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Summary

This thesis presents a probabilistic framework for recognizing multiple simultane-

ously expressed concepts in sign language gestures. These gestures communicate

not just the lexical meaning but also grammatical information, i.e. inflections that

are expressed through systematic spatial and temporal variations in sign appear-

ance. In this thesis we present a new approach to analyse these inflections by

modelling the systematic variations as parallel information streams with indepen-

dent feature sets. Previous work has managed the parallel complexity in signs by

decomposing the sign input data into parallel data streams of handshape, location,

orientation, and movement. We extend and further generalize the concept of par-

allel and simultaneous data streams by also modelling systematic sign variations

as parallel information streams. We learn from data, the probabilistic relationship

ix



Summary x

between lexical meaning and inflections, and the information streams; and then use

the trained model to infer the sign meaning conveyed through observing features

in multiple data streams.

We show how to take advantage of commonalities between how grammati-

cal processes affect appearances of different root sign words to reduce parameters

learned in the model and recognize new and unseen combinations of root words and

grammatical information. This is crucial because there is a large variety of infor-

mation that can be conveyed in addition to the lexical meaning in signs and hence

a large variety of appearance changes that can occur to a root word. It is therefore

crucial to be able to recognize unseen new signs conveying new combinations of

lexical and grammatical information.

In preliminary experiments, we recognize isolated gestures using a Bayesian

network (BN) to combine the information stream outputs and infer both the basic

lexical meaning and the inflection categories. In further experiments, we apply

our approach to recognize continuously signed sentences containing inflected signs.

Continuous signing presents additional challenges as the segmentation of a con-

tinuous stream of signs into individual signs is a difficult problem. We propose a

novel dynamic Bayesian network (DBN) structure – the Multichannel Hierarchi-

cal Hidden Markov Model (MH-HMM) for continuous sign recognition. Just as

in the case for the BN, the MH-HMM models the probabilistic relationship be-

tween lexical meaning and inflections, and the information streams. Sentences are



Summary xi

implicitly segmented into individual signs during the recognition process, while

synchronization between multiple streams is obtained through the novel use of a

synchronization variable in the network structure. The vocabulary used in the

continuous signing experiments is very complex. The vocabulary size is 98 signs,

with 73 different sentences appearing in the training and test set data. The 98

signs are made up of combinations of 29 lexical meanings, and two different types

of inflections, one with 11 distinct values and the other with 3 distinct values.

Many of the root sign words appear in multiple variations due to inflections. For

example, the root sign word GIVE appears in 16 different versions. Some of the

inflections modify the sign simultaneously, further increasing the complexity of the

vocabulary.

Computational complexity of inferencing in DBNs increases with network size.

We show how to use particle filtering as an approximate inferencing algorithm

to manage the computational complexity for our proposed DBN model. Experi-

mental results demonstrate the feasibility of using the MH-HMM for recognizing

inflected signs in continuous sentences. We also demonstrate results for recognizing

continuously signed sentences containing unseen new signs.
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Chapter 1
Introduction and background

Sign language (SL) communication is a richly expressive medium that involves not

only hand/arm gestures (for manual signing) but also non-manual signals (NMS)

conveyed through facial expressions, head movements, body postures and torso

movements. NMS is most used for syntactic constructions, for example, to mark

topics, relative clauses, negative clauses, and questions [94]. In manual signing, the

interplay of grammatical elements and lexical meaning produces a large number

of complex variations in sign appearances [94]. In SL, many of the grammatical

processes involve systematically changing the manual sign appearance to convey

information in addition to the lexical meaning of the sign. This includes informa-

tion that would usually be expressed in English through prefixes and suffixes or

additional words like adverbs. Hence, while information is expressed in English

by using additional words as necessary rather than changing a given word’s form,

1
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in SL, it is often expressed through a change in the form of the root sign word.

Thus, just as there is a large variety of prefixes, suffixes, and adverbs that may

be used with a particular word in English, there is also a large variety of different

systematic appearance changes that can be made to a root word in SL.

In this thesis we are concerned with SL recognition. The term SL recognition

refers to extracting information from the signed data stream (for example of a

sentence), and recognizing the sequence of manual signs and NMS in that stream.

The output of the recognition process is the sequence of meanings (words and

grammatical information) conveyed in the signing sequence. This is a very raw form

which is not grammatical, and may not have a one-to-one mapping with the words

of any spoken language. Thus, a complete sign-to-text/speech translation system

would additionally require machine translation from the recognized sequence of

meanings to the text or speech of a spoken language such as English. Machine

translation is usually not addressed in SL recognition work, and is beyond the

scope of this thesis.

Much of SL recognition research has focused on solving problems similar to

those that occur in speech recognition, such as scalability to large vocabulary,

robustness to noise and person independence, to name a few. These are worthy

problems to consider and solving them is crucial to building a practical SL recogni-

tion system. However, the almost exclusive focus on these problems has resulted in

systems that can only recognize the lexical meanings conveyed in signs, and bypass
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the richness and complexity of expression inherent in manual signing.

This thesis is a step towards addressing the imbalance in focus. In taking this

first step, it is necessary to limit the scope to manual signing. So although NMS is

an important part of SL communication, NMS and its recognition is not considered

in any detail. The focus of this work is on recognizing the different sign appearances

formed by modulating a root word and extracting both the lexical meaning and the

additional grammatical information that is conveyed by the different appearances.

Specifically, the focus is on modelling and extracting information conveyed by

two types of grammatical processes that produce systematic changes in manual

sign appearance, viz., directional use of verbs and temporal aspect inflec-

tions. These processes will be described in more detail in the next section (Section

1.1). The signs and grammar described are with reference to American Sign Lan-

guage (ASL) because it is one of the most well-researched sign languages – by sign

linguists as well as by researchers in machine recognition. Its grammatical rules

have been studied extensively and well-documented in comparison with many other

sign languages in use around the world. One of the motivations for SL recognition

research is the contributions that it can make to gesture recognition research in gen-

eral. In Section 1.2, the connection between speech-accompanying gesticulations

and SL manual signing is considered, especially as it pertains to the grammatical

processes mentioned above. Section 1.3 describes more fully the motivation of our

research, followed by a statement of the research goals in Section 1.4.
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For the rest of this thesis, unless otherwise noted, the terms word and sign shall

refer exclusively to manual signing and do not include NMS. Our definitions of these

two terms are given below. They do not necessarily reflect accepted conventions

in SL linguistic literature and thus should be considered as only applicable within

the scope of this thesis. If the lexical/word meaning and grammatical information

conveyed by two SL hand gestures is the same, then we consider it to be the same

sign. However, gestures that convey the same lexical/word meaning but different

grammatical information are defined to be the same word but different and distinct

signs. So for example, the same word inflected in different ways results in different

signs.

1.1 Sign language communication

As mentioned above, most research work in SL recognition has focused on classi-

fying the lexical meaning in signs. This is understandable since the lexical infor-

mation in signs does express the main information conveyed through signing. For

example, by observing the hands in the sequence of Figure 1.1, we can decipher the

lexical meaning conveyed as ‘YOU STUDY’1. However, without observing NMS

and the repetitiveness of the movement in the signing, we cannot decipher the full

meaning of the sentence as, “Are you studying very hard?”. The query in the

1Words in capital letters are sign glosses which represent signs with their closest meaning in
English. However, the signs do not necessarily correspond exactly in meaning with the glosses
that represent them.
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sentence is expressed by the body leaning forward, head thrust forward and raised

eyebrows towards the end of the signed sequence (e.g. in Figure 1.1(e),(f)). To

refer to an activity performed with great intensity, the lips are spread wide with

the teeth visible and clenched; this co-occurs with the sign STUDY. In addition to

information conveyed through these NMS, the sign is performed repetitively, trac-

ing a circular path in 3-dimensional space, with smooth motion. This continuous

action further distinguishes the meaning as “studying” instead of “study”. In the

following sections, issues related to the lexical form of signs will be considered first,

followed by some pertinent issues with respect to modifications of signs that carry

grammatical meaning.

Figure 1.1: A sequence of video stills from the sentence translated into English as
“Are you studying very hard?”. Frame (a) is from the sign YOU. Frames (c)–(f)
are from the sign which contains the lexical meaning STUDY. Frame (b) is during
the transition from YOU to STUDY.

1.1.1 Manual signs to express lexical meaning

Sign linguists agree that signs have internal structure that can be broken down into

smaller parts [152], and they generally distinguish the basic parts as consisting of

the handshape, hand orientation, location and movement. Handshape refers to
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the finger configuration, orientation to the direction in which the palm and fingers

are pointing, and location to where the hand is placed relative to the body. Hand

movement includes both path movement that traces out a trajectory in space, and

movement of the fingers and wrist. Each of these parts have a limited number of

possible categories, or “primes” (for example [14] identifies 40 distinct handshapes,

16-18 distinct orientations, 12 distinct locations, and 12 simple movements).

Two major ways of analysing the sign structure are: 1) as temporally paral-

lel phenomena where signs are primarily seen as a simultaneous organization of

features; or 2) as primarily sequential phenomena where signs are organized as a

sequence of temporal segments [95]. In Stokoe’s [144] representation, a sign is de-

scribed as a combination of simultaneous values for location, oriented handshape,

and one or more movements. If there are sequences of handshapes, locations, and

orientations within a sign, these are considered as by-products of the movement

component. In Liddell’s representation [94], [95], signs consist of movement and

hold segments that are produced sequentially. Movement segments are defined as

periods during which some part of the sign is in transition, whether handshape,

location or orientation. Hold segments are periods when all these parts are static.

Movement segments have additional features, including path contour or path shape

(the shape of the path traced in 3-dimensional space by the hand); contour plane

(the 2-dimensional plane in which the path is traced in); and other movement path
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attributes like shortening, acceleration, reduction or enlargement. Many of the re-

cent models also propose sequential representation of signs ([27],[125],[137],[164]).

An important phenonemon that occurs in continuous signing is movement

epenthesis. When signs occur in a continuous sequence to form sentences, the

hand(s) need to move from the ending location of one sign to the starting loca-

tion of the next. Simultaneously, the handshape and hand orientation also change

from the ending handshape and orientation of one sign to the starting handshape

and orientation of the next. These inter-sign transition periods are called move-

ment epenthesis [95] and are not part of either of the signs. Figure 1.1(b) shows

a frame within the movement epenthesis where the right hand is transiting from

performing the first sign to the second sign in the sentence. In continuous signing,

processes with effects similar to co-articulation in speech also do occur, where the

appearance of a sign is affected by the preceding and succeeding signs (e.g. hold

deletion, metathesis and assimilation [152]). However, these processes do not nec-

essarily occur in all signs; for example, hold deletion is variably applied depending

on whether the hold involves contact with a body part [95]. Hence movement

epenthesis occurs most frequently during continuous signing and should probably

be tackled first by machine analysis, before dealing with the other phonological

processes.
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The systematic changes to the sign appearance during continuous signing de-

scribed above (addition of movement epenthesis, hold deletion, metathesis, as-

similation) do not change or add to the sign meaning. However, there are other

systematic changes to one or more parts of signs which affect the sign meaning.

Two of these types of modulatory processes are briefly described in the next two

sections.

1.1.2 Directional verbs

Directional verbs are made with various handshapes and movement path shapes to

encode the lexical meaning of the verb. Meanwhile, the movement path direction

(the direction in which the hand is moving in 3-dimensional space ) serves as a

pointing action to identify the subject and the object of the verb [94].

Example 1. Figure 1.2 (a) shows the appearance of the sign which has lexical

meaning TEACH and with subject and object being the signer and the addressee,

respectively (English translation: “I teach you”). Figure 1.2 (b) shows the sign

with the same lexical meaning of TEACH, this time with subject and object being

the addressee and the signer, respectively (English translation: “You teach me”).

In Figure 1.2 (c), the subject of the verb is indicated as the signer. The object

is neither the signer nor the addressee but a third person who could either be

someone standing (off-camera) roughly to the left of the signer, or a non-present

person. In the second case, the signer would have already set up or established
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Figure 1.2: The sign TEACH pointing towards different subjects and objects : (a)
“I teach you”, (b) “You teach me”, (c) “I teach her/him (someone standing to the
left of the signer)”.

this non-present referent in the location to the left of her body. One of the ways

of doing this is by using a pronoun to point to that location right after making

the sign for the referent (e.g. the person’s name) [8]. (We will use this method of

establishing referents in the experiments of Chapter 6). Once established, pointing

signs can be made in the direction of the location just as if the referent really was

present there.

The modulations in movement path direction as described above are examples

of directional verb inflections. There are a few things to note about directional

verbs. The addressee or any other referent could be located just about anywhere

with respect to the signer. Thus the directionality of these verbs is not fixed, but
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varies depending on the actual location of the entity it is directed towards or the

established referent location (in subsequent analysis we shall only refer to the case

where the referent is physically present, with the understanding that the analysis

would apply equally to the case of the non-present referent). The hand can point

in an unlimited number of directions, and Liddell [94] makes a convincing argu-

ment that this directional use of signs does not convey symbolic information but

instead conveys the same information as pointing co-verbal gestures. In spoken

language the phonetic signal that conveys symbolic information (i.e. the lexical

word meaning) is expressed verbally, while pointing co-verbal gestures would be

performed by the hand/arm, which are completely separate and distinct articula-

tors than that for speech. In the case of SL discourse, the symbolization and the

pointing both occur through movements of the hands and body. It is important

however to distinguish the two functions as separate within the same sign.

Another key fact to note is that movement direction modulation is accompanied

by location change and often also a change in palm orientation. Although the final

location of the hand, for example, is not describable in terms of a fixed set of

phonological or phonetic features, it does depend on the locations of entities these

verbs are directed towards and the signer’s judgement in tracing a path that leads

from the starting point of the sign towards the entity that is the verb’s object. We

will make use of this fact for modelling and in experiments described in Chapter 4

and 6, respectively.
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Lastly, the direction of the signer’s eye gaze (and frequently his/her head posi-

tion) is also important for understanding the grammatical role of different referents

in the sentence [8]. This NMS is however beyond the scope of the thesis and will

not be addressed here.

1.1.3 Temporal aspect inflections

In the sentence of Figure 1.1, the sign STUDY expresses aspectual information in

addition to the lexical meaning of the verb. The handshape of this inflected sign

is the same as in its uninflected form but the movement of the sign is modified to

show how the action (STUDY) is performed with reference to time. The English

translation for this sign would be “studying continuously” or “studying for a while”.

This particular inflection value is denoted as [DURATIONAL]. Examples of other

signs that can be inflected in this way are WRITE, SIT, LOOK-AT and 33 other

signs listed by Klima and Bellugi in [81]. Below are some examples and illustrations

of the [DURATIONAL] inflection as well as other inflections in the same category,

collectively called temporal aspect inflections.

Example 2. In Figure 1.3(a), the sign is uninflected and conveys the lexical

meaning LOOK-AT. It has a linear, straight movement path shape. In Figure

1.3(b), the sign is modulated with the [DURATIONAL] inflection to give the

meaning “look at continuously”. Similar to the inflected sign for STUDY men-

tioned above, here the sign is also performed repetitively in a circular path shape
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Figure 1.3: (a) The sign LOOK-AT (without any additional grammatical infor-
mation), (b) the sign LOOK − AT[DURATIONAL], conveying the concept “look at
continuously”.

with smooth motion.

Example 3. In Figure 1.4(a), the sign is uninflected and conveys the lexical

meaning CLEAN. In Figure 1.4(b), the sign is modulated with the [INTENSIVE]

inflection to give the meaning “very clean”. Compared to the unmodulated sign,

the movement in CLEAN[INTENSIVE] is faster and bigger, and the hand/arm is more

tense. FAST and AFRAID are examples of other signs that can be modulated in
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Figure 1.4: (a) The sign CLEAN (without any additional grammatical informa-
tion), (b) the sign CLEAN[INTENSIVE], conveying the concept “very clean”.

this way.

Figure 1.5: Signs with the same lexical meaning, ASK, but with different temporal
aspect inflections (from [126]) (i) [HABITUAL], meaning “ask regularly”, (ii) [IT-
ERATIVE], meaning “ask over and over again”, (iii) [DURATIONAL], meaning
“ask continuously”, (iv) [CONTINUATIVE], meaning “ask for a long time”.

Figure 1.5 shows illustrations of the signs expressing the lexical meaning ASK,

with different types of aspectual inflections - [HABITUAL], [ITERATIVE], [DU-

RATIONAL], and [CONTINUATIVE].
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From these examples we can see that these modulations firstly affect the move-

ment path shape and size (both of which also affect the hand location, a fact

that we use to advantage in sign modelling and in experiments of Chapter 4 and

6, respectively), and secondly, the movement rhythm and speed. An example of

modulations of the latter type is CLEAN[INTENSIVE] which has a faster movement

than the uninflected word sign CLEAN. The [DURATIONAL] and [HABITUAL]

inflections induce smooth motion at a constant rate while the [CONTINUATIVE]

and [ITERATIVE] inflections induce uneven motion (unfortunately these differ-

ences in rhythm and speed are difficult to illustrate on the printed page). Sign

linguists postulate that all the variations due to expression of aspectual meanings

differ from one another in only a limited number of spatial and temporal dimen-

sions, each with a small number of contrastive values [81]. These dimensions are:

rate (relatively fast or slow), onset-offset hold (the movement can start or end

with a hold), tension (presence or absence of tension in the hand/arm), evenness

(constant or uneven rhythm), size (relatively large or small), contouring (straight,

circular, elliptical) and number of cycles (single or multiple).

The meanings conveyed through these modulations in movement are associ-

ated with aspects of the verbs that involve frequency, duration, recurrence, per-

manence, and intensity [81],[126]. Besides the examples mentioned above, other
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meanings that may be conveyed include “incessantly”, “from time to time”, “start-

ing to”, “increasingly”, “gradually”, “resulting in”, “with ease”, “readily”, “ap-

proximately” and “excessively”. Klima and Bellugi [81] lists 11 different types of

aspectual meanings that can be expressed. The important thing to note is that the

aspectual information is conveyed in addition to and without changing the lexical

meaning of the verb or adjective.

Lastly, signs marked for aspectual meaning tend to appear with specific non-

manual signals, including specific facial expressions as well as head positions and

movements [94]. However NMS is not addressed here.

1.1.4 Multiple simultaneous grammatical information

In ASL, multiple grammatical information may be conveyed through a single sign,

by creating complex spatio-temporal sign forms [81]. The modulations of sign

movement due to different categories of grammatical processes affect different char-

acteristics of movement. For example, a directional verb points to its subject and

object through the direction of the movement. Whereas, if the verb is marked for

aspectual meaning, this is expressed through the movement path shape, size and

speed. Each of these characteristics is mutually exclusive and their “values” can

combine in parallel. So for example, we can express the meaning “you give to me

regularly” as distinct from “you give to me continuously” or “I give to you regu-

larly” and so on. Each modulation category adds grammatical information to the
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sign. The appearance of a sign can reflect the effects of several coexisting interre-

lated systems [81]: 1) a lexical system, 2) a pointing system, and 3) the aspectual

inflectional system. Each of these systems utilizes certain selected properties of

space, form, and movement that are unique to, or especially characteristic of that

system.

In the modelling and experiments on isolated gestures in Chapter 3, and on

continuous signing in Chapters 4 and 6, signs that carry multiple simultaneous

grammatical information will be considered.

1.2 Gestures and sign language

In taxonomies of communicative hand/arm gestures, SL is often regarded as being

the most structured, with the most symbolic content and rigidly defined conven-

tions among all the gesture categories. In the continuum of gestures described

by Kendon, sign languages are at the opposite end of the scale from gesticulation

(Figure 1.6(a) [77], [104]). A main distinction made in gestures is whether it is an

autonomous gesture or a gesticulation. Autonomous gestures are performed in the

absence of other modes of communication (usually speech). They are standardized,

symbolic gestures that are complete within themselves [77], [163]. In contrast, ges-

ticulations are typically not performed on their own, but along with speech. The

verbal part conveys lexical and grammatical information, while the accompanying
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gesticulation depicts non-symbolic information, for example actions or spatial re-

lationships [76], [129]. In such a dichotomy, sign languages would be firmly placed

in the category of autonomous gestures, the argument being that in the absence of

speech (and forgetting NMS for the moment) manual signing necessarily carries all

the lexical and grammatical information conveyed in the language [128]. Manual

signs are complete within themselves, and no other concurrent mode of communi-

cation is required. However, this does not mean that all the information conveyed

in manual signing is lexical and grammatical information. Manual signing does

indeed include symbolic content but this content is not all that it includes. Signs

can also convey the same information as in speech-accompanying gesticulations;

some elements in SL signs serve the same function and/or have the same form as

gesticulations.

Gesticulation Language-like gestures

Pantomimes Emblems Sign languages

(a)

Gestures

Acts Symbols

Mimetic Deictic
Specific
Generic
Metonymic

Referential Modalizing

(b)

Figure 1.6: Two different gesture taxonomies ([128]): (a) Kendon’s continuum
[104], (b) Quek’s taxonomy [128].

Kendon [78] describes the main role of gesticulations as being spatial/temporal

qualifiers that specify location, orientation, spatial relation and shape, or as a
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volumetric qualifier that specifies size. Quek [128] distinguishes between acts,

which are gestures whose movements relate directly to the intended interpretation

(iconic, pantomimic or deictic), and symbols, which are gestures whose forms are

arbitrary in nature (refer to Figure 1.6(b)). Acts can be of four classes [129]:

• Locative gestures point to a location or to an object.

• Orientational gestures show placement of objects by specifying rotations

of the hand.

• Spatial pantomimes use the hand movement trajectory to depict some

shape, path or spatial outline.

• Relative spatial gestures show spatial relationships such as nearer, fur-

ther, further right, etc.

To this list perhaps we can add one more class – temporal pantomimes –

gestures that use the movement dynamics (speed and acceleration) of the hand to

depict the duration, frequency, manner, and repetitiveness (collectively called the

temporal contour) of an action.

There are a few types of signs which exhibit the form, function or both, of the

gesticulations and act gestures described above. Some of these are described below

with reference to ASL signs and grammar.
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1.2.1 Pronouns and directional verbs

Pronouns are made with the handshape of the extended index finger, and a straight-

line movement path shape. Directional verbs are made with various handshapes

and movement path shapes to encode the lexical meaning of the verb (see Sec-

tion 1.1.2). What both these types of signs have in common is that they point,

either at objects or in the direction of some location which has been established

as representing a referent [94]. The pointing action identifies the person referred

to in the case of pronouns. In the case of directional verbs, the pointing action

identifies the subject and the object of the verb. Thus there are both symbolic

and deictic elements in these signs, and they fulfill functions associated with the

locative gesture class mentioned above.

1.2.2 Temporal aspect inflections

These inflections modulate spatial and dynamic (speed and acceleration) character-

istics of sign movements to express a temporal contour (i.e. the duration, frequency,

manner and repetitiveness) in a verb or adjective (see Section 1.1.3). Klima and

Bellugi [81] have proposed that the temporal contour of the action is reflected in

the spatial and dynamic characteristics of the signs’ movement: “The modulatory

forms are not incongruent and are in some sense indicative with their meanings:

permanent or enduring states are characterized by continuous movements, recur-

ring states by repeated end-marked movements, intensification of a state or quality
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by tense rapid movement.” These modulated signs would therefore seem to have

iconic elements (the sign form suggests its meaning) and we could perhaps call this

the temporal pantomimes gesture class.

1.2.3 Classifiers

These signs can function in many different ways [8] including, illustrating the pre-

cise and relative locations, orientations and/or actions of two referents, by position-

ing the hands in particular locations in space and moving them in relation to each

other; moving the hands to mimic the actions of the objects that they represent;

indicating the shape and size of an object by tracing its outline with the hands.

Classifiers would seem therefore to fulfill many of the functions described in the

classes of act gestures above, including that of orientational gestures, spatial

pantomimes and relative spatial gestures.

The fact that SL signs are autonomous gestures does not mean that they cannot

incorporate forms and functions of gesticulations. As the above descriptions illus-

trate, signs can have both functions attributed to autonomous gestures (symbolic)

as well as that attributed to gesticulations (act). In the case of the directional use of

verbs and temporal aspect inflections – the two categories of grammatical processes

that are the focus of the modelling and recognition framework presented in this

thesis – the information conveyed is quite different from that conveyed through ges-

ticulations. In directional verbs, the subject and object of verbs are identified and
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in signs marked for temporal aspect, the temporal contour of actions is conveyed.

Whereas, the information conveyed through gesticulations usually pertains to the

specification of location, orientation, spatial relation, shape, and size. However, we

argue that the form in which the modulations due to grammatical processes ex-

presses itself shares some of the same dimensions or features sets as gesticulations.

Directional verbs point and are deictic, just like the location gestures mentioned

in Quek’s taxonomy ([129]). Signs marked for temporal aspect exhibit spatial and

temporal variation in movement path and dynamics (speed and acceleration) that

are not mentioned in Quek’s analysis. However, it has iconic elements and we can

imagine how a speech-accompanying gesticulation might be made quickly in a tense

manner in order to convey a sense of urgency or emphasis. The key issue is that

although the information conveyed is not the same, the pointing action and move-

ment dynamics that are expressed are similar, and in both SL and gesticulations,

the pointing action and movement dynamics are conveying information.

1.3 Motivation of the research

There are two main motivations for SL recognition research. Firstly, there are

many useful and practical applications that can be made possible as a result, and

secondly because of the contributions it can make to gesture recognition research

in general.
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One of the applications envisioned for SL recognition is of course in a signing-

to-text/speech translation system. In an ideal system, the SL recognition module

would have a large and general vocabulary, be able to capture and recognize man-

ual sign information and NMS, perform accurately in real-time and robustly in

arbitrary environments, and allow for maximum user mobility. Such a translation

system is not the only use for SL recognition systems however, and other useful

applications where the system requirements and constraints may be quite different,

include the following:

• Translation or complete dialog systems for use in specific transactional do-

mains such as government offices, post offices, cafeterias, etc. [5],[103],[135],[97].

These systems may also serve as a user interface to PCs or information

servers [11]. Such systems could be useful even with limited vocabulary and

formulaic phrases, and a constrained data input environment (perhaps us-

ing direct-measure device gloves [46],[135] or colored gloves and constrained

background for visual input [5]).

• Bandwidth-conserving communication between signers through the use of

avatars. Sign input data recognized at one end can be translated to a no-

tational system (like HamNoSys) for transmission and synthesized into an-

imation at the other end of the channel. This represents a great saving in

bandwidth as compared to transmitting live video of a human signer. This
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concept is similar to a system for computer-generated signing developed un-

der the Visicast project ([79]) where text content is translated to SiGML

(Signing Gesture Markup Language, based on HamNoSys) to generate pa-

rameters for sign synthesis. Another possibility is creating SL documents for

storage of recognized sign data in the form of sign notations, to be played

back later through animation.

• Automated or semi-automated annotation of video databases of native sign-

ing. Linguistic analyses of signed languages and gesticulations that accom-

pany speech require large-scale linguistically annotated corpora. Manual

transcription of such video data is time-consuming, and machine vision as-

sisted annotation would greatly improve efficiency. Head tracking and hand-

shape recognition algorithms [116], and sign word boundary detection algo-

rithms [83] have been applied for this purpose.

One of the most difficult goals in gesture recognition research is the recogni-

tion of ‘natural’ gestures or gesticulations - spontaneous, free-form gestures that

often accompany verbal discourse (see Section 1.2) [76], [40]. Natural gestures

are distinct from the synthetic gestures in use by many human-computer interac-

tion applications. The latter usually use a small vocabulary of artificially defined

gestures that are designed to be easily and reliably recognized [40]. Natural ges-

tures, being free-form, are infinitely variable and thus much more challenging to
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recognize than synthetic gestures. As noted in Section 1.2, many manual signs

in SL exhibit the same form, function or both, as these natural gestures. Pro-

nouns, directional verbs, signs marked for temporal aspect, and classifiers contain

non-symbolic, iconic, deictic and pantomimic elements – these signs have charac-

teristics that relate directly to the intended interpretation. Furthermore, signs

obviously share the same articulators as natural gestures – the hands and arms.

So signs and natural gestures exist in the same visual medium, and can perform

similar functions and convey similar information. The key difference however is

that SL signs are much more structured and SL recognition has a clear, measurable

goal, that of recognizing the word meaning and grammatical information conveyed

by the signer. This makes SL recognition a good starting point for developing

methods to recognize natural gestures. SL signs can be a good test-bed and useful

benchmark for evaluating gesture recognition systems and proposed frameworks.

