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Summary

The evolution of deep submicron technologies has placed a high importance on 

power dissipation and temperature of the chip. In addition, the increasing design 

complexity is causing higher levels of uncertainty in design prototyping in the early chip 

planning stages, thus leading to parameter variations which are posing an ever-increasing 

challenge to performance analysis of high-speed designs. The purpose of this thesis is to 

develop an interconnect power and thermal aware, and a variability-aware floorplanner 

based on B*-Tree representation, to combat the effects of scaling technologies on 

temperature and variations due to design uncertainty, separately. The thesis consists of 

two parts which explain our work done in the areas of interconnect power and thermal 

aware floorplanning, and variability-aware floorplanning as described below.

Interconnect power dissipation is becoming a performance bottleneck in sub

micron technologies leading to dramatic rise in chip temperatures which have negative 

impact on chip performance and reliability. However, most prior work fail to consider the 

switching activity of interconnects in deriving interconnect power dissipation and in 

exploring a thermal-aware floorplan. This can result in peak temperatures being 

underestimated by as much as 15oC according to our experiments. In this work, we present 

an interconnect power and thermal aware floorplanner that aims at reducing hotspots and 

distributing temperature evenly across a chip, while optimizing the traditional design 

metrics, chip area and wirelength. Results demonstrate that our floorplanner is effective in 

lowering peak temperatures by as much as 20% while providing floorplans that are as 

compact as the traditional area oriented techniques with just a slight overhead of total 

wirelength by 2% when testing on five MCNC benchmarks.
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The ever increasing growth of design complexity with the scaling of technologies 

towards the nanometer regime brings with it a challenging increase in the amount of 

variability due to uncertainty in initial estimates in early phases of the chip planning. With 

the introduction of variations due to uncertainty in block characteristics such as width, 

height and aspect ratio, a traditional deterministic floorplanner is unable to take block’s

variations into account and a variability-aware floorplanner is needed. In this work, we 

use an affine arithmetic (AA) model to develop a fast and optimized variability-aware 

floorplanner. The AA model enables a fast and accurate estimation of the variable range of 

floorplan metrics such as area and wirelength in the presence of variations of each block’s

dimensions. Compared with the Monte Carlo simulation results, the average errors of 

mean and range values computed by the proposed method are –0.78% & –12.96% 

respectively for area, –2.43% & –13.23% respectively for wirelength and up to 100X 

speed up by testing on five MCNC benchmarks. Our solution to this problem is also 

interesting to related problems such as warehouse floorplanning.
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Chapter 1

Introduction

1.1  Overview

Aggressive scaling of process technologies towards the nanometer regime has 

enabled feature sizes to shrink continuously. This allows designers to pack more 

functionality onto a single die. However, the increased level of integration within a single 

die imposes rigid constraints on the power consumption budget and hence the temperature 

profile of the chip. Also, it brings with it a challenging increase in the amount of 

variability due to uncertainty in initial estimates in the early phases of VLSI design i.e. 

design prototyping.

1.1.1 Floorplanning

Floorplanning is an important step in the VLSI design process to plan the positions 

and orientations of a set of circuit modules on a chip in such a way that no blocks overlap 

and the circuit performance is optimized. It can have drastic impacts on the quality and 

flexibility of a design such as layout area, wirelength congestion, power density and 

temperature of the chip. As technology moves into the deep-submicron era, circuit sizes 

and complexities are growing rapidly and floorplanning has become more important than 

ever before. With the introduction of uncertainty in the block dimensions at the time of 

floorplanning, a variability-aware floorplanner can predict the ranges of area and 

wirelength of a design that impact acceptability assessment of the chip architecture in the 

early design decision stage. 
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There are two aspects in general when dealing with the floorplanning problem. 

The first one is to find an appropriate topological representation (CBL, B*-Tree, O-Tree, 

TBS, BSG, Sequence Pair, TCG etc.) in the form of a data structure to represent the 

geometrical relationship among the blocks. The second aspect considers the application of 

a stochastic search method on the representation to find an optimized floorplan. Most 

floorplanning algorithms use simulated annealing to search for an optimal solution. 

Floorplanning has been proven to be a NP-hard problem, hence, it is important to chose a 

good representation and a searching methodology to perturb the infinite solution space to 

search for a near optimal floorplan solution in less time. Most of the research is focused on 

these two aspects of the floorplanning problem.

1.1.2 Thermal and Power Dissipation effects

Interconnects have become the center of attraction in terms of power consumption 

and performance as the process technology scales into the deep sub micron region. 

However, interconnects, unlike transistors, have not scaled down exponentially as we 

move to nano meter era. This has led to an increase in the total capacitance of 

interconnects and hence dynamic power dissipation despite the introduction of low 

dielectric materials. Secondly, long interconnects, compared to the scaled transistors, are 

becoming exceptionally long. In order to keep the delays of these long wires tractable, 

repeaters and flip-flops are inserted to prevent performance degradation. However, these 

additional components have detrimental impacts on interconnect power dissipation. 

Power density directly translates into heat which may lead to a significant increase 

in chip temperature. As a result, the temperature in modern high performance VLSI 

circuits increases dramatically due to smaller feature size, higher packing density and 
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rising power consumption. The hotspot in a modern chip might have a temperature of 

more than 100oC while the intrachip temperature differentials can be larger than 10~20oC 

[41]. Temperature can have a dramatic impact on circuit performance, power, and 

reliability: MOS current drive capability decreases approximately 4% for every 10oC 

temperature increase while the leakage current increases exponentially with the 

temperature increase resulting in thermal runaways. The interconnect resistance also 

becomes larger with increasing temperature. For example, the resistivity of copper 

increases by 39% from 20oC to 120oC. Higher resistivity causes longer interconnect RC 

delay and hence performance degradation. The interconnect (Elmore) delay increases 

approximately 5% for every 10oC increase in temperature [1]. Higher temperatures 

accelerate electro migration failures and reduce the lifetime of the device. Finally, high 

temperature of the chip makes cooling solutions significantly more expensive. Therefore, 

it is very important to eliminate hotspots and have a thermal balanced design. 

Power-aware design alone is not able to address the temperature challenge because the 

thermal distribution profile depends on not only the power density but also the physical 

size and location of each functional block. Therefore, even though it is related to the 

power-aware design area, thermal-aware design itself is a distinct and important research 

area. 

1.1.3 Design Prototyping

Design prototyping has gathered much attention recently due to increasing 

complexity of VLSI designs and the need for area and performance measures early in the

chip planning stage. Based on the assessment of the above measures, the chip architecture 

is revisited and it is partially or completely redesigned accordingly to meet the design 
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specifications. This saves a lot of time and cost incurred otherwise due to changes made 

after the actual implementation. Since design prototyping occurs very early in the design 

phase, uncertainty exists in the circuit physical dimensions and the technology library 

cells. This poses a challenging task to the designer to have initial estimates about area and 

performance parameters of the chip. Therefore, we need to correctly model these 

uncertainty variations not only to determine the correct expected circuit area and 

performance of a design but also to correctly optimize the design such that the percentage 

of parts that meet a specified performance target is maximized. 

1.2 Problem Definition

                 The work in the thesis is inspired from the concerns at rising trends in accurate 

thermal-conscious mechanisms and the impact of variations due to design uncertainty in 

early planning stage of a chip fabricated with sub-micron technologies. Designers are 

looking at developing new methods to tackle these problems at an early design stage so 

that unnecessary work may be avoided at later stages. Floorplanning has been a major 

focus of attention and research since it can impact many important design decisions at an 

early stage.

                  Many thermal-aware floorplanners exist that estimate the temperature of the 

chip and help to reduce hotspots by clever floorplanning techniques. However, with the 

onset of high switching activity circuits i.e. circuits which have high usage of specific 

interconnects and increasing interconnect power dissipation, previous floorplanners fail to

provide accurate temperature estimates. Therefore, we need to consider the switching 

activity of different interconnects in deriving the total power dissipation in a circuit. Since 

the temperature of the chip depends largely on the power distribution profile in a chip, 
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neglecting any of the factors responsible for power dissipation will give a pessimistic 

analysis of temperature estimates. 

As designs are getting more complex, it is difficult to have the entire design (the 

netlist and the database library) completely specified and available at the time of 

floorplanning. This introduces uncertainty in block dimensions which then need to be 

specified by a range of values for further evaluation. Floorplanning with uncertainty is the 

process of obtaining an accurate floorplan with missing data. With the introduction of 

variations in block characteristics such as width, height and aspect ratio, due to design 

uncertainty, a traditional deterministic floorplanner is unable to take block variations into 

account and a variability-aware floorplanner is needed. The traditional floorplanners 

optimize design metrics to find one best fixed floorplan for blocks with only fixed block 

characteristics. For example, an area driven traditional floorplanner might perform 

optimizations to find one fixed floorplan that yields the minimum total area. It assumes 

that each block has fixed block area or aspect ratio when estimating the total chip area. 

However, the variability-aware floorplanner optimizes design metrics to find one best

relative floorplan for all blocks with variable block characteristics. For example, an area 

driven variability-aware floorplanner might perform optimizations to find one relative 

floorplan that yields the minimum average total area for all possible variations in the 

range. It assumes that each block has variable block area or aspect ratio when estimating 

the total chip area. As a result, with the introduction of variability in the dimensions for 

each module, the conventional approach fails to estimate the ranges of area, wirelength 

and other floorplan metrics.

To estimate the range caused by variations, two types of brute-force approaches 
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can be tried. The first approach assumes the worst-case magnitude for each variation but 

the resulting floorplan will be very pessimistic. The second approach performs Monte 

Carlo simulations to consider enough points in a very large variation space, although the 

results are relatively accurate but the simulation time is extremely long. Both approaches 

are not ideal to have a fast and accurate estimation of ranges. 

To provide a fast yet accurate estimation of ranges caused by variations, the related 

area in statistical static timing analysis (STA) uses analytical approaches to find 

closed-form expressions for the distributions of circuit delays. These methods use normal 

distributions, interval valued analysis, probabilistic intervals or mathematical statistical 

models. We believe a similar approach is needed to quickly and accurately estimate the 

floorplan metric ranges.

Thus, our problem definition consists of developing a floorplanning algorithm 

with the objective of minimizing chip area and wirelength together with achieving two 

major goals as outlined below:

 Accurate chip thermal modeling with the consideration of switching 

activity of interconnects and netlength in determining interconnect power 

dissipation together with the block power dissipation in a chip. The goal of 

floorplanning algorithm is to evenly spread out the temperature on a chip 

and thus reduce hotspots.

 Determining the range of total area and wirelength under the presence of 

variations in dimensions of modules. The goal is to determine the best 

relative floorplan with the smallest range and average for all possible 

variations in total area and wirelength.
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1.3  Our Contributions 

We develop a floorplanner based on B*-Tree representation and use the simulated 

annealing algorithm to get the best floorplan layout meeting the criteria as outlined in the 

problem definition given earlier. The major contributions of the thesis are two fold. 

 First, our work incorporates the feature of switching activity of 

interconnects while calculating the power densities across the entire chip 

and shows that it can lead to different power density profiles depending on 

values of switching activity, keeping other parameters like positions and 

dimensions of functional blocks and interconnect lengths constant. This 

results in significant change in chip temperature leading to localized hot

spots. We then develop an interconnect power and thermal aware 

floorplanner that aims at reducing hotspots and distributing temperature 

evenly across a chip while optimizing the traditional design metrics, chip 

area and wirelength. A thermal modeling tool called HotSpot is used to 

determine the chip temperature profile. Our work is novel with regard to the 

different floorplanning algorithms developed till recently for chip 

temperature estimates as none of the previous works take switching activity 

of the interconnects into account for determining the temperature of the 

chip. Results in our work indicate that excluding switching activity in 

interconnect power determination can result in peak temperatures to be 

under estimated by as much as 15oC. Our floorplanner is effective in 

lowering peak temperatures by as much as 20% while providing floorplans 

that are as compact as the traditional area oriented techniques with a slight 
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overhead of total wirelength by 2% when testing on five MCNC 

benchmarks.

