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Abstrat
As the next generation of mobile networks emerges, the design for more advanednetworking tehniques beomes more di�ult and non-trivial, due to the inreas-ing quality-of-servie (QoS) demands of multimedia appliations, while onsideringsystem issues and onstraints.In this thesis, we onsider a stohasti optimal ontrol approah for resoure al-loation and provisioning in wireless ad ho networks. Spei�ally, we study theproblem of multi-lass network sheduling under a time-varying hannel and networktopology. We formulate the problem using the deision theoreti framework knownas Markov Deision Proess (MDP) . We present four variants of MDP formulationsto highlight important results and ontributions.The �rst model uses the theory of ψ-irreduibility for ontrolled Markov hainsto formulate an average-ost MDP for eah node ating as an agent, with the goal of�nding the poliy that minimizes the expeted average ongestion level. Using sta-bility onepts of ψ-irreduible hains, we present the �rst novel method of ahievingoptimization and stability onditions simultaneously for a general Markov queueingnetwork, and for deriving performane bounds from the ontrol algorithm, as thealgorithm onverges to the optimal solution.The seond model onsiders a Semi-Markov Deision Proess (SMDP) where eahnode adaptively performs network-level bandwidth alloation and bu�er management.The main objetive is to maximize average long term network reward and at the sametime, minimize QoS violations with respet to bandwidth, queueing delay, and bu�eriii



loss. Due to the dynami nature of the network, estimating the state transition of theMarkov hain is a non-trivial task. Hene, we use the model-free framework known asNeuro-Dynami Programming (NDP), also known as Reinforement Learning (RL),that uses stohasti approximation and simulation-based (i.e. online) tehniques toapproximate or �nd the near-optimal poliies.In order to have a faster and more robust onvergene, we also onsider the pro-visioning problem as a Hierarhial Semi-Markov Deision Proess (HSMDP) thatexploits a task struture in the original SMDP problem. Spei�ally, the problem isdivided into a hierarhy of subtasks in a task graph. In solving the HSMDP, we usethe orresponding Hierarhial Reinforement Learning (HRL) tehnique that reusesubtask solutions in the task graph struture.Finally, we formulate the queue sheduling problem as a Deentralized PartiallyObservable Markov Deision Proess (DEC-POMDP) where the joint ations or poli-ies of agents a�et the performane of the system. DEC-POMDP is a multi-agentextension of MDP for deentralized ontrol where eah agent observes a di�erent par-tial view of the urrent network ondition. We also address the issue of loality ofinteration among neighboring nodes and apply a model-free algorithm to approxi-mate the optimal joint poliies. Using stability onepts of ψ-irreduible hains, wealso present the �rst method for analyzing the stability and optimization of a deen-tralized Markov network and derive performane bounds, as the algorithm onverges.We also verify our analysis from simulation results to show the e�etiveness andonvergene of our proposed algorithms for the four types of MDP formulations.
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Chapter 1Introdution
Mobile ad ho networks (MANETs) have been envisioned as a type of next gen-eration wireless network that is self-organizing, rapidly deployable and requires noinfrastruture. They form a wireless network of mobile routers inter-onneted withmulti-hop ommuniation paths. MANETs o�er distintive advantages in areas suhas searh and resue operation in disaster areas, in ollaborative mobile omputing,and reently, in a heterogeneous sensor network where a mobile node ats as a morepowerful sink and luster head or gateway for resoure-onstrained sensor devies.In order to realize the pratial bene�ts of MANETs, it is essential to develope�ient networking tehniques that take full advantage of available resoures withonsideration of the system apabilities and onstraints. A number of issues mustbe addressed, suh as routing, sheduling, medium aess ontrol (MAC), mobilitymanagement, power ontrol and quality of servie (QoS).This thesis onsiders the problem of network-level resoure alloation and provi-sioning under a time-varying hannel in a multi-lass ad ho network. Spei�ally,we use a stohasti optimal ontrol approah for queue sheduling or bandwidth allo-ation and bu�er management. Our model aptures the situation of having di�erentsoure-destination pairs, di�erent hannel data and error rates, general tra� arrivalpatterns and arbitrary number of nodes.There has been a number of researh works in resoure alloation and sheduling1



under a time-varying hannel and in a multi-hop network. Due to the inherently lossyharateristis of the wireless medium, researhers have used adaptive tehniques forresoure management. In [1℄ and [2℄, the authors formulated a onstrained onvexoptimization of resoure alloation for MANETs subjet to QoS and fairness on-straints. Spei�ally, they have onsidered power ontrol for optimizing throughput,servie level agreement (SLA) feasibility under network onstraints (i.e. with respetto bandwidth, delay, delivery probability and guaranteed data rate), unused apa-ity maximization and minimizing transmission delay under SLA with the networkonstraints.In [3℄, the authors presented a prie-based approah of bandwidth alloation andonsidered priing as a means to stimulate ooperation where nodes harge othernodes for relaying data pakets. Assuming that the users maximize their own bene�t,they have proposed an iterative prie and rate adaptation algorithm and showed thatit onverges to a soially optimal bandwidth alloation.The main weakness of these approahes [1, 2, 3℄ is the assumption that the networkis stati. One the network onditions vary, eah agent may need to re-ompute itsoptimal resoure alloation poliy. A better and more pratial approah is thus toinlude the network dynamis and �nd the optimal ourse of ations for the agents.There is also no lear notion of time or deision periods in the above-mentionedshemes. It is evident that the amount of available resoures for future onnetionsand expeted amount of future net bene�t depend on how muh reservation is made atpresent. Our solution di�ers from these approahes by treating the resoure alloationproblem as a stohasti ontrol problem, where eah agent atively performs queuemanagement and sheduling to optimize long term performane.The theory of Markov Deision Proess (MDP) have been widely used as a math-ematial framework for sequential deision-making in stohasti domains and for ad-dressing performane optimization. This thesis presents four variants of MDP formu-2



lations to highlight our ontributions and results.1.1 Optimal Stohasti Control using ψ-irreduibleMarkov hainsThe �rst type onsiders a general queueing network under a time-varying hannel,where eah node ats as an agent. We derive a Markov hain for eah node andformulate a MDP, also known as a ontrolled Markov hain, with the objetive ofminimizing the average ongestion level. The optimal solution to the MDP an befound by using standard dynami programming (DP) tehniques suh as value itera-tion and poliy iteration [4℄. However, due to the time-varying nature of the network,the irreduibility property of the Markov hain may not hold and thus, DP algo-rithms annot be applied diretly to ompute the optimal poliy. We thus use a novelframework known as ψ-irreduibility for ontrolled Markov hains. We note that ψ-irreduibility is easier to verify and is more appliable than the standard de�nitionof irreduibility of having only a single ommuniating lass where any state an bevisited from any initial ondition [4℄.Obtaining stohasti ontrol poliies for wireless queueing networks are developedbased on the theory of Lyapunov drift [5, 6, 7℄. This theory has been used in thedevelopment of stabilizing ontrol laws for data networks, but has not been used toaddress performane optimization. However, by using the framework of ψ-irreduibleMarkov hains, not only that we an address performane optimization in �nding theoptimal poliies, we an also show stability for the queueing model.In partiular, for obtaining the optimal poliies for ψ-irreduible Markov hains,we introdue stability onepts suh as c-regularity, regular hains and regular poli-ies. Consequently, our analysis also uses the theory of Lyapunov's seond method,together with Foster's stability riterion for unontrolled Markov hains. The merging3



of these tehniques is known as the Foster-Lyapunov drift ondition [8℄ that providesa stability inequality ondition for our wireless queueing model.By using the stability onditions for ψ-irreduible Markov hains and a modi�edvalue iteration algorithm, we also derive performane bounds from the ontrolledmodel itself, as the ontrol algorithm onverges to the optimal poliy. Spei�ally,due to the Foster-Lyapunov drift ondition and regularity of intermediate poliiesin the iteration, we an guarantee a bounded average ongestion level and queueingdelay.The idea of using a drift ondition to derive performane bounds is similar to thework in [9℄. However, the authors in [9℄ did not formulate the problem as a MDPand only used a linear programming approah at every time slot to searh for theoptimal parameter settings. In general, the value iteration algorithm for MDP is lessomputationally expensive than linear programming, sine the former improves on itsomputed poliy at every sueeding iteration, while the latter searhes the solutionspae at every time step without onsideration of previously obtained values.To the best of the author's knowledge, by using onepts of ψ-irreduible Markovhains, we present the �rst method of ahieving optimization and stability onditionssimultaneously in a general wireless Markov queueing network, and for deriving per-formane bounds diretly from the sheduling algorithm, as the algorithm onvergesto the optimal solution.1.2 Near-Optimal and Model-Free QoS ProvisioningThe seond variant of MDP formulation onsiders a Semi-Markov Deision Proess(SMDP) where eah node adaptively performs network-level bandwidth alloationand bu�er management in a multi-lass network. The main objetive is to maximizeaverage network reward and at the same time, minimize per-lass QoS violations with4



respet to bandwidth, queueing delay, and bu�er loss. Due to the fat that in a dy-nami network, estimating the state transition probabilities of the underlying Markovhain is a non-trivial task, we use the novelmodel-free mathematial framework knownas Neuro-Dynami Programming (NDP) [10℄, also termed as Reinforement Learning(RL) [11℄.It is also well known that Dynami Programming tehniques, suh as value iter-ation and poliy iteration, su�er from urse of dimensionality [4℄, espeially whenthe state spae is large as in the ase of QoS provisioning. NDP or RL solves theseissues by �nding an approximate solution to the optimal poliy, while the agent in-terats with the system. The distinguishing harateristis of this approah is thatit an be used in pratial and real-world senarios, whereby eah node determinesits near-optimal poliy through a sequene of diret interations with the network. Amodel-free solution does not need prior knowledge of the state transition probabilitiesof the Markov hain. Thus, RL is less omputationally expensive than DP tehniques,as it does not require the exat model of the system.In [12℄, the authors proposed a stohasti ontrol approah for resoure alloationunder a time-varying hannel. However, they used a model-based DP algorithm to�nd the optimal poliy. In our researh, we employ a model-free solution due to itspratiality and appliability in atual network deployments. In addition to the time-varying hannel, we also onsider MANET-spei� harateristis, suh as dynamitopology and di�erent MAC and routing mehanisms.A provisioning method based on the SMDP framework was proposed in [13℄ foradaptive multimedia in ellular wireless networks. They disussed a bandwidth adap-tation algorithm in onjuntion with all admission ontrol. They onsidered a multi-lass network and formulated an average reward SMDP. They applied a model-freeRL algorithm to maximize the network revenue while satisfying the following QoSonstraints: probability of hand-o� dropping, average alloated bandwidth and intra-5



lass fairness. Due to the large state spae of the problem, they used a neural networkstruture known as Multi-Layer Pereptron (MLP) with a single hidden layer for ap-proximating the state-ation values in the RL algorithm. The state-ation valueswere then used to onstrut and �nd the optimal poliy.Our SMDP formulation is similar to [13℄, however, we present a network-levelbandwidth alloation and bu�er management sheme in a multi-lass MANET withonsideration of per-lass QoS onstraints. In applying RL to �nd the near-optimalpoliy, we use a linear neural network struture known as Cerebellar Model Artiula-tion Controller (CMAC), whih is omputationally heap to use and is suitable forfast and real-time learning. The CMAC network performs linear funtion approxi-mation for ompatly estimating and storing state-ation values in the RL algorithm[14℄. Linear funtion approximators, suh as CMAC neural networks, in ontrast withnon-linear MLP networks used in [13℄, are also known to be bene�ial for the on-vergene of RL algorithms, suh as Temporal-Di�erene (TD) learning, for problemsinvolving large or ontinuous state spae [15℄.The main ontribution of this approah is by formulating the QoS provisioningproblem as a stohasti ontrol problem (i.e. SMDP) and using a model-free solution(i.e. RL), we are able to provision bandwidth and manage bu�er resoures to satisfyQoS requirements in a ost-e�etive and pratial manner, while attaining the near-optimal poliy and without knowing the exat model of the system.1.3 Hierarhial Optimal Control for Resoure Allo-ationThe third variant of MDP formulation extends the SMDP model for QoS provisioningas desribed in the previous setion, espeially for ontinuous state and ation vetorspaes. Using the idea of divide-and-onquer, we propose to divide the original SMDP6



provisioning problem into a olletion of smaller problems. We then ompose poliiesobtained from the smaller problems into the optimal poliy for the original problem.Intuitively, this mehanism aelerates the proess of �nding the optimal solution,sine the smaller problems are relatively easier to solve. Formally, we use the frame-work known as Hierarhial Semi-Markov Deision Proess (HSMDP) [16℄ that usesthe idea of deomposing the large state spae into regions of sub-spaes.A omplex SMDP problem an often be solved by deomposing it into a olletionof smaller problems. The smaller problems an then be solved and reombined intoa solution for the original problem. In dividing the state spae, HSMDP essentiallydeomposes the given problem into di�erent tasks. Eah task an then be furtherdeomposed into a olletion of subtasks and so on, up to the desired level of the taskhierarhy. HSMDP uses the idea of temporal abstration where, at a given task levelin the hierarhy, deisions are not required at eah step, but invokes a sequene oftemporally-extended ativities or tasks, also known as temporally-abstrat ations. Atthe lowest level of the task hierarhy are primitive ations that immediately terminateafter exeution.In the original SMDP problem in Setion 1.2, we observe that, even though themodel-free solution was used in �nding the near-optimal poliy for bandwidth allo-ation and bu�er management, eah agent still su�ers from slow onvergene, as itneeds onsiderable amount of experiene in estimating the optimal poliy. In resoureonstrained devies, this may not be pratial.As for the HSMDP formulation, �nding the optimal poliy requires obtaining thebest poliy at eah level of the task hierarhy. We use the orresponding model-freeHierarhial Reinforement Learning (HRL) tehnique [16℄. A primitive ation ofthe task hierarhy orresponds to the ation used in the �at or non-hierarhial RLalgorithms, suh as Q-Learning [17℄ and the SMART algorithm used in [13, 18℄. Itshould be noted that �at RL algorithms are only appliable for non-hierarhial MDP7



problems.In [18℄, even though the ation vetor with the highest state-ation value anbe retrieved ompatly, we observed that the �at RL algorithm is still searhingfrom a large ontinuous vetor spae. This e�etively does not prevent the agentfrom hoosing ostly ations, espeially during the initial exploration phase, whihalso ontributes to slower onvergene. HRL aelerates onvergene by reusing thepoliies learned by the subtasks in the task hierarhy in the HSMDP formulation. Itis also possible to de�ne ations at eah subtask to prevent the agent from hoosingostly and unfavorable poliies.The main ontribution of this approah is that by deomposing the network-levelQoS provisioning problem into a task hierarhy under the stohasti ontrol HSMDPframework, and using the orresponding model-free HRL algorithm, we an ahievebetter average long term performane.1.4 Deentralized Optimal Control for Resoure Al-loationThe fourth type of MDP formulation onsiders the queue sheduling problem as adeentralized ontrol problem. Spei�ally, we use the framework known as Deen-tralized Partially Observable Markov Deision Proess (DEC-POMDP) [19℄ where theperformane of the network is a�eted by the joint ations or poliies of the agents.DEC-POMDP is an extension of the theory of Markov Deision Proess for de-entralized ontrol (DEC-MDP), but eah agent observes a di�erent partial view ofthe urrent network ondition. The observation of an agent may only inlude theloal queue information and poliies of neighboring agents. In �nding the optimaljoint ations, the DEC-POMDP formulation is essentially a multi-agent system thatallows the agents to ollaborate, ooperate and ontrol a single MDP without om-8



plete observability of the global network state. This approah is thus more appliableand realisti than any other MDP-based framework, as it onsiders a deentralizedmulti-agent system in atual ommuniation network senarios.It is known that exat and model-based solutions to a DEC-POMDP are ompletefor the omplexity lass non-deterministi exponential time (NEXP-omplete) [19℄.In other words, a general DEC-POMDP does not admit polynomial-time algorithmssine P 6= NEXP. In this thesis, we propose to solve the queue sheduling problem asa DEC-POMDP using model-free RL tehniques. It should be noted that standardRL algorithms only solve a single MDP formulation for eah agent independently.Hene, in order to �nd and approximate the optimal joint poliy in a deentralizedmanner, we propose to extend RL algorithms to solve a multi-agent ollaborativeDEC-POMDP. Spei�ally, our approah is based on the RL tehnique known aspoliy gradient that parameterizes and updates the poliies of eah agent duringexeution.We also observe the fat that in atual ommuniation networks, eah agent hasonly limited interations with a small number of neighboring agents. In other words,eah agent only a�ets those agents geographially lose to it. We address this issue byexploiting this idea of loality of interation by ombining the ideas of DEC-POMDPand a formalism known as Distributed Constraint Optimization (DCOP) [20, 21℄.We propose a model-free deentralized algorithm alled Loally Interating Dis-tributed Reinforement Learning Poliy Searh (LID-RLPS) to solve a DEC-POMDP.LID-RLPS uses a multi-agent �nite state ontroller for eah node to approximate thejoint poliy while onsidering the loality of interation, and without the state andobservation transition model of the DEC-POMDP. In our analysis, we also use the ψ-irreduibility framework disussed earlier, but applied in a multi-agent environment.Consequently, we show a stability ondition known as V-uniform ergodiity [22℄ for9



ψ-irreduible ontrolled Markov hains. This stability property provides an inequalityondition that enables us to derive performane bounds from the ontrol algorithm.We emphasize that V-uniform ergodiity di�ers from the Foster-Lyapunov drift on-dition desribed earlier in Setion 1.1 as it is more appliable in a model-free approahfor a deentralized multi-agent framework.To the best of the authors' knowledge and by also using stability onepts of
ψ-irreduible hains, we present the �rst method of ahieving optimization oopera-tively in a deentralized manner in a general wireless Markov queueing network, andfor deriving stability onditions and performane bounds simultaneously and diretlyfrom the ontrol algorithm, as the LID-RLPS algorithm onverges to the optimalsolution.1.5 Thesis ContributionsFigure 1.1 shows the ontributions of our thesis. The breakdown of Figure 1.1 isexplained as follows:1. Given a wireless MANET, we identify a ontrolled Markov hain or MarkovDeision Proess. Two lassi�ations of MDP framework are used: single-agentand multi-agent.2. Given a partiular MDP, we address the issue of stability. We introdue the

ψ-irreduibility framework, and its stability onepts suh as c-regular hains,petite sets, drift onditions, and V -uniform ergodiity.3. We also address the issue of �nding the optimal poliy to optimize ertain perfor-mane metris. This an be done either via model-based exat DP algorithmssuh as value iteration, or via model-free algorithms suh as poliy gradientmehanism and NDP or RL. 10
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4. In addition, we want to derive performane bounds for the network, underthe ontrolled Markov hain. In this thesis, we use the Foster-Lyapunov andgeometri drift inequality onditions under the ψ-irreduibility framework.5. To the best of the author's knowledge and as our main ontribution, we presentthe �rst tehnique based on a stohasti optimal ontrol framework that ahievesstability and optimization simultaneously, and for deriving performane boundsin a general Markov wireless queueing network diretly from the ontrol algo-rithm as the algorithm onverges to the optimal solution.In addition, we propose a number of tehniques in the RL researh �eld suh as:
• A novel funtion approximation tehnique known as Wire-�tted CMAC thathandles ontinuous state and ation vetor spaes for value-based algorithms
• A tehnique alled Continuous-time Hierarhially Optimal Average Reward(CHO-AR) RL algorithm for solving the HSMDP problem with ontinuous stateand ation vetor spaes
• Deentralized Model-free algorithm known as Loally Interating DistributedReinforement Learning Poliy Searh (LID-RLPS) for solving the DEC-POMDPwhile handling loality of interation, partial observability, and stability.1.6 Summary of MDP models & algorithmsFigure 1.2 shows a summary of the MDP models, in terms of ontrol and optimization.The �rst three models (i.e. ψ-irreduible ontrolled Markov hains, SMDP, HSMDP)fall under the single-agent framework. The last MDP variant (i.e. DEC-POMDP)is an extension of deentralized MDP (DEC-MDP) and falls under the multi-agentframework. In the �rst three variants, eah node ats as an agent that sees its own12



MDP loally and independently from the other nodes. Figure 1.3 shows our generalsystem model for MANETs for the independent MDP agents.

Figure 1.2: MDP models

Figure 1.3: Independent MDP agents for resoure alloation in MANETsUnder the ψ-irreduibility framework, Figure 1.4 shows the di�erent properties13



that express stability onditions needed for performane analysis in our wirelesssheduling model.

Figure 1.4: Stability and Performane Analysis of Controlled Markov Chains

Figure 1.5: Model-Free MDP AlgorithmsFor the ψ-irreduibility framework in Chapter 3, we use a modi�ed DynamiProgramming-based value iteration algorithm that onsiders both stability and opti-mization simultaneously (i.e. �nd optimal and stable poliies). On the other hand,Figure 1.5 shows the orresponding algorithms used to solve the di�erent MDP vari-ants used in Chapters 4, 5, and 6. For the SMDP framework, we use a model-freeRL algorithm known as Semi-Markov Average Reward Tehnique (SMART). We also14



extend SMART for ontinuous state and ation vetor spaes to approximate theoptimal poliy.For the HSMDP framework, we use an extended RL-based algorithm for a hier-arhial task struture, known as Continuous-Time Hierarhially Optimal AverageReward (CHO-AR) algorithm. As mentioned in Setion 1.3, this aelerates the on-vergene of �nding the optimal poliy as ompared with the original SMDP model.Finally, for the DEC-POMDP multi-agent model, we propose a model-free LID-RLPS algorithm that �nds a near-optimal and stable poliy struture for our resourealloation problem.1.7 Organization of ThesisChapter 2 introdues the novel mathematial framework known as ψ-irreduibilityfor Markov hains. We shall use this framework for studying the stability and per-formane analysis for our wireless queueing model.Chapter 3 �rst presents a general queueing model with a time-varying hannelstate proess. We introdue the onepts of rate onvergene and hannel onver-gene and prove that the queueing model is a ontrolled Markov hain or MDP. Wealso onsider the onept of a topology state proess and explain how our approahan be used to inlude varying topology and MAC mehanisms. Sine the irreduibil-ity property of Markov hains may not apply due to the time-varying nature of thenetwork, we apply the onepts of ψ-irreduibility for Markov hains from Chapter 2.Spei�ally, we disuss the optimization and stability onditions for ψ-irreduible on-trolled Markov hains with the objetive of minimizing the average ongestion level.We then derive the performane bounds for average queueing delay and ongestionlevels from the stability ondition and ontrol algorithm.15



Chapter 4 introdues the SMDP framework and applies it for bandwidth alloationand bu�er management. We then use the model-free RL algorithm to �nd the near-optimal poliy that maximizes the average network reward, while minimizing QoSonstraint violations. We also propose a novel funtion approximation tehniqueknown as Wire-Fitted CMAC that solves the issues of ontinuous state and ationvetor spaes in QoS provisioning.Chapter 5 extends the SMDP framework of Chapter 4 by reformulating the QoSproblem as HSMDP. The key priniple behind HSMDP is to ompose poliies from thesubtasks in the task struture. We then present the orresponding model-free HRLsolution to approximate the hierarhially optimal poliy. We ompare the HRL-based provisioning sheme with the non-hierarhial solution in Chapter 4, in termsof average long term performane, suh as network reward, lass queueing delay, andbu�er loss.Chapter 6 presents and emphasizes the importane of deentralized ontrol ap-proah for ollaborative sheduling and resoure alloation, whih di�ers from pre-vious researh. This hapter di�ers from the prior hapters as it addresses globalnetwork-wide optimization, and not on a per-node basis. We then present the DEC-POMDP framework and apply it for the multi-lass queue sheduling problem inMANETs under the average ost riterion. The main objetive is to �nd the joint op-timal poliy of the agents that minimizes the average long term ongestion level. Wethen disuss some non-trivial issues of exat model-based solutions for DEC-POMDP.In order to �nd and approximate the joint optimal poliy in a deentralized manner,we propose a model-free ontrol algorithm known as LID-RLPS. We also exploit theidea of �nding a poliy struture to apture the loality of interation among neigh-boring agents. Furthermore, we use the ψ-irreduibility property for Markov hainsto study the performane and stability of our deentralized system model. We alsoderive performane bounds on average queueing delay and ongestion level from the16



stability ondition known as V-uniform ergodiity for ψ-irreduible Markov hains.Finally, we onlude our work and desribe future researh diretions in Chapter7.
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Chapter 2Optimization and Stability of MarkovDeision Proess
This hapter introdues the mathematial theory for a general Markov Deision Pro-ess, with emphasis on the ψ-irreduibility property, stability, and optimization of
ψ-irreduible Markov hains.As brie�y introdued in Setion 1.1, the framework of ψ-irreduible Markov hainsis required sine the usual onept of irreduibility for Markov hains may not hold,due to the time-varying network ondition. The lemmas and theorems in this hapterare from previous researh [4, 8, 23, 24, 25℄.This important theory shall be used in Chapter 3 spei� to our sheduling prob-lem in a general wireless queueing network for MANETs.2.1 Controlled Markov Chain or Markov DeisionProessWe onsider a general MDP with the state proess Φ = {Φ(t) : t ≥ 0} evolving on aountable state spae S and ation spae A. For eah s ∈ S, there exists a non-emptyset A(s) ⊆ A that ontains the admissible ations when the state Φt takes the value sat time t. Let β(S) denote the set of all subsets of S. The pair (S, β(S)) is generally18



known as a measurable spae with S as the abstrat set of points and β(S) as the
σ-�eld. The set of admissible state-ation pairs {(s, a) : s ∈ S, a ∈ A(s)} is assumedto be a measurable subset of the produt spae S × A.The proess Φ itself an be thought of as lying in a sequene or path spae formedby a ountable produt Ω = (S × A)∞ =

∞
∏

i=0

(S ×A)i. The set of all subsets of Ω issimilarly de�ned with the orresponding σ-�eld F . We also de�ne an initial ondition
s ∈ S for the sample path with a probability measure Ps so that P (Φ ∈ G) is wellde�ned for any set G ∈ F . The triple {Ω,F , Ps} thus de�nes a stohasti proess[23℄.The transitions of the state proess is governed by Pa(s, B) whih desribes theprobability that the next state is in B for any B ∈ β(S) given the urrent state is
s ∈ S and the hosen ation is a ∈ A(s). A poliy is de�ned by a mapping of thestate proess into the hoie of ation. In this hapter, we only onsider a stationaryMarkov poliy w : S → A, suh that w(s) ∈ A(s) for all s and does not depend ofthe past hoie of ations and time-period.The proess Φw under a �xed poliy w is a Markov hain on (S, β(S)). We de�nethe t-step transition probabilities for this hain as:

P t
w(s, B) := P (Φw

t ∈ B | Φw
0 = s)for s ∈ S, B ∈ β(S), and t ∈ Z+. We also use the operator-theoreti notation:

P t
wh(s) := E {h(Φw

t ) | Φw
0 = s}. We also de�ne the resolvent kernel as:
Kw(s, B) :=

∞
∑

t=0

2−(t+1)P t
w(s, B) (2.1)The stability of a Markov hain Φw is frequently de�ned in terms of the followingreturn times: 19



τB := min {n ≥ 1 : Φw
t ∈ B}

σB := min {n ≥ 0 : Φw
t ∈ B}where τB is alled the �rst return time while σB is the �rst hitting time on B.We also de�ne the return time probability as:

L(s, B) := Ps(τB <∞) (2.2)where L(s, B) represents the probability that the hain enters B starting from state
s. We assume that a ost funtion c : S × A → [1,∞) is given. This assumption isused in [8, 23℄ for a general state spae MDP and is ruial in providing onvergenewithout the usual assumption of irreduibility. In this hapter, we only onsider theaverage ost riterion. The average ost of a partiular poliy w, for a given initialondition Φw

0 = s, is de�ned as:
J(w, s) := lim

n→∞

1

n

n
∑

t=0

Ew
s {c(Φw

t , at)} (2.3)where ation at = w(Φw
t ). A poliy w∗ is optimal if J(w∗, s) ≤ J(w, s) for all poliies

w, and any initial state s. The onstrution of the optimal poliy is usually derivedfrom the following equations:
η∗ + h∗(s) = mina∈A(s) [c(x, a) + Pah∗(s)] (2.4)

w∗(s) = arg mina∈A(s) [c(s, a) + Pah∗(s)] , s ∈ S (2.5)where Pah∗(s) := E {h∗(Φ
a
1) | Φa

0 = s}. The equality (2.4) is known as the average20



ost optimality equation (ACOE). If a poliy w∗, a measurable funtion h∗ and aonstant η∗ exist that solve (2.4) and (2.5), then the stationary Markov poliy w∗ isoptimal [4, 8℄. Formally, this result is presented as follows:Theorem 2.1: [24, Theorem 2.1℄ If the triple (w∗, h∗, η∗) solves (2.4) and (2.5), andfor any x ∈ X and any poliy w satisfying J(w, s) <∞ and that:
1

n
P n

wh∗(s) → 0, n→ ∞.Then w∗ is an optimal ontrol and η∗ is the optimal ost suh that:
lim

n→∞

1

n

n
∑

t=0

Ew
x

{

c(Φw∗

t , at)
}

= η∗ (2.6)and J(w, s) ≥ η∗ for all poliies w, and all initial states s.Sine the goal is to �nd the poliy that minimizes the steady state ost in (2.3), it isreasonable to �rst understand when the ost an be expeted to be �nite. In the nextsetions, we will introdue the onepts of ψ-irreduible Markov hains, petite sets,
f -regularity, and c-regular hains [23℄. These onepts are needed for haraterizingthe limit in (2.3) and for the stability of general Markov hains. We emphasize thatthe usual onept of irreduibility for Markov hains is relaxed in our model and thusanother mathematial framework is required.2.2 Conept of ψ-irreduibility for general state spaehainsDe�nition 2.1: A Markov hain Φw under poliy w is ψ-irreduible if there existsa measure ψ on B ∈ β(S) suh that, whenever ψ(B) > 0, the resolvent kernel21



Kw(s, B) > 0, for all s ∈ S. We all ψ a maximal irreduibility measure.
Let β+(S) := {A ∈ β(S) : ψ(A) > 0}. If the hain Φw is ψ-irreduible, the proess hasa positive probability of entering any set in β+(S). In other words, there exists some
n > 0, suh that, for any initial ondition s ∈ S, P n

w(s, A) > 0, where A ∈ β+(S). Thehain Φw is also onsidered as ψ-irreduible if the return time probability satis�es:
L(s, A) > 0 whenever ψ(A) > 0, for all s ∈ S. Equivalently, for a ountable statespae model, there exists a state θ ∈ S whih is aessible where: ∞

∑

t=0

P t
w(s, θ) > 0.The following result is from [8℄.Lemma 2.1: A Markov hain is ψ-irreduible for a ountable state spae model ifthere exists a single ommuniating lass of states whih is reahable from any initialondition.De�nition 2.2: For a ψ-irreduible hain, a set C is de�ned as a petite set iffor eah A ∈ β+(S), and for any s ∈ C, there exists n ≥ 1 and δ > 0, suh that:

Ps(τA ≤ n) ≥ δ where Ps(τA ≤ n) denote the probability that the hain, starting from
x, reahes A in at most n steps. This is equivalently expressed as: Kw(s, A) ≥ δunder poliy w. This also implies that in a ψ-irreduible hain, there always exists aountable overing of the state spae by petite sets [23, Chapter 5℄.2.3 f-Regularity and StabilityA entral onept of our model is the notion of f -regularity, where f is a measurablefuntion of the state spae and f ≥ 1. In our ase, f = cw, where cw(s) = c(s, w(s))is the one-step ost inurred by poliy w, for s ∈ S.In a ontrolled ψ-irreduible hain and for any A ∈ β+(S), a set C is cw-regular22



if:
sup
s∈C

Ew
s

{

τA
∑

t=0

cw(Φw
t )

}

<∞ (2.7)where τA is the �rst return time to A.A cw-regular set is always a petite set due to the haraterization of petite setsin De�nition 2.2 and the result in [23, Theorem 14.2.4℄. The Markov hain is itself a
cw-regular hain if the state spae S admits a ountable overing of cw-regular sets.The Markov poliy w is a regular poliy if the ontrolled Markov hain is cw-regular.The importane of regular poliies is highlighted as follows:Theorem 2.2: [25, Theorem 2.1℄ For any regular poliy w, there exists a uniqueinvariant (i.e. steady state) probability distribution πw and the ontrolled proess Φwsatis�es the following bound for the steady state ost π(cw):

π(cw) :=
∑

cw(s)πw(s) <∞. (2.8)The average ost is equal to π(cw), independent of the initial ondition s, and thefollowing limit holds:
J(w) = J(w, s) = π(cw) = lim

n→∞

1

n

n
∑

t=0

Ew
s {cw(Φw

t )} (2.9)
The onepts of regular poliies and c-regular Markov hains are thus ruial in �ndingthe optimal poliy w∗ of ontrolled ψ-irreduible hains due to the Theorems 2.1 and2.2.The following result is a onsequene of the f -norm Ergodi Theorem in [8, 23,Chapter 14℄ that uses a drift haraterization of c-regular hains.23



Theorem 2.3: Let Φw be a Markov hain satisfying the Foster-Lyapunov driftinequality for s ∈ S:
PwV (s) := E

{

V (Φw
t+1) | Φw

t = s
}

≤ V (s) − cw(s) + η̄ (2.10)where V : S → R+ and η̄ > 0 is a �nite onstant. This inequality is usually writtenas: PwV ≤ V − cw + η̄. The ost funtion satis�es cw(s) ≥ 1. Suppose that the set
U = {s : cw(s) ≤ 2η̄} is petite (see De�nition 2.2). Then,(i) Φw is a cw-regular Markov hain satisfying the following bound: For eah A ∈

β+(S), there exists a onstant d(A) <∞:
Ew

s

{

τA−1
∑

t=0

cw(Φw
t )

}

≤ V (s) + d(A) (2.11)(ii) There is a unique invariant probability πw and π(cw) ≤ η̄, where π(cw) is thesteady state ost de�ned in (2.8).
Theorem 2.3 gives neessary onditions for a hain to be c-regular. Another relevantresult in using the Foster-Lyapunov drift inequality is known as the ComparisonTheorem from [23, Theorem 14.2.2℄. This theorem will be used in Chapter 3 forshowing c-regularity for our model.Theorem 2.4: If the Markov hain Φt satis�es the drift inequality for s ∈ S:

PV ≤ V − g + uwhere the funtions V , g, and u take values in R+. Then for any stopping time τ ,
Es {V (Φτ )} + Es

{

τ−1
∑

t=0

g(Φt)

}

≤ V (s) + Es

{

τ−1
∑

t=0

u(Φt)

} (2.12)24



An important onept for stability of ψ-irreduible hains is de�ned as follows:De�nition 2.3: A ψ-irreduible hain is alled Harris if L(s, A) = 1 for any A ∈

β+(S) and any s ∈ S, where L(s, A) is de�ned in (2.2). If the hain admits an in-variant probability measure π, then the hain is alled positive Harris.
From this de�nition, a c-regular hain is automatially positive Harris. In [5℄, fora wireless queueing system, the authors de�ned stability as satisfying: L(s, A) :=

Ps(τA <∞) = 1 where the state spae S represents the queue length. However, theydid not formulate the problem as a ontrolled Markov hain and did not use the ideaof c-regular hains and regular poliies and of �nding the optimal poliy from thehain itself.For our ase, we de�ne stability as satisfying the c-regularity property for theMarkov hain. In our model, the Foster-Lyapunov drift inequality in Theorem 2.3plays a signi�ant role for queue stability and for deriving performane bounds.2.4 Existene of optimal poliies of ψ-irreduibleontrolled hainsIn Theorem 2.2, it is guaranteed that the limit of the average ost funtion existsfor any regular poliy. In this setion, we disuss that this result is related to theexistene riteria of the optimal poliy for ψ-irreduible ontrolled hains. Spei�ally,we present the haraterization of the triple (w∗, h, η∗) on the ACOE in (2.4) and (2.5).
25



We de�ne the ost over one yle ηw under a Markov poliy w: For any A ∈ β+(S),
ηw := min

{

η ≥ 1 : Ew
s

[

τA−1
∑

t=0

(cw(Φw
t ) − η)

]

≤ 0

} (2.13)Let ηmin be the minimal yli ost over all Markov poliies. If the poliy w isregular, then from the result in [8℄, the ost over one yle under the stationary poliy
w satis�es: ηw = π(cw) = J(w, s) for s ∈ S.The minimal relative value funtion hmin is de�ned point-wise as:

hmin(s) := inf

{

Ew
s

[

τA−1
∑

t=0

(cw(Φw
t ) − ηmin)

]} (2.14)where the minimum is taken over all Markov poliies.We term a funtion c norm-like if the sub-level set {s : c(s) ≤ b} is a �nite subsetof S for any �nite onstant b. The following assumptions are used for the existeneriteria of the optimal solution to the ACOE:
A(1): There exists a poliy w0, a funtion V0 : S → R+ and positive onstant η̄ <

∞ satisfying the orresponding Foster-Lyapunov drift inequality: Pw0V0 ≤ V0−cw0+η̄.This assumption implies that there is at least one regular poliy.
A(2): The ost funtion c(s, a) is norm-like on the produt spae S × A, andthere exists a norm-like funtion c : S → R+ suh that c(s, a) ≥ c(s) for any s ∈ S,

a ∈ A(s).
A(3): For any Markov poliy w, there exists θ ∈ β(S) and δ > 0 suh that

Kw(s, θ) > δ for all s ∈ S0, where S0 = {s : c(s) ≤ 2η̄}. This implies that S0 is apetite set for any poliy w. This ondition is a generalization of the De�nition 2.2 inSetion 2.2.The following important theorem is from [8℄.Theorem 2.5: Suppose the Assumptions A(1) − A(3) hold. Then:(i) The minimal relative value funtion hmin is a solution to the ACOE.26



(ii) Suppose the poliy wmin satis�es:
wmin(s) = arg min

a∈A(s)
[c(s, a) + Pahmin(s)] , s ∈ S (2.15)where Pahmin(s) := E {hmin(Φa

1) | Φa
0 = s}. Then, wmin is optimal over all Markovpoliies.