It has a naturally developed complexity and a large well-defined vocabulary for ob-

taining data with a known ground truth. Achieving the goal of automatic machine

recognition of this data requires addressing all the complexities inherent in SL.

In the Gesture Workshop of 1997, Edwards identified two aspects of SL recog-

nition that had often been overlooked by researchers – facial expression, and the

use of space and spatial relationships in signing [40]. Since then, although there

has been some work to tackle these aspects, the focus of research continues to be

elsewhere and hence progress has been limited. SL recognition research to-date
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has mostly produced systems that only recognize the lexical meanings conveyed in

signs, missing out on important information conveyed through deictic and iconic

characteristics in signs. For a practical and useful application that is based on SL

recognition, this is unacceptable. Another reason for shifting the focus to char-

acteristics in manual signing that are not purely symbolic is that this is precisely

where SL signs and natural gestures intersect in form and function and focusing on

recognizing these characteristics would represent concrete steps towards natural

gesture recognition. By addressing the modelling and extraction of information

from directional verbs, and signs marked for temporal aspect – signs that have

deictic and iconic characteristics – we hope that the work in this thesis would

represent just such steps.

1.4 Goals

The goal of this thesis is to recognize signs which convey information in addi-

tion to lexical/word meaning. This information is conveyed through grammatical

processes that produce systematic changes in sign appearance. We seek to first

model how the lexical and grammatical information conveyed affect the sign ap-

pearance, then use this model to extract that information from observations of

signing data. The focus will be specifically on modelling directional use of verbs

and temporal aspect inflections (see Section 1.1.2 and 1.1.3). These two categories

of grammatical processes may in fact appear in parallel, simultaneously affecting
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the sign appearance (see Section 1.1.4). Thus such simultaneous modulations on

signs should also be modelled and the simultaneously conveyed information should

likewise be extracted.

The goal of much previous research in SL recognition is scalability to large

vocabulary – i.e. being able to recognize a large number of lexical words. In

contrast, one of the requirements of our proposed model is to be able to recognize

a large number of combinations of lexical words and grammatical information. This

is crucial because there is a large variety of information that can be conveyed in

addition to the lexical meaning in signs and hence a large variety of appearance

changes that can occur to a root word. It is not possible to obtain training data for

all these appearances, hence ideally the model should be able to recognize unseen

signs conveying new combinations of lexical and grammatical information.

The sentences used in the experiments on recognizing continuous signing in

Chapter 6 were obtained from a signer who is a deaf individual and a native signer

of the local (Singaporean) sign language. We felt that it was important to work

closely with the local deaf community and to elicit their input and help in obtaining

experimental data. At present many recognition results reported in the literature

do not use data from native signers or even deaf individuals. Some exceptions are

Imagawa et al. [67], Vogler [157], and Tamura and Kawasaki [148], while Tanibata

et al. [149] used a professional interpreter. As mentioned by Braffort [25], the

goal of recognizing signing as it is used in communication among deaf individuals
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requires close collaboration with native signers and SL linguists.

1.5 Organization of thesis

The rest of this thesis is organized as follows. Chapter 2 presents a literature

review, as well as our model for signs that convey grammatical information and

an overview of our proposed approach. Chapter 3 presents the framework and

experimental results in recognizing a simulated vocabulary of isolated gestures

with Bayesian networks. This is extended to recognition of continuous signing

with dynamic Bayesian networks, and this framework is presented in Chapter 4.

Inferencing in dynamic Bayesian networks (DBN) is the subject of Chapter 5 with

particular attention to approximate inferencing with sampling methods as a way of

dealing with the computational complexity in the DBN models for continuous sign

recognition. Experimental results using these inference techniques are presented in

Chapter 6. Chapter 7 concludes the thesis by presenting the research contributions

and directions for future work.



Chapter 2
Review and overview of proposed
approach

2.1 Related work

The two main approaches to manual sign classification either employ a single

classification stage to classify the whole sign, or represent the sign as consist-

ing of simultaneous components, classify the components individually and then

integrate them together for sign-level classification. Figure 2.1 shows examples

of the latter approach. Figure 2.1(a) ([153]) is a block diagram of the two-

stage classification scheme while Figure 2.1(b) ([157]) shows sign components mod-

elled as separate hidden Markov model (HMM) channels. Various classification

methods have been used to either classify the sign directly or classify one of

the sign components. These methods include neural networks (NN) and vari-

ants [6, 41, 47, 57, 66, 80, 107, 145, 154, 159, 168, 171], HMMs and variants

[12, 13, 42, 47, 82, 93, 103, 143, 157, 161, 174], principal component analysis

28
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(PCA) and multiple discriminant analysis (MDA) [20, 30, 35, 68, 85], decision trees

[62, 61], nearest-neighbour matching [87], image template matching [56, 147], corre-

lation [150], rule-based methods [63, 74, 75, 80, 100, 146], and the semi-continuous

dynamic Gaussian mixture model [167].

Place of articulation
network

Motion
network

CyberGlove Polhemus

Interface
routines

Handshape
network

Orientation
network

Final classifier

User's hand actions

Gesture classification

(a)

HMM 1 HMM 3

HMM 2 HMM 4

E

Word end nodes. Combine probabilities here.

S

E
S

E

E

S

S

Right hand channel

Left hand channel

(b)

Figure 2.1: Schemes for integration of component-level results: (a) System block
diagram of a two-stage classification scheme by Vamplew [153], (b) Parallel HMMs
where tokens are passed independently in the left and right hand channels, and
combined in the word end nodes (E). S denotes word start nodes [158].

Since the approach taken in this work is to integrate simultaneous compo-

nents, we will examine schemes for doing this in greater detail in the next section.

Table 2.1 summarizes some of these schemes which are divided into approaches

using direct-measure devices and cameras for acquiring hand gesture data. In

vision-based methods single camera, stereo cameras or orthogonally placed cam-

eras are used for image/video acquisition. Direct-measure (glove-based) devices
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for acquiring hand gesture data, consist of trackers that report position and orien-

tation in 3D and gloves that measure the flexure and possibly abduction of finger

joints using various types of sensors: optical (VPL Dataglove [1, 178]), resistor-

based (Virtex Cyberglove [4]), magnetic (TUB-SensorGlove [65]), or accelerometers

(AcceleGlove [62]). Electromagnetic trackers report 3D position and orientation

(Polhemus 3Space [2], Ascension’s Flock of Birds), ultrasonic trackers report 3D

position only (PowerGlove [3, 146]), and the accelerometer-type tracker of the

TUB-SensorGlove reports 3D orientation/acceleration. Hernandez-Rebollar et al.

[61] recently experimented with a two-link mechanical arm skeleton fitted with an

accelerometer and resistive angular sensors to measure rotation and flexion of the

arm and forearm.

Sections 2.1.2 and 2.1.3 examine works that deal with two of the issues in SL

recognition that are addressed in this thesis, grammatical processes and signer

adaptation.
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2.1.1 Schemes for integrating component-level results

A common approach to integrate component-level results is to specify using do-

main knowledge, the categories of handshape, hand orientation, hand location and

movement path shape that make up each sign in the vocabulary, forming a lex-

icon of sign definitions. Classifying the sign label from component-level results

is then performed by comparing the ideal lexicon categories with the correspond-

ing recognized components [61, 68, 80, 136, 145, 148, 154]. Various methods of

performing this matching operation have been implemented; for example, Vam-

plew and Adams [154] employed a nearest-neighbour algorithm with a heuristic

distance measure for matching sign candidates. In Sagawa and Takeuchi [136] the

dictionary entries defined the mean and variance (which were learned from training

examples) of handshape, orientation and motion type attributes as well as the de-

gree of overlap in the timing of these components. Candidate signs were then given

a probability score based on the actual values of the component attributes in the

input gesture data. In Su [145] work on Taiwanese Sign Language (TWL), scoring

was based on an accumulated similarity measure of input handshape data from the

first and last 10 sample vectors of a sign. A major assumption was that signs can be

distinguished based on just the starting and ending handshapes. This assumption

is in fact only valid for some and not all signs. Liang and Ouhyoung [93] classi-

fied all four sign components using HMMs. Classification at the sign and sentence
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level was then accomplished using dynamic programming, taking into account the

probability of the handshape, location, orientation and movement components ac-

cording to dictionary definitions as well as unigram and bigram probabilities of the

signs.

Methods based on HMMs include Gao et al. [47], where HMMs model indi-

vidual signs while observations of the HMM states correspond to component-level

labels for position, orientation and handshape, which were classified by multilayer

perceptrons (MLPs). Vogler [157] proposed the parallel HMM algorithm to model

sign components and recognize continuous signing in sentences. The right hand’s

shape, movement and location, along with left hand’s movement and location were

represented by separate HMM channels which were trained with relevant data and

features. For recognition, individual HMM networks were built in each channel

and a modified Viterbi decoding algorithm searched through all the networks in

parallel. Path probabilities from each network that went through the same se-

quence of signs were combined (Figure 2.1(b)). Tanibata et al. [149] proposed a

similar scheme where output probabilities from HMMs which model the right and

left hand’s gesture data were multiplied together for isolated sign recognition.

Waldron and Kim [159] combined component-level results (from handshape,

hand location, orientation and movement type classification) with NNs, by exper-

imenting with MLPs as well as Kohonen’s self-organizing maps (SOM). The SOM

performed slightly worse than the MLP (83% vs 86% sign recognition accuracy),
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but it was possible to relabel the map to recognize new signs without requiring

additional training data (experimental results were given for relabelling to acco-

modate two new signs). In an adaptive fuzzy expert system ([29]) by Holden [64],

signs were classified based on start and end handshapes and finger motion, using

triangular fuzzy membership functions, whose parameters were found from training

data.

An advantage of decoupling component-level and sign-level classification is that

fewer classes would need to be distinguished at the component-level. This conforms

with the findings of sign linguists that there are a small, limited number of cat-

egories in each of the sign components which can be combined to form a large

number of signs. For example, in Liang and Ouhyoung [93], the most number of

classes at the component-level was 51 categories (for handshape), which is smaller

than the 71 to 250 signs that were recognized. In general, this approach enables the

component-level classifiers to be simpler, with fewer parameters to be learned, due

to the fewer number of classes to be distinguished and the reduced input dimen-

sions (since only the relevant component features are input to each classifier). In

the works where sign-level classification was based on a lexicon of sign definitions,

training data only at the component-level classification was required, and not at

the whole-sign level [61, 80, 93, 145, 148, 154, 157]. Furthermore, new signs can

be recognized without retraining the component-level classifiers, if they cover all

categories of components that may appear in signs. For example, the system of
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Hernandez-Rebollar et al. [61] which was trained to classify 30 signs, was expanded

to classify 176 new signs by just adding their descriptions into the lexicon. This

system was however only used for classifying isolated signs.

Our approach to integrating component-level results and modelling multiple si-

multaneous components differs in two major ways. Firstly, a dictionary-definition

of signs is not assumed, i.e., the relationship between sign and component-level

results is not taken to be deterministic, but probabilistic, where the probability

parameters are learned from training data. In contrast, most of the above works

employ a dictionary-definition of the sign lexicon. Waldron and Kim [159] is an ex-

ception, where component-level results are combined using a trained NN. However,

the MLP and SOM architectures they used work best on isolated signs (indeed, the

majority of previous work listed in Table 2.1 only deals with isolated signing). The

NNs need all the component-level results to be input at the same time, and the

learned parameters represent the relationship between the sign class output and all

the component-level inputs. There is no way to extract the relationship between

the sign and each of the component-level results. We show in Chapters 3 and 4 how

the probabilistic approach can be applied to both isolated and continuous signing.

The relationship between sign value and component-level results are represented

by separate parameters for each component, and can be learned separately. Sec-

ondly, we interpret both, the lexical word meaning and the additional grammatical

information that is simultaneously conveyed. In order to to do this, we model not
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only the basic sign parts that are conventionally modelled as sign components in

previous work but also define additional movement attributes as sign components.

2.1.2 Grammatical processes

Generally there have been very few works that address grammatical processes that

affect the spatial and temporal dimensions of sign appearance in systematic ways.

HMMs, which have been applied successfully to lexical word recognition, are de-

signed to tolerate variability in the timing of observation features which are the

essence of temporal aspect inflections. The approach of mapping each isolated ges-

ture sequence into a standard temporal length ([30, 171]) causes loss of information

on the movement dynamics. The few works that address this important aspect of

SL generally deal only with spatial variations. Sagawa and Takeuchi [134] deci-

phered the subject-object pairs of Japanese Sign Language (JSL) verbs in sentences

by learning the (Gaussian) probability densities of various spatial parameters of

the verb’s movement from training examples and thereby calculated the probabil-

ities of spatial parameters in test data. Six different sentences constructed from

two verbs and three different subject-object pairs, were tested on the same signer

that provided the training set, and were recognized with an average word accuracy

of 93.4%. Braffort [24] proposed an architecture where HMMs were employed for

classifying lexical words using all the features of the sign gesture (glove finger flex-

ure values, tracker location and orientation), while directional verbs were classified
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by their movement trajectory alone and classifier signs were classified by their fin-

ger flexure values only. Sentences comprising seven signs from the three different

categories were successfully recognized with 92-96% word accuracy. They further

proposed a rule-based interpreter module to establish the spatial relationship be-

tween the recognized signs, by maintaining a record of the sign articulations around

the signing space. Although they were not applied to sign recognition, Paramet-

ric HMMs were proposed in [165] to estimate parameters representing systematic

variations such as the distance between hands in a two-handed gesture and move-

ment direction in a pointing gesture. However, it is unclear whether the method

is suitable for larger vocabularies that exhibit multiple simultaneous variations.

The works above only deal with a subset of possible spatial variations, with no

straightforward extension to modelling systematic speed and timing variations. In

Watanabe [162] however, both spatial size and speed information were extracted

from two different musical conducting gestures with 90% success. This method

first recognized the basic gesture using min/max points in the gesture trajectory,

and then measured the change in hand centre-of-gravity between successive images

to obtain gesture magnitude and speed information.

The main weaknesses of the works above is that firstly they recognize a very

limited number of different signs. There are six different sign appearances in [134],

seven signs in [24] and two different gestures in [162]. Secondly, except for Watan-

abe’s work which is on musical gestures and not SL manual signing, the others
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tackle signs with spatial variations only. Thirdly, only one type of variation is

expressed in the signs at any one time, and there are no instances of multiple

simultaneous grammatical information being expressed through multiple simulta-

neous systematic variations.

2.1.3 Signer independence and signer adaptation

Analogous to speaker independence in speech recognition, an ideal sign recogni-

tion system would work “right out of the box”, giving good recognition accuracy

for signers not represented in the training data set (unregistered signers). Sources

of inter-person variations that could impact sign recognition accuracy include dif-

ferent personal signing styles, different sign usage due to geographical or social

background [152], and fit of gloves in direct-measure device approaches. In this

area, sign recognition lags far behind speech.

When the number of signers in the training set is small, results on test data from

unregistered signers can be severely degraded. In Kadous [74], accuracy decreased

from an average of 80% to 15% when the system that was trained on 4 signers was

tested on an unregistered signer. In Assan and Grobel [7], accuracy for training

on one signer and testing on a different signer was 51.9% compared to 92% when

the same signer supplied both training and test data. Better results were obtained

when data from more signers was used for training. In Vamplew and Adams [154],
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seven signers provided training data; test data from these same (registered) sign-

ers was recognized with 94.2% accuracy vs 85.3% accuracy for three unregistered

signers. Fang et al. [42] trained a recognition system for continuous signing on five

signers and obtained test data accuracy of 92.1% for these signers, compared to

85.0% for an unregistered signer. Classification accuracy for unregistered signers is

also relatively good when only handshape is considered, perhaps due to less inter-

person variation as compared to the other gesture components. For example, [57]

and [145] reported 93-96% handshape classification accuracy for registered signers

vs 85-91% accuracy for unregistered signers. Interestingly, Kong and Ranganath

[85] showed similarly good results for classifying 3D movement trajectories. Test

data from six unregistered signers were classified with 91.2% accuracy vs 99.7% for

test data from 4 registered signers.

In speech recognition, performance for a new speaker can be improved by using a

small amount of data from the new speaker to adapt a prior trained system without

retraining the system from scratch. The equivalent area of signer adaptation is

relatively new. The work in Chapter 3 is a first attempt at addressing this area.

2.2 Modelling signs with grammatical informa-

tion

The central focus of this thesis is on processes where some parts of a sign are

modulated to convey grammatical information that is additional to and does not
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alter the lexical meaning in the sign. These modulations affect the sign form

primarily in the attributes of the sign’s movement path i.e. the shape traced by

the hand movement path in 3-dimensional space, and the path direction, size and

speed. Of these, only the shape traced by the hand (path shape) is conventionally

considered as one of the basic parts or building blocks of signs (see Section 1.1.1).

The other path attributes are usually ignored in SL recognition work since they do

not convey the lexical meaning of a sign. In contrast, our analysis of sign structure

takes into account these attributes because they are information-bearing parts of

the sign. We define as separate components, attributes which convey information,

have a limited number of distinct values and which are combined to construct signs,

regardless of whether these are signs that just convey lexical meaning or convey

additional non-lexical meaning as well.

In our analysis of sign structure, the basic parts or components of a sign are

defined as handshape, hand orientation, location, movement path shape, movement

path direction, movement path size and movement path speed. We first look at

handshape, hand orientation, and location.

• There is a limited number of distinct categories of handshape that are formed

from finger configurations; these are called handshape values. The hand-

shape component of one sign consists of one or more handshape values (in

sequence).
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• There is a limited number of distinct categories of direction/orientation that

the hand/palm faces, called orientation values. The orientation compo-

nent of one sign consists of one or more orientation values (in sequence).

• There is a limited number of distinct categories of location that the hand

positions itself in 3-dimensional space, called location values. The location

component of one sign consists of one or more location values (in sequence).

Generally, the precise way in which the finger configurations change from forming

one handshape value to another is just a function of the handshape values at the

start and end of the change. Thus it is not relevant as it carries no information.

The same can be said about the direction/orientation that the hand/palm faces.

However it is somewhat different for the 3-dimensional hand position in space.

For example, if a sign has a different end location value as compared to the start

location value, there can be multiple possibilities for the shape of the path traced

in 3-dimensional space to get from the start to the end location. In fact this

movement path has many attributes besides shape. We define below each of these

attributes as a sign component:

• There is a limited number of distinct categories for shapes of the paths traced

in 3-dimensional space, for example, straight-line, an arc, a circle etc; these

are referred to as path shape values. The path shape component of one
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sign consists of one or more path shape values (in sequence). The modula-

tions in the dimensions of contouring and cyclicity due to temporal aspect

inflections affect the path shape value(s) of a sign (see Section 1.1.3). Mod-

ulations in contouring could change the path shape value from straight to

circle, for example. Modulations in cyclicity could result in multiple path

shape values (in sequence) for a sign, instead of a single value.

• There is a limited number of distinct categories of directions in which paths

in 3-dimensional space can point towards – these are referred to as path

direction values. The path direction component of one sign consists of

one or more path direction values (in sequence). Directional verbs point to

the subject and object of the verb by modulating the sign’s path direction

value(s) (see Section 1.1.2). Note that even though there is potentially an

unlimited number of directions in which a directional verb can point, within

a signing discourse the possible directions are limited by the position of the

referents (either present or absent) that have been set up during the discourse,

since the directional verbs would only point to these referents.

• There is a limited number of distinct categories of sizes for the paths in

3-dimensional space – these are referred to as path size values. The path

size component of one sign consists of one or more path size values (in

sequence). The modulations in size due to temporal aspect inflections affect
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the path size value(s) of a sign (see Section 1.1.3).

• There is a limited number of distinct categories of speeds for tracing the

paths in 3-dimensional space – these are referred to as path speed values.

The path speed component of one sign consists of one or more path speed

values (in sequence). The modulations in the dimensions of rate and evenness

due to temporal aspect inflections affect the path speed value(s) of a sign (see

Section 1.1.3)1.

Among the movement path attributes defined above, the path shape is generally

pertinent for determining the lexical or word meaning of a sign, whereas modula-

tions in the values of the other attributes are pertinent for determining grammat-

ical information conveyed by the sign. Of course, the attributes of path direction,

size and speed also exist in signs which only convey lexical meaning, without any

additional grammatical information. The important point is that to convey gram-

matical information, values of these attributes are varied or modulated. So just

as we need to recognize the value(s) of the handshape, orientation, location and

path shape components (collectively called the lexical components) in order to

determine the lexical meaning, we would need to recognize the value of the path

1Modulation in the dimensions of absence/presence of onset-offset hold and tension due to
temporal aspect inflections is difficult to measure (for example, muscle tension in the hand and
arm is not measurable from the 3-dimensional hand position sequence) and is not dealt with in
our model.
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direction, size and speed components in order to extract the grammatical informa-

tion.

We note that Liddell’s [95] definition of features in movement segments does

include some of the movement path attributes mentioned above (see Section 1.1.1).

For example, the ‘path contour’ in his analysis is similar to path shape (as defined

above), similarly qualities like ‘shortening’ and ‘acceleration’ are similar to path

speed (as defined above), and path ‘reduction’ and ‘enlargement’ are similar to path

size (as defined above). The model we propose however differs in two ways. Firstly,

we consider movement path attributes to be simultaneous components on equal par

with handshape, orientation and location components, and not as attributes of sep-

arate movement segments. Secondly, our model is non-commital with regards to

segmental structure in signs, i.e. with regards to the movement and hold segments

as defined by Liddell. We consider a sign as consisting of synchronized sequences

of distinct values in each component. The sequences are synchronized at the start

and end of the sign, since each component is expressing the same sign at the same

time. There may or may not be sequential segments within a sign but in any case

there is no requirement for the component sequences to be synchronized at seg-

ment boundaries, the only requirement is synchronization at the sign boundaries.

Liddell’s definition implies synchronization between components not only at sign

boundaries but also at sub-sign segments boundaries.
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2.3 Overview of approach

The information conveyed by a sign includes lexical/word meaning and possi-

bly multiple and simultaneously expressed categories of grammatical information.

This information is conveyed through the physical appearance of the sign, with

the grammatical information most significantly expressed in movement path at-

tributes that are not conventionally modelled as basic sign parts or components.

Previous work has modeled the sign components that identify lexical meaning as

simultaneous and independent components (refer Section 2.1.1). These sign lexi-

cal components are handshape, orientation, location and movement path shape.

This approach is generalized by modelling not only the lexical components, but

also the various temporal and spatial movement attributes that exhibit systematic

variation (specifically movement path direction, size and speed), as independent

information-carrying components, with distinct “primes” or values that are clas-

sified from separate feature sets (refer Section 2.2). There are a limited number

of these distinct values in each component and they combine to produce a large

number of different signs. Thus data from multiple signs can be pooled together

for training the component-level classifiers.

The goal is to build models whose structure reflects the effect of lexical and

grammatical information conveyed in the sign, on each of the components, train

the model, and then use the trained model to infer the information conveyed in a
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sign or sign sequence through observing feature data streams in each of the com-

ponents. We use a probabilistic framework for the models, viz., Bayesian networks

(BNs) for isolated gestures (Chapter 3) and dynamic Bayesian networks (DBNs)

for continuous signs (Chapter 4). The model structure explicitly represents our

domain knowledge of the lexical and grammatical structure of sign language and

the assumption of independent components. The advantage of this simplifying

assumption is that we need never model the interaction between all the compo-

nents in a sign, thereby greatly reducing the number of model parameters. These

parameters numerically define the probabilistic relationships between the informa-

tion conveyed through a sign and the sign component values, and are learned from

training data, rather than assuming them to be deterministic, and specifying their

values.

The probabilistic approach for modelling sign to component dependencies is

different from most previous work for combining component-level results which

commonly assume a dictionary definition or deterministic dependencies between

sign and components. The probabilistic approach does not require data addi-

tional to that required for training component-level classifiers and can improve on

component-level classifier accuracies. There are commonalities across signs in their

effects on sign components. So even though the sign to component dependencies

are numerically defined and need to be learned, the commonalities can be exploited

to reduce the model parameters required by allowing signs to share parameters.



Chapter 3
Recognition of isolated gestures with
Bayesian networks

This chapter describes a framework for recognizing isolated gestures displaying

systematic variations in temporal and spatial movement attributes along with ex-

periments using digital video data gestures. The gesture vocabulary is novel and

defined to have a similar structure as signs carrying grammatical information. The

gestures convey both basic meaning (which is identified from the values of the

gestures’ lexical components) and additional meaning (equivalent to inflections in

signs) which modulate movement attributes in systematic ways. The lexical com-

ponents and movement attributes are considered to be independent components

of the gesture, each with a limited number of categories or classes. The approach

here is to define the distinct classes in each component and train component-level

classifiers. A Bayesian network (BN) is then used to combine results from the

trained component-level classifiers, and infer basic meaning and inflections in the

47
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gesture. The BN parameters are learned from the same training data that is used

to train the component-level classifiers.

Although the main focus of this thesis is the analysis and recognition of inflec-

tional processes, in Section 3.2 we also consider another oft-neglected issue in sign

language (SL) recognition, that of signer adaptation, and propose a framework

for adapting a trained system to yield improved performance on a new signer.

Experimental results are likewise reported for the implementation of this signer

adaptation scheme.

3.1 Overview of proposed framework and exper-

imental setup

Image
Processing

and
Feature

Extraction

Classification of HOrienS (hand
orientation at start of gesture)

xHS

xHE

xMO

xMSz

x1
MSh... xT-2

MSh

x1
MSp... xT-2

MSp

Classification of HOrienE (hand
orientation at end of gesture)

Classification of MOrien
(movement direction)

Classification of MSize
(movement trajectory size)

Classification of MShape
(movement trajectory shape)

Classification of MSpeed
(movement speed profile)

t = 1

t = T

Bayesian
Network

S1

Basic Lexical
Meaning

Intensity
Inflection

Distance
Inflection

Rate
Inflection

Continuance
Inflection

Image frames of one
gesture sequence

+

+

+

+

= Complete
meaning

Example:

Go left

for a long
distance

none

none

quickly

Go left quickly
for a long distance

1 2 3

Figure 3.1: System block digram showing: (1) image processing and feature extrac-
tion, (2) component-level classification, and (3) Bayesian network, S1, for inferring
basic meaning and inflections. Example final output from the system is shown on
the right.

The block diagram in Figure 3.1 shows an overview of the processing steps in
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the proposed system. In Step 1, the input gesture video is processed to extract fea-

tures that are appropriate to classify (i) the hand orientation at the start and (ii)

end of the gesture, (iii) the movement path orientation/direction and (iv) size (also

based on information at start and end of gesture), and (v) the movement trajec-

tory/path shape and (vi) speed profile (based on information obtained throughout

the gesture sequence). As our focus here is on developing a classification frame-

work for interpreting inflections in signing, we simplified the imaging conditions

and image processing operations. The test subjects performed the gestures while

wearing black gloves and a white long-sleeved shirt, and a white board was used as

background. In Step 2, six trained classifiers independently categorize these fea-

tures for input to a BN. The BN structure is developed using domain knowledge

as described in Section 3.1.4. The conditional probability tables (CPTs) for the

network are learned from training data. After training, the complete sign meaning

including inflections can be inferred. This is shown as the output of Step 3 in

Figure 3.1.

In the next section, we describe the gesture vocabulary used in the experiments

before passing on to Steps 1, 2 and 3 of the block diagram.
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3.1.1 Gesture vocabulary

We used a simulated vocabulary with 6 basic meanings (“Go left”, “Go right”,

“Good”, “Bad”, “Bright”, “Dark”), and 5 possible inflections (“very”, “contin-

uously”, “for a long time”,“quickly”, “for a long distance”,) which together can

form 20 distinct gestures as shown in Table 3.1 and Figure 3.2. This includes in-

flections that modify the movement both temporally and spatially; and is a larger

vocabulary than that used in previous related work on recognizing inflected signs.