 Second, we present a mathematical model using affine arithmetic to 

estimate the range of floorplan metrics such as chip area and wirelength 

under the given variations in dimensions for each module. Our work is a 

breakthrough with reference to earlier related work that considers variations

of width and height of each block to be limited to certain discrete values in a 

range. Also, we use more advanced analytical technique i.e. affine 

arithmetic to perform range calculations on a set of MCNC benchmark

circuits. Moreover, we also determine range of wirelength in addition to the 

range of area. We determine the most feasible B*-Tree as the solution 

which can give the lowest range of values lying as close as possible to the 

minimum average values of area and wirelength for a given set of 

variations. We then run Monte Carlo simulations to verify the accuracy of 

our affine arithmetic model. Experimental results show that, compared with 

the Monte Carlo simulation results, the average errors of mean and range 

values computed by the proposed method are –0.78% & –12.96% 

respectively for area, –2.43% & –13.23% respectively for wirelength and 

up to 100X speed up by testing on five MCNC benchmarks. Our solution to 

this problem is also interesting to other related problems such as warehouse 

floorplanning. 

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 gives the 
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background information on floorplanning, thermal and power dissipation effects, and 

variations due to design uncertainty, which provide the base and framework for the work 

done in this thesis. The chapter gives an overview of floorplanning concepts including the 

description of B*-Tree and simulated annealing algorithm which have been used in our 

work. Further, it describes the sources of power dissipation in a chip together with the role 

of interconnects in determining power dissipation, and hence the temperature estimation 

of the chip using a thermal modeling tool called Hotspot. Finally, the chapter gives a brief 

overview of Monte Carlo simulation method, numerical computation methods i.e. interval 

arithmetic and affine arithmetic which have been used for modeling variations. Chapter 3 

reviews the previous work which has served as a source of motivation for this research 

work and formally describes the problem definition, solution approach and experimental 

results for our contribution towards making thermal-aware floorplanning more accurate 

with the incorporation of switching activity of interconnects in deriving the power 

dissipation in a chip. Chapter 4 presents the formal problem formulation for our 

contribution towards developing a variability-aware floorplanner based on affine 

arithmetic to enable a fast and accurate estimation of the variable range of floorplan 

metrics such as area and wirelength in the presence of variations of block dimensions due 

to design uncertainty. The chapter reviews the previous related work, explains our 

variability-aware floorplanning algorithm in detail and presents the experimental results 

based on both the Monte Carlo simulation approach and our approach. Chapter 5 draws 

the conclusions and provides future research directions. 
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Chapter 2

Background and Related Work 

In this chapter, we discuss some preliminary topics which will provide the 

necessary ground framework for the work done in this thesis. The chapter is organized as 

follows. Section 2.1 briefly discusses floorplanning concepts and the typical approach 

followed to solve a floorplanning problem. It gives an overview of various topological 

representations, block and net model including pin assignment and wirelength estimation 

method, and various floorplanning algorithms. Section 2.2 discusses various causes of 

power dissipation including interconnect power dissipation. It also explains the method to 

estimate temperature together with a brief description of thermal modeling tool called 

Hotspot. Section 2.3 explains Monte Carlo simulation method, and mathematical models 

like interval arithmetic and affine arithmetic, which are used for modeling variations.

2.1 Floorplanning 

Floorplanning is an important step in physical design of VLSI circuits to plan the 

positions and orientations of a set of circuit modules on a chip in order to optimize the 

circuit performance. The quality of the floorplan solution depends largely on the choice of 

topological representation and the floorplanning algorithm selected to search over an 

infinite solution space.

2.1.1 Topological Representation

In order to floorplan a circuit design, an abstract representation is needed to 

represent the geometrical relation or topologies among blocks so that some algorithms can 
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be applied on to solve the problem. This abstract representation is called topological 

representation and is commonly specified by a rectangular dissection of the floorplan 

region. Floorplans can be divided into two categories, the slicing floorplans [4], [5] and 

the non-slicing floorplans [6], [7], [8] and [9]. 

Slicing floorplan is a rectangular dissection that can be obtained by recursively 

cutting a rectangle horizontally or vertically into two smaller rectangles. Slicing 

floorplans are represented by slicing structures which can be modeled by a binary tree 

with n leaves and n-i nodes where each node represents a vertical cut line or a horizontal 

cut line and each leaf a basic rectangle. Figure 2.1 shows the slicing floorplan and its

corresponding binary tree.  

                          
   V 

   H 5

     3 H

    V          4
    

        1               2

Figure 2.1: Slicing floorplan and its corresponding binary tree.  

Non-slicing floorplans are further categorized into mosaic floorplans and general 

floorplans. Mosaic floorplan is one which is dissected into exactly n rooms so that each 

room is occupied by one and only one block. E.g. a wheel structure as shown in Figure 2.2. 

In addition, there is no crossing cut in the mosaic floorplan. 

          3
                     

    1     2       5

4
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Figure 2.2: Mosaic floorplan (wheel structure).  

General floorplan is similar to mosaic floorplan in that non-slicing structures are 

allowed. However, the floorplan region can be dissected into more than n rooms such that 

some rooms are empty, i.e. not occupied by any block as in Figure 2.3.

                                                           

     Deadspace

Figure 2.3: General floorplan.

Deadspace of a floorplan is the space that is wasted as shown in Figure 2.3.    

Minimizing area is the same as minimizing deadspace. Deadspace percentage is computed 

as  

(A − ∑Ai ) × 100%   (2.1)
                            ∑Ai

       where Ai is the area of each block i and A is the total area of the floorplan.

Slicing floorplan is a special case of mosaic floorplan and mosaic floorplan is a 

special case of general floorplan. The relationship among the solution spaces of slicing, 

mosaic and general floorplans is illustrated in Figure 2.4 on next page.

         3
     2

  5          
4

1
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                   General               

                                          

Figure 2.4: Relationship among the solution spaces of slicing, mosaic and general
floorplans.

Various topological representations like Normalized Polish Expression, B*-Tree

[10], O-Tree [6], Sequence Pair [11], Corner Block List (CBL) [12], Bounded Sliceline 

Grid (BSG) [8], Transitive Closure Graph (TCG) [13] etc. have been proposed to 

represent slicing and non-slicing floorplans. We briefly describe some of the most popular 

representations below.

2.1.1.1 Normalized Polish Expression (NPE)

Normalized polish expression [5] proposed by Wong and Liu is used for 

representing slicing floorplans. NPE removes the redundancy in the binary tree 

representation, which is due to the existence of more than one binary tree corresponding to 

the same slicing floorplan. An ideal data representation is one which is able to represent all 

possible combinations of floorplan without having two or more data representations that 

correspond to the same floorplan. 

An expression, E = e1, e2, …, e2n-1, where ei Є {1, 2, …, n, H, V}, 1 < i < 2n-1, is a 

polish expression of length 2n-1 iff

          Mosaic           

   Slicing
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 Every operand j, 1 < j <  n, appears exactly once in the expression, and

 The expression E has the balloting property, i.e. for every sub-expression 

Ei = e1, e2, …, ei , 1 < i < 2n-1, the number of operands is greater than the 

number of operators.

A polish expression is said to be a normalized polish expression iff E has no consecutive 

H’s and V’s (e.g. 16H7H25HV34HV). 

We can view a normalized polish expression as a bottom UP description of a 

slicing structure. In fact, we can interpret the symbols H and V as two binary operators 

between slicing structures. If A and B are slicing structures, we can interpret AHB and 

AVB as the resulting slicing structures obtained by placing B on top of A, and B to the 

right of A, respectively. A postorder traversal of the slicing tree results in a NPE with V

and H as the operators, and the basic rectangles as operands (See Figure 2.5). This 

expression specifies how to build the final slicing structure from smaller ones. Figure 2.5 

shows the slicing floorplan, its NPE and the corresponding slicing tree.

        V

        V               H

  H             H    3          4

                   H       7    2        5

         1        6

              NPE = 16H7H25HV34HV

Figure 2.5: Slicing floorplan, its NPE and the corresponding slicing tree.

7      5

  4
    6

           2

    1               3
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2.1.1.2 Sequence Pair  

Murata et al. [11] proposed the sequence-pair representation for rectangular 

module placement. The main idea is to use a sequence pair to represent the geometric 

relation of modules, place the modules on a grid structure and construct corresponding 

constraint graphs to evaluate cost. This representation requires 2n[log n] space to encode a 

sequence pair and there are (n!)2  combinations in total where n is the number of modules. 

Further, the transformation between a sequence pair and a placement takes O(nlogn) time.

A sequence pair (Ґ+, Ґ-) is a pair of sequences of elements representing a list of 

blocks. The two sequences Ґ+ and Ґ- are permutations of a given block set. The sequence 

pair structure is actually a meta grid. Given a sequence pair, one can construct a 45 degree 

oblique grid as shown in Figure 2.6 (a). For every block, the plane is divided by the two 

crossing slope lines into four cones as shown in Figure 2.6 (b). Block 2 is in the right cone 

of block 1, then it is to the right of block 1 [see Figure 2.6 (c)]. In general, the relative 

positions between any two blocks a and b can be derived from a sequence pair (Ґ+, Ґ-) by 

the following rules.

 Horizontal constraint:

If (Ґ+, Ґ-) = (<…a, …, b…>, <…a, …, b…>), block b is at the right side of 

block a.

 Vertical constraint:

If (Ґ+, Ґ-) = (<…a, …, b…>, <…b, …, a…>), block b is below block a.



16

 For example, (Ґ+, Ґ-) = (<431625>, <635412>) is a sequence pair of block set {1, 2, 3, 4,

5, 6}. Figure 2.6 shows the oblique grid and packing of the sequence pair (<431625>, 

<635412>).

           

       (a) (b)

                                                     

              (c)

Figure 2.6: (a) Oblique grid for sequence pair (<4 3 1 6 2 5>, <6 3 5 4 1 2>) (b) Four 
cones of block 1 (c) Corresponding packing. Dimensions for the six blocks are: 1 (4 × 
6), 2 (3 × 7), 3 (3 × 3), 4 (2 × 3), 5 (4 × 3) and 6 (6 × 4).  

Evaluation of a Sequence Pair

In order to evaluate the corresponding floorplan of a sequence pair and 

determine the position of each block, Murata et al. [11] used two weighted directed 

constraint graphs Gh and Gv that are constructed according to horizontal and vertical 

constraints of a sequence pair. Then, the longest path algorithm is invoked to determine 

the longest paths of the two graphs. The longest paths of Gh and Gv are the width and 
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height of the corresponding placement of the sequence pair respectively. Figures 2.7 (a) 

and (b) are examples of the weighted directed constraint graphs Gh and Gv of the sequence 

pair (Ґ+, Ґ-) = (<431625>, <635412>).

                     

(a) (b)

Figure 2.7: The horizontal and vertical constraint graphs of a sequence pair 
(<431625>, <635412>) (a) Horizontal constraint graph (b) Vertical constraint graph.

 The time complexity of the longest path algorithm is O(n2) where n is the number 

of blocks. It had been proved that the longest path of Gh is equivalent to the longest

common subsequence of Ґ+ and Ґ-, and the longest path of Gv is equivalent to the longest 

common subsequence of Ґ+R and Ґ- where Ґ+R is the reverse sequence of Ґ+. Based on the 

theorm, Tang et al. [7] used an effective data structure to determine the longest common 

subsequence of a sequence pair in O(nloglogn) time. They use a complete binary tree and 

a doubly-linked list to determine the longest common subsequence of a sequence pair. The 

doubly linked list is used to keep the longest common subsequence during the evaluating 

process and a complete binary tree is used to find the position of a new element which will 

be inserted into the doubly-linked list.
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2.1.1.3 Corner Block List (CBL) 

Corner Block List is proposed by Hong et al. [12] to represent mosaic floorplan. 

The corner block (CB) is the block at upper-right corner of the floorplan. The left and 

bottom bounding segments of CB form a T-junction. 

T-junction of 90o T-junction of 180o

     (a) Vertical CB (b) Horizontal CB

Figure 2.8: Two different kinds of T-junction and orientation of the corner block 
(CB) “f”.

