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SUMMARY 

 

This study aimed to develop a human periodontal ligament fibroblast 

(hPDLF)-alveolar osteoblast (hAO) cell-scaffold double construct. Ten hPDLF and 

three hAO primary cell lines were established by explant culture up to passage 3-5. 

hPDLF and hAO produced varying levels of alkaline phosphatase and mineral-like 

tissue upon osteogenic induction by day 28. Three selected hPDLF cell lines 

demonstrated a preservation of collagen-synthetic capability as seen from the 

synthesis of type I, III, V, XII and XIV, and a dedifferentiated or embryonic-like 

collagenous matrix under culture expansion in the presence of ascorbic acid over 21 

days. Cell-substratum interactions of three hPDLF cell lines on poly(ε-caprolactone) 

(PCL) membranes were examined. Cytocompatibility of alkali-treated PCL 

membranes was enhanced via a two-fold increase in cell adhesion rate and total 

efficiency, attributable to a greater accessibility of fibronectin cell-binding domain. 

Constructs consisting of perforated PCL membranes provided greater cell anchorage, 

and cell and matrix alignment than unperforated ones via contact guidance, while 

retaining hPDLF phenotypic expression and promoting matrix maturation at day 21. 

hPDLF proliferated on alkali-treated, perforated PCL membranes, while hAO 

produced mineral-like tissue on alkali-treated PCL scaffolds at day 21. Vascularized, 

well-integrated hPDLF-hAO double construct was observed at day 28 of 

subcutaneous implantation in athymic mice, but no further osteogenesis in the earlier-

mineralized matrix was seen.  



 xi

LIST OF PUBLICATIONS RELATED TO THIS THESIS 

 

This thesis is submitted for the degree of Doctorate of Philosophy in the 

Department of Biological Sciences at the National University of Singapore. No part of 

this thesis has been submitted for any other degree or equivalent to another university 

or institution. All the work in this thesis is original unless references are made to other 

works.  Parts of this thesis have been published or presented in the following: 

International Journal Publications 

Chou A.M., Sae-Lim V., Hutmacher D.W., Lim T.M. Tissue Engineering of a 

Periodontal Ligament-Alveolar Bone Graft Construct. The International Journal of 

Oral & Maxillofacial Implants, 21: 526–534, 2006. 

 

Chou A.M., Sae-Lim V., Lim T. M., Schantz J.T., Teoh S.H., Chew C.L., Hutmacher 

D.W. Culturing and Characterization of Human Periodontal Ligament Fibroblasts – A 

Preliminary Study, Materials Science and Engineering C, 20: 77–83, 2002. 

Presentations and Awards 

Chou A.M., Sae-Lim V., Hutmacher D.W., Lim T.M. Effects of Ascorbic Acid 2-

Phosphate on Human Periodontal Ligament Fibroblasts under Low and High Serum 

Conditions in vitro. 8th Annual Meeting of Tissue Engineering Society International, 

China (2005); Merit winner award (Dental poster), Combined Scientific Meeting, 

Singapore (2005) 

 

Chou A.M., Sae-Lim V., Hutmacher D.W., Lim T.M. Characterization of Human 

Periodontal Ligament Cell Sheets on Ultra-Thin and Cell-Permeable Bioresorbable 



 xii

Membrane. 6th Annual Meeting of Tissue Engineering Society International, USA 

(2003); 7th NUS-NUH Annual Scientific Meeting, Singapore (2003) 

 

Chou A.M., Sae-Lim V., Zhou Y.F., Hutmacher D.W., Lim T.M. Preliminary studies 

on human periodontal ligament fibroblasts and alveolar osteoblasts cultured on foil-

scaffold constructs. Young Investigator Award, 1st NHG Scientific Congress, 

Singapore (2002); Best Clinical Science Poster Award, 6th NUS-NUH Annual 

Scientific Meeting (2002) 

 

 



 xiii

LIST OF TABLES 

2.1 Summary of reported collagens in the PDL (Adapted from Kirkham and 
Robinson, 1995; Kielty and Grant, 2002). 
 

 
11

2.2 Summary of selected polyesters (Gunatillake and Adhikari, 2003). 
 

34

4.1 Summary of western blot results (Fig. 4.5) of ON, OPN and BSP 
synthesis by paired hPDLF and hAO, derived from three individuals, 
under normal and mineralizing culture. 
 

 
 

73

4.2 Biodata of donors, categorized by the pattern of mineral-like nodule 
formation at day 28 in hPDLF and hAO. 
 

 
75

5.1 List of primer sequences and expected size of PCR products. 
 

94

7.1 Summary of immunostaining results. 
 

151

 

 



 xiv

LIST OF FIGURES 

1.1 Schematic representation of periodontal regeneration using an 
autologous cell-scaffold construct. 
 

 
5

2.1 Stages in collagen synthesis (adapted from Gage et al., 1989). 
 

10

2.2 Schematic representation of a developing tooth bud at the cap stage 
(adapted from Cho and Garant, 2000). 
 

 
16

2.3 The contact angle of a liquid with a solid. 
 

28

2.4 Illustration of events at the biomaterial surface (adapted from Kasemo 
and Gold, 1999). 
 

 
29

4.1 Representative images of cellular outgrowth and morphology of hPDLF 
and hAO. 
 

 
68

4.2 Effects of dexamethasone (Dex) on the alkaline phosphatase (ALP) 
activities of hPDLF and hAO. 
 

 
69

4.3 ALP activities of hPDLF and hAO cultured in the absence and presence 
of 100 nM Dex.  
 

 
70

4.4 Representative images of (A-B) hPDLF and (C-D) hAO after staining 
for ALP under normal and mineralizing cultures, respectively. 
 

 
71

4.5 Western blot analysis of (A) osteonectin (ON), (B) osteopontin (OPN) 
and (C) bone sialoprotein (BSP) in whole cell lysates of paired hPDLF 
and hAO, derived from three individuals, under normal and 
mineralizing culture. 
 

 
 
 

72

4.6 Representative morphology of hPDLF (A-C) and hAO (D-F) at stage I, 
II and III of nodule formation, respectively. 
 

 
74

4.7 Mineral-like tissue formation in hPDLF and hAO under mineralizing 
culture, as observed (A-C) before and (D-F) after von Kossa staining at 
day 28. 
 

 
 

74

4.8 
 

Correlation between ALP activity and mineral-like nodule formation in 
hPDLF and hAO. 
 

 
76

4.9 Schematic diagram showing the metabolism of ATP and AMP, and the 
role of ALP on mineralization. 
 

 
76

5.1 Synthesis of (A) DNA and (B) proteins over time. 
 

94

5.2 Gene expression of three representative collagens in the PDL, namely 
types I, III and XII, as represented by their respective α1 chains using 
RT-PCR. 

 
 

95



 xv

5.3 Synthesis of (A) collagen I and (B) alkaline phosphatase (ALP), 
normalized to dsDNA. 95 

5.4 Three-day window of collagen synthesis. 
 

96

5.5 Accumulative collagen deposition. 96 

5.6 Silver-stained non-reducing SDS-PAGE of cell layer fractions in 3-8% 
Tris-acetate gel, as compared to that in 5% Tris-glycine gels. 
 

 
97

5.7 Ratio of collagenous peptides obtained by limited pepsin digestion of 
medium and cell layer fractions under 0.2% and 10% FBS over time, as 
determined by densitometry. 
 

 
 

98

5.8 Phase contrast light (PCLM) and fluorescence light microscopy images 
of hPDLF cultures stained with anti-collagen I-FITC antibody at day 21 
(200x magnification). 
 

 
 

99

5.9 Confocal laser microscopy images of hPDLF cultures double immuno-
labeled for collagen I/XII and I/XIV, and singly labeled for collagen III 
at day 21. Cells were counter-stained with Hoechst (scale bar = 50 μm). 
 

 
 

100

5.10 Western blot analysis of undigested medium. 
 

101

6.1 Modulation of cell behaviour through substrate-dependent changes in 
FN conformation (adapted from Garcia et al., 1999). 
 

 
121

6.2 Manufacturing procedure and classification of PCL membranes. 
 

121

6.3 Representative surface morphologies of UP/UT, UP/T, P/UT, P/T 
membranes obtained by scanning electron (SEM) and atomic force 
(AFM) microscopy. 
 

 
 

122

6.4 (A) Root-mean-square (RMS) surface roughness and (B) surface area of 
membranes obtained by AFM at a scan size of 5 μm x 5 μm. 
 

 
123

6.5 Optical density of ELISA of antibody binding to FN adsorbed from 2 
μg/ml by (A) anti-FN polyclonal antibody and (B) HFN7.1 monoclonal 
antibody in the absence and presence of a 100-fold excess of BSA. 
 

 
 

123

6.6 
 

Representative PCLM images of hPDLF attached onto UP/UT, UP/T, 
P/UT, and P/T membranes at 1, 2, 6 and 18 h after seeding in culture 
medium containing 10% serum (magnification 600X).  
 

 
 

124

6.7 
 

Adhesion efficiency of hPDLF, expressed as the percentage of double-
stranded DNA (dsDNA) harvested from attached cells from initial cell 
suspension, at 1, 2, 6 and 18 h after seeding on membranes. 
 

 
 

125

6.8 Immunofluorescence of f-actin (green) and vinculin (red) in hPDLF at 6, 
12 and 24 h after seeding on membranes (scale bar = 50 μm). 

 
127



 xvi

6.9 Close-up images of Fig. 6.8 (numbered boxes) of vinculin (red) at 24 h 
after seeding on membranes (scale bar = 10 μm). 
 

 
127

6.10 Representative images of hPDLF cell sheet on UP/T and P/T 
membranes (magnification 100X, unless stated otherwise). 
 

 
128

6.11 Cell sheet coverage on membranes as deduced from FDA/PI staining at 
100X magnification after image analysis by Micro-Image® over 21 
days. 
 

 
 

129

6.12 Cell proliferation in terms of dsDNA harvested from attached hPDLF 
over 21 days. 
 

 
129

6.13 Western blot and densitometric analysis of reducing SDS-PAGE 
containing whole cell lysates of hPDLF cultured on UP/T, P/T 
membranes and TCP at day 21. 
 

 
 

130

6.14 Representative images of non-reducing SDS-PAGE in 3-8% gradient 
Tris-acetate gel of (A) medium and (B) cell layer fractions after limited 
pepsin digestion at day 21. 
 

 
 

130

6.15 Representative confocal laser microscopy images of hPDLF 
immunolabeled for FN and type I collagen on UP/T membrane, P/T 
membrane and TCP at day 21 (scale bar = 50 μm). 
 

 
 

131

6.16 Level of alkaline phosphatase (ALP) of hPDLF at day 7, 14 and 21. 
 

132

7.1 Attachment, growth and viability of hPDLF on PCL membranes. 
 

146

7.2 Attachment, morphology and viability of hAO on PCL scaffolds. 
 

147

7.3 Metabolic activities of hPDLF on membranes and of hAO on scaffolds, 
with their respective wells at weekly intervals. 
 

 
148

7.4 Implantation and excision of membrane-scaffold constructs. 
 

149

7.5 Histological  analysis of constructs after 4-weeks in vivo. 
 

150

7.6 Immunohistochemical analysis of constructs after 4-weeks in vivo. 
 

152

 



 xvii

LIST OF ABBREVIATIONS 

 

5’NT   5’ nucleotidase 

AFM   atomic force microscopy 

AMP   adenosine monophosphate 

AO   alveolar osteoblast 

Arg   arginine 

Asc   ascorbic acid 

Asp   aspartate 

ATP   adenosine 5'-triphosphate 

β-GP   beta-glycerophosphate 

BMP   bone morphogenetic protein 

BSA   bovine serum albumin 

BSP   bone sialoprotein 

cDNA   complementary DNA 

DAB   3,3'-diaminobenzidine 

Dex   dexamethasone 

DMEM   Dulbecco’s Modified Eagle Medium  

DMSO   dimethyl sulphoxide 

DNA   deoxyribonucleic acid 

DTT   dithiothreitol 

ECL   enhanced chemiluminescence 

ECM   extracellular matrix 

EDTA   ethylenediaminotetraacetic acid 

ELISA   enzyme-linked immunosorbent assay 



 xviii

EtBR   ethidium bromide 

FBS   fetal bovine serum 

FDA   fluorescein diacetate 

FDM    fused deposition modeling  

FITC   fluorescein isothiocyanate 

FN   fibronectin 

FRET   fluorescence resonance energy transfer 

g   gram 

Gly   glycine 

h   human 

HRP   horseradish peroxidase 

Kb   kilo base 

kDa   kilo Dalton 

LDS   lithium dodecyl sulfate 

M   molar 

MAPK   mitogen-activated protein kinase 

min   minute 

 MTS   3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy- 

    methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

NADP    nicotinamide adenine dinucleotide phosphate 

NaOH   sodium hydroxide 

NTPPPH  nucleoside triphosphate pyrophosphohydrolase 

OD   optical density  

ON   osteonectin 

OPN   osteopontin 



 xix

PBS   phosphate buffered saline 

PCL   poly(ε-caprolactone) 

PCLM   phase contrast light microscopy 

PCR   polymerase chain reaction 

PDL   periodontal ligament 

PDLF   periodontal ligament fibroblast 

PHSRN  Pro-His-Ser-Arg-Asn 

Pi   inorganic phosphate 

PI   propidium iodide 

PPi   inorganic pyrophosphate 

RGD   Arg-Gly-Asp 

RNA   ribonucleic acid 

SD    standard deviation 

SDS   sodium dedocyl sulphate 

SEM   scanning electron microscopy 

sec   second  

Tris   trishydroxyaminomethane 

TRITC   tetramethylrhodamine isothiocyanate 

IU   international unit 

UV   ultra-violet 

VN   vitronectin 

v/v   volume by volume 

w/v   weight by volume 



Introduction 

1. INTRODUCTION 

 

1.1. Introduction to periodontal regeneration 

Periodontal regeneration aims to achieve reconstitution of soft (gingival and 

periodontal ligament) and mineralized (bone and cementum) tissues lost due to 

periodontal disease or trauma, as well as congenital defects. Ideally, four criteria must 

be met in order for regeneration to have occurred. These include the restoration of (i) 

a functional epithelial seal, (ii) new connective tissue fibres (Sharpey’s fibres) on the 

root surface to reproduce both the periodontal ligament (PDL) and the dentogingival 

fibre complex, (iii) new acellular, extrinsic fibre cementum on the root surface, and 

(iv) alveolar bone height (Bartold et al., 2000). In essence, all the features of the 

normal dentogingival complex have to be restored to their original form, function and 

consistency. 

Regeneration of the alveolar bone and other periodontal structures does not 

usually occur on a clinically predictable basis (Melcher, 1976). Instead, healing takes 

place, consisting of inflammation, granulation tissue formation and tissue remodelling 

(Clark, 1996). Periodontal healing following mechanical or surgical therapy leads to 

one of the following outcomes: a control of inflammation, formation of long 

junctional epithelium, connective tissue re-attachment to the root surface, new bone 

formation, root resorption and/or ankylosis, or formation of new functional 

attachment apparatus (reviewed in Bartold and Narayanan, 1998). 

The outcome of healing by regeneration or repair by scar tissue depends upon 

at least three factors that are not mutually exclusive: (i) availability of the appropriate 

cell type(s), (ii) soluble mediators of cell function that activate these cells, and (iii) a 

developing extracellular matrix (ECM) (Bartold et al., 2000).  

 1
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1.2. Limitations of current therapeutic procedures 

Conventional periodontal surgical procedures, such as surgical debridement 

and resective procedures, have been established as effective treatment regimes (Hill et 

al., 1981; Lindhe et al., 1982; Pihlstrom et al., 1983; Ramfjord et al., 1987; Becker et 

al., 1988; Kaldahl et al., 1996). This may be accomplished by the excision of tissues, 

or by the attempted replacement and attachment of tissues to the root surface. Despite 

this, healing typically takes place by repair. The failure to obtain a new connective 

tissue attachment after conventional periodontal therapy has been attributed to the 

formation of long junctional epithelium, as a result of an ability of oral epithelium to 

migrate apically along the root surface (Caton and Nyman, 1980; Caton et al., 1980). 

Hence, the formation of new epithelial attachment is classified as repair and not 

regeneration.  

A regenerative therapeutic approach called “guided tissue regeneration” (GTR) 

was thus developed based on the exclusion of gingival connective tissue cells from 

the wound and the prevention of apical migration of epithelium, thus favouring 

healing primarily from the PDL space and adjacent alveolar bone (reviewed in 

American Academy of Periodontology, 2005). This procedure consists of the 

placement of a barrier membrane between the periodontal defect and the gingival 

tissues (GTR), or between the bone defect and the gingival tissues (guided bone 

regeneration, GBR). First introduced by Nyman et al. (1982), these barriers allow 

controlled repopulation by cells with regenerative potential, such as PDL cells, bone 

cells and possibly cementoblasts, space maintenance and clot stabilization at the 

wound site (Nyman et al., 1982; Caton et al., 1987; Nyman et al., 1987). The use of 

bone allografts consisting of tricalcium phosphate and/or decalcified freeze-dried 
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bone in addition to barrier membrane further augmented bone fill (Schallhorn and 

McClain, 1988; Anderegg et al., 1991). 

Despite the fact that guided tissue regeneration (GTR) and osseous grafting 

are the two techniques with the most histological documentation of periodontal 

regeneration (reviewed in Academy Report, 2005), clinical outcome was still less than 

optimal for a number of reasons (Bartold et al., 2000), including: (i) preferential 

regeneration of bone over that of cementum and fibrous connective tissues, (ii) 

inability to control the formation of a long junctional epithelium, and (iii) inability to 

adequately seal the healing site from the oral environment and prevent infection. 

Therefore, current difficulties associated with achieving predictable 

periodontal regeneration point to the need for novel techniques in order to regenerate 

the critically lost or damaged soft and hard tissues. As mentioned previously, the 

outcome of healing depends upon an availability of appropriate cell type(s), biological 

mediators, and a developing ECM (Bartold et al., 2000). This could be realized by 

developing tissue engineering strategies, as detailed in the next section. 

 

1.3. Tissue engineering as a potential regenerative strategy 

Tissue engineering is the application of principles and methods of engineering 

and life sciences toward fundamental understanding of structure-function 

relationships in normal and pathological mammalian tissues, and the development of 

biological substitutes to restore, maintain, or improve tissue function (Langer and 

Vacanti, 1993). It involves the use of a combination of cells, scaffolds and suitable 

biochemical factors, as opposed to inert implants, in developing biological substitutes. 

Tissue engineering efforts in dentistry are aimed at replacing the supporting structures 

 3



Introduction 

of the dentition as well as the surrounding soft tissue for restoration of function 

(Buckley et al., 1999).  

The application of cell-based scaffold constructs is postulated to be a potential 

regenerative strategy in reconstituting normal periodontal tissue architecture (Bartold 

et al., 2000). Due to the juxtaposition of the PDL between the alveolar bone and the 

root, it is hypothesized that optimal and sustained availability of viable PDL cells on 

the damaged denuded root surface would facilitate periodontal tissue regeneration 

(Hasegawa et al., 2005). Cell sheets of selective phenotype (Okuda et al., 2004) 

theoretically provide the critical cell mass allowing for competitive wound healing 

favouring desirable tissue regeneration (Gottlow et al., 1984, Sae-Lim et al., 2004). In 

this way, the need for recruitment of cells to the site is negated and the predictability 

of the outcome may be enhanced. Moreover, the periodontium is under constant 

mechanical loading. A cell-supportive scaffold would hypothetically maintain the 

integrity of the engineered tissue during and after implantation.  

The most likely source of cells for periodontal tissue engineering is the PDL 

and alveolar bone, whose progenitor cells could be isolated and propagated in culture 

for seeding into scaffolds. Preliminary studies have indicated that cells from the PDL 

(Van Dijk et al., 1991; Lang et al., 1998) and bone (Malekzadeh et al., 1998) can be 

transplanted into periodontal sites with no adverse immunologic or inflammatory 

consequences, giving rise to new connective tissue attachment and bone. 

 

1.4. Research aim 

It is envisioned that tissue-engineered cell-scaffold constructs could be 

obtained by a stimulation of autologous periodontal cells into the desired cell lineages 

within scaffolds of biocompatible material, and that the subsequent implantation of 

 4
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such a construct could lead to autologous cell-based therapy (Fig. 1.1). The aim of 

this thesis was therefore to tissue engineer a hPDLF membrane-hAO scaffold double 

construct for the purpose of periodontal regeneration.  
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Figure 1.1. Schematic representation of periodontal regeneration using an 

autologous cell-scaffold construct. 
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2. LITERATURE REVIEW 

2.1. Anatomy of the periodontal ligament (PDL) 

The periodontium comprises the connective tissues around the teeth and 

consists of gingiva, periodontal ligament (PDL), cementum, and alveolar bone 

(Berkovitz and Shore, 1995). The PDL, varying between 0.1 to 0.25 mm in width 

(Coolidge, 1937), is the dense connective tissue located between the alveolar bone 

and the root surface. It extends from the apex to the cementoenamel junction of the 

healthy tooth, with the coronal part continuous with the subepithelial connective 

tissue of the gingiva. The ligament is widest near the cementoenamel junction and the 

apex, and narrowest near the middle of the root. The width is dependent on age and 

functionality of the tooth, being thinner in aged tooth, and greatest for heavily loaded 

tooth (reviewed by Holmstrup, 2003).  

The main function of the PDL is anchorage of the tooth, by resisting 

displacement forces during occlusal loading, and maintaining the tooth in a functional 

position during tooth eruption. This is achieved by collagen, arranged into bundles 

called principal fibre groups, in an extracellular matrix (ECM)  through which vessels 

and nerves innervate. These collagen bundles traverse the space between the root and 

the alveolar wall, conferring elasticity to the PDL and compensating for minute 

movements of the tooth during mastication. Furthermore, the proprioceptor nerve 

endings of the PDL form part of the extremely refined neurological control of 

mastication, and the mechano-receptors monitor changes in pressure within the 

ligament space (reviewed in Berkovitz and Shore, 1995).  

The collagen bundles, about 5 μm in diameter, are inserted as Sharpey’s fibres 

into the cementum at one end, and into the compact bone plate of the alveolus at the 

other (Cohn, 1972; Raspanti et al., 2000). The principal fibres of the PDL can be 
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divided into six groups, with presumed functions based on location and insertion 

(Hassell, 1993): (i) alveolar crest fibres which retain tooth in the socket, oppose 

lateral forces, and protect deeper PDL structures, (ii) oblique fibres which oppose 

axially directed forces, (iii) transseptal fibres which maintain contact between teeth, 

(iv) horizontal fibres which oppose lateral forces, (v) interradicular fibres which 

maintain tooth in socket, and (vi) apical fibres which prevent tooth extrusion, protect 

vessel and nerve supply. 

The remaining fibres consist of secondary collagen fibres, oxytalan and 

reticulin fibres, which are randomly oriented and often associated with vessels and 

nerves. It has been hypothesized that oxytalan fibres, which resemble immature 

elastic fibres, function in a supportive, developmental and/or sensory role in the PDL 

(Mariotti, 1993). Their fibres are thicker and more numerous in teeth that carry heavy 

loads and that moved by orthodontic treatment. 

 

2.2. Connective tissue matrix of the PDL 

 The ECM provides a controlled environment for the exchange of substances 

for survival, strength and shape for tissues, and protection from external physical 

stress. The two main components of the connective tissue ECM are firstly, the 

insoluble fibres that resist tensile forces, and secondly, the soluble interfibrillar 

macromolecules that inflate the fibrous network, providing resistance to compressive 

forces. The former consists mainly of collagen, whereas the latter consists of 

carbohydrate-protein complexes occurring primarily as proteoglycans. The remaining 

non-collagenous proteins, such as fibronectin (FN), laminin, tenascin, provide a 

bridge between the ECM and the cells embedded within.  
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Matrix-matrix interactions between modular motifs within the ECM molecules 

regulate fibril or lamina formation, hence giving rise to diverse structures that 

determine tissue architecture. The relative proportions of collagenous and 

proteogloycan components determine the unique mechanical properties of tissues, 

influencing connective tissue structure and function. Taken altogether, these ECM 

components provide cells with a mechanical scaffold optimal for adhesion, migration 

and differentiation of a specific cell type.  

 

2.2.1. Collagens 

Collagens are the major constituent of the periodontal structures. In addition to 

their structural role, collagens have also been shown to be involved in promoting cell 

attachment and differentiation, either directly or indirectly, and as a chemotactic agent 

for both fibroblasts and macrophages (Linsenmayer, 1991).  

More than 19 different collagen types have been described (reviewed in Kielty 

and Grant, 2002). Each collagen is a homotrimer or a heterotrimer of three 

polypeptide alpha chains (α chains) that fold to form triple-helical domains (Piez, 

1976). A repeating gly-X-Y amino acid sequence within the polypeptide is 

responsible for the triple helix, where X is often proline and Y is often hydroxyproline.  

Collagen synthesis involves the production of a precursor called procollagen at 

the ribosomes on the rough endoplasmic reticulum (RER), triple-helix formation in 

the cytosol and the secretion of the fully associated trimeric procollagen out of the cell 

(reviewed by Kirkham and Robinson, 1995). The synthesis of procollagen involves 

extensive co-translational and post-translational modifications such as hydroxylation, 

signal peptide cleavage, and glycosylation. In particular, hydroxylation of pre-pro 

peptide chains at proline and lysine is responsible for helix stability and 
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intermolecular cross-linkage. Triple-helix formation is initiated by peptide alignment 

via non-covalent interactions at the C-terminal propeptide, and subsequently 

stabilized by interchain disulphide bond formation in the propeptide domain. After 

secretion, collagen fibrils are formed via the removal of the propeptides at the N- and 

C-termini by endopeptidases, and aggregation at the ECM (Fig. 2.1). Further 

assembly of collagen fibrils into bundles is believed to occur at cytoplasmic recesses 

and convoluted surface folds of secreting cells (Birk and Trelstad, 1984; 1986). Lastly, 

supramolecular aggregates of collagen are formed through lysine-derived intra-chain 

and inter-chain crosslinks in the extracellular space (Bornstein and Traub, 1979).  

Collagen types present within the PDL are summarized in Table 2.1. Type I 

collagen is the predominant protein of most connective tissues including PDL. Type I 

collagen, which consists of two identical α1 chains and a chemically different α2 

chain, accounts for about 80% of PDL collagen. Type III collagen, consisting of three 

α1 III chains and constituting approximately 20% of PDL collagen, is the next 

abundant collagen. Both type I and III collagens belong to the fibrillar or fibril-

forming collagens, in which the triple-helical domain contains an uninterrupted 

stretch of 338 to 343 gly-X-Y triplets in each chain (Bartold and Narayanan, 2003). 

Type III collagen is more fibrillar and extensible than type I, and may be important in 

maintaining the integrity of the PDL during vertical and horizontal movements during 

mastication. Moreover, the relatively high level of type III collagen, in similar 

proportions in embryonic tissues, is believed to reflect the high turnover rate within 

the ligament (Butler et al., 1975). Small amounts of other collagens are also present. 

Type IV is localized to basement membranes (Gage et al., 1989), whereas type V is  

distributed in the matrix of the lamina propria, in close association with cells. Type VI  
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Fig. 2.1. Stages in collagen synthesis showing (from top) collagen α-chain 

polypeptides, the procollagen molecule, collagen, and the packing of individual 

collagen molecules into a fibril (adapted from Gage et al., 1989). Each molecule of 

300 nm length is displaced laterally by the distance, D, of 67 nm.  
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Type Chains Mr 

(103) 
of 
chains 

Macromolecular 
structure 

Special 
characteristics 

I [α1(I)]2[α2(I)] 
 
[α1(I)]3

95  Quarter-staggered 
array, forming 
large-diameter, 
banded fibrils 
 

Uninterrupted 
helix 

III [α1(III)]3 95 Quarter-staggered 
array, forming 
small-diameter 
banded fibrils 
 

Uninterrupted 
helix; co-
expressed with 
type I 

IV [α1(IV)]2[α2(IV)]; also 
α3(IV), α4(IV), α5(IV), 
α6(IV) 

170-
180 

End-to-end 
association, 
forming reticular, 
non-fibrillar 
network 

Interrupted 
helix 

V [α1(V)]2[α2(V)] 
[α1(V)][α2(V)][α3(V)] 
[α1(V)]3

120-
145 

Quarter-staggered 
array, forming fine 
banded fibrils 

Uninterrupted 
helix; co-
expressed with 
type I and II 

VI [α1(VI)][α2(VI)][α3(VI)] α1 140 
α2 140 
α3 340

End-to-end 
association into 
tetramers, forming 
microfibrillar 
network  

Short helix 

VIIIa [α1(VIII)]2[α2(VIII)] 
 
 

61 Hexagonal non-
fibrillar lattice 
networka

Short helix 
with 
interruptions 
 

XII [α1(XII)]3 220, 
340 

Association with 
surface of banded 
fibrils 
 

Two short 
helices 

XIVb [α1(XIV)]3
 

220 Association with 
surface of banded 
fibrils 
 

Two short 
helices 

 

Table 2.1. Summary of reported collagens in the PDL (Adapted from Kirkham 

and Robinson, 1995; Kielty and Grant, 2002). a, Sawada and Konomi, 1991; b, 

Zhang et al., 1993. 
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collagen has a microfibrillar distribution (Romanos et al., 1993). Types V, XII and 

XIV are co-distributed with type III surrounding type I collagen in Sharpey’s fibres 

(Bartold, 1995). Types XII and XIV, homotrimers of three α1 XII and α1 XIV chains 

respectively, belong to the fibril-associated collagens with interrupted triple helices 

(FACITs).  

 

2.2.2. Noncollagenous proteins 

Fibronectin (FN), a high molecular weight, insoluble, fibre-forming 

glycoprotein, is present both intra- and extracellularly (Yamada and Olden, 1978). It 

contains an Arg-Gly-Asp (RGD) sequence that binds to cells as well as other sites that 

bind to collagen, heparin and fibrin (Mariotti, 1993). During granulation tissue 

formation, fibronectin provides a temporary substratum for migration and 

proliferation of cells, and acts as a template for collagen deposition. Therefore, cells 

preferentially adhere to FN, which is involved in cell migration and orientation 

(reviewed in Embery et al., 1995). FN may have considerable biological significance 

within the PDL with its high rate of turnover. Immunochemical techniques showed 

that FN is uniformly distributed throughout the PDL both during eruption and in fully 

erupted teeth. It is also found in the endosseal spaces, periosteum and bone lining 

cells at their interface with alveolar bone (Steffensen et al., 1992). However, it is 

expressed particularly strongly along attachment sites of the PDL collagen fibres to 

cementum but not to alveolar bone (Lukinmaa et al., 1991). Moreover, its expression 

is weaker in cementum than in PDL (Zhang et al., 1993). A loss of FN has been 

observed during the terminal maturation of many connective tissue matrices, its 

continued presence within the PDL may be indicative of its immature characteristics 

or its high turnover.  