The vocabulary is designed to have fewer ambiguities in the 2-dimensional image

plane, while adhering to the general principle of how basic lexical meaning and in-

flections are combined in ASL. This allows us to keep the image processing part of

the scheme simple, and focus on classifying the movements. The basic meaning of

a gesture is represented by the pointing direction of the thumb (hand orientation),

movement trajectory/path shape, and movement path direction/orientation; these

are equivalent to lexical components in our vocabulary. The inflections “very”,

“continuously” and “for a long time”, are characterized by movement variations

as described in Examples 2 and 3 and Figure 1.5 of Section 1.1.3: the modulation

adding the meaning “very” affects the movement characteristics of tension, hold,

rate and size; the modulations which add the meanings “continuously” and “for a

long time” affect the rate, evenness, contouring and cyclicity of the movement. On

the other hand, the modulations which add the meaning “quickly” and “for a long
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distance” affect only the rate and size of movement, respectively, and can co-occur.

Since different types of inflections are associated with different basic meanings (for

example “very go left” does not make any sense), the BN structure must take

this into account and interpret the movement manner differently depending on the

basic gesture meaning.

(a)

(b)

(c)

(d)

even
rhythm

uneven
rhythm

(g) (h)

(i) (j)

(e)

(f)

Figure 3.2: Ten of the possible combinations of basic meaning and inflections: (a)
“Go left”, (b) “Go left quickly”, (c) “Go left for a long distance”, (d) “Go left
quickly for a long distance”, (e) “Go left continuously”, (f) “Go left for a long
time”, (g) “Good”, (h) “Very good”, (i) “Bright”, (j) “Very bright”. “Go right”,
“Dark” and “Bad” gestures are flipped versions of “Go left”, “Bright” and “Good”
respectively. (Solid (dotted) lines denote medium (fast) speed).

3.1.2 Step 1: image processing and feature extraction

An NTSC digital color video camera was used to capture 320x240 24-bit color image

sequences at frame rates of 5-15fps. The videos were then manually segmented

in time to obtain isolated gesture actions. In Step 1 of Figure 3.1, the hand

is first automatically segmented out in each image, as shown in Figure 3.3, by

thresholding, based on color and frame differences. The resulting binary image is

used to obtain the hand centroid and axis of least inertia (determined by the major
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Table 3.1: Complete list of sign vocabulary (20 distinct combined meanings)

Go left
Go right
Good
Bad
Bright
Dark
{Go left, Go right} for a long distance
{Go left, Go right} quickly
{Go left, Go right} quickly for a long distance
{Go left, Go right} continuously
{Go left, Go right} for a long time
Very {Good, Bad, Bright, Dark}

axis of the bounding ellipse of the hand [142]). The angle of this axis, φ, and 3rd

order moments are used to distinguish between orientations of, for example, down

vs up. We define six gesture components, and for classifying each component into

a distinct category, we extract one of the following feature vectors:

• xHS = [sinφ1, cosφ1]
T where φ1 is the angle of the axis of least inertia in the

first gesture frame1. This is used for classifying hand orientation at the start

of the gesture, in the HOrienS component.

• xHE = [sinφT , cosφT ]T where φT is the angle of the axis of least inertia in

the last gesture frame. This is used for classifying hand orientation at the

end of the gesture, in the HOrienE component.

1Measuring features from a single frame, instead of averaging over a small temporal window
could result in more susceptibility to noise. However due to the low frame rate of the video
captured, the latter approach would likely “smudge” the feature measurements.
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• xMO = [sinα, cosα]T where α is the angle of the straight line between the

hand centroid in the first and last frames, used for categorizing movement

orientation/direction in the MOrien component.

• xMSz is the length of the straight line between the hand centroid in the first

and last frames, used for categorizing movement path size in the MSize

component.

• xMSh
t = [sinθt, cosθt]

T , t = 1, . . . , T − 2 where θt is the change in the mo-

tion vector angle in successive video frames, defined as in Figure 3.4. This

sequence of features is extracted from all but the last two of the T frames

in one gesture action, and is used to categorize movement path shape and

cyclicity in the MShape component.

• xMSp
t , t = 1, . . . , T − 2 is the difference of the motion vector magnitudes in

successive image frames (Figure 3.4). This sequence of features is used to

categorize the speed profile of the movement in the MSpeed component,

accounting for rate and evenness of movement.

3.1.3 Step 2: component-level classification

The features obtained in Step 1 are categorized by component-level classifiers.

The input to gesture components, HOrienS, HOrienE, MSize and MOrien, are

static features. For classification in each of these gesture components, we assume
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Figure 3.3: Example image sequence of “Go left continuously” and corresponding
thresholded images.

v1

v2

time t t+1 t+2

Figure 3.4: Illustration of change in motion vector angles (θ) and change in motion
magnitude (xMSp

t = || �v2|| − || �v1||)

class-conditional Gaussian mixture densities (with 2 to 10 mixture components) for

the relevant features of that gesture component. The parameters of these densities

are computed using the maximum likelihood (ML) criterion, and estimated using

the Expectation-Maximization (EM) algorithm. For example, Gaussian mixtures

are estimated for each of the six categories of HOrienS viz; Left, Right, Up, Down,

Diagonal-Left, and Diagonal-Right. Similarly, six categories are defined for com-

ponents HOrienE and MOrien, while three categories are defined for MSize. Sub-

sequently the trained component-level classifier yields the class/category with the

highest likelihood for a given input feature vector. This is a generative approach to
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s1
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(ii)

s1 s2 s3 s4 s5 s6

Figure 3.5: State transition diagrams for hidden Markov models.

classification. A discriminative graphical model approach or other discriminative

classifiers like neural networks are also possible and may require fewer parameters

to train [70]. However, we did not make comparisons between these alternative

approaches as the main focus of the work in this chapter is on evaluating the

feasibility of using a Bayesian Network to combine component-level classification

results and not on evaluating different types of component-level classifiers. Learn-

ing class-conditional densities also made it easier to make a comparison with the

approach in a previous work ([134]) which directly multiplied the probability scores

of component features (see Section 3.3.1).

For the MShape component, where a time sequence of data points is classified,

we train, using ML estimation, one HMM for each of the 5 categories, Straight,

Left-Arc, Right-Arc, Counter-Clockwise-Circle and Clockwise-Circle. A new test se-

quence is then classified according to the HMM which gives the highest likelihood
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for the time sequence of data points. A 6-state left-right (Bakis) HMM struc-

ture (Figure 3.5(i)) is used for all categories except Counter-Clockwise-Circle and

Clockwise-Circle which have no self-transitions and have an additional loop-back

state transition to the first state to account for the multiple cycles in the circular

paths (Figure 3.5(ii)). The state output densities are single Gaussians. The EM

algorithm is used for training and is terminated when the percentage increase in

log-likelihood between iterations falls below a threshold. Similarly, one HMM is

trained for each of the 4 categories in the MSpeed component — the structure in

Figure 3.5(i) is used for categories Medium and Fast, while the structure in Figure

3.5(ii) is used for Even and Uneven.

We choose observation features for the MShape HMMs that, as far as possible,

are not influenced by the size and speed of the gesture movement. The chosen

features — the change in the angle of motion vectors — do not include explicit

measurements of hand position and motion vector magnitude so that each MShape

HMM can be trained with data from gestures with different movement sizes and

speed profiles without incurring a large variation in the observation features. Simi-

larly, changes in the speed are the observation features for the MSpeed HMMs, and

do not include explicit information on hand position and movement path shape.
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3.1.4 Step 3: BN for inferring basic meaning and inflec-
tions

The final stage of the system is implemented with a Bayesian network (BN) which

is a directed acyclic graph consisting of a set of nodes representing random vari-

ables, Y = Y1, . . . , Yn, and directed edges representing dependencies among the

nodes [59]. In the graph, absence of edges implies conditional independence, i.e.

a node is independent of its non-descendants, given its parents. The conditional

independencies encoded in the graph allow the joint distribution of the set of

random variables to be factored as a product of local conditional probabilities:

P (Y1, . . . , Yn) =
∏n

i=1 P (Yi | PaYi
), where PaYi

is the set of parents of random

variable Yi. Although the network structure which encodes the conditional inde-

pendence relationships can be learned from training data, in many applications,

the structure is manually defined using domain knowledge of the problem. As such,

training of the network consists of learning the network parameters, θ, which are

the numerical values of the local conditional probabilities, from training data, D.

The training data, D = {y[1], . . . ,y[N ]}, is assumed to be a random sample from

the joint probability distribution of Y. Network parameters, θ, can be learned

using either ML estimation or Bayesian estimation if all the node values are known

at training time. After training the network allows inferring the probabilities of

query nodes given the observed values of evidence nodes.

Though gestures can be viewed as being described through a set of rules, a BN
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for probabilistic inferencing is prefered to rule-based deduction. This is in view

of the inherent uncertainties which can manifest themselves through component-

level classifier errors, which arise from inaccuracies and noise in feature extraction,

and inter-person or even intra-person variations between individual gesture per-

formances. BNs can account for these uncertainties, and are therefore useful to

represent gestures and their inflections.

We define five query nodes in the BN. The BasicMeaning node represents six

possible basic gesture meanings (“Go left”, “Go right”, “Good”, “Bad”, “Bright”,

“Dark”), while the other four nodes represent the absence or presence of inflec-

tions. These are Intensity (none, “very”), Distance (none, “for a long distance”),

Rate (none, “quickly”) and Continuance (none, “continuously”, “for a long time”).

The observation nodes represent the six gesture components, HOrienS, HOrienE,

MShape, MOrien, MSize, and MSpeed. The possible values of these nodes, LHS,

LHE , LMSh, LMO, LMSz and LMSp are the discrete categories of each of the com-

ponents. Here the network structure is defined using prior knowledge, and the

rationale for the precise structure is discussed in the following.

The lexical components that represent the gesture’s basic meaning are: (i) hand

orientation at start, and (ii) end of gesture; (iii) movement path shape; and (iv)

movement path orientation. Given the class label of BasicMeaning, the lexical com-

ponent categories are assumed to be mutually independent, and this conditional

independence relationship is represented by the network in Figure 3.6(a). To deal
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BasicMeaning
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LHE LMSh

LMO
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LMSz LMSp
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Figure 3.6: (a) Conditional independence of lexical components, (b) causal depen-
dence between movement attributes and Intensity node, (c) S1 network models the
causal relationship between basic gesture meaning, inflections, lexical components
and movement attributes.

with inflections, we note, for example, that a gesture with the inflection “very” has

larger movement size and speed as compared to the uninflected gesture, while the

lexical gesture components of hand orientation, movement shape and movement

orientation are unaffected. We can conceptualize this as a “causal” relationship be-

tween the Intensity inflection node and the MSize and MSpeed nodes (represented

by the network in Figure 3.6(b)). Similar causal relationships can be represented

by edges between the other inflection nodes Distance, Rate and Continuance, and

the relevant gesture components.

Since different types of inflections are associated with different gestures, edges
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are added from BasicMeaning to Intensity, Distance, Rate and Continuance. Fur-

thermore, edges from Continuance to the Rate and Distance nodes take into ac-

count how the inflections, “continuously” and “for a long time”, cannot co-occur

with the inflections “quickly” or “for a long distance”. By taking into account

these considerations, and the causal relationships represented by the networks in

Figure 3.6(a) and Figure 3.6(b), we arrive at the network structure S1 (Figure

3.6(c)) which encodes the causal relationships between the gesture’s basic mean-

ing and inflections, and the component category labels output by component-level

classifiers.

3.1.5 Training the Bayesian network

The network parameters, θ, for S1, can now be learned from training data, D, using

ML estimation. Due to network factorization, the likelihood, P (D|θ), decomposes

according to the structure of the network,

P (D|θ) = P (y[1], . . . ,y[N ]| θ)

=
N∏

l=1

P (y[l]| θ)

=
N∏

l=1

n∏
i=1

P (Yi = yi[l] | PaYi
= paYi

[l], θi)

=

n∏
i=1

{
N∏

l=1

P (Yi = yi[l] | PaYi
= paYi

[l], θi)

}
(3.1)

where θi denotes the parameters of the local distribution function P (Yi | PaYi
).
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These parameters can be estimated independently, since, from (3.1),

θ̂ = argmax
θ

P (D|θ)

= argmax
θ

log P (D|θ)

= argmax
θ

n∑
i=1

{
N∑

l=1

log P (Yi = yi[l] | PaYi
= paYi

[l], θi)

}
(3.2)

Hence, we have independent estimation problems for each θi,

θ̂i = argmax
θi

N∑
l=1

log P (Yi = yi[l] | PaYi
= paYi

[l], θi) (3.3)

In a network such as S1 where all the variables Yi are discrete, with possible

values, k = 1, . . . , ri, the local distribution function for Yi is a collection of distinct

multinomial distributions, one distribution for each configuration of its parents

PaYi
. So θi = (θi1, . . . , θiqi

), where the possible configurations of the parents

are j = 1, . . . , qi. For each such configuration j, the vector of parameters of the

multinomial is θij = (θij1, . . . , θijri
), where θijk � P (Yi = k|PaYi

= j), for k =

1, . . . , ri. The parameter vectors, θij (for i = 1, . . . , n and j = 1, . . . , qi), are

assumed to be mutually independent, hence can be estimated independently. The

ML estimation of the parameters of a multinomial distribution are the sample

proportions [59],
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θ̂ijk =
Nijk∑ri

m=1Nijm
(3.4)

where Nijk is the number of times Yi = k and PaYi
= j occur in the observation

data set.

In the next section we describe a scheme developed to adapt both the trained

component-level classifiers and the trained S1 network to yield good results for

new signers. In Section 3.3, we show experimental results of trained S1 networks

which combine the results of component-level classifiers for inferring class labels

for basic gesture meaning and inflections.

3.2 Signer adaptation scheme

We now describe a method for adapting a trained Bayesian network-based multiple

signer system to recognize gestures performed by a new test subject, using only

a small amount of adaptation data from the new subject. The signer adaptation

scheme separately adapts the component-level classifiers and the network S1.

3.2.1 Adaptation of component-level classifiers

In Section 3.1.3, the approach to component-level classification was to train, using

ML estimation, in each component, a set of models whose parameters best ex-

plained training examples for the known category. However, if the ML approach

is followed to train a set of models on gestures performed by a new person, when
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only a small amount of adaptation data is available, model parameter estimates

will not be robust. Our approach for adapting to a new person is to use maximum a

posteriori (MAP) estimation, which is one of the main speaker adaptation schemes

in speech recognition systems that are based on continuous density HMMs [49, 91].

Each of the HOrienS, HOrienE, MOrien and MSize components is characterized

by class-conditional Gaussian mixtures. For a particular component, and a partic-

ular class/category in that component, the joint probability distribution function

(p.d.f) of T independent, identically-distributed (i.i.d) observations xt drawn from

that class is,

p(x|θ) =

T∏
t=1

p(xt|θ)

=
T∏

t=1

M∑
i=1

ωiN (xt|µi
,Σi) (3.5)

where x = (x1, . . . , xT ), θ = (ω1, . . . , ωM , µ1
, . . . , µ

M
,Σ1, . . . ,ΣM), ωi are mixture

weights, N (xt|µi
,Σi) are Gaussian distributions with mean µ

i
and covariance ma-

trix Σi, and all the class-conditional mixtures are assumed to have M components

to simplify illustration. We can formulate p(xt|θ) as a marginal probability by

introducing hidden variable lt — the unobserved label of the mixture component.

Let the mixture weight for the i-th component, ωi, be the probability that lt takes

on the value i, i.e. ωi � P (lt = i), and let p(xt|lt = i) be given by the mixture

component density, N (xt|µi
,Σi). We then obtain p(xt|θ) by summing over i [70],
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p(xt|θ) =
M∑
i=1

p(xt, lt = i|θ)

=

M∑
i=1

P (lt = i|θ)p(xt|lt = i, θ)

=

M∑
i=1

ωiN (xt|µi
,Σi) (3.6)

which gives us the mixture model of (3.5).

In the MAP estimation of the model parameters, prior knowledge about the

parameters in the form of a prior distribution for θ, is used in addition to the

adaptation data x from the new person to provide a more robust estimate (than

if x alone was utilized as in ML estimation). With the introduction of hidden

variables, l = (l1, . . . ., lT ), we can use the EM algorithm to iteratively refine the

model parameters with the goal of maximizing the posterior probability of θ, given

x. This is equivalent to maximizing the logarithm of the joint distribution of x

and θ [33]:

θ̂ = argmax
θ

log p(x, θ)

= argmax
θ

log

{∑
l

p(x, l, θ)

}
. (3.7)

In the M-step of the (k+1)-th iteration, the parameter values are re-estimated

as [33],
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θk+1 = argmax
θ

{
EP (l|x,θk)[log p(x, l|θ)] + log p(θ)

}
, (3.8)

where the first term is the expected complete log likelihood, given the observed

(adaptation) data x, and the parameters estimated in the k-th iteration, θk. The

second term is the log of the prior density assumed for the model parameters.

The scheme here is a simplified version of the method in [49], where the mixture

component means, covariances, and weights are all adaptively refined using MAP

estimation. In this investigation for signer adaptation, we only adapt the mixture

component means µ = (µ
1
, . . . , µ

M
), while the other parameters of the Gaussian

mixture, are assumed to be fixed and known. Mean adaptation seems a good place

to start for a first attempt at signer adaptation because it reflects variations in the

appearances of gestures across different test subjects. For example the angle at

which test subjects held their hands, or the trajectory size in which they performed

the same gesture type. Hence it is more pertinent for adaptation than mixture

component covariances (which measure intra-person variations). By inspection of

video data input in our experiments, we found that each test subject performed

each type of gesture in a consistent manner (for eg. the appearances of different

instances of “Go left for a long distance” for test subject A were consistent with

one another). Hence there is relatively less difference between the intra-person

variations of different signers. Another motivation for this approach is that it has



3.2 Signer adaptation scheme 66

been found in speech recognition (based on continuous density HMMs) that the

most important speaker specific effect is related to the Gaussian means of state

observation densities [166].

For each individual Gaussian mixture component, an appropriate distribution

for modeling prior knowledge about the mean, µ
i
, is a conjugate density, such as

a Gaussian density,

p(µ
i
) = N (µ

i
|µ

io
,Σio). (3.9)

where µ
io

represents our best guess for µ
i
and Σio represents our uncertainty about

this guess [38]. Assuming independent parameters (i.e. the mean of a particular

component is independent of the means of the other components), the joint prior

density of the means is given by, p(µ) =
∏M

i=1 p(µi
).

Specializing the M-step equation (3.8) to adapt only the means, we get

µk+1 = argmax
µ

{
EP (l|x,µk)[

T∑
t=1

log p(xt, lt|µ1
, . . . , µ

M
)] +

M∑
i=1

log p(µ
i
)

}

= argmax
µ

{
T∑

t=1

M∑
i=1

P (lt = i|xt,µ
k)log p(xt, lt = i|µ

i
) +

M∑
i=1

log p(µ
i
)

}

= argmax
µ

{
M∑
i=1

[
T∑

t=1

P (lt = i|xt,µ
k)log p(xt, lt = i|µ

i
) + log p(µ

i
)

]}
(3.10)

Each of the terms within the outer summation can be maximized independently
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with respect to µ
i
. Hence,

µk+1

i
= argmax

µ
i

{
T∑

t=1

P (lt = i|xt,µ
k)log p(xt, lt = i|µ

i
) + log p(µ

i
)

}
,

for i = 1, · · · ,M (3.11)

Defining,

γt(i)
k = P (lt = i|xt,µ

k)

= P (lt = i|xt, µ
k

1
, . . . , µk

M
)

=
ωiN (xt|µk

i
,Σi)∑M

m=1 ωmN (xt|µk
m
,Σm)

(3.12)

we obtain, from equations (3.11),(3.6) and (3.9),

µk+1

i
= argmax

µ
i

T∑
t=1

γt(i)
klogωiN (xt|µi

,Σi) + logN (µ
i
|µ

io
,Σio)
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i
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γt(i)
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,Σi) + logN (µ
i
|µ

io
,Σio) (3.13)

since
∑T

t=1 γt(i)
k logωi is independent of µ

i
, and we have assumed that ωi and Σi are

fixed and known. Maximizing (3.13) is equivalent to maximizing its exponential,

exp

[
T∑
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γt(i)
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,Σi)

]
exp

[
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]
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i
) + (µ

i
− µ

io
)′Σ−1

io (µ
i
− µ

io
)

)]
(3.14)
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where quantities that do not depend on µi have been absorbed into the constant K.

The expression in (3.14) is an exponential function of µ
i
and is again a Gaussian

density [38], N (µ
i
|µ̂

i
, Σ̂i), where,

µ̂
i

= Σio

(
Σio +

1∑T
t=1 γt(i)k

Σi

)−1 ∑T
t=1 γt(i)

kxt∑T
t=1 γt(i)k

+
1∑T

t=1 γt(i)k
Σi

(
Σio +

1∑T
t=1 γt(i)k

Σi

)−1

µ
io

(3.15)

Σ̂i = Σio

(
Σio +

1∑T
t=1 γt(i)k

Σi

)−1
1∑T

t=1 γt(i)k
Σi (3.16)

From (3.15),

µk+1

i
= µ̂

i
(3.17)

since the mode of the Gaussian density, N (µ
i
|µ̂

i
, Σ̂i), is at its mean µ̂

i
. This has an

elegant interpretation as the weighted average of the ML estimate of the mixture

component mean from adaptation data,
∑T

t=1 γt(i)
kxt/

∑T
t=1 γt(i)

k, and the prior

density of the component mean, µ
io
. From (3.15), in order to evaluate µ̂

i
, the

parameters, µ
io

and Σio, of the prior density need to be specified. Following [91], we

use a prior trained model and set µ
io

to the corresponding mixture component mean

in this seed model. That is, the prior knowledge before taking into account any

adaptation data from the new person gives the best guess for the component mean

in the new model as the component mean in the seed model. Instead of explicitly
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specifying Σio, we note that if we assume diagonal covariances throughout, the

element-wise operation (for D-dimensional features) in (3.15) is,

µ̂id =
σ2

iod

∑T
t=1 γt(i)

kxtd + σ2
id µiod

σ2
iod

∑T
t=1 γt(i)k + σ2

id

=

∑T
t=1 γt(i)

kxtd + τid µiod∑T
t=1 γt(i)k + τid

, for d = 1, · · · , D (3.18)

where µ̂id, xtd and µiod are the d-th elements of the vectors, µ̂
i
, xt and µ

io
, re-

spectively; σ2
iod and σ2

id are the d-th diagonal elements of the matrices, Σio and Σi,

respectively; and τid = σ2
id/σ

2
iod. For simplicity if we assume τid to be identical for

all the elements, i.e. τid = τi, for d = 1, · · · , D, we obtain,

µk+1

i
=

∑T
t=1 γt(i)

kxt + τiµi0∑T
t=1 γt(i)k + τi

(3.19)

τi can be viewed as the uncertainty regarding our prior guess for the mixture

component mean, as measured by the amount of scatter in Σio, relative to Σi. A

large value for τi implies that our prior certainty is strong, and the prior density

is sharply peaked around µ
io
, the component mean in the seed model [91]. A ratio

of either the trace or determinant of Σi and Σio can be used as a scalar measure

of our relative prior certainty. In practice, for simplicity, τi is constrained to be

identical for all mixture components of a model, i.e. τi = τ , for all i.

For gesture components MShape and MSpeed, the models used in each of the

components are HMMs with single Gaussian observation densities for each state, i.
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Following [91], the initial state probabilities, πi, and the state transition probabil-

ities, aij , are assumed to be fixed and known. We further simplify the adaptation

process by assuming that the covariances of the Gaussian density in each state are

known. Hence only the mean of the Gaussian density in each state is modified by

adaptation data. MAP estimation of the means, iteratively refined using the EM

algorithm, proceeds in a similar fashion to that for Gaussian mixtures as described

above. The re-estimation of the mean of the Gaussian density in state i, at the

(k + 1)-th iteration is calculated with equation (3.19). Here µ
io

is the Gaussian

mean in the corresponding state i of a prior trained HMM seed model; xt is the

adaptation data available from the new signer, and this is summed over the length

of the observation sequence of the known category that we are training for, and

over multiple sequences if available; γt(i)
k is the probability of state i, given the

observation sequence and the model parameters after the k-th iteration, which can

be calculated from the forward and backward variables, αt(i)
k and βt(i)

k [131]; and

τi can be viewed as the uncertainty regarding our prior guess for the state mean,

relative to the covariance of the Gaussian density. For simplicity, τi is constrained

to be identical for all the states of a HMM, i.e. τi = τ , for all i.

3.2.2 Adaptation of Bayesian network S1

Section 3.1.4 described how the parameters, θ, of the BN S1 used in Step 3 of the

block diagram (Figure 3.1), are learned using ML estimation. However, to obtain
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a robust estimate when using a limited amount of adaptation data, D, from a new

test subject, we again utilize prior knowledge about the parameters in the form

of a prior distribution for θ, to determine the posterior distribution p(θ|D). As

mentioned in Section 3.1.4, for a BN with all discrete nodes, Yi (i = 1, . . . , n), the

network parameters consist of the parameter vectors, θij, of distinct multinomial

distributions (for each Yi, and for each configuration, j = 1, . . . , qi, of its parents

PaYi
). These parameter vectors which are assumed to be mutually independent

remain independent given the adaptation data D,

p(θ|D) =
n∏

i=1

qi∏
j=1

p(θij|D) (3.20)

The posterior distributions for θij can therefore be determined independently (for

each node Yi and each configuration j of its parents PaYi
) [59].

A suitable prior distribution for θij = {θij1, . . . , θijri
} is defined as a Dirich-

let distribution, p(θij) = Dir(θij|αij1, . . . , αijri
), which is a conjugate prior for

multinomial sampling. The observation of adaptation data, x, from the new test

subject, converts this to a posterior density which is again a Dirichlet distribution,

p(θij |D) = Dir(θij |αij1 +Nij1, . . . , αijri
+Nijri

) [59]. Here, as in Section 3.1.4, Nijk

is the number of times Yi = k and PaYi
= j occur in the observation data set. In

the MAP estimation of Section 3.2.1, the parameter values which maximized the

posterior distribution were taken to be the final adapted parameters. In this case,
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we take the expectation of the parameters. The expectation of θijk, with respect

to the posterior distribution is [59],

θ̃ijk = < θijk >p(θij |D)

=

∫
θij

θijkDir(θij|αij1 +Nij1, . . . , αijri
+Nijri

) dθij

=
αijk +Nijk∑ri

k=1{αijk +Nijk} (3.21)

Comparing (3.21) to (3.4), it can be seen that the parameters of the prior

distribution, αijk, for k = 1, . . . , ri, act as additional counts for the number of

times Yi = k and PaYi
= j have occurred. Indeed, one of the ways of specifying the

values of these parameters is to determine the number of counts that is equivalent

to our prior knowledge about the process modeled by the BN [59].

3.3 Experimental Results

The dataset was generated from 8 persons (test subjects A to H), each of whom

performed about 10 repetitions of each of the 20 distinct complete gesture mean-

ings, giving a total of 1855 gesture sequences.

3.3.1 Experiment 1 - Signer-Dependent System

For the signer-dependent2 systems, we trained the six component-level classifiers

(as described in Section 3.1.3) on roughly 2
3

of the gesture sequences obtained

2“Signer” is used here as a convenient term although the gesture set used does not contain
actual signs.
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from one test subject (e.g. A). The trained (signer-dependent) classifiers then

output the component category labels as discrete values to network S1’s observation

nodes, LHS, LHE , LMSh, LMO, LMSz and LMSp. The numerical values of the local

conditional probabilities of the nodes in S1 were learned with ML estimation (3.4).

In the testing procedure, we used the trained component-level classifiers to obtain

the observation node categories for the remaining 1
3

of the gesture sequences, and

presented these as evidence to the S1 network for inferring the most probable values

for the query nodes BasicMeaning, Intensity, Distance, Rate, and Continuance. A

test sequence was considered to be recognized correctly only if all the query node

values were inferred correctly. The above procedure was repeated individually on

all 8 test subjects. Accuracy results ranged from 88.2% to 95.7%, with an average

accuracy of 92.2% (see Table 3.2). Since the basic meaning class labels are grouped

in a separate node from the inflections, we also performed “partial” recognition of

the basic gesture meaning only, which yielded an average accuracy of 98.5%.

For comparison, we implemented a direct multiplication of the probability

scores of component features (in the manner of [134]) and obtained a much lower

average gesture recognition accuracy of 69.5%.

Network S1 is able to take advantage of redundancies in the information from

different components to disambiguate uncertainties in the component classification

results. The network learns to characterize the error performance of the classifiers
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Table 3.2: Gestures recognition accuracy results on test data for signer-dependent
system of Experiment 1.