Following the proof of Theorem 2.5 in [8℄, it an be easily shown that the poliy wminin (2.15) is also a regular poliy and that ηmin = π(cwmin
) = J(wmin, s) for s ∈ S.Hene, η∗ = ηmin, h∗ = hmin, and w∗ = wmin as de�ned in (2.6) in Theorem 2.1.Now that we know that the solution exists, the next setion explains an algorithm toobtain the solution.2.5 Value Iteration Algorithm for ψ-irreduible on-trolled hainsThe value iteration algorithm (VIA) is a model-based Dynami Programming (DP)tehnique that approximates the value funtion in the optimality equation. For theaverage-ost riterion of ψ-irreduible ontrolled hains, VIA is indutively de�ned asfollows [25℄. If the value funtion Vn is given at the nth iteration, the ation wn(s) isde�ned as:

wn(s) = arg min
a∈A(s)

[c(s, a) + PaVn(s)] , s ∈ SThe value funtion is then updated as follows:
27



Vn+1(s) = cwn(s, a) + PwnVn(s) (2.16)
= mina∈A(s) [c(s, a) + PaVn(s)]This then makes it possible to obtain the next ation wn+1(s). For notationalonveniene, we use the following:

cn = cwn; Pn = Pwn (2.17)Let En be the expetation operator indued by the stationary poliy wn:
wn = {wn(Φ0), w

n(Φ1), ...}In Assumption A(3) of Theorem 2.5, it is assumed that for any poliy w, there exists adistinguished state θ ∈ β(S). We de�ne the following funtions for s ∈ S and n ∈ Z+:
hn(s) := Vn(s) − Vn(θ); gn(s) := Vn+1(s) − Vn(s)The performane of the algorithm strongly depends on the initial value funtion

V0. The following theorem gives the neessary onditions for onvergene.Theorem 2.6: [25, Theorem 2.2℄ Suppose that the value iteration algorithm is initial-ized with the funtion V0 found in Assumption A(1), and the Assumptions A(1)−A(3)are satis�ed. In addition, suppose that the optimal poliy satis�es: lim
n→∞

1

n
P n

w∗V0(s) = 0for s ∈ S. Then:(i) For eah s, the sequenes {gn(s)} and {hn(s)} are bounded, and
28



lim
n→∞

1

n
Vn(θ) = lim

n→∞
gn(θ) = η∗

lim sup
n→∞

1

n
Vn(s) ≤ lim sup

n→∞
gn(s) ≤ η∗, s ∈ S(ii) Eah intermediate poliy wn is regular with unique invariant probability πn,and eah Vn serves as a Lyapunov funtion for the nth poliy:

PnVn ≤ Vn − cn + η̄, n ≥ 0(iii) The average ost satis�es: J(wn) = πn(cn) ≤ η̄n = sup
x∈X

gn(x), where πn(cn) isthe steady state ost de�ned in (2.8) and that lim
n→∞

J(wn) = η∗.(iv) Any point-wise limit point of the poliies {wn} is regular and optimal. If h∞is any point-wise limit of the sequene {hn(s)}, then the pair {h∞, η∗} is a solutionto the ACOE.
Theorem 2.6 states that if the value funtion is initialized with a Lyapunov funtiontogether with a few assumptions above, then every sueeding poliy in the iterationis regular. This key result is used in the derivation of performane bounds in Chapter3.
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Chapter 3
ψ-irreduible MDP for WirelessQueueing Model
This hapter presents an appliation of ψ-irreduible Markov hains in Chapter 2 for ageneral wireless queueing model. Using the ondition known as the Foster-Lyapunovdrift inequality from Theorem 2.3, we derive results for �nding the optimal poliy andstability onditions for average queueing delay and ongestion level.By using the onepts of ψ-irreduible Markov hains and to the best of the au-thor's knowledge, we present the �rst method of ahieving optimization and stabilityonditions simultaneously in a general wireless Markov queueing network, and for de-riving performane bounds diretly from the ontrol DP algorithm, as the algorithmonverges to the optimal solution.Setion 3.1 disusses a general queueing model with a time-varying hannel stateproess. We introdue the onepts of rate onvergene and hannel onvergene andshow that the queueing model is a ontrolled Markov hain using the proof of Theorem3.1. We also onsider the onept of a topology state proess and explain how ourapproah an be used to inlude varying topology and MAC mehanisms in Setion3.2.Setion 3.3 applies the onepts of Chapter 2 for �nding the optimal poliy andstability onditions for our system model in Setion 3.1. Setion 3.4 then derivesthe performane bounds for average queueing delay and ongestion levels from the30



stability ondition and ontrol algorithm. In Setion 3.5, we present and disusssimulation results obtained using the NS2 network simulator. Figure 3.1 summarizesthe key ideas of this hapter.

             Contribution: 
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            & topology 
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Foster-Lyapunov 
   Provisioning 
     Algorithm

Wireless Queue Scheduling
     as Independent MDP 
          for each agent

Figure 3.1: Summary of tehniques for ψ-irreduible Markov hains for wireless queuesheduling
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3.1 SystemModel: Time-Varying Channel State Pro-essConsider a wireless network with N nodes and J network lasses. Eah node isassumed to at as an agent that atively performs sheduling on its own J loalqueues, where pakets are enqueued in their respetive lass queues. In eah node,assuming that time is slotted, the queue dynamis at the jth queue an be generallyexpressed for ∀j as:
xj(k + 1) = (xj(k) + aj(k) − µj(k))

+ (3.1)where:
xj(k) is the number of bits at time slot k
aj(k) is the number of bits arriving to the jth queue
µj(k) is the number of bits that were transmitted out of the node
(x)+ := max(x, 0)We assume that an agent observes the wireless hannel state, denoted as Ch(k),and is �xed for the entire time slot k and only hanges at slot boundaries. The han-nel state may inlude the harateristis of the network that a�et the transmission.It an be obtained either through diret measurement or through a ombination ofmeasurement and hannel predition. In partiular, we assume that the hannel pro-ess {Ch(k)}

∞
k=1 evolves as an irreduible aperiodi �nite state-spae Markov hain.Let {Ch,l(k) : l = 1, .., L} be the set of hannel states with a total of L states. Thisassumption is ommonly used in literature for modeling a time-varying hannel pro-ess and has been shown to be valid in atual network onditions [6, 12, 26, 27, 28℄.32



For eah hannel state Ch(k) at time slot k, {µj(k)}
J

j=1 is ontained in a onstraintset ΓCh(k) that represents the set of available transmission rates for sheduling. Atevery time slot k, the agent hooses the servie rate vetor µ(k) = (µ1(k), ..., µJ(k))
′

∈

ΓCh(k). The mapping from urrent hannel state to servie rate vetor is a stationarysheduling poliy. Let H be the set of all stationary sheduling poliies.It is shown in the next theorem that the servie rate µj(k) under any poliy
h0 ∈ H forms a stohasti proess {µj(k)}

∞
k=0 that is rate onvergent as de�ned asfollows [29℄:De�nition 3.1: A stohasti proess {A(k)}∞k=0 is rate onvergent with rate λ when:(i) lim

k→∞

1

k

∞
∑

k=0

A(k) = λ <∞(ii) For any δ > 0, there exists an interval K suh that, for any initial time k0and regardless of past history:
∣

∣

∣

∣

∣

E

{

1

K

K−1
∑

k=0

A(k0 + k)

}

− λ

∣

∣

∣

∣

∣

≤ δ

The following theorem shows that the servie proess {µj(k)}
∞
k=0 is rate onvergentand its rate, de�ned as µj,av := lim

k→∞

1

k

∞
∑

k=0

µj(k), an be expressed from the statistisof the hannel proess itself {Ch(k)}
∞
k=1 .Theorem 3.1: Given an irreduible aperiodi �nite state-spae Markov hain {Ch(k)}

∞
k=0for the hannel proess, the servie proess {µj(k)}

∞
k=0 is rate onvergent with rate

µj,av =
L
∑

l=1

πlRl, where {πl > 0; l = 1, ..., L} is the steady state probability distributionof the Markov hain with L hannel states; and Rl := E {µj(k) | Ch,l(k)} is de�ned asthe expeted servie rate when the hannel state is Ch,l(k) under the stationary poliy
h0, whih is independent of past history. 33



Proof: It is ommonly known that an irreduible aperiodi �nite state-spae Markovhain has a unique steady state probability distribution [4℄: πl > 0, for l = 1, ..., L. Inthe interval [k0, k0 +K − 1], let Tl(k0, K) be the set of time slots where the hannelstate is in state l. Let ‖Tl(k0, K)‖ denote the number of time slots where the hannelstate is l in this interval. The hannel proess is known to be hannel onvergent [29℄as the steady state probabilities of the Markov hain satisfy the following onditions:(i) ‖Tl(k0,K)‖
K

→ πl as K → ∞.(ii) For δ > 0, there exists a �xed interval K suh that:
L
∑

l=1

∣

∣

∣

∣

πl −
E {‖Tl(k0, K)‖}

K

∣

∣

∣

∣

≤ δFollowing [29℄, the empirial rate over K slots for the servie proess is given as:
1
K

K−1
∑

k=0

µj(k) = 1
K

L
∑

l=1







∑

k∈Tl(0,K)

µj(k)







=

L
∑

l=1

‖Tl(k0, K)‖

K







1

‖Tl(k0, K)‖

∑

k∈Tl(0,K)

µj(k)







(3.2)By the Law of Large Numbers, as K → ∞,
1

‖Tl(k0, K)‖

∑

k∈Tl(k0,K)

µj(k) → RlHene, µj,av := lim
k→∞

1

k

∞
∑

k=0

µj(k) =
L
∑

l=1

πlRl, thus proving the �rst ondition for rateonvergene in De�nition 3.1. The seond ondition for rate onvergene an be shownby taking expetations of (3.2) in the interval [k0, k0 +K − 1]:
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µj,av − E

{

1
K

k0+K−1
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k=k0

µj(k)

}

=

L
∑

l=1

πlRl −E







1
K

L
∑

l=1





∑

k∈Tl(k0,K)
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L
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K
Rl

=

L
∑
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Rl
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µj,av − E

{

1
K

k0+K−1
∑

k=k0

µj(k)

}∣

∣

∣

∣

∣

≤ δRmaxwhere Rmax is the maximum value of Rl for all hannel states. The last inequalityis due to the hannel onvergent property ondition. Hene, the servie proess isindeed rate onvergent. �We assume that {aj(k)}
∞
k=0 are independent and identially distributed sequeneof random variables and form a stationary and ergodi arrival proess suh that:

E [aj(k)] = λj < ∞ and its seond moment are also bounded on every slot k:
E
[

a2
j (k)

]

≤ A2
j,max < ∞, for j = 1, ..., J . This arrival proess an also be easilyshown to be rate onvergent with rate λj . It is also assumed to be independent ofthe servie proess above.For any poliy in H , the queue length proess {xj(k)}

∞
k=0 is in�uened by theMarkov hannel proess and the independent and rate onvergent arrival and servieproesses for eah lass j. From these onepts, we onlude that the queue lengthproess is indeed a Markov hain. The queueing model in (3.1) for eah lass j istherefore a ontrolled Markov hain or MDP.35



We propose in Setion 3.3 that eah agent independently solves its MDP basedon its loal observed state ondition. The ase of a multi-agent system where agentsollaborate among themselves is disussed in Chapter 6.In [7℄, the queue length proess in (3.1) was shown to be an aperiodi irreduibleMarkov hain. This was done by assuming that the arrival proess is modeled as aMarkov-modulated Poisson proess where the orresponding state spae evolves ina ountable and irreduible Markov hain. The number of arrivals is also a Poissonrandom variable. In our ase, we relax this assumption for the arrival proess. Thisimplies that the queue length proess {xj(k)}
∞
k=0 (i.e. queue length in bits) maynot be an irreduible Markov hain in the usual sense (i.e. having only a singleommuniating lass). As also mentioned in [5℄, under the onstraint set ΓCh(k) forthe available transmission rates, we annot guarantee irreduibility. The queue lengthproess (in bits) annot be irreduible sine not every possible length (in bits) an bevisited, obviously.The ontrolled Markov hain in our model is also not reurrent under a stationarypoliy h0, sine by de�nition, reurrent hains are only onerned with irreduiblehains [4℄.The work in [7℄ also disusses stable poliies under a time-varying hannel. Ourmodel is generally more appliable by relaxing the Markov-modulated Poisson arrivalassumption and not having an irreduible Markov hain for the queue length proess.Furthermore, we analyze stability and performane optimization simultaneously undera stohasti ontrol framework by �nding stable and optimal poliies.3.2 Conept of Topology State ProessIn the previous setion, we have disussed that eah node is in�uened by the hannelstate proess that evolves as a Markov hain. We laim that this onept an be36



extended to apture other important MANET related harateristis, suh as varyingtopology and medium aess ontrol (MAC) mehanisms. For instane, the suessof transmission depends on other nodes' attempts as well as the topology state ofthe network. The topology state inludes all the harateristis of the network thata�et transmission and may vary with time. It may inlude the hanging onnetivityamong nodes as they move, and transmission rates in eah link with hanging quality.Other harateristis that may not be diretly related to transmission an be alsoinluded in the topology state. This onept of topology state is applied in [27℄.By onsidering slotted time, we an assume that the topology state, whih alsoaptures the hannel state, forms a stohasti proess that evolves as an irreduibleaperiodi �nite state-spae Markov hain. Hene, we an apply the same reasoningand onlude that the queue length proess in eah node is in�uened by the topologystate of the network. Theorem 3.1 is also appliable and thus, the queue length proessis a ontrolled Markov hain.3.3 MDP for Wireless Queueing ModelAs explained in Setion 3.1, given the hannel state Ch(k) at time slot k, the agenthooses the servie rate vetor µ(k) = (µ1(k), ..., µJ(k))
′

∈ ΓCh(k).However, under the MDP formulation, we rede�ne the state vetor as the queuelength proess itself: x(k) = (x1(k), ..., xJ(k))
′

∈ X, where X is the state spae of thequeue length proess.Given the urrent state or loal lass queue lengths, eah agent hooses the ationvetor representing the servie rate vetor µ(k). This is possible sine the queue lengthproess loally for eah lass j is already a Markov hain that obeys the followingqueueing law from Setion 3.1:
37



xj(k + 1) = (xj(k) + aj(k) − µj(k))
+We have also shown that the servie proess {µj(k)}

∞
k=0 and arrival proess {aj(k)}

∞
k=0are independent rate onvergent proesses with rates µj,av and λj , respetively. Thus,the queue length proess x(k) = (x1(k), ..., xJ(k))

′ is itself ontrolled Markov hain.In other words, we do not anymore onsider the hannel or topology state proess,sine the queue length proess is already a Markov hain.The mapping from urrent state vetor x(k) (i.e. loal queue length vetor inbits) to the servie rate vetor µ(k) is de�ned as stationary sheduling poliy for theontrolled Markov hain. The goal is for eah agent to �nd the stationary poliy wthat minimizes the expeted average long term ongestion level starting with someinitial state x(0):
J(w, x(0)) := lim

n→∞

1

n

n
∑

k=0

Ew

x(0)
{call(x(k), µ(k))} (3.3)where call(x(k), µ(k)) :=

∑

j

xj(k) is de�ned as the bu�er or ongestion level of thequeues. The existene of the expetation operator Ew

x(0)
is due to the fat that theatual ongestion levels vary depending on the hannel quality and atual transmissionrate. If the hannel is error-free, the maximum amount of bits an be sent per timeslot at the transmission rate. The expetation operator also aptures the unertaintyof paket loss due to the time-varying hannel and hange in topology and routepaths.Figure 3.2 shows the multi-lass MANET where eah node ats as an agent. Weemphasize that eah agent independently solves its own MDP based on its loal ob-served state ondition (i.e. loal queue lengths). As disussed in Setion 3.2, this gen-38



Figure 3.2: Independent MDP agents for queue sheduling in MANETseral system model aptures varying topology, MAC mehanisms and wireless hannelonditions.The ase of a multi-agent framework where agents ollaborate among themselvesis disussed in Chapter 6.As shown in Setion 3.1, the queue length proess for eah lass j is already aontrolled Markov hain in itself. For ease of presentation in the following setions,we only onsider per-lass proesses, suh as the arrival, servie and queue lengthproesses for lass j in a single node.It should also be noted that in the MDP formulation, eah node does not needthe hannel state and tra� arrival statistis, sine the loal queue lengths for eahlass j already evolve as a ontrolled Markov hain.
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3.3.1 ψ-irreduibilityAfter de�ning the MDP, the next step is to establish the onept of ψ-irreduibilityfor the ontrolled Markov hain.Let dj(k) = aj(k)−µj(k). Sine the arrival and servie proesses are independent,the proess Dj = {dj(k)}
∞
k=0 itself is also rate onvergent with rate (λj − µj,av) andthese inrement variables dj(k) are i.i.d. random variables taking integer values in Z.Let Γj(z) = P (dj(k) = z), z∈ Z be the probability distribution of the proess Dj .The queue length for eah lass j evolves as a random walk on a half line:
xj(k + 1) = (xj(k) + dj(k))

+ (3.4)For any B ∈ Z+, the probability distribution for the lass queue j proess withinitial ondition of xj(0) = x0, x0 ∈ Z+ an be spei�ed as:
P (x0, B) = P (B = x0 + dj(1) | x0)

= P (dj(1) = B − x0) = Γj (dj(1) = B − x0)This implies that if P (x0, B) = Γj (dj(1) = B − x0) > 0, then any sueedingqueue length B > 0 an be reahed. On the other ase, we have for x0 > 0:
P (x0, {0}) = P (x0 + dj(1) ≤ 0 | x0)

= P (dj(1) ≤ −x0) = Γj (dj(1) ≤ −x0)It is lear that if Γj (−∞, 0) := Pj (dj(k) ≤ 0) > 0 for any k ≥ 0, then the hainreahes the empty queue {0}.Formally, suppose for some δ, ǫ > 0, Γj (−∞,−ǫ) > δ. Then for any n, if x0/ǫ < n40



for x0 > 0 then,
P n (x0, {0}) ≥ δn > 0 (3.5)We see that the queueing model in (3.4) is indeed ψ-irreduible if Γj (−∞, 0) :=

P (dj(k) ≤ 0) > 0, so that the empty queue {0} for lass j is aessible from anyinitial ondition xj(0) = x0, x0 ∈ Z+. This also satis�es the onditions of Lemma 2.1under the ountable state spae model.In [23, Proposition 4.3.1℄, it is shown that the measurable funtion ψ satis�es:
ψ(B) =

∞
∑

t=0

2−tP t(0, B) for B ∈ β(X) under the state spae X (i.e. queue length xin bits in our sheduling problem).From (3.5), we an also onlude that for any x ∈ C = [0, x0], the probability ofreahing {0} starting from x is bounded:
Px

(

τ0 ≤
x0

ǫ

)

≥ δ1+
x0
ǫ (3.6)In other words, the ompat set C = [0, x0] is a petite set from De�nition 2.2 withthe aessible set {0} for any x0 > 0 provided that Γj (−∞, 0) := P (dj(k) ≤ 0) > 0.We make the observation that ψ-irreduibility is easier to verify and more applia-ble than the standard de�nition of irreduibility of only having a single ommuniatinglass under a ountable state spae model.3.3.2 Queue StabilityIn Setion 2.3, we de�ne that a Markov hain is stable if it satis�es the c-regularityproperty. In applying this onept for our queueing model, we separately de�ne queuestability as follows:
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De�nition 3.2: A queue is stable if the queue length proess {xk}
∞
k=0 satis�es:

lim sup
M→∞

1

M

M−1
∑

k=0

Ex {xk} <∞ (3.7)We establish in the next subsetion that the c-regularity property of the Markov hainleads to queue stability from this de�nition.3.3.3 Establishing c-regularity and Queue StabilityIn showing that the ψ-irreduible hain in (3.4) is c-regular, we use Foster-Lyapunovdrift inequality ondition in Theorem 2.3. We show that the rate onvergent proess
Dj = {dj(k)}

∞
k=0 a�ets the c-regularity property. We have the following result:Theorem 3.2: Let βj = (λj − µj,av) denote the rate of the proess Dj = {dj(k)}

∞
k=0with probability distribution Γj(z) = P (dj(k) = z), z∈ Z. The queue length proessfor lass j is c-regular if βj < 0.Proof: Sine βj < 0, there exists a �nite x0 > 0 suh that:

∞
∑

z=−x0

zΓj(z) ≤
βj

2
< 0 (3.8)For the ountable state spae Markov hain Φw

t whih represents the queue lengthproess under the Markov poliy w, the Foster-Lyapunov drift inequality an be es-tablished as follows. For any x, y ≥ 0,
PwV (x) := E

{

V (y = Φw
t+1) | Φw

t = x
}

=

∞
∑

y=0

P (x, y)V (y)Let △V (x) := PwV (x)−V (x) and z = (y − x) for z∈ Z. We hoose the Lyapunovfuntion V (x) = x2. Then for any x ≥ 0,
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△V (x) =
∞
∑

y=0

P (x, y)V (y) − V (x)

= −V (x) +
∞
∑

z=−x

P (y = x+ z | x)V (x+ z)

= −x2 +

∞
∑

z=−x

Γj(z)(x + z)2

= −x2 + x2

∞
∑

z=−x

Γj(z) + 2x

∞
∑

z=−x

zΓj(z) +

∞
∑

z=−x

z2Γj(z)From Setion 3.3.1, we have shown that the ompat set C = [0, x0] is petitefor x0 > 0. Assuming that the distribution Γj(z) has a �nite seond order moment(i.e. ∞
∑

z=−∞

z2Γj(z) < ∞), and by the �nite negative rate βj in (3.8) and the fat that
∞
∑

z=−x

Γj(z) ≤ 1, then for any x ≥ 0:
△V (x) := PwV (x) − V (x) ≤ −f0cw(x) + d0δC(x) (3.9)for some onstants f0 > 0, d0 <∞, where cw(x) = (x+ 1) and the indiator funtionfor the petite set C = [0, x0], for some x0 > 0, is de�ned as: δC(x) = 1 if x ∈ C or 0otherwise.Let θ = {0} be the aessible state with τθ as the �rst return time of the hain

Φw
t under poliy w. By applying Theorem 2.4, we have for any x ≥ 0:

V (θ) + f0E
w
x

{

τθ−1
∑

t=0

cw(Φt)

}

≤ V (x) + d0E
w
x

{

τθ−1
∑

t=0

δC(Φt)

}

Following the idea of Assumption A(3) of Theorem 2.5, for the petite set C andfor any Markov poliy w, there exists a onstant m0 > 0 suh that Kw(x, θ) ≥ m0 forall x ∈ C. This is possible from (3.6) and due to the petiteness property in De�nition43



2.2.It is shown in [25, Lemma A.3℄ that for the petite set C and an aessible set {θ}satisfying Kw(x, θ) ≥ m0 for all x ∈ C, the following inequality holds:
Ew

x

{

τθ−1
∑

t=0

δC(Φt)

}

≤
1

m0Hene, the following inequality follows:
Ew

x

{

τθ−1
∑

t=0

cw(Φt)

}

≤
V (x) + d0/m0

f0Sine V (x) = x2 is bounded for any x ∈ C, the right hand side of this inequalityis bounded and thus, by de�nition in (2.7), the set C is regular. Furthermore, eahof the sub-level sets Cn = {x : V (x) ≤ n} for n ∈ Z+ is regular, sine every petite set
C = [0, x0] for any x0 > 0 satis�es the inequalities above. Therefore, the proess isitself cw-regular and there exists a regular Markov poliy w. �We now show that c-regularity leads to queue stability by the following result.Lemma 3.1: If the queue length proess is c-regular, then the queue is stable fromDe�nition 3.2.Proof: We rewrite the Foster-Lyapunov drift inequality in (3.9) as follows:

△V (x)/f0 ≤ −cw(x) + d0δC(x)/f0Sine f0 > 0 and we only require the Lyapunov funtion V (x) ≥ 0, we anreplae this funtion with a normalized version V0(x) := V (x)/f0 and the c-regularityproperty shown earlier still holds. In other words, the drift inequality for the hain44



Φw
t an be expressed as:

PwV0(x) − V0(x) ≤ −cw(x) + η (3.10)for positive onstant η < ∞ and any x ∈ X. Furthermore, this an be rewritten forall t ≥ 0, under a regular poliy w as:
Ew

x {V0(xt+1) − V0(xt) | xt} ≤ −cw(xt) + η (3.11)where Φw
t := xt. Taking expetations of this inequality over the distribution of xt,and summing over t from t = 0 to t = M − 1 for some M ∈ Z+ yields:

Ew
x {V0(xM ) − V0(x0)} ≤Mη −Ew

x

{

M−1
∑

t=0

cw(xt)

}

Dividing by M and using the fat that V0(xM) ≥ 0, we have:
1
M
Ew

x

{

M−1
∑

t=0

cw(xt)

}

≤ 1
M
Ew

x {V0(x0)} + ηBy taking note that cw(xt) = xt + 1, we have:
lim sup
M→∞

1

M

M−1
∑

t=0

Ew
x {xt} ≤ η − 1 <∞ (3.12)The last inequality thus proves queue stability as de�ned in De�nition 3.2. �3.3.4 Using the Value Iteration AlgorithmAfter we have shown c-regularity and queue stability, the next step is then to �ndthe optimal poliy using the value iteration algorithm. Spei�ally, we show how thedi�erent assumptions of the value iteration algorithm in Theorem 2.6 are satis�ed as45



follows:Assumption A(1) of Theorem 2.6 requires the existene of a regular poliy w0satisfying the orresponding Foster-Lyapunov drift inequality: Pw0V0 ≤ V0 − cw0 + η̄.This ondition is satis�ed as shown in the proof of Theorem 3.2 and partiularly in(3.11) of Lemma 3.1.As de�ned in Setion 2.4, a funtion c is norm-like if the sub-level set {x : c(x) ≤ b}is a �nite subset of X (i.e. state spae of queue length) for any �nite onstant b.The ost funtion cw(x) = (x+ 1) is learly norm-like for any x in the petite set
C = [0, x0], for x0 > 0 as shown earlier, sine cw(x) is bounded and �nite in theset C. For Assumption A(2) to be satis�ed, we require another norm-like funtion
c : X → R+ suh that c(x, a) ≥ c(x) for any x ∈ X, a ∈ A(x). This an be learlymet by the indiator funtion c(x) := δC(x) in (3.9) for the petite set C.For Assumption A(3), the existene of a distinguished state θ ∈ β(X) for anyMarkov poliy w is satis�ed by the state {0}. Spei�ally, for the petite set C andany Markov poliy w, there exists a onstant m0 > 0 suh that Kw(x, θ) ≥ m0 for all
x ∈ C. This has been shown in the proof of Theorem 3.2. This is again possible from(3.6) and due to the petiteness property in De�nition 2.2.Finally, for any Markov poliy w, P n

wV0(x) := E {V0(Φ
w
t ) | Φw

0 = x}. As also shownin the proof of Theorem 3.2, eah of the sub-level sets Cn = {x : V0(x) ≤ n} for n ∈ Z+is regular. Sine in a c-regular Markov hain, there is a ountable overing of the statespae X by c-regular sets from Setion 2.3, we an say that the Lyapunov funtion
V0(x) is bounded for all x ∈ X. Hene, for any regular poliy w, lim

n→∞

1

n
P n

wV0(x) = 0for x ∈ X. From Theorem 2.5, the optimal poliy w∗ is also a regular poliy. Hene,the �nal assumption of Theorem 2.6 is satis�ed.
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3.4 Performane BoundsIn this setion, we shall use the ideas of Chapter 2 and the results in the previoussetions to derive performane bounds, as the algorithm onverges to the optimalsolution.3.4.1 Appliation of Value Iteration AlgorithmIn Lemma 3.1, we have shown that under any Markov poliy w, the Markov hainfor the wireless queueing model is c-regular and hene, the queue length proess forlass j is stable. In Setion 3.3.4, we have shown how the value iteration algorithman be used with respet to our model by disussing its onditions and assumptions.Theorem 2.6 states that if the algorithm is initialized with a regular poliy w0then every intermediate poliy wn in the iteration is also regular for n ∈ Z+. Thisthen leads us to the following result:Theorem 3.3: The value iteration algorithm with an initial regular poliy w0 stabi-lizes the queueing model and yields the time average ongestion bound:
lim sup

t→∞

1

t

t−1
∑

τ=0

E {xτ} ≤ η̄ − 1Proof: Following the notations of Setion 2.5 and Theorem 2.6, we have for any
x ∈ X:

