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  Summary

Summary

Four-dimensional dynamic contrast enhanced-magnetic resonance imaging (4-D DCE-

MRI)  is  an  emerging  clinical  tool  in  paediatric  urology.  It  involves  administration  of  a 

contrast agent whose journey through the kidneys is monitored over time on T1-weighted 

images  to  provide  detailed  information  on  renal  morphology  and  physiology.  Such 

acquisitions yield a huge amount  of  data that makes quantification difficult.  Therefore, 

automated  image  segmentation  of  the  kidney  tissues  becomes  important  for  clinical 

purposes.

While previous kidney segmentation methods focus on spatial information, this present 

thesis  exploits  the  kinetics  of  contrast  agent  uptake  in  abdominal  tissues.  This  novel 

approach is motivated by the reproducible  pattern  of  time-enhancement  curves which 

reflects known anatomy and physiology of the tissues.

Two types of techniques are proposed:

■ A  clustering  based  technique  (Kohonen  Neural  Network,  Fuzzy  K-Means 

clustering and Expectation-Maximization clustering) identifies groups of voxels that 

share similar time courses and associates each group to a different tissue type. It 

demonstrates  the ability  to  extract  the renal  parenchyma from the surrounding 

organs.

■ A factor  analysis based technique (FAMIS)  with novel  constraints  yields  factor 

solutions  that  can  describe  physiologically  both  the  spatial  distribution  and 

temporal  behaviour  of  the  different  tissue  types.  It  demonstrates  the  ability  to 

extract intrarenal compartments.

The proposed approach is validated over a wide range of 20 real patient MR data sets 

and  our  kidney  segmentation  results  show  good  agreement  with  the  manual 

segmentation  performed  by  our  expert.  Especially,  our  FAMIS  technique  produces 

consistent results in extracting factors that are physiologically interpretable and thus, it 

represents a potentially useful technique in the assessment of renal function.
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 1   Introduction

1 Introduction

1.1 Background on imaging modalities

Magnetic Resonance Imaging (MRI) has revolutionized the diagnosis of many types of 

illness.  This  progress  was  possible  due  to  the  concomitant  development  and  use  of 

contrast agents which accumulate in specific tissues or organs to improve the diagnosis 

of these regions.

Recent  investigations  indeed  recognize  that  MR  images  collected  over  time  by 

dynamic contrast-enhanced MRI (DCE-MRI) have the potential to provide both anatomic 

and physiologic information: the contrast agents are administered not only to enhance the 

visibility of an organ of interest, but also to analyse its biological function by measuring 

the temporal change of the spatial distribution of the contrast agent.

In paediatric renal imaging, the use of gadolinium-enhanced excretory MR imaging of 

the  kidney,  also  called  dynamic  contrast-enhanced  MR  Urography  (DCE-MRU),  is 

considered  as  a  major  breakthrough.  The  contrast  agent,  commonly  Gd-DTPA,  is 

designed to concentrate mostly at the kidney which appears brighter.  Localization and 

differentiation of this organ may then be easier and information about its concentration 

and excretory function may also be analysed by visualizing the passage and elimination of 

the contrast agent [62] [64].

Despite  their  widespread  use,  other  imaging  modalities  like  nuclear  scintigraphy, 

Doppler ultrasound (US), intravenous urography (IVU) and computed tomography (CT) 

have inherent shortcomings:

■ Routinely,  nuclear  scintigraphy,  US  and  IVU  provide  only  2-D  images  of  the 

kidney.

■ Nuclear scintigraphy  provides  functional  information  but  relatively  poor  spatial 

resolution.

■ US has better spatial resolution but little functional information.

■ IVU and CT have good spatial resolution and the potential to provide information 

on  renal  excretion  by  demonstrating  the  course  of  a  bolus  of  contrast  agent 

through  the  glomeruli  but  subject  paediatric  patients  to  nephrotoxic  contrast 

agents.

10
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■ Nuclear  scintigraphy,  IVU  and  CT  use  ionizing  radiation  that  has  potential 

deleterious effects.

On the contrary, 4-D DCE-MRU (3-D + time) can provide in a single study both very 

good spatial and adequate temporal resolution for functional assessment without the use 

of nephrotoxic contrast agents and ionizing radiation. Although expensive and not always 

available,  it  has  several  advantages  in  the  examinations  of  the  kidneys  because  it 

supplies  detailed  information  regarding  anatomy,  function  and  drainage  and  thus, 

provides some completely new insights into renal pathophysiology [24] [50] [63] [64] [66], 

renal  transplant  functional  assessment  [52] [57] and functional  renal volume  [43] [61]. 

Therefore, it is a promising tool for the assessment of the urinary system and with future 

advances in automated image analysis, it could emerge as the functional renal imaging 

modality of choice.

1.2 Motivations

4-D DCE-MRU examinations always include an image processing routine to extract the 

different  physiological  compartments  of  the  kidneys  from  the  surrounding  tissues. 

Currently, this may be done by comparing, on a slice-by-slice basis, volumetric images of 

a same patient acquired over the sequence after manually placing volumes of interest 

(VOI)  that enclose the renal cortex,  the renal medulla and the renal pelvis.  Then, the 

mean signal intensity within each VOI at each time point is computed and plotted against 

time, resulting in a so-called renogram describing renal function and urinary excretion.

But  such  a  manual  technique  in  4-D  DCE-MRU  is  repetitive,  laborious  and  time 

consuming because of the large amount of data: a patient acquisition can easily generate 

a  sequence  of  more  than  200  volumes,  each  of  12-20  slices.  Moreover,  it  is  highly 

dependent on user-defined volumes of interest, especially in poorly functioning kidneys, 

making the results subject to large inter-observer and intra-observer variability.

In this context therefore, automatic segmentations that can extract the kidneys in 3-D 

are  becoming  an  increasingly  important  image  processing  step  for  clinical  diagnosis. 

These tasks are especially challenging in DCE-MRI because:

■ Image  intensity values change rapidly over the time course reflecting  the rapid 

wash-in and wash-out of contrast agent from the abdominal tissues.

■ Contrast agent uptake in poorly functioning kidneys may be reduced, resulting in 

weak boundaries between different tissues or disjoined bright regions.

11
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■ Kidneys are located in a crowded soft-tissue environment and contrast agent also 

enhances the neighbouring tissues such as spleen, liver, intestine and aorta.

■ The image quality is  subject  to  the amount  of  noise,  motion artefacts  and the 

current technological limitations of the imaging modality.

In this thesis, novel techniques for kidney segmentation in 4-D DCE-MRI based on a 

physiological  and  temporal  approach  are  presented.  They  are  motivated  by  the 

observation that a reproducible pattern of time-enhancement curves characterises each 

abdominal organ. The methods are tested on 20 real patient MR data sets and the results 

show consistent agreement with the segmentations provided by the domain expert.

The algorithms are implemented in MATLAB(R) 7.0, The MathWorks, Inc., to facilitate 

integration into an existing GUI (Graphical User Interface) used by doctors of the National 

University Hospital (NUH).

A brief description of our 20 MR data sets are given in Appendix.

1.3 Contribution summary

The key contributions of this work are summarized below:

■ A novel 4-D DCE-MRI approach which  analyses the kinetics  of  contrast  agent 

uptake in abdominal tissues to segment kidneys is proposed. It is motivated by the 

reproducible pattern of time-enhancement curves that can be explained by known 

anatomy and physiology.

■ Clustering based methods are applied to regroup voxels that share a similar time 

course and a factor analysis based method with new constraints is developed to 

segment  not  only  kidneys  from  surrounding  tissues  but  also  intrarenal 

compartments.

■ The performance of the techniques is demonstrated on 20 real MR patient data 

sets and it is shown that the factor analysis based method yields promising results 

for a clinical routine.

1.4 Organization of the thesis

The  contents  of  the  key  chapters  that  follow  in  the  remainder  of  this  thesis  are 

described briefly below:

12
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■ Chapter 2: Dynamic contrast-enhanced MR Urography. Some of the necessary 

concepts to comprehend the subtleties of MR imaging are reviewed. Insights into 

the anatomy and physiology of the kidneys are especially given to demonstrate 

the renal enhancement pattern observed in DCE-MRU.

■ Chapter  3:  Related  works  in  kidney  segmentation. A literature  review  of 

medical image segmentation of the kidneys is presented.

■ Chapter 4: Proposed methods for kidney segmentation. The principles and the 

algorithms of the proposed methods based on cluster analysis and factor analysis 

to segment kidney tissues in DCE-MRU are described in detail.

■ Chapter  5:  Experimental  results  and  Discussion. The  performance  of  the 

segmentation results is evaluated and discussed.

■ Chapter  6:  Conclusion. The  results  are  summarized  and  future  research 

directions are indicated.

13
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2 Dynamic contrast-enhanced MR Urography

A detailed explanation of  MRI is beyond the scope of  this thesis and the reader is 

invited to refer to [31], [34] or [69] for more detailed information.

2.1 Basic MRI physics

2.1.1 Macroscopic magnetization

Hydrogen nuclei exhibit a magnetic moment due to the spinning of their proton around 

their  own  axis.  When  the  hydrogen  protons  are  placed  within  a  powerful  external 

magnetic field of strength  B0 , they align themselves mostly toward the direction of the 

magnetic field (spin-up or parallel) and experience a precession by rotating around the 

direction of the field (Figure 1). The precessional frequency is proportional to the external 

magnetic field and is given by the Larmor equation: 

0=B0  (2.1.1)

■ 0  is the angular frequency of precession in radians and is called the Larmor 

frequency.

■   is a constant called gyromagnetic ratio which is a distinguishing characteristic 

of each element. As hydrogen is naturally abundant in human tissues which are 

made of water at 75%, clinical MRI is confined to imaging the hydrogen nucleus 

for which =42.57MHz/T .

■ B0  is the magnetic field strength in Tesla.

Consequently,  within a magnetic  field  and at  equilibrium,  the vector  sum of  all  the 

magnetic  moment  vectors  of  the  individual  protons,  called  net  magnetization  or 

macroscopic  magnetization  M=M 0 ,  can  be  described  by  a  longitudinal  component 

M z=M=M 0  aligned with the field, along the z  axis, while the transverse component 

M xy , lying on the x - y  plane (also known as the transverse plane), is null because the 

individual protons do not precess in phase with each other (Figure 2).

14
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 Figure 1: Precession of hydrogen nuclei

Hydrogen nuclei exhibit a magnetic moment (straight black arrows). Within a magnetic  
field  B0, they  precess around the direction of the magnetic field (as indicated by the 
curved blue arrows) and are aligned mostly spin-up or parallel with the magnetic field.

 Figure 2: Effect of a 90° RF pulse on the macroscopic magnetization

– (a) Equilibrium: within a magnetic field B0 and at equilibrium M0, the macroscopic 
magnetization  M=M0 is  described by a longitudinal component  Mz (blue arrow) 
while the transverse component Mxy is null: M=M0=Mz.

– (b) Magnetic resonance and excitation: a 90° RF pulse at the Larmor frequency 
perturbs the equilibrium: it tips down the macroscopic magnetization M at 90° so 
that  the  longitudinal  magnetization  Mz disappears  while  the  transverse 
magnetization Mxy (green arrow) appears: M=Mxy.

– (c)  (d) Relaxation: when  the  RF  pulse  is  turned  off,  the  macroscopic 
magnetization  M (red arrow) returns back to the equilibrium M0. The longitudinal 
relaxation refers to the recovery of  Mz back to  M0 and the transverse relaxation 
refers  to  the decay  of  Mxy back  to  the null  vector.  Notice  that  the transverse  
relaxation is always faster than the longitudinal relaxation (T2<T1).

http://upload.wikimedia.org/wikipedia/commons/2/22/90pulse.jpg
The original image is under the GNU Free Documentation License and was modified 
to fit the explanations given in this thesis.

(a) (b) (c) (d)

B
0

H+ H+

Spin-up Spin-down

http://upload.wikimedia.org/wikipedia/commons/2/22/90pulse.jpg
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2.1.2 Magnetic resonance and excitation

Magnetic  resonance  is  accomplished  by  applying  a  radio  frequency  (RF)  pulse  at 

exactly the same frequency as the Larmor frequency that perturbs the proton equilibrium: 

the net  magnetization vector  M  moves away from alignment  in the  z  direction  and 

rotates towards the  x -y  plane so that the longitudinal magnetization  M z  decreases 

whereas the transverse magnetization M x y  appears (Figure 2). The angle of rotation   

is called the tip angle or flip angle and is proportional to the strength B1  and the duration 

t p  of the RF pulse according to the following equation:

=B1 t p  (2.1.2)

2.1.3 Relaxation times

Relaxation refers to the return to equilibrium of the net magnetization M  back to M 0  

as soon as the RF pulse is turned off (Figure 2). It combines 2 different mechanisms:

■ Longitudinal relaxation or T1 relaxation (Figure 3) corresponds to the recovery 

of the longitudinal magnetization  M z  back to  M 0  according to an exponential 

curve characterised by the tissue-specific time constant T1. It is also known as 

spin-lattice relaxation because the recovery is due to the release by the excited 

protons  of  RF  energy  back  to  the  surrounding  lattice.  After  time  T1,  the 

longitudinal  magnetization  M z  has  returned  to  63%  of  its  value  M 0  at 

equilibrium.

■ Transverse relaxation or  T2 relaxation (Figure 4) corresponds to the decay of 

the transverse magnetization  M xy  to a null vector according to an exponential 

curve also characterised by the  tissue-specific  time constant  T2<T1.  It  is  also 

known  as  the  spin-spin  relaxation  time.  Indeed,  the  RF  pulse  at  the  Larmor 

frequency forces the individual protons to precess in phase but when it is turned 

off,  this  phase  coherence  is  progressively  lost  due to  the  interaction  between 

excited protons which modify their precession rate. After time T2, the transverse 

magnetization M xy  has dropped to 37% of its initial magnitude considered at the 

moment when the RF pulse was turned off.
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 Figure 4: Transverse relaxation T2
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 Figure 3: Longitudinal relaxation T1
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2.2 Magnetic resonance imaging

2.2.1 Tissue contrast

Basically, the MR signal and thus, the contrast in MR images is produced by weighting 

(enhancing or reducing) the differences in proton density (PD) and relaxation times (T1 

and T2) that characterize each tissue (Figure 5). This is done by using different pulse 

sequences (spin echo sequence in section  2.2.3. or gradient echo sequence in section 

2.2.4.)  and by tuning  their  parameters.  Depending  on the  tissue characteristic  that  is 

emphasized, three types of image contrast can be produced:

■ PD-weighted images where  tissues with high proton densities give generally the 

highest signal intensities and thus the brightest voxels.

■ T1-weighted images where tissues with the shortest  T1 give the highest  signal 

intensities and thus the brightest voxels.

■ T2-weighted images where tissues with the longest  T2 give the highest  signal 

intensities and thus the brightest voxels.

As it shall be explained, a spin echo sequence and a echo gradient sequence can both 

produce PD-, T1-, T2-weighted images depending on the choice of their parameters.

18

 Figure 5: Development of tissue contrast

– The figure considers the transverse magnetization decay in T2 of two different  
tissues.

– t=TE1 provides better tissue contrast than t=TE2.
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2.2.2 MR signal and Free Induction Decay (FID)

The MR signal  that  can be measured by the RF coils is always the current  signal 

induced by the variations of  the transverse magnetization vector  M xy .  This signal  is 

oscillating at Larmor frequency and its envelope decays exponentially to zero at a time 

constant T2* faster than T2 due to both the loss of phase coherence between individual 

protons and the inhomogeneities in the external magnetic fields. When it  is measured 

after  transmission  of  a  RF  pulse  at  the  Larmor  frequency,  it  is  known  as  the  Free 

Induction Decay (FID) (Figure 6). But actually, spin echo or gradient echo signals rather 

than FID are measured in MR imaging.
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 Figure 6: A free induction decay with a T2* envelope
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2.2.3 Spin echo sequence

 Pulse sequence  

The spin echo sequence is based on the repetition of 90° and 180° RF pulses (Figure

7):

■ A 90°  RF pulse at the Larmor frequency tips the net magnetization  M  down at 

90° so that:

□ M  lies in the x - y  plane.

□ Longitudinal magnetization M z  disappears.

□ Transverse  magnetization  appears  and  M xy=M 0  in  amplitude  (due  to 

complete phase coherence between individual protons).

■ Once the 90° RF pulse is turned off:

□ Longitudinal magnetization M z  recovers with time-constant T1.

□ Transverse magnetization M xy  decays with time-constant T2* due to both 

the loss of phase coherence between individual protons (random) and the 

inhomogeneities in magnetic fields (non-random).

■ A 180°  RF pulse at the Larmor frequency applied at time TE/2 after the 90° RF 

pulse reverses the non-random dephasing so that protons come back into phase 

to increase the transverse magnetization M xy  and form, at time TE (Echo Time), 

the spin echo which is the sampled MR signal. However, due to decay in T2, the 

signal of the spin echo is not as high as the initial transverse magnetization.

■ Then, the protons dephase again and the transverse magnetization M xy  decays 

due to T2* effect. This sequence of 90° and 180° RF pulses is repeated multiple 

times again depending on the MR image size.

The spin echo sequence has two parameters:

■ The echo time, TE, is the time between the 90° RF pulse and the maximum of the 

spin echo, corresponding to the MR signal sampling. TE/2 is the time between the 

90° RF pulse and the 180° RF pulse.

■ The repetition time, TR, is the time between two consecutive 90° RF pulses.

20



 2   Dynamic contrast-enhanced MR Urography

 Development of tissue contrast  

A  T1-weighted  image  is  taken  as  example  to  explain  how  the  tissue  contrast  is 

achieved in a spin echo sequence. In a T1-weighted image, the contribution due to T1 

must be emphasized while those of T2 and PD must be reduced. This is done by using a 

short TR and a short TE:

■ Each  tissue  is  characterised  by a  relaxation  time T1 for  the  recovery of  their 

longitudinal  magnetization  M z .  So,  a short  TR enhances these differences in 

longitudinal recovery between tissues with different T1.

■ A short TE ensures that protons are not given sufficient time to dephase and thus 

that the transverse magnetization differences between tissues due to decay in T2 

have a minimum effect  on  the  differences  due to  the  characteristic  T1 of  the 

different tissues.
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 Figure 7: Formation of a spin echo at time TE
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2.2.4 Gradient echo sequence

 Pulse sequence  

There are two main differences that distinguish a gradient echo sequence from a spin 

echo sequence (Figure 8):

■ The  exciting  RF  pulse  yields  a  flip  angle  lower  than  90°.  Consequently,  the 

longitudinal magnetization  M z  flips incompletely into the  x - y  plane so that a 

transverse  magnetization  M xy  appears  while  a certain  amount  of  longitudinal 

magnetization M z  still remains.

■ Once the RF pulse is turned off,  M z  recovers with time constant T1 while M xy  

decays with time constant T2* like in the spin echo sequence.

■ But then, instead of using a 180° RF pulse, the gradient echo sequence rather 

uses a magnetic field gradient reversal to rephase the protons:

□ A negative magnetic field gradient −G x  is first applied, forcing the protons 

to  dephase  much  faster  than  in  T2*.  That  is,  depending  on  its  position 

respectively  to  the  gradient,  each  proton  is  forced  to  precess  faster  or 

slower, until the transverse magnetization M xy  is eliminated.

□ Then, the magnetic field gradient is reversed to yield a positive amplitude. 

So,  protons  which  were  previously  precessing  faster  start  to  slow down, 

while those which were precessing slower start to speed up. As a result, all 

the  protons  eventually  come  back  into  phase  to  restore  the  transverse 

magnetization  M xy  and form, at time TE (Echo Time), the gradient echo, 

which  is  the  sampled  MR  signal.  However,  the  magnetic  field  gradient 

reversal does not compensate for the dephasing due to T2* and thus, the 

height of the gradient echo signal decays in T2*. For this reason, a gradient 

echo should rather be considered as a FID rather than a true echo and it 

produces  what  it  should  be  called  T2*-weighted  images  rather  than  T2-

weighted images.
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The gradient echo sequence has three parameters:

■ The echo time, TE, which is the time between the RF pulse and the maximum of 

the gradient echo, corresponding to the MR signal sampling.