Test subjects Accuracy results
A 92.5%
B 91.9%
C 92.1%
D 88.2%
E 90.1%
F 92.9%
G 93.8%
H 95.7%
Average 92.2%

and also improves the overall accuracy. As a result, though the worst perform-

ing (HOrienS component) and the best performing component classifier (MSpeed

component) and had average (over the 8 test subjects) accuracies of 68.3% and

91.6% respectively, the overall gesture recognition accuracy was between 88.2%

and 95.7%.

3.3.2 Experiment 2 - Multiple Signer System

Our first attempt at building a system for recognizing gestures from multiple signers

used the same methodology as in Experiment 1, the sole difference being that data

from 4 persons (A,B,C, and D) was pooled together for training and testing. This

yielded an accuracy of 78.7% on the test data. The accuracy dropped as compared

to Experiment 1 because when data from multiple persons is used, there is an

increase in the variance of the class-conditional densities in the component-level
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classifiers (due to different styles in gesturing and body size) and these densities

start to overlap (Figure 3.7).

Figure 3.7: Class-conditional density functions p(xMSz | LMSz) estimated by pool-
ing together data from 4 test subjects, A, B, C and D. There is significant overlap
among the densities.

In an effort to improve accuracy, we first noted that our approach for clas-

sification at the component-level is analogous to inferencing with a generative

classification model (e.g. S2 in Figure 3.8(a), [70]) where the parent node val-

ues are discrete class labels, and the child node values are the continuous-valued

feature vectors of the component. For example in S2, which classifies categories

of the MSize component, the probability density functions for the xMSz node

are p(xMSz | LMSz), for LMSz = Circ,Med,Big. If MSize categories are as-

sumed to have equal prior probabilities, inferring the most probable value of LMSz,

argmax
LMSz

P (LMSz | xMSz) (as is performed in generative classification models), is

equivalent to finding the class with the highest likelihood, argmax
LMSz

p(xMSz | LMSz)

(as performed in our approach to component-level classification). Next, to account
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for the person specific variations we added a PersonId node to network S2 to ob-

tain S3 (Figure 3.8(b)). Hence, instead of pooling together data from multiple

test subjects to estimate class-conditional densities p(xMSz | LMSz), we estimated

signer-specific class conditional densities, p(xMSz | LMSz,PersonId). For example

in S3, p(xMSz | LMSz,PersonId = A), for LMSz = Circ,Med,Big, is exactly the

class-conditional density of the component-level classifier for MSize trained on data

from subject A in Experiment 1 (top left plot in Figure 3.9). The other plots in

Figure 3.9, show p(xMSz | LMSz,PersonId = B), p(xMSz | LMSz,PersonId = C),

and p(xMSz | LMSz,PersonId = D) for network S3.

PersonIdLMSz

xMSz

LMSz

xMSz

(a) (b)

LHS

xHS
xMSh

PersonId
LMShLMO

LMSp
LHE

xHE

LMSz

xMO xMSz xMSp

(c)

Figure 3.8: (a)S2 for inferring LMSz value. (b)S3 which can additionally infer
PersonId value. (c) S4, signer-indexed component-level classifier for multiple signer
system.

We made the PersonId node common to all the components (since for a given

gesture sequence, the same person would have produced the features in all the com-

ponents) and obtained the structure S4 shown in Figure 3.8(c). Just as p(xMSz |

LMSz,PersonId), are exactly the class-conditional densities of the component-level
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Figure 3.9: Signer-specific class-conditional density functions,
p(xMSz|LMSz,PersonId = A), p(xMSz|LMSz,PersonId = B), p(xMSz|LMSz,
PersonId = C), p(xMSz|LMSz,PersonId = D), in network S3.

classifier for MSize trained on data from signer-specific data (as described above),

so also the local conditional probabilities for the other feature nodes in network

S4 are the class-conditional densities of the appropriate component-level classi-

fiers trained on data from signer-specific data in Experiment 1. In addition, the

categories in each of the LHS, LHE, LMSh, LMO, LMSz and LMSp and PersonId

nodes are specified as equiprobable. Hence no additional training is required to

obtain the parameters of network S4. We then followed the same 2
3
:1
3

data split for

obtaining the training and test sets and trained the network S1. Following this,

gesture accuracy results on the test set were obtained from networks S4 and S1,
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Table 3.3: Accuracy results of multiple signer system on test data in Experiment
2. Person identity is inferred from the signer-indexed component-classifier S4.
Gesture is recognized by using the trained S1 network to infer values of query
nodes from the classification results of S4.

Test subjects Gesture recognition Person identity recognition
B,C,D (3) 84.4% 85.4%
A,B,C,D (4) 84.9% 81.6%
E,F,G,H (4) 86.9% 78.5%
A to H (8) 85.0% 61.2%

and are given in Table 3.3. These results show that this method for multiple sign-

ers generalizes well as the number of test subjects increased from 3 to 8. For test

subjects A, B, C, and D, the accuracy improved from 78.7%, when the data was

simply pooled together, to 84.9% when the PersonId node was used to maintain

signer-specific class conditional densities. This is a 26.8% reduction in error rate.

As using the signer’s identity led to improved gesture recognition results, we

also investigated the extent to which a person could be recognized by observing

his gestures (in our multiple signer system). For this, the identity of the test

subject was inferred from the PersonId node in network S4. Person identification

accuracy results are shown in Table 3.3. It is seen that when the system handles 4

signers, the signer identity can be recognized with a fairly high accuracy of about

80%. However, this drops to 61.2% when the system handles all 8 signers. Person

identification is not critical to the gesture recognition results but is an added feature

of our multiple signer system.
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3.3.3 Experiment 3 - Adaptation to New Signer

When gesture sequences from subject A were tested on the multiple signer system

trained on 3 other persons (B, C, and D) in Experiment 2, a gesture recogni-

tion accuracy of only 52.6% was obtained. This is not an unexpected result as

Experiment 2 suggests that there are significant inter-person differences, so that

recognizing gestures from a new person without any training data from that person

is difficult. As is well known, in speaker adaptation, the goal is to have a system

whose performance on the new speaker approaches that of a speaker-dependent

system but with much less speaker-specific training data than is required for a full

speaker-dependent system [166]. Similarly, we implemented the adaptation scheme

discussed in Section 3.2 in an attempt to improve gesture recognition accuracy for

test subject A close to that of the signer-dependent system for A (Experiment 1 -

92.5%) while using only one set of the 20 distinct gestures from A. Our scheme sep-

arately adapts (ii) the gesture component-level classifiers and, (ii) the S1 network,

both initially trained on data from subjects B, C, and D.

For each gesture component, we adapted a set of models, using the features

appropriate for that gesture component, from the data of new test subject A.

Each model was adapted by iteratively refining the model parameters using the

EM algorithm with MAP criterion (3.7). Only the mixture component means of

the Gaussian mixtures (for gesture components with static input features) and
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the means of Gaussian state densities (for gesture components with time sequence

data as input features and modeled with HMMs) were learned during the train-

ing/adaptation by EM. The other model parameters (for example, state density

covariances, state initial and transition probabilities of a HMM model), were taken

unmodified from a previously trained seed model. This is a tradeoff between ac-

curacy and computational simplicity. However, as mentioned in Section 3.2.1,

simplying the MAP adaptation scheme to only adapting the means of Gaussian

state densities is reasonable start because it has been found in speech recognition

that the most important speaker specific effect is related to the Gaussian means of

state observation densities, rather than the state density covariances, state initial

and transition probabilities [166]. The component means of the Gaussian mixtures

and the means of Gaussian state densities were re-estimated in each EM iteration

with equation (3.19) where prior mean (for example, µ
io

for state i of a HMM

model) was initialized to the corresponding mean of the seed model. The value

of τ , in the re-estimation equation was empirically determined by experimenting

with different values of τ and testing the adapted set of models on the adaptation

data from subject A. In each gesture component, the value of τ that gave the

best classification performance on the adaptation data was used. The final values

ranged between 1 and 2.
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To obtain the seed models, we first found in each gesture component, the train-

ing subjects’ (B, C and D) signer-dependent classifier that gave the best classifica-

tion results for the adaptation data. The appropriate set of models in each compo-

nent was then used as seed models for the adaptation process. This differs from the

implementation in speech recognition systems which generally use HMMs trained

on multiple speakers (termed as speaker-independent models) as seed models. Our

method of selecting seed models again reflects the implication from Experiment 2

results that there are significant inter-person differences in gesturing. Hence it may

be more effective to tune the best performing signer-dependent classifer with the

limited amount of adaptation data available rather than adapt the multiple signer

gesture component-level classifier (network S4), which contains a greater number

of model parameters.

After the gesture component-level classifiers were adapted, their classification

outputs for the adaptation data were used as the discrete values of the observation

nodes in the S1 network, which together with the known values of query nodes, Ba-

sicMeaning, Intensity, Distance, Rate and Continuance, constituted the observed

number of counts for node values in S1. These are the Nijk terms in the parameter

adaptation equation (3.21). As mentioned, the terms, αijk for k = 1, . . . , ri act as

prior counts for node values. We applied equation (3.21) by taking as prior knowl-

edge the training data from subjects B, C and D that was used to train network

S1 in the multiple signer system in Experiment 2. So the term αijk is the number
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of times Yi = yk
i and PaYi

= paj
Yi

occured in that training set.

The gesture recognition accuracy for test subject A using the adapted compo-

nent classifers and adapted S1 network increased substantially to 88.5%. Although

still short of the 92.5% accuracy of the signer-dependent system for subject A, this

is a significant improvement over the 52.6% recognition rate from the unadapted

system trained on subjects B, C and D.

3.4 Summary

This chapter presented experiments with a simulated vocabulary of 6 lexical signs

and 5 possible grammatical inflections which modify movement both spatially and

temporally. Isolated gestures were used and data capture was by video camera.

Although the vocabulary here is an artificial one, it has been designed to have a

structure similar to SL, and thus represents a proof of concept of ideas that can

be applied to recognition of continuous signing. The extension of these ideas to

continuous signing of ASL sentences will be shown in the next chapter. The main

ideas are as described below.

Each of the parallel and simultaneous components in gestures, has a limited

number of categories/classes. Separate component-level classifiers can be trained

to recognize the classes from independent feature sets. This approach simplifies

classifier design – in the experiments there were only 3 to 6 categories to distinguish

in each gesture component (even though the vocabulary has 20 distinct gestures),
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thus requiring fewer parameters and less training data. It was possible to use

static features and classifiers in some components despite the fact that gesture is

an inherently time sequential process.

The dependencies between basic meaning and inflection information, and ges-

ture components were probabilistically instead of deterministically modelled. Due

to conditional independence assumptions (as embodied in the S1 BN structure of

Figure 3.6(c)), the parameters encoding the numerical values of these dependencies

are estimated independently. We need never model the interaction between gesture

components. At the same time, the advantage of the probabilistic approach can

be seen from considering the results obtained from the recognition of individual

signer gestures with a signer-dependent system in Section 3.3.1. Here we obtained

average recognition accuracy of 92.2%, even though the worst-performing and best-

performing component-level classifiers had accuracies of 68.3% and 91.6%, respec-

tively. Our approach improved on component-level classifier accuracies, whereas

combining the component outputs by assuming dictionary definition of signs could

only yield an average gesture recognition accuracy of 69.5%.

In addition to the main points above, we also developed an additional network

(S4) to account for differences among signers by characterizing probability densities

of component features according to signer identity. This approach was found to

generalize well as the number of test subjects were increased from 3 to 8. We

also considered the problem of adapting the models trained on three test subjects
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with a small amount of data from a fourth person. The approach is novel in that

we adapt both the component-level classifiers as well as the BN that combines

component-level classifier outputs. The component-level classsifier were adapted

using a variation of maximum a posteriori (MAP) adaptation, one of the main

speaker adaptation schemes in speech recognition systems. The BN was adapted

by representing the parameters of the trained system as a Dirichlet prior. A further

advantage of having separate components of information with only a few categories

in each is that, although there is only one set of the 20 distinct gestures available

as adaptation data, there can be multiple instances available for adapting each

category of classifiers. For example, 2 to 12 instances were available for adapting

the HMMs in the MShape component.



Chapter 4
Recognition of continuous signing with
dynamic Bayesian networks

The main ideas that were presented in the previous chapter for recognizing isolated

gestures are used to develop models to recognize continuously signed ASL sentences

that include inflected signs. These ideas are as follows:

• Signs/gestures can be decomposed into parallel and simultaneous compo-

nents.

• Each of these components consists of a limited number of categories or values.

The component-level classifiers are trained independently of each other using

independent feature sets.

• It is advantageous to model sign/gesture to component dependencies proba-

bilistically rather than deterministically.

85
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• The sign/gesture to component dependencies can be learned from data (in-

stead of specified using domain knowledge). We assume conditional indepen-

dence such that this learning is done separately for each component.

In continuous signing, the goal is to recognize the sequence of signs in a sentence.

Each of the signs in turn consists of synchronized sequences of distinct values in

each sign component (see Section 2.2), and within each component, classification

of the features into a distinct component value requires observing a sequence of

such features. Thus the extension of the main concepts above to modelling and

recognition of continuously signed ASL sentences requires a model for sequential

data and synchronization (at sign boundaries) between component feature/data

streams.

In the isolated gesture experiments of Chapter 3, a Bayesian network (BN) was

used to model gesture to component dependencies. Each of the observation nodes

of the BN, which represented gesture component values, had only one input value

for each gesture even though it is inherently a time sequential process. This is

because the component-level classifiers (some of which take as input a sequence of

features) output one component value for each gesture. Thus the model for gesture

to component dependencies did not require temporal modelling of the data and the

(static) BN was an adequate model. The dynamic Bayesian network (DBN) is an

extension of the BN for modelling temporal process. The next section describes
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DBNs in general and the application of a simple DBN, the hidden Markov model

(HMM), to speech and sign recognition. Section 4.2 describes the hierarchical

hidden Markov model (H-HMM), which is a DBN structure suitable for modelling

the hierarchical structure in speech. Although the sign data stream has a similar

hierarchical structure, it also has a parallel and simultaneous structure and hence

can be decomposed into multiple streams of component features/data. Section

4.3 examines some of the DBNs that have been used for modelling and combining

multiple data streams. We then present a new DBN structure in Section 4.4 called

the Multichannel Hierarchical Hidden Markov model (MH-HMM) which models

both the hierarchical structure and the parallel and simultaneous component data

streams in signing. In Section 4.5 we show how the MH-HMM can be applied to

the modelling and recognition of sign sentences that include inflected words.

4.1 Dynamic Bayesian networks

A dynamic Bayesian network (DBN) [50, 109] can be used to represent random

proccesses, i.e. random variables that evolve with time. Each of the random

variables is either hidden or observed. The hidden state of the system at time t

is represented in terms of a set of hidden variables, Xk,t, k = 1, . . . , K. There

are also multiple observation variables at time t, Yl,t, l = 1, . . . , L. The DBN is a

graphical model consisting of nodes representing these variables and directed edges

representing dependencies among the nodes. The edges link nodes that are within
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the same time slice or across two consecutive time slices. Just as in the BN, absence

of edges in the graph implies conditional independence, i.e. a node is independent

of its non-descendants, given its parents. This allows the joint distribution of the

random variables represented by the nodes to be factored as a product of local

conditional probability distributions (CPD). The key difference from a BN is that

in the DBN, there is a set of random variables {X1,t, . . . , XK,t, Y1,t, . . . , YL,t} at

every time slice t. The models are taken to be 1st-order Markov, so that the

parents of any one variable are either from the same time slice or the previous time

slice. The CPDs are taken to be time-invariant to allow modelling of arbitrary

length sequences with a limited number of parameters. As a result of the 1st-

order Markov and time invariance properties, we only need to define the CPD for

variables in a DBN unrolled for the first two time slices [109].

X1

Y1

X2

Y2

Figure 4.1: DBN representation of a HMM, unrolled for the first two time slices.

The simplest DBN is a HMM, which at time t has a single hidden variable, Xt,

and a single observation, Yt. Figure 4.1 shows the DBN representation of a HMM.

For a HMM whose hidden variable Xt can take on M possible values/states, the

parameters (for the CPDs) required to specify the model are [131]:
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• state initial probabilities, πi = P (X1 = i), for i = 1, . . .M .

• state transition probabilities, aij = P (Xt+1 = j|Xt = i), for i = 1, . . .M and

j = 1, . . .M .

• output probability distributions, bi(yt) = P (Yt = yt|Xt = i), for i = 1, . . .M .

ends1 s2 s3

Figure 4.2: State transition diagram of an example HMM phone model with three
states. Initial state probabilities are zero for all but the s1 state. Thus only the s1
state can be joined to states of the previous phone model when they are chained
together in the HMM recognition model. The end state is not an actual state, it
just identifies which state of this model (in this case only the s3 state) can be joined
to states of the next phone in the recognition model (see text for explanation).

HMMs are widely used in speech recognition systems, where they are able to

process speech utterances of variable lengths and implicitly segment continuous

speech into individual words. Generally one HMM is trained to model each basic

sound or phone in the spoken language (see Figure 4.2 for the state transition

diagram of such a phone model, not to be confused with the DBN representation in

Figure 4.1). All words can be decomposed into a sequence of these phone subunits

which are limited in number (for example there are 42 units in English [34]),

thereby enabling recognition of large vocabularies with a finite number of trained

HMMs. During recognition, the trained HMM phone models are chained together

into a branching tree-structured network that allows all valid word sequences –
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called a recognition model [18]. Viterbi decoding is used to find the most probable

state path through the HMM recognition model, thereby recovering both the word

boundaries and sequence [173]. This idea has also been used for recognition of

continuous signs ([47, 103, 143]); some of these works define sequential subunits for

the same purpose as phone subunits for speech recognition, i.e. reducing training

data requirements and scaling to large vocabularies ([12, 13, 157, 161, 174]).

However, the HMM has the disadvantage of being a flat model where all the

information about the state of the system is contained in a single, unfactorised

state variable. In speech recognition for example, this state variable identifies the

word, the phone and the state within the phone model. As mentioned in [110],

there are disadvantages to using a flat structure such as the HMM to model the

essentially hierarchical structure inherent in speech:

1. Modularity in the parameters is lost. For example the dependencies between

word to phone, and from phone to subphone (HMM state) are combined in a

complex way in the flat HMM structure. In HMM-based speech recognition

systems, the word model (i.e. the decomposition of a word into a phone

sequence) is most often determined according to a pronunciation dictionary.

If a particular word has only one possible pronunciation, the word to phone

sequence dependency would be deterministic; if multiple pronunciations are
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possible the dependency is probabilistic. Regardless, the dependency is usu-

ally assumed to be fixed and in the flat HMM structure there is no modular

way of learning or adjusting the probabilistic dependencies between word to

phone.

Learning the probabilistic dependencies between word to phone may be de-

sirable in speech recognition because dictionary definitions, no matter how

comprehensive, cannot account for all the variations in pronunciations due

to accent, regional differences or personal styles. This is however especially

pertinent in the case of SL recognition because there is no commonly agreed

upon definition of sign subunits and the equivalent of the pronunciation dic-

tionary in speech is not available.

2. There is implicit sharing of phone model parameters without a clear repre-

sentation. In speech, multiple words often share the same phone. However

a given phone which appears in different words would generally be followed

in sequence by a different phone. So it is necessary to identify not only the

current phone but also the current word as well. Thus different instantia-

tions of each phone exist corresponding to different word contexts, making

the overall HMM recognition model very large [18]. At the same time, the

CPD parameters for the different phone instantiations would need to be tied

together – this is not represented in the HMM.
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The next section describes a model that is better suited for modelling the hierar-

chical organization in both speech and SL manual signs, including any probabilistic

relationship between a word and its associated phone sequence.

4.2 Hierarchical hidden Markov model (H-HMM)

Speech has a natural hierarchical structure where phones combine sequentially to

form words, and combinations of words form sentences. Each phone is consid-

ered as a quasi-stationary process consisting of a sequence of steady-state periods,

and hence, HMM-based speech recognition systems model a phone as consisting

of a sequence of subphones or HMM states. Each level (sentence, word, phone,

subphone) has a different time scale, and in fact the state transition time at any

particular level depends on the time taken to finish a state sequence at a lower

level. For example, the next word in a sentence can start only when the phone

sequence of the current word has ended. Similarly, within this phone sequence,

the next phone can start only when the subphone or HMM state sequence of the

current phone has ended.

Hierarchical hidden Markov models (H-HMM) [44, 110] have been proposed as

a suitable DBN structure for modelling domains with hierarchical processes that

evolve at multiple time scales. In applications such as human activity recognition

[90, 118], event and scene recognition in video sequences [99, 169], and grammatical

relations recognition in text sentences [141], H-HMMs have been found to give
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better results than baseline HMM approaches. There are two kinds of states in a

H-HMM, abstract states and production states. An abstract state does not emit

any observations but calls a lower-level state, usually starting a state sequence at

the lower-level. Each of the states at this level may in turn also be an abstract

state which calls another lower-level state. At the lowest level are production states

which emit observations. A lower-level state sequence must finish before it returns

control to the higher-level state that called it.

Figure 4.3: State transition diagram of an example H-HMM for a speech recog-
nition system that can recognize three words. Phone models (represented by sur-
rounding boxes at the 3rd level) are shared by different words – thus multiple
dotted-line arrows point to the starting state of the same phone model (only two
phone models are shown to avoid clutter). The subphones are equivalent to HMM
states and are the only states that emit observations. The end states are not actual
states, they just identify which states of a particular model can be the last state
in the state sequence for that model (from [111], adapted from [73]).

To model speech using a H-HMM, we can represent the word and phone values
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as abstract states and subphones as the lowest level production states. Figure 4.3

shows the state transition diagram for an example H-HMM modelling three words.

Here solid-line arrows represent horizontal transitions within the same level, while

dotted-line arrows represent vertical transitions, i.e. calls to a lower-level state.

Consider an example of generating a sentence from this H-HMM. Say the first

word in the sentence is “on”. This triggers the phone sequence associated with

this word, i.e. the word model for “on”. The first phone in this sequence is “aa”.

The call to “aa” in turn triggers the subphone sequence of this phone, the phone

model for “aa”. Each of the subphones1 in sequence emits an acoustic vector.

When the subphone sequence for “aa” reaches its end, it returns control to the

phone-level which then goes on to the next phone “n”, triggering the subphone

sequence of the phone model for “n”. When this new subphone sequence ends,

control again returns to the phone-level. At this point, the phone sequence of the

“on” word model has reached its end. Control thus returns to the word-level where

the next word can either be the same word (“on”), or a different word, “need” or

“the”. Once the next word is chosen, the phone sequence of that word model is

triggered and the same process as above ensues. The word sequence reaches its

end at the end of the sentence. (The end state at the word-level is not shown in

Figure 4.3).

1In the rest of the chapter, the word subphone is used exclusively to refer to the HMM states of
a phone model. The word state will refer to either the abstract and production states at different
levels of a H-HMM or the state of the entire DBN. The meaning will be clear by context.
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The phone model is defined by the decomposition of a phone into its associated

subphone sequence and the output probability distributions for the subphones.

The associated subphone sequence for a phone is defined by the subphone initial

and transition probabilities (equivalent to the HMM state initial and transition

probabilities of Section 4.1), and the subphone ending probabilities (the probability

of each subphone being the last in the sequence). We refer to this as the state initial,

transition and ending probabilities at the subphone-level which is represented in

Figure 4.3 by the state transitions within the surrounding boxes at the 3rd level.

There is one set of such probabilities for each phone model. The word model is

defined as the decomposition of a word into its associated phone sequence, which is

defined by the state initial, transition and ending probabilities at the phone-level.

This is represented by state transitions within the surrounding boxes at the 2nd

level. There is one set of such probabilities for each word model. Lastly the sentence

model is defined as the set of valid word sequences that can be constructed from

the H-HMM. It is defined by the state initial, transition and ending probabilities

at the word-level. For example the sentence model in Figure 4.3 shows that any

of the three words can start a sentence, and each of the words can be followed by

any of the other two words as well as by itself (the ending probabilities are not

represented in the figure).

The H-HMM for speech recognition can be represented by a DBN such as in

Figure 4.4 which shows the DBN unrolled for the first two time slices [111].
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indicates word

seq. has finished

Figure 4.4: H-HMM for speech recognition (from [111]). Dotted lines enclose nodes
of the same time slice.

The word, phone and subphone at time t are represented by Q1
t , Q

2
t , and Q3

t

respectively, collectively called the Q nodes. The value of the Qd
t node, is the state

at level d and time t. In a sense, each level implements a set of models, with the

exact model that is currently active dependent on the value of the higher-level

state. For example, the word value at time t, q1
t , determines the current word

model that is active at the phone-level, i.e. the phone sequence associated with

the word value is implemented. Similarly, the phone value at time t, q2
t , determines

the current phone model that is active at the subphone-level, i.e. the subphone

sequence associated with the phone value is implemented. Hence, in general, Qd
t is

necessarily a parent of Qd+1
t .
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The F d
t nodes are binary indicator variables with a value of 1 (“on”) if the state

sequence at level d and time t has finished [110]. Otherwise, it has a value of 0

(“off”). As an example, consider F d+1
t . There are two possible situations at time

t:

• The current state sequence at level d+1 has finished, indicated by the variable

F d+1
t being “on”. Control should then return to the higher-level, d, which

can now change state, i.e. Qd
t+1 can be a different value from Qd

t . This then

triggers a new state sequence to start at level d+ 1 and time t+ 1. This new

state sequence is associated with the new d-level state, i.e. qd
t+1.

• The current state sequence at level d+ 1 has not finished, the variable F d+1
t

is “off”, and the value of Qd
t+1 is forced to remain in the same state as in the

previous time slice, i.e. qd
t+1 = qd

t , and a new state sequence is not triggered

at level d+ 1 and time t+ 1.

Thus F d+1
t is both a parent of Qd

t+1 (to indicate when its value can be different

from the value of Qd
t , i.e. when level d can change state), and a parent of Qd+1

t+1 (to

indicate when its value should be drawn from the initial state probabilities of the

model associated with qd
t+1, i.e. when a new state sequence at level d + 1 should

be started). Lastly, F d+1
t node is a parent of F d

t node to enforce the requirement

that a higher-level sequence cannot finish when the lower-level sequence has not.

Collectively, the indicator nodes enforce the different time scales at each level and
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only allow a higher level to change state when the lower-level sequence has finished.

We now consider how H-HMMs allow modularity in the parameters and sharing

of phone models by multiple words.

4.2.1 Modularity in parameters

As mentioned, the sentence model is the set of possible word sequences and is

defined by the state initial, transition and ending probabilities at the word-level.

In the DBN of Figure 4.3, these probabilities are encoded in the parameters of the

CPDs for nodes Q1
t and F 1

t . The word model for a particular word is the phone-

level state initial, transition and ending probabilities associated with that word.

These are encoded in the CPD parameters for nodes Q2
t and F 2

t . Both nodes have

as one of their parents, the Q1
t node, thus the word value determines which set of

phone-level state probabilities is active. The phone model for a particular phone

has an associated subphone sequence defined by the subphone-level state initial,

transition and ending probabilities. These are encoded in the CPD parameters

for nodes Q3
t and F 3

t . Both nodes have as one of their parents, the Q2
t node,

thus the phone value determines which set of subphone-level state probabilities

is active. The phone model also includes the output probability distributions for

the subphones associated with it. This distribution is defined by the CPD of the

observation feature Ot. Notice that both the phone node (Q2
t ) and the subphone

node (Q3
t ) are parents of Ot. The output probability distribution is determined
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by both the phone value as well as the subphone value since for example, the first

state of two different phone models would not have the same output probability

distribution.

Thus we see that the probabilities defining the sentence, word and phone mod-

els are distinct and easily extracted from the node CPDs of the DBN. They are

not lumped together into the state initial and transition probabilities for a single

variable that represents the entire state of the system, as occurs in the HMM. Con-

ceptually, the system’s state has been factorised into the random variables enclosed

by the rounded-rectangle in Figure 4.4.

4.2.2 Sharing phone models

Multiple words sharing the same phone is easily represented in the H-HMM state

transitions without needing to create multiple copies of the same phone (see Figure

4.3). The word node (Q1
t ) is not a parent of the subphone-level Q and F nodes (Q3

t

and F 3
t ), thus the subphone-level state initial, transition and ending probabilities

are dependent only on the phone node (Q2
t ), and multiple words in which a phone

occurs share the same model of the phone. At the same time, control over the

“flow” of phone sequences is maintained by the phone-level state initial, transition

and ending probabilities which do depend on the word value since the word node

(Q1
t ) is a parent of the phone-level Q and F nodes (Q2

t and F 2
t ).

The H-HMM models the hierarchical structure in speech and would similarly
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be able to model the hierarchical structure in SL sentences. However SL manual

sign sequences not only exhibit hierarchical structure, they also consist of multiple

data streams, corresponding to each sign component. Hence, in the next section

we review some models for combining and modelling multiple data streams.

4.3 Related work on combining multiple data streams

Various statistical models have been proposed to handle problems where multiple

observation streams correspond to the same sequence of events. The information

streams that are combined and their corresponding application domains include:

different acoustic features for speech recognition [176], acoustic phone features and

pitch features for recognition of Mandarin tonal phones [92], clean speech and

noise for speech recognition [155], different frequency bands for speech recognition

[21, 32, 60, 52, 106, 120], audio and visual features for speech recognition [15,

28, 39, 53, 54, 72, 98, 105, 114, 115, 117, 127, 151, 177], features of different

sign components for recognizing manual signing in SL [157], features from two

hands or individuals for gesture/action recognition [26], data from video, audio

and computer interactions for office activity recognition [121], audio and visual

features and features from individual participants for recognition of group actions

in meetings [102, 175], features from multiple individuals for human interaction

recognition [122], audio and visual detector outputs for speaker detection [48],

different facial features for facial expression recognition [170], different body parts
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for action recognition [123].

In the following we will examine the statistical models used in the above applica-

tions in terms of how they deal with the issues related to modelling and combining

multiple data streams: asynchronicity between data streams, hierarchies of data

and events, and the requirement to jointly train with the multiple observation

streams.

4.3.1 Flat models

The HMM, as opposed to a H-HMM, is a flat model that contains all the infor-

mation about the different abstract levels of a system in a single state variable.

Similarly, in the flat models described below, the hierarchy of abstract levels and

multiple time scales are not explicitly modelled. These models can be divided into

those that do not necessarily require concurrent training with the multiple obser-

vation streams (multistream HMM, product HMM, parallel HMM) and those that

do (coupled HMM, factorial HMM, B-band DBN, asynchronous HMM).

X1

Y2
1

X2

Y1
1 Y2

2Y1
2

Figure 4.5: DBN representation of a multistream HMM with two observation
streams, unrolled for the first two time slices. The DBN for a product HMM
is identical.
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In the multistream HMM [21, 98, 117], and product HMM [54, 155, 177] frame-

works, individual HMMs may be trained separately for each data stream. These

HMMs are then combined into a multistream HMM or a product HMM for decod-

ing/testing. The DBN representation for these two types of models is as shown in

Figure 4.5, where two observation streams with features Y 1
t and Y 2

t , respectively,

are modelled. The combined model has a single hidden state variable at any time

instant. The hidden state value is the combination of the state values in each of the

individually trained HMMs. In the multistream HMM, the state values that are

combined from the individually trained HMMs are forced to be identical. Thus the

modelling assumption is that the two different sequences are state synchronous. In

the product HMM, the state values that are combined from each of the individually

trained HMMs can be different as long as they belong to the same model. Since

in speech, HMMs usually model the phone, the modelling assumption in the case

of the product HMM is that the two different sequences are phone synchronous.

During recognition, the phone models are chained together into a branching tree-

structured network as with regular HMMs and the Viterbi decoding algorithm

finds the most probable state path through the network. The parallel HMM [157]

makes the same assumption of synchronization at model boundaries as product

HMMs but does not form a combined HMM from the individual HMMs trained on

separate data streams. Instead decoding is done separately in individual HMM de-

coding networks or recognition models and the n-best word or phone synchronous
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paths (with n ranging up to 20) from each network are combined to find the best

combined path. This is a suboptimal solution as there is no guarantee that the

best overall path (as would be found in the product HMM framework) is among

the n-best paths found in each of the individual HMM decoding networks. Another

modelling paradigm that does not require concurrent training with the multiple

observation streams is discriminative model combination with rescoring of n-best

hypotheses [117], [19], [156]. In speech recognition, the n-best hypotheses from

the separate data streams that have the same word sequence are combined. n can

be quite large, for example, 2000 best hypotheses were used in [117]. Within a

sentence, complete asynchrony between the individual HMMs is allowed.
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Figure 4.6: (a) Coupled HMM, (b) Factorial HMM, (c) general loosely coupled
HMM (all figures adapted from [119]).

Coupled HMMs [26] and factorial HMMs [51] are examples of loosely coupled
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HMMs [119]. In these models, the state of the system, Xt, at each time instant

is factorized into state variables that represent the state of the process in each

of the multiple data streams. For example, Xt is factorized as X1
t and X2

t for

the case of two data streams. The factorized states can have various degrees and

manner of coupling and interaction. In the coupled HMM, the state transitions of

the individual processes are coupled (Figure 4.6(a)). In the factorial HMM, the

states of the individual processes are not coupled directly but they share the same

observations (Figure 4.6(b)). In the general loosely coupled HMM, the states of

the individual processes are coupled and also share the same observations (Figure

4.6(c)). Due to the coupling of the state variables and/or sharing of observations,

the models mentioned above must be jointly trained with the multiple data streams

as observations. Other models that also require such training includes the B-band

DBN [32] and the asynchronous HMM [15].

Being able to perform training separately using the different observation data

sequences and then using the learned parameters in the combined model is an

advantage. Training is faster since it is performed on simpler models and there is

no requirement for the training data to include all possible combinations of values in

each data stream. A key step that makes this possible is enforcing synchronization

at some level (for example, word-level) while allowing complete asynchrony at

lower levels (for example, phone and subphone levels), as opposed to modelling the

asynchrony between data streams at the state-level (as in loosely coupled HMMs)
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or at the level of each time slice (asynchronous HMM).

4.3.2 Models with multiple levels of abstraction

Multiple levels of abstraction are useful when a high-level event can be decomposed

into a sequence of sub-processes or sub-events, as for example in speech. In the

layered HMMs of [175], this concept was applied to model actions in a meeting as

consisting of multiple lower-level actions by each individual participant. Two layers

of HMMs were used and the posterior probabilities from multiple lower-layer HMMs

(which modelled each participant’s actions) were concatenated as observations of

the higher-layer HMM (which modelled the meeting actions). A similar model was

used in [121] to model and recognize office activities.

In the layered HMM structure, the multiple levels of abstraction are not mod-

elled concurrently. Each level takes its observations from the previous level and

generates the observations for the next level. Thus the recognition and decoding in

each level occurs in a decoupled manner. The work most closely related to our pro-

posed model in the next section are the DBN models of [53], [176] and [92] which

concurrently model the multiple levels of abstraction in multiple processes and

data streams. In Gowdy et. al [53] an acoustic feature stream and a video data

stream are modelled to perform audio-visual speech recognition. In this model,

the word transition times are solely determined by the acoustic data stream, i.e.

a transition to the next word occurs when the phone sequence in acoustic stream
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for the current word has finished, even though the phone sequence in video stream

may not have finished. Thus the acoustic stream acts like a master sync. Zhang

et. al [176] which models different acoustic features for speech recognition uses the

same structure as in [53], thus similarly has a master sync channel. Lei et. al [92]

combine acoustic phone features and pitch features in the recognition of Mandarin

tonal phones. This work is different from ours in that it recognizes phone sequences

and not word sequences. Also, no details were given for the CPD parameters re-

quired for the phone-level Ft node, which is crucial for synchronization between

the multiple data streams.

4.4 Multichannel Hierarchical Hidden Markov Model

(MH-HMM)

The analysis of SL manual sign structure presented in Section 2.2 represents signs as

parallel and simultaneous sequences of values in each of the sign components. There

is a limited number of “primes” or classes in each of the components, which we can

consider as the equivalent of phone subunits in speech. So a sign is decomposed

as a sequence of phones in each component stream. As mentioned in Section 2.2,

there is no requirement for the different streams to synchronize at the phone-level

or any other sub-sign “segmental” level (such as implied in Liddell’s model [95]).

The only requirement is synchronization at the sign-level, i.e. for any particular

sign in the sentence, the phone sequence for that sign in each component stream
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should start and end at the same time. In the actual physical performance of

signs, it is likely that at sign boundaries, the phone values across components

do not synchronize exactly at the per-frame level. However, this synchronization

constraint is necessary for connecting phone variables across components to the

same parent sign variable and in our view is more reasonable than allowing sign

transition times of different components to be completely unconstrained, as has

been implemented in [157].

We propose the Multichannel Hierarchical Hidden Markov model (MH-HMM)

as a DBN suitable for simultaneously modelling both the hierarchical and the

parallel structure in sign sequences. This structure is shown in Figure 4.7. The

MH-HMM models a sentence as made up of a sequence of signs, and each sign as

made up of parallel phone sequences, one in each sign component. Additionally, a

phone in a component may be decomposed as a sequence of subphones. Most of the

previous work in combining multiple data streams either modelled a flat structure

for the parallel data streams, or where multiple time-scales and a hierarchical

structure was considered, modelled the higher and lower-levels of the hierarchy in

a decoupled manner. In contrast, the MH-HMM models multiple data streams with

hierarchical structure, and different levels of the hierarchy are jointly modelled. In

addition, sign-level synchronization between component streams is accomplished

through the use of a sync node, S2
t in Figure 4.7, such that none of the components

have priority in terms of synchronization. This is unlike the models proposed in
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Figure 4.7: MH-HMM with synchronization between components at sign bound-
aries (shown for a model with two components streams, and two time slices).
Dotted lines enclose component-specific nodes.
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[53] and [176] where one of the data streams is the master sync. Another advantage

of the MH-HMM framework is that it allows training to be performed separately on

each component’s observation feature stream. The training process will be covered

in more detail in Section 4.4.2 and Chapter 6.

The key difference between the MH-HMM and the H-HMM is that in the MH-

HMM, there is one set of sign-level nodes, Q1
t and F 1

t , but multiple sets of phone-

and subphone-level and observation feature nodes. Figure 4.7 shows a model for

two component streams where there are two sets each of Q2 c
t ,Q3 c

t , F 2 c
t , F 3 c

t , and

Oc
t nodes, with c = 1, 2. In general, we can expand the model to as many sets,

Nc, of the above nodes as required to model multiple component data streams.

In Section 4.4.1, we show how parameters for the MH-HMM can be learned by

training separately with each of the component data streams. Thus for example,

the MH-HMM model of Figure 4.7 is only employed during testing/decoding, with

much simpler models used during training. In our approach, training complexity

increases linearly with the number of component data streams that are modelled.

The phone-level nodes (Q2 c
t and F 2 c

t , c = 1, . . . , Nc) share the same parent sign

node (Q1
t ). So at any instant in time, the phone sequences in each component are

associated with a common sign value. However, each component c has a separate

set of phone-level nodes (Q2 c
t and F 2 c

t , c = 1, . . . , Nc), subphone-level nodes (Q3 c
t

and F 3 c
t , c = 1, . . . , Nc) and observation feature nodes (Oc

t , c = 1, . . . , Nc). So

within the time period of a sign, the different component data streams can have
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Table 4.1: CPD for the sign synchronization node S2
t in a MH-HMM modelling

three components. The CPD implements the EX-NOR function.

P (S2
t |F 2 1

t , F 2 2
t , F 2 3

t )
F 2 1

t F 2 2
t F 2 3

t S2
t = 0 S2

t = 1
0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1

different phone and subphone state evolution dynamics, where the phone values

in one component stream may be changing faster or slower than those in another

component stream. At sign boundaries however, the phone sequences for the cur-

rent sign in all Nc components are required to end, and the phone sequences in all

components for the movement epenthesis that links up to the following sign must

start. In the MH-HMM, this is achieved by forcing F 2 c
t (which indicates when the

phone sequence of the c-th component has ended), for c = 1, . . . , Nc, to all have

values of 0 or all have values of 1. We introduce a synchronization node S2
t , as

the common child of the F 2 c
t nodes. The CPD of S2

t is defined as the EX-NOR

function (see Table 4.1), so that S2
t = 1 only when its parents either all have values

of 1 or all have values of 0. When the MH-HMM is used for recognizing continuous

signing, for example, when we input the data from a test sentence, we set S2
t = 1

in all time slices to enforce sign-level synchronization.
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We also mention here that the synchronization node between components can

be applied at other levels. For example, it can be made a child of all the F 3 c
t nodes.

This would enforce all component streams to transit from the current phone to the

next phone at the same time. Since in our analysis in Section 2.2 we require

synchronization at the sign-level only and not at the phone-level, we apply the

synchronization node as noted above.

All the advantages of the H-HMM versus the flat-HMM as mentioned in Section

4.2 apply as well to the case of MH-HMM versus flat models for combining multiple

data streams, i.e. modularity in parameters and sharing of phone models between

different signs.

4.4.1 MH-HMM training and testing procedure

In the MH-HMM, the sentence model, i.e. the possible sign sequences, are encoded

in the CPD parameters of the sign-level nodes Q1
t and F 1

t . This is similar to the

case for the H-HMM as used in speech modelling (see Section 4.2.1). In speech

modelling, the word model for a particular word is the phone-level state initial,

transition and ending probabilities associated with that word. In the MH-HMM

however, for a particular sign, there is not one but Nc component-specific sign mod-

els, one for each component, c. And the phone-level state initial, transition and

ending probabilities for the c-th component are encoded in the CPD parameters

for nodes Q2 c
t and F 2 c

t . For each phone in the c-th component, the phone model
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for that phone has an associated subphone sequence defined by the subphone-level

state initial, transition and ending probabilities. These subphone-level state prob-

abilities are specific to the component, and are encoded with the CPD parameters

for nodes Q3 c
t and F 3 c

t . The output probability distributions for the subphones

are also specific to the component and are defined by the CPD of the component’s

observation feature Oc
t . Thus in the MH-HMM, there is one common sentence

model, while the sign and phone models are component-specific.

Our training and modelling strategy is to learn the component-specific sign

and phone models by training each component’s models independently of each

other and with independent observation feature sets. This training is done us-

ing the (single channel) H-HMM (see Section 4.4.2). After training, the learned

component-specific sign and phone models are combined in the MH-HMM by spec-

ifying the CPD parameters for the component-specific phone-level nodes (Q2 c
t and

F 2 c
t ), subphone-level nodes (Q3 c

t and F 3 c
t ), and observation feature nodes (Oc

t ),

for c = 1, . . . , Nc. The sentence model for a particular set of sentences can be

straight-forwardly determined from knowledge of the sign sequences that appear

in the sentence set. For example, the probability of a particular sign starting a

sentence is simply the relative frequency of that sign appearing at the start of the

sentences within the set. We thus specify the sentence model, i.e. the CPD param-

eters of sign-level nodes (Q1
t and F 1

t ), by taking into account the sign sequences

that appear in the training sentence set. The remaining node in the MH-HMM is
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the sychronization node S2
t whose CPD parameters are specified to implement the

EX-NOR function.

After the procedure above, the MH-HMM can be used for recognition of con-

tinuously signed sentences. To recognize a test sentence, the values of all observed

nodes in each time slice are input to the MH-HMM, and the most-likely sign se-

quence that could have produced the observed values is inferred (observed nodes

in the graphical model context refers to nodes with known values). In our testing

procedure, the observed nodes at time t include not just the observation features

of all the components, Oc
t , for c = 1, . . . , Nc, but also the nodes S2

t and F 1
t . As

mentioned above, in order to enforce synchronization between component streams

at sign boundaries, the value of the S2
t node must be set as 1 in all time slices.

We also set F 1
t = 0 for t = 1 . . . , T − 1 and F 1

T = 1, indicating that for each test

sequence, the sentence ends only at the last time slice and not before [110, 179].

This enforces the requirement that the sentence does not end until all the observa-

tions features are used up. The inferencing algorithm employed for decoding test

sentences in the MH-HMM will be described in the next chapter.

4.4.2 Training H-HMMs to learn component-specific mod-
els

Our goal in this training procedure is to learn the component-specific sign and

phone models, i.e. for each component c, to learn the CPD parameters for nodes
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Q2 c
t and F 2 c

t ; Q3 c
t and F 3 c

t ; and Oc
t . Learning the CPD parameters for nodes Q2 c

t

and F 2 c
t requires each of their parent nodes to be in the training model. Thus, for

each component c, we construct a H-HMM containing not only all the nodes above

but also Q1
t , the common parent sign node. The F 1

t node is also included, so that

we can set its value during training to indicate that for each training sequence, the

sentence ends only at the last time slice. Therefore, for each sign component, c,

we train a (single channel) H-HMM such as in Figure 4.8.

We denote the discrete and continuous nodes in a DBN generically as Zt and

Ot. In the H-HMM of Figure 4.8, Ot includes just Oc
t , the vector-valued features

for sign component c (in the subsequent development we drop the bold font and

indicate Ot by Ot since there is only one continuous variable at time t). In our

experiments of Chapter 6, data is obtained from direct-measure devices, and is

hence insensitive to occlusion and data association ambiguity problems, and Oc
t is

always observed. If the proposed model is to be used within a vision-based system,

we would need to first track the required features for each component. In this case,

Oc
t , would be the tracked features and not the raw observations from video data.

Thus Oc
t is always observed in the sense that it is always the value of whatever the

tracked feature value is at time t. All other nodes at time t are discrete and we

indicate the individual nodes as Zi,t, for i = 1, . . . , nZ . In our training procedure,

besides Oc
t , there are other nodes which also have known values (i.e. are observed)

during training. As explained below, F 1
t is observed in every time slice, while Q1

t
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seq. has finished
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seq. has finished
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Figure 4.8: H-HMM for training sign component c. Nodes indexed by superscript
c pertain to the specific component (e.g. Q2 c

t refers to the phone node at time t for
component c). Zt encompasses all discrete nodes at time t, Ot refers to continuous
nodes, in this case just Oc

t . Solid gray nodes represent nodes that are observed in
all time slices (observed nodes in the graphical model context refers to nodes whose
values are known). Cross-hatched gray nodes represent nodes that are observed in
some but not all time slices.

is observed only in some time slices. We denote the set of observed nodes at time

t as Yt and their observed values as yt.

Each discrete variable Zi,t, can take on ri possible values, 1, . . . , ri. We denote

the parents of each Zi,t as PaZi,t
. By inspection of Figure 4.8, the parents of each

Zi,t are also discrete. We use j as the index for all possible combination of values

that these parents PaZi,t
can take and denote the index j as ranging from 1 to qi.
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Similarly, the parents PaOt of continuous variable Ot are discrete, and we index

the combination of their values with j, for j = 1, . . . , qi.

The parameters of the DBN are estimated with the maximum likelihood (ML)

criterion, using the expectation-maximization (EM) training algorithm. This is

similar to the training procedure for the BN in cases where there are missing

values (unobserved nodes) in the training data. The main difference here is that in

the DBN, the CPDs are time-invariant and their parameters are tied across time

slices. Thus in the M-step of the EM, we not only pool together data from different

training instances (in this case, training sequences) but also data from different

time slices. All the terms required in the E-step can be obtained from any DBN

inferencing algorithm such as the forward interface algorithm [110]. Inferencing in

DBNs is covered in more detail in Chapter 5.

The training procedure for the DBN is presented in Algorithm 4.1. Each train-

ing sequence is indexed by s, for s = 1, . . . , Ns, and y
(s)
1:T

2 denotes observations from

sequence s. θ denotes all the CPD parameters of the model and θ̂
(a)

indicates the

estimated parameter values after iteration a.

Algorithm 4.1. EM algorithm for training the H-HMM

• Start with initial configurations θ̂
(1)

for the model parameters, and iterate E

2In general each sequence is of different length Ts, but we drop the subscript s from T for
notational simplicity.
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and M-steps below until convergence.

• At iteration a + 1,

1. E-step

For s = 1, . . . , Ns,

(a) For i = 1, . . . , nZ , compute

P (Zi,t = k,PaZi,t
= j|y(s)

1:T , θ̂
(a)

)

for t = 1, . . . , T ; k = 1, . . . , ri; j = 1, . . . , qi. This is the joint
posterior distribution of Zi,t and its parents PaZi,t

, given the obser-

vations y
(s)
1:T and the model parameters estimated at iteration a, and

is the expected sufficient statistics (ESS) required for computing the
parameter in Step 2(a) below [70, 110].

(b) Compute

P (PaOt = j|y(s)
1:T , θ̂

(a)
)

for t = 1, . . . , T ; j = 1, . . . , qi. This is the posterior distribution of
PaOt the parents of Ot, given the observations y

(s)
1:T and the model

parameters estimated at iteration a, and is the ESS required for
computing the parameter in Step 2(b) below [70].

(c) Compute the likelihood for sequence s,

P (y
(s)
1:T |θ̂

(a)
)

required for determining convergence in Step 3 below.

2. M-step

(a) The parameters for node Zi,t’s CPD are defined as θijk � P (Zi,t =
k|PaZi,t

= j), for j = 1, . . . , qi, and k = 1, . . . , ri. The ML estimate
for θijk at iteration a+ 1 is,

θ̂
(a+1)
ijk =

∑Ns

s=1

∑T
t=1 P (Zi,t = k,PaZi,t

= j|y(s)
1:T , θ̂

(a)
)∑Ns

s=1

∑T
t=1

∑ri

m=1 P (Zi,t = m,PaZi,t
= j|y(s)

1:T , θ̂
(a)

)

This is estimated for i = 1, . . . , nZ , j = 1, . . . , qi, and k = 1, . . . , ri.
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(b) The CPD for Ot is a set of conditional Gaussians, P (ot|PaOt = j) =
N (ot|µj

,Σj), for j = 1, . . . , qi. The ML estimates for the Gaussian

parameters at iteration a + 1 are,

µ̂(a+1)

j
=

∑Ns

s=1

∑T
t=1 P (PaOt = j|y(s)

1:T , θ̂
(a)

) · o(s)
t∑Ns

s=1

∑T
t=1 P (PaOt = j|y(s)

1:T , θ̂
(a)

)

and

Σ̂
(a+1)
j =

∑Ns

s=1

∑T
t=1 P (PaOt = j|y(s)

1:T , θ̂
(a)

) ·
(
o

(s)
t − µ̂(a)

j

)(
o

(s)
t − µ̂(a)

j

)T

∑Ns

s=1

∑T
t=1 P (PaOt = j|y(s)

1:T , θ̂
(a)

)

The parameters above are estimated for j = 1, . . . , qi. o
(s)
t is the

observed value of Ot for sequence s.

3. Stop if the incremental increase in the training data likelihood,

Ns∏
s=1

P (y
(s)
1:T |θ̂

(a)
) −

Ns∏
s=1

P (y
(s)
1:T |θ̂

(a−1)
)

drops below a threshold (indicating convergence), otherwise re-iterate
E and M-steps.

Step 2(a) of the algorithm estimates the parameters for the CPD of discrete

node Zi,t. The summation over t is taken from 1 to T . This assumes that the

CPD for node Zi,t is invariant for all time slices, which is the correct assumption

for nodes such as F 1
t , F 2 c

t and F 3 c
t in the H-HMM of Figure 4.8. This is however

not correct for nodes Q1
t , Q

2 c
t and Q3 c

t . At time 1, all the parents (if any exist)

of each of these nodes are in time 1 as well, whereas for 2 ≤ t ≤ T , one or more

of each node’s parents are from the previous time slice. So, for example, we need
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to estimate the parameters of the CPD for Q3 c
1 separately from that for Q3 c

t for

t = 2, . . . , T .

The ML estimate for parameter P (Q3 c
1 = k|Q2 c

1 = j) at iteration a+ 1 is,

∑Ns

s=1 P (Q3 c
1 = k,Q2 c

1 = j|y(s)
1:T , θ̂

(a)
)∑Ns

s=1

∑ri

m=1 P (Q3 c
1 = m,Q2 c

1 = j|y(s)
1:T , θ̂

(a)
)

The ML estimate for parameter P (Q3 c
t = k|{Q3 c

t−1, F
3 c
t−1, Q

2 c
t } = j), for t =

2, . . . , T , ({Q3 c
t−1, F

3 c
t−1, Q

2 c
t } indicates the combination of values for the nodes in

the curly braces, and as before we index the combinations with j) at iteration a+1

is,

∑Ns

s=1

∑T
t=2 P (Q3 c

t = k, {Q3 c
t−1, F

3 c
t−1, Q

2 c
t } = j|y(s)

1:T , θ̂
(a)

)∑Ns

s=1

∑T
t=2

∑ri

m=1 P (Q3 c
t = m, {Q3 c

t−1, F
3 c
t−1, Q

2 c
t } = j|y(s)

1:T , θ̂
(a)

)

Note that unlike at Step 2(a) above, here the summation is for 2 ≤ t ≤ T and does

not include t = 1. With respect to the continuous node Oc
t , all its parents are in

the same time slice, so that the time-invariant CPD assumption made in Step 2(b)

is valid.

In the posterior distributions calculated in Step 1(a) of the algorithm, if any of

Zi,t or PaZi,t
is observed in the sequence s (i.e. its value is known), the observed

value of the variable will have probability of one, given y
(s)
1:T , and probabilities for

all other values will be zero. For example, if Zi,t is observed as ki in the sequence
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s, then (conditioning on θ̂
(a)

omitted for brevity),

P (Zi,t = k|y(s)
1:T ) =

⎧⎪⎪⎨⎪⎪⎩
1 for k = ki,

0 otherwise.

Thus, the posterior probabilities in Step 1(a) are,

P (Zi,t = k,PaZi,t
= j|y(s)

1:T ) = P (PaZi,t
= j|Zi,t = k,y

(s)
1:T )P (Zi,t = k|y(s)

1:T )

= P (PaZi,t
= j|y(s)

1:T )P (Zi,t = k|y(s)
1:T ) , since Zi,t is observed

=

⎧⎪⎪⎨⎪⎪⎩
P (PaZi,t

= j|y(s)
1:T ) for k = ki,

0 otherwise.

(4.1)

A similar calculation applies to the case where one or more of the variables in PaZi,t

is observed. In our training procedure F 1
t is set to 0 in time slices 1 . . . , T − 1 and

to 1 in time slice T , indicating that for each training sequence, the sentence ends

only at the last time slice and not before [110, 179]. In Section 6.4 we explain how

the value of Q1
t is known for some of the training sequences, and for some of the

time slices in those sequences. Thus F 1
t is observed in every time slice and every

training sequence, while Q1
t is observed in some (but not all) time slices and in

some (but not all) training sequences. Equation (4.1) can be applied when either

Q1
t or F 1

t appears as one of the variables in the terms calculated in Step 1(a) of

the Algorithm 4.1. Since P (Zi,t,PaZi,t
|y(s)

1:T ) is calculated for each sequence s and

each time slice t, in the case of variable Q1
t , we simply apply Equation (4.1) if Q1

t
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happens to be observed for the sequence and time slice that we are computing the

joint posterior term for.

In this training procedure we are only interested in learning the component-

specific sign and phone models to be combined in the final MH-HMM. As men-

tioned in Section 4.4.1, the sentence model of the MH-HMM can be easily specified

according to the sign sequences that appear in each training sentence. Thus the

CPD parameters of sign-level nodes Q1
t and F 1

t do not need to be learned during

training. In our training procedure we clamp these parameters during the M-step

in Algorithm 4.1, i.e. we simply skip over the variables Q1
1, Q

1
t , and F 1

t when esti-

mating CPD parameters for discrete variables in Step 2(a). In addition, since for

each training sequence s, we know the correct sign sequence of the sentence, we can

use this knowledge of the correct sentence model for training sequence s. In other

words, the CPD parameters of Q1
t , and F 1

t are set to values that allow the sign

sequence of training sentence s to be constructed. So in the E-step of Algorithm

4.1, for each training sequence s, the CPD parameters of Q1
t , and F 1

t are first set to

reflect the sign sequence for this training sentence before performing the computa-

tions of Step 1(a),(b) and (c). This is referred to as constrained model training and

is standard practice in training procedures of speech recognition [18, 110]. Note

that this is not the same as observing the node Q1
t – we only know the correct sign

sequence of the training sentence, but not when each particular sign appears.
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4.5 MH-HMM for recognition of continuous sign-

ing with inflections

This section describes how the model structure in Figure 4.7 is applied to the

specific problem of recognizing continuous signing with inflections.