 12



Literature review 

Tenascin, a glycoprotein characteristic of immature connective tissue, has also 

been found in the PDL. In contrast to other major ECM proteins, tenascin is expressed 

during wound healing (Mackie et al., 1988) and in a few adult tissues including bone 

marrow and the PDL. Unlike FN, it is not uniformly distributed in the PDL. It is 

found between less densely packed collagen fibrils of the PDL (Zhang et al., 1993) 

and accumulated towards the alveolar bone and cementum (Lukinmaa et al., 1991; 

Steffensen et al., 1992), with only weak expression throughout the alveolar bone 

matrix and cementum. 

Laminin is found exclusively in the basement membrane, and is located in the 

basal lamina of blood vessels and the oral, sulcus and junction epithelium in the 

periodontium (Steffensen et al., 1992). Vitronectin (VN), a protein that promotes the 

attachment and spreading of cells, has been found on lining cells of the alveolar bone 

and cementum (Steffensen et al., 1992). It is also associated with the connective tissue 

fibres of the gingival and PDL (Matsuura et al., 1995). 

 

2.2.3. Proteoglycans 

The ligament ECM is an amorphous matrix of glycosaminoglycans (GAGs), 

proteoglycans and glycoproteins, and plays an important role in the absorption of 

functional stresses. The GAGs are represented by several species, including 

chondrointin sulphate, dermatan sulphate, keratin sulphate and hyaluronan (Mariotti, 

1993). The PDL and gingival ground substance compositions are similar, and contains, 

in addition to the above, versican, decorin, biglycan and syndecan (Purvis et al., 1984; 

Pearson and Pringle, 1986; Larjava et al., 1992). These molecules, secreted by 

fibroblasts, have important functions, including ion and water binding and exchange, 

control of collagen fibrillogenesis and fibre orientation. Proteoglycans also regulate 
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cell adhesion and growth, and have capacity to bind and regulate growth factor 

activity (Bartold and Narayanan, 1998). 

Many aspects of cell function are influenced by the ECM. Cell-matrix 

interactions regulate tissue remodelling during growth, differentiation, morphogenesis, 

and wound healing, as illustrated below. 

 

2.3. Cells of the PDL 

Mature PDL is a highly vascularized cellular tissue. Fibroblasts are the most 

abundant cell type in the PDL. They are spindle shaped, with their long axes parallel 

to the principal fibres. The functions of the PDL fibroblasts (PDLF) includes the 

synthesis and degradation of collagen and ground substance components (Limeback et 

al., 1983), playing an important role in the maintenance and repair of the PDL. Hence, 

the fibres and the ground substance of the PDL have a relatively high turnover rate 

compared to that of the cells (Crumley, 1964; Minkoff and Engstrom, 1979; 

McCulloch and Melcher, 1983a). Defence cells may also be present in the PDL, 

including macrophages, mast cells and eosinophils as in other connective tissues, and 

play an important role in immunity. Groups of epithelial cells, the ‘epithelial rests of 

Malassez’, which are remnants of the Hertwig root sheath, are found close to the 

cementum (reviewed in Berkovitz and Shore, 1995).  

The major cell populations in the PDL are discussed below, in light of their 

origin during  development to their subsequent differentiation.  

 

 2.3.1. Development of the PDL 

The majority of periodontal tissues have an origin from the dental follicle that 

is derived from neural crest. Following the development of the neural tube by 
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invagination of the overlying ectoderm, migratory pluripotent neuroepithelial cells, 

also known as neural crest cells, lose their epithelioid nature and acquired a 

mesenchymal phenotype, and formed dental ectomesenchyme. This is followed by 

tooth development via an aggregation of neural crest ectomesenchymal cells 

(reviewed in Cho and Garant, 2000).  

Tooth development is generally divided into the following stages: the bud 

stage, the cap stage, the bell stage and finally, maturation stage (reviewed in Nanci 

and Ten Cate, 2003). The tooth bud is divided into the enamel organ, the dental 

papilla and the dental follicle (Fig. 2.2). The enamel organ gives rise to ameloblasts, 

which produce enamel and the reduced enamel epithelium. The dental papilla consists 

of cells that develop into odontoblasts which form dentin. Mesenchymal cells within 

the dental papilla forms the tooth pulp. The dental follicle gives rise to cementoblasts, 

osteoblasts, and PDLF which form cementum, alveolar bone and the PDL, 

respectively (reviewed in Ross et al., 2002).  

During the development of the periodontal tissues, cells of the dental follicle 

are separated from the newly formed root dentin by the cells of Hertwig’s epithelial 

root sheath, which secrete a fine layer of enamel-like proteins onto the dentin surface, 

known as the hyaline layer (Lindskog, 1982; Slavkin et al., 1989). Subsequently, the 

Hertwig’s epithelial root sheath fragments, possibly by apoptosis, permitting direct 

contact of the dental follicle onto the newly formed hyaline layer on the root surface. 

Cementoblasts appear, presumably differentiated from the cells of the dental follicle, 

and cementogenesis proceeds. This hypothesis, in which cells derived from oral 

epithelium participate in formation of cementum, is based on the established principle 

that epithelial-mesenchymal interactions are critical for development of tissues such 

as heart, hair follicles, limb buds, dentin and enamel of teeth (MacNeil and Somerman,  
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Figure. 2.2. Schematic representation of a developing tooth bud at the cap stage 

(adapted from Cho and Garant, 2000). 

 
 

1999). Specifically, the differentiation factors may be dentin-associated or secreted by 

epithelial root sheath cells (reviewed in Ten Cate, 1996; 1997). Enamel proteins from 

this matrix, such as amelogenin, may act as a reservoir of biologic factors in 

stimulating the migration, adhesion and differentiation of cells (Harrison and Roda, 

1995; Hammarström et al., 1996; Ten Cate, 1996), rendering it conducive for 

connective tissue attachment. Following the coordinated formation of PDL fibres and 

alveolar bone, root development occurs in an apical direction till the attachment 

apparatus becomes complete (reviewed in Bartold and Narayanan, 1998).  
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2.3.2. Cell populations and phenotype 

In light of tooth development, PDLF near the cementum are thought to be 

derivatives of the ectomesenchymal cells of the investing layer, whereas PDLF near 

the alveolar bone are derivatives of perivascular mesenchyme. In agreement to this 

hypothesis, reports have shown that the mitotic activity and collagen turnover rates 

within the PDL at the tooth surface are different from those near the alveolar bone, 

particularly during trauma from occlusal imbalances (Beertsen, 1975). However, 

identities of the specific cell types and the required stimuli for differentiation of dental 

follicle cells have not been established.  

In addition, studies indicate that phenotypically distinct and functional sub-

population of cells of both fibroblast and osteoblast/cementoblast lineage exists in the 

PDL (McCulloch and Bordin, 1991; Pitaru et al., 1994). These cells probably consist 

of other mesenchymal cells, including progenitor cells, important in repair and 

regeneration (Lekic and McCulloch, 1996). In support of this theory, PDL cells have 

been shown to possess osteoblast-like characteristics, including the production of 

osteonectin (Somerman et al., 1990; Nohutcu et al., 1996; Yamada et al., 2001), 

alkaline phosphatase (ALP) (Kawase et al., 1988; Groeneveld et al., 1995), and cyclic 

adenosine monophosphate (cAMP) and bone gla protein in response to parathyroid 

hormone (PTH) and 1,25-dihydroxyvitamin D3, respectively (Cho et al., 1992).  

Indeed, PDL cells consist of two fibroblast types, one existing as soft tissue 

fibroblasts and the other possessing high ALP levels similar to osteoblasts. The latter 

form bone- and cementum-like structures in vitro, and appears capable of 

differentiating into cementoblasts that synthesize Sharpey’s fibres of the cementum 

(Schroeder, 1992; Cho et al., 1995). Hence, PDLF appears to play a role in 

periodontal regeneration.  
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2.4. Biology of periodontal regeneration 

Periodontal regeneration refers to the reproduction or reconstitution of a lost 

or injured tissue which entails the full restoration of its architecture or function 

(American Academy of Periodontology, 2005). Periodontal regeneration therefore 

involves both soft (gingival and PDL) and mineralized (bone and cementum) 

connective tissues, as detailed in section 1.1. In order to elaborate on the mechanism 

of periodontal regeneration, the roles of signalling molecules and cells in regeneration 

are detailed below. 

 

2.4.1. Molecules in periodontal regeneration 

Many molecules and cell types participate in periodontal regeneration. The 

associated events include an initial inflammatory reaction, recruitment of connective 

tissue cell populations by chemotaxis, their proliferation and differentiation, and 

synthesis of ECM (Bartold and Narayanan, 1998).  

Soluble mediators bind to cell surface receptors to activate intracellular 

signalling molecules and mechanisms which lead to cell responses such as cell 

migration, changes in cell shape and synthesis of ECM macromolecules. Soluble 

mediators involved in periodontal regeneration include (i) growth factors and other 

inflammatory mediators, including cytokines, lymphokines, and chemokines, (ii) 

adhesion proteins like FN and laminin, and (iii) matrix components such as collagens, 

proteoglycans, and hyaluronan (reviewed in Bartold et al., 2000).  

Firstly, growth factors and cytokines regulate cell migration, proliferation, and 

differentiation during inflammation and wound repair (Nakae et al., 1991; MacNeil 

and Somerman, 1993; Pitaru et al., 1994; Narayanan and Bartold, 1996). Their effects 

are pleiotropic, and depend upon many factors, such as healing stage, target cell type, 
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and the nature of the ECM (Bartold et al., 2000). Secondly, adhesion proteins localize 

cells at required sites and hence regulate cell recruitment and healing. They may 

exhibit cell-specificity. Lastly, ECM components such as collagens and proteoglycans 

are necessary for the structural and physiological integrity of the new tissue, as well 

as for subsequent cell differentiation.  

The origins of these molecules may be from the circulation, or produced 

locally by cells residing in the ECM. The former are secreted by inflammatory cells 

and resident connective tissue cells during inflammation and wound healing. For 

example, growth factors such as insulin-like growth factor-1 and adhesion molecules 

such as VN are derived from the blood plasma, while platelet-derived growth factor, 

transforming growth factor-β, interleukin-1 and interferon-γ are secreted by 

fibroblasts and inflammatory cells. The latter, normally sequestered by the ECM, are 

released (Hauschka et al., 1988; Clark, 1996). These include growth factors such as 

insulin-like growth facor-1, fibroblast growth factor-1 and -2, transforming growth 

factor-β, and bone morphogenetic proteins, and adhesion proteins such as osteopontin 

(OPN), bone sialoprotein (BSP) and FN from cementum and alveolar bone (Nakae et 

al., 1991; MacNeil and Somerman, 1993; Narayanan and Bartold, 1996). The 

mechanism of action of these soluble factors is considered to be via cell surface 

receptors which leads to an induction of downstream transcription factors and gene 

expression cascades (Maniatis et al., 1987; Vellanoweth et al., 1994).  

 

2.4.2. Cell populations in periodontal regeneration 

 Progenitor cells within the PDL and alveolar bone marrow of the 

periodontium are considered to be the parent cells for synthetic cells such as 

osteoblasts and cementoblasts. Progenitor cells have the capacity to undergo 
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continuous cell division to maintain their progeny, and to give rise to specialized cell 

types in a process called tissue homeostasis. It has been demonstrated that such 

progenitor cells are located close to the blood vessels in PDL (Gould et al., 1980; 

McCulloch and Melcher, 1983b). These progenitor cells divide slowly but continually 

in paravascular zones, from which daughter cells migrate toward the root surface, 

alveolar bone, or into the body of the PDL (McCulloch and Melcher, 1983b; 

McCulloch et al., 1987). Due to the numerous interconnections of vascular channels 

in the PDL and the stromal compartment in alveolar bone, progenitor cells may 

originate from the bone stromal compartment. This was supported by in vitro 

observations that cells cultured from bone have the capacity to form cementum-like 

material (Melcher et al., 1986). In addition, progenitor cells located in paravascular 

zones undergo rapid cell division in periodontal wounding models and presumably 

supply the healing site with synthetic cell types that deposit ECM (Gould et al., 1980; 

Iglhaut  et al., 1987).   

Similar to embryonic development, PDL fibroblasts (Gould et al., 1980; 

Roberts et al., 1987; Lin et al., 1994; Nohutcu et al., 1996) as well as paravascular 

and endosteal fibroblasts (McCulloch et al., 1987) when properly induced, were 

demonstrated to have the capacity to synthesize PDL, cementum and alveolar bone 

during regeneration of the periodontium. However, the exact identity of cells 

responsible for periodontal regeneration are not established. Yet, while populations of 

cells exist within the PDL having the capacity to function as cementoblast or 

osteoblast-like cells, there are others within the PDL, both during development and 

regeneration, secret factors that inhibit mineralization (Melcher, 1970; Saito et al., 

1990; Ogiso et al., 1991; Lang et al., 1995), thus preventing ankylosis, the fusion of 

tooth root with surrounding alveolar bone. 
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An accumulation of recently published data demonstrates that epithelial cells 

derived from the epithelial rests of Malassez (ERM) in the PDL express high amounts 

of OPN, as well as other proteins usually associated with mesenchymal cells (Mouri 

et al., 2003; Mizuno et al., 2005; Rincon et al., 2005). The ERM, which are remnants 

of the Hertwig root sheath, are found close to the cementum (Berkovitz and Shore, 

1995), and are postulated to play a role in cementum repair and regeneration 

(reviewed in Rincon et al., 2006).  

 

2.5. Choice of scaffolds for periodontal tissue engineering 

As discussed in Chapter 1, limitations in current therapeutic procedures open 

up new revenues for tissue engineering. The term “tissue engineering” was first 

coined at a scientific workshop in 1987 (Heineken and Skalak, 1991), depicting the 

multi-disciplinary technologies in the controlling of cell behaviour and in the 

implantation of cells with non-biological scaffolds, in place of traditional synthetic 

prostheses, to achieve tissue repair and reconstruction. It is hoped that by utilizing the 

regenerative capacity of cells, functional tissue analogues having the desired 

dimensions, mechanical properties and biological function could be deployed that 

overcome existing limitations. Having highlighted the roles of PDLF in periodontal 

regeneration, the physical and chemical properties of scaffolds, as well as their roles 

in influencing cell-substratum interactions and the biological outcome, will be 

reviewed.  

 

2.5.1. Scaffold morphology 

Many large or non-space-containing defects often require grafting materials in 

the form of scaffolds to assist in space maintenance and enhance tissue formation. 
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This is particularly relevant for bone defects of critical size, as in Class III furcation 

defects described in section 1.2.2. Hence, the requirements for successful tissue 

engineering of the periodontium can be divided into (i) the biomechanical properties 

of scaffold, such as architectural geometry and space maintaining properties, and (ii) 

the biological functions of the engineered matrix, including cell recruitment, 

permission of meovasculariztion and delivery of the requisite morphogenetic, 

regulatory and growth factors for tissue regeneration (reviewed in Bartold et al., 

2000).  

Design features to obtain satisfactory space maintenance would include an 

ability to be fashioned into a desired shape and be of a consistency compatible with 

easy handling (reviewed in Brekke and Toth, 1998). The scaffold material should also 

be of sufficient form to allow placement into a defect and to withstand soft tissue 

collapse (reviewed in Scantlebury, 1993). The internal architecture of the scaffold 

should allow rapid colonization by cells of the desired phenotype and ingrowth of 

tissue compatible with that at the site of regeneration (Whang et al., 1999). At the 

same time, the scaffold should ideally function as a barrier to the ingrowth of 

unwanted tissues, such as gingival epithelium and connective tissue, yet permit 

selective ingrowth of regenerative tissues, consistent with the principles of guided 

tissue regeneration (GTR) (reviewed in Bartold et al., 2000). Consequently, a 

sufficient wound space and a suitable environment will act synergistically to permit 

regeneration as required.  

 

 2.5.2. Biodegradability 

For therapeutic tissue engineering, one of the most desirable material 

properties is degradation or resorption (reviewed in Griffith, 2000). “Degradable” 
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polymers undergo extensive chain scission to form small soluble oligomers or 

monomers in the presence of body fluids. This degradation may proceed by a 

biologically active process, such as enzymatic digestion, or by passive hydrolytic 

cleavage. “Bioresorbable” polymers, on the other hand, can be completely degraded 

in vivo, and their degradation by-products can be totally eliminated via natural 

metabolic pathways. A bioresorbable biomaterial is favourable over non-resorbable 

ones to support gradual tissue ingrowth and to achieve complete replacement by a 

regenerated matrix for two major reasons. Firstly, permanent implants almost always 

elicit a chronic inflammatory reaction or a foreign body response, characterized by 

formation of a poorly vascularised fibrous layer analogous to a scar at the material-

tissue interface, which likely affects tissue function. Secondly, mechanical properties 

of hybrid tissues may be compromised compared to native ones (reviewed in Griffith, 

2000).  

 

2.6. Surface properties of the biomaterial 

2.6.1. Biocompatibility 

Biocompatibility can be defined as the acceptance (or rejection) of an artificial 

material by the surrounding tissues and by the body as a whole (Park, 2000).  

Biocompatibilty encompasses many different aspects, including (i) cell adhesion, (ii) 

cytotoxicity, (iii) tissue compatibility, (iv) hemocompatibility and (v) biofunctionality 

(Kirkpatrick et al., 1998; Rhodes, 2004; Stieglitz, 2004; Owen et al., 2005; Tang and 

Hu, 2005).  

Two important aspects of material screening refer to in vitro cytotoxicity and 

tissue- or hemocompatibility behaviour (Sgouras and Duncan, 1990). In the former, 

cell injury is indicated by a reduction in metabolic activity as measured by cellular 
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ATP levels or mitochondrial activity, and a loss of membrane integrity. This is 

followed by morphological change and subsequent cell death. Cytotoxicity comes 

about due to unfavourable interactions of the material components with cell 

membranes, leading to cell damage (reviewed in Wang et al., 2004). In the latter, 

tissue compatibility is defined by the degree of material-mediated foreign body 

reactions, manifested as inflammation, fibrosis, infection and thrombosis. Molecular 

interactions between the phagocyte integrin Mac-1 (CD11b/CD18) and P1 sequence 

within the fibrinogen D domain is responsible for inflammatory response via 

phagocyte accumulation on the material, due to the exposure of P1 in surface-mediate 

denaturation of fibrinogen and thrombin-mediated conversion of fibrinogen to fibrin 

(Hu et al., 2001). Further contact with blood results in rapid adsorption of plasma 

proteins onto its surface, an interaction of which results in complement cascade 

activation and subsequent cell lysis (reviewed in Rihova, 1996). Moreover, platelet 

adhesion and activation initiates the coagulation process, leading to thrombosis 

(reviewed in Andrade, 1985).  

Despite the importance of the above in determining cell acceptance or 

rejection, the first and foremost requirement for biocompatibility is the ability of the 

scaffold material in supporting cell adhesion. Cell adhesion triggers integrin-

dependent pathways involving focal adhesion kinase (FAK) and the Src-family 

kinases. This in turn activates downstream mitogen-activated protein kinase (MAPK) 

pathway, resulting in transcriptional regulation of genes responsible for growth and 

differentiation (reviewed in Owen et al., 2005a). Furthermore, the MAPK pathway 

has the potential in modulating the extent of attachment depending on the signals it 

receives by the “inside-out, outside-in” paradigm (reviewed in Boudreau and Jones, 

1999). Therefore, initial cell adhesion, critical to these processes, is a major 
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determinant of cytocompatibility in vitro, and a possible determinant of 

biocompatibility in vivo.  

Biomaterials used for tissue engineering can be broadly divided into categories 

of synthetic or naturally derived. Synthetic polymers are widely used as graft 

materials because (i) they offer a wide range of physical, chemical and mechanical 

properties that are easily altered by chemical means, and (ii) they are more readily 

fabricated into various shapes and forms (Thomson et al., 1997). In light of the 

importance of cell adhesion, the following section will examine cell-substratum 

interactions at the liquid-solid interface, as well as the influence of two most 

extensively studied aspects of surface properties, namely surface wettability and 

topography, with special focus on synthetic polymers. 

 

2.6.2. Cell-substratum interactions 

 The first studies investigating cell-substratum adhesion were performed with 

surface contact microscopy (Ambrose, 1961) and transmission electron microscopy  

(Abercrombie et al., 1971), in which cell adhesion was found to occur at regions 

marked by an increased electron density in the cytoplasm beneath the cell membrane 

and an association with microfilament bundles known as ‘plaques’. At the same time, 

Curtis (1964) examined cell-substratum contacts on living specimens with the 

interference reflection microscope, which exploits a phase shift in illumination when 

it is moved from the cell-medium boundary between a cell and a substrate. The 

closest contacts appeared darkest, whereas the less close appear progressively lighter 

in monochromatic light, up to a separation of about 100 nm. Subsequently, ‘focal 

adhesions’ with 10-20 nm separation between the cell membrane and substratum, and 

‘close contacts’ (30-50 nm separation), were identified (Izzard and Lochner, 1976).   
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Focal adhesions or contacts are comprised of a complex assembly of intra- and 

extracellular proteins, connecting cytoskeletal actin fibres with the ECM via 

transmembrane glycoproteins known as integrins (reviewed in Burridge et al., 1988). 

The integrins are heterodimer receptors, consisting of non-covalently linked α- and β-

subunits (Hynes, 1987; Ruoslahti and Pierschbacher, 1987), involved in cell-cell and 

cell-substratum interactions (Albelda and Buck, 1990; Lampugnani et al., 1991). 

Intracellular proteins involved in focal adhesions are α-actinin, talin, vinculin 

(Burridge et al., 1988), and paxillin (Turner et al., 1990). α-actinin crosslinks actin 

microfilaments and is responsible for cell shape maintenance (Dubreuil, 1991), 

whereas talin and vinculin act as the structural link between f-actin and integrins. The 

remaining focal adhesion proteins such as focal adhesion kinase (FAK), Cas, and 

paxillin interact with both α-actinin and the intracellular domain of integrins, thereby 

participating in integrin-mediated signalling (Burridge and Chrzanowska-Wodnicka 

1996), leading to the regulation of cytoarchitecture, cell proliferation and 

differentiation (Giancotti and Ruoslahti, 1999).  

Components of focal contacts, anchored to the distal ends of cytoskeletal 

microfilaments underlying the cytoplasmic membrane (Heath and Dunn, 1978), 

traverse the cell and allow it to bind to ECM via integrins. Ligand binding occurs at 

the outer surface of transmembrane integrins though an Arg-Gly-Asp (RGD) 

sequence (Ruoslahti and Pierschbacher, 1987) as well as other domains (Aota et al., 

1991). Signals from the extracellular environment are also relayed to the cell via 

integrins, leading to changes in gene expression and protein synthesis. For instance, 

two subfamilies, namely the integrin β1-subfamily, including the FN receptor (α5β1), 

and the β3-subfamily, including the VN receptor (αVβ3), are implicated in cell-

substratum interactions (Akiyama et al., 1989). The former plays an important role in 
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initial cell adhesion events (Yamada et al., 1992), FN matrix assembly (Akiyama et 

al., 1989), and migration (Straus et al., 1989).  

The occurrence of focal adhesions is determined largely by substrate 

composition (Burridge and Fath, 1989), which is influenced by the surface properties 

of the substratum such as surface wettability and topography.  

 

2.6.3. Surface wettability and protein adsorption 

The surface properties of polymers that influence their biocompatibility 

include (i) the interfacial free energy, (ii) a balance between hydrophilicity and 

hydrophobicity on the surface, also known as wettability, (iii) the chemical structure 

and functional groups, (iv) the type and density of surface charges, (v) the molecular 

weight of the polymer, (vi) conformational flexibility of the polymer and (vii) surface 

topography and roughness. Among these, wettability is one of the most important 

parameters in the design of biomaterials or implant devices (reviewed in Wang et al., 

2004).  

It has been demonstrated that cell adhesion follows the principles of 

thermodynamics; the extent of cell adhesion decreases as a function of increasing 

substratum surface free energy (γsv) when the liquid surface tension (γlv) is higher than 

the cell surface tension (γcv), and vice versa (Schakenraad et al., 1988). The 

thermodynamics of a liquid/solid interaction can be determined by the measurement 

of contact angles. Contact angle, θ, is a quantitative measure of the wettability of a 

solid by a liquid. It is defined geometrically as the angle formed by a liquid at the 

three phase boundary where a liquid, gas and solid intersect (Fig. 2.3). 
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Figure 2.3. The contact angle of a liquid with a solid. 

 

A measurement of surface wettability is warranted by the fact that the first 

molecule a biomaterial encounters in culture or when implanted is water, whose 

molecular arrangement varies according to the surface properties of the biomaterial. 

Natural ions, such as chloride and sodium, are immediately incorporated into the 

water overlayer as hydrated ions. Subsequently, proteins in the surrounding medium 

approach the surface (Fig. 2.4), and adsorb via conformation changes or denaturation 

and/or replacement in a process called the “Vroman effect” (Vroman and Adams, 

1969; Horbett, 1984). Proteins bind with their hydrophilic regions and with intact 

water shells on hydrophilic surfaces, whereas they bind with hydrophobic domains 

without intervening water shells on hydrophobic surfaces (Israelachvili and 

Wennerstrom, 1996). As a result, hydrophobic surfaces tend to adsorb larger amounts 

of proteins that are more tightly bound than hydrophilic ones (reviewed in Elbert and 

Hubbell, 1996).  

The effects of varying surface wettability on cell attachment and proliferation 

were well documented. A wettability gradient of dichlorodimethylsilane coupled to 

glass cover slips, with a range of advancing water contact angles between 43 ± 6° to 
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Figure 2.4. Illustration of events at the biomaterial surface (adapted from 

Kasemo and Gold, 1999). 

 

101 ± 2°, showed that the spread area of fibroblasts at the hydrophilic end was more 

than twice of that at the hydrophobic end (Ruardy et al., 1995). This is in accordance 

to previous findings that surfaces with intermediate wettabilities, exhibiting water 

contact angles between 40° to 60°, provide an optimal substratum for cell adhesion 

(van Wachem et al., 1985; 1987b; Yanagisawa et al., 1989), and subsequent 

spreading (Schakenraad et al., 1986) and proliferation (Saltzman, 1997; Lee et al., 

1998).  

Surface wettability influences cell adhesion and morphology via a modulation 

of the composition and organization of the protein layer. The deposition of 

endogenous FN, a major cell adhesion protein (reviewed in Bartold et al., 2000), is 

possible only on hydrophilic surfaces where FN displaces serum proteins pre-

adsorbed onto the substrata (Grinnell and Feld, 1982; Bentley and Klebe, 1985; Van 

Wachem et al., 1987a). This is because the presence of competing serum lowers the 

overall densities of adsorbed FN on hydrophobic substratum (Pettit et al., 1992; 
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McClary et al., 2000), rendering the surface incapable of supporting cell attachment 

(Grainger et al., 2003). Moreover, surface properties of substratum were found to 

influence the tightness of FN binding (Pettit et al., 1992) as well as the conformation 

of its cell binding domain (Iuliano et al., 1993). Accordingly, FN on hydrophobic 

surfaces is in a conformation that discourages cell-integrin receptor recognition 

(Grainger et al., 2003). As a result, the focal adhesion complex and the anchorage of 

cells to the substratum may be compromised, leading to spherical morphology and 

disorganized cytoskeletal arrangement. 

 

2.6.4. Surface topography, and cell growth and differentiation 

Cells are sensitive to the physical characteristics or topography of substrates, 

with which they interact via focal contacts (Burridge et al., 1988). Topography may 

be defined as the morphology of a substrate, and can be classified into two different 

criteria: roughness and texture. Surface roughness is characterized by changes of 

surface topography including hills and pits with random size and distribution, caused 

either by natural processes like crystallization, or artificial means such as sand 

blasting. Surface texture, on the other hand, represents configurations of grooves, 

ridges or pores designed into a substrate, often with defined dimensions and surface 

distribution (reviewed in von Recum and van Kooten, 1995).  

Surface topography has been identified as an important factor that influences 

cell attachment and proliferation. Exudates of fibroblasts cultured on controlled 

surface variations carrying pillar-like filaments in the range of 50 to 150 μm were 

found to contain factors promoting cell attachment and spreading (Korman et al., 

1984). Additionally, fibroblast cell growth was highest on textured surfaces with 

pillar sizes between 2 and 5 μm, followed by wells and smooth surface (Green et al., 
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1994). Hence, the physical cues may reside in raised surface elements and possibly in 

sharp corners or acute discontinuities of the substrate, as deduced from actin 

condensations at the transitions from ridges to grooves (Brunette, 1986).  

On the other hand, the influence on morphogenesis is dependent upon cell 

type as well as cellular properties such as cytoskeletal organization and cell-cell 

interactions (reviewed in Boyan et al., 1996). Unlike fibroblasts which showed a 

preferential growth on textured substrata, osteoblast-like cell adhesion, but not 

proliferation, was enhanced on polymer surfaces with nano-scale and micro-scale 

roughness compared to smooth ones (Wan et al., 2005). In fact, MC3T3-E1 

osteoblast-like cell proliferation was enhanced on smooth ends of poly(D,L-lactic acid) 

(PDLLA)-rich roughness gradient than on the rough poly(L-lactic acid) (PLLA)-rich 

ends configured by polymer blending (Simon et al., 2005). Similarly, the same cells 

proliferated more on smooth regions of a PLLA polymer crystallinity gradient, with 

root-mean-square (rms) roughness values ranging from 0.5 to 13 nm (Washburn et al., 

2004).  

Surface topography can also determine the type of focal adhesion and its 

configuration in space, thus influencing cell shape and even its phenotypic expression. 

In terms of cell shape, surface discontinuities representing local changes in surface 

free energy affect cellular alignment and direction of proliferation via changes in 

protein adsorption and conformation (reviewed in von Recum and van Kooten, 1995). 

Meningeal cell and ECM alignment were found to increase with increasing oriented 

surface roughness, reaching a threshold at 345 nm (Manwaring et al., 2004). Such an 

induction of cellular locomotion in response to surface topography have been 

identified and termed as topographic or contact guidance (Brunette and Chehroudi, 

1999). In terms of phenotypic expression, MG63 osteoblast-like cells showed 
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enhanced differentiation on rough compared to smooth alloy surfaces, reflected by 

decreased proliferation and increased ALP and osteocalcin production (Lincks et al., 

1998).  

 

2.7. Biodegradable synthetic polymers 

 Biodegradable synthetic polymers such as poly(glycolic acid), poly(lactic acid) 

and their copolymers, poly(p-dioxanone), and copolymers of trimethylene carbonate 

and glycolide have been used in a number of clinical applications. The major 

applications include resorbable sutures, drug delivery systems and orthopaedic 

fixation devices (reviewed in Suggs and Mikos, 1996; Gunatillake and Adhikari, 

2003). Among the families of synthetic polymers, polyesters and copolyesters of 

naturally occurring hydroxyl-acids have been successfully employed as implants for 

tissue regeneration, and are summarized below. 