The orientation of CB is defined by the orientation of its T-junction. The 

T-junction has only two types of orientations: T rotated by 90 degrees (Figure 2.8 (a)) and 

by 180 degrees (Figure 2.8 (b)) counterclockwise respectively. If T is rotated 90 degrees 

counterclockwise, the CB is vertically oriented, and its corresponding entry in list L is set 

by a “0”. Otherwise, the CB is horizontally oriented, and the entry in list L is set by a “1”.

For example, in Figure 2.8 (a), the orientation of corner block “f” is vertical and is denoted 

by “0” whereas in Figure 2.8 (b), the orientation of “f” is horizontal and is denoted by “1”.

f
 b

   c       e

a       d

e    f
 a

  c      d

          b
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Bottom segment is moved upward

Insert f

Delete f

S1 = f;
L1 = 0;
T1 = {10};

Figure 2.9: Deletion/Insertion of vertically oriented corner block “f”.

Left segment is moved towards right

Insert f

Delete f

Figure 2.10: Deletion/Insertion of horizontally oriented corner block “f”.

Corner Block Deletion

The core idea of CBL representation is embodied in the corner block deletion 

operation. The way to delete a CB depends on its orientation. To delete a CB which is 

vertically oriented, its bottom segment is shifted to the top boundary of the floorplan and 

the attached T-junctions (if any) are pulled along with the segment. Figure 2.9 illustrates 

this operation. The corner block “f” is vertically oriented, thus, in order to delete this CB, 

the bottom segment of its room is shifted to the top boundary and the attached T-junction 

(in this case there is only one attached T-junction) is pulled along with the bottom 

segment. If the CB is horizontally oriented, the left segment of its room is shifted to the 

right boundary of the floorplan and the attached T-junctions (if any) are pulled along with 

the segment. Figure 2.10 illustrates the deletion of horizontally oriented CB “f”.

f
 b

   c       e

a       d

 b      c          e

a           d

          e   
 a

  c      d

          b

e    f
 a

  c      d

          b
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Corner Block Insertion

Corner block deletion is the inverse of deletion. If the inserted CB is vertically

oriented, the horizontal segment from the top of the floorplan covering a designated 

numbers of T-junctions is pushed down in order to create a room for the inserting CB. 

Figures 2.9 and 2.10 illustrate the insertion operation of corner block “f” starting from the 

floorplan shown in the right and obtaining the floorplan as shown in the left after insertion 

of CB “f”. If the corner block is horizontally oriented, the operation is similar to those of 

vertical oriented but instead of pushing the top segment, the vertical segment at the right of 

the floorplan is pushed towards left. 

It can be observed that the floorplan still remains mosaic after the deletion or 

insertion operation.

Transformation from floorplan to CBL

CBL list is constructed by recursive deletion of CBs in the floorplan until there is 

no CB left in the floorplan. For each deletion of a CB, its name is recorded in list S, its 

orientation recorded in list L and the number of its attached T-junctions is recorded by the 

same number of successive “1”s ended by a “ 0” in a binary list Ti (Figure 2.11). At the end 

of deletions of all CBs, three lists are obtained: the block name list S = {Mn, Mn-1, ..., M1}, 

the orientation list L = {Ln, Ln-1, ..., L2} and the T-junction list T = {Tn, Tn-1, ..., T2}. Then 

each list is reversed and all the items of the T-junction list are combined into a single 

binary vector T. The triple (S, L, T) is called a corner block list.
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Corner Block List

S = {a, b, c, d, e, f};

L = {0, 1, 1, 0, 0};

T = {0 10 0 0 10};

Figure 2.11: A CBL list and the resultant floorplan.

Transformation from CBL to floorplan 

Construction of the floorplan from a CBL is the inverse process. Blocks are 

inserted in turn either from the right for vertical orientation or from the top for horizontal 

orientation, covering required number of T-junctions given by the corresponding entry in 

list T. Figure 2.11 illustrates the resultant floorplan of a corner block list.

2.1.1.4 B*-Tree

We shall review the B*-Tree representation in this section. Chang et al. [10] 

presented a binary tree based representation for a left and bottom compacted placement

called B*-Tree and showed its superior properties for operations. Given a placement P, we 

can construct a unique B*-Tree in linear time by using a recursive procedure similar to the 

depth first search (DFS) algorithm. Each node ni in a B*-Tree denotes a module. The root 

of a B*-Tree corresponds to the module on the bottom-left corner. The left child nj of a 

node ni denotes the module mj that is the lowest adjacent module on the right-hand side of 

mi i.e.

xj  =  xi  +  wi                                                               (2.2)

The right child nk of a node ni denotes the module mk that is the lowest visible 

module above mi and with the same x co-ordinate as mi i.e.

f
 b

   c       e

a       d
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xk =  xi                 (2.3)

Figures 2.12 (a) and (b) show a placement and its corresponding B*-Tree

respectively. The root n0 of the B*-Tree in Figure 2.12 (b) denotes that m0 is the module on 

the bottom-left corner of the placement. For node n3 in the B*tree, n3 has a left child n4

which means that module m4 is the lowest adjacent module in the right-hand side of 

module m3 (i.e. x4 = x3 + w3). n7 is the right child of n3 since module m7 is the visible 

module over module m3 and the two modules have the same x co-ordinate (x7 = x3).

                        

Figure 2.12: (a) A placement (b) The corresponding B*-Tree.

We shall show the procedure to get the placement from a B*-Tree. We first define a 

permutation π which is the label sequence when we traverse the tree in depth-first search 

order. The first element in permutation π is the root of tree. We now introduce a contour

structure which is used by Guo et al. in [6]. The contour structure is a doubly linked list of 

modules, which describes the contour line in the current compaction direction. Without 

the contour structure, the runtime for placing a new module is linear to the number of 

modules. By maintaining the contour structure, the y co-ordinate for a newly inserted 
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module can be computed in O(1) time. For each module mi, let ψ(i) be the set of modules 

mk with its order lower than mi in permutation π and interval (xk, xk + wk) overlaps interval 

(xi, xi + wi) by a non-zero length. If ψ(i) is non-empty, we have

               yi = max k ε ψ(i) yk + hk                                                (2.4)

        Otherwise   yi = 0                                     (2.5)

The algorithm for finding the placement from a corresponding B*-Tree is outlined 

in Figure 2.13 below. It uses a contour structure to reduce the run time for finding the y

co-ordinate of a module while solving the equations (2.4) and (2.5).

  Input: B*-Tree(π [0:n])
  Output: Placement with position (xi, yi) for each module mi

  Begin
              Set perm = 1

  Set contour = NULL
  Set current_contour = 0
  For code = 0 to n−1
       if code = 0 then
            Set current_module = π [perm]
            If current_contour = 0 then
                 Set x[current_module] = x[current_contour] + w[current_contour]

     Else set x[curent_module] = 0
          End if

     Set y[current_module] = find_max_y (contour, current_module)
     Update_contour (contour, current_module)
     Set current_contour = current_module
     Set perm = perm + 1

       Else set current_contour = prev [current_contour]
End if

  End for
  End.

Figure 2.13: Pseudo code of algorithm for finding the placement from a 
corresponding B*-Tree.

We use a variable current_contour to record the module where we want to insert 
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the next module in the contour. Figure 2.14 shows how find_max_y determines the y

co-ordinate of current module and how update_contour updates the contour structure 

when we add a new module m8 to the placement. The old contour is composed of modules 

m7, m3, m4, m6 and m5. After m8 is placed, the new contour becomes m7, m8, m4, m6 and m5.  

Note that we only need to search modules m3 and m4 to get m8’s y co-ordinate y8 with the 

contour structure.

Newly added module

Old Contour   

                             New Contour

Figure 2.14: Adding a new module on top, we search the contour from left to right 
and update it with the top boundary of the new module.

We perturb a B*-Tree (a feasible solution) to another B*-Tree by using the following four 

operations.

1 Op1: Rotate a module. 

2 Op2: Move a module to another place. 

3 Op3: Swap two modules. 

To cope with rotated modules while performing Op1, when inserting a deleted node into a 

B*-Tree, we can perform the operation twice at each position to find a better solution, one 

for the original orientation, and the other for the rotated one. Op2 deletes and inserts a 

module. For the deleted node associated with a rectangular module, we simply delete the 

   M0     M1
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    M3    M4
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M6

M7
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node from the B*-Tree. Op2 and Op3 need to apply the Insert and Delete operations for 

inserting and deleting a node to and from a B*-Tree. We explain the two operations as 

below.

Deletion

       There are three cases for the deletion operation. 

1 Case 1: A leaf node. 

2 Case 2: A node with one child. 

3 Case 3: A node with two children. 

In Case 1, we simply delete the target leaf node. In Case 2, we remove the target node and 

then place its only child at the position of the removed node. The tree update can be 

performed in O(1) time. In Case 3, we replace the target node nt by either its right child or 

left child nc. Then, we move a child of nc to the original position of nc. The process 

proceeds until the corresponding leaf node is handled. It is obvious that such a deletion 

operation requires O(h) time where h is the height of the B*-Tree. Note that in Cases 2 and 

3, the relative positions of the modules might be changed after the operation, and thus, we 

might need to reconstruct a corresponding placement for further processing. 

Insertion

When adding a module, we may place it around some module. We define two 

types of positions as follows. 

1 Internal position: A position between two nodes in a B*-Tree.

2 External position: A position pointed by a NULL pointer.

Both these positions can be used for inserting a new node. 

We explain the perturbation process with the help of an example in Figure 2.15 
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that illustrates all the three moves namely Op1, Op2 and Op3. We start with an initial 

placement and then perform the three operations in the order, i.e. swapping two modules, 

moving a module from one place to another and rotating a module successively. The 

corresponding B*-Tree for each placement obtained after the perturbation process is given 

below it as shown in the Figure 2.15. Note that the rotation operation does not change the 

configuration of the B*-Tree, only the block orientation changes in the same position in 

the placement.

        Op3     Op2          Op1

Figure 2.15:  Example showing the perturbations process on placement and its
corresponding B*-Tree.  

We summarize the advantages of B*-Tree as follows:

1. Based on ordered binary trees, B*-Trees are very easy for implementation and can 

perform the respective primitive tree operations: search, insertion and deletion in only 

O(1), O(1) and O(n) times while existing representations for non-slicing floorplans 

need at least O(n) time for each of these operations where n is the number of  modules. 
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2. B*-Tree is very flexible for handling the floorplanning problems with various types of 

modules (e.g. hard, pre-placed, soft, and rectilinear modules) directly and efficiently. 

They can handle non-slicing structures.

3. The correspondence between an admissible placement (i.e. which is compacted and 

can neither move down nor move left) and its induced B*-Tree is 1-to-1 (i.e. no 

redundancy). Further, the transformation between them takes only linear time.

4. B*-Trees do not need to construct constraint graphs for area cost evaluation. The area 

cost after exchanging two modules can be recomputed incrementally on a B*-Tree. 

Specifically, the modules ahead of the exchanged modules in the depth-first search 

(DFS) of a B*-Tree remain unchanged. Therefore, we need to consider only the 

modules behind the exchanged ones for cost update.

5. The solution space is smaller, i.e. O(n!22n-2/n1.5).

2.1.1.4 Comparison of different topological representations 

The strength of each topological representation can be roughly evaluated by 

looking at the upper bound of their solution space. Usually, lower the bound, better a 

representation. Another way of evaluating the performance of the floorplan representation 

is by looking at its time complexity to transform a floorplan to a placement configuration. 

A good topological representation should be easily transformed into an actual placement. 

We summarize the strengths and weaknesses of various topological representations used 

more popularly in Table 2.1. 
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Table 2.1. Comparisons among the solution spaces and time complexity of various 
floorplan representations.

2.1.2 Block and Net Model

Floorplan layout shows the locations of blocks and terminals. Characteristics and 

arrangement of blocks as well as terminals need to be determined accurately. Net list is 

described by a net model which also explains how to estimate wirelength.

2.1.2.1 Block Model and Pin Assignment

1 Origin for chip is at (0, 0). Blocks are specified by their lower left (x, y) 

co-ordinates (positive numbers), and height and width as shown in Figure 2.16.

    Pin

(0,0)            Pad

Figure 2.16: Block and terminal locations in a chip.