In our continuous signing experiments, the input ASL sentences contain signs

with two types of inflections: directional verb inflections and temporal aspect

inflections. As mentioned in Section 1.1.2, in directional verbs, the movement path

direction serves as a pointing action which identifies the subject and the object of

the verb. Section 1.1.3 described temporal aspect inflections. We will specifically

consider the [DURATIONAL], [HABITUAL], and [CONTINUATIVE] aspectual

inflections in our experiments. These inflections affect the movement path shape,

size and speed.

Following the approach as outlined in Section 2.3, we seek to model the effect

of lexical word meaning and the above inflections on the sign appearance. As men-

tioned in Section 1.1.2 and 1.1.3, besides movement path attributes, the inflections

above also affect the location and orientation components, as follows:

• Directional verb inflections: the movement direction modulation is accompa-

nied by a change in hand location and palm orientation.

• Temporal aspect inflections: the movement path shape and size modulations

also affect the hand location.
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In Chapter 3, we separated out the appearance attributes that are modulated

by inflections and modelled these attributes as distinct sign components. Here

however, we use the fact that the effect of the inflections above appear in both

the location and orientation components to reduce the number of components that

need to be modelled. Thus taking into account that lexical word meaning affects

the handshape, location and orientation sign components, we find that only three

components need to be modelled – handshape, location and orientation.

Q1
t

Q2_1
t Q2_2

t Q2_3
t

Sign

Handshape
component phone

Location
component phone

Orientation
component phone

Figure 4.9: Causal dependence between the sign and the three component phone
variables.

The MH-HMM structure of Figure 4.7 can thus be extended to model the

three component streams, where the links between the sign-level and phone-level

Q nodes at time t, are represented as in Figure 4.9. Here Q1
t is the sign variable, and

Q2 1
t , Q2 2

t , Q2 3
t are the phone variables for the handshape component, orientation

component and location component, respectively. However, the sign in fact conveys

both lexical word meaning and inflectional meaning, so that we can factorize the

sign variable/node Q1 into three separate variables/nodes as:

• Q1 LW
t : lexical word node/variable
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• Q1 DV
t : directional verb inflection node/variable

• Q1 TA
t : temporal aspect inflection node/variable

Q2_1
t Q2_2

t Q2_3
t

Handshape
component phone

Location
component phone

Orientation
component phone

Q1_LW
t

Q1_DV
t Q1_TA

t

Lexical word Directional verb
inflection

Temporal aspect
inflection

Figure 4.10: Causal relationship between lexical word, directional verb inflections,

temporal aspect inflections and the three component phone variables.

Taking into account how these top level variables affect the components of

handshape, orientation and location, the links between the top level and phone-

level Q nodes at time t can be represented as in Figure 4.10. Thus the Q1
t node

of Figure 4.7 is factorized into Q1 LW
t , Q1 DV

t , and Q1 TA
t nodes as in Figure 4.10.

Factorizing the sign node Q1
t makes clear the causal dependence between lexical

root word, directional verb and temporal aspect inflections, and the three sign

components of location, orientation and handshape. However, to prevent clutter we

will continue using the node Q1
t to represent the complete sign meaning in diagrams

of the MH-HMM and H-HMM structures used for training and/or continuous sign
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recognition. We will also often refer to the node Q1
t as a shorthand for the nodes

Q1 LW
t , Q1 DV

t , and Q1 TA
t , and the sign value as a shorthand for the combination

of values in the three nodes.

The primary effect of this factorization is that it reduces the number of param-

eters that have to be learned for the component-specific sign models. For example,

in Figure 4.10, the handshape component’s phone variable only has the lexical

word Q1 LW
t as a parent. Thus the phone sequence in the handshape component is

only affected by the lexical word value and not the values of the inflection nodes.

Different signs which share the same lexical meaning thus share the same phone

sequence in the handshape component. This drastically reduces the number of

distinct handshape-specific sign models that have to be learned in the training

procedure described in Section 4.4.2. Fewer distinct models of the same type re-

quires fewer parameters, which means that for the same amount of training data,

more robust estimates for the parameters can be found. We can similarly argue for

the case of the orientation component – the number of distinct orientation-specific

sign models that need to be learned is reduced due to the factorization above. At

first glance, the location component does not seem to benefit from this factoriza-

tion. All three of the top level Q nodes are parents of the location component’s

phone variable. However Section 6.2 later describes how we can take advantage of

context-specific independence [22] to reduce the number of distinct location-specific

sign models. A second effect of factorizing the Q1
t node is that we can perform
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“partial” recognition of the sign’s lexical meaning only. The complete sign mean-

ing (i.e. the value of Q1
t ) is a combination of the values in the three nodes Q1 LW

t ,

Q1 DV
t , and Q1 TA

t . We can recognize just the lexical/word meaning by inferring

the value of Q1 LW
t only. Section 6.5 describes evaluation criteria that measures

the sign recognition results in terms of lexical/word accuracy.



Chapter 5
Inference in dynamic Bayesian networks

We first briefly describe algorithms for exact inference in dynamic Bayesian net-

works (DBN) and their computational complexity. Exact inferencing is used in

the E-step of the EM training algorithm described in the previous chapter. We

then explain the need for applying approximate inference on the MH-HMM to

recognize signs in continuous sentences. Particle filtering (PF) is proposed as a

suitable approximate inference method for application to our problem domain and

we show how the algorithm can be applied specifically to infer the most-probable

sign sequence in a test sentence.

5.1 Exact inference in DBNs

We consider a general DBN with hidden variables Xt, and observed variables Yt, at

every time slice. Xt and Yt each represent multiple variables: Xt = {X1,t . . .XK,t}

127
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and Yt = {Y1,t . . . YL,t}. All hidden variables are discrete. The hidden state process

is first order Markov, i.e. P (Xt|X1:t−1) = P (Xt|Xt−1), and the observations Y1:t,

are conditionally independent given the hidden states X1:t [37]. The graphical

model representation is as in Figure 5.1.

X1

Y1

X2

Y2

Figure 5.1: A general DBN with hidden variables Xt, and observed variables Yt,
unrolled for the first two time slices.

One of the goals of inferencing in DBNs is often to estimate the filtering distri-

bution, αt|t(xt) � P (Xt = xt|y1:t). This can be done by applying the forward-pass

step of the forward-backward algorithm to DBNs [110, 131]. Given αt−1|t−1(xt−1),

this distribution can be propagated forward to obtain αt|t(xt) in two steps. Firstly,

the one-step prediction for xt is given by,

αt|t−1(xt) � P (xt|y1:t−1) =
∑
xt−1

P (xt|xt−1)P (xt−1|y1:t−1)

=
∑
xt−1

P (xt|xt−1)αt−1|t−1(xt−1) (5.1)

where the summation is over xt−1, the values of all the hidden variables at time

t − 1. Hence for each term αt|t−1(xt), this step is O(|Xt−1|) = O(MK), where

M � maxk|Xk,t| and K is the number of hidden variables. Since there are MK
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terms αt|t−1(xt), the total cost of this step is O(M2K).

Next, we update the prediction using the observations at time t to obtain the

posterior distribution,

αt|t(xt) = P (xt|y1:t) =
P (yt|xt)P (xt|y1:t−1)∑

xt

P (yt|xt)P (xt|y1:t−1)

=
P (yt|xt)αt|t−1(xt)∑

xt

P (yt|xt)αt|t−1(xt)
(5.2)

For each term αt|t(xt), the numerator involves one multiplication. The summation

in the denominator is over xt and is done just once in this step. Therefore the total

cost of this step is MK + 1 or O(MK). Combining the two steps, the total cost for

filtering at each time slice is O(M2K +MK).

When applying a DBN such as the MH-HMM (Figure 4.7) to SL recognition,

the inferencing goal is to find the most-probable sign sequence in a test sentence.

This amounts to finding the most-probable value assignments to a subset of the

hidden variables in all the time slices (given the observations in all time slices). For

example, referring to Figure 4.7, the desired inference result is argmax
q1
1:T

P (Q1
1:T =

q1
1:T |y1:T ). If we represent the sign variable as Rt and the other hidden variables

as Zt, so that Xt = {Rt,Zt}, the most-probable sign sequence in a data sequence

with T time slices is,
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r̄1:T = argmax
r1:T

P (R1:T = r1:T |y1:T )

= argmax
r1:T

∑
z1:T

P (R1:T = r1:T ,Z1:T = z1:T |y1:T )

(5.3)

This calculation can be done recursively but at a great computational cost

since it involves a combination of the sum- and the max-operators which are not

commutative [111]. In practice, a suboptimal solution is usually calculated, as the

most-probable sequence of values for all the hidden variables rather than just the

sign variable, i.e. argmax
x1:T

P (X1:T = x1:T |y1:T ). This is suboptimal because the

most-probable sequence of signs may be different from the sign sequence obtained

from the most-probable sequence of all hidden variables [16].

The most-probable value assigment to all the hidden variables in all the time

slices is found by replacing the sum-operator in Equation (5.1) with the max-

operator [131] and keeping track of the argmax xt−1 (see Equation (5.4) below) at

each time t. This max-product operation (as opposed to the sum-product operation

in filtering) also has complexity O(M2K +MK). The one-step prediction for xt in

the max-product operation is,
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ᾱt|t−1(xt) � max
x1:t−1

P (xt,x1:t−1|y1:t−1) = max
xt−1

P (xt|xt−1) max
x1:t−2

P (xt−1,x1:t−2|y1:t−1)

= max
xt−1

P (xt|xt−1)ᾱt−1|t−1(xt−1) (5.4)

followed by updating the prediction using the observations at time t,

ᾱt|t(xt) � max
x1:t−1

P (xt,x1:t−1|y1:t) =

P (yt|xt) max
x1:t−1

P (xt,x1:t−1|y1:t−1)∑
xt
P (yt|xt) max

x1:t−1

P (xt,x1:t−1|y1:t−1)

=
P (yt|xt)ᾱt|t−1(xt)∑
xt
P (yt|xt)ᾱt|t−1(xt)

(5.5)

The E-step of the EM training algorithm in the previous chapter (refer Section

4.4.2 and Algorithm 4.1) requires calculating the joint posterior distribution of

various discrete variables, given observations of all time slices (see Step 1(a) and

1(b) of Algorithm 4.1). This is a smoothing operation which requires the forward-

pass mentioned above followed by a backward-pass of the same computational

complexity. Thus the total cost of the smoothing operation is in generalO(2(M2K+

MK)) or O(M2K +MK).

The likelihood term, P (y1:T ), required in Step 1(c) of the algorithm is computed

as a by-product of the forward-pass. At time t, the denominator in Equation

5.2 is
∑

xt
P (yt|xt)P (xt|y1:t−1) = P (yt|y1:t−1). Collecting the denominators at

t = 1, . . . , T , we can calculate the likelihood as,
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P (y1:T ) = P (y1)
T∏

t=2

P (yt|y1:t−1) (5.6)

Computational complexity for exact inference in DBNs has been reduced by

algorithms such as the forward interface algorithm [110] which has maximum com-

plexity of O(MK+I), where I is the number of variables that have outgoing arcs to

the next time-slice. The amount of reduction depends on the extent of inter-slice

links.

5.2 Problem formulation

Our training and modelling strategy for using the MH-HMM for sign recognition

requires training one H-HMM for each sign component (see Section 4.4.1). As

mentioned above, the E-step of this EM training algorithm requires smoothing op-

erations, which in the experiments of Chapter 6, was performed using the forward

interface algorithm. Following training, a MH-HMM is constructed based on the

CPD parameters of each H-HMM, and used to decode test sentences where the

goal is to infer the most-probable sign sequence in each sentence. Time and space

complexity is an issue for decoding using exact inferencing because of the large

number, K, of hidden variables in the network. As mentioned above, time and

space requirements are exponential in 2K. Furthermore, examination of Figure

4.7 shows that all the hidden variables have outgoing arcs to the next time-slice,



5.3 Importance sampling and particle filtering (PF) 133

thus, although the forward interface algorithm does better than O(M2K), the im-

provement is slight. Hence, it is necessary to use approximate inferencing methods

to reduce time and space requirements to a manageable level.

Approximate inferencing methods that have been applied to DBNs include

the Boyen-Koller algorithm [23], the factored frontier algorithm [112], loopy belief

propagation [124, 113], variational algorithms [71], and stochastic (sampling) algo-

rithms. Sampling-based algorithms have the advantage of being easy to implement

on various kinds of models and giving exact answers in the limit of infinite number

of samples [110]. Particle filtering (PF) is one such sampling-based method that

can be applied to inferencing in DBNs.

5.3 Importance sampling and particle filtering

(PF)

The most general formulation for the inference goal is the estimation of the ex-

pected value of a function of the state trajectory X1:t, or some subset of the state

trajectory, relative to the posterior probability distribution (given observations),

i.e. EP (X1:t|y1:t)[f(X1:t)] – for example, the filtering distribution P (Xt = xt|y1:t)

can be expressed as EP (X1:t|y1:t)[δ(Xt,xt)].

The basic idea in PF is to represent the posterior P (X1:t|y1:t) by samples in the

state-space, for example N samples, xi
1:t, i = 1 . . . N , and estimate the expected

value of functions using these N samples instead of the exact posterior P (X1:t|y1:t).
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The rest of Section 5.3 is tutorial material on PF. Readers familiar with the

algorithm may want to skip to the following sections.

5.3.1 Importance sampling

To estimate the expected value of some function f(X) relative to P (X), i.e.

EP (X)[f(X)], the most direct method using samples draws independent identically

distributed (i.i.d.) samples xi, i = 1 . . .N , from P (X), and estimates the required

expected value as,

EP (X)[f(X)] ≈ 1

N

N∑
i=1

f(xi) ; where xi ∼ P (X) (5.7)

By the law of large numbers, this estimate becomes increasingly more accurate as

N → ∞. In the case of the DBN models we are considering, our inference goal is

to evaluate the expected value of some function of X1:t, i.e. EP (X1:t|y1:t)[f(X1:t)].

Usually however, it may not be feasible to sample directly from or even evaluate

P (X1:t|y1:t). Using the importance sampling method [36], we can instead sample

from an importance function, Q(X1:t|y1:t), with the requirement that Q(X1:t|y1:t)

dominates P (X1:t|y1:t) (i.e. Q(X1:t|y1:t) > 0 whenever P (X1:t|y1:t) > 0). Often,

P (X1:t,y1:t) is easier to evaluate than P (X1:t|y1:t), thus we express EP (X1:t|y1:t)[f(X1:t)]

as follows,
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EP (X1:t|y1:t)[f(X1:t)] =
∑
x1:t

f(x1:t)P (x1:t|y1:t)

=
1

P (y1:t)

∑
x1:t

f(x1:t)P (x1:t,y1:t)

=
1

P (y1:t)

∑
x1:t

{
f(x1:t)

P (x1:t,y1:t)

Q(x1:t|y1:t)

}
Q(x1:t|y1:t)

=
1

P (y1:t)
EQ(X1:t|y1:t)[f(X1:t)wt(X1:t)] (5.8)

where wt(X1:t) � P (X1:t,y1:t)
Q(X1:t|y1:t)

. Both the expectation term and the denominator are

estimated by sampling, as shown below:

EQ(X1:t|y1:t)[f(X1:t)wt(X1:t)] ≈ 1

N

N∑
i=1

f(xi
1:t)w

i
t

and,

P (y1:t) =
∑
x1:t

P (x1:t,y1:t)

=
∑
x1:t

{
P (x1:t,y1:t)

Q(x1:t|y1:t)

}
Q(x1:t|y1:t)

= EQ(X1:t|y1:t)[wt(X1:t)]

≈ 1

N

N∑
i=1

wi
t

where xi
1:t ∼ Q(X1:t|y1:t), and wi

t � wt(x
i
1:t) are the (unnormalised) importance

weights.
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Hence, combining the two terms,

EP (X1:t|y1:t)[f(X1:t)] ≈
N∑

i=1

f(xi
1:t)

wi
t∑N

j=1w
j
t

=

N∑
i=1

w̃i
tf(xi

1:t)

(5.9)

where w̃i
t =

wi
t∑N

j=1 wj
t

are the normalised importance weights.

So basically, by drawing samples xi
1:t from Q(X1:t|y1:t), the expected value of

any function f(X1:t) can be evaluated relative to the distribution P (X1:t|y1:t), as a

weighted sum of the function evaluated at xi
1:t, with weights w̃i

t defined as above.

For example, we can estimate the posterior distribution P (X1:t = x1:t|y1:t) itself

as,

P (X1:t = x1:t|y1:t) = EP (X1:t|y1:t)[δ(X1:t,x1:t)]

≈
N∑

i=1

w̃i
tδ(x

i
1:t,x1:t) (5.10)

where δ(x, x′) = 1 if x = x′, and 0 otherwise.

5.3.2 Sequential importance sampling

In practice, it is not necessary to sample the entire trajectory xi
1:t, N times from

Q(X1:t|y1:t). Since at time t−1, we have N trajectory samples xi
1:t−1, sampled from
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Q(X1:t−1|y1:t−1), to represent P (X1:t−1|y1:t−1), we can propagate the N trajectories

to time t to obtain N samples xi
1:t, sampled from Q(X1:t|y1:t), without modifying

the previous simulated trajectories. This means that the importance function at

time t, Q(X1:t|y1:t), admits as a marginal distribution, the importance function

Q(X1:t−1|y1:t−1) at time t− 1 [36],

Q(X1:t|y1:t) = Q(Xt|X1:t−1,y1:t)Q(X1:t−1|y1:t−1) (5.11)

We thus incrementally sample from Q(Xt|X1:t−1,y1:t) at every time step. In

effect, we are choosing importance functions that are conditionally independent

of observations in the future, Q(X1:t|y1:t+k) = Q(X1:t|y1:t). With this choice, the

weights wi
t can also be evaluated incrementally. Using the definition of wi

t from

equation (5.8), we have,

wi
t =

P (xi
1:t,y1:t)

Q(xi
1:t|y1:t)

=
P (xi

t,yt|xi
1:t−1,y1:t−1)

Q(xi
t|xi

1:t−1,y1:t)
· P (xi

1:t−1,y1:t−1)

Q(xi
1:t−1|y1:t−1)

=
P (yt|xi

1:t,y1:t−1)P (xi
t|xi

1:t−1,y1:t−1)

Q(xi
t|xi

1:t−1,y1:t)
· wi

t−1

=
P (yt|xi

t)P (xi
t|xi

t−1)

Q(xi
t|xi

1:t−1,y1:t)
· wi

t−1 (5.12)
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5.3.3 Sequential Importance Sampling with Resampling

Doucet [36] shows that for importance functions satisfying equation (5.11) above,

the variance of the importance weights increases stochastically with time. This

implies that after a few steps of sequential sampling, most of the normalized im-

portance weights will be very close to zero. Thus much of the computation is

spent on updating sample trajectories which will finally contribute very little to

the posterior distribution estimate. Resampling is a method to counter the de-

generacy of importance weights by eliminating trajectories with small values of

normalized importance weights and replicating trajectories with large values. In

Sampling Importance Resampling (SIR) [132], each trajectory sample is replicated

with probability proportional to its normalized weight. This amounts to sampling

with replacement from the current belief state, since the weight and frequency

of particles reflect that belief state. After resampling, all the samples are equally

weighted. In the large sample limit, the representation of the posterior distribution

remains unchanged after resampling [133].

The particle filtering algorithms most often in use resample at every time slice,

as described in Algorithm 5.1.

Algorithm 5.1. Particle Filtering or Sequential Importance Sampling with Re-
sampling

1. Sequential Importance Sampling step

(a) For i = 1 . . .N , obtain samples (equation (5.11))
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x̂i
t ∼ Q(Xt|xi

1:t−1,y1:t)

and set

x̂i
1:t � (x̂i

t,x
i
1:t−1)

(b) For i = 1 . . .N , evaluate importance weights up to a normalizing con-
stant (equation (5.12))

wi
t ∝ P (yt|xi

t)P (xi
t|xi

t−1)

Q(xi
t|xi

1:t−1,y1:t)

(c) For i = 1 . . .N , normalize the importance weights

w̃i
t =

wi
t∑N

j=1w
j
t

2. Resampling step

• Resample N samples from x̂i
1:t according to the normalized importance

weights w̃i
t, to obtain N samples xi

1:t.

Note that in Step 1(b) of Algorithm 5.1, the expression shown for wi
t is actually

the incremental weight at time t (equation (5.12)). However since all weights were

set to be equal after resampling at the previous time slice, this has no bearing on

the final normalized weight values. We next analyze two choices of importance

functions that satisfy equation (5.11), and the associated importance weights.

5.3.4 Importance function and importance weights

Prior importance function

The simplest importance function for sampling Xt is the prior distribution of the

hidden state variables, P (Xt|xi
1:t−1,y1:t−1) [36]. This is the distribution of the
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hidden state Xt, given a past sample trajectory and past observations, and before

seeing the current observations yt. In general, when there are multiple hidden

variables, Xt = {X1,t . . .XK,t}, we sample each Xk,t in topological order such that

the parents of Xk,t in the current time slice are always sampled before it. Since

the parents of Xk,t from the previous time slice have already been sampled, the

sampling distribution forXk,t is just the distribution defined by its local conditional

probability (CPD) and by the values of its parents. Thus the prior importance

function is expressed as,

Q(Xt|xi
1:t−1,y1:t) = P (Xt|xi

1:t−1,y1:t−1) = P (Xt|xi
t−1) (due to Markov state process)

=

K∏
k=1

P (Xk,t|PaXk,t
= pai

Xk,t
) (5.13)

where P (Xk,t|PaXk,t
) is the CPD of Xk,t, and PaXk,t

are the parents of Xk,t with

instantiated values pai
Xk,t

. The Xk,t variables are sampled one at a time, and it

is never necessary to evaluate the full joint prior, P (Xt|xi
t−1). For each sample

i, we need to sample once per state variable, Xk,t. The appropriate sampling

distribution is found by indexing into Xk,t’s CPD using the instantiated values of

its parents. This indexing requires number of operations in the order of the number

of parents, NPaXk,t
. Since all the Xk,t variables are discrete, the CPD indexed by

the instantiated values of the parents is a multinomial distribution. Sampling from

a multinomial distribution with m values requires O(logm) operations [84]. Thus,
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denoting NP � maxk[NPaXk,t
], andM � maxk|Xk,t|, the overall cost of each sample

is O(K ×NP × log(M)), which is linear in K, the number of hidden variables.

With this choice of importance function, the importance weights correspond to

the observation likelihood. From equation (5.12) we have,

wi
t ∝ P (yt|xi

t)P (xi
t|xi

t−1)

Q(xi
t|xi

1:t−1,y1:t)

=
P (yt|xi

t)P (xi
t|xi

t−1)

P (xi
t|xi

t−1)
= P (yt|xi

t) � lit|t (5.14)

When there are multiple variables in Yt, say Yl,t, l = 1 . . . L, the likelihood is

evaluated as,

lit|t =
L∏

l=1

P (yl,t|PaYl,t
= pai

Yl,t
)

(5.15)

where P (yl,t|PaYl,t
) is the CPD of Yl,t evaluated at yl,t, and with instantiated parent

values pai
Yl,t

. All parents of Yl,t are instantiated because all the hidden variables

Xk,t have already been sampled at this point. The evaluation of the importance

weights is thus linear in L, the number of observation variables.

Optimal importance function

The optimal importance function in terms of minimizing the variance of the (un-

normalized) importance weights wi
t, conditioned on the sample trajectory xi

1:t−1

and observations y1:t, is the posterior distribution of the hidden state variables,
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P (Xt|xi
1:t−1,y1:t) [36] (recall that low variance is a desirable property for reducing

degeneracy in the normalized importance weights). Thus the optimal importance

function is evaluated as,

Q(Xt|xi
1:t−1,y1:t) = P (Xt|xi

1:t−1,y1:t) = P (Xt|xi
t−1,yt) (due to Markov state process)

=
P (yt|Xt)P (Xt|xi

t−1)∑
xt
P (yt|Xt)P (Xt|xi

t−1)

=

∏L
l=1 P (yl,t|PaYl,t

)
∏K

k=1 P (Xk,t|PaXk,t
)

P (yt|xi
t−1)

(5.16)

where P (Xk,t|PaXk,t
) is the CPD of Xk,t, and P (yl,t|PaYl,t

) is the CPD of Yl,t

evaluated at yl,t. The sampling distribution has to be evaluated |Xt| times, so

if there are K variables in Xt and as before M � maxk|Xk,t|, the cost of each

sample is O(MK), i.e. exponential in K. With this choice of importance function,

the importance weights correspond to the one-step ahead observation likelihood.

From equation (5.12) we have,

wi
t ∝ P (yt|xi

t)P (xi
t|xi

t−1)

Q(xi
t|xi

1:t−1,y1:t)

= P (yt|xi
t)P (xi

t|xi
t−1) ·

P (yt|xi
t−1)

P (yt|xi
t)P (xi

t|xi
t−1)

= P (yt|xi
t−1) � lit|t−1 (5.17)

The one-step ahead observation likelihood lit|t−1 is calculated at the same time

as the importance function since it appears in the denominator in equation (5.16).
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Thus the calculation complexity is also exponential in K.

5.4 Comparison of computational complexity

Table 5.1 compares the computational complexity of exact filtering and PF (with

different choices of importance functions) in DBN.

Cost per time step

Exact filtering O(M2K +MK)

Cost per time step

Sampling Weights

PF with prior importance function O(SK) O(SL)

PF with optimal importance function O(SMK) O(SMK)

Notations:

M � maxk|Xk,t| ; K = total number of hidden variables, Xt

L = total number of observation variables, Yt

S = number of samples

Table 5.1: Computational complexity for exact and approximate (sampling) infer-

encing in DBN

In terms of dependence on K, the number of hidden variables, PF with prior

sampling provides substantial computational saving as compared to exact inferenc-

ing and even PF with optimal sampling. The latter two methods are exponential

in K, while PF with prior sampling is linear in K. However, PF methods are also

linear in S, the number of samples employed. The samples represent the poste-

rior distribution P (X1:t|y1:t), therefore the larger the state space, MK , the more

samples are required to represent the distribution at an acceptable accuracy. In



5.5 Continuous sign recognition using PF 144

Chapter 6 we will use PF with prior sampling to perform inferencing on MH-HMM

models and investigate the effects of sample number on sign recognition accuracy.

5.5 Continuous sign recognition using PF

In continuous sign recognition, the goal of inferencing is to find the most-probable

sign sequence. The approach required is to marginalize away the non-sign hidden

variables in the model (for example the phone, subphone and indicator variables

in the MH-HMM), before maximizing the sequence of sign values. As mentioned

in Section 5.1, in practice, the suboptimal solution of the most-probable sequence

of values for all the hidden variables is usually calculated instead.

With sampling methods like PF however, it is relatively straightforward to

estimate the most-probable sequence of sign values. It simply involves counting

sample trajectories.

Representing the sign variable as Rt and the other hidden variables as Zt, so

that Xt = {Rt,Zt}, the most-probable sign sequence in a data sequence with T

time slices is argmax
r1:T

P (R1:T = r1:T |y1:T ). We can estimate the posterior distribu-

tion P (X1:T = x1:T |y1:T ) from sample trajectories xi
1:T , i = 1 . . . N using equation

(5.10). Basically, a weighted sum of the samples xi
1:T is calculated for each of

the values x1:T whose posterior probability is required. The most-probable value

of x1:T is the one with the largest weighted sum. Similarly, we can estimate the
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marginal posterior distribution P (R1:T = r1:T |y1:T ) by calculating a weighted sum

of the samples xi
1:T where the R1:T variables in the sample take on each of the

values r1:T whose posterior probability we want to evaluate.

P (R1:T = r1:T |y1:T ) =
∑
z1:T

P (R1:T = r1:T ,Z1:T = z1:T |y1:T )

=
∑
z1:T

P (X1:T = x1:T |y1:T ) , since Xt = {Rt,Zt}

≈
∑
z1:T

N∑
i=1

w̃i
T δ(x

i
1:T ,x1:T ) , from equation (5.10)

=

N∑
i=1

w̃i
T

∑
z1:T

δ(xi
1:T ,x1:T )

=
N∑

i=1

w̃i
T

∑
z1:T

δ({ri
1:T , z

i
1:T}, {r1:T , z1:T})

=
N∑

i=1

w̃i
T δ(r

i
1:T , r1:T ). (5.18)

So to evaluate the posterior probability of a particular sign sequence, P (R1:T =

r1:T |y1:T ), we do a weighted sum of the sample trajectories, xi
1:T , where the sampled

values for the variables R1:T is the same as the sign sequence whose probability

we need to estimate. The most-probable value of r1:T is the one with the largest

weighted sum. This is a slightly different application of the PF algorithm from

what is usually found in the literature, which generally estimates the filtering

distribution. Our application is suitable for the case where we are interested in

the values of only a subset of the hidden variables and we want the most-probable
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sequence of values for this subset of hidden variables.



Chapter 6
Experimental results

In this chapter we present experimental results on recognizing continuously sen-

tences that include inflected signs, using the model proposed in Chapter 4. In-

ferencing on this model employs the PF algorithm outlined in Chapter 5. We

first describe the data collection process including the sign vocabulary, and feature

extraction for each sign component. Section 6.2 describes how we obtain initial

parameters for training component-specific sign and phone models. In this section

we first review how sign and phone models have been defined in previous work

before presenting our approach to this issue. In Section 6.3 we review some of the

past work on dealing with movement epenthesis before presenting our approach.

Section 6.4 discusses the possible advantages to be gained by labelling sign node

values in the training data. This is followed by sections on the evaluation criteria

for test results and the presentation of those results. The most important results

147
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are in Sections 6.7 and 6.8. Sections 6.7 presents results on recognizing continu-

ous signs by combining information from multiple sign components. Section 6.8

presents a procedure whereby we perform training on sentences containing only a

subset of signs in the vocabulary, and subsequently use the trained model to recog-

nize sentences containing unseen signs. PF is used as the inferencing algorithm in

both cases and we present experiment results using different numbers of samples

in the algorithm.

6.1 Data collection

6.1.1 Sign vocabulary and sentences

The collected data is obtained from a deaf individual who is a native signer of

the local (Singaporean) sign language. The signed sentences, which adhered to

ASL grammar, were continuous, with no pauses between signs. There were 73

distinct sentences between 2 to 6 signs long, constructed from a 98-sign vocabu-

lary. Each distinct sentence was signed approximately 5 times, providing a total

of 343 sentences and 1927 signs. The 98-sign vocabulary includes signs with in-

flections, specifically, directional verb inflections and temporal aspect inflections

(as described in Sections 1.1.2 and 1.1.3). Such inflected signs are formed from

a combination of a root lexical word and one or more inflection values. The vo-

cabulary included both one-handed and two-handed signs. However all the signs

were distinguishable by looking only at the dominant hand, i.e. no two signs in the
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vocabulary had exactly the same appearance in the dominant hand, and differed

only in the appearance of the non-dominant hand. Table B.1 in Appendix B lists

the 29 different lexical words present in the vocabulary. There are three different

temporal aspect inflection values (see Table B.2 in Appendix B) and 11 different

directional verb inflection values (see Table B.3 in Appendix B) that may combine

with a root lexical word.

Examples of directional verb and temporal aspect inflected signs in the vocab-

ulary are given below:

• The root verb HELP, combined with inflection values indicating different sub-

jects and objects, yields: HELPI→YOU, HELPYOU→I, HELPI→GIRL, HELPI→JOHN,

HELPJOHN→I, HELPJOHN→YOU, HELPYOU→HELP, HELPGIRL→I, HELPGIRL→YOU,

HELPYOU→GIRL, HELPGIRL→JOHN.

• The root word EAT, combined with different temporal aspect inflections

yields:

EAT[DURATIONAL], EAT[HABITUAL], EAT[CONTINUATIVE].

Some of the inflected signs are formed with two inflection values which ap-

pear simultaneously, further increasing the complexity of the vocabulary. Ex-

amples of these signs are: (GIVE[DURATIONAL])I→GIRL, (GIVE[HABITUAL])I→GIRL,

(GIVE[CONTINUATIVE])I→GIRL

A few of the lexical root words are used in combination with various inflection
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values to form many different signs, for example, the lexical word GIVE appears

in 16 different signs.

6.1.2 Data measurement and feature extraction

Features were extracted from the signer’s right (dominant) hand only1. Data was

collected using the Polhemus electromagnetic tracker [2] which consists of an elec-

tromagnetic field-emitting transmitter and sensors that detect their 3-dimensional

position and orientation within the field. Sensors were placed on the back of the

signer’s right hand and the base of his spine. Conceptually, each sensor has an

attached orthogonal coordinate frame. The position and orientation of the right

hand’s sensor is represented by the 3-dimensional coordinates of its origin, x, y,

and z axes (oH , xH , y
H

, and zH), relative to the waist sensor’s coordinate frame.

Appendix C gives details of how this is calculated. The waist sensor’s coordinate

frame was used as a reference to discount variations in the signer’s position and

the direction he is facing, relative to the transmitter. We also collected data from

a Virtual Technologies Cyberglove [4] worn on the right hand. This records the

fingers’ joint and abduction angles, and the wrist pitch and yaw, from 18 sensors

in the glove. The tracker and glove data are synchronized and were recorded at

approximately 31.1ms frame rate.

1The sign vocabulary included two-handed signs. Since only features from the right hand
are extracted in our experiments, any potential information conveyed by the left (non-dominant)
hand in two-handed signs is ignored. The implications of this are discussed in the next chapter,
Section 7.2.
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As mentioned in Section 4.5, in the continuous signing experiments, we model

three sign components – handshape, location and orientation. The features used

as observations for each of the components are given below:

• Handshape component. Data measured by 16 sensors of the Cyberglove, re-

porting the joint and abduction angles of the right hand’s fingers and thumb.

The data reported by the two sensors measuring wrist yaw and pitch were

not used because this data does not represent the finger configurations. The

feature vector for the handshape component is 16-dimensional.

• Location component. The 3-dimensional position of the right hand, oH , taken

to be the origin of the sensor’s coordinate frame. The feature vector for the

location component is 3-dimensional.

• Orientation component. The unit vector corresponding to the z-axis, zH , of

the right hand sensor, with reference to the waist sensor’s coordinate frame.

Recall from Section 1.1.1 that the hand orientation is defined as the direction

in which the palm and fingers are pointing. Here however, we only extract

features measuring the palm direction because measurements pertaining to

the fingers are already extracted in the feature vector of the handshape com-

ponent. Figure 6.1 shows a schematic of how the sensor is mounted on the

back of the right hand. The x, y and z-axes of the right hand sensor’s coor-

dinate frame are shown. The sensor’s z-axis direction is roughly coincident
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with the direction in which the palm is pointing thus its corresponding unit

vector indicate the palm orientation. We note that left-right rotation (i.e.

hand rotations in the x-y plane) would not register a change in the z-axis

direction. So our choice of features is based on a simplifying assumption

that the direction in which the palm is pointing is more relevant than the

left-right wrist rotation. The feature vector for the orientation component is

3-dimensional.

y

x

z

Figure 6.1: Schematic representation of how the Polhemus tracker sensor is

mounted on the back of the right hand. The z-axis of the sensor’s coordinate frame

is pointing into the page, i.e. it is approximately coincident with the direction that

the palm is facing.
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6.2 Initial parameters for training component-

specific models

One of the difficulties faced by researchers in SL recognition who wish to take the

approach of modelling subunits or phones is the lack of a general consensus in SL

linguistic studies as to what those subunits are. Sign linguists do agree that a sign

consists of parts and that each of these parts has a limited number of categories

or“primes”. A SL recognition researcher may want to equate phones with these

primes since the goal is to decompose a sign into a limited number of phones.

However, there is no consensus among SL linguists as to how many primes exist,

for example, various numbers of distinct handshapes have been proposed, such as

19, 40, 45 and 54 [10]. Although there has been previous SL recognition work [157,

161, 174] that define sign subunits linguistically, in these works, the analysis and

definition of subunits/phones is based on a particular phonological model proposed

by SL linguists and not a commonly agreed upon model. Furthermore, there may

be a mismatch between the phonological model employed and the observation

feature vectors that have been found to be the most robust for recognition. For

example, Vogler [157] defined subunits based on Liddell’s Movement-Hold (M-

H) phonological model [95]. In the M-H framework, translational movement of

the hand tracing the same trajectory shape in space and moving in roughly the

same direction are defined as the same phone, regardless of the height at which
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the movement is performed. For example, “M − {strToward}” (a straight line

movement towards the body) performed at the chest, chin or forehead-level are

defined as equivalent phones. Thus the phone appears to be position-invariant.

This is not a realistic match with the HMM phone models as defined by Vogler

in [157] where the observation features include the 3-dimensional positional data

of the hand, which is not position-invariant. Although the 3-dimensional hand

velocity would be a good candidate as a position-invariant feature, it was found to

be susceptible to noise and yielded comparatively poor recognition results.

Alternative data-driven approaches are based on clustering the data. Based

on unsupervised methods employed in speech recognition [69], Bauer and Kraiss

[12] defined 10 subunits for a vocabulary of 12 signs using k-means clustering.

The data was obtained from all time slices of a sentence and is clustered in a

feature space that is a concatenation of measurements from the sign components

of hand location, orientation and handshape. Continuous sentences need to be

manually segmented in time into the constituent signs so that a particular sign can

be defined as a sequence of the subunits found through clustering. Fang et. al [43]

used temporal clustering to extract subunits by first segmenting a sentence using

HMMs, then clustering the segments by using dynamic programming to compute

distance measures. Each segment consists of a sequence of concatenated features

of hand location, orientation and handshape. Wang et. al [160] found handshape

phones by clustering handshape features only, using a combination of Kohonen’s
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SOM and k-means. However they did not show any sign-level recognition results

using the proposed phones.

Similar to Bauer and Kraiss [12], our approach for obtaining phone models is

also based on clustering but differs from their work and Fang ’s [43] in that the

phones are defined separately for each of the sign components; and unlike [160] we

obtain phones for the location and orientation components, as well as handshape.

The 343 sentences (containing 1927 signs) collected were first divided into train-

ing and test sets in the ratio of approximately 60:40, resulting in 201 training sen-

tences (containing 1139 signs), and 142 test sentences (containing 788 signs). Then

for each of the distinct signs that appear in the vocabulary, we found one sentence

containing the sign from the training set and manually segmented the sentence

in time into its constituent signs. Manual segmentation of the glove and tracker

data was performed by determining sign boundaries through inspection of video

sequences of the signer that were recorded simultaneously, and then calculating

the closest data frames corresponding to those boundaries. The correspondence

between video and data frames is not exact because of their different frame rates

(video frame rate 33.3ms, data frame rate 31.1ms). In total 67 sentences out of

the 201 training sentences, were processed as above, i.e. approximately 1
3

of the

training set.

We then performed clustering in the feature space corresponding to each of the
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sign components of location, orientation and handshape (see Section 6.1.2). Since

we are interested in finding subunits which define signs, we only clustered data

from time slices corresponding to when signs occur in the sentence, discarding time

slices corresponding to movement epenthesis (see Section 1.1.1 for a description of

movement epenthesis). So for example, to obtain location phone models, we take

the oH feature vector of each data frame that corresponds to valid signs from

the manually segmented sentences, and perform k-means clustering. That is, the

frame-by-frame feature vectors corresponding to valid signs are clustered. An initial

guess of the number of clusters is based on a ballpark range of the number of phones

proposed in the sign linguistic literature. Subsequently, clusters with fewer than

two members were merged with the nearest neighbouring cluster. We arrived at

28 clusters for location and 40 each for handshape and orientation.

There are two main purposes for the clustering procedure above. Firstly, it

defines the number of phones in each component (thus there are 28 location phones,

and 40 each of handshape and orientation phones) and provides initial parameters

for the phone models in the EM training algorithm (Algorithm 4.1). Recall from

Section 4.4.2 that the EM training algorithm is used to learn the component-

specific sign and phone models. The EM algorithm requires initialization of all the

parameters in the model to be trained. These parameters should be well-chosen

as the algorithm finds only local maxima and is thus sensitive to the choice of

initial starting point. The CPD parameters pertaining to the sentence model (i.e.
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CPD parameters for nodes Q1
t and F 1

t in the H-HMM of Figure 4.8) do not require

initialization since their values are adjusted for each training sentence to reflect

the correct sign sequence for that sentence. The CPD parameters pertaining to

component-specific phone models do need to be initialized. The initial parameters

for CPDs of the Q3 c
t and F 3 c

t nodes are generally set to define subphone state

transitions following the 3-state left-right (Bakis) model (see Figure 4.2), with

equal probabilities specified for state transitions with non-zero values. In Section

6.6 the means and covariances of the clusters found above are used to initialize the

CPD parameters of Oc
t .

This brings us to the second purpose of the clustering procedure which is to

obtain initial parameters for the component-specific sign models in the EM training

algorithm, as explained in the following paragraphs.

Our approach to modelling a sign is to define it as consisting of synchronized

sequences of distinct values or phones in each sign component (see Section 2.2).

Thus in our next step, we obtain for each of the distinct signs in the vocabulary,

initial sign models (i.e. phone sequences) in each of the sign components. The

component-specific phone sequence for a particular sign is the sequence of cluster

assignments for the appropriate data features (according to the sign component)

corresponding to the time slices for that sign. In other words, it is the winning clus-

ter sequence for the component features in that sign. The phone sequences obtained

are then used to initialize the CPD parameters that define the component-specific
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sign models in the H-HMM of Figure 4.8 – specifically, the CPD parameters of

the Q2 c
t and F 2 c

t nodes which encode the sign models for the c component. A

particular phone sequence is completely specified by the state initial, transition

and ending probabilities at the phone-level. The state initial and transition prob-

abilities at the phone-level are encoded in the CPD parameters of Q2 c
t , while the

ending probabilities are encoded in the CPD parameters of F 2 c
t . Thus the phone

sequences found above can be used to provide initial values for these parameters.

In our implementation, there are fewer than 98 distinct sign models in each

component as one would expect for a 98-sign vocabulary. This is due to the causal

dependence between lexical root word, directional verb and temporal aspect in-

flections, and the three sign components of location, orientation and handshape as

shown in Figure 4.10. From the figure, we note that the handshape phone value

depends only on the lexical word value, and thus signs formed from the same lexical

root word regardless of their inflectional values, share the same handshape phone

sequence. There are 29 lexical root words (see Table B.1), and we additionally de-

fine two words, REST START and REST END, that represent the signer’s hand

at rest, at the start and end of a sentence, respectively2. Therefore there are 31

possible values for the Q1 LW
t node and 31 distinct sign models in the handshape

2To facilitate manual segmentation of the data into individual sentences, in these experiments
the sentences are signed with a pause in between each sentence, during which the signer’s hand
returns to a rest position. Since it was difficult to determine exactly when the hand has started
signing the first sign after moving from the rest position, we considered the sentence to start and
end with the signer’s hand at rest.
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component.

The orientation phone node in Figure 4.10 has as parents only the lexical word

and the directional verb inflection nodes. Thus signs formed from the same lexical

root word and directional verb inflection combination, regardless of their temporal

aspect inflection values, share the same orientation phone sequence. There are 11

possible values for Q1 DV
t node (see Table B.3). Not all combinations of lexical root

word and directional verb inflections are possible – in the experimental vocabulary

there are 63 such combinations that appear, thus there are 63 distinct sign models

in the orientation component.

The location phone node in Figure 4.10 has as parents all three sign-level nodes,

i.e. the lexical word, directional verb inflection and temporal aspect inflection

nodes. However, we can take advantage of context-specific independence [22] to

reduce the number distinct sign models in the location component to 58 (from 98).

Context-specific independence refers to the case where not all parents are always

relevant in determining the child’s distribution. Some of the parents are irrelevant

when the other parents of the child take on specific values, i.e. the independence

is according to context. In our case, we make the assumption that when temporal

aspect inflection is absent, the lexical word value is not relevant for determining

the location component phone. This is graphically represented in Figure 6.2. This

is a reasonable assumption since the start and end locations of a sign that has a

directional verb inflection depends more on the identity of the subject and object
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of the verb rather than the lexical word value.

Q2_3
t

Location
component phone

Q1_LW
t

Q1_DV
t Q1_TA

t

Lexical word Directional verb
inflection

Temporal aspect
inflection

Figure 6.2: Context-specific independence in the causal relationship between lexi-

cal word, directional verb inflections, temporal aspect inflections and the location

component phone. The causal link in dotted line is absent when there is no tem-

poral aspect inflections, i.e. Q1 TA
t takes on value of 0.

Section 6.6 describes experiments for training to obtain the final 31, 63 and 58

sign models of the handshape, orientation and location components, respectively.

6.3 Approaches to deal with movement epenthe-

sis

In HMM-based systems for SL recognition, there are three main approaches for

dealing with movement epenthesis: modelling signs with context-independent HMMs,

modelling signs with context-dependent HMMs, and explictly modelling movement

epenthesis. The approach of modelling signs with context-independent HMMs

[12, 143], uses one HMM to model each sign (or subunit, in the case of [12]). The
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same HMM model is used for each sign, regardless of the preceding and following

sign in the sentence, i.e. the HMM model is context-independent. The approach

of modelling signs with context-dependent biphone HMMs defines a unique HMM

for every distinct combination of two signs in sequence. Other works accounted for

movement epenthesis by explicitly modeling it. In Assan and Grobel [7] all tran-

sitions between signs go through a single state, while in Gao et al. [47] separate

HMMs model the transitions between each unique pair of signs that occur in se-

quence. In more recent experiments [45], the number of such transition HMMs was

reduced by clustering the transition frames. In Vogler [157], separate HMMs model

the transitions between each unique ending and starting location of signs, and also

between each unique ending and starting handshapes of signs. [157] also assessed

the advantage of explicit epenthesis modeling by making experimental comparisons

with context-independent HMMs (as used in [12, 143]), and context-dependent bi-

phone HMMs. On a test set of 97 sentences constructed from a 53-sign vocabulary,

explicit epenthesis modeling was shown to have the best word recognition accuracy

(92.1%) while context-independent modeling had the worst (87.7% vs 89.9% for

biphone models).

In our experiments we explicitly model movement epenthesis, with the assump-

tion that within each sign component, movement epenthesis appears as a smooth

transition between the ending phone of the preceding sign and the starting phone
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of the following sign. Thus each unique pair of phone values gives a possible move-

ment epenthesis. This would mean 28 x 28 (= 784) possible movement epenthesis

in the location component, for example. We reduce this number to 28 (i.e. the

same as the number of location phones defined in Section 6.2, based on a reasonable

guess that the number of movement epenthesis “phones” should be in the order of

the number of phones in signs) by clustering pairs of the 28 cluster centres found in

Section 6.2, i.e. for the location component, we cluster 784 6-dimensional vectors

to obtain 28 clusters. With this definition of movement epenthesis, in Section 6.6

we train a (single channel) H-HMM (as in Figure 4.8) for the location component,

where we define a total of 56 possible values for the phone node, Q2c
t , consisting of

28 values for phones in signs and 28 values for movement epenthesis.

We also experimented with a different approach, which bears some resemblence

to the context-independent HMM approach mentioned above. Our approach seeks

to extract only data points that correspond to significant points within a sign, for

further processing. We conjecture that these significant points within a sign corre-

spond to points where the hand motion exhibit sharp changes in motion direction,

and thus use motion direction change in the 3-dimensional hand position trajectory

as a criterion for detecting the points. The remaining data points are discarded.

As a by-product, this process also removes data points corresponding to move-

ment epenthesis. Since a straight line is the shortest distance between two points

in 3-dimensional space, movement epenthesis most often appears as a straight line
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motion between two points, which are the ending position of the preceding sign

and the starting position of the following sign. Straight line motions do not exhibit

any sharp movement changes within the period of the motion itself, thus by our

procedure, the corresponding data points are not extracted for further processing

and are discarded.

The motion direction change detection procedure is described below. We first

performed smoothing and interpolation by spline-fitting the 3-dimensional position

trajectory of a sentence to 10 times the original number of data points. This pro-

cess yields equispaced 3-dimensional points between each pair of the original data

points but does not produce equi-spaced points across the entire sentence trajec-

tory, since spline-fitted points in slow-moving sections would be closer together. To

calculate motion direction change, the motion trajectory shape should not include

speed information, i.e. it should be invariant to the signing speed. Hence, we re-

interpolate the spline-fitted points to obtain equi-spaced points across the entire

sentence trajectory. These are the smoothed points we used for motion direction

change detection. Experiments using curvature as a criterion for detecting motion

direction change produced very noisy results, and hence we used the change in mo-

tion vector angle in successive smoothed points as the detection criterion (see θt in

Figure 3.4 for an illustration). Changes above a threshold were taken as indicating

points with a sharp change in motion direction. These points were then mapped

to the closest original data points in the trajectory to mark the points with sharp
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change in motion direction. Figure 6.3 plots the 3-dimensional trajectory of an

example sentence, with the extracted data points shown.

−80
−70

−60
−50

−40
−30

−20

−20
−10

0
10

20
30

40

−10

0

10

20

30

40

50

Figure 6.3: Plot of 3-dimensional position trajectory and extracted data points

(crosses), for the sentence: GIVEI→YOU PAPER. Sections of the trajectory cor-

responding to movement epenthesis is plotted with dotted line, sections of the

trajectory corresponding to signs is plotted with solid line.

With this approach, data points corresponding to signs are discarded along with

those corresponding to movement epenthesis. This results in each phone within

a sign encompassing a much smaller variation in appearance of the observation

feature, as compared to when all the original data points are used. In effect, each

phone can be represented with just one subphone state and we can use a simpler
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H-HMM model with two Q-levels instead of three for training. The two Q-level

H-HMM is as shown in Figure 6.4 where the subphone-level nodes and their links

have been removed from the H-HMM of Figure 4.8. In the two Q-level H-HMM,

since there are no subphone-level states, the phone model simplifies to just the

output probability distributions of the component feature, i.e. the CPD of node

Oc
t (see Section 4.2.1). Modelling the location component requires a total of 28

possible values for the phone node Q2c
t since movement epenthesis is not modelled.

In Section 6.6 we train a two Q-level H-HMM for the location component and

compare the test results with the three Q-level H-HMM mentioned above.

Q1 node
represents sign

Q1
1

Q2_c
1

Q1
2

Q2_c
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F2_c
1
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time 1 time 2

Q2_c node
represents phone

component
features

F2_c node
indicates phone
seq. has finished

F1
1 F1

2

F1 node
indicates sign seq.

has finished

Figure 6.4: H-HMM with two Q-levels for training sign component c. Nodes

indexed by superscript c pertain to the specific component (e.g. Q2 c
t refers to the

phone node at time t for component c). Dotted lines enclose nodes of the same

time slice.
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6.4 Labelling of sign values for subset of training

sentences

Our training and modelling strategy involves learning the component-specific sign

and phone models by training each component’s models independently of each

other and with independent observation feature sets (see Section 4.4.2). A draw-

back of this approach however is that since the different sign components are

trained separately, they are implicitly trained with different sign alignments. The

corresponding issue was pointed out for the case of multistream data modelling

using flat models by Bengio in [17]. As mentioned in Section 4.4.2, we know the

correct sign sequence for each training sentence s, and provide this information

during training by setting the CPD parameters of the sign-level nodes, Q1
t and F 1

t

in the H-HMM of Figure 4.8, to values that only allow the sign sequence of training

sentence s to be constructed. However, the sign node Q1
t is not observed (its value

is not known) since we do not know the correct sign alignment. For each training

sequence s, the EM training algorithm (Algorithm 4.1) explores all possible sign

alignments subject to the constraint of adhering to the known sign sequence. The

posterior distribution terms calculated in the E-step reflect the different weightages

given to the possible sign alignments. Since the component-specific H-HMMs are

trained separately, there is no requirement for the training process in each compo-

nent to give the same weightages to these sign alignments. So in a sense, the sign
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alignments used in different components to learn their respective CPD parameters

do not match (across components).

We experimented with alleviating this problem by using labelled sign nodes for

the subset of training data that had been manually segmented in time as described

in Section 6.2. For this subset, we know the sign alignment within time slices

and can thus label the sign node Q1
t for the appropriate time slices when training

the (single channel) H-HMM across the different sign components. Section 6.6

presents comparative test results between location component H-HMMs trained

with a labelled sign nodes on a subset of training data, and training with no such

labels.

6.5 Evaluation criteria for test results

A sign is recognized as correct if values of all the sign-level nodes are inferred

correctly, i.e. the lexical word, directional verb inflection and temporal aspect

inflection values must all be correct. With this criterion, sign accuracy is defined

as follows. Let Ns denote the total number of signs appearing in the test set, Ss

the number of substitutions, Ds the number of deletions, and Is the number of

insertions. The sign accuracy, Accs, is thus:

Accs =
Ns − Ss −Ds − Is

Ns
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Sentence accuracy, AccSents, is defined by the fraction of sentences without

any recognition errors.

In Section 6.7 and 6.8 we also calculate the word accuracy. Since the lexical

word is factorized as a separate node, we can find the recognition accuracy for just

this node, in effect considering different signs with the same lexical word value as

equivalent. With Nw denoting the total number of signs appearing in the set, Sw

the number of substitutions, Dw the number of deletions, and Iw the number of

insertions, the word accuracy, Accw, is defined as

Accw =
Nw − Sw −Dw − Iw

Nw

Sentence accuracy (when different signs with the same lexical word value are

considered as equivalent), AccSentw, is defined as the fraction of sentences without

any recognition errors.

6.6 Training and testing on a single component

In the first set of experiments we compared different approaches to dealing with

movement epenthesis (see Section 6.3) and also examined the possible benefits of

using labelled sign nodes for a subset of training data (see Section 6.4). We exper-

imented with training to obtain three different trained H-HMMs for the location

component. In all three models the observation features are oH , as described in
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Section 6.1.2. The training procedure is as described in Section 4.4.2. Starting

from initial model parameters for the H-HMM, the iterative steps in the EM algo-

rithm are repeated until it converged. Training uses constrained sentence models

reflecting the correct sign sequence in training sentences. In the E-step, inferencing

uses the forward interface inferencing algorithm for DBNs [110]3.

The first model trained is a H-HMM with three Q-levels (Figure 4.8), modelling

movement epenthesis explicitly, as described in Section 6.3. The phone sequences

obtained from the winning cluster sequence (for the location features) of each sign

are used to initialize the sign model parameters, i.e. the CPD parameters for

the Q2 c
t and F 2 c

t nodes (see Section 6.2). We define three subphone states for

each of the phone models, with state transitions defined as the 3-state left-right

(Bakis) model (see Figure 4.2). The CPD parameters for the Q3 c
t and F 3 c

t nodes

are initialized such that the nonzero subphone state initial, transition and ending

probabilities are equiprobable. For each phone, the mean and covariance of the

three subphone output probability distributions are initialized identically, to the

corresponding cluster’s mean and covariance values (see Section 6.2). This defines

the initial CPD parameters of Oc
t . During training, the observation features for

the H-HMM are obtained from every time slice of the training sequences.

3All experiments in this chapter were performed using Matlab code based on the Bayes Net
Toolbox [108].
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The second model trained is a H-HMM with two Q-levels (Figure 6.4), as de-

scribed in Section 6.3. As in the three Q-level H-HMM above, the phone sequences

obtained from the winning cluster sequence (for the location features) of each sign

are used to initialize the sign model parameters, i.e. the CPD parameters for the

Q2 c
t and F 2 c

t nodes. In this two Q-level H-HMM, there are no subphones, hence

there is only output probability distribution for each phone and its mean and co-

variance is initialized to the corresponding cluster’s mean and covariance values

(see Section 6.2). This defines the initial CPD parameters of Oc
t . The observation

features for the model are obtained from data points extracted using the motion

direction change detection procedure described in Section 6.3.

The third model trained is a H-HMM with two Q-levels with model parameters

initialized exactly as above and with the same observation features. The sole

difference is that during training, a subset of the training sequences have observed

(known) sign node values. These are the sentences that were manually segmented

to obtain initial model parameters as described in Section 6.2. Thus the sign node

values for these sentences are already known.

The three trained models above are tested for sign recognition on the test

sentence set. Inferencing during testing obtains the most-probable assignment of

values to all the hidden nodes in the model (see Section 5.1). We use the forward

interface algorithm in this decoding step. The sign and sentence accuracy results

for the three trained models are shown in Table 6.1.
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Table 6.1: Test results on location component H-HMMs.

Trained model Accs (%) AccSents (%) Ds Ss Is Ns

3 Q-level H-HMM with 69.7 15.5 26 185 28 788
movement epenthesis modelling
2 Q-level H-HMM without 78.3 18.3 11 148 12 788
movement epenthesis modelling
2 Q-level H-HMM with 78.4 18.3 11 150 9 788
labelled sign nodes

The best accuracy results were obtained with the third model, the two Q-level

H-HMM, without modelling movement epenthesis, and presented with training se-

quences where a subset was labelled with sign node values. The results of the

third model was only marginally better than that of the second model (which did

not use sign labels). However, since there is no added training effort required to

obtain the sign labels (the labels were obtained as a by-product of the parameter

initialization procedure described in Section 6.2), the third trained model will be

used in the next section to provide the necessary location-specific CPD parameters

to construct the MH-HMM. We then applied the training strategy employed for

the third model above, to train two Q-level H-HMMs for the handshape and ori-

entation components. The observations features for these two components are as

described in Section 6.1.2. The sign and sentence accuracy results for the trained

models of handshape and orientation components are shown in Table 6.2. The ac-

curacy results reported in Table 6.1 and 6.2 are quite low. This is not unexpected
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Table 6.2: Test results on trained models for two Q-level H-HMMs for handshape
and orientation components.

Trained model Accs (%) AccSents (%) Ds Ss Is Ns

Handshape component H-HMM 73.1 12.7 11 199 2 788
Orientation component H-HMM 85.0 36.6 16 95 7 788

since there are 98 signs in the vocabulary, but fewer than 98 distinct sign models

in each of the components - there are 58 distinct sign models defined for the loca-

tion component, 31 for handshape component and 63 for orientation component.

Thus not all of the 98 signs can be distinguished based on any of the components

singly. The motivation for testing single component trained models is to make sure

that sign/sentence accuracy results are in a reasonable range, before proceeding to

construct the MH-HMM based on the parameters of these trained models.

Examination of the test results on location component H-HMMs shows that the

accuracy results with the three Q-level H-HMM is quite low in comparison to that

obtained with the simpler two Q-level H-HMM. The accuracy of the three Q-level

H-HMM could be affected by the fact that the “phones” corresponding to move-

ment epenthesis are clustered versions of pairs of location phones corresponding

to signs. That is to say, not every unique pair was defined as a unique movement

epenthesis. This was necessary to reduce the number of movement epenthesis to

be modelled but may have resulted in a loss of modelling accuracy. The large

number of movement epenthesis models appears to be a problem in the approach
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of modelling movement epenthesis explicitly, and often there are more movement

epenthesis models than there are phone models corresponding to signs. For ex-

ample [157] defined 78 phone models corresponding to signs and 133 movement

epenthesis models (i.e. there were 70% more movement epenthesis models than

phone models). This seems like a waste of training data and resources. Since there

are more movement epenthesis models than there are phone models, the majority

of training data is used to learn parameters of movement epenthesis models!

Our approach is a viable alternative, discarding data points corresponding to

movement epenthesis. Training data is used to learn just the phone models instead

of models of the transitions between signs. Training time is reduced dramatically

because there are much fewer data points.

6.7 Testing on combined model

A MH-HMM modelling the location, handshape and orientation components is

constructed by combining the component-specific sign and phone models trained

in Section 6.6 (also see Section 4.4.1). The MH-HMM is shown in Figure 6.5.

We presented the observed values of the component features Oc
t , for components

c = 1, 2, 3 from the test set sentences. Synchronization between component streams

at sign boundaries was enforced by setting S2
t = 1, for 1 ≤ t ≤ T . We also set

F 1
t = 0 for t = 1 . . . , T−1 and as F 1

T = 1, indicating that for each test sequence, the
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Table 6.3: Test results on MH-HMM combining trained models of location, hand-
shape and orientation components.

Num. of Accs AccSents Ds Ss Is Ns Accw AccSentw Dw Sw Iw Nw

samples (%) (%) (%) (%)
3000 92.0 58.5 7 56 0 788 98.4 92.3 7 8 0 788
5000 92.4 62.0 4 53 3 788 98.9 95.1 4 2 3 788
10000 92.6 61.3 6 50 2 788 98.5 92.3 6 4 2 788
15000 92.6 62.7 5 50 3 788 98.7 94.4 5 2 3 788
20000 93.4 66.2 4 45 3 788 98.9 95.1 4 2 3 788
25000 93.9 68.3 5 42 1 788 98.7 93.7 5 4 1 788
30000 92.9 64.8 8 45 3 788 98.4 92.3 8 2 3 788
40000 93.7 68.3 6 40 4 788 98.4 92.3 6 3 4 788

sentence ends only at the last time slice and not before. With these observed node

values, the most probable sign sequence in each sentence was inferred using particle

filtering (PF) as described in Chapter 5 and in particular Section 5.5. The sign

and word accuracy results for this MH-HMM are shown in Table 6.3 for different

number of samples used in the PF algorithm. Only one trial was performed at

each sampling level.

The sign recognition accuracy is greatly improved compared to single compo-

nent decoding results (compare Tables 6.1 and 6.2). Within each of the compo-

nents, there are less than 98 distinct (component-specific) sign models. However,

although multiple signs may share the same component-specific sign model, none

of the signs share the same component-specific sign models in all three components.

That is to say that the 98 signs in the vocabulary have distinct combinations of
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Figure 6.5: MH-HMM with two Q-levels and with synchronization between com-

ponents at sign boundaries (shown for a model with three components streams,

and two time slices). Dotted lines enclose component-specific nodes.
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component-specific sign model. Thus the improved sign recognition results is to

be expected.

The PF algorithm is expected to give better inferencing results with increased

number of samples, theoretically approaching results that would be obtained using

exact inferencing at the limit of infinite number of samples. The results in Table 6.3

show an improvement in sentence accuracy, AccSents, with increased number of

samples. It might be worth increasing the number of samples beyond the maximum

40000 that we experimented with, to investigate if this would produce further

improvement in the sentence accuracy, which is currently quite low considering the

relatively high sign accuracy.

The correspondence between sample number and accuracy is however not seen

in the other accuracy measurements. The maximum sign accuracy (Accs) of 93.9%

was obtained with 25000 samples and not with the maximum number of 40000

samples that we ran experiments with. The maximum word accuracy (Accw) of

98.9% was also obtained with fewer than 40000 samples. Due to the stochastic

nature of the inferencing algorithm, multiple trials at each sampling level are re-

quired before we can conclude if there is indeed diminishing returns in sign and

word accuracy beyond 20000 to 25000 samples.

The majority of the errors made in sign recognition are substitution errors, this,

together with the much improved accuracy results, Accw and AccSentw, when we
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only infer the lexical word value, indicate that many of the errors made in sign

recognition involved errors in determining the inflection values and not the lexical

word values. Although we did not calculate the recognition confusion matrix, the

above results would indicate that a large proportion of signs that get confused are

signs that appear in various inflected and non-inflected versions in the vocabulary.

In general, the frequency of a sign appearing in the training set (and thus the

amount of training data available for that sign) would effect recognition accuracy

for that sign. Thus recognition rates for sparsely-represented signs may suffer. It

is reasonable however to also surmise that signs based on the same lexical word are

inherently more difficult to distinguish from one another since they share common

features – for example the handshape. The results above seem to bear this out.

Accw and AccSentw seem to saturate quickly with the number of samples, for

example, the best word accuracy results are found with 5000 samples and 20000

samples.

6.8 Testing on combined model with training on

reduced vocabulary

In this set of experiments, we applied the same strategy as outlined in Section 6.6

for training H-HMMs for each of the sign component but withheld a subset of the
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sentences from the training set. Specifically, sentences containing 16 out of the 98

signs in the vocabulary were not presented to the models during training and were

not used in obtaining winning cluster sequences to initialize the sign model param-

eters (see Table B.4 for the set of unseen signs). Thus the three components models

were trained on 144 sentences containing 835 signs, instead of the full training set

of 201 sentences containing 1139 signs. Despite not seeing all the signs in the vo-

cabulary, it was still possible to train the full set of component-specific sign models

because multiple signs share the same component-specific models. This is due to

the structural conditional independencies and the context-specific independencies

in the models (see Section 6.2). The set of excluded signs was chosen with the

requirement that for all three components, each distinct component-specific sign

model must be represented among the remaining signs. As adequate training data

is required for robust learning of parameters, another requirement is that at least

5 sentences containing signs that share the same component-specific sign model

must be present among the sentences used for training.

Once the models were trained, we constructed an MH-HMM by combining the

component-specific sign and phone models of location, handshape and orientation.

As in the previous section, we presented the observation features for all three

components of the test set sentences and set the values of the S2
t and F 1

t nodes.

The most probable sign sequence in each sentence was inferred as before.

Within the test set, some of the sentences contained only signs that had been
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Table 6.4: Test results on MH-HMM combining trained models of location, hand-
shape and orientation components, tested on sentences with only seen signs.

Num. of Accs AccSents Ds Ss Is Ns Accw AccSentw Dw Sw Iw Nw

samples (%) (%) (%) (%)
3000 92.2 62.2 6 34 4 563 98.2 89.8 6 0 4 563
5000 92.9 65.3 6 34 0 563 98.2 90.8 6 4 0 563
10000 93.6 68.4 7 29 0 563 98.1 89.8 7 4 0 563
15000 95.2 77.6 5 22 0 563 98.4 91.8 5 4 0 563
20000 95.0 74.5 4 23 1 563 98.2 91.8 4 5 1 563
25000 95.2 76.5 4 21 2 563 98.4 93.9 4 3 2 563
30000 95.9 78.6 3 17 3 563 98.9 93.9 3 0 2 563
40000 94.1 73.5 8 23 2 563 97.9 89.8 8 2 2 563

present during training, i.e. seen signs, while others contained signs that had not

been present during training, i.e. unseen signs. The sign and word accuracy results

for each case are shown in Table 6.4 and 6.5, for different number of samples used

in the PF algorithm.

Sign recognition accuracy from decoding sentences that only contain seen signs

are better than those obtained when we use the full set of training sentences that

contained all 98 signs (compare Table 6.3). This makes sense because in the former

case we trained component-specific sign models on a smaller training set with

less variations in sign appearances, and then tested on representative sentences

containing the same signs.

Accuracy results from decoding sentences that contained unseen signs were not

very good. But the word accuracy results, Accw and AccSentw, for these sentences
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Table 6.5: Test results on MH-HMM combining trained models of location, hand-
shape and orientation components, tested on sentences containing unseen signs.

Num. of Accs AccSents Ds Ss Is Ns Accw AccSentw Dw Sw Iw Nw

samples (%) (%) (%) (%)
3000 84.4 27.3 2 32 1 225 98.7 93.2 2 0 1 225
5000 85.8 31.8 3 29 0 225 98.7 93.2 3 0 0 225
10000 86.7 34.1 2 28 0 225 99.1 95.5 2 0 0 225
15000 88.0 40.9 1 26 0 225 99.6 97.7 1 0 0 225
20000 86.7 36.4 2 28 0 225 99.1 95.5 2 0 0 225
25000 87.6 38.6 1 27 0 225 99.6 97.7 1 0 0 225
30000 88.4 43.2 1 25 0 225 99.6 97.7 1 0 0 225
40000 88.0 40.9 1 26 0 225 99.6 97.7 1 0 0 225

showed a significant increase (even compared to the word accuracy results from

decoding sentences that only contain seen signs). This makes sense since each

lexical word in the vocabulary is represented in the training set, so for each of the

unseen signs, the uninflected version and possibly other inflected versions based on

the same lexical word were seen in the training set.

In conclusion, results on recognizing continuous signs by combining information

from multiple sign components using the MH-HMM are promising (Table 6.3),

obtaining a maximum sign accuracy of 93.9%. The test sentences included signs

which contained inflection meaning but if we only consider recognition of lexical

meaning, the word accuracy improves to a maximum of 98.9%. Results in this

section also show that with our approach of defining multiple signs as sharing the

same component-specific sign models, it was possible to recognize continuously
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signed sentences containing unseen signs, albeit at a lower recognition accuracy –

the best result obtained was 88.4% (Table 6.5). The lexical meaning of these signs

were recognized at a much higher accuracy of 99.6%, indicating that most of the

recognition errors were made in inferring the inflection values.



Chapter 7
Conclusions and future work

7.1 Contributions

The main contribution of this thesis is in addressing an aspect of SL that has largely

been overlooked in previous work on SL recognition and yet is integral to signed

communication. The work described in thesis is the most comprehensive to-date on

the recognition of the complex variations in sign appearances due to grammatical

processes. These processes systematically change both the temporal and spatial

dimensions of a root sign word to convey information in addition to lexical meaning.

The systematic modulations in sign appearance that are recognized in this work are

of a nature and number that have not been tackled in previous work. Furthermore,

we also extracted information conveyed through multiple simultaneous modulations

on sign appearance, which is likewise a novel contribution.

We presented the MH-HMM as a modelling and recognition framework for con-

tinuously signed sentences that include modulated signs. The MH-HMM models

182
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the hierarchical, sequential and parallel organization in signing while requiring

synchronization between parallel data streams at sign boundaries. The effect of

grammatical processes on sign appearance is learned from data in a modular way;

this simplifies training while still being able to model the complex effects of these

processes. In this thesis we showed how the MH-HMM can be applied to our prob-

lem domain, and described how the PF algorithm can be specifically applied in

our model to infer the most-likely sign sequences in continuous sentences.

We propose the MH-HMM not only as a model suitable for the problem do-

main that is the focus of this thesis but for any domain where there is a hierarchy

of abstract levels, multiple time scales, and multiple data streams which require

synchronization between the streams. Previous work in domains exhibiting hi-

erarchical and parallel structure either separated the levels of hierarchy (layered

HMMs) or had a parallel flat structure (PaHMM, product HMM). The MH-HMM

models both hierarchical and parallel structure, while retaining modularity. MH-

HMM has advantages over the existing methods mentioned above, including:

• Hierarchical and parallel structures in the data are modelled simultaneously,

allowing information at all levels to influence the final inferencing results.

The information flow is not exclusively top-down or bottom-up (as in layered

HMMs).
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• Factorization of the system state allows information to be input where avail-

able, i.e. a subset of the nodes can be labelled during testing.

• The parameters of the model pertaining to different data streams are learned

separately, making the training faster and easier.

• The framework is modular and flexible; we could, for example, combine H-

HMMs with different number of Q-levels together into the MH-HMM. We

can easily experiment with enforcing synchronization between streams at

different levels, for example in speech, at the word or phone level.

The MH-HMM is a probabilistic model and all the parameters are learned from

data, including the probabilistic relationship between lexical and grammatical in-

formation conveyed in signs and sign subunits which are the equivalent of phones

in speech. This is different from previous work which defined the relationship be-

tween lexical information and phones linguistically or was based on a phonological

model instead of learning from data. The ability to learn the effect of grammatical

processes on sign appearance from data is especially pertinent for SL recognition

because unlike in speech, there is no consensus on a phonological model for signs

and thus there is no equivalent to the pronunciation dictionaries as used in speech

recognition to define words as a decomposition of phones.

In another important contribution of our work we showed how to take advan-

tage of commonalities between how grammatical processes affect appearances of
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different root sign words to reduce parameters learned in the model and recognize

new and unseen combinations of root words and grammatical information. This

is crucial because there is a large variety of information that can be conveyed in

addition to the lexical meaning in signs and hence a large variety of appearance

changes that can occur to a root word, making it impossible to obtain training

data for all these appearances.

Our work also proposed a novel method of dealing with sign transitions (move-

ment epenthesis) in the data stream. Our method performs better than the ap-

proach of explicitly modelling movement epenthesis and circumvents the problem

that arises in the latter approach whereby the majority of the training resources

ends up being used for training sign transitions rather than actual signs.

7.2 Future Work

Future work should include data from both hands in continuous sign recognition.

Although the sign vocabulary considered in our experiments included two-handed

signs, all the signs were distinguishable by looking only at the dominant hand.

However, this is not true in general as we consider larger sign vocabularies. In clas-

sifier signs the non-dominant hand is especially important for expressing relative

spatial relations. Including data from both hands would require adding additional

channels to the MH-HMM model.

In the isolated gesture experiments we had separated out movement attributes
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affected by grammatical processes as separate sign components. However this was

not done in modelling continuous signs and the associated experiments. Modelling

movement attributes as a separate data stream is a difficult problem as we require

features that evolve as a quasi-stationary process and at the same time are invariant

to position. Some features currently being explored include curvature (although it

has been found to be noisy), centroid distance function [9] and Fourier transform

based features.

The PF algorithm used for inference in the MH-HMM is a sampling method

that is relatively easy to implement on different types of DBNs without needing

to customize the basic algorithm to the specific model. Its main disadvantage

however is that since a large number of samples are required to represent the

distribution of a large state space, it runs very slowly for large models. At each

time step, the number of operations required for generating samples is O(SK),

and for weighting the samples is O(SL) (where S = number of samples, K =

total number of hidden variables, L = total number of observation variables. See

Section 5.4.). For example, in Section 6.7 testing was on the combined model of

Figure 6.5 which has 7 hidden variables (K) and 5 observed variables (L). Thus

the number of operations per time step was in the order of 36,000 (SK+SL) when

3000 particles were used, and in the order of 480,000 when 40,000 particles were

used. One possible avenue for exploration is the use of Rao-Blackwellised particle

filtering (RBPF) which combines exact and stochastic inferencing, resulting in a
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smaller state space that requires fewer samples for representation. Both PF and

RBPF are stochastic in nature, thus ideally multiple trials at each sample level

should be performed in experiments. This we did not do in the experiments of

Chapter 6 and should be looked into in future work. It would also be informative

to explore the use of non-stochastic approximate inference methods such as loopy

belief propagation [124, 113] and variational methods [71].

The focus of the experiments in Chapter 6 was in verifying the feasibility of

using the MH-HMM to recognize inflected signs. As such it is a reasonable first

step to perform the experiments with only a single signer. We would need to

include more signers in the future to see how recognition results would be affected

when there are multiple signers, especially in light of the findings in Chapter 3

that there is indeed much variation in how different people perform the same

gestures. To reduce signer variation in feature measurements, data collected from

the Virtual Technologies Cyberglove should be calibrated carefully (a calibration

software application is provided by the glove manufacturer). In addition, we could

calibrate position information measured from the Polhemus electromagnetic tracker

by scaling position measurements according to the extent of each signer’s arm reach.

The signer used in the experiments of Chapter 6 is a native signer but not

a native ASL signer, whereas the sentences signed in the experiments are ASL

sentences. To apply our model to a native ASL signer, we would need to retrain

the model, possibly including redefining the phones of each component according to
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the data collected from the new ASL signer. However, the structure of the model,

i.e. the MH-HMM formulation, should remain the same, as this was derived based

on the structure of sign sentences in general, and specifically ASL sentences and

grammar.

One of the considerations in designing a DBN is the number of hidden vari-

ables and the number of variable states. Inappropriate numbers could lead to

under-fitting or over-fitting. In our design, the hidden variables of the MH-HMM

represent the sign, phones of different components and HMM states of the phone

models of different components. Thus the number of hidden variables is deter-

mined by the hierarchical and parallel nature of the domain data. The number

of states of the phone variable in each component was determined by clustering

the data (see Section 6.2), thus it is also data-driven and reflects variation present

in the data. The HMM phone models were all designed with 3 states. Although

this number was just a reasonable guess, it does not affect the eventual test results

reported in Sections 6.7 and 6.8 where tests were performed on the two Q-level

MH-HMM which models the phone level but not the HMM state level.

The proposed MH-HMM is a generative model and thus shares some of the

same disadvantages as simpler generative DBNs such as HMMs. This includes

difficulty in incorporating long-range dependencies between the states and the ob-

servations and the requirement of conditional independence of observations (from

different time frames). Discriminative models such as Conditional Random Fields
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(CRF) [89] and Hidden Conditional Random Fields (HCRF) [130] are able to

model sequence data without having the disadvantages mentioned above. CRFs

have been used successfully in parts-of-speech tagging [140], information extrac-

tion [101, 139, 31], RNA structural alignment [138], protein structure prediction

[96], labeling and segmenting images [58, 88], to name a few. However the CRF

is not multi-layered and does not explicitly model intermediate structures in the

manner of the H-HMM. HCRFs are multi-layered models with hidden states and

have been used for recognizing isolated gestures [130] and classifying segmented

phones [55]. However, HCRF requires training data where the top-level variable

(i.e. the variable to be inferred) is labelled for all time frames. In our present

application, the top-level variable is the sign value. The majority of our training

sentences do not have labelled sign values, and thus could not be used for training

a model such as the HCRF. Another disadvantage of discriminative models is that

all model parameters would need to be re-learned if the model is to be expanded

to include new sign vocabulary. A generative model such as the MH-HMM would

only need to learn parameters pertaining to the new vocabulary, keeping intact the

parameters that have already been learned for existing vocabulary.

There are many problem domains that require modelling of multiple observation

streams corresponding to the same sequence of events and subsequent recognition

of these events. The continuous events to be recognized include multiband speech,

audio-visual speech, gesture, human activity, group action in meetings, and facial
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expressions. Many of these events can also be decomposed into a hierarchical struc-

ture. MH-HMM can be applied to model these sequential events if they can be

analysed such that there is a definable set of “words” in the vocabulary, the equiva-

lent of “phones” or subunits in each observation stream, and with synchronization

between streams at either the word or phone level. It would be of great interest to

apply the MH-HMM to such problems and compare the results to existing methods

and architecture for modelling in these domains.
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Appendix A
Notation and Terms

This is a list of notations used in the thesis in general. Any specific notations used

in specific sections or chapters are defined when they first appear.

• P (X = x) : probability of the random variable X taking on the value x.

This is generally abbreviated as P (x).

• |X| : the number of possible values for X.

• PaX : parents of variable X.
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Appendix B
List of lexical words and inflections for
continuous signing experiments

Table B.1 lists the 29 different lexical words present in the vocabulary. Only a

subset of these are combined with an inflection value to form signs, i.e. some signs

are formed from a lexical word only, with no inflectional meaning added. Table

B.2 lists the 3 different temporal aspect inflection values and Table B.3 lists the 11

different directional verb inflection values used in forming signs. The notation for

directional verb inflections show the subject and object that the root verb (notated

as a generic ‘VERB’) identifies through its movement path direction. The terms to

the left and right of the arrow are the subject and object, respectively. In the set

of sentences containing directional verbs, the subjects and objects that the verb

may indicate includes the signer (denoted as ‘I’), the addressee (denoted as ‘YOU’)

and two other non-present referents ‘GIRL’ and ‘JOHN’. In sentences that refer to

‘GIRL’, this referent was established at roughly to the right of the signer, using the
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Table B.1: Lexical root words used in constructing signs for the experiments.

Category Lexical root words
Nouns BOOK, CAT, EMAIL, GIRL, HOME, JOHN, PAPER, PEN,

PICTURE, SIGN LANGUAGE, TEACH
Pronouns I, MY, YOU, YOUR, INDEX→GIRL , INDEX→JOHN

Verbs BLAME, EAT, GIVE, GO, HELP, LOOK, PRINT, SEND,
TAKE, WRONG

Adjectives A LOT, BLACK
Other REST START, REST END

Note: INDEX→x is produced with the index finger extended, directed towards the
person being referred to, x. For example, INDEX→GIRL points towards GIRL.

Table B.2: Temporal aspect inflections used in constructing signs for the experi-
ments.

[DURATIONAL], [HABITUAL], [CONTINUATIVE]

method mentioned in Section 1.1.2. Similarly, ‘JOHN’ was established at roughly

to the left of the signer.

Table B.4 lists the signs that were left out of the training sentences in the

experiments reported in Section 6.8. This set of signs are referred to as unseen

signs. The purpose of the experiments were to test the combined model (MH-

HMM), with training done on a reduced sign vocabulary.
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Table B.3: Directional verb inflections used in constructing signs for the experi-
ments.

VERBI→YOU, VERBYOU→I, VERBI→GIRL, VERBGIRL→I, VERBI→JOHN, VERBJOHN→I,
VERBYOU→GIRL, VERBGIRL→YOU, VERBYOU→JOHN, VERBJOHN→YOU,
VERBGIRL→JOHN

Table B.4: Signs not present in the training sentences in the experiments on train-
ing with reduced vocabulary (see Section 6.8).

HELPI→GIRL, HELPGIRL→I, HELPI→JOHN, HELPJOHN→I, GIVEI→YOU, GIVEI→JOHN,

EAT[DURATIONAL], EAT[HABITUAL], EAT[CONTINUATIVE], (GIVE[DURATIONAL])I→YOU,

(GIVE[HABITUAL])I→YOU, (GIVE[CONTINUATIVE])I→YOU, (GIVE[DURATIONAL])I→GIRL,

(GIVE[HABITUAL])I→GIRL, (GIVE[DURATIONAL])I→JOHN, (GIVE[HABITUAL])I→JOHN



Appendix C
Position and orientation measurements in

continuous signing experiments

Suppose we have an object H , and an orthogonal coordinate frame associated with

it. This coordinate frame’s origin, and x, y, z axes can be expressed relative to

a base coordinate frame as BoH , BxH , By
H

, and BzH , respectively. BxH , By
H

,

and BzH are the columns of a rotation matrix BRH , that maps a vector expressed

relative to object H ’s coordinate frame to another vector expressed relative to the

base coordinate frame. For example, the x-axis in H ’s coordinate frame is [1 0 0]T .

To express it relative to the base coordinate system, we apply the rotation matrix

BRH to get,
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BRH

⎡⎢⎢⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

BxH
By

H

BzH

]
⎡⎢⎢⎢⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
= BxH (C.1)

The case for By
H

and BzH is analogous.

If we have another object W , with an attached coordinate frame whose origin

and axes are expressed relative to the base coordinate frame as BoW , BxW , By
W

,

and BzW , we need to express the origin and axes of H ’s coordinate frame relative

to W ’s coordinate frame, i.e. W oH , WxH , W y
H

, and W zH .

W xH , W y
H

, and W zH are the columns of the rotation matrix W RH , that maps a

vector expressed relative to object H ’s coordinate frame to one expressed relative

to object W ’s coordinate frame. This rotation matrix can be computed as two

rotations applied successively [172], i.e.

W RH = WRB.
BRH

=
(

BRW

)T
.BRH (C.2)

which is straightforward to compute since we know both BRW and BRH .

Next, we find W oH by first finding the difference vector between the origins of

the H and W coordinate frames, Bp =B oH −B oW . As this difference vector is
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expressed relative to the base coordinate frame, so we need to apply a rotation

matrix W RB, in order to express it relative to W ’s coordinate frame. Thus,

W oH = WRB.
Bp

=
(

BRW

)T
.
(

BoH −B oW

)
(C.3)

which is again straightforward to compute since we know all the terms in the last

expression.

In the experiments of Chapter 6, data capture was through the Polhemus

tracker which reported 3-dimensional position and orientation of the right hand

and waist sensors, relative to the transmitter frame. Conceptually, each of the

sensors has an attached orthogonal coordinate frame. The reported 3-dimensional

position data is the x, y, and z coordinates of its origin, relative to the transmitter

frame. If we denote the transmitter frame as the base frame (B), and right hand

and waist sensors as H and W , respectively, their reported 3-dimensional posi-

tions correspond to the terms BoH and BoW mentioned in the above paragraphs.

The reported orientation angles are the roll (Bψi), pitch (Bθi) and yaw (Bφi) (for

i = H,W ) of the sensor’s coordinate frame, relative to the transmitter frame.

The yaw, pitch and row angles are equivalent to the angles of successive rotations

about the z, y and x axes of the reference frame [86]. Thus we can calculate the

corresponding rotation matrix W Ri as,
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BRi =

⎡⎢⎢⎢⎢⎢⎢⎣
cos(Bψi) −sin(Bψi) 0

sin(Bψi) cos(Bψi) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣
cos(Bθi) 0 sin(Bθi)

0 1 0

−sin(Bθi) 0 cos(Bθi)

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cos(Bφi) −sin(Bφi)

0 sin(Bφi) cos(Bφi)

⎤⎥⎥⎥⎥⎥⎥⎦ for i = H,W (C.4)

For i = H , the rotation matrix obtained from equation (C.4) is BRH , for i = W ,

the rotation matrix obtained is BRW . We can now apply equation (C.2) to obtain

W RH and thus the orientation of the right hand sensor relative to the waist sensor’s

coordinate frame in terms of the three axes, WxH , W y
H

, and W zH . We can also

apply equation (C.3) to obtain W oH , the position of the right hand sensor relative

to the waist sensor’s coordinate frame . Note that in Chapter 6, the superscript

W is dropped when referring to the right hand sensor’s coordinate frame.
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