 

 2.7.1. Overview of polyesters 

Aliphatic polyesters with physical and chemical properties suitable as matrix 

materials (Chaignaud et al., 1997; Hutmacher, 2000b) constitute the most versatile 

and widely used family of polymers studied to date. The reasons are, firstly, the ester 

bonds in these polymers are hydrolytically labile (Vert and Li, 1992), rendering the 

materials easily degradable by nonenzymatic means. Secondly, the initial stages of 

polymer degradation involves a lowering of molecular weight, but not the mass 

(Hoffman and Casey, 1985), hence preserving the space maintenance properties of a 

scaffold. Thirdly, it is possible to alter the degradation kinetics by modifying the 

structure, and some of the degradation products can be resorbed through natural 

metabolic pathways. Lastly, these polyesters are thermoplastic and can be formed into 
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desired shapes by moulding, extrusion and solvent processing (reviewed in 

Gunatillake and Adhikari, 2003).  

The key polymers in this family are poly(glycolic acid), poly(lactic acid), 

poly(glycolic-co-lactic acid), poly(dioxanone), poly(caprolactone), poly(3-

hydroxybutyrate), poly(3-hydroxyvalerate), poly(valcrolactone), poly(tartronic acid), 

poly(β-malonic acid). The prominent members for which biocompatibility and 

biodegradation studies were documented were listed in Table 2.2. Among polyesters, 

poly(α-hydroxy acids) such as poly(glycolic acid), poly(lactic acid) and a range of 

their copolymers have a long history of use as synthetic biodegradable materials in a 

number of clinical applications including scaffolds for cell transplantation (reviewed 

in Gunatillake and Adhikari, 2003). Polyesters have also been considered for 

development of tissue engineering applications (Hubbell, 1995; Wong and Mooney, 

1997), particularly for bone tissue engineering (Kohn and Langer, 1996; Burg et al., 

2000).  

It is therefore envisioned that a biodegradable, biocompatible material with the 

ease of processability to specified shapes with appropriate porosity from the family of 

polyesters, that satisfy the basic requirements for tissue engineering (detailed in 

section 2.5.1), would be used in the regeneration of hard and soft tissues of the 

periodontium. From the list of clinically tested polyesters, poly(ε-caprolactone) (PCL) 

stands out due to its excellent cyto- and tissue-compatibility and versatility (Pitt, 1990; 

Ng et al., 2000). Therefore, the physical and chemical properties of PCL are 

examined in greater detail in the following section.  
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Table 2.2. Summary of selected polyesters (Gunatillake and Adhikari, 2003). 

 

2.7.2. Poly(ε-caprolactone) (PCL) 

Poly(ε-caprolactone) (PCL) is an FDA-approved semi-crystalline, 

bioresorbable aliphatic polyester belonging to the family of poly(ω-hydroxy esters) 

(Kimura, 1993). PCL can be prepared by ring opening polymerization of ε-

caprolactone using a catalyst. The repeating molecular structure of PCL homopolymer 

consists of five non-polar methylene (-CH2) groups and a single relatively polar ester 

(O-C=O) group. Hence, the mechanical properties of PCL are polyolefin-like in terms 

of elasticity and tensile strength (Pitt, 1990), while its hydrolytic degradability 

resembles that of polyesters due to the presence of the aliphatic-ester linkage 

(reviewed in Perrin and English, 1997).  
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Previous work established that PCL is biocompatible based on the finding that 

its degradation by-products are non-toxic (Darney et al., 1989; Kweon et al., 2003). 

The first stage in the biodegradation process involving auto-catalyzed random 

hydrolytic cleavage of the ester linkage leads to a decrease in molecular weight (Pitt 

et al., 1981). Intracellular degradation in Sprague-Dawley rats as an animal model 

demonstrated that PCL became encapsulated by collagen filaments, with occasional 

giant cells, during this stage of non-enzymatic bulk hydrolysis lasting approximately 

nine months. A transient initial inflammatory response was observed around the 

avascular connective tissue capsule, of less than 100 microns, during the first two 

weeks (Woodward et al., 1985). This is followed by an onset of weight loss and a 

reduction in the rate of chain scission in the second stage, when the molecular weight 

is reduced to about 5,000, with the eventual fragmentation of the polymer into a 

powder. Short chain oligomers produced were rapidly degraded in phagosome of 

macrophages, giant cells and occasionally in fibroblasts, (Woodward et al., 1985), 

requiring only 13 days for complete absorption in some cases (reviewed in Perrin and 

English, 1997). The by-products of auto-catalysed bulk hydrolysis are monomeric 

acids, which are eliminated from the body by direct renal secretion or metabolized via 

the Krebs cycle primarily as carbon dioxide and water (Kweon et al., 2003). 

Moreover, hydroxyl free radicals from extracellular exudate and inflammatory cells 

have been implicated to be one of the major causes of PCL degradation (Ali et al., 

1993; 1994), in addition to enzymatic degradation (Pitt et al., 1984). 

Despite its biocompatibility, one major disadvantage of PCL is its slow rate of 

degradation; homopolymer bulk PCL has a degradation time of the order of two to 

three years (Holland and Tighe, 1992). This could be overcome by altering the rate of 

hydroloysis via copolymerization with other lactones (Pitt et al., 1981). Hence, PCL 
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has been extensively investigated for developing long-term, implantable drug delivery 

systems (reviewed in Suggs and Mikos, 1996; Gunatillake and Adhikari, 2003).  

In comparison to other commercially available bioresorbable polymers, PCL is 

flexible and versatile. Firstly, PCL has unusual thermal stability, with a 

decomposition temperature of 350 °C, whereas other tested aliphatic polyesters have 

decomposition temperatures between 235 °C and 255 °C (Suggs and Mikos, 1996). 

Secondly, PCL has unique physical properties due to its low melting point (Tm) of 57 

ºC and a glass transition temperature (Tg) of -62 ºC (Engelberg and Kohn, 1991), 

imparting it with a rubbery state at room temperature (reviewed in Perrin and English, 

1997). Consequently, PCL possesses high drawability compared to other aliphatic 

biodegradable polyesters. This ease of processing facilitates the fabrication of 

membranes through biaxial drawing method, which improves physical properties such 

as tensile strength and modulus in both the longitudinal and lateral directions (Ng et 

al., 2000). Furthermore, three-dimensional porous scaffolds fabricated from PCL 

demonstrated high elasticity and mechanic strength (Guan et al., 2002; Zein et al., 

2002; Jeong et al., 2004). 

PCL substrates have been rigorously tested with different cell types for 

various biomedical applications. For example, alkali-hydrolyzed PCL membranes 

have been demonstrated to support the attachment and growth of dermal fibroblasts 

(Ng et al., 2001), keratinocytes (Khor et al., 2002, 2003), bladder smooth muscle cells 

(Thapa et al., 2003), endothelial and smooth muscle cells (Serrano et al., 2005), and 

conjunctival epithelial cells (Ang et al., 2006). In addition, PCL scaffolds fabricated 

by fused deposition modelling (FDM) possessing fully interconnected channel 

network, and controllable porosity and channel size (Zein et al., 2002; Hutmacher et 

al., 2001) have been studied as potential matrices for tissue engineering of bone and 
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cartilage (Hutmacher, 2000; Hutmacher et al., 2001). PCL can be regarded as a soft- 

and hard-tissue-compatible bioresorbable material, and is therefore a candidate 

scaffold biomaterial for periodontal regeneration. 
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3. COMMON MATERIALS AND METHODS 

3.1. Fabrication of PCL membranes 

3.1.1. Solvent casting 

Membranes were prepared by solution-casting, heat press and biaxial 

stretching, as previously described (Ng et al., 2000). Poly (ε-caprolactone) (PCL) 

pellets (Mn = 80,000, density = 1.145 g/cm3, Sigma-Aldrich, WI, USA) were checked 

for purity by differential scanning calorimetry (DSC), after which they were 

desiccated in a vacuum oven at 40 °C for 24 h to remove trapped moisture. A 

polymer-solution (3% w/w) was prepared by dissolving dried PCL pellets in 

dichloromethane (JT Baker, NJ, USA) on a platform shaker for 3 h, and cast over 

custom-designed glass moulds, 16 cm x 16 cm. The solution was swirled gently to 

ensure uniform coverage in the moulds, and sealed by aluminium foil to allow slow 

evaporation of the solvent at room temperature in a safety hood cabinet overnight. 

Solvent-cast PCL films of about 100 ± 10 μm thus obtained were dried as before at 40 

°C for 24 h to remove residual solvent.  

 

3.1.2. Heat press and biaxial stretching 

PCL films, 5 cm x 5 cm, were sandwiched between 2 steel plates covered with 

aluminium foil and heat pressed at 55-58 °C and at 100 bars for 10 min with a Cavar 

heat press (PH Hydraulics and Engineering, Singapore) to remove surface defects due 

to solvent evaporation. Films were visually inspected to ensure surface homogeneity 

and thickness uniformity. Heat-pressed films were mounted onto an in-house biaxial 

stretch machine (Ng et al., 2000) and pre-heated for 2 h at 55-58 °C to achieve 

temperature equilibrium. Biaxial stretching of films to a draw ratio of 3 x 3 was 

performed at 55-58 °C at a uniform speed (Appendix). Biaxially stretched membranes 
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were maintained in the machine for 6 h for polymer stabilization. Membrane 

thickness was measured with a digital micrometer screw gauge (Mitutoyo, Singapore). 

Samples within 20 μm thickness were retained for further processing.  

 

3.1.3. Perforation 

Membrane perforation was achieved using a 3-axis desktop robot (Sony 

Robokids, Model CAST_AU4/B2521E, Tokyo, Japan), a 0.57 mm-diameter needle 

and customized software (Htay et al., 2004). Biaxially stretched membranes were 

adhered onto a polystyrene foam stage and an orderly array of perforations, 

approximately 100 μm in diameter, was obtained by the vertical punching action of 

the needle. The distance between two hole-centres was set at 0.5 mm and the speed of 

perforation at 50 mm/s, as described previously (Htay et al., 2004). Perforation 

diameter and density were determined from PCLM (Olympus IX70, Tokyo, Japan) 

images using Micro-Image® (Media Cybernetics, MD, USA).  

 

3.1.4. Alkaline hydrolysis treatment  

Membranes were treated by immersion in 5 M NaOH for 3 h with agitation at 

100 rpm at room temperature to increase hydrophilicity, and rinsed several times in 

distilled water to ensure complete removal of NaOH. Purity and crystallinity of the 

polymeric membranes before and after treatment were determined by differential 

scanning calorimetry as described previously (Htay et al., 2004). Membranes were 

sterilized with 70% ethanol and uv irradiation, and stored in a desiccator under 

vacuum before use.  
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3.2. Collagen induction 

PDLF between passage 3 to 5 were seeded at a density of 10,000 cells/cm2, 

and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco, Life 

Technologies, NY, USA) containing 10% (v/v) foetal bovine serum (FBS) (Gibco) 

and 2% penicillin-streptomycin (Invitrogen, CA, USA). Collagen stimulation was 

carried out one day after seeding with culture medium supplemented with 200 

μΜ ascorbic acid 2-phosphate magnesium salt (Asc; Sigma), the level present in 

gingival crevicular fluid  (Meyle and Kapitza, 1990), and 350 μM of L-proline 

(Sigma). Fresh ascorbic acid aliquots (100X stock in DMEM at -20 ºC) were added at 

medium change every 3 to 4 days, and 1 ml of medium was added per well in 12-well 

tissue culture plates (TPP, MO, USA).  

 

3.3. Cell proliferation assay 

Cell proliferation as reflected by the amount of dsDNA was assayed by 

PicoGreen® dsDNA quantitation kit (Molecular Probes, Invitrogen, CA, USA) as 

previously described (Ng et al., 2005), with slight modifications. Samples (n≥3) were 

rinsed thrice with PBS to remove unattached cells and incubated with 200 μl of 0.1% 

(w/v) collagenase and 0.1% (w/v) trypsin in PBS at 37 °C for up to 30 min with 

periodic agitation at 200 rpm to release cells from the extracellular matrix. Whole cell 

suspensions were pelleted and lysed by two freeze-thaw cycles in autoclaved 

deionized water. Samples were diluted with appropriate volumes of DNAse-free Tris-

EDTA (TE) buffer (10 mM Tris-Cl, pH 7.5,  1 mM EDTA), whereas DNA standards 

(0 ng/ml, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1000 ng/ml) were diluted from 100 μg/ml 

of λ DNA (Molecular Probes) with the same. Samples and DNA standards in 100 μl 

aliquots were incubated with equal volumes of PicoGreen reagent, pre-diluted 200-
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fold in TE buffer, in triplicates in an opaque 96-well plate (TPP, MO, USA) for 5 min 

at room temperature in the dark. Fluorescence was measured at 485 nm excitation and 

535 nm emission in a microplate reader (GENios, Tecan Group, Switzerland). 

Calibration curves showed fluorescence measurements to be proportional to cell 

number. Cell proliferation was presented as the quantity of dsDNA (μg) as 

determined from λ DNA standard curve, over a 3-week period. 

 

3.4. Cell viability assay 

Cell viability assay was performed (n=3) with fluorescein diacetate (FDA, 

Molecular Probes) and propidium iodide (PI, Molecular Probes). Constructs were 

incubated with 2 μg/ml of FDA for 15 min at 37 ºC and 5% CO2, and rinsed thrice 

with PBS for 3 min each. Then they were incubated with 0.1 mg/ml PI for 3 min at 

room temperature, and rinsed again with PBS. Viewing was performed with a 

Confocal laser scanning microscope (CLSM; Olympus FluoViewTM FV500, Japan). 

Viable cells, having the ability to metabolise FDA and exclude PI, were stained green, 

whereas non-viable or apoptotic cells were stained red with PI. The areas of green and 

red colour were calculated in pixels from a confocal image at 100X magnification 

using Micro-Image® (Media Cybernetics, MD, USA) as described (Vidal et al., 2003). 

Cell viability on membranes after FDA/PI staining were determined as the percentage 

of green area over the sum of green and red, whereas cell retention as the percentage 

of green area over the total image area. 

 

3.5. Alkaline phosphatase (ALP) assays 

3.5.1. ALP stain 

 41



Common materials and methods 

Alkaline phosphatase (ALP) functions as an ectoenzyme attached to the cell 

membrane (Magnusson et al., 1999). ALP activity was detected in cells by staining 

using ALP kit 86-R (Sigma) according to the manual. Cell nuclei were counterstained 

with Haematoxylin.  

 

3.5.2. ALP enzyme substrate assay 

Quantitative measurements of ALP activity was determined via colorimetric 

enzymatic substrate assay, as described previously (Chou et al., 2002). Protein 

supernatants obtained from whole cell lysates were diluted 10-fold with alkaline 

substrate buffer (Sigma). Samples in 50 μl aliquots were incubated with 150 μl of 

0.2% (w/v) para-nitrophenyl phosphate disodium (Sigma) in 1 M diethanolamine 

HCL at pH 9.83 for 30 min at 37 °C. The reaction was terminated by the addition of 

200 μl of 2 M NaOH/0.2 mM EDTA to each sample. Absorbance of 100 μl mixtures 

in a 96-well plate was measured at 405 nm in triplicates with a microplate reader 

(Magellian, CA, USA). ALP activity was inferred as μM pNP/ml from a standard 

curve prepared using known concentrations of para-nitrophenol (pNP) (Sigma) and 

NaOH / EDTA as blank. ALP activities were presented as international units per mg 

protein (IU/mg protein) in whole cell lysates, in which the IU of ALP activity was 

defined as μmoles of pNP substrate liberated per min under optimal conditions 

(Young, 1977). 

 

3.6. Collagen extraction by limited pepsin digestion 

The extraction of collagen by pepsin digestion relies on the resistance of 

collagen triple helix to enzymatic digestion, but the susceptibility of other proteins to 

degradation. To extract collagens in the medium, 500 μl of 3-day conditioned medium 
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was split into two groups, 250 μl each. The first medium fraction was supplemented 

with protease inhibitor cocktail with a final concentration of 5 μM AEBSF, 1.5 nM 

aprotinin, 10 nM E-64, 5 μM EDTA, 10 nM leupeptin (Calbiochem, CA, USA), and 

loaded immediately for SDS-PAGE (section 3.8) or freeze stored in aliquots at -20 °C. 

The second medium fraction was digested with 25 μl pepsin (1 mg/ml in 1 N HCl) for 

2 h at room temperature with constant agitation at 100 rpm.  

To extract collagens in the cell layer, hPDLF were washed twice with HBSS 

and digested with 250 μl of HBSS containing 25 μl of pepsin (1 mg/ml in 1 N HCl). 

Pepsin digestion of cell layer fraction was performed separately, but identically to 

medium fraction, as described above. After 2 h, the reaction was irreversibly 

terminated by neutralization with 25 μl of 1 N NaOH until the pH was at least 7.0 as 

indicated by phenol red.  

 

3.7. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)  

 3.7.1. Tris-acetate gels 

To facilitate the resolution of high M.W. collagens, protein samples were 

separated on pre-cast 3-8% gradient NuPAGE® Tris-acetate gels (Invitrogen). 

Pepsin-digests and undigested medium fractions were denatured for 10 min at 70 °C 

in NuPAGE® lithium dodecyl sulfate (LDS) sample buffer (Invitrogen), with or 

without dithiothreitol (DTT) as reducing agent, and loaded alongside Precision Plus 

protein pre-stained standards (Bio-Rad Laboratories). Gel electrophoresis was 

performed using NuPAGE gel system (Invitrogen) in NuPAGE® Tris-acetate SDS 

Running Buffer (Invitrogen). Electrophoresis was run at a constant voltage of 120V 

until the dye front reached the bottom of the gel. 
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3.7.2. Tris-glycine gels 

For the separation of non-collagenous proteins, polyacrylamide gels (6% 

stacking, 12% resolving) were cast using 30% acrylamide/bis (37:5:1) solutions, 

N,N,N,N-tetramethyl-ethylenediamine (TEMED) as the accelerator (all from Bio-Rad 

Laboratories) and 10% (w/v) ammonium persulphate (APS) (Invitrogen) as the 

polymerization catalyst. Whole-cell-lysates, normalized according to total protein 

content (Appendix), were denatured for 5 min at 90 °C in 4X SDS-PAGE reducing 

sample buffer (250 mM Tris-HCl [pH 6.8], 8% (w/v) SDS, 40% (v/v) glycerol, 20% 

(v/v) β-mercapthoethanol, 0.2% (w/v) bromophenol blue), and loaded alongside 

BenchMarkTM pre-stained protein ladder (Invitrogen), or Precision Plus protein pre-

stained standards (Bio-Rad Laboratories). Gel electrophoresis was performed using 

the Mini-PROTEAN II Electrophoresis System (Bio-Rad Laboratories) in Tris-

glycine buffer and run at a constant voltage of 60V and 120V for 6% stacking and 

12% resolving gel respectively, until the dye front reached the bottom of the gel.  

 

3.8. Protein gel stain 

3.8.1. Coomassie Blue stain 

Size-fractionated proteins were visualized by routine Coomassie Blue stain 

(0.25% (v/w) Coomassie Brilliant Blue R250, 50% methanol, 10% acetic acid) for 4 h 

at room temperature with gentle agitation, and destained with destain solution (40% 

methanol and 10% (v/v) acetic acid) overnight. 

 

3.8.2. PageBlueTM stain 

Size-fractionated proteins were visualized by PageBlueTM Protein Staining 

Solution (Fermentas Inc., MD, USA) according to manufacturer’s instructions. Since 

 44



Common materials and methods 

PageBlueTM is compatible with silver staining, the same gels were visualized 

subsequently with silver stain, bypassing the fixation step.  

 

3.8.3. Silver stain 

Protein gels were fixed in 40% (v/v) methanol and 10% (v/v) acetic acid 

overnight at room temperature. Fixed gels or PageBlueTM-stained gels were immersed 

in 50% (v/v) methanol for 15 min with gentle agitation, and washed with milliQ water 

5 times, 5 min each. Then, the gels were sensitized with 0.02% (w/v) sodium 

thiosulphate for 1 min, and washed with milliQ water 2 times, 1 min each. Silver 

staining was performed with 0.2% (w/v) silver nitrate for 25 min at 4 °C in the dark, 

followed by washing with milliQ water 2 times, 1 min each. Development of silver 

stain was carried out by immersing the gels in 3% (w/v) sodium carbonate anhydrous 

and 2.5 x 10-3 % (v/v) formaldehyde with gentle agitation for about 5 min, changing 

solution when it yellowed. The gels were washed with milliQ water 2 times, 1 min 

each, to remove undeveloped stain, and staining was terminated by the addition of 5% 

(v/v) acetic acid and stored in 1% (v/v) acetic acid at room temperature. 

 

3.9. Western blot analysis 

 3.9.1. Protein transfer 

For the immuno-detection of collagens, fresh or frozen conditioned medium 

separated in 3-8% Tris-acetate NuPAGE gels were transferred onto nitrocellulose 

membranes (Pall Corp., NY, USA) with NuPAGE® Transfer buffer (Invitrogen) 

containing 10% (v/v) methanol. For the immuno-detection of non-collagenous 

proteins, fresh or frozen whole cell lysates separated in 12% polyacrylamide SDS-

PAGE were transferred onto nitrocellulose membranes with Tris-glycine transfer 
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buffer (25 mM Tris-HCl, 192 mM glycine, 20% (v/v) methanol). The gel was 

sandwiched between one pre-equilibrated membrane and two 3MM Chr papers 

(Whatman plc., Middlesex, UK), and finally assembled between two sponges in a 

Trans-Blot cell (Bio-Rad Laboratories). Protein transfer was carried out at 100-120V 

for 90 min at 4 °C.  

 

3.9.2. Immunoblotting  

After protein transfer, nitrocellulose membranes were equilibrated in Tris 

buffered saline (TBS) (10 mM Tris [pH 7.4], 150 mM NaCl,) and incubated in 

blocking buffer, TBS-T (TBS, 0.1% (v/v) Tween-20) containing 5% (w/v) non-fat 

milk, for either 1 h at room temperature or overnight at 4 °C on an orbital shaker. For 

immunoblotting, membranes were incubated with primary antibodies (Appendix), 

diluted in incubation buffer, TBS containing 2-5% (w/v) non-fat milk, for either 2 h at 

room temperature or overnight at 4 °C on an orbital shaker. Primary antibodies were 

filter-sterilized and stored at 4 °C for re-use, and discarded after the third use. After 

primary antibody binding, membranes were washed 3 times with TBS-T at room 

temperature, 10 min each, before incubation with the appropriate horseradish 

peroxidise-conjugated secondary antibodies (Appendix) for 1 h at room temperature 

on an orbital shaker. The membranes were then subjected to 3 additional 10 min wash 

in TBS-T, incubated in chemiluminescence reagents (Supersignal West Pico Kit, 

Pierce Biotechnology, Inc., IL, USA), according to manufacturer’s instructions and 

placed between transparency sheets. Signal detection was performed by exposure to 

X-ray film (Kodak, Japan) and developed in a RP X-OMAT Processor (Eastman 

Kodak Co., NY, USA).  
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3.10. Semi-quantitative densitometry 

The relative concentrations of bands (n=3) generated by PageBlueTM or silver 

stain on SDS-PAGE, or by Chemilluminescence on Western blots, were determined 

by semi-quantitative densitometry. Signals were digitized into an image by gel 

scanner (GS-800 calibrated densitometer; Bio-Rad Laboratories). Each pixel was 

stored in the memory in 12 bits, and the gray level of each pixel was assigned a value. 

The relative concentrations of the bands of interest were determined with Quantity-

One software (Bio-Rad Laboratories) by summing the gray levels of all pixels within 

the boundaries of each band.  

 

3.11. Double-labelling immunofluorescence 

Cells were rinsed with sterile PBS, and fixed with absolute methanol at -20 °C 

for 10 min. After air-drying and re-equilibration with PBS, blocking was performed 

with 5% bovine serum albumin (w/v) (Sigma) and 1% goat serum (v/v) (Invitrogen) 

in PBS for 2 h at room temperature. For double labelling of collagens, cells were 

incubated with anti-collagen I (1:5000; Sigma) overnight in a humidified chamber at 4 

°C, rinsed thrice with PBS-T, followed by anti-mouse FITC (1:100; DAKO, CA, USA) 

for 2 h at room temperature in the dark. After rinsing thrice with PBS-T, each 10 min, 

and re-blocking, cells were incubated with either anti-collagen XII or XIV (1:500; 

kind gifts from Dr Greg Lunstrum) overnight in a humidified chamber at 4 °C, rinsed 

as above, followed by anti-rabbit Alexa Fluor 555 (1:100; Molecular Probes) for 2 h 

at room temperature. Cells were counterstained with Hoechst 33258 (1:200; 

Molecular Probes), and observed under a Confocal laser scanning microscope (CLSM; 

Olympus FluoViewTM FV500, Japan; Section 3.14).  
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3.12. Phalloidin stain 

For visualization of cytoskeletal microfilaments, fibrillar actin (f-actin) were 

labelled with phalloidin (A12379 Alexa Fluo 488, Molecular Probes). Samples were 

fixed in 3.7% (w/v) formaldehyde in cytoskeleton buffer, containing 10 mM MES 

(pH 6.1), 138 mM KCl, 3 mM MgCl2, 2 mM EGTA and 0.32 M sucrose, for 30 min 

at room temperature. After rinsing twice with cytoskeleton buffer for 3 min each time, 

samples were extracted with 0.1% Triton X-100 in cytoskeleton buffer for 5 min, 

followed by RNA digestion with 200 μg/ml of RNase A (Sigma) in PBS for 30 min at 

room temperature. After rinsing twice with PBS for 3 min each time, samples were 

incubated with 1% BSA in PBS for 30 min to reduce non-specific staining. Incubation 

with 5 U/ml of phalloidin (1:40) (Molecular Probes) was carried out for 30 – 45 min 

at room temperature in the dark before rinsing thrice with PBS, 5 min each time. For 

visualization of nuclei, samples were counterstained with 5 μg/ml of PI (Molecular 

Probes) for 20 min at room temperature in the dark and rinsed thrice with PBS, 5 min 

each time. Signals were visualized under Confocal laser scanning microscopy 

(Section 3.14). 

 

3.13. Von Kossa stain 

 Cells were fixed in 10% neutral buffered formalin for 30 min at room 

temperature and rinsed thrice with distilled water. Cells were first immersed in 5% 

silver nitrate solution for 45 min under strong light and rinsed thrice with distilled 

water, and then immersed in 5% sodium bicarbonate and 25% formalin for 8 min, 

followed by rinsing once with distilled water for 10 min. Subsequently, cells were 

fixed with 5% sodium thiosulphate for 5 min, and rinsed with tap water for 15 min. 
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Mineralized tissues appear gray-black, whereas osteoid appears bright brown under 

light microscopy. 

 

3.14. Confocal laser scanning microscopy 

Stained samples were mounted with liquid mounting media (DAKO, CA, 

USA) and viewed under a Confocal laser scanning microscope (CLSM; Olympus 

FluoViewTM FV1000, Japan). Omission of primary antibodies and staining with 

secondary antibodies alone served as negative controls. To increase signal to noise 

ratio for weak intensity stains, images were acquired under Kalman filter with 

averaging from two to three scans. To reduce cross emission in double-labelled 

samples, images were acquired with sequential scanning. Singly-labelled samples 

were used as internal controls. Double-labelling images were obtained by 

superimposing green and red fluorescence. Depth projection images from consecutive 

0.5- to 1-μm-thick optical sections were obtained with Fluoview FV1000 Viewer 

software (Olympus, Japan).  

 

3.15. Scanning electron microscopy 

Samples were fixed with 2.5% glutaraldehyde (Merck, Darmstadt, Germany) 

in PBS (pH 7.4) at 4 °C for 2 h. After washing thrice in PBS, cells were dehydrated in 

ascending series of ethyl alcohol (30 %, 50 %, 70%, 90 % and absolute), 5 min each, 

and dried in 37 °C oven. Specimens were gold-coated with a Fine Coater (BAL-TEC 

SCP005, MA, USA) at 30 mA for 80 sec, and viewed under magnifications between 

100x to 5000x with scanning electron microscopy (SEM; Jeol JSM-5600LV, Tokyo, 

Japan) with an accelerating voltage between 10-15 kV. Three representative SEM 

images were obtained for each specimen. 
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3.16. Statistical analysis  

 All quantitative results were obtained from at least 3 independent experiments, 

and expressed as the mean ± standard deviation. Experimental data were analyzed by 

Student’s t-test and two-way Analysis of Variance (ANOVA). Intergroup differences 

were determined by post-hoc Tukey test. Differences among samples were considered 

statistically significant when p<0.05.  
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4. ESTABLISHMENT OF PRIMARY hPDLF CELL LINES IN VITRO 

 

4.1. Background  

Periodontal therapy, which aims to restore the damaged tissues to their 

original form and function, requires regeneration of the destroyed periodontal 

connective tissues through the formation of new cementum, new bone and attachment 

of new connective tissue fibres (Minabe, 1991; Schroeder, 1992; Wikesjo et al., 1992; 

Garrett, 1996).  

Periodontal ligament (PDL) cells are thought to play an important role in 

promoting periodontal regeneration and alveolar bone homeostasis. In animal studies, 

it was found that when tooth roots were covered with PDL cells grown in culture and 

then re-implanted in vivo, they acted as progenitor cells and gave rise to the formation 

of new PDL (Boyko et al., 1981; Van Dijk et al., 1991; Lang et al., 1995, 1998). 

Further experiments on human PDL cells demonstrated that subpopulation of cells 

exist which possess osteoblastic characteristics including high alkaline phosphatase 

(ALP) levels, increased cyclic adenosine monophosphate (cAMP) production in 

response to parathyroid hormone (PTH) stimulation, the capacity to form mineral-like 

nodules in vitro, and increased bone Gla protein production in response to 1,25(OH)2 

vitamin D3 (Somerman et al., 1988; Arceo et al., 1991; Liu et al., 1997; Hou et al., 

2000). Hence, it is established that the PDL consists of heterogeneous subpopulations 

of cells that can differentiate into the osteoblastic or cementoblastic lineage, hence 

taking part in periodontal repair and regeneration.  

The sequence of osteoblastic differentiation is believed to comprise three 

steps: i) proliferation, ii) matrix synthesis and maturation, and iii) mineralization 

(Lian and Stein, 1992). Procollagen I and osteonectin (ON) are maximally expressed 
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during proliferation (Stein and Lian, 1993), whereas ALP expression peaks during the 

post-proliferative period of matrix maturation (Owen et al., 1990; Sodek and Cheifitz, 

2000). During skeletal development, osteopontin (OPN) is deposited into the matrix 

by immature and mature osteoblasts, whereas bone sialoprotein (BSP) level peaks just 

prior to mineralization (Cowles et al., 1998). These Ca2+-binding bone-matrix proteins 

have proven to be particularly useful osteogenic markers (Sodek and Cheifitz, 2000).  