Data Structure Solution Space Time complexity

NPE O(n!23n/n1.5) O(n)
B*-Tree O(n!22n-2/n1.5) O(n)
O-Tree O(n!22n-2/n1.5) O(n)

Sequence Pair (n!)2 O(n2)
Corner Block List (CBL) O(n!23m) O(n)

Transitive Closure Graph (TCG) (n!)2 O(n2)
Bounded Sliceline Grid (BSG) n!C(n2,n) O(n

2
)

    

(6,6)

(2,3)          (5,3)

    3
          

    
   1           

  2  
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2 There are two types of terminals: terminals attached to the frame and terminals 

attached to the blocks. The first type is denoted as pad and the second as pin as 

shown in Figure 2.16.

3 Each block has a set of pins at locations specified by (x, y) co-ordinates as depicted 

in Figure 2.17. The process of identifying a pin location is called pin assignment.

Note that the pin locations are determined relative to the chip’s origin and are 

termed as absolute co-ordinates (xabs, yabs). Pin locations specified relative to 

block’s lower left co-ordinates (x, y) are termed as relative co-ordinates (xrel, yrel). 

Relationship between absolute and relative pin co-ordinates is given by the 

following equations.

                            xabs = x + xrel                         (2.6)

and yabs = y + yrel                         (2.7)

          P3(0,10)      P4 (5,10)    P5(10,10)

    P2(0,5)           P6(10,5)

P1(0,0)         P8 (5,0)     P7 (10,0)

Figure 2.17: Pin locations on a block.

4 A block can be placed on a chip in any one of the four orientations as depicted in 

Figure 2.18. Note that the pins rotate too with the block rotation and their locations 

get modified accordingly.

Block 
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    P1         P2      P3     P5      P6          P7

            P3              P4     P5    P7    P8     P1

          P2     P6     P8    P4    P6       P2     P4            P8  

  

  P1 P8   P7        P7    P6        P5    P5   P4     P3      P3 P2      P1

Figure 2.18: Different block orientations and corresponding pin locations.

5 A net is just a set of two or more pins. Figure 2.19 shows an example of a five 

terminal net where two pins are from block 3, other two from blocks 1 and 2 

respectively, and the fourth  terminal is a pad. Exact wirelength of each net is not 

known until routing is done.

                                    

Figure 2.19: Example of a five terminal net.

2.1.2.2 Half Perimeter Wirelength Estimation (HPWL) method

There are many methods available to estimate wirelength in a floorplan. 

However, HPWL is the most popular method for wirelength estimation.

          We compute the HPWL of a net containing j terminals, each having location  (xj, 

yj) as follows:

   HPWLx =  max (xj) – min (xj)              (2.8)
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   HPWLy =  max (yj) – min (yj) (2.9)

                    HPWL = HPWLx + HPWLy             (2.10)

As shown in Figure 2.20, HPWL perimeter length metric for a two terminal net is 

determined by enclosing the net in a rectangle and computing the semi perimeter of the 

rectangle as below:

| rightX − leftX | + |topY − bottomY|                         (2.11)                               

                                                   
Figure 2.20: HPWL of a net.

We illustrate the determination of HPWL by an example of a five terminal net 

shown in Figure 2.19. The net consists of one chip pin i.e. pad and four other block pins. 

HPWL is determined by enclosing the net in a rectangle as shown dotted in Figure 2.21 

below. The semi perimeter of the rectangle gives the HPWL of the net.

                                                                                                
HPWL of the rectangle = | rightX − leftX | + |topY − bottomY|

Figure 2.21: Example of determination of HPWL of a five terminal net.

Table 2.2 lists the (x, y) co-ordinates for all the pins in the net. We calculate the value of



32

HPWLx and HPWLy from equations (2.8) and (2.9) respectively. Finally, we sum up 

HPWLx and HPWLy to yield the HPWL of the net. 

Table 2.2. Pin locations of a five terminal net.

Pin 
number

Pin 
co-ordinates

(x, y)
1 (2, 7)
2 (4, 7)
3 (5, 3)
4 (6, 5)
5 (5, 10)

HPWLx = max (xj) – min (xj) = 6 – 2 = 4

HPWLy = max (yj) – min (yj) = 10 – 3 = 7

HPWL = HPWLx + HPWLy = 4 + 7 = 11

Total wirelength is given by the summation of lengths for all nets. 

2.1.3 Cost Function

As the number of feasible solutions for a given instance of a floorplanning 

problem is very large, floorplanning algorithms use cost function as a measure that allows 

selecting superior floorplans with specific criteria. The possible criteria may be 

minimizing area, wirelength, delays, optimizing routing structure, power density and 

temperature of the chip or a combination of two or more of the above criteria. The specific 

criterion ensures greater reliability and performance of the circuits. A commonly used 

objective function is a weighted sum of area and wirelength:

Cost = α × A + β × L                                               (2.12)

where A is the total area of the packing, L is the total wirelength, and α and β are constants.
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2.1.4 Floorplanning Algorithms

Several floorplanning algorithms exist that search over a solution space to 

determine the optimal floorplan solution. Floorplanning algorithms are classified into 

three classes:

1. Constructive: These algorithms attempt to build up a feasible solution by starting 

from a seed module; then, other modules are selected one at a time and added to the 

partial floorplan. Algorithms that fall under this category are as below.

 Cluster Growth

 Partitioning and Slicing

 Mathematical Programming

 Rectangular Dualization

2. Knowledge-Based approach: A knowledge expert system is implemented consisting 

of 3 basic elements.

 Knowledge base containing data describing the floorplan problem and its   

current state.

 Rules stating how to manipulate the data in the knowledge base in order to 

progress toward a solution.

 Inference engine controlling the application of the rules to the knowledge base.

3. Iterative: These algorithms employ techniques that start from an initial floorplan 

which then undergoes a series of perturbations until a feasible floorplan is obtained or 

no more improvements can be achieved. Algorithms that fall under this category are 

enumerated as below.
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 Simulated Annealing

 Force Directed Interchange

 Genetic Algorithm

Some of the most popular algorithms used in research are discussed in the section below.

2.1.4.1 Cluster Growth

Figure 2.22: Cluster growth floorplanning.

In this approach, the floorplan is constructed in a greedy fashion; one module at a 

time until each module is assigned to a location of the floorplan. A seed module is selected 

and placed into a corner of the floorplan (lower left corner). Then, the remaining modules 

are selected one at a time and added to the partial floorplan while trying to grow evenly on 

upper, diagonal, and right sides simultaneously (Figure 2.22), maintaining any stated 

aspect ratio constraint on the modules as well as the chip itself and optimizing other 

criteria. Criteria might include: minimization of wiring length, minimization of dead 

space or both. 

To determine the order in which the modules should be selected, the modules are 

initially organized into a linear order. Linear ordering algorithms order the given module 

netlist into a linear list so as to minimize the number of nets that will be cut by any vertical 

line drawn between any consecutive modules in the linear order. Linear ordering is one of 

Floorplan growth
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the most widely used techniques for constructively building an initial placement 

configuration. A general description of a linear ordering algorithm is given in Figure 2.23, 

which is based on the linear ordering heuristic reported by Kang. 

            Algorithm Linear_Ordering
            S: Set of all modules
            Order: Sequence of ordered modules  // initially empty
            Begin

Seed = Select Seed module
Order = [Seed]
S = S – [Seed]
Repeat

  For each module m Є S 
        Compute the gain for selecting module m
        gainm = number of nets terminated by m – number of new nets started by m
  End For
  Select the module m* with maximum gain
  If there is a tie then
         Select the module that terminates the largest number of nets
  Elseif there is a tie then
         Select the module that has the largest number of continuing nets

                          Elseif  there is a tie then
             Select the module with the least number of connections

                          Else break remaining ties as desired
  Endif

                          Order = [!Order, m*]  //append m* to the ordered sequence
  S = S − {m*}

Until S = θ
            End.

Figure 2.23: Linear ordering algorithm.

First, a seed module is selected. The seed selection could be random or based on 

the module connectivity with the I/O pads and/or the remaining modules. Then, the 

algorithm enters a Repeat loop. At each iteration of this loop, a gain function is computed 

for each module in the set of the remaining unordered modules. The module with the 

maximum gain is selected, removed from the set of unordered modules and added to the 

sequence of ordered modules. In case of a tie between several modules, the module which 
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terminates the largest number of started nets is selected. In case of another tie, the module 

that is connected to the largest number of continuing nets is preferred. If we have one more 

tie, the most lightly connected module is selected. Remaining ties are broken as desired. 

The concept of net termination, starting of new nets and continuing nets are illustrated in 

Figure 2.24.

Terminated nets New nets

       …       …        …

         Continuing net

Figure 2.24: Classification of nets during linear ordering.

     In the description of Figure 2.24, the notation !L is used to mean the elements of 

sequence L. Curly braces ({}) are used with sets and square brackets ([]) are employed 

with sequences. A general description of the cluster growth algorithm is given in Figure 

2.25.

            Algorithm Cluster_Growth
            S: Set of all modules
            Begin

Order = Linear_Ordering(S)
Repeat

Nextmodule = b where Order = [b, !rest]
Order = rest
Select a location for b that will result in minimum increase in cost function

// Cost may be function of the contour of the partial floorplan, size and shape of
     b, and wiring length
Until Order = θ

            End.

Figure 2.25: Cluster growth algorithm.
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2.1.4.2 Genetic Algorithms

Genetic algorithms (GA) [3] are a class of search and optimization methods that 

mimic the evolutionary principles in natural selection. They are implemented as a 

computer simulation, in which a population of abstract representations (called 

chromosomes) of candidate solutions (called individuals) to an optimization problem 

evolves towards better solutions. Genetic algorithms are applied to floorplanning problem 

to search for an optimized solution from an infinitely large solution space. Figure 2.26 

shows a genetic algorithm optimization flow. The solution (i.e. representation of a 

floorplan design) is usually encoded into a binary string called chromosome. Instead of 

working with a single solution, the search begins with a random set of chromosomes 

(floorplans) called initial population. Each chromosome is assigned a fitness score that is 

directly related to the objective function of the optimization problem. 

The population of chromosomes (floorplans) is modified to a new generation by 

applying three operators similar to natural selection operators – Reproduction, Crossover

and Mutation. Reproduction selects good chromosomes based on the fitness function and 

duplicates them. Crossover picks two chromosomes randomly and some portions of the 

chromosomes are exchanged with a probability Pc. Finally, mutation operator changes a 1 

to a 0 and vice versa with a small mutation probability Pm. A genetic algorithm 

successively applies these three operators in each generation until a termination criterion 

is met. It can very effectively search a large solution space while ignoring regions of the 

space that are not useful. This algorithmic methodology leads to very time-efficient 

searches. In general, a genetic algorithm has the following steps: 

1. Generation of initial population.
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2. Fitness function evaluation.

3. Selection of chromosome.

4. Reproduction, Crossover and Mutation operations.

100100
010011
…..
101100

          Y

N

1001           00׀1001 ׀11 
0100 ׀11  0100׀00

010000            011000

Figure 2.26: Genetic algorithm flow.

2.1.4.3 Simulated Annealing 

It is a technique to find a good solution to an optimization problem by trying 

random variations of the current solution. A worse variation is accepted as the new 

solution with a probability that decreases as the computation proceeds. The slower the 

  Stop

   Begin

    Initial population

         Mutation

       Reproduction

   Fitness evaluation

         Crossover

Terminate?
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cooling schedule or rate of decrease, the more likely the algorithm is to find an optimal or 

near-optimal solution. An annealing algorithm needs four basic components: 

 Solution space (e.g. slicing floorplan): These represent the possible 

problem solutions over which we will search for an answer. 

 Perturbation rules: A set of allowable moves that will permit us to move 

from one feasible configuration to other as annealing proceeds. 

 Cost function (e.g. area): Determines how “good” a particular solution is.

 Cooling schedule: To anneal the problem from a random solution to a 

good, frozen placement.

We need a starting hot temperature and rules to determine when the current temperature 

should be lowered, by how much the temperature should be lowered, a cooling schedule 

(e.g. T = 0.9 * T) and when annealing should be terminated. The pseudo code for the 

simulated annealing algorithm with reference to floorplan problem is outlined in Figure 

2.27.

The simulated annealing algorithm starts by randomly choosing an initial B*-Tree. 

Then, it perturbs a B*-Tree (a feasible solution) to another B*-Tree based on the 

aforementioned Op1–Op3. The perturbation process converts one feasible B*-Tree to 

another. We then do the placement for the corresponding B*-Tree and evaluate the cost 

function. The move is accepted if the cost of the current solution is less than the previous 

one or with a probability that is a decreasing function of annealing temperature 

(Boltzmann function) as defined in the algorithm. For all other cases, the move is rejected. 

At each temperature, we try enough moves until there are N uphill moves (bad moves) or 

the total number of moves exceeds 2N where N is an increasing function of n (O(n)), the 
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number of basic rectangles. We use a fixed ratio temperature schedule i.e. T = 0.9 * T. We 

terminate the annealing process if the number of accepted moves is less than 5% of all 

moves made at a certain temperature or the temperature is low enough i.e. less than the 

threshold. At last, we transform the resulting B*-Tree, i.e. the solution with the lowest 

value of cost function, to the corresponding final admissible placement.

Begin
        Initialize temperature T
        Initialize a B*-Tree for the input blocks
        Do
          Repeat
                  Perturb 
                  Placement
                  Compute cost
                  If cost < Previous cost
                          Accept the move 
                  Else
                         Prob = min (1, e−Δck/T), where Δc = change in cost, k = constant

        Rand = Random (0, 1)
                         If Rand < Prob then
                             Accept the move
                         Else
                            Reject the move

        End if
             End if
        Until (Uphill moves > 2*N or Downhill moves < N)        

             T = 0.9 * T
        While (T > Threshold and Reject_rate < converge_rate)
End.

Figure 2.27: Pseudo code of simulated annealing algorithm.

2.1.5 Floorplanning Methodology

A floorplanning problem typically consists of an input as a benchmark suite that 

consists of standard circuits (set of blocks with dimensions of each block, possible shapes 

of each block, number of terminals for each block) with netlist that can be tested upon to 

obtain an optimized floorplan. 
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We have to make certain selections, as given below, in floorplanning approach to 

obtain the output which is a layout with orientations and positions of blocks.

1. Choice of floorplan representation: We select an appropriate floorplan 

representation according to the input as well as implementation cost and run time. 

2. Choice of cost function: Cost function contains parameters that determine the 

criteria for selection of an optimized floorplan. E.g. area, wirelength, power etc.

3. Choice of floorplanning algorithm. 

Selection of all these parameters will determine how good the optimized floorplan 

solution is.

2.2 Thermal and Power Dissipation effects

Smaller feature size, higher packing density and rising power consumption lead to 

dramatic temperature increase in modern high performance very large scale integrated 

(VLSI) circuits, thereby resulting in serious timing and reliability concerns. Therefore, it 

becomes important to identify the major power dissipation sources on a chip and quantify 

them accurately. Both the device and interconnect power dissipation contribute towards 

the estimation of the resulting chip temperature. This enables to optimize the on chip 

thermal distribution profile, thereby eliminating hotspots.

2.2.1 Sources of Power Dissipation

Generally there are two sources of power dissipation in a chip:

1) Static power dissipation, which is switching independent and mostly 

induced by various short-circuit and leakage currents. 

2) Dynamic power dissipation, which arises from the switching activities of 
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logic circuits. 

We take into account both static and dynamic sources of power dissipation while

calculating the power density of functional blocks and interconnects in the design. 

2.2.1.1 Dynamic Power Dissipation 

Dynamic power is the main source of power consumption on a chip at algorithm 

and architecture levels. This is because short-circuit and leakage currents responsible for 

static power, 

(i) Can be reduced to less than 15% of the total chip power by smart circuit 

design techniques [41], and 

(ii) Are influenced mainly by the circuit design style used.

        Dynamic power dissipation mainly arises from two circuit behaviors: 

1) Transient short-circuit current, and

2)  Repeated charging and discharging of capacitive loads. 

The short-circuit current is incurred due to transient conduction of both the pull-up and 

pull-down circuits in the CMOS circuit. Because transition cannot realistically be instant, 

it is possible that the shut-off network is turned on before the previously turned-on 

network is shut off. This current, however, is not significant in most circuits and is often 

ignored [27] and [28]. 

The major dynamic power consumption comes from the charging and discharging 

of the state-keeping nodes. A low-to-high state transition corresponds to the charging up 

of all the capacitors associated with that node; while a high-to-low transition corresponds 

to the discharging of the node. With scaled feature sizes, the capacitance per unit area 

increases, accompanied by the increased switching frequency. These trends lead to 
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significant dynamic power consumption in modern-day circuits. 

The dynamic power dissipated is given by

Pdynamic = α × C × V 2  × F                                         (2.13)

where α is the switching activity, F is the frequency of operation, V is the supply voltage 

and C is the physical capacitance of the resources.

2.2.1.1.1 Interconnect Power Dissipation

Assuming the supply voltage and frequency of operation to be constant, 

interconnect power dissipation depends on the switching activity and the capacitance of 

the interconnects. The capacitance of the interconnect Cint is directly dependent on its 

length Lint which is determined by the floorplan. Thus

Cint = k × Lint

where k is some constant. The switching activity depends on the number of times the 

interconnect is accessed and the correlations between the data that it operates on. The 

access in turn depends on the total number of data transfers in the algorithm while the 

correlations depend heavily on the input data [26]. In other words, the switching activity 

depends on how frequently a particular interconnect is used. 

For example, two functional blocks that need to access each other very frequently 

for data or information exchange will have their bus interconnects busy all the time,

leading to a greater current flow. This would lead to higher power dissipation compared to 

when the interconnect is used less frequently. The lesser the interconnect is used, lesser is 

the power consumption as the bus will be in high impedance state most of the time. Such 

type of impact will be more pronounced in high frequency circuits. However, at the 

floorplanning stage, we can safely assume that the switching activity depends mainly on 
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the number of accesses to interconnects, which in other words is the frequency of usage of 

interconnects.

Thus, to minimize the interconnect power dissipation, it is important to consider 

both the switching activity and the net length with the objective of minimizing the length 

of interconnects, which have high switching activity, in the resulting floorplan. Hence,

interconnects which are heavily accessed or have high switching activity on them should 

be made as short as possible to reduce the power dissipation and the wire delays.

2.2.2 Temperature Estimation

The temperature of the chip depends on the power consumption of each functional 

block and the relative positions of the functional blocks. Also, the temperature greatly 

depends on the power density profile of the chip, i.e. how the total power is distributed 

among the various blocks on the chip. For the same total value of power dissipation and 

the same floorplan layout, different distribution of power among various blocks can lead 

to altogether different temperature profiles of the chip. This is due to the fact that heat 

transfer depends on adjacent hot and cold blocks. Since high power blocks generate more 

heat, placing them adjacent to low power density or colder blocks will lead to larger heat 

diffusion than placing them closer to hot blocks. This will result in more spreading of heat,

thus reducing hotspot temperatures. The larger the temperature difference, the larger the 

heat diffusion. Therefore, to reduce the maximum temperature of the chip, we should 

surround blocks with high power density by blocks with low power density if possible. 

We explain the impact of power density profile on heat diffusion with the help of 

an example. Let there be four blocks with total power of 10 units. Let the power 

distribution profile for one case be as given on the next page. The corresponding heat 
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diffusion flow is indicated besides the power distribution profile.

                                                                                                                                          

Figure 2.28: Case 1: a) Power distribution profile b) Corresponding heat diffusion flow. 

 On changing the power density profile, as in case 2, we get a different corresponding heat 

diffusion flow as given below.

Figure 2.29: Case 2: a) Power distribution profile b) Corresponding heat diffusion flow.

According to the general temperature-power equation

T = P × R  (2.14)

where P is the power and R is the thermal resistance. Substituting the value of R, the 

equation modifies to as given below 

T = P × (t / k × A) = (P / A) × (t / k)

where t is the thickness of the chip, A is the area and k is the thermal conductivity of the 

material. The equation can now be written as below

                      T = d × (t / k)        (2.15)

     A        B
  P = 4      P = 2

    
    C       D
  P = 3     P = 1

     A        B
   P = 5      P = 1

     C       D
   P = 1      P = 3
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where d is the power density. Based on previous equation, we can conclude that 

temperature is heavily dependent on power density. Thus, we can substitute power density 

metric for temperature in thermal-aware calculations. 

2.2.2.1 Hotspot Tool

Skadron et al. [29] proposed a thermal modeling tool called HotSpot which is easy 

to use and computationally efficient for modeling thermal effects at the block level. 

Hotspot provides a simple compact model where the heat dissipation within each 

functional block and the heat flow among blocks are accounted for. An RC network of 

thermal capacitances and resistances of functional modules are constructed and then 

temperatures at the center of functional modules are calculated by using circuit-solving 

techniques. The basic idea is that, we define the transfer thermal resistance Rij of 

functional block i with respect to block j as the temperature rise at block i due to one unit 

of power dissipated at block j:

                                Rij = ∆ Tij / ∆ Pj                 

such that we can get a transfer thermal resistance matrix as Rt . For any power distribution 

on the floorplan, we can calculate each block’s temperature by using the following 

equation:

    T1              R
t
11      R

t
12   …………………   R

t
1m                       P1

    T2             R
t
21      R

t
22   …………………   R

t
2m                      P2

                  =    

    Tm            R
t
m1      R

t
m2   …………………  R

t
mm              Pm

Figure 2.30: Transfer thermal resistance matrix Rt .
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where Pi is the power consumption and Ti is the temperature of the functional block i. The 

transfer thermal resistance matrix can be obtained from Hotspot, given the floorplan for a 

set of blocks.

The inputs to HotSpot are the floorplan description and the power consumption 

number of individual modules. The specifications of heat spreader and heat sink are also 

provided to define the heat-removing ability. The output of Hotspot is the temperature for 

each module.

2.3 Variation Models

Design uncertainty greatly affects dimensions of blocks and interconnect lengths 

in complex VLSI circuits at an early chip planning stage. There are many sources of 

uncertainty, chief among them being: incomplete design of some blocks and incomplete 

technology library of cells. The resulting variations affect other chip parameter 

estimations like area, wirelength, delay and power etc, which need to be assessed for the 

acceptability of chip architecture at the design decision stage.

We need methods and tools to model arbitrary variational CAD problems. Monte 

Carlo analysis remains the gold standard for “arbitrary” problems- accurate, but often 

intractably slow. To model the variations accurately in less time, we use some analytical 

and statistical methods. Since we take into account the variations in dimensions of blocks 

and interconnect lengths to determine the range of chip area and wirelength, we need to 

perform arithmetic calculations on interval ranges. To facilitate such range computations,

we resort to the use of some kind of numerical computation methods.

Numerical Computations is the study of algorithms for the problems of continuous

mathematics. Many numeric computations are inherently approximate, i.e. they will not 
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deliver the “true” exact values of target quantities but only some values in some sense 

“near” the true ones. The difference between a computed value and the “true” value of the 

corresponding quantity is called the error of that computed value. In Self Validated 

Computation (SVC), the accuracy of computed quantities is being tracked as part of the 

process of computing them. So, if the magnitude of the error cannot be predicted, at least it 

can be known a posteriori. 

   Interval arithmetic (IA) and affine arithmetic (AA) are two such SVC models 

based on range analysis, i.e. use ranges to approximate the accurate values.  Whatever the 

shape of allowed ranges, all range-based SVC models provide, for every function f:

Rm→Rn, a range extension F: Rm→Rn with the following property: If the input vector (x1, 

…, xm) lies in the range jointly determined by the given approximate values X1, …, Xm, 

then the quantities (z1, …, zn) = f (x1, …, xm) are guaranteed to lie in the range jointly 

determined by approximate values (Z1, …, Zn) = F (X1, …, Xm).

The IEEE Floating-point Standard provides control over rounding, a feature that 

is essential to SVC. The standard specifies precisely the results of exceptional operations 

and reserves certain bit patterns to denote two “infinite” values and a series of error codes 

or “not-a-numbers” (NaN). 

 We use the notation < f > for the value of expression f in IEEE floating-point 

arithmetic with the default rounding mode.

 We write ↑ f ↑ for a numerical float (possibly) that is greater than or equal to the 

value of a formula f; that is, the value of f is rounded up to a representable number 

(not necessarily the smallest one). Similarly, we write ↓ f ↓ for the value of f

rounded down to a representable number.
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 In special cases, f can consist of a single, or two or more arithmetic operations. 

2.3.1 Interval Arithmetic (IA)

Interval arithmetic (IA) [36] is a range-based model of numerical computation. In 

IA, each real quantity x is represented by an interval x = [xlo, xhi] of real numbers. It means 

that the true value of x is known to satisfy xlo ≤ x ≤ xhi. 

(1) We define a non-empty interval as a set of this form: 

      [xlo, xhi] = {x Є R: xlo ≤ x ≤ xhi},

     where xlo is in F U {-∞} and xhi is in F U {+∞}.

     We define an empty interval [ ] where the lower and upper bounds are not defined.

(2) The bounds of an interval are float values, possibly infinite, but its elements are 

finite real quantities.   

(3) A finite float x can be represented as an interval [xlo, xhi]. 

(4) The pairs: [+∞, +∞], [-∞, -∞], [NaN, NaN], [a, NaN], [NaN, a] are not valid, for 

any float a. 

Operations are defined on intervals e.g. negation, addition, translation, subtraction, 

scaling, multiplication, reciprocal, division, square root, logarithm, exponential and sine 

and co-sine etc. Other operations are midpoint, radius, meet (intersection), join (convex 

hull). We present two examples of affine operations, namely addition and join below.

Example 1: Addition

      IA.add (x, y: interval): Interval ≡   | Computes x + y.

      if x = [ ] or y = [ ]      then return [ ]

      else   return [↓ xlo + ylo ↓, ↑ xhi + yhi ↑ ]   
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Example 2: Join

   IA.join (x, y: interval): Interval ≡   | Returns x U y.

   if x = [ ]  then return y

  else if y = [ ]  then return x

   else  return [min{xlo, ylo}, max{xhi, yhi}] 

The main weakness of IA is its over-conservatism: the computed interval for a 

quantity may be much wider than the exact range of that quantity. In long computation 

chains, the relative accuracy of the computed interval decreases at an exponential rate and 

finally the “error explosion” occurs. Some techniques to avoid error explosion are:

1. Avoid unfavorable correlations between the arguments of the IA operation.

Example: x = [4, 6], considering the evaluation of z ← x × (10 − x) 

Using IA.sub and IA.mul, we get z = [16, 36]. However, a trivial analysis shows 

that the exact range should be [24, 25].

So, the correlation between the arguments is unfavorable. 

2. Combine several arithmetic operations into a single “macro operation” and write a 

special-purpose IA routine for it.

Example: x = [-2, 2], considering the evaluation z ← x
2
. Since x

2
 = x × x, so we use 

IA.mul and we get [-4, 4] which is of poor accuracy.

So, we can write a special routine (IA.sqr, for example) to deal with evaluation of 

power.

Unfortunately, the previous techniques can only be applied to relatively simple operations 

over restricted domains. When the expression to be computed is determined only at run

time or involves dozens of variables and operations, avoiding bad correlation is 
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impossible. We have to resort to more sophisticated SVC models, for example, affine 

arithmetic (AA). 

2.3.2 Affine Arithmetic (AA)

Affine arithmetic (AA) [37] is introduced to overcome the error explosion problem 

occurred in IA. It provides a tighter bound for the computed quantities. In affine 

arithmetic, each input or computed quantity x is represented by an affine form x
^

 which is a 

first order polynomial

x
^

= x0 + x1ε1 + x2ε2 + …+ xnεn                                (2.16)

where x0, x1, x2, …, xn are known floating-point numbers, and ε1, ε2, ..., εn are symbolic 

variables whose values are only known to lie in the range [-1,+1]. x0 is the ideal value of 

the affine form . Each εj  stands for an independent component of the total uncertainty. xj

gives the corresponding magnitude of component εj. It means, if we want to evaluate the 

range of  Z = x × y (x Є [a, b], y Є [c, d]), we will have to replace x and y with 

Z = (x0 + x1ε1 + x2ε2 + …+ xnεn) × (y0 + y1ε1 + y2ε2 + …+ ynεn)                                                        

where xj is determined by a and b, and yj by c and d.

The approximation error incurred in each AA operation normally has a quadratic 

dependency on the size of the input intervals. Therefore, if the input intervals are small 

enough, each operation will provide a fairly tight estimate of the exact range of the 

corresponding quantity.

Addition, subtraction and simple scaling are easily seen to yield the affine form 

directly. In affine operations, for a function, if f (x, y) is an affine function of x and y, 

namely f (x, y) = αx + βy + ζ, then z can be represented by an affine form directly,
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Z  <= αx
^

 +βy
^

 +ζ = (αx0 +βy0 +ζ ) + (αx1 +βy1) × ε1 + … + (αxn +βyn) × εn

This will yield an almost-exact range (except for round-off error) of z in terms of εj in the 

input range.

The general rule for approximating the result of a non-affine operation (e.g. x, /, 

exp) on affine operands is to seek an affine form that is a linear combination of the 

operands along with a new term (ε) to account for the error. The range of the actual result 

should lie within the range of this affine approximation. In non-affine operations, if in z = 

f (x, y), f can not be represented by an affine form, then we need to add the approximation 

error, namely 

Z
^

 = f a (e1,…,en) + zkεk  = z0 + z1ε1 + … znεn  + zkεk

where f a  is the affine operation and zkεk represents the approximation error as well as the 

round-off error. 

Round-off errors can not be avoided, so in order to provide guaranteed enclosure, 

every affine form should add an extra term zkεk. E.g. Z = X + Y should add the extra term 

zkεk. The handling of round-off errors increases the code complexity and execution time of 

AA operations. In applications where those errors are known to be unimportant (because 

they are dominated by uncertainties in the input data, etc), round-off error control can be 

ignored.

We explain the non-affine operation with the help of an example. Let’s consider a 

multiplication operation z
^

 = x
^

 × y
^

       where  x
^

 = 30 − 4ε1 + 2ε2 and

y
^

 = 20 + 1ε1 + 3ε2 , then
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z
^

 = 600 + 10ε1 + 40ε2 + 30ε3 + (-4ε1 + 2ε2 ) (3ε1 + 1ε3) 

The quadratic term (-4ε1 + 2ε2 ) (3ε1 + 1ε3) can be treated as the error term whose range is 

[-24, 24] writ large. Hence, z
^

 is in the range of 600 + 104 = [496, 704]. Analysis shows 

that the actual range of z
^

 is [528, 675], so AA results in only 1.42 times wider than the 

actual range. If IA is used, the resulting range is [384, 863], 3.26 times wider than the 

actual range. 

Thus, AA gives more precise estimation than IA and is a preferred method in range 

calculations where accuracy is essential. To find the best estimation, Chebyshev 

approximation can be used.

To convert from AA to IA, we define the smallest interval that contains all 

possible values of x
^

. Every affine form x
^

 = x0 + x1ε1 + x2ε2 + … + xnεn   implies a bound of 

the ideal quantity x, namely r, i.e.

x Є x = [x0 – r, x0 + r]     (2.17)

where r is the total deviation of x
^

, ∑ N   
j = 1 (xj). It is the smallest interval that contains all 

possible values of x
^

. However, this conversion discards all correlation information in x
^

.

To convert from IA to AA, we replace every ordinary interval bound x = [a, b] for 

an ideal quantity x by x
^

= x0 + xkεk where

x0 = (a + b) / 2 ,     (2.18)

xk = (b − a) / 2     (2.19)

      and εk a new noise symbol not occurred anywhere before.
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2.3.3 Monte Carlo Simulation 

Monte Carlo simulation [39] is a method for iteratively evaluating a deterministic 

model using sets of random numbers as inputs. This method is often used when the model 

is complex, nonlinear or involves more than just a couple uncertain parameters. It is used 

for analyzing uncertainty propagation where the goal is to determine how random 

variation, lack of knowledge or error affects the sensitivity, performance or reliability of 

the system that is being modeled. Monte Carlo simulation is categorized as a sampling 

method because the inputs are randomly generated from probability distributions to 

simulate the process of sampling from an actual population. So, we try to choose a 

distribution for the inputs that most closely matches data we already have or best 

represents our current state of knowledge. The data generated from the simulation can be 

represented as probability distributions (or histograms) or converted to error bars, 

reliability predictions, tolerance zones and confidence intervals. A simulation can 

typically involve over 10,000 evaluations of the model. 

Monte Carlo simulation method is generally used as a base for comparison with 

the proposed algorithm to verify the accuracy and effectiveness of the algorithm to 

evaluate the deterministic model by some other approach.
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Chapter 3

Interconnect Power and Thermal aware Floorplanning

Thermal aware floorplanning has become of paramount importance recently due 

to scaling technologies and many more research efforts are directed towards determining 

accurate temperature estimates of the chip. Since thermal aware floorplanning requires 

knowledge of both the power density profile and the relative positions of blocks, accurate 

estimations of both the factors are essential. In our work, we seek to do accurate thermal 

conscious floorplanning by considering the above factors with in-depth analysis. In this 

chapter, we describe our interconnect power and thermal aware floorplanning algorithm 

based on accurate power estimations by taking into account the effect of switching activity 

of interconnects on the power dissipation and hence the temperature estimations of the 

chip. 

The chapter is organized as follows. Section 3.1 reviews previous work related to 

this research. Section 3.2 formulates the problem. We present our approach in evaluating 

the impact of interconnects during floorplanning process in section 3.3. Section 3.4 

presents and discusses experimental results. We conclude this chapter in the last section.

3.1 Motivation

In this section, we discuss some relevant work that has been a source of motivation 

for the research work presented in this chapter. Previous works related to this work fall 

into two broad categories- the first is the prevalence of thermal aware floorplanners and 

thermal modeling tools, and the second is the interconnect power estimates.

The first category of work studied thermal or temperature aware floorplanning 
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algorithms at the micro architectural level. For example, Han et al. [15] used an Alpha 

floorplan to analyze the impact of floorplanning on the maximum temperature. The 

tradeoff between performance and temperature is explored in [14]. W.L. Hung [16] used 

the genetic algorithm approach. These papers consider that the power density can increase 

due to the placement of blocks, that have high power consumption, close together. 

However, all the above work neglected the interconnect power consumption. Tools for 

modeling thermal effects on chip-level placement have been developed [10], [17], [18] 

and [19]. Nevertheless, interconnect power factor is never the center of attention in these 

floorplanning/placement techniques.

Recently, W.L. Hung [20] developed a floorplanner that considers the interconnect 

power consumption in exploring a thermal-aware floorplan. However, the drawback of 

their approach is that they have only considered the interconnect lengths in calculating the 

distribution of total interconnect power across the chip. They have not accounted for the 

switching activity of the interconnects in the power density formulations, which can lead 

to erroneous chip temperature estimates. Our work uses a similar approach to theirs but 

also takes into account the effect of switching activity which has a significant impact on 

the power density profile of the chip and thus the average and peak temperatures.

The second category of related work studied interconnect effects. Interconnect 

buffers are now first-order timing and power considerations in VLSI design [21]. This 

change has imposed challenges across all design levels. It is no longer possible to 

accurately produce the power consumption and performance of a design without prior 

knowledge about its floorplan to predict the structure of its interconnect. A number of 

researchers have considered the impacts of chip-level interconnect in power and 
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performance aspects [22], [23] and [24]. There has been significant work done at 

high-level synthesis stage. Prabhakaran [25] presented a new algorithm that combines 

physical design and high-level synthesis with the objective of minimizing interconnect

energy dissipation. Mehra [26] considered architectural synthesis and power reduction 

techniques. However, none of the above papers consider the thermal or temperature 

effects. Our work focuses mainly on thermal effects in addition to the power dissipation at 

floorplanning stage.

There are numerous works on the determination of device power dissipation with 

accurate analysis. However, interconnect power dissipation is still an ongoing area of 

research with the sharp rising impact of interconnects on power dissipation of the chip 

with scaling technologies as discussed in chapter 1.2. Therefore, we mainly focus on 

interconnect power dissipation in our work and seek to accurately model it, considering all 

the major factors like switching activity of interconnects which has been ignored till now 

at the floorplanning stage. We then intend to do interconnect power and thermal aware 

floorplanning based on accurate determination of power dissipation.

3.2 Problem Formulation

We define our problem in this work as follows: given the information of a set of 

modules including their areas, interconnections and power consumptions, the interconnect 

power and thermal aware floorplanning problem is that of placing the modules in the chip 

area satisfying a set of conditions and achieving the goal of distributing the temperature 

evenly across the chip by taking into account the power dissipation due to switching 

activity of interconnects while optimizing area and wirelength. In this work, we consider 

only the hard modules, i.e. modules that are not flexible in shape but are free to move and 
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rotate.

Let B = {b1, b2, …, bm} be a set of m rectangular modules with block bi of width 

Wi, height Hi, area Ai, and an original power density Pi, 1 < i < m. Each module is free to 

rotate. Let (xi, yi) denote the co-ordinates of the bottom-left corner of the rectangle bi on a 

chip. A floorplan F is an assignment of (xi, yi) for each bi such that no two modules 

overlap. The goal of interconnect power and thermal aware floorplanning algorithm is to 

minimize 

(i) Chip area (i.e. minimum bounding rectangle of F). 

(ii) Wirelength (i.e. the summation of half bounding box of interconnections) and 

(iii) Both peak and average temperatures across the chip.

3.3 Interconnect Power and Thermal aware Floorplanning Algorithm

In this section, we describe our methodology to develop the interconnect power 

and thermal aware floorplanning algorithm by taking into account the effect of switching 

activity of interconnects on the power dissipation and hence the temperature estimations 

of the chip.

3.3.1 Methodology and Algorithm

We first developed a traditional simulated annealing floorplanning algorithm 

having the cost function (equation 2.12)

C = α × A + β × WL                                                     

where A is the total area of the packing, WL is the total wirelength, and α and β are 

constants which denote the relative weights of area and wirelength respectively in the cost 

function, (α + β) ≤ 1 . We use B*-Tree representation for our floorplanning algorithm as 
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its easy to implement, has a smaller solution space and time complexity, and many other 

advantages as outlined in chapter 2.1.1.4. Since our floorplanner considers only the hard 

modules, we perturb the B*-Tree (a feasible solution) to another B*-Tree by using the 

following three operations

Op1: Rotate a module.

Op2: Move a module to another place.

Op3: Swap two modules.

We obtained a floorplan description which gives the positions and dimensions of 

various functional blocks together with the length of different interconnects in the netlist. 

We then calculated the power density values for different modules by taking into account 

the interconnect induced power consumptions with and without the considerations of 

switching activity of the interconnects. Hotspot tool was then used to determine the 

temperature profile of the chip based on floorplan description and power density values 

calculated for various blocks as the inputs to the tool. But Hotspot has a limitation that it 

models thermal effects only at the per module level. It does not model the thermal effects 

arising due to interconnect power dissipation directly. So, we devised a mechanism 

similar to [20] to distribute the power consumed by each net to the connecting modules as 

explained in the next section on interconnect power distribution. Finally, we make our 

floorplanner interconnect power and thermal aware by modifying the cost function as 

discussed in the section on temperature approximations. Figure 3.1 on the next page

summarizes the flow of our algorithm.
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Input: A set of modules bi (Wi, Hi, Ai and Pi), Netlist N and total interconnect power TIP.
Output: Floorplan F of chip area (A), total wirelength (WL), average and peak 
temperatures (Tavg and Tpeak), and containing modules with locations (xi, yi).
Begin
         Initialize temperature T
         Initialize a B*-Tree for the input blocks
         For each net j Є N

  α[j] = Random number Є (0, 1)
         End For       
      // Run B*-Tree based simulated annealing floorplanning algorithm to obtain F
         Do

       Repeat
                  Perturb

     Placement
     Call Calculate_Power algorithm to determine total block power TPi

     Compute cost
     If cost < Previous cost
            Accept the move
     Else

            Prob = min (1, e−Δck/T), where Δc = change in cost, k = constant
       Rand = Random (0, 1)

            If Rand ≤ Prob then
       Accept the move

       Else
       Reject the move

       End if
     End if

             Until (Uphill moves > 2*N or Downhill moves < N)        
             T = 0.9 * T
        While (T > Threshold and Reject_rate < Converge_rate)
        Apply F and TPi to Hotspot tool to obtain Tavg and Tpeak

End.

Figure 3.1: Pseudo code of the interconnect power and thermal aware floorplanning 
algorithm.

Figure 3.2 shows the diagram depicting the relationship between temperature 

profile and the effect of switching activity of interconnects on power density profile of the 

chip.
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         For Interconnects

                     P = α × C × V 2 × F

                  Net Length         Architecture dependent

Figure 3.2: Diagram showing relationship between temperature and switching 
activity of interconnect.

3.3.2 Interconnect Power Distribution

To account for the interconnect induced power consumptions in the Hotspot 

thermal modeling tool, we distribute the power consumed by each interconnect or net to 

the connecting modules in the floorplan. We accomplish this goal by taking the intuition 

that power consumption of a module is relative to capacitance and capacitance is 

proportional to the module area [20]. We thus distribute the net power to a connecting 

module in proportion of its module area and total area of all the modules connected in a 

net. Given a particular value of total interconnect power, we then calculate the proportion 

Temperature Profile

Power density of Blocks and 
Interconnects

Positions and Dimensions of 
Blocks + Net Lengths

Floorplan Description

Number of 
accesses to 
nets.
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of total interconnect power assigned to each net with and without considering the effect of 

switching activity of nets. As outlined in section 2.2 earlier, interconnect power 

dissipation depends on both the net length and switching activity of interconnects. The 

switching activity of interconnect depends on its frequency of usage which is further 

dependent on the specific design and the internal functionality as discussed in section 

2.2.1.2 on interconnect power dissipation.

For calculation of net power without considering the switching activity, only net 

length will be used as the criteria for dividing the total interconnect power among different 

nets as proposed in [20]. We calculate the net power by the formula

    NPj  =   NLj    ×   TIP                                         (3.1)
                                      WL

where NPj is the net power, NLj is the net length of net j in the netlist containing N number 

of nets, TIP is the total interconnect power and WL is the total wirelength given by 

                                        WL = ∑ N 
j=1 NLj                                                                       (3.2)

When switching activity is considered in addition to net length, we calculate the net power 

by the formula

                      NPj  =             (NLj × αj)          ×    TIP                  (3.3)
                                      (∑ N 

j=1 (NLj × αj))

       where αj is the switching activity of net j. 

Thus, the amount of net power that contributes to the connecting module bi of the 

net j can be stated as follows:

MPij    =    Ai      ×  NPj                                            (3.4)
                                    TAj

where MPij indicates the amount of power from net j contributing to module bi, Ai

represents the area of functional module bi and TAj tells the total area of connected 
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modules of net j.

Following the above procedure, we can obtain for a particular module, the 

contributions of power from each net in the netlist. Besides this, each module has its own 

internal power consumption stated as the original module power P which is obtained 

experimentally for real circuits. Finally, we sum up such contributions from each net and 

the original module power to obtain the total power TPi of each module bi as

TPi   =  Pi  +  ∑ N 
j=1 MPij                                           (3.5)

Figure 3.3 presents the Calculate_Power algorithm for calculating the interconnect 

aware power values for all the modules. The algorithm has a runtime complexity of O(nm)

where n is the number of nets in the netlist and m is the number of modules in the 

benchmark.

Begin
   For each module bi     
            For each net j Є N
                   NPj = ((NLj × α j) / ∑ N 

j=1 (NLj× α j)) * TIP                     
                   MPij = (Ai / TAj) × NPj                                                
                   Calculate  ∑ N 

j=1 MPij                                          
            End For     
   TPi = Pi + ∑ N 

j=1 MPij                                          
  End For
End.

Figure 3.3: Pseudo code of the Calculate_Power algorithm.

We now illustrate our algorithm in determining the impact of switching activity of 

interconnects on power distribution profile with the help of an example. Let there be four 

blocks A, B, C and D, each of equal dimensions, and with original power Pi values as 5, 1, 

1 and 3 units respectively. Let there be two interconnects AB and CD of lengths 2 and 3 

units respectively, and having switching activity values of 0.4 and 0.2 respectively. Let the 
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total interconnect power be 4 units. Now, we determine the power density profile for both 

the cases when switching activity is considered in power estimations and when it is not 

considered.

Case 1: Power estimations considering only interconnect lengths.

Step 1.           Net power NPAB  =     2       ×   4    =  1.6             
                                                      (2+3)  

                     Net power NPCD  =     3       ×   4    =  2.4             
                                                      (2+3)  

Step 2.   The amount of net power contributing to the connecting modules A and B of the 

net AB,         MPA   = 1/2 × 2.9 = 1.45

and                MPB  = 1/2 × 2.9 = 1.45

Similarly, amount of net power contributing to the connecting modules C and D of the net 

CD,        MPC    = 1/2 × 1.1 = 0.55

and         MPD    = 1/2 × 1.1 = 0.55

Thus, the total power of each module can be calculated by summing up the original 

module power with net power contributions to each module. The total power of each 

module and the power distribution profile is shown in Figure 3.4 below.

Figure 3.4: Power distribution profile for case 1.

         A                                   B

 P = 5 + 1.45                    P = 1 + 1.45         
    = 6.45                       = 2.45

        C             D
P = 1 + 0.55                         P = 3 + 0.55     
   = 1.55              = 3.55
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Case 2: Power estimations considering both interconnect lengths and switching activity 

values.

Step 1.           Net power NPAB  =         2 ×0 .4            ×   4    =  2.9             
                                                      (2 × 0.4 + 3 × 0.1)  

                      Net power NPCD  =         3 × 0.1            ×   4    =  1.1             
                                                      (2 × 0.4 + 3 × 0.1)  

Step 2.   The amount of net power contributing to the connecting modules A and B of the 

net AB,              MPA   = 1/2 × 1.6 = 0.8

 and                    MPB = 1/2 × 1.6 = 0.8

Similarly, amount of net power contributing to the connecting modules C and D of the net 

CD,     MPC    = 1/2 × 2.4 = 1.2

and     MPD    = 1/2 × 2.4 = 1.2

Thus, the total power of each module can be calculated by summing up the original 

module power with net power contributions to each module. The power distribution 

profile is shown in Figure 3.5 below.

Figure 3.5: Power distribution profile for case 2.

From the above example, we observe different power distribution profiles for the 

two cases. This will lead to different heat diffusion flows as explained in section 2.2.2 and 

      A                                      B
P = 5 + 0.8             P = 1 + 0.8         
    = 5.8                = 1.8

       C                       D
P = 1 + 1.2                       P = 3 + 1.2     
      = 2.2             = 4.2
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hence different values of average and peak temperature of the chip. Therefore, switching 

activity must be considered together with the net length for correct chip temperature 

estimations.

3.3.3 Temperature Approximation

Since thermal effects are influenced by relative placement of blocks as discussed 

in section 2.2.2, therefore, it is imperative to include temperature in the cost function in the 

floorplanning algorithm to achieve an optimum floorplan with reduced hotspots. 

However, it is prohibitively time consuming to involve the temperature calculations every 

time when evaluating a large number of solutions during simulation procedure. Other than 

using the actual temperature values, we have adopted the power density metric as a 

thermal-conscious mechanism in our floorplanner. We can substitute the temperature for

the power density, according to equation (2.15), to approximate the 3-tie temperature 

function

CT = (T − To) / To

proposed in [17] to reflect the thermal effect on a chip. As such, the 3-tie power density 

function is defined as 

P = (Pmax − Pavg) / Pavg    (3.6)

where Pmax is the module with the maximum power density while Pavg is the average 

power density of all modules. 

The cost function used in simulated annealing in the interconnect and thermal 

aware floorplanning algorithm can now be written as

Cost = α × A + β × WL + γ × P                              (3.7)

where α, β and γ are constants which denote the relative weights of A, WL and P
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respectively in the cost function, (α + β + γ) ≤ 1. At the end of execution of our 

floorplanner, we obtain the floorplan description and the power numbers for each module 

including the interconnect power contributions from all nets. We then use the block model 

of HotSpot to provide the temperature estimations of the chip.

3.4 Experimental Results

To evaluate our interconnect power and thermal aware floorplanning algorithm, 

we performed a series of three experiments. First experiment was conducted using the 

traditional area and wirelength metrics in the cost function. It presents peak and average 

temperatures when only the net length of interconnects is used in deriving the power 

density profile of the chip. Second experiment includes the effect of switching activity in 

addition to net length of interconnects in deriving the power density profile of the chip. 

Finally, we prove the effectiveness of our algorithm in reducing the hotspots in the third 

experiment.

3.4.1 Experimental Setup

The experimental setup is as follows. The simulated annealing floorplanning 

algorithm is implemented in C++ programming language on an Intel Pentium 4, 1.73 GHz 

PC with 1 GB RAM. The operating system is RedHat Linux v6.1, kernel version 2.4. The 

experiments were performed on a set of five MCNC benchmark circuits that consists of 

hard modules. We tested all these benchmarks. Table 3.1 gives the information of MCNC 

benchmarks.
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 Table 3.1. MCNC benchmarks information.

                    

The widely used method of half-perimeter bounding box (HPWL) model as 

explained in section 2.1.2 is adopted to estimate the wire length. Power values in the range 

of 0.05mW to 3W were randomly assigned to the modules in different benchmarks due to 

lack of information on the internals of each module. These power values are the typical 

values in modern high performance circuits such as microprocessors. The total net power 

is assumed to be 30% of total power of modules due to lack of information for the MCNC 

benchmarks. Random values in the range 0-1 were assigned to switching activity for 

various interconnects as we do not know the internal functionality of the MCNC 

benchmark circuits. Random selection of values for module power and switching activity 

of various interconnects will impact the runtime complexity of the algorithm further by 

O(n+m) where n is the number of nets in the netlist and m is the number of modules in the 

benchmark.

In the simulated annealing process, the temperature was decreased at a constant 

rate (0.9). We terminate the annealing process if the rejection rate of moves exceeds the 

convergent rate of 0.85 at a certain temperature or the temperature decreases beyond the 

threshold value of 0.1.

The final results are based on average of the results of 100 test runs for each 

benchmark circuit for a particular set of power values of the modules. We consider area 

Circuit Block # Net # Pin # Pad #
apte 9 97 214 73

xerox 10 203 696 2
hp 11 83 264 45

ami33 33 123 480 42
ami49 49 408 931 22
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optimization as the main criterion in the cost function to obtain floorplans with the 

smallest area possible for all the benchmarks.

3.4.2 Results and Analyses

Table 3.2 shows the experiment results of our approach when considering only the 

traditional metrics (area and wire) with and without the consideration of switching activity 

of interconnects. We list the area, wirelength, Tpeak, Tavg and deadspace for each of the 

circuit. The run time of the approach is also provided. Note that the area, wirelength, 

deadspace and runtime for both the experiments are the same. Only values of Tpeak  and 

Tavg are affected by the inclusion of switching activity of interconnects.

Table 3.2.  Results considering traditional area and wirelength minimizations.

The peak and average temperature results from these tables also reiterate the 

importance of including the switching activity of interconnects in determination of power 

consumption, which most prior works ignore. The difference between peak and average 

temperatures not considering switching activity of interconnects in power estimation 

(Tpeak and Tavg) and considering it (Tpeak (Sa) and Tavg (Sa)) is 15oC on the average. 

Table 3.3 presents the results of applying our interconnect power and thermal

aware floorplanning algorithm. When taking thermal effect into account together with the 

Circuit Area 
(mm2)

WL  
(mm)

Tpeak

(oC)
Tavg

(oC)
Tpeak

(Sa) 
(oC)

Tavg

(Sa) 
(oC)

Run 
Time    
(Sec)

Dead 
Space  
(%)

apte 47.31 653.51 90.15 62.63 91.25 63.87 2.48 1.59
xerox 20.42 402.88 156.55 85.08 169.75 99.90 4.47 5.26

hp 9.20 280.79 396.75 164.52 410.75 174.37 5.47 4.03
ami33 1.22 83.74 964.67 810.33 979.94 818.34 53.68 5.40
ami49 38.84 1061.42 599.87 294.14 605.75 298.42 60.13 8.75
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area and wirelength metrics, our floorplanner can reduce the peak and average 

temperatures by as much as 20% while increasing the wirelength by 2% and providing a 

comparable chip area as compared to the floorplan generated using traditional metrics. 

     Table 3.3.  Results using our thermal aware floorplanner.

Figures 3.6 and 3.7 show the peak and average temperatures respectively of all 

five MCNC benchmarks with/without consideration of switching activity of interconnects 

for area optimization only as well as area and thermal optimizations. It shows that the area 

optimization with the consideration of switching activity (Sa) of interconnects in deriving 

power dissipation results in highest peak and average temperatures for all benchmarks. 

The temperature can be effectively reduced through interconnect power and thermal 

aware optimization combined with area constraint such that lower temperature is achieved 

with the same compact floorplan. The hotspot temperature (peak temperature) is reduced 

by as much as 20% in circuit xerox in Figure 3.6. The overall average temperature is 

reduced by around 1~19 oC as shown in Figure 3.7.

Circuit Area 
(mm2)

WL  
(mm)

Tpeak

(Sa) 
(oC)

Tavg

(Sa) 
(oC)

Run 
Time    
(Sec)

Dead 
Space      
(%)

apte 47.31 653.51 89.85 62.59 3.06 1.59
xerox 20.42 410.26 125.34 80.65 5.49 5.26

hp 9.33 283.83 316.25 162.20 6.87 5.37
ami33 1.22 86.55 907.45 803.56 65.70 5.40
ami49 39.05 997.65 531.95 284.77 71.12 9.24
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Figure 3.6: Comparison of peak temperatures for area optimization with/without 
consideration of switching activity and thermal aware optimization. 

Figure 3.7: Comparison of average temperatures for area optimization with/without 
consideration of switching activity and thermal aware optimization. 

However, some benchmarks could not achieve large temperature reduction. For 

example, the hotspot temperature reduction for apte is only 1.4oC. The reason behind this 

is that the power density is relatively high for a limited small area and deadspace is very 

less to allow heat in hotter regions to flow through more dead areas that consume no 
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power. Thus, there is not much flexibility for algorithm to discover a good solution. As 

observed from Table 3.3, apte has a very small deadspace of 1.59%, thus restricting the 

heat flow and hence the temperature reduction. xerox has a fairly large deadspace of 

5.26% and relatively larger area compared to other benchmark circuits, which allow 

greater heat flow and hence it achieves large temperature reduction by 20%.

 Note that the runtime is almost comparable in both the cases i.e. using traditional 

metrics and our thermal aware approach. 

Table 3.4. Comparison of runtime results for Hung’s floorplanner and our 
floorplanner.

Table 3.4 shows the runtime comparisons between W.L. Hung’s 2D floorplanner 

[20] and our floorplanner using the MCNC benchmarks. We note that both the 

floorplanners use the randomly selected values in the similar ranges for the power of 

different blocks in the benchmark circuits and the total net power, thus affecting the run 

time complexity in a similar way. However, our floorplanner uses additional randomly 

selected values for the switching activity of different nets, which can slightly increase the 

run time. But as observed from the table above, clearly, our floorplanner has a much 

shorter runtime, thus proving the simplicity of our interconnect power and thermal aware 

Circuit Hung’s floorplanner 
Dual Intel Xeon (3.2 

GHz, 2GB RAM)

Run Time    (Sec)

Our floorplanner                  
Intel Pentium4, (1.73 

GHz, 1 GB RAM)

Run Time    (Sec)
apte - 3.06

xerox 13 5.49
hp 25.78 6.87

ami33 101 65.70
ami49 240 71.12
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floorplanning algorithm. Other parameters like area and wirelength are not considered for 

comparison because we have used hard modules in our work where as W.L Hung’s 

floorplanner is based on soft modules, which achieves much larger reduction in area due 

to adjustment of aspect-ratio of the soft blocks. Since wirelength estimates depend on the 

relative positions of different blocks and eventually their area, therefore, they are also not 

considered for comparison.

To show the pre-thermal and post thermal effects on the arrangement of blocks, we 

present the floorplan layout for all the benchmarks for both the above cases. Figures 3.8 to 

3.16 show the floorplans of various benchmarks using the area optimization factor only 

and that using our interconnect power and thermal aware floorplanning algorithm. 
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xerox thermal

Figure 3.8: Floorplan of xerox with area optimization only.

Hp trad

Figure 3.9: Floorplan of xerox with area and thermal optimization.
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Figure 3.10: Floorplan of hp with area optimization only.

              Figure 1. Florplan of ami33 with Area-wirelength optimization 

Figure 3.11: Floorplan of hp with area and thermal optimization.
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Figure 3.12: Floorplan of ami33 with area optimization only.

Figure 3.13: Floorplan of ami33 with area and thermal optimization.
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Figure 3.14: Floorplan of ami49 with area optimization only.

        

Figure 3.15: Floorplan of ami49 with area and thermal optimization.
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Figure 3.16: Floorplan of apte with area optimization only, and area and thermal 
optimization.

From the above figures, we observe that the floorplan layout changes considerably 

after the thermal optimization for most of the benchmarks. However, for the benchmark 

apte, we observe that the floorplan layout remains the same before and after the thermal 

optimization though the temperature results are different for both the cases as seen from 

the Tables 3.2 and 3.3. Also, the wirelength value changes. This can be explained by 

considering the fact that one or many of the blocks would have undergone double rotations 

at the same location in order to meet the thermal constraints as specified in the cost 

function. This results in the change of pin locations and hence the netlength. Thus, the 

power distribution contribution from the nets which have their netlength value changed 

will affect the power density profile of the chip. Hence, we get different temperature 

estimations, compared to traditional area optimization, in the thermal optimization 

approach.
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3.4.3 Discussion

Since our goal is to mainly study the impact of power distribution profile of the 

chip, obtained by including the power dissipation, considering switching activity of the 

interconnects, on chip temperature estimations, we have presented the results for the 

experiments performed with only one particular set of power values randomly chosen for 

all the modules in the benchmark. However, we also performed experiments with different 

set of power values and observed a similar behavior in the results for temperature 

estimations. Thus, we can safely draw conclusions about the variations in temperature 

estimations with and without considering the switching activity of interconnects, and our 

interconnect power and thermal aware floorplanning algorithm from only one set of 

experimental results.

However, since the power distribution profile depends on both the netlength and 

switching activity of interconnects, we chose to run the tests 100 times to ensure that we 

cover the maximum variation in temperature estimations that can be evaluated by 

assigning different sets of random values to switching activity of each interconnect. 

As the cost function plays an important role in selecting the quality of the floorplan 

based on some specific criteria, we arbitrarily assigned the values of α, β and γ in the cost 

function and perform the entire set of experiments with those fixed values to obtain the 

same quality of floorplans for different benchmarks. This avoids unambiguous 

interpretation of results. 

We can achieve further temperature reductions by using our interconnect power 

and thermal aware floorplanning algorithm if we relax the area and wirelength constraints. 

This will allow more dead areas to be created to allow heat in hotter regions to flow 
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through them that consume no power. But this is beyond the scope of our goal of 

interconnect power and thermal aware floorplanning problem stated in section 3.2. 

Based on the above results and discussion, we state that more attention should be 

drawn to switching activity of interconnects in future technologies and it is imperative to 

include switching activity together with length of interconnects in deriving power 

estimates in guiding any thermal-aware floorplanning.

3.5 Conclusion

In this chapter, we have presented our interconnect power and thermal aware 

floorplanner based on B*-Tree representation. The problem has been formulated as a 

floorplanning optimization problem under interconnect power dissipation considerations.  

Then, we have explained the entire methodology followed in developing the algorithm. 

We have discussed how to incorporate switching activity of interconnects in determining 

power dissipation estimations. Further, we have shown how to make temperature 

approximations, and the effect of placement and power density profile on temperature 

estimