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SUMMARY 
The Architecture/Engineering/Construction (AEC) industry still lacks an 

approach to represent and analyze intermediate function requirements arising from 

supporting the construction processes and maintaining the temporary stability of in-

progress structures. This inadequacy may greatly affect the capability of 

constructability analysis with respect to the executability of construction schedules. 

Thus, the present research attempts to develop an approach to represent and analyze 

intermediate function requirements. 

The component state concept and In-Progress Product Core Model (IPPCM) 

as well as Product-Oriented Scheduling Technology are developed to abstract the in-

progress configuration of a facility product using a component state network. Each 

component state has both temporal and spatial attributes. In this way, the construction 

life cycle of a product component can be described in terms of a state chain, and the 

functional dependencies between two in-progress product components can be 

abstracted with respect to interval-to-interval relationships between component states. 

Furthermore, the duration of a component state is further divided into an active phase 

and a quiescent phase, leading to better description of the requirement and availability 

conditions of intermediate functions. 

An intermediate function can be semantically modeled in five layers. Based on 

such a semantic model, intermediate function requirements can be evaluated from 

both temporal and spatial perspectives. Moreover, the temporal logics residing in 

construction methods can be captured as intermediate function requirement 

knowledge from three perspectives, namely the construction life cycle of a single 

component, the functional interdependencies between two in-progress components, 

and the availability condition of an intermediate functionality with respect to a group 
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of in-progress components. A schema for representing this knowledge has been 

developed using two product-oriented constructs, namely component type and state 

type, and four categories of temporal interval relationships, which are precedent, 

coincident, coupling, and disjoint relationships. 

An information framework is developed for intermediate function analysis. 

This framework integrates five project modeling perspectives, namely product, 

process, intermediate function, space, and resource. Based on such a framework, four 

analysis methodologies have been developed. The first and second analysis 

methodologies can be used for detecting unfulfilled intermediate function 

requirements from the temporal and spatial perspectives, respectively. The third 

analysis method facilitates resolving compatible intermediate function requirements 

by co-matching multiple users and providers from different trades, and the fourth 

method can be applied for identifying bottleneck states which determines the earliest 

availability of intermediate functionalities. 

A software prototype 4D Intermediate Function AnalysiS Tool (4D-iFAST) is 

developed for implementing the information integration framework and the analysis 

methodologies as well as 4D simulation. Additionally, the existence vector together 

with the Boolean operations simplifies the time-window analysis for intermediate 

function analysis, and also makes it possible to implement spatio-temporal analysis 

without having to conduct 4D simulation. Two industry cases are used for validating 

the developed intermediate function analysis tools. These case studies indicate that the 

construction period can be shortened and that the collaboration on realizing 

intermediate functions among trades can be improved by using the developed tools. 
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NOMENCLATURE 

IPPCM In-Progress Product Core Model 

AEC Architecture/Engineering/Construction 

POST Product Oriented Scheduling Technique 

4D-iFAST 4D intermediate Function AnalysiS Tool 

DFM Design For Manufacturability 

GIS Geographic Information System 

EPM Extended Product Model 

STP State Transition Point 

CPM Critical Path Method 

S  Start (time point attribute of state) 

AF Active (time point attribute of state) 
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SD  State Duration (interval attribute) 

AD  Active Duration (interval attribute) 
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PS  Performer State 

.A Active Phase of State 

.Q Quiescent Phase of State 
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The Sj state of the Ci component  
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CHAPTER 1 INTRODUCTION 

1.1 Research Motivation and Background  

This dissertation presents the main works of the research project In-Progress 

Product Core Model (IPPCM), a subproject of the Collaborative Engineering Program 

(CEP), which is a collaboration sponsored by the Infocomm Development Authority 

of Singapore (IDA), National University of Singapore (NUS), Sun Microsystems, the 

Asia Pacific Science & Technology Center (APSTC) of Sun, and Singapore 

Technologies Electronics (Info-Software Systems) Pte. Ltd. One critical motivation of 

the IPPCM project is to help the Architecture/Engineering/Construction (AEC) 

industry improve the constructability of a facility project through the systematic 

analysis of construction requirements. In this connection, the construction 

requirements should be represented, communicated, and then evaluated before the 

commencement of project construction. 

Construction requirements are capabilities and conditions to which both the 

construction process system and the in-progress facility product must conform. 

Otherwise, the construction processes may be delayed or the temporary stability of the 

in-progress structure may not be sustained during construction. Similar to software 

requirements (Cysneiros and Yu 2004), construction requirements can be classified 

into two categories: functional and non-functional. Functional construction 

requirement defines the temporary functionalities required by in-progress facility 

products and construction performers, while non-functional requirement indicates the 

availability and performance capacity of construction resources. The fulfillment of the 

former generally requires the support of the in-progress facility, while the fulfillment 

of the latter indicates the availability of the construction resources that are 

prerequisites for construction processes. Specifically, the constraint-based scheduling 
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research (Shen and Chua, 2005; Chua and Shen, 2005; Chua et. al., 2003) focuses on 

incorporating non-functional construction requirements into construction schedules. 

The functional construction requirements can be further divided into two 

subcategories: transformation functions and intermediate functions. Transformation 

function describes different types of operational functionalities required for 

transforming the material compositions, shapes, and locations of product components 

or resource components, while intermediate function represents various kinds of 

functionalities provisionally required for supporting the construction performers and 

for maintaining the temporary stability of an in-progress structure. The present study 

focuses on analyzing intermediate functions.  

Additionally, more types of intermediate functionalities will be discussed in 

Section 4.1 of Chapter 4. Besides supporting construction loads and maintaining 

stability of in-progress structures Intermediate functions, intermediate functions are 

also required for providing a workface, providing protection for finished works and 

providing safe work environments. This research will concentrate on analyzing the 

first two subcategories of intermediate functionalities. This analysis may help 

designers and constructors to identify the unfulfilled intermediate function 

requirements and then resolve them to improve the constructability of a facility 

project.  

 

1.2 Construction Requirement Analysis for Improving 

Constructability 

The AEC trades have recognized that systematic analysis of construction 

requirements, especially intermediate function requirements, plays an indispensable 

role in improving the constructability of a facility project. More and more clients are 
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keeping prudent watch on the cost of realizing the intermediate functions with respect 

to the selection of construction methods. Designers are becoming aware of the 

importance to concurrently consider both usage requirements from the clients and the 

intermediate function requirements from the constructors, while the specialist 

constructors and fabricators should make their special intermediate function 

requirements known to the designers as early as possible. The construction contractors 

and subcontractors should also collaboratively plan their construction schedules to 

ensure that the upstream works can provide the intermediate functionalities for 

executing the downstream processes. Meanwhile, construction schedules should also 

be examined from the intermediate function viewpoint in order to ensure the 

accessibility of labor and heavy equipment and to make certain the temporary stability 

of the in-progress structure as well as to reduce interferences between/among trades. 

Furthermore, several alternatives for resolving the intermediate function requirements 

may be explored in order to shorten construction schedules and decrease excessive 

expenditure on temporary facilities. 

 From a pragmatic viewpoint, early consideration and evaluation of crucial 

intermediate function requirements can result in improved executability of a 

construction schedule, which is a key aspect of constructability. The improved 

executability often benefits the constructors in higher productivity and safer work 

environment, leading to profit increase. Meanwhile, the improved executability of a 

construction schedule can also benefit the designers by decreasing the number of 

change orders arising from the late identified intermediate function requirements, 

resulting in earlier delivery of engineering drawings with improved constructability. 
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1.3 Challenges for Intermediate Function Analysis 

Although the AEC industry has been aware of the importance of 

constructability analysis for decades and even developed various programs to improve 

constructability, the systematic analysis of intermediate function requirements is still 

limited. A major reason is that the AEC practitioners still encounter at least four 

challenges in analyzing intermediate function requirements. The inadequate 

evaluation frequently results in project delays and additional costs in the form of 

frequent change orders, increased reworks, low productivity, and work space 

congestion as well as expensive and unsafe access to the in-progress works. 

Firstly, the AEC industry still lacks a semantic model to represent the 

intermediate function requirements. Such requirements are frequently represented in 

the format of natural language. Sometimes, an even worse situation is that the 

intermediate function requirements and the knowledge to resolve these requirements 

are only stored in the engineers’ mind instead of being recorded on paper or in 

computer systems. The natural-language-based representation may cause ambiguity 

among the participants, and also makes it very difficult for employing information 

technology to facilitate the analysis of intermediate function requirements. Moreover, 

this may also hinder the communication of intermediate function requirements among 

the participant trades, especially those dispersed in distinct engineering fields. 

Secondly, the current integration among prevailing project management 

software is inadequate for rendering the information required for analyzing the 

intermediate function requirements. The integration between the construction 

requirement modeling perspective and the other project modeling perspectives, like 

product, process, resource, and space, is still rudimentary and unstructured. This 

means that the AEC practitioners lack an information integration framework for 
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conducting intermediate function requirement analysis. Additionally, the delay of 

constructability improvement ideas may also be exacerbated due to lack of an 

information integration framework. 

Thirdly, the AEC industry still lacks methodologies to analyze the 

intermediate function requirements. Although many AEC companies have established 

internal constructability improvement programs and constructability review 

procedures, the analysis of intermediate function requirements is frequently conducted 

ad hoc instead of in a systematic manner, leading to construtability improvement 

decisions that are too late to be applied. A major reason is that construction engineers 

lack analysis tools for systematic analysis of intermediate function requirements. 

Lastly, the inefficient practice of intermediate function analysis may also arise 

from the fragmented nature of facility project management. Angelides (1999) has 

classified the fragmentation of project management into three categories, namely, 

sequential realization, segmented view of product quality, and fragmented project 

control. Specifically, some research indicates that such project perspectives as 

construction scheduling and cost estimating are often managed and optimized from 

the viewpoint of a specific organization rather than from an overall project 

perspective (Hendrickson and Au, 1989).  

Another fragmentation category is the different modeling perspectives 

employed by different trades for managing construction requirements. For example, 

designers tend to evaluate and specify construction requirements from the product 

perspectives, while constructors often specify their construction requirements with 

respect to construction schedules. This often results in that the solutions for resolving 

some intermediate functions, when optimized only within one organization, may 

impair overall constructability. Specifically, some trades may be unaware or negligent 
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of their responsibilities for realizing the intermediate functionalities required by the 

fellow trades. 

A comprehensive literature review in the following chapter shows that 

construction requirement management has been studied along several research trends. 

These studies have made significant contribution to improve the constructability of 

facility projects. However, the AEC project management community still finds it 

difficult to derive an analysis framework or approach from these previous studies in 

order to represent and evaluate intermediate function requirements. Specifically, the 

requirement and availability of an intermediate functionality is inadequately studied in 

many previous studies, while the 4D research does not provide adequate information 

for evaluating the time-dependent spatial interaction between the users and the 

provider of an intermediate functionality.  

 

1.4 Research Objectives 

This research project primarily attempts to develop a framework for 

intermediate function analysis. Such a framework will comprise the concept and 

semantic model for representing the intermediate function, the representation schema 

for describing the intermediate function requirement knowledge, the information 

integration framework for deriving the attributes of intermediate functions, and the 

analysis methodologies for detecting unfulfilled intermediate function requirements. 

The present study also attempts to explore the feasibility of using 4D simulation to 

facilitate intermediate function analysis. In this way, the executability of a 

construction schedule can be improved, consequently leading to improved 

constructability of a facility project and better collaboration among the trades. 
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To achieve this general goal, this research project is intended more specifically 

for delivering the following research components: 

(1) Model to Describe In-progress Configurations of Facility   

This research seeks to extend the traditional product decomposition model for 

describing the configuration of an in-progress facility and for representing 

intermediate functions. Accordingly, a scheduling method will be developed to derive 

temporal attributes associated with the in-progress facility product. 

 

(2) Concept and Semantic Model to Abstract Intermediate Functions  

The present research attempts to develop the concept and semantic model to 

abstract an intermediate function requirement. Such a concept should be less 

dependent on a specific engineering domain so that it can be easily understood and 

applied by the trades distributed in different engineering domains. Accordingly, the 

semantic model should allow integrating the intermediate function modeling 

perspective with other project modeling perspectives like product, process, and space 

perspectives. In this way, the temporal and spatial attributes in other models can be 

mapped onto the intermediate function model. 

 

(3) Schema for Representing Intermediate Function Requirement Knowledge  

A schema for representing intermediate function requirement knowledge will 

be developed for capturing the temporal logics residing in construction methods, 

especially those concurrent relationships. Such a knowledge representation schema 

can also be used for facilitating the description of in-progress facilities and the 

analysis of intermediate function requirements. 
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(4) Information Integration Framework 

An information integration framework will be developed for associating the 

intermediate function modeling perspective with such project modeling perspective 

models as process, product, resource, and space. These modeling perspectives are 

required for deriving temporal and spatial attributes for intermediate function analysis. 

 

(5) Intermediate Function Analysis Methodologies 

The present study attempts to develop analysis methodologies for evaluating 

the temporal and spatial perspectives of intermediate functions requirements, since 

these two perspectives are the common characteristics of all intermediate function 

requirements. These analysis methodologies can be used for detecting the unfulfilled 

intermediate function requirements. Meanwhile, this study also plans to develop an 

analysis methodology for identifying the critical factors that determine the availability 

of some intermediate functionalities, which restrict the commencement of the 

associated construction activities. This may help planning engineers reduce 

construction periods. 

 

(6) Software Prototype for Implementing Analysis Methodologies 

A software prototype will be developed to implement the information 

integration framework and the analysis methodologies as well as 4D simulation. 

Additionally, the capability of the 4D simulation for facilitating intermediate function 

analysis will also be explored using the prototype. 
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(7) Case studies for Validating the Developed Analysis Framework 

This research will validate the developed intermediate function analysis 

framework with two case studies. The first is the construction of a bridge deck using 

balanced cantilever approach, while the second is the construction of the entrance gate 

of a nursing home. These two case studies will be intentionally amended to keep 

confidential some sensitive data, while the characteristics of the evaluated 

intermediate function requirements should be kept as original. 

 

1.5 Research Methodology 

 

Figure 1.1 Research Procedure 
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The present research project adopts the research methodology illustrated in 

Figure 1.1. The Figure shows the sequence of the key research steps, which are 

explained as follows: 

(1) Collect Research Data 

In the initial stage, various types of research data related to construction 

requirement management were collected for the succeeding works. There were four 

types of data: academic publication, expert interviews, design drawings, and 

construction schedules. There were more than 300 papers collected and reviewed, and 

around two thirds of them were referenced by the present research.  

The author of the present research had attended site meeting for more than 100 

hours in order to understand the current practice of construction requirement 

management as well as to collect various construction requirements. Meanwhile, the 

author also conducted face-to-face interviews with 24 AEC experts. Among them, 

there were one directing manager of a construction company, two senior project 

managers, twelve construction site engineers, three construction planner, three 

designers, and three consultants for project management. These interviews were 

required for understanding the barriers in construction requirement management and 

also for collecting the suggestions on improving the current construction requirement 

management. These interviews also helped verify the developed intermediate function 

analysis framework. 

Two real cases had been collected for the present research with respect to the 

design drawings and the construction schedules as well as other project documents 

like site photos and progress records. The two case studies were intentionally 

amended to keep confidential some sensitive data, while the characteristics of the 

evaluated intermediate function requirements were kept as original. 
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(2) Review Academic Literatures 

The review of academic literatures covers such research fields as 

constructability analysis, function modeling, facility product modeling, construction 

sequence modeling, concurrent relationship modeling, and space requirement analysis 

as well as 4D simulation. This review provided a solid foundation for the present 

research, and also helped explore the inadequacy of the developed function modeling 

approaches and integrated information frameworks for construction requirement 

analysis.  

(3) Categorize Construction Requirements 

The construction requirements gathered through case studies and site 

interviews as well as academic literatures were categorized by capturing their key 

characteristics or attributes since the AEC industry has not proposed a categorization 

schema or terminology dictionary for classifying construction requirements. Such 

semantic technologies as ontology modeling approach may be helpful in this research 

stage. The preliminary study indicated that requirements can be divided to functional 

and non-functional sets, which require different representation models and analysis 

approaches. Therefore, construction requirements were categorized at early stage in 

order to scope the research. Particularly, intermediate function requirement is the 

focus of the present study. 

(4) Develop In-Progress Product Core Model (IPPCM) 

The In-Progress Product Core Model (IPPCM) was developed before 

addressing the concept of intermediate function since IPPCM comprises the 

“component state” concept that is necessary for the semantic representation of an 

intermediate function. The temporal and spatial attributes of a component state will be 

defined. Particularly, the temporal relationships between component states will be 
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represented using interval-to-interval relationships developed in the interval algebra 

instead of traditional point-to-point precedent relationships. 

(5) Develop Semantic Model to Represent Intermediate Functions 

The semantic representation of intermediate function requirement knowledge 

is explored in this research step. Literature reviews have indicated that there are 

several ways to model a general function. According to the categorization of 

construction requirements, this study concentrated on developing the semantic model 

of intermediate function, which is a subcategory of functional construction 

requirements. The present study defined an intermediate function from both temporal 

and spatial perspectives, assuming that an intermediate function can be represented as 

the temporal and spatial interaction between the user and the provider.   

(6) Develop Schema for Representing Intermediate Function Requirement 

Knowledge 

Based on the developed IPPCM and the semantic model of intermediate 

functions, the temporal logics residing in construction methods can be captured in 

terms of intermediate function requirement knowledge. Accordingly, the 

representation schema can be developed. Meanwhile, the study in this stage also helps 

improve the concepts and methodologies for modeling an in-progress product. 

(7) Develop Integrated Framework for Intermediate Function Analysis 

The developed IPPCM provides a kernel to integrate the product, process, and 

space perspectives of a facility project. Such an integration structure should be further 

extended to integrate the resource model and the intermediate function model, since 

either a function provider or a function user may comprise resource components like 

labor and heavy equipment. In this way, the integration framework, linking five 
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project modeling perspectives, can provide the information for analyzing intermediate 

function requirements using the analysis tools developed in the next step. 

(8) Develop Intermediate Function Analysis Methodologies 

The intermediate function analysis can be conducted from three perspectives, 

namely temporal interaction between user and provider, spatial interaction between 

them, and bottleneck state for determining the availability of an intermediate 

functionality. Accordingly, the intermediate function analysis tools can be developed 

from these three viewpoints. The analysis results can be used to detect the unfulfilled 

intermediate function requirements. It was also expected that the analysis results can 

help elicit alternative solutions to better realize the intermediate function requirements. 

(9) Prototype Intermediate Function Analysis Approach 

A software prototype will be developed for two main purposes: to implement 

the developed analysis approaches and to conduct 4D simulation for visualizing 

IPPCM. Accordingly, the two key parts of the prototype are the inference engine to 

evaluate the temporal and spatial interactions and the 4D simulation engine for 

visualizing the construction progress described by the IPPCM. The Access desktop 

database will be used for storing the model data, and the Delphi 5 (Object Pascal 

language) will be used for coding most parts of the prototype software. Additionally, 

the prototype will import the construction schedules generated by Ms Project 2003 

and the 3D models created by AutoCAD 2000.  

(10) Validate Concepts and Analysis Methodologies against Two Case Studies 

The developed concepts and analysis methodologies will be validated against 

two case studies collected from industry experts. Moreover, the engineering meaning 

or explanation of the inference results will be further studied in this research stage. 

 13



 

Additionally, Figure 1.1 also shows that some research results produced in the 

downstream stages were incorporated into the earlier stages for enhancing the 

corresponding research results. Specifically, the development of the semantic model 

for representing intermediate functions required that the component state concept 

developed in the preceding step be amended by including the spatial attribute in order 

to accommodate the representation and evaluation of the spatial perspective of an 

intermediate function. Meanwhile, the development of the semantic model of 

intermediate functions indicated that the distinction of active and quiescent phases of 

a component state can better describe the requirement and availability of an 

intermediate function, and the study of cross-component state relationships also 

indicated that this distinction can facilitate representing functional interdependencies 

between in-progress product components.    

  

1.6 Organization of Dissertation 

This dissertation is organized as follows: 

This chapter introduces the background and motivation of the present research. 

The importance of conducting intermediate function requirement analysis for 

improving the constructability of a facility project is addressed, and the challenges 

arising from intermediate function analysis are also outlined. In this connection, the 

research objectives and research methodology are stated. Additionally, the 

organization of this thesis is also described by summarizing the contents of each 

chapter. 

Chapter 2 presents a comprehensive review of the academic publications 

related to the present research. The literature reviews on constructability analysis 

indicate that construction requirement analysis should be the fundamental issue of 
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constructability analysis. Subsequently, such research topics as modeling engineering 

requirements, modeling facility product, representation of construction sequencing 

requirements, concurrent relationships among activities, and modeling space 

requirements are respectively reviewed. These reviews indicate that a systematic 

approach for analyzing intermediate function requirement should be developed to 

advance the research and practice of construction requirement analysis. 

Chapter 3 presents the key issues for developing an In-Progress Product Core 

Model (IPPCM). The structure of the IPPCM is presented, and this is followed by 

introducing the concept of component state along with its temporal and spatial 

attributes. Based on this concept, the construction life cycle of a product component 

can be represented as a sequence of component states, and the functional 

interdependencies between two in-progress components can be described with respect 

to interval-to-interval state relationships. In this way, the in-progress configuration of 

a facility product can be described by a component state network. Lastly, the Product 

Oriented Scheduling Technique (POST) is developed for deriving the temporal 

attributes of component states.  

Chapter 4 provides a semantic model for representing an intermediate function 

in five layers. Subsequently, this chapter presents a schema for representing 

intermediate function requirement knowledge. It is developed for capturing the 

temporal logics residing in construction methods from three perspectives, namely the 

construction life cycle of a single product component, the functional 

interdependencies between two in-progress components, and the availability 

conditions for a group of provider components. This chapter also presents an 

information integration framework for integrating five project modeling perspectives 

required by intermediate function analysis. These five perspectives are product, 
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process, resource, space, and intermediate function. The integration is realized 

through work package, performer state package, requirement state package, and 

functional state package as well workspace and state space.  

Chapter 5 presents four analysis methodologies. The first and second 

methodologies are developed for evaluating the temporal and spatial interactions 

between the user and the provider of a single intermediate function. The third 

methodology extends the first methodology from a single intermediate function to a 

set of compatible intermediate functions by co-matching their requirement and 

availability time-windows. The fourth methodology can be used for identifying 

bottleneck states that constrain the commencement of the associated construction 

activities. 

Chapter 6 presents the research prototype 4D intermediate Function AnalysiS 

Tool (4D-iFAST) to implement the information integration framework and the 

analysis methodologies as well as 4D simulation. The potential benefits from using 

4D simulation for intermediate function analysis is first explored, and then the 

architecture and the main data structure of the prototype are presented. The 

mechanisms of the inference engine for detecting unfulfilled requirements and the 4D 

simulation engine for visualizing construction schedule are subsequently introduced. 

Particularly, the existence vector concept and the corresponding Boolean operations 

are developed, which make it feasible to detect the unfulfilled temporal and spatial 

interactions without the need to conduct simulation. 

Chapter 7 presents two case studies used for validating the developed 

intermediate function analysis framework. These two case studies also demonstrate 

the application of the developed concepts, semantic model, knowledge representation 

schema, and analysis methodologies. The first case study illustrates the representation 
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of intermediate function requirement knowledge and also demonstrates the 

identification and analysis of the bottleneck states, while the second case study is used 

to illustrate the co-matching between the requirement time-windows and availability 

time-windows of two substitutable temporary support functions.  

Chapter 8 first summarizes and discusses the research findings and then 

presents the limitations and the future works. 

Finally, the Appendix contains a list of publications in journals and 

conferences arising from the current research that have been published or accepted for 

publication up to this point in time. 
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CHAPTER 2 LITERATURE REVIEW 

The present study relates to such research fields as constructability analysis, 

function modeling, facility product modeling, representation of construction 

sequences, concurrent relationships, and space requirements in construction planning 

as well as 4D simulation. These research findings indicates that the previous studies 

are inadequate for analyzing intermediate function requirements. 

 

2.1 Construction Requirement Analysis for Improving 

Constructability  

The concurrent engineering philosophy advocates that the requirements 

occurring in the downstream activities should be considered and evaluated in the 

upstream activities as early as possible. A number of studies indicated that Design For 

Manufacturability (DFM) is an important approach to implement concurrent 

engineering philosophy in developing manufacturing products (Sapuan et. al., 2006; 

Pham and Dimov, 1998; Braunsperger, 1996; Youssef, 1994;   Yeh, 1992; Ranky, 

1994). Compared with the traditional approaches for managing the development life 

cycle of a manufacturing product, the DFM idea stresses that the 

manufacturing/processing requirements should be considered and evaluated during 

the design phase. Besides fabrication and assembly requirements, the manufacturing 

requirements may cover the requirements from procurement, shipping, test, and even 

maintenance. In a DFM team, these manufacturing requirements from the factories are 

often concurrently considered with the usage requirements from the customers. In this 

way, many potential conflicts arising from manufacturing processes can be identified 

and proactively prevented, leading to high productivity and reliability with decreased 

defective product ratio. 
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Similar to the application of DFM in the manufacturing industry, the AEC 

industry has mooted its constructability concept as a critical approach for improving 

the development of a facility product. The constructability concept stresses the 

optimum usage of construction knowledge in the early development phases such as 

design and planning in order to achieve overall project objectives. (CII, 1986; 

Construction Management Committee of the ASCE Construction Division, 1991). 

This approach highlights the importance of managing construction requirements since 

a large part of construction knowledge and experience can be represented and 

managed with respect to construction requirements. Therefore, construction 

requirements should be one of the fundamental and dominant concepts in 

constructability analysis. 

The constructability concept further stresses that the construction requirement 

analysis should be conducted as early as possible. Specifically, the construction 

requirements should be incorporated into both facility designs and construction 

schedules in early project phases (CII, 1986; CII, 1987a). The less effective “late 

constructability review” program should be replaced with the more efficient “early 

constructability analysis” approach (CII, 1987a). The “”late constructability review” 

program is often conducted when design has been completed or nearly finished. At 

that stage, even if some valuable solutions to resolve the crucial construction 

requirements have been produced, these solutions may not be incorporated into the 

related designs and schedules due to tight project schedule and the potential adverse 

relationships among the related parties. This means that the construction requirements 

should be identified in the early development phases to make sure that some critical 

construction requirements may not be omitted or neglected by the project players. 
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The importance of managing construction requirements can also be seen from 

the guidelines to improve constructability in such development phases as conceptual 

planning (CII, 1987b; Tatum, 1989), engineering and procurement (CII, 1986c; 

O’Connor et. al., 1987), and even field operations (CII, 1988; O’Connor and Davis, 

1988; Fisher and O’Connor, 1991). These principles for eliciting constructability 

improvement ideas suggest that the various construction requirements should be 

systematically identified and incorporated into the analysis during pre-construction 

stages. Specifically, project plans, designs, procurement schedules, and site layouts 

should be ‘construction-driven’. 

Several previous studies indicate that managing construction requirement 

information plays an indispensable role in a successful constructability improvement 

program. A number of constructability improvement programs have been proposed 

specifically for managing construction requirement information from different 

management scopes and levels (Russell and Gugel, 1993; Radtke and Russell; 1993; 

Russell et. al., 1994). A common focus of these programs is to manage various 

channels and interfaces for exchanging the construction requirement information and 

for incorporating this information into the facility designs and construction plans. 

Some studies indicate that the lack and delay of construction requirement 

information is a major barrier causing a hindrance to the improvement of 

constructability (CII, 1993c). Specifically, the timely exchange of construction 

requirement information between the workflow of constructability review processes 

and the workflow of project development processes should be regarded as one of the 

crucial factors of successful constructability improvement analysis (Anderson et al. 

2000). This means that if the construction requirement information is not 
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systematically recorded, communicated, and analyzed, the constructability of a 

facility project may be compromised. 

 

2.2 Engineering Function Modeling and Analysis 

In general, a lot of design intentions and rationale can be represented by 

functions. Function modeling is an approach to elicit, express, and evaluate the design 

intentions of an artifact (Lee, 1997). Functionality modeling can be used for reasoning 

the design rationale of mechanical and electrical products (Chakrabarti and Blessing, 

1996; Chakrabarti and Bligh, 1996; Deng et. al., 1998; Deng, 2000, Deng et,. al., 

2000a; Deng et,. al., 2000b; Deng et,. al., 2000c). Function modeling can also be 

applied for redesigning a product, whereby the designers can locate functional 

redundancies by exploiting potential functionalities of the designed components 

(Umeda et; al., 1992). Additionally, other researchers have explored the application of 

function modeling in fault diagnosis (Hawkins and Woollons, 1998; Kumar and 

Upadhyaya, 1995; Hawkins, 1994). This implies that intermediate function 

requirement can be also be modeled from the function perspectives. 

Moreover, some studies indicate that the function model of the artifact is 

necessary to convey the engineering behaviors or functionality characteristics that 

cannot be represented solely by its product model. This is because the mapping 

relationship between the functionality elements and the product components is many-

to-many instead of one-to-one (Kumar and Upadhyaya 1995). 

Some ontological studies indicate that function model can be used to explicitly 

communicate designer’s intentions across different technical domains (Kitamura and 

Mizoguchi, 1999; Kitamura and Mizoguchi, 2003). Specifically, Sasajima et. al. 

(1995) developed a function knowledge representation schema that comprises a set of 
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generic functions and a collection of meta-functions containing the interdependencies 

between functions. This schema facilitates explaining the design intentions of a 

complex engineering system across a design team, whose members may come from 

different engineering domains.  

The function concept plays an important role in representing and 

communicating requirements and intentions in various engineering domains, but the 

term “function” seems too overloaded in different contexts. In many previous studies, 

the term “function” is frequently confused with the terms “behavior” or “purpose”. 

Several studies suggested that “function” should be clearly distinguished from 

“behavior” and “purpose” (Chittaro et; al., 1993; Larsson, 1996). The term “purpose” 

is described from the perspective of the user, who can select different engineering 

solutions to achieve it. On the other hand, the “behavior” is inherent to the product 

(engineering solution), and is immaterial of the purposes of the potential user. This 

distinction can help explicitly represent functional purposes and the engineering 

solutions to achieve them. 

Previous studies indicate that a function can be represented from three 

viewpoints: user, provider/product, and the relationship between them. Chittaro and 

Kumar (1998) suggested that a function can be defined from two perspectives: 

operational and purposive. The former is a product-oriented definition that a function 

is a relationship between the input and output of a product, while the latter is a user-

oriented definition that depicts a function as the purpose, goal, or intention from users 

of a specific product. Similarly, a function is also suggested to be modeled from either 

purpose (user-oriented) or action (provider-oriented) perspective (Winsor and 

MacCallum, 1994). Likewise, Chandrasekaran and Josephson (2000) suggest that a 

function can be described from either an environment-oriented viewpoint (similar to 
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purpose) or a device-oriented viewpoint (similar to operation/action). Chakrabarti 

(1998) proposes that a function can be abstracted as behaviors in the component level 

(provider-oriented) and purposes at a higher structure/system level (user-oriented). 

On the other hand, there are also other studies that define function as the 

relationships between the users’ requirements/purposes and the engineering behaviors 

exhibited by a product system (Bobrow, 1984). The present study defines an 

intermediate function, following the relationship-oriented approach, as the functional 

interdependencies between the function user (workers, equipment, or in-progress 

structures) and the provider (building products, temporary facilities, or site 

components). 

Furthermore, several modeling methodologies have been proposed to represent 

various engineering behaviors or functionalities. There have been mainly two 

approaches: natural language (verb-noun pairs) and mathematical representation 

(transformation between input and output with respect to mathematical equations) 

(Chakrabarti and Bligh 2001; Deng 2002). Moreover, several studies have indicated 

that the functionalities of a product system are determined by the engineering 

behaviors of its constituent components, which depend greatly on their physical states 

(Keuneke, 1991; Ullman, 1993; Umeda et al. 1996; Qian and Gero, 1996). 

Some studies indicate that function analysis can help incorporate 

manufacturing process requirements into the redesigns of manufactured products 

(Hayes, 1995). This implies that function analysis as well as function modeling can be 

used for improving constructability of a facility project with respect to evaluating 

intermediate function requirements. Several function analysis tools, like Value 

Engineering (VE) or Value Analysis (VA) (Sato, 2005; Fisk, 2003; Mukhopadhyaya, 

2003; Younker, 2003; Dhillon, 2002) and Quality Function Deployment (QFD) (Lee 
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and Arditi, 2006; Eldin and Hikle, 2003; Ahmed et. al., 2003; Pheng and Yeap, 2001; 

Mallon and Mulligan, 1993), have been widely accepted by the manufacturing and 

construction industries. However, most of the existing function analysis tools are not 

suitable for abstracting and evaluating such construction requirements. The major 

reason is that they mainly focus on modeling the final usage functionalities with 

respect to the manufactured/constructed product. As such, they are inadequate to 

represent and evaluate the temporal attributes of intermediate function requirements 

associated with an in-progress facility product, whose physical states are frequently 

transited by construction processes. 

 

2.3 Modeling Facility Product  

Function modeling and analysis is closely related to product modeling. 

Specifically, the key process of QFD analysis compares the functionalities expected 

by the customers/clients with the product features that can be derived from a product 

model. The critical procedure of VA is to maximize the ratio of the expected values 

(functions) to the expenditure, which can be computed from the physical and cost 

attributes of the associated product components. 

Several studies on facility product modeling have been conducted in the 

context of Computer-Integrated Construction (CIC) (Bjork and Penttila, 1989; Bjork, 

and Penttila, 1991; Bjork, 1992; Bjork, 1994). Most of these works focus on the 

methodologies to decompose a facility product and to structure the product modeling 

data. Meanwhile, several classification schemata have also been proposed in terms of 

terminology indexes for standardizing product decomposition. Some prevailing 

classification schemata are Uniclass (Crawford et; al., 1997), CI/SfB index (Alan and 

Wilfred, 1971), CAWS (Common Agreement of Work Sections for building works) 
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(Allott, 1998), NSB (National Building Specification), and Building (RIBA 

Enterprises, 2006). These classification schemata are typically based on similar 

hierarchical approaches defined by the associated terminology dictionaries. These 

classification schemata facilitate modeling a facility product by providing a common 

product decomposition hierarchy that may be easily referenced by fellow trades. 

Such modeling languages as Object-Oriented language (Froese, 1996) and 

Express-G language (ISO/DIS 10303-11, 1992) have been applied to model facility 

products, and various representation schemata using these two languages have been 

proposed. Among these schemata, STEP (ISO/DIS 10303-1, 1993; Palmer, 1992) and 

IFC (IAI, 2004) are the most prevalent. However, most of these existing 

representation schemata as well as the product terminology indexes focus on 

modeling the completed facility project. Specifically, the physical attributes and the 

geometric attributes often describe the engineering characteristics of a product 

component in its completed state. Thus, the changing engineering characteristics of an 

in-progress product component along its construction life cycle are inadequately 

abstracted, leading to difficulties in using these existing product models to derive the 

temporal attributes of their engineering behaviors, which are necessary for evaluating 

the availability of an intermediate functionality. 

Another important issue relating to facility product modeling is the integration 

capability of a product model to associate with other project perspective models 

(Bjork, 1992). A number of studies have proposed similar integration frameworks to 

link such project perspectives as product, process, resource, and contracting 

organization. Froese (1996) has presented a comprehensive review on many of these 

integration frameworks. 
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The integration of the product and process models forms the foundation for 

automatic schedule generation. This can be seen from a comprehensive comparison of 

various automatic schedule generation systems by Chevallier and Russell (1998). 

However, many of these automatically generated construction schedules may not have 

practical application. Some reasons, like the decomposition level of processes and 

construction method representation, have been put forward (Fischer and Aalami, 1996, 

Stumpf et al. 1996). Another possible cause, as a result of the present research, may 

be that the availability of an intermediate functionality that determines the 

commencement of the associated construction process is inadequately accounted for 

in previous works. 

Previous integration frameworks use the construction state concept as the 

bridge between product and process models. Coupled with the similar concept of 

element activity, the component state concept enables the mapping of the construction 

processes onto the associated product components to depict the in-progress status of a 

product component (Zozaya-Gorostiza, 1989; Waugh, 1990; Jagbeck, 1994; Fischer 

and Froese, 1996; Luiten and Tolman, 1997). However, the construction state concept 

does not distinguish between the active state (when the associated construction 

activity is in progress) and the quiescent state (when no construction activity is 

performed on the in-progress product component). This leads to the deficiency in 

depicting the transitive engineering behavior of an in-progress product component. 

For example, the support-load functionality provided by an scaffold is only available 

when its erection has been completed.    

Compared with the construction state concept, the component state concept 

distinguishes the engineering behaviors between the active and quiescent state phases 

(Chua and Song, 2002). This distinction is necessary to better represent the 
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intermediate function requirements. Component state describes both the changing 

material compositions and the engineering behaviors of a product component along its 

construction life cycle (Chua and Song, 2001; 2003). Additionally, the application of 

component state condition has been explored to integrate segmented schedules 

developed by different trades (Chua and Song, 2001; 2003). Furthermore, the 

component state concept can also be used to describe the intermediate function 

requirements and to integrate project modeling perspectives (Song and Chua, 2003). 

 

2.4 Representation of Construction Sequencing Requirements 

Many functional construction requirements for supporting construction 

processes can be described from the construction sequence viewpoint. A construction 

sequence indicates that the downstream activities may require functionalities realized 

in upstream construction. A large part of these functionalities are intermediate 

functionalities. The representation of construction sequencing requirements has been 

studied along two main research trends.  

The first trend is that the construction sequencing knowledge can be 

represented as heuristic rules with various knowledge constructs and syntaxes 

(Navinchandra et. al., 1988; Morad and Beliveau, 1994; Dzeng and Tommelein, 1996). 

Most of these representation methodologies capture the sequencing rules from the 

process viewpoint as well as from the product viewpoint. They attempt to represent 

the reasoning logic in terms of cause-consequence relationships that associate the 

precedence relationships between processes and the functional interdependencies 

between product components. Such knowledge can be used for automatic schedule 

generation by deriving precedence relationships from product models.  
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Essentially, for example, a finish-to-start precedent relationship between an 

activity AX (constructing product component CX) and an activity AY (constructing 

product component CY) can be reasoned out from the functional interdependency that 

component CX supports component CY. Spatial factors such as topological 

relationships between or among product components (Chernef et. al., 1991) and 

installation directions (Morad and Beliveau, 1994) have also been incorporated into 

the heuristic rules for improving their ability to derive precedence relationships. 

However, the construction states of a product component, during which the 

component provides or requires some intermediate functionalities, have not been 

integrally considered in these representation schemata. This poses some difficulty in 

accurately describing the temporal availability of some functional interdependencies 

between in-progress product components. 

 

Figure 2.1 Precondition and Post-condition of Construction Activity 

The second trend is that the construction sequence knowledge can be 

represented as the pre- and post-conditions of a class of activities in terms of 

construction states of product components (Froese, 1996; Luiten and Tolman, 1997). 

Figure 2.1 shows that the precondition, defining the trigger of the start event of the 

associated process, comprises a set of prerequisite construction states of the associated 

product components, while the post-condition defines the transitions to new 
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construction states of the product components worked on by the associated process 

upon its completion. This Figure also illustrates that one product component can have 

a number of construction states to describe the sequence of construction processes that 

work on the component.   

However, the construction state (basic knowledge construct) does not further 

distinguish the active and quiescent state phases (Song and Chua, 2006). Accordingly, 

the differences of behavioral characteristics of a product component between its active 

and quiescent state phases cannot be captured by construction state conditions, so that 

the pre- and post-conditions may not be sufficiently defined in certain circumstances. 

Additionally, construction processes may not be the only cause for transiting the 

engineering behaviors of product component. The behavioral differences of a product 

component during the long duration of a natural chemical-physical process may not 

be adequately specified in the pre- and post-condition representation schema. 

Most of previously developed construction sequencing knowledge can be used 

to derive only precedent relationships between construction activities. However, the 

non-precedent temporal relationships, especially concurrent relationships between 

construction processes or construction states, are difficult to be inferred using these 

existing knowledge representation schemata. The non-precedence relationships are 

crucial for evaluating intermediate function requirements. 

 

2.5 Incorporation of Concurrency Relationships into Project 

Schedules  

A major benefit of construction requirement analysis is to reduce the period of 

a construction schedule by better realization of the intermediate function requirements. 

Songer et al. (2000) have comprehensively reviewed several tools developed for 

 29



 

shortening a construction schedule. The major philosophy underlying these schedule 

reduction tools is concurrent engineering. Prevalent concurrent engineering 

approaches in the Architecture/Engineering/Construction (AEC) industry include 

Total Quality Management (TQM), participant partnering, and constructability review 

(de la Garza et. al., 1994), as well as design-built contracting and fast track 

development. Previous studies indicate that overlapping the sequential activities is a 

major strategy to advance project delivery (Chang and Ibbs, 1998; Eldin, 1997; and 

Prasad, 1996), especially for reducing design schedules (Bogus et. al., 2005). 

Most of the previous studies have explored the overlapping relationships 

between two activities from the perspective of information dependency. The 

overlapping extent between two activities is plausibly affected by the degree of 

information dependency between them. Accordingly, four dependent types, namely 

independent, semi-independent, dependent, and interdependent, have been suggested 

to classify the information dependencies between the activities (Prasad, 1996). Other 

research focusing on reducing iteration loops in design schedule also implies that 

information requirement and availability should be a crucial factor that determines the 

overlapping relationships between the design tasks and construction activities (Chen 

et. al. 2003). 

On the other hand, the risks or uncertainties arising from overlapping activities 

are also addressed with respect to shortening design schedules. A plausible risk is the 

unexpected iterative cycles and their negative impacts on downstream design 

activities where reworks may arise from frequent changes and unidentified errors in 

the upper-stream activities (Lee et. al, 2005). Some key uncertainty factors 

determining the overlapping extent have been studied. Specifically, information 

evolution and information sensitivity have been identified as two crucial factors that 
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determine the overlapping extent between two design activities (Bogus et. al., 2005). 

Other activity attributes such as task production rate, upstream task reliability, and 

downstream task sensitivity to upstream errors are also identified for planning and 

controlling a fast track schedule (Peña-Mora and Li, 2001). 

These studies can help planners reduce project schedules by incorporating the 

overlapping strategies, and assist project managers in recognizing and proactively 

controlling the risks arising from overlapping tasks. However, from a practical 

viewpoint, the application of many existing overlapping strategies is limited to 

planning design schedules or programming as-built information required by designers, 

since the identification of concurrency relationships frequently focuses on the 

information requirement and availability. Thus, if the overlapping activity strategies 

can be extended to incorporate more types of construction requirements, the 

robustness of a project schedule would be further improved.  

The intermediate function studies (Song and Chua, 2006; Song and Chua 2004) 

imply that the overlapping between/among component states as well as construction 

activities can be represented and evaluated with respect to intermediate functions. 

Particularly, the matching between the requirement and availability of an intermediate 

functionality imply a concurrency relationship. Meanwhile, the availability time-

window of an intermediate functionality is also determined by the concurrency 

relationships among a set of component states. Consequently, the conflicts arising 

from improper concurrency relationships can be identified , leading to more robust 

concurrent schedules. 
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2.6 Modeling Space Requirements for Construction Processes 

Space is an indispensable resource for constructing a facility product. 

Therefore, evaluating the fulfillment of space requirements in a construction schedule 

has been an important concern for many researchers. The space requirements have 

been studied in four main trends: site layout, workspace planning, 4D simulation, and 

time-space analysis. 

Site layout studies focused on dynamic assignment of site spaces to temporary 

facilities and construction processes (Tommelein et. al 1992; Tommelein and Zouein 

1993, 2001; Zouein and Tommelein 1999; Li and Love, 1998; Yeh, 1995; Hegazy and 

Elbeltagi, 1999). In general, a site space model needs to be integrated with a 

construction schedule for evaluating the dynamic layout of a site. Such evaluation is 

used for detecting the temporal collision among the site objects and for optimizing the 

transportation distances between the site space entities. Some artificial intelligence 

technologies, like Genetic Algorithm (GA) (Zouein and Tommelein 1999) and Neural 

Network (NN) (Yeh, 1995), have been explored for optimizing the dynamic layouts of 

a site along the construction period. 

Previous studies on workspace planning have stressed that workspace should 

be considered as crucial resource for construction processes (Thabet and Beliveau, 

1994a; Mallasi and Dawood, 2002). Additionally, the construction sequences are also 

constrained by occupation sequences of workspaces (Thabet and Beliveau, 1994b). 

Furthermore, the workspace requirements can be decomposed into some generic space 

utilization patterns, and these space utilization patterns have been categorized to 

facilitate detecting interferences among trades (Riley and Sanvido, 1995; Riley and 

Sanvido, 1997). In these studies, the workspace requirements from construction 
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processes as well as the placement requirements from product/resource components 

are often represented in 3D format. 

4D simulation technology has been developed for visualizing the construction 

sequence as well as the temporal occupation and release of workspaces. In general, 

4D simulation is realized through associating the 3D CAD models with the 

corresponding construction schedules (Mallasi, 2005; Soetanto, 2005; Chau et. al., 

2004; Heesom et. al., 2003; Messner et. al., 2002; Koo and Fischer, 2000; McKinney 

and Fischer, 1997; Vaugn, 1996). Additionally, some studies employed 4D simulation 

models for facilitating site layout (Ma et. al., 2005; Soltani et. al., 2002; Tawfik and 

Fernando, 2001; Dawood and Marasini, 2000), and other studies explored the 

feasibility of using 4D simulation for recognizing the execution patterns of 

construction activities (Mallasi and Dawood, 2001; Mallasi and Dawood, 2002).   

Based on the 4D simulation, several time-space analysis methodologies have 

been developed for detecting the time-space conflicts with respect to the temporal 

collisions (intersection topological relationships) between workspaces. Akinci et al. 

(2002a; 2002b; 2002c; 2003) proposed a pair-wise analysis between the workspaces 

occupied by two activities for detecting temporal collisions in a construction schedule. 

Guo (2002) detected spatial conflicts by categorizing the patterns of the space 

conflicts, and came up with a strategy to resolve the conflicts. This time-space 

analysis information can help construction planners improve construtability by 

alleviating space congestions and reducing trade interferences. 

The common collision detection mechanism in previous studies is to combine 

the collision detection algorithm with the discrete event simulation method. This 

means that the collision detection computation between two work spaces may need to 

be implemented more than once, since the dynamic space world can only be 
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configured as a series of frames as the discrete event simulation proceeds. It is known 

that nearly all collision detection computation algorithms are very computationally 

intensive and resource consuming, implying that the existing time-space detection 

approaches may pose high demand for computation. 

Song and Chua (2005a; 2005b) proposed the temporal space entity and 

temporal topological relationship concepts to represent a dynamic 3D space system 

for detecting spatio-temporal conflicts in a construction schedule, and also presented 

an improved approach for detecting time-space conflicts. This approach only performs 

the collision detection algorithm once, and the temporal intersection relationships can 

be derived by the comparatively time-saving Boolean operation on the existence 

periods of temporal space entities, which depict the durations when the associated 

space entities  is occupied. 

Additionally, only detecting temporal collision is inadequate for analyzing the 

spatial perspective of an intermediate function requirement. Some Geographic 

Information System (GIS) studies have suggested 8 types of binary topological 

relationships between two 2D regions (Egenhofer and Franzosa, 1990), and these 

eight types can be adopted to define the topological relationships between two 3D 

space entities (Song et. al., 2003). Particularly, the temporal ‘meet’ relationships has 

been used for detecting inaccessibility problems (Song and Chua, 2005). This implies 

that if non-intersection topological relationships can be incorporated into intermediate 

functions, more unfulfilled space utilization requirements can be detected through 

intermediate function analysis. 
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2.7 Comparison of Key Ideas of Present Research with Previous 

Studies 

This section attempts to briefly compare the key ideas of the present research 

with the main contributions of the related previous studies. The present study 

develops the In-Progress Product Core Model (IPPCM) that extends the traditional 

product decomposition approach by a component state network that depicts in-

progress configuration of a facility product, which is necessary for representing and 

evaluating intermediate function requirements. Component state developed in IPPCM 

represents the changing engineering behaviors of an in-progress product component. 

Based on this concept, the construction life cycle of a product component and the 

functional relationships between in-progress product components as well as the 

concurrent processing of a group of product components can be semantically 

represented with respect to interval-to-interval state relationships. This can help 

construction engineers identify more temporal relationships other than the precedent 

ones in CPM schedules.  

Compared with the traditional construction state concept, a component state 

has both an active phase and a quiescent phase. This distinction facilitates 

differentiating the engineering behaviors associated with active and quiescent phases, 

leading to more accurate description of intermediate functions. Moreover, besides 

temporal attributes, a component state also has spatial attribute that references a 

number of 3D space entities in a space model. 

The present study develops an analysis framework for evaluating intermediate 

function requirements. This framework comprises the intermediate function concept, 

the semantic model for representing intermediate functions, the schema for 

representing the intermediate function requirement knowledge, the information 
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integration framework for providing analysis data, and the analysis methodologies for 

evaluating intermediate function requirements. 

The semantic model of intermediate functions provides an approach to 

evaluate intermediate function requirements using IT technologies. This semantic 

model incorporates the temporal and spatial attributes of the associated component 

states, which make it possible to evaluate the temporal and spatial perspectives of an 

intermediate function. Additionally, the ambiguities caused by the natural language 

representation can be largely resolved. Furthermore, the schema for representing the 

intermediate function requirement knowledge can be used to capture the temporal 

logics, especially those concurrent relationships, residing in construction methods. 

This knowledge can aid construction engineers in developing IPPCM and conducting 

intermediate functions analysis. 

The information integration framework developed in the present study not 

only integrates the product and process modeling perspectives, but it also integrates 

another three modeling perspectives: resource, space, and intermediate function. 

These five modeling perspectives are necessary for intermediate function requirement 

analysis. Four analysis methodologies have been developed for analyzing an 

intermediate function from the temporal and spatial perspectives. This implies that the 

concurrent relationships, which are inadequately evaluated in traditional CPM 

schedules, can be evaluated with respect to the temporal relationships between/among 

component states.  

Moreover, the existence vector concept and the corresponding Boolean 

operations are developed for implementing the temporal and spatial interaction 

analysis, which make it possible to evaluate these interactions without the need to 

conduct simulation of construction schedules. In this way, intermediate function 
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requirements can be timely and systematically communicated and analyzed, leading to 

improved constructability of facility projects. 
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CHAPTER 3 IN-PROGRESS PRODUCT CORE MODEL 

This chapter introduces the structure of the In-Progress Product Core Model 

comprising an extended product model for representing the decomposition of a 

facility product and a component state network for depicting the construction life 

cycles of product components and the functional interdependencies between in-

progress components in terms of interval-to-interval state relationships. Moreover, the 

temporal and spatial attributes of a component state are also defined. Lastly, the 

Product Oriented Scheduling Technique (POST) is developed for deriving the 

temporal attributes of component states from the construction process schedule. 

 

3.1 Structure of In-Progress Product Core Model 

The present research develops an In-Progress Product Core Model (IPPCM) to 

characterize both the decomposition and the in-progress configuration of a facility 

product. Figure 3.1 illustrates the structure of an IPPCM comprising two parts. The 

left part of the Figure is an extended product model that represents the system 

decomposition of a facility product, while the right part is a component state network 

that describes the construction life cycle of the product components as well as the 

temporal relationships between the component states. The proposed IPPCM extends 

the product decomposition hierarchy that mainly describes the organization of a 

completed facility product by incorporating the construction life cycles of product 

components as well as the functional interactions between the in-progress product 

components. Additionally, besides the permanent product components, the temporary 

and site components are also incorporated into the extended product hierarchy.  
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Figure 3.1 Structure of In-Progress Product Model (IPPCM) 

 

3.2 Extended Product Model 

3.2.1 Three Product Categories in Extended Product Model 

Many existing product decomposition models mainly described the permanent 

facility product. The extended product model is essentially a product decomposition 

hierarchy that extends the traditional description of a permanent facility product by 

including both temporary facilities and site works for constructing the permanent 
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building. The permanent facility components of the extended product model depict 

the facility product that will be delivered to the project owner, while the temporary 

facility and site work components are not delivered to the project owner, but they are 

required to describe the construction requirements residing in various construction 

methods (Chua and Song, 2003). Therefore, the temporary and site components 

should be included in the product system to facilitate analysis of construction 

requirements. 

The Extended Product Model (EPM) shown in Figure 3.1 illustrates these 

three product categories: 

(1) Permanent Product  

A permanent product represents the permanent parts that will be 

delivered to the project owner after the construction. Once a permanent 

product component enters the product system, it will remain in the product 

system until the facility is demolished. A typical permanent building product 

normally comprises such subsystems as foundation, structure, enclosure, and 

HVAC systems.  

(2) Temporary Product  

The temporary facility category comprises the temporary facilities that 

will be disassembled after the associated construction processes that require 

these temporary facilities are completed. Typical examples are formwork, 

brace work, scaffold, staging platform, and site accommodation facilities. In 

general, a temporary component will leave the product system after it is 

demolished or disassembled. 
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(3) Site Work  

The site work category comprises the site components that describe the 

site environment of the permanent facility, but do not belong to the permanent 

facility. Such site works as earth works and temporary accesses support 

construction processes by providing construction spaces, accesses, and 

suitable work environment. 

 

3.2.2 Product Component 

Figure 3.1 shows that each of the three categories can be further decomposed 

into systems, subsystems, and product components. The product component is the 

lowest level of product details that is necessary to describe the intermediate functions. 

In this regard, most of the facility components in the engineering design, like beams, 

columns, windows, and doors, can be modeled as product components in an extended 

product model. Sometimes, a large-size building part, like a long shear wall or a large-

volume earth excavation, should be segmented into several parts. Such segmentation 

may be necessary to better describe the work package and facilitate analysis of 

construction requirements. In this way, each segment is represented as a product 

component. From a pragmatic viewpoint, the decomposition levels of different facility 

systems/subsystems can be determined by a construction engineer to a granulation 

degree that is suitable for evaluating the construction requirements. 

 

3.3 Component State Network 

A component state network comprises the sequences of component states that 

depict the construction life cycles of product components and the cross-component 
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state relationships that abstract the functional interactions or concurrent transitions 

between two in-progress product components. 

 

3.3.1 Component State Concept for Depicting Construction Life Cycle 

The present study develops the component state concept that describes the 

transitive engineering behaviour of a product component along its construction life 

cycle. This means that the entire construction life cycle of a product component can 

be divided into a sequence of component states. In this way, the construction life 

cycle of a product component can be abstracted from the engineering behavior 

perspective. Moreover, the engineering behaviors of a product component are often 

determined by its physical attributes, like material compositions, locations, and shapes, 

which are progressively altered by the construction processes associated with it. This 

means such a sequence of component states can also depict the sequence of 

construction processes executed on a specific product component.  

Besides the construction processes, the engineering behaviors of a component 

may also be altered by some logistic activities processes. Specifically, the logistic 

activities may change the locations/shapes of product components. These changed 

geometric attributes of a component are significant for function analysis since they 

determine whether the component can be accessed by other component. For example, 

the functional space boundary of a portable platform is determined by its height and 

location. 

A natural physical-chemical process, like hydration and drying which occur 

during curing, may not change the material composition or geometric attributes of a 

product component, but it may affect such engineering behaviors as acquired strength 

of a product component. Sometimes, the change in engineering behaviors along a 
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long-duration natural process need to be further distinguished by segmenting the 

duration of the natural process into several states. For example, the natural hydration 

process of concrete components can be segmented as three component states 

according to the “Setting”, “Hardening” and “28-Day Strength” stages. 

 

3.3.2 Temporal Attributes of Component State 

State Transition Points (STPs) are event time points that segment the 

construction life cycle of a product component into a sequence of component states, 

indicating that the STPs determine the temporal attributes of the associated 

component states. A major characteristic of these STPs is the markedly changed 

engineering behavior as well as material composition of a product component at these 

events. Accordingly, most of the start and finish events of construction processes can 

be treated as STPs. Moreover, the long-duration natural chemical-physical process, 

like hydration, can be segmented by a number of STPs to better reflect the changing 

engineering behaviors of a product component. In this way, the construction life cycle 

of a product component can be segmented by a sequence of STPs, and therefore its 

transitive engineering behaviors can be distinguished from state to state. 

 

Figure 3.2 Construction Life Cycle of RC Column 

Figure 3.2 shows that the “RC Column” component is realized by three 

sequential processes: “Install Rebar”, “Cast Concrete”, and “Natural Hydration”. Its 
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construction life cycle starts at “STP1”, which is the start event of the first 

construction process “Install rebar”, and finishes at end of the construction period. In 

general, the end of the construction life cycle of a permanent component is usually the 

end of the construction period since the permanent component will stay in the product 

system even after all the associated processes have been finished. In contrast, the end 

of the construction life cycle of a temporary component is often the finish time point 

of the associated “Disassembly” or “Dismantle” or “Remove” process since after this 

time point the temporary component leaves the product system. 

Figure 3.2 also shows that the construction life cycle of the “RC Column” 

component is segmented into five sequential states by four STPs: “STP 2” to “STP 5”. 

“STP 2” is the start event of the second construction process “Cast Concrete”, while 

“STP 3” is the start event of the “Natural Hydration” process and also the finish event 

of “Cast Concrete”. The 28-day duration of “Natural Hydration” is further subdivided 

by “STP 4” and “STP5” into three states to depict the strength ranges of the in-

progress “RC Column”, during which “RC Column” can provide the intermediate 

functionality for supporting different construction processes (see Figure 3.2). 

Specifically, after “STP 4” the column has acquired the 3-day strength and can 

maintain its shape by itself, while after “STP 5” it acquires its 7-day strength and can 

support the construction of components of the upper levels. Since “STP 5” the 

strength of the “RC Column” will continue developing for 21 days until the end of 

hydration process. In this way, the sequential changes of the engineering behavior of 

the “RC Column” component as well as its transitive material compositions are 

represented as a sequence of component states: Rebar  Concrete  Strength 

Development Stage 1  Strength Development Stage 2  Strength Development 

Stage 3. 
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Each component state is associated with two time points: start and finish, 

which determine the interval of the associated state duration. Figure 3.2, for example, 

shows that “STP 1”and “STP 2” are the start and finish time points of the state 

“Rebar”, respectively, and the corresponding state duration is 3 days. Additionally, if 

a component state is not the last state in the corresponding state chain its finish point 

is the same as the start point of its immediate successor state. For instance, “STP 2” is 

the finish point of the first state “Rebar” and also the start point of the second state 

“Concrete”.  

Moreover, a component state can also be associated with an active finish time 

point that divides the duration into two phases: active phase and quiescent phase. 

Accordingly, the name label of a component state is marked by a postfix of either 

“.A” or “.Q” to differentiate its active and quiescent phases, respectively. Generally, 

an active finish time point can be the finish event of a construction/logistic/natural 

process. The active phase is the time interval between the start and active finish time 

points, during which the attributes of a product component are being actively altered 

by the associated process, whereas the quiescent phase is the interval between the 

active finish and finish time points, during which the component attributes are kept 

unchanged or can be modeled as unaltered from the engineering behavior perspective. 

In other words, an active phase is an active interval during which the associated 

process is in-progress, whereas a quiescent phase is a dormant gap between two 

consecutive activities performed on the associated product component, since the 

succeeding activity may not start just as the preceding activity finishes due to various 

reasons. If there is no gap between two consecutive processes executed on the same 

product component, the active finish time point is the same as the corresponding finish 

time point.  
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Distinguishing active phases from quiescent phases can facilitate the 

representation of intermediate functionalities. This distinction can better describe the 

engineering behaviors. Some engineering behaviors (intermediate functionalities) can 

only be realized when the associated product components are in their active phases, 

while other engineering behaviors can only be provided when their provider 

components are in their quiescent phases. As a result, this distinction can enhance the 

description of intermediate function requirements. For example, the temporary 

containing functionality can be provided when the formworks have been installed, 

which means that the formwork components are in their “Installed.Q” quiescent phase. 

Figure 3.2 shows that the construction life cycle of “RC Column” has two 

active finish time points “FE 1” and “FE 2”, which divided the “Rebar” and “Strength 

Development Stage 3” states, respectively. The corresponding two quiescent phases 

describes that the prevailing engineering behaviors during the two quiescent phases 

differ from their corresponding active phases. Firstly, “FE 1”, which corresponds to 

the finish event of the activity “Install Rebar”, is the active finish time point to 

segment the “Rebar” state into the active phase “Rebar.A” and the quiescent phase 

“Rebar.Q” (see Figure 3.2). During the 1-day “Rebar.A” state phase the “Install 

Rebar” process is being executed, while the “Rebar.Q” indicates the 2-day quiescent 

phase when the preceding “Install Rebar” has been completed but the succeeding 

“Cast Concrete” process has not started. The installation of the formwork can only be 

executed during “Rebar.Q” since it requires the required workspace that only exists 

when the “RC Column” is its “Rebar.Q”. The second instance of quiescent state phase 

in Figure 3.2 occurs in the “Strength Acquirement Stage 3” state, indicating that the 

28-day strength has been achieved at the finish event of the “Natural Hydration”, i.e. 
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“FE 2” (Figure 3.2). Since then, the strength of the “RC Column” will remain 

unchanged until the end of construction period.  

Figure 3.2 also shows that the “Concrete” state has a zero-duration quiescent 

phase since the “Natural Hydration” starts as soon as the concrete is cast. Meanwhile, 

both the “Strength Development Stage 1” and “Strength Development Stage 2” states 

have zero-duration quiescent phases since the “Strength Development Stage 1”, 

“Strength Development Stage 2”, and “Strength Development Stage 3” states are 

continuously transited by the “Natural Hydration” process. 

It is important to note that the duration of a quiescent phase cannot be merely 

explained as the “free float time” in CPM schedules. The quiescent phase is 

determined by two activities sequentially executed on the same product component, 

whereas an activity may have several succeeding activities, and its free float time is 

determined by the succeeding activity that starts earliest. In this connection, the 

product component worked on by the activity may differ from that worked on by the 

succeeding activity that determine the float time. 

 

Figure 3.3 Difference between Quiescent State Phase and Float Time 

For instance, Figure 3.3 shows that “Activity A” and “Activity C” are 

sequentially executed to transit the active phases “S1.A” and “S2.A” of “Component 
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C2”, and there is 2-day quiescent phase “S1.Q” between “S1.A” and “S2.A”. On the 

other hand, besides “Activity C”, “Activity A” also has another successor “Activity 

D”, which starts one day earlier than “Activity C”. Consequently, there is a 1-day free 

float time for “Activity A”, which is determined by “Activity D”. Note that “Activity 

D” is executed on “Component 3”, while “Activity A” is executed on “Component 2”. 

This implies that some quiescent duration may not be derivable from a CPM schedule 

since it does not explicitly model the association relationships between activities and 

product components. 

 

3.3.3 Spatial Attributes of Component State 

The changes of the spatial characteristics of an in-progress product component 

can be represented by the state space attributes of each component state or state phase 

along it construction life cycle. In General, the state space attribute defines both the 

boundary of the physical shape and the location of an in-progress product component 

during the corresponding component state/phase. In this way, the geometric changes 

of a component along its construction life cycle can be depicted state by state. 

Figure 3.4, for example, shows the shape changes of a site component “Access 

Road 2” along its construction life cycle. This site component will be excavated on 

Day 3, and kept open until Day 12 when it is backfilled. Accordingly, its construction 

life cycle can be segmented into a sequence of state phases: Original.Q  

Excavated.A  Excavated.Q  Backfilled.A  Backfilled.Q, which is shown in the 

first column of the table in Figure 3.4. The top diagram in the Figure shows that the 

shape of the unexcavated “Access Road 2” is segmented into four space entities, 

namely “AR2_S1”, “AR2_S2”, “AR2_S3”, and “TE3_S1”, to facilitate the 
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description of its state spaces. The second column of the table illustrates the space 

entities referenced by the state space attribute of each state phase. 

AR2_S1
AR2_S3

AR2_S2AR2_S1

AR2_S2

TE3_S1

AR2_S3

State Duration

Excavated.A
(E.A)  I(3,3)

Excavated.Q
(E.Q) I(4,11)

 Backfilled.A
(B.A) I(12,12)

  Backfilled.Q
(B.Q) I(13,14)

Original.Q
(O.Q)   I(1,2)

AR2_S1
AR2_S3

AR2_S2

AR2_S1
AR2_S3

AR2_S2

AR2_S2AR2_S1
TE3_S1

AR2_S3

State Shape

O.Q E.A E.Q B.A E.Q

Construction Lifecycle of “Access Road 2”

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

Access Road 2 
Shape 1

(AR2_S1)

Trench Earth 3
Shape 1

(TE3_S1)

Access Road  2 
Shape 1

(AR2_S2)

Access Road  2 
Shape 1

(AR2_S2)

Legend

XXX.A Active Phase

Quiescent PhaseXXX.Q

Space Entity

 

Figure 3.4 State Space Attributes of State Phases of “Access Road 2” 

Specifically, the quiescent state phases “Original.Q” and “Backfilled.Q” 

reference the four space entities. On the other hand, the other three state spaces 

“Excavated.A”, “Excavated.Q”, and “Backfilled.A” do not reference the space entity 
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“TE3_S1” since the trench “TE3_S1” has been excavated and thus exits the space 

system during these state phases. The state space attribute of a product component is 

significant for evaluating the accessibility to its intermediate functionality. For 

example, when the trench in Figure 3.4 is kept open, a mobile crane cannot travel on it. 

 

3.3.4 Interval-to-Interval State Relationships 

The temporal relationship between two component states is the fundamental 

temporal logic used to depict both the construction life cycle of a single product 

component and the functional interactions between or among in-progress product 

components. Such temporal relationships can be represented in either a point-to-point 

format or an interval-to-interval format. The four types of precedence relationships 

used in the Critical Path Method (CPM) are represented in point-to-point format. In 

contrast, the present study employs the interval-to-interval format to depict the 

temporal relationships between the component states.  

The temporal interval representation approach can provide greater flexibility 

and a richer semantic context to explicitly describe the precedent, coincident, coupling, 

and disjoint relationships between component states. The basis for this representation 

is the temporal interval algebra where the interval primitives and relationships have 

been formalized (Allen, 1984; Vilain et. al., 1990). Additionally, by using interval-to-

interval format, the lag time in precedence relationships can be mapped onto one or 

more consecutive component states to give an explicit engineering reason for the lag 

time. 

A time interval can be defined by two boundary points of time, namely the 

start and finish points, to represent a continuous interval. In the present study, “I(Ts, 

Tf)” denotes a temporal interval that starts on Ts and finishes on Tf. A temporal 
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interval relationship is a binary relationship that associates two intervals and is 

denoted by an interval relationship type. For instance, a temporal interval relationship 

“Before(iX, iY)”, as shown in the first row of Figure 3.5, indicates that the finish 

point of the interval iX should be earlier than the start point of the interval iY. This 

further indicates that each point of time within iX is earlier than all the points of time 

in iY. 

 

Figure 3.5 Temporal interval relationships 

Figure 3.5 illustrates the thirteen types of temporal interval relationships 

proposed by Allen (1984), which have been widely referenced in many studies related 

to temporal logic representations and inferences. The inverse relationships between 

the corresponding types of interval relationships have also been included in the Figure. 

For example, “After” and “MetBy” are the inverse relationships of “Before” and 

“Meet” relationships, respectively. The present study further groups these thirteen 

 51



 

interval relationships into three categories, namely, precedent, coincident, and 

coupling as depicted in the Figure for better analysis of intermediate function 

requirements. 

The interval-based precedent relationships comprising “Before”, “After”, 

“Meet”, and “MetBy” can be used to represent the sequence of the duration intervals 

of two component states, between which there is no overlapped interval. Moreover, a 

“Meet” relationship implies a “Before” relationship between two sequential intervals 

sharing one boundary point of time. The “Meet” relationship can be used to depict the 

sequence of states along the construction life cycle of a product component. “Meet” or 

“MetBy” relationships do not allow any temporal gap between two associated 

intervals, unlike Finish-to-Start precedence relationships in Activity-On-Node 

Networks that allow a lag time between the finish and start events of two successive 

processes. 

Coincident relationships comprising “Overlap”, “OverlappedBy”, “Contain”, 

and “ContainedBy” relationships depict that one interval extends over another interval 

wholly or partially, but requires no simultaneous start or finish between the two 

associated intervals. The “Overlap” relationship can be used to describe the temporal 

availability of an intermediate functionality which is to be provided by the joint 

performance of a set of product components during certain states. Meanwhile, the 

“Contain” relationship can be seen as a stricter form of the “Overlap” relationship 

with a further condition that the two boundary points of one interval should lie within 

the other interval. The former relationship can be used to verify whether the temporal 

availability time-window (iX) of an intermediate functionality fully covers its 

requirement time-window (iY).   
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A stricter form of coincident relationship is depicted by the coupling 

relationship which comprises “Start”, “StartedBy”, “Finish”, “FinishedBy”, and 

“Equal” as shown in Figure 3.5. A coupling relationship defines the “Concurrency” 

relationships between the boundary points of the two state intervals, either the start 

point, finish point or both points. The coupling relationship can be used to describe 

situations when a set of processes are required to be executed simultaneously.   

In the present study, another interval relationship “Disjoint” is specifically 

defined (see Figure 3.5). It is an important relationship for describing prohibited 

coexistence of two component states. For example, the painting state of a wall cannot 

be concurrently conducted with welding state of a pipe in an adjacent area. 

Mathematically, a “Disjoint(iX, iY)” relationship, indicating that there is no overlap 

between two intervals iX and iY, can be equally represented by the union of two 

precedent relationships, namely Before(iX, iY) and After(iX, iY). 

Additionally, with temporal interval algebra, more temporal constraints can be 

inferred from a set of known interval relationships. For example, if it is declared that 

an interval iX “Contains” an interval iA, and iY “Contains” another interval iB, and 

the interval iA is “Equal” to the interval iB, the inference resultant from these three 

interval relationships is that iX should “Overlap” iY, indicating that these two 

intervals should overlap each other. This inference may help identify more temporal 

relationships for existing interval relationships, which can be used for analyzing 

intermediate functions as well as construction schedules. 

 

3.3.5 State Relationships in Component State Network 

The state relationships in a component state network can be abstracted from 

mainly four perspectives. Firstly, the construction life cycle of each product 
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component can be described by the “Meet” relationship to associate a preceding state 

with its immediate successor in a construction life cycle since the finish point of the 

preceding state and the start point of the immediate succeeding state share the same 

time point (state transition point). Secondly, the functional interdependencies between 

two in-progress components can be abstracted as the cross-component state 

relationships in terms of “Contain” or “ContainedBy” interval relationships. Thirdly, 

the concurrent construction of a group of product component in the same work 

package can be modeled by the coupling interval relationships like “Equal” or “Start” 

illustrated in Figure 3.5. Fourthly, some safety requirements can also be represented 

by disjoint interval relationships between the associated component states. 

 

Figure 3.6 State Relationships between Column and Formwork 

Figure 3.6, for example, shows the functional independencies between the in-

progress “RC Column” component and the corresponding “Formwork” component. 

The construction life cycle of “RC Column” has been introduced in the preceding 

section, while the construction life cycle of “Formwork” is segmented into two 

sequential component states: “Assembled” and “Dismantled”. The former state is 

further decomposed into two state phases by the active finish “FE 3” corresponding to 

the finish event of the construction activity “Install Formwork”. The “Dismantled” 

 54



 

state does not have a quiescent phase since the temporary “Formwork” component 

leaves the product system after the “Disassemble Formwork” activity is finished.  

Figure 3.6, for instance, shows that the “Rebar” state should “Meet” the 

“Concrete” state for the “RC Column” component along the construction life cycle of 

“RC Column”, while the “Assembled” state should “Meet” the “Disassembled” state 

along the construction life cycle of “Formwork”. In this way, the sequential 

transitions of product component states along its construction life cycle can be 

explicitly described with respect to “Meet” relationships between the immediately 

consecutive states.  

Figure 3.6 also illustrates one “Contain” relationships and two “ContainedBy” 

relationships. The “Contain” relationships describes that the in-progress “RC column” 

provides the intermediate functionality for the in-progress “Formwork”, while the two 

“ContainedBy” relationships indicates that the in-progress “RC column” requires the 

intermediate functionality provided by the in-progress “Formwork”. Specifically, the 

quiescent phase “Rebar.Q” of “RC Column” should “Contain” the active phase 

“Assembled.A” of “Formwork”. This means that when the rebar of “RC Column” has 

been installed (“Rebar.Q”) and its concrete has not been cast, the in-progress column 

component provides work faces for executing the “Install Formwork” activity 

(“Assembled .A”). Figure 3.6 shows that “Install Formwork” lasts one day and can be 

conducted any time within the 2-day quiescent phase “Rebar.Q”. This also implies 

that the duration of “Rebar.Q” cannot be shorter than that of “Assembled.A”. 

On the other hand, the “Concrete” and “Strength Development State 1” states 

of “RC Column” should be “ContainedBy” the quiescent state “Assembled.Q” of the 

“Formwork” component. This indicates that the concrete casting (“Concrete.A”) of 

“RC Column” requires the temporary support from the assembled “Formwork” 
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(“Assembled.Q”) and that the “Formwork” cannot be dismantled during the initial 3 

days of hydration (“Strength_ Development_Stage_1.Q”) in order to maintain the 

temporary stability of “RC Column”. In this way, the functional interdependencies 

between two in-progress components can be depicted. 

While reinforced concrete components and scaffold components have been 

exemplified for demonstrating that component state concept can be used for 

representing their construction life cycles and the functional interdependencies 

between the in-progress concrete and scaffold components. More examples like 

tendon, sliding formwork, traveling platform, access roads, trench works, scaffold, 

and falsework components will be presented later in Chapters 5 and 7 with respect to 

their state chains and cross-component state relationships. This implies that, in general, 

a sequence of states can be used for describing the construction life cycle and that 

cross-component state relationships can be employed for representing the functional 

dependencies between two in-progress components. 

 

3.4 Product-Oriented Scheduling Technique (POST) 

The Product-Oriented Schedule Technique (POST) (Song and Chua, 2003) is 

developed to derive the temporal attributes (start, active finish, and finish) of the 

states in the component state network. Using this scheduling approach, construction 

engineers can compute the duration intervals (state duration, active duration and 

quiescent duration) of component states as well as their state phases. These interval 

attributes are necessary for evaluating the fulfillment of intermediate function 

requirements. In this way, a construction schedule can be represented and analyzed 

from the product instead of the process perspective. Additionally, such a product-
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oriented schedule may be referenced with ease by trades who mainly work on the 

product system, like designers. 

 

3.4.1 Key Elements of POST 

 

Figure 3.7 Three Key Elements of POST 

Figure 3.7 shows the structure of POST comprising three key elements, 

namely product decomposition hierarchy, component state network, and temporal 

attributes of component states. As addressed in the preceding section, an extended 

product system can be first developed, and then a component state network can be 

developed to describe the construction life cycles of product components and the 

temporal relationships between the component states. Lastly, the developed 

component state network will be integrated with process schedule model via the work 

package concept, through which the temporal attributes of the component states can 
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be derived. In this way, the product model and the process model can be integrated 

from the scheduling viewpoint.   

 

3.4.2 Work Package Concept 

 

Figure 3.8 Integrate Product and Process Models through Work Package 

Figure 3.8 shows the main reference relationships that associate process 

activities with component states through work packages. The Figure illustrates that a 

process can be associated with a number of product components via its work content 

attribute, which can be further described by the corresponding work package attribute. 

In general, a work package comprises a group of states (active phases) of the product 

components that are concurrently transited by the associated process. For example, 

“Work Content 01” of “Activity 01” comprises two permanent components 

“PmntCompA_01” and “PmntCompA_02”, which will be constructed by “Activity 

01”, and “Work Package 01” comprises the “S1.A” active phases of 
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“PmntCompA_01” and “PmntCompA_02”. In this way, through the work package a 

construction process in a process schedule associates with a number of component 

states in the corresponding component state network, which make it possible to derive 

the temporal attributes of component from the associated process schedule. 

Additionally, Figure 3.8 also implies that a component state network plays a pivotal 

role in integrating product and process perspectives. 

 

3.4.3 Derivation of Temporal Attributes of Component States 

 

Figure 3.9 Work Package for Deriving Temporal Attributes of Component States 

The derivation of the temporal attributes of component states depends on the 

nature of their transitions. In the case of a construction/logistic transition, the start and 

active finish time points of the active phases comprised in the work package are equal 

to the start and finish time points of the associated process. Figure 3.9, for example, 

shows a work package “WP1” comprising the active state phases “Rebar.A” (“R.A”) 

of four components “RC Columns 01 to 04” associated with the activity “Install 

Rebar”. Accordingly, the start and active finish time points of these four “Rebar.A” 

are on the start and end of Day 1, respectively, which are also the start and finish of 
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the associated process “Install Rebar”. Meanwhile, the finish time point of each 

“Rebar” state is equal to the start time point (start of Day 5) of its immediate 

successor state “Concrete” (“C.A”) comprised in the work package “WP2” associated 

with “Cast Concrete”. It can be deduced that the duration of the “Rebar” state is 3 

days with a 1-day active phase and a 2-day quiescent phase. This is the case for all 

work packages of construction/logistic processes.  

A component state can also be transited by a natural chemical-physical process. 

A natural process often starts as soon as the preceding construction activity is finished 

so that the component state transited by the preceding activity has a zero-duration 

quiescent phase, and the active finish and finish points of the preceding state as well 

as the start of the state transited by natural process are coincident. This is illustrated in 

Figure 3.9 by the “Natural Hydration” process which transits from “Concrete” (“C.A”) 

to “Strength Development Stage 1” (SDS1.A) of “RC Columns 01 to 04”. The Figure 

also illustrates the start of “Natural Hydration” is coincident with the finish (end of 

Day 4) of the preceding activity “Cast Concrete”. Thus, the start points of the four 

associated “Strength Development Stage 1” are on the end of Day 4. Particularly, the 

four “Concrete” states of “RC Columns 01 to 04” have zero-duration quiescent phases.  

The duration attributes of nature-transited states are determined by the time 

required for completing the natural process, which is often independent of the quantity 

of work content. If a natural process is not further subdivided into several transition 

stages, the duration of the associated active phase is essentially the duration of the 

natural process. If the long duration of a natural process is segmented into several 

transition stages, the durations of the associated active phases are equal to the 

corresponding transition stages.  
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For example, Figure 3.9 shows that the 28-day duration of “Natural 

Hydration” is segmented into three transition stages, which last for 3 days, 4 days, and 

21days, respectively. In this case, the active finish and finish time points of the states 

“Strength Development Stage 1” of “RC Columns 01 to 04” are on the end of Day 7. 

Accordingly, the active durations of these four states are 3 days. The time point and 

interval attributes of the “Strength Development Stage 2” and “Strength Development 

Stage 3” states can be likewise derived. Particularly, the “Strength Development Stage 

1” and “Strength Development Stage 2” states have zero-duration quiescent phases, 

since each of the succeeding states begin as soon as the strength has been achieved. 

“Strength Development Stage 3” states have non-zero quiescent phases which start on 

the end of Day 32 (finish time point of “Natural Hydration”) and finish on the end of 

the construction period (see Figure 3.9), indicating that the 28-day strength has been 

achieved from the end of Day 32 (or start of Day 33) onwards.  

There are two further special scenarios in the derivation of the temporal 

attributes of component states. Firstly, unlike a permanent component which stays in 

the product system after the last associated activity finish, a temporary component 

will leave the product system after it is dismantled or removed. Accordingly, the last 

state (“Dismantled” or “Disassembled”) in the construction life cycle of a temporary 

component should have a zero-duration quiescent phase. For example, Figure 3.9 

shows that the “Dismantled” states of the two formwork components “Formwork 01” 

and “Formwork 02” have zero-duration quiescent phases. 

Secondly, such site components as existing facilities and earth components 

exist in the product system from the start of the project. This scenario is represented 

by the initial states “Original.Q” with zero-duration active phases. Figure 3.9 shows 

the example that three site components “Access Road Segments 01 to 03” have 9-day 
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“Original.Q” quiescent phases since the first associated activity “Excavate” starts on 

Day 10. This means that the finish points of the three “Original.Q” quiescent phases 

are coincident with the start points (start of Day 10) of the succeeding “Excavated” 

states, respectively. 

3.5 Concluding Remarks 

The chapter develops the component state concept to represents the changing 

engineering behaviors of an in-progress product component. Based on this concept, 

the In-Progress Product Core Model (IPPCM) is developed to extend the traditional 

product decomposition model. In this way, the IPPCM not only has the capacity to 

represent the hierarchy structure of a completed facility product, but it can also 

describe the in-progress configuration of a facility product with respect to a 

component state network.  

In such a component state network, the construction life cycle of a product 

component can be depicted by a sequence of component states, while the functional 

interdependencies between in-progress components are represented in terms of 

interval-to-interval state relationships. In this way, more types of temporal 

relationships, especially the concurrent ones, can be captured by using interval-to-

interval relationships instead of point-to-point relationships as used in traditional 

CPM schedules.  

A component state is described by both temporal and spatial attributes, which 

make it feasible to evaluate intermediate functions from both temporal and spatial 

perspectives. Furthermore, compared with the traditional construction state concept, a 

component state has both an active phase and a quiescent phase. This distinction 

facilitates differentiating the engineering behaviors associated with the two phases, 

respectively, leading to more accurate description of intermediate functions. 
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Additionally, Product Oriented Scheduling Technique (POST) is also developed for 

deriving temporal attributes of component states from process oriented schedules like 

CPM schedules. 

It is of interest to discuss the mapping relationships between component states in 

a component state network and activities in a construction schedule. In general, a 

component state can be transited by either a construction process or a logistic process 

or a natural process. Provided that a process schedule comprises a completed list of 

construction activities, each construction process in the lowest decomposition levels 

of the process hierarchy can associate a set of component states in the component 

state network through their work package attributes. For example, the “Install Rebar” 

activity in the process schedule are associated with the “Rebar” states of a group of 

reinforced concrete columns on which “Install Rebar” will be executed (see Figure 

3.2).  

Similarly, the performer states of resource components like labor and cranes can 

be associated with the corresponding logistic activities in a process schedule. Some 

logistic activities may not be explicitly represented but implied by the construction 

activities, to which the resource components have been allocated. For instance, the 

activity executed by a crane to transport precast components may not be explicitly 

represented in a construction schedule, and it is often implicitly indicated by the 

construction activity “Launch Precast Component”. In this regard, the performer state 

“PS(Transport Precast Component)” of the crane can be associated with the 

construction activity “Launch Precast Component”.  

Some component states are transited by natural processes that are often 

described as lag times of precedent relationships instead of activities in a construction 

schedule. Figure 3.2, for instance, illustrates the 3-day “Strength Development Stage 
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1” state transited by the natural hydration process. This state 3-day period is 

represented by the lag time of the finish-to-start precedent relationship between the 

“Cast Concrete” and “Dismantle Formwork” activities in a process schedule. 

Furthermore, it is also meaningful to discuss the early/late times of an activity in 

relation to the associated component states with respect to the lengths of 

availability/requirement time-windows. In the present research, it is often assumed 

that the early start and finish times of a scheduled process determine the 

corresponding start and active finish time points of the associated states. In this regard, 

an in-progress product core model can be scheduled forward. On the other hand, the 

in-progress product core model can also be scheduled backward by mapping the late 

start and finish times onto the corresponding start and active finish time points of the 

associated states.  
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CHAPTER 4 REPRESENTATION OF INTERMEDIATE 

FUNTION REQUIREMENT AND KNOWLEDGE  

This chapter presents the intermediate function concept to represent functional 

construction requirements. Accordingly, a semantic model for representing functional 

construction requirements is also developed. Subsequently, a representation schema is 

developed for depicting intermediate function requirement knowledge from three 

perspectives. Lastly, an integrated information framework that integrates five project 

perspectives is developed for intermediate function analysis. 

 

4.1 Characteristics of Intermediate Function 

Intermediate functions form an important category of temporary functions that 

are required for supporting the construction of a facility project. In general, the 

intermediate functions are required for providing necessary work conditions, for 

performing construction processes, and for maintaining the stability and safety of an 

in-progress facility. The present study identifies some fundamental intermediate 

functions for supporting construction loads, maintaining stability of in-progress 

structures, providing workface, providing protection for finished works, and providing 

safe work environments. Some complex intermediate functions may comprise two or 

more fundamental functionalities. For example, providing a workable condition for 

painting skylights is a complex intermediate function requirement that comprises at 

least three fundamental intermediate functionalities: the temporary support provided 

by scaffold, the protection provided by tapes for the paneled glass, and the safe work 

environments that prohibit welding works in adjacent areas. 
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 Although the purposes of intermediate functionalities may be different, they 

have two common characteristics that are different from usage functionalities of a 

facility product. Firstly, compared with most usage functionalities that are designed to 

last for the life cycle of the facility, intermediate functionalities are only required 

during a shorter period for supporting construction. Secondly, most usage 

functionalities are always available whenever they are required, whereas an 

intermediate functionality may only be available during certain period or periods since 

the engineering behaviors of an in-progress facility change as the construction 

processes as well as natural physical-chemical processes change its structures as well 

as the material compositions of its components. These two characteristics should be 

considered in modeling intermediate functions. 

 

4.2 Semantic Model of Intermediate Function 

4.2.1 Three Perspectives for Modeling Intermediate Function 

A semantic model provides the constructors and designers an explicit 

description of an intermediate function so that they can have a common vehicle to 

communicate their intermediate function requirements. In this way, the intermediate 

function requirement knowledge can be captured from the previous project cases, 

communicated across trades, and reused with the aid of information technology. 

Furthermore, the semantic model makes it possible to explicitly incorporate the 

temporal and spatial logics that are embedded in the intermediate function 

requirements into the construction schedules. These temporal and spatial logics can 

then be evaluated for detecting unfulfilled intermediate function requirements. 

Consequently, the constructability of a facility can be improved. 
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However, it is difficult to apply most of the existing function analysis tools for 

representing intermediate functions. A major reason is that the function representation 

models employed in these tools lack the attributes to describe the temporal and spatial 

characteristics of the functions, and this greatly affects the evaluation of an 

intermediate function since both its requirement and its availability are time-

dependent, as stated in the preceding section. The present study proposes a semantic 

model to describe an intermediate function from three perspectives: function user, 

function provider, and interaction between user and provider. 
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Figure 4.1 Structure of Semantic Representation Model 

Figure 4.1 shows the semantic representation model comprising five layers. 

These five layers are description perspective, constituent component, component state, 

state attribute, and attribute relationship. Following this structure, a function user or a 
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function provider can be further decomposed into the component state level. The 

interaction between the user and the provider can then be assessed from both temporal 

and spatial perspectives since the component states associated with the user and the 

provider comprise both temporal and spatial attributes. In this way, the temporal and 

spatial logics embedded in an intermediate function can be semantically represented 

and then evaluated to ensure its fulfillment. The modeling elements in each layer will 

be explained in the following sections. 

 

4.2.2 Function User and Requirement State Package 

Function user is the requester of an intermediate functionality. It can comprise 

one or more in-progress product/resource components. Figure 4.1, for example, shows 

that the function user “User X” comprises two performer components “Labor A” and 

“Equipment A”. A function user can be either a resource-oriented or a product-

oriented user. A resource-oriented user comprises one or several construction 

performers (labors or construction equipment) requiring an intermediate functionality 

to support their loads, to access work faces, to acquire a work space, or to prevent 

themselves from hazards. On the other hand, a product-oriented user comprises a 

collection of in-progress components requiring an intermediate functionality to sustain 

their stability, to control their construction tolerances, or to protect themselves from 

damage.  

As depicted in Figure 4.1, the construction state of a function user can be 

described by its requirement state package, which is a collection of states of the 

constituent user components, during which the user components would require the 

defined intermediate functionality. The associated states are called requirement states. 

For example, in Figure 4.1, the construction state of “User X” is depicted by 
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“Requirement State Package X” comprising three requirement states: the “PS(Activity 

A)” and “PS(Activity B)” states of “Labor A” and the “PS(Activity B)” state of 

“Equipment A”. This means that both “Labor A” and “Equipment A” would require 

“Intermediate Function X” when they are executing the corresponding “Activities A 

and B”. Particularly, the three requirement states only have active phases since the 

construction performers “Labor A” and “Equipment A” will leave the process system 

and not require “Intermediate Function X” after they complete the corresponding 

construction activities. 

 

4.2.3 Function Provider and Functional State Package 

Function provider represents the engineering solution for realizing an 

intermediate functionality. A function provider often comprises a group of in-progress 

product/resource components that jointly exhibit their behaviors to fulfill the defined 

intermediate function requirement. Similar to a function user, a function provider can 

be either a resource-oriented provider (labor and construction equipment) or a 

product-oriented provider (in-progress building system). For example, the “Provider 

X” in Figure 4.1 is a product-oriented provider comprising three product components 

“G1”, “G2” and “G3”.  

Accordingly, the construction state of a function provider is depicted by its 

functional state package, which comprises the component/performer states during 

which the corresponding constituent provider components jointly behave to realize the 

defined intermediate functionality. The associated states are called functional state. 

Specifically in Figure 4.1, the functionality defined by the “Intermediate Function X” 

can be available only when the components “G1” and “G2” are in either “S2”state or 
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“S3” state and when the component “G3” is in its “S2” state. These five functional 

states are contained in “Functional State Package X”. 

Additionally, some components may simultaneously play both user and 

provider roles in two intermediate function systems. For example, a scaffold (provider) 

can temporarily support the workers (user) for installing skylight on the roof, and 

simultaneously it (user) should be supported by the underlying concrete structure 

(provider). The dual-roles played by some product/resource components imply that 

the in-progress components are interrelated through the functional interdependencies 

between them. This information may help planning engineers to trace the influence of 

the changes in designs and schedules with respect to the fulfillment of intermediate 

function requirements. 

 

4.2.4 Temporal and Spatial Attributes of Component State 

As addressed in the preceding chapter, there are three point attributes (Start(S), 

Active Finish (AF), and Finish (F)) and three interval attributes (State Duration (SD), 

Active Duration (AD), and Quiescent Duration (QD)) associated with each 

component state. The state duration interval is determined by the start and finish time 

points, and is divided into active duration and quiescent duration by the active finish 

point. The fourth layer in Figure 4.1 shows that each component state contained in the 

“Functional State Package X” is associated with these six temporal attributes. 

Meanwhile, each performer state contained in the “Requirement State Package X” has 

only active duration.   

On the other hand, the state space attribute of each requirement/functional 

state can references one or several 3D space entity(ies). Figure 4.1, for example, 

illustrates that the state space of the requirement state “PS(Activity B)” of 
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“Equipment A” references two workspace entities “SE12” and “SE13”,  while “SE13” 

is also referenced by another requirement state “PS(Activity B)” of “Labor A” to 

describe its workspace. Similarly, the provider component “G2” references “SE2” 

space entity in its functional state “S2” and references both  “SE2” and “SE3” in the 

succeeding functional state “S3”, indicating that the physical space of “G2” is 

expanded as more material is added during the “S3” state. 

 

4.2.5 Temporal and Spatial Interactions between User and Provider 

Figure 4.1 shows that the functional interdependency between the function 

user and the function provider can be described by temporal and spatial interactions, 

in the fifth layer of the semantic model structure. The temporal interaction is 

described by the requirement time-window of the functionality required by the 

function user in relation to the availability time-window of the functionality provided 

by the function provider, while the spatial interaction can be evaluated with respect to 

the spatio-temporal relationship between the user space and the corresponding 

provider space. 

The requirement time-window can be derived from the temporal attributes of 

the requirement states comprised in the requirement state package, while the 

availability time-window can be computed from the temporal attributes of the 

functional states comprised in the functional state package. The matching between the 

requirement time-window and the availability time-window can be used to verify 

whether the temporal interaction can be available in a construction schedule. The 

derivation of these two time-windows as well as the matching evaluation will be 

elaborated in Section 5.1.  
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An appropriate spatial interaction between the user and provider must exist in 

order for the user to utilize/access the intermediate functionality provided by the 

provider. The spatial interaction is depicted by the spatio-temporal relationship 

between the user space and the provider space. Figure 4.1 shows that the user space 

is a collection of space entities associated with the corresponding requirement states 

comprised in the “Requirement State package X”, while the provider space comprises 

a set of space entities associated with the corresponding functional states comprised in 

the “Functional State package X”. In the example of Figure 4.1, the user space 

comprises three space entities “SE11”, “SE12”, and “SE13”, and the provider space 

comprises four space entities “SE1”, “SE2”, “SE3”, and “SE4”.  

In this way, the spatio-temporal relationship between the user space and the 

provider space can be further described with respect to the twelve topological 

relationships that can be produced by pairing the three space entities in the user space 

and the four entities in provider space. These twelve topological relationships can be 

evaluated against the predefined spatio-temporal criteria for evaluating the availability 

of the spatial interaction. The evaluation methodology will be presented in Section 5.2. 

 

4.3 Representation of Intermediate Function Requirement 

Knowledge  

This section introduces a schema for representing the construction requirement 

knowledge from the perspective of the intermediate function. This knowledge 

representation schema comprises a set of basic knowledge constructs and a collection 

of relationships to associate these constructs. These knowledge constructs and 

association relationships can be used for scripting the domain knowledge according to 

the syntax rules specified in the schema. Specifically, this schema employs two basic 
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knowledge constructs defined from the product perspective, namely (product) 

component type and (component) state type. The association relationships use the 

temporal interval relationships stated in Chapter 3 for representing the functional 

interdependencies among component states. The syntax rules will be defined with 

respect to intermediate functionality from three perspectives, namely construction life 

cycle of single product component using state chain type, functional 

interdependencies between two in-progress product components using state 

interaction type, and availability condition of an intermediate functionality provided 

by a group of product components using intermediate function availability type. 

Consequently, such a schema can be used to capture the temporal logics residing in 

construction methods. These temporal logics can facilitate the evaluation of the 

availability of intermediate functionalities and also help establish the state 

relationships in a component state network.    

 

4.3.1 Two Basic Knowledge Constructs 

4.3.1.1 Product Component Type 

Product component instances of the same type have similar functional and 

material characteristics, and are often constructed using the same construction 

method(s). The product components can be categorized into different categories, i.e. 

component types, according to such component attributes as function/role, material 

composition, geometric attributes, and physical attributes. These attributes will be 

explained in the following. 

Firstly, name label represents the name of the product component type which 

is used as the type identifier for constructing the intermediate function requirement 

knowledge. Secondly, function/role indicates the functional role that the component 
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will play in the completed facility product system. In other words, it describes the 

purpose for which the component has been designed. For example, such structural 

components as columns, beams, and slabs are designed for supporting various loads. 

Thirdly, material composition indicates the main material constitution of a product 

component which often implies the possible construction methods to build the 

component. For example, a concrete component can be constructed using precast or 

cast-in-situ method. Fourthly, the geometric attributes attribute indicates shape, 

location, surface area, and volume of a product component. These geometric attributes 

determines the interaction between product components as well as the work content. 

Lastly, physical properties include such physical attributes as rigidity, 

moisture, dryness, and elasticity. Besides the material composition, these physical 

properties may also determine the behavioral characteristics of a product component. 

Additionally, these properties are often changed by the natural chemical-physical 

processes like drying and hydration. This is the main rationale for mapping the effects 

of natural processes onto the corresponding state(s) of a product component.  

 

4.3.1.2 State Type 

Throughout the construction life cycle of a product component, its material 

composition and physical attributes as well as its geometric attributes may change, 

leading to corresponding changes in its engineering behaviors. These changes in 

behavioral characteristics can be abstracted by a sequence of component states 

divided by a series of state transition points. The component state instances of the 

same type often indicate that their associated in-progress components can perform 

similar engineering behaviors for realizing certain intermediate functionalities. The 

state type can be defined as a category token for characterizing both the compositional 
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and behavioral natures of a collection of in-progress components of the same 

component type. Accordingly, a group of component states of the same type would 

display similar behavioral characteristics, and would be associated with similar types 

of construction processes that transit the material and geometric attributes of the 

associated in-progress components.  

The semantic representation of a state type can be defined by four attributes. 

Firstly, name label represents the name of the state type which is used as an identifier 

for constructing the intermediate function requirement knowledge. Secondly, in-

progress material composition indicates the constituent material added to (or 

deducted from) the component in the construction process (denoted by active state 

phase). Thirdly, related/associated process type indicates the construction or logistic 

or natural chemical-physical process that contributes to the defined state. Fourthly, in-

progress physical characteristics (like rigidity, moisture, dryness, and elasticity) may 

determine the transitive engineering behavior (like strength, and adhesion) of an in-

progress product component. Thus, an in-progress component may exhibit different 

engineering behaviors or play distinct functional roles at different states along its 

construction life cycle. 

 

4.3.2 Three Representation Syntaxes 

4.3.2.1 State Chain Type 

If product components of the same type are built using the same construction 

method(s), their construction life cycles would follow the same sequence of state 

transitions, though the state durations may differ depending on the work content. 

Accordingly, the entire construction life cycle of a product component can be 

characterized by a state chain type describing the sequential changes of its 
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engineering behavior, which meanwhile reflects the sequence of the construction, 

logistic, or natural processes contributing to these changes. 

The representation syntax of a typical state chain type is illustrated in Figure 

4.2, where “CompA_X_Chain” represents the construction life cycle of component 

type “CompA” built using the construction method “X”. The state sequence is the 

critical attribute defining the sequence of state types delimited by “{” and “}”. The 

component state types, separated by semicolons, are listed in temporal order. The 

temporal interval relationship between each two consecutive states is the “meet” type 

(see Figure 3.5 for the complete set of interval relationships). For example, state “S1” 

“Meets” state “S2” (see Figure 4.2).  

 

Figure 4.2 Representation of state chain type 

Some states in the state sequence marked by a postfix “.A”, like state “S3.A” 

in Figure 4.2, indicates that this state does not have a quiescent phase in the 

construction life cycle. This is possible in a natural chemical-physical process. For 

example, the hydration period of a concrete column can be separated into two states, 

“3-day strength” and “7-day strength” states. The end of the former, with no quiescent 

phase, indicates that the concrete strength has developed sufficiently to maintain its 

own shape, while the end of the latter active phase indicates that the strength has been 

further developed to provide the functionality to support the weight of the upper 

structure components. Such distinctions in the state chain may be necessary for 
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depicting the evolving intermediate functionalities that may be required by different 

downstream processes. 

From the functional interdependency viewpoint, the preceding state of a 

product component often provides the intermediate functionality required by the 

succeeding state along its state chain. For example, the bottom and side segments of a 

box girder should be constructed before its top segment, since the top segment 

requires the support functionality provided by the bottom and side segments. 

Additionally, the state sequence of the mobile component, like a sliding formwork, a 

traveling platform, or a portable platform, can also be determined by the sequence of 

its changing locations or workspace provision. 

 

4.3.2.2 State Interaction Type 

 

Figure 4.3 Representation of state interaction type 

The state interaction type depicts both the functional interdependencies and 

concurrent transitions residing in the construction method(s) with respect to the 

temporal relationships between the state chains of two product components. Its 

representation syntax is illustrated in Figure 4.3, which demonstrates the cross-
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component state relationships between two state chains “CompA_X_Chain” (first 

state chain) and “CompB_Y_Chain” (second state chain).  

The critical attribute state interaction comprises a collection of temporal 

interval relationships established from one state in the first state chain to another state 

in the second state chain. Generally, each temporal interval relationship can be either 

a coincident or a coupling relationship. The coincident relationship, like “Contain” or 

“ContainedBy”, depicts the functional interdependency between the two in-progress 

components, while the coupling relationship types depict some concurrent transitions 

of their states (either concurrent start, or concurrent finish, or both). 

The example in Figure 4.3 shows one functional interdependency and one 

concurrent transition in terms of temporal relationships between the states of 

“CompA_X_Chain” and “CompB_Y_Chain”. The functional interdependency is 

represented by a coincident relationship given by “ContainedBy(CAXC.S1.A, 

CBYC.S1.Q)” which indicates that the intermediate functionality required by the 

“CompA” component during its active phase “S1.A” is to be provided by the 

“CompB” component during its quiescent phase “S1.Q”, and this intermediate 

functionality does not exist when “CompB” begins its transition to the “S2.A” active 

phase. For instance, the interaction “ContainedBy(Beam.Concrete.A, 

Formwork.Assembled.Q)” would indicate that the concrete of the beam (function user) 

can be cast only when the corresponding formwork (function provider) has been 

assembled (quiescent state phase “Assembled.Q”) before it is dismantled (active state 

phase “Dismantled.A”).  

On the other hand, the concurrent transition relationship is represented by a 

coupling relationship given by “StartedBy(CAXC.S3.A, CBYC.S3.A)”, which 

denotes that the active transition of state “S3” of “CompB” simultaneously triggers 
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the active transition of the “S3” state of “CompA”. For instance, 

“StartedBy(Slab.Concrete.A, Beam.Concrete.A)” indicates that concrete slab should 

be cast simultaneously with the underlying beams for structural integrity. 

 

4.3.2.3 Intermediate Function Availability Type 

In general, an intermediate functionality is provided by the function provider 

comprising a group of components of various component types in certain component 

states/phases. These states/phases are termed as functional states/phases, which 

determine the availability of the intermediate functionality. During these functional 

states, the associated product components contribute their engineering behaviors to 

the realization of the defined intermediate functionality. Therefore, not only should 

the type of components to realize the intermediate functionality be depicted, but the 

component states/phases that determine the availability of the intermediate 

functionality should also be explicitly defined. 

The intermediate function availability type is used to abstract the necessary 

condition to realize the intermediate functionality. The representation syntax of an 

intermediate function availability type is illustrated in Figure 4.4. The most important 

attribute is the availability condition that is delimited within the “{” and “}”. This 

condition references a set of functional states, and some provider components may 

have more than one functional state. The example in Figure 4.4 illustrates the 

availability condition representing the joint performance of the provider components 

in their functional states to realize the “iFunctionX” functionality. The functional 

states are marked by the circled one in the Figure. 
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CompA_X_Chain

S1.A S1.QTempL_Z_Chain S2.A

S1.A S1.Q S2.A S2.Q S4.A S4.QS3.A

S1.A S1.QTempM_Z_Chain S2.A

1

1

Type Name: iFunctionX
Functionality Description: Temporary support functionality
Referenced State Chains: CompA_X_Chain (CAXC); 
                                            TempL_Z_Chain (TLZC); TempM_Z_Chain (TMZC).
Availability Conditions: 
      { CAXC[S3.A; S4.A]; TLZC[S1.Q]; TMZC[S1.Q]};

1CAXC

TLZC

TMZC

1

1

 

Figure 4.4 Representation of intermediate functionality type 

The condition “{CAXC[S3.A; S4.A]; TLZC[S1.Q]; TMZC[S1.Q]}” requires 

that the component “CompA” be in its two active phases “S3.A” and “S4.A” and that 

both temporary components “TempL”  and “TempM” be in their quiescent state 

phases “S1.Q” so that these three types of components in an in-progress structure 

jointly provide the “iFucntionX” functionality. Additionally, the “S2” state of either 

“TempL” or “TempM” does not have the quiescent phase, since the components are 

being disassembled during the active phase of the “S2” state and they leave the 

product system after the disassembly is completed. 

 

4.4 Information Integration Framework 

4.4.1 Structure of Information Integration Framework  

In Chapter 3, the Product Oriented Scheduling Technique (POST) indicates 

the integration of the product and the process models through the work package 

concept. This integrated product and process model can be extended to cover more 

project perspectives.  
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Figure 4.5 Structure of Information Integration Framework 

Figure 4.5 depicts the information integration framework that associates the 

five project modeling perspectives, namely product, process, resource, space, and 
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intermediate function. These five modeling perspectives are required for analyzing 

intermediate function requirements. The integration of the five perspective models is 

achieved through four types of state package concepts and two space reference 

attributes. Besides the work package, the other three are performer state package, 

requirement state package, and functional state package as depicted in. Figure 4.5 also 

shows the space model referenced by the process and product as well as resource 

models through the workspace attribute of process and state space attribute of 

component state. Moreover, the Figure also shows that the component state network 

acts as the kernel to integrate four project perspectives: product, process, space, and 

intermediate function. 

 

4.4.2 Space Model 

The space model describes the geometric characteristics of a product system 

and also characterizes various space utilization requirements arising from executing 

construction processes, transporting equipment and materials, and storing materials. 

The space model comprises a hierarchy of space entities and a triangle matrix to 

describe the topological relationships between the space entities, as shown in Figure 

4.5.  

“Space World” represents the root of the space hierarchy system, which can be 

decomposed according to different utilization purpose into such space subsystems as 

physical space, work space and path space subsystems, which themselves can be 

further decomposed into embedded subsystems until space entities in the lowest 

hierarchy levels. Briefly, the space boundary of a space entity/subsystem in the low 

hierarchy level should be contained or enclosed by the associated higher-level ones. 
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The space entities in the lowest hierarchy levels can be represented by the 3D solid or 

surface objects in a 3D CAD model. 

 

Generated Path SpacePredefined Path

Physical Shape of Mobile Crane

Figure 4.6 Generation of Path Space of Mobile Crane 

A workspace subsystem or entity describes the boundaries within which the 

associated construction labors and equipment can execute their construction tasks. For 

example, the workspace subsystem of the reinforced concrete structure of an 8-floor 

building can be decomposed into 8 floor zones, and each floor zone can be further 

decomposed into 3 work zones, each of which can be further detailed into several 

workspace entities. Similarly, the trajectory boundary required by mobile equipment 

and portable facilities, like mobile cranes, can be represented by path space entities, 

which can be generated in a 3D CAD model by extruding the physical shape of a 

mobile equipment/facility along predefined tracks/paths (see Figure 4.6). Also the 

physical spaces occupied by the permanent building components can also be 

structured according to the product system hierarchy. In this way, most of the space 

utilization requirements during construction can be abstracted. 

Furthermore, the spatial relationships between two space entities can be 

described in terms of (binary) topological relationships. In the present study the 
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topological relationships are simply categorized into three types, namely disjoint, 

intersection, and meet. The disjoint relationship means that there is no surface or 

volumetric overlap between two space entities, while the intersection relationship 

indicates that there is overlapped volume between space entities. The meet 

relationship defines that two space entities only share some common surfaces, but 

there is no overlapped volume between them. The intersection topological 

relationships can be used to detect temporal collisions among workspaces (Song and 

Chua, 2005), while the present study focuses on employing the meet relationships for 

evaluating the spatial interaction between function user and function provider. 

Figure 4.5 shows that the topological relationships between a pair of space 

entities can be represented as a triangle matrix, since the reverse topological 

relationship from Space Entity Y to X is the same as the corresponding topological 

relationship from Space Entity X to Y in the context of the present categorization 

scheme of topological relationships. The triangle matrix in Figure 4.5, for example, 

only records the topological relationship “TR(SE1, SE2)” from space entities “SE1” 

to “SE2”, since the reverse topological relationship TR(SE2, SE1) is the same as 

“TR(SE1, SE2)”. 

 

4.4.3 Work Package and Performer State Package 

An activity in the process system module of Figure 4.5 can be described by 

two important attributes: the work content and the performer group. The former refers 

to the product components that will be processes by the activity, while the latter 

denotes the labor and equipment allocated for executing the activity. “Activity A” of 

Figure 4.5, for example, has “Work Content A” (referencing “Components A1 and 

A2” in the product model) and “Performer Group A” (referencing “Equipment A” or 
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“Labor A” in the resource model). These two attributes can be further described from 

the viewpoint of construction state by the work package and performer state package, 

respectively.  

Figure 4.5 shows that “Work Content A” is depicted by “Work Package A” 

comprising the states “S2” of “Components A1 and A2”. The active phases of these 

two “S2” states are transited by “Activity A”. Meanwhile, the “Performer Group A” 

of “Activity A” can be further described by the “Performer State Package A” 

comprising the performer states “PS(Activity A)” of “Labor A” and “Equipment A”. 

In this way, the temporal attributes of “Activity A” can be mapped onto the two 

performer states for further intermediate function analysis.  

Additionally, if a construction performer is assign to execute several activities, 

its execution history can be described by a sequence of performer states 

corresponding to the activities. This is similar to the construction life cycle of product 

component, but the sequence of performer states may be discontinuous since there are 

gaps between the construction activities along the execution history of the associated 

construction performer. Figure 4.5, for example, shows that “Labor A” is firstly 

allocated to perform “Activity A” and then “Activity B” so its execution history 

comprises two sequential performer states: “PS(Activity A)” and “PS(Activity B)”. 

Consequently, the integration of the process and product models can be 

realized through the work package concept, while the integration of the process and 

the resource model can be established by the performer state package. Then, the 

temporal attributes of construction activities can be mapped onto the 

component/performer states for deriving their temporal attributes. These derived 

temporal attributes will be used for evaluating the temporal interaction of an 

intermediate function. 
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4.4.4 Requirement and Functional State Packages 

As stated in the preceding Section 4.2, the requirement state package 

comprises a set of component/performer states during which the function user would 

require the intermediate functionality for supporting the construction processes or for 

maintaining the stability of an in-progress structure. On the other hand, the 

availability of the intermediate functionality is depicted by the functional state 

package, comprising a collection of component/performer states during which the 

constituent components jointly exhibit their engineering behaviors to realize the 

intermediate functionality. 

Figure 4.5 illustrates the intermediate function “Function X” that is associated 

with resource model through “Requirement State Package X”. The “Requirement 

State Package A” comprises the performer states “PS(Activity A)” and “PS(Activity 

B)” of both “Labor A” and “Equipment A”, which would require the “Function X” 

functionality when they are executing “Activity A” and “Activity B”. Likewise, the 

intermediate function “Function X” is also associated with component state network 

through “Functional State Package X”, marked by a rounded rectangle in Figure 4.5. 

This means that the “Function X” functionality is available only when “Components 

G1 and G2” are in either state “S3” or “S4” and when “Component H1” is in the state 

“S2”, “S3” or “S4”. These seven component states are contained in “Functional State 

Package X”. 

 

4.4.5 Workspace and State Space   

The information integration framework shows that a process model can be 

integrated with a space model via its workspace attribute. Besides the work content 
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and performer group attributes, an activity has another attribute workspace, which can 

reference a number of space entities in a space model to describe the space boundary 

required for executing the activity. Figure 4.5, for example, shows that “Workspace 

A” of “Activity A” references the space entity “SE3” to describe the space boundary 

required for executing “Activity A”.   

The state space of a component state may reference one or several space 

entities in a space model to describe the physical space occupied by the in-progress 

component. Figure 4.5, for example, shows that “S1” state of “Component A1” 

references the space entity “SE1”. Similarly, the state space attribute of a performer 

state can also reference several space entities to describe the workspace where the 

construction performer executes the associate activity. For example, the performer 

states “PS(Activity A)” of both “Labor A” and “Equipment A” reference the same 

space entity “SE3”, indicating they work together within the same workspace. This 

means that the workspace of an activity can be mapped onto the associated performer 

states as their state spaces.  

Additionally, Figure 4.5 also shows that besides “SE3”, the performer state 

“PS(Activity A)” of “Equipment A” references another space entity “SE5”, which 

describes the path space for transporting “Equipment A” to the work face. 

Consequently, the spatial attributes of component/performer states can be used for 

evaluating the spatial interaction between the function user and the function provider, 

which is elaborated in Section 5.2. 

 

4.5 Concluding Remarks 

The semantic model of intermediate function provides a common vehicle to 

represent and communicate intermediate function requirements among the trades 
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distributed in different engineering domains, leading to reduced ambiguity of 

understanding intermediate function requirements across trades. Moreover, this 

semantic model also makes it feasible to manage intermediate function using 

information technologies.  

A schema has been developed for representing the intermediate function 

requirement knowledge from three perspectives, namely the construction life cycle of 

a single product component, the functional interdependencies between two in-

progress components, and the availability conditions for a group of provider 

components. This knowledge capture the temporal logics residing in construction 

method, which can aid planning engineers in developing IPPCM and modeling 

intermediate function requirements. 

Lastly, an information integration framework is developed for integrating five 

project modeling perspectives: product, process, resource, space, and intermediate 

function, which are necessary for intermediate function analysis. The integration is 

realized through work package, performer state package, requirement state package, 

and functional state package as well workspace and state space. Thus, the information 

integration framework creates the foundation for developing various analysis 

methodologies in the succeeding chapter. 
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CHAPTER 5 INTERMEDIATE FUNCTION ANALYSIS 

METHODOLOGIES 

The semantic representation model of an intermediate function indicates that 

an intermediate function can be analyzed from both temporal and spatial perspectives. 

Based on this semantic representation model, four analysis methodologies have been 

developed. The first and second methodologies are used for detecting unavailable 

temporal and spatial interactions of a single intermediate function, respectively. The 

third methodology extends the first to match the requirement time-windows with the 

availability time-windows of a set of compatible/substitutable intermediate 

functionalities. The fourth methodology is developed to identify the bottleneck state 

that determines the earliest availability of an intermediate function, which aids 

planning engineers in advancing bottleneck states for early realization of the 

associated intermediate functionalities, leading to earlier commencement of 

construction activities and reduced construction periods. 

 

5.1 Evaluation of Temporal Interaction between User and Provider 

5.1.1 Computation of Requirement Time-Window 

The temporal interaction between the function user and the provider can be 

evaluated by matching the Requirement Time-Window (RTW) of the user with the 

Availability Time-Window (ATW) of the provider. The requirement time-window of 

an intermediate function defines the time interval(s) during which the intermediate 

functionality will be required by the function user, and this time-window can be 

derived from the associated requirement states (or state phases). In general, a 

requirement time-window should cover the duration intervals of all the requirement 
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states comprised in the requirement state package RSP(F). Mathematically, such a 

time-window can be derived by the Boolean union operation of the duration intervals 

of all the associated requirement states or state phases, given by: 

( )( )ji
ji

SCIFRTW .)(
,
U=     ∀ Ci.Sj ∈  RSP(F)                                             (5.1) 

Where F is an arbitrary intermediate function, RTW(F) the requirement time window 

of F, Ci.Sj the Sj state of the Ci component, I(Ci.Sj) the duration interval of Ci.Sj, and 

RSP(F) the requirement state package of the intermediate function F. 

For example, Figure 5.1A shows the function user “User_1” of “Function_1”, 

comprising two construction performers “R1” and “R2” along with their requirements 

states “R1.Act_01”, “R1.Act_02”, “R2.Act_01” and “R2.Act_02” comprised in the 

requirement state package “RSP(Function_1)”. Accordingly, the temporal attributes 

of two “Act_01” and two “Act_02” states can be derived from the associated 

construction activities “Act_01” and “Act_02” through the corresponding performer 

state packages “PSP(Act_01)” and “PSP(Act_02)”, respectively (Figure 5.1A). In the 

Figure, the two “Act_01” states are equal to each other, and the two “Act_02” states 

are also equal to each other, indicating that “R1” and “R2” are jointly executing the 

construction activities “Act_01” and “Act_02”.  

Accordingly, the requirement time window RTW(Function_1) can be derived 

from the duration intervals of the four performer states, which is given by the Boolean 

union operation as follows: 

RTW(Function_1)  

= I(R1. Act_01) ∪ I(R1.Act_02) ∪ I(R2.Act_01) ∪ I(R2. Act_02) 

= RI1 ∪ RI2 
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Figure 5.1 Matching Requirement with Availability Time-Windows 

The resultant requirement time-window can contain several discontinuous 

intervals. For the example shown in Figure 5.1B, the requirement time window 

RTW(Function_1) contains two time intervals: “RI1” and “RI2”. These two intervals 

correspond to the duration intervals of the performer states “Act_01” (activity 
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“Act_01”) and “Act_02” (activity “Act_02”), respectively, between which there is a 

quiescent gap, which makes the requirement time-window of “Function_01” 

discontinuous. 

 

5.1.2 Computation of Availability Time-Window 

The availability time-window of an intermediate function defines the time-

window during which the intermediate functionality will be provided by the function 

provider, and this time-window can be derived from the associated functional states 

(or state phases). Only when all the constituent components in a function provider are 

concurrently in their functional states, can they jointly behave as an interrelated 

system for realizing the intermediate functionality. The computation of the 

availability time-window can be achieved in two steps. The duration intervals of the 

functional states of each provider component are first united into a functional time-

window using the Boolean union operation. Then the availability time-window can be 

produced using the Boolean intersection operation on the functional time-windows of 

all provider components. The computation formula is presented as: 

I U
i j

ji SCIFATW ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ).()(     ∀ Ci.Sj ∈ FSP(F)                                      (5.2) 

Where F is an arbitrary intermediate function, ATW(F) the availability time window 

of F, Ci.Sj the Sj state of the Ci component, I(Ci.Sj) the duration interval of Ci.Sj, and 

FSP(F) the functional state package of F. 

Figure 5.1C shows the function provider “Provider_1” of “Function_1”, 

comprising three components “C1”, “C2” and “C3” along with their functional states 

“S2.Q”, “S3.Q” and “S4” contained in the functional state package 

“FSP(Functional_1)”. The functional state phases “S2.Q” and “S3.Q” of each 
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provider component indicate that the intermediate functionality is not available during 

its “S3.A” active phases. For the instance shown in Figure 5.1C, the availability time-

window “ATW(Function_1)” is given by the following Boolean operations:  

     ATW(Function_1)  

=     ((I(C1.S2.Q) ∪ I(C1.S3.Q) ∪ I(C1.S4))) 

   ∩ ((I(C2.S2.Q) ∪ I(C2.S3.Q) ∪ I(C2.S4))) 

∩ ((I(C3.S2.Q) ∪ I(C3.S3.Q) ∪ I(C3.S4))) 

= AI1 ∪ AI2  

Figure 5.1C shows that the resultant availability time-window comprises two 

discontinuous time intervals, namely “AI1” and “AI2”. In this instance, it is evident 

from Figure 5.1C that the available time-window “ATW(Function_1)” is disrupted by 

the “S3.A” active phases, thus making the availability time-window discontinuous, 

which is often experienced in practice. 

 

5.1.3 Analysis on Matching Requirement and Availability Time-windows  

The temporal interaction between the user and provider of an intermediate 

function can be evaluated by matching the requirement time window with the 

availability time-window of an intermediate function. This analysis can be achieved 

using a Boolean cut operation between the requirement time-window (like minuend) 

and the availability time-window (like subtrahend). The Boolean cut operation 

produces the difference between two time-window operands, indicating the interval or 

intervals where the requirement time-window cannot be overlapped/covered by the 

availability time-window. The formula for computing a non-matching time-window 

(NMTW) is presented as: 

NMTW(F) = RTW(F) – ATW(F)                                                               (5.3) 
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Where F is an arbitrary intermediate function, NMTW(F) the no-matching time-

window of F, RTW(F) the requirement time window of F, and ATW(F) the availability 

time window of F. 

The temporal interval(s) in the resultant non-matching time-window indicate(s) 

the periods during which the intermediate functionality is required but not provided, 

implying unavailable temporal interaction between the function user and the 

corresponding provider. Thus, an unfulfilled intermediate function can be detected. 

On the other hand, a “null” non-matching time-window indicates that the requirement 

time-window is totally covered by the availability time-window, meaning that the 

temporal interaction between the function user and function provider is feasible. 

Figure 5.1B demonstrates the non-matching time-window NMTW(Function_1) 

between RTW(Function_1) and ATW(Function_1), which can derived by the Boolean 

cut operation as follows: 

    NMTW (Function_1)  

= RTW(Function_1) - ATW(Function_1) 

= NI1 ∪ NI2 ∪ NI3 

Since the RTW and ATW of an intermediate functionality may not be 

continuous, the Boolean cut resultant can also be discontinuous. In this instance, the 

resultant non-matching time-window NMTW(Function_1) comprises three temporal 

intervals “NI1”, “NI2”, and “NI3” (Figure 5.1B), indicating the periods during which 

the “Function_1” intermediate functionality is required but cannot be provided, 

leading to unavailable temporal interaction between “User_1” and “Provider_1”.  

In this way, not only can the availability of the temporal interaction between 

the user and the provider of an intermediate function be evaluated, the unavailable 

period can also be detected and explained with respect to the associated 
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requirement/functional states. This information may help planning engineers improve 

their schedules by adjusting the schedules of the corresponding activities in order to 

change the component states associated with the requirement time window and the 

availability time-window of the unfulfilled intermediate function. Such adjustment 

may eliminate the non-matching time-window.  

 

5.1.4 Concurrency Relationships Implied by Matching RTW with ATW 

From the process modeling viewpoint, the temporal matching between the 

requirement time-window and the corresponding availability time-window can be 

explained as the concurrency relationship between the construction activities 

associated with the requirement states and the functional states. Also, the joint 

contribution of the functional states to realize an intermediate functionality implies the 

concurrent relationships among the associated construction activities that transit the 

functional states.  

Figure 5.1 shows that two activities “Act_01” and “Act_02” are associated 

with the four requirement states of two construction performers “R1” and “R2” 

through two performer state packages “PSP(Act_01)” and “PSP(Act_02)”, 

respectively. Similarly, there are six other activities “Act_101” to “Act_106” 

associated with the nine functional states of three provider components “C1”, “C2” 

and “C3” through six work packages “WP(Act_101)” to “WP(Act_106)”, respectively. 

Specifically, activity “Act_106” references three “S5.A” active phases through the 

work package “WP(Act_106)” (Figure 5.1C). Although these three “S5.A” phases are 

not functional states, their start points determine the finish points of the corresponding 

preceding states “S4”, which are functional states.  
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The matching between RTW(Function_1) and RTW(Function_1) implies the 

concurrency relationship between the two-activity group associated with “User_1” 

(“Act_01” and “Act_02”) and the six-activity group associated with “Provider_1” 

(“Act_101” to “Act_106”). However, such concurrent relationships are not 

semantically represented in CPM schedules, giving rise to potential schedule conflicts 

because of unfulfilled intermediate function requirements.   

The computation of ATW(Function_1) indicates the concurrency relationships 

among the six activities “Act_101” to “Act_106” (Figure 5.1D), and these 

concurrency relationships should be considered as temporal constraints for scheduling 

these six activities to fulfillment the requirement from “Function_1”. Unfortunately, 

such concurrency relationships determining an availability time-window are often 

inadequately represented in a semantic manner in traditional CPM schedules. The 

computation of ATW(Function_1) also implies that the concurrency relationships 

associated with a function provider would be better described by the quiescent gaps 

between the corresponding activities (like the quiescent phases “S2.Q”, “S3.Q” and 

“S4.Q”). However, these quiescent phases are neither depicted nor derived in the 

traditional CPM schedules. 

 

5.2 Evaluation of Spatial Interaction between User and Provider 

The matching between the available time-window and the requirement time-

window only evaluates whether an intermediate functionality is available when it is 

required, but such evaluation does not verify whether the function user can physically 

interact with the provider when the temporal interaction is available. Such physical 

interaction can be evaluated with respect to the time-dependent spatial (or spatio-

temporal) relationships between the user components and provider components. For 
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this purpose, the concepts of temporal space entity and temporal topological 

relationships between two temporal space entities are first defined. Based on these 

two concepts, a spatio-temporal interaction matrix can be derived to describe the time-

dependent spatial interaction between the user and the provider, and then the spatio-

temporal interaction matrix is evaluated against the corresponding spatio-temporal 

criterion matrix, which specifies the spatial interaction criteria between user 

components and provider components. Consequently, the unavailable spatial 

interaction between the user and the provider of an intermediate function can be 

detected. 

  

5.2.1 Temporal Space Entity and Temporal Topological Relationship  

The spatial interaction of an intermediate function should be evaluated from 

both spatial and temporal attributes of its user and its provider because the spatial 

interaction is not only determined by the topological relationships between the user 

components and the provider components, but it is also restricted by the co-existence 

of the associated components. However, a 3D space model that is developed using 

various CAD tools itself does not contain any temporal information to depict when a 

space entity enter or exit a space system. In such a time-independent space model, the 

topological relationships between the associated space entities are also time-

independent. These time-independent space entities and topological relationships 

alone cannot be adopted to evaluate the time-dependent spatial interaction between 

the user and the provider. Therefore, the present study develops two concepts, namely 

temporal space entity and temporal topological relationship, to describe the spatial 

interaction between the function user and the function provider. 
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A temporal space entity describes both geometric characteristic and existence 

period of a space entity. The geometric characteristic attribute describes such spatial 

information as shape and location of an in-progress component, while the existence 

period attribute describes a time-window during which the in-progress component has 

the shape and stays in the location as the associated geometric characteristic depicts. 

For example, when an access road has been backfilled, its shape is different from 

when it has been excavated. So the shape of the backfilled road is different from the 

shape of the excavated road, and these two shapes have different existence periods. 

Since a space entity may be referenced by several discontinuous 

functional/requirement states its existence period can contain several discontinuous 

intervals. For example, “backfilled” state of an access road can reference the same 

shape entity “R” in the CAD model as its state space and the “unexcavated” or 

“Original” state of the access road can also reference the same “R” space entity. This 

means that the space entity “R” is referenced by two states, which are discontinuous. 

Mathematically, the existence period of an arbitrary temporal space entity “TSEm” 

can be derived by a Boolean union of the duration intervals of the associated 

requirement/functional states (or state phases) that reference “TSEm” as their state 

spaces, as follows: 

( )).()(
,

ji
ji

m SCITSEEP U=           ∀ Ci.Sj. ∈ RSP(F) or Ci.Sj ∈ FSP(F), 

IsAssociatedWith(TSEm, Ci.Sj) = True                                                      (5.4) 

Where TSEm is an arbitrary temporal space entity associated with intermediate 

function F, Ci.Sj the Sj state of the Ci component, I(Ci.Sj) the duration interval of 

Ci.Sj. Ci.Sj ∈ RSP(F) indicates the component state Ci.Sj is a requirement state 

contained in the requirement state package of the intermediate function F, while Ci.Sj 

∈ FSP(F) is a functional state contained in the functional state package of the 
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intermediate function F. IsAssociatedWith(TSEm, Ci.Sj)=True indicates that the 

component state Ci.Sj is associated with the temporal space entity TSEm if the 

Boolea

t existence period may be a discontinuous 

time-window containing several intervals. 

n result is true. 

Eq. (5.4) indicates that the existence period of the temporal space entity TSEm 

is Boolean union of all the requirement/functional states (or state phases) that 

reference TSEm as their state spaces. Since the duration intervals of these associated 

states may not be continuous, the resultan
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Figure 5.2 Spatio-temporal Interaction Matrix 

Figure 5.2 illustrates the spatial interaction of a temporary support function. 

Specifically, two platforms “PC1” and “PC2” are erected on the ground earth “EC3”, 

and these three provider components work together to realize the temporary support, 
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while three user components, namely labor “RC1”, “RC2”, and “RC3”, requires the 

temporary support for executing their construction processes. According to the 

construction plan, “PC1” is erected in two steps which are respectively represented by 

its states “PC1.S1” and “PC1.S2”. The “TSE1” part of “PC1” is first erected during 

“PC1.S1”, and then its “TSE2” part is erected on the top of “TSE1” during “PC1.S2”. 

Likewise, “PC2” is also erected in two steps. Its “TSE3” part is first erected adjacent 

to “TSE2” during “PC2.S1”, and then the horizontally expended part “TSE4” is 

erected

es (“PC1.S1.Q”, “PC1.S2.Q”, “PC2.S1.Q”, 

“PC2.S

ectively. Therefore, the existence period of 

“TSE1

ewise, the 

existence periods of the other seven temporal space entities can be derived. 

 adjacent to “TSE3”. 

Accordingly, there are a total of three space entities (“TSE11”, “TSE12”, and 

“TSE13”) associated with three user components (labor “RC1”, “RC2”, and “RC3”) 

via four requirement states (“RC1.S1.A”, “RC2.S1.A”, “RC3.S1.A”, and 

“RC3.S2.A”), while there are a total of five space entities (“TSE1” to “TSE5”) 

associated with three provider components (platforms “PC1” and “PC2” and earth 

component “EC3”) via five functional stat

2.Q”, and “EC3.S1”) (Figure 5.2). 

For example, labor “RC3” (user component) has two requirement states which 

reference the same temporal space entity “TSE13”, which describes the workspace of 

“RC3” when it executes two construction activities represented by the active phases 

“RC3.S1.A” and “RC3.S2.A”, resp

3” can be derived as follows:  

EP(TSE13) = I(RC3.S1.A) ∪ I(RC3.S2.A) = I(15, 16) ∪ I(18, 20) 

The resultant discontinuous window contains two temporal intervals during which 

labor “RC3” requires the temporary support functionality for executing the 

construction processes represented by “RC3.S1.A” and “RC3.S2.A”. Lik
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The temporal topological relationship between two temporal space entities 

represents the spatio-temporal relationships between them. A temporal topological 

relationship has two attributes: (binary) topological relationship and existence period. 

The former denotes the time-independent binary topological relationship (like disjoint, 

meet, and intersect) between the geometric boundaries of the two associated temporal 

space entities, while the latter indicates the time-window during which both 

associated temporal space entities co-exist to ensure the existence of the spatial 

interaction between them. Accordingly, the present study defines three categories of 

temporal topological relationships: temporal disjoint, temporal meet, and temporal 

intersect.  

Mathematically, the existence period of a temporal topological relationship 

can be derived by Boolean intersection between the existence periods of two 

associated temporal space entities, given by: 

EP(TTR(TSEx, TSEy)) = EP(TSEx) ∩ EP(TSEy)                             

nd EP(TSEx) and 

EP(TSE

“TSE13”and the provider space entity “TSE3” (Figure 5.2), can be derived as follows: 

(5.5) 

Where TSEx and TSEy are two arbitrary temporal space entities, a

y) are the existence periods of TSEx and TSEy, respectively. 

Since the existence periods of each associated space entity (like “TSEx” or 

“TSEy”) may be discontinuous, the existence period of the resultant temporal 

topological relationship (like “TTR(TSEx, TSEy)”) may also be discontinuous. For 

instance, the existence period of the temporal topological “TTR(TSE13, TSE3)”, 

which represents the spatio-temporal relationship between the user space entity 

 101



 

   EP(TTR(TSE13, TSE3))  

= EP(TSE13) ∩ EP(TSE3) 

= (I(15, 16) ∪ I(18, 20)) ∩ (I(12, 13)  ∪ I(15, 22)) 

= I(15, 16) ∪ I(18, 20) 

Incidentally, this discontinuous existence period is equal to the existence period of the 

associated user space entity “TSE13” (derived in the preceding paragraph). This 

means that when labor “RC3” requires the temporary support (during I(15,16) and 

I(18,20)) from the platform “PC2”, the former can “Meet” the latter. 

 

5.2.2 Analysis of Spatio-Temporal Interaction Matrix using Spatio-Temporal 

Criterion Matrix 

Figure 5.2 illustrates the fifteen temporal topological relationships between 3 

user space entities and 5 provider space entities organized into a 3*5 matrix, called a 

spatio-temporal interaction matrix. A spatio-temporal interaction matrix of an 

intermediate function depicts the spatial interaction between its user and provider 

component with respect to the temporal topological relationships between the 

temporal space entities associated with each requirement state and each functional 

state. In such a matrix, the space entity at each row represents a user space entity, 

while the space entity at each column represents a provider space entity.  

Figure 5.2, for example, shows that “TSE13” at the third row is referenced by 

the user component “RC3” via the requirement state phases “RC3.S1.A” and 

“RC3.S2.A”, while “TSE3” at the third column is reference by the provider 

component “PC2” via the functional state phases “PC2.S1.Q” and “PC2.S2.Q”. Each 

element in the interaction matrix denotes the temporal topological relationship 

between the user (row) space entity and provider (column) space entity. For instance, 
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the element at the third row and the third column depicts the temporal topological 

relationship between the temporal space entities “TSE13” and “TSE3”. In this way, 

the spatial interaction between the function user and the corresponding provider can 

be described by the corresponding spatio-temporal interaction matrix. 

The derived spatio-temporal interaction matrix is validated against the 

corresponding spatio-temporal criterion matrix in order to detect unavailable spatial 

interaction. The spatio-temporal criterion matrix defines the expected spatio-temporal 

relationships between the user components and provider components with respect to 

the necessary conditions/criteria for the topological relationships between the user 

(row) space entities and provider (column) space entities. Thus, the size of a spatio-

temporal criterion matrix should be equal to that of the corresponding spatio-temporal 

interaction matrix. Moreover, the sequences of space entities in the row and the 

column are also the same as the corresponding spatio-temporal interaction matrix. 

For example, Figure 5.3 shows a 3*5 spatio-temporal criterion matrix for 

evaluating the spatio-temporal interaction matrix illustrated in Figure 5.2. Specifically, 

“TSE3” is the third row entity in both the interaction matrix and the criterion matrix 

(see Figures 5.2 and 5.3). In this way, each element in the spatio-temporal interaction 

matrix can be matched with the criterion element at the same row and column in the 

spatio-temporal matrix. For instance, the temporal topological relationship 

TTR(TSE13, TSE3) at the third row and the third column in interaction matrix shown 

in Figure 5.2 can evaluated according to the criterion defined in the third row and the 

third column in the criterion matrix illustrated in Figure 5.3. 
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Figure 5.3 Spatio-Temporal Criterion Matrix 

There are two types of conditions in a spatio-temporal criterion matrix. The 

first is the “interaction” condition, while the second is the “non-collision” condition. 

The “interaction” condition is necessary for realizing the required spatial interaction 

between the user and provider components. Such a necessary condition defines how 

and when the associated user components should spatially interact with the associated 

provider components with respect to the required type(s) of temporal topological 

relationship and the required range for its existence period. On the other hand, the 

“non-collision” condition defines that temporal topological relationship between the 

user space entity and the corresponding space entity does not affect the spatial 
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interaction between the user and the provider as long as they do not collide with each 

other. 

In the context of evaluating temporary support functionality, an interaction 

element only permits a temporal meet relationship, and its existence period should be 

equal to the existence period of the associated user space entity, indicating that the 

associated user component can temporally access the associated provider component 

whenever the user component requires the temporary support. Since the existence 

period of a temporal topological relationship is the Boolean intersection of the 

existence periods of the associated user and provider space entities, the existence 

period of the resultant temporal topological relationship can never be longer than the 

existence period of either user or provider space entity. Thus, the “interaction” 

condition for a temporary support function is denoted by “(M, =EP(USE))”, where 

“M” denotes that the spatio-temporal relationships between the user and provider 

space entities should be temporal meet and “=EP(USE)” denotes that the existence 

period of the corresponding temporal topological relationships should be equal to the 

associated user space entity. 

On the other hand, a “non-collision” condition for a temporary support 

function does not permit a temporal intersection relationship with non-zero existence 

period, which would indicate a temporal collision between the associated user space 

entity and the associated provider space entity. This condition is therefore denoted by 

“(I, null)”. Meanwhile, a temporal disjoint relationship or a temporal meet 

relationship with any existence period is permitted for a “non-collision” condition 

without causing any spatial conflict. These two criteria are denoted by “(D, ~)” and 

“(M, ~)”, respectively. 
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The example in Figure 5.3 shows that a total of six elements in the spatio-

temporal criterion matrix are assigned the “interaction” condition, depicting the 

necessary conditions to realize the spatial interaction between “User_1” and 

“Provider_1”. Herein, C(TTR(TSEu, TSEp)) denotes the condition for the temporal 

topological relationship between the user space entity TSEu and the provider space 

entity TSEp. Specifically, with respect to “TSE11”, “C(TTR(TSE11, TSE1))”, 

“C(TTR(TSE11, TSE3))”, and “C(TTR(TSE11, TSE4))” denotes that the workspace 

of labor “RC1” (“TSE11”) should “meet” the lower part of the platform “PC1” 

(“TSE1”), the horizontally expanded “PC2” (“TSE3”, and “TSE4”) for accessing the 

temporary support. Similarly, “C(TTR(TSE12, TSE2))” defines that the work space of 

“RC2” (“TSE12”) should meet the elevated part (“TSE2”) of the platform “PC1”. 

Figure 5.3 also illustrates that a total of nine elements in the spatio-temporal 

criterion matrix have assigned the “non-collision” condition. Specifically, with respect 

to “TSE5”, “C(TTR(TSE11, TSE5))”, “C(TSE12, TSE5))”, and “C(TSE13, TSE5))” 

denotes that the labor “RC1”, “RC2” and “RC3” has no need to “meet” the earth 

component “EC3” under two platforms “PC1” and “PC2”. Similarly, “C(TTR(TSE11, 

TSE2))” indicates that the labor “RC1” (whose workspace is “TSE11”) does not 

require but should avoid temporal collision with the elevated part (physical space 

“TSE2”) of the platform “PC1”, and “C(TTR(TSE13, TSE2))” means that the “RC2” 

in its workspace “TSE13” does not require the temporary support from the lower 

part(“TSE2”) of the platform “PC1” as long as these  “TSE13” and “TSE2” do not 

collide with each other. The section view in Figure 5.3 shows that the user space 

entity “TSE13” (the workspace of “RC3”) actually meet “TSE2” (physical space of 

the elevated part of “PC1”) on their vertical sides. 
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The unavailable spatial interaction between the function user and the 

corresponding function provider can be detected by evaluating the spatio-temporal 

interaction matrix against the corresponding spatio-temporal criterion matrix. If any 

temporal topological relationship in the interaction matrix cannot fulfill the condition 

specified in the corresponding element in the spatio-temporal criterion matrix, an 

undesirable temporal topological relationship is detected, implying unavailable spatial 

interaction. An undesirable temporal topological relationship can arise from either 

prohibited types of spatio-temporal relationship occurs or its existence period cannot 

satisfy the range defined in the spatio-temporal criterion matrix. 

 
Figure 5.4 Matching Interaction Matrix with Criterion Matrix 

Figure 5.4, for example, illustrates the validation of the spatio-temporal 

interaction matrix shown in Figure 5.2 against the spatio-temporal criterion matrix 

defined in Figure 5.3. This validation detects one undesirable temporal topological 

relationship TTR(TSE11, TSE4) at the first row and the fourth column of the spatio-

temporal interaction matrix since its existence period is null instead of being equal to 

the existence period of the corresponding user space entity “TSE11”, indicating that 

The “interaction” condition “M, =EP(USE)” for TTR(TSE11, TSE4) is violated. This 

means that labor “RC1” cannot access the horizontally expanded part of platform 

“PC2” on Days 12 and 13. Additionally, Figure 5.4 shows that although “TSE11” 
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intersects with “TSE2”, but the existence period of this temporal intersection 

relationship is “null”. Therefore, this will not result in temporal collision. 

Consequently, the analysis of evaluating spatio-temporal interaction matrix 

against spatio-temporal criterion matrix not only detects the inaccessibility to the 

function provider, but the analysis result also indicates the undesirable temporal 

topological relationships in terms of undesirable temporal topological types or 

improper existence periods. This information can aid planning engineers in adjusting 

construction schedules for resolving the unavailable spatial interactions. 

 

5.2.3 Example of Moving Mobile Crane on Excavated Access Road  

 

Figure 5.5 Site Layout for Moving Mobile Crane 

Figure 5.5 illustrates an example, using a 2D drawing, that a mobile crane is 

employed to transport precast columns from the storage yard to the erection positions 
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and then to lift and install the columns. This example is used to explain the detection 

of unavailable spatial interaction by evaluating the spatio-temporal interaction matrix 

against the corresponding spatio-temporal criterion matrix. At the same time, the site 

is also undergoing underground piping work that takes place across the site as shown 

in Figure 5.5. This construction scenario implies that inaccessibility problems may 

occur as a result of the excavation of the access road. 

 

Figure 5.6 Durations of Related Activities and Component States 

The above-mentioned access scenario is depicted with respect to the process 

activities and the associated product/resource components as well as their construction 

life cycles. It is also assumed that the period of the study is 14 working days (Day 1 to 

Day 14). Figure 5.6 shows five construction activities whose start and finish times are 

presented for deriving the durations of the corresponding state phase. In particular, 

“Move Crane” is a logistic activity that will be executed from the start of Day 5 to the 

end of Day 8. The access road on which the crane is moving is divided into three 

segments labeled as “Access Road 1”, “Access Road 2”, and “Access Road 3” (see 

Figure 5.5). The trench work will be sequentially executed in three zones, labeled as 
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“Trench Earth 1”, “Trench Earth 2”, and “Trench Earth 3” on Days 1, Day 2, and Day 

3, respectively. The excavation of “Trench Earth 3” will change the shape of the 

“Access Road 2”. After the pipe work finishes, the three excavated trenches will be 

concurrently backfilled on Day 12. 

Figure 5.6 also illustrates the association relationships between the activities 

and the corresponding component states. Specifically, the “Move Crane” activity is 

mapped onto the “Mobile Crane” as its performance state phase “Moving.A”, whose 

duration is from the start of Day 5 to the end of Day 8. Two construction activities 

“Excavate Trench 2” and “Backfill Trenches” are respectively mapped as the active 

phases of the “Excavated” and “Backfilled” states of “Access Road 2”. Accordingly, 

the active phases of these two active state phases are on Day 3 and Day 12, 

respectively. Meanwhile, the quiescent state phases of the relevant components are 

also shown in Figure 5.6. Specifically, the “Excavated.Q” quiescent phase of “Access 

Road 2” lasts from the start of Day 4 to the end of Day 11. Both “Access Road 1” and 

“Access Road 3” respectively have only one quiescent state “Original.Q”, which lasts 

from the beginning to end of the 14-day study period, since no activity is executed on 

them. 

Figure 5.7 shows the semantic model of the intermediate function “Temporary 

Support Function”, depicting the functional interdependency between the “Mobile 

Crane” and the “Access Road”. The “User” comprises only one construction 

performer “Mobile Crane”, while the function provider comprises three road segments 

“Access Roads 1 to 3”. Accordingly, the requirement state package comprises only 

one active phase, i.e. “Moving.A” of “Mobile Crane”, while the functional state 

package comprises five state phases associated with three road segments, respectively. 

The functional state phases for each road segment can be either “Original.Q”, 
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“Excavated.Q”, or “Backfilled.Q” because the access road segments cannot provide 

support functionality when it is being excavated (“Excavated.A”) or backfilled 

(“Backfilled.A”).  

 

Figure 5.7 Spatio-temporal Interaction Matrix for Detecting Inaccessibility 

Follow Eq. (5.1) and Eq. (5.2), it can be derived that the requirement time-

window RTW(Temporary_Support_Function) is the time interval I(5,8), while the 

availability time-window ATW(Temporary_Support_Function) is the discontinuous 

time-window I(1,2) ∪ I(4,11) ∪ I(13,14). Following Eq. (5.3), the corresponding non-

matching time-window between the RTW and the ATW is “null”, indicating that the 

temporal interaction between “User” and “Provider” is available. This means that the 

support functionality can be provided by the access road whenever the “Mobile 

Crane” requires it. On the other hand, whether the mobile crane can access the 

provided support functionality should be further evaluated with respect to the spatial 

interaction between the crane and the access road. 

 111



 

 

Figure 5.8 State Space Attributes of Component States 

Figure 5.8 illustrates the space entities referenced by the state space attribute 

of each requirement/functional component state (phase) of “Temporary Support 

Function”. Specifically, the state space of “Moving.A” references the path space 

entity “CP_S1” to represent the trajectory boundary of “Mobile Crane”. On the other 

hand, each functional state of the three road segments also references one or several 

space entities to describe their physical spaces. In particular, both “Original.Q” and 

“Backfilled.Q” functional state phases of “Access Road 2” reference the same four 

physical space entities: “AR2_S1”, “AR2_S2”, “AR2_S3”, and “TE3_S1” (see Figure 

5.5), but its “Excavated.Q” phase references only three space entities since the 

“TE3_S1” space entity, representing the earth object of the excavated trench, is 

excluded from the state space of “Excavated.Q” during which the trench is kept open. 

Additionally, the “Original.Q” quiescent phases of the unexcavated road segments 
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“Access Road 1” and “Access Road 3” reference the physical space entities 

“AR1_S1” and “AR3_S1”, respectively. 

Accordingly, the existence period of each temporal space entity shown in 

Figure 5.8 is the Boolean union of the duration intervals of the associated 

requirement/functional state phases. Specifically, the existence period of “CP_S1” 

(the path space entity of “Mobile Crane”) is equal to the duration interval of state 

phase “Moving.A” of “Mobile Crane”, i.e. I(5, 8). Similarly, the existence periods of 

both “AR1_S1” (“Access Road 1”) and “AR3_S3” (“Access Road 3”) encompass the 

whole study period, i.e. I(1,14). On the other hand, the existence period of “TE3_S1”, 

referenced by two functional state phases “Original.Q” and “Backfilled.Q” of 

“AR2_S2”, can be derived as follows: 

EP(TE3_S1) = I(AR2_S2.Original.Q) ∪ I(AR2_S2.Backfilled.Q)  

                      = I(1,2) ∪ U I(13,14) 

The existence period of the other three temporal space entities “AR2_S1”, “AR2_S2”, 

and “AR2_S3” can be likewise derived. 

The temporal topological relationships between the path space entity (user 

space entity) of the mobile crane and the six physical space entities (provider space 

entities)  associated with the three road segments are organized into an 1*6 spatio-

temporal interaction matrix as shown in Figure 5.7. There are a total of five temporal 

meet relationships and one temporal disjoint relationship in the spatio-temporal 

interaction matrix.  

The existence period of each temporal topological relationship in the spatio-

temporal interaction matrix can be derived by the Boolean intersection of the 

existence periods of the associated user and provider space entities. For example, the 

existence period of TTR(CP_S1, TE3_S1) is derived as follows: 
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   EP(TTR(CP_S1, TE3_S1))  

=  EP(CP_S1) ∩ EP(TE3_S1) 

= I(5,8) ∩ (I(1,2) ∪ I(13,14)) = Null 

The resultant “null” existence period of TTR(CP_S1, TE3_S1) indicates that the 

“Mobile Crane” may not temporally “meet” the trench earth object in the road 

segment “Access Road 2” since they cannot co-exist in the intermediate function 

system. The derived spatio-temporal interaction matrix will be evaluated against the 

spatio-temporal criterion matrix that is presented in the bottom of Figure 5.7 for 

detecting undesirable temporal topological relationships. 

The spatio-temporal criterion matrix in Figure 5.7 denotes that the path space 

of the “Mobile Crane” should meet each of the six road space entities. In detail, the 

six elements in the spatio-temporal criterion matrix are all assigned the interaction 

condition (M, =EP(CP_S1)). Herein, “M” denotes that the type of each temporal 

topological relationship should be “temporal meet”, while “=EP(CP_S1)” indicates 

that its existence period should be equal to the existence period of the crane path 

space “CP_S1”. 

The evaluation identifies one undesirable temporal topological relationship 

TTR(CP_S1, TE3_S1), which is at the fifth column. Its “null” existence period is 

unable to satisfy the corresponding existence period criterion “=EP(CP_S1)” in the 

interaction condition. This means that the moving path of “Mobile Crane” should but 

can not “meet” the trench earth object (“TSE3_S1”) from the start of Day 5 to end of 

Day 8 when it has been excavated. This renders the required temporary support 

functionality inaccessible due to the improper construction schedule. This result is 

consistent with the fact that the mobile crane cannot move over the excavated trench 
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at the site during Days 5 to 8 as planned. Consequently, the unfulfilled intermediate 

function requirements arising from the infeasible spatial interactions can be detected.  

 

5.3 Analysis on Matching Multiple Users with Multiple Providers 

Some intermediate functionalities are compatible or substitutable on site. In 

this case, if the similar intermediate functionalities are requested by a number of 

function users and if they are themselves provided by more than one provider, the 

“non-matching” evaluation discussed earlier can be extended from matching single 

user with single provider to matching multiple users with multiple providers. For 

example, a worker (function user) can access the work faces from different accesses 

(alternative function providers), and a scaffold (function provider) can support the 

construction works of different trades (multiple function users). This implies that if 

the requirement/availability time-windows of these users and providers can be 

properly matched, some temporary facilities may be avoided, and the risks of 

inaccessibility to work faces may be reduced. Consequently, the executability of the 

construction schedules be improved, leading to better constructability of a facility 

project.  

The fulfillment of a group of compatible intermediate function requirements 

can be evaluated with respect to matching the time-windows between the associated 

users and providers. The “non-matching time-window” (denoted by mNMTW where 

“m” denotes “multiple”) between the requirement time-windows of multiple users (in 

this case, n users) and the availability time-windows of multiple providers (in this 

case, n providers) can be evaluated using the Boolean cut operation on the Boolean 

union resultants of the respective requirement and availability time-windows, given 

by the equation Eq. (5.6): 
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Where n intermediate functions F1 to Fn are compatible with each other, Fi the ith 

intermediate function in the compatible intermediate function set {F1, …, Fi, …, Fn}, 

RTW(Fi) the requirement time-window of Fi, and ATW(Fi) the availability time-

window of Fi. 

 

Figure 5.9 Non-Matching Time-Window between Multiple Users and Providers 

Figure 5.9, for example, shows two users (“User_1” and “User_2”) and two 

providers (“Provider_1” and “Provider_2”) associated with two compatible 

intermediate functions “Function_1” and “Function_2”, respectively. The requirement 

time-window RTW(Function_1) of “User_1” contains two intervals “RI_1” and 

“RI_2”, while RTW(Function_2) of “User_2” contains another two intervals “RI_3” 

and “RI_4”. The availability time-window ATW(Function_1) of “Provider_1” 

comprises two intervals “AI_1” and “AI_2”, while ATW(Function_2) of “Provider 2” 

comprises “AI_3” and “AI_4”. 

Employing Eq. (5.3) to evaluate the single intermediate function “Function_2”, 

the resultant non-matching time-window NMTW(Function_2) contains the interval 

“NMI_1”, indicating that the requirement interval RI_3 cannot be completely 
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contained by the availability interval “AI_3” (see Figure 5.9). This means that during 

the interval “NMI_1”, the intermediate function requirement from “User_2” cannot be 

fully fulfilled by the corresponding “Provider_2”. This dilemma, however, can be 

resolved by the “Provider_1” of the alternative “Function_1”. 

Figure 5.9 illustrates the Boolean union of two requirement time windows 

RTW(Function_1) and RTW(Function_2), which is a discontinuous time-window 

comprising three intervals (RI_1, RI_3, RI_2&4). This time-window denote the time 

that either “User_1” or “User_2” would require the compatible intermediate 

functionalities “Function_1” and “Function_2”. Note that “RI_2&4” is the Boolean 

union of the overlapped “RI_2” and “RI_4”. On the hand, the Boolean union of two 

available time windows, comprising two intervals AI_1&3 and AI_2&4, denotes the 

time-window during which the compatible intermediate functionalities can be realized 

by the two engineering alternatives provided by “Provider_1” and “Provider_2”. 

AI_1&3 and AI_2&4 are two continuous intervals respectively made up of two 

availability intervals, namely AI_1 overlapping with AI_3 and AI_2 overlapping with 

AI_4. The non-matching time-window of “Function_1” and “Function_2” can be 

derived using Eq. (5.6) as: 

       mNMTW(Function-1, Function_2)  

=   (RTW(Function_1) ∪ RTW(Function_2))  

   - (ATW(Function_1) ∪ ATW(Function_2)) 

=  (RI_1 ∪ RI_2 ∪ RI_3 ∪ RI_4) – (AI_1 ∪ AI_2 ∪ AI_3 ∪ AI_4) 

=  (RI1 ∪ RI3 ∪ RI_2&4) - (AI_1&3 ∪ AI_2&4) 

=  Null 

By using the substitutable engineering solutions to resolve the compatible 

intermediate function requirements, the resultant mNMTW(Function_1, Function_2) 
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is null, indicating that unfulfilled requirement during the interval “RI_3” of “User 2” 

can now be achieved by the functionality provision during the interval “AI_1” of 

“Provider 1”. In this way, the compatible intermediate functionalities required by the 

two users can be collaboratively realized by both engineering solutions. 

Furthermore, Eq. (5.6) also implies that adjusting a requirement interval of a 

function user may save expenditure on temporary facilities. Specifically, it is assumed 

that the function user “Uk” of the intermediate function “Fk” is originally supported 

by the corresponding provider “Pk”. If the requirement interval “RIx” of “Uk” can be 

adjusted to utilize the compatible intermediate functionality provided by the provider 

“Pj” of another intermediate function “Fj”, some temporary facilities associated with 

the provider “Pk”, which were originally necessary during the requirement interval 

“RIx” for supporting the user “Uk” need not be constructed or can be 

dismantled/removed earlier, leading to saving of cost.  

Furthermore, Eq. (5.6) also implies that if an requirement interval “RIx” of an 

function user “Uk” can be adjusted to utilize the intermediate functionality provided 

by other provider(s), some provider components, especially temporary facilities, that 

are once required for realizing the intermediate functionality for supporting the user 

“Uk” during the original “RIx”, can be saved or dismantled/removed earlier, which 

means potential saving.  

For example, Figure 5.9 shows that the requirement interval “RI_4” of 

“User_2” partially overlaps with the availability interval “AI_2” of “Provider_1” and 

that the length of “RI_4” is shorter than the length of “AI_2”. If “RI_4” can be 

advanced until it is contained by “AI_2” the availability interval “AI_4” of 

“Provider_2” may not be required. This means the provider component(s) required for 

realizing the “Function_2” functionality during “AI_4”, for example a scaffold, can be 
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avoided. This can be achieved by the collaborative planning among relevant 

contractors. 

 

5.4 Identification of Bottleneck State 

The principle of lean construction states that the delay of some construction 

activities, especially critical activities, arises from waiting for the availability of the 

associated resources and design information. Likewise, the late commencement of 

some construction or logistic activities may result from the late availability of 

intermediate functionalities for supporting the associated construction performers and 

maintaining the temporary stability of the associated in-progress structure. In this case, 

shortening a construction schedule can be realized by advancing the availability of the 

intermediate functionalities that determines the commencement of the associated 

construction activities.  

In general, a functional state package may comprise a number of functional 

states which may not start simultaneously. A Bottleneck state is a functional state that 

determines the earliest availability of an intermediate functionality that constraints the 

commencement of the associated construction/logistic activity. Such an “earliest 

availability” time point can be either the start of an availability time-window or the 

start of an availability interval contained in a discontinuous availability time-window. 

In other words, if an activity is constrained by the first interval of an availability time-

window, the bottleneck state is the functional state that determines the start point of 

the availability time-window. If an activity is constrained by the ith availability 

interval contained in a discontinuous availability time-window, the bottleneck state is 

the functional state that determines the start of the ith availability interval.   
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The definition of the bottleneck state implies that a bottleneck state can be 

detected by comparing the start time points of the functional states/phases that are 

associated with the delayed construction activity via its construction performers or its 

work package. Figure 5.10 illustrates a typical case of an availability time-window 

containing an interval “AI1” where the bottleneck state occurs. In this case, the 

commencement of “Activity B” has been assumed to be determined by the availability 

of “Function X” since its construction performers “Labor A” and “Equipment A” 

(user components) requires the  “Function X” functionality provided by the product 

components “G1” and “H1” (provider components). Accordingly, the functional state 

package comprises the “S3.Q” and “S4” states of both “G1” and “H1”. 

G1

H1

ATW(Function X)

Provider X

S4.Q

AI1

S3.Q S4.A

S4.AS3.Q S4.Q

ES(Activity B)Labor A

Equipment A ES(Activity B)

RTW(Function X) RI1

User X

Bottleneck State

Function X

Requirement State package

Functional State package

Activity_A

Activity_B

Activity_C
Performers

 

Figure 5.10 Bottleneck States with Single-Interval Availability Time-Window 
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Figure 5.10 further shows that the earliest start of a continuous availability 

time-window containing only one interval “AI1”, whose start is determined by the 

quiescent phase “S3.Q” of “G1” because it starts later than the “S3.Q” of “H1”. This 

means that the advancement of “S3.Q” of “G1” toward the start of the “S3.Q” of “H1” 

can bring forward the availability time-window of “Function X” functionality 

provided that each predecessor activity (like “Activity A”) of  “Activity B” has a float 

time,  leading to the earlier commencement of activity “Activity B”. Additionally, the 

advancement of the quiescent phase “S3.Q” implies the corresponding active phase 

“S3.A” should also be brought forward simultaneously. Therefore, the “S3” state of 

“G1” is the bottleneck state that constraints the start of “Activity B”. 

 

Figure 5.11 Bottleneck States with Discontinuous Availability Time-Window 

Figure 5.11 shows a bottleneck state that occurs during the second interval of 

the availability time-window ATW(Function Y). The Figure also illustrates that the 

work package of “Activity M” comprises the “S2.A” active phases of “Components A 
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and B”. These two in-progress components require the “Function_Y” functionality for 

maintaining their temporary stability. This means that the commencement of “Activity 

M” is constrained by the availability of the “Function_Y” functionality, which is 

provided by “Components J and K” in their “S1.Q” and “S4.Q” quiescent states. The 

availability time-window ATW(Function Y) is a discontinuous time-window 

containing two intervals “AI1” and “AI2”. The first availability interval “AI1” is the 

overlap between the “S1.Q” quiescent phases of “Components J and K”, while the 

second availability interval is the overlap between their “S2.Q” quiescent phases. 

Figure 5.11 also shows that the requirement interval “RI1” associated with 

“Activity M” is covered by the second availability interval “AI2”. This implies that 

the commencement of “Activity M” is contained by the second availability interval 

“AI2”. Furthermore, since the quiescent phase “S4.Q” of “Component J” is later than 

“S4.Q” of “Component K”, “S4” of “Component J” is the bottleneck state that 

constrains the commencement of “Activity M”. This means that if “S4” of 

“Component J” can be brought forwards, the availability interval “AI2” can be 

accordingly start earlier for maintaining the stability of “Components A and B”, 

leading to earlier commencement of “Activity M”. 

Identifying bottleneck state can aid planning engineers in reducing 

construction periods with respect to advancing bottleneck states that constrains the 

commencement of some critical activities. Moreover, the transition of a bottleneck 

state may be constrained by other component states through various types of state 

relationships. This means that planning engineers should proactively control the 

progress of upstream works in order to prevent delay of the bottleneck states. 
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5.5 Concluding Remarks 

This chapter presents four analysis methodologies. The first and second 

methodologies can be used for evaluating the temporal and spatial interactions a 

single intermediate function, respectively. The third methodology extend the first 

methodology from evaluating the temporal interaction inside a single intermediate 

function to analyzing the temporal interactions between the user and providers 

associated with a set of compatible intermediate function requirements. The fourth 

methodology is used to identify bottleneck states that constrain the commencement of 

the associated construction activities. 

Using the first three analyses, the temporal and spatial perspectives of 

intermediate function requirements can be evaluated for detecting unfulfilled 

requirements. Particularly, these analyses imply that the concurrent relationships, 

which are inadequately evaluated in traditional CPM schedules, can be analyzed with 

respect to the temporal relationships between/among component states. In this way, 

more scheduling conflicts can be detected, leading to improved constructability of a 

facility project. 

The fourth methodology helps planning engineers locate the constraints of 

construction activities, especially those critical ones, with respect to bottleneck states. 

In this way, more constraints of construction activities can be identified from the 

intermediate function viewpoint. This information can also guide planning engineers 

to proactively control the completion of the upstream works that may delay the 

downstream bottleneck states. Moreover, some bottleneck states can be advanced in 

order to shorten the construction period, leading to better executability of construction 

schedules.  

 123



 

CHAPTER 6 4D-iFAST PROTOTYPE 

4D intermediate Function AnalysiS Tool (4D-iFAST) is a research prototype 

to implement the developed integration framework and the analysis methodologies as 

well as 4D simulation. The potential benefits from using 4D simulation to facilitate 

intermediate function analysis are first explored in this chapter. Subsequently, the 

main data structure of the prototype is represented by the class diagram. Based on the 

data structure, this chapter introduces the reasoning mechanism of the inference 

engine and the simulation mechanism of the 4D simulation engine. The existence 

vector concept and the Boolean operations on existence vectors are developed for 

speeding up the inference engine and the simulation engine, which are two kernel 

modules of the prototype. Lastly, some typical interface windows are demonstrated 

for illustrating the key functions of 4D-iFAST. 

 

6.1 4D Simulation Environment for Intermediate Function Analysis 

A 4D Model integrates both the three-dimensional geometric attribute and the 

temporal attribute for visualizing construction sequences. Several 4D simulation tools 

and prototypes have been studied in the past two developed. Previous studies 

indicated that these 4D simulation tools facilitate the constructability analysis mainly 

from three aspects, namely integration, visualization, and time-space analysis, as 

addressed in the literature reviews. 

With the application of 4D simulation, the AEC industry can benefit from less 

rework, reduced trade interference, fewer change orders, and smoother work flows, 

leading to improved productivity and cost savings. It was reported that 4D simulation 

can help some companies save up to 45 percent of expenditure on change orders 

(Sheppard 2004). Another benefit of using 4D simulation is the better understanding 
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of the construction progress from all the project participants, which help them 

collaboratively schedule their tasks. 

The previous research on 4D simulation implies that 4D simulation tools may 

also facilitate intermediate function analysis. The present study attempts to 

incorporate the 4D simulation function into the software prototype 4D-iFAST, which 

stands for 4D- Intermediate Function Analysis Tool. One purpose of this prototype is 

to explore the feasibility and capability of using 4D simulation for facilitating the 

intermediate function analysis in terms of identifying the function user and function 

provider and exploring better engineering solutions for intermediate function 

requirements. This research may also help software vendors to enhance and customize 

their present products with respect to intermediate function analysis. 

The potential contribution of 4D simulations to intermediate function analysis 

lies in three areas. Firstly, the 4D model integrates the spatial information stored in 

3D CAD model and the temporal information stored in process model and in-progress 

product model as well as resource model. This means that the 4D model plays the role 

of a kernel to reference the spatial attributes and the temporal attributes distributed in 

the product, process, resource, and intermediate function models. 

Secondly, the simulation frames can help designers and constructors to 

identify the intermediate function requirements, and facilitate their exploration for 

better engineering solutions to fulfill the intermediate function requirements. For 

example, through studying the 4D simulation scenarios, the glass work subcontractor 

may explore the feasibility of using the scaffold erected by the steel structure 

subcontractor, which, if feasible, could save the cost and time spent on additional 

temporary facilities and also accelerate the delivery of site space to the downstream 

cladding subcontractor. 
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Lastly, 4D simulation can help develop the spatio-temporal criterion matrix for 

verifying the spatial interactions between function users and function providers. 

Additionally, the developed 4D model can also be used to automatically analyzing 

temporal topological between the space entities. Specifically, the 4D model can be 

used to verify the accessibility of work faces with respect to the temporal “meet” 

relationship between a user space entity and a provider space entity. Meanwhile, 

based on the 4D model, the time-space conflicts can also be detected by locating the 

temporal intersection relationships between a pair of temporal space entities (Song 

and Chua, 2005). 

 

6.2 Conceptual Architecture of 4D-iFAST Prototype  

Construction 
Schedule Import

Intermediate Function
Inference Engine

User Interface

Relational Database 
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Domain Object 
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4D Simulation 
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3D Model Import

Ms Project
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External Models

 

Figure 6.1 Conceptual Architecture of 4D-iFAST 
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4D-iFAST is developed mainly using the programming tool Delphi 5, and the 

domain database and intermediate function knowledge base are developed using 

Access 2003 Desktop Database. The rendering engine for 4D simulation is developed 

using OpenGL API. The construction schedule is developed using Ms Project 2003, 

and the 3D space model is created using AutoCAD 2000 and exported as a 3DS 

model. 

Figure 6.1 illustrates the conceptual architecture of the developed 4D-iFAST 

prototype. This architecture highlights the key subsystems and the major dependency 

relationships between them. The architecture of the 4D-iFAST prototype is structured 

into five layers from top to bottom as shown in Figure 6.1. A subsystem in the upper 

layer may depend on the subsystems in the lower layers, but the subsystems in the 

lower layers do not depend on those in the higher layers. In this way, the dependency 

relationships between the subsystems can be decoupled to reduce the complexity of 

the prototype structure. 

The bottom layer comprises two import applications. The “Construction 

Schedule Import” subsystem is developed for importing Ms Project schedule data into 

the Access database using the ActiveX Data Object (ADO) technology, while the “3D 

Model Import” subsystem is used to import the 3DS model, which is developed and 

exported by the AutoCAD application, into the “Domain Object management” 

subsystem for generating the space entity objects. The conversion from 3DS model to 

space entity objects is realized by a 3DS file parser module mainly written in Delphi 5. 

The “Relational Database Management” subsystem manages all the data input 

from the user interface and the construction schedule data imported from MS Project 

application. Besides the construction schedule database, this subsystem comprises 
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another four relational databases: IPPCM, resource, intermediate function, and 

intermediate function knowledge databases.  

The “Domain Object Management” subsystem is responsible for generating 

the corresponding domain objects using the record data stored in the databases, and 

also for retrieving and destroying the domain objects temporarily stored in the 

computer memory. Accordingly, an object buffer management module should also be 

developed to control the dynamic construction and destruction of the domain objects 

according to the inference and simulation requirements. These domain objects will be 

used by the “Intermediate Function Inference Engine” for evaluating intermediate 

functions and also are required by the “4D Simulation Engine” for visualizing the 

construction progress. 

The “Intermediate Function Inference Engine” subsystem is the most 

important part of the prototype. It implements the analysis methodologies developed 

in Chapter 5 for reasoning out the unfulfilled intermediate function requirements from 

both temporal and spatial perspectives. The “4D Simulation Engine” is another 

important module for generating 4D simulation frames. This simulation engine 

implements the mechanism addressed in the following Section 6.6 

The “User Interface” subsystem mainly comprises the interactive windows for 

importing, inputting, and editing the data for establishing the integrated information 

framework. On the other hand, this subsystem also comprises the interface windows 

for publishing, previewing, and printing the results of inferring intermediate functions 

and also for rendering the 4D simulation frames. Some of the interface windows will 

be shown and explained in the following section 6.7. 
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Figure 6.2 Component-Relationship Structure of 4D-iFAST System 

 

 



 

6.3 Component-Relationship Structure of 4D-iFAST System 

Figure 6.2 shows the component-relationship structure of the 4D-iFAST 

prototype using the class diagram. This Figure only shows the classes/types of the 

system objects related to the intermediate function inference and the 4D simulation 

due to space limitation. The class diagram illustrates the key modeling elements in 

five project perspective models (intermediate function, product, resource, process, and 

space) as well as the intermediate function knowledge and also represents the 

association and aggregation relationships among the classes. These classes and the 

relationships between them are necessary for understanding the inference mechanism 

and simulation mechanism addressed in the succeeding sections. 

The Activity class is a fundamental modeling element in the process model. Its 

name attribute should be kept unique among a collection of activities. Each activity 

has both start and finish attributes that are produced by the external MS Project 

application. The workspace attribute can associate with one or more space entity(ies) 

for representing the workspace required by the associated performers. The work 

package and performer package attributes are used for establishing association 

relationships with product model and resource (construction performer) model, 

respectively. Specifically, the work package attribute can reference one or more 

component state objects for depicting the work content, while the performer state 

package can reference one or more construction performers in the resource model. 

The physical component is the super-class (parent class) of both product 

component and construction performer classes. It represents the common attributes 

(temporal and spatial attributes) and behaviors of product components and 

construction performers. Accordingly, the physical component collection class 

represents a collection of physical component. Figure 6.2 shows that the physical 
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component collection class can aggregate both product components and construction 

performers. These two types of components are often associated with an intermediate 

function to describe its user and provider. The super class physical component makes 

it possible to aggregate both product and resource component into one object list, 

which is represented by the component list attribute of the physical component 

collection class. In this way, the data structure design of the inference engine as well 

as the simulation engine can be simplified.  

Figure 6.2 shows that the physical component class has two attributes: 

component name and sequence of state. The former is an identifier to distinguish the 

product/resource components in a component list, and therefore should be unique. The 

latter is a sequence of component state objects to represent either the construction life 

cycle of a product component or the execution history of a construction performer. 

The product component class is the subclass (child class) of the physical 

component. So the former inherits the two attributes of the latter, and adds another 

attribute state chain type, which references a state chain type object (see Figure 6.2). 

The most important attribute of the state chain type class is sequence of state type, 

which can be used for automatic generation of a default state chain as the value of the 

sequence of states attribute of a product component object. This can facilitate the 

input of the product component data. The sequence of states attribute represents the 

construction life cycle of a product component in terms of a chain of component states. 

Similar to the product component class, the construction performer class also inherits 

the two attributes of its super-class physical component. The sequence of states herein 

represents the execution history of a construction performer in terms of a series of 

performer states, which are the activities that employ the construction performer.  
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The component state class acts as the bridge to link the product model with the 

process, space, and intermediate function models. Besides the state type/name 

attribute for identifying a component state object, this class also has three temporal 

attributes (start, active finish, and finish) and two spatial attributes (active state space 

and quiescent state space). The start and active finish of a component state determine 

the temporal interval of its active phase, while the active finish and finish determine 

its quiescent phase. In other words, the active finish is the point of time which divides 

the state duration the active and quiescent phases. Since a construction performer has 

zero-duration quiescent phase, its active finish time is equal to its finish time.  

Each of the two state space attributes of the component state class may 

reference a number of space entities to represent the space occupied by an in-progress 

product component. The active state space attribute describes the space occupation 

during the active state phase. Similarly, the quiescent state space attribute describes 

the space occupation during the quiescent state phase. In this way, the difference in 

space utilization between the active and quiescent phases can be distinguished for 

better description of component states. For example, the space occupied by a portable 

platform can be represented by the boundary of the moving path during its 

“Moving.A” active phase, whereas it only occupies its physical volume during its 

“Moving.Q” quiescent phase, which is a much smaller boundary than the moving path. 

Additionally, the active state phase of a construction performer frequently references 

the workspace of the corresponding activity as its active state space. 

The space entity class can depict either the physical volume of a fixed product 

component, the workspace of an activity, or the path space of moving object. The 

space name attribute is used as the identifier for retrieving a specific space entity in 

the space entity collection. The geometric characteristic attribute describes the shape 
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and location of the space entity in terms of triangulated surfaces that are imported 

from the 3DS model. In a 3DS model, all the surfaces of a space entity have been 

triangulated. The value of the color and texture attributes will be automatically 

changed by the simulation engine for visualizing in-progress configuration of the 

associated product components. 

The topological relationship class represents the binary spatial relationships 

between two 3D space entities denoted by the first space entity and the second space 

entity. The topological relationship type attribute records the derived topological 

relationship type. There are 3 types of topological relationships, namely “Disjoint”, 

“Meet” and “Intersect”. All the derived topological relationships will be stored in the 

topological relationship collection, which is a list of topological relationship objects.  

The availability condition type class is designed to implement the schema of 

availability condition knowledge defined in Chapter 4. In this way, the availability 

conditions of various types of intermediate functionalities can be represented by a set 

of availability condition type objects stored in the availability condition knowledge 

base. The availability condition type class has three attributes: condition type name, 

functionality description, and availability condition. The condition type name is the 

identifier for uniquely identifying a specific availability condition type object, and the 

functionality description attribute depicts the role or purpose of the intermediate 

functionality. The most important availability condition attribute stores a list of 

functional state types to abstract the in-progress engineering behaviors of the 

corresponding (product) component types. 

The intermediate function class abstracts the intermediate function 

requirements. The function name attribute is the unique identifier of an intermediate 

function object. The construction states of the function user and the function provider 
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are depicted in terms of the requirement state package attribute and the functional 

state package attribute, respectively. Both packages reference a group of component 

state objects, which are aggregated in the corresponding product components or 

construction performers. The availability condition type attribute is used to reference 

the corresponding availability condition knowledge, which can be parsed by the 

inference engine for automatically generating functional state package using the 

component data stored in the provider components attribute. This attribute often 

references several physical component objects. This automatic assignment will be 

explained in Section 6.5.1. 

The inference engine for evaluating the intermediate functions is also 

represented as a class. From this class, only one inference engine object will be 

constructed in the 4D-iFAST application. Its intermediate function attribute indicates 

the intermediate function that will be evaluated by the inference engine. The inference 

engine references two object lists through the physical component collection attribute 

and the topological relationship attribute in order to retrieve temporal and spatial 

information for evaluating the temporal and spatial interaction between the function 

user and the function provider. The inference engine also references the availability 

condition knowledge base for retrieving the availability condition type object.  

The simulation engine class has two attributes: physical component collection 

and space entity collection. These two attributes can be used to derive the 4D model, 

which is essentially a system of temporal space entities. Each temporal space entity in 

the 4D model has an existence period attribute to depict when the space enters, exits 

as well as re-enters the temporal space system during the entire construction period. 

The derivation of the 4D model and its simulation mechanism will be explained in 

Section 6.6. 
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6.4 Existence Vector and Boolean Operations 

6.4.1 Existence Vector Concept 

A temporal interval can be represented by an existence vector instead of a pair 

of time points (start and finish points) as defined in Section 3.3.4. An existence vector 

is an n-element vector with each element denoting the existence of an object within a 

finite time interval. Each element in the existence vector is a Boolean value, where 

1/true denotes the existence of the object in the system while 0/false denotes its 

absence. If all the finite intervals of an existence vector are 0/false, such an existence 

vector is called “zero” existence vector in the present study.  

A finite time interval (FTI) is defined as a short time interval for segmenting a 

period of study, during which the attributes of an object can be assumed to be 

unchanged. In this way, a continuous study period can be segmented into an array of 

discrete finite time intervals. A finite time interval can be 1-week, 1-day, or even 1-

hour depending on the precision and the nature of the problem studied. The size of an 

existence vector is therefore T/tf, where T is the period of the study and tf the finite 

time interval. For example,  assuming that the construction period T of a project is 

from Days 1 to 10 and the finite time interval tf  is 1 day, the active phase of a 

component state “S1” which starts at the start of Day 3 and finishes at the end of Day 

5 can be represented as an 10-element existence vector (0,0,1,1,1,0,0,0,0,0).  

Moreover, compared with a temporal interval which can only represent a 

continuous period, an existence vector can be used to represent either a continuous 

temporal interval or a discontinuous time-window containing several intervals. This 

characteristic is very useful for evaluating the temporal interaction as well as other 

interval algebra computations for intermediate function analysis. Specifically, a state 
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duration or activity/quiescent duration is a temporal interval, while a requirement 

time-window, an availability time-window, a non-matching time-window, or the 

existence period of a temporal space entity can be a discontinuous time-window. The 

computation of these discontinuous time-windows can be simplified by using 

existence vectors and Boolean operations on them.  

 

6.4.2 Boolean Operations between Two Existence Vectors 

There are altogether three types of fundamental Boolean operations between 

two existence vector operands that are useful for the analysis of intermediate 

functions. They are Boolean union, Boolean intersection, and Boolean cut. The 

Boolean union operation ascertains all the non-zero elements from two existence 

vector operands as follows: 
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Where EVa(f1, …, fi …, fn) and EVb(g1, …, gi …, gn) are two arbitrary existence 

vectors whose sizes are n, EVr(h1, …, hi …, hn) the resultant existence vector of the 

Boolean union operation, fi the ith element (at the ith finite time interval) of EVa,  gi 

the ith element (at the ith finite time interval) of EVb, and hi the ith element (at the ith 

finite time interval) of EVr. Eq. (6.1) indicates that at an arbitrary finite time interval i, 

the resultant existence vector has the value of 0, only if both existence vector 

operands have the values of 0. Otherwise, the Boolean union resultant will be 

assigned the value of 1 at the ith finite time interval. 
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The Boolean intersection operation ascertains the overlap of non-zero 

elements between two existence vector operands. The Boolean intersection formula is 

presented as: 
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Where EVa(f1, …, fi …, fn) and EVb(g1, …, gi …, gn) are two arbitrary existence 

vectors whose sizes are n, EVr(h1, …, hi …, hn) the resultant existence vector of the 

Boolean intersection operation, fi the ith element (at the ith finite time interval) of EVa,  

gi  the ith element (at the ith finite time interval) of EVb, and hi the ith element (at the ith 

finite time interval) of EVr. Eq. (6.2) indicates that at an arbitrary finite time interval i, 

the resultant existence vector has the value of 1, only if both existence vector 

operands have the value of 1. Otherwise, the Boolean intersection resultant will be 

assigned the value of 0 at the ith finite interval unit. 

The Boolean cut operation ascertains the finite time intervals where non-zero 

elements in the first existence vector operand corresponding to the zero elements in 

the second operand. The Boolean cut formula is presented as follows: 
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Where EVa(f1, …, fi …, fn) and EVb(g1, …, gi …, gn) are two arbitrary existence 

vectors whose sizes are n, EVr(h1, …, hi …, hn) the resultant existence vector of the 
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Boolean cut operation, fi the ith element (at the ith finite time interval) of EVa,  gi the ith 

element (at the ith finite time interval) of EVb, and hi the ith element (at the ith finite 

time interval) of EVr. Eq. (6.3) indicates that at an arbitrary finite time interval i, the 

resultant existence vector has the value of 1, only if the first existence vector has the 

value of 1 and the second existence vector has the value of 0. Otherwise, the Boolean 

cut resultant will be assigned the value of 0 at the ith finite time interval.  

These three fundamental Boolean operations can be used to compute various 

types of time-windows during intermediate function analysis. Specifically, the 

Boolean union operation between two existence vectors can be used to compute the 

requirement time-window following Eq. (5.1). Likewise, the Boolean intersection 

operation as well as the Boolean union operation can be used for deriving the 

availability time-window following Eq. (5.2). The Boolean cut operation can be used 

to derive non-matching time-windows following Eq. (5.3). Additionally, the existence 

periods of both temporal space entities and temporal topological relationship can also 

be derived by using Boolean union and intersection operations following the Eq. (5.4) 

and Eq. (5.5), respectively.  

 

6.4.3 Boolean Operations on a Set of Existence Vectors 

Two additional Boolean operations, namely “multiple-union” (denoted by ∪m) 

and “multiple-intersection” (denoted by ∩m), are defined to manipulate a set of 

existence vectors. The formula of the multiple-union is presented as follows: 
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Where EVi(f1, …, fk, …, fm) is the ith existence vector operand whose size is m, EVi(fk) 

the kth element of the ith existence vector operand, EVr(fk) the kth  element of the 

multi-union resultant existence vector. Eq. (6.4) indicates that the kth element (at the 

kth finite time interval) of the multiple-union resultant EVr, i.e. EVr(fk), is the Boolean 

union resultant of all the kth elements of m existence vector operands. Therefore, at the 

kth finite time interval, only when all the kth elements of m existence vector operands 

have the values of 0, will the multiple-union resultant have the value of 0. Otherwise, 

the multiple-union resultant has the value of 1 at the kth finite time interval. 

Similarly, the formula of the multiple-intersection is presented as follows:  
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Where EVi(f1, …, fk, …, fm) is the ith existence vector whose size is m, EVi(fk) the kth 

element of the ith existence vector operand, EVr(fk) the kth element of the multi-

intersection resultant existence vector. Eq. (6.5) indicates that the kth element (at the 

kth finite time interval) of the multiple intersection resultant, i.e. EVr(fk), is the 

Boolean intersection result of all the kth elements of m existence vector operands. It 

can be derived that at the kth finite time interval, if any existence vector operand has 

the value of 0, the kth element of the multi-intersection resultant is assigned the value 

of 0. Only when all the kth elements of m existence vector operands have the values of 

1, will the kth element of the multi-intersection resultant have the value of 1. 

The implementation of the inference engine can be enhanced by using 

existence vectors and Boolean operations between them (Song and Chua, 2005). 

Using the two additional Boolean operations ∪m and ∩m, the requirement and 

availability time-windows as well as the existence period of a temporal space entity 
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can be simplified when there are more than two associated states in the temporal 

computation. Additionally, the inference speed of temporal analysis for an 

intermediate function can be improved by using the Boolean operations since the 

computation of Boolean values are much faster than the computation of comparing 

integers or floats required by the traditional interval algebra. Moreover, the existence 

vector representation format together with the Boolean operations also makes it 

possible to implement spatio-temporal analysis without having to conduct 4D 

simulation (Song and Chua, 2005). 

 

6.5 Inference Mechanism for Evaluating Intermediate Function 

Figure 6.3 illustrates the inference mechanism for evaluating the temporal 

interaction of an intermediate function, comprising mainly four steps. Each step 

comprises several functions that can be concurrently implemented and synchronized 

in multiple parallel threads marked by circled labels. The first digit in each circled 

label defines the inference step where the thread is implemented. For example, the 

circle “1a” indicates that the “Retrieve Provider Components” function is 

implemented in the first inference step (see Figure 6.3). Additionally, The Figure 

shows that an engineer will enter the data for such attributes of an intermediate 

function as availability condition type, provider component, and requirement state 

package (marked by rectangles in Figure 6.3) in addition to the spatio-temporal 

criterion matrix. The development of the spatio-temporal criterion matrix can be 

facilitated by the 4D simulation. 
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Figure 6.3 Inference Mechanism for Evaluating Temporal Interaction 

The first inference step comprises three functions that will be concurrently 

implemented in three parallel threads. The “Retrieve Provider Components” function 

(implemented in the thread “1a”) is to retrieve the provider components from the 

physical component collection (see Figure 6.2) according to the names of the provider 

components entered by the user. Meanwhile, the “Retrieve Availability Condition 

Type” function (implemented in the thread “1b”) is to retrieve the availability 

condition type object from the availability condition knowledge base which stores the 

candidate availability conditions for different types of intermediate functions. The 
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retrieved provider components (product components or construction performers) and 

the retrieved availability condition type object are temporarily stored in the memory 

for use in the next inference step. The “Retrieved Requirement States” function 

(implemented in the thread “1c”) is to firstly retrieve the user components from the 

physical component collection according to the names of the component users (like 

“R1” in “R1.Act1” in Figure 6.3) and then retrieve the requirement states from the 

sequence of states attributes of the retrieved user components according to the state 

names (like “Act1” in “R1.Act1” in Figure 6.3). 

The second inference step comprises only one function “Generate Functional 

States” (implemented in the thread “2a”). This function cannot be implemented in the 

first inference step since it requires the physical objects and the availability condition 

type object retrieved in the first step to automatically generate the functional state 

package, which is a list of component state names. In this way, the friendliness of the 

user interface can be improved since the users can save a lot of effort on manually 

entering the list of functional states. For example, the “Generate Functional States” 

function can automatically generate three functional states: “S2.Q”, “S3.Q”, and “S4” 

for the provider component “C1” according to the “Availability Condition Type 1” 

where a product component of the “CompA_X_Chain” type has these three functional 

states. The functional states of provider components “C2” and “C3” can be likewise 

generated. Similar to the function “Retrieve Requirement States”, the function 

“Retrieve Functional States” uses the generated list of component state names to 

locate and associate the corresponding component state objects from the physical 

component collection. 

The third inference step comprises four parallel functions which are 

respectively implemented in four parallel threads marked by circled “3a”, “3b”, “3c”, 
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and “3d”. Using Eq. (6.4), the function “Compute Requirement Time-Window” 

(implemented by the thread “3a”) can compute the requirement time-window from the 

existence vectors of the requirement states retrieved in the second step. Similarly, 

using the Eqs. (6.4) and (6.5), the “Compute Availability Time-Window” function 

(implemented by the thread “3b”) can compute the availability time-window from the 

duration existence vectors of the functional states retrieved in the second step. 

Meanwhile, the function “Derive Temporal Space Entities for User” 

(implemented in the thread “3c”) is responsible for deriving the temporal space 

entities associated with each component state/phase listed in the requirement state 

package. The time-independent space entities associated with each requirement state 

are first retrieved, and then its existence period can be derived from the corresponding 

requirement states using the Eqs. (6.4). Likewise, the function “Derive Temporal 

Space Entities for provider” (implemented in the thread “3d”) can derive the temporal 

space entities associated with each functional state from the associated functional 

states. 

In the fourth and final inference step, two functions “Evaluate Temporal 

Interaction” and “Evaluate Spatial Interaction” are concurrently implemented in two 

parallel threads “4a” and “4b” for evaluating the fulfillment of the intermediate 

function requirement from the temporal and spatial perspectives, respectively. The 

function “Evaluate Temporal Interaction” is responsible for matching the requirement 

and availability time-windows respectively derived in the third inference step. The 

matching process uses the equation Eq. (6.3) to derive the non-matching time-window. 

If the resultant non-matching time-window is a “zero” existence vector the 

corresponding temporal interaction is available. Otherwise, the non-zero elements in 
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the non-matching time-window indicate the temporal interval(s) during which the 

temporal interaction is unavailable.  

Simultaneously, the function “Evaluate Spatial Interaction” will be 

implemented in two sequential procedures. This function firstly produces the spatio-

temporal interaction matrix from the derived user and provider temporal space entities 

using the approach introduced in Section 5.2.2. Then, it automatically compares the 

derived spatio-temporal interaction matrix against the spatio-temporal criterion matrix 

entered by planning engineers to identify undesirable temporal topological 

relationships. In this way, the unavailable spatial interaction between the function uses 

and the corresponding providers can be detected. 

Table 6.1 Temporal Data of Requirement/Functional States of “IFunction_1” 

Component States Temporal Interval

I(State/Phase Duration ) 

Existence Vector 

EV(I(State/Phase Duration )) 

R1.Act1 (RS*) I(11, 12) (00000 00000 11000 00) 
R2.Act5 (RS*) I(14, 16) (00000 00000 00011 10) 
C1.S2.Q (FS*) I(5, 6) (00001 10000 00000 00) 
C1.S3.Q (FS*) I(11, 12) (00000 00000 11000 00) 
C1.S4 (FS*) I(13, 16) (00000 00000 00111 10) 
C2.S2.Q (FS*) I(5, 6) (00001 10000 00000 00) 
C2.S3.Q (FS*) I(11, 12) (00000 00000 11000 00) 
C2.S4 (FS*) I(13, 16) (00000 00000 00111 10) 
C3.S2.Q (FS*) I(6, 8) (00000 11100 00000 00) 
C3.S3.Q (FS*) I(10, 12) (00000 00001 11000 00) 
C3.S4 (FS*) I(13, 17) (00000 00000 00111 11) 

*Note: RS denotes a requirement state, while FS denotes a functional state. 

The intermediate function “IFunction_1” illustrated in Figure 6.3 is used as an 

example to demonstrate the interval algebra computation required in the 

aforementioned inference functions in terms of Boolean operations on existence 

vectors. It is assumed that the construction period is 17 work days, and the finite time 
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interval is 1 work day. Table 6.1 Lists the associated requirement and functional 

state/phases, their duration intervals and the corresponding existence vectors. 

The user of “IFunction_1” comprises two construction performers “R1” and 

“R2” who requires the “IFunction_1” functionality when R1 executes the activity 

“Act1” and “R2” executes the activity “Act5”, while the provider of “IFunction_1” 

comprises three product components “C1”, “C2”, and “C3” along with their 

functional states/phases “S2.Q”, “S3.Q” and “S4”. The requirement time-window 

RTW(IFunction_1) can be produced using the equation Eq. (5.1) and the multiple-

union (Eq. (6.4)) as follows: 

   EV(RTW(IFunction_1))  

= EV(I(R1.Act1)) ∪ EV(I(R2.Act5)) 

= (00000 00000 11000 00) ∪ (00000 00000 00011 10) 

= (00000 00000 11011 00) 

The resultant requirement time-window, which is an existence vector containing four 

true elements, denotes that the intermediate functionality is required at the eleventh, 

twelfth, fourteenth, and fifteenth finite intervals.  

Similarly, the availability time-window ATW(IFunction_1) can be computed 

using the equation Eq. (5.2), following the multiple-union (Eq. (6.4)) and multi-

intersection (Eq. (6.5)) operations, as follows: 

    EV(ATW(IFunction_1))  

=  ( m (EV(I(C1.S2.Q)), EV(I(C1.S3.Q)), EV(I(C1.S4))),     mI U

             (EV(I(C2.S2.Q)), EV(I(C2.S3.Q)), EV(I(C2.S4))), mU

             (EV((I(C3.S2.Q)), EV(I(C3.S3.Q)), EV(I(C3.S4))))     mU

 145



 

= ( m ((00001 10000 00000 00), (00000 00000 11000 00), (00000 00000 00111 10)), mI U

             ((00001 10000 00000 00), (00000 00000 11000 00), (00000 00000 00111 10)), mU

             ((00000 11100 00000 00), (00000 00001 11000 00), (00000 00000 00111 11))) mU

= ((00001 10000 11111 10), (00001 10000 11111 10), (00000 11101 11111 11)) mI

= (00000 10000 11111 10) 

The resultant availability time-window denotes that the intermediate functionality is 

available at the sixth and eleventh to fifteenth finite intervals. 

Then, following Eq. (5.3), the non-matching time-window can be computed by 

Boolean cutting the EV(ATW) from the EV(RTW), which is shown in the following: 

   EV(NMTW(IFunction_1))  

= EV(RTW(IFunction_1)) - EV(ATW(IFunction_1)) 

= (00000 00000 11011 00) - (00000 10000 11111 10) 

= (00000 00000 00000 00) 

The aforementioned non-matching resultant is a zero existence vector, indicating that 

the temporal interaction between the function user and the function provider is 

available. 

On the other hand, the derivation of the existence periods of both temporal 

space entities and temporal topological relationships can also be facilitated by using 

the Boolean operations on existence vectors. For example, the existence period of the 

temporal space entity “TSE14”, referenced by both “S3.Q” and “S4” states of the 

provider component “C2” in Figure 6.3, can be computed as follows: 

   EV(EP(TSE14)) 

= EV(I(C2.S3.Q)) ∪ EV(I(C2.S4)) 

= (00000 00000 11000 00) ∪ (00000 00000 00111 10) 

= (00000 00000 11111 10)  
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The existence period of the temporal topological relationship between “TSE1” 

and “TSE14” can be computed via the Boolean intersection of their existence periods 

in terms of existence vectors. The existence vector of the temporal space entity 

“TSE1” is equal to the existence vector of the requirement state “R1.Act1” since 

“TSE1” is only reference by “R1.Act1”. Thus, the computation of the existence period 

of TTR(TSE1, TSE14) can be represented as follows: 

    EV(EP(TTR(TSE1, TSE14))) 

= EV(EP(TSE1)) ∩ EV(EP(TSE14)) 

= (00000 00000 11000 00) ∩ (00000 00000 11111 10) 

= (00000 00000 11000 00) 

The resultant existence period indicates that the temporal topological relationship only 

exists in the eleventh and twelfth finite intervals since the user component “R1” and 

the provider component “C2” co-exist on Days 11 and 12. 

 

6.6 4D Simulation Engine 

The 4D simulation addressed in the beginning of this chapter is implemented 

by the 4D simulation engine, mainly comprising two functions: a 4D model generator 

and a frame filter. The former is a function for automatically generating the system of 

temporal space entities, while the latter is a retrieving function to filter out the 

temporal space entities that should be rendered at the specified time frames. 

A 4D model comprise a set of temporal space entities that are associated by 

both the IPPCM and the process model. The temporal work, path, and physical space 

entities in a 3D space model are associated with the product components and the 

construction performers aggregated in the physical component collection. The 4D 

model generator function retrieves these associate relationships for computing the 
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existence vector for each temporal space entity. The existence period of a temporal 

work/path space entity is the Boolean union of the duration existence vectors of the 

construction activities that reference the specified work/path space entity to describe 

their work/transportation boundaries. On the other hand, the existence period of a 

temporal physical space entity is the Boolean union of the duration existence vectors 

of the component states/phases that reference the specified physical space entity as 

their state spaces. In this way, a time-independent 3D space system can be converted 

into a 4D model by deriving their existence periods. Bases on such a 4D model, the 

simulation frames can be generated by the frame filter function. 

Figure 6.4 shows an example to derive the existence vectors of four space 

entities “TSE1”, “TSE2”, “TSE3”, and “TSE4”, which are respectively referenced by 

the state spaces of two temporary components “T01” and “T02”. “T01” comprises 

two parts whose physical shapes are represented by “TSE1” and “TSE2”, respectively. 

The construction life cycle of “T01” indicates that the “TSE1” part is erected during 

the “S1” state, and then the “TSE2” part is erected on the top of “TSE1” during the 

“S2” state. Subsequently, the “TSE2” part will be dismantled during the third state 

“S3”, and then the “TSE1” part will be dismantled during the last state “S4”. 

Therefore, “T01.S4” does not reference any space entity. Accordingly, the existence 

vector of “TSE1” can be derived by the Boolean union of the existence vectors of the 

“T01.S1”, “T01.S2”, and “T01.S3” states, while the existence vector of “TSE2” is 

equal to the existence vector of the “T01.S2” state. 
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Extended Product Model
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Figure 6.4 Mechanism of 4D Simulation Engine 

On the other hand, the construction life cycle of “T02” comprises three states: 

“S1”, “S2”, and “S3”. The state space of state “T02.S1” references two physical space 

entities “TSE3” and “TSE4”, while the state space of state “T02.S2” only references 

one space entity “TSE3”, indicating that “TSE4” is demolished during the “T02.S2” 

state. During the third and last state “T02.S3”, the “TSE3” part will be demolished, so 

the state space of “T02.S3” references no space entity. Thus, the existence vector of 

“TSE4” is equal to that of the “T02.S1”, which is the only state that references 
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“TSE4”, and the existence vector of “TSE3” is the Boolean union of the existence 

vectors of the associated states “T02.S1” and “T02.S2” (see Figure 6.4).  

The “frame filter” is a simple function to retrieve the temporal space entities 

that should be rendered in a specified frame according to their existence vectors. For 

each temporal space entity in the 4D model that has been generated and stored in the 

computer memory, if its element at the time marker has the value of true/1, the 

corresponding temporal space entity is filtered into the rendering set. Otherwise, the 

temporal state entities will not be selected for rendering. Figure 6.4, for example, 

shows that when the time marker points “Day 14”, i.e. the 14th finite time interval of 

the period of study, only the temporal space entities “TSE1” and “TSE3” are filtered 

and rendered, but “TSE2” and “TSE4” are not. This is because “TSE1” and “TSE3” 

have the “true/1” elements at the 14th finite time interval, but “TSE2” and “TSE4” 

have “0/false” value at the 14th finite time intervals in their existence vectors, 

indicating that “TSE2” has not been erected and “TSE4” has been dismantled on Day 

14 (see Figure 6.4). The Figure also shows when the time marker points Day 16, 

besides “TSE1” and “TSE3”, “TSE2” is also filtered for rendering since the “TSE2” 

part of “T01” is erected on Day 16. 

 

6.7 Typical User Interfaces 

This section illustrates the user interfaces developed in 4D-iFAST, and 

simultaneously explains the major input and output at each interface. Generally, the 

intermediate function inference engine and the 4D simulation engine can get the 

required data and publish the inference and simulation results through these interfaces. 

Due to the space limitation of the present thesis, the illustration and explanation of 

some comparatively infrequent interfaces, like the database maintenance utilities, are 
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omitted. The introduction of the interfaces follows the workflow of using 4D-iFAST 

prototype system to conduct intermediate function analysis. The project case 

illustrated in most of the interfaces is a post-tensioned bridge structure constructed 

using the balance-cantilever construction method, which will be elaborated in the 

succeeding chapter. 

 

6.7.1 In-Progress Product Core Model Interface 

 

Figure 6.5 Import Process Schedule Data from Ms Project 

The first step to use 4D-iFAST is to import the process-oriented schedule 

developed using the MS Project 2000 or 2003 application. Figure 6.5 shows that such 

data fields as “Task ID”, “Task Name”, “Task Start”, “Task Finish”, and “Task 
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Unique ID” in the MS Project task table are imported into the process database 

developed in the 4D-iFAST. The “Task Unique ID” is the primary key of both the 

original task schedule table in MS Project and the imported task schedule table in 4D-

iFAST. These two primary keys are crucial for synchronizing the changes in both task 

schedule tables. Additionally, the data table storing the imported schedule data is 

indexed by “Task ID”, which represents the row number where the task lies in the 

Gantt chart grid as defined in the MS Project application.  

 

Figure 6.6 Study Period and Construction Period 

Moreover, the “StartD” and “FinishD” attributes are the start and finish time 

points of each construction process in terms of the number of days from the “Study 

Start”, which is start time of the study period for the intermediate function analysis. 

“StartD” and “FinishD” are automatically computed by the “Construction Schedule 

Importation” module (Figure 6.1). For example, Figure 6.6 shows that the 

construction period started on November 1st, 2004 and finished on July 1st, 2005, 

whereas the study period started on January 1st, 2005 and finished on May 29th, 2005. 

Figure 6.5 shows that “Install Bottom and Side Rebar (7)” (“ID 78”) started on March, 
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28th, 2005, and its “StartD” is Day 87. Furthermore, assuming that the finite interval is 

one day, these “StartD” and “FinishD” attributes of each activity respective defines 

the start and finish finite intervals in the corresponding duration existence vector. 

 

Figure 6.7 Input of Product Hierarchy and Component States 

After the MS Project schedule has been imported, the user can continue to 

input the product decomposition hierarchy and then define the state chain for each 

product component in the hierarchy. The top left of Figure 6.7 illustrates the grid for 

developing the product decomposition hierarchy. The tree diagram on the right is 

automatically updated by the application as the product component hierarchy is 

updated.  

Besides the “Component Name” and “State Chain Type” attributes, each 

record in the grid has both “PBS Code” (Product Breakdown Structure Code) and 

“Parent Code” attributes. These two codes define the parent-child relationships 

between the product components (tree nodes) in the product decomposition hierarchy. 
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The “PBS Code” is the unique identifier to locate a product component in the 

database, while the “Parent Code” is actually the “PBS Code” of the parent 

component. The product component grid in Figure 6.7, for example, shows that the 

“Parent Code” of the deck segment “SegL13” is “01010100”, which is the “PBS 

Code” of the subsystem component “Left Deck System”, indicating that “Left Deck 

System” comprises the “SegL13” deck segment as its child components. 

The application automatically generates the state chain according to the “State 

Chain Type” attribute of each product component, using the “Initialize Chain” button 

in the navigation tool bar in the bottom left panel of the interface as shown in Figure 

6.7. The Figure shows the automatically generated chain for “SegL13” comprising a 

sequence of six component states. Additionally, the component state grid in the 

bottom left of Figure 6.7 shows that the “StartD”, “ActiveFinishD”, and “FinishD” 

attributes are assigned a default time “0”, indicating that these temporal attributes 

have not been computed by the application. These three temporal attributes are not 

represented in the format of date time, but in the format of the number of days from 

the start of the study period, which is similar to the representation format of “StartD” 

and “FinishD” attributes in Figure 6.5. 

The “State Chain Type” is managed through the state chain type browser 

shown in Figure 6.8. The browser manages the intermediate function knowledge with 

respect to state chain type. The state chain type for a product component is selected 

based on the construction method. Figure 6.8 shows the state chain of “Deck 

Segment”, which was replicated in Figure 6.7 for initializing the construction life 

cycle of the deck segments. 
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Figure 6.8 State Chain Type Browser 

 

Figure 6.9 Work Package and Performers of Construction Processes  

After the process schedule has been imported and the state chain of each 

product component defined, the work packages of the construction processes are 
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defined using the interface depicted in Figure 6.9. Simultaneously, the performers of 

the construction processes can also be entered. The one-to-many relationships 

between construction processes and performers are stored in the process schedule 

database, and the sequence of performer states of a performer can hence be derived as 

elaborated in the preceding sections. 

 

Figure 6.10 “Edit Work Package” Window 

The input of work package is facilitated with the “Edit Work Package” 

window as shown in Figure 6.10. The edit box in the right side displays all the 

component states, which can be selected and added to the work package box on the 

left side. As demonstrated in Figure 6.10, the six component states 

“SegL13@Bottom_&_Side_Rebar”, “SegL14@Bottom_&_Side_Rebar”, “SegR13 

@Bottom_&_Side_Rebar”, “SegR14@Bottom_&_Side_Rebar”, “TdnL13-L16@ 

Duct”, and “TndR13-R16@Duct” are added from the candidate component state list 

on the right and associated with work package of the construction activity “Install 
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Bottom and Side Rebar (7)”. In this way, the work packages bridge the construction 

activities in the process schedule and the component states in the in-progress product 

model. Consequently, the “StartD”, “ActiveFinishD”, and “FinishD” temporal 

attributes of the associated component states can be automatically computed through 

the corresponding work packages. 

 

Figure 6.11 Automatic Computation of Temporal Attributes of States 

Figure 6.11 shows that the three temporal attributes of the state “Bottom & 

Side Rebar” of “SegL13” are on Day 87, indicating that this state has the active phase 

of 1 day and zero-duration quiescent phase. This computation resultant is consistent 

with the process schedule as shown in Figure 6.9 where the activity “Install Bottom 

and Side Rebar (7)” starts and finishes on March 28th, 2005. There are exactly 87 days 

from March 28th, 2005 backward to January 1st, 2005 (the start of the study period as 

shown in Figure 6.6). The activity “Install Bottom and Side Rebar (7)” is immediately 

followed by the activity “Cast Bottom Concrete (7)” (starting on March 29th, 2005) so 
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that the state “Bottom & Side Rebar” of “SegL13” has no quiescent duration, and its 

“FinshD” attribute is determined by the “StartD” of  “Cast Bottom Concrete (7)”. 

Meanwhile, The “StartD” and “ActiveFinishD” temporal attributes of the “Duct” 

states of the tendon component “TndL13-L16” are respectively equal to the “StartD” 

and “FinishD” of “Install bottom and side Rebar” since it is comprised in its work 

package. 

 

Figure 6.12 Box View of Component Construction Life 

Figure 6.12 illustrates the box view of the construction life cycle of the deck 

components “SegL10” to “SegL16”. On the left side of the interface is the product 

decomposition tree, while on the right is the component state chain for depicting the 

construction life cycles of the deck segments on the left side. Each box in the network 

represents a component state. Besides the state type attribute, a state box also displays 

five temporal attributes: “StartD” (“[S: ]”), “ActiveFinishD” (“[AF: ]”), “FinishD” 

(“[F: ]”), “Active Duration” (“[AD: ]”), and “Quiescent Duration” (“[Q: ]”). In this 
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way, the planning engineers can have an overview of the in-progress configuration of 

a facility product. 

  

6.7.2 4D Simulation Interface 

 

Figure 6.13 4D Simulation of Deck Construction 

Figure 6.13 shows the 4D simulation interface that visualizes the construction 

schedule of constructing the bridge deck through its in-progress product model. The 

4D simulation engine traverses the collection of physical components (including both 

product and resource component) to “filter” the product components via their 

existence vectors. These filtered product components are being constructed at the time 

of the present frame marker, and their physical shapes should be visible on the screen. 

The rendering color of the component is determined by its state at the time of the 

simulation frame. Each frame can be captured and recorded as a picture, and such a 

sequence of pictures can then be labeled and composed into a 4D movie. 
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6.7.3 Intermediate Function Analysis Interface 

 
A 

 
B 

Figure 6.14 Intermediate Function Browser 

Figure 6.14 shows the browser window for entering the attributes of an 

intermediate function object. In Figure 6.14A, the requirement state package, the 

provider component and the availability condition of the “Intermediate Functionality 

to Withstand Post-tension Load” have been entered, but the functional state package 

remains null. Via the “Generate Package” button, the “Functional State Package” is 

automatically filled in by the inference engine. In contrast, the requirement state 

package requires the manual input of the user. 

Figure 6.14B shows altogether six functional states for three provider 

components that are automatically generated. Specifically, each of the components 

“SegL13”, “SegL14”, and “SegL16” has two functional state phases “Strength 

Development.Q” and “Stressed.A”, as defined in the “Availability Condition”. This 

means that the three deck segments (provider components), during these two state 

phases, can withstand the post-tension load exerted by the user component “TdnL13-

L16” when it is being stressed (during the requirement state “TdnL13-
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L16@Stressed.A”). These six generated functional states will be used by the inference 

engine to compute the availability time-window for evaluating the fulfillment of the 

intermediate function requirement. 

 

Figure 6.15 Interface of Temporal Interaction Analysis 

The “Temporal Interaction” function on the bottom left of the browser shown 

in Figure 6.14 brings up the temporal interaction analysis interface as depicted in 

Figure 6.15. This interface publishes the results of the temporal interaction analysis 

for “Intermediate Functionality to Withstand Post-tension Load”. There are three grids 

for displaying the requirement time-window, availability time-window, and non-

matching time-window, respectively. The number in the top row of each grid denotes 

the number of the finite interval unit of the existence vector. In the “Requirement 

Time-Window” grid, each requirement state as well as its existence vector is 

displayed. Similarly, each functional state as well as its existence vector is 
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demonstrated in the “Availability Time-Window” grid. The functional states are 

indexed by the component name as shown in Figure 6.15. The “Non-Matching Time-

Window” grid shows the existence vectors of the requirement, availability, and non-

matching windows in three rows. In this way, the availability of the temporal 

interaction between the function user and the function provider can be evaluated using 

the equations Eq.’s (6.1) to (6.5). Figure 6.15 shows that the non-matching time-

window is “null”. This indicates that the “withstanding post-tension load” 

functionality is provided by the three deck segments (“SegL13”, “SegL14”, and 

“SegL16”) when the tendon “TdnL13-16” is being stressed. 

 

Figure 6.16 Interface for Publishing Spatio-Temporal Interaction Matrix  

Figure 6.16 depicts the interface of the Spatio-Temporal Interaction Matrix for 

displaying the spatial interaction between the function user and the function provider. 

Each row title of the matrix grid denotes a temporal space entity referenced by the 

corresponding requirement state, while each column title denotes a temporal space 

entities referenced by the corresponding functional state. The other grid cells show the 
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binary temporal topological relationships between the corresponding row and column 

entities.  

The interface shows the computation result of the example of moving a mobile 

crane on an excavated road as elaborated in Section 5.2.3. The mobile crane (user 

component) references only one space entity “CP_S1” which depicts the path space of 

a mobile crane, while three access road segments (provider component) reference a 

total of six space entities. Consequently, the temporal topological relationships 

between the space entity defining the path space of the mobile crane and the six space 

entities depicting the access road segments are respectively computed by the inference 

engine. The highlighted cell demonstrates an undesirable temporal topological 

relationship, indicating that the path space “CP_S1” of the mobile crane should but 

cannot temporally “meet” the shape entity “TE_S1” due to the trench excavation. In 

this way, the unavailable spatial interaction between the “Mobile Crane” and the 

“Access Road” can be identified. 

 

6.8 Concluding Remarks 

This chapter presents the research prototype 4D intermediate Function 

AnalysiS Tool (4D-iFAST) to implement the developed information integration 

framework and the analysis methodologies as well as 4D simulation. The main data 

structure of the prototype is represented, and the mechanisms of the inference engine 

and the 4D simulation engine are also addressed. Lastly, some typical interface 

windows are demonstrated for illustrating the key functions of the prototype. These 

research results indicate the intermediate function analysis framework can be 

implemented as a software product, taking the advantages of information technologies 

for enhancing construction requirement management.  
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Particularly, the existence vector concept and the corresponding Boolean 

operations are developed for implementing the temporal and spatial interaction 

analysis. In this way, the temporal and spatial interactions can be evaluated without 

the need to conduct simulation of construction schedules. Additionally, the temporal 

data representation in intermediate function analysis can be simplified by using 

existence vector to represent both continuous temporal intervals and discontinuous 

time-windows, and the interval algebra computations are also speed up by using the 

Boolean operations on existence vectors. Meanwhile, the 4D simulation can facilitate 

intermediate function analysis with respect to identifying function user and providers 

and to locating alternative engineering solutions for better realizing intermediate 

functionalities as well as to identifying state relationships. 
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CHAPTER 7 CASE STUDIES 

This chapter addresses two case studies for illustrating the application of the 

developed concepts, representation schemata, integration framework, and analysis 

tools. These two case studies come from the real projects and are intentionally 

amended to keep confidential some sensitive data, but the characteristics of associated 

intermediate function analysis are kept as original. The first case study is used to 

demonstrate the representation of intermediate function knowledge, and the 

identification and analysis of the bottleneck state as well as 4D simulation of 

construction schedules. The second case is employed to demonstrate the analysis of 

co-matching the requirement time-windows and the availability time-windows of two 

compatible intermediate functionalities through the collaboration among the 

subcontractors, which can be facilitated by the spatio-temporal enquiry on the 4D 

model and. 

  

 



166 

 

 

Right Balanced Cantilever Structure 

Figure 7.2 Left Balanced Cantilever with Tendon Configuration 

7.1 Case 1: Post-Tensioned Prestress Bridge by Balance Cantilever Approach 

Figure 7.1 Symmetric Structure of Bridge 

Left Balanced Cantilever Structure 

7.1.1 Balance Cantilever Construction Approach 

 

 



 

The following case involves the construction of the deck of a post-tensioned 

prestress bridge across a river (Figure 7.1) using the balance cantilever approach. The 

balance cantilever approach from two piers was adopted because the width of the river 

makes crane lifting method infeasible. Accordingly, two traveling platforms were used to 

support the construction of the bridge deck segments on each side of the piers as 

construction proceeds. Additionally, the bridge structure is symmetric from the mid-span 

(see Figure 7.1), and the construction of the right balanced cantilever structure follows a 

similar construction sequence for constructing the left balanced cantilever structure, so 

only the left cantilever is elaborated in this case study. Furthermore, Figure 7.2 shows the 

deck segments numbering together with the prestress tendon configuration. 

 

Figure 7.3 Balanced Cantilever Structure With Traveling Platforms in Cycle(3) 
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The two cantilevers on each side of the pier are constructed outward from the pier 

with not more than one segment out of balance at any time so that the stability of the in-

progress structure is maintained. For example, Figure 7.3 shows a frame from the 4D 

simulation of the deck construction, either SegL05 or SegL06 cannot be constructed until 

both SegL03 and SegL04 have been stressed to form a stable balanced cantilever in the 

construction cycle “Cycle(2)”. The construction consequence of the bridge structure is 

illustrated with 4D simulation frames in the succeeding section. 

 

7.1.2 4D Simulation of Original Construction Sequence 

 

Pile Caps

Piles 

Figure 7.4 Construction of Pile Foundation System 

The general construction sequence of the bridge can be separated into three 

sequential phases. During the first phase, the piles are firstly installed and driven into the 

river bed and banks, and then the pile caps are built to provide the foundation systems for 

the upper piers and the deck (Figure 7.4). Subsequently, the “Piers LL, L01, and L02” are 

constructed on the pile caps, and then the pier caps are constructed and post-tensioned 
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with the temporary support functionality provided by the falseworks at Piers LL, L01, 

L02 (Figure 7.5). 

 

Pier L01 Pier L02 Pier LL 

Figure 7.5 Construction of Piers 

 

Trv L1Trv L2 

SF L1 SF L2 

SegL01 SegL02 

Pier Head L 

Work Platform 

Figure 7.6 First Cycle of Balanced Cantilever Construction 

During the second phase, the deck system is sequentially constructed as illustrated 

by Figures 7.6 to 7.10. The traveling platform “Trv L1” will be first installed on the 

completed pier head “Pier Head L” (see Figures 7.6), and then the sliding formwork “SF 

L1” will be installed on the traveling platform “Trv L1” for constructing the deck 

segments. Using the temporary support provided by the traveling platform “Trv L1” and 
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the sliding formwork “SF L1” on it, the deck segment “SegL01” can be constructed by 

installing rebar and casting concrete as well as developing strength. Similarly, the deck 

segment “SegL02” can be constructed using the temporary support provided by the 

traveling platform “Trv L2” and the corresponding sliding formwork “SF L2”. 

Additionally, Figure 7.6 also illustrates that each traveling platform has a two-level work 

platform, which is required for supporting the workers and the post-tensioning equipment. 

These two segments can be post-tensioned with the pier head “Pier Head L” to form a 

temporary cantilever structure after they have been cast and cured for three days. 

Subsequently, the tendon ducts should be grouted for protecting the tendon clusters. This 

is the first cycle of the balanced cantilever construction.  

 

SegL04 SegL03 Trv L2 Trv L1

SF L1 SF L2 
SegL01SegL02

Figure 7.7 Construction of Deck Segments “SegL03” and “SegL04” 
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Figure 7.8 Construction of Deck Segments “SegL11” and “SegL12” 

In the end of the first construction cycle, the in-progress cantilever structure can 

provide temporary support functionality to permit the traveling platforms “Trv L1” and 

“Trv L2” to be advanced outward from the pier system in order to construct the deck 

segments “SegL03” and “SegL04” in the second construction cycle. Figure 7.7 shows the 

simulation frame with the sliding formworks “SF L1” and “SF L2” having been advanced 

outwards since the deck segments “SegL01” and “SegL02” are self supported. The 

above-mentioned balance cantilever construction procedure will be repeated through 

“SegL05” to “SegL12”. The construction of “SegL11” and “SegL12” in the sixth 

construction cycle is shown in Figure 7.8. 

 171



 

 

Figure 7.9 Construction of Deck Segments “SegL13” and “SegL14” 

 

SegL11 SegL12 Trv L2 

SegL13 SegL11SegL12 

SegL16 SegL14 SegL13 

SegL14 

Potential Collision 

Trv L1

Figure 7.10 Construction of Deck Segment “SegL16” 

After grouting the duct of “Tendon L11-L12” that stressed “SegL11” and 

“SegL12” with the in-progress cantilever structure, the traveling platform “Trv L1” and 

“Trv L2” will be advanced and fixed onto the “SegL11” and “SegL12”, respectively, 

which starts the seventh and last cycle to construct the balance cantilever structure 

(Figure 7.9). The original method of construction stipulates that the construction of the 

deck segments “SegL13” and “SegL14” is accomplished using the traveling platforms 

“Trv L1” and “Trv L2”, respectively (Figure 7.9), and this is followed by the construction 

of the closure segment “SegL16” with the support of the falsework “FWL16” instead of 
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the traveling platform “Trv L2” (Figure 7.11). Subsequently, three deck segments 

SegL13, SegL14 and SegL16 will be stressed together via “TendonL13-16” as shown in 

the tendon configuration of Figure 7.2.  

 

Falsework “FW L16” 

SegL14 

Work Platform of  “Trv  L2” 

Trv L2 

SegL16 will be built here 

Left River Bank (2.50-3.50m to the bottom of SegL14 and SegL16) 

Potential Space Collision between Work Platform of TrvL2 and Falsework FWL16 

Figure 7.11 Potential Collision between Work Platform and Falsework 

The simulation frame shown in Figure 7.10 also implies a potential space 

collision. The potential collision is zoomed in a larger viewport as shown in Figure 7.11. 

In order to prevent the potential collision, the falsework “FW L16” under the deck 

segment “SegL16” should be erected after the work platform of “Trv L2” (in the location 

of SegL16) is disassembled. Otherwise, a space collision between the falsework “FW 

L16” and the work platform of “Trv L2” may occur. This implies that the construction of 

“SegL14” and “SegL16” in the same construction cycle cannot commence 

simultaneously due to the potential space utilization conflicts. 

The third construction phase of the deck structure begins after “Tendon L13-L16” 

has been stressed and grouted. “SegL15” and “SegL17” are sequentially constructed in an 
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unbalanced manner (Figure 7.1). After that, the middle closure between the left and right 

deck structures can be constructed (Figure 7.1), and then the continuity tendons “Tendon 

L16-L17” (See Figure 7.2) going through the two end spans and the middle span will be 

stressed to make the whole deck system as an integrity structure. 

  

7.1.3 Intermediate Function Requirement Knowledge Representation 

Figures 7.12 to 7.21 illustrate the three types of intermediate function requirement 

knowledge capturing the temporal logics that reside in this construction approach. 

 

Figure 7.12 State Chain Type of Deck Segment 

Figure 7.12 shows the state chain type “Deck Segment Chain”, representing the 

construction life cycle of product component type “Deck Segment”. It depicts that a 

typical deck segment is constructed from the bottom to top using the cast-in-situ 

construction method. Specifically, its construction life cycle comprises six sequential 

state types, namely “Bottom and Side Rebar”, “Bottom Concrete”, “Top Rebar”, “Top 

and Side Concrete”, “Strength Development (for stressing)”, and “Stressed” (see Figure 

7.13). Additionally, the boundary shape of the deck segment associated with each of the 

states along the construction life cycle is shown in the bottom of Figure 7.13. 
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Figure 7.13 State Chain of Deck Segment Component with State Spaces 

This sequence not only depicts the gradual development of material composition 

in the evolution of the construction cycle but also indicates the transitions of engineering 

behavior characteristics. The first four states correspond to changes in material 

composition, wherein the rebar is assembled in the respective slabs and sides, and the 

concrete cast. The latter two states correspond to changes in strength. Additionally, the 

state “Top & Side Concrete” have no quiescent phase, since the active “Strength 

Development” state, which is induced by the hydration process, starts immediately after 

the concrete has been cast. 

 

Figure 7.14 State Chain Type of Tendon 

The “Tendon Chain” in Figure 7.14 describes the construction life cycle of the 

“Tendon” component for stressing the deck segments into an integrated structure. It 

comprises the “Duct” state when the duct is installed within the side rebar cage of the 

deck segment, the “Tendon” state when the tendon clusters are threaded, the “Stressed” 

state when the tendons are stressed, and the “Grouted” state when the tendon duct is 

grouted with mortar to protect the stressed tendons. 

 175



 

 

Figure 7.15 State Chain Type of Sliding Formwork 

The sliding formwork system contains two parts: “External Formwork” and 

“Internal Formwork”. Its construction life cycle simply comprises two sequential state 

types, namely “External Formwork To Cycle(X)” and “Internal Formwork To Cycle(X)”, 

which represent the sliding of the respective formwork parts to their locations for 

supporting the deck segment that will be constructed in “Cycle(X)” (see Figure 7.15). 

The “X” in “Cycle(X)” herein indicates the order number of the construction cycle that 

the traveling platform is planned to support. These two states will be alternated as the 

sliding formwork is advanced forward by the traveling platform to its new locations in 

the succeeding cycles. 

 

Figure 7.16 State Chain Type of Traveling Platform 

Figure 7.16 shows the state transition life cycle of a traveling platform used in the 

balance cantilever construction approach. The states of the traveling platform are 

characterized by its locations, since its support functionality is only accessible within the 
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boundary of the platform. The “Traveling Platform” is moved to its location for 

“Cycle(X)” in order to support the weights of the sliding formwork and the deck segment 

as well as other construction loads. Accordingly, the states of the traveling platform are 

denoted by the construction cycle “Cycle(X)”. 

 

Figure 7.17 State Interaction Type between Deck Segment and Sliding Formwork 

Figure 7.17 illustrates the state interaction knowledge to depict the functional 

interdependencies between a deck segment and the corresponding sliding formwork 

(supported by the traveling platform). The construction life cycles of these two 

component types are respectively defined by “Deck Segment Chain” (first state chain) 

and “Sliding Formwork Chain” (second state chain).  

There are altogether six functional interdependencies between the above-

mentioned state chains, which are grouped in three interaction sets. The first set 

comprising “ContainedBy(DSC.B&SR, SFC.EFTC(X).Q)” and  “ContainedBy(DSC.BC, 

SFC.EFTC(X).Q)” abstracts the intermediate functionality provided by the “External 

Formwork” of the sliding formwork system that has been moved beneath the deck 

segment to support the transitions of the states “Bottom & Side Rebar” and “Bottom 

Concrete” of the deck segment in “Cycle(X)”. The second set is the state interaction 
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“Contain(DSC.BC.Q, SFC.IFTC(X).A)”. It abstracts the temporary support functionality 

provided by the bottom slab of the deck segment that has been cast (i.e. “DSC.BC.Q”) so 

that the internal formwork can be slid into its position (i.e. “SFC.IFTC(X).A”). 

The third set of state interactions comprises “ContainedBy(DSC.TR, 

SFC.IFTC.Q)”, “ContainedBy(DSC.T&SC, SFC.IFTC.Q)”, and “ContainedBy 

(DSC.SD.A, SFC.IFTC.Q)”. The former two interactions depict the intermediate 

functionality provided by the internal formwork to support the “Top Rebar” and “Side & 

Top Concrete” states. The third interaction implies that the temporary support 

functionality for the deck segment is still required while its strength is being developed to 

the degree that the deck segment can maintain its shape (i.e. “DSC.SD.A”). 

 

Figure 7.18 State Interaction Type between Deck Segment and Tendon 

The functional interdependencies between the “Deck Segment Chain” and the 

“Tendon Chain” are shown in Figure 7.18. The “Tendon Chain” interrelates with the 

“Deck Segment Chain” through two interdependencies “Contain(DSC.B&SR, TC.D.A)” 

and “Equal(DSC.S.A, TC.S.A)”. The first interdependency requires that the tendon duct 

installation be concurrently executed with the bottom and side rebar assembly of the deck 

segment, while the second interdependency indicates that the deck segments become 

stressed whenever the tendon clusters are being stressed. The first interdependency also 

implies that the installation of tendon duct (active phase “TC.D.A”) can be finished later 
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than the installation of bottom and side rebar (active phase “DSC.B&SR.A”), but the 

former cannot start earlier than the latter since the former requires the support of in-

progress rebar cage. 

 

Figure 7.19 State Interaction Type between Sliding Formwork and Traveling Platform 

The state interaction between the “Traveling Platform Chain” and the “Sliding 

Formwork Chain” is shown in Figure 7.19. The first interaction “StartedBy(SFC.EFTS 

(X).A, TPC.PTC(X).A)” indicates that the traveling platform and the sliding external 

formwork are simultaneously moved because the external formwork is bolted to the 

traveling platform. After they have been moved into place, the external formwork 

requires additional time to be adjusted to the right level and shape to accommodate the 

new segment to be constructed. 

During the construction of the in-progress cantilever structure, an important 

intermediate functionality is to maintain its temporary support for the balanced 

cantilevers. Figure 7.20 shows the decomposition of the function provider system that 

provides the temporary support functionality in “Cycle(3)”, as an example, in which 

segments “SegL05” and “SegL06” will be cast and stressed (see Figure 7.3).  
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Figure 7.20 Decomposition of Provider System and Functional States in Cycle(3) 

The direct support for a deck segment comes from the “Sliding Formwork”, 

which requires the support from “Traveling Platform”. The platform further requires the 

support from the embedded cantilever subsystem “In-Progress Cantilever Structure in 

Cycle(2)”. Meanwhile, the embedded subsystem is further decomposed into two deck 

segments and one tendon component as well as the earlier smaller embedded subsystem 

“In-Progress Cantilever Structure in Cycle(1)”. The functional states for each constituent 

component are presented in Figure 7.20. 
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Figure 7.21 Availability Type of Temporary Support Functionality in Cycle(X) 

Figure 7.21 shows that the functional states comprised in four state chains are 

organized into an availability condition (labeled by the circled number 1) to provide the 

temporary support functionality for constructing the deck segments in “Cycle(X)”. The 

functional state of “Deck Segment (X-1)” is the “Stressed.Q” state, while the two 

functional states of “Tendon (X-1)” component are “Stressed.Q” and “Grouted” states. 

These functional states imply that the in-progress cantilever structure constructed in the 

“Cycle (X-1)” has been duly stressed and thus are able to support its balanced cantilever. 

This availability condition also sufficiently implies that the deck segments in the earlier 

cycles have been stressed as depicted in the embedded subsystems in Figure 7.20. 

Based on this basic support functionality of the cantilever subsystem, two 

temporary facility components, namely the sliding formwork and the traveling platform 

can be advanced to provide the construction platforms for constructing the deck segments 

in “Cycle(X)”. The traveling platform component has only one functional state 

“PTC(X).Q”, indicating that it has completed its advancement in Cycle(X). Meanwhile, 

the functional states of the sliding formwork system are “EFTC(X).Q” and “IFTC(X)”, 
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implying that the formwork parts have been advanced into their locations for Cycle(X) 

(See Figure 7.21). In this way, the traveling platform and the sliding formwork system, as 

well as the cantilever structure completed in “Cycle(X-1)”, work together to provide the 

temporary support functionality for constructing the deck segments in “Cycle (X)”. 

This availability condition captures and also explains the temporal logics residing 

in the balance cantilever approach, specifying that the two cantilevers on each side of the 

pier can only be constructed outward with not more than one segment out of balance at 

any one time. Functionally, it depicts that the cantilever support can be maintained by the 

in-progress structure itself only after the tendon clusters have been stressed in Cycle(X-1), 

and then the traveling platform can be advanced to the subsequent location for Cycle(X). 

 

7.1.4 Development of Component State Network Related to Cycle(7)  

Using the intermediate function requirement knowledge elaborated in the 

preceding sections, the in-progress product core model (IPPCM) of the bridge deck can 

be developed for representing its in-progress configuration. Figure 7.22 shows a part of 

the IPPCM that is related to the Cycle(7) construction. The Figure shows four permanent 

components and six temporary components. These permanent components are three deck 

segments (“SegL13”, “SegL14”, and “SegL16”) and one tendon component 

(“TendonL13-L16”), while the temporary components are two sliding formworks (“SF 

L1” and “SF L2”), two traveling platforms (“Trv L1” and “Trv L2”), one formwork 

(“Frm L16”), and one falsework (“FW L16”). Meanwhile, Figure 7.22 also illustrates the 

pertinent state relationships between these product components with respect to the 

construction life cycle of each product component, the functional interdependencies 
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between two in-progress components, and the concurrent relationships between the 

component states contained in the same work package. 

 

 Figure 7.22 In-Progress Product Core Model for Cycle(7) 

The development of the construction life cycles of the product components in 

Figure 7.22 can be facilitated by using the state chain knowledge addressed in the 

preceding section. For example, the construction life cycles of three deck segments can 

be derived from the “Deck Segment Chain” type illustrated in Figure 7.12. Similarly, the 

construction life cycle of “Tendon L13-L16” can be developed from the “Tendon Chain” 
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type shown in Figure 7.14. The construction life cycles of two sliding formworks and two 

traveling platforms can also be initialized from “Sliding Formwork Chain” (Figure 7.15) 

and “Traveling Platform Chain” type (Figure 7.16), respectively. Additionally, the 

construction life cycles of “Frm L16” and “FW L16” can likewise developed. 

Furthermore, some construction life cycles are further developed for 

accommodating the specific construction sequence. Specifically, the “Duct” state in the 

construction life cycle of “Tendon L13-L16” is split into two state “Duct(L13&L14)” and 

“Duct(L16)” since the duct are assembled in two steps associated with two construction 

activities “Install Bottom and Side Rebar L13&L14” and “Install Bottom and Side Rebar 

L16”, respectively (See Figure 7.23), between which there is a gap. The construction life 

cycle of “Trv L2” is also added a “Dismantled Work Platform” state following its 

“Platform To Cycle(7)” state to describe that the work platform of “Trv L2” should be 

dismantled after the construction of “SegL14” in order to release the space for erecting 

“FW L16”.     

The functional dependencies between the in-porgress product components 

illustrated in Figure 7.22 can be represented in terms of cross-component state 

relationships, especially “Contain” and “ContainedBy” relationships. The establishment 

of these state relationships can be facilitated by the state interaction knowledge like that 

explained in Figures 7.17 to 7.19. For example, the state relationship “ContainedBy 

(SegL14.T&SC.A, SF_L2.IFTC(7).Q)” can be derived using the knowledge explained in 

Figure 7.17,  indicating that casting concrete of the top and side slabs of “SegL14” 

requires the temporary support from the internal formwork of the slide formwork “SF 

L2” that has been slid to the designed location for “SegL14”.  
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Figure 7.22 also illustrates the concurrent transition of a number of component 

states contained in the same work package in terms of “Equal” relationships between 

their active phases. For example, the active phases “Stressed.A” of deck segments 

“SegL13” “SegL14” and “SegL16” and tendon “Tendon L13-L16” are contained in the 

work package of construction activity “Stress Deck L13-L16” so there is an “Equal” 

relationship between each two of these four active phases (Figure 7.22). 

 

Figure 7.23 Original CPM Schedule for Cycle(7) 

By using the Product Oriented Scheduling Technology (POST) introduced in 

Section 3.4, the temporal attributes of the component states in the component state 

network illustrated in Figure 7.22 can be derived from the corresponding CPM schedule 

for Cycle(7) as shown in Figure 7.23. The construction activities in Figure 7.23 are 

grouped into three blocks: constructing “SegL13” and “SegL14” (ID 77 to ID 83), 

constructing “SegL16” (ID 84 to ID 92), and post-tensioning the segments into an 

integrated structure (ID 93 to ID 95). Additionally, the natural curing processes and the 
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logistic activities for advancing the traveling platform and the sliding formworks are also 

listed in the CPM schedule. 

Table 7.1 Work Packages of Activities for Cycle(7)  

ID Activity Start 
(D) 

Finish
(D) Work Package 

77 Advance traveling platform (7)  86  86 Trv_L1.PTC(7).A, Trv_L2.PTC(7), 
SF_L1.EFTC(7).A, SF_L2.EFTC(7).A 

78 Install bottom and side rebar 
L13&L14   87  87 SegL13.B&SR.A, SegL14.B&SR.A., 

TendonL13-l16.D(L13&L14).A 
79 Cast bottom concrete L13&L14   88  88 SegL13.BC.A, SegL14.BC.A 

80 Advance internal formwork 
L13&L14   89  89 SFL1.IFTC(7).A, SFL2.IFTC(7).A 

81 Install top rebar L13&L14   90  90 SegL13.TB.A, SegL14.TB.A, 

82 Cast top and side concrete 
L13&L14   91  91 SegL13.T&SC.A, SegL14.T&SC.A 

83 Curing for 3 days L13&L14   91  94 SegL13.SD.A, SegL14.SD.A 
84 Disassemble work platform    95  95 Trv_L2.DWP.A 
85 Install falsework L16  96  96 FW_L16.AF.A 
86 Install external formwork L16  97  97 Frm_L16.AEF.A 

87 Install bottom and side rebar L16   98  98 SegL16.B&SR.A,  
TendonL13-L16.(DL16).A 

88 Cast bottom concrete L16  99  99 SegL16.BC.A 
89 Install internal formwork L16  100  100 Frm_L16.AIF.A 
90 Install top rebar L16  101  101 SegL16.TR.A 
91 Cast top and side concrete L16  102  102 SegL16.T&SC.A 
92 Curing for 3 days 16  102  105 SegL16.SD.A 
93 Thread Tendon L13-L16   106  106 TendonL13-16.T.A 

94 Stress deck  L13-L16   107  107 SegL13.S.A, SegL14.S.A, SegL16.S.A, 
TendonL13-L16.S.A 

95 Grout tendon L13-L16   108  108 TendonL13-L16.G.A 

Note: The component states in the work packages are abbreviated by the initials of each 
word. For example, the “Bottom Concrete” state is abbreviated by “BC”. The abbreviations 
of the states in the work package column can reference Figure 7.22. 

The construction activities in the CPM schedule will map their temporal attributes 

onto the corresponding component states through the corresponding work packages as 

shown in Table 7.1. The Table presents the start, finish, and work packages of each 

activity comprised in the CPM schedule for Cycle(7). The component states associated 

with the right cantilever structure is intentionally omitted for briefing the statements. For 

example, the work package of the activity “Install Bottom and Side Rebar L13&L14” (ID 

78) contains altogether three active state phases, namely the active phases of the “Bottom 
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and Side Rebar” states of both “SegL13” and “SegL14” and the active phase of the “Duct 

(L13 and L14)” state of “TendonL13-L16”. The other work packages can be likewise 

defined. Using POST, the temporal attributes of each associated component state can be 

derived from the start and finish times of the associated activities. Figure 7.24 illustrates 

the derivation results in the format of a bar chart within a period from the start of Day 86 

to the end of Day 108. These derived temporal attributes will be used for intermediate 

function analysis in the following sections. 
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Explanation of state name abbreviation: 

B&SR:   Bottom & Side Rebar 
BC:        Bottom Concrete 
TR:        Top Rebar 
SD:        Strength Development
S:           Stressed 

AEF:      Assembled External Formwork
AIF:       Assembled Internal Formwork 
AF:         Assembled Falsework
PTC(7):  Platform To Cycle(7)
DWP:     Dismantled Work Platform  

D:  Duct
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Figure 7.24 In-Progess Product Core Model for Cycle(7) 
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7.1.5 Identification of Bottleneck State in Cycle(7) 

Due to delays in upstream activities, the contractor has to expedite the 

construction schedule. Analysis of the schedule suggests opportunities to expedite the 

seventh construction cycle to complete the bridge deck in time. After examining the 

intermediate functionalities associated with each critical activity in Cycle(7), the planning 

engineers find that the commencement of the critical activity “Stress Deck L13-L16” is 

constrained by the intermediate functionality to withstand the post-tension load. 

 

Figure 7.25 Intermediate Function for Post-tensioning Tendon L13-L16 

Figure 7.25 shows the composition of the intermediate function for post-

tensioning “Tendon L13-L16”. The function user is the “Tendon L13-L16” component, 

which requires the associated intermediate functionality to withstand the post-tension 

load when it is being stressed (“Stressing.A”). The function provider comprises three 
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deck segments “SegL13”, “SegL14”, and “SegL16”. The intermediate function is 

available when the three deck segments are in their quiescent phase of the “Strength 

development” states (“SD.Q”) and active phases of the “Stressed” states (“S.A”). The 

“S.A” should be included in the functional state, since when the tendon component is in 

its “S.A”, the corresponding deck segment must be in their “S.A”.   

The requirement time-window and the availability time-window can be derived 

using the Equations (5.1) and (5.2). Figure 7.25 shows that the requirement time window 

is fully contained by the corresponding availability time-window, indicating that when 

post-tensioning “Tendon L13-L16”, the cantilever structure from SegL13 to SegL16 is 

available to withstand the post-tension load. Furthermore, Figure 7.25 also shows that 

“SD.Q” of “SegL16” is 11 days later than the “SD.Q” phases of both “SegL13” and 

“SegL14”, indicating that “SD” of “SegL16” is a bottleneck state that delays the 

availability of the required intermediate functionality. If this bottleneck state can be 

advanced, the intermediate functionality for withstanding post-tension load can be 

realized earlier, leading to the earlier commencement of the critical activity “Stress Deck 

L13-L16”. Thus, the construction of Cycle(7) can be expedited.  
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Figure 7.26 Precedence Chain for Bottleneck State 

 

 

7.1.6 Analysis of Bottleneck State 



 

In order to explore the feasibility of advancing the bottleneck state, the 

component states/phases that constrain the start of the bottleneck state should be explored 

in terms of a chain of precedence path. The component state/phases along a precedence 

chain are associated by either a “Meet” or “Before” relationship. This precedence chain 

can be used to locate opportunities for advancing the bottleneck state. 

Figure 7.26 shows the precedence chain linking the “SD” states of “SegL14” and 

“SegL16”. The precedence path can be first traced from the bottleneck state “Strength 

Development” of “SegL16” upstream along its construction life cycle until its initial 

active phase “Bottom & Side Rebar.A” (“B&SR.A”), which is the labeled by the 

precedence path “P1” in Figure 7.26. There are altogether five active state phases and two 

quiescent phases along “P1”. These seven state phases constrain the advancement of the 

bottleneck state “SD”. If either the preceding quiescent phases can be compressed or the 

preceding active phases can brought forward, it is possible to advance the bottleneck state. 

Unfortunately, the two quiescent phases along the precedence path “P1”, namely “BC.Q” 

(quiescent phase of state “Bottom Concrete”) and “SD.Q” (quiescent phase of state 

“Strength Development”), cannot be compressed since the duration interval of the former 

is totally used for installing the internal formwork (active phase “AIF.A”) of “Frm L16” 

and the duration interval of the latter is fully required for threading “Tendon L13-L16” 

(active phase “T.A”). These two functional interdependencies are represented by two 

“ContainedBy” state relationships in Figure 7.26. 

The remaining opportunity for advancing the state chain along the precedence 

path “P1” should be explored by locating the associated component states in other 

construction life cycles that constrain the commencement of active phase “B&SR” of 
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“SegL16”, since it is the initial state in the construction life cycle of “SegL16”. Figure 

7.26 shows that “B&SR.A” of “SegL16” is “Contained By” the quiescent phase of state 

“Assembled External Formwork” (“AEF.Q”) of formwork “Frm L16” since the 

installation of side and bottom rebar of “SegL16” requires the temporary support from 

the assembled external formwork of “Frm L16”. Meanwhile, the corresponding active 

phase “AEF.A” “Meets” the quiescent phase “AEF.Q” along the construction life cycle 

of “Frm L16”. Thus, it can be inferred that the active phase “AEF.A” of “Frm L16” 

should either be “Before” or “Meet” the quiescent phase “B&SR.A” of “SegL16”, i.e. 

“Before/Meet(Frm_L16.AEF.A, SegL16.B&SR)”, implying that the start of bottom and 

side rebar installation (“B&SR.A”) of “SegL16” is restricted by the installation of the 

external formwork installation (“AEF.A”) of “Frm L16”. Furthermore, their temporal 

attributes indicate that the former “Meets” the latter. Therefore, the advancement of 

“B&SR.A” of “SegL16” depends on whether “AEF.A” of “FrmL16” can be brought 

forward. This precedence path from “SegL16.B&SRS.A” to “Frm_L16.AEF.A” is 

labeled as “P2” in Figure 7.26. 

Similarly, since “AEF.A” is the initial active phase in the construction life cycle 

of “Frm L16” (see Figure 7.23), its advancement can be constrained by the associated 

states of other components. Specifically, “AEF.A” of “Frm L16” is contained by “AF.Q” 

of “FW L16”. Again, a “Before/Meet” relationship “Before/Meet(FW_L16.AF.A, 

Frm_L16.AEF.A)” can be inferred, labeled by the precedent path “P3” in Figure 7.26. 

The temporal attributes of the two associated state phases indicate that “FW_L16.AF.A” 

meets “Frm_L16.AEF.A”, meaning that “AEF.A” of “Frm L16” can be advanced only if 

“AF.A” of “FW L16” can be brought forward. 
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Likewise, the precedence path “P4” can be derived from two existing state 

relationships: “ContainedBy(FW_L16.AF.A, Trv_L2.DWP.Q)” and 

Meet(Trv_L2.DWP.A, Trv_L2.DWP.Q) as depicted in Figure 7.26. The resultant state 

relationship “Before/Meet(Trv_L2.DWP.A, FW_L16.AF.A)” indicates that the 

assembling (“AF.A”) of the falsework “FW L16” is restricted by the dismantling of the 

work platform (“DWP.A”) of the traveling platform “TrvL2”, since the latter can release 

the space for the former in order to prevent the potential space collision as explained in 

Figure 7.11. The temporal attributes of these two active phases show that 

“Trv_L2.DWP.A” meets “FW_L16.AF.A”, indicating that the advancement of “AF.A” 

of “FW L16” depends on whether “DWP.A” of “Trv L2” can be brought forward. 

The inference of the precedent path “P5” from the active phase “DWP.A” of “Trv 

L2” to the active phase “SD.A” of “SegL14” is similar to the inference of precedence 

path “P4” (Figure 7.26). The work platform of “Trv L2” can be dismantled after 

“SegL14” has achieved its 3-day strength, as represented by the “ContainedBy” 

relationship “ContainedBy(Trv_L2.DWP.A, SegL14.SD.Q)”. This “ContainedBy” 

relationship and the “Meet” relationship “Meet(SegL14.SD.A, SegL14.SD.Q)” give rise 

to the “Before/Meet” relationship “Before/Meet(SegL14.SD.A, Trv_L2.DWP.A)”. The 

temporal attributes again indicates that “SegL14.SD.A” “Meets” “Trv_L2.DWP.A” so 

that the dismantling of the work platform of “Trv L2” can only be advanced if the 3-day 

strength development (hence the casting) of “SegL14” can be brought forward.  

Consequently, the preceding states that restrict the start of the bottleneck state are 

identified as a chain of precedent paths from “P1” to “P5”. At the same time, the 

associate relationship between the bottleneck state “SD” of “SegL16” and state “SD” of 
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“SegL14” can also be inferred from the precedent chain, indicating that “SD.Q” of 

“SegL16” cannot be earlier than “SD.A” of “SegL14”. Furthermore, from the temporal 

attributes of the state phases along the precedent chain “P1” to “P5”, a gap of 11 days can 

be obtained. This is equal to the difference between the start points of the duration 

intervals of the “SD.Q” phases of “SegL16” and “SegL14”, implying that the gap 

between these two quiescent phases cannot be compressed. 

 

7.1.7 Alternative Construction Method for Advancing Bottleneck State 

Further analysis of the IPPCM shows that the “SD.A” of “SegL14” cannot be 

advanced because of the upstream construction life cycles. The remaining option is to 

explore an alternative construction method to synchronize the construction of “SegL14” 

and “SegL16”. Through the 4D simulation frame shown in Figure 7.11, the height 

clearance for deck segments “SegL14” and “SegL16” was determined to be only 2.5m to 

3.5m from the bank level. This height makes it feasible to erect of a longer falsework 

(“FW L14-L16”) for supporting the concurrent construction of both “SegL14” and 

“SegL16”. In this way, the construction life cycles of “SegL13”, “SegL14” and “SegL16” 

can be synchronized in order to advance the realization of the intermediate functionality 

for withstanding the post-tension load exerted by “Tendon L13-L16”.  
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Tendon L11-L12

Figure 7.27 Shortened CPM Schedule for Construction Cycle(7) 

Figure 7.27 shows the revised construction schedule for Cycle(7), and Figure 7.28 

depicts the corresponding component state network. The modified construction sequence 

indicates that after the grouting (active phase “G.A”) of “Tendon L11-L12” is completed, 

the work platform of “Trv L2” can be dismantled to clear the space for assembling the 

falsework “FW L14-L16” (“AF.A”). The external formworks of sliding formwork “SF 

L2” and the original formwork “Frm L16” can be put in place with the support from “FW 

L14-L16” for concurrently constructing “SegL14” and “SegL16”. 
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Figure 7.28 In-Progress Product Model for Cycle (7) of Improved Schedule 

Two pairs of active phases, namely “EFTC(7).A” of “SF L2” with “AEF.A” of 

“Frm L16” and “IFTC(7).A” of “SF L2” with “AIF.A” of “Frm L16”, can be 

synchronized through the use of two “Equal” relationships, indicating that the external 

and internal formworks of “SF L2” and “Frm L16” are installed together in the same 

work package. Additionally, the duct installation of “TendonL13-L16”,which was split 

into two states “Duct(L13&L14)” and “Duct(L16)” in the original schedule (see Figure 
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7.24), is now completed in one step in the revised schedule contained by the active 

phases of “B&SR” of “SegL13”, “SegL14” and “SegL16”, which have been 

synchronized in the same work package of “Install Bottom and Side Rebar L13, L14, & 

L16” in Figure 7.27. Consequently, the intermediate functionality for post-tensioning 

“Tendon L13-L16” can be greatly advanced, reducing construction period by 9 days, 

which is more than an eight percent savings over the time required for constructing the 

balanced cantilever structure. 
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7.2 Case Study Two: Construction of Entrance Gate of Nursing Home 

7.2.1 Original Construction Schedule 

 

Steel Beam 

Curtain Wall 

Main Entrance 

Scaffold_S or 
Scaffold_G 

Trench for laying cable pipes 

Figure 7.29 3D model of Nursing House Showing Main Entrance 

This case study presents the schedule to construct the main entrance of a nursing 

home. One important task is to design and build the glass works for the front facade, 

which is closely related to the construction of the curved steel beam above the main 

entrance. The scope of the glass works includes the glass door of the main entrance and 

the curtain walls of the upper floors (see Figure 7.29). The steel beam is fabricated in 

segments off-site and assembled on-site by welding using a scaffold as temporary support. 

The design and construction of the glass works are subcontracted to the 

subcontractor “SubCon_1”, while the steel beam works are subcontracted to another 

subcontractor “SubCon_2”. The cable pipe laying is performed by the main contractor 
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“MainCon”. The trench work for cable pipe laying is shown in Figure 7.29. “SubCon_1” 

will require the as-built information of the steel beam for designing the shop drawings for 

the front glass door and curtain wall glass panels. Additionally, the Finish-to-finish 

precedence relationship between “Site Survey” and “Design Shop Drawing” of the glass 

works has a lag time of five days (labeled in Figure 7.30) to allow for completion of the 

shop drawing design after acquiring the as-built information of the completed steel beam. 

The master schedule in Figure 7.30 shows that the construction of the glass works 

cannot commence before the end of Day 240. Otherwise, the path space through the main 

entrance required by the MainCon’s works (from the start of Day 227 to the end of Day 

240) will be blocked by “Scaffold_G”. Meanwhile, the glass subcontractor “SubCon_1” 

should finish site demobilization before the end Day 277 so that the downstream cladding 

works that should start on Day 278 will delayed (See Figure 7.30). 

The original schedule in Figure 7.30 also shows that “SubCon_2” (Steel Beam 

subcontract) “Demobilizes” at the end of Day 224 to clear the path space near the main 

entrance in time for downstream works to be executed by “MainCon” who requires the 

main entrance for access from the start of Day 227 to the end of Day 240. During the 

demobilization, “SubCon_2” dismantles, on Days 223 to 224, “Scaffold_S” that was 

erected for designing, assembling and welding the steel beam segments. Another scaffold 

“Scaffold_G” was later erected on Day 241 for measuring as-built information and for 

executing glass works, and finally “SubCon_1” finishes their demobilization on Day 274. 
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Figure 7.30 Original Schedule for Beam, Glass Works, and Cable Pipes 
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7.2.2 Intermediate Function Analysis for Temporary Support in Original Schedule 

Figure 7.31 illustrates the function user “User 1” of the temporary support 

function “Funciton_1” comprising two labor components “Assistant Designer” and 

“Glass Workers”. The temporary support functionality is required by the “Assistant 

Designer” for measuring the as-built information of the completed steel beam and later 

required by the “Glass Workers” for constructing spider and glass components (fixing up 

spiders, assembling glass panels, checking and correcting assembled works, and applying 

sealant).  
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Figure 7.31 Unavailable Temporary Support in Original Schedule 

 

 



 

 

Figure 7.31 also shows the function provider “Provider 1” of “Function_1” 

comprising “Scaffold_G” and “Ground Earth” (under “Scaffold_G”). The temporary 

support functionality be made available only when “Scaffold_G” is in its “Erected.Q” 

quiescent phase (after the erection and before the dismantling) and when “Trench for 

Pipe Cabling” is its three functional states: “Original.Q” (before excavation), 

“Excavated.Q” (after excavation and before backfill), and “Backfilled.Q” (after the 

backfill). 

The temporal attributes of the requirement and functional states of “Function_1” 

are also shown in Figure 7.31 as indicated by the earlier schedule in Figure 7.30 via the 

corresponding work packages. Figure 7.31 shows that the requirement time “RTW” 

(containing intervals “RI1” to “RI3”) is totally covered by the corresponding availability 

time-window “ATW” (containing intervals “AI1” to “AI3”), where the requirement 

interval “RI1” is contained by “AI1” and “RI3” contained by “AI3”. Additionally, the 

functional state phase “Excavated.Q” of “Ground Earth” is not required by the user.  

Figure 7.31 indicates that two active phases “Excavated.A” (“E.A”) and 

“Backfilled.A” (“B.A”) of “Ground Earth” between its three functional states are also 

contained by the long duration interval of functional state “Erected.Q” of “Scaffold_G”. 

The figure also shows that the workspace entities associated with these two active phases 

are denoted “TSEe” and “TSEb”, respectively, and their existence periods are equal to the 

active duration of the two associated active phases, i.e. I(255, 257) and I(263, 264). 

“TSEs” denotes the physical space entity associated with quiescent phase “Erected.Q” of 

“Scaffold_G”, and its existence period of “TSEs” is equal to the quiescent interval of 
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“Scaffold_G.Erected.Q”, i.e. I(243, 272). The temporal topological relationships between 

these temporal space entities can be derived as follows: 

TTR(TSEe, TSEs) = Temporal Intersection 

EP(TTR(TSEe, TSEs)) = EP(TSEe) ∩ EP(TSEs) = I(255, 257) ∩ I(243, 272) 

                                       = I(255, 257) 

TTR(TSEb, TSEs) = Temporal Intersection 

EP(TTR(TSEb, TSEs)) = EP(TSEb) ∩ EP(TSEs) = I(263, 264) ∩ I(243, 272) 

                                       = I(263, 264) 

The derived two temporal intersection relationships have non-null existence periods, 

indicating that the workspaces for excavating and backfilling the trench in “Ground 

Earth” would be blocked by the physical space occupied by the erected “Scaffold_G”, 

thus rendering the construction schedule infeasible. 

 

7.2.3 Scheduling Alternatives for Resolving Conflict 

Several planning alternatives can be considered for resolving the aforementioned 

scheduling conflict. The first alternative is to postpone the measurement of the as-built 

information of steel beam until the trench for pipe cabling is backfilled so that 

“Scaffold_G” can be erected later and not collide with the excavation and the backfilling. 

However, this will result in a delay in the measurement of the as-built information and 

hence the shop drawing design and the final installation of the glass works.  

The second alternative is to postpone the excavation works until “Scaffold_G” is 

dismantled, thus relieving the collision. However, this will delay the laying of the 

electrical cable works and affect the installation of the cladding works at the main 
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entrance which also require the work space in the vicinity of the trench. Consequently, 

the project will be delayed.  

The third alternative suggests that “Scaffold_G” be erected earlier and then 

dismantled after the measurement of the as-built information before Day 227 to make 

way for the access of the “MainCon” through the main entrance. After the trench is 

backfilled, “Scaffold_G” will be re-erected. This alternative may not significantly delay 

the delivery of the various subcontract works but will cost more for the temporary 

facilities to “SubCon_1”. Such alternatives often happen on site if the conflict is not 

detected early in planning. 

Figure 7.31 shows that there is a 21-day gap between the first requirement interval 

(for measuring the as-built information) and the second requirement interval (for fixing 

spiders) in the discontinuous requirement time-window. This indicates that “Scaffold_G” 

need not be erected so early if the measurement of the as-built information can be 

supported by other alternatives.  

The alternative solution should provide the temporary support within the space 

under the steel beam. Therefore, the spatial criterion is that the physical boundary of the 

alternative provider should intersect with the physical space of “Scaffold_G”. Meanwhile, 

the temporal criterion is a time-window which should start later than the completion of 

the welding and inspection of the steel beam on Day 222 to ensure that the steel beam is 

ready for as-built information. It should also finish before the interference from 

“MainCon” access from Day 227 to Day 240 (See Figure 7.30). 
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Furthermore, another scaffold “Scaffold_S” satisfying the above-mentioned 

spatial and temporal criteria can also be identified to provide the fourth alternative. 

Figure 7.32 illustrates the temporary support function “Function_2” associated with 

“Scaffold_S”, wherein the “Steel Workers” (function user) utilize “Scaffold_S” to install 

and check the steel beam. “Scaffold_S” and the underlying “Ground Earth” jointly work 

as the function provider. 

 

Figure 7.32 Temporary Support Function for Steel Beam Works 
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Figure 7.33 Improved Schedule for Beam, Glass Works, and Cable Pipes 

 

 



 

The revised construction schedule in Figure 7.33 shows the measurement of the 

as-built information of the steel beam being brought forward from Day 243to Day 222 to 

coincide with the inspection of the steel beam. Moreover, the dismantling of 

“Scaffold_S” is not delayed. This also advances the shop drawing design of the glass 

works due to earlier acquisition of as-built information, leading to earlier fabrication of 

spider and glass components. Since glass fabrication is a long-lead item and the 

fabricated panels may need to be re-fabricated if damaged during transportation, earlier 

availability of the shop drawings will reduce the risk of delayed glass fabrication, leading 

to improved constructability of glass works.  

Consequently, the erection of “Scaffold_G” that is originally planned to start on 

Day 241 can be postponed to Day 265 (25 days later) just after the excavated trench is 

backfilled so that the conflict between the erection of “Scaffold_G” and the excavation of 

the “Trench Earth” can be resolved. The improved schedule in Figure 7.33 shows that 

this alternative does not delay the installation of glass components.  
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Figure 7.34 Co-Matching Two-Users and Two-Providers for Temporary Support 

The fulfillment of the two aforementioned temporary support functionalities can 

be evaluated with respect to co-matching the requirement time-windows (“RI1” and 

“RI2”) and the availability time-windows (“AI1” and “AI2”) associated with 

“SubCon_1” and “SubCon_2”. Figure 7.34 shows the availability time-windows and 

requirement time-windows for both temporary support functions according to the revised 

construction schedule in Figure 7.33. Evidently, the resultant non-matching time-

windows is null, indicating that the two functionalities are now available when required. 

Specifically, the temporary support requirement from the “Assistant Designer” 

(User_SubCon_2) for measuring as-built information can be fulfilled by “Scaffold_S” 

erected by “SubCon_2” (Provider_SubCon_1) by advancing its requirement interval from 

Day 243 to Day 222, as illustrated in Figure 7.34. This means that the collaboration on 
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resolving intermediate function requirements across trades may improve the overall 

executability of the construction schedules, leading to improved constructability of the 

project. 

 

7.3 Concluding Remarks 

In this chapter, the developed intermediate function analysis framework is 

validated against two case studies. The first case study illustrates that the schema for 

representing intermediate function requirement knowledge can capture the temporal 

logics, especially the non-precedent ones, residing in the construction methods for a 

complex structure. It also demonstrates that the in-progress product core model (IPPCM) 

together with the product oriented scheduling technique (POST) can be used for 

developing construction schedules from the product instead of process viewpoint. This 

case study also verifies that not only can the state relationships represent the construction 

sequences in terms of precedent relationships but they can also describe the functional 

interdependencies and concurrent works with respect to coincident and coupling 

relationships. In this way, the non-precedent relationships residing in construction 

schedules can be semantically represented and evaluated. 

The first case study also demonstrates the value of the identification and analysis 

of bottleneck states. In this instance, an 8 percentage reduction of construction period was 

achieved. Furthermore, new state relationships inferred from existing state relationships 

can help planning engineers analyze the feasibility of advancing bottleneck states, leading 

to selection of alternative construction methods. Additionally, this case study also 

demonstrates the values of 4D simulation for developing and explaining construction 
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sequences and for facilitating intermediate function analysis as well as for preventing 

potential collisions.   

The second case study demonstrates that the co-matching between multiple 

requirement time-windows (users) and multiple availability time-windows (providers) 

can enhance constructability with respect to saving cost on extra scaffold and not 

delaying the delivery of site to the downstream trade. It also illustrates the benefits from 

making the intermediate function requirements transparent among the trades. This case 

study also implies that the co-matching analysis provides a platform among the relevant 

trades for collaboratively evaluating their segmented schedules, leading to improved 

overall executability. Additionally, the second study indicates that the 4D simulation can 

facilitate locating alternative engineering solutions for resolving unfulfilled intermediate 

functions. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Reviews of Intermediate Function Analysis Framework 

The AEC community still lacks a modeling tool to represent and evaluate 

functional construction requirements. Additionally, the representation of functional 

construction requirements is also restricted by the previous definition of the construction 

state concept, which does not distinguish active phases and quiescent phases. 

Furthermore, the concurrent relationships between construction activities are seldom 

semantically represented in traditional CPM schedules, which also affect the analysis of 

functional construction requirements. The aforementioned inadequacy may greatly affect 

the constructability of facility project with respect to the executability of its construction 

schedule. Therefore, the present study focuses on developing an intermediate function 

analysis framework to improve constructability of facility projects. 

Specifically, the present study proposes the intermediate function concept and the 

corresponding semantic model to represent a class of functional construction 

requirements arising from supporting the construction processes and maintaining the 

temporary stability of in-progress structures. Meanwhile, it also develops the component 

state concept in the context of in-progress product modeling. The component state 

concept is indispensable for representing an intermediate function, and also makes it 

possible to evaluate the fulfillment of intermediate function from both temporal and 

spatial perspectives. Moreover, the schema for representing intermediate function 

requirement knowledge, the information integration framework, and four intermediate 

function analysis methodologies are also developed for implementing intermediate 

function analysis. In this way, the analysis results can aid planning engineers to improve 
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the executability of construction schedules, leading to better constructability of facility 

projects. 

The proposed analysis framework can be scaled to an entire AEC project. Actually, 

the modelling scope of a facility project can be flexibly determined by designers and 

constructors according to the nature of the constructability problems, while the 

decomposition of product components, process activities, resource items, and even 

intermediate functions can be granulated to different levels according to the required 

accuracy of the constructability analysis. No matter what granularity and scope of the 

analysis model are needed, the association relationships between the entities in the 

various project perspective models should be created and maintained in the system. 

However, the product, process, and intermediate function models as well as other 

project perspective models are developed by different constructors or designers at 

different times with different granularities. In this connection, the accuracy of the 

analysis result may be affected by the coarseness of the models. In some situation, the 

lack of refined product model, 3D space model, or specification of crucial construction 

methods may render the analysis of some intermediate function requirements unworkable. 

Meanwhile, the intermediate function analysis may also be affected by the 

unsynchronized input of project information models developed by different trades due to 

the fragmented and dynamic nature of construction project management as well as the 

inability to foresee far in advance actual collaboration conditions. In particular, some 

component state information may not be available when required especially in early 

project phases. It also may occur that an intermediate function requirement is identified 

too late to be realized economically due to lack of timely project model information. 
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Taking the industry experts’ suggestions into account, some of the difficulties 

arsing from undesirable granularity and availability of various project perspectives can be 

partially overcome by improving collaborative environment among the trades. For 

example, a part of the product model originally developed by “Constructor A” only to the 

work zone granularity may be further decomposed according to the analysis request from 

“Constructor B”. The main contractor can play the collaborator role for coordinating the 

project information management with respect to controlling the model granularity and 

synchronizing the input of different models and integration. Additionally, a distributed 

project information management system that links the different participants via internet 

may help the intermediate function analysis, and the prevailing project modelling 

standard like Industry Foundation Class (IFC) may facilitate the implementation of such a 

system.  

In this connection, this research also helps AEC practitioners understand in-depth 

the potential problems arsing from fragmented management of a facility project from the 

construction requirement viewpoint, and also provides theoretical framework to affirm 

the common sense that better collaboration among trades often lead to improved 

constructability. From the viewpoint of synchronizing the modelling information among 

trades, when a constructor determines the granularity and the input time of the model 

information, he cannot only consider his internal requirements for constructability 

analysis but should also take into account the analysis needs from his fellow constructors. 
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8.2 Conclusions 

8.2.1 In-Progress Product Modeling with Component State 

The In-Progress Product Core Model (IPPCM) provides a modeling methodology 

to represent the in-progress configuration of a facility product. This modeling method 

extends the traditional product decomposition hierarchy model using a component state 

network, which comprises a collection of component states and the interval-to-interval 

state relationships between the states. Additionally, the Product-Oriented Scheduling 

Technique (POST) provides an approach to derive the temporal attributes of a component 

state from the associated construction process schedule. This implies that In-Progress 

Product Core Model can act as a tool to plan construction program from the product-

oriented viewpoint instead of process perspective.  

In a component state network, the construction life cycle of product component 

can be depicted by its state chain, while the functional interdependencies and concurrent 

transitions between two in-progress product components can be described using cross-

component state relationships. This means that the concurrent relationships in 

construction schedules can be semantically represented with respective various types of 

state relationships. It also implies that new state relationships can be inferred from the 

known state relationships, which is elaborated in the bottleneck state analysis of first case 

study. Moreover, compared with the previous construction state concept, the duration of 

component state is divided into an active phase and a quiescent phase to better describe 

the requirement and availability conditions of intermediate functionalities. 
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8.2.2 Semantic Model of Intermediate Function 

The present research presents a semantic representation model to describe an 

intermediate function in five layers, namely description perspective, constituent 

component, component state, state attribute, and attribute relationship. This makes it 

possible to evaluate intermediate function requirements from both temporal and spatial 

perspectives. Meanwhile, by using the developed semantic model, the engineers in 

different domains/trades can represent and communicate their intermediate function in a 

consistent format. Thus, the intermediate function concept and the semantic 

representation model are two fundamental issues for intermediate function analysis. 

 

8.2.3 Schema for Representing Intermediate Function Requirement Knowledge 

The present study also provides a schema to represent intermediate function 

requirement knowledge from three perspectives, namely construction life cycle of single 

product component using state chain type, functional interdependencies between two in-

progress product components using state interaction type, and availability condition of an 

intermediate functionality provided by a group of product components using intermediate 

function availability type. The representation schema uses two product-oriented 

constructs, namely component type and state type, and four categories of interval-to- 

interval relationships, which are precedent, coincident, coupling, and disjoint. 

This representation schema enriches the terminologies to depict the temporal 

relationship types other than only precedent type. This knowledge representation schema 

may help planning engineers capture more temporal logics residing in construction 

methods and then incorporate these logics into intermediate function analysis. In this way, 
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the executability of construction schedules can be better evaluated from a broader 

perspective not restricted merely to traditional precedence relationships. Meanwhile, 

reusing these three types of intermediate function requirement knowledge can facilitate 

intermediate function analysis. Specifically, the construction life cycle of a product 

component can be initialized from the associated state chain type, while the state 

relationships between the state chains can be created by using the state interaction 

knowledge, and the functional state package of an intermediate function can be derived 

from the associated availability condition type. 

 

8.2.4 Integration Framework for Intermediate Function Analysis 

The present study develops an information integration framework for intermediate 

function analysis. This framework integrates five modeling perspectives necessary for 

intermediate function analysis. These five perspectives are product, process, resource, 

intermediate function, and space. In this framework, the component state network acts as 

the reference kernel to link product, process, intermediate function, and space models. 

Specifically, the process model links with the component state network through work 

packages and references resource model through performer packages, while the 

intermediate function model associates with the component state network through the 

requirement and functional state packages. Additionally, a 3D space model references the 

corresponding component state network via the state space attributes of the component 

states. Based on this framework, the temporal and spatial attributes can be derived, and 

then the analysis approaches can use these derived attribute to detect unfulfilled 
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intermediate function requirements and to find bottlenecks that delay the availability of 

the required intermediate functionalities.  

 

8.2.5 Intermediate Function Analysis Methodologies 

Four methodologies have been developed for analyzing intermediate function 

requirements from different aspects. The first methodology quantitatively evaluates the 

availability of the temporal interaction between the user and the corresponding provider 

by matching the requirement and availability time-windows, while the second analysis 

tool diagnoses the spatial interaction between them by evaluating the derived spatio-

temporal interaction matrix against the corresponding spatio-temporal criterion matrix.  

In this way, not only the unfulfilled intermediate function requirements can be 

detected with respect to unavailable temporal or spatial interaction, but the unavailability 

time-windows and the undesirable component states as well as the unsatisfactory 

topological relationships are also identified. This information can help planning engineers 

to identify the cause of the unfulfilled intermediate function requirements, and also 

support their decision-making on adjusting construction schedules or changing 

construction methods. Additionally, the spatial interaction analysis also implies that non-

intersection topologies (like “meet”) can be incorporated and then evaluated for detecting 

unfulfilled spatial requirements in construction schedule. Many previous time-space 

studies focus on detecting spatio-temporal conflicts arising from only temporal collisions 

(temporal intersection relationships). 

The third analysis methodology extends the temporal interaction analysis between 

a single user and a single provider to multiple users and providers for a set of 
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substitutable/compatible intermediate functionalities. The analysis result shows that 

unfulfilled requirement in a single intermediate function can be resolved by one or 

several alternative providers. This analysis methodology can aid designers and 

constructors in collaboratively resolving their intermediate function requirements, leading 

to saving on temporary facilities and earlier deliveries. Additionally, this analysis also 

reminds construction planners that some intermediate function requirements may cause 

extra expenditure if they are not resolved in the earlier construction stages, especially 

when the compatible intermediate functionalities are being provided by other trades. 

The fourth and last analysis methodology is used for identifying bottleneck states. 

The present study reveals that a bottleneck state determines the earliest availability of the 

associated intermediate functionality. Sometimes, the commencement of a construction 

activity is constrained by the availability of an intermediate functionality, implying that if 

the availability of the required intermediate functionality can be advanced the 

construction period can be reduced. In this case, the bottleneck analysis can help planning 

engineers to adjust construction schedules for early delivery of project. Moreover, the 

analysis result can also guide them to proactively control the completion of the upstream 

works that may delay the downstream bottleneck states, especially when these bottleneck 

states constrain some critical activities. Additionally, the bottleneck state analysis also 

provides valuable insights for project managers to select alternative construction methods 

for early realization of the required intermediate functionalities.  
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8.2.6 Research Prototype 

The research prototype 4D Intermediate Function Analysis Tool (4D-iFAST) is 

developed for implementing the integration framework and the analysis methodologies. 

This prototype indicates that the proposed intermediate function analysis can be vastly 

facilitated by using the information technologies to manage the data and to automatically 

detect the unfulfilled intermediate functions. Additionally, the prototype also implies that 

the intermediate function analysis can be facilitated by using 4D simulation by 

visualizing the in-progress configuration of facility product and facilitating identification 

of alternative engineering solutions for realizing the required intermediate functionalities. 

Moreover, this prototype further implies that it can be used as a collaborative center for 

the project participants to make transparent and communicate their intermediate function 

requirements, to share their intermediate function requirement knowledge, and to jointly 

resolve their intermediate function requirements. 

 

8.2.7 Existence Vector and Boolean Operations 

The existence vector concept and the Boolean operations have been developed for 

representing both temporal intervals and discontinuous time-windows. The present study 

defines three fundamental Boolean operations, namely Boolean union, intersection, and 

cut, on two existence vector operands, and also develops another two additional Boolean 

operations “multiple-union” and “multiple-intersection” on a set of existence vectors. The 

existence vector together with the Boolean operations makes it possible to evaluate 

temporal and spatial interactions without having to conduct 4D simulation. Additionally, 

the temporal data representation in intermediate function analysis can be simplified by 
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using existence vector as a representation format, and the Boolean operations on 

existence vectors can also speed up the intermediate function inference engine and the 4D 

simulation engine since the computation of Boolean values are much faster than the 

computation of comparing integers or floats required by the traditional interval algebra 

computations. 

 

8.3 Limitations 

In the course of the present research, some limitations have been observed and 

summarized as follows. 

 

8.3.1 Timely Awareness on Intermediate Function Requirements 

A major challenge to implement the proposed intermediate function analysis lies 

in that some AEC companies may lack of awareness on construction requirement 

management. Compared with most software developers who regard the requirements of a 

software project as an independent management issue, many AEC practitioners distribute 

their construction requirements in different management facets like site layout, 

construction method selection, and construction scheduling. This means that some crucial 

intermediate function requirements required by the downstream trades may be neglected 

by the upstream trades. To achieve an executable schedule, each participant should 

adequately and in a timely fashion make its intermediate function requirements 

transparent to other parties so that all participants are aware of each other’s requirements. 

The value of the intermediate function analysis would be affected if the intermediate 
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function requirements cannot be represented and communicated with other trades in a 

timely fashion. 

 

8.3.2 Limitations Pertaining to Modeling Spatial Interaction  

In general, the availability of an intermediate functionality not only depends on 

the in-progress states of each provider components, but should also rely on the structure 

of an in-progress provider system. In this connection, the temporal topological 

relationships between the in-progress provider components should also be the necessary 

availability conditions for the intermediate functionality, but this modeling facet has not 

been studied in detail in the present study due to limitation in research time. However, the 

semantic model has provided a good framework to incorporate future research findings. 

This can be an important area of research in the future. 

On the other hand, the present study focuses on analyzing the temporal meet 

topological relationships between the function user and the function provider in the 

context of analyzing temporary support. There may be other types of spatial interaction 

between them. Some of these “non-meet” spatial interactions may arise from providing 

operation space for manipulating tools and equipment, providing safe workspace for 

labor, and preventing damages and hazards. Accordingly, the rules for defining spatio-

temporal criterion matrixes should be further studied.  

Additionally, the present space model may not have incorporated all space 

requirements that may occur during construction. Specifically, the space requirement 

related to work protection and safety management should be modeled in a space system 

in order to enrich the spatial interaction residing in intermediate functions. For example, 
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the space affected welding flame and the space filled with the volatile vapor from 

painting should be modeled for evaluating the fulfillment of the safety requirement.    

 

8.3.3 Limitations Relating to Prototype  

The bottleneck state analysis and the co-matching multi-users and multi-providers 

analysis methodologies have been developed in the current research, but have not been 

programmed in the prototype mainly due to the limited time. However, the developed 

prototype can be extended to incorporate these analysis methodologies in the future. 

Another limitation of the present prototype is that the topological relationship 

computation algorithm programmed in the present prototype can only produce 

“approximate” topological relationship, which is the topological relationship between the 

box boundaries of two space entities instead of the accurate topological relationship 

between two space entities. 

Additionally, after the POST derives the temporal attributes for each component 

state, the interval-to-interval relationships between the states can be computed according 

to their temporal attributes. These computed state relationships can be compared against 

the state relationships derived from the state interaction knowledge. The inconsistencies 

indicate potential conflicts in the process schedules. This analysis approach can be further 

studied and put into the intermediate function analysis framework, which can enhance the 

prototype development in the future. 
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8.4 Recommendations for Future Works 

The intermediate function analysis methodology proposed in the present research 

may be extended with respect to the following research issues, taking the aforementioned 

limitations into account. 

 

8.4.1 Intermediate Function Modeling 

As stated in the preceding section, one major future work is to improve the 

semantic representation model of the intermediate function to enhance the analysis of 

spatial interaction. Meanwhile, the criterion rules of defining the spatio-temporal criterion 

matrix should be further explored for representing the non-meet criteria. 

 

8.4.2 Exploration of Feasibility to Describe State of Product Subsystem 

The present research only used the component state concept to describe the 

changing engineering behaviors of an element product component in the lowest level of 

the product decomposition hierarchy. Further research may be carried out to extend the 

component state from describing the in-progress engineering behaviors of element 

components to include product subsystems in the higher decomposition levels. 

Accordingly, the temporal relationships between the extended states of product 

subsystems may also be explored. 

 

8.4.3 Feasibility of Advancing Bottleneck State 

The first case study in Chapter 7 implies that new state relationships can be 

inferred from the known state relationships according to some inference rules. For 
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example, Based on a “Meet” relationship and a “ContainedBy” relationship predefined in 

the component state network, a new “Meet/Before” relationship can be generated. In the 

future, more inference rules should be explored. In this way, by comparing the state 

relationships derived from the temporal attributes with the generated state relationships, 

more conflicts in construction schedules can be detected. 

 

8.4.4 Automatic Resolution of Unfulfilled Requirements 

One important future research task is to develop the algorithm for automatically 

resolving the unfulfilled intermediate function requirements. In the present research stage, 

it can be intuitively perceived that such an algorithm should be non-polynomial hard. The 

proof of the non-polynomial hard nature can be conducted mathematically in the future 

works. The automatic resolution of the unfulfilled requirements may be achieved using 

evolutionary algorithms. A likely possibility is the use of genetic algorithms, and 

annealing methods can also be explored. 

 

8.4.5 Further Validation of the Analysis Framework against Other Types of Projects 

In the future, the developed intermediate function analysis framework should be 

further validated against more functional construction requirements from other types of 

projects. Processing and off-shore projects are two possible fields that can be explored. 
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