In order for hPDLF to be used for periodontal regeneration, the most 

important requirement is that the osteogenic potential of PDLF must be retained in 

vitro. Therefore, it was hypothesized that primary hPDLF cell line established by 

explant culture up to passage 3-5 retained sufficient progenitor cells with osteogenic 

potential. To establish a reliable source of hPDLF cell line as a first step in tissue 

engineering of the PDL, we investigated the synthesis of ON which indicates that the 

cells are at the proliferation phase, of ALP and OPN which indicates the matrix 

maturation phase, and of BSP which indicates an initiation of matrix mineralization in 

vitro. 

 

4.2. Materials and methods 

4.2.1. Isolation of explants 

Periodontal ligament and alveolar bone tissues were harvested (Chou et al., 

2002) from clinically healthy premolar or upper third molar of human patients 

undergoing orthodontic or routine extraction after informed consent was obtained 

according to the ethical guidelines of the Helsinki II declaration (52nd World Medical 

Association General Assembly, 2000) and approved by the National University of 

Singapore Institutional Review Board (NUS-IRB No. 036). Impacted, non-functional 

or broken teeth were excluded in the selection criteria. Explant database was 
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established according to guidelines stated (Freshney, 2000). Information such as tooth 

number, age, gender, reason for extraction, were documented strictly for research 

purposes and kept confidential, according to ethical guidelines.  

Extracted teeth were rinsed extensively with sterile Dulbecco’s Phosphate 

Buffered Saline (PBS) (137 mM NaCl, 3 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 

[pH 7.4]) containing 2% penicillin-streptomycin solution (100 IU/ml and 100 μg/ml) 

to wash off blood. Next, they were rinsed extensively in biopsy media: Dulbecco’s 

Modified Eagle’s Medium (DMEM; Gibco, Life Technologies, NY, USA) with 

glucose (4,500 mg/l), 2% penicillin-streptomycin (Invitrogen Corp., CA, USA), 250 

μg/ml gentamicin sulfate (Sigma, WI, USA) and 2.5μg/ml amphotericin B (Gibco, 

Life Technologies, NY, USA).  

PDL explants were obtained by scraping the middle third of the root surface 

using a sterile surgical blade as reported previously. Care was exercised to avoid 

contamination from gingival or periapical granulatiom tissues. PDL explants were 

teased into 1-2 mm3 fragments in 100-mm tissue culture dishes (TPP, MO, USA), 

wetted by several drops of culture medium, and weighed down by sterilised glass 

slides. They were then cultured in PDL biopsy culture medium: DMEM (Gibco, Life 

Technologies, NY, USA) with glucose (4,500 mg/l), 10% (v/v) foetal bovine serum 

(FBS; Gibco, Life Technologies, NY, USA), 2% penicillin-streptomycin (Invitrogen 

Corp., CA, USA) and 2.5μg/ml amphotericin B (Invitrogen Corp., CA, USA) at 37 °C 

and 5% CO2 in a humidified environment, as previously described (Somerman et al., 

1988).  

Alveolar bone explants attached to the root surface were removed by a sterile 

surgical blade and isolated as positive control. The resulting bone chips were fully 

scraped to remove any attached connective tissue and briefly sterilized by immersion 
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in 70% ethanol. They were then diced into small cubes of 1-2 mm3 and cultured in T-

75 flasks (TPP, MO, USA) in bone biopsy culture medium: Medium-199 (Gibco, Life 

Technologies, NY, USA) containing 10% (v/v) FBS, 2% penicillin-streptomycin and 

2.5μg/ml amphotericin B at 37 °C and 5% CO2 in a humidified environment. 

 

4.2.2. Cell expansion and cryopreservation 

Explants were monitored regularly for cell outgrowth under phase contrast 

light microscope (PCLM; Olympus, IX70, Tokyo, Japan). When cell confluency was 

reached, explants and cells were lifted from tissue culture dishes or flasks by 0.25% 

(v/w) trypsin and 0.2 g/L EDTA in Hank’s Balanced Salt Buffer (HBSS; HyClone, 

UT, USA), centrifuged at 1000 rpm at 4 ºC for 5 min, and resuspended in regular 

culture medium. PDL fibroblasts (PDLF) were cultured in DMEM containing 4500 

mg/l glucose, 10% (v/v) FBS and 2% penicillin-streptomycin, whereas alveolar 

osteoblasts (AO) in Medium-199 containing 10% (v/v) FBS and 2% penicillin-

streptomycin. Cells were replated in T-75 flasks (TPP, MO, USA) for expansion in 

1:3 split ratio till passage 2 and cryopreserved for subsequent experiments.  

For cryopreservation, trypsinized cells between 1 x 106 to 2 x 106 were 

pelleted and resuspended in 900 μl fresh culture medium containing 40% (v/v) FBS 

and mixed with 100 μl of dimethyl sulphoxide (DMSO; Sigma, MI, USA) to a final 

concentration of 10% (v/v) in each cryovial (Nalge Nunc Intl., NY, USA). Cryovials 

in Cryo 1 ºC Freezing Container (Nalge Nunc Intl., NY, USA) containing isopropanol 

were placed into -80 ºC freezer. Cryopreserved cells were transferred to a liquid 

nitrogen tank within 24 h for storage in the liquid phase. Cells were thawed in a 37 ºC 

water bath with gentle agitation for about 2 min, and at least 10-fold volume of fresh 

culture medium was added, drop by drop initially, to thawed cell suspensions in a T-
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75 flask (TPP, MO, USA), such that DMSO level was not more than 1% (v/v). 

Medium was changed after overnight incubation.  

 

4.2.3. Osteogenic induction 

Primary cultures of hPDLF and hAO between passage 3 to 5 were seeded at a 

density of 20,000 cells/cm2 in six-well plates (TPP, MO, USA). hPDLF were cultured 

in DMEM (Gibco, Life Technologies, NY, USA) containing 10% FBS and 2% 

penicillin-streptomycin, whereas human alveolar osteoblasts (hAO) and human 

calvarial osteoblasts (hCO) were cultured in Medium 199  (Gibco, Life Technologies, 

NY, USA) containing the same. Osteogenic differentiation (n=3) was initiated one 

day after seeding on one half of randomly selected cultures by supplementation with 

200 μM L-ascorbic acid 2-phosphate magnesium (Asc; Sigma, WI, USA), 10mM β-

glycerophosphate (β-GP; Sigma, WI, USA) and 100 nM dexamethasone (Dex; Sigma, 

WI, USA). Three ml of mineralizing culture medium was added per well, and medium 

change was performed every 2 to 3 days. 

 

4.3. Results 

4.3.1. Establishment of hPDLF and hAO cell lines 

Representative images of explants showed that cellular outgrowth was 

observed after 7 days in culture (Fig. 4.1). Confluent cultures were obtained by day 

21. The outgrowth varied between cell lines, depending upon the quantity and size of 

explants. Cells that migrated from hPDL explants, termed hPDL fibroblasts (hPDLF), 

appeared spindle-shaped and were uniformly orientated in subsequent passage. Cells 

that migrated from human alveolar bone chips, termed human alveolar osteoblasts 

(hAO), appeared more polygonal with varying cell orientations. hPDLF and hAO 
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demonstrated population doubling time between 2-3 days (not shown). Cells from 

different individuals were expanded as individual primary cell lines and numbered 

according to the sequence of tissue harvest. Cell morphology and viability were 

monitored at every passage.  

 

4.3.2. hPDLF cell line demonstrated ALP induction 

Dexamethasone, a member of the glucocorticoid class of hormones, promotes 

development of the osteoblast phenotype by selectively modulating expression of 

genes associated with cell growth and differentiation (Shalhoub et al., 1992). A 

physiological concentration of Dex at 10 nM (Probst and Jungermann, 1983) is most 

commonly used in traditional bone (Wong et al., 1990 and references within) and 

hAO cultures (Fernandes et al., 1997; Costa and Fernandes, 2000; Perinpanayagam et 

al., 2006). As for hPDLF, varying dosages of Dex – 10 nM (Lekic et al., 2001; Ohno 

et al., 2002), 100 nM (Arceo et al., 1991; Liu et al., 1997; Hou et al., 2000), 500 nM 

(Matsuda et al., 1993), 5 μM (Ramakrishnan et al., 1995) – have been supplemented 

for osteogenic differentiation. Yet, the effects of Dex dosage on ALP activities of 

hPDLF have not been reported.  

In order to investigate the effects of dexamethasone on ALP activity, 

increasing levels of Dex at 1 nM, 10 nM and 100 nM were supplemented to hPDLF 

and hAO under mineralizing culture over 28 days. Representative data from ALP 

enzymatic assay showed that ALP activity increased significantly under Dex 

supplementation between day 7 to day 21 in hPDLF, followed by a decline to near 

starting levels at day 28 (Fig. 4.2A). ALP level peaked at day 14 under 100 nM Dex, 

and on day 21 for both 10 nM and 1 nM Dex. In hAO, ALP activity increased 

significantly under Dex supplementation at all time points, with the greatest 
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upregulation at day 28 (Fig. 4.2B). A dose-dependent effect was observed for hAO on 

day 14 and day 21, but not for hPDLF even upon repeated assays on two other cell 

lines (not shown).  

Subsequently, 100 nM Dex was chosen on the basis of the greatest ALP 

upregulatory effect, and supplemented to hPDLF derived from ten individuals, four 

males and six females, aged 13-56 yr (25 ± 11, mean ± SD), under mineralizing 

culture. Corresponding hAO from three individuals within the sample pool were used 

for comparison. ALP level of each cell line was represented individually (Fig. 4.3A, 

B). In the absence of Dex, ALP activities of hPDLF ranged typically between 0.05 to 

0.5 IU/mg protein. There was minimal induction at day 14 (Fig. 4.3A). In the 

presence of Dex however, ALP was characterized by a sharp rise in activity up to 2.5 

IU/mg protein followed by a decline, indicative of matrix maturation between day 14 

and day 21 (Owen et al., 1990; Sodek and Cheifitz, 2000). Upregulation was observed 

at day 14 in half of the hPDLF cell lines. Among the remaining half, two cell lines 

showed a delayed increase at day 21, two did not demonstrate any increase, and one 

exhibited an anomalous pattern of ALP showing a steep decline (Fig. 4.3B). As for 

hAO, ALP activities ranged between 0.1 to 0.3 IU/mg protein, with no apparent 

upregulation (Fig. 4.3C). In the presence of Dex, ALP was induced at day 21, 

reaching an activity of 1.7 IU/mg protein (Fig. 4.3D). 

To visualize ALP expression, hPDLF and hAO cell lines were stained for ALP 

enzymatic activity at day 14, corresponding to the time of upregulation (Appendix). 

Representative images showed that hPDLF was moderately stained for ALP under 

phase contrast light microscopy with occasional highly stained cells under normal 

culture (Fig. 4.4A). Under mineralizing culture, hPDLF demonstrated intense 

staining, localized at proliferating cell clusters (Fig. 4.4B), which were potential sites 
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of mineral-like nodule formation (Cho et al., 1992). hAO was lightly stained for ALP, 

and appeared polygonal under normal culture condition (Fig. 4.4C). Under 

mineralizing condition, hAO exhibited intensely-stained cells of varying morphology 

(Fig. 4.4D). 

 

4.3.3. hPDLF cell line demonstrated matrix maturation 

To confirm the extent of matrix maturation, expression of ON, OPN and BSP 

was assayed at day 7, 14 and 21 as a measure of phenotypic differentiation (Knabe et 

al., 2004). Western blot against whole cell lysates of paired hPDLF and hAO, derived 

from three individuals numbered 37, 40, 47 (Fig. 4.3), were performed in 12% gel. 

Each lane was normalized to total protein. ON was detected as a prominent ~38-kDa 

protein (Fig. 4.5A), as previously described in hPDLF (Ramakrishnan et al., 1995). 

OPN, synthesized as 44-kDa and 55-kDa isoforms in osteoblasts (Kasugai et al., 

1991; Nagata et al., 1991), was detected as a single ~44-kDa protein in whole cell 

lysates of hPDLF and hAO at day 7 in 12% gel (Fig. 4.5B), in accordance with results 

obtained with EDTA-extracts of ECM during osteogenic differentiation (Kasugai et 

al., 1992). BSP, with an apparent Mr of 60-80 K on SDS-PAGE (Fisher et al., 1987), 

was detected as ~60-kDa and ~80-kDa proteins in hPDLF and hAO from day 14 

onwards (Fig. 4.5C).  

Chemiluminescence signals of Western blot for three individuals were 

summarized in Table 4.1. Signals were graded as follows: -, negative signal; -/+, weak 

to undetectable signal; +, moderate signal; ++, intense signal. Synthesis of ON was 

increased in hAO and marginally in hPDLF under mineralizing culture at day 7 and 

day 14, with some degrees of downregulation at day 21. An increase followed by a 

decrease in expression of ON was in agreement to its role in directing extracellular 
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matrix remodeling (Kelm et al., 1994) during the proliferative phase. OPN synthesis 

was increased in hAO and hPDLF under mineralizing culture at day 14 and day 21. 

The concomitant elevation of ALP and OPN levels at day 14 was indicative of matrix 

maturation under the influence of Dex (Owen et al., 1990; Sodek and Cheifitz, 2000). 

An increase in BSP synthesis was observed in hAO under mineralizing culture at day 

21, hypothetically leading to the mineralization phase of osteoblastic differentiation 

(Cowles et al., 1998). 

 

4.3.4. hPDLF cell line demonstrate mineral-like tissue formation 

 Multi-layered nodules were observed under mineralizing culture at day 21. 

Four distinct stages based on morphology under phase contrast light microscopy were 

identified during nodule formation (Fig. 4.6), as previously reported (Ramakrishnan et 

al., 1995). hPDLF maintained its spindle-shaped morphology upon reaching 

confluency at day 7 (stage I; Fig. 4.6A), proliferated to form cell clusters (arrow) at 

day 14 (stage II; Fig. 4.6B), and generated multi-layered nodules (arrowhead) at day 

21 (stage III; Fig. 4.6C). hAO demonstrated a similar progression, evidenced by 

confluency at stage I (Fig. 4.6D), cell clustering and production of ECM at stage II 

(Fig. 4.6E), and formation of nodules containing refringent material at cell clusters at 

stage III (Fig. 4.6F).  

To assess the extent of mineral-like matrix formation, hPDLF and hAO cell 

lines from the ten individuals were cultured in the presence of 100 nM Dex up to day 

28. In hPDLF, two patterns of mineral-like matrix formation were observed as 

previously reported (Liu et al., 1997; Declercq et al., 2005). The first was “diffuse” 

type, characterized by flat and randomly dispersed foci (Fig. 4.7A). The second was 

“nodular” type, characterized by three-dimensional nodule formation associated with 
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regions of cell and matrix condensation (Fig. 4.7B). In hAO, varying degrees of 

“nodular” mineral-like tissue were observed, with highly mineralized foci observed 

for hAO47 (Table 4.2, Fig. 4.7C). The presence of minerals was verified by von 

Kossa staining that distinguishes calcium as inorganic phosphate (Lillie and Fullmer, 

1976). The morphology and extent of mineral-like tissue formation were documented 

for each cell line (Appendix). Amorphous brown-black precipitates overlying bright 

brown spots were detected under phase contrast light microscopy, indicative of 

mineral-like nodules and osteoids, respectively (Fig. 4.7D-F). Under no circumstance 

was positive von Kossa reaction obtained for control cultures (not shown). 

 Ten hPDLF and three corresponding hAO cell lines were categorized 

according to the extent and pattern of mineral-like nodule formation (Liu et al., 1997; 

Declercq et al., 2005). Von Kossa reaction was graded as follows: -, negative 

staining; -/+, weak to undetectable staining; +, moderate staining; ++, intense staining 

(Appendix, Table 4.2). In hPDLF, five out of 10 cell lines were moderately- and 

intensely-stained by von Kossa, consisting of “diffuse” and “nodular” types. Three 

cell lines were partially- or weakly-stained, demonstrating bright brown spots 

characteristic of osteoids. The remaining two cell lines did not show any signal. In 

hAO, two out of three cell lines exhibited positive von Kossa reaction in the form of 

“nodular” type foci, while the remaining one cell line demonstrated weak staining 

with osteoids stained bright brown.  

To test whether there was a correlation between ALP activity and mineral-like 

nodule formation, ALP levels were plotted against von Kossa reaction (Fig. 4.8). 

Negative von Kossa staining was correlated with a low ALP activity of less than 0.5 

IU/mg protein at day 21. Weak to partial staining was correlated with an intermediate 

ALP activity of up to 1.0 IU/mg protein. With the exception of hPDLF48 which 
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exhibited an early onset of mineralization (Fig. 4.3B, Table 4.2), the appearance of 

moderate to intense von Kossa staining was correlated with a high ALP activity of at 

least 1.0 IU/mg protein at day 21. When ALP activities at day 7 and 14 were plotted 

against von Kossa reaction, positive correlations were not seen (not shown).  

 

4.5. Discussion 

4.5.1. Characterization of hPDLF and hAO cell lines  

hPDLF cell line was successfully established from approximately 80% of 

harvested tissue by explant culture. Similarly, hAO cell line was established by 

explantation culture, as cited (Fernandes et al., 1997; Nefussi et al., 1998; Costa and 

Fernandes, 2000; Perinpanayagam et al., 2006). It has been shown previously that 

PDL explantation technique produced a mixture of fibroblast-like and epithelial cells 

derived from the epithelial rests of Malassez (ERM), whereas trypsinization of teeth 

yielded exclusively fibroblast-like cells (Brunette et al., 1976; Blomlof and Otteskog, 

1981). Initial experiments with trypsinization resulted in individual cells and tissue 

debris in suspension which did not attach (now shown). This was similar to earlier 

findings which reported very poor plating efficiency (0.024%) from trypsinized PDL 

cells (Brunette et al., 1976). Moreover, fibroblast-like cells readily outgrow epithelial 

cells and dominate in primary culture (Ragnarsson et al., 1985). With serial 

passaging, the eventual hPDL cell population was predominantly fibroblastic.  

The osteogenic potential of hPDLF cell line obtained was evaluated in terms 

of ALP activity (Lomri et al., 1988) after Dex (from 1 nM to 100 nM) 

supplementation. This was performed in comparison with hAO for two reasons. 

Firstly, patient-to-patient variation can be circumvented by obtaining hAO cell line 

from the same individual. Secondly, hAO is developmentally related to hPDLF as the 
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PDL and alveolar bone are both derived from the ectomesenchyme (Ten Cate, 1997; 

Cho and Garant, 2000), whereas skeletal bone, for example, is derived from the 

mesoderm (Reddi, 1981; Olsen et al., 2000). When increasing levels of Dex between 

1 nM to 100 nM were supplemented under mineralizing culture, Dex resulted in a 

dose-dependent response in hAO (Fig. 4.2B), in agreement with previous findings in 

osteoblast-like cells (Majeska et al., 1985; Green et al., 1990; Namkung-Matthai et 

al., 1998). However, this was not observed for hPDLF (Fig. 4.2A). A recent 

publication at the time of writing reported a dose-dependent response under serum-

free conditions in hPDLF (Hayami et al., 2007). Hence, it was speculated that the 

above discrepancy was due to the compounding effects of serum factors such as 

cytokines (Hayami et al., 2007) and the intrinsic heterogeneity (i.e. mixture of osteo-

progenitors and fibroblasts) of hPDLF (Lekic et al., 1997; Phipps et al., 1997).  

Protein synthesis of ON, OPN and BSP, representing proliferative, maturation 

and mineralization phases respectively, was studied by Western blot analysis for three 

pairs of hPDLF and hAO cell lines derived from the same individual (Fig. 4.5) and 

summarized in Table 4.1. High levels of ON mRNA and protein are associated with 

developing bones and teeth (Mundlos et al., 1992), and with cementum and bone 

during periodontal healing and remodeling (Takano-Yamamoto et al., 1994; Matsuura 

et al., 1995). Expression of ON exhibits a specific induction by Dex in hAO obtained 

in this study (Fig. 4.5A, Table 4.1), but was less overt in hPDLF, paralleled by results 

obtained with bone marrow stromal cells which consist of heterogeneous mixture of 

cell lineages including osteoblastic cells (Cheng et al., 1994). Synthesis of OPN was 

increased under mineralizing culture (Fig. 4.5B), as demonstrated for hAO (Xiao et 

al., 2004) and hPDLF (Chien et al., 1999). Whereas the 55-kDa form predominates in 

the conditioned medium, the 44-kDa form is associated with the mineralized matrix 
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(Kasugai et al., 1992). The report of OPN as 61-kDa and 67-kDa forms in rat PDLF 

medium (Ramakrishnan et al., 1995), is attributed to the anomalous migratory 

behaviour of OPN on SDS-PAGE of varying acrylamide content (Nagata et al., 

1991). Several phenotypes in fetal rat calvarial osteoblasts based on OPN expression 

were observed: OPN-negative cells enriched in osteogenic precursors, differentiating 

osteogenic cells that secrete OPN, and migrating stromal cells characterized by 

perimembranous OPN (Zohar et al., 1997). The expression of OPN under normal 

culture of hPDLF, shown similary by Ivanovski et al. (2001), could be explained by 

the fact that proliferating osteogenic cells, including periodontal ligament cells, 

express intracellular OPN associated with cell migration (Zohar et al., 2000). The 

increase in BSP synthesis under mineralizing culture has been reported in hAO (Xiao 

et al., 2004) and hPDLF (Chien et al., 1999). The absence of such an increase in 

hPDLF in the given timeframe of 21 days could be indicative of a delayed 

upregulation, as BSP appeared to be produced primarily from day 21 onwards (Fig. 

4.5). Whereas BSP was identified as a ~60-kDa protein in osteoblasts (Nagata et al., 

1991; Kasugai et al., 1992), it was identified as a ~78-kDa protein in rat PDLF 

medium (Ramakrishnan et al., 1995). The extensive glycosylation of BSP is the likely 

source of heterogeneity observed (Ganss et al., 1999). BSP, unique to mineralized 

tissues, is expressed at high levels coincident with de novo formation of bone (Chen et 

al., 1992) and cementum (MacNeil et al., 1996), but supposedly absent from PDL 

proper (Matsuura et al., 1995). However, BSP mRNA transcript, though reported 

absent in PDLF by Northern blot (Nohutcu et al., 1996), was demonstrated by RT-

PCR in PDLF under routine culture (Ivanovski et al., 2001). The presence of BSP in 

Western blot could be attributable to a very low baseline expression of BSP in hPDLF 

in vitro.  
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Primary hPDLF established by explant culture in this thesis produced BSP as 

well as the 44-kDa form of OPN under both normal and mineralizing culture. This 

could be attributable to two sources. Firstly, osteo-progenitors reside perivascularly in 

the PDL (McCulloch, 1995; Lekic and McCulloch, 1996), and was postulated to be 

obtained during explant culture (Ragnarsson et al., 1985). Secondly, osteoblast-like 

cells if present were thought to be derived from cementum. OPN and BSP are 

expressed by cementoblasts during the early stages of tooth root development, and 

also on mature fully erupted root surfaces (MacNeil et al., 1995; D'Errico et al., 1997; 

Sasano et al., 2001).  

 

4.5.2. Analysis of ALP activity and mineralization potential 

The most important criterion for the characterization of the osteoblastic 

phenotype is the ability to form a mineralized collagenous matrix. The primary 

hPDLF and hAO cell lines established herein retained their ability to initiate mineral-

like deposition upon osteogenic induction. Similar to those observed in other bone 

cell systems (Bellows et al., 1992; Gundle et al., 1995; Stein et al., 1996), mineral-

like nodule formation began to occur following maximal ALP activity (Fig. 4.6). This 

mineral-like formation was unlikely a result of biochemical precipitation of calcium 

phosphate, due to firstly, the presence of underlying osteoids observed as bright 

brown spots in the ECM (Fig. 4.7D-F) and secondly, the absence of von Kossa stain 

in control cultures. 

ALP activity was identified in association with osteogenesis and 

cementogenesis (Groeneveld et al., 1995), in which a localized increase in inorganic 

phosphate from ALP hydrolysis leads to an initiation of mineralization in the presence 

of physiological concentrations of Ca2+ (Stein et al., 1996) (Fig. 4.9). In cloned 
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hPDLF populations, it has been found that a propensity to produce mineral-like tissue 

in vitro varied in direct proportion to the level of ALP expression, determined by the 

percentage of positively stained cells (Liu et al., 1997). In this study, it was further 

demonstrated that a direct correlation between mineral-like tissue formation and ALP 

expression, in terms of enzymatic activity, exist in primary hPDLF and hAO cell lines 

(Fig. 4.8). This correlation was only obtained for ALP activity on day 21, as 

mineralization occurs in the stationary phase, i.e. day 14 to day 21, following 

maximal ALP induction in hAO (Fernandes et al., 1997).  

The occurrence of “diffuse” and “nodular” mineral-like tissue described in 

Fig. 4.7 was similarly reported in hPDLF clones (Liu et al., 1997) and rat osteoblastic 

cells (Declercq et al., 2005), the biological reason behind unknown. “Nodular” type 

was found in 15% of hPDLF clones (Liu et al., 1997), and rat bone marrow, calvarial 

and early-passage periosteal derived cells (Declercq et al., 2005). On the other hand, 

“diffuse” type was found in 85% of hPDLF clones (Liu et al., 1997) and late-passage 

periosteal derived cells and UMR-106 cells (Declercq et al., 2005). In this study, only 

five out of the ten hPDLF cell lines examined yielded adequate mineral-like tissues to 

be categorized; it is premature to arrive at a statistically significant representation of 

mineral-like tissue pattern in hPDLF. It is therefore worthwhile to expand the sample 

size in future studies, and to adopt a variety of biophysical techniques such as 

transmission electron microscopy and X-ray microanalysis to determine the 

ultrastructural morphology of the mineral-like tissue and the composition of calcium 

and phosphorus within.   
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4.5.3. Patient-to-patient variation 

Thus far, it is evident that primary hPDLF cell line established in this study 

possessed osteogenic potential. However, a distinct cell line-to-cell line variation 

could be seen in terms of ALP activity (Fig 4.3), synthesis of bone-matrix proteins 

(Fig. 4.5), and mineral-like tissue formation (Table 4.2). This could be a result of 

extrinsic factors such as serial passaging as described by Fernandes et al. (1997), 

and/or intrinsic biological differences amongst patients as described by Arceo et al. 

(1991), Carnes et al. (1997) and Ivanovski et al. (2001). 

It was reported that subcultured osteoblasts remained competent to express the 

developmental sequence during osteoblastic differentiation, but a lengthening of the 

time course was observed (Owen et al., 1990). Specifically, the effect of Dex on ALP 

activity is dependent on the differentiation status of the cells (Stein et al., 1996). For 

instance, hAO at passage 1 achieved maximal ALP level between day 14 to day 18, 

after which ALP activity dropped significantly (Costa and Fernandes, 2000; 

Fernandes et al., 1997). At passage 4 onwards, hAO exhibited a delayed ALP 

induction at day 21, with a concomitant decrease in enzyme activity and 

mineralization potential (Fernandes et al., 1997). Indeed, the basal ALP activity of 

hAO cell line between passage 3 to 5 in this study at 0.08 to 0.32 IU/mg protein (Fig. 

4.3C) was lower than the reported level of 1.4 ± 0.2 IU/mg protein in early passages 

of mouse trabecular osteoblasts (Lomri et al., 1988).  

However, the same was not observed for hPDLF cell line. The basal ALP 

activity of hPDLF at 0.05 to 0.66 IU/mg protein (Fig. 4.3A) was within the reported 

range (Carnes et al., 1997). Moreover, ALP upregulation for the majority of the 

hPDLF cell lines was not delayed (Fig. 4.3B). Furthermore, a strong correlation in 

osteogenic potential between paired hPDLF and AO cell lines from the same 
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individual was obtained. For example, hPDLF/hAO40 showed low, hPDLF/hAO37 

moderate, and hPDLF/hAO47 high osteogenic potential as seen from the various 

criteria examined. Hence, while hAO cell line appeared to be sensitive to a loss of 

phenotypic differentiation from serial passaging, a delay and/or reduction in 

osteogenic potential in some hPDLF and hAO cell lines were not solely due to 

passaging effects, but also intrinsic biological differences.  