■ The repetition time, TR, which is the time between two consecutive RF pulses.

■ The flip angle,  , which is caused by the RF pulse.
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 Figure 8: Formation of a gradient echo at time TE
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 Advantage: faster acquisitions  

The main advantage of a gradient echo sequence over a spin echo sequence is its 

reduced scan time by shortening the TR. This is because a partial flip angle determines 

both the amount of longitudinal magnetization remained in the z  axis and that tipped into 

the x - y  plane:

■ With a 90° flip angle, M z  becomes null. So, if a small TR is used to speed up the 

scan, M z  has not sufficient time to recover. Thus, it decreases progressively with 

each pulse and hence, it also yields subsequent decreased M xy  and signals.

■ But with a partial flip angle, say 30°, a residual  M z  persists. Thus, its recovery 

can be more complete. So, even if TR is shortened to reduce the scan time, M z  

can  still  keep  an  adequate  amplitude  after  each  pulse  to  tip  a  transverse 

magnetization M xy  into the x - y  plane and thus, induce a signal.

 Steady-state transverse magnetization  

Thus; in a gradient echo sequence, the scan time can be reduced by shortening the 

TR. But if  the TR used is shorter than the T2* that characterises the tissues, then the 

protons are not given sufficient time to dephase (that is, the transverse magnetization has 

not  enough  time  to  decay  completely).  As  a  result,  there  is  a  permanent  residual 

transverse magnetization that remains at the end of each cycle, just before the next RF 

pulse, and eventually,  after  a few cycles, it  reaches a steady state value. This steady 

state transverse magnetization, denoted M ss , may affect the tissue contrast, producing 

more T2*-weighting in MR images. Therefore, in spoiled gradient echo sequences, it is 

possible to reduce T2*-weighted images with a gradient spoiler which cancels out any 

residual  transverse  magnetization  prior  to  each  RF  pulse  by  enhancing  the  proton 

dephasing.

 Development of tissue contrast  

A gradient  echo  sequence  also  produces  new contrasts  between  tissues  because 

there are three parameters that can be tuned by the radiologist: TE, TR and the flip angle 

 . As a result, it gives rise to several mixtures of PD-, T1-, T2*-weighting images:

■ A short TE reduces T2* weighting like in a spin echo sequence.
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■ A short  TR enhances T2* weighting.  Indeed,  if  TR is smaller  than T2*, then a 

steady state transverse magnetization M ss  appears and contributes to the signal.

■ A  small  flip  angle    reduces  T1  weighting.  Indeed,  for  small  flip  angles,  a 

longitudinal magnetization M z  persists and thus, it can recover completely faster. 

So, the differences in longitudinal recovery between the tissues will be minimized.

2.2.5 Contrast agent in MR urography

The use of  contrast  agent  in MR urography,  often designated as dynamic contrast 

enhanced MRU (DCE-MRU), is motivated by the necessity for clinical purposes to obtain 

both morphological and functional information of the urinary tract:

■ The use of contrast agent enhances the contrast between different tissues and 

may also enhance the contrast difference between the renal pathological lesions 

and the surrounding unaffected renal tissues.

■ It offers information about the excretory function of the kidneys since the passage of 

contrast agent through the urinary tract can be visualized.

The contrast  agent,  commonly Gd-DTPA (gadolinium diethylenetriamine pentaacetic 

acid  or  gadopentetate  dimeglumine),  is  injected  into  the  patient  intravenously.  The 

paramagnetic  properties  of  Gd-DTPA are  explained  by  the  gadolinium  ion  while  the 

physiologic properties are explained by the attached molecule DTPA:

■ Gadolinium  decreases  the  relaxation  times  T1  and  T2  of  hydrogen  protons. 

Hence, on T1-weighted images, it enhances the signal intensity of tissues where it 

is absorbed. It  is a toxic element but when chelated to DTPA, it becomes safe 

while its paramagnetic properties are still preserved.

■ DTPA is a substance that  is excreted exclusively in the kidneys by glomerular 

filtration with no tubular secretion or reabsorption.

So, when bound together, the path of Gd-DTPA through distinct regions of the kidneys 

(cortical vasculature, medullary tubules and pelvis) can be monitored over time using T1-

weighted spin echo imaging or T1-weighted gradient echo imaging to obtain information 

about renal perfusion, uptake and excretion.

Gd-DTPA has the same properties  as Tc-DTPA (technetium-DTPA) used for  renal 

scintigraphy  and  a  good  correlation  can  be  obtained  between  the  contrast  agent 

elimination  assessed by DCE-MRU and the conventional  radionuclide methods.  Some 
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groups ([23] [51]) even show that DCE-MRU can be a good alternative to conventional 

radionuclide methods.

It must be mentioned that several other MR contrast agents [68] are widely available 

and in broad clinical  use,  but  only Gd-DTPA will  be referred in  the remainder  of  this 

thesis.
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2.3 MR urography imaging of renal function

2.3.1 Physiologic background of the kidneys

 Introduction  

In the first pass, 20% of the injected dose of contrast agent reaches the kidneys [54]. 

But  this is only true in approximately the first 20 seconds following injection. After that, 

there is considerable dilution, recirculation and re-enhancement of the kidney.

The blood flow (Figure 9) (Figure 10) (Figure 11) comes from the renal arteries which 

branch from the abdominal  aorta.  Upon entering the  renal hilus, it  is delivered to the 

nephrons via interlobular arteries that separate many times into afferent arterioles.

The  nephron (Figure 12)  is the basic functional unit of the kidney. There are more 

than a million in each kidney. Their role is to clean the blood supply by:

■ filtration in the glomerulus

■ reabsorption of water in the tubules

■ secretion of substances in the tubules

Blood cleaned by the nephrons returns back to the general blood circulation via the 

renal veins with a reduced amount of key solutes. Those key solutes, which include toxic 

and waste materials like contrast agents, are concentrated in the nephrons, subsequently 

sent in the form of urine into the  bladder via the  ureters,  and finally excreted into the 

outside environment via the urethra.

To follow the path of Gd-DTPA through the kidneys (Figure 9) (Figure 10) (Figure 11) 

(Figure 12) and understand its changes of  concentration,  the function of  the nephron 

must be explained [24].
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 Figure 9: Diagram of the urinary system
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 Figure 10: Gross anatomy of the left kidney
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 Figure 11: Right kidney on a MR image

– Left: right kidney on a maximum intensity projection (MIP) derived from the full volume 
(16 slices) and the full dynamic sequence (24 time points).

– Right: right kidney at t=5.7min, during vascular phase, slice 8
– Data set 040205bpa1.
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 Figure 12: Journey of Gd-DTPA through the kidney nephron

– Gd-DTPA goes down from the kidney cortex to the medulla via the descending limb of  
the loop of Henle.

– Then, it goes back to the cortex via the ascending limb of the loop of Henle and the  
DCT. Finally, it returns to the medulla again and reaches the renal pelvis in the form of 
urine via the CD.

– Blue arrows indicate water  reabsorption and enlarging Gd indicate changes in the 
intratubular concentration of Gd-DTPA from PCT to CD.

– This pathway and concentration mechanism is essentially identical for all Gadolinium,  
iodine-based CT contrast agents, Tc-DTPA, creatinine and many other molecules.
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 Glomerular filtration  

In a  single pass, most of the water and around 20% of the Gd-DTPA delivered from 

the blood flow are forced by high pressure out of the glomerular capillaries to pass into 

the Bowman's capsule. They compose the so-called primary urine or glomerular filtrate. 

The remaining 80% of the Gd-DTPA leaves the kidney and returns to the general blood 

circulation via the renal veins and the ascending vena cava.

 Tubular   reabsorption  

After  glomerular  filtration,  the  glomerular  filtrate  enters  the  proximal  convoluted 

tubules (PCT) where the concentration of Gd-DTPA is briefly diluted during the first pass 

by the existing fluid. However, at the end of the PCT, most of the water composing the 

glomerular  filtrate is absorbed by osmosis so that only one third of  the filtrate volume 

enters the outer medulla.

In the medulla, the epithelium covering the descending limb of the loop of Henle is 

permeable  to  water  and thus,  absorbs  the  remaining  water  in  the  tubular  fluid  which 

progressively becomes more concentrated in Gd-DTPA. But then, unlike the descending 

limb,  the  ascending  limb  of  the  loop  of  Henle and  earlier  sections  of  the  distal 

convoluted tubules (DCT) are impermeable to water but permeable to solutes and urea. 

So, on the way back to the cortex, the tubular fluid is a bit diluted. This results in a so-

called counter-current mechanism that yields the highest concentration of Gd-DTPA in the 

top of the loop of Henle (LOH), that is, in the inner part of the medulla.

Finally, depending on the release of antidiuretic hormone (ADH), more or less water is 

reabsorbed  again  in  the  latter  section  of  the  distal  convoluted  tubules and  in  the 

collecting  ducts (CD).  The  definitive  fluid,  now  called  urine,  reaches  a  maximal 

concentration in the renal pelvis and is drained into the bladder via the ureters.

Tubular reabsorption explains that during the passage of the glomerular filtrate through 

the tubules and the collecting ducts,  most  of  the nutrients are sent back to the blood 

stream and finally only 1% of the glomerular filtrate actually leaves the organism.

 Tubular secretion  

Tubular secretion is not relevant to Gd-DTPA, but for information only, it is a process 

that keeps the blood pH at a normal level by especially adding ions in the tubular fluid.
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2.3.2 Renal enhancement pattern

If Gd-DTPA is intra-venously injected and if the signal changes related to the perfusion 

are tracked over time for  abdominal  organs,  the signal  intensity of  renal  cortex,  renal 

medulla, spleen and liver will all demonstrate first a peak enhancement and subsequently 

show a continuous decline reflecting the contrast agent uptake from the blood and its 

later expulsion.

But  although  the  appearance  of  the  excreted  contrast  agent  through  the  kidney 

depends on the pulse sequence that is used and on the concentration of Gd-DTPA that is 

administered,  there is a reproducible enhancement  pattern of  signal intensity changes 

described by three typical phases (Figure 13) (Figure 14) [40] [59] which can be explained 

by known anatomic and physiologic characteristics of the organs:

■ A vascular  phase occurs immediately after  the injection  of  the contrast  agent 

which reflects the contrast agent uptake from the blood.

□ This phase can be identified by the enhancement of the renal cortex whose 

signal intensity describes a steep linear rise until a peak is reached while the 

medulla  is  still  hypointense.  It  is  explained  by  the  arrival  at  plasma 

concentration of the first bolus of Gd-DTPA into the kidney via the cortical 

vasculature and glomerular capillaries.

□ The spleen exhibits an inhomogeneous enhancement with patchy areas of 

alternating higher and lower signal intensity that some authors relate to the 

varying blood flow rate through the cords of red pulp [4] [11] [12] [14] [20].

□ The liver enhances slightly later  [12] which reflects its dual blood supply in 

two  times.  Indeed,  approximately  25% of  the  blood flow to  the  liver  first 

comes from the hepatic artery and then approximately 75% from the portal 

venous system which brings nutrient-rich blood from the spleen and other 

abdominal organs. Consequently, the initial uptake of Gd-DTPA in the liver 

can  be  described  in  two  phases:  a  first  subtle  arterial  phase  which 

corresponds to the arrival  of  a small  quantity of  Gd-DTPA and thus to a 

minimal liver enhancement;  and a second subsequent portal phase which 

corresponds to the arrival of venous Gd-DTPA and thus a slightly later liver 

enhancement peak.

□ The  aorta,  which  supplies  the  blood  to  the  abdominal  organs,  and  its 

bifurcation into common iliac arteries (future femoral arteries) also enhance 

and may be visible in some slices.
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 Figure 13: Selected DCE-MRU images

– Left  column  shows  maximum intensity  projection  (MIP)  derived  from four  image 
volumes (14 slices) considered respectively at four separate time points (t=2.9min,  
t=3.1min, t=5.5min, t=13.2min).

– Right column shows slice 6 of the four image volumes considered respectively at the 
four  separate  time  points  (t=2.9min,  t=3.1min,  t=5.5min,  t=13.2min).  Voxels 
representative  of  the  different  physiological  tissue  types  (cortex,  medulla,  pelvis,  
bladder, spleen and liver) are selected (cf crosses) and their signal intensities are  
averaged with those of their 8 neighbours and plotted over time in Figure 14.

– Data set 060721cpa1.
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 Figure 14: Pattern of signal intensities

– Voxels  representative  of  the different  physiological  tissue  types are  selected from 
Figure 13. Their signal intensities are averaged with those of their 8 neighbours and 
plotted over time.

– Pre-enhancement phase (t=2.9min, see also Figure 13) shows low signal intensities 
before contrast agent uptake except usually for liver which has a short T1 relaxation 
time.

– Vascular phase (t=3.1min, see also Figure 13):
– Renal cortex enhances at the outer rim and reaches a peak in intensity.
– Spleen enhances heterogeneously
– Liver will enhance slightly later due to the delay required to deliver Gd-DTPA from 

the portal venous system.
– Tubular phase (t=5.5min, see also Figure 13):
– Renal medulla is first hyperintense and reaches a signal intensity peak
– Then, the renal parenchyma (both cortex and medulla) becomes isointense.

– Excretory phase (t=13.2min, see also Figure 13) shows increasing signal intensity in 
renal pelvis and bladder.

– Left kidney shows delayed excretion revealing a possible obstruction (see Figure 13).
– Data set 060721cpa1, slice 6.
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■ A  tubular  phase where  the  Gd-DTPA  moves  down  to  the  medulla  via  the 

descending  limb  of  the  loop  of  Henle  and  gets  back  to  the  cortex  via  the 

ascending part and the DCT.

□ The first part of this phase is identified by a contrast inversion: the signal 

intensity  of  the  renal  cortex  decreases  due  to  glomerular  filtration  and 

dilution in the PCT whereas that of the renal medulla increases as long as 

the inflow of Gd-DTPA from the cortical vasculature into the tubules exceeds 

the outflow into the CD. The medulla is then hyperintense and reaches a 

peak in intensity which is slightly higher and occurs later than that of  the 

cortex,  reflecting  the  concentration  of  Gd-DTPA along  the  tubules  and a 

maximal concentration in the LOH.

□ Subsequently,  the second part  of  the tubular phase is characterised by a 

decline but an equilibrium of Gd-DTPA flow between the kidney cortex and 

medulla.  Their  signal  intensities  both  decrease  but  become  isointense 

resulting in a homogeneously enhanced parenchyma over time. This can be 

explained by the flow of Gd-DTPA within the ascending limb of the loop of 

Henle  and  the  DCT  which  are  impermeable  to  water  and  keep  the 

concentration of contrast agent approximately constant.

□ The  contrast  agent  leaves  the  spleen  and  the  liver  respectively  via  the 

splenic vein and the hepatic vein and thus, undergo a sharp decrease of 

their signal intensities.

■ An excretory phase where the signal intensities of renal cortex and medulla both 

keep decreasing homogeneously due to the contrast elimination into the CD. It 

results in a brighter  signal intensity first  in the kidney pelvis, which is the most 

intense  region  during  a  normal  study  because  of  urine  accumulation.  Then, 

contractions occur 2 to 6 times per minute to form and transport, via the ureter, 

bolus of urine into the bladder which becomes also brighter.

Finally, it is interesting to notice a few other points:

■ The vascular phase is the one that most of the previous studies has focused on to 

segment  kidneys because it  offers  a good cortico-medullary differentiation  with 

hypointense signals for other abdominal organs. But this difference fades away in 

the subsequent phases.
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■ Compared to the spleen and the liver, the kidney enhances the most intensively. 

This  can  be  explained  by  its  prominent  vascularity  and  its  ability  to  filter  and 

concentrate Gd-DTPA.

■ On T1-weighted images, the liver signal intensity displays more signal intensity in 

the  pre-enhancement  phase  compared  to  other  abdominal  tissues  due  to  its 

characteristic short T1 relaxation time (Figure 15) ([53]).

■ On  T1-weighted images, the signal intensity of the spleen is usually lower than 

that of the liver [20] but is higher in terms of relative contrast enhancement, which 

reflects the prominent vascularity of the spleen  [12] and the short T1 relaxation 

time of the liver (that is, an additional decrease in T1 relaxation time caused by a 

contrast agent leads only to a slight increase of liver signal intensity compared to 

other tissues).

■ The renal enhancement pattern was explained by the T1 shortening effects of Gd-

DTPA  uniquely  (that  is,  an  increased  concentration  of  Gd-DTPA  yields  an 

increased signal intensity) but it must be kept in mind that T2 shortening effects 

cannot be neglected and often occur in the renal medulla and pelvis.

■ Alterations  in  the  normal  enhancement  pattern  can  be  observed  in  cases  of 

uropathies like obstruction.

Thus, the kinetics of contrast uptake enhance differently depending on the abdominal 

tissues and they describe a reproducible enhancement pattern which can be explained by 

the anatomical and physiological differences between tissues. Consequently, this can be 

a  strong  feature  to  segment  the  kidneys  from  the  surrounding  tissues  as  well  as  to 

segment the different renal compartments (cortex, medulla and pelvis).
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 Figure 15: Average T1 relaxation times at 1.5 Tesla [53]
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2.4 Technical issues

2.4.1 Quantification of contrast agent

The paramagnetic effects of Gd-DTPA (or any other paramagnetic contrast agent) on 

relaxation times T1 and T2* (or T2) of water protons can be described by the following 

equations:

1
T1
=

1
T10
r1⋅[Gd ]

1
T2*=

1
T20

*r2⋅[Gd ]
(2.4.1)

■ T10  and T20
*  are the tissue relaxation times in the absence of Gd-DTPA.

■ r1  and r 2  are relaxivity constants specific to Gd-DTPA.

■ [Gd ]  is the concentration of Gd-DTPA.

Moreover, the relationship between the relaxation times and the MR signal  SMR  on 

spoiled gradient echo images can be described by the following equation [34]:

SMR=M 0⋅sin⋅e
−

TE
T2*

⋅ 1−e
−TR

T1

1−cos⋅e
−TR

T1

 (2.4.2)

■ M 0  is the equilibrium longitudinal magnetization.

■   is the flip angle.

■ TE  and TR  are respectively the echo time and the repetition time.

Equations (2.4.1) shows that an increase of Gd-DTPA concentration shortens both the 

relaxation times T1 and T2* and hence modify the MR signal through equation (2.4.2).

It is interesting to notice that if  T2* is long relatively to TE, then the T2* shortening 

effects can be neglected in equation (2.4.2) and the MR signal can be approximated by:

SMR=M 0⋅sin⋅ 1−e
−TR

T1

1−cos⋅e
−TR

T1

 (2.4.3)

Assuming  a  given  spoiled  gradient  echo  sequence  with  α=15°, TR=6.2  msec  and 

TE=2.8 msec,  Figure 16 simulates the complex relationship between the MR signal and 

36



 2   Dynamic contrast-enhanced MR Urography

the  Gd-DTPA  concentration  in  medullary  tissues  by  using  equations  (2.4.1),  (2.4.2), 

(2.4.3) and values reported in the literature (T10=1412 msec, T20*=85 msec [53], r1=4.5 kg 

mmol-1 sec-1, r2=30 kg mmol-1 sec-1 [18] [37]).

It can be concluded from the simulation that the MR signal is not linearly related to the 

concentration of Gd-DTPA present in the tissue. Indeed, the MR signal is determined by 

the competing paramagnetic effects of T1 and T2* shortening by Gd-DTPA (Figure 16):

■ At low  Gd-DTPA concentrations,  T1 shortening effect dominates and enhances 

the signal intensity of urine.

■ But  at  high concentrations,  T2*  shortening  effect  dominates,  resulting  in  a 

decreased rather than increased signal intensity of urine.
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 Figure 16: MR signal as a function of Gd-DTPA concentration in medullary tissues
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T2*  shortening  effect  is  clearly  undesirable  because  it  decreases  the  positive 

enhancement of the urine and leads to a signal loss or eventually to a signal void. In the 

simulation, the T2* effect alters significantly the MR signal when the concentration of Gd-

DTPA rises locally above 1 mmol/kg and causes a signal void above 60 mmol/kg. This 

often occurs in DCE-MRU because renal medulla and pelvis can locally concentrate and 

accumulate Gd-DTPA up to 100-fold. Consequently, the concentration of contrast agent 

in DCE-MRU cannot be simply and uniquely determined on the basis of signal intensities.

This  is  in  contrast  to  nuclear  scintigraphy  where the  signal  intensity  measures  the 

count of gamma photons in the tissue of interest and hence, is directly proportional to the 

concentration of radionuclides. 

To overcome the issue in DCE-MRU, a few solutions have been proposed:

■ A lower concentration of Gd-DTPA can be used to prevent gadolinium from being 

too much concentrated in the renal medulla and collecting system and thus, avoid 

the dominant T2* effect. Studies ([23]) suggest that doses lower than 0.1 mmol/kg 

may keep the relationship between signal intensity and Gd-DTPA concentration 

approximately linear.

■ Furosemide can be administered prior to Gd-DTPA. It inhibits water reabsorption 

in the loops of Henle and hence, dilutes the concentration of Gd-DTPA. It  also 

causes an uniform distribution of Gd-DTPA inside the urinary tract [25].

■ The parameters of  the spin echo sequence and gradient  echo sequence could 

also be adjusted to the concentration of Gd-DTPA that is expected to be found in 

the kidneys so that T2* effects can be reduced ([23] [51]).
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2.4.2 Motion artefacts

Patient  motions  during  image  acquisition  must  be  avoided  because  they  alter  the 

signal and degrade the image quality, especially the cortico-medullary differentiation. 

■ Gross patient motion causes blurring of the image. This happens when the patient 

does not keep still, for example, in response to the contrast agent administration. 

Or the patient may feel some discomfort, especially because a MR scanner is very 

noisy and the acquisition can take a long time (usually more than 20 min with our 

imaging protocol).

■ Physiological  motion like respiration can produce blurring and ghost images. To 

avoid respiratory artefacts, the image acquisition can be done repetitively during 

several breath holds. But even in this case, the kidneys may slightly shift spatially 

or rotate from one image volume to another if  the diaphragm is not held in the 

same  position  for  each  acquisition.  Kidney  motion  is  a  major  problem  if  the 

perfusion sequence needs to be tracked over time for renogram or segmentation 

methods  like  ours.  For  non  cooperative  patients,  especially  children  under  10 

years old, sedation is required during the image acquisition.

■ Motion  of  blood  containing  contrast  agent  causes  ghost  artefacts  which  are 

equally separated (Figure 17).

■ Differential mixing of concentrated and less concentrated contrast and unopacified 

urine in the renal pelvis in the early phase of contrast  excretion from the renal 

medulla causes streaks that appear to come out of the renal pelvis (Figure 18).

It is especially important to avoid kidney motion in DCE-MRU. Indeed, all clinical MRU 

examinations  require  an accurate  positioning  of  distinct  VOIs  over  the  different  renal 

compartments  to  generate  a  reliable  renogram;  but  it  cannot  be simply  done by just 

copying the VOIs over all the image volumes of the sequence because kidneys may slide 

or rotate from one image volume to another due to unavoidable patient motion during the 

image acquisition (Figure 19). Therefore, a registration procedure is often a requirement 

to correct for complicated 3-D motion of the kidneys and align them over the sequence.

Registration is even more necessary for our segmentation techniques: if the data sets 

were not corrected against kidney motion, it would not be possible to track correctly the 

renal signal intensity over the perfusion sequence and thus, our segmentation techniques, 

based on the differences in kinetics of contrast uptakes between different physiological 
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tissues, would fail. So, the accuracy of our kidney segmentation techniques will strongly 

depend on the quality of the prior registration.

Registration is not the purpose of this project and thus, our segmentation techniques 

will only be tested on data sets which could reasonably be corrected against translation 

via a method based on cross correlation.
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 Figure 17: Ghost image of the aorta

– The ghost image is arrowed.
– Data set 040902pa1, slice 14, t=3.8 min.

 Figure 18: Visible streaks appear to come out of both renal pelvis

– Data set 040831cpa1, slice 9, t=29.4 min.
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 Figure 19: Kidney motion in DCE-MRU

– A region of interest is placed manually over the right kidney, on slice 8, at t=7.7min.
– The  same  region  of  interest  is  copied  on  the  same  slice  8  over  the  perfusion 

sequence (t=9.5min, t=23.4min and t=24.4min).
– The sequence was acquired during multiple breath holds. But clearly, because the 

right kidney shifts and deforms between acquisitions, unwanted areas of surrounding 
tissues like liver are included and will contribute to the region of interest if a renogram  
is generated.

– Data set 040831cpa1, slice 8.

t=7.7 min

t=24.4 mint=23.4 min

t=9.5 min
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2.4.3 Partial volume artefacts

Partial  volume artefacts  occur for  voxels which contain a mixture of  multiple tissue 

types. The mixed voxels have then a signal that is a weighted sum of the signals from the 

multiple tissue types. It happens especially at tissue boundaries if the spatial resolution is 

insufficient  (even though a slice contains 256×256=65536 voxels),  resulting in blurring 

and ambiguities in those regions.

Segmentation  algorithms  can  take  into  account  those  uncertainties  by  allowing 

different tissue types to overlap (see our proposed segmentation methods in section 4.).

2.5 Scanning protocol

All the 20 patients were children. A 3-D Fast Spoiled Gradient Recalled sequence with 

a flip angle  α=15°, TR=6.2 msec and TE=2.8 msec was performed. The reconstructed 

slice thickness was approximately 5 mm and the field of view (FOV) was 300mm×150mm. 

The  acquisition  matrix  was  256×128 giving  300/256,  that  is  approximately 

1.2mm×1.2mm×5mm voxels.

The 3-D acquisition scans were repeated at an interval of approximately 16 sec for the 

first 5-6 min and subsequently, they were repeated at 1 min intervals for about 20 min. 

Several pre-contrast  acquisitions were usually performed and the amount of Gd-DTPA 

that was intravenously injected was 0.1 mmol/kg of subject weight (volume of 2mL/10kg).

The gradient echo sequence is favoured over the spin echo sequence because of its 

shorter scanning times. Thus, artefacts due to patient motions can be reduced and 3-D 

acquisitions are made more practical. Moreover, 3-D acquisitions can be obtained with a 

single breath hold and there is thinner slice thickness with no interslice gap.

Spatially varying T2*-weighting is reduced by employing a spoiling process to eliminate 

after each echo the residual transverse magnetization.

Faster scans and better temporal resolution would be possible if a single slice only was 

acquired. The whole 3-D volume of the abdomen was wanted. Moreover, nowadays, with 

current technology, a 3-D volume could be acquired in as little as 4-5 sec.

A brief description of our 20 patient MR data sets are given in Appendix.
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3 Related works in kidney segmentation

Previous kidney segmentation techniques can be classified in two groups, depending 

on whether they are based on spatial information or temporal information:

■ In  the  spatial  approach,  segmentations  are  performed  on  one  image  volume 

chosen  at  one  time  point,  usually  the  one  when  the  cortico-medullary 

differentiation is optimal, that is during the vascular phase. 

■ In the  temporal approach, segmentations differentiate tissues according to their 

contrast  agent  uptake  over  time  by  considering  the  intensity  time  course 

associated to the voxels.

3.1 Methods based on spatial information

3.1.1 Methods based on deformable models

Tsagaan et al. [48] introduces a priori knowledge of the kidney shape to segment 3-D 

volumes of the kidneys in 33 CT images: information as average and statistical variation 

of  the  kidney's  shape  is  derived  from  a  training  set  and  incorporated  as  an  energy 

function  into  a  deformable  model  represented  by  Non-Uniform  Rational  B-Spines 

(NURBS) surface. The size and the location of the model in the CT images is initialized 

automatically, then the model is deformed to match the kidney target by minimizing the 

energy function and finally,  the renal hilum is extracted in a post-processing stage by 

region-growing. 

Rao et al. [60] exploits a similar idea using deformable shape models called m-reps to 

automatically segment 3-D kidneys in 12 CT images. M-rep models are obtained by using 

a  set  of  about  50  training  images  where  kidneys  are  manually  segmented.  After  the 

kidney m-rep model is first interactively initialized over the target kidney in the CT images, 

an automatic and iterative procedure, driven by an objective function, positions it closer to 

the target via a global similarity transformation and changes its shape to match the target 

based on principal geodesic analysis until no changes are observed.

However,  deformable  model  approaches that  use a priori  information  to match the 

model against a target object usually achieve sophisticated segmentation results provided 

that  the target  object  has  a  predictable  shape.  This  is  the  case for  normal  anatomic 

structures which can thus be represented by a typical shape and serves as a model (for 
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example,  the  m-rep  model  in  [60] is  merely  a  mean  shape).  But  it  is  believed  that 

deformable models are not the right approach for kidney segmentation in MRU because 

the target organ can have very various shapes, especially if it is malfunctioning, and thus 

reliable shape information cannot be incorporated. Moreover, the authors in [48] also note 

that  their  segmentation  method  fails  if  the  target  kidney  shape  is  too  deformed  by 

surrounding organs such as the liver or the spleen.

3.1.2 Methods based on the use of contrast agent

 Nuclear scintigraphy  

Tomaru et al. [27] is a semi-automated method based on two thresholds to assign a 

renal  region  of  interest  (ROI)  in  99mTc-MAG3  (Technetium  Mercaptoacetyltriglycine) 

renography.  The operator  is  required  to  click  on the  centre  of  the  kidney.  Then,  the 

maximal  renal  count  inside  a  small  rectangular  area  centred  on  the  clicked  pixel  is 

calculated.  The pixels,  inside a larger  area centred again on the clicked pixel,  whose 

count is greater than 60% of the maximal count are highlighted to form areas. The only 

area that includes the clicked pixel is disconnected from the others and is called the renal 

central area. Finally, pixels that are adjacent to the renal central area and whose count is 

greater  than 30% of  the maximal renal count  are chosen to form the renal peripheral 

area. The renal central area and the peripheral area constitute the renal ROI. The authors 

show that  their  method  detects  renal  contour  well  and  calculates  reproducible  renal 

uptake of 99mTc-MAG3.

 Dynamic Contrast Enhanced-MRI  

Several  approaches in DCE-MRI take the advantage of  the perfusion sequence by 

segmenting the kidneys at a time point when they are especially enhanced by the contrast 

agent.

De Priester  et  al. [39] proposes a semi-automated method on dynamic  MR image 

series of renal transplant to segment the kidney on 2-D slices and obtain MR renographs 

of  the cortex and medulla by placing two ROIs that overlay the peripheral and central 

renal parenchyma. The process first involves subtraction of the precontrast images from 

the early-enhanced images, thresholding to yield a binary image in which there are only 

pixels  whose  signals  enhance,  removing  of  small  objects  to  keep  a  single  area  that 

corresponds to the renal parenchyma, morphological closing and erosion to obtain both 

the  renal  parenchyma  and  the  hilar  structures.  Then,  two  bands  are  automatically 
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generated: a first  peripheral  band overlaying the renal cortex and hilum and a second 

central band composed of cortical tissue, medullary tissue and hilar structures. Finally, an 

operator delineates the non-hilar area to define, from the two previous bands, a peripheral 

ROI and a central  ROI which are copied to all  the time points of  the dynamic series. 

Cortical  signal curves can be obtained from the peripheral  ROI while medullary signal 

curves can be computed by a weighted subtraction of the mixed cortico-medullary signal 

of the central ROI from the cortical signal. However, this method still needs further studies 

to extract 3-D volumetric native kidneys.

In a study by Coulam et al. [43], an operator first traces manually the kidney perimeter 

on a few two-dimensional DCE-MR slices acquired during cortical enhancement phase 

and  nephrographic  enhancement  phase.  Subsequently,  an  interpolation  between  the 

traced  slices  is  computed  to  obtain  automatically  a  cortical  phase  volume  and  a 

nephrographic phase volume of the kidneys. Finally, a lower signal intensity threshold is 

selected interactively to isolate, on the one hand, the renal cortex from the cortical phase 

volume and, on the other hand, the parenchyma from the nephrographic phase volume. 

The  medulla  could  also  be  segmented  by  just  subtracting  the  cortex  from  the 

parenchyma. This approach was performed on eight anaesthetized pigs.

Koh et al. [65] present a method that uses the morphological 3-D h-maxima transform 

to segment kidneys on 5 DCE-MRI studies.  Rectangular  masks are first  generated to 

locate the kidney regions wherein a Canny edge detector is subsequently performed over 

the slices to capture the shape of the kidneys. The result is incorporated into the output of 

the 3-D h-maxima transform as a spatial  constraint  to minimize leakage.  The authors 

show that their approach extracts the kidney cortex without the unwanted areas of the 

surrounding tissues. However, their method depends heavily on the generated constraint: 

there are cases when a kidney is mistaken by a surrounding organ like the spleen for 

example or when the Canny edge detector does not perform well. Finally, few remarks 

must be made about their work:

■ Their  proposed  segmentation  method was processed  on a  limited  selection  of 

studies  where  the  3-D  h-maxima  transform,  assisted  by  manual  cropping  as 

required, could yield relatively good results.

■ 3-D h-maxima transform alone can work reliably with little operator intervention in 

kidneys of normal function.

■ 3-D h-maxima transform and the Canny edge detector are not sufficiently robust in 

the data sets which have been selected for this work.
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Unfortunately, all those previous described methods need the operator interaction ([39] 

[43]) or are dependent on parameters whose values can be quite subjective (appropriate 

threshold  values  are  needed  for  [27] [39] [43],  and  appropriate  values  for  the  edge 

detector and the 3-D h-maxima transform are needed for [65]). Furthermore, they all give 

limited precision in differentiating structures (like right  kidney from liver for  [27], cortex 

from medulla for  [43]) if the contrast is insufficient or if the signal-to-noise ratio is poor. 

Especially, a poorly functioning kidney often yields a suboptimal contrast between renal 

cortex and medulla even during the vascular phase. 

3.2 Methods based on temporal information

While  many  existing  spatial  segmentation  approaches  can  be  applied,  the  use  of 

temporal information is, to our knowledge, still limited.

Boykov  et  al. [38] proposes  a  semi-automated  method  that  introduces  a  temporal 

Markov Model into a graph cut algorithm to segment dynamic MRI volumes. The nodes of 

the graph correspond to the voxels and the edges correspond to the relationship between 

the neighbouring voxels. The aim is to find the cut in the graph that generates an optimal 

segmentation  imposed  by  the  edge  weight  values  determined  from  hard  and  soft 

constraints:

■ Hard  constraints  are  provided  by  an  operator  who  marks  certain  voxels  that 

absolutely have to be part of the volume of interest and certain pixels that have to 

be part of the background.

■ Soft  constraints are defined as a cost function that incorporates both boundary 

and region information.

Then, the algorithm computes, via a min-cut/max-flow algorithm, the cut in the graph 

which corresponds to the global  minimum of  the cost  function among all  the possible 

segmentations that satisfy the hard constraints imposed by the user. That is, the cut gives 

the extraction of the volume of interest from the background. Their method is applied to 

segment a registered perfusion sequence of one single kidney volume in three iterations: 

the entire kidney is first  extracted from the background, then the medulla is separated 

from the cortex and the collecting system, and finally, the collecting system is cut from the 

cortex.

Sun  et al. [47] minimizes an energy function that takes into account both the spatial 

correlation of  the pixels in the same image and their  temporal  correlation through the 
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image sequence to segment in 2-D kidney cortex of 10 normal and 10 transplanted rats in 

MRI sequences enhanced by USPIO (Ultrasmall  Superparamagnetic  Iron Oxide).  It  is 

assumed that  the image sequence is formed of  an inner  region and an outer  region 

whose dynamic profiles are different from each other. The energy function measures the 

dissimilarity between the dynamic  signals  and the average dynamic  signal  in  each of 

those two regions and is minimized by a level set-based approach or a region growing-

based approach.

3.3 Summary

The flaw of all intensity-based segmentation methods is their over-sensitivity to noise 

and artefacts. They are best suited for normally functioning tissues or images where the 

voxel intensity and edge information are not degraded. 

The evaluation of the signal intensities provides useful physiological information that 

can help achieve better differentiation of organs in MRU. But previous methods based on 

temporal information still need the intervention of an operator (hard constraints from the 

operator  is required for  [38])  or  do not  consider  all  three spatial  dimensions  ([47])  to 

extract kidney volumes. Furthermore, they still need a clinical validation.
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4 Proposed methods for kidney segmentation

4.1 Definitions and notations

4.1.1 Data set

A volumetric data set of N s  slices of N i⋅N j  pixels is represented in a vector form of 

N =N i⋅N j⋅N s  components called voxels.

The dynamic volumetric data set D  of T  time points, referenced as four dimensional 

(t + 3-D or 4-D) data set, is represented in a matrix form of  N  rows and  T  columns. 

Each row of the matrix D  represents the time intensity curve (TIC) of a given voxel and 

each column represents the intensity of all the voxels at a given time point. 

A TIC associated to a voxel is also called a quadrixel and the intensity of all the voxels 

at a given time point forms a volume image. The 4-D dataset  D  can then be entirely 

defined by the N  quadrixels d n .  of T  time points or by T  volume images of N  voxels:

D=[ d 11  d 1T

⋮ ⋱ ⋮
dN1  dNT

]=[d1 . '
⋮
dN . ']=[d . 1  d . T ]  (4.1.1)

∀ n=1N , d n .=[d n1 d n2  d nT ]'  is the n th  quadrixel (4.1.2)

∀ t=1T , d . t=[ d 1 t

d 2 t


dN t
]  is the volume image at time point t (4.1.3)

 Similarly, a trixel can also be defined as the TIC associated to a pixel for a dynamic 

planar data set referenced as a three dimensional data set (t + 2-D).

The dynamic volumetric data set D  is supposed to be perfectly registered over time.
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4.1.2 Time enhancement curve (TEC)

While the time-intensity curve (TIC) is the direct measured raw signal intensities, the 

time-enhancement curve (TEC) is defined and can be regarded as a normalized TIC or a 

relative signal enhancement. For a given voxel n , it is expressed as:

en=[en1 en2  enT ]  (4.1.4)

□ ent=
d nt−d n

d n
 is the TEC value at time point t , with d n≠0 .

□ d n=
1
∑t=1

t=

d nt  is the average pre-contrast TIC defined by the first    time 

points.

TIC retains information  about  the amplitude of  the measured raw signal  intensities 

while TEC emphasizes the relative enhancement of the signal.

All our proposed methods based on clustering analysis and factor analysis consider 

the TIC associated to the voxels, also called quadrixels. However, the use of TEC will 

later  be  justified  in  clustering  analysis  to  remove  the  background  composed  of  non 

enhanced voxels.
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4.2 Preliminary concepts for our approaches

4.2.1 Cluster analysis

 Motivations for a cluster analysis approach  

In a cluster analysis approach, a given quadrixel d n .  of  T  components is viewed as 

one data point in an Euclidean space of T  dimensions that shall be called data space or 

feature space.

If  all  the  N  quadrixels  of  a  study  D  were  mapped  into  the  data  space  of  T  

dimensions, high density areas of data points, called clusters, would be found, reflecting 

different groups of quadrixels having similar TIC.

Thus,  kidney quadrixels,  which share the same temporal  characteristics  of  contrast 

agent uptake, would plot inside a certain cluster  c k *  while other tissue quadrixels would 

plot inside other different clusters c k , k≠k * . The aim of this segmentation approach can 

then  be considered  as  a  partition  of  all  the  quadrixels  into  K  different  physiological 

regions  represented  by  K  clusters  when  mapped  into  a  T -dimensional  space.  The 

clustering process is based on a criterion of similarities between quadrixels: data points in 

a same cluster c k *  must be more similar to each other than to those in c k , k≠k * .

 K-Means Clustering  

For  illustration  purposes,  the  most  commonly  used  clustering  algorithm,  called  K-

means clustering [35], is considered to find in a 4-D data set D , K  physiological regions 

of similar quadrixels d n . .

K-means clustering is an iterative process that  minimizes the sum-of-squared error 

criterion:

E W =∑
k=1

K

∑
d n∈c k

∥d n .−w k∥
2 (4.2.1)

■ K  is the number of clusters and represents the number of different physiological 

regions that must be segmented.
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■ ck  is the  k th  cluster and represents the segmentation of a given physiological 

region.

■ w k  is  the centre of  cluster  ck  and is sometimes called prototypes.  It  can be 

calculated by averaging all the TIC that belong to region ck .

■ W=[w 1  w K ]  are the K  cluster centres or prototypes.

From (4.2.1), the centres w k  of clusters  c k ,  k=1K , can be interpreted as being 

the best representation of the data set D  in the sense that it minimizes: 

∑
d n∈ｃk

∥d n .−w k∥
2

 (4.2.2)

Hence, (4.2.1) measures the total square error in representing the given data set  D  

by the K  cluster centres W=[w 1  w K ] .

That is, the cluster centres W=[w 1  w K ]  are the typical and best representatives 

TIC of each of the corresponding K  physiological regions.

However,  K-means  clustering  has  limitations  that  are  well-known.  It  has  a  strong 

tendency to form clusters of roughly equal size and is best suited for data sets that are 

essentially compact,  hyper-spherical in shape and well-separated from each other. But 

this is often not the case for our 4-D MRU studies because clusters are usually blurred 

and close to each other due to noise, different artefacts and partial overlaps that affect 

TIC.

 Proposed Clustering methods  

Three  other  clustering  methods  for  kidney  segmentation  in  4-D  MR  images  are 

proposed:

■ Kohonen Neural Network (KNN) which is also a hard clustering method in the 

sense that it assigns each data point to exactly one single cluster (Chapter 4.4).

■ Fuzzy K-means Clustering (FKM) which is a soft clustering version of K-means 

clustering  in  the  sense  that  it  incorporates  the  concept  of  fuzzy  membership 

functions of a data point to multiple clusters (Chapter 4.5).
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■ Expectation-Maximization Clustering (EM) which can also be considered as a 

soft  clustering  as  it  is  a  statistical  approach  that  assigns  each  data  point  to 

multiple clusters with a certain probability (Chapter 4.6).

4.2.2 Factor analysis

Factor analysis is a very different kind of approach. It aims at extracting the relevant 

signal from the noise and then summarizing it into a set of a reduced number of variables 

called factors.

Applied to medical image sequences, it incorporates further constraints to yield factors 

that can describe physiologically the dynamic and the spatial distribution of independent 

structures.  Indeed,  the  proposed  factor  analysis  of  medical  image  series  (FAMIS) 

expresses  TIC  as  a  linear  decomposition  of  a  limited  number  of  fundamental  factor 

curves  and  associated  factor  volumes  which  represent  respectively  the  temporal 

behaviour  and the spatial  distribution  of  the  contrast  agent  in  different  regions  of  the 

abdomen.

The details of  the proposed FAMIS with new constraints and similar works by other 

groups will be explained in Chapter 4.7.
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4.3 Preprocessing: background elimination

This stage consists  of  background elimination.  There are two types of  background 

which can be considered for elimination: 

■ The  background composed  of  voxels  that  do  not  enhance  over  the  image 

acquisition. Those voxels belong to tissues where the contrast agent uptake does 

not occur and thus are unlikely to be renal voxels. To eliminate this background, 

two strategies are possible:

□ A threshold on the TEC: each quadrixel d n .  of  the original  data set  D , 

n=1N ,  whose  mean  TEC value  over  time,  defined  as  1
T ∑t=1

T en t ,  is 

below a selected enhancement threshold  E0 ,  is excluded. This is the 

strategy chosen for our clustering analysis methods.

□ A  threshold on the TIC:  each quadrixel d n .  of  the original  data  set  D , 

n=1N ,  whose  mean  TIC  value  over  time,  defined  as  1
T ∑t=1

T d n t ,  is 

below a selected intensity threshold I0 , is excluded. This is the strategy 

chosen for our factor analysis method.

■ There is also a background composed of voxels that do enhance but are not of 

interest because they do not belong to renal tissues. This is especially the case for 

the abdominal aorta and the iliac arteries for example. Although the renal cortex 

enhancement phase persists beyond the initial arterial peak in the large arteries, 

this difference may not be enhanced enough with the temporal resolution used, 

and as a consequence, the cortex and some arteries, like the abdominal aorta and 

the iliac arteries, may exhibit TIC which will not be differentiated by the proposed 

segmentation approaches. The strategy that is adopted requires an operator to 

manually draw a region of interest (ROI) on a maximum intensity projection (MIP) 

derived  from  the  dynamic  sequence  to  exclude  those  tissues  that  may  be 

problematic. Among our 20 MR data sets, this option is used only once.

Let  D={d1 . ,d 2 . , ,dN .}  be  the  data  set  whose  background  is  removed  by  the 

preprocessing  stage and which  is  now comprising  of  only  NN  quadrixels  that  are 

submitted for further segmentation analysis.
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4.4 Kohonen Neural Network (KNN)

4.4.1 Introduction

A Kohonen Network is a self-organizing network of artificial neurons that learns the 

characteristics of the input data points in a competitive way and thus, is often known as a 

competitive network. Each output neuron stores a weight vector that can be viewed as the 

centre of a cluster in the input data space.

Wismuller et al. [67] extended the Kohonen Neural Network to a Self-Organizing Map 

to  discover  clusters  of  similar  temporal  behaviours  on  dynamic  cerebral  contrast-

enhanced perfusion MRI time-series.

4.4.2 Network architecture

It  is  a  single-layer  network  where  the  inputs  are  fully  connected  to  the  output 

(competitive) layer (Figure 20). The network is built with T  inputs and K  output neurons. 

To recall, T  is the number of time points and K  is the number of clusters.

The centre of cluster ck  is represented by a prototype w k=[wk 1 wk 2  wk T ] '  that 

is attached to each of the K  output neurons. The K  prototypes W=[w1 w2  wK ]  

can be also be interpreted as the weights  between the  T  inputs  and the  K  output 

neurons.

4.4.3 Training

 Description  

The training refers to finding the cluster centres W=[w1 w2  wK ]  such that the 

data  set  D={d1. ,d 2 . , ,dN .}  is  labelled  into  K  groups  representing  physiological 

regions of similar temporal behaviours.

During training, an input quadrixel d n .=[d n1 d n2  d nT ]'  is chosen randomly and 

presented one at a time to the network.

At  each presentation,  the euclidean distances  h k  between the input  quadrixel  and 

each of the K  weight vectors are computed: 
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h k=∥w k−d n .∥=w k−d n .' w k−d n .  with k=1K  (4.4.1)

The output neuron k *  whose weight vector w k *  is nearest to the input quadrixel d n .  

is  considered  as  the  winning  neuron and outputs  u k *=1  while  others  output  u k=0 , 

k≠k * : 

u k *={1 if h k *= argmin
k

h k

0 otherwise
 (4.4.2)

 The winning neuron updates its weight vector according to the learning rule: 

w k *
n e w=w k *

oldd n .−w k *
old  where ∈[0 , 1 ]  is the learning rate (4.4.3)

The characteristics of the data set D  is then learnt by matching every input quadrixel 

to its closest weight vector in the sense of euclidean distance and this process iterates 

over and over until a termination decided by the operator.
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 Figure 20: Kohonen Neural Network architecture
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 Kohonen learning   rule  

The network is trained from the input quadrixels chosen randomly one at a time.

Only the weights associated to the winning output neuron are updated. This is also 

known as a winner-take-all rule.

The Kohonen learning rule (4.4.3) can also be rewritten as 

w k *
n ew=1−w k *

oldd n  (4.4.4)

(4.4.4) states that the learning rule moves the nearest weight vector towards the input.

 Interpretation  

At each presentation,  the output  neurons compete among themselves and the one 

whose weight vector is closest to the input quadrixel is identified (4.4.1) (4.4.2) and wins 

the privilege to learn: its weight vector is updated so that it is pushed toward the input 

quadrixel (4.4.3). Intuitively, it means that the best matching weight vector is adjusted to 

become even more similar to the input quadrixel. Consequently, the same neuron is more 

likely to win the competition each time a similar quadrixel is presented, but is less likely to 

win if a very different quadrixel is presented. As a result, after training, each weight vector 

will be adjusted toward a cluster of similar quadrixels. That is, all quadrixels that form a 

given  cluster  will  always  excite  the  same  winning  neuron  that  will  output  1,  while 

outputting 0 for all other different clusters. Thus, the Kohonen neural network is trained to 

recognize and label similar input quadrixels into clusters.

This type of learning strategy is partly inspired from observed brain activities in the 

cerebral cortex.

4.4.4 Kohonen Neural Network algorithm

D={d 1 . ,d 2 . , ,d N . }  is the given unlabelled data set of quadrixels.

 Training process  

1. Fix the number of clusters K , the number of epochs em a x  and the learning rate 

∈[0,1 ] .
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2. Initialize the weights W=[w 1 w 2  w K ] .

3. For e=1 ,, em a x

○ For n=1 ,, N

□ Select randomly a quadrixel d n .  from input data set D .

□ Competition. Find  the  winning  neuron  indexed  by  k *d n . : 

k *d n .=argm in
k
∥d n .−w k∥ , k=1K .

□ Adaptation. Update the winner: w k *
n e w=w k *

oldd n .−w k *
old  (4.4.3).

□ next n

○ next e

The  number  of  epochs  em a x  is  the  number  of  times  the  entire  data  set  D  of 

quadrixels is presented to the neural network. A large number of epochs may improve the 

accuracy of the final weight vectors but will take more time. 

The learning rate    can be viewed as how strong the nearest  weight  vectors are 

pushed  toward  their  input  quadrixel.  A  small  learning  rate  may require  more  epochs 

during  training,  but  a  large  learning  rate  may never  converge.  The  value  can  range 

between 0 and 1. From (4.4.4), if =0 , then the weight vectors are never updated. But if 

=1 , then the weight vector w k *
n e w  is made equal to the input quadrixel d n . .

 Testing process  

Segmentation  is  achieved  by  assigning  voxels  characterised  by  quadrixels  d n .  to 

specific  physiological regions  c k
*  based on minimal distance criterion.  That is,  d n .  is 

assigned to cluster c k  for which the distance h k=∥w k−d n .∥ , k=1K , is minimal. This 

can be done automatically by a testing process:

1. Each quadrixel  d n .  is  presented once more to the network  which computes 

again the euclidean distances h k  (4.4.1) between d n .  and each of the final K  

weight vectors W  found at the end of the training process.
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2. A  winning  neuron  k *d n .  is  then  identified  and  outputs  u k *=1  (4.4.2)  to 

automatically  categorize  the  input  quadrixel  d n . :  d n .  can be considered  as 

belonging to the physiological region c k *  whose representative TIC is  given by 

the winning weight vector w k *=[w k *1 w k * 2  w k *T ]' .

4.4.5 Initialization problem and possible corrective actions

 Initialization problem  

If  an output neuron has its weight vector initialized relatively far way from any input 

quadrixel, it might never win a competition and thus, might never be updated even if the 

training is continued.

 Possible corrective actions  

■ Introduce cooperation between neurons:

□ During training, the weights of all losing neurons can also be updated, but at 

a smaller rate: 

w k *
n e w=w k *

old1 d n−w k *
old for  winning neuron k *

w k
n e w=w k

old2 d n−w k
old for all  losing neurons k≠k *

wi t h 1≫2

 (4.4.5)

(4.4.5) has the effect of slowly moving losing neuron weight vectors toward 

denser region of patterns. 

□ The  weights of  the losing neurons which are in the neighbourhood of  the 

winning neuron only can also be updated. This gives rise to the so-called 

Kohonen Self-Organizing Maps [32].

■ Introduce a bias learning rule:

A negative bias bk  is added to the euclidean distance (4.4.1) and updated at each 

iteration to help a neuron win more often. The value of the bias bk  depends on 

the frequency the corresponding neuron k  wins. The bias is smaller for frequently 

winning neurons and larger for rarely winning neuron. Thus, a neuron that rarely 

wins  has  a  large  bias  that  helps  push  its  weight  vector  to  a  cluster  of  input 

quadrixels. Then, the neuron can start to win more frequently and consequently, 

its bias can decrease to zero.
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In  this  thesis,  the  Kohonen Neural  Network  is  provided by the  neural  network 

toolbox 4.0 of MATLAB(R) 7.0, The MathWorks,  Inc. which introduces this bias 

learning rule into its algorithm to overcome the weight initialization problem.

4.4.6 Termination problem

The main drawback of Kohonen Neural Network comes from the termination strategy. 

Indeed,  the  termination  is  artificially  forced  by  the  operator  who  fixes  the  number  of 

epochs. 

The learning rate e   could start with a large value and then be gradually reduced 

over the epochs to zero: this would force the algorithm to stop automatically when the 

weight vectors do not change very much any more. But yet,  this learning strategy still 

does not guarantee a convergence of the weight vectors to any sensible model.

This is not the case for other clustering algorithms like K-means clustering which is 

based on an optimizing model and tries to minimize an objective function (4.2.1) reflecting 

the total squared error incurred in representing the data set  D  by the cluster centres 

W=[w 1 w 2  w K ] .

However, the great advantage of Kohonen Neural Network over K-means clustering is 

its ability to find clusters of heterogeneous shape and eventually, if the number of clusters 

is chosen properly, any group of similar TIC can be clustered.
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4.5 Fuzzy K-Means Clustering (FKM)

4.5.1 Introduction

Hard clustering like Kohonen Neural Network assumes that the boundaries between 

clusters are well defined. So, each  quadrixel,  represented by a data point in the data 

space,  is  assigned  to  only  one  single  cluster  that  corresponds  to  only  one  single 

physiological region. But due to noise and artefacts, like partial volume effect and breath 

motion on DCE-MR images,  a more nuanced model to describe the uncertainty for  a 

given quadrixel to belong to one single physiological region is desirable for clustering.

In this context, the so-called Fuzzy K-means clustering originally introduced by Bezdek 

[3] may be a more suitable clustering technique because it is assumed that each data 

point can belong to multiple clusters, but with varying degrees specified by membership 

functions.

Moreover, contrary to Kohonen neural network, Fuzzy K-means clustering is based on 

an optimizing  model  that  minimizes a cost  function  by iteratively updating  the cluster 

centres and the membership functions for each data point.

Wismuller  et  al. [67] performs  a  Fuzzy K-means  clustering  to  discover  clusters  of 

similar temporal behaviours on dynamic cerebral contrast-enhanced perfusion MRI time-

series. Chuang  et al. [30] combines a Kohonen Neural Network and a Fuzzy K-means 

clustering to classify TIC of  the brain according to temporal similarity in functional MR 

images. They especially show that the cascade clustering can overcome the difficulty to 

find activations occupying small areas of the cortex.

4.5.2 Cost Function minimization

Fuzzy K-means clustering seeks a minimum of this following cost function with respect 

to the membership functions U  and the prototypes W :

E m U ,W =∑
n=1

N

∑
k=1

K

u k n
m ∥d n .−w k∥

2  (4.5.1)

■ U=[u 1 1  u 1 N

⋮ ⋱ ⋮
u K1  u KN

]  is a fuzzy partition of the data set.
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■ ukn  is  the membership  function  of  d n .  to  cluster  ck .  A  larger  membership 

function ukn  indicates a higher confidence in the assignment of quadrixel  d n .  to 

cluster ck . It must satisfy the following two constraints:

0u k n1 , ∀ k =1K  and ∀n=1N (4.5.2)

∑
k=1

K

ukn=1 , ∀n=1N (4.5.3)

■ W=[w 1 w 2  w K ]  are the K  prototypes of dimension T .

■ m 1  is a weighting exponent on each fuzzy membership that adjusts the degree 

of fuzziness between the different clusters. If  m=0 , then the objective function 

becomes simply the sum-of-squared errors similar to (4.2.1) and each quadrixel is 

assigned to only one cluster.

The objective function (4.5.1) to be minimized can be intuitively interpreted as the sum 

of  the  squared  distances  in  the  euclidean  space  between  all  the  quadrixels  and  the 

cluster centres weighted by the corresponding membership functions.

4.5.3 Fuzzy K-Means algorithm

Given the unlabelled data set D={d 1 . ,d 2 . , ,d N . } , the fuzzy clustering is carried out 

through an iterative process to optimize E m U ,W   (4.5.1) and obtain a fuzzy partition 

U  of D :

1. Fix the  number  of  clusters  K ,  the  weighting  coefficient  m 1  and  the 

membership functions U  such that (4.5.2) and (4.5.3) hold.

2. Update the prototypes W=[w 1 w 2  w K ]  for all clusters c k , k=1K :

w k=
∑
n=1

N

ukn
m d n

∑
n=1

N

ukn
m

 (4.5.4)

3. Update the membership functions u k n  for all quadrixels d n . , n=1N  and for 

all clusters c k , k=1K : 
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u k n=
1

∑
l=1

K ∥d n .−w k∥
∥d n .−w l∥

2
m −1  (4.5.5)

4. if the change between two consecutive prototypes W  or membership functions 

U  is less than a given threshold, then stop the procedure. Else return to 2 .

Intuitively,  a given membership function (4.5.5) measures the similarity between the 

corresponding quadrixel and cluster centre: the closer they are in the sense of Euclidean 

distance, the higher the membership function.

Clearly,  the Hard K-means clustering is only a special case where the membership 

functions are given by

uk*n={1 if k *= argmin
k
∥d n .−w k∥

0 otherwise
(4.5.6)

Fuzzy K-means clustering is better than the Hard K-means clustering at avoiding local 

minima but can still converge to local minima of the cost function given by (4.5.1).

The main advantage of Fuzzy K-means clustering is its ability to group quadrixels into 

multiple clusters with varying degrees of membership and thus, takes into account that 

boundaries have no sharp transitions because of noise, artefacts and overlaps that occur 

in MR studies.

This is particularly useful  for voxels which are hard to label automatically based on 

their TIC. In this case, assigning the quadrixel to the cluster with the highest membership 

value may not always be the best approach. Instead, displaying the membership functions 

as K  volumes that reflect the degree of confidence for each quadrixel to belong to any of 

the  K  clusters  produces  a  fuzzy map that  retains  more information  about  uncertain 

quadrixels. Then, an operator can select a reasonable tissue membership value based on 

visual inspection to threshold the fuzzy map and thus obtain a hard clustering of the data 

set.

62



 4   Proposed methods for kidney segmentation

4.6 Expectation-Maximization Clustering (EM)

4.6.1 Introduction

Expectation-Maximization clustering (EM) [1] is a statistical approach to group similar 

patterns of data.

Even  though  quadrixels  of  a  given  physiological  and  anatomical  region  are 

characterised by a common pattern of TIC, they do not share the same exact values over 

time. That is, when mapped into a high-dimensional space, they do not plot into a same 

single point but rather into multiple distinct points that can be grouped into a cluster c k . 

The shape  and  the  size  of  cluster  c k  reflect  the  distribution  of  the  quadrixel  values 

around a certain mean w k  which is located at the centre of the cluster.

While  Hard  K-means  clustering,  Kohonen  neural  network  and  Fuzzy  K-means 

clustering all try to characterise a cluster  c k  with a mean value w k  only, EM clustering 

defines it  with a probability density function that must be learnt in an iterative process 

from the data set.

Thus,  to express the variability  of  the quadrixel  values in probabilistic  terms,  d  is 

considered to be a continuous random variable whose distribution p d ∣c k   depends on 

the type of physiological and anatomical region c k  it belongs to.

When all the relevant probability values are learnt from EM, hard clustering can be 

performed subsequently by a maximum a posteriori classifier.

4.6.2 The Gaussian mixture model

In a Gaussian mixture model, it is assumed that the quadrixels belonging to each of 

the  K  physiological  regions  are  distributed  according  to  respectively  K  Gaussian 

distributions  p d ∣c k   of parameters  {w k ,k } ,  k=1K , where  w k  is the mean and 

k  the covariance matrix: 

p d ∣c k =
1

2
T
2 ∣k∣

e x p−1
2
d −w k  ' k

−1 d −w k  , k=1K (4.6.1)
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Thus, a Gaussian mixture model refines the model implied by previous algorithms by 

parametrizing clusters with true probability density functions p d ∣c k   described not only 

by means w k  but also associated covariance matrices k , k=1K .

Consequently,  the  probability  density  function  of  the  whole  data  set  is  given  by  a 

mixture density:

p d =∑
k=1

K

P ck p d∣ck  (4.6.2)

with

0P ck 1  and ∑
k=1

K

P ck =1 (4.6.3)

The previous equations can be interpreted as follows:

■ (4.6.1) is a Gaussian distribution whose parameters are {w k ,k }  and describes 

the  variability  of  quadrixels  values  in  the  physiological  region  ck .  It  can  be 

regarded as a “sub-model”.

■ (4.6.2) states that the density of the data set d  can be fitted by a “super-model” 

which  is  a  mixture  of  K  individual  Gaussian  distributions  p d∣ck   (4.6.1) 

weighted by respective coefficients Pck   (4.6.3).

■ (4.6.3) is a mixture weight  that stands for  the relative importance of  each sub-

model in the super-model.

Intuitively, combining several sub-models to produce a super-model is often useful to 

best fit the density of the data set, especially in case of MRU studies: a given quadrixel 

may be a mixture of  multiple TIC and thus,  may not  be  sufficiently explained by the 

Gaussian distribution of one single distinct cluster when mapped into the data space.

Moreover,  it  is  commonly  accepted  that  any  continuous  data  density  can  be 

approximated  relatively  well  by  Gaussian  mixture  models  with  suitable  parameters 

{w k ,k } , mixture weights Pck   and number of sub-models K .

So, given unlabelled data set D={d1. ,d 2 . , ,dN .}  and the number of clusters K , the 

aim  of  Expectation-Maximization  algorithm  is  to  estimate  the  parameters  { w k , k } , 
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k=1K , of the  K  Gaussian distributed clusters and their respective weights  Pck   

that best describe the density of the data set D  in the T  dimensional space.

Put it in another way, it can be considered that all the data points d n . , n=1N , were 

generated from the probability density function given by (4.6.2) as follows:

■ A cluster c k  is randomly chosen with probability Pck  .

■ A  data  point d n .  is  generated  from  the  corresponding  Gaussian  distribution 

p d∣ck   (4.6.1).

■ The process is repeated over for the N  data points.

The aim of EM can then be interpreted as finding the parameters w k , k  and Pck  , 

k=1K ,  that  are  most  likely  to  generate  the  observed  data  points 

D={d1 . ,d 2 . , ,dN .} .

4.6.3 Maximum-Likelihood estimation

 Likelihood  

It is assumed that the unlabelled quadrixels d n . , n=1N , are drawn independently 

from the Gaussian mixture density specified by (4.6.2): 

p d n .=∑
k=1

K

pd n .∣ck Pck  (4.6.4)

So, the resulting density of the entire data set D={d1 . ,d 2 . , ,dN .} , called likelihood, 

can be written as:

p D=∏
n=1

N

pd n . (4.6.5)

The strategy employed by EM is to find the Gaussian mixture that best fits the data set 

D  by estimating  the parameters  k={ wk , k , P ck } ,  k=1K ,  that  maximize the 

likelihood (4.6.5). Thus, k={ wk , k , P ck } , k=1K , are called maximum-likelihood 

estimates.

Usually, the log-likelihood L  of the entire data set is rather considered:
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L=log p D=log∏
n=1

N

p d n .=∑
n=1

N

log pd n .=∑
n=1

N

log{∑k=1

K

P ck p d n .∣ck } (4.6.6)

 Posterior probability or responsibility  

L  must  be  maximized  with  respect  to  k={wk ,k , Pck }  and  subject  to  the 

constraints given by (4.6.3).

For  that,  the  posterior  probability  Pck∣d n .  is  introduced  according  to  the  Bayes 

formula:

Pck∣d n .=
pdn .∣ck Pck 

p d n. 
(4.6.7)

In the light of (4.6.7),  Pck  ,  p d n .∣ck ,  Pck∣d n .  and  p d n . can be reinterpreted 

as follow:

■ P c k   is  the prior  probability  that  quadrixel  d n .  belongs  to  region  c k .  This 

probability reflects the prior knowledge of how likely d n .  belongs to ck  before it is 

observed

■ p d n .∣c k   is  a  class-conditional  probability  density  function  that  shows  the 

probability  density  of  observing  a  particular  quadrixel  value  d n .  given  that  it 

belongs to region c k

■ Pck∣d n .  is the posterior probability that d n .  is assigned to region ck  given that 

the quadrixel value is observed to be d n . . It shall be called responsibility of the 

cluster ck  for data point d n . .

■ p d n .  is a scale factor that guarantees ∑k=1
K P c k∣d n .=1

The Bayes formula (4.6.7) merely states that the observation of the value of quadrixel 

d n .  converts the prior probability P c k   to the posterior probability P c k∣d n . .

The  responsibility  P c k∣d n .  plays  a  major  role  since  it  gives  the  probability 

membership of quadrixel d n .  to a physiological region c k . If a hard segmentation has to 

be  made,  the  maximum  a  posteriori  (MAP)  classifier  can  be  used:  quadrixel  d n .  is 

assigned to the cluster c k *  with the highest responsibility.
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 Maximum-Likelihood estimates  

Moreover,  responsibility  P c k∣d n .  is  also  involved  in  computing  the  maximum-

likelihood estimates which maximize L  and which are given, without demonstrations, as 

follows:

P c k =
1
N ∑n=1

N

P c k∣d n .  (4.6.8)

w k=
∑
n=1

N

P c k∣d n . d n .

∑
n=1

N

P c k∣d n . 
 (4.6.9)

k=
∑
n=1

N

P c k∣d n d n− w k d n− w k  '

∑
n=1

N

P c k∣d n 
 (4.6.10)

The maximum-likelihood estimates have a very intuitive interpretation:

■ (4.6.8)  states that  the  relative  importance  of  the  sub-model  cluster  c k  in  the 

mixture super-model is given by the average posterior probability that each of the 

data points  d n . ,  n=1N ,  belongs to cluster  c k .  That is, the more likely the 

data points to belong to cluster  c k , the larger cluster weight  P c k   to describe 

the super-model.

■ (4.6.9) states that the mean w k  of cluster c k  is given by the average data points 

d n . , n=1N , weighted by the posterior probability that each of the data points 

belongs to cluster c k .

■ (4.6.10)  states  that  the  covariance  matrix  k  of  cluster  c k  is  given  by  the 

variance  of  the  data  points  d n . ,  n=1N ,  with  respect  to  the  mean  w k , 

weighted by the posterior probability that each of the data points belongs to cluster 

c k .

4.6.4 EM algorithm

Unfortunately, (4.6.8), (4.6.9) and (4.6.10) do not give explicitly  k={ wk , k , P ck } , 

k=1K , but rather a coupled set of non-linear simultaneous equations. So, given the 
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unlabelled data set D={d1 . ,d 2 . , ,d N .} , the most obvious approach to solve for k  is 

an iterative procedure that involves applying alternatively a E-step and a M-step:

1. Fix the  number of  clusters  K ,  make  an  initial  guess  for  the  parameters 

{ w k , k }  of the K  Gaussian distributions and for the mixture weights P c k  , 

k=1K .

2. E-step: compute the responsibility P c k∣d n .  of each cluster c k , k=1K , for 

each data point d n . , n=1N  given by

○ P c k∣d n .=
p d n .∣c k  P c k 
p d n . 

 (refer to 4.6.7)

○
p d n .∣c k =

1

2 
T
2 ∣ k∣

e x p−1
2
d n .− w k  ' k

−1 d n .− w k   (refer to 4.6.1)

○ p d n .=∑
k=1

K

p d n .∣c k  P c k   (refer to 4.6.4)

3. M-step:  Re-estimate  the  parameters  { w k , k }  of  the  K  Gaussian 

distributions and the mixture weights P c k  ,  k=1K , based on an estimate 

of the responsibilities P c k∣d n .  and data points d n . :

○ P c k =
1
N ∑n=1

N
P c k∣d n .  (refer to 4.6.8)

○ w k=
∑
n=1

N
P c k∣d n . d n .

∑
n=1

N
P c k∣d n . 

 (refer to 4.6.9)

○ k=
∑
n=1

N
P c k∣d n d n− w k d n− w k  '

∑
n=1

N
P c k∣d n 

 (refer to 4.6.10)

4. If the change between two consecutive log-likelihoods L  (4.6.6) is less than a 

given threshold, then stop the procedure. Else return to 2 .

An interesting  property  of  EM is  that  the  log-likelihood  can only increase over  the 

iterations.  Yet,  there  is  no guarantee the algorithm necessarily  converges to a global 
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maximum of the log-likelihood. So, the results are highly dependant on the initialization of 

the parameters { w k , k }  and the mixture weights P c k  , k=1K .

A standard approach is to preliminary cluster the data points  D  by a hard K-means 

clustering to get good starting values:

■ the means w k  are initialized at the centre of the clusters c k

■ the covariance matrices k  are set equal to 1
N k−1 ∑d n∈c k

d n−w k d n−w k  '  where 

N k  is the number of data points d n .  that belong to cluster c k

■ the mixture weights P c k   are chosen equal to N k

N

4.6.5 Dimensionality reduction

EM clustering  is  computationally  intensive,  especially  because  it  involves  at  each 

iteration the computation of the inverse and the determinant of  K  covariance matrices 

k  (4.6.1) in a T -dimensional space where 24T44  in the case of our MRU studies.

The EM clustering can be faster and use less memory if an appropriate subspace of 

dimension  T 2≤T  is determined by a principal component analysis (PCA) or Karhunen-

Loève transform [35]:

D 2=D A  (4.6.11)

■ D  is the N xT   data set matrix

■ D2  is the N×T 2  derived data set matrix

■ A  is  the T ×T 2   linear transformation matrix whose columns are the first  T 2  

eigenvectors corresponding to the first  T 2  largest eigenvalues of the covariance 

matrix 1
N −1 D ' D  of the data set D .

A  is  known as the similarity  transform.  It  retains  from the data set  D ,  only  the 

T 2T  transformed features which are uncorrelated with each other and have the largest 

variances.

It can be shown that D 2  optimally approximates in the least squares sense the data 

set D  in a lower dimensional sub-space T 2T  and thus, EM would rather cluster D 2  
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instead of the original data set D  to accelerate the algorithm without any significant loss 

of variance.

The EM algorithm is implemented to include a PCA whose T 2  value is determined by 

retaining 95% of the variance.

However,  it  shall  be noted that  the dimensionality reduction  by PCA is suitable for 

faithful representation of the data set, not for discrimination of patterns. Indeed, emphasis 

is placed on features with greatest variability rather than the ones that can separate the 

clusters.

4.6.6 Summary of EM properties

EM clustering has the advantage over all the previous clustering methods that it can 

detect clusters of very different size and shape. Basically, the number of data points N k  

which are likely to belong to cluster c k  is controlled by the mixture weight P c k   and the 

shape of the cluster is controlled by the covariance matrix k .

Moreover, it also has the same interesting properties as Fuzzy K-means: quadrixels 

are grouped into multiple clusters with varying degrees of membership given by posterior 

probabilities. Thus, probability maps that reflect how likely each quadrixel belongs to any 

of  the  K  clusters  can be displayed  to  an operator  who  selects  a  reasonable  tissue 

membership threshold to get a final hard clustering of the data set.

However,  EM clustering  model  is  entirely  based  on  the  assumption  that  quadrixel 

distribution  in  MRU studies  can be expressed as a mixture  of  Gaussian distributions, 

which is not necessarily true, especially for noisy data sets.
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4.7 Factor Analysis of Medical Image Series (FAMIS)

4.7.1 Introduction

Factor Analysis of Medical Image Series (FAMIS) extracts, from dynamic image series, 

physiological regions related to anatomical or functional structures with different temporal 

behaviours, even if they partially overlap and yield mixed kinetics.

The method was primarily developed for nuclear medicine data [2] [5] [6] [8] [10] [15] 

[26] [28] [46] as a good alternative to the widely used manual region of interest approach. 

But it has also been applied more recently on MRI [13] [21] [41] [42] [44] [49] and other 

imaging modalities (PET  [17] [22] [58],  SPECT  [33] [36] [45],  ultrasound  [55], spectral 

sequences [29] [56]) and extended to process dynamic volumetric data sets [13] [17] [58]. 

The applications are very various (brain studies [2] [17] [41] [42], cardiac studies [6] [22] 

[28] [36] [45] [44] [55] [58], renal studies  [8] [26] [46], hepatic studies  [15], angiography 

[49], oncology [13] [21], noise removal [28]).

FAMIS is based on the assumption that the relevant information in the dynamic image 

series can be summarized into a limited number K  of fundamental spatial distributions, 

called factor  volumes,  wherein the fundamental  TIC, called associated factor  curve, is 

homogeneous (Figure 21). But volumes may also partially overlap due to partial volume 

effects for  example.  Therefore,  the TIC measured at each voxel of  the studied image 

sequence, called a quadrixel, is considered as a composite TIC that can be decomposed 

into a linear combination of the K  underlying factor curves:

d nt =∑
k=1

K

ank f kt  nt (4.7.1)

■ K  is the number of underlying structures or physiological regions

■ d n t  is one TIC sample of voxel n  at time point t

■ a n k  is a time-independent factor coefficient that represents a weight: it expresses 

the contribution of factor curve f k t  in the composite TIC d n t  and differs from one 

quadrixel to another; the set of factor coefficients a . k=[a 1 k a n k  a N k ] ' , called 

factor  volume,  corresponds  to  the  fundamental  spatial  distribution  of  a 

physiological region
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■ f k t  is the k t h  factor curve at time point t ; a factor curve f k .  is the fundamental 

TIC of a physiological region

■ n t  is the error due to both the model and the noise.

For  demonstration  purposes,  it  is  convenient  to  consider  that  in  our  case of  MRU 

studies, a quadrixel d n .  that enhances may be expressed for example as:

d n .= a n 1⋅f 1 . a n 2⋅f 2 . a n 3⋅f 3 . n .  with K=3 (4.7.2)

where f 1 . , f 2 . , and f 3 .  are the factor curves and represent the fundamental TIC of a 

pure voxel that would only belong respectively to the kidney, the liver and the spleen.

Factor curves and their associated factor volumes can be interpreted in a symmetric or 

dual way: one can also consider that a volume image at time point  t  in the sequence 

may also be expressed as:

d . t = f 1 t⋅a . 1  f 2 t⋅a . 2  f 3 t⋅a . 3  . t  with K=3 (4.7.3)

(4.7.2) states that one quadrixel  d n .  can be decomposed over  K=3  factor curves 

weighted by their associated factor coefficients. (4.7.3) states that one volume image d .t  

at  time  point  t  can  be  decomposed  over  K=3  factor  volumes  weighted  by  their 

associated factor curves at time point t .

The weight  a n k  associated to factor curve  f k .=[f k 1  f k t  f k T ] '  is given by the 

voxel intensity in the associated factor volume a . k=[a 1 k a n k  a N k ] ' , and hence, each 

factor volume represents the spatial distribution of the associated factor curve f k . .

It must be noticed right now that, in cases where TIC are considered, ∀ k=1K  and 

∀ t=1T ,  f kt  cannot  be by nature  negative  as they represent  fundamental  signal 

intensities over time, and symmetrically, ∀ n=1N  and ∀ k=1K , ank  must also be 

non negative as they represent voxel intensities at a given time.

The aim of FAMIS is then to find the physiological factor volumes and factor curves 

that  linearly  decompose  the  studied  image  sequence,  assuming  that  K  is  known.  It 

generally includes two main stages:

■ Orthogonal analysis. The orthogonal analysis is merely a principal component 

analysis (PCA) or a singular  value decomposition (SVD).  It  determines a lower 
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dimensional orthogonal subspace, also called 'study space', that is optimal in the 

least  squares sense and separates most  of  the relevant  part  of  the quadrixels 

from the noise.

■ Oblique analysis. The  basis  vectors  of  the  study  subspace  found  by  the 

orthogonal analysis cannot represent the physiological factor curves. Indeed, they 

are  by  definition  orthogonal  and  thus  necessarily  contain  negative  values. 

Consequently, an oblique rotation under constraints is performed to obtain non-

orthogonal basis vectors, namely the factor curves.
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 Figure 21: Decomposition into factor curves and factor volumes
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4.7.2 FAMIS model and previous approaches

 FAMIS model  

To recall, after preprocessing, a dynamic volumetric data set D  is considered as a set 

of N  enhanced quadrixels d n . , n=1N , of T  components d nt , t=1T , where T  

is the number of time points.

All the information in the data set  D  is contained in these  N  quadrixels and from 

(4.7.1), it can also be expressed as

D = A F  E1  (4.7.4)

■ D=[ d 11  d1T

⋮ ⋱ ⋮
d N 1  d NT

]N×T =[ d 1 . '⋮d N . ']=[d . 1  d . T ]

■ A=[ a 1 1  a 1 K

⋮ ⋱ ⋮
a N 1  a NK

]N ×K =[a . 1  a . K ]=[ a 1 . '⋮a N . ' ]
■ F=[ f 1 1  f 1 T

⋮ ⋱ ⋮
f K 1  f KT

]K×T =[ f 1 . '⋮f K . ' ]=[f . 1  f . T ]

■ E1=[ 1 1  1T

⋮ ⋱ ⋮
N 1  N T

]N ×T 
A  is the matrix whose columns are the factor volumes and  F  is the matrix whose 

rows  are  the  associated  factor  curves.  The  spatial  distribution  of  factor  curve 

f k .=[f k 1  f k t  f k T ] '  is contained in the factor volume a . k=[a 1 k a n k  a N k ] ' .

The  goal  of  FAMIS is  to  extract  the  matrices  A  and  F  that  have  physiological 

meanings.

Orthogonal analysis. The matrix  D  is  factorized by extracting the eigenvectors of 

the  covariance matrix  C= 1
N D ' D  and by keeping  only the first  K  eigenvalues  that 

account for most of the variance:
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D = V  U  E2 (4.7.5)

■ U  is the K×T   matrix of the first K  eigenvectors of C  and U U '=IK  where 

I K  is the K×K   identity matrix.

■   is the K×K   diagonal matrix of the square roots of the first K  eigenvalues.

■ V =D U '−1  is the  N ×K   matrix of the coordinates of the quadrixels in the 

subspace spanned by the first K  eigenvectors and 1
N V V '=I N

Substituting for D  from (4.7.4) and (4.7.5) and ignoring the error matrices:

A = V  R−1 (4.7.6)

F = R U (4.7.7)

where R  is a non singular K×K   matrix with R−1 R=IK .

A=V   and F=U  with R=IK  are trivial solutions that are of no interest because 

they are two orthogonal matrices and thus necessarily contain negative values.

Oblique  analysis. This  stage  is  necessary  to  perform  a  rotation  R ≠ I K  on  the 

principal  components  U  so  that  the  factors  A  and  F  can  represent  underlying 

physiology. The most common approach is an iterative procedure that takes into account 

the positivity constraints on A  and F .

Starting from a first  estimate of  R ,  the factor  volumes  A  can be computed from 

(4.7.6). Then, A  is modified to satisfy the positivity constraints.

Multiplying both sides of (4.7.6) on the left by V ' V −1 V ' , a new rotation matrix R  

can be computed from the modified A :

R−1 =−1 V ' V −1V ' A (4.7.8)

From (4.7.7), F  is obtained from the new R  and then is also modified to satisfy the 

positivity constraints.

Both sides of (4.7.7) are multiplied on the right by  U ' U U ' −1  and a new rotation 

matrix R  again can be recomputed from the modified F : 

R = F U ' U U ' −1  (4.7.9)
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Then A  is recomputed from (4.7.6) again and this is performed iteratively to satisfy 

the positivity constraints until convergence.

However, positivity constraints alone are usually not sufficient to produce an unique 

solution  [7]. This is the main problem of FAMIS and it has given rise to many different 

approaches.

 Previous approaches  

Several  groups  [2] [5] [6] [13] [21] [22] [56] propose  an  iterative  apex  seeking 

procedure: the trixels are normalized, centred and projected onto a  K−1  dimensional 

subspace  spanned  by  the  first  K−1  principal  components.  Then,  the  apices  of  a 

polytope that contain all the trixel projection are isolated under positivity constraints to 

estimate the physiological  factor  curves.  Buvat  et  al. [16] constrains the procedure by 

searching for the apices that best fit  a priori  information on the factors when they are 

available.  Benali  et  al. [15] introduces  also  a  statistical  model  to  achieve an  optimal 

separation between signal and noise for scintigraphic dynamic studies.

Nijran and Barber  [8] [9] use an intersection method.  Besides the study space that 

represents the studied trixels,  they define a theory space generated from a theoretical 

model of all the possible trixels that can describe the physiological structure of interest. 

The factor  of  interest  lies in both the spaces simultaneously.  However,  this method is 

strongly dependent on the relevance of the theoretical model of the structure of interest.

Some authors [10] [33] apply a method based on the maximum entropy principle.

Benali  et  al. [19] unifies  some previous  approaches  ([16] [15])  and the  hypothesis 

related to the fundamental factor curves and images in scintigraphic dynamic studies.

Some studies  [36] [55] are based on specific constraints that reflect prior knowledge 

on their studies and thus, are only adapted to their studies.

Martel  et al. [41] [42] incorporate additional constraints on factor  images and factor 

curves appropriate for DCE-MRI studies

Some  groups  [45] [46] [58] use  a  penalized  least  squares  objective  function  to 

minimize the non negative terms responsible for the overlapping between factor volumes.

In the study by Martel et al. [49], the factor curves are determined by the operator who 

selects representative TIC of anatomic structures.
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4.7.3 Proposed physiological constraints on the factors

The constraints which are proposed should be tight enough to prevent from ambiguous 

solution  but  sufficiently  general  to  ensure  that  all  kinds  of  MRU  studies  can  be 

considered, even those where pathological structures enhance.

So, the following constraints are incorporated and do not restrict  the algorithm to a 

specific type of study:

■ Positivity constraints on the factor volumes. Considering TIC, the contribution 

of each factor coefficient on factor curves can only be positive: ∀n=1N  and 

∀k =1K , a n k0 .

■ Remove ambiguity on scale factor.  Without any constraint on  R , the factors 

A  and F  are determined up to a scale factor. So, the following constraints are 

added to keep the true magnitude of the factor curves:

□ ∀ n=1N , ∑k=1
K ank=1

□ ∀ k=1K  and ∀ t=1T , t f ktt

t  and t  are determined by averaging respectively 1 % of the lowest and 

1 % of the greatest quadrixels at time t .

□ So, ideally, neglecting the error term, a pure kidney quadrixel d n .  would be 

expressed from (4.7.2) as d n .= f 1 . n .  with an1=1 , an2=0  and an3=0

.  If  TIC are  considered,  this  constraint  is  more  restricting  than a  simple 

positivity  constraint  on  F  because  usually  t0 .  But  if  TEC  were 

considered,  the constraint  would  take into account  that  f kt  can also be 

negative.

■ Reduce overlapping. Ideally,  each  factor  volume  should  describe  a  single 

physiological structure. But due to the non unique solution of FAMIS (Sitek et al. 

[46] explains nonuniqueness of the factor model), a factor volume may be a linear 

combination of a number of true physiological volumes. To reduce the amount of 

mixing  between  factors,  all  quadrixels  are  forced  to  be mainly  explained by a 

single  set  of  factor  volume  and  factor  curve  by  keeping  to  a  high  value  the 

greatest factor coefficient and keeping to a low value the others.

Our proposed iterative procedure to solve for A  and F  can now be stated.
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4.7.4 Proposed FAMIS algorithm

The steps are summarized in Figure 22 and are as follows:

1. Compute =[1  T ] , =[1  T ]  and V ,  , U  from (4.7.5).

2. Compute a first estimate of A  from A=V  .

3. Adjust A  to satisfy the constraints:

○ Replace all negative elements of A  by 0.01 .

○ Normalize each row of A  so that ∀n=1N , ∑k =1
K a n k=1 .

○ For each row n=1N  of A ,

□ if  the  K  factor  coefficients  ank  are  smaller  than  0.5  then,  set 

ank*=1−0.01⋅K   where  ank*  is the greatest of the  K  factor coefficients 

and set ank=0.01  to the other factor coefficients k≠k* .

□ next n

○ Normalize again each row of A  so that ∀n=1N , ∑k =1
K a n k=1 .

4. From the adjusted A , compute R  given by (4.7.6) as R=A ' A −1 A ' V   

and hence, compute F  given by (4.7.7) as F=R U .

5. Adjust F  to satisfy the constraints:

○ ∀ k=1K  and ∀ t=1T , if f ktt  then set the value of f kt  to t  and 

if f ktt  then set the value of f kt  to t .

6. From the adjusted F , compute R−1  given by (4.7.7) as R−1=U F ' F F ' −1  

and hence, compute A  given by (4.7.6) as A=V  R−1 .

7. If the change between two consecutive factor volumes A  or factor curves F  is 

less than a given threshold, then stop the procedure. Else return to 3 .

It  shall  be noted that  even at the end of  the procedure,  A  and  F  may not  both 

simultaneously satisfy all the physiological constraints because of noise and outliers. The 

final values should be regarded as a trade-off  between the constraints on  A  and the 

constraints on F .
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Moreover, the original data set D  can be reconstructed, with an error term that can be 

attributed to noise, from the factor volumes  A  and the factors curves  F  (4.7.4) and 

thus, makes also FAMIS a useful method for compression.

The factor  volumes  A  can be interpreted as a factor coefficient map. The greater 

value ank , the more quadrixel d n .  is made of factor curve f k . . Like fuzzy K-means and 

EM clustering, an operator can select a tissue membership threshold to obtain, from the 

factor coefficients map, a hard segmentation of the physiological structures.

Finally,  our  proposed  FAMIS method  does  not  need  any random  initialization  and 

consequently, the results are reproducible whereas all clustering methods are dependent 

on the selection of starting values.
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 Figure 22: FAMIS algorithm
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4.8 Summary

4.8.1 Common points between our approaches

Although clustering  analysis  (KNN,  FKM, EM) and factor  analysis  (FAMIS) are two 

different  kinds  of  approaches  for  kidney  segmentation,  they  share  surprisingly  some 

common points:

■ Fundamental factor curves in FAMIS can be considered as the equivalent of the 

representative TIC or weights in clustering methods: a factor curve describes the 

main kinetic in a physiological region while the weights represent the average TIC 

in this same region.

■ Factor volumes in FAMIS can be considered as the equivalent of the clusters in 

clustering  method as they both correspond in the dynamic image sequence to 

physiological regions sharing similar kinetics.

■ Like  fuzzy  memberships  in  fuzzy  K-means  clustering  and  probabilities  in  EM 

clustering,  factor  volumes in  FAMIS  give  a  soft  partition  of  the  physiological 

regions.

■ FAMIS and EM clustering both assume a linear decomposition of a limited number 

of physiological regions (observe the similarity of equations 4.6.2 and 4.7.1).

4.8.2 Summary of our proposed methods

A summary of our 4 proposed methods to segment kidney tissues is given by Figure

23.

At the end, in an automatic step, the volumetric structures of interest can finally be 

segmented  by  extracting  only  the  biggest  6-connected  objects.  But  an  extra  step  is 

necessary in rare cases where the kidney is so severely damaged that some sections do 

not link into a coherent object.
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Method Approach

Model / 

Objective 

function

Computation Output

Kohonen 
Neural 
Network

Non-parametric 
clustering

Based on 
Euclidean 
distances

Hard clustering: 
data points are 
assigned to the 
nearest  cluster 
centre

Fuzzy K-
Means 
clustering

Non-parametric 
clustering

Minimize the 
sum of the 
squared 
distances 
weighted by 
membership 
functions 
(4.5.1)

Based on 
Euclidean 
distances 
weighted by 
membership 
functions

Fuzzy 
membership 
map: a higher 
membership 
value gives 
more 
confidence

EM clustering Parametric 
clustering (a 
Gaussian 
mixture density 
is assumed)

Best fit the 
distribution of 
the data set by 
a Gaussian 
mixture density 
(4.6.5)

Based on 
probabilities

Probability 
map: a higher 
probability 
gives more 
likelihood

FAMIS Factor analysis Data set is a 
linear 
combination of 
factor curves 
and factor 
volumes (4.7.4)

Based on SVD 
and 
physiological 
constraints

Factor 
coefficient map: 
a higher 
coefficient 
gives more 
contribution

 Figure 23: Summary of proposed methods
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5 Experimental results and Discussion

5.1 Introduction

Our proposed methods are performed on 20 real MR data sets that were all collected 

between 2003 and 2006 at the National University Hospital. The 20 data sets represent a 

wide range of possible scenarios, from normal to very poorly functioning kidneys (refer to 

Appendix for a brief description of the data sets).

The data sets consist of  24 to 44 volumes, each volume containing 10 to 18 slices 

whose image matrix size is 256x256.

All our methods are coded in MATLAB(R) 7.0, The MathWorks, Inc. Kohonen neural 

network  (KNN) and Fuzzy K-means clustering  (FKM) are performed using the Matlab 

toolboxes (respectively neural network toolbox 4.0 and fuzzy logic toolbox 2.0) with the 

default values (that is, a learning rate =0.01  for KNN and a weighting exponent m=2  

for FKM) while Expectation-Maximization clustering (EM) and FAMIS are implemented on 

our own.

5.2 Parameter settings

5.2.1 Initialization

 Background elimination  

No drawing region is required from the user except for data set 041124pa3 where a 

ROI is manually drawn to exclude the aorta and the right femoral artery.

For the three clustering techniques (KNN, FKM, EM), the background is eliminated by 

excluding quadrixels  whose mean TEC over time is below an enhancement  threshold 

E=0.5 . The value is chosen low enough so that it does not exclude any kidney voxels, 

but it is also high enough to exclude from analysis most of the irrelevant tissues (muscle, 

guts, bones, ...) that do not enhance.

For FAMIS, the strategy is different. This technique has not the ability to separate the 

left kidney cortex from the spleen in most data sets. So, there is an attempt to eliminate 

the splenic region beforehand by using a high enhancement threshold value. But, a too 
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high value is not advisable since it would discard from analysis renal voxels too. That is 

why  an  enhancement  threshold  E  on  TEC  is  not  applied  but  rather  an  intensity 

threshold  I  on  TIC:  in  terms  of  relative  contrast  enhancement,  the  spleen  signal 

intensity is high and consequently, a too high enhancement threshold value E  on TEC 

would be required to exclude the splenic region. Hence, before submitting the data sets to 

FAMIS analysis, quadrixels whose mean TIC over time is below an intensity threshold I  

are discarded. Using a threshold on mean TIC rather than TEC is worthwhile for FAMIS 

because it gives the possibility to exclude the spleen region from analysis. But it has the 

disadvantage that it requires the user to select a suitable threshold value  I  for each 

data set:  I  must be chosen high enough to discard splenic voxels, but it must be low 

enough to keep renal  voxels  for  analysis.  To aid the user  in selecting  I ,  a simple 

graphical user interface (GUI) is used to adjust the threshold level and preview the result 

for one particular slice.

 Number of clusters and number of factors  

The number of factors in FAMIS is chosen to be K=5  while the number of clusters in 

clustering  methods  is  chosen  to  be  K=6 .  The  same  number  K=5  for  clustering 

methods could be used as well, but seeking for one more cluster is considered to be more 

appropriate as a low threshold value E=0.5  is used: the additional cluster can regroup 

the noise or other irrelevant tissues.

In case of doubt, it is usually more advisable to overestimate the number of clusters or 

factors  than to underestimate it. Indeed, if the number is underestimated, there is a risk 

that  several  tissue  types  are  regrouped  into  one  single  cluster  or  factor  and  thus, 

separating the different tissue types would require to split up the cluster or factor, which is 

a  difficult  task.  On  contrary,  if  it  is  overestimated,  one  tissue  type  may certainly  be 

regrouped into several clusters or factors, but it would be an easy task to merge them.

Figure  24 summarizes  the  different  parameter  values  to  initialize  the  clustering 

techniques (KNN, FKM, EM) and FAMIS for each of the 20 data sets.
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5.2.2 Volume extraction

KNN  provides  a  hard  segmentation:  it  outputs  K=6  binary  volumes  and  the 

interaction of an operator is just needed to associate each volume to a possible tissue 

type  based  on  visual  inspection.  On  contrary,  FKM,  EM  and  FAMIS  provide  a  soft 

segmentation:  FKM outputs  fuzzy  membership  values,  EM  outputs  probabilities  and 

FAMIS outputs factor coefficients. Although clinical works may require a volume to be the 

sum of voxels with partial tissue membership, for the purposes of algorithm comparison, 

all the output memberships are rendered to be hard. Hence, for FKM, EM and FAMIS, the 

output must be “defuzzified” to enforce a binary decision. That is, for FKM and EM, the 

voxels must be assigned to one single cluster while for FAMIS, they must be assigned to 

one  single  factor  to  obtain  a  final  hard  segmentation.  This  decision  could  be  done 

automatically by assigning each voxel uniquely to the cluster or factor where it has the 

highest  membership  value  (or  probability  or  factor  coefficient).  But  in  the  proposed 

approach, an operator is required to threshold by visual inspection the tissue membership 

maps (or probability maps or factor coefficient maps) to yield binary maps so that the 

uncertain information can be dealt with more flexibility. The tissue membership threshold 
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Only data set 041126pa3* requires a region of interest (ROI) to be drawn to exclude aorta 
and right femoral artery.

 Figure 24: Initialization parameters for clustering techniques and FAMIS

Clustering techniques FAMIS
Data sets Threshold on TEC Number of clusters Theshold on TIC Number of factors
031104pa5

0.5 6

130

5

031113e1pa1 35
031223pa3 50
040205bpa1 45
040205pa1 110
040205pa2 70
040426apa1 80
040426dpa1 80
040427pa1 45
040430pa1 105
040831cpa1 40
040902pa1 30
041126pa2 60
041126pa3* 60
041126pa4 35
050518epa2 20
050613pa2 35
060721apa3 75
060721bpa4 45
060721cpa1 75
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operation is applied individually to the right and left kidneys and the values used for each 

data set are given in Figure 25.

Finally, the interested volumes that contain renal tissues are extracted from the binary 

maps by considering the biggest 6-connected component over the slices. For most of the 

data sets, the volume extraction does not include the most anterior and posterior slices 

because they do not contain renal regions but rather some irrelevant tissues like bowels.

An example  of  tissue  extraction  for  left  and right  renal  parenchyma  from  EM and 

FAMIS  is  given  in  Figure  26 and  Figure  27.  Among  all  the  volumes  output  by  our 

methods, the one associated to the parenchyma must be identified. Merging a number of 

volumes to obtain  the parenchyma volume is also possible,  especially  for  our  FAMIS 

method which has the ability to return the parenchyma in two different  factor  volumes 

(cortex and medulla factor volumes). Then, a tissue membership threshold is applied and 

the  biggest  6-connected  component  over  the  slices  is  extracted  to  yield  the  final 

parenchyma segmentation.
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 Figure 25: Tissue membership threshold values used to “defuzzify” renal parenchyma 
and cortex volumes

– Data set  031113e1pa1 has no left kidney, so no left parenchyma and no left cortex  
are extracted.

– FAMIS could not extract from data sets 041126pa2 and 041126pa3 any renal cortex.

FKM EM FAMIS FAMIS

Data sets

031104pa5 0.2 0.5 0.8 0.4 0.1 0.1 0.3 0.3
031113e1pa1 0.3 0.3 0.9 0.7
031223pa3 0.1 0.8 0.1 0.6 0.9 0.8 0.8 0.8
040205bpa1 0.4 0.4 0.6 0.8 0.5 0.5 0 0.4
040205pa1 0.2 0.4 0.4 0.6 0.7 0.8 0.6 0.7
040205pa2 0.2 0.2 0.1 0.6 0.1 0.5 0.3 0.5
040426apa1 0.6 0.1 0.7 0.3 0.1 0 0.3 0
040426dpa1 0.3 0.2 0.2 0.1 0.5 0.1 0.4 0.1
040427pa1 0.2 0.2 0.1 0.1 0.2 0.6 0.1 0.5
040430pa1 0.2 0.4 0.1 0.5 0.1 0.8 0.3 0.7
040831cpa1 0.1 0.1 0.3 0.2 0.5 0.5 0.2 0.4
040902pa1 0.2 0.1 0.9 0.6 0.9 0.6 0.6 0.5
041126pa2 0.3 0.2 0.2 0.1 0.5 0.4
041126pa3 0.4 0.1 0.8 0.2 0.7 0.2
041126pa4 0.2 0.2 0.5 0.7 0.4 0.9 0.1 0.2
050518epa2 0.1 0.2 0.4 0.1 0.6 1.5 0.6 0.7
050613pa2 0.1 0.2 0.1 0.2 0.8 0.8 0 0.4
060721apa3 0.2 0.1 0.1 0.1 0.4 0.4 0.2 0.3
060721bpa4 0.1 0.7 0.1 0.3 0.1 0.5 0.1 0.5

Left
Parenchyma

Right
Parenchyma

Left
Parenchyma

Right
Parenchyma

Left
Parenchyma

Right
Parenchyma

Left
Cortex

Right
Cortex
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 Figure 26: Extraction of renal parenchyma volume in EM

– Each of the  6 volumes output by EM may be associated to a possible anatomical  
tissue and the one associated to the renal parenchyma is identified.

– The parenchyma volume is described by probabilities that reflect tissue memberships.  
A  tissue  membership  threshold  is  applied  to  obtain  a  hard  segmentation.  The 
thresholding operation is applied individually to left and right parenchyma.

– Finally, left and right parenchyma volumes are obtained by extracting the biggest 6-
connected component over the slices.

– Data set 060721cpa1 (only one single slice of the volumes are shown).

Parenchyma volume

Noise volume

Noise volume

Pelvis and bladder volume

Liver and spleen volume

Noise volume

Right parenchyma
thresholded

Left parenchyma
thresholded

Right parenchyma
extracted

Left parenchyma
extracted
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 Figure 27: Extraction of renal parenchyma volume from factor volumes in FAMIS

– Each of  the  5 factor volumes output by FAMIS may be associated to a possible anatomical  
tissue. The ones associated to the renal cortex volume and medulla volume are identified and 
are mathematically added to yield a renal parenchyma volume.

– The parenchyma volume is described by factor coefficients that reflect tissue memberships. A 
tissue  membership  threshold  is  applied  to  obtain  a  hard  segmentation.  The  thresholding  
operation is applied individually to left and right parenchyma.

– Finally, left and right parenchyma volumes are obtained by extracting the biggest 6-connected 
component over the slices. Left and right cortex volumes could be obtained in the same way.

– Data set 060721cpa1 (only one single slice of the volumes are shown).

Right parenchyma
extracted

Right parenchyma
thresholded

Left parenchyma
extracted

Left parenchyma
thresholded

Medulla volume

Liver volume Parenchyma
volume

Cortex volume

Bladder volume

Pelvis volume
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5.3 Result examples

5.3.1 Data set 031113e1pa1

Data set  031113e1pa1 has no left  kidney while the right  one has a very particular 

shape. A segmentation approach guided by a prior knowledge of a typical kidney shape is 

unlikely to work for this data set due to the very unique shape of the right kidney. On 

contrary, our proposed methods achieve good results (Figure 28).
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 Figure 28: Results for data set 031113e1pa1

– From 1st to 5th row: ground truth, KNN, FKM, EM and FAMIS results.
– From 1st to 4th column: slice 8, 10, 12 and 14.
– The data set is characterised by the absence of left kidney and the particular shape 

of right kidney. Yet, our techniques based on temporal signal intensities achieve good 
results.

– Note that part of the aorta (arrow) is included in the KNN result on slice 14. But it is  
removed in other techniques by selecting a proper tissue membership threshold.
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5.3.2 Data set 050518epa2

If both right and left kidneys were functioning similarly, they would have similar signal 

intensities,  and thus,  they would be expected to be regrouped in the same cluster  or 

factor  volume.  But,  data  set  050518epa2  is  a  case  where  only  the  right  kidney  is 

functioning  normally while  the left  one is  functioning  poorly and has a strange shape 

(which may be signs of hydronephrosis). Hence, they have very different signal intensities 

and thus,  our proposed methods separate them in different  clusters or different  factor 

volumes.

Figure  29 shows  two  of  the  five  factor  volumes output  by FAMIS.  The first  factor 

volume can be mainly identified to the right kidney cortex (and the spleen). However, the 

left  kidney  cortex  is  not  present  in  the  same  factor  volume  because  it  enhances 

abnormally over time. Indeed, it enhances later and thus, it appears more like a normal 

renal medulla. That is why the left kidney cortex is extracted from the factor volume that 

contains the right renal medulla.
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 Figure 29: FAMIS results for data set 050518epa2

Right  renal  cortex and left  renal  cortex are  extracted from 2 different  factor  volumes,  
which reflects their difference in physiology (the right renal cortex is functioning normally  
whereas the left renal cortex is malfunctioning and has a strange shape).

Right renal cortex extracted

Left renal cortex extracted

Factor Volume 1

Factor Volume 2
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5.3.3 Data set 041126pa3

Data set 041126pa3 is the example of a patient whose both kidneys are very poorly 

functioning: the larger right kidney appears to have a slower transit than the smaller left 

kidney. No functioning renal medulla is visible and no excretory phase occurs over the 

acquisition time of 22 minutes, revealing probably severe kidney obstruction. Most of the 

methods based on thresholding or deformable model are unlikely to give satisfying results 

for  those two kidneys.  This is the only data set  that  is  handled by requiring  from the 

operator to draw a region of interest that excludes the aorta and the right femoral artery 

(Figure 30).

By disconnecting  the  aorta  and the  right  femoral  artery  from the right  kidney,  our 

proposed methods can achieve results reasonably close to the ground truth. Especially, 

FAMIS yield factor curves that may provide useful information to the clinician (Figure 31): 

the kidney factor  curve, which is supposed to be upper concave in normal pattern,  is 

continually  rising  and  flattened  because  of  a  possible  persisting  tubular  phase. 

Consequently, those patient kidneys may be suspicious of very severe obstruction and 

may draw the attention of the clinician.

It must be noted that for this data set, both the kidneys are functioning so differently 

from their normal pattern that all our methods, including FAMIS, can easily differentiate 

the splenic tissue from the renal tissue.
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 Figure 30: Drawing ROI for data set 041126pa3

– An operator is required to draw a ROI on a maximum intensity projection  
(MIP) of slice 8 derived from the dynamic sequence.

– The volume inside the drawing ROI, which includes aorta and right femoral  
artery, is excluded from analysis for all our methods.
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 Figure 31: Factor volumes and factor curves for data set 041126pa3

– FAMIS returns  a reasonably good kidney factor volume. But the aorta and the right  
femoral artery had to be removed from analysis by an operator interaction, otherwise 
they  would  still  be  connected  to  the  right  kidney  and  thus,  would  yield  poor  
segmentation results.

– Examination of  factor  volumes and factor  curves  draw attention on the abnormal  
kidney pattern, possibly caused by severe obstruction .
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5.3.4 Data sets 040427pa1 and 040902pa1

Unfortunately,  there  are  data  sets  where  the  clustering  methods  achieve  less 

satisfactory kidney segmentation compared to the ground truth. Data set 040427pa1 and 

040902pa1 are two examples of those data sets. The main cause of failure is due to the 

presence of the spleen or the liver with respectively the left or right kidney (Figure 32). 

This misclassification happens when the kidney tissue has similar signal intensities with 

the  surrounding  organs  such  as  spleen  and  liver,  and  consequently,  our  clustering 

methods can hardly regrouped them in separate clusters. This is more likely to happen for 

poorly functioning kidneys. Yet, our FAMIS method could return reasonably good results 

for all our 20 MR data sets.
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 Figure 32: Examples of segmentation failures by clustering methods

– Ground truth is the manual segmentation performed by the expert.
– The segmentation result on data set 040427pa1 (slice 5) by KNN contains both right 

parenchyma and part of the liver tissue: KNN fails to regroup right parenchyma and  
liver tissues in separate clusters based on their signal intensities. On the contrary,  
FAMIS achieves a reasonably good result for this data set.

– The  segmentation  result  on data set 040902pa1 (slice 7) by EM contains both left  
parenchyma and part of the splenic tissue: EM fails to regroup left parenchyma and 
splenic tissues in separate clusters based on their signal intensities. On the contrary,  
FAMIS achieves a reasonably good result for this data set.

KNN result
on data set 040427pa1

FAMIS result
on data set 040427pa1

Ground truth
on data set 040427pa1

EM result
on data set 040902pa1

FAMIS result
on data set 040902pa1

Ground truth
on data set 040902pa1



 5   Experimental results and Discussion

5.4 Performance evaluation

5.4.1 Quantitative measures

 Computation time  

Our proposed methods are run in Matlab on a Intel Pentium(R) D 2.8GHz with 1Gb 

Ram. The computation time needed to process each of the 20 data sets are given in 

Figure 33.

It is clear that FAMIS has the best computation time efficiency: it  returns the factor 

volumes and the factor curves within seconds. This can be explained by the simple matrix 

computations involved in the algorithm and by the high threshold in preprocessing that 

excludes from analysis a great amount of data, essentially the spleen and the noise.

KNN is  the  most  computationally  expensive method because it  is  a  single  sample 

update algorithm. That is, the weights are updated after each quadrixel is presented to 
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 Figure 33: Computation time in seconds

Data sets KNN FKM EM FAMIS
031104pa5 620 572 157 2 
031113e1pa1 465 305 105 7 
031223pa3 515 388 155 4 
040205bpa1 614 379 66 2 
040205pa1 399 308 62 9 
040205pa2 206 221 122 4 
040426apa1 563 431 190 3 
040426dpa1 328 243 65 2 
040427pa1 432 320 46 16 
040430pa1 384 368 82 4 
040831cpa1 418 282 117 6 
040902pa1 537 332 198 6 
041126pa2 397 216 118 5 
041126pa3 474 620 163 12 
041126pa4 401 237 134 4 
050518epa2 248 233 97 34 
050613pa2 412 350 104 3 
060721apa3 273 246 41 4 
060721bpa4 211 331 89 6 
060721cpa1 398 273 119 3 

Mean 415 333 112 7 
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the  neural  network.  On  contrary,  FKM  and  EM  are  faster  because  they  are  batch 

algorithms: they wait until all quadrixels have been re-clustered before they update their 

cluster centres.

Finally, EM processes faster than FKM mainly because its data is preprocessed by a 

PCA to reduce the computation complexity of the algorithm.

 Segmentation results compared to ground truth  

The  proposed  methods  are  validated  by  using  a  measure  that  quantifies  the 

discrepancy  between  our  segmentation  results  and  the  tracings  of  cortex  and  whole 

parenchyma by a human expert (Dr Borys Shuter from the National University Hospital). 

This is done by computing the undirected average distance:

H A ,B=maxh A ,B , hB , A  (5.4.1)

h A ,B= 1
N A
∑
a∈A

min
b∈B
∥a−b∥  (5.4.2)

■ A  is the manual segmentation, called ground truth, performed by the expert.

■ N A  is the number of voxels in A .

■ B  is the segmentation result obtained from our proposed methods.

The evaluation results for each of the 20 MR data sets are tabulated in Figure 34.

The segmentation performance of each of our proposed methods can be compared to 

each other to determine whether there is one method that achieves closer results to the 

ground truth than another one: a Student  t-test on paired two samples is used with the 

null  hypothesis  H 0  that  1=2  against  the  alternate  hypothesis  H 1  that  12 , 

where  1  is  the  mean  of  the  undirected  average  distances  achieved  by one  of  our 

proposed methods and 2  is that by another one.

Two comparative tests are statistically significant: it is found that T statistict critical  when 

KNN is compared to FKM and when KNN is compared to FAMIS (Figure 35). Hence, for 

those two cases,  H 0  is  rejected with a confidence of  95%. That  is,  KNN results  are 

significantly more different from the ground truth than FKM and FAMIS results. 

On contrary, comparative tests between our other proposed methods do not give us 

enough evidence to reject H 0 .
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 Figure 34: Evaluation results using undirected average distance (unit: voxel)

– The renal parenchyma (left and right) obtained from KNN, FKM, EM and FAMIS for  
each data set are compared to the parenchyma ground truth using the undirected 
average distance.

– The  renal cortex (left  and right)  obtained from FAMIS for  each data set  are  also  
compared to the cortex ground truth using the undirected average distance.

– Data set  031113e1pa1 has no left kidney, so no left parenchyma and no left cortex 
are extracted.

– FAMIS could not extract from data sets 041126pa2 and 041126pa3 any renal cortex.

KNN FKM EM FAMIS FAMIS

Data sets

031104pa5 1.29 1.28 1.27 1.09 1.24 1.14 1.29 1.3 0.88 0.79
031113e1pa1 0.91 0.74 0.79 1.13 0.9
031223pa3 2.11 0.84 2.19 0.6 2 0.55 1.85 0.92 1.68 0.93
040205bpa1 0.88 1.29 1.14 1.48 1.17 1.57 1.11 1.41 1.35 0.83
040205pa1 0.65 1.27 0.63 1.02 0.66 1.19 0.57 0.87 0.48 0.6
040205pa2 1.65 1.36 1.36 1.12 1.08 1.29 0.76 1.01 0.89 0.81
040426apa1 1.16 1.21 1.08 0.85 1.02 1.25 0.76 1.37 0.74 0.68
040426dpa1 0.6 1.05 0.55 0.98 0.6 0.94 0.61 1.06 0.61 1.11
040427pa1 2.06 3.56 1.49 1.32 1.5 1.4 1.05 1.05 0.9 0.52
040430pa1 0.82 1.73 0.81 1.34 0.82 1.12 0.75 0.96 0.6 0.68
040831cpa1 1.18 0.7 1.21 0.67 1.3 0.99 0.95 0.76 1.05 1.1
040902pa1 1.47 1.59 1.04 1.63 5.96 1.77 1.13 1.23 1.83 1.23
041126pa2 0.84 0.97 0.89 0.95 0.83 0.96 0.85 1.05
041126pa3 0.88 1.71 0.75 1.51 1.08 1.36 1.4 1.01
041126pa4 1.19 0.84 1.16 0.82 1.29 1.02 0.87 1.32 0.84 1.04
050518epa2 3.72 1.02 3.89 1.06 3.27 0.76 1.72 0.78 1.72 0.64
050613pa2 1.36 0.78 1.37 0.58 1.41 0.69 1.43 0.65 1.35 0.93
060721apa3 1.68 1.41 1.66 1.25 1.66 1.37 1.44 1.16 1.62 0.83
060721bpa4 2.21 1.3 1.48 0.78 0.94 1.05 1.11 0.97 1.76 1.22
060721cpa1 0.92 0.71 0.83 0.59 0.8 0.61 0.98 1.25 1.26 0.76

Mean 1.4 1.28 1.31 1.02 1.51 1.09 1.09 1.06 1.15 0.87

Left
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Right
Parenchyma

Left
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Right
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 Figure 35: Results of the Student t-tests for renal parenchyma

KNN vs FKM KNN vs FAMIS
2. 83 2. 73

p val ue 0. 005 0. 004
Tstatistic
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5.4.2 Qualitative measure

FAMIS has the strong advantage over all  the clustering  methods that  it  is the only 

method which has the ability to provide separately the renal cortex and the renal medulla. 

Among the 20 MR data sets, there are only 2 cases where FAMIS cannot distinguish the 

cortical and medullary tissues but still provides the whole renal parenchyma. In the first 

case (data set 041126pa3), kidney cortex and medulla are severely compromised and no 

clear signal differences can be measured. In the second case (data set 041126pa2), the 

reasons are still unknown, but it might be due to a too slow contrast agent injection to the 

patient.

To give another qualitative measure of the advantage of FAMIS over all the clustering 

methods, it can be emphasized that FAMIS yields factor curves that are physiologically 

interpretable  by  the  clinician.  Indeed,  Figure  36 shows  that  FAMIS  can  extract 

physiological compartments and their associated physiological factor curves which clearly 

reveal the different phases of the renal enhancement pattern:

■ A pre-enhancement phase where the liver tissue is hyperintense for about the first 

3 minutes.

■ A  vascular phase characterised by a cortex intensity peak and followed, after a 

slight delay, by an intensity peak in the liver.

■ A  subsequent tubular  phase  where  the  signal  intensity  of  the  renal  medulla 

exceeds that of the cortex to reach a peak corresponding to the arrival of contrast 

agent in the loop of Henle, and then decreases homogeneously with the cortex.

■ An excretory phase where the renal pelvis and bladder tissues enhance.

On contrary, all the clustering techniques extract the entire renal parenchyma without 

differentiating the renal cortex and renal medulla. Moreover, the TIC which are associated 

to the cluster centres and are representative of the compartments are more difficult to 

interpret physiologically. Figure 37 shows that clustering methods extract:

■ A  parenchyma  curve, which is a mixture of both cortical and medullary signals, 

that reaches the highest amplitude.

■ A pelvis and/or bladder curve.

■ A splenic curve whose signal intensity is lower than that of the parenchyma.
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■ 2 or 3 other curves that are only different from each other in amplitude. They do 

not  describe  any  particular  physiological  compartments  and  may  rather 

correspond to the noise present in the dynamic sequence.

In that sense, clustering methods tend to regroup the quadrixels based more on their 

signal amplitude rather than their characteristic physiology.
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 Figure 36: Factor volumes and Factor curves for data set 060721cpa1

The different phases of the renal enhancement pattern, reflecting the physiology of the  
kidneys, are clearly visible on the factor volumes and factor curves returned by FAMIS: 
pre-enhancement phase, vascular phase, tubular phase and excretory phase.
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(a)

(b)

(c)

 Figure 37: Representative TIC for data set 060721cpa1

– From top to down: representative TIC output respectively from (a) a Kohonen Neural  
Network, (b) a Fuzzy K-means and (c) a EM clustering method.

– No distinct cortex and medulla components are visible as in FAMIS (Figure 36) but 
rather a mixture of both cortex and medulla in a parenchyma component.

– Clustering methods tend to regroup the quadrixels based on their signal amplitude.
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5.5 Discussion

For  the majority of  the data sets  tested,  the segmentation  results  provided by our 

proposed methods lie within one or two voxels of the ground truth, which means that they 

are close to the segmentation of our domain expert. However, there are few cases where 

our  proposed  clustering  methods  fail  to  give  a  result  close  to  the  ground  truth  (

H A ,B2 ) due to the presence of the spleen or the liver in our segmentation results.

On average, our segmentation results seem to be closer to the ground truth for the 

right kidney than for the left kidney. This may be explained by two reasons:

■ The spleen is a tissue that can raise problem to separate from the left kidney due 

to its similar time course with the renal cortex.

■ In our data sets, the left kidney is the one which is the most frequently impaired 

and  thus,  also  the  one  whose  segmentation  is  more  likely  to  be  subject  to 

variability.

KNN seems to be the method that performs worse. This is confirmed by Student t-tests 

that demonstrate a higher undirected average distance to the ground truth compared to 

FKM and FAMIS. It can be due to the inability for KNN to consider the uncertainty for a 

voxel  to belong to different  tissue types.  On contrary,  FKM, EM and FAMIS allow an 

operator  to set  a tissue membership threshold based on visual inspection,  which is a 

more suitable approach to handle voxel uncertainties.

It  must  be  noted  that  the  quantitative  performance  evaluation  used  to  assess  our 

segmentation results must be considered carefully. Indeed, such an evaluation method 

judges the quality of our results compared to a ground truth, as if the ground truth was the 

“ideal” segmented image. Yet, it is expected that manual segmentations are subject to 

inter-observer  and  intra-observer  variability,  especially  dealing  with  poorly  functioning 

kidneys and partial volume effects. Another problem is that the ground truth is obtained by 

performing  a manual  segmentation  mainly on a single  volume at  a certain  time point 

whereas  our  segmentation  approaches  consider  the  kinetics  of  the  whole  dynamic 

volumetric sequence. Hence, our segmentation results are all the more different from the 

ground truth since the data sets are not perfectly corrected against motion (translation, 

rotation and deformation).

Qualitatively, FAMIS is the method that yields the most remarkable results: the factor 

volumes and factor curves returned by FAMIS may allow to assess the ability of the renal 

cortex and medulla to concentrate and excrete the contrast agent and thus, give insights 
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into the physiology of the patient kidneys. Hence, if the desire for a clinician is to obtain 

within  few minutes  an exhaustive summary which  can be physiologically  interpretable 

from  a  huge  4-D  data  set,  then  FAMIS  is  the  most  promising  approach.  The  main 

drawback is that it returns the spleen and the renal cortex in the same factor volume. This 

can be explained physiologically by the high vascularity of both tissues which dominantly 

enhance during the vascular phase of contrast agent uptake.

Finding a way for FAMIS to remove the spleen to obtain a factor volume that would 

contain only the renal cortex would be of great clinical interest because it would give the 

possibility to measure the functioning cortical volume. In the proposed approach, there is 

an attempt to exclude the spleen from analysis  by using a high threshold  I  on the 

mean TIC.  But  this  idea is  not  satisfying  because it  requires  a careful  selection  of  a 

threshold value by the operator and because it tends also to chop off part of the kidney 

tissue, especially the medulla. Another possible approach in the future is to combine both 

a clustering analysis and a factor analysis:

■ A clustering analysis by FKM or EM first removes the spleen, which is proved to 

work  well  in  this  task  because  it  is  more  sensitive  to  the  difference  in  TIC 

amplitude.

■ A factor  analysis is subsequently applied on the data set  completely devoid of 

splenic tissue and hence is able to return a pure renal cortical curve associated to 

a renal cortical volume that can be physiologically be interpretable by the clinician.
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6 Conclusion

6.1 Results summary

A novel approach is presented for kidney segmentation in 4-D DCE-MRU based on the 

observation that  the reproducible  time-enhancement  pattern  of  abdominal  tissues is a 

strong feature to distinguish them.

Clustering  techniques  such  as  KNN,  FKM  and  EM  are  applied  to  regroup  the 

quadrixels based on their  similarities and a FAMIS with novel constraints is applied to 

yield physiological factor volumes and associated factor curves.

Clustering  techniques  can  return  a  renal  parenchyma  volume,  but  without 

distinguishing the renal cortex and renal medulla tissues, and a splenic tissue for most of 

the data sets. This may be due to the sensitivity of the approach to signal amplitudes.

One of the major  benefits of  FAMIS is that it  can return the renal cortex and renal 

medulla in separate factor volumes. Consequently, it allows both separate and combined 

clinical  analysis  of  cortical  and medullary  TIC,  which  may be of  future  importance  in 

clinical  renal  diagnosis.  But  without  the user  interaction  to remove the splenic  tissue, 

FAMIS would return in a common factor volume both the renal cortex and the spleen. This 

may be due to the sensitivity of  the approach to renal physiology:  this common factor 

volume represents the vascular volume that comprises of the two abdominal tissues that 

are highly vascular and thus dominantly enhance during the arterial phase. 

Our 4 proposed methods are quantitatively evaluated on 20 MR real patient data sets 

and achieve reasonably accurate results compared to the ground truth: the undirected 

average distance lies within 2 voxels on average.

Segmentation  failure  cases  concern  only  clustering  methods  and  are  due  to  the 

presence  of  surrounding  organs  like  spleen and liver  in  the results.  On contrary,  our 

FAMIS approach  yields  good  segmentation  results  for  all  our  data  sets.  Moreover,  it 

provides factor curves with a clear visualization of the three physiological phases of the 

contrast agent uptake and thus, allow us to consider it for clinical routine.
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6.2 Future work

Further  work  to  demonstrate  the  clinical  usefulness  of  FAMIS  should  be  made: 

possible reliable parameters (like peak medullary signal intensity, cortico-medullary cross-

over point, time between cortex peak and medulla peak, renal transit time...)  could be 

derived from the factor volumes and associated factor curves to evaluate the functioning 

renal volume or assess the degree of renal obstruction. If the results were consistent with 

the expert examination, FAMIS would provide a powerful tool for renal diagnosis.

A method combining a cluster analysis to remove the splenic tissue before submitting 

the data set to FAMIS is a possible approach for a future work.

Moreover, our MR data sets are limited by temporal resolution (44 data points in TIC at 

most).  Nowadays,  new  imaging  techniques  make  possible  to  obtain  more  frequent 

sampling  points  in  the  TIC (more  than  200).  By  analysing  data  sets  where  the  time 

between each time point is shortened, it may be possible for our clustering methods to 

differentiate intrarenal compartments, and for our FAMIS to differentiate the spleen from 

the renal cortex. 

Finally,  our  segmentation  methods  are  not  restricted  to  MRU  only.  It  would  be 

interesting to also investigate their performance in renal nuclear scintigraphy and DCE-

MRI of tumours in various tissues.

104



  Bibliography

Bibliography
 [1] Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM 

algorithm. J. of the Royal Statistical Society (1977) 39 1: 1–38  

 [2] Barber DC. The use of principal components in the quantitative analysis of gamma 

camera dynamic studies. Phys. Med. Biol. (1980) 25 : 283-292  

 [3] Bezdek JC.  Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer 

Academic Publishers (1981) ISBN: 0306406713.

 [4] Glazer GM, Axel L, Goldberg HI, Moss AA. Dynamic CT of the normal spleen. AJR 

Am. J. Roentgenol. (1981) 137 2: 343-346  

 [5] Di  Paola  R,  Bazin  JP,  Aubry  F,  Aurengo  A,  Cavailloles  F,  Herry  JY,  Kahn  E. 

Handling of dynamic sequences in nuclear medicine.  IEEE Trans. Nucl. Sci. (1982) 29 : 

1310-1321  

 [6] Cavailloles F, Bazin JP, Di Paola R. Factor analysis in gated cardiac studies. J. Nucl. 

Med. (1984) 25 : 1067-1079  

 [7] Houston AS. The effect of apex-finding errors on factor images obtained from factor  

analysis and oblique transformation. Phys. Med. Biol. (1984) 29 9: 1109–1116  

 [8] Nijran KS, Barber DC. Towards automatic analysis of dynamic radionuclide studies 

using principal-components factor analysis. Phys. Med. Biol. (1985) 30 : 1315-1325  

 [9] Nijran KS, Barber DC.  Factor analysis of dynamic function studies using a priori  

physiological information. Phys. Med. Biol. (1986) 31 : 1107-1117  

 [10] Nakamura  M,  Suzuki  Y,  Kobayashi  S.  A Method  for  Recovering  Physiological  

Components from Dynamic Radionuclide Images Using the Maximum Entropy Principle:  

A Numerical Investigation. IEEE Trans. Biom. Eng. (1989) 36 : 906-917  

 [11] Mirowitz SA, Brown JJ,  Lee JK,  Heiken JP.  Dynamic gadolinium-enhanced MR 

imaging of the spleen: normal enhancement patterns and evaluation of splenic lesions. 

Radiology (1991) 179 3: 681-686  

 [12] Mirowitz  SA,  Gutierrez  E,  Lee  JK,  Brown  JJ,  Heiken  JP.  Normal  abdominal  

enhancement patterns with dynamic gadolinium-enhanced MR imaging. Radiology (1991) 

180 3: 637-640  

105



  Bibliography

 [13] Bonnerot V, Charpentier A, Frouin F, Kalifa C, Vanel D, Di Paola R. Factor analysis 

of dynamic MR imaging in predicting the response of osteosarcoma to chemotherapy. 

Invest. Radiol. (1992) 27 : 847-855  

 [14] Semelka RC, Shoenut JP, Lawrence PH, Greenberg HM, Madden TP, Kroeker MA. 

Spleen:  dynamic  enhancement  patterns  on  gradient-echo  MR images  enhanced  with 

gadopentetate dimeglumine. Radiology (1992) 185 2: 479-482.   

 [15] Benali  H,  Buvat  I,  Frouin  F,  Bazin JP,  Di  Paola  R.  A statistical  model  for  the 

determination  of  the  optimal  metric  in  Factor  Analysis  of  Medical  Image  Sequences  

(FAMIS). Phys. Med. Biol. (1993) 38 : 1065-1080  

 [16] Buvat I, Benali H, Frouin F, Bazin JP, Di Paola R.  Target apex-seeking in factor  

analysis of medical image sequences. Phys. Med. Biol. (1993) 38 : 123-138  

 [17] Frouin F, Cinotti L, Benali H, Buvat I, Bazin JP, Millet P, Di Paola R. Extraction of 

functional volumes from medical dynamic volumetric data sets.  Comput.  Med. Imaging 

Graph. (1993) 17 4-5: 397-404  

 [18] Hendrick RE, Haacke EM. Basic physics of MR contrast agents and maximization  

of image contrast. J. Magn. Reson. Imaging (1993) 3 : 137  

 [19] Benali H, Buvat I, Frouin F, Bazin JP, Di Paola R. Foundations of factor analysis of  

medical image sequences. Image and Vision Computing (1994) 12 : 375-385  

 [20] Rabushka  LS,  Kawashima  A,  Fishman  EK.  Imaging  of  the  spleen:  CT  with 

supplemental MR examination. Radiographics (1994) 14 2: 307-332  

 [21] Zagdansky AM, Sigal R, Bosq J, Bazin JP, Vanel D, Di Paola R. Factor analysis of 

medical image sequences in MR of head and neck tumors. Am. J. Neuroradiol. (1994) 15 

: 1359-1368  

 [22] Wu HM, Hoh CK, Choi Y,  Schelbert  HR, Hawkins RA, Phelps ME, Huang SC. 

Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. 

J. Nucl. Med. (1995) 36 : 1714-1722  

 [23] Taylor  J,  Summers  PE,  Keevil  SF,  Saks  AM,  Diskin  J,  Hilton  PJ,  Ayers  AB. 

Magnetic  resonance renography:  optimisation  of  pulse sequence parameters  and Gd-

DTPA dose, and comparison with radionuclide renography. Magnetic Resonance Imaging 

(1997) 15 6: 637-649  

 [24] Knesplova L, Krestin GP. Magnetic resonance in the assessment of renal function. 

Eur. Radiol. (1998) 8 : 201-211  

106



  Bibliography

 [25] Nolte-Ernsting CC, Bucker A, Adam GB, Neuerburg JM, Jung P, Hunter DW, Jakse 

G, Gunther RW.  Gadolinium-enhanced excretory MR urography after low-dose diuretic 

injection:  comparison  with  conventional  excretory  urography.  Radiology (1998)  209 : 

147-157  

 [26] Samal M, Nimmon CC, Britton KE, Bergmann H. Relative renal uptake and transit  

time measurements using functional factor images and fuzzy regions of interest.  Eur. J. 

Nucl. Med. (1998) 25 : 48-54  

 [27] Tomaru Y, Inoue T, Oriuchi N, Takahashi K, Endo K. Semi-automated renal region 

of  interest  selection  method  using  the  double-threshold  technique:  inter-operator  

variability  in  quantitating  99mTc-MAG3 renal  uptake.  Eur.  J.  Nucl.  Med. (1998)  25 1: 

55-59  

 [28] Bruyant  PP,  Sau J,  Mallet  JJ.  Noise removal  using factor  analysis  of  dynamic 

structures: application to cardiac gated studies. J. Nucl. Med. (1999) 40 : 1676-1682  

 [29] Buvat  I,  Hapdey  S,  Benali  H,  Todd-Pokropek  A,  Di  Paola  R.  Spectral  factor 

analysis for multi-isotope imaging in nuclear medicine. Information Processing in Medical 

Imaging (1999)  : 442-447  

 [30] Chuang  KH,  Chiu  MJ,  Lin  CC;  Chen  JH.  Model-Free  Functional  MRI  Analysis  

Using  Kohonen  Clustering  Neural  Network  and  Fuzzy  C-Means.  IEEE  Trans.  Med. 

Imaging (1999) 18 12: 1117 - 1128  

 [31] Haacke  EM,  Brown  RW,  Thompson  MR,  Venkatesan  R.  Magnetic  resonance 

imaging : physical principles and sequence design. Wiley-Liss (1999) ISBN: 0471351288.

 [32] Haykin  S.  Neural  Networks:  a  comprehensive  foundation.  Prentice  Hall  (1999) 

ISBN: 0-13-273350-1.

 [33] Sitek  A,  Di  Bella  EV,  Gullberg  GT.  Factor  Analysis  of  Dynamic  Structures  in  

Dynamic SPECT Imaging Using Maximum Entropy.  IEEE Trans. Nucl. Sci. (1999) 46 6: 

2227-2232  

 [34] Stark DD, Bradley WG. Magnetic Resonance Imaging Vol1 3rd Edition. Mosby Inc, 

St. Louis (1999) ISBN: 0815185189.

 [35] Duda RO,  Stork  DG,  Hart  PE.  Pattern  Classification.  Wiley-Interscience (2000) 

ISBN: 978-0471056690.

 [36] Sitek  A,  Di  Bella  EV,  Gullberg  GT.  Factor  analysis  with  a  priori  knowledge-

application in dynamic cardiac SPECT. Phys. Med. Biol. (2000) 45 9: 2619-2638  

107



  Bibliography

 [37] Stanisz  GJ,  Henkelman  RM.  Gd-DTPA  relaxivity  depends  on  macromolecular  

content. Magn. Reson. Med. (2000) 44 : 665-667  

 [38] Boykov Y, Lee VS, Rusinek H, Bansal R. Segmentation of Dynamic N-D Data Sets 

via  Graph  Cuts  Using  Markov  Models.  MICCAI (2001)  Lecture  Notes  in  Computer 

Science 2208 : 1058-1066  

 [39] de Priester JA, Kessels AG, Giele EL, den Boer JA, Christiaans MH, Hasman A, 

van Engelshoven JM. MR renography by semiautomated image analysis: performance in 

renal transplant recipients. J. Magn. Reson. Imaging (2001) 14 2: 134-140  

 [40] Krier JD, Ritman EL, Bajzer Z, Romero JC, Lerman A, Lerman LO.  Noninvasive 

measurement  of  concurrent  single-kidney  perfusion,  glomerular  filtration,  and  tubular  

function. Am. J. Physiol. Renal Physiol. (2001) 281 4: F630-F638  

 [41] Martel AL, Allder SJ, Delay GS, Morgan PS, Moody AA. Perfusion MRI of infarcted 

and  noninfarcted  brain  tissue  in  stroke:  a  comparison  of  conventional  hemodynamic  

imaging and factor analysis of dynamic studies. Invest. Radiol. (2001) 36 7: 378-385  

 [42] Martel  AL,  Moody AR,  Allder  SJ,  Delay GS,  Morgan PS.  Extracting  parametric  

images from dynamic contrast-enhanced MRI studies of the brain using factor analysis. 

Med. Image Anal. (2001) 5 1: 29-39  

 [43] Coulam  CH,  Bouley  DM,  Sommer  FG.  Measurement  of  renal  volumes  with 

contrast-enhanced MRI. J. Magn. Reson. Imaging (2002) 15 2: 174-179  

 [44] Janier MF, Mazzadi AN, Lionnet M, Frouin F, Andre-Fouet X, Cinotti L, Revel D, 

Croisille P. Factor analysis of medical image sequences improves evaluation of first-pass 

MR imaging acquisitions for myocardial perfusion. Acad. Radiol. (2002) 9 1: 26-39  

 [45] Sitek  A,  Di  Bella  EV,  Gullberg  GT,  Huesman  RH.  Removal  of  liver  activity 

contamination  in  teboroxime  dynamic  cardiac  SPECT imaging  with  the  use  of  factor  

analysis. J. Nucl. Cardiol. (2002) 9 2: 197-205  

 [46] Sitek A, Gullberg GT, Huesman RH. Correction for ambiguous solutions in factor  

analysis using a penalized least squares objective.  IEEE Trans. Med. Imaging. (2002)  : 

216-225  

 [47] Sun Y, Moura JMF, Yang D, Ye Q, Ho C. Kidney segmentation in MRI sequences 

using temporal dynamics. IEEE International Symposium on Biomedical Imaging (2002)  : 

98 - 101  

108



  Bibliography

 [48] Tsagaan B, Shimizu A, Kobatake H, Miyakawa K.  An Automated Segmentation 

Method  of  Kidney  Using  Statistical  Information.  MICCAI (2002)  Lecture  Notes  in 

Computer Science 2488 : 556–563  

 [49] Martel AL, Fraser D, Delay GS, Morgan PS, Moody AA.  Separating arterial and 

venous  components  from  3D  dynamic  contrast-enhanced  MRI  studies  using  factor 

analysis. Magn. Reson. Med. (2003) 49 5: 928-933  

 [50] Rohrschneider WK, Haufe S, Clorius JH, Tröger J. MR to assess renal function in 

children. Eur. Radiol. (2003) 13 : 1033-1045  

 [51] Teh HS, Ang ES, Wong WC, Tan SB, Tan AG, Chng SM, Lin MB, Goh JS.  MR 

Renography Using a Dynamic Gradient-Echo Sequence and Low-Dose Gadopentetate 

Dimeglumine as an Alternative  to  Radionuclide  Renography.  AJR Am. J.  Roentgenol. 

(2003) 181 2: 441-450  

 [52] Bruno S, Remuzzi G, Ruggenenti P. Transplant renal artery stenosis. J. Am. Soc. 

Nephrol. (2004) 15 : 134-141  

 [53] de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC.  MR Imaging Relaxation 

Times of Abdominal and Pelvic Tissues Measured in Vivo at 3.0 T: Preliminary Results. 

Radiology (2004) 230 3: 652-659  

 [54] Ell P, Gambhir S.  Nuclear medicine in clinical diagnosis and treatment. Churchill 

Livingstone (2004) ISBN: 0443073120.

 [55] Frouin F, Delouche A, Raffoul H, Diebold H, Abergel E, Diebold B. Factor analysis 

of the left ventricle by echocardiography (FALVE): a new tool for detecting regional wall  

motion abnormalities. Eur. J. Echocardiography (2004) 5 : 335-346  

 [56] Kahn E, Lizard G, Dumas D, Frouin F, Menetrier F, Stoltz JF, Todd-Pokropek A. 

Analysis of Fluorescent MRI Contrast Agent Behavior in the Liver and Thoracic Aorta of  

Mice. Anal. Quant. Cytol. Histol. (2004) 26 4: 233-238  

 [57] Subramaniam M, Mizzi A, Roditi G.  Magnetic resonance angiography in potential  

live renal donors:  a joint  radiological  and surgical  evaluation.  Clin.  Radiol. (2004)  59 : 

335-341  

 [58] El Fakhri G, Sitek A, Guérin S, Kijewski MF, Di Carli MF, Moore SC. Quantitative 

Dynamic Cardiac (82)Rb PET Using Generalized Factor and Compartment Analyses.  J. 

Nucl. Med. (2005) 46 8: 1264-1271  

109



  Bibliography

 [59] Jones RA, Easley K, Little SB, Scherz H, Kirsch AJ, Grattan-Smith JD.  Dynamic 

contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: Part 1,  

functional assessment. AJR Am. J. Roentgenol. (2005) 185 6: 1598-1607  

 [60] Rao M, Stough J, Chi YY, Muller K, Tracton G, Pizer SM, Chaney EL. Comparison 

of human and automatic segmentations of kidneys from CT images. Int. J. Radiat. Oncol. 

Biol. Phys. (2005) 61 3: 954-960  

 [61] van den Dool  SW,  Wasser  MN,  de Fijter  JW,  Hoekstra  J,  van der  Geest  RJ. 

Functional  Renal  Volume:  Quantitative  Analysis  at  Gadolinium-enhanced  MR 

Angiography-Feasibility Study in Healthy Potential Kidney Donors. Radiology (2005) 236 : 

189-195  

 [62] Grattan-Smith JD, Jones RA. MR urography in children. Pediatric Radiology (2006) 

36 : 1119-1132  

 [63] Grenier N, Hauger O, Cimpean A, Pérot V. Update of Renal Imaging. Semin. Nucl. 

Med. (2006) 36 : 3-15  

 [64] Kirsch AJ,  Grattan-Smith JD, Molitierno Jr JA.  The role of magnetic  resonance 

imaging in pediatric urology. Curr. Opin. Urol. (2006) 16 : 283-290  

 [65] Koh HK, Shen W, Shuter B, Kassim AA.  Segmentation of Kidney Cortex in MRI  

studies using a Constrained Morphological 3D H-maxima Transform.  Ninth International 

Conference on Control, Automation, Robotics & Vision (2006)

 [66] Michoux N, Vallée J-P, Pechère-Bertschi A, Montet X, Buehler L, Van Beers BE. 

Analysis of contrast-enhanced MR images to assess renal function. Magn. Reson. Mater. 

Phy. (2006) 19 : 167-179  

 [67] Wismuller A, Meyer-Baese A, Lange O, Reiser MF, Leinsinger G. Cluster Analysis 

of Dynamic Cerebral Contrast-Enhanced Perfusion MRI Time-Series.  IEEE Trans. Med. 

Imag. (2006) 25 1: 62-73  

 [68] Lin S-P, Brown JJ, MD. MR Contrast Agents: Physical and Pharmacologic Basics. 

J. Magn. Reson. Imaging (2007) 25 : 884-899  

 [69] McRobbie DW, Moore EA, Graves MJ, Prince MR.  MRI from Picture to Proton. 

Cambridge University Press (2007) ISBN: 9780521683845.

110



A   Appendix

A Appendix

The denomination of our 20 patient MR data sets, the number of slices contained in 

their 3-D volumes, their number of time points (that is, the number of 3-D volumes) and 

their acquisition time are given in Figure 38.

Figure 39 and Figure 40 are illustrations of a typical MR data set.
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 Figure 38: Characteristics of our 20 MR data sets

Data sets

031104pa5 14 38 30
031113e1pa1 16 38 26
031223pa3 14 37 27
040205bpa1 16 24 16
040205pa1 12 36 24
040205pa2 12 41 29
040426apa1 18 37 23
040426dpa1 12 33 22
040427pa1 10 30 22
040430pa1 12 35 20
040831cpa1 14 40 31
040902pa1 16 39 25
041126pa2 14 38 24
041126pa3 14 44 22
041126pa4 14 37 25
050518epa2 18 36 27
050613pa2 18 35 30
060721apa3 12 35 22
060721bpa4 14 40 23
060721cpa1 14 33 21

Number
of slices

Number of
time points

Acquisition
time (min)
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 Figure 39: Illustration of a sequence of 3-D images (4-D data set)

This  is  an illustration of  data set  060721cpa1 which  is  a  sequence of  33 volumetric 
images made of 14 image slices during an acquisition time of 21 min.
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 Figure 40: Illustration of 1 volumetric image made of 14 slices

– From top to down and left to right: 14 slices, from most posterior to most anterior, of 1 
volumetric image chosen when the cortico-medullary differentiation is the best.

– Data set 060721cpa1 at t=3.1 min.
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