PnVn(x) ≤ Vn(x) − cn(x) + η̄, n ≥ 0where cn(x) = cwn(x) and Pn = Pwn from (2.17). Let ΦS denote the atual samplepath, or the set of states visited by the hain as it evolves through slotted time
k ≥ 0. We assume that, without loss of generality, n = k, where n is the index ofiteration from the algorithm itself. In other words, at every time slot k, we allow47



the poliy to hange aording to the value iteration algorithm itself. From thisassumption, the sample path is haraterized by the set of states that were visitedfrom the intermediate poliies wn at every time slot k: ΦS = {xk : Φwn

k = xk} for
k ≥ 0.As n → ∞, let wS := {w0(x0), w

1(x1), ..., w
n(xk)} be the point-wise limit poliywhih denotes the poliy that is obtained from the exeution of the intermediatepoliies wn at eah time slot k. From onstrution, the sample path itself ΦS is also a

c-regular Markov hain and the orresponding Foster-Lyapunov drift inequality holdsfor k ≥ 0:
PkVk(xk) := EwS

x {Vk(xk+1) | xk} ≤ Vk(xk) − ck(xk) + η̄ (3.13)Taking the expetation of the inequality in (3.13) over the distribution of x andusing the fat that cwS
(x) = ck(x),

EwS
x {Vk(xk+1) − Vk(xk)} ≤ −EwS

x {cwS
(xk)} + η̄ (3.14)We note that at time slot k, the orresponding Lyapunov funtion Vk is di�erentfrom the previous time slot funtion, Vk−1. We use the relation in (2.16) for twoonseutive Lyapunov funtions in the value iteration for x ∈ X as:

Vk+1(x) := ck(x) + PkVk(x)

= ck(x) + EwS
x {Vk(x) | x} (3.15)For notational onveniene, let c(x) = cwS

(x) and E = EwS
x . For the state xk+1,
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and by using (3.15) and (3.14), we have the following:
E {Vk+1(xk+2) − Vk+1(xk+1)} ≤ −E {c(xk+1)} + η̄ (3.16)
E {c(xk+2) + Vk(xk+2)} − E {c(xk+1) + Vk(xk+1)}

≤ −E {c(xk+1)} + η̄

E {Vk(xk+2) − Vk(xk+1)} ≤ −E {c(xk+2)} + η̄ (3.17)The inequality in (3.17) expresses the di�erene of the expeted values of the Lya-punov funtion Vk for two onseutive sample points: xk+1 and xk+2. The motivationfor this is to rewrite the orresponding Foster-Lyapunov drift inequality in (3.16) with
Vk+1 in terms of only the Lyapunov funtion Vk. In other words, we �x the Foster-Lyapunov funtion as V0 and express the sueeding drift onditions in terms of V0alone. We an thus rewrite (3.14) and (3.17) as:

E {V0(xk+1) − V0(xk)} ≤ −E {c(xk)} + η̄ (3.18)
E {V0(xk+2) − V0(xk+1)} ≤ −E {c(xk+2)} + η̄ (3.19)Similarly, for xk+2 , xk+3 and xk+4, we an easily derive the following inequalities:
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E {V0(xk+3)} − E {V0(xk+2)}

≤ −E {2c(xk+3)} + E {c(xk+2)} + η̄ (3.20)
E {V0(xk+4)} − E {V0(xk+3)}

≤ −E {3c(xk+4)} + E {2c(xk+3)} + η̄ (3.21)
E {V0(xk+5)} − E {V0(xk+4)}

≤ −E {4c(xk+5)} + E {3c(xk+4)} + η̄ (3.22)Continuing in this manner from xk to xk+M for some M ∈ Z+ and summing theorresponding inequalities in (3.18) to (3.22), we have for k ≥ 0:
E {V0(xk+M)} − E {V0(xk)}

≤ −E {(M − 1)c(xk+M)} −E {c(xk)} +Mη̄ (3.23)To derive the required bounds from (3.23), we let k = iM+t0 for t0 ∈ {0, ...,M−1}.Summing over i from i = 0 to i = K−1 for some K ∈ Z+ reates a telesoping seriesyielding:
E {V0(xt0+KM)} − E {V0(xt0)} ≤ KMη̄

−E {(M − 1)c(xt0+KM)} −E {c(xt0)}

−M

K−1
∑

i=1

E {c(xt0+iM)}Dividing by K and using the fat that V0(xt0+KM) ≥ 0 for a Lyapunov funtion,
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M

K

K−1
∑

i=0

E {c(xt0+iM)} +
(M − 1)

K
E {c(xt0+KM) − c(xt0)}

≤ Mη̄ +
1

K
E {V0(xt0)}Summing over t0 ∈ {0, ...,M − 1} and dividing by M2 yields:

1

KM

MK−1
∑

τ=0

E {c(xτ )}

+
(M − 1)

MK

1

M

M−1
∑

t0=0

E {c(xt0+KM) − c(xt0)}

≤ η̄ +
1

KM2

M−1
∑

t0=0

E {V0(xt0)}By taking lim sup of the inequality above as K → ∞ and noting that c(x) = x+1,we have:
lim sup

t→∞

1

t

t−1
∑

τ=0

E {xτ} ≤ η̄ − 1 (3.24)Hene, the time average ongestion bound is satis�ed as the value iteration algo-rithm onverges in the iteration. In addition, by Little's Theorem, the average queueongestion level for lass j is proportional to the average bit delay Dj,bit. In otherwords, Dj,bit ≤
η̄−1
λj

where λj is the rate of the rate onvergent arrival proess for lass
j. �3.4.2 Appliation of Queueing LawThe Foster-Lyapunov drift inequality in (3.10) has been established using the followingarguments: 51



(i) ψ-irreduible ontrolled Markov hain with βj = (λj − µj,av) < 0(ii) Existene of the petite set C = [0, x0] for any x0 > 0 under any Markov poliy
w, suh that Kw(x, θ) ≥ m0 > 0 in the proof of Theorem 3.2.(iii) Lyapunov funtion V0(x) = x2/f0 for some onstant f0 > 0 and a positiveonstant η <∞.(iv) Appliation of Theorem 2.4We emphasize that this methodology is the general manner of validating theFoster-Lyapunov drift inequality from a ψ-irreduible ontrolled Markov hain.In this subsetion, we also laim that the bound parameter η̄ in (3.24) an beexpressed in terms of the parameters of the independent rate onvergent arrival andservie proesses. Spei�ally, the Foster-Lyapunov drift inequality an also be veri-�ed using the queueing model itself.Theorem 3.4: From the rate onvergent arrival proess {aj(k)} and servie proess
{µj(k)} with rates λj and µj,av, respetively, suh that βj = (λj − µj,av) < 0, thefollowing drift ondition holds for lass j and for all k ≥ 0.

E {V (xk+1) − V (xk) | xk} ≤ −c(xk) + ηwhere V (x) := x2

2(µj,av−λj)
; c(xk) = (xj(k) + 1); η =

(

mj

2(µj,av−λj)
+ 1
); and mj is theseond moment of the inrement proess {aj(k) − µj(k)} for all k ≥ 0.Proof: The queue length proess is a Markov hain that obeys the following queue-ing law from (3.1):

xj(k + 1) = (xj(k) + aj(k) − µj(k))
+This an be rewritten as follows: 52



xj(k + 1) ≤ max (xj(k) + aj(k) − µj(k), 0)The expression above is an inequality beause new arrivals may depart before theurrent slot interval is �nished. By letting dj(k) = (aj(k) − µj(k)) and squaring bothsides, we have:
x2

j (k + 1) ≤ x2
j (k) + d2

j(k) + 2xj(k)dj(k)Sine the sequene {dj(k) : k ≥ 0} is i.i.d with ommon mean βj = (λj − µj,av) < 0and a ommon seond moment mj := Ed

{

d2
j(k)

}

> 0, and by taking expetationswith respet to dj(k), we have:
x2

j (k + 1) ≤ x2
j (k) +mj + 2βjxj(k)By taking V (xk) =

x2
j (k)

2(µj,av−λj)
as the Lyapunov funtion and letting c(xk) = (xj(k) + 1),and taking expetations with respet to xj(k), we an write:

E {V (xk+1) − V (xk) | xj(k)} ≤ η − c(xk) (3.25)where η :=
mj

2(µj,av−λj)
+ 1. The inequality in (3.25) thus satis�es the Foster-Lyapunovdrift inequality. Applying the result of Lemma 3.1 and (3.12), we an easily deduethat: f0 = 2 (µj,av − λj). �3.4.3 Relationship among Class QueuesIn our analysis above, we derive theorems and performane bounds for a singlelass queue j, where eah queue length proess for lass j is already a ontrolled53



ψ-irreduible Markov hain.In this subsetion, we emphasize that the atual Foster-Lyapunov drift inequalityfor the MDP formulation in Setion 3.3 an be expressed by summing the onditionsof Theorem 3.4 for all j as follows:
E {V (x̄k+1) − V (x̄k) | x̄k} ≤ −c(xk) + ηall (3.26)where:

xk = (x1(k), ..., xJ(k))
′

ηall =
J
∑

j=1

(

mj

2 (µj,av − λj)
+ 1

)

mj = E
{

(aj(k) − µj(k))
2}

V (x̄k) = 1
2

J
∑

j=1

x2
j (k)

(µj,av−λj)

c(xk) =
J
∑

j=1

(xj(k) + 1)The atual ost or ongestion level call(x(k), µ(k)) in Setion 3.3 an be easilydedued from the ost funtion c(xk) in (3.26).In summary, in Setion 3.3, we showed ψ-irreduibility and c-regularity of thewireless queueing model, whih then leads to queue stability as de�ned in De�nition3.2. We then disussed how the assumptions of the value iteration algorithm inTheorem 2.6 an be satis�ed.In Setion 3.4, we applied the modi�ed value iteration algorithm initialized witha Lyapunov funtion so that queue stability is satis�ed, as the algorithm onverges tothe optimal solution. Using this tehnique and the Foster-Lyapunov drift ondition,we are able to derive bounds diretly from the algorithm.54



3.5 Simulation ResultsA wireless multi-hop network of 20 mobile nodes in a 1,000m by 1,000m area is sim-ulated in the NS2 simulator [30℄. We use the IEEE 802.11 Distributed CoordinationFuntion (DCF) for the MAC. For the routing protool, the Ad ho On-DemandDistane Vetor (AODV) protool is used [31℄. A two-ray ground re�etion model isused for the radio propagation model. The nodes are simulated with a speed of 0 to10m/s with a random way-point mobility model and varying pause times. The maxi-mum hannel apaity is 2 Mbps, while the size of the network interfae and routingprotool queues have a depth of 50 and 100 pakets, respetively. The simulation isdone for 3,000 seonds.We de�ne three tra� lasses and simulate eight long-lived Constant Bit Rate(CBR) onnetions with the harateristis shown in Table 3.1. We hoose CBR �owssine this type of �ows aptures the worst ase and average long term performane.However, we emphasize that our theoretial results still apply for other types oftra� suh as Pareto and Exponential ON/OFF soures. The ontrol pakets fromthe routing protool are marked as Class I and the data paket size is 64 bytes.Figure 3.3 shows the simulation senario with eight CBR �ow onnetions. Forexample, S1 represents the soure, D1 is the destination, and the arrows from nodeS1 to D1 represent the �ow path. The dotted line represents the wireless link, whilethe unlabeled nodes represent intermediate nodes. The soure tra� is lassi�edaording to its type in Table 3.1.
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S1

S2

S3

S4

S5

S6

S7

S8

D1

D2

D3

D4
D5

D6

D7

D8Figure 3.3: MANET Simulation Senario with eight �owsTable 3.1: Tra� Soure CharateristisTra� Soure Tra� Type Rate (kbps)Nodes 1 & 2 I 128Nodes 3 & 4 III 32Nodes 5 & 6 II 100Nodes 7 & 8 III 128We have disussed in Setion 3.2 that the MAC mehanisms and varying mobilityand topology issues are aptured in our model through the onept of a topologystate proess that evolves as an irreduible aperiodi Markov hain. From the samereasoning, the queue length proess is also in�uened by the topology state and thus,our results and theorems apply in this ase. It should also be noted that there havebeen a number of works that analyze the performane of DCF in MANETs using theMarkov hain theory [32, 33℄. Our approah is di�erent beause we formulate theproblem using the ψ-irreduibility framework for a ontrolled Markov hain for eahnode ating as an agent.We note that the value iteration algorithm in Setion 2.5 requires the state tran-56



sition probabilities of the Markov hain. Following the notations of Setion 2.5, wean de�ne the state-ation values as:
Qn(x, a) = c(x, a) + PaVn(x)The stohasti value funtion Vn in (2.16) an then be expressed as:

Vn(x) = min
a∈A

Q(xn, a)The state-ation values an also be omputed using the equivalent formulation ofvalue iteration as:
Qn+1(x, a) = c(x, a) + Pa

(

min
b∈A

Q(x, b)

) (3.27)Theorem 2.6 states that if the value funtion Vn is initialized with a Lyapunovfuntion, then every sueeding poliy in the iteration is regular. In the state-ationformulation, only the minimum state-ation value is initialized with the Lyapunovfuntion as presented in Setion 3.4.3.For simulation purposes and due to the fat that estimating the state transitionprobabilities of the Markov hain is a non-trivial task, we make use of the sample-based or model-free framework known as Neuro-Dynami Programming (NDP) [10℄,also known as Reinforement Learning (RL) [11℄. RL is a simulation-based methodwhere the optimal value funtion is approximated while the agent diretly interatswith the environment without the need of the state transition probabilities. Following[22℄, we use RL for ψ-irreduible ontrolled Markov hains. We summarize the RL-based value iteration algorithm for the average ost riterion as follows [34℄: If ation
an is hosen at the nth deision period with state xn, the orresponding state-ationvalue Qn(xn, an) is updated as: 57



Qn+1(xn, an) = Qn(xn, an) + αn [c(xn, an)

−ηn + minb∈AQn(xn+1, b) −Qn(xn, an)] (3.28)where αn is the learning rate parameter in the nth deision period. The estimate ofthe average ost ηn is updated as:
ηn = (1 − βn−1)ηn−1 + βn−1

T (n− 1)ηt−1 + c(xn, an)

T (n)
(3.29)where βn denote the learning rate parameter and T (n) is the total time spent untilthe nth deision period. If eah ation is exeuted in eah state an in�nite numberof times and all the states are visited while the learning rates βn and αn are deayedappropriately, the algorithm onverges to the optimal solution [34℄. The optimalpoliy in this ase an be obtained from the ation with the minimum state-ationvalue: wn(x) = arg min

a∈A
Q(x, a).As mentioned earlier, the optimal solution an be obtained after an in�nite visitsto eah state. In dealing with real problems, RL failitates this idea by using explo-ration in the seletion of ations. Spei�ally, with a small probability pn, ationsother than that of the minimum state-ation value are hosen. In deaying the pa-rameters βn, αn, and pn, the Darken-Chang-Moody searh-then-onverge algorithm[35℄ is used.We emphasize that RL is only used in this setion for simulation purposes only andfor updating the state-ation value in (3.27), together with the Lyapunov funtion asdesribed in Setion 3.4.3. In Chapter 4, we shall disuss RL in greater details.In deiding the ation for the servie rate vetor, we perform bandwidth alloationand provisioning among the lass queues. We use the work-onserving shedulerknown as worst-ase fair weighted fair queueing (WF 2Q) [36℄. Spei�ally, the RL58



algorithm learns the WF 2Q weights for eah lass queue.
WF 2Q is appliable, sine in Theorem 3.1, we have proved that the amount ofbits being transmitted out of the queue is rate onvergent with rate µj,av for lass

j. We note that this result of rate onvergene is only valid if the topology stateproess evolves as an irreduible aperiodi Markov hain. We emphasize that, sinethe servie rate proess {µj(k)}
∞
k=0 is rate onvergent, then WF 2Q is appliable, andnot the other way around.Essentially, eah node ats as an intelligent RL agent that �nds the best WF 2Qweights depending on the urrent state of its ψ-irreduible ontrolled Markov hain(i.e. loal lass queue lengths). WF 2Q is used by eah node to adaptively provision

J
∑

j=1

µj,av among its J loal lass queues. We shall refer the proposed adaptive solutionas the Foster-Lyapunov Provisioning (FLP) algorithm.We ompare its performane with that of stati provisioning where the WF 2Qweights are equal and �xed among the lasses. We shall also verify the stabilityonditions and performane bounds that were derived in the previous setions.To show the Foster-Lyapunov ondition, c-regularity and queue stability, we re-quire that βj = (λj − µj,av) < 0 for lass j. We refer to λj and µj,av as the e�etivearrival and servie rates whih are measured in a node using a time window meha-nism under NS2.Table 3.2 shows the e�etive arrival and servie rate measurements, averaged overthe simulation period and over all nodes. This learly shows that βj < 0 for alllasses. In addition, we ompare the average ongestion level measurements andthe theoretial bound omputed as: ( mj

2(µj,av−λj)

), where mj is the seond momentof the inrement proess {aj(k) − µj(k)}, whih is obtained from the data samplesand disussed in Theorem 3.4. We also show the normalized ongestion bound foreah lass alulated as: ( AveBitsj

MaxBitsj

), where AveBitsj is shown in the 5th olumnand MaxBitsj is the maximum possible amount of bits in queue j. The simulation59



results show that the measured average ongestion level is well within the theoretialongestion bound under FLP for eah lass.Table 3.2: Average Measurements under FLP for 5 ses pause timeTra�Type AverageArrivalRate (bps) AverageServieRate (bps) AverageCongestion(bits) TheoretialBound forAverageCongestion (bits) NormalizedTheoretialBoundI 5866.04 5879.90 2304.60 3806.72 0.1487II 3107.09 3117.13 1088.14 2677.76 0.1046III 8255.53 8274.54 3162.71 3486.72 0.1362Average Congestion Level among Classes 3409.56 0.1298
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Figure 3.4: Normalized average ost for varying pause timesFigure 3.4 shows the average long-term ost under di�erent senarios and pausetimes. The average long-term ost e�etively represents the average ongestion levelamong the lasses as disussed in Setion 3.4.3. Stati provisioning inurs higherongestion level and thus violates the ongestion bound. Table 3.2 gives the averagenormalized theoretial bound value of 0.1298 for FLP for the 5 seonds pause timesenario, whih is a tight bound as shown in Figure 3.4. The �gure also shows that60



the bound is not initially met for FLP. This is due to the fat that the RL algorithm islearning or updating the state-ation values and has not yet onverged to the optimalsolution in (3.28). It is also observed that FLP satis�es the theoretial bound valueof 0.1298 for the other senarios and pause times. This result supports our laim thatthe MAC and topology issues are aptured in our model as disussed in Setion 3.2.From the value iteration algorithm and Theorem 2.6, we an say the onvergenelimit of the average ost is the minimum average ost, whih also orresponds to theminimum average ongestion level. We emphasize that the theoretial bound valuean only be met by the optimal poliy due to the result in part (iv) of Theorem 2.6.
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Figure 3.7: Bu�er Loss using FLP for 5 ses pause timealloate bandwidth e�iently and hene ongestion and bu�er loss inrease.Table 3.3: Average Queueing Delay (ses) and Bu�er Loss (%) Measurements (Node-level statistis) for FLP and Stati ProvisioningSheme - Pause Time (ses) I II IIIDelay Loss Delay Loss Delay LossFLP - 5 0.20 4.59 0.06 2.20 0.17 5.90Stati - 5 23.81 26.41 15.28 8.30 0.31 6.44FLP - 25 0.21 5.22 0.05 3.19 0.26 4.72Stati - 25 30.98 23.81 10.07 4.15 0.54 5.13FLP - 50 0.20 4.19 0.35 4.07 0.25 6.06Stati - 50 47.24 21.38 11.71 4.90 0.56 10.41FLP - 100 0.28 4.08 0.33 3.13 0.16 5.08Stati - 100 45.41 27.96 10.77 3.52 0.95 9.48Table 3.4 summarizes the average end-to-end delay and throughput or paketdelivery ratio (PDR) as measured and averaged from the eight lassi�ed CBR �ows.As the queueing delay for stati provisioning is higher under FLP espeially for Classes63
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Figure 3.8: Bu�er Loss using stati provisioning for 5 ses pause timeI and II, it is expeted that stati provisioning inurs higher end-to-end delay. On theother hand, FLP ahieves higher PDR in most senarios due to its adaptive bandwidthprovisioning mehanism. As FLP minimizes the average ongestion level over time,it gives smaller bu�er loss and higher amount of pakets an be transmitted over aninterval. This then gives higher throughput or PDR under FLP.Table 3.4: Average End-to-End Delay (ses) and Paket Delivery Ratio (PDR %)Comparison for FLP and Stati ProvisioningSheme - Pause Time (ses) I II IIIDelay PDR Delay PDR Delay PDRFLP - 5 0.93 14.75 0.68 10.49 0.77 20.83Stati - 5 20.58 13.92 10.67 9.62 0.87 13.40FLP - 25 0.43 23.43 0.90 12.73 0.66 14.87Stati - 25 23.32 20.88 9.38 9.61 0.96 13.38FLP - 50 1.14 7.79 0.92 14.18 0.80 16.76Stati - 50 20.42 6.53 5.34 12.05 1.02 6.93FLP - 100 0.96 9.30 0.65 18.35 0.82 16.22Stati - 100 30.68 8.32 10.68 2.29 0.97 10.07
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3.6 Possible Weaknesses of FLP algorithm and ψ-irreduibility theoryThe Foster-Lyapunov Provisioning algorithm uses a model-free RL tehnique for eahagent to �nd the best WF 2Q weights that depends on the urrent loal state of the
ψ-irreduible Markov hain (i.e. loal queue length for all lasses in bits). In thissetion, we enumerate possible weaknesses of this tehnique.Firstly, eah agent e�etively learns the WF 2Q weights from a ontinuous ationspae (i.e. vetor of real numbers in the spae ℜJ , where J is the number lasses).For a given state or loal queue length ondition, (i.e. say Class 1 has empty queuelength), the agent an have many possible WF 2Q weight ombinations or solutions.In other words, there may be many optimal sets of ations that are learned by FLP.This may seem to be a problem, as there is no unique ation set for a given state.However, as explained in Setion 2.4 and (2.14), the minimum relative value fun-tion is unique that solves the Average Cost Optimal Equation (ACOE) in (2.5).There maybe many possible ations, but there is only one value funtion that solvesthe ACOE for getting the optimal poliy. This unique minimum value funtion isused to estimate the optimal or minimum long term ost. (i.e. minimum ost as
η∗ = ηmin, minimum value funtion as h∗ = hmin, and optimal poliy w∗ = wmin inSetion 2.4). In other words, we an obtain the optimal or minimum average ost,even though there is no unique ation set for a given state.Another possible weakness is the storage of WF 2Q weights in the ontinuousvetor spae ℜJ . A possible solution is the use of funtion approximation tehniques,suh as arti�ial neural networks. We shall deal this problem in Setion 4.4 in greaterdetails.The FLP algorithm mainly relies on the use of WF 2Q for adaptive provisioningfor eah agent. WF 2Q is only possible, as we have said in Setion 3.2 and Setion65



3.5, when the topology state (i.e. whih also inludes the hannel state) evolves asan irreduible aperiodi (i.e. ergodi) Markov hain. From Theorem 3.1, when thetopology state evolves as suh, the servie rate proess {µj(k)}
∞
k=0 is rate onvergent,and thus WF 2Q is appliable for eah lass j.The assumption of an irreduible aperiodi Markov hain for a time-varying han-nel proess has been ommonly used in literature [6, 12, 26, 27℄. In [37℄, the authorsdesribed a hannel model for multi-node ommuniation that aptures the Signal-to-Interferene (SIR) ratio or hannel gain between eah node. Suppose that the SIRvalues are partitioned into L intervals: 0 < Γ1 < ... < ΓL. The hannel gain is said tobe in state l if it is between interval Γl−1 and Γl. This mapping an then be reduedinto an ergodi Markov hain, and the state transition probability ompletely spei�esthe dynamis of the hannel.Under the NS2 simulation [30℄, setting the transition probabilities an be easilydone as NS2 already provides a �nite-state Markov hannel in its software distribution.Even though this assumption of an ergodi Markov hain for the hannel proess isommonly used in theory and is veri�ed in simulations, suh assumption still remainsto be seen in atual network implementation.Another possible issue is that eah agent independently solves its own loally-observed MDP, without knowing the poliies of other agents. Although this frame-work is easier to implement as eah node does not need information about othernodes, aurate estimate of the global optimal ost may not always be obtained. Weaddress this issue in Chapter 6.As for the ψ-irreduibility theory on general Markov hains, showing this propertyof ψ-irreduibility may not be straightforward, espeially when the state spae is on-tinuous and multi-dimensional. In our formulation in Setion 3.3.1, ψ-irreduibility
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was easily veri�ed due to the fat that the MDP state desriptor is:
x(k) = [x1(k), ..., xJ(k)]We an easily separate the analysis for eah lass, sine the queue length proess foreah lass j evolves as a random walk on the half line and is already a Markov hain.However, for a general state desriptor suh as in non-linear state spae models,showing ψ-irreduibility may be di�ult [23℄. In this ase, one may need to lookat other types of stability formulations, suh as how to guarantee reurrene andergodiity of multi-dimensional Markov hains, and existene of Lyapunov funtions[38℄. In other words, although using ψ-irreduibility an give stability onditions andoptimization simultaneously, it requires areful analysis and onditions spei� to theproblem.3.7 Comparison of ψ-irreduibility with Lyapunov-based workIn this setion, we summarize the reent state-of-the-art work by Neely in [6, 9, 26, 39,40, 41℄ where he proposed a tehnique that uses a Lyapunov-based stability onditionfor ommuniation networks.In [39℄, Neely emphasized that �there was no Lyapunov method for optimization(suh as stabilizing a system with minimum energy)�. He then developed �a novel Lya-punov drift tehnique that enables system stability and performane to be ahievedsimultaneously�. He laimed that his tehnique �bridges the gap between onvex op-timization and stohasti optimal ontrol problems, and establishes a new frameworkfor dynami network optimization."In [6℄, he laimed that his new tehnique that uses a Lyapunov-based stability on-67



dition �unites network optimization and network ontrol.� His stohasti shedulingtehniques are quite new [40, 41℄ whih �build on the Lyapunov method to ahieveoptimal delay trade-o�s, and make a signi�ant ontribution to the �eld of devel-oping new sheduling algorithms that go beyond the lassial gradient methods ofoptimization theory.�In this thesis, we laim that there exists a Lyapunov method for optimization,ontrary to Neely's laim, and this is based on the theory of ψ-irreduibility. To thebest of the author's knowledge, we present the theory of ψ-irreduibility that bringsthe gap between stohasti optimal ontrol and stability in dynami network opti-mization. We emphasize that, not only will ψ-irreduibility ahieve optimal ontrol,it is the only known framework to handle network optimization, network ontrol,and network stability simultaneously in a MDP formulation [22, 23, 24, 25℄.This thesis is the �rst researh work that presents and applies this novel theoryfor a wireless network, in order to derive bounds, ahieve stability and optimal ontrolsimultaneously.To highlight another weakness of Neely's reent state-of-the-art work, we disussthe ideas of [9℄ where he proposed the following tehnique:1. Firstly, a global Lyapunov drift ondition is assumed to be satis�ed for all time-slots t [9, Lemma 1℄. This implies that for all time t in the future, the systemis already stable, where the drift ondition in (2.10) of Theorem 2.3 is satis�edfor all time slots.2. Using the Lyapunov drift ondition, one an easily derive performane bounds.(see [9, Setion IV℄)3. By manipulating the equations in the Lyapunov drift inequality, Neely was ableto �nd an optimization problem to be done at every time slot.68



4. Neely then uses a Linear Programming-based algorithm to solve the optimiza-tion problem, to be done at every time slot (i.e. searh for optimal parametersat urrent time slot, independent of previous time slots).This tehnique is done in his reent state-of-the-art papers [6, 9, 26, 39, 40, 41℄.In this thesis, we are essentially addressing the same problem: ahieve optimiza-tion and stability simultaneously, for all time slots in a ommuniation network, butin a di�erent and better manner:1. We do not assume that a global Lyapunov ondition is satis�ed for all time slotst. This is more realisti.2. We only need a Lyapunov funtion at the �rst time slot. This Lyapunov funtionsatis�es the Foster-Lyapunov drift inequality at time k = 0 only.3. We then use the standard value iteration algorithm as our ontrol algorithm.But, we initialize it with the Lyapunov funtion at k = 0.4. By running the value iteration algorithm, this initializing tehnique then stabi-lizes the next poliy at the next time slot, and every time slot after that.In other words, we only need to stabilize at k = 0 and satisfy the Lyapunov driftinequality at k = 0, and the value iteration algorithm with the Lyapunov funtionstabilizes it for all time slots, automatially. Again, one we an stabilize at everytime slot, then we an easily derive bounds using the Foster-Lyapunov drift onditionin Theorem 2.3, just like Neely's results.Neely's assumption of satisfying a global Lyapunov ondition for all time slotsis super�uous. This assumption implies that in a network, for all time slots in thefuture, the system is already stable. Then, Neely �nds an algorithm to make it stable,to be done independently, at every time slot.69



This thesis emphasizes a di�erent and better tehnique. We emphasize that wedo not need to assume for all time slots in the future, the system is already stable.We only need the initial time slot k = 0 to be stable, and by following a modi�edvalue iteration algorithm, we an stabilize all time slots in the future, automatially.This is a new unique result, ompared to Neely's results. His work and tehniquesdo not deal with Markov hains too. In fat, the Linear Programming approah atevery time slot by Neely in most of his reent state-of-the-art papers is not really sonovel.The value iteration algorithm is better than searhing the parameter spae in Lin-ear Programming-based algorithms. It inrementally or iteratively �nds the optimalvalue funtions for every possible state at every time slot as it onverges to the op-timal solution. Linear Programming-based algorithms su�er a drawbak, beause itis just onerned with one time slot independent of other time slots, and it does notuse the previously obtained values at previous time slots.In summary, if one an �nd a general Markov hain for a network, one an �nd theoptimal poliy using standard value iteration tehniques. In addition, by using the
ψ-irreduibility theory, not only we an �nd the optimal poliies, we an also stabilizethe network, and other than that, we an derive bounds automatially. In addition,we an do these things in a more e�ient manner, thus providing a framework fornew sheduling tehniques that ombines network optimization and network ontrol.3.8 Chapter SummaryWe have onsidered a stohasti optimal ontrol approah to solve the problem ofmulti-lass sheduling or bandwidth alloation and provisioning under a time-varyinghannel and topology in MANETs. Our proposed sheme is based on average-ostMDP, with the goal of �nding the poliy that minimizes the expeted average onges-70



tion level. We use a novel framework based on the theory of ψ-irreduible ontrolledMarkov hains, c-regularity, regular hains, regular poliies and Foster-Lyapunov driftinequality onditions that an be used to �nd stable and optimal poliies.Using this theory, we derive performane bounds on the average ongestion leveland queueing delay as the algorithm onverges to the optimal solution. Spei�ally,at eah iteration of the algorithm, a stability inequality ondition is satis�ed automat-ially when the value funtion is initialized with an appropriate Lyapunov funtion.Our simulation results show that the proposed sheme known as FLP is able to attainits objetive of minimizing the average ongestion level.In summary, we have presented the �rst tehnique that uses the onepts of ψ-irreduible Markov hains for ahieving the following simultaneously for a generalMarkov wireless queueing network:1. Finding the optimal sheduling poliy for eah node that only depends on itsqueue length vetor, by using a modi�ed value iteration algorithm initializedwith a Lyapunov funtion, and without onsidering the statistis of the hanneland topology state proesses2. Obtain the poliy that stabilizes the queue ongestion level diretly from theoptimal sheduling poliy, while the Markov hain satis�es the Foster-Lyapunovdrift stability ondition3. Derive average performane bounds diretly from the value iteration algorithm,as the algorithm onverges to the optimal solution
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Chapter 4Resoure Alloation: A Semi-MDPApproah
This hapter introdues the seond variant of MDP formulations in this thesis. Wepresent an adaptive approah for QoS provisioning, where eah node ating as anagent performs bandwidth alloation (BA) and bu�er management (BM). We onsideran event-based sheme where eah agent only exeutes its own poliy at deisioninstants that depend on system events. These system events inlude hanges inrouting paths and MAC layer allbak or noti�ations suh as transmission failures.We observe that the time interval between two suessive deision instants islearly non-deterministi, whih depends on a number of fators suh as the time-varying hannel, random MAC shemes, and mobility. Furthermore, the loal ob-served queue ondition may vary during deision intervals. Formally, we use theSemi-Markov Deision Proess (SMDP) framework to e�etively apture this se-nario. This framework di�ers from Chapter 3, due to the inlusion of the time inter-val between deision instants. We note that in a deision interval, the state of theMarkov hain an vary as well.The main objetive is to maximize average network reward and at the same time,minimize per-lass QoS violations with respet to bandwidth, queueing delay, andbu�er loss. Due to the fat that in a dynami network, estimating the state transi-tion probabilities of the underlying Markov hain is a non-trivial task, we formally72



introdue a model-free mathematial framework known as Neuro-Dynami Program-ming (NDP) , also termed as Reinforement Learning (RL) in this hapter.In �nding the optimal poliy for SMDP, it is well known thatmodel-based DynamiProgramming tehniques, suh as value iteration and poliy iteration, su�er fromurse of dimensionality [4℄, espeially when the state spae is large as in the ase ofQoS provisioning. NDP or RL solves these issues by �nding an approximate solutionto the optimal poliy, while the agent interats with the system. The distinguishingharateristis of this approah is that it an be used in pratial and real-worldsenarios, whereby eah node determines its near-optimal poliy through a sequeneof diret interations with the network. A model-free solution does not need priorknowledge of the state transition probabilities of the Markov hain. Thus, RL is lessomputationally expensive than DP tehniques, as it does not require the exat modelof the system.We �rst introdue the SMDP framework in Setion 4.1, followed by the RL al-gorithm in Setion 4.2. Setion 4.3 presents the SMDP formulation for eah agentperforming bandwidth alloation and bu�er management. Setion 4.4 disusses theomplexity and implementation issues of the proposed sheme. In Setion 4.5, wepresent and disuss simulation results based on the NS2 simulator.4.1 Semi-Markov Deision ProessA Semi-Markov Deision Proess (SMDP) is de�ned by a tuple (S,A, P,R) where Sis a set of states, A is a set of ations, R is a reward funtion, and P is a probabilitydistribution funtion de�ned as follows [4℄:
P (t, s′ | s, a) = P (s′ | s, a)F (t | s, a) (4.1)where: 73



P (t, s′ | s, a) is the probability that the proess will be in state s′ for the next deisionepoh, at or before t time units after hoosing ation a in state s.
P (s′ | s, a) denote the probability that ation a taken will ause the system to tran-sition from state s to s′.
F (t | s, a) gives the probability that the next deision epoh ours within t timeunits after ation a in state s is hosen.In state s, when ation a is hosen, a lump sum reward k(s, a) is reeived. Theexpeted total reward between two deision epohs an be expressed as:

r(s, a) = k(s, a) + Ea
s

{
∫ τ

0
c(Wu, s, a)du

} (4.2)where:
c(Wu, s, a) is the rate at whih reward is arued when the natural proess is in state
Wu.
τ is the transition time to the next deision epoh.
Ea

s is the expetation with respet to the transition distribution F (t | s, a).The natural proess desribes the evolution of the system at all times, while theSMDP model represents the snapshots of the system at deision points. The expetedtotal reward up to time t, starting from initial state s is de�ned as [42℄:
V w

t (s) = Ew
s

{

vt−1
∑

i=0

k(si, ai) +

∫ t

0
c(Wu, svu , avu)du

} (4.3)where:
vt is the number of deisions made up to time t.
Ew

s denote the expetation with respet to poliy w and initial state s.The average reward starting from state s and using poliy w (also known as the
74



gain of the poliy w) is de�ned as:
ρw(s) = lim

M→∞

Ew
s

{

M
∑

i=0

(

k(si, ai) +

∫ τi

0
c(Wu, si, ai)du

)

}

Ew
s

{

M
∑

i=0

τi

} (4.4)where:
τi is the transition time between (ith) and (i+ 1)th deision epohs.We assume a uni-hain SMDP, where the gain of the poliy is state independent:
ρw(s) = ρw. For ontinuous-time uni-hain average reward SMDP, the expetedaverage adjusted sum of rewards Hπ up to time t for poliy w is de�ned as:

Hw(s) = V w
t (s) − ρwt (4.5)The main objetive is to �nd the poliy w∗ that will maximize the average longterm reward. The Bellman optimality equation for average reward SMDP an bestated as follows: For any uni-hain SMDP, there exists a salar ρ∗ and a valuefuntion H∗ satisfying the system of equations [4℄ :

H∗(s) = max
a∈A

(

r(s, a) − ρ∗τ(s, a) +
∑

s′∈S

Pss′(a)H∗(s′)

) (4.6)where:
τ(s, a) is the average sojourn time in state s when ation a is taken in it, until thenext deision period.
Pss′(a) is the probability of transition from state s to state s′ under ation a.
ρ∗ is the optimal gain.The state-ation representation of (4.6) an be written as follows: Let Rw(s, a)represents the average adjusted value of hoosing ation a in state s one, and thenfollowing poliy w subsequently [43℄. Let R∗(s, a) be the average adjusted value by75



hoosing ations optimally.
R∗(s, a) = r(s, a) − ρ∗τ(s, a) +

∑

s′∈S

Pss′(a)max
a′∈A

R∗(s′, a′) (4.7)The optimal poliy is w∗(s) = arg max
a∈A

R∗(s, a).4.2 RL Solution for Average Reward SMDPA model-free average reward Reinforement Learning algorithm known as Semi-Markov Average Reward Tehnique (SMART) [13, 44℄ an be used to solve the SMDP.We summarize the SMART algorithm as follows: If ation at is hosen at the tth de-ision period with state st, the orresponding state-ation value R(st, at) is updatedas:
Rnew(st, at) = Rold(st, at) + αt

[

r(st+1, st, at) − ρtτt + max
at+1∈A

Rold(st+1, at+1) − Rold(st, at)

](4.8)where:
αt is the learning rate parameter in the tth deision period.
r(st+1, st, at) is the atual umulative reward earned from s to s′ under a.
τt is the sojourn time period from state s to s′.The reward rate ρt is updated as follows:

ρt = (1 − βt−1)ρt−1 + βt−1
T (t − 1)ρt−1 + r(st+1, st, at)

T (t)
(4.9)where:

βt denote the learning rate parameter.
T (t) is the total time spent until the tth deision period.If eah ation is exeuted in eah state in�nite number of times and all the states76



are visited while the learning rates βt and αt are deayed appropriately, the SMARTalgorithm onverges to optimality [44℄.To failitate this in a pratial manner, exploration is performed where, with asmall probability pt, ations other than the highest state-ation value (i.e. arg max
a∈A

R(st, a)or greedy ation) should be exeuted. In deaying the parameters βt, αt, and pt, theDarken-Chang-Moody searh-then-onverge algorithm [35℄ is used where, in the fol-lowing expressions, ϑ an be substituted by β, α, and p. The following deayingequation is used: ϑt = ϑ0/(1 + ξt), where ξt = t2/(ϑr + t), and ϑ0 and ϑr are on-stants. This exploration sheme is a standard method of approximating the optimalvalue funtions for RL [13, 35℄.4.3 SMDP for Resoure AlloationIn this setion, we apply the onepts of the previous setions for resoure alloationfor MANETs. As mentioned in earlier, we use the SMDP framework, instead of theusual MDP due to the fat that, in a dynami wireless network, the time intervalbetween two suessive deision events for an agent is non-deterministi. The lengthof the time interval depends on a number of fators suh as the time-varying hannel,random MAC shemes, and varying topology.At eah deision instant, eah agent performs network-level resoure alloation bydoing bandwidth alloation (BA) and bu�er management (BM) among its loal lassqueues. We inlude prede�ned per-lass QoS onstraints with respet to queueingdelay, bandwidth and bu�er loss. The agent earns reward whih depends whether ithas ahieved these onstraints. The main objetive is to �nd the optimal BA andBM poliy so that the agent maximizes its average long term reward and at the sametime, minimize average long term QoS violations for all the tra� lasses.This approah is similar to [13℄ in that we use an average reward SMDP and a77



model-free RL solution. The authors in [13℄ formulated a onstrained SMDP and usea Lagrange multiplier method for their QoS onstraints. However, as we are dealingwith a more dynami MANET, instead of a entralized ellular network, absoluteQoS bounds might be di�ult to ahieve. Hene, we hoose to minimize the averagelong term QoS violations.Our multi-lass resoure alloation sheme is also similar to the non-linear JointBu�er Management and Sheduling (JoBS) optimization algorithm in [45℄. However,JoBS requires knowing the system state, arrival, input and output urves for the wholehistory. For our ase, the formulation strongly depends on the Markov property thatthe response at the next deision period depends only on the urrent state and ationhosen, and not of the whole history [4℄.4.3.1 System ModelWe onsider the wireless nodes as agents in a multi-lass network and formulate aSMDP for eah agent. Similar to the ψ-irreduible MDP framework in Setion 3.3,we propose that eah agent independently solves its SMDP based on its loal observedstate ondition as shown in Figure 4.1. The ase of a multi-agent system where agentsollaborate among themselves is disussed in Chapter 6.There are J lasses of network servies in the system. Eah lass j de�nes aminimum rate bj,min, and absolute queueing delay and loss (i.e. paket bu�er loss)onstraints: dj ≤ dj,max and lj ≤ lj,max, for j = 1, 2, ..., J . For eah node, we de�nethe state desriptor for BA and BM as:
S = [d1, l1, d2, l2, ..., dJ , lJ ] (4.10)where:

dj is the normalized measured queueing delay for lass j78



Figure 4.1: Independent SMDP agents for resoure alloation in MANETs
lj is the measured bu�er loss for lass jWe assume that the sheduling mehanism is work-onserving. We shall justifythis assumption by the hoie of the atual sheduling mehanism in Setion 4.4.2.We identify the following system events for the state transitions for the SMDP: a)Changes in the routing path, where the agent may need to realloate bandwidth andperform bu�er management for those servie lasses with �ows using ative routes,so as to earn more reward and e�etively minimize deadline violations; b) MAC layerall-bak or noti�ations suh as transmission failures; ) Paket arrival. We alsoassume that only one event an our in any time instant.When an event ours, the agent performs BA and BM through ation a de�nedas:

a = [r1, r2, ..., rJ , a1, a2, ..., aJ ] (4.11)where:
aj is the drop rate for lass j 79



rj is the rate alloated for lass jWe de�ne the umulative reward funtion from state S to S
′ under ation a as:

r(S′,S,a) = τ(S′,S,a)
J
∑

j=1

{

rj,price

(

r′j − bj,min

Ch

)

+dj,price(dj,max − dj) + lj,price(lj,max − lj)} (4.12)where:
τ(S′,S, a) is the atual sojourn time from state S to S

′

rj,price is the rate or bandwidth prie for lass j
Ch is the urrent apaity of the hannel that is assumed to be observed by theagent (see Setion 4.4.2 for detailed explanation)
r′j is the new alloated bandwidth for lass j
dj,price is the prie for queueing delay for lass j
lj,price is the prie for loss or bu�er drops for lass jThe reward de�nition in (4.12) gives more redit to those ations that satisfy theQoS onstraints. If the hosen ation results in QoS violations, the reward funtionpenalizes the agent by a weighted salar that is proportional to the deviations fromthe onstraints.Stritly speaking, the problem an be formulated as a onstrained SMDP. Themotivation behind the unonstrained SMDP formulation and reward de�nition aboveis as follows: For a general onstrained SMDP with L onstraints, the optimal poliyfor at most L of the states is randomized [46℄. Sine the state spae is ontinuous in(4.10), a non-randomized poliy obtained from RL is often a good approximation tothe optimal poliy [47℄.Thus, we handle the onstraints through our reward de�nition as above. Abso-lute QoS bounds are also di�ult to ahieve espeially in MANETs. Thus, we try to80



ahieve our objetive of maximizing average long term reward by e�etively minimiz-ing the average QoS violations. Our method an be used as a priing sheme, wherethe servie provider earns more when the system experienes good QoS and it triesto maximize its average long term pro�t.The SMDP objetive is then to maximize the average reward, starting from state
s1 = S and using poliy w, de�ned as:

ρw(S) = lim
M→∞

Ew
S

{

M
∑

t=1

r(st+1, st, w(st))

}

Ew
S

{

M
∑

t=1

τ(st+1, st, w(st))

} (4.13)
where:
w(st) is the ation taken using poliy w when at state st

Ew
S
is the expetation with respet to poliy w and initial state s1 = SNote that this multi-lass formulation an be applied for a wired or wireless net-work. In Setion 4.4.2, we explain the reason spei� for MANETs, espeially withtime-varying hannel medium and topology.We do not pursue the disussion of the state transition probabilities that apturethe underlying unertainties of the network. The exat system model is often infeasi-ble due to the following reasons. Firstly, the SMDP state-spae formulation requiresthe transition probability that enompasses the joint distribution of unertainties,suh as node mobility, hannel onditions and MAC shemes, that a�et the statetransition and umulative reward. Estimating the probability distribution is also anon-trivial task during runtime. In addition, �xing a model before omputing theoptimal poliy also means that it would not be robust if the atual system ondi-tions depart from the assumed model. Our main motivation for this researh is touse model-free algorithms suh as RL and allow the nodes to adaptively learn theoptimal poliy. 81



4.4 Implementation Issues4.4.1 RL algorithm-related issuesWe assume that the SMDP in Setion 4.3 is uni-hain, so that the optimal state-ationvalues in (4.8) an be found.In value funtion-based RL algorithms suh as Setion 4.2, when the total numberof states and ations is small, using the algorithms is straightforward by having a look-up table to store and update the orresponding state-ation values R(s, a). However,when the state and ation spaes are large or ontinuous and multi-dimensional, asin our ase in (4.10) and (4.11), the state-ation values are usually approximated dueto storage limitations.In dealing with ontinuous state spae, researhers have used funtion approxima-tion tehniques suh as neural networks. When using funtion approximation meth-ods, it is ruial that the hoie of suh approximators failitates the onvergene ofthe RL algorithms. The RL provisioning algorithm in [13℄ uses a Multi-Layer Per-eptron (MLP) neural network with a single hidden layer. Non-linear approximators,suh as MLP networks, are more di�ult to analyze mathematially and in general,may beome divergent [15℄.We thus use the linear funtion approximator known as Cerebellar Model Artiu-lation Controller (CMAC) where the output (i.e. state-ation values) is approximatedby a weighted linear sum of the features of the state input vetor. The CMAC is atile-oding funtion approximator that displays loal generalization. Tile oding is anestablished and well-understood method for Reinforement Learning [14℄. The lin-earity property is also instrumental in proving the algorithm's onvergene [15℄ andin generalizing between similar states when the ations are disrete [14, 48, 49℄.However, for both ontinuous state and ation spaes, the CMAC neural networkmay not su�e alone. A number of reent researh works have already takled the82



issues of ontinuous multi-dimensional state and ation spaes for RL algorithms. In[50, 51℄, the authors proposed a ontinuous state, ontinuous ation value funtion-based algorithm. A neural network ating as an approximator is ombined with aomponent known as wire �tter interpolator. Their method, known as Wire FittedNeural Network (WFNN), has the distinguishing property of �nding the ation withthe highest expeted value in real-time.In the value-based RL algorithm in (4.8), there is a need to searh for that a-tion vetor with the highest expeted value. If the ation is ontinuous and multi-dimensional, a straightforward and rude manner is to disretize the ation vetorin eah dimension and sweep through all these representative vetors to obtain themaximum value. WFNN ahieves a better and faster approah due to the propertyof the wire �tting interpolator that the highest interpolated value (i.e. maximumstate-ation value) oinides with the highest interpolation vetor (i.e. wire vetorwith maximum state-ation value) of the wire �tter [51℄.In [50℄, the author favored a feed-forward neural network (i.e. a MLP network),whih is a global approximator where hanges to the neural network weights havesome e�et over the entire input spae and an represent higher level relationshipsbetween the input and target output variables. However, as mentioned earlier, a non-linear global approximator may not be suitable in general due to its non-onvergenefor RL algorithms. Hene, we use the loal and linear tile-oding approximator. Weterm our arhiteture as theWire-Fitted CMAC for ontinuous and multi-dimensionalstate and ation spaes.Figure 4.2 shows the Wire-Fitted CMAC with input state vetor −→x , n wires withthe wire ation vetors −→ui (i.e. representative ation vetors), and state-ation values(Q-values) qi, for i = 1, 2, ..., n. A CMAC network is used to approximate −→ui and qifor eah i.The omputation and updating of Q(−→x ,−→u ) from these omponents are explained83



Figure 4.2: Wire-Fitted CMACin greater details in [50℄. We summarize the wire-�tted interpolation of Q(−→x ,−→u )with input vetors −→x (i.e. state vetor) and −→u (i.e. ation vetor) as follows:
Q(−→x ,−→u ) = lim

ǫ→0+

n
∑

i=1

qi(
−→x )

pi(
−→x )

n
∑

i=1

1

pi(
−→x )

(4.14)where:
pi(

−→x ) = ‖−→u −−→ui(
−→x )‖

2
+ δ

(

max
i

qi(
−→x ) − qi(

−→x )

)

+ ǫ

−→ui (
−→x ) is the ith wire vetor when the state is −→x

qi(
−→x ) is the q-value of the ith wire vetor

ǫ, δ are small onstant fatorsThe main funtion of the wire vetors −→ui is: arg max−→u Q(−→x ,−→u ) = −→u arg max
i

qi
.The Q-values represent the orresponding state-ation values R(st, at) in the SMARTalgorithm in (4.8).Thus, the Wire-Fitted CMAC ombines the CMAC neural network with wire-�ttedinterpolation to approximate the state-ation values in ontinuous vetor spaes. TheCMAC is used for its fast omputational apability, its linearity and onvergene prop-erties in RL, while the wire-�tted interpolation helps in �nding the ation with thehighest state-ation value in real-time by searhing only a few number of n repre-sentative wire ation vetors. Wire-�tted interpolation also represents disontinuities84



in the poliy and value funtion where the ation represented by eah wire vetorhanges smoothly in response to hanges in the state [51℄.The hoie of value for n a�ets the performane of the funtion approximationmehanism. Inreasing n generally dereases the error of approximation, but it alsoinreases the storage requirements (i.e. total number of ation vetors). Other issuesrelating to Wire-Fitted funtion approximation are disussed in [50℄.Sine CMAC neural networks only display loal generalization or approximation,the lak of global generalization is addressed by adding noise terms in the hosenation whenever the ation is non-greedy. This is also in onjuntion with the explo-ration sheme desribed in Setion 4.2.Another issue is the state-ation deviation problem [50℄: If the state-ation valuesare stored approximately, it is likely that the approximation resoures will be usedto represent values of the states rather than ations in the states. Following [50℄,a modi�ed SMART updating sheme based on advantage learning update is thusneessary:
Rnew(st, at) = Rold(st, at) + αt

{

Mt − (1 −
1

q
)

(

Mt − max
at∈A

Rold(st, at)

)} (4.15)where:
Mt = r(st+1, st, at) − ρtτt + maxat+1∈A Rold(st+1, at+1)

q is a small onstant, taken as 0.1 in simulationsSimilar to Setion 3.5, for bandwidth alloation, we use the work-onserving shed-uler known as worst-ase fair weighted fair queueing (WF 2Q) [36℄. The RL algorithmlearns theWF 2Q weights for bandwidth alloation together with the paket drop ratefor bu�er management (see (4.11)).Wire-�tted interpolation requires the umulative reward in the update equation85



to be normalized to the range of the ation vetors [50℄. We also require the WF 2Qweights and paket drop rate for BA and BM respetively to be in the range [0, 1].The umulative reward de�ned in (4.8) is initially passed into a hyperboli tangentfuntion before passing into the Wire-Fitted CMAC. This lamps the wire ationvetors to be in the range [−1, 1], whih are then normalized to [0, 1].With the Wire-Fitted CMAC, together with a modi�ed SMART algorithm, weterm the proposed resoure alloation and provisioning sheme as Wire-Fitted Rein-forement Learning Provisioning (WFRLP) algorithm.We observe that the bu�er management omponent an be used in a wired orwireless senario. However, for bandwidth alloation, fair queueing tehniques suhas WF 2Q are generally known to be only appliable in a wired network [36℄. In thenext subsetion, we justify the appliability of the bandwidth alloation omponentof WFRLP under a time-varying hannel medium and topology.4.4.2 Bandwidth alloation for MANETsWe use a similar priniple from Setion 3.1 to haraterize the bandwidth alloationomponent of WFRLP.Following the notations in Setion 3.1, eah node is assumed to at as an agentthat atively performs sheduling or bandwidth alloation on its own J loal queues,where pakets are enqueued in their respetive lass queues. In eah node, the queuedynamis at the jth lass queue for j = 1, ..., J , an be generally expressed as:
xj(k + 1) = max (xj(k) + aj(k) − µj(k), 0) (4.16)The index k represents the deision instant. By assuming that the hannel proess

{Ch(k)}
∞
k=1 is an embedded irreduible aperiodi �nite state-spae Markov hain, wehave the same ase as in Setion 3.1. The di�erene is we onsider the deision instants86



or periods as the time slot boundaries of (4.16). In other words, the servie proess
{µj(k)}

∞
k=0 is also rate onvergent from Theorem 3.1, when the hannel proess is anembedded irreduible aperiodi Markov hain. We an then apply the same resultas in Setion 3.2 and laim that the servie proess is also rate onvergent for atime-varying topology state proess.From Theorem 3.1, fair queueing tehniques suh as WF 2Q an thus be applieddue to the rate onvergene property of the servie proess for eah lass j. Speif-ially, the WF 2Q weights are used to provision and alloate the total e�etive rate

J
∑

j=1

µj,av among the lass queues. This total e�etive rate e�etively represents theobserved apaity Ch in the SMDP formulation in (4.12).4.4.3 Ation Searh For Handling QoS ConstraintsAs the state-ation values are being updated in (4.15) when the RL agent interatswith the environment, it is ertain that the agent may hoose ations that are ap-parently ostly and ine�etive, even though the ation vetor with the maximumstate-ation value an be easily retrieved through the Wire-Fitted CMAC in Figure4.2. In BA, for learning the WF 2Q lass weights wsched,j for j = 1, 2, ..., J , the RLalgorithm does not prevent the agent to alloate zero bandwidth for a ertain lass
j (i.e. wsched,j = 0) as it initially searhes the ontinuous ation spae. Similarly inBM, the ation vetor may result in dropping large proportion of pakets in the lassqueue, even though there's no delay or rate onstraint violations. These unwantedations thus drastially penalize the agent and slow down the onvergene of the RLalgorithm.In this subsetion, we inorporate prior knowledge to address these issues. We usea similar approah in [52℄ to searh for the desired ations (i.e. how muh bandwidthto alloate and what is the paket drop rate for eah lass). We de�ne the targetbandwidth rj,min for network lass i for handling the rate and delay onstraints men-87



tioned in Setion 4.3 as follows: If dj,max > di, rj,min = max
(

Bj

dj,max−dj
, bj,min

), where
Bj is the total bu�er size of lass j (in bits).The target bandwidth rj,min e�etively aptures the required bandwidth to learthe bu�er, without any bu�er loss, within the maximum allowed delay. If dj,max ≤ dj,the target bandwidth is set to the observed urrent link apaity Ch, so as to quiklylear the bu�er [52℄.We use the same state and ation desriptors in (4.10) and (4.11) for the SMDPformulation. However, we rede�ne the reward struture r(S′,S, a) in (4.12) by repla-ing bj,min with rj,min. As an be dedued from the de�nition of rj,min, the followingases arise:Case 1: ∑

j

rj,min < Ch and dj,max > dj , ∀j: No rate and delay violations. Thespare bandwidth (i.e. Ch −
∑

j

rj,min) is alloated among the baklogged lasses. Theproportion for eah lass is obtained from the normalized rate omponents of theation vetor. No bu�er drops are made.Case 2:∑
j

rj,min = Ch: No rate violations. a) If there are no delay violations, the
WF 2Q weight is set as: wsched,j =

rj,min

Ch
. No bu�er drops are also made. b) If thereare delay violations and due to our ondition that rj,min = Ch if dj,max ≤ dj, for some

j, then only lass j is baklogged and having delay violations. Pakets are droppeduntil the delay onstraints are satis�ed or up to the proportion value obtained fromthe ation vetor's drop omponents.Case 3:∑
j

rj,min > Ch: Three sub-ases arise: a) If there are no rate or delayviolations for any lass, pakets are dropped up to the learned proportion of the exessbandwidth (i.e. ∑
j

rj,min − Ch) obtained from the ation vetor's rate omponents.b) If there are delay violations, pakets are dropped similar in 2b. ) If there are rateviolations (i.e. rj,min > Ch) for some j, pakets are dropped similar to 3a.For Cases 2 and 3, one the pakets are dropped and delay and rate onstraints are88



satis�ed,∑
j

rj,min ≤ Ch, ∀j. The WF 2Q weight is set as: wsched,j =
rj,min

∑

k

rk,min

. Thisassures that the alloated rate is at least the target minimum rate: rj = wsched,j ·Ch =

rj,min
∑

k

rk,min

· Ch ≥ rj,min.4.5 Simulation ResultsWe simulate a similar senario desribed in Setion 3.5 and Figure 3.3 with 20 mobilenodes in a 1,000m by 1,000m area under the NS2 simulator. The hannel apaityis 2 Mbps, while the interfae queue and routing protool's bu�er have a depth of50 and 100 pakets, respetively. We de�ne three di�erent tra� lasses with theparameters shown in Table 4.1 (see (4.12) for the prie de�nition).Table 4.1: QoS Constraints and Prie ParametersTra�Type BWPrie Min BW DelayPrie MaxDelay(mses) LossPrie MaxBu�erLoss %I 50 128kbps 50 20 50 1II 40 100kbps 40 60 40 2III 20 50kbps 20 500 20 5We have used eight long-lived CBR onnetions with the harateristis similar toTable 3.1. We hoose CBR �ows sine this type of �ows aptures the worst ase andaverage long term performane. However, our tehnique still applies for other typesof tra� suh as Pareto and Exponential ON/OFF soures.We have disussed in Setion 4.4.2 that the MAC mehanisms and varying topol-ogy in the network is aptured in our model through the onept of the topology stateproess that evolves as an irreduible aperiodi �nite-state Markov hain. It shouldalso be noted that there have been a number of works in MANETs under the Markovhain theory [32, 33℄. Our approah is di�erent beause we use the ontrolled Markovhain or SMDP framework. 89



Class Queues 

Each agent 
performs WFRLP 
for maximizing average
reward and minimizing
average long term 
QoS violationsFigure 4.3: Eah RL agent performs WFRLP independentlyFor WFRLP, the onstants of the Darken-Chang-Moody sheme for the learningand exploration rates are hosen as β0 = α0 = 0.5, p0 = 0.1, and βr = αr = pr = 1011(see Setion 4.2). Eah CMAC has 4 tiles with 3 resolution elements in eah dimensionof the 6-dimensional state vetor, giving a storage of 2916. We also use 10 wires orinterpolation vetors. Hene, in one mobile node, the neural network approximatorfor WFRLP (see Figure 4.2) has 70 CMAC networks.Figure 4.3 shows eah node ating as an RL agent that performs the WFRLPalgorithm with the orresponding state and ation desriptor in (4.10) and (4.11),respetively. The WFRLP update equation is desribed in (4.15). Note that theagent forms its state desriptor from loal available information in (4.10) and doesnot require tra� arrival, topology, or hannel statistis.WFRLP is ompared with the JoBS algorithm found in the latest version of NS2.The NS2 implementation of JoBS (JoBS-NS2) uses a feedbak-ontrol based heuristias desribed in [52℄. The simulations were performed with varying pause times. Itshould be noted that JoBS-NS2 performs joint bu�er management and sheduling(JoBS) optimization and was initially designed for wired networks.90



However, as we have disussed earlier in Setion 4.4.2, the servie proess is rateonvergent under a time-varying hannel and topology proess. We believe JoBS-NS2 an be used for wireless networks, due to the rate onvergene property andan irreduible aperiodi Markov hain assumption for the topology. For its averagereward measurement, we modify JoBS-NS2 to use (4.12).
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Table 4.2: Average Queueing Delay and Bu�er Loss (%) for WFRLP and JoBS-NS2Sheme - Pause Time (ses) I II IIIDelay Loss Delay Loss Delay LossWFRLP - 0 1.69ms 15.39 4.50ms 10.59 48.74ms 18.44JoBS-NS2 - 0 1.87s 17.06 0.56s 5.67 1.96s 9.55WFRLP - 25 2.45ms 14.41 3.02ms 12.11 47.61ms 20.02JoBS-NS2 - 25 1.77s 13.63 1.53s 6.92 2.23s 10.14WFRLP - 50 5.19ms 14.80 6.85ms 11.70 45.89ms 20.65JoBS-NS2 - 50 2.03s 15.59 1.38s 5.74 2.81s 16.43WFRLP - 100 2.16ms 16.21 3.50ms 11.18 41.25ms 21.85JoBS-NS2 - 100 2.93s 14.65 1.41s 5.93 4.67s 15.20Table 4.3: End-to-End Delay (mse) and Paket Delivery Ratio (PDR %) for WFRLPand JoBS-NS2Sheme - Pause Time (ses) I II IIIDelay PDR Delay PDR Delay PDRWFRLP - 0 49.81 21.15 70.63 42.78 168.14 51.10JoBS-NS2 - 0 2766.01 17.81 2577.34 37.97 1642.35 49.62WFRLP - 25 49.38 23.54 63.45 31.82 168.39 52.03JoBS-NS2 - 25 2345.22 28.86 2465.38 29.04 2010.47 45.78WFRLP - 50 48.08 30.13 61.59 38.61 178.44 47.07JoBS-NS2 - 50 2896.42 28.68 2529.94 35.71 2558.74 38.63WFRLP - 100 42.55 28.93 56.84 41.97 164.54 41.40JoBS-NS2 - 100 2160.31 25.94 2211.74 37.77 2352.21 33.75
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4.5.1 Advantages of WFRLP over JoBS-NS2In this subsetion, we �rst summarize the ideas behind JoBS-NS2. It was proposedin [52℄ as a quantitative Assured Forwarding servie under the Di�erentiated Serviearhiteture for providing absolute and proportional di�erentiation of loss, servierates, and paket delays.JoBS-NS2 performs simultaneous sheduling and bu�er management by enforingper-lass QoS guarantees on loss, delay, and throughput by adjusting the servierate alloation and seletively dropping tra�. The authors of JoBS-NS2 in [30, 52℄proposed delay and loss feedbak loops.For the delay feedbak loop, they proposed a linear ontrol model for expressingthe relationship between the rate adjustment and desired queueing delay. The servierates are translated into paket sheduling deisions resembling De�it Round Robin[30, Setion 7.5.1℄. That is, the sheduler tries to ahieve desired servie rates bykeeping trak of the di�erene between the atual transmission rate for eah lassand desired rates for eah lass.The ontrol model onsists of the delay feedbak loop and is designed to be linearand time-invariant. They then derive a stability ondition on the linearized approxi-mate model by bounding the gain of the ontroller to satisfy the rate onstraint foreah lass. The authors admitted that these assumptions may not hold in general.They also stated ertain inequality onditions on the ontroller where the system an-not satisfy absolute delay and rate guarantees and proportional delay di�erentiationat the same time [52℄. In this ase, the JoBS-NS2 relaxes the onstraints, aordingto the given lass preedene order on the servie guarantees.For the loss feedbak loop of JoBS-NS2, tra� is dropped from a lass queue tosatisfy the proportional loss di�erentiation within the limits imposed by the abso-lute loss guarantees. If there is lass bu�er over�ow, or an absolute delay and rateviolation, tra� is dropped until the onditions are satis�ed, or until the maximum95



amount of tra� has been dropped. One the maximum possible amount of loss ismet, and there is still absolute delay and rate violations, these onstraints are relaxed[30, 52℄.Hene, as expeted and seen in Figures 4.6 and 4.7, JoBS-NS2 inurs signi�antlyhigher delay and higher ongestion level (in bits) due to its linearized ontrol model.This approximate model may not hold in general. WFRLP provides an advantage asit does not require ontrol model parameters.Another issue of JoBS-NS2 is that it only enfores servie guarantees over theduration of a busy period. The authors of JoBS-NS2 admitted that if the busyperiods are short, enforing QoS guarantees with the information on the urrent busyperiod is unreliable. For WFRLP, eah agent uses its experiene on previous busyperiods due to the sequential nature of the SMDP, and does not su�er from this issue.4.6 Possible Weaknesses of WFRLPWFRLP faes a similar issue in Setion 3.6 sine it also uses WF 2Q for bandwidthprovisioning for eah agent. As mentioned in Setion 4.4.2, this is only possible ifthe topology state evolves as an irreduible aperiodi (i.e. ergodi) Markov hain.We have already disussed the impliations of this assumption and its appliabilityin atual networks in Setion 3.6.In this hapter, eah agent independently solves its own loally-observed SMDP,without knowing the poliies of other agents. Although WFRLP is easier to imple-ment as eah node does not need information about other nodes, aurate estimateof the global optimal reward may not always be obtained. We address this issue inChapter 6 for the deentralized ase.The proposed Wire-Fitted CMAC for ontinuous state and ation vetor spaesin Figure 4.2 uses a funtion approximation tehnique to �nd the near-optimal state-96



ation values. The state-ation values are then used to onstrut the optimal poliy.As explained in Setion 4.4, this tehnique an ahieve a fast searh of the greedyation (i.e. arg max
a∈A

R∗(s, a) in (4.15)) by only searhing a onstant number of repre-sentative vetors, rather than searhing the entire multi-dimensional spae.However, in-depth onvergene analysis is needed to haraterize the error boundas the algorithm onverges to the optimal solution. Further investigation is neededto �nd the best struture for the Wire-Fitted CMAC (i.e. number of wire vetors,CMAC on�guration, and learning and deaying rates) and this maybe spei� to theproblem.4.7 Chapter SummaryWe have proposed a bandwidth alloation and bu�er management sheme in a time-varying hannel and topology, with onsideration of bandwidth, queueing delay andbu�er loss onstraints. Eah node ats as an agent that observes its own averagereward SMDP independently. Eah agent uses a model-free RL algorithm that allowsto learn the optimal poliy through sequential deision without knowing the transitionprobabilities that enompasses the dynami nature of the network.Simulation results show that the proposed algorithm known as Wire-Fitted Rein-forement Learning Provisioning (WFRLP) is able to attain its objetive of provi-sioning bandwidth and bu�er to meet QoS requirements in a ost e�etive manner.Due to the ontinuous and multi-dimensional nature of the states and ations of theSMDP, we also propose a novel Wire-Fitted CMAC struture that is suitable forfast and real-time learning and is able to attain good onvergene as shown in oursimulation results.Figure 4.8 summarizes the main ideas of this hapter. We have formulated theresoure alloation problem (i.e. bandwidth alloation and bu�er management) as a97
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Chapter 5Hierarhial Semi-MDP Approah forQoS Provisioning
This hapter presents the third variant of MDP formulation in this thesis. This typeextends the independent agent SMDP formulation in Chapter 4, espeially in the QoSprovisioning problem with large and ontinuous state and ation vetor spaes.We observe that in Setion 4.4, even though the desired ation vetor with thehighest state-ation value an be retrieved ompatly, the �at RL algorithm is stillsearhing from a large ontinuous vetor spae. This e�etively does not prevent eahagent from hoosing ostly ations, espeially during the initial exploration spae,whih then ontributes to slower onvergene.In this hapter, we present a novel solution to address this issue. Using the ideaof divide-and-onquer, the original SMDP formulation for an agent is deomposedinto smaller sub-problems. Intuitively, this mehanism aelerates the proess of�nding the optimal solution, sine the smaller problems are relatively easier to solve.Formally, we present the Hierarhial Semi-Markov Deision Proess (HSMDP) andHierarhial Reinforement Learning (HRL).It should be noted that HSMDP and HRL are still based on the single-agentframework as desribed in Setion 1.3, where eah node ats as an agent that triesto solve its own loally-observed HSMDP, independent of other agents. Figure 5.1shows a general system model for independent HSMDP agents.99
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Figure 5.1: Independent HSMDP agents for resoure alloation in MANETsThe ase for the multi-agent framework is disussed in Chapter 6.Setion 5.1 formally introdues the HSMDP theoretial framework and a model-free HRL algorithm. Setion 5.2 then desribes our proposed HRL-based resourealloation sheme, where eah node ats as an agent solving its own HSMDP inde-pendently. In Setion 5.3, we present and disuss simulation results obtained usingthe NS2 network simulator. We e�etively ompare the performane of the non-hierarhial RL algorithm from Chapter 4 and the new proposed HRL-based methodin this hapter.5.1 Hierarhial SMDP and Hierarhial RLHierarhial Semi-Markov Deision Proess (HSMDP) is a framework for large do-mains by using a task or ation struture to restrit the searh of poliies. A largeMDP problem is deomposed into a set of tasks, and eah task an be further de-omposed into a olletion of subtasks and so on, up to a desired level of hierarhy.100



The key priniple behind HSMDP is to reuse learned poliies by the subtasks in thetask hierarhy. The orresponding model-free tehnique for HSMDP is HierarhialReinforement Learning (HRL).We emphasize that well-known �at or non-hierarhial RL algorithms, suh asQ-Learning [17℄ and the SMART algorithm used in [13, 18℄ and Setion 4.2, do notapply here anymore due to the hierarhial task struture of HSMDP.At the lowest level of the task hierarhy are primitive ations that immediatelyterminate after exeution. In a non-hierarhial setting, primitive ations orrespondto the atual ation obtained from the �at RL algorithm as in Setion 4.2. In thehierarhial setting, the higher level tasks above the primitive ations are subtasksknown as non-primitive or temporally-abstrat ations. This type of ations an takea variable amount of time to �nish. HRL determines how lower-level poliies oversubtasks or primitive ations an themselves be omposed into higher level poliies.Poliies over primitive ations or tasks are onsidered Semi-Markov when omposedat the next level up due to the variable exeution times.The SMDP model desribed in Setion 4.1 has been the mathematial frameworkfor analyzing this onept of temporal abstration [16℄ used in HSMDP, where at agiven task level in the task hierarhy, deisions are not required at eah step, butinvoke a sequene of temporally-extended ativities whih follow their own subtaskpoliies until termination.Several approahes to HSMDP and HRL have been proposed, inluding the op-tions formalism [53℄, hierarhies of abstrat mahines (HAMs) [54℄ and the MAXQframework [55℄. The di�erene among these three well-known approahes lies in howto speify the subtasks in the hierarhy. In this hapter, we leverage on the MAXQframework and its value funtion deomposition, due to its ability to represent thestate and ation values in a more ompat and reusable manner. However, as theoriginal MAXQ framework is formulated for disounted reward riterion, we use its101



extension for average reward riterion found in [42℄.5.1.1 Hierarhial Task Deomposition in HSMDPHSMDP deomposes the overall task MDP M into a �nite set of subtasks
{M0,M1, ...,Mn}where M0 is the root task and solving it solves the original MDP M .Eah non-primitive subtask i onsists of a tuple (Ti, Ai, Ri) [42℄ where:

Ti(si) is a termination prediate that partitions the MDP state spae S into a setof ative states Si, and a set of terminal states Ti. The poliy of subtask Mi an beexeuted only if s ∈ Si. Subtask i terminates when it reahes a state in Ti.
Ai is a set of ations that an be exeuted to perform subtask Mi. These ationsan be the primitive ations from the MDP ation spae A or an be other subtasks.
Ri is the reward struture inside subtask i. Besides the reward of the overall task(MDP M), eah subtask an use additional rewards to guide its learning of poliies.A hierarhial poliy w is de�ned as the set of poliy for eah of the subtasks in thehierarhy: w = {w0, w1, ..., wn}. Under a hierarhial poliy w, a multi-step transitionprobability funtion is de�ned for eah subtask i: Pw

i : Si × ℵ × Si → [0, 1] , where
Pw

i (s′, K | s) is the probability that ation µi(s) will ause the system transition fromstate s to s′ in K primitive steps. Eah subtask i an then be modeled by a SMDPwith the omponents (Si, Ai, P
w
i , Ri) .An example of a task graph struture is shown in Figure 5.2. The Root task isfound at the highest level, while the RedueDelay, RedueLoss, and InreaseThrough-put are the non-primitive ations or subtasks for Root. The PerformBA and Per-formBM tasks are the possible ations or subtasks for the next lower level. TheAtionBA for PerformBA (i.e. perform bandwidth alloation) is a primitive ation102



Figure 5.2: Example Task Graphor task whih orresponds to the atual ation vetor taken by the agent from theontinuous ation spae. Similarly, AtionBM is a primitive ation for PerformBM,the subtask for bu�er management.The onept of temporal abstration an be explained as follows: the Root initiallyhooses among its non-primitive subtasks aording to its poliy, and these subtasks inturn follow their own poliies until they themselves terminate. The primitive ationsterminate immediately after exeution.5.1.2 OptimalityThe hierarhial task graph struture is generally spei�ed by the designer usingprior knowledge about the problem. This essentially redues the size of the spae forsearhing a good poliy. However, the hierarhy itself onstrains the possible poliiesthat it may not be able to represent the optimal poliy or its value funtion. Twotypes of optimality have been de�ned to takle this issue:1. Hierarhial optimal poliy is a hierarhial poliy whih has the best perfor-mane among all poliies onsistent with the hierarhy. The poliy for eahsubtask may not be optimal, but the poliy for the task hierarhy is optimal.103



2. Reursive optimal poliy is a hierarhial poliy suh that for eah subtask Mi,the orresponding poliy µi is optimal for the SMDP de�ned by (Si, Ai, P
w
i , Ri) .In this work, we onsider a hierarhial optimal poliy for the QoS provisioning prob-lem. Following Setion 4.3, our objetive is to maximize average long term networkreward whih e�etively translates into minimizing average long term QoS violations.Hene, the goal is to �nd a hierarhial optimal poliy that maximizes the averagelong term reward of the overall task.5.1.3 Hierarhially Optimal Value Funtion DeompositionIn omposing poliies for tasks from lower level subtasks, the need for ompatlystoring the value of the state-ation pairs at di�erent task levels is ruial in orderfor poliy reuse. This idea is exploited in the MAXQ framework [55℄ that allows thestoring and deomposing of the value funtion in a distributed manner in the nodes ofthe task graph. However, MAXQ value deomposition is only proven to be reursivelyoptimal and for disounted reward riterion. The separation of the value funtion fora hierarhial optimal poliy is disussed in greater details in [42℄. We summarize thehierarhial optimal value deomposition for average reward riterion as follows:We assume the root task in the task hierarhy is a ontinuing task (i.e. the overallroot task goes on without termination). In addition, we assume that for every possiblestationary poliy onsistent with the overall hierarhy, the embedded Markov hainhas uni-hain transition probability distribution and as a result, the whole task isuni-hain SMDP [56℄. This assumption also implies that the average reward for theroot (i.e. overall problem) is well de�ned for every hierarhial poliy and does notvary with initial state. We de�ne the overall gain to the hierarhial poliy w as ρw ,also de�ned as the gain of the root task.The hierarhial value funtion of a subtask ontains the reward reeived duringsubtask exeution and the reward after it terminates. This is ruial in order to �nd104



the hierarhial optimal poliy. This also implies that the expeted reward depends onthe subtask and all its alling anestors up to the root of the hierarhy. Similar to (4.5)in the �at uni-hain SMDP model, we de�ne the hierarhial average adjusted valuefuntion Hw(i, s) for hierarhial poliy w and subtask Mi as the average adjustedsum of rewards earned until Mi terminates plus the average adjusted reward outside
Mi:

Hw(i, s) = lim
K→∞

Ew
s

{

K−1
∑

t=0

(r(st, at) − ρwτt)

} (5.1)where τt is the length of deision period.Deomposing (5.1) an be stated as follows [42℄: Suppose the �rst ation hosenby poliy w is exeuted and terminates after N1 primitive steps in s1 aording to
Pw

i (s1, N1 | s, wi(s)), where wi(s)= ation taken by poliy wi for subtask Mi. After-wards, subtask Mi itself exeutes for N2 steps at the level of subtask Mi (i.e. N2 isthe number of ations taken by subtask Mi, not the number of primitive ations) andterminates in s2 aording to Fw
i (s2, N2 | s1), also known as the abstrat transitionprobability at the level of subtask Mi. A Bellman equation an then be written as:

Hw(i, s) = r (s,wi(s)) − ρwyi (s,wi(s)) +
∑

N1,s1∈Si

Pw
i (s1,N1 | s,wi(s)) Ĥw(i, s1)

+
∑

s1∈Si

Fw
i (s1 | s,wi(s)) Mw

i (s1, i) (5.2)where:
Mw

i (s1, i) =
∑

N2,s2∈Si

Fw
i (s2,N2 | s1) Hw(pt(i), s2)

Fw
i (s1 | s,wi(s)) =

∞
∑

N=1

Pw
i (s1,N | s,wi(s))

pt(i) is the alling parent task of subtask Mi

yi (s, wi(s)) is the expeted length of time until the next deision period after invoking105



ation wi(s)

Fw
i (s1 | s, wi(s)) is the single-step transition probability funtion for subtask Mi,de�ned by marginalizing the multi-step probability funtion Pw

i .
Ĥw(i, si) denote the projeted average adjusted value funtion of hierarhial poliy
w and subtask Mi, de�ned as the average adjusted sum of rewards of exeuting thepoliy wi and the poliies of all the desendants of Mi starting in si, until Mi termi-natesSine r (s, wi(s)) is the expeted total reward between two deision epohs ofsubtask Mi given that the system was at state s and exeuted ation wi(s), we have:
r (s, wi(s)) = Ĥw(wi(s), s)+ρ

wyi (s, wi(s)) . The Bellman equation an then be writtenas:
Hw(i, s) = Ĥw(wi(s), s)

+
∑

N1,s1∈Si

Pw
i (s1,N1 | s,wi(s)) Ĥw(i, s1)

+
∑

s1∈Si

Fw
i (s1 | s,wi(s)) Mw

i (s1, i) (5.3)The orresponding hierarhial average adjusted ation-value funtion for (5.3),similar to the ation-value representation in (4.7) for �at uni-hain SMDP, an beexpressed as:
Lw(i, s, a) = Ĥw(a, s)

+
∑

N1,s1∈Si

Pw
i (s1,N1 | s, a) Ĥw(i, s1)

+
∑

s1∈Si

Fw
i (s1 | s, a)Kw

i (s1, i) (5.4)
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where:
Kw

i (s1, i) =
∑

N2,s2∈Si

Fw
i (s2,N2 | s1) L̂w(pt(i), s2, wpt(i)(s2))

L̂w(i, s, a) denote the projeted average adjusted ation-value funtion of hierarhialpoliy w and subtask Mi, de�ned as the average adjusted sum of rewards of doing ain state s one, and exeuting the poliy wi and the poliies of all the desendants of
Mi thereafter, until Mi terminatesThe projeted average adjusted value funtion Ĥw(i, s) in (5.2) an be rede�nedas:

Ĥw(i, s) =



















L̂w(i, s, wi(s)), if i is a omposite task
∑

s′

P
(

s′ | s, i
) (

r(s′ | s, i) − ρw
)

, otherwise (5.5)A primitive task i is synonymous to a primitive ation whih terminates immedi-ately after exeution and is found at the lowest level of the task hierarhy. In the taskgraph struture, the primitive task i stores its own Ĥw(i, s). A non-primitive task i,also known as a omposite task or ation, is a higher level task that takes a variableamount of time to �nish. It stores the value funtions L̂w(i, s, a) and Lw(i, s, a) foreah possible ation a under non-primitive task i.5.1.4 Hierarhially Optimal Average Reward RL AlgorithmAs RL methods do not require the probability distribution funtions, as de�ned in theprevious subsetion, the optimal poliy is learned or approximated using the Bellmanequations in (5.3), (5.4), and (5.5) for estimating the optimal values of the di�erentvalue funtions: Ĥw(i, s), Lw(i, s, a), and L̂w(i, s, a) [42, 56℄.One the optimal value funtions are obtained, the optimal poliy for subtaskMi is107



given as: w∗
i (s) = arg max

a∈Ai

Lw∗

(i, s, a).We term the algorithm as the Continuous-timeHierarhially Optimal Average Reward (CHO-AR) RL algorithm and its pseudo-odeis shown in Algorithm 1. The exploration poliy mentioned in the pseudo-ode is sim-ilar to the exploration sheme desribed in Setion 4.2 in the �at RL algorithm. Thisalgorithm is similar to the ideas used in [42, 56℄, but applied in a ontinuous-time,hierarhially optimal ontext.Algorithm 1 Continuous-time Hierarhially Optimal Average Reward RL algorithmFuntion CHO-AR(Task i, State s)Let Seq be the sequene of states visited while exeuting iIf i is a primitive ation thenExeute ation i in state s, observe s′ andreward (k(s, i) + r(s′, s, i)τ), Update Ĥw
t (i, s):

Ĥw
t+1(i, s) = (1 − αt)Ĥ

w
t (i, s) + αt (k(s, i) + r(s′, s, i)τ − ρtτ),where τ= time interval between the deision epohsIf i and all its alling anestors are non-random ations thenupdate the global average reward:

ρt+1 = rt+1

τt+1
= rt+k(s,i)+r(s′,s,i)τ

τt+τEnd ifPush state s into the beginning of SeqElseWhile i has not terminated doChoose ation a aording to urrent exploration poliy wi(s)Let ChildSeq = CHO-AR(a, s), where ChildSeq is thesequene of visited states while exeuting ation aObserve the resulting state s′Let a∗ = arg maxa′∈Ai(s′) Lw
t (i, s′, a′)For eah s in ChildSeq from the beginning doLet target = Ĥw

t (a, s) + L̂w
t (i, s, a∗)

L̂w
t+1(i, s, a) = (1 − αt)L̂

w
t (i, s, a) + αttarget

Lw
t+1(i, s, a) = (1 − αt)L

w
t (i, s, a) + αttargetEnd forAppend ChildSeq onto the front of Seq

s = s′End whileEnd ifReturn SeqEnd Funtion CHO-AR
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5.2 HRL for QoS ProvisioningUsing the HSMDP framework requires the designer to deompose the problem into atask struture using available prior knowledge. As mentioned in Setion 5.1, we usethis framework to e�iently searh for ations in the ontinuous ation spae in orderto handle the QoS onstraints and to prevent the agent from invoking ations thatare ostly and unfavorable.In inorporating prior knowledge, we use a similar approah in [52℄ to searh forthe desired ations (i.e. how muh bandwidth to alloate and what is the paketdrop rate for eah lass). We de�ne the target bandwidth rj,min for network lass jfor handling the rate and delay onstraints mentioned in Setion 4.3 as follows: If
dj,max > dj,

rj,min = max

(

Bj

dj,max − dj

, bj,min

) (5.6)where Bj is the total bu�er size of lass j (in bits)The target bandwidth rj,min e�etively aptures the required bandwidth to learthe bu�er, without any bu�er loss, within the maximum allowed delay. If dj,max ≤ dj,the target bandwidth is set to the observed link apaity Ch, so as to quikly learthe bu�er [52℄.We use the same state and ation desriptors in (4.10) and (4.11) for the HSMDPformulation. However, we rede�ne the reward struture by replaing bj,min with rj,minas follows:
r(S′,S, a) = τ(S′,S, a)

{

J
∑

j=1

rj,price

{

r′j − rj,min

Ch

}

+

J
∑

j=1

dj,price(dj,max − di) +
J
∑

j=1

li,price(lj,max − lj)

} (5.7)109



As de�ned in (4.10), the state desriptor ontains the atual queueing delay andbu�er loss measurements in a node. The state e�etively aptures the ahieved QoSinformation. Given a state s, the target bandwidth for the network lasses an beeasily omputed from (5.6). As an be dedued, the state s an be found in one ofthe following regions in the QoS provisioning state spae:Region A1: ∑
j

rj,min < Ch and dj,max > dj , ∀j: No rate and delay violations.Region A2:∑
j

rj,min = Ch: No rate violations.Region A3:∑
j

rj,min > Ch.The three regions above help us to de�ne the proposed task graph hierarhy forQoS provisioning. Region A1 is onsidered as the best region sine the requiredbandwidth is satis�ed to lear the lass queue without any bu�er loss and delayviolations.In the network, as the atual delay and loss measurements vary, the position ofstate s also varies among the three regions. The QoS provisioning problem an thusbe stated as follows: Given the urrent varying state s, the agent needs to performBA and BM to bring or maneuver the state into the best region, where the averagelong term reward is maximized. By intuition, the ideal solution is when the agentan bring the state into Region A1 and stay in this region. However, due to networkdynamis and interation or ommuniation among the nodes, this ase may not bealways possible as the ahieved QoS vary. The goal is still for the agent to performBA and BM to navigate the state into a region where it an maximize its long termreward, whih e�etively translates into minimizing long term QoS violations. Theproblem an thus be easily translated into a navigation problem for the agent.
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Figure 5.3: Task Graph for QoS provisioningUsing the idea of navigation for QoS provisioning, we use a simple task graphstruture for the HRL formulation in Figure 5.3. We de�ne the following tasks:
• Root. This is the overall task. We assume that the root is a ontinuing taskthat does not terminate as mentioned in Setion 5.1.3, with the objetive ofmaximizing average long term reward.
• RedueDelay. This omposite task is used to redue the queueing delay.
• RedueLoss. This omposite task is used to redue the bu�er loss.
• InreaseThroughput. This omposite task is used to inrease throughput.
• PerformBA. This omposite task is used for performing bandwidth alloation.AtionBA is a primitive ontinuous ation.
• PerformBM. This omposite task is used for bu�er management. AtionBM isa primitive ontinuous ation.
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The PerformBA and PerformBM tasks are the omposite ations for RedueDe-lay, RedueLoss and InreaseThroughput. The PerformBA obtains the atual ationvetor from the primitive ation AtionBA for bandwidth alloation, while primitiveation AtionBM gives the ation vetor for bu�er management in the PerformBMtask. This level of abstration is needed sine the omposite tasks PerformBA andPerformBM are searhing the ontinuous ation spae.The sequene of ation seletion for the di�erent subtasks is obtained from thetask poliy itself that is being learned. PerformBA and PerformBM terminatesimmediately after the orresponding ation vetor (i.e. AtionBA or AtionBM ) hasbeen taken. For the RedueDelay subtask, it terminates one the queueing delay ofat least one lass has been redued. The termination prediates of RedueLoss andInreaseThroughput are de�ned in a similar manner. The agent is using the di�erenttasks in the task hierarhy for navigation in the di�erent regions.Figure 5.4 shows the MAXQ graph for the task graph de�ned in Figure 5.3. TheMAXQ graph is a graphial representation of the value funtion deomposition andis used for the design and implementation of the RL algorithm itself [55℄. The graphontains two types of nodes: Max nodes and Q nodes. The Max nodes orrespond tothe subtasks in the task deomposition as shown in Figure 5.3, where eah primitiveation is represented by a Max node, while eah subtask, inluding the Root, is alsorepresented by a Max node. The Q nodes orrespond to the ations that are availablefor eah subtask.For the CHO-AR pseudo-ode in Algorithm 1, eah primitive Max node i storesthe value of Ĥw(i, s). Eah Q node for parent task i, state s, and subtask a storesthe values of Lw(i, s, a) and L̂w(i, s, a).As mentioned earlier, the subtasks PerformBA and PerformBM are searhing theontinuous ation spae and hene, there are in�nitely many possible primitive ationvetors. To represent this in the MAXQ graph, we de�ne a ontinuous Q node to112



Figure 5.4: MAXQ graph for QoS Provisioninghandle a ontinuous ation spae. The node QAtionBA is a ontinuous Q node whihstores the value funtions Lw(i, s, a) and L̂w(i, s, a) for the possible ation vetors afor BA. The node AtionBA is also de�ned as a ontinuous primitive Max node andstores Ĥw(a, s) for the possible ation vetors a for BA. Similarly, nodes QAtionBMand AtionBM are ontinuous Q node and ontinuous primitive Max node for BM,respetively. These value funtions in the respetive ontinuous Q nodes and Maxnodes are stored ompatly using the Wire-Fitted CMAC struture in Figure 4.2.Note that this state-ation representation for ontinuous vetor spae with ontin-uous Q nodes and Max nodes is our proposed extension to the usual MAXQ graph fordisrete vetor spaes. In addition, the proposed CHO-AR tehnique in Algorithm 1uses this ompat representation whih di�ers from [42, 56℄.113



We term the proposed HRL-based solution for QoS provisioning as the HierarhialOptimal Reinforement Learning Provisioning (HORLP) algorithm.Similar to the �at RL-based algorithm in Setion 4.4, we use the work-onservingsheduler known as worst-ase fair weighted fair queueing (WF 2Q). The HORLPalgorithm learns the WF 2Q weights for bandwidth alloation and the paket droprate for bu�er management.We observe that the bu�er management omponent of HORLP an be used ina wired or wireless senario. However, for bandwidth alloation, fair queueing teh-niques suh as WF 2Q are generally known to be only appliable in a wired network[36℄. To justify the use ofWF 2Q under a time-varying hannel medium and topology,we use the same idea as in Setion 4.4.2 and Theorem 3.1.Essentially, by assuming that eah agent observes a time-varying hannel proessthat evolves as an embedded irreduible aperiodi �nite-state Markov hain, we havethe same ase as in Setion 3.1. Again, the di�erene is we onsider the deisioninstants or periods as the single time slot boundaries of the queueing law in (4.16).For a time-varying topology proess, the same result applies, where the servie proessor the amount of bits oming out of a loal lass queue is rate onvergent. FromTheorem 3.1, fair queueing tehniques suh as WF 2Q an thus be applied due tothe rate onvergene property of the servie proess for eah lass j. Therefore, the
WF 2Q weights are used to provision and alloate the total e�etive rate J

∑

j=1

µj,avamong the lass queues. This total e�etive rate e�etively represents the observedapaity Ch in the HSMDP formulation in (5.7).5.3 Simulation Results for HRL-based provisioningIn this setion, we simulate the same senario desribed in Setion 4.5, with a networkof 20 mobile nodes in a 1,000m by 1,000m as shown in Figure 3.3. The maximum114



hannel apaity is 2 Mbps, while both the queue size of the interfae queue androuting protool have a depth of 50 pakets.We use the same tra� lass de�nitions and �ow harateristis from Tables 4.1and 3.1, respetively. Spei�ally, we simulate eight long-lived CBR �ows. We haveused CBR onnetions sine this type of �ows aptures the worst ase and averagelong term performane.We have disussed in Setion 4.4.2 that the MAC mehanisms and varying topol-ogy in the network is aptured in our model through the onept of a topology stateproess that evolves as an irreduible aperiodi Markov hain. It should also be notedthat there have been a number of works that uses DCF in MANETs with varying se-narios under the Markov hain theory [32, 33℄. Our approah is di�erent beause weuse the ontrolled Markov hain under the HSMDP framework.We ompare the performane of the HRL-based HORLP algorithm with the FlatRL algorithm disussed in Setion 4.4 with respet to the normalized average reward.It should be noted that the average reward is a measure of how well the algorithmsatis�es the QoS onstraints in (5.7).
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struture in HRL that allows the agent to reuse subtask poliies whenever the agentis in any region in the QoS provisioning state spae as desribed in Setion 5.2. The�gure also shows that HORLP attains a onvergene limit lose to 0.6513 for di�er-ent senarios and pause times. This result supports our laim in Setion 4.4.2 thatdi�erent MAC mehanisms and varying topology issues are aptured in our modeldue to the topology state proess onept.
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where HORLP ahieves more robust and faster onvergene in Figure 5.5. It shouldalso be noted that HORLP appears to inur higher queueing delay than Flat RL. Themain reason for this is explained later in onjuntion with bu�er drop measurementsin Figure 5.7.
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As expeted, sine Flat RL inurs higher paket drops, the amount of pakets inthe lass queues is less than that of HORLP. This explains the reason why HORLPappears to inur higher queueing delay as mentioned earlier and shown in Figure5.6, sine HORLP has more pakets in the queue. There is a lear trade-o� betweenpaket drops and queueing delay.Table 5.1: Average Queueing Delay (ses), Bu�er Drops (bits) and Congestion Level(in bits) Measurements for HORLP and Flat RLSheme -PauseTime(ses) I II IIIDelay Drops Congestion Delay Drops Congestion Delay Drops CongestionHORLP- 5 0.042 2418.83 2097.98 0.013 995.31 111.437 0.041 2602.79 323.56Flat RL- 5 0.023 4100.53 1962.53 0.005 1726.42 96.45 0.017 4567.77 257.64HORLP- 25 0.048 2573.98 2389.15 0.023 1662.62 1526.89 0.036 2211.61 2071.05Flat RL-25 0.024 4302.86 2003.05 0.010 2844.56 1300.64 0.015 4173.46 1849.02HORLP- 50 0.067 2215.70 1884.02 0.029 1462.85 1841.70 0.039 2740.90 2778.60Flat RL- 50 0.022 3618.06 1701.36 0.012 3301.91 1601.86 0.018 4712.36 2301.83HORLP- 100 0.032 2242.44 1682.60 0.023 1429.61 1647.22 0.031 2394.85 2108.9Flat RL- 100 0.019 3607.47 1618.55 0.010 2784.06 1325.96 0.015 3869.59 1779.53Table 5.1 shows the measured average queueing delay, average paket drops inbits, and average ongestion level (i.e. average paket bu�er ontent in bits). Themeasurements are obtained from the QoS statistis from all nodes and averaged overthe simulation period. The table supports our earlier results in Figures 5.6 and 5.7 asit also shows that Flat RL has fewer pakets in the queue (i.e. less ongestion) andslightly smaller queueing delay than HORLP. However, Flat RL inurs higher paket119



drops. HORLP is advantageous sine a task struture permits e�ient searhing ofations to avoid ine�etive drop rates, thus improving the overall performane interms of average long term reward.5.4 Possible Weaknesses of HORLP algorithm andHRLHORLP faes a similar issue with WFRLP and the FLP algorithm in Setion 3.6sine it also uses WF 2Q for bandwidth provisioning for eah agent. As mentionedin Setion 4.4.2, this is only possible if the topology state evolves as an irreduibleaperiodi (i.e. ergodi) Markov hain. We have already disussed the impliations ofthis assumption and its appliability in atual networks in Setion 3.6.HORLP also faes the same issue as the WFRLP in Setion 4.6 sine eah agentindependently solves its own loally-observed HSMDP, without knowing the poliiesof other agents. Although this is easier to implement as eah node does not needinformation about other nodes, aurate estimate of the optimal network reward maynot always be obtained. We address this issue in Chapter 6 for the deentralized ase.HORLP also uses the Wire-Fitted CMAC in its task graph representation inSetion 5.2, and thus su�ers similar issue with WFRLP in Setion 4.6 with regardsto storage implementation of ontinuous state-ation multidimensional spae.In addition, HORLP uses a task graph struture in deomposing the originalSMDP problem, as disussed in Setion 5.2. In our provisioning problem, we haveonly used a simple task graph in Figure 5.3. Finding the best task graph is thenext issue. Aside from this, one requires problem-spei� onditions to speify thetermination onditions in the task graph. Further investigation is needed to addressthis problem. There are also some reent work on automating the searh for buildingthe task graph [57℄. 120



5.5 Chapter SummarySimulation results show that HORLP is able to attain its objetive of network pro-visioning to meet QoS requirements in a ost e�etive manner. By deomposingthe network-level QoS provisioning problem into a simple task hierarhy under astohasti ontrol HSMDP framework, and using the orresponding model-free HRLalgorithm, we are able to ahieve better average long term performane, in terms ofnetwork reward and redution in QoS onstraint violations.
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Chapter 6Deentralized Optimal Control forResoure Alloation
This hapter presents the fourth variant of MDP formulation in this thesis. In theprevious hapters, we have used a single-agent framework, where eah agent sees itsown ontrolled Markov hain independently, and �nds its optimal poliy. In thishapter, we formulate the queue sheduling problem as a deentralized ontrol prob-lem. Spei�ally, we use the framework known as Deentralized Partially ObservableMarkov Deision Proess (DEC-POMDP) [19℄ where the performane of the networkis a�eted by the joint ations or poliies of the agents. DEC-POMDP is an extensionof the theory of MDP for deentralized ontrol where eah agent observes a di�erentpartial view of the urrent network ondition. The observation of an agent may onlyinlude the loal queue information and poliies of neighboring agents.In �nding the optimal joint ations, the DEC-POMDP formulation is essentially amulti-agent system that allows the agents to ollaborate, ooperate and ontrol a sin-gle MDP without omplete observability of the global network state. This frameworkis thus more appliable and realisti in atual network deployment.In Chapters 4 and 5, due to the known omplexity of model-based DP tehniques,suh as value iteration and poliy iteration, we have also introdued the model-freeapproah known as Neuro-Dynami Programming or Reinforement Learning. Inthis hapter, we also employ a model-free solution as it does not require the transi-122



tion probability distribution of the underlying Markov hain in �nding the optimalsolution. RL e�etively solves a single MDP formulation with independent agents,however, we extend standard RL algorithms to solve a multi-agent ollaborative DEC-POMDP.It is also known that exat solutions to a DEC-POMDP are omplete for theomplexity lass non-deterministi exponential time (NEXP-omplete) [19℄. In otherwords, a general DEC-POMDP do not admit polynomial-time algorithms sine P 6=NEXP. Hene, using online RL-based algorithms to approximate the optimal solutionis not only more appliable in a dynami network, but also pratial and less inomplexity.We also note that in prior researh work, the performane analysis of ommunia-tion networks is usually done using a separate mathematial framework. For instane,the work in [58℄ uses a general G/G/1 queue for MANETs to establish the probabilitydistributions and performane bounds on ongestion level and queueing delay with-out an expliit use of a ontrol algorithm. In this thesis, we also derive performanebounds diretly from the ontrolled Markov hain itself, as the model-free algorithmonverges in �nding the best sheduling poliy. This approah is also more realistisine the nodes ating as agents an ontrol the atual performane ahieved.We also use the ψ-irreduibility framework disussed in Chapters 2 and 3 for study-ing the stability and performane analysis of our DEC-POMDP sheduling problem.Note that ψ-irreduibility is more appliable than the standard de�nition of irre-duibility where the latter refers to the ase when there is only a single ommuniat-ing lass and any state of the Markov hain an be visited from any initial ondition[4℄. Consequently, our analysis uses a stability ondition known as V-uniform ergod-iity [22℄ for ψ-irreduible ontrolled Markov hains. This stability property providesan inequality ondition that enables us to derive performane bounds from the ontrol123



algorithm. We emphasize that V-uniform ergodiity di�ers from the Foster-Lyapunovdrift ondition in Theorem 2.3 as it is more appliable in a model-free approah fora deentralized multi-agent framework.We believe that the DEC-POMDP formulation aptures a multi-agent system forommuniation networks more appropriately than any other deision-theoreti, game-theoreti or MDP-based framework. To the best of the authors' knowledge, this novelapproah is the �rst method of ahieving optimization ooperatively in a deentralizedmanner, and for deriving stability onditions and performane bounds simultaneouslyin a general wireless Markov queueing network diretly from the ontrol algorithm, asthe algorithm onverges to the optimal solution. Furthermore, our proposed solutiondoes not require the omplete knowledge of the topology, tra� and hannel statistis.This hapter is organized as follows. Setion 6.1 emphasizes the importane of adeentralized ontrol framework for ollaborative sheduling and resoure alloation,whih di�ers from earlier researh. We then introdue the DEC-POMDP frameworkand apply it for the multi-lass queue sheduling problem in MANETs under theaverage ost riterion. The main objetive is to �nd the optimal joint poliy thatminimizes the average ongestion level of the network. We also explain how a time-varying hannel medium and topology an be easily aptured in our system model.Setion 6.2 then disusses non-trivial omplexity issues of exat and optimal algo-rithms for DEC-POMDP. In order to �nd and approximate the optimal poliies e�-iently and in a deentralized manner, we propose a model-free ontrol algorithm inSetion 6.3. We introdue the onept of amulti-agent �nite state ontroller (MFSC).Our approah is based on the RL tehnique known as poliy gradient that parame-terizes and updates the poliies of agents during exeution. We also exploit the ideaof �nding a poliy struture to apture the loality of interation among neighboringagents.In Setion 6.4, we use the ψ-irreduibility property for Markov hains from Chap-124



ter 2 to study the performane and stability of our system model. Spei�ally, wederive performane bounds on average queueing delay and ongestion level from thestability ondition known as V-uniform ergodiity for ψ-irreduible ontrolled Markovhains.
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ity in studying the performane and stability of our model. By using a distributedpoliy gradient mehanism in LID-RLPS, we an ahieve optimization and stabilitysimultaneously. LID-RLPS also uses funtion approximation tehniques (i.e. CMAClinear neural network) in storing neighborhood poliy parameters.6.1 Deentralized Control for Resoure Alloation6.1.1 Importane of Deentralized ControlMarkov Deision Proess have been widely used as a mathematial framework for se-quential deision-making in stohasti domains. In partiular, a single deision makerontrols the system to optimize a global objetive. The agent ompletely observes thestate of the ontrolled Markov hain and ats based on its poliy [4℄.For resoure alloation in ommuniation networks, the authors in [18, 59℄ haveused the MDP framework where eah node, ating as an agent, treats relevant loalinformation as the state of the MDP. For instane, in [59℄ and Chapter 3, the loalqueue length represented the state of the ontrolled Markov hain, while the imme-diate ost depended only on the loally-observed state. The goal was to �nd the bestsheduling poliy that minimizes the average ost or ongestion level of the network.The solution was obtained using a model-free RL tehnique that approximates theoptimal poliy without the transition probability distribution of the MDP. While thisapproah is novel, the model in [59℄ and Chapter 3 is only a single agent framework,where eah agent solves its own loally-observed MDP independently, without diretlyonsidering the poliies of other agents. Sine the agents do not exhange informa-tion about the loal states and poliies of other neighboring agents in the resourealloation problem, attaining the global optimum may not be possible.The idea of using a ollaborative framework among the agents is not new and hasalready been studied in game theory. For instane, the theory of stohasti games126



provides the foundation for reent researh work on multi-agent planning and learning[60℄. A stohasti game an be onsidered as an extension of single-agent MDP wherethere are multiple agents with possible on�iting goals, and the joint ations of agentsdetermine the global state transition and rewards. Muh of the literature on stohastigames assume that eah agent has omplete information (i.e. omplete observability)about the global state of the system. However, this assumption is obviously notsatis�ed espeially in a large and dynami network. For MANETs, suh assumptionis impratial sine eah agent requires the instantaneous loal information from allother agents to at optimally.In this hapter, we are interested in a single MDP that is ollaboratively ontrolledby multiple agents. However, eah agent does not have aess to the global state of thenetwork whih evolves as a Markov hain and is a�eted by the joint ations of agents.Spei�ally, an agent only observes its loal information, suh as the queue lengths inits lass queues, and possibly the loal information and poliies of neighboring agents.This type of model is known as a Deentralized Partially Observable Markov DeisionProess (DEC-POMDP).We highlight that the spatial extent of the neighboring loality is disussed inSetion 6.3.2.6.1.2 DEC-POMDPA N-agent DEC-POMDP an be expressed as the tuple [19℄:
〈

S,
−→
A,P, C,

−→
Ω , O, po

〉 (6.1)where:
S is a �nite set of states.
−→
A = {Ai} is a �nite set of joint ations, where Ai is the set of ations available to127



agent i.
P (S ′|−→a , S) denote the probability that the next state is S ′ given that the agentsexeute the joint ation −→a = {a1, ..., aN} when the urrent state is S.
−→
Ω = {Ωi} is a �nite set of joint observations, where Ωi is the set of observations byagent i.
O(−→o |S,−→a , S ′) is the probability of observing −→o = {o1, ..., oN} when the agents takeations −→a in state S, resulting to state S ′.
C(S,−→a , S ′) denote the immediate ost funtion,
p0 is the initial state distribution of the system.In a DEC-POMDP, the joint ation of the agents and the urrent state determinethe next state. However, eah agent only observes its own loal observation oi andnone of the agents know the omplete state of the system. Note that this formulationis similar to the entralized single-agent Partially Observable Markov Deision Proess(POMDP) framework [61, 62℄ where the agent only has observations.We de�ne a loal poliy wi for agent i to be a mapping from loal history ofobservations −→

oh
i (t) = {oi(1), ..., oi(t)} to loal ations ai(t). A joint poliy −→w =

{w1, ..., wN} is de�ned to be a tuple of loal poliies. Solving a DEC-POMDP anbe seen as �nding a set of N poliies, one for eah agent. Here, we only onsider theaverage ost riterion. The average ost of a partiular joint poliy −→w for a giveninitial state S(0) = s0 is de�ned as:
J(−→w , s0) := lim

n→∞

1

n

n
∑

t=0

E
−→w
s0
{C(S(t),−→a (t), S(t+ 1))} (6.2)A poliy −→

w∗ is optimal if J(
−→
w∗, s0) ≤ J(−→w , s0) for all poliies −→w and any initialstate s0.
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6.1.3 Queue Sheduling as DEC-POMDPConsider a wireless network with N nodes ating as agents and J network lasses.Eah node is assumed to at as an agent that atively performs sheduling on its own
J loal queues, where pakets are enqueued in their respetive lass queues.In formulating the queue sheduling problem as a DEC-POMDP, we study thequeue length dynamis of the agents in a time-varying hannel and topology. Spei�-ally, we shall show that for eah lass, the queue length dynamis an be onatenatedfrom all agents to form the state vetor whih evolves as a Markov hain. This ideais similar to the entralized model in [5℄, but we extend it to the deentralized ase.Following [5℄, we represent the network as a direted graph G(V,E), where V isthe set of nodes and E is the set of links. We assume slotted time and there are Lmaximum possible links, where L := N(N − 1) and N is the number of nodes. Torepresent the dynami network topology, we de�ne the N × L topology matrix Rjfor lass j as follows. We de�ne the element of Rj in its ith row and lth olumn for
i = 1, ..., N and l = 1, ..., L:

rj
i,l =























1

−1

0

if h(l) = iif q(l) = iotherwise (6.3)where:
h(l) represents the destination node of link l.
q(l) represents the origin node of link l.We let {Ni} be the set of neighboring nodes of node i, whih is de�ned as the setof nodes that share an ative link with node i (i.e. rj

i,l 6= 0). The set of neighborsdetermines the loality of interation among nodes or agents. We shall elaborate onthis onept in Setion 6.3.2. 129



Let M j
l (t) be a binary variable suh thatM j

l (t) = 1 if a paket of lass j from q(l)is suessfully transmitted to h(l) during slot t; otherwise M j
l (t) = 0 as the paketremains at node q(l). Let xj

i (t) denote the number of bits in node i at its jth lassqueue during time slot t. The queue dynamis an be generally expressed for ∀j:
−→
xj (t+ 1) =

−→
xj (t) +Rj(t)M j(t)

−→
µj(t) +

−→
Dj(t) (6.4)where:

−→
xj (t) = [xj

1(t), ..., x
j
N(t)]T is a vetor of the queue lengths in bits by the end of timeslot t.

Rj(t) is the topology matrix with elements rj
i,l(t) de�ned in (6.3).

M j(t) is a L× L diagonal matrix where the lth diagonal element is M j
l (t).

−→
µj(t) = [µj

1(t), ..., µ
j
L(t)]T , where µj

l (t) denote the share of bandwidth (in bits) thatwas alloated for link l by the agent or node q(l) for lass j.
−→
Dj(t) = [dj

1(t), ..., d
j
N(t)]T , where dj

i (t) denote the number of bits arriving at the jthlass queue, as generated by the soure appliation at node i, if there's any.We assume that {dj
i (t)}

∞
t=1, {rj

i,l(t)}
∞
t=1 , and {M j

l (t)}∞t=1 are i.i.d. sequenes ofrandom variables for all i = 1, ...N , l = 1, ..., L, and j = 1, ..., J . In addition,we assume that these proesses are independent among themselves and the seondmoments of the arrival proesses are �nite.Due to the broadast nature of the wireless medium and by assuming that eahnode has only one network interfae devie, performing rate alloation on eah out-going link l from node q(l) is e�etively the same as eah agent i managing its ownsingle outgoing link (i.e. single network interfae). For notational onveniene, wewriteµj
i (t) as the rate alloated by agent i for eah lass j for its single networkinterfae.In ontrast with the model in [5℄ where there exists a entralized entity that hasomplete knowledge of the vetor queue length −→

xj (t) = [xj
1(t), ..., x

j
N(t)]T , in our ase,130



no agent has omplete knowledge of −→xj (t). Agent i must deide based on its ownloally observed history of information.Under the statistial assumptions above and for any joint poliy by the agents,the queue length proess {−→xj (t)}∞t=1 is a ontrolled Markov hain for eah lass j andis independent among the lasses. Generally speaking, eah agent is ating similarto a single POMDP agent, where the latter uses its history of loal observations andations to �nd its optimal poliy [61, 63℄.For the DEC-POMDP formulation, we de�ne the state vetor as:
S(t) := −→x (t) = [

−→
x1(t), ..,

−→
xJ(t)] (6.5)where:

−→x (t) is a fatored representation or onatenation of the queue length vetors −→xj (t) =

[xj
1(t), ..., x

j
N(t)]T from all network lasses.Thus, −→x (t) also evolves as a ontrolled Markov hain. The set of joint ations of

N agents is represented by the rate alloation vetor −→µ (t) = [
−→
µ1(t), ...,

−→
µJ(t)]T , where

−→
µj(t) = [µj

1(t), ..., µ
j
N(t)]T . The rate alloation ation vetor an also be rewrittenas −→µ (t) = [−→µ1(t), ...,
−→µN(t)]T , where −→µi(t) := −→ai (t) = [µ1

i (t), ..., µ
J
i (t)]T is the ationvetor for agent i. Eah agent i only observes the queue length vetor −→oi (t) :=

−→xi (t) = [x1
i (t), ..., x

J
i (t)] from its loal lass queues. The ost funtion for eah lass jis de�ned as the ongestion level from all agents:

C(xj(t), µj(t)) =

N
∑

i=1

xj
i (t) (6.6)The atual immediate ost is Call(

−→x (t),−→µ (t)) =

J
∑

j=1

N
∑

i=1

xj
i (t). The average net-
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work ongestion level starting from an initial state −→x (0) is de�ned as:
J(−→w ,−→x (0)) := lim

n→∞

1

n

n
∑

t=0

E
−→w
−→x (0) {Call(

−→x (t),−→µ (t))} (6.7)The main objetive is to �nd the optimal joint poliy −→w = {w1, ..., wN} so that
J(−→w ,−→x (0)) is minimized starting from any initial state −→x (0). Figure 6.2 summarizesthe ideas of queue sheduling as a DEC-POMDP problem.

Each node acts as an agent 
and coordinates with other agents 

DEC-POMDP: 
Queue Lengths vector from all agents 

Class Queues 

Coordinated 
Resource Allocation:
Provision bandwith
to minimize average 
global congestion level

Figure 6.2: Queue Sheduling as multi-agent DEC-POMDP
6.1.4 Time-Varying Channel and TopologyIn modeling the time-varying wireless medium, researhers have used the onept ofthe hannel state proess. The hannel state inludes harateristis of the networkthat a�et transmission. It an be obtained either through diret measurement orthrough a ombination of measurement and hannel predition. The authors in [12,132



6, 26, 27℄ have assumed that the hannel state, denoted as {Ch(t)}
∞
t=1, evolves as anirreduible aperiodi �nite state-spae Markov hain.In this subsetion, we laim that this important onept an be easily apturedin the general queue dynamis in (6.4). Spei�ally, the hannel state proess isaptured in the diagonal element M j

l (t) of the diagonal matrix M j(t), sine M j
l (t) isfrom {0, 1} that e�etively represents a suess or failed transmission from node q(l)to h(l).In addition, we also laim that other important MANET related harateristis,suh as varying topology, routing protools and MAC mehanisms, an be easilyinluded in the queueing model in (6.4). We know that the suess of transmissiondepends on other nodes' attempts as well as the topology state of the network. Thetopology state inludes all the harateristis of the network that a�et transmissionand may vary with time. It may inlude the hanging onnetivity among nodesas they move, and transmission rates in eah link with hanging quality. Otherharateristis that may not be diretly related to transmission an be also inludedin the topology state. E�etively, the topology state also aptures the hannel stateproess above. By onsidering slotted time, the authors in [27, 59℄ have assumed thatthe topology state forms a stohasti proess that evolves as an irreduible aperiodi�nite state-spae Markov hain.In the queueing model above, the topology state proess an be expressed inthe topology matrix Rj(t) and in onjuntion with the earlier assumption that theelements of Rj(t) = {−1, 0, 1} are i.i.d random variables.Hene, from these onepts, we onlude that the time-varying hannel and topol-ogy state proesses are aptured in our general queueing model. We observe that,one a Markov hain is identi�ed for the entire network, the DEC-POMDP formu-lation seems straightforward. Although the DEC-POMDP formulation is novel andhandles a deentralized multi-agent system for ommuniation networks more appro-133



priately than any other MDP-based framework, we highlight some non-trivial issuesfor exat optimal DEC-POMDP algorithms in the next setion.6.2 Complexity Issues of DEC-POMDPAs mentioned in the Setion 6.1.3, DEC-POMDP appears to be a POMDP, whereeah agent only has loal observation and the joint ations of the agents determine thenext state transition, without observing the atual state of the system. In this sense,one an intuitively onvert it to a POMDP and use established tehniques [64, 65℄.However, the authors in [19℄ have shown that, on the ontrary, a DEC-POMDPrequires a fundamentally di�erent algorithmi struture. By reduing the ontrolproblem to a tiling problem, they have shown that if the underlying transition proba-bility funtion is known, the DEC-POMDP in a �nite-horizon with a onstant numberof agents (i.e. N ≥ 2) is omplete for the omplexity lass non-deterministi expo-nential time (NEXP). This implies that problems modeled as DEC-POMDP provablydo not admit polynomial-time algorithms. This trait is not shared by �nite-horizonMDP or POMDP problems and thus, has diret impliations when solving problemsinvolving distributed agents. It should be noted that, even if one an onvert a DEC-POMDP into a single-agent POMDP, one for eah agent, exat POMDP methods arePSPACE-hard [63, 64℄ and so approximate tratable solutions are preferable.Even for in�nite-horizon POMDPs, it has been shown that exat algorithms basedon Dynami Programming su�er from an in�nite number of belief states. This on-dition implies that the problem of determining onvergene is undeidable [63, 66℄.Sine a POMDP is a speial ase of a DEC-POMDP (i.e. N = 1), the orrespondingDEC-POMDP problems are also undeidable [19℄.Reently, an exat Dynami Programming algorithm was proposed for a generalDEC-POMDP [67℄. Though the algorithm was used in a �nite-horizon ontext, the134



authors mentioned ways to extend it to the in�nite-horizon ase. Their model-basedalgorithm uses poliy trees that enumerate the possible poliies at eah state and everypossible next state transitions up to a given depth in the tree, and performs pruningof tree branhes. The algorithm obviously su�ers from large memory requirementswith eah iteration as the tree grows and in pratie, has only been used to solve verysmall problems. It is likely that any exat optimal algorithm would su�er this urseof dimensionality and exponential-time omplexity, due to the NEXP-omplete resultin [19℄.6.3 Model-Free Algorithm for Queue Sheduling asa DEC-POMDP6.3.1 Finite-State Controller ModelDue to the omplexity issues of exat model-based algorithms for DEC-POMDP asdisussed in the previous setion, we use model-free tehniques to approximate theoptimal joint poliy of agents.When an agent does not ompletely observe the state of the system and that theunderlying transition probability distribution is unknown, the agent needs memoryof the past observations and ations to at optimally, as in the ase of single-agentPOMDP [63℄.Following [63℄ for POMDP, we use the onept of a �nite-state ontroller (FSC) toapture relevant past information to at optimally. Eah agent i ontains a �nite-stateontroller whih is represented as the tuple:
〈Ii, φi, fi(·), θi, µi(·)〉 (6.8)
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where:
Ii is the set of internal states (I-states) of the FSC.
fi(·) and µi(·) are I-state transition and ation seletion distribution funtions, re-spetively.
φi ∈ R

nφi and θi ∈ R
nθi are vetor parameters.FSC uses φi ∈ R

nφi as a nφi
-dimensional vetor to parameterise the I-state transi-tion probabilities based on the urrent I-state and loal observation. In other words,the next I-state is hosen stohastially from the distribution fi(· | φi, g, y), where

g ∈ Ii and y is the urrent loal observation. Similarly, θi ∈ R
nθi is a nθi

-dimensionalvetor to parameterise the ation probabilities µi(· | θi, h, y) > 0 for eah I-state hand loal observation y.Eah agent learns to use the I-states to remember only what is needed to atoptimally. Spei�ally, the I-state transitions and poliies are learned by searhing thespae of parameters φi and θi. The ation seletion or mapping based on µi(· | θi, h, y)is also known as a randomized poliy.Algorithm 2 summarizes the FSC for a single-agent framework. In Step 5, thegradient mehanism used mostly depends on the I-state and poliy distributions
fi(· | φi, g, y) and µi(· | θi, h, y), respetively. We shall elaborate this poliy gra-dient mehanism spei� to our proposed solution in Setion 6.3.3.In single-agent POMDP literature, the FSC is used to apture the unertainty ofthe system using the onept of belief states. In a single-agent ase, a belief stateis de�ned as: Bsingle(t) = Pr(S(t) |

−→
oh(t)) where S(t) is the unobserved state and

−→
oh(t) represents a vetor of the history of loal observations up to time t. It is knownthat Bsingle(t) is a su�ient statisti beause the agent an ompute an optimal poliybased on Bsingle(t) without having to onsider the atual observation history sequene
−→
oh(t) [68℄. 136



Algorithm 2 Finite-State Controller (FSC) for Partially-Observable Environment(i.e. Single-Agent POMDP)Let St= unobserved state of the environment at time t

gt= I-state of the agent i.
〈φi, θi〉 = FSC parameters1. Agent i observes yt whih depends on St.2. Agent i then hooses its next I-state gt+1 from the distribution fi(· | φi, gt, yt)3. Agent i then hooses its ation at from µi(· | θi, gt+1, yt)4. The environment transits to the next state St+1 and the immediate ost Ct+1 isobtained by the agent i5. The agent updates its FSC parameters 〈φi, θi〉 using a gradient estimate mehanism.6. t = t + 1. Go to step 1.As the agent uses the I-states in the FSC above, this proess an be viewed asan automati quantization of the belief state spae to provide the optimal poliyrepresentable by ‖Ii‖ internal states. As ‖Ii‖ → ∞, we an represent the optimalpoliy aurately, without knowing the exat model of the system [69℄.In a multi-agent DEC-POMDP ase, an agent faes a omplex but normal single-agent POMDP if the poliies of all other agents are �xed at a given deision instant.However, Bsingle(t) is not su�ient sine the agent must also reason about the ationseletion and observation histories of other agents.Following [70℄, at eah time t, agent i deides based on the tuple:

−→ei (t) =
〈

S(t),
−→
oh
6=i(t)

〉where −→
oh
6=i(t) =

〈−→
oh
1 (t), ...,

−−→
oh

i−1(t),
−−→
oh

i+1(t), ...,
−→
oh

N(t)
〉 is the joint observation historiesof all agents exept i. By treating the vetor −→ei (t) as the state of the agent i at time

t, we an de�ne the transition funtion and observation for the single-agent POMDPfor agent i as follows: 137



P
′

(−→ei (t+ 1)|ai(t),
−→ei (t)) = P (S(t+ 1)|S(t),−→a (t))

·O 6=i(
−→o 6=i(t+ 1)|−→a (t), S(t+ 1)) (6.9)

O
′

(oi(t+ 1)|ai(t),
−→ei (t+ 1)) = Oi(oi(t+ 1)|−→a (t), S(t+ 1)) (6.10)where:

P (S(t + 1)|S(t),−→a (t)) is the state transition distribution funtion of the originalDEC-POMDP.
O 6=i(

−→o 6=i(t+1)|−→a (t), S(t+1)) is the probability that all other agents exept i observesvetor −→o 6=i(t + 1) (i.e. not part of history −→
oh
6=i(t)) given previous joint ation −→a (t),resulting to S(t+ 1).

Oi(oi(t + 1)|−→a (t), S(t + 1)) is the probability that agent i observes oi(t + 1) givenprevious ation −→a (t), resulting S(t+ 1).The multi-agent belief state for an agent i given the distribution over the initialstate p0(s) = P (S(0) = s) is de�ned as [70℄:
Bi,mul(t) = Pr(−→ei (t)|

−→
oh

i (t),
−→
ah

i (t− 1), p0(s)) (6.11)where:
−→
ah

i (t−1) is the history vetor of ations up to time (t−1), while−→oh
i (t) is the observationhistory for agent i up to time t.In other words, when reasoning about the agent's poliy in the ontext of otheragents (i.e. other agents' poliies are �xed at the urrent ontext), we maintain adistribution over −→ei (t), rather than simply the urrent state S(t) as in Bsingle(t).We thus extend of the FSC in (6.8) to apture the multi-agent belief state Bi(t).138



Spei�ally, we use the same tuple 〈Ii, φi, fi(·), θi, µi(·)〉, with the parameters φi and
θi, and set of internal states Ii. We rede�ne the internal state transition distributionas fi(· | φi, g, y, ai(t − 1)), where g ∈ Ii and y is the urrent loal observation, and
ai(t − 1) is the previous loal ation. Similar to (6.8), the ation seletion poliyis based on the ation probabilities µi(· | θi, h, y) > 0 for eah I-state h and loalobservation y. The I-state transitions and poliies are learned by searhing the spaeof parameters φi and θi.This searh proess e�etively performs an automati quantization of the multi-agent belief state Bi,mul(t) in (6.11), similar to the single-agent POMDP ase earlier.We refer to this onept as the multi-agent �nite state ontroller (MFSC).In summary, the agent searhes the spae of parameter vetors φi and θi to atoptimally, with onsideration of other agents' observation history statistis, withoutknowing the state transition and observation probabilities of the DEC-POMDP in(6.1).6.3.2 Loality of Interation among Neighboring AgentsWhile deentralized or distributed POMDP aptures real-world unertainty in multi-agent domains, suh as time-varying topology and hannel in MANETs, it fails toexploit the fat that eah agent has limited interations with a small number ofneighboring agents. In other words, eah agent only a�ets the loal observation andpoliies of those agents lose to it. A general DEC-POMDP does not exploit theloality of interation struture of a ommuniation network.In [71℄, the authors introdued this important onept for distributed POMDPs for�nite horizon problems. In this setion, we apply this idea under the in�nite-horizonriterion for our DEC-POMDP sheduling problem.We have earlier shown in Setion 6.1.3 that the queue length proess {

−→
xj (t)}∞t=1is already a ontrolled Markov hain for eah lass j. For notational onveniene, we139
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Figure 6.3: Loality of interation among neighboring nodesdrop the lass index j and we perform our analysis for a single lass queue only.Due to the interation among neighbors, we observe that the immediate ost fun-tion C(xj , µj) in (6.6) for lass j an be expressed as a summation of the orrespondingost funtions of a sub-group of agents. For example, onsider the network senariowith six nodes in Figure 6.3. We know that in a single time slot t, the queue lengthof a node is only a�eted by neighboring nodes. The immediate ost or ongestionfuntion for N nodes an be simply expressed as:
C(−→x ,−→a ) =

N
∑

i=1

C(xi, xNi
, ai, aNi

) (6.12)where:
xNi

is a vetor representing the loal observations or queue lengths of the neighboringagents (i.e. xN1 = [x2, x3, x4, x6]
T in Figure 6.3).

ai is the hosen ation of agent i.
aNi

is a vetor for the ations of the neighboring agents (i.e. aN1 = [a2, a3, a4, a6]
T inFigure 6.3).

C(xi, xNi
, ai, aNi

) is the immediate ost inurred by agent i whih depends on itsurrent loal observation xi and ation ai, and the relevant information xNi
and aNifrom neighbors.
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Let Cloc,i(t) :=
∑

k

C(xk, xNk
, ak, aNk

), ∀k ∈ {i ∪Ni} is the immediate loalizedost. This e�etively represents the sum of the individual ost funtions in (6.12)where xi and ai omponents are inluded at the urrent time slot t. We use thisquantity to separate the immediate ost funtion into two independent omponents:one is a�eted by agent i, while the other is independent of i. For instane, in Figure6.3, the immediate ost funtion in (6.12) an be expressed in the following ways,depending on the index i in Cloc,i:
C(−→x ,−→a ) = Cloc,1 + C(x3, x4, x5, a3, a4, a5)

= Cloc,2 + C(x1, x3, x4, x5, a1, a3, a4, a5) +

C(x3, x4, x5, a3, a4, a5) + C(x1, x6, a1, a6)

= Cloc,3 + C(x1, x6, a1, a6)

= Cloc,4 + C(x1, x2, x3, a1, a2, a3) + C(x1, x6, a1, a6)We de�ne the loal neighborhood utility of agent i as B−→w (Ni, s) to represent theexpeted average long term ost for exeuting joint poliy −→w = {w1, ..., wN} due tothe links ontaining agent i, starting with state s0:
B−→w (Ni, s0) := lim

n→∞

1

n

n
∑

t=0

E
−→w
s0
{Cloc,i(t)} (6.13)Lemma 6.1: To �nd the best poliy for agent i given its neighbors' poliies in op-timizing its loal neighborhood utility, agent i does not need to onsider the non-neighbors' poliies.Proof: We observe from (6.13) that the loal neighborhood utilities of agent i fortwo joint poliies −→wa = [wa,1, ..., wa,N ] and −→wb = [wb,1, ..., wb,N ] are equal, if the orre-sponding poliy vetor omponents are equal: B−→wa

(Ni, s0) = B−→wb
(Ni, s0) if wa,k = wb,kfor all k ∈ {i ∪ Ni}. Thus, any poliy vetor −→wb that has di�erent poliies for only141



non-neighborhood agents as ompared to poliy −→wa has equal value as B−→wa
(Ni, s).Furthermore, given the neighbors' poliies, optimizing the loal neighborhood utilityof agent i does not a�et the loal neighborhood utility of agent k if k /∈ {Ni}. �Lemma 6.1 is known as the property of loality of interation whih we shall use inthe algorithm in the next subsetion. We also emphasize that the loal neighborhoodutility for agent i also aptures varying network topology espeially in MANETs, sine

B−→wa
(Ni, s) is independent of time and is the time average of the immediate loalizedost Cloc,i(t) inurred from the topology at every time slot t.6.3.3 Model-Free Poliy Generation algorithmThe idea of exploiting loality of interation in distributed agents to optimize a globalobjetive funtion has already been addressed in the formalism known as DistributedConstraint Optimization (DCOP) [20, 21℄.A DCOP problem inludes a set of variables, eah variable is assigned to an agentwho an ontrol its value, and agents must oordinate their hoie of values. DCOPshave suessfully exploited limited agent interations in multi-agent systems, withover a deade of algorithm development. However, DCOPs do not apture planningunder unertainty as ompared to DEC-POMDP.In an attempt to synthesize DCOPs and DEC-POMDP in order to handle loalityof interation and deentralized stohasti planning, the authors in [71℄ proposed anovel model known as Networked Distributed-POMDP (ND-POMDP). They haveproposed a novel algorithm alled Loally Interating Distributed Joint EquilibriumSearh for Poliies (LID-JESP), whih ombines the ideas of Dynami Programmingin poliy searh, and the Distributed Breakout Algorithm (DBA) for DCOPs [20℄.ND-POMDP an be thought of as an N-ary DCOP where N is the number ofagents and the DCOP variable at eah node is the individual agent's poliy. The142



model-based LID-JESP algorithm in [71℄ an be summarized as follows: Eah agent
i starts with a random loal poliy and exhanges its poliies with its neighbors. Itthen omputes its loal neighborhood utility (see (6.13)) with respet to its urrentpoliy and its neighbors' poliies (i.e. urrent ontext). Agent i then uses a value-based Dynami Programming tehnique to get the loal neighborhood utility of agent
i's best poliy given the poliies of its neighbors. The di�erene between the two loalneighborhood utilities is represented as the gain message. Eah agent broadasts itsgain message among its neighbors for the urrent ontext. Agent i is allowed to at ifits gain message is larger than all the gain messages it reeives from all its neighbors.Essentially, agent i hanges its poliy to the omputed best loal poliy if it is thewinner at the urrent ontext or yle of the algorithm. This proess is then repeated.The idea of exhanging poliies and gain messages in the LID-JESP algorithm toimprove agent i's poliy with respet to its neighbors' poliies in a distributed manneris based on the DBA for DCOPs [20℄. However, LID-JESP inludes planning underunertainty, where the value of the loal neighborhood utility depends on the expetedlong term value, whereas DBA does not handle unertainty in the variables of theDCOP.In this sub-setion, we extend the idea of ND-POMDP to our deentralized queue-ing problem. Spei�ally, we extend the model-based LID-JESP algorithm to use theMFSC learning framework in Setion 6.3.1, and apply model-free tehniques to searhfor the poliy parameters in representing and estimating the loal neighborhood util-ity in (6.13).As mentioned earlier in Setion 6.2, a model-based Dynami Programming algo-rithm su�ers from the urse of dimensionality espeially for DEC-POMDP, even withsmall number of states, observations, and ations. Hene, we propose that the poliygeneration of LID-JESP should be represented using the MSFC and without usingthe state and observation transition probabilities.143



For our DEC-POMDP formulation on queue sheduling in Setion 6.1.3, the statevetor S(t) := −→x (t) = [
−→
x1(t), ..,

−→
xJ(t)] in (6.5) is a fatored representation or onate-nation of the loal observations −→xj (t) = [xj

1(t), ..., x
j
N(t)]T of agents for eah lass j.Following Setion 6.3.2 and for notational onveniene, our analysis here is based on asingle lass only, sine the queue length proesses among the lasses are independent.As shown in Lemma 6.1, given the neighbors' poliies, agent i does not need toonsider non-neighboring agents to �nd its best poliy. The loal neighborhood utility

B−→w (Ni, s0) has e�etively loalized the e�et of agent i's poliy to the global ostfuntion in (6.12). In other words, agent i has to only optimize its B−→w (Ni, s0), giventhe poliies of the neighboring agents. The exhange of gain messages determineswho among the agents an update its loal poliy at every yle of the algorithm.From this onept, we reformulate the MFSC for agent i to apture the loalityof interation. Following [71℄, instead of onsidering all other agents exept i in thetuple −→ei (t) in (6.9) and (6.10), we only onsider the neighboring agents. In order toexploit the loality of interation, we rede�ne the tuple −→ei (t) as:
−→ei (t) =

〈

Si,Ni
(t),

−→
oh

Ni
(t)
〉 (6.14)where:

Si,Ni
(t) is a vetor ontaining the loal observations of neighboring agents and agent

i at the urrent time slot t.
−→
oh

Ni
(t) represents the joint observation histories of neighbors up to time t.Given the poliy of neighboring agents, treating −→ei (t) as state of agent i resultsin a single-agent POMDP with transition funtions:
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P
′

(−→ei (t+ 1)|ai(t),
−→ei (t)) =

P (Si,Ni
(t+ 1)|Si,Ni

(t),−−→ai,Ni
(t))

·ONi
(−→oNi

(t+ 1)|−−→ai,Ni
(t), Si,Ni

(t+ 1)) (6.15)
O

′

(oi(t+ 1)|ai(t),
−→ei (t)) =

Oi(oi(t+ 1)|−−→ai,Ni
(t), Si,Ni

(t+ 1)) (6.16)where:
ONi

(−→oNi
(t+ 1)|−−→ai,Ni

(t), Si,Ni
(t+1)) is the probability that neighboring agents observe

−→oNi
(t+1) (i.e. not part of history −→oh

Ni
(t)) given previous ation vetor −−→ai,Ni

(t), resultingto Si,Ni
(t+ 1).

Oi(oi(t+1)|−−→ai,Ni
(t), Si,Ni

(t+1)) is the probability that agent i observes oi(t+1) givenprevious ation vetor −−→ai,Ni
(t), resulting to Si,Ni

(t+ 1).The multi-agent belief state in (6.11) is de�ned similarly with respet only to theneighboring agents: Bi,mul(t) = Pr(−→ei (t)|
−→
oh

i (t),
−→
ah

i (t − 1), p0(s)). We emphasize that
−→ei (t) is a single-agent POMDP only for a given set of poliies of neighbors at theurrent ontext where their poliies are �xed. In other words, to apture the multi-agent belief state under the MFSC with unknown transition probabilities, the MFSCmust also depend on the poliy parameters of neighboring agents, and not just φi and
θi for agent i.We thus rede�ne the internal state transition distribution in Setion 6.3.1 as fi(· |

φi, g, y, ai(t− 1), δNi
), where g ∈ Ii and y is the urrent loal observation, ai(t− 1) isthe previous loal ation, and δNi

∈ R
nδi is a nδi

-dimensional vetor that aptures the145



Algorithm 3 Multi-agent Finite-State Controller (MFSC) with Loality of Intera-tion for DEC-POMDPLet St= unobserved state of the environment at time t

gt= I-state of the agent i.
〈φi, θi〉 = FSC parameters1. Agent i observes yt whih depends on St.2. Agent i then hooses its next I-state gt+1 from the distribution fi(· | φi, gt, yt, ai(t −

1), δNi
), where ai(t − 1) is its previous ation, δNi

represents a urrent feature vetorfrom the FSC parameters of its neighbors Ni3. Agent i then hooses its ation at from µi(· | θi, gt+1, yt, δNi
)4. The immediate loalized ost Cloc,i(t) is obtained by the agent i5. The agent updates its FSC parameters 〈φi, θi〉 using a gradient estimate mehanism.(see Algorithm 4 for the omplete desription)6. t = t + 1. Go to step 1.e�et of the neighbors' poliy parameters 〈θk, φk〉 for all k ∈ Ni. Similarly, the ationseletion poliy is based on the ation probabilities µi(· | θi, h, y, δNi

) > 0 for eahI-state h, loal observation y, and parameters θi and δNi
. It should be noted that δNiis �xed in a given yle of the algorithm sine the neighbors' poliies are �xed duringa yle. Algorithm 3 gives a short summary of the MFSC with loality of interation.The MFSC extends the ideas of Algorithm 2 with the addition of the feature vetor

δNi
for agent i from its neighbors.It is known from [62℄ that if −→ei (t) is the state of the single-agent POMDP and

g(t) ∈ Ii is an internal state of the MSFC, then the tuple 〈−→ei (t), g(t)〉 forms a Markovhain. Let P (φi, θi) be the probability matrix of the Markov hain. Interationbegins at an initial state −→ei (0) and agent i ompletely observes its own initial I-state
g(0) ∈ Ii.Given the neighbors' poliies −−→wNi

, the goal of agent i is to �nd φi and θi that
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minimizes the loal neighborhood utility, independent of the initial state:
B(Ni, φi, θi|

−−→wNi
) := lim

n→∞

1

n

n
∑

t=0

Eφi,θi
{Cloc,i(t)|

−−→wNi
} (6.17)where the expetation Eφi,θi

denote the expetation over all trajetories:
〈−→ei (0), g(0)〉 , 〈−→ei (1), g(1)〉 , ...with transitions generated using P (φi, θi). We emphasize that the model-free searh-ing of poliy parameters 〈θi, φi〉 in the MFSC performs an automati quantization ofthe belief state Bi(t) for a given set of internal states, as explained in Setion 6.3.1.We all our proposed model-free algorithm as: Loally Interating Distributed Re-inforement Learning Poliy Searh (LID-RLPS) that uses the MFSC to generate thepoliies while onsidering loality of interation, and without the state and observa-tion transition model of DEC-POMDP. The pseudo-ode of LID-RLPS is shown inAlgorithm 4. Note that the poliy wi of agent i is represented by the poliy vetor

〈θi, φi〉. Hene, during exhange of poliies in LID-RLPS, the atual poliy vetor isommuniated among the neighbors.It is assumed that there is no error in the ommuniation of the poliy vetor
〈θi, φi〉 among neighbors. The ase when there is error an be translated into theproblem of minimizing the error of funtion approximation in representing the poliyparameters. This issue is disussed in the next subsetions.6.3.4 Algorithm Implementation IssuesThe funtion LoalBestPoliy(wi, δNi

, yt, Cloc,i(t)) in Algorithm 4 returns the best re-sponse poliy: w∗
i = arg min

wi

B(Ni, φi, θi|
−−→wNi

). This funtion is implemented as apoliy gradient algorithm similar to the model-free IState-GPOMDP algorithm pro-147



Algorithm 4 Loally Interating Distributed Reinforement Learning Poliy Searh(LID-RLPS)Let t = 0 and T = required number of iterations.Eah agent i starts with a random poliy wi represented as 〈θi, φi〉.Let wNi
be the poliies of agent i's neighbors Ni, and are represented as the set of poliyparameters {θk, φk} ∀k ∈ Ni .Let gt be the I-state of the agent at time t.While t < TObtain yt as loal observationAgent i exhanges poliies wi with neighbors NiForm δNi

as a feature vetor from 〈θk, φk〉 ∀k ∈ NiChoose gt+1 from fi(· | φi, gt, yt, ai(t − 1), δNi
)Choose and exeute ation ai(t) from µi(· | θi, gt+1, yt, δNi

)Get the immediate loalized ost Cloc,i(t)
w∗

i = 〈θ∗i , φ
∗
i 〉 = LoalBestPoliy(wi, δNi

, yt, Cloc,i(t))
cV alue = GetEstimate(wi, δNi

)
mV alue = GetEstimate(w∗

i , δNi
)

gaini = ‖cV alue − mV alue‖Broadast gaini to Ni

maxGain = max
k∈{i∪Ni}

gaink

winner = arg max
k∈{i∪Ni}

gainkIf maxGain > 0If i = winner thenUpdate poliy: wi = w∗
i or 〈θi, φi〉 = 〈θ∗i , φ

∗
i 〉Broadast w∗

i to NiElse Reeive poliy wwinner from winnerUpdate wNiEnd IfElse Break While;End If
t = t + 1End Whileposed in [63℄. The pseudo-ode for LoalBestPoliy(wi, δNi

) is shown in Algorithm5. The funtion GetEstimate(wi, δNi
) in Algorithm 4 omputes the estimated loalneighborhood utility B(Ni, φi, θi|

−−→wNi
) given the neighbors' poliies. If we simplyfollow the IState-GPOMDP algorithm in [63℄, this estimate is obtained from theimmediate loalized ost Cloc,i(t) as follows: Let ηBi

(t) be the urrent estimate of148



Algorithm 5 Finding the Best Loal Poliy ResponseGiven β ∈ [0, 1). αt = 1
t

= learning rateSet zθi
0 = zθi

new = [0], z
φi

0 = z
φi
new = [0];

△θi

0 = △θi
new = [0]; △φi

0 = △φi
new = [0];

φi,new = [0], θi,new = [0];where zθi
0 , zθi

new,△θi
0 ,△θi

new, θi,new ∈ R
nθi ,

z
φi

0 , z
φi
new,△φi

0 ,△φi
new, φi,new ∈ R

nφi .Funtion LoalBestPoliy(wi, δNi
,yt,Cloc,i(t))

z
φi
new = βz

φi

t +
∇fi(gt+1|φi,gt,yt,ai(t−1),δNi

)

fi(gt+1|φi,gt,yt,ai(t−1),δNi
)

zθi
new = βzθi

t +
∇µi(ai(t)|θi,gt+1,yt,δNi

)

µi(ai(t)|θi,gt+1,yt,δNi
)

△φi
new = △φi

t + 1
t+1

[

Cloc,i(t)z
φi
new −△φi

t

]

△θi
new = △θi

t + 1
t+1

[

Cloc,i(t)z
θi
new −△θi

t

]

φi,new = φi − αt+1△
φi
new

θi,new = θi − αt+1△
θi
newReturn w∗

i = 〈φi,new, θi,new〉End Funtion
B(Ni, φi, θi|

−−→wNi
) given the urrent neighbor poliies−−→wNi

. It is then updated as follows:
ηBi

(t+ 1) = ηBi
(t) +

1

t+ 1
[Cloc,i(t+ 1) − ηBi

(t)] (6.18)However, this update struture may not be suitable in storing the estimates ofevery possible poliies of neighbors −−→wNi
. This is due to the fat that δNi

is obtainedfrom the set of neighbor parameters 〈θk, φk〉 ∀k ∈ Ni, whih are from ontinuousvetor spaes. We then propose that the estimated utility ηBi
(t) is approximatedusing a form of neural network, known as Cerebellar Model Artiulation Controller(CMAC).A CMAC is a tile-oding struture that performs linear funtion approximation,where the output (i.e. ηBi

(t)) is a weighted linear sum of the features of the inputvetor parameters. The input vetor for the CMAC is represented as [gt+1, yt]. TheCMAC internal neural network weights are represented by the vetor parameters
〈δNi

, θi, φi〉.Figure 6.4 shows the CMAC neural network for representing the estimate utility149



ηBi
(t). This representation is required sine the vetor δNi

is ontinuous and werequire to retrieve ηBi
(t) for every possible set of neighbor poliy vetors.

Figure 6.4: Linear Funtion Approximation for estimate utility ηBi
(t)The CMAC displays loal generalization for approximating the estimated utility.With this struture, di�erent poliies of neighbors are represented ompatly andthe estimate ηBi

(t) is retrieved easily. The CMAC neural network weights are thenupdated with the immediate loalized ost Cloc,i(t) as the target value. More detailson CMAC networks an be found in [14℄.In Algorithm 4, the vetor parameter δNi
is obtained from the poliy vetors ofthe neighbors Ni. In our experiments, δNi

is omputed where its vetor elements arethe average of the orresponding elements in the poliy vetors: 〈θk, φk〉 ∀k ∈ Ni.Other possible feature representation for δNi
an also be investigated.In representing the MFSC distribution funtions fi(gt+1 | φi, gt, yt, ai(t − 1), δNi

)and µi(ai(t) | θi, gt+1, yt, δNi
), we fae the same issue for storing the funtion valuesfor every possible neighbor poliies, sine the vetor parameter δNi

is a ontinuousreal-valued vetor. Hene, we use neural networks to represent the these distributionfuntions. Following [63℄, we use the soft-max funtion to generate the distributions.Spei�ally, for fi(· | φi, gt, yt, ai(t − 1), δNi
), a neural network is used where theinput vetor is represented as [gt, yt, ai(t−1)], whih is a onatenation of the urrentI-state gt, urrent observation yt, and previous ation ai(t − 1). The weights of theneural network are represented by the parameter vetors 〈δNi

, φi〉. The output is a
‖Ii‖-dimensional vetor [m1, ..., m‖Ii‖], where ‖Ii‖ is a onstant total number of I-150



states. The soft-max distribution for eah possible next I-state h ∈ Ii is obtained asfollows:
fi(h | φi, gt, yt, ai(t− 1), δNi

) =
exp(mh)

∑

h
′∈Ii

exp(mh
′ )

(6.19)Figure 6.5 shows the neural network representation for the soft-max distribution
fi(h | φi, gt, yt, ai(t − 1), δNi

). This is required to apture the ontinuous vetor pa-rameter δNi
. The next I-state gt+1 is hosen from the soft-max distribution in (6.19).

Figure 6.5: Neural Network for the Soft-Max Distribution: fi(h | φi, gt, yt, ai(t−1), δNi
)For notational onveniene, let fi(h|φi, li) = fi(h | φi, gt, yt, ai(t − 1), δNi

). Asrequired in Algorithm 5, the log gradient of the distribution with respet to the om-ponents of the poliy vetor φi = [φi,k], for k = 1, ..., nφi
, is represented as ∇fi(h|φi,li)

fi(h|φi,li)and omputed as follows:
∂fi(h|φi,li)

∂φi,k

fi(h|φi,li)
= 1

fi(h|φi,li)

∑

h
′
∈Ii

∂fi(h | φi, li)

∂mh
′

∂mh
′

∂φi,k

=
∑

h
′∈Ii

(

χh
′ (h) − fi(h

′
| φi, li)

) ∂m
h
′

∂φi,k
(6.20)where χh

′ (h) = 1 if h′ = h else 0.The �rst fator in the summation in (6.20) is derived from (6.19), while the se-151



ond fator ∂m
h
′

∂φi,k
is the gradient of the neural network output with respet to eahweight parameter φi,k. The whole expression is implemented similarly to error bakpropagation, whih is a standard proedure for training neural networks [14℄. How-ever, instead of propagating the gradient of an error measure, we bak propagate thesoft-max gradient for the agent's hoie of h.We derive ∇µi(ai(t)|θi,gt+1,yt,δNi

)

µi(ai(t)|θi,gt+1,yt,δNi
)
in Algorithm 5 in the same way by having anotherneural network with input as [gt+1, yt] and evaluating the soft-max distribution foreah possible ation at(t) by using the real-valued outputs of the neural network.6.3.5 E�et on Overall Network Congestion LevelTheorem 6.1: When applying the LID-RLPS algorithm, the estimate of the globalaverage network ongestion level J(−→w ,−→x (t)) in (6.7) is stritly dereasing.Proof: We know from Setions 6.3.2 and 6.3.3 that the loal neighborhood utility

B(Ni, φi, θi|
−−→wNi

) has e�etively loalized the e�et of agent i's poliy to the globalimmediate ost funtion in (6.12). B(Ni, φi, θi|
−−→wNi

) is estimated in the urrent ontextor yle where the neighbors' poliies are �xed. From the LID-RLPS algorithm, onlynon-neighboring agents an modify their poliies in the same yle. If agent i hasthe largest gain or improvement among its neighbors, it sets its poliy to the bestloal poliy response. From (6.12) and (6.13), dereasing B(Ni, φi, θi|
−−→wNi

) results indereasing the global average ost funtion. By loality of interation, if an agent
k /∈ {i ∪ Ni} hanges its poliy to improve its loal neighborhood utility, it will nota�et B(Ni, φi, θi|

−−→wNi
), but will derease the global average ost. Thus, at eah yle,the estimate of the global average network ost or ongestion is stritly dereasing.�The proof of Theorem 6.1 is similar to the ase of the model-based LID-JESPalgorithm [71℄, sine both are using the onept of loality of interation, loal neigh-152



borhood utility, and exhange of gain messages. The main di�erene lies in the om-putation of the loal neighborhood utility, whih is approximated by the model-freeLID-RLPS algorithm using a poliy-gradient tehnique in Algorithm 5. In Setion6.4, we shall show the onvergene proof of LID-RLPS, espeially in optimizing theloal neighborhood utility.6.3.6 LID-RLPS under Time-Varying Channel & TopologyIn this subsetion, we explain some issues onerning the proposed LID-RLPS algo-rithm for resoure alloation under a time-varying hannel and topology. From (6.4),at eah node i and eah loal lass queue j, the queue length (in bits) generally evolvesas:
x

j
i (t + 1) = max



x
j
i (t) −

∑

{∀l:q(l)=i}

µ
j
l (t), 0



 +
∑

{∀l:h(l)=i}

µ
j
l (t) + d

j
i (t) (6.21)where {q(l) = i} is the set of neighboring nodes with links reeiving from i, while

{h(l) = i} is the set of neighboring nodes with links transmitting to i.We have disussed earlier in Setion 6.1.4, that both time-varying hannel andtopology proesses an be inorporated in our general queueing model in (6.4). Wenow have the following result:Theorem 6.2: Given a time-varying topology proess evolving as an irreduible ape-riodi Markov hain, let µj
i,out(t) =

∑

{∀l:q(l)=i}

µj
l (t) be the total alloated rate for alloutgoing links from node i for lass j. Then, µj

i,out(t) is rate onvergent to someonstant rate µj
i,av (see De�nition 3.1).Furthermore, eah agent i an use the WF 2Q sheduling mehanism to adap-tively provision J
∑

j=1

µj
i,av among its J loal lass queues as follows: let wsched,j bethe loal lass weight of the WF 2Q sheduling mehanism for lass queue j, ∀j =

1, ..., J . Agent i obtains wsched,j from the learned ation seletion probability µi(aj |153



θi, gt+1, yt, δNi
) of the LID-RLPS algorithm, where disrete ation aj represents thelass queue j itself.Proof: The �rst part of the Lemma follows immediately from Theorem 3.1. Byhaving a topology state proess evolving as an irreduible aperiodi Markov hain andfollowing the proof of Theorem 3.1, we an say that the servie proess µj

i,out(t) israte onvergent to some onstant rate µj
i,av (see De�nition 3.1) for eah lass j.Following the reasoning in Setion 3.5 and Setion 4.4.2, we an thus use weightedfair queueing tehniques for sheduling. Spei�ally,WF 2Q is used by eah shedulingagent i to adaptively provision J

∑

j=1

µj
i,av among its J loal lass queues, sine the servieproesses of the lass queues are rate onvergent.This is similar to the single-agent framework in Chapters 3, 4 and 5. However, inthis hapter, the sheduling mehanism is performed in onjuntion with the deen-tralized LID-RLPS algorithm. We elaborate this onept as follows:By de�nition, the WF 2Q weight wsched,j for lass j represents the alloated share

Bwj (in bits per seonds) of bandwidth from the total share J
∑

j=1

µj
i,av. In other words,

wsched,j =
Bwj

J
∑

j=1

µ
j
i,av

. Sine the proess µj
i,out(t) is rate onvergent, wj also representsthe probability of alloating Bwj bits over time to lass j.In other words, if agent i alloates the ratio wsched,j to lass j, then ratio wsched,jof the time, agent i selets queue j to empty out its ontents. This is the same asthe agent hoosing a lass queue among its J lass queues over time from its ationseletion distribution µi(aj | θi, gt+1, yt, δNi

), where ation aj is the lass queue jitself. �The ation seletion distribution µi(aj | θi, gt+1, yt, δNi
) is learned using the poliygradient mehanism in Algorithm 5 of LID-RLPS with loality of interation, and154



not simply by blindly searhing of parameters, nor independently among neighbors.We also emphasize that in our multi-lass queue network, the rate onvergentresult for the servie proess for eah lass queue j is always true, no matter what theloal lass queue ondition is (i.e. even baklogged or not). This holds true providedthe topology and hannel state proesses as disussed in Setion 6.1.4 evolve as anirreduible aperiodi Markov hain.6.3.7 Advantage over a Cluster-Based ApproahWe observe that the loality of interation under the DEC-POMDP framework inSetion 6.3.2 an be ompared with an hierarhial luster-based arhiteture forMANETs [72, 73℄. Some issues in a luster-based arhiteture inlude mobility andformation of lusters (i.e. seletion of luster-heads).A luster-based approah is similar to the loality of interation in the LID-RLPSalgorithm and redues the number of messages to get the required agent poliy pa-rameters. However, eah luster (i.e. luster-head) has to oordinate among otherneighboring lusters (i.e. luster-heads) in order to optimize a given performanemetri (i.e. average ongestion level).We observe that in this manner, the luster-heads themselves form a higher-levelDEC-POMDP with loality of interation. Furthermore, depending on the numberof levels in the hierarhial luster-based arhiteture, we an �nd a orrespondingDEC-POMDP among nodes on the same level.In other words, our proposed DEC-POMDP (i.e. non-hierarhial) frameworkwith loality of interation is less omplex than a luster-based arhiteture, sine ithas already onsidered the oordination among nodes, without the need for lusterformation. The size of loality to share information is handled during the automatisearh of winning agent in the loality with the highest gain as explained in Algorithm4. 155



6.4 Performane analysisIn this setion, we analyze the proposed model-free algorithm in terms of optimalityand stability for the queue sheduling problem. As explained in Setion 6.1.3, thequeueing law in (6.4) evolves as a Markov hain, jointly ontrolled by multiple agentsin a deentralized manner.The stability and optimality of Markov hains are usually studied by analyzinghow the state of the Markov hain evolves, what properties the hain must satisfy,and how to ontrol the Markov hain to preserve suh properties. For instane, theirreduibility property has been ommonly used in model-free algorithms [10℄. How-ever, as explained in [5, 59℄ and Chapter 3, this irreduibility property may not hold,sine in a dynami network, the Markov hain may not have a single ommuniatinglass of states.Thus, we use the ψ-irreduibility framework disussed in Chapter 3 to study thestability and performane analysis in our DEC-POMDP formulation for the queuesheduling problem. It should be noted that this ψ-irreduibility onept di�ersfrom [5℄ where the authors only onsidered a Markov hain, without any ontrolalgorithm for the MDP. The main reason for us to apply ψ-irreduibility is to obtainstability onditions under the model-free ontrol algorithm, whih an be used toderive performane bounds in Setion 6.4.4 as the algorithm onverges.Figure 6.6 summarizes the key ideas in this setion:1. For the DEC-POMDP model for queue sheduling, we shall �rst show the ψ-irreduibility framework in Setion 6.4.1. Spei�ally, we prove ψ-irreduibilityin Lemma 6.2 under some stability assumptions and harateristis of the jointpoliy.2. We then introdue the stability property known as geometri drift in De�nition6.2 and prove the onvergene of the LID-RLPS algorithm in Theorem 6.3.156



Simultaneous
Optimization &
Stability 

   Irreducibility &
Stability using 
Uniform Ergodicity

      DEC-POMDP
for Queue Scheduling 

LID-RLPS algorithm
 with  Locality of 
Interaction

 Optimization using
Distributed & Localized
   Policy Gradient

 Performance Bounds
using Geometric Drift
          Condition

2
1

3

Figure 6.6: Summary of tehniques used in performane analysis for DEC-POMDP3. Finally, we use the geometri drift ondition or V -uniform ergodiity to derivebounds in Setion 6.4.4.6.4.1 ψ-irreduibility for DEC-POMDP queueing problemIn [74℄, the authors proposed a multi-agent ross-produt MDP from the DEC-POMDP itself together with the �nite state ontrollers of all nodes. In this hapter,we apply this idea but with the loality of interation among neighbors, as disussedin the previous setion.Formally, we only onsider the DEC-POMDP omponents in the neighborhood ofagent i and de�ne the tuple:
〈Si,Ni

, Ai,Ni
, P, Cloc,i,Ωi,Ni

, O, po〉 (6.22)157



where:
Si,Ni

is the set of fatored state vetor ontaining the loal queue lengths of agent iand its neighboring agents Ni. Note that eah agent does not ompletely observe thisstate (i.e. eah agent only observes its own loal queue lengths).
Ai,Ni

is the set of ations {Ak}, ∀k ∈ {i ∪ Ni} for the neighboring agents inludingagent i.
P (S

′

i,Ni
|Si,Ni

,−−→ai,Ni
) is the state transition probability.

Cloc,i is the immediate loalized ost in (6.13) whih depends only on 〈Si,Ni
,−−→ai,Ni

〉.
Ωi,Ni

is the orresponding set of observation vetors
O(−−→oi,Ni

|Si,Ni
,−−→ai,Ni

, S
′

i,Ni
) is the observation funtion probability.

p0 is the initial state probability distribution for Si,Ni
.We also use the MFSC with neighbor loality for eah agent k: 〈Ik, φk, fk, θk, µk〉

∀k ∈ {i∪Ni}. Spei�ally, let −→gi (t) = [gk ∈ Ik] be a vetor of I-states at time t fromagents i and its neighbors Ni. We de�ne η(−−→oi,Ni
|−→gi (t)) be a mapping from the set ofobservations −−→oi,Ni

to the set of next I-states vetor −→gi (t+1), given the urrent I-statesvetor −→gi (t).Following [74℄, the ross produt MDP from the DEC-POMDP in (6.22) andMFSC for agent k, ∀k ∈ {i ∪Ni} is de�ned as the tuple:
〈

Ŝ, Â, P̂ , Ĉ
〉 (6.23)where:

Ŝ =

(

∏

k

Ik

)

× Si,Ni
is the ross produt spae of the Si,Ni

and Ik.
Â =

∏

k

(

Ak × IΩk

k

) is the ross produt spae of the ation spae Ak and the set ofI-states Ik with respet to the set of observations Ωk.
Ĉ(Ŝ(t), Â(t)) is the immediate ost funtion, whih is also equal to Cloc,i(t).
P̂ (Ŝ(t+ 1)|Â(t), Ŝ(t)) is the state transition probability that an be written as:158



P̂ (Ŝ(t+ 1)|Â(t), Ŝ(t)) = P (Si,Ni
(t+ 1)|−−→ai,Ni

(t), Si,Ni
(t))

·
∑

−−−→oi,Ni
(t)∈Ωi,Ni

O(−−→oi,Ni
(t)|−−→ai,Ni

(t), Si,Ni
(t), Si,Ni

(t+ 1))where:
O(−−→oi,Ni

(t)|−−→ai,Ni
(t), Si,Ni

(t), Si,Ni
(t + 1)) is the probability of observing −−→oi,Ni

(t) whenagents in Si,Ni
(t) take −−→ai,Ni

(t) resulting to Si,Ni
(t+ 1).

η(−−→oi,Ni
(t)|−→gi (t)) = −→gi (t+1) is the mapping from −−→oi,Ni

(t) to −→gi (t+1), as obtained fromthe agents' poliies.
Ŝ(t) = 〈−→gi (t), Si,Ni

(t)〉

Â(t) = 〈−−→ai,Ni
(t)〉, whih depends on −−→ai,Ni

(t) itself and η(−−→oi,Ni
(t)|−→gi (t)).Note that the DEC-POMDP omponents in (6.22) is similar to the single-agentPOMDP for eah agent i with state −→ei (t) =

〈

Si,Ni
(t),

−→
oh

Ni
(t)
〉 in (6.14). Although

−→ei (t) is not used expliitly in LID-RLPS, in this subsetion, we use Ŝ(t) = 〈−→gi (t), Si,Ni
(t)〉as the state of the ross produt MDP. Ŝ(t) does not ontain −→

oh
Ni

(t) that representsthe omplete history of observations of other agents up to time t. This is not only forease of representation, but also for analysis in verifying ψ-irreduibility.We emphasize that in the ross produt MDP, no agent an e�etively know theglobal state Ŝ(t) espeially when eah agent i exeutes LID-RLPS. In spite of this,the main idea here is to show that the ontrolled Markov hain 〈Ŝ, Â, P̂ , Ĉ〉 is ψ-irreduible under the joint poliy −−→wi,Ni
= [wi,

−−→wNi
], where the joint poliies are �xedat the urrent ontext of LID-RLPS.The state Ŝ(t) = 〈−→gi (t), Si,Ni

(t)〉 onsists of the I-states vetor and the fatoredqueue lengths of agents. Sine the queue length proesses among lass queues areindependent as disussed in Setions 6.1.3 and 6.3.3, our analysis is based on a singlelass queue. From the queueing law in (6.4) and by onsidering loality of interation,it an be seen that the queue dynamis (in bits), given a �xed joint poliy −−→wi,Ni
, anbe written as: 159



−−→
xj

i,Ni
(t+ 1) =

−−→
xj

i,Ni
(t) +Rj

i,Ni
(t)M j

i,Ni
(t)

−−→
µj

i,Ni
(t) +

−−−→
Dj

i,Ni
(t)This queueing law is similar to (6.4), but is only onerned among agent i andits neighbors Ni, where Si,Ni

(t) = [
−−→
x1

i,Ni
(t), ..,

−−→
xJ

i,Ni
(t)] for J network lasses. On theother hand, −→gi (t) evolves from observation mapping: η(−−→oi,Ni

|−→gi (t− 1)) = −→gi (t). Theation vetor Â(t) from the joint poliy −−→wi,Ni
= [wi,

−−→wNi
] depends on the alloationrate −−→ai,Ni

(t) :=
−−→
µj

i,Ni
(t), observation vetor −−→oi,Ni

, and internal state −→gi (t). Thus, wean write:
Ŝ(t+ 1) = Ŝ(t) +H(Ŝ(t)) +M(Ŝ(t), Ŵ (t)) (6.24)where {Ŵ (t)} is i.i.d. and independent of Ŝ(0). We assume that Ŵ (t) is taken fromthe spae Ŝ, but independent of Ŝ(t) itself. We assume that the funtions H and Mare smooth, while funtion H is Lipshitz.The pair 〈Ŝ, β(Ŝ)
〉 is a measurable spae with β(Ŝ) as the σ-�eld. The statespae Ŝ onsists of two omponents: subsets of multidimensional Eulidean spae for

Si,Ni
(t); and subsets of multidimensional ountable and disrete spae for the I-states

−→gi (t). Thus, the spae Ŝ is ompat and a separable metri spae.We also assume that Ŝ evolves as an aperiodi Markov hain. We refer the readerto [23℄ for further terminology and notation. In addition, we have the followingassumptions:Assumption A(1): Let Ŝ(t) = Ŝ∗ for t → ∞. There exist Ŵ (t) = Ŵ ∗ suhthat M(Ŝ∗, Ŵ ∗) = 0, and for a ontinuous funtion ξ : R
d → [0, 1] with ξ(Ŵ ∗) > 0and for B ∈ β(Rd): Pr(Ŵ (0) ∈ B) ≥

∫

B

ξ(z)dz. This assumption is mainly forharaterizing the density of Ŵ (t).Assumption A(2): The pair of matries (F,G) is ontrollable with:160



F = ∂

∂Ŝ
H(Ŝ∗)+ d

dŜ
M(Ŝ∗, Ŵ ∗) andG = d

dŴ
M(Ŝ∗, Ŵ ∗). The onept of ontrollablepair (F,G) is used in linear ontrol models if the ontrol matries (F,G) satisfyertain matrix struture properties so that eah pair of states 〈Ŝ(0), Ŝ(t) = Ŝ∗

〉 anbe reahed. For more details on ontrollable matries, see [23, Chapter 4℄.De�nition 6.1: We term a joint poliy −−→wi,Ni
= [wi,

−−→wNi
] that satis�es Assumptions

A(1) and A(2) as a dominating poliy.Lemma 6.2: Under a dominating joint poliy −−→wi,Ni
= [wi,

−−→wNi
], the ross produtMDP 〈Ŝ, Â, P̂ , Ĉ〉 in (6.23) is a ψ-irreduible ontrolled Markov hain.Proof: We follow some notations from Chapter 2. From Assumptions A(1) and

A(2) and using the Impliit Funtion Theorem [22℄, the state spae an be writtenas the union of open sets [23, Proposition 7.1.5℄. Furthermore, if O is an open setontaining Ŝ∗ and ŝ ∈ O, then under poliy −→w , the t-step transition probability fromstate ŝ satis�es:
P t
−→w (ŝ, R) = P (Ŝ(t) ∈ R|Ŝ(0) = ŝ) ≥ ǫv(R) (6.25)where ǫ > 0 is a onstant, R ∈ β(Ŝ), and v(·) is the uniform distribution on set O.The set O is also known as a small and petite set from the inequality ondition in(6.25).From (2.1), the resolvent kernel for set O, under �xed poliy −→w = −−→wi,Ni

, an bewritten as: K−→w (s, O) :=
∞
∑

t=0

2−(t+1)P t
−→w (s, O) for any s ∈ Ŝ. From Assumption A(1),

M(Ŝ∗, Ŵ ∗) = 0 and thus, by using (6.24), we have Ŝ(t) ∈ O for all su�iently large t.In other words, P t
w(s, O) > 0 for large t. Sine Ŵ ∗ is also the support of the marginaldistribution of {Ŵ (t)} from Assumption A(1), it then follows that K−→w (s, O) > 0from the resolvent kernel de�nition.From the inequality in (6.25), we an write the following for some m ∈ Z

+ andany s ∈ Ŝ, R ∈ β(Ŝ) (see [22℄): 161



K−→w (s, R) ≥

∫

K−→w (s, dy)2−mPm
−→w (y, R)

≥ 2−mK−→w (s, O)ǫv(R)Sine the right-hand side expression of the last inequality above is always positive,the Markov hain in (6.24) is a T-hain [24℄. Finally, from the result in [23, Proposition6.2.1℄ with one reahable set O ontaining Ŝ∗ and from De�nition 2.1, the ontrolledMarkov hain is thus ψ-irreduible. �6.4.2 Markov Stability and Convergene of LID-RLPSIn analyzing the onvergene of the proposed model-free LID-RLPS algorithm, we�rst introdue the following stability ondition [23, Chapter 16℄.De�nition 6.2: Consider a ψ-irreduible Markov hain Φ with measurable spae
β(Ŝ) and probability transition P . If there exists an extended-value funtion V :

Ŝ → [1,∞] bounded in Ŝ, a measurable set C, and onstants γ > 0, b <∞, suh thatfor s ∈ Ŝ:
△V (s) :=

∫

P (s, dy)V (y) − V (s) ≤ −γV (s) + bδC(s) (6.26)then Φ exhibits geometri drift towards set C, where δC(s) is the indiator funtion:
δC(s) = 1 if s ∈ C else 0.
In this subsetion, we shall use the geometri drift ondition to show that the ψ-irreduible hain Φ =

〈

Ŝ, Â, P̂ , Ĉ
〉 has a unique stationary distribution. One this isestablished, we shall prove the onvergene of the LID-RLPS algorithm, spei�allyAlgorithm 5. 162



Formally, sine the state spae Ŝ is ompat, and that the hain Φ is a ψ-irreduibleand aperiodi T-hain from Lemma 6.2, then Φ is known as uniformly ergodi [23,Theorem 16.2.5℄.Some properties of uniformly ergodi hains are:1. Existene of a unique invariant probability measure π suh that:
sup
s∈Ŝ

∥

∥P t(s, B) − π(B)
∥

∥→ 0, t→ ∞.where B ∈ β(Ŝ), π(B) is the steady state probability distribution, and the norm
‖ν(·)‖, for some signed measure v(·) on β(Ŝ), is known as the total variationnorm: ‖ν(·)‖ = sup

B∈β(Ŝ)

v(B) − inf
B∈β(Ŝ)

v(B).2. The geometri drift ondition in (6.26) is satis�ed for a petite set C, and abounded funtion V .
Hene, the hain has a unique stationary distribution π for a given dominatingpoliy −→w = −−→wi,Ni

in the MDP. This also implies under poliy −→w , the Markov hain isde�ned to be stable (i.e. uniformly ergodi).Let c(−→w ) ∈ R
‖Ŝ‖ be a ∥∥

∥
Ŝ
∥

∥

∥
-dimensional vetor, where ∥∥

∥
Ŝ
∥

∥

∥
is the total number ofstates in the ountable state spae Ŝ, suh that the s-th omponent is:

c(−→w , s) := E−→w {Ĉ(s,−→a )|s} (6.27)for all s ∈ Ŝ and −→a ∈ Â. By using the fat that Ĉ(Ŝ(t), Â(t)) = Cloc,i(t), we anwrite the loal neighborhood utility B(Ni, φi, θi|
−−→wNi

) in (6.17) to be equal to:
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η−→w := B(Ni, φi, θi|
−−→wNi

) = lim
n→∞

1

n

n
∑

t=0

E−→w {Cloc,i(t)}

=
∑

s∈Ŝ

π(s)c(−→w , s) (6.28)This expression is thus independent of the initial state. LID-RLPS tries to �nd
〈φi, θi〉 that minimizes η−→w given the poliies of neighbors. Hene, it is intuitive tolook at the gradient of η−→w with respet to the parameters 〈φi, θi〉. Spei�ally, thegradient an be expressed as: ∇η−→w = (∇π)T c(−→w ) + (∇c(−→w ))

T
π, where π is writtenas a ∥∥

∥
Ŝ
∥

∥

∥
-dimensional vetor.Given β ∈ [0, 1) from Algorithm 5, we de�ne a vetor ζ−→w,β ∈ R

‖Ŝ‖ where the s-thomponent is:
ζ−→w,β(s) = eT

s

∞
∑

t=0

βtP (−→w )tc(−→w ) (6.29)where:
eT

s ∈ R
‖Ŝ‖ is a unit vetor where the s-th omponent is equal to 1.

P (−→w )t = (P (−→w ))t is t-th power of the probability matrix P (−→w ) of the Markov hain
Φ under poliy −→w and P (−→w )0 = I is the identity matrix.From [61℄, lim

β→1
πT∇P (−→w )ζ−→w,β = (∇π)T c(−→w ). This implies that:

∇η−→w ,β = πT∇P (−→w )ζ−→w,β + (∇c(−→w ))
T
π (6.30)where ∇η−→w,β is a good estimate of ∇η−→w when β is lose to 1.Theorem 6.3: During the update of the poliy for agent i in Algorithm 5 when it isthe winner and for a given β ∈ [0, 1), let △T := [△θi

T ,△
φi

T ] be the gradient estimateafter T yles. Under the ψ-irreduible aperiodi T-hain Φ and assumptions in164



Lemma 6.2 with a dominating poliy −→w , lim
T→∞

△T = ∇η−→w,β = [
∂η−→w ,β

∂θi
,

∂η−→w ,β

∂φi
].Proof: Sine the hain Φ is uniformly ergodi and satis�es (6.26), then from [23,Lemma 15.2.2℄, the funtion V is known as unbounded o� petite sets that satisfy thefollowing de�nition: For any n < ∞, the sublevel set CV (n) = {s : V (s) ≤ n} ispetite. A set is petite if it satis�es the ondition in (6.25).The geometri drift ondition in (6.26) an be easily written as:

△V (s) ≤ 0, s /∈ C (6.31)From this inequality ondition and the result in [23, Theorem 9.1.8℄, and usingthe fat that C is a petite set from the uniform ergodiity property, then the hain
Φ is known as Harris reurrent hain that satis�es the following: L(s, C) = 1, whihis the return time probability starting with any state s ∈ Ŝ to the petite set C, asdesribed in (2.2) and Setion 2.1.By de�nition in [23, Chapter 10℄, if Φ is ψ-irreduible, admits an invariant prob-ability measure π, and is Harris reurrent, then Φ is alled a positive Harris hain.From Algorithm 5, let µi(ai(t) | θi, gt+1, yt, δNi

) = µi(ai(t)|li(t)) for ease of nota-tion. Sine the poliy is �xed at −→w , we an expand △θi

T for T steps:
△θi

T := 1
T

[

T
∑

k=0

Cloc,i(k)
∇µi(ai(k)|li(k))

µi(ai(k)|li(k))

]

+ 1
T

[

T
∑

k=0

Cloc,i(k)

k
∑

t=0

βk−t∇µi(ai(t)|li(t))

µi(ai(t)|li(t))

] (6.32)We shall show that the �rst and seond terms of (6.32) onverge to (∇c(−→w ))
T
πand πT∇P (−→w )ζ−→w,β, respetively. The proof for the ase of △φi

T is similar.Using a similar idea in [75, Theorem 4℄, for positive Harris hain with the ostfuntion Ĉ(s(t),−→a (t)) = Cloc,i(t) as a Borel-measurable funtion, the �rst term in165



(6.32) an be written as:
lim

T→∞

1
T

[

T
∑

k=0

Cloc,i(k)
∇µi(ai(k)|li(k))

µi(ai(k)|li(k))

]

= Eπ

{

Ĉ(s(0),−→a (0))∇µi(ai(0)|li(0))
µi(ai(0)|li(0))

}

(a.s.) (6.33)To simplify this relation, we rewrite the ost vetor omponent c(−→w , s) in (6.27)for s ∈ Ŝ as follows:
c(−→w , s) := E−→w {Ĉ(s,−→a )|s,−−→wNi

}

=
∑

ai∈Ai

Ĉ(s,−→a )µi(ai | θi, g, y, δNi
)

=
∑

ai∈Ai

Ĉ(s,−→a )µi(ai | li) (6.34)where:
−→a = [ai,

−→aNi
] represents all possible ation vetors with ai ∈ Ai from agent i and −→aNifrom its neighbors.

−−→wNi
is the poliies of the neighbors Ni, represented as δNi

.
µi(ai | θi, g, y, δNi

) := µi(ai | li) is the ation seletion distribution from the MFSCfor an internal state g and observation y obtained from the state s ∈ Ŝ, and li =

[θi, g, y, δNi
].The representation in (6.34) is possible, sine only the winner agent i at theurrent algorithm yle an hange its parameters, given the �xed poliies −−→wNi

of itsneighbors. By di�erentiating (6.34) with respet to 〈φi, θi〉, we have:
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∇c(−→w , s) =
∑

ai∈Ai

Ĉ(s,−→a )∇µi(ai | li)

=
∑

ai∈Ai

Ĉ(s,−→a )
∇µi(ai | li)

µi(ai | li)
µi(ai | li)

= c(−→w , s)∇µi(ai|li)
µi(ai|li)By using the stationary distribution π in (6.28), we an write the following vetorexpression:

(∇c(−→w ))
T
π =

∑

s∈Ŝ

π(s)c(−→w , s)
∇µi(ai | li)

µi(ai | li)
(6.35)Consequently, sine the expression in (6.33) holds for every possible initial values

s(0), −→a (0), and li(0), and by using (6.35), we an write (6.33) as:
lim

T→∞

1

T

[

T
∑

k=0

Cloc,i(k)
∇µi(ai(k)|li(k))

µi(ai(k)|li(k))

]

= (∇c(−→w ))
T
πWe then simplify the seond term in (6.32) as follows. Using a similar argumentin [75, Lemma 9℄ for positive Harris hains,

lim
T→∞

1

T

[

T
∑

k=0

Cloc,i(k)

k
∑

t=0

βk−t∇µi(ai(t)|li(t))

µi(ai(t)|li(t))

]

=

∞
∑

k=0

βkEπ

{

∇µi(ai(0)|li(0))

µi(ai(0)|li(0))
Ĉ(s(k + 1),−→a (k + 1))

} (6.36)From (6.29),
πT∇P (−→w )ζ−→w,β =

∞
∑

k=0

βkπT ∂P (−→w )

∂θi

P (−→w )kc(−→w ) (6.37)167



For any k ≥ 0, by following [75, Theorem 4℄ and using the fat that only winneragent i hanges its poliy,
πT ∂P (−→w )

∂θi

P (−→w )kc(−→w ) :=

∑

s,s′,ai

π(s)µi(ai|li)
∇µi(ai|li)

µi(ai|li)
P (s

′

|s, ai)
[

P (−→w )kc(−→w )
]

(s
′

)

= Eπ

{

∇µi(ai(0)|li(0))

µi(ai(0)|li(0))
Ĉ(s(k + 1),−→a (k + 1))

} (6.38)where:
P (s

′
|s, ai) is the state transition probability.

[

P (−→w )kc(−→w )
]

(s
′
) is the orresponding s′-th vetor element.Using (6.36), (6.37), and (6.38), we have the desired limit for the seond term of(6.32). The following equality then holds:
lim

T→∞
△T = πT∇P (−→w )ζ−→w,β + (∇c(−→w ))

T
π = ∇η−→w ,β.

�

Theorem 6.3 implies that, for eah agent i, the gradient estimates △T approahesthe atual gradient of the loal neighborhood utility ∇η−→w ,β for a given �xed domi-nating poliy −→w = 〈φk, θk〉 for k ∈ {i, Ni}.LID-RLPS updates the parameters of the winning agent i simply by: θi,new :=

θi − αt+1△
θi

t+1 and φi,new := φi − αt+1△
φi

t+1. We note that one the parameters arehanged, the joint poliy also hanges. Our next goal is to show that, despite thispoliy hange, the new sueeding joint poliy is still a dominating poliy. As explainearlier, a dominating poliy is a stable poliy that makes the hain to be uniformlyergodi. 168



From Algorithm 4 and (6.18), the estimate ηBi
(t) of the loal neighborhood utility

η−→w in (6.28) is required to obtain the gain messages. The key idea is to initialize thisestimate to a ertain value that satisfy stability properties. Using similar argumentsin [8, 59℄, we �rst initialize the estimate ηBi
(t) to a Lyapunov funtion V that satis�esthe geometri drift in (6.26). Spei�ally, sine the geometri drift inequality an beredued to the Foster-Lyapunov inequality in [8, 59℄ and Theorem 2.3, it an be shownthat every sueeding poliy in the iteration is also uniformly ergodi.The parameters 〈θi,t, φi〉 of the winning agent are said to evolve on a slower time-sale than the gradient estimator △T . The onvergene of two-time sale stohastiapproximation theory is studied in [76℄. Following [76℄ under suitable stability on-ditions, it an be shown that 〈θi,t, φi〉 onverges to the parameter values that satisfy:

∇η−→w ,β = 0.In summary, by starting with a dominating poliy −→w and initializing the estimateof the loal neighborhood utility ηBi
(t) to a Lyapunov funtion V in (6.26), we anguarantee onvergene (i.e. ∇η−→w ,β = 0) and stability (i.e. uniform ergodiity) of thesueeding joint poliies in the LID-RLPS iteration.We observe that this gradient-based mehanism may onverge to a loally optimalsolution. To handle this situation, we an use the idea of ator-riti algorithms thatuse a value funtion approximator (i.e. riti) in omputing the value of the poliy.This extends the ideas in [77℄ in expressing the gradient estimate △T .6.4.3 Deentralized Queue StabilityThe previous subsetion disusses the stability and onvergene of the LID-RLPSalgorithm using the geometri drift ondition in De�nition 6.2. In applying thisonept for our deentralized queueing model, we de�ne deentralized queue stabilityas follows: 169



De�nition 6.3: A network of N queues is stable if the queue length proess {xi(t)},∀isatis�es:
lim sup
M→∞

1

M

M−1
∑

t=0

(

N
∑

i=0

E {xi(t)}

)

<∞Lemma 6.3: A network of N queues is stable if and only if eah queue is stable fromDe�nition 3.2.Proof: If all the queues are stable from De�nition 3.2, then De�nition 6.3 followsautomatially, sine:
N
∑

i=0

(

lim sup
M→∞

1

M

M−1
∑

t=0

E {xi(t)}

)

<∞If the network is stable, then by using the fat that the lim sup of a sum is lessthan or equal to the sum of the lim sups [29℄, then eah queue is stable from De�nition3.2. �6.4.4 Performane Bounds using V-uniform ergodiityFrom Setion 6.4.2, we see that a bounded value funtion V exists that satis�es thegeometri drift inequality. In this subsetion, we show how to �nd V using the generalqueueing law in (6.4).Lemma 6.4: For a single lass queue j, the drift value funtion V j(s) =

N
∑

i=1

(xj
i )

2satis�es the geometri drift inequality in De�nition 6.2, where s ∈ Ŝ in (6.23) and xj
iis the queue length in bits at node i.Proof: From the queueing law in (6.4) and for eah lass queue j, suppose thearrival proesses {dj

i (t)} have a rate E{dj
i (t)} = λj

i for i = 1, ..., N .We rewrite the general queueing expression in (6.21) as follows:170



x
j
i (t + 1) = max

(

x
j
i (t) − y

j
i (t), 0

)where y
j
i (t) :=

∑

{∀l:q(l)=i}

µ
j
l (t) −

∑

{∀l:h(l)=i}

µ
j
l (t) − d

j
i (t).By squaring this expression and noting that (max (x, 0))2 ≤ x2, we have:

(

x
j
i (t + 1)

)2
−
(

x
j
i (t)
)2

≤
(

y
j
i (t)
)2

− 2xj
i (t)y

j
i (t) (6.39)From Theorem 6.2, we know that the proess µj

i,out(t) :=
∑

{∀l:q(l)=i}

µj
l (t) is rateonvergent to some onstant rate µj

i,out > 0. By similar arguments to the proof ofTheorem 6.2, the proess de�ned as µj
i,in(t) :=

∑

{∀l:h(l)=i}

µj
l (t) is also rate onvergentto some rate µj

i,in > 0.Assuming the soure arrival proess {dj
i (t)} is independent with {µj

i,out(t)} and
{µj

i,in(t)}, then the proess {yj
i (t)} is also rate onvergent with rate (µj

i,out − µj
i,in − λj

i

).Suppose that {yj
i (t)} has a seond moment

mj
i := E

{

(

yj
i (t)
)2
}

> 0 (6.40)By taking expetations of (6.39) with respet to yj
i (t), we have:

(

x
j
i (t + 1)

)2
−
(

x
j
i (t)
)2

≤ m
j
i − 2

(

µ
j
i,out − µ

j
i,in − λ

j
i

)

x
j
i (t)By summing for all nodes i, letting V j(st) =

N
∑

i=1

(

xj
i (t)
)2, and taking onditionalexpetations on the vetor −→

xj
t := [xj

1(t), ..., x
j
N (t)], we obtain the geometri drift in-equality as:

171



△V j(st) := E

{

V j(st+1) − V j(st)|
−→
x

j
t

}

≤ −V j(st)

+

N
∑

i=1

(

x
j
i (t)
)2

+

N
∑

i=1

m
j
i − 2

N
∑

i=1

(

µ
j
i,out − µ

j
i,in − λ

j
i

)

E

{

x
j
i (t)|

−→
x

j
t

} (6.41)To identify a ertain measurable set C (see (6.26)), we onsider the indiatorfuntion: δC(st) := 1 if N
∑

i=1

(

µj
i,out − µj

i,in − λj
i

)

> 0, else 0 if N
∑

i=1

(

µj
i,out − µj

i,in − λj
i

)

≤

0. We an then de�ne the measurable set C as the stability region of the network,when N
∑

i=1

(

µj
i,out − µj

i,in − λj
i

)

> 0. This de�nition is intuitive and not surprising, sineit implies that for eah lass queue j in eah node i: µj
i,out > µj

i,in + λj
i . This is alsoin onjuntion with Lemma 6.3, implying that the measurable set C is the situationwhen every stable queue leads to network stability and vie versa. The result thenfollows.

�We shall now use the geometri drift ondition in (6.41) for deriving performanebounds for average queueing delay and ongestion level.Theorem 6.4: The LID-RLPS algorithm stabilizes the queueing model aording toDe�nition 6.3.Proof: By letting V (s) =

J
∑

j=1

N
∑

i=1

(xj
i )

2, where s ∈ Ŝ in (6.23) and xj
i is the lass

j queue length in bits at node i, and by summing (6.41) ∀j, we have the followinggeometri drift inequality for ∀t:
△V (st) := E {V (st+1) − V (st)|

−→xt} ≤ −V (st)

+
J
∑

j=1

N
∑

i=1

(

x
j
i (t)
)2

+
J
∑

j=1

N
∑

i=1

m
j
i − 2

J
∑

j=1

N
∑

i=1

(

µ
j
i,out − µ

j
i,in − λ

j
i

)

E

{

x
j
i (t)|

−→
x

j
t

} (6.42)172



where mj
i is de�ned in (6.40), and

−→xt := [x1
1(t), ..., x

1
N (t), x2

1(t), ..., x
2
N (t), ..., xJ

1 (t), ..., xJ
N(t)]Sine V (st) ≥ 0, and by taking expetations over the distribution of −→xt andsumming inequality (6.42) over t from t = 0 to t = M − 1 for some M ∈ Z+ andsimplifying, we have:

E {V (sM ) − V (s0)} ≤ M

J
∑

j=1

N
∑

i=1

m
j
i − 2

M−1
∑

t=0

J
∑

j=1

N
∑

i=1

(

µ
j
i,out − µ

j
i,in − λ

j
i

)

E
{

x
j
i (t)
}Dividing by M and using the fat that V (sM) > 0, we have:

1

M

M−1
∑

t=0

J
∑

j=1

N
∑

i=1

2
(

µj
i,out − µj

i,in − λj
i

)

E
{

xj
i (t)
}

≤
1

M
E {V (s0)} +

J
∑

j=1

N
∑

i=1

mj
iBy taking lim sup, we have the following bound:

lim sup
M→∞

1

M

M−1
∑

t=0

J
∑

j=1

N
∑

i=1

2
(

µj
i,out − µj

i,in − λj
i

)

E
{

xj
i (t)
}

≤

J
∑

j=1

N
∑

i=1

mj
iNoting the result in (6.4) that −→xj (t) = [xj

1(t), ..., x
j
N(t)]T is already a Markov hainfor eah lass j , we an write:

lim sup
M→∞

1

M

M−1
∑

t=0

N
∑

i=1

2
(

µj
i,out − µj

i,in − λj
i

)

E
{

xj
i (t)
}

≤
N
∑

i=1

mj
iFollowing the ideas of [29, Lemma 2℄ and rewriting the geometri drift for eahnode i and eah lass j,

lim sup
M→∞

1

M

M−1
∑

t=0

E
{

xj
i (t)
}

≤
mj

i

2
(

µj
i,out − µj

i,in − λj
i

)
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From Lemma 6.3, we an then write the following bound (see Lemma 6.4 fornotations):
lim sup
M→∞

1

M

M−1
∑

t=0

J
∑

j=1

N
∑

i=1

E
{

xj
i (t)
}

≤

J
∑

j=1

N
∑

i=1

mj
i

2
(

µj
i,out − µj

i,in − λj
i

) (6.43)
�Note that the bound in (6.43) only holds when the LID-RLPS algorithm is initializedwith a dominating poliy −→w and by initializing the estimate of the loal neighborhoodutility ηBi

(t) with the Lyapunov funtion V (s) =

J
∑

j=1

N
∑

i=1

(xj
i )

2, so that the geometridrift ondition in (6.42) is initially satis�ed. This is in onjuntion with Theorem 6.3and the onepts in Setion 6.4.2.We also observe that the bound in (6.43) of Theorem 6.4 is an extension of theresult from Setion 3.4.3 for the single-agent ase and in onjuntion with Lemma 6.3.However, the result in this setion is only met by following the LID-RLPS algorithm.6.5 Simulation and DisussionWe simulate the same senario as desribed in Setion 3.5 with a network of 20mobile nodes as shown in Figure 3.3. We set the maximum hannel apaity at 2Mbps, while both the network interfae and routing protool queues have a limit of50 and 100 pakets, respetively. The simulation is done with varying pause times for3,000 seonds.We have used eight long-lived CBR onnetions with the harateristis similar toTable 3.1. We hoose CBR �ows sine this type of �ows aptures the worst ase andaverage long term performane. However, our tehnique still applies for other typesof tra� suh as Pareto and Exponential ON/OFF soures. The ontrol pakets from174



the routing protool are marked as Class I and the data paket size is 64 bytes.We have disussed in Setion 6.1.4 that di�erent MAC mehanisms and vary-ing mobility and topology issues are aptured in our general deentralized queueingmodel. It should also be noted that there have been a number of works that ana-lyze the performane of DCF in MANETs using the Markov hain theory [32, 33℄.Our approah is di�erent beause we formulate the problem using the DEC-POMDPframework for a deentralized ontrolled Markov hain.We ompare the performane of LID-RLPS with a single-agent based RL algo-rithm similar to [37, 59℄ and Setion 4.2. We refer to the latter as Independent RLProvisioning (IRLP), where eah node only onsiders its own loally-observed MDPindependently and does not ommuniate its poliies with any other agent.As explained in (6.7) of Setion 6.1.3, the main objetive is to minimize the averageongestion level of the network, whih onerns all nodes and all network lasses.Similar to Setion 3.5 earlier in Chapter 3, we summarize the e�etive arrival rateand servie lass rate measurements, averaged over the simulation period and over allnodes in Table 6.1.Table 6.1: Performane measurements under LID-RLPS for 5 ses pause timeTra�Type E�etiveArrivalRate (bps) E�etiveServieRate (bps) AverageCongestion(bits) TheoretialBound forAverageCongestion (bits) NormalizedTheoretialBoundI 14671.40 14700.68 2892.53 3005.72 0.1174II 5657.82 5741.80 991.30 1166.93 0.0455III 15396.20 15407.39 2862.89 3200.15 0.1250Total Congestion among Classes 6746.72 7372.80 0.2879Furthermore, we ompare the average ongestion level measurements and the the-oretial bound omputed as: J
∑

j=1

N
∑

i=1

mj
i

2
(

µj
i,out − µj

i,in − λj
i

) from (6.43), where mj
i isthe seond moment of the the proess {yj

i (t)} de�ned in (6.40), and is obtainedfrom data samples. The normalized ongestion bound for eah lass is alulated as:175



(

AveBitsj

MaxBitsj

), where AveBitsj is shown in the 5th olumn of Table 6.1 andMaxBitsj isthe maximum possible amount of bits in queue j (i.e. 50 ∗ 64 ∗ 8 bits). The tabulatedsimulation results show that the measured average ongestion level (i.e. 4th olumn)is well within the theoretial ongestion bound (i.e. 5th olumn) under LID-RLPS foreah lass.
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Figure 6.7: Normalized average ongestion for LID-RLPS and IRLP under varyingpause timesFigure 6.7 shows the average long term ost or ongestion over time, under di�erentsenarios and pause times. As expeted, IRLP inurs higher ongestion level eventhough eah agent learns and adapts its poliy. LID-RLPS ahieves signi�antly lowersine eah agent oordinates among its neighbors before the winner agent hanges itspoliy, as explained in Algorithm 4.Table 6.1 shows a normalized bound value of 0.2879, summed for all J lasses, forLID-RLPS under the 5 seonds pause time senario. We observe that this is indeeda tight bound as shown in Figure 6.7. The �gure also shows that the bound was notinitially met due to the LID-RLPS learning algorithm that uses the multi-agent �nite176



state ontroller (MFSC) for eah node. LID-RLPS is ontinually updating the MFSCparameters in eah agent, and has not onverged yet to the optimal solution.We also observe that LID-RLPS satis�es the limiting bound value of 0.2879 forvarying senarios and pause times. This result supports our laim that the varyingMAC mehanisms and topology are aptured in our model as disussed in Setion6.1.4. We also emphasize that the theoretial bound value an only be met by theoptimal poliy from the result in Theorem 6.4.6.6 Possible Weaknesses of LID-RLPSAs explained in Theorem 6.2 and similar to FLP, WFRLP and HORLP in the previoushapters, LID-RLPS uses WF 2Q provisioning if the topology state (i.e. also apturesthe hannel state proess in Setion 6.1.4) evolves as an irreduible aperiodi Markovhain, as seen by eah agent. This assumption has been ommonly used in literature[6, 12, 26, 27℄.Following the ideas in Setion 3.6, we highlight again that this assumption anbe met as follows: In a multi-node ommuniation network, suppose the Signal-to-Interferene (SIR) ratio or hannel gain between eah node an be measured. TheSIR of a link i an be expressed as [37, 78℄:
Γi(p1

t , ..., p
N
t ) =

WAi
tp

i
t

R

(

∑

j 6=i

Aj
tp

j
t + σ2

)

where W and R are the system bandwidth and transmission rate, pi
t is the transmis-sion power employed at node i, Ai

t is the path loss orresponding to link i, and σ2 isthe variane of the thermal noise. The path loss Ai
t depends on the distane betweenthe transmitter i and reeiver. 177



The SIR is essentially the main omponent a�eting the transmission in the generaldeentralized queueing law in (6.4). Suppose that the SIR values are partitioned into
L intervals: 0 < Γ1 < ... < ΓL. The hannel gain is said to be in state l if it isbetween interval Γl−1 and Γl. This mapping an then be redued into an ergodiMarkov hain, and the state transition probability ompletely spei�es the dynamisof the hannel. Under the NS2 simulation [30℄, setting the transition probabilitiesan be easily done as NS2 already provides a �nite-state Markov hannel model.Even though this assumption of an ergodi Markov hain for the hannel proess isommonly used in theory and is veri�ed in simulations, suh assumption still remainsto be seen in atual network implementation.As mentioned in Setion 6.3.4 and shown in Figure 6.4, a linear funtion approxi-mation struture known as the CMAC is used to store the estimate ηBi

(t) of the loalneighborhood utility B(Ni, φi, θi|
−−→wNi

) given the neighbors' poliies. This struturealso faes an issue of how lose is the atual estimate to the required value, espeiallyduring learning. Similar to the usage of the CMAC neural network in Setion 4.6,further investigation is required to study the error bound between these two values. Inrelation to this storage issue, one an fae similar problem when representing the soft-max distribution fi(h | φi, gt, yt, ai(t−1), δNi
) in Figure 6.5, due to the approximationerror of the arti�ial neural network struture.We observe that even though LID-RLPS an solve the DEC-POMDP queuesheduling problem in a deentralized model-free manner, with loality of intera-tion, the prie to pay is that it an only give a near-optimal poliy and an inreaseof storage for storing and representing the di�erent required quantities of LID-RLPSsuh as ηBi

(t) and fi(h | φi, gt, yt, ai(t− 1), δNi
).We emphasize that the proposed tehnique is independent on the size of loalityor neighboring nodes ‖Ni‖. In the exhange of poliy vetors in the loality, eahagent performs feature extration on the poliy vetors: 〈θk, φk〉 ∀k ∈ Ni, so that the178



stored vetor parameter δNi
for eah agent has a onstant dimension. As explainedin Setion 6.3.4, δNi

is omputed as the average of the poliy vetors. Other featureextration mehanism an be investigated in the future.The main idea is that, the poliy learned with the urrent set of neighbors an beused when the set of neighbors hanges. The vetor spae for δNi
is the same, whilethe values of the vetor parameter δNi

vary, when the set of neighbors hanges. Thisvetor parameter δNi
is used during the LID-RLPS learning proedure to obtain therequired poliy, independent on the size or set of neighbors.6.7 Chapter SummaryWe have onsidered a stohasti optimal ontrol approah to solve the problem ofmulti-lass sheduling or bandwidth alloation and provisioning under a time-varyinghannel and topology in MANETs. Our proposed sheme is based on a novel frame-work known as Deentralized Partially Observable Markov Deision Proess (DEC-POMDP), where the performane is a�eted by the joint ations of the agents. Inaddition eah agent only observes a partial view of the urrent network state, whihmay only inlude its loal queue lengths and poliies of neighboring agents. In solvingthe DEC-POMDP, we propose a model-free algorithm known as LID-RLPS that per-forms ooperative deentralized optimization for a general Markov wireless queueingnetwork, without requiring the topology, tra�, and wireless hannel statistis. Wealso exploit the idea of �nding a poliy struture to apture the loality of intera-tion among neighbors. Simulation results have shown that the proposed sheme inresoure alloation is able to attain its objetive of minimizing the average ongestionlevel, as ompared to independent learning agents.
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Chapter 7Conlusion
In this thesis, we have onsidered a stohasti optimal ontrol approah for network-level resoure alloation and provisioning under a time-varying hannel in a multi-lass ad ho network. Spei�ally, we study the problem of queue sheduling andbu�er management, under the inherently lossy wireless medium and varying topology.Our model aptures the situation of having di�erent soure-destination pairs, varyinghannel data and error rates, and general tra� arrival statistis and arbitrary numberof nodes.We have formulated the resoure alloation problem using the deision theoretiframework known as Markov Deision Proess (MDP). In this thesis, we have pre-sented four variants of MDP formulations to highlight important results and ontri-butions.The �rst variant uses the theory of ψ-irreduibility to formulate an average ostMDP for eah node ating as an agent, with the objetive of minimizing the averageongestion level. Using the stability onditions of ψ-irreduible Markov hains, wehave presented the �rst tehnique of ahieving optimal ontrol, network optimization,and stability simultaneously for a general Markov queueing network, without theknowledge of tra�, topology, and hannel statistis. From this theory, we havealso derived performane bounds on the average ongestion level and queueing delaydiretly from the value iteration algorithm initialized with a Lyapunov funtion, as180



the algorithm onverges to the optimal poliy.The seond variant onsiders an event-based Semi-Markov Deision Proess (SMDP)for eah node that adaptively performs network-level bandwidth alloation and bu�ermanagement. The main objetive is to maximize average long term network reward,and at the same time, minimize QoS violations with respet to bandwidth, queueingdelay, and bu�er loss. In solving the SMDP without knowing the underlying statistisof the hannel, topology, and tra� proesses, we have used a novel model-free ap-proah known as Neuro-Dynami Programming (NDP), also known as ReinforementLearning, that uses simulation-based tehniques to �nd near-optimal poliies.We have also onsidered the third variant of MDP formulation that extends theSMDP model earlier, espeially for ontinuous state and ation vetor spaes in theQoS provisioning problem. By dividing the original SMDP formulation into dif-ferent tasks or smaller problems, and omposing poliies from these tasks for theoptimal poliy of the original problem, we have shown that suh mehanism ael-erates the onvergene of �nding the optimal solution. Formally, we have used theframework known as Hierarhial Semi-Markov Deision Proess (HSMDP) and usethe orresponding model-free Hierarhial Reinforement Learning (HRL) algorithmfor provisioning. HRL provides the advantage of faster onvergene and better per-formane in terms of long term average reward by reusing subtasks solutions in thetask hierarhy of the HSMDP formulation. In the seond and third variants, we haveemphasized that the algorithm does not need to onsider the tra�, topology, andhannel statistis.Finally, we disussed the importane of deentralized ontrol for resoure alloationand provisioning. We have used a novel multi-agent framework known as Deentral-ized Partially Observable Markov Deision Proess (DEC-POMDP). In the earlierMDP formulations, eah agent independently solves its own loally-observed Markovhain. On the ontrary, under a DEC-POMDP, the joint poliies of the nodes at-181



ing as agents a�et the overall performane. This framework is similar to stohastigame theory, where agents have to ollaborate among themselves to �nd the optimalpoliy. However, in ontrast to game theory where eah agent ompletely observesthe global state of the network, for DEC-POMDP, eah agent only observes its loalqueue information and possibly poliies of neighboring agents.To the best of our knowledge, we believe that the DEC-POMDP formulationaptures a multi-agent system for ommuniation networks more appropriately thanany other deision-theoreti, game-theoreti, or MDP-based framework. In this thesis,we present the �rst DEC-POMDP formulation for queue sheduling under a time-varying hannel and topology. The solution to the DEC-POMDP gives the optimaljoint poliy for the agents. However, it is known that solving a DEC-POMDP isNEXP-omplete and memory requirements grow exponentially even for �nite-horizonproblems. We address these issues by exploiting the loality of interation among theagents and using online model-free tehniques to approximate the optimal solution.We have proposed a model-free algorithm for ahieving optimization and stabilityooperatively and simultaneously in a deentralized manner, without knowing thestatistis of the topology, tra�, and hannel in a general Markov queueing network.7.1 Possible Diretions for Future ResearhAs we have presented in Chapter 3, under the ψ-irreduibility framework, one anahieve simultaneous optimization and stability for the queue sheduling problem.We observe that this theory for ontrolled Markov hains an be used to addressoptimization and stability for other types of networks. As mentioned earlier in Setion3.7, this tehnique outperforms reent state-of-the-art works by Neely. Generallyspeaking, using ψ-irreduibility allows us to derive similar bounds to Neely's work.This novel theory of ψ-irreduibility has a rih mathematial framework [23℄, and182



an be used to analyze system metris in a ommuniation network. Possible futureareas inlude works similar to [6, 9, 26, 39, 40, 41℄ for power alloation, routing,ongestion ontrol, for analyzing energy expenditure, and study delay and rate trade-o�s. We an also use this theory for ross-layer design and optimization, and deriveperformane bounds, similar to a reent Lyapunov-based work in [79℄, as long asone an �nd a ontrolled Markov hain. The main added advantage is that, we ananalyze and ahieve stability and optimization simultaneously.As for the theory on Neuro-Dynami Programming or Reinforement Learning,possible future researh inludes adding the theory of ψ-irreduibility using themodel-free algorithm to diretly derive performane bounds. This is similar to the work in[22℄, but applied in an atual network. With this idea, one an theoretially deriveperformane bounds from the SMDP formulation desribed in Chapter 4.For possible extension on the theory on HSMDP and HRL, one an also look atthe inlusion of stability using ψ-irreduibility. We note that in Chapter 5, the HRL-based algorithm only takles optimization, and no stability onditions were disussed.This an be further investigated in the future.For the DEC-POMDP formulation, in this thesis, we have only proposed onemodel-free algorithm, with loality of interation. As the DEC-POMDP theory isquite new, other types POMDP-based algorithms an also be investigated. Otherareas of researh an be done by extending the ideas in reent works by [80, 81℄ thatuse the onept of graphial games to study the loality of interation among nodes,ahieving Nash equilibrium, and in ahieving performane optimization simultane-ously.Finally, for using the ψ-irreduibility stability framework on general Markov hains,showing this property of ψ-irreduibility may not be straightforward, espeially whenthe state spae is ontinuous and multi-dimensional. In our formulation in Setion3.3.1, ψ-irreduibility was easily veri�ed due to the fat that the queue length proess183



for eah lass j evolves as a random walk on the half line and is already a Markovhain. However, for a general state desriptor suh as in non-linear state spae mod-els, showing ψ-irreduibility may be di�ult [23℄. In this ase, one may need to lookat other types of stability formulations, suh as how to guarantee reurrene andergodiity of multi-dimensional Markov hains, and existene of Lyapunov funtionsand stability for non-linear ases [38℄.
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