In summary, this work demonstrated the feasibility of establishing hPDLF and 

hAO cell lines in vitro, and highlighted the importance of characterization in 

establishing the potential application of these cells in periodontal regeneration for 

successful clinical outcome. Following this initial establishment of primary hPDLF 

and hAO cell lines, characterization hAO was undertaken separately and in greater 

detail by another Ph.D. student in the laboratory (Zhou, 2006).  
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              Day 7 
 
 
 
 
 hPDLF 
 
 
 
 
 
 
 hAO 
   

Day 21 P1 

 
 
 
Figure 4.1. Representative images of cellular outgrowth and morphology of 
hPDLF and hAO. Cellular outgrowth was observed after 7 days in culture, and 
confluent cultures were obtained at day 21. hPDLF at passage 1 (P1) appeared 
spindle-shaped. hAO at P1 appeared more polygonal. Cells from different patients 
were expanded as individual cell lines, numbered according to sequence of tissue 
harvest. 
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Figure 4.2. Effects of dexamethasone (Dex) on the alkaline phosphatase (ALP) 
activities of hPDLF and hAO. Representative data from ALP enzymatic assay (n=3) 
when increasing concentrations of Dex rang ing from 1 nM to 100 nM were 
supplemented to (A) hPDLF and (B) hAO under mineralizing culture over 28 days. 
(A) ALP activity increased significantly under Dex supplementation between day 7 to 
day 21 in hPDLF, with the earliest peaked upregulation at day 14 by 100 nM Dex, 
followed by a decline at day 28. (B) ALP activity increased significantly under Dex 
supplementation in hAO at all time points, with the greatest upregulation at day 28. A 
dose-dependent effect was observed for hAO on day 14 and day 21. Values were 
expressed as means ± SD. *P < 0.05; **P < 0.01; ***P<0.001. 
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Figure 4.3. ALP activities of hPDLF and hAO cultured in the absence and 
presence of 100 nM Dex. Subsequently, 100 nM Dex was supplemented to hPDLF 
(n=3) derived from ten individuals, four males and six females, aged 13-56 yr (25 ± 
11, mean ± SD) under mineralizing culture. Corresponding hAO (n=3) from three 
individuals were used for comparison. (A) In the absence of Dex, there was minimal 
ALP induction in hPDLF. (B) In the presence of Dex however, ALP was strongly 
upregulated at day 14 and day 21 in half and one-fifth of the hPDLF cell lines, 
respectively. As for hAO, (C) there was minimal induction in the absence of Dex, in 
contrast to a delayed increase at day 21 in two of the three hAO cell lines in the 
presence of Dex. 
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Figure 4.4. Representative images of (A-B) hPDLF and (C-D) hAO after staining 
for ALP under normal and mineralizing cultures, respectively. (A) hPDLF was 
moderately stained for ALP with occasional highly stained cells under normal culture. 
(B)  Under mineralizing conditions, hPDLF demonstrated intense staining, localized 
at cell clusters. (C) hAO was lightly stained for ALP, and appeared polygonal under 
normal culture. (D) Under mineralizing culture, hAO exhibited intensely-stained cells 
of varying morphology.  
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Figure 4.5. Western blot analysis of (A) osteonectin (ON), (B) osteopontin (OPN) 
and (C) bone sialoprotein (BSP) in whole cell lysates of paired hPDLF and hAO, 
derived from three individuals, under normal and mineralizing culture. Sample 
loading in each lane was normalized to total protein. ON was detected as a prominent 
~38-kDa protein. OPN was detected as a single ~44-kDa protein at day 7. BSP was 
detected as ~60-kDa and ~80-kDa proteins in PDLF and hAO from day 14 onwards. 
Lane 1, hPDLF40 -Dex; lane 2, hPDLF40 +Dex; Lane 3, hAO40 -Dex; lane 4, 
hAO40 +Dex; Lane 5, hPDLF37 -Dex; lane 6, hPDLF37 +Dex; Lane 7, hAO37 -Dex; 
lane 8, hAO37 +Dex; Lane 9, hPDLF47 -Dex; lane 10, hPDLF47 +Dex; Lane 11, 
hAO47 -Dex; lane 12, hAO47 +Dex. 
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ON hPDLF -Dex hPDLF +Dex hAO -Dex hAO +Dex 
Day 7 + + + + 
Day 14 -/+ + + +/++ 
Day 21 -/+/++ +/++ -/+ -/+/++ 

 
OPN hPDLF -Dex hPDLF +Dex hAO -Dex hAO +Dex 
Day 7 -/+ -/+ -/+ -/+ 
Day 14 -/+ + -/+ +/++ 
Day 21 -/+ + -/+ +/++ 

 
BSP hPDLF -Dex hPDLF +Dex hAO -Dex hAO +Dex 
Day 7 - - - - 
Day 14 -/+ -/+ -/+ -/+ 
Day 21 + + -/+ +/++ 

 
Table 4.1. Summary of western blot results (Fig. 4.5) of osteonectin (ON), 
osteopontin (OPN) and bone sialoprotein (BSP) synthesis by paired hPDLF and 
hAO, derived from three individuals, under normal and mineralizing culture. 
Synthesis of ON was increased in hAO and marginally in hPDLF under mineralizing 
culture at day 7 and day 14. Levels of ON at day 21 was variable, with some degrees 
of downregulation. OPN synthesis was increased in hAO and hPDLF under 
mineralizing culture at day 14 and day 21. An increase in BSP synthesis was observed 
in hAO under mineralizing culture at day 21. Western blot signal was graded as 
follows: -, negative signal; -/+, weak to undetectable signal; +, moderate signal; ++, 
intense signal. 
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 Day 7 Day 14 Day21  
 A

D E 

B

F 
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Figure 4.6. Representative morphology of hPDLF (A-C) and hAO (D-F) at stage 
I, II and III of nodule formation, respectively. hPDLF (A) appeared spindle-shaped 
at stage I, (B) proliferated to form cell clusters (arrow) at stage II, and (C) generated 
multi-layered nodules (arrowhead) at stage III. hAO (D) reached confluency at stage I, 
(E) produced ECM at cell clusters at stage II, and (F) formed nodules containing 
refringent material at cell clusters at stage III.  
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Figure 4.7. Mineral-like tissue formation in hPDLF and hAO under mineralizing 
culture, as observed (A-C) before and (D-F) after von Kossa staining at day 28. 
hPDLF gave rise to two patterns of mineral-like tissue formation, namely (A) diffuse 
type, characterized by flat and randomly dispersed foci, and (B) nodular type, 
characterized by three-dimensional nodule formation at regions of cell and matrix 
condensation, the latter of which was observed in (C) hAO. (D-F) Amorphous brown-
black precipitates overlying bright brown spots were observed under von Kossa 
staining, indicative of mineral-like nodules and osteoids, respectively.  
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Source Gender Age Tooth Von Kossa 

stain 
Type / Comments 

hPDLF54 F 22 Third molar - NA 
hPDLF1 F 56 Third molar - NA 
hPDLF34 F 25 Third molar -/+ NA, osteoid 
hPDLF40 M 20 Third molar -/+ NA, osteoid 
hPDLF42 M 25 Third molar -/+ NA, osteoid 
hPDLF35 F 13 Premolar + Diffuse 
hPDLF37 M 21 Third molar + Diffuse 
hPDLF41 M 20 Third molar + Diffuse 
hPDLF48 F 23 Third molar ++ Nodular, early 

mineralization 
hPDLF47 F 23 Third molar ++ Nodular 
hAO40 M 20 Third molar -/+ NA, osteoid 
hAO37 M 21 Third molar + Nodular 
hAO47 F 23 Third molar ++ Nodular 
 
Table 4.2. Biodata of donors, categorized by the pattern of mineral-like nodule 
formation at day 28 in hPDLF and hAO. In hPDLF, five out of 10 cell lines were 
moderately- and intensely-stained by von Kossa. Three were partially- or weakly-
stained, demonstrating bright brown spots. The remaining two did not show any 
signal. In hAO, two out of three cell lines exhibited positive von Kossa reaction in the 
form of mineral-like foci, while the remaining one cell line demonstrated weak 
staining and bright brown spots. Von Kossa reaction was graded as follows: -, 
negative staining; -/+, weak to undetectable staining, +, moderate staining; ++, intense 
staining. 
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Figure 4.8. Correlation between ALP activity and mineral-like nodule formation 
in hPDLF and hAO. ALP activities at day 21 were plotted against von Kossa 
reaction (Table 4.2). Negative staining was correlated with a low ALP activity of less 
than 0.5 IU/mg protein. Weak to partial staining was correlated with an intermediate 
ALP activity of up to 1.0 IU/mg protein. With the exception of hPDLF48 which 
exhibited an early onset of mineralization (Fig. 4.3B, Table 4.2), the appearance of 
moderate to intense staining was correlated with a high ALP activity of at least 1.0 
IU/mg protein.  
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Figure 4.9. Schematic diagram showing the metabolism of ATP and AMP, and 
the role of ALP on mineralization. ATP is hydrolyzed by nucleoside triphosphate 
pyrophosphohydrolase (NTPPPH) to AMP and inorganic pyrophosphate (PPi), which 
are further degraded to yield inorganic phosphate (Pi) by ALP. The inorganic 
phosphate forms apatite in the presence of physiological concentrations of calcium 
(Ca2+). An excess of PPi results in the inhibition of apatite deposition. 
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5. COLLAGEN SYNTHESIS DURING EXPANSION OF PRIMARY hPDLF IN 

VITRO  

 

5.1. Background 

The extracellular matrix (ECM) is composed of structural proteins, 

proteoglycans, growth factors and matricellular proteins. Whereas matricellular 

proteins serve as biological modulators by regulating cell-matrix interactions and cell 

function, structural proteins such as collagens contribute to the structural stability of 

the ECM (Bornstein and Sage, 2002).  

In Chapter 4, we characterized the osteogenic potential of primary hPDLF cell 

lines established by explant culture in terms of the synthesis of bone-matrix proteins 

and mineral-like tissue formation. In this chapter, we seek to describe the collagen-

synthetic capability of the cells, as collagens are the major constituent of the 

periodontal structures. The structural ECM, together with matricellular proteins and 

soluble factors, presumably act in concert to determine specific downstream effects on 

gene expression and cellular phenotype. 

As described in Chapter 2, the PDL is characterized by fibrils of type I and III 

collagen, as well as minor collagens such as type V, VI, XII and XIV (Table 2.1). 

PDL cells in vivo exhibit a collagen-synthetic pattern resembling that of embryonic 

connective and wound-healing tissue, characterized by high collagen turnover, 

proportion of collagen III and dehydrodihydroxy-lysinonorleucine cross-link (Pearson 

et al., 1975; Lekic and McCulloch, 1996; Beertsen et al., 1997). However, a lack of 

phenotypic stability in subcultured monkey PDLF was previously reported in vitro 

(Limeback and Sodek, 1979).  
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Collagen metabolism, the combined process of synthesis and turnover, is 

dependent on intrinsic factors such as cell isolation (Weber et al., 1986), cell cycle 

and cellular age (Mayne et al., 1976), as well as extrinsic factors such as ascorbic acid 

(Asc) (Peterkofsky, 1972), serum (Narayanan and Page, 1977) and medium 

composition (Booth et al., 1980). Attempts to correlate patterns of collagen synthesis 

in vitro and in vivo are hampered by such extrinsic factors. During culture expansion, 

cells were supplemented with fetal bovine serum (FBS) which has been shown to 

modulate collagen expression. In particular, type III collagen synthesis in human 

gingival fibroblasts peaked at 10% serum, but the proportion of collagens over total 

protein synthesis was correspondingly reduced (Narayanan and Page, 1977). 

Furthermore, platelet-derived growth factor present in serum was found to upregulate 

type V and concomitantly downregulate type III collagen in human gingival 

fibroblasts (Narayanan and Page, 1983).  

For successful tissue engineering of the PDL, it is essential that hPDLF 

produce a collagenous matrix in vitro. Hence, it was hypothesized that hPDLF 

retained collagen-synthetic capability during 21-day culture expansion under 10% 

serum. Three cell lines established previously (Chapter 4) were studied under serum 

deprivation and culture expansion under the following conditions: i) 0.2% FBS, ii) 

0.2% FBS + 200 μM Asc, iii) 10% FBS, iv) 10% FBS + 200 μM Asc. To ensure the 

consistency of serum factors such as growth factors, hormones and metabolites, serum 

from a single batch was used. Pepsin digestion of conditioned medium and whole cell 

extracts, in combination with quantitative ELISA for C-terminal propeptide of 

procollagen I (PICP) and immunofluorescence, were conducted to determine collagen 

synthesis and deposition in vitro. 
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5.2. Materials and methods 

5.2.1. Collagen induction 

Primary hPDLF cell lines between passage 3 to 5, derived from third molars of 

three females aged 21-23 yr (22 ± 1, mean ± SD), were seeded into tissue culture 

plates (TPP, MO, USA) at a density of 10,000 cells/cm2, and incubated in DMEM 

(Gibco, Life Technologies, NY, USA) containing 10% FBS and 2% penicillin-

streptomycin at 37 ºC and 5% CO2. After cell attachment was achieved, hPDLF were 

rinsed thrice with PBS and incubated with medium containing a descending series of 

serum concentrations, i.e. 2%, 0.5% and 0.2% FBS, 3 hr each. Cells were then starved 

in medium containing 0.2% FBS for 24 hours to achieve cell cycle arrest at the G0/G1 

phase, as described (Lee and Piedrahita, 2002). Subsequently, hPDLF (n=3) were 

subjected to four culture conditions: i) 0.2% FBS, ii) 0.2% FBS + 200 μM Asc, iii) 

10% FBS, iv) 10% FBS + 200 μM Asc.  

0.2% FBS was the level commonly cited for growth factor supplementation 

studies in which the effects of serum factors were negligible (Matsuda et al., 1992; 

Haase et al., 1998; Ivanovski et al., 2001). Two hundred μΜ  ascorbic acid 2-

phosphate magnesium salt (Asc; Sigma, MI, USA), a thermo-stable phosphate 

derivative of L-ascorbic acid (Nomura et al., 1969), was added to mimic the level 

present in gingival crevicular fluid (Meyle and Kapitza, 1990). In addition, 350 μM of 

L-proline (Sigma), a precursor of collagen synthesis (Bornstein and Traub, 1979), was 

added to ensure that the incorporation of proline was not rate-limiting.  

The day of collagen induction was designated as day 0. Fresh Asc aliquots 

(100X stock in DMEM at -20 ºC) were added at medium change every 3 to 4 days, 

and approximately 500 μl of medium was added per well in 24-well plates. 
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Experiments were performed at day 1, 7, 14 and 21. To ensure the consistency of 

serum factors, FBS from a single batch was used. 

 

5.2.2. Reverse transcription polymerase chain reaction (RT-PCR)  

Total cellular RNA from six-well-plate cultures (n=3) was extracted using 

Trizol reagent (Invitrogen, CA, USA) according to manufacturer’s instructions. RNA 

was quantified with a NanoDrop spectrophotometer (NanoDrop, Delaware, USA). 

Optical density was read at 260 nm and 280 nm with ND-100 V3.1.0 software. Total 

yield in μg/ml was obtained by multiplying the 260 nm reading x 10 x 40, whereas 

purity was determined from the ratio of 260 nm / 280 nm. RNA integrity was 

confirmed by denaturing agarose gel electrophoresis (Sigma). Agarose gels were cast 

by dissolving 1% (w/v) ultra-pure electrophoresis-grade agarose (Sigma) in Tris 

acetate EDTA (TAE) buffer (0.04M Tris acetate, 1 mM EDTA) supplemented with 

0.5 μg/ml ethidium bromide (Sigma). Samples were mixed with an appropriate 

amount of a 6X DNA gel loading dye (1X TAE, 30% (v/v) glycerol, 0.25% (w/v) 

bromophenol blue, 0.25% (w/v) xylene cyanol FF) and run at 80-100 voltage on 

electrophoresis machine (Bio-Rad Laboratories, CA, USA) alongside 1kb DNA 

ladder (Promega, WI, USA). Gels were viewed using a UV transilluminator (UVItec 

Limited, Cambridge, UK). Total RNA was temporarily stored at -80 °C until use. 

Complementary DNA (cDNA) was synthesized from 1 µg of total RNA with 

moloney murine leukaemia virus reverse transcriptase (M-MLV RT, Promega) 

according to manufacturer’s instructions. cDNA was temporarily stored at -20 °C 

before being used as templates for subsequent PCR amplification. PCR was 

performed using 2µl of cDNA product with PCR kit (Promega), according to 
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manufacturer’s instructions. Primer pairs used (1st BASE, Singapore) were presented 

in Table 5.1. 

PCR samples were placed in a thermocycler (MiniCyclerTM, MJ Research, 

MA, USA) and subjected to one cycle of 95 °C for 2 min, then 25 cycles of 

denaturation at 95 °C for 30 sec, annealing at 60°C for 30 sec, and extension at 72°C 

for 1 min. A final single cycle of 10 min at 72°C was performed. Amplified products 

were separated by 1% agarose gel electrophoresis for verification of size and quality.  

 

5.2.3. Collagen I assay 

Type I collagen synthesis was determined from the amount of secreted C-

terminal propeptide of procollagen I (PICP) in triplicate samples by ELISA (Metra 

Biosystems, CA, USA) (Melkko et al., 1990). Briefly, 24-hr-conditioned medium was 

collected, supplemented with protease inhibitor cocktail (Section 3.6; Calbiochem, 

CA, USA) and stored at -80 °C. Samples were diluted 10-fold prior to use and 

assayed according to manufacturer’s instructions. All steps were performed at room 

temperature. Fresh culture medium containing 0.2% and 10% FBS was tested to 

correct for the presence of background PICP levels. 

 

5.2.4. SDS-PAGE 

For the separation of collagens in pepsin-digested medium and cell layer 

fractions by SDS-PAGE, polyacrylamide gels (3% stacking and 5% resolving) were 

cast using 30% acrylamide/bis (37:5:1) solutions, TEMED (Bio-Rad Laboratories) 

and 10% (w/v) APS (Invitrogen). Equal proportions of medium fractions (60 μl out of 

a total 500 μl) and cell layer fractions (30 μl out of a total 250 μl) were denatured for 

5 min at 90 °C in Laemmli’s non-reducing sample buffer (156 mM Tris-HCl [pH 6.8], 
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5% (w/v) SDS, 50% (v/v) glycerol, 0.5% (w/v) bromophenol blue), and loaded 

alongside purified human type I collagen standard (Sigma) and Precision Plus protein 

pre-stained standards (Bio-Rad Laboratories). Fixed amounts of protein standard were 

loaded as internal controls for semi-quantitative densitometry. Gel electrophoresis 

was performed using the Hoefer SE 400 Electrophoresis System with heat exchanger 

(Hoefer, CA, USA) in Tris-glycine buffer (25 mM Tris, 192 mM glycine, 0.1% (w/v) 

SDS). Electrophoresis was run at a constant current of 30 mA and 60 mA for 3% 

stacking and 5% resolving gels respectively, until the dye front reached the bottom of 

the gel.  

For the separation of pepsin-digested and intact collagens in 3-8% gradient 

NuPAGE® Tris-acetate gels (Invitrogen), please refer to section 3.8.1. 

 

5.2.5. Immunofluorescence 

Cells, seeded at a density of 10,000 cells/cm2 on LabTek chamber slides 

(Nunc, Inc., IL, USA), were rinsed with sterile PBS, and fixed with absolute methanol 

at -20 °C for 10 min. After air-drying, blocking was performed with 5% bovine serum 

albumin (w/v) (Sigma) and 1% goat serum (v/v) (Invitrogen) in PBS for 2 h at room 

temperature. Cells were incubated with primary antibodies, namely anti-collagen I 

(1:5000; Sigma), anti-collagen III (1:500; Chemicon, CA, USA), anti-collagen XII 

and XIV (1:500) overnight in a humidified chamber at 4 °C. The antibodies against 

collagen XII and XIV were kind gifts from Dr Greg Lunstrum (Shriners Hospital for 

Children, OR, USA). For double labelling of collagens and viewing under Confocal 

laser scanning microscope, please see section 3.12 and 3.15 respectively. Singly-

labelled samples were used as internal controls.  
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5.3. Results 

5.3.1. Asc supplementation led to increased collagen synthesis  

Cell proliferation, as reflected by the amount of total dsDNA, was 

approximately 4-fold higher under 10% serum (p<0.001) (Fig. 5.1A). However, it was 

insignificantly different in the presence of Asc up to day 14. A spike in the quantity of 

dsDNA at day 21 under Asc supplementation could be attributed to the incomplete 

disaggregation of cells in post-confluent cultures, leading to an over-estimation of 

dsDNA. In contrast, total protein synthesis was significantly increased under 10% 

serum and Asc from as early as day 1 (<0.05) (Fig. 5.12B). The fold increase in 

protein (mean ± SD) in the presence of Asc over 21 days was 1.4 ± 0.3 and 1.3 ± 0.2 

at 0.2% serum and 10% serum, respectively.  

Gene expression of three representative collagens in the PDL, namely types I, 

III and XII, was verified by their respective α1 chains using RT-PCR (Fig. 5.2). Asc 

supplementation resulted in an increase in the expression of α1 (I) and α1 (III) from 

day 7 onwards, and of α1 (XII) from day 14 onwards. The coordinated increase in 

steady-state levels of both collagen α1 (I) and α1 (III) mRNA transcripts was similar 

to previous finding in human dermal fibroblasts (Phillips et al., 1992). A lack of 

increase at day 1 showed that a lag of 24 h was required for the induction of collagen 

transcripts, as similarly reported for tendon cells and chondrocytes (Lyons and 

Schwarz, 1984; Sullivan et al., 1994). Whereas collagen expression was similar over 

time under 10% FBS, there was a drastic decrease in overall mRNA synthesis by day 

14 under 0.2% FBS, corresponding possibly to a state of cell quiescence as indicated 

by the low levels of dsDNA (Fig. 5.1A). Hence, only results at day 1 and day 7 were 

presented for 0.2% FBS.  

 
 

83



Collagen synthesis during expansion of hPDLF  in vitro 

C-terminal propeptide of procollagen I (PICP) was quantified in 24-h- 

conditioned medium to provide a stoichiometric representation of type I collagen 

synthesis in vitro (Melkko et al., 1990). PICP values between 200-300 ng/ml were 

obtained from 2 x104 primary hPDLF seeded in 24-well plates, similar to the values 

reported for primary hOB (Martinez et al., 1998). Collagen I synthesis, as the level of 

PICP normalized to dsDNA, was significantly higher under 0.2% serum (p<0.001) 

and under supplementation with Asc (p<0.05) as early as day 1 (Fig. 5.3A). This early 

increase in collagen polypeptide synthesis was in agreement to the notion that the 

primary effects of Asc are post-transcriptional (Rowe and Schwarz, 1983; Sullivan et 

al., 1994). Collagen synthesis decreased gradually under 0.2% serum, but drastically 

under 10% serum at day 7 when cell confluency was achieved (Appendix), reaching a 

steady state at day 14. This down-regulation was also described in human dermal 

fibroblasts within a pericellular (Jukkola et al., 1991) or three-dimensional 

collagenous matrix (Mauch et al., 1988). The fold increase in collagen synthesis due 

to Asc supplementation was 1.6 ± 0.3 and 1.6 ± 0.5 (mean ± SD) at 0.2% serum and 

10% serum, respectively.  

ALP activity was significantly higher under 0.2% serum (p<0.001) at all time 

points (Fig. 5.3B). ALP level peaked at day 14 under 0.2% FBS + Asc when cells 

were approaching confluency (Appendix), and thereafter declined. In contrast, ALP 

level under 0.2% FBS continued to rise. Under 10% serum, ALP activity was 

characterized by a drop at day 7 (p<0.01), followed by an increase at day 14 (p<0.05) 

in both the presence and absence of Asc. This was representative of ALP upregulation 

as previously described (Chapter 4). Unlike collagen I synthesis, ALP activity was not 

significantly higher in the presence of Asc.  
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5.3.2. Serum modulated type III and V collagen, as well as fibre morphology  

Pepsin solubilises collagen by cleaving the intermolecular cross-links in the 

telopeptides, while leaving the triple-helical regions intact (Bailey et al., 1970). 

Fibrillar collagens thus solubilized were identified through the characteristic mobility 

of the resultant α-chains on SDS-PAGE. Limited pepsin digests of conditioned 

medium depicting 3-day window of collagen synthesis (Fig. 5.4) and of cell layer 

depicting accumulative collagen deposition (Fig. 5.5) were run in non-reducing 5% 

Tris-glycine SDS-PAGE gels alongside purified type I collagen. Collagen I synthesis, 

evidenced by pepsin-resistant α1(I) and α2(I) chains, was observed to increase at day 

7 and decrease slightly at day 21 (Fig. 5.4A, B). Collagen I deposition was observed 

to increase consistently up to day 14, with no further increase at day 21 (Fig. 5.5A, B).  

The major fibrillar collagens in the PDL are types I, III and V. Under both 

0.2% and 10% serum, types I and III collagen were detected in the medium (Fig. 5.4A, 

B), whereas types I, III and V collagen in the cell layer fraction (Fig. 5.5A, B). The 

predominant collagen is type I. Type III in the medium was verified by reducing SDS-

PAGE, in which a disappearance of α1(III)3 trimer and a corresponding increase in 

α1(I) was noted (Appendix). Type V α-chains and type I β-chains were found 

exclusively in the cell layer under both 0.2% and 10% serum (Fig. 5.5A, B), in 

agreement with an association of secreted type V collagen with the matrix (Narayanan 

and Page, 1983). A band at the position of δ-chains was observed in the medium 

under 10% serum (Fig. 5.4B). This high molecular weight pepsin-resistant peptide is 

probably a supramolecular aggregate of a non-fibrillar collagen. In agreement, a faint 

band just below α1(V) was observed in the cell layer (Fig. 5.5B), whose migratory 

pattern did not coincide with any of the fibrillar collagens reported in the PDL.  
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Multiple distinct γ- and δ-bands were present in the cell layer under 0.2% 

serum (Fig. 5.5A). Under 10% serum however, γ-components appeared indistinct and 

δ-chains were barely detectable (Fig. 5.5.B), suggestive of protein degradation. To 

accurately resolve these high molecular weight components, fresh aliquots of pepsin-

digested cell layer at day 21 were run in non-reducing 3-8% gradient gels (Fig. 5.6). 

Similar to the 5% gel, two resolved bands were seen around 150 kDa, pointing to the 

presence of an additional pepsin-resistant peptide just below α1(V). Unlike 5% gels 

which hindered the migration of high molecular weight peptides, 3-8% gradient gel 

allowed an improved resolution of these bands. Numerous γ- and δ-bands were 

demonstrated under 10% serum. Only minute differences in the migration of γ- and δ-

chains were observed between 0.2% and 10% serum, unlike previously demonstrated 

(Fig. 5.5A, B). This provided further evidence for the presence of non-fibrillar 

collagens, as well as an accelerated degradation of δ-chains into γ-components under 

10% serum.  

 The ratios of α1(III)3:α1(I) and α1(V):α1(I) generated from pepsin-digests of 

medium and cell layer fractions (Fig. 5.4, 5.5) were analyzed using densitometry to 

examine the phenotypic expression of collagens over time (Fig. 5.7). Results showed 

that ratios of types III and V collagen relative to type I were modulated by serum level 

over time. Densitometric analysis of α1(I) in pepsin-digested medium fractions after 

reduction at day 21 gave a fold increase of 1.3 and 1.2 under 0.2% and 10% serum 

respectively (Appendix), indicating that secreted type III collagen was approximately 

20% of secreted type I collagen. In agreement, type III collagen in the medium was 

14-15% of type I collagen as determined from α1(III)3:α1(I) ratio (Fig. 5.7A). Despite 

similar proportions of secreted type III collagen at both serum levels, the level in the 

cell layer under 10% serum was at most half of that under 0.2% serum (Fig. 5.7B), in 
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accordance to previous finding (Limeback and Sodek, 1979). Additionally, cultures 

under 10% serum possessed an increasing relative proportion of type V collagen over 

time as seen from α1(V):α1(I) ratio, whereas the reverse was true for 0.2% serum 

(Fig. 5.7C), as observed for human gingival fibroblasts (Narayanan and Page, 1983). 

Moreover, an increase in α1(I):β11(I) ratio was obtained under both 0.2% and 10% 

serum over time (Fig. 5.7D), indicative of a reduction in collagen I cross-linking 

(Junker et al., 1981).  

Since the ratio of major fibrillar collagens with respective to type I and the 

degree of cross-linking were observed to differ (Fig. 5.7), we sought to investigate 

collagen deposition at the end of culture period. Collagen fibre morphology at day 21 

differed in thickness, uniformity and alignment under the two serum levels. Thick, 

irregular fibres (arrowhead) in confluent group 0.2% FBS + Asc were seen under 

PCLM and fluorescence light microscopy, compared to densely-packed collagenous 

matrix obstructed by cells in post-confluent group 10% FBS + Asc (Fig. 5.8). Single 

and double immunolabeling for types I, III, XII and XIV was performed, 

counterstained with Hoechst 33258, and observed by Confocal laser microscopy (Fig. 

5.9). Thick type I collagen fibres (green) formed from an aggregation of thin subunit 

fibrils at multiple branch points were demonstrated in the group 0.2% FBS + Asc. 

Collagen fibre alignment was randomized at extracellular vicinity of cells. Conversely, 

thin type I fibres aligned along the long axis of cells were demonstrated in the group 

10% FBS + Asc. Some fibres were crisscrossed at post-confluent regions. Double-

labeling established the presence of types XII and XIV of the sub-family of fibril 

associated collagens with interrupted triple helices (FACITs) (red), co-localized along 

the length of type I fibrils as previously described (Keene et al., 1991). Signals of type 

III (red) were less distinct amidst perinuclear staining.  
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5.3.3. hPDLF produced the large isoforms of collagen XII and XIV 

Type XII and XIV collagen are associated with the surface of banded type I 

collagen fibrils through a portion of the triple helix, whereas the N-terminal globular 

(NC-3) domain projects from the fibril surface, influencing additional interactions 

between fibrils, or between fibrils and the environment (Koch et al., 1995). 

Furthermore, collagen XII is synthesized as large (320 kDa) and small (220 kDa) 

isoforms by alternative splicing within its non-collagenous (NC-3) domain (Koch et 

al., 1995; Kania et al., 1999). To see if serum modulated the synthesis of collagen XII 

and XIV, conditioned medium containing intact collagen XII and XIV were run on 

reducing 3-8% gradient gels and the proteins detected by Western blotting (Fig. 

5.10A-C).  

Type XIV collagen was detected as a prominent ~290-kDa protein under 10% 

serum with a faint band at ~220 kDa (Fig. 5.10A), in agreement with previous finding 

(Aubert-Foucher et al., 1992). However, signals were undetectable under 0.2% serum. 

Type XII collagen was detected as a prominent ~320-kDa protein under both 0.2% 

and 10% serum (Fig. 5.10B). Several bands were seen under 10% serum, with at least 

one high molecular weight band. Western blot was repeated for hPDLF derived from 

three other individuals under 10% serum, along with purified type I collagen from 

human skin, under more stringent conditions. Two distinct bands were detected, one 

approximately 320 kDa, and the other a high molecular weight aggregate migrating 

above γ(I) (arrowhead) (Fig. 5.10C), in agreement to previous reports (Aubert-

Foucher et al., 1992; Lunstrum et al., 1992). Analysis by densitometry of three 

independently-run SDS-PAGE gels determined that the ratio of type XII under 0.2% 

and 10% serum was equivalent to the ratio of total proteins loaded. No cross-

reactivity of anti-collagen XII antibody to type I collagen was observed. 
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5.4. Discussion 

5.4.1. Collagen synthesis and ALP activity 

Ascorbic acid increases both the rate of procollagen gene transcription as well 

as the half-life of mRNA transcripts (Lyons and Schwarz, 1984). In addition, Asc 

plays an important role in the assembly of collagen-synthesizing polyribosomes, and 

as a cofactor in hydroxylation of proline (Sodek et al., 1982). A stimulation of 

collagen I synthesis in the presence of Asc was in agreement with previous reports for 

hPDLF (Ishikawa et al., 2004) and tooth organ culture (Bronckers, 1983). The extent 

of collagen induction was similar regardless of serum level. This indicated that serum 

level did not modulate the magnitude of Asc induction. The fold increase in collagen I 

synthesis was approximately 1.6 fold, lower than a previous report for hPDLF 

(Ishikawa et al., 2004). This could be attributed to different cellular passage, patient-

to-patient variation and conditions of experiment.  

Collagen matrix accumulation precedes and is essential for sequential 

expression of differentiation-related proteins such as ALP by osteoblasts (Owen et al., 

1990; Franceshi, 1999). In this study, however, Asc was unable to increase ALP 

synthesis in hPDLF determined on a per cell basis (Fig. 5.2B) unlike previously 

reported (Ishikawa et al., 2004). ALP activity of cells under 10% serum normalized to 

protein yielded values between 0.1-0.3 IU/mg, which was similar to values obtained 

under routine culture, i.e. in the absence of Asc (Chapter 4). These results were in line 

with recent reports, in which Asc failed to induce ALP upregulation at low and 

intermediate cell density cultures. This was attributed to the upregulation of 

collagenase-1 expression which led to an increase in collagen turnover (Shiga et al., 

2003; Hayami et al., 2006).  
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5.4.2. Collagen deposition and fibre morphology 

Despite a reduction in type III collagen deposition under 10% serum, the 

difference was reduced over culture time. The collagen III/collagen I ratio in pepsin-

solubilized hPDLF at day 21 was 0.11 and 0.24 under 10% and 0.2% serum 

respectively (Fig. 5.7B), which fell into the lower and higher range of rat skin at 0.14-

0.23 (Junker and Lorenzen, 1983; Levi and Werman, 1998). Moreover, collagen 

V/collagen I ratio, though increasing under 10% serum, was not significantly different 

at day 21 (Fig. 5.7C). In contrast to the earlier report of a lack of phenotypic stability 

in monkey PDLF in culture over 24 h (Limeback and Sodek, 1979), this study showed 

that hPDLF in 21-day expansion culture demonstrated a recovery of type III collagen 

and a slight but statistically insignificant increase in type V collagen in the cell layer 

fractions (Fig. 5.7). 

In the human PDL, collagen fibril bundles, approximately 1 μm in thickness 

(Kuroiwa et al., 1996), are consisted of a parallel arrangement of subunit fibrils 

between 50-80 nm (Schroeder, 1986). The diameter of collagen fibril bundles formed 

from an in vitro association of type III and type I collagens was reported to be smaller 

than that of type I alone, and correlated to the proportion of type III (Lapiere et al., 

1977). Despite the high proportion of type III collagen in 0.2% serum culture, thick 

collagen fibres were obtained in monolayer cultures under 0.2% serum (Fig. 5.9). 

Speculatively, complete procollagen processing via the cleavage of C-propeptide, 

which would otherwise be inhibited at conditions above 5% serum (Njieha et al., 

1982; Kessler et al., 1986), enabled additional lateral growth of fibrils (reviewed in 

Silver et al., 2003). Alternatively, the collagenous fibre morphology was dictated by 

fibronectin matrix, since fibronectin acts as a template for collagen deposition 

(reviewed in Embery et al., 1995). Either way, the disuniformity in fibre thickness 
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under 0.2% serum and the thin collagenous fibre morphology under 10% serum 

pointed to other contributing factors responsible for fibrillogenesis in the PDL, such 

as small leucine-rich proteoglycans (Matheson et al., 2005).  

 

5.4.3. hPDLF exhibited a dedifferentiated phenotype during expansion in vitro 

that was partially reversed by serum deprivation  

Collagen XII is highly expressed at locations bearing high tensile stress, such 

as tendons, ligaments, and in dense connective tissues of dermis, cornea, blood 

vessels, perichondria and periostea (Sugrue et al., 1989). Collagen XII was first 

purified from bovine PDL (Dublet et al., 1988) and subsequently reported in the PDL 

of rat (Karimbux et al., 1992) and mouse (MacNeil et al., 1998), the expression of 

which increased with the alignment and organization of PDL fibril bundles during 

tooth eruption and attainment of occlusal contact. Whereas both the large and the 

small isoforms have been identified in mouse embryonic tissues (Oh et al., 1993), the 

small isoform is the major product at later stages of development (Bohme et al., 1995). 

Correspondingly, adult tendon, ligament and skin express mainly the small isoform 

(Kania et al., 1999; Kato et al., 2000). 

hPDLF phenotype during culture expansion appeared to be dedifferentiated or 

embryonic-like, which was typical of that during morphogenesis and wound healing. 

These were demonstrated by the following observations. Firstly, hPDLF exhibited 

high proliferative rates and synthetic activities under culture expansion (Fig. 5.1). 

Coupled with a simultaneous reduction of both collagen I and ALP synthesis (Fig. 

5.3), hPDLF matrix did not appear to achieve maturation (discussed in Chapter 4). 

Secondly, hPDLF possessed a collagenous matrix that was not highly cross-linked. 

The degree of cross-linking as estimated by alpha/beta chain ratio was not reported 
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for PDL. However, it is known that the ratio reported in pepsin-solubilized skin was 

between 2.1-2.9 (Junker and Lorenzen, 1983; Levi and Werman, 1998). Since the 

PDL is a dense connective tissue in vivo, an alpha/beta chain ratio of 6-7 under culture 

expansion (Fig. 5.7D) was suggestive of a low degree of collagen cross-linking. 

Thirdly, hPDLF matrix demonstrated high collagen turnover as seen from degradation 

of δ-chains (Fig. 5.5B), possibly by the action of matrix metalloproteinases (Shiga et 

al., 2003; Hayami et al., 2006).  

On the other hand, serum deprivation appeared to result in a reversal of 

phenotype, as recently reported in human vascular smooth muscle cells (Han et al., 

2006), based on the following observations. Firstly, hPDLF become quiescent (Fig. 

5.1), yet demonstrated a significantly higher level of collagen I and ALP synthesis 

(Fig. 5.3). The results corroborated with a previous finding that ALP induction was 

associated with mitogen deprivation, in which the upregulation of ALP expression 

required the cessation of proliferation (Abe et al., 1998). The induction of ALP at day 

14 coupled with the quiescent state of cells resembled the post-proliferative period of 

matrix maturation (Owen et al., 1990; Sodek and Cheifitz, 2000). Secondly, hPDLF 

matrix appeared to achieve lateral growth of fibres and hence thick collagen fibre 

morphology (Fig. 5.8, 5.9). Serum deprivation hypothetically enabled more complete 

collagen processing regardless of cell density, resulting in an interconnected 

meshwork of collagen fibres. Thirdly, hPDLF retained high levels of collagen III 

synthesis and deposition, similar to PDL in vivo (Butler et al., 1975).  

However, this reversal was not complete. hPDLF under serum deprivation did 

not revert to a synthesis of the small type XII collagen isoform (Fig. 5.10). It had been 

suggested that collagen fibril arrangement during PDL development is related to the 

expression of collagen XII (Karimbux et al., 1992), and that collagen XII expression 
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may be closely associated with the functional regeneration of the PDL (Karimbux and 

Nishimura, 1995). The small isoform, expressed within mature PDL, participates in 

fibril organization into functional parallel arrangement & insertion into cementum 

(Gordon et al., 1989). However, transcription of collagen XII gene is switched from 

the short to the long splice variant under monolayer culture conditions (Oh et al., 

1993). The large isoform is the predominant product of fibroblasts in vitro from 

tendon (Trueb and Trueb, 1992) and skin (Oh et al., 1993; Berthod et al., 1997; 

Gerecke et al., 1997; Dharmavaram et al., 1998).  

In summary, this work demonstrated the preservation of basic collagen 

synthetic capability in 21-day expansion cultures of hPDLF in vitro, and highlighted 

the possibility of dedifferentiation, which would be of importance for downstream 

clinical applications. 
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Product  Gene 

number 

bp Primer sequence 

AlphaI(I) NM-000088.2 501 sense 5’-CTGGCAAAGAAGGCGGCAAA-3' 

anti-sense 5'-CTCACCACGATCACCACTCT-3' 

AlphaI(III) NM0000902 559 Sense 5’-CAGTATTCTCCACTCTTGAGTTCAG-3’ 

anti-sense 5’-GTGACAAAGGTGAAACAGGTGAAC-3’ 

AlphaI(XII) NM_080645.1 

NM_004370.4 

237 sense 5´-CAAGAGGCGAGGTGCAAACTGTTA-3´ 

anti-sense 5´-CTCTGGATTTGGAATGCGGCTGAT-3´ 

β-Actin BC013380.2 212 sense 5′-GAGACCTTCAACACCCCAGCC-3' 

anti-sense 5'-GGCCATCTCTTGCTCGAAGTC-3' 

Table 5.1. List of primer sequences and expected size of PCR products. 
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Figure 5.1. Synthesis of (A) DNA and (B) proteins over time. (A) Cell proliferation 
as reflected by the amount of total dsDNA was approximately 4-fold higher under 
10% serum (p<0.001), whereas it was not significantly different in the presence of 
Asc (p>0.05) with the exception of day 21. (B) Total protein synthesis was 
significantly increased (<0.05) under 10% serum and Asc from as early as day 1.  
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Figure 5.2. Gene expression of three representative collagens in the PDL, namely 
types I, III and XII, as represented by their respective α1 chains using RT-PCR. 
Asc supplementation resulted in an increase in the expression of α1 (I) and α1 (III) 
from day 7 onwards, and of α1 (XII) from day 14 onwards. No induction in collagen 
gene expression was observed at day 1. There was a drastic decrease in overall 
mRNA synthesis by day 14 under 0.2% FBS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3. Synthesis of (A) collagen I and (B) alkaline phosphatase (ALP), 
normalized to dsDNA. (A) Collagen synthesis was significantly higher under 0.2% 
serum (p<0.001) and under supplementation with Asc (p<0.05). It decreased 
gradually over time under 0.2% serum, but drastically under 10% serum. (B) ALP 
activity was significantly higher under 0.2% serum (p<0.001). ALP induction was 
observed on day 14 in the presence of Asc, after which it decreased and levelled off 
under 0.2% and 10% FBS, respectively.  
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Figure 5.4. Three-day window of collagen synthesis. Representative images of 
silver-stained non-reducing SDS-PAGE in 5% Tris-glycine gel, showing pepsin 
digested 3-day conditioned medium under (A) 0.2% and (B) 10% FBS. Types I and 
III, and a non-fibrillar collagen were detected in the medium fraction. 
   
 
 
 
 
   
 
 
 
   
 
 
 
   
 
 
 
 
 
 
 
Figure 5.5. Accumulative collagen deposition. Representative images of silver-
stained non-reducing SDS-PAGE in 5% Tris-glycine gel, showing pepsin digested 
cell layer under (A) 0.2% and (B) 10% FBS. Types I, III and V, and non-fibrillar 
collagen(s) were detected in the cell layer fraction. The predominant collagen is type I. 
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Figure 5.6. Silver-stained non-reducing SDS-PAGE of cell layer fractions in 3-
8% Tris-acetate gel, as compared to that in 5% Tris-glycine gels. Two resolved 
bands were seen around 150 kD. In 3-8% gradient gels containing fresh digest, 
numerous γ- and δ-bands were demonstrated, with only minute differences in banding 
patterns under either 0.2% or 10% serum. This demonstrates the presence of non-
fibrillar collagens, as well as the degradation of δ-chains into γ-components under 
10% serum.  
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Figure 5.7. Ratio of collagenous peptides obtained by limited pepsin digestion of 
medium and cell layer fractions under 0.2% and 10% FBS over time, as 
determined by densitometry. α1(III)3/α1(I) in (A) medium and (B) cell layer 
fractions, (C) α1(V)/α1(I) and (D) α1(I)/β11(I) in cell layer fractions. Values were 
expressed as means ± SD of three independent experiments. *P < 0.05; **P < 0.01. 
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Figure 5.8. Phase contrast light (PCLM) and fluorescence light microscopy 
images of hPDLF cultures stained with anti-collagen I-FITC antibody at day 21 
(200x magnification). Type I collagen fibres were observed in cultures supplemented 
with ascorbic acid. Thick, irregular fibres observable under light microscopy 
(arrowhead) were formed in group 0.2% FBS + Asc, whereas dense collagenous 
matrix, obstructed by post-confluent cells, were seen in group 10% FBS + Asc. 
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Figure 5.9. Confocal laser microscopy images of hPDLF cultures double 
immuno-labeled for collagen I/XII and I/XIV, and singly labeled for collagen III 
at day 21. Cells were counter-stained with Hoechst (scale bar = 50 μm). Thick, 
non-uniform and highly branched type I fibres (green) were formed in the group 0.2% 
FBS + Asc. Thin, uniform and parallel type I fibres were demonstrated in the group 
10% FBS + Asc. Type XII and XIV (red) co-localized along the length of type I fibres. 
Type III fibres (red) were less distinct amidst perinuclear staining.  
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Figure 5.10. Western blot analysis of undigested medium. Conditioned medium 
were run in reducing 3-8% gradient Tris-acetate gel, transferred onto nitrocellulose 
membranes, and probed with antibodies against (A) collagen XIV and (B) collagen 
XII. Type XIV collagen was detected as a prominent ~290-kDa protein under 10% 
serum. (C) Western blot against collagen XII repeated for hPDLF derived from three 
other individuals. Type XII collagen was detected as the 320-kD isoform under both 
0.2% and 10% serum, and as an additional high M.W. aggregate under 10% serum. 
No cross-reactivity of anti-collagen XII antibody to type I collagen was observed. 
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6. DEVELOPMENT OF hPDLF-MEMBRANE CONSTRUCTS 

 

6.1. Background 

Having established primary hPDLF cell line as reported in Chapter 4, and 

characterized the collagen synthetic capability of hPDLF in Chapter 5, this study 

aimed to evaluate the cytocompatibility of poly(ε-caprolactone) (PCL) as a candidate 

biomaterial for periodontal regeneration.  

Cell adhesion to biomaterials, via the sequential events of protein adsorption, 

cell-substratum contact, cell attachment and spreading (Vogler, 1989; Horbett and 

Klumb, 1996), is considered to be one of the most important stages in cell-substratum 

interaction (Kirkpatrick and Dekker, 1992; Anselme et al., 2000). This is because 

adhesive interactions control cell physiology by regulating cell shape (Folkman and 

Moscona, 1978), cytoskeleton arrangement (reviewed in Clark and Brugge, 1995; 

Giancotti and Ruoslahti, 1999) and matrix proteins deposition (reviewed in 

Schoenwaelder and Burridge, 1999). In turn, the organization of the cytoskeleton and 

the assembly of matrix proteins such as collagens or fibronectin (FN) determine cell 

function and proliferation (Sechler and Schwarzbauer, 1998).  

The development of PDLF cell-scaffold constructs require the selection of an 

appropriate biomaterial and the characterization of PDLF on this substrate. PCL was 

short-listed as a potential biomaterial based on its biodegradability, tissue-

compatibility and ease of processing (reviewed in Section 2.6). Biaxially-stretched, 

perforated PCL membranes, possessing excellent handling characteristics and 

enhanced gas permeability and fluid diffusability, were postulated to be applicable in 

tissue engineering (Htay et al., 2004). In vitro biocompatibility testing of native PCL 

homopolymer demonstrated its ability to support the attachment and proliferation of 
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endothelial cells, fibroblasts, chondrocytes and osteoblasts (Ishaug-Riley et al., 1999; 

Hutmacher et al., 2001; Verderio et al., 2001; Kweon et al., 2003; Serrano et al., 2004; 

Tang et al., 2004), with further improvements upon alkali-treatment (Ng et al., 2001; 

Schantz et al., 2002a; Khor et al., 2003; Thapa et al., 2003; Serrano et al., 2005; Ang 

et al., 2006). However, the mechanism and the extent of improvement on cell 

adhesion have not been extensively reported.  

FN is responsible for initial cell adhesion events (Yamada et al., 1992), itself 

alone being sufficient in mediating cell attachment and phenotypic expression 

(Pierschbacher and Ruoslahti, 1984; Lewandowska et al., 1989). The interaction 

between FN and α5β1 integrin is highly specific, requiring both the Pro-His-Ser-Arg-

Asn (PHSRN) synergy and the Arg-Gly-Asp (RGD) sequences at the 9th and 10th type 

III repeats (Pierschbacher et al., 1981; Aota et al., 1994). The interdomain tilt, as well 

as the RGD-PHSRN distance of 32 Å, are both important for α5β1 integrin-mediated 

cell binding (Altroff et al., 2004). Moreover, this interaction is highly dependent on 

surface chemistry, as the conformation of adsorbed FN is significantly different on 

varying substrates (Underwood et al., 1993; Garcia et al., 1999; Keselowsky et al., 

2003).  

It was hypothesized that the alkali-treatment of PCL membranes facilitated 

hPDLF adhesion via an increase in the accessibility of the cell-binding domain on 

adsorbed FN, and that this early interaction would determine subsequent phenotypic 

expression (Fig. 6.1). As a first step in the development of hPDLF-membrane 

constructs, FN adsorption and cell adhesion assays reflective of the earliest stages of 

cell-substratum interactions were conducted, followed by an assessment of cell 

proliferation and matrix formation, to select a suitable PCL membrane substrate for 

tissue engineering of the PDL. 
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6.2. Material and methods 

6.2.1. Preparation of PCL membranes 

PCL membranes were fabricated as detailed in section 3.1, and classified into 

four groups as shown in Fig. 6.2. Membranes were cleaned in a sonication bath in 1% 

sodium dodecyl sulfate (SDS) for 15 min, washed extensively in deionized water and 

air-dried overnight before surface characterization. 

 

6.2.2. Atomic force microscopy 

Surface topography was obtained with a scanning probe microscope 

(Dimension 3100, Veeco Metrology Group, CA, USA). Membranes, 16 mm x 16 mm, 

were analyzed by Tapping ModeTM with a silicon cantilever in air. Scan sizes of 50 x 

50 μm and 5 x 5 μm were imaged, at scan rates of 0.5 Hz and 1.0 Hz respectively for 

256 scanning lines. Three representative atomic force microscopy (AFM) images of 

each scan size were obtained per membrane in triplicates. Images were subjected to 

flattening to the first order to remove vertical offset between scan lines, and 

standardized for the entire set of data. The root-mean-square (RMS) roughness (Rq), 

corresponding to the standard deviation of Z values within the area, and surface area 

were calculated from 5 x 5 μm areas and presented as mean value (n=3) ± standard 

deviation.  

 

6.2.3. Water contact angle measurements 

Surface wettability of membranes measuring 8 mm x 8 mm was determined by 

sessile drop method at 25 °C with a VCA-Optima Surface Analysis System (AST, 

Singapore). A 1 µl droplet of deionised water was dispensed from the tip of a 

microlitre syringe. The sample stage was advanced towards the syringe until the 
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sample made contact with the droplet. The sample stage was then retracted, and the 

static advancing contact angle calculated from digital image capture. A series of 

values were obtained at every second up to 5 s, and a graph of contact angle kinetics 

were plotted to determine the optimal time point. Subsequent measurements were 

taken at 3 s-time point, and the contact angle was presented as mean value (n=5) ± 

standard deviation. 

 

6.2.4. Toluidine blue assay 

The surface density of anionic carboxyl functional groups was determined by 

toluidine Blue O (TBO) via visible light spectrometry with slight modifications (Sano 

et al., 1993). Membranes (n=5) before and after alkali-treatment, each 16 mm x 16 

mm, were sandwiched between custom-made 316L stainless steel rings (Alson 

Engineering (S), Singapore) in 12-well plates. Carboxyl groups were complexed with 

1 ml of 0.5 mM TBO (Sigma-Aldrich, WI, USA), pH 10, for 3 h under constant 

agitation at room temperature. Membranes were subsequently sandwiched between 

fresh rings and rinsed 6 times with an excess of distilled deionized water adjusted to 

pH 8, each 10 min, to remove non-complexed dye. Desorption of dye molecules 

bound to the carboxyl groups on membrane surface was conducted with 1 ml of 50% 

acetic acid solution for 10 min under vortexing, followed by quantification with a 

spectrophotometer (Unicam UV300, Thermo Spectronic, MA, USA) at 633 nm. 

Membranes were transferred to fresh wells at every step. The surface density of 

carboxyl groups was calculated from standard curve of known concentrations of TBO, 

based on the assumption that TBO was complexed to equivalent moles of carboxyl 

groups (Sano et al., 1993) on both sides of membranes.  

 

 105



Development of hPDLF-membrane constructs 

6.2.5. Fibronectin adsorption 

Adsorption of FN in the competing presence or absence of a 100-fold excess 

of BSA was examined by a modified enzyme-linked immunosorbent assay (ELISA), 

as previously described (McClary et al., 2000; Kowalczynska et al., 2002). Membrane 

discs of 4-mm diameter (n=3) were floated face down on 100 μl of 2 μg/ml FN 

(Sigma) in PBS in the presence or absence of 200 μg/ml of BSA (Sigma) for 2 h. 

Subsequently, membranes were rinsed thrice with 300 μl of PBS-T, blocked with 

0.25% (w/v) BSA in PBS for 30 min, and incubated with 100 μl of either anti-human 

FN polyclonal antibody (Biodesign, ME, USA) or HFN7.1 monoclonal antibody 

(Developmental Studies Hybridoma Bank, IA, USA) diluted 1:250 in PBS containing 

1% (w/v) BSA for 60 min. Membranes were rinsed thrice with PBS-T and blocked, as 

described above. Incubation with 100 μl of anti-rabbit or anti-mouse antibodies 

conjugated with alkaline phosphatase (Bethyl Laboratories, Inc., TX, USA) diluted 

1:500 in PBS containing 1% (w/v) BSA was performed. After washing and transfer to 

fresh 96-well plates, the enzyme-substrate reaction was initiated with 200 μl of pNPP 

substrate (Sigma) per membrane. Negative controls, with primary and secondary 

antibodies alone, were also performed. To monitor the progression of enzyme-

substrate reaction, absorbance at 410 nm was measured at every 5-min intervals with 

a microplate reader (Magellian, Tecan Group, Switzerland). All steps above were 

performed at room temperature. 

 

6.2.6. Seeding of hPDLF onto PCL membranes 

Primary hPDLF cell lines between passage 3 to 5, derived from third molars of 

three males aged 21-25 yr (24 ± 2, mean ± SD), were seeded at 10,000 cells/cm2 in 50 

μL aliquots containing DMEM (Gibco, Life Technologies, NY, USA), 10% FBS and 
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2% penicillin-streptomycin onto membranes, 16 mm x 16 mm, sandwiched between 

custom-made 316L stainless steel rings for the retention of cell suspensions. For cell 

adhesion and proliferation controls, cells were seeded in a similar manner onto 12-

well tissue culture plates (TPP, MO, USA). Cell adhesion and morphology were 

monitored with PCLM (Olympus, IX70, Tokyo, Japan) after the removal of 

unattached cells with several rinse of PBS. Culture medium was added after 

incubation at 37 ºC and 5 % CO2 for 2-3 h when cell adhesion was achieved. Cell-

seeded membranes were cultured in suspension in 12-well plates (TPP) for 3 weeks, 

and supplemented with 200 μM ascorbic acid 2-phosphate magnesium salt (Asc; 

Sigma) for induction of collagen synthesis, with medium change every 3 days.  

 

6.2.7. Cell adhesion efficiency 

Cell adhesion efficiency on membranes was determined at various time 

intervals after seeding (1, 2, 6 and 18 h) with PicoGreen® dsDNA quantitation assay 

(Section 3.3; Molecular Probes, Invitrogen, CA, USA), with slight modifications. 

Cell-seeded membranes (n=3) were disassembled from rings, washed thrice with PBS 

to remove unattached cells and freeze-stored at -80 °C overnight. Next, the cell-

seeded membranes were thawed to room temperature and incubated in 100 μl of 

autoclaved distilled water in a sealed well at 37 °C for 1 hr, before being subjected to 

a second round of freeze-thaw. Samples and DNA standards in 100 μl aliquots were 

incubated with equal volumes of PicoGreen reagent, pre-diluted 200-fold in TE buffer, 

in triplicates in an opaque 96-well plate (TPP) for 5 min at room temperature in the 

dark. Fluorescence was measured at 485 nm excitation and 535 nm emission in a 

microplate reader (GENios, Tecan Group, Switzerland). Cell adhesion efficiency was 

 107



Development of hPDLF-membrane constructs 

defined as the percentage of dsDNA harvested from attached cells on the membrane 

at the time of harvest / seeded (control).  

 

6.2.8. Focal contact formation 

Focal contact formation was determined in situ by localization of vinculin. 

Cells were seeded at 30% confluence onto substrates, simultaneously permeabilized 

and fixed in 3.7% paraformaldehyde containing 0.5% (v/v) Triton X-100 in 

cytoskeletal buffer for 5 min at room temperature, and subsequently post-fixed in 

3.7% (w/v) paraformaldehyde for an additional 30 min at 4 °C (Kam et al., 1995) to 

remove cell structures as well as vinculin not located in focal adhesions. Cells seeded 

similarly on LabTek chamber slides (Nunc, Inc., IL, USA) were used as positive 

controls. After rinsing thrice with cytoskeleton buffer, 3 min each time, cells were 

incubated in blocking buffer containing 2% (w/v) BSA and 7% (v/v) FBS in PBS for 

30 min at room temperature. Cells were incubated with anti-vinculin monoclonal 

antibody, clone 3F393 (USBiological, MA, USA), diluted 1:100 in blocking buffer 

for 1 h at room temperature, and rinsed thrice with PBS-T, 5 min each time. For 

double-labelling of actin and vinculin, cells were incubated with Alexa Fluor 488-

conjugated phalloidin (Section 3.12; Molecular Probes), and anti-mouse-

tetramethylrhodamine isothiocyanate (TRITC)-conjugated secondary polyclonal 

antibody (DAKO, CA, USA), diluted 1:100, in 1% BSA in cytoskeleton buffer for 45 

min at room temperature in the dark, followed by thrice rinsing with PBS-T, 5 min 

each time. Omission of primary antibodies and staining with secondary antibodies 

alone served as negative controls. 
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6.3. Results  

6.3.1. Alkali-treatment and perforation increased surface roughness and area 

Biaxially stretched membranes (mean thickness ± SD, 10 ± 2 μm) with 

perforations (mean diameter ± SD, 100 ± 10 μm) of 400/cm2-density were fabricated. 

Representative surface morphologies of membranes obtained by SEM and AFM were 

shown (Fig. 6.3). UP/UT (native) membranes appeared smooth, with uniform 

distribution of uniaxially-oriented polymer fibrils (arrows) visible at 100x (inset) and 

5000x magnification, as well as under AFM. The filamentous morphology of 

membranes is due to biaxial drawing of heat-pressed films, during which polymer 

fibrils were orientated along the lines of stress (Ng et al., 2000). P/UT membranes 

possessed a textured but relatively smooth surface topography. Polymer fibrils 

(arrows) were less prominent than UP/UT membranes under AFM. Alkali-treated 

UP/T membranes showed a granulated morphology with a loss of surface fibril 

feature. P/T membranes possessed a similar granulated surface morphology with 

prominent macropores (inset), representing amorphous regions which were 

preferentially degraded in the presence of alkali (Ali et al., 1993; Htay et al., 2004).  

Both UP/T and P/T membranes exhibited an increase in nano-scale surface 

roughness in the form of voids at sub-micron levels (arrowheads) to macropores 

(inserts), as reported elsewhere (Vance et al., 2004), attributable to surface erosion 

during alkali-treatment (Htay et al., 2004). Membrane perforation further augmented 

surface erosion at sites of perforation due to their high strain energy (Htay et al., 

2004). Image analysis of 5 μm x 5 μm scan size showed that RMS surface roughness, 

corresponding to the standard deviation of Z values relative to the mean plane (Fig. 

6.4A), was significantly increased on perforated (P vs. UP) as well as alkali-treated (T 

vs. UT) membranes (p<0.001). Corresponding surface area (Fig. 6.4B) was more 
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significantly increased on alkali-treated membranes (p<0.001) than it was on 

perforated membranes (p<0.05). 

 

6.3.2. Alkali-treatment increased surface wettability and accessibility of HFN7.1 

Native membranes were hydrophobic, with an average static advancing 

contact angle of 81.0 ± 4.8°. The contact angles on perforated membranes were not 

taken into consideration, as perforations were found to disturb the surface tension of 

the water droplet. During alkali-treatment, hydroxide anions hydrolyze ester bonds, 

breaking the polymer chain and exposing carboxyl and hydroxyl groups at the termini 

of two new chains (Gao et al., 1998). To monitor the extent of hydrolysis, the surface 

density of anionic carboxyl functional groups was determined by toluidine Blue O 

(TBO), a cationic dye that binds to negatively charged groups (Kiernan, 2001). 

Alkali-treatment caused a two-fold increase in carboxyl functional group surface 

density. The values increased from 0.31 ± 0.05 nmol/cm2 to 0.61 ± 0.05 nmol/cm2 on 

unperforated membranes (p<0.001), and from 0.34 ± 0.05 nmol/cm2 to 0.62 ± 0.07 

nmol/cm2 on perforated membranes (p<0.001). This was translated to an increase in 

the wettability of membranes, with a drop in static advancing contact angle to 69.0 ± 

4.1° (p<0.001).  

HFN7.1 monoclonal antibody, whose epitope maps to a segment spanning the 

flexible link between the 9th and 10th type III repeats (Schoen et al., 1982; Bowditch et 

al., 1991), has been demonstrated to be an effective probe for the presentation of cell-

binding domain in FN  (Keselowsky et al., 2003). Given that FN adsorption may lead 

to conformation change via domain rotation or extension (Baugh and Vogel, 2004), 

the binding of HFN7.1 to adsorbed FN on membranes was assayed using a modified 

ELISA (McClary et al., 2000; Kowalczynska et al., 2002). In addition, a polyclonal 
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antibody targeting both native and denatured plasma FN (Yamada, 1983) was used to 

determine the extent of adsorption. 

FN adsorbed from a concentration of 2 μg/ml in the presence and absence of a 

100-fold excess (physiological ratio) of BSA (Grainger et al., 2003), was assayed. 

Optical density as a function of enzyme-substrate reaction time at 5-min intervals 

revealed an approximately linear relationship up to 30 min, demonstrating the linear 

dependence of measured signals on the number of linked enzyme centres (results not 

shown). Optical density signals were lower in the presence of BSA, indicating 

competitive binding as reported previously (McClary et al., 2000). An optical density 

signal at 30 min was chosen for statistical analysis. In the absence of BSA (Fig. 6.5A), 

optical density signal of anti-human FN polyclonal antibody was significantly higher 

on perforated (P vs. UP) (p<0.001) and alkali-treated (T vs. UT) membranes 

(p<0.001). In the presence of competing BSA, values were significantly higher on 

perforated membranes (p<0.05) only. ELISA performed with HFN7.1 monoclonal 

antibody produced significantly higher values on perforated (p<0.01) as well as alkali-

treated membranes (p<0.01) in both the absence and presence of BSA (Fig. 6.5 B). 

Therefore, the preferential binding of HFN7.1 indicated a greater accessibility of the 

synergy and RGD domains on FN adsorbed to alkali-treated membranes, regardless of 

the presence of competitive BSA.  

 

6.3.3. Alkali-treatment increased cell adhesion and formation of focal contacts 

In order to correlate the surface wettability of membranes and their capacity to 

support hPDLF adhesion, cell morphology was evaluated by direct observation with 

PCLM at 1 h, 2 h, 6 h and 18 h after seeding in serum-supplemented culture medium 

(magnification 600X) (Fig. 6.6). The above time points were chosen based upon a 
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previous characterization of cell adhesion kinetics on PCL, in which adhesion rates 

reached a plateau beyond 6 h (Ishaug-Riley et al., 1999). hPDLF demonstrated 

filopodia (black arrows) on P/T and UP/T membranes by 1 h and 2 h, respectively. 

Cell flattening was observed on P/T membranes by 2 h, as seen from a decrease in 

phase contrast at cell boundary. In comparison, hPDLF remained spherical after 2 h 

on untreated membranes. At 6 h, pronounced cell clustering and formation of long 

cytoplasmic projections (black arrowheads) were observed on UP/UT membranes. By 

18 h, cell spreading was complete, with increased cytoplasmic membrane density at 

the periphery of sheet-like lamellipodia (white arrows). A greater degree of hPDLF 

spreading was obtained on alkali-treated membranes. 

The same samples used for cell morphology evaluation with PCLM were used 

to determine hPDLF adhesion efficiency, expressed as the percentage of dsDNA 

harvested from attached cells over that from the initial cell suspension, on the various 

membranes. Adhesion efficiency was significantly enhanced on alkali-treated (T vs. 

UT) membranes (p<0.001) at 1 h, 2 h, 6 h and 18 h after seeding (Fig. 6.7). hPDLF 

demonstrated an initial burst in adhesion rate at 1 h, reaching a plateau of 51-55% at 6 

h on alkali-treated membranes. On untreated membranes, cell adhesion rose gradually 

over time, reaching only 23-28% at 6 h, in agreement to a previous report of human 

articular chondrocytes on native spin-cast PCL films (Ishaug-Riley et al., 1999). At 

18 h, a slight increase attributable to DNA synthesis in cells having passed the 

restriction point in the cell cycle (reviewed in Skehan, 1988) was observed on alkali-

treated membranes. 

From PCLM observations, it was evident that cell adhesion was complete by 6 

h, but cell spreading took place between 6 to 18 h (Fig. 6.6). Since cell spreading is 

controlled by cytoskeletal architecture (Cramer and Mitchison, 1995), the formation 
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of actin stress fibres and focal adhesions at later stages of cell adhesion were analyzed 

by confocal microscopy (Fig. 6.8). Immunolabelling of vinculin, a key component in 

focal adhesions (Zamir and Geiger, 2001), was performed. A pre-permeabilization 

technique was employed to facilitate the specific localization of vinculin to focal 

adhesions (Niederreiter et al., 1994). At 6 h, f-actin organization and weak signals of 

vinculin (arrowheads) as focal complexes at cell periphery were observed on P/UT, 

UP/T and P/T membranes. At 12 h, f-actin remained disorganized in cells on UP/UT 

membrane, whereas it was incorporated into microfilament bundles (arrows) on 

alkali-treated membranes. Punctuated staining for vinculin, indicative of dot-like focal 

adhesions constituted of transmembrane and linker proteins (Bershadsky et al., 1985), 

was seen on untreated membranes. Elongated staining for dash-like focal contacts of 

at least 2 μm in length from an association of transmembrane proteins with 

cytoskeletal actin (Bershadsky et al., 1985) was obtained on alkali-treated membranes. 

By 24 h, stress fibres were observed on alkali-treated membranes, with concomitant 

formation of mature focal contacts approximately 5 μm in length, demonstrated by 

long spikes of vinculin at the terminating ends of stress fibres, indicative of FN 

assembly (Sechler and Schwarzbauer, 1997). On untreated membranes, stress fibres 

and focal contacts were sparse or poorly formed. Close-up images (numbered boxes) 

of vinculin at 24 h (Fig. 6.9) revealed centrally located focal adhesions (arrows) 

resembling “fibrillar” adhesions (Zamir et al., 2000) on UP/T membranes, and 

elongated adhesions 10-20 μm in length (arrowhead) resembling “supermature” focal 

adhesions characteristics of myofibroblasts (Dugina et al., 2001; Hinz et al., 2003) on 

both UP/T and P/T membranes. These structures were absent from cells on untreated 

membranes. 
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6.3.4. hPDLF-membrane constructs demonstrated FN and collagenous matrix 

formation in the process of maturation  

Thus far, an association between the conformation of adsorbed FN and the 

ability to support cell adhesion up to 24 h was established. To examine subsequent 

cell behaviour with the aim of developing hPDLF-membrane constructs, cells were 

cultured on membranes for up to 21 days in comparison with tissue culture plate (TCP) 

in vitro. Following initial attachment, hPDLF failed to maintain cell-substratum 

interactions; cytoplasmic retraction and significant cell clustering on untreated 

membranes were observed (Appendix). This precluded further characterization. 

Hence, UP/UT and P/UT membranes were excluded from subsequent experiments.  

On UP/T and P/T membranes, hPDLF proliferated, migrated away from the 

site of seeding and reached cell confluency on hPDLF-membrane constructs as seen 

after Haematoxylin stain at day 21. Cell alignment on UP/T membranes was mostly 

unidirectional (Fig. 6.10A), whereas cells bridged between perforations on P/T 

membranes (Fig. 6.10B). hPDLF were found to migrate along membrane “flaps” 

(arrow) on P/T membranes (Fig. 6.10C) and adhere to the underneath side as seen 

under phalloidin staining (Fig. 6.10D), demonstrating contact guidance. Cells 

demonstrated strong staining for f-actin on both UP/T and P/T membranes (Fig. 6.10E, 

F) respectively at day 14. FDA/PI staining revealed high cell viability, as indicated by 

a high number of live cells (green) and a low number of dead cells (red) (Fig. 6.10G, 

H). Detachment of cell sheet (absence of staining) was observed on UP/T membranes 

at day 21 (Fig. 6.10G). Image analysis by Micro-Image® (Media Cybernetics, MD, 

USA), detailed in section 3.4, was used to quantify cell sheet coverage (Fig. 6.11). 

Results showed that hPDLF coverage was initially higher on UP/T membranes at day 
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7 (p<0.05). However, coverage on P/T membranes caught up at day 14, and surpassed 

UP/T membranes at day 21 (p<0.01).  

In order to rule out cell proliferation as a contributing factor to differing cell 

retention over time, cell growth represented as dsDNA on the membranes and tissue 

culture plate (TCP) as a control were determined by PicoGreen® assay (Ng et al., 

2005), with slight modifications detailed in section 3.3. Results showed that there was 

a greater rate of cell proliferation on UP/T membranes up to day 14, but there was no 

statistically significant difference in the quantity of dsDNA harvested from UP/T and 

P/T membranes (p>0.05) throughout 21 days (Fig. 6.12). The lower amount of 

dsDNA on membranes compared to TCP, approximately 55-67% at day 1, might be 

related to a reduced cell seeding efficiency (Fig. 6.7). Therefore, it could be inferred 

that cell numbers on UP/T and P/T were similar at the end of culture period, and cell 

sheet coverage was independent of cell number.  

Given that cells on UP/T and P/T membranes displayed differences in focal 

adhesion morphology and distribution, it was speculated that substrate-induced 

differences in cell adhesion might influence downstream ECM synthesis and 

phenotypic expression. Western blot analysis of reducing SDS-PAGE containing 

whole cell lysates normalized by total protein quantity showed that the level of α-

smooth muscle actin (~45 kDa), a mechano-sensitive protein that is constitutively 

expressed by hPDLF and recruited to stress fibres under high tension (Arora and 

McCulloch, 1994; Wang et al., 2006), was similar in all samples at day 21. The level 

of FN (~240 kDa) produced by hPDLF-membrane constructs were also equivalent 

(approximately 1:1), but the amounts were approximately 30% of that on TCP (Fig. 

6.13). Non-reducing SDS-PAGE of pepsin digests demonstrated the presence of 

collagens secreted into medium and deposited into cell layer (Fig. 6.14). Bands 
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corresponding to α-chains of major fibrillar collagens, type I, III and V, were detected. 

Type I collagen β-chains, indicative of cross-linking in the collagenous matrix (Rao et 

al., 1982) were present. The relative proportions of collagen I, the predominant 

collage in ECM of the PDL, was determined by densitometric analysis. The amount 

of secreted collagen I in the medium was similar in all samples, whereas the 

deposition of collagen I on membranes was approximately 60% of that on TCP.  

Matrix organization on hPDLF-membrane constructs at day 21 were 

investigated by immunofluorescence for FN and type I collagen (Fig. 6.15). Confocal 

laser microscopy images confirmed the presence of fibrillar FN (red) and type I 

collagen (green). Fibrillar FN was randomly oriented and often seen lining the 

periphery of individual cells or cell clusters on both TCP and UP/T membranes. 

Collagenous matrix was in a similar orientation to fibrillar FN, the alignment of both 

was greater on P/T membranes. PCLM images depicting the corresponding surface 

morphology of hPDLF-membrane constructs demonstrated that cells on P/T 

membranes responded to contact guidance, aligning both cell and matrix to surface 

topography in the form of substrate grooves or folds (arrows), as shown previously 

(Teixeira et al., 2003; Manwaring et al., 2004). In particular, prominent collagen 

fibres were seen in highly aligned confluent cells traversing sites of perforation 

(arrowhead) on P/T membranes.  

 To investigate whether hPDLF-membrane constructs reached matrix 

maturation, ALP activity which peaks during the post-proliferative period of matrix 

maturation (Owen et al., 1990; Sodek and Cheifitz, 2000) was assayed (Fig. 6.16). 

ALP activity normalized by total intracellular protein was upregulated in cells on TCP 

at day 14 up to a value of 0.29 IU/mg, after which it declined at day 21. This was in 

accordance to ALP induction patterns as previously described (Chapter 4). Cells on 
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UP/T and P/T membranes followed a pattern of delayed induction, reaching 0.29-0.35 

IU/mg at day 21. ALP level on P/T membranes was significantly higher than UP/T 

membranes at day 14 (p<0.01) and TCP at day 21 (p<0.01). All ALP values were 

within the range reported for hPDLF under collagen induction (Appendix). 

 

6.4. Discussion 

6.4.1. Cytocompatibility of alkali-treated PCL membranes 

In this study, alkali-treatment of biaxially stretched PCL membranes of Mn=10 

x 103 and Mw =14 x 103 (Htay et al., 2004) at 5 M NaOH and room temperature led to 

a two-fold increase in surface carboxyl functional group and an approximately 10-nm 

increase in RMS surface roughness (Fig. 6.4A). Alkali-treated membranes facilitated 

cell adhesion, increasing both rate and total adhesion efficiency by two-folds (Fig. 

6.7), attributable to a greater accessibility of FN cell-binding domain (Fig. 6.5B).  

A correlation between FN adsorption and cell adhesion, however, was not 

seen. Specifically, the amount of FN adsorption (Fig. 6.5A) was not significantly 

higher on UP/T membranes, unlike previous reports (Rouxhet et al., 1998; McClary et 

al., 2000). MicroBCA assay, as described previously (Ishihara et al., 1999), showed 

that FN adsorption from a pure solution of 20 μg/ml, a 10-fold dilution of 

physiological plasma level (Hynes, 1990), resulted in 0.58 ± 0.21 μg/cm2 and 0.30 ± 

0.10 μg/cm2 on UP/UT and UP/T membranes respectively (unpublished data). The 

surface densities of FN on native and alkali-treated PCL, within the range reported for 

tissue culture polystyrene at 0.4 μg/cm2 (Haas and Culp, 1982), were in agreement 

with a previous report that the saturation densities of FN on self-assembled 

monolayers (SAMs) were higher for CH3- than for COOH- and OH-presenting SAMs 

(Keselowsky et al., 2003). Hence, the apparent contradiction could be attributed to the 
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method of detection, where higher FN densities were obtained on hydrophilic surfaces 

via radio-labelled-FN or -primary antibodies (Rouxhet et al., 1998; McClary et al., 

2000), as compared to enzyme-tagged secondary antibodies for ELISA in this study 

and elsewhere (Kowalczynska et al., 2002).  

In the case of perforated membranes, some peculiarities in the optical density  

ELISA readings were observed. Perforation alone resulted in increases in RMS 

surface roughness and area (Fig. 6.4), but not in surface density of carboxyl functional 

groups. In light of this, the significantly elevated FN adsorption and accessibility of 

cell-binding domain (Fig. 6.5) might be attributed to a leakage of FN solution through 

the perforations during adsorption and the resultant increased binding of antibodies to 

the top surface despite precautions. Nonetheless, a higher relative density of adsorbed 

FN and cell-binding domain on P/T membranes could be inferred from the earlier 

onset of cell flattening (Fig. 6.6) and focal complex formation (Fig. 6.8), given that 

cell adhesion and spreading increases with increasing RGD surface density (Berg et 

al., 2004).  

On native PCL, the reduction in cell-binding domain accessibility despite 

similar levels of FN adsorption to alkali-treated surfaces, was indicative of FN 

conformational change. Indeed, FN favours a compact conformation on hydrophobic 

surfaces accompanied by a greater perturbation of secondary structure (Culp and 

Sukenik, 1998), but an elongated one on hydrophilic surfaces via dimer arm extension 

(Bergkvist et al., 2003; Baugh and Vogel, 2004). This was reflected in a retardation of 

cell spreading and a lack of well-developed stress fibres and focal contacts, suggestive 

of a disruption in  α5β1 integrin-mediated RhoA activation (Nobes and Hall, 1995), 

as reported for CH3-presenting SAMs (McClary et al., 2000). Moreover, the 
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predominance of “classical” focal contacts restricted to cell periphery was indicative 

of αVβ3 integrin-mediated cell adhesion (reviewed in Zamir and Geiger, 2001).  

 

6.4.2. Evaluation of hPDLF-membrane constructs 

Further evaluation of 21-day cultures of constructs consisting of UP/T and P/T 

membranes revealed a prominent alignment of f-actin as well as a deposition of FN 

and collagen into the ECM. The loss of cell sheet observed on UP/T membranes (Fig. 

6.10G) was speculated to result from a contractile phenotype, since the upregulation 

of actin bundle alignment in fibroblasts and collagen and FN matrix assembly have 

been found to coincide with tissue contraction (Welch et al., 1990). However, hPDLF 

constitutively expressed similar levels of α-smooth muscle actin on UP/T and P/T 

membranes (Fig. 6.13).  

Cell adhesion responses to topography and surface ligand density were 

cooperative (Ranucci and Moghe, 2001). Given that P/T membranes possessed 

surface texture in the form of perforations (Fig. 6.3) and supported the preferential 

development of “supermature” focal adhesions (Fig. 6.9) as compared to UP/T 

membranes, the higher cell coverage could be attributed to strengthened adhesion 

onto P/T membranes, attributed to cell anchorage at membrane “flaps” (Fig. 6.10C, 

6.15). This affirmed the importance of surface topography in terms of organized 

roughness or texture, which was reported to play a greater role in adhesion than 

roughness amplitude (Anselme et al., 2000; Ranucci and Moghe, 2001). Moreover, 

this also showed that biaxially stretched membranes, possessing a tensile strength of 

42-55 MPa (Ng et al., 2001; Ang et al., 2006), are sufficiently rigid to withstand cell 

traction forces exerted by hPDLF. 
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Surface topography of P/T membranes led to a greater alignment of ECM 

matrix (Fig. 6.15). This would have implications in tissue engineering of the PDL, 

where collagen fibre alignment is essential in maintaining the tooth in a functional 

position and in resisting displacement forces during occlusal loading (reviewed in 

Kirkham and Robinson, 1995). Furthermore, the addition of appropriate surface 

topographies to guided tissue regeneration (GTR) membranes, by discouraging 

epithelial cell migration and promoting osteoblastic differentiation, is proposed to 

have the potential of improving clinical performance in periodontal tissue 

regeneration procedures (Owen et al., 2005b).  

In comparison to TCP, alkali-treated membranes did not facilitate as much 

ECM matrix formation (Fig. 6.13, 6.14), even though cell proliferation, viability and 

collagen synthetic ability of hPDLF on membranes were not perturbed (Fig. 6.10, 

6.12). Collagen deposition was two-fold higher and FN production was three-fold 

higher on TCP. Given that FN acts as a template for collagen deposition (reviewed in 

Embery et al., 1992), it therefore appeared that FN matrix assembly was the limiting 

factor for collagen deposition on PCL membranes. Even so, hPDLF on PCL 

membranes were able to undergo matrix maturation over time, as seen from the ALP 

upregulation at day 21 (Fig. 6.16), hypothetically due to substratum conditioning by 

cells during prolonged culture (Lim et al., 2004).  

In summary, cytocompatibility of alkali-treated PCL membranes was 

increased, attributable to a greater accessibility of fibronectin cell-binding domain. 

hPDLF-membrane constructs of perforated PCL membranes provided greater cell 

anchorage, and cell and matrix alignment than unperforated ones via contact guidance, 

while retaining its phenotypic expression of major collagen types and promoting 

matrix maturation.  
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Figure 6.1. Modulation of cell behaviour through substrate-dependent changes in 

FN conformation (adapted from Garcia et al., 1999).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2. Manufacturing procedure and classification of PCL membranes. 
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Figure 6.3. Representative surface morphologies of UP/UT, UP/T, P/UT, P/T 
membranes obtained by scanning electron (SEM) and atomic force (AFM) 
microscopy. UP/UT (native) membranes appeared smooth, with uniform distribution 
of uniaxially-oriented polymer fibrils (arrows). P/UT membranes possessed a textured 
but relatively smooth surface topography. UP/T membranes showed a granulated 
morphology with a loss of surface fibril feature. P/T membranes possessed a similar 
granulated surface morphology with prominent micropores (inset). Both UP/T and 
P/T membranes exhibited an increase in nano-scale surface roughness in the form of 
voids at sub-micron levels (arrowheads) to micropores (inserts). 

  122



Development of hPDLF-membrane constructs 

B A 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

RMS surface roughness

 
 

***
**

**

22.0

23.0

24.0

25.0

26.0

27.0

28.0

Surface area

μm
2

 
 
 
 
 
  
 
 
 
 
 
 
 
Figure 6.4. (A) Root-mean-square (RMS) surface roughness and (B) surface area 
of membranes obtained by AFM at a scan size of 5 μm x 5 μm. RMS surface 
roughness was significantly increased on perforated (P vs. UP) as well as alkali-
treated (T vs. UT) membranes (p<0.001). Image surface area was significantly 
increased on alkali-treated membranes (p<0.001), but only slightly increased on 
perforated membranes (p<0.05). Data are presented as mean ± SD, n = 3. *P < 0.05; 
**P < 0.01; ***P < 0.001.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5. Optical density of ELISA of antibody binding to FN adsorbed from 2 
μg/ml by (A) anti-FN polyclonal antibody and (B) HFN7.1 monoclonal antibody 
in the absence and presence of a 100-fold excess of BSA. (A) In the absence of 
BSA, binding of polyclonal antibody was significantly higher on perforated (P vs. UP) 
(p<0.001) and alkali-treated (T vs. UT) membranes (p<0.001). In the presence of 
competing BSA, binding of polyclonal antibody was significantly higher on 
perforated membranes (p<0.05) only. (B) In contrast, binding of HFN7.1 was 
significantly higher on perforated (p<0.01) as well as alkali-treated membranes 
(p<0.01) in both the absence and presence of competing BSA. Data are presented as 
mean ± SD, n = 3. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 6.6. Representative PCLM images of hPDLF attached onto UP/UT, UP/T, 
P/UT, and P/T membranes at 1, 2, 6 and 18 h after seeding in culture medium 
containing 10% serum (magnification 600X). hPDLF demonstrated filopodia (black 
arrows) on P/T and UP/T membranes by 1 h and 2 h, respectively. Cell flattening was 
observed on P/T membranes by 2 h, as seen from a decrease in phase contrast at cell 
boundary. In comparison, hPDLF remained spherical after 2 h on untreated membranes. 
At 6 h, pronounced cell clustering and formation of long cytoplasmic projections (black 
arrowheads) were observed on UP/UT membranes. By 18 h, cell spreading was 
complete, with increased cytoplasmic membrane density at the periphery of sheet-like 
lamellipodia (white arrows). A greater degree of hPDLF spreading was obtained on 
alkali-treated membranes. 
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Figure 6.7. Adhesion efficiency of hPDLF, expressed as the percentage of double-
stranded DNA (dsDNA) harvested from attached cells from initial cell 
suspension, at 1, 2, 6 and 18 h after seeding on membranes. Adhesion efficiency 
was significantly enhanced on alkali-treated (T vs. UT) membranes (p<0.001) at all 
time points. hPDLF demonstrated an initial burst in adhesion efficiency at 1 h, 
reaching a plateau of 57 ± 10% by 6 h on alkali-treated membranes. Only about 27 ± 
7% of hPDLF attached onto untreated membranes at 6 h. At 18 h, a slight increase 
attributable to DNA synthesis in cells having passed the restriction point in the cell 
cycle was observed on alkali-treated membranes. Data are presented as mean ± SD, n 
= 5.  
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Figure 6.8. Immunofluorescence of f-actin (green) and vinculin (red) in hPDLF at 
6, 12 and 24 h after seeding on membranes (scale bar = 50 μm). At 6 h, f-actin 
organization and weak signals of vinculin (arrowheads) as focal complexes at cell 
periphery were observed on P/UT, UP/T and P/T membranes. At 12 h, f-actin remained 
disorganized in cells on UP/UT membrane, whereas it was incorporated into 
microfilament bundles (arrows) on alkali-treated membranes. Immature dot-like focal 
adhesions were seen on untreated membranes, whereas dash-like focal contacts were 
obtained on alkali-treated membranes. By 24 h, stress fibres were observed on alkali-
treated membranes, with concomitant formation of mature focal contacts approximately 
5 μm in length, demonstrated by long spikes of vinculin. On untreated membranes, 
stress fibres and focal contacts were sparse or poorly formed.  
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Figure 6.9. Close-up images of Fig. 6.8 (numbered boxes) of vinculin (red) at 24 h 
after seeding on membranes (scale bar = 10 μm). Centrally located focal adhesions 
(arrows) resembling “fibrillar” adhesions (Zamir et al., 2000) were observed on UP/T 
membranes, and 10-20 μm long adhesions (arrowhead) resembling “supermature” 
focal adhesions were observed on both UP/T and P/T membranes. These structures 
were absent from cells on untreated membranes. 
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Figure 6.10. Representative images of hPDLF cell sheet on UP/T and P/T 
membranes (magnification 100X, unless stated otherwise). PCLM images of 
hPDLF showing (A) unidirectional alignment on UP/T membranes and (B) radial 
alignment on P/T membranes after Haematoxylin stain at day 21. (C) SEM image 
showing hPDLF bridging across and through perforations on membrane “flaps” 
(arrow). Confocal laser microscopy images of hPDLF (green) (D) migrating onto the 
underneath sides of membrane under phalloidin staining at day 14, demonstrating 
contact guidance. Cells demonstrated strong staining for f-actin (green) on both (E) 
UP/T and (F) P/T membranes at day 14. Comparison of cell viability at day 21 on (G) 
UP/T and (H) P/T membranes, showing detachment of cell sheet (absence of staining) 
on the former. Positions of perforations were indicated as arrowheads. 
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Figure 6.11. Cell sheet coverage on membranes as deduced from FDA/PI staining 
at 100X magnification after image analysis by Micro-Image® over 21 days. 
hPDLF coverage was initially higher on UP/T membranes at day 7 (p<0.05). However, 
coverage on P/T membranes caught up at day 14, and surpassed UP/T membranes at 
day 21 (p<0.01). Data are presented as mean ± SD, n = 3. *P < 0.05; **P < 0.01. 
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Figure 6.12. Cell proliferation in terms of dsDNA harvested from attached 
hPDLF over 21 days. Results showed that there was a greater rate of cell 
proliferation on UP/T membranes up to day 14, but no statistically significant 
difference in the quantity of dsDNA harvested from UP/T and P/T membranes 
(p>0.05). The levels of dsDNA on membranes were approximately 55-67% of that on 
TCP at day 1. Data are presented as mean ± SD, n = 3. *P < 0.05. 
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Figure 6.13. Western blot and densitometric analysis of reducing SDS-PAGE 
containing whole cell lysates of hPDLF cultured on UP/T, P/T membranes and 
TCP at day 21. hPDLF on UP/T and P/T membranes produced equivalent amounts of 
α-smooth muscle actin (~45 kDa) and FN (~240 kDa). However, the amount of FN 
on TCP was three-fold of that on membranes.  
 
 
 
 
  
A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 B

MW

250

150

100

75

50
37

δ

α1(III)3

β11 (I)
β12 (I)

α1 (I)
α2 (I)

1       2        3       4       5 

δ

α1(III)3/γ (I)

β11 (I)
β12 (I)
α1 (V)
α2 (V)
α1 (I)
α2 (I)

1       2        3       4       5 
MW

250

150

100

75

50
37

δ

α1(III)3

β11 (I)
β12 (I)

α1 (I)
α2 (I)

1       2        3       4       5 
MW

250

150

100

75

50
37

MW

250

150

100

75

50
37

MW

250

150

100

75

50
37

δ

α1(III)3

β11 (I)
β12 (I)

α1 (I)
α2 (I)

δ

α1(III)3

β11 (I)
β12 (I)

α1 (I)
α2 (I)

1       2        3       4       5 

δ

α1(III)3/γ (I)

β11 (I)
β12 (I)
α1 (V)
α2 (V)
α1 (I)
α2 (I)

1       2        3       4       5 

δ

α1(III)3/γ (I)

β11 (I)
β12 (I)
α1 (V)
α2 (V)
α1 (I)
α2 (I)

δ

α1(III)3/γ (I)

β11 (I)
β12 (I)
α1 (V)
α2 (V)
α1 (I)
α2 (I)

1       2        3       4       5 

 
 
Figure 6.14. Representative images of non-reducing SDS-PAGE in 3-8% 
gradient Tris-acetate gel of (A) medium and (B) cell layer fractions after limited 
pepsin digestion at day 21. Bands corresponding to α-chains of major fibrillar 
collagens, type I, III and V, were detected. Type I collagen β-chains, indicative of 
cross-linking in the collagenous matrix (Rao et al., 1982) were present. The relative 
proportions of collagen I, the predominant collage in ECM of the PDL, was 
determined by densitometric analysis. The amount of secreted collagen I in the 
medium was similar in all samples, whereas the deposition of collagen I on 
membranes was approximately 60% of that on TCP. Lane 1: Protein ladder, 2: UP/T 
membrane, 3: P/T membrane, 4: TCP, 5: Col I standard.  
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Figure 6.15. Representative confocal laser microscopy images of hPDLF 
immunolabeled for FN and type I collagen on UP/T membrane, P/T membrane 
and TCP at day 21 (scale bar = 50 μm). The presence of fibrillar FN (red) and type I 
collagen (green) was observed. Whereas fibrillar FN was randomized on TCP and 
often seen lining the periphery of discreet cells or cell clusters on both TCP and UP/T 
membranes, its organization on P/T membranes was directional. Collagenous matrix 
was in a similar orientation to fibrillar FN, the alignment of both was greater on P/T 
membranes. PCLM images depicting the corresponding surface morphology of 
hPDLF-membrane constructs demonstrated that cells on P/T membranes responded to 
contact guidance, aligning both cell and matrix to surface topography in the form of 
substrate grooves or folds (arrows). In particular, prominent collagen fibres were seen 
in highly aligned confluent cells traversing sites of perforation (arrowhead) on P/T 
membranes.  
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Figure 6.16. Level of alkaline phosphatase (ALP) of hPDLF at day 7, 14 and 21. 
ALP activity normalized by total intracellular protein was upregulated in cells on TCP 
at day 14 up to a value of 0.29 IU/mg, after which it declined at day 21. Cells on UP/T 
and P/T membranes followed a pattern of delayed induction, reaching 0.29-0.35 
IU/mg at day 21. ALP level on P/T membranes was significantly higher than UP/T 
membranes at day 14 (p<0.01) and TCP at day 21 (p<0.01). All ALP values were 
within the range reported for hPDLF under collagen induction (Appendix). Data are 
presented as mean ± SD, n = 3. *P < 0.05; **P < 0.01; ***P < 0.001. 
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7. TISSUE ENGINEERING OF A hPDLF MEMBRANE-hAO SCAFFOLD 

DOUBLE CONSTRUCT 

 

7.1. Background 

To be applicable for tissue engineering and regeneration, the biomaterial 

surface has to be cytocompatible and to present chemical and physical cues to guide 

tissue morphogenesis and differentiation (reviewed in Griffith, 2002). Having 

demonstrated P/T membranes as suitable substrates for hPDLF-membrane constructs 

(Chapter 6), the objective of this chapter was to investigate the ability of hPDLF-

membrane constructs consisting of alkali-treated and perforated PCL membranes to 

facilitate tissue regeneration in combination with hAO-scaffold constructs in an in 

vivo model. 

The presence of an intact periodontium, consisting of gingiva, periodontal 

ligament, cementum and alveolar bone, is crucial for establishing a stable bone / tooth 

interface. Thus, the regeneration of periodontal tissues lost to inflammatory process 

related to either dental injuries (Sae-Lim et al., 2004) or periodontal diseases (Amar, 

1996) is considered the ultimate aim in tooth retention (Sae-Lim, 2001). Many 

therapeutic approaches, including the usage of guided tissue regeneration (GTR) 

membranes with or without bone grafts or substitute, failed to achieve predictable 

results (Bartold et al., 2000) due to the complexity of the regenerative process at the 

soft-hard tissue interface (Amar, 1996). It was postulated that the provision of a 

prefabricated three-dimensional structure with the appropriate cells or inductive 

molecules would be a viable regenerative strategy (Bartold et al., 2000). 

Transplantation of periodontal scaffold-cell constructs had been previously 

reported. Investigations have included the implantation of human periodontal 
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ligament fibroblasts (hPDLF) on collagen scaffolds into Sprague-Dawley rats 

(Quteish et al., 1991), of human cementum-derived cells on hydroxyapatite/tricalcium 

phosphate ceramic into immunodeficient mice (Grzesik et al., 1998), and of human 

gingival autograft using hyaluronic acid scaffolds (Prato et al., 2003). Recently, 

autologous PDL cells seeded onto a collagen sponge were used to regenerate 

cementum on the root surface in beagle dogs (Nakahara et al., 2004). However, to the 

authors’ knowledge, there have been no reports on scaffold-cell grafts harbouring 

hPDLF and human alveolar osteoblasts (hAO) forming the PDL-bone interface. 

Critical size defects involving multiple tissue types, such as the PDL and alveolar 

bone, require the application of scaffolds containing the appropriate cells for tissue 

development (Murphy and Mooney, 1999). Consequently, transplantation of tissue 

engineered grafts consisting of scaffold-cell constructs appears to be a promising 

technique in regenerating periodontium.  

A double construct of hPDLF-seeded membrane and hAO-seeded scaffold 

was hypothesized to have potential application in tissue engineering periodontal 

structures. This chapter reports the two-phase study of a membrane-scaffold construct 

to investigate its ability in supporting hPDLF and hAO attachment and growth in vitro, 

and its feasibility for tissue engineering a PDL-alveolar bone interface in vivo. 

 

7.2. MATERIALS AND METHODS 

7.2.1. Preparation of membranes and scaffolds 

Poly(ε-caprolactone) (PCL) membranes (mean thickness ± SD, 10 ± 2 μm) 

with perforations (mean diameter ± SD, 100 ± 10 μm) of 400/cm2-density (Chapter 6) 

were fabricated, alkali-treated and sterilized as detailed in section 3.1. Thirty-four 

membranes, 16 x 16 mm2, were immersed in PDLF culture medium, i.e. DMEM 
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(Gibco, Life Technologies, NY, USA) containing 10% FBS, 4500 mg/mL glucose 

and 2% penicillin-streptomycin, at 37ºC followed by overnight air drying. 

Subsequently, thirty membranes were sandwiched between custom-made 316L 

stainless steel rings (Alson Engineering (S), Singapore) for subsequent cell seeding. 

Four non-seeded membranes were set aside as negative controls.  

PCL scaffolds, fabricated via fused deposition modelling (Hutmacher et al., 

2001) with a lay-down pattern of 0/60/120º and porosity approximately 65%, were 

kind gifts from Singapore Temasek Polytechnic. The fully interconnected pores had a 

size falling within the range of 360 x 430 x 620 μm (Hutmacher et al., 2001). 

Scaffolds measuring 8 x 8 x 5 mm3 were treated with NaOH and sterilized as above 

for membranes. Thirty-four scaffolds were immersed overnight in alveolar osteoblast 

(AO) culture medium, i.e. Medium199 (Gibco) containing 10% FBS and 2% 

penicillin-streptomycin, at 37ºC followed by overnight air drying. Four non-seeded 

scaffolds were set aside as negative controls. 

 

7.2.2. Seeding and culture of hPDLF and hAO 

hPDLF and hAO cell line from a periodontally sound molar of a healthy 23-

year-old female, previously characterized to possess the highest osteogenic potential 

(Chapter 4) were used in this study. hPDLF between the fourth and fifth passages 

were seeded in 45 μL aliquots each onto thirty sandwiched membranes at 78,000 

cells/cm2 or 200,000 cells/membrane. Membrane-cell constructs were incubated at 

37ºC and 5% CO2 for 2 h before DMEM was added. hAO were mixed with slow-

setting fibrin glue in a 1:2 (v/v) ratio according to manufacturer’s instructions 

(Tisseel® Kit, Baxter, Vienna, Austria). Fibrin glue was a kind gift from Dr. 

Katharina Bittner (Baxter, Hyland Immuno, Austria). Cell-fibrin mixtures in 55 μl 
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aliquots each were seeded at 625,000 cells/cm3 or 200,000 cells/scaffold onto thirty 

scaffolds. Scaffold-cell constructs, sparingly coated with 25 μL of fibrin glue, were 

incubated for 30 min before Medium199 was added. Medium change was performed 

every three days. Membrane-cell and scaffold-cell constructs were subjected to 

experiments every 7 days for a period of 21 days. All specimens were transferred to 

new wells before weekly experiments. Coating of the scaffold-cell constructs was 

repeated at day 7 to retain hAO in the scaffolds. Osteoinduction was carried out at day 

14 using medium supplemented with 50 μg/mL ascorbic 2-phosphate, 10 mM β-

glycerophosphate and 10
-7

 M dexamethasone (Sigma, MO, USA) as previously 

described (Schantz et al., 2002b). 

 

7.2.3. Cell metabolic assay 

Cell metabolism was assayed separately (n=3) for cells retained on constructs 

and cells lost to the corresponding wells by CellTiter 96® AQueous One Solution Cell 

Proliferation Assay (Promega, WI, USA). The substrate, 3-(4,5-dimethylthiazol-2-yl)-

5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), was bio-

reduced into a brown formazan product by nicotinamide adenine dinucleotide 

phosphate (NADP) or its reduced form (NADPH) within living cells. Constructs were 

transferred to new wells prior to assay. Five-hundred μl of assay reagents (1:5 MTS to 

culture medium ratio) were added per well. After 3-h incubation at 37 ºC and 5% CO2, 

100 μl aliquots of bioreduced mixture from each test well were transferred to a 96-

well plate. Absorbance at 490 nm was determined.  
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7.2.4. Implantation 

At the fourth week of culture, scaffolds and membranes were paired for 

implantation (seeded experimental group, n=9; non-seeded control group, n=4). 

Scaffolds were trimmed at the edges and assembly of fibrin glue–coated membrane-

scaffold constructs was performed 1 h prior to implantation to ensure adequate 

stability. Subcutaneous implantation was performed in accordance with the 

International Guiding Principles for Animal Research (Howard-Jones, 1985) and in a 

laminar flow hood under sterile conditions. Seven 12-week-old athymic Balb C mice 

(Animal Resources Centre, Murdoch, Australia) were anaesthetized intraperitoneally 

with 0.15 ml of Dormicum (Roche, Basel, Switzerland) and Hypnorm (Janssen, 

Beerse, Belgium) mixed at a ratio of 1:1 (v/v). After disinfection with iodine and 70% 

alcohol, approximately 10 mm-long incisions lateral to the dorsal spine were made to 

create bilateral subcutaneous pockets in accommodation of two randomly selected 

membrane-scaffold constructs, inserted with the membrane facing dorsally. The mice 

were euthanized after 4 weeks.  

 

7.2.5. Histology  

Excised tissue blocks were cut into two diagonal halves, fixed in 4% 

formaldehyde in PBS for 2 h at room temperature and immersed in 2 M sucrose 

(Sigma) at 4ºC overnight. One half of tissue blocks were embedded in tissue freezing 

medium (H-TFM; Triangular Biomedical Science, NC, USA) and frozen by 

immersion in liquid nitrogen. Seven cryosections, 8 to 12 μm in thickness, were made 

in the vertical ‘z’ plane (Fig. 7.4A). One cryosection each was stained with 

haematoxylin and eosin (H&E) and Masson’s Trichrome, while the remaining 5 were 

processed for immunostaining. The other diagonal half of tissue blocks were 
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embedded in poly(methyl methacrylate), and 3 sections each were processed for Hale 

Periodic Acid-Schiff (PAS)  and Giemsa staining. 

 

7.2.6. Immunohistochemical analysis 

Cryosections were processed with affinity purified polyclonal antibodies 

against major ECM proteins present in PDLF and AO to verify tissue identify, i.e. 

type I collagen (1:200 dilution) (Biodesign, ME, USA), type III collagen (1:40 

dilution) (Chemicon, CA, USA), fibronectin (1:200 dilution) (Biodesign), vitronectin 

(1:20 dilution) (Santa Cruz Biotechnology, CA, USA) and bone sialoprotein (BSP) 

(1:200 dilution) (Chemicon). Blocking was performed with 5% BSA (w/v) and 1% 

goat serum (v/v) in PBS for 30 min at room temperature. Sections were incubated 

with primary antibodies overnight at 4ºC in a humidified chamber. Incubation with 

secondary antibodies, anti-rabbit IgG-horseradish peroxidase (HRP) (R&D Systems, 

MN, USA) and anti-goat IgG-HRP (Chemicon), was performed according to 

manufacturer’s protocols (1:500 dilution). To distinguish between recipient and donor 

cells within the membrane-scaffold constructs, the former was identified by 

immunostaining with antibodies against mouse-IgG-specific antibody (1:250 dilution) 

(Santa Cruz Biotechnology). Immunostaining for each antibody was performed on 3 

randomly selected cryosections, and counterstained with haematoxylin.  

 

7.3. RESULTS 

7.3.1. Adhesion and proliferation of hPDLF and hAO in vitro 

hPDLF, previously characterized and found to possess the highest osteogenic 

potential (Chapter 4), attached uniformly on PCL membranes and appeared spindle-

shaped at day 7 (Fig. 7.1A). Cells were seen to either bridge or migrate through 
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perforations  (arrowheads) (Fig. 7.1B), leading to confluent cell layers on the 

membranes at day 14 (Fig. 7.1C). Under FDA/PI staining, cells appeared highly 

viable throughout the in vitro culture (Fig. 7.1C). However, the fluorescent signals on 

membranes disassembled from rings and rinsed during staining steps were frequently 

localized around perforations at day 21 (Fig. 7.1D).  

hAO, derived from the same patient as hPDLF and found to possess adequate 

osteogenic potential (Chapter 4), were seen embedded in fibrin glue at day 7 (Fig. 

7.2A, B). The initial onset of fibrinolysis was indicated by an increase in visibility of 

fibrin glue through the scaffold. At day 14, increased cell density and fibrin 

degradation within scaffolds pores were observed (Fig. 7.2C, D). FDA/PI staining 

showed viable hAO cell layers over the scaffold bars (Fig. 7.2E). The attached hAO 

on the scaffold bars appeared elongated, while those within the pores bridged within 

the interconnected honey-comb-like scaffold pores, secreting ECM to replace the 

degrading fibrin network (Fig. 7.2F). At day 21, osteoinduced hAO in scaffolds 

demonstrated positive von Kossa staining at nodules (Fig. 7.2G). 

Cell metabolic assay over 21 days (Fig. 7.3) showed a steep and steady 

increase in the metabolic rates of hPDLF on PCL membranes. hAO cultured on 

scaffolds showed a high metabolic rate in the first week, and a gentler increase at day 

14 and day 21. There was a significant peak in the metabolic rates of hPDLF at the 

bottom of culture wells at week 2 (p<0.01), whereas this was not as distinct for hAO.  

 

7.3.2. Tissue formation of hPDLF-hAO double construct in vivo 

At the fourth week of culture, scaffolds and membranes were paired for 

implantation (seeded experimental group, n=9; non-seeded control group, n=4). 

Membrane-scaffold constructs were assembled (Fig. 7.4A and Fig. 7.4B insert) and 

 139



Tissue engineering of a hPDLF-hAO double construct 

implanted into the bilateral subcutaneous pockets of 12-week-old athymic Balb C 

mice (Fig. 7.4B) for 28 days. Both constructs and surrounding soft tissues were 

harvested for evaluation at the end of 28 days (Fig. 7.4C).  

The mice tolerated the surgical procedures well. Displacement of membrane 

from construct was observed in 4 specimens (2 each from experimental and control 

groups), and these were excluded from analysis. The final sample consisted of seven 

from experimental group and two controls. Tissue ingrowth through membrane 

perforations at the membrane-scaffold interface (Fig. 7.5A) was observed in majority 

of specimens. There was a higher degree of vascular network infiltration and 

construct integration with recipient tissue in experimental group specimens. Hale-PAS 

and Giemsa staining gave uniform blue and pink coloration respectively, representing 

muscle-like tissue (Fig. 7.5A) and fibrous as well as adipose tissue (Fig. 7.5B). In 

contrast, non-seeded control group specimens were characterized by predominant 

adipose tissue (Fig. 7.5C) and the dissociation of tissue-scaffold entity. Under 

Masson’s Trichrome staining, collagen was detected in dense fibrous tissue at the 

periphery of constructs (Fig. 7.5D) and as parallel fibers along scaffold bars in 

experimental group (Fig. 7.5E). Inflammatory cell infiltration and degradation of PCL 

were not observed (data not shown).  

Immunostaining results for the major ECM proteins were summarized (Table 

7.1). Sites of antigen localization were visualized by brown coloration, generated by 

the enzymatic conversion of 3,3'-diaminobenzidine (DAB) into brown precipitate by 

HRP. Negative controls in the absence of primary antibodies gave little or no staining. 

In accordance with the results of Masson’s Trichrome staining (Fig. 7.5E), type I 

collagen was observed to be present along the scaffold bars (Fig. 7.6A), while the 

membrane-scaffold interface was positively stained for both collagen type I (Fig. 7.6C) 
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and III (Fig. 7.6B). Fibronectin was detected throughout the constructs – moderately 

at the tissue-scaffold interface and extensively at the periphery (Fig. 7.6D). 

Vitronectin expression was localized only around the vasculature (Fig. 7.6E). Staining 

for BSP gave negative results in all specimens examined. Immunostaining with anti-

mouse IgG antibodies demonstrated the sites of recipient tissue within the constructs. 

The specificity of anti-mouse IgG antibody was verified by positive staining of nude 

mice dermal sections (Fig. 7.6F), and a lack of staining in human dermal fibroblasts 

(Fig. 7.6G) and alveolar osteoblasts in vitro (results not shown). Signals for anti-

mouse IgG, detected mainly at the extracellular ECM, were localized throughout 

constructs in control groups (Fig. 7.6H), but mostly at the construct periphery and 

vasculature in experimental group (Fig. 7.6I, J). PDL tissue was largely 

indistinguishable from surrounding fibrous connective tissues, except at regions of 

membrane-scaffold interface, characterized by discrete cell layers and infiltration 

across perforated membranes (Fig. 7.6J). 

 

7.4. DISCUSSION 

7.4.1. Membranes and scaffolds supported cell adhesion and proliferation in vitro  

This chapter describes a novel concept of a PDL-alveolar bone construct. 

Poly(ε-caprolactone) (PCL), a bioresorbable scaffold polymer investigated for soft 

and hard tissue engineering (Ng et al., 2001; Schantz et al., 2002b; Li et al., 2003; 

Williamson and Coombes, 2004), was demonstrated in this study to support the 

attachment and growth of hPDLF (also described in Chapter 6) and hAO (Figs. 7.1, 

7.2).  

Fibrin glue was employed during hAO seeding as a carrier for the delivery of 

cells into scaffolds. Fibrin glue is biocompatible (Romanos and Strub, 1998) and can 
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be degraded by local fibrinolytic activity followed by the invasion of granulation 

tissue accompanied by macrophages (Warrer and Karring, 1992) at about 1 week 

post-injury (Amar, 1996). Components such as factor XIII and cross-linked fibrin 

were believed to stimulate cell proliferation, and facilitate the formation of a 

fibroblast network via the clot structure in wound healing (Redl et al., 1985). In this 

study, hAO within PCL scaffolds demonstrated a high metabolic rate in the first 14 

days of in vitro culture (Fig. 7.3). The lengthened process of fibrinolysis, initiated at 

day 7 and extended till day 14 as suggested by the increase in visibility through the 

scaffold (Fig. 7.2A-D), could be attributed to the action of aprotinin from fibrin glue. 

Aprotinin has been shown to negatively regulate plasmin (de Haan and van Oeveren, 

1998) and hence slow down fibrin degradation. As cell proliferation and migration 

took place, hAO gradually emerged out of fibrin matrix and established contacts with 

PCL surface via focal adhesions (Schantz et al., 2002b). hAO embedded in fibrin glue 

but unattached to PCL were lost with fibrinolysis onto the bottom of culture wells at 

day 14 (Fig. 7.3). Mineralized nodule formation, characterized by cell aggregates and 

positive von Kossa staining, was observed at day 21 (Fig. 7.2G), which were in 

accordance with previously reported in vitro studies on bone engineering (Schantz et 

al., 2002b).  

On the other hand, hPDLF seeded at a density of 78,000 cells/cm2 or 200,000 

cells/membrane did not achieve high cell densities on membranes at day 7 (Fig. 

7.1A). hPDLF demonstrated a high rate of proliferation on membranes throughout the 

21-day in vitro culture (Fig. 7.3), and reached cell confluency at day 14 (Fig. 7.1C). 

Coating with membranes with fibrin glue did not result in significant differences in 

either cell attachment or proliferation (unpublished data). Cell loss was observed 

during rinsing after disassembly of rings (Fig. 7.1D), possibly accounting for the peak 
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in hPDLF metabolic activity at the bottom of culture wells (Fig. 7.3). An intermediate 

seeding density of cells on scaffolds was found to be optimal for cell proliferation and 

ECM synthesis (Zhou et al., 2006). In retrospect, hPDLF seeded at high cell densities 

did not achieve as much cell mass and matrix formation as when seeded at sub-

confluence (Chapter 6). Nonetheless, a stable hPDLF-membrane interface from an 

integration of cell layers and membrane (Fig. 7.5A, 7.6D) was eventually obtained, 

attributed to cell migration through perforations (Fig. 7.1B, 7.7J). 

 

7.4.2. Membrane-scaffold double construct facilitated tissue growth and 

vascularization in vivo  

Histochemical examination of in vivo constructs in the experimental group 

after 28 days demonstrated highly vascularized tissue including ingrowth of muscle, 

fibrous and adipose tissues from the recipient (Fig. 7.5A-C). This incidentally also 

provided evidence for the advantages of a scaffold with high porosity with respect to 

nutrient supply which is a determining factor for the survival, proliferation, and 

differentiation of transplanted cells (Muschler et al., 2004). Connective tissue 

invasion, identified by immunostaining with anti-mouse IgG antibodies, was detected 

mainly at the construct periphery and vasculature (Fig. 7.6I). Cells within constructs 

secreted ECM observed as collagen fibres aligning along scaffold bars (Fig. 7.5E), 

whereas cells at the membrane-scaffold interface secreted collagen, depositing 

between cell layers (Fig. 7.6C). Fibronectin and vitronectin, usually found to be 

present in newly-formed PDL and osteoid at 4 and 8 weeks post-injury (Matsuura et 

al., 1995), were also detected in our constructs. Unlike the ubiquitous distribution of 

fibronectin, vitronectin was expressed only by cells near the vasculature (Fig. 7.6E), 

in accordance to its presence in the plasma, platelet α-granules and vessel wall (Jang 
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et al., 1998). On the other hand, cell penetration through the 100-μm-diameter 

membrane perforations allowed for enhanced integration with the scaffolds (Fig. 7.5A, 

7.6D, 7.6J). Despite this, membrane displacement was observed due to a lack of 

physical interlocking of the membrane and scaffold. However, the loss of construct 

integrity at the membrane-scaffold interface and the weakened bonding of tissue to 

scaffold bars were more pronounced in non-seeded controls, implicating the crucial 

role of seeded cells in scaffold-cell constructs. 

The observation of increased ECM and mineralized nodule formation of hAO 

after 14 days in vitro (Fig. 7.2F, G) was in accordance with an earlier finding 

(Franceschi, 1999). Previous characterization of hAO derived from the same patient 

on tissue culture plastic demonstrated its ability to form mineral-like nodules in vitro 

(Chapter 4). A similar experiment involving the subcutaneous implantation of human 

periosteum-derived osteoprogenitor cells on PCL scaffold also reported bone 

formation (Schantz et al., 2002b). Furthermore, studies from the same laboratory have 

demonstrated the ability of hAO to express osteogenic proteins such as osteopontin  

(OPN) and osteocalcin on PCL scaffolds (Zhou, 2006).  

Given the observed intrinsic biological patient-to-patient variation among the 

ten primary hPDLF cell lines (Chapter 4), the selection of cells with the highest 

osteogenic potential in vitro was thought to facilitate tissue regeneration in hPDLF-

hAO double constructs in vivo. However, no mineralization was found within the in 

vivo constructs in this study. Bone sialoprotein (BSP), a mineralized tissue-specific 

marker with an established role in bone calcification (Boskey, 1996), was not detected 

within the constructs, possibly suggestive of a loss of phenotypic differentiation. 

Taking into account the observation that hPDLF exhibited a dedifferentiated or 

embryonic-like phenotype during expansion culture in the presence of ascorbic acid 
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(Chapter 5), and that the PDL has been associated with root resorption due to 

prostaglandin E2 production (Ogiso et al., 1992; Shiraishi et al., 2001), it may be 

speculated that the interaction between hPDLF and hAO interfered with the 

osteogenesis of hAO at the interface of soft and mineralizing tissues. Future studies 

could encompass the separate evaluation of hPDLF and hAO cell-scaffold constructs 

in periodontal defects, and histological examination using ALU probes (Weisberg et 

al., 1996) to assess the colonization of human-derived cells in recipient tissues. 

In summary, alkali-treated PCL membranes and scaffolds supported hPDLF 

and hAO adhesion and proliferation in vitro, whereas membrane-scaffold double 

constructs facilitated tissue growth and vascularisation, but not mineralized tissue 

formation in vivo.  
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Figure 7.1. Attachment, growth and viability of hPDLF on PCL membranes. (A) 
Uniform distribution of hPDLF on membranes was observed under PCLM at day 7. 
(B) Bridging or migration of cells through perforations (arrowheads) was observed 
under SEM at day 14. Confocal laser microscopy images showing (C) highly viable 
cells at day 14, and (D) the localization of cells to sites of perforations at day 21 after 
FDA/PI staining. 
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Figure 7.2. Attachment, morphology and viability of hAO on PCL scaffolds. hAO 
embedded in fibrin glue via (A) PCLM and (B) SEM at day 7. Prominent signs of 
fibrin degradation was observed via (C) PCLM and (D) SEM at day 14, as indicated 
by white arrow. (E) hAO proliferated and remained largely viable on scaffold bars 
under FDA/PI staining at day 14. (F) hAO were also observed to bridge within 
scaffold pores, secreting ECM to replace the degrading fibrin network. (G) 
Mineralized nodule formation  (black arrowhead) was observed after von Kossa 
staining of osteoinduced hAO at day 21. 
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Figure 7.3. Metabolic activities of hPDLF on membranes and of hAO on 
scaffolds, with their respective wells at weekly intervals. Cell metabolic assay over 
21 days showed a steep and steady increase in the metabolic rates of hPDLF on PCL 
membranes. hAO cultured on scaffolds showed a high metabolic rate in the first week, 
and a gentler increase at day 14 and day 21. There was a significant peak in the 
metabolic rates of hPDLF at the bottom of culture wells at week 2 (p<0.01), whereas 
this was not distinct for hAO.  
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Figure 7.4. Implantation and excision of membrane-scaffold constructs. (A) 
Three-dimensional representation of a membrane-scaffold construct, with the 
implantation orientation indicated. (B) Twelve-week-old athymic Balb C mice 
carrying (insert) membrane-scaffold constructs assembled with fibrin glue in bilateral 
subcutaneous pockets with the membrane facing dorsally. (C) Both constructs and 
surrounding soft tissues were harvested for evaluation 28 days after implantation.  
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Figure 7.5. Histological  analysis of constructs after 4-weeks in vivo. 
Representative morphology of constructs from experimental group after (A) Hale-
PAS and (B) Giemsa staining. (C) Dislocation of PCL membrane and predominance 
of adipose tissue in non-seeded control. Presence of collagen at (D) periphery and (E) 
tissue-scaffold interface under Masson’s Trichrome staining. Abbreviations: a, 
adipose tissue; bv, blood vessel; d, dense fibrous tissue; m, muscle-like; black arrow, 
PCL membrane; white arrow, tissue penetration across perforations; arrowhead, 
collagen fibers. 
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Protein 

 
Group Membrane  Central 

tissue 
Tissue-
scaffold 
interface 

Collagen I E 
C 

-/+ 
-/+ 

-/+ 
-/+ 

-/+ 
-/+ 

Collagen III E 
C 

-/+ 
-/+ 

-/+ 
-/+ 

-/+ 
- 

Fibronectin E 
C 

+ 
+ 

+  
+ 

+ 
+ 

Vitronectin E 
C 

-/+ a

-/+ a
-/+ a

-/+ a
- 
- 

Bone sialoprotein E 

C 
- 

- 
- 

- 
- 

- 
Mouse IgG E 

C 
+ 
+ 

-/+ 
+ 

-/+ 

+ 
 
Table 7.1. Summary of immunostaining results. Abbreviations: E, experimental; C, 
non-seeded control; -, absent; +, present; a, staining localized at blood vessels. 
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Figure 7.6. Immunohistochemical analysis of constructs after 4-weeks in vivo. (A) 
Expression of type I collagen at tissue-scaffold interface, as indicated by brown 
coloration. Expression of (B) type III and (C) type I collagen at membrane. Note the 
differing tissue morphology at (B) construct periphery and at (C) membrane-scaffold 
interface. (D) Expression of fibronectin, strong at periphery and moderate at tissue-
scaffold interface. (E) Expression of vitronectin near vasculature. Immunostaining of 
anti-mouse IgG in (F) nude mice dermal sections (positive control) and (G) human 
dermal fibroblasts (negative control). Expression of anti-mouse IgG in (H) control and 
(I, J) experimental group. Cells of mouse origin (indicated by black arrowheads) were 
found mainly at the periphery and areas of vascularization. (J) Close up image at the 
membrane-scaffold interface, showing the infiltration of putative PDLF cell-sheet 
through the perforation. Abbreviations: bv, blood vessel; black arrow, PCL membrane; 
white arrow, tissue penetration across perforations. 
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8. GENERAL CONCLUSIONS AND FUTURE WORK 

8.1. General conclusions 

Ten hPDLF and three hAO primary cell lines from four males and six females, 

aged 13-56 yr (25 ± 11, mean ± SD), were established. hPDLF under osteogenic 

induction demonstrated an initial increase followed by a subsequent decrease in ALP 

and ON, an increased synthesis of bone-matrix protein OPN after day 14, and 

mineral-like tissue formation at day 28. Furthermore, hPDLF produced BSP as well as 

the 44-kDa form of OPN under both normal and mineralizing culture. Hence, hPDLF 

established by explant culture up to passage 3-5 retained osteo-progenitors and 

osteoblast-like cells capable of osteogenic differentiation in vitro.  

Subsequent characterization under 21-day expansion culture with 10% serum 

supplemented with ascorbic acid showed that hPDLF preserved their collagen 

synthetic ability in vitro, as demonstrated by the synthesis of types I, III, V, XII and 

XIV. hPDLF matrix thus formed demonstrated a recovery of type III collagen 

deposition and an insignificant increase in type V collagen at the end of expansion.  

Having established and characterized hPDLF, cell-substratum interactions of 

hPDLF on PCL membranes were examined as a first step in the development of 

hPDLF-membrane constructs. Cytocompatibility of alkali-treated PCL membranes 

was enhanced in terms of a two-fold increase in cell adhesion rate and total efficiency, 

attributable to a greater accessibility of fibronectin cell-binding domain. Constructs 

consisting of perforated PCL membranes provided greater cell anchorage, and cell 

and matrix alignment than unperforated ones via contact guidance, while retaining 

hPDLF phenotypic expression and promoting matrix maturation at day 21.  

Based on the findings above, hPDLF and hAO, derived from the same 

individual and previously characterized to possess the highest osteogenic potential, 
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were cultured on alkali-treated, perforated membranes and alkali-treated scaffolds 

respectively. Vascularized, well-integrated hPDLF-hAO double construct was 

observed 28 days after subcutaneous implantation in athymic mice, but no further 

osteogenesis in the earlier-mineralized matrix was seen. 

Given the intrinsic biological patient-to-patient variation among the ten 

primary hPDLF cell lines, the selection of cells with the highest osteogenic potential 

in vitro was thought to facilitate tissue regeneration in hPDLF-hAO double constructs 

in vivo. However, the outcome of ectopic implantation in athymic mice was 

unexpected. Taking into account the observation that hPDLF exhibited a 

dedifferentiated or embryonic-like phenotype during expansion culture in the 

presence of ascorbic acid, and that the PDL has been associated with root resorption 

due to prostaglandin E2 production (Ogiso et al., 1992; Shiraishi et al., 2001), the 

lack of mineralized tissue formation was probably due to an interaction between 

hPDLF and hAO.  

 

8.2 Future work 

The possibility of dedifferentiation, defined as a process in which a partially or 

terminally differentiated cell reverts to a more embryonic form, or an earlier 

developmental stage (reviewed in Liu et al., 2006) is sometimes overlooked during 

culture expansion. This is of importance not only in the expression of genes and 

proteins specific to the stage of differentiation, but also the collagenous matrix which 

in turn determines downstream gene expression and cellular phenotype.  

It has been reported that in vitro cultures of PDLF demonstrated a lack of 

phenotypic stability, and were selective for a more “fibroblast-like” phenotype 

(Limeback and Sodek, 1979; Nohutch et al., 1996). However, according to the 
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author’s knowledge, there has been no report on the redifferentiation of hPDLF in 

vitro. The preservation of the state of cell differentiation for downstream clinical 

applications such as tissue engineering have been recently studied in chondrocytes 

(Yang et al., 2006), epithelial cells (Reuters et al., 2006) and hepatocytes (Hansen et 

al., 2006).  

This study showed that serum deprivation appeared to result in a reversal of a 

dedifferentiated phenotype, as recently reported in human vascular smooth muscle 

cells (Han et al., 2006). hPDLF, though quiescent, secreted significantly greater 

amounts of collagenous ECM and achieved matrix maturation as seen from ALP 

upregulation. Therefore, this study provides the foundation work for redifferentiation 

studies of PDLF. Yet, this reversal was not complete, as seen from the persistent 

synthesis of the large isoforms of type XII and XIV collagen. Future work could 

entail the analysis of type XII and XIV collagen transcripts over serial passages of 

hPDLF by RT-PCR using isoform-specific primers to pin-point the exact stage where 

a “switch” in isoform expression took place. 
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APPENDIX 

Chapter 3: Fabrication of PCL membranes 

 

A B  

 

 

 

 

Biaxial stretching of (A) heat pressed PCL films into (B) 10 μm-thin membranes. 

The directions of stretch are indicated with arrows. 
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Chapter 3: Whole cell lysis and total protein quantification 

Cells cultured in six-well plates were rinsed with sterile PBS and lysed in 

chilled Wally Langdons lysis buffer containing 20 mM Tris (pH 8.0), 150 mM NaCl, 

1 mM EDTA, 1% (v/v) Triton X-100 and protease inhibitor cocktail (Calbiochem) for 

5 min on ice. Cells were removed from the wells with cell scrappers (Iwaki, Japan) 

and whole cell lysates were centrifuged at 14,000 rpm for 10 min at 4°C.  

Total proteins were quantitated in triplicates at each time point by Bradford 

assay (Bio-Rad Laboratories, CA, USA), in which the Coomassie® Brillant Blue G-

250 dye exhibits an absorbance maximum shift from 465nm to 595nm upon protein 

binding. Protein supernatants were diluted 100-fold in autoclaved deionized water. 

Six dilutions of the protein standard, bovine serum albumin (BSA) (Sigma), were 

prepared in the following concentrations : 0 μg/ml, 5 μg/ml, 10 μg/ml, 15 μg/ml, 20 

μg/ml and 25 μg/ml. Twenty-five μl of Coomassie dye was added to 100 μl of each 

standard or diluted sample, mixed and incubated for 5 min at room temperature in a 

96-well plate. Absorbance was measured at 595nm using a microplate reader 

(GENios, Tecan Group, Switzerland), and protein concentrations (mg/ml) were 

determined from standard curve.  
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Chapter 3: Primary and secondary antibodies used for Western blotting. 
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Chapter 4: Alkaline phosphatase (ALP) stain 
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Chapter 4: Von Kossa stain 
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Type of mineralization was categorized as according to Liu et al. (1997) and 

Declercq et al. (2005). “Diffuse” type was characterized by the appearance of flat and 

randomly dispersed foci. “Nodular” type was characterized by three-dimensional 

nodule formation, associated with regions of cell and matrix condensation. Von Kossa 

reaction was graded as follows: -, negative staining; -/+, undetectable to weak 

staining, +, moderate staining; ++, intense staining. 
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Chapter 5: Cell morphology 
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Morphology of hPDLF demonstrating cell quiescence and proliferation under 

0.2% and 10% serum respectively over time. 
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Chapter 5: ALP activity as IU/protein 
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Levels of alkaline phosphatase (ALP) normalized to total protein.  
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Chapter 5: SDS-PAGE 
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SDS-PAGE of pepsin-digested and undigested medium fractions at day 21 in 3-

8% gradient Tris-acetate gel before and after reduction. Type III collagen was 

verified by a disappearance of α1(III)3 trimer and a corresponding increase in α1(I). 

Densitometric analysis of α1(I) in pepsin-digested medium fraction after reduction 

revealed a fold increase of 1.3 and 1.2 under 0.2% and 10% serum respectively, 

indicating that secreted type III collagen was approximately 20% of secreted type I 

collagen. 
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Chapter 6: Cell seeding onto membranes 

 
 Day 3 
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Cell morphology and growth of hPDLF on PCL membranes. At day 3, cell-cell 

association (arrows) was evident on untreated membranes, whereas uniform 

attachment showing spindle-shaped morphology was obtained on alkali-treated 

membranes. hPDLF migrated out from cell clusters onto untreated membranes at day 

7, whereas those on alkali-treated membranes proliferated to form a well-attached 

layer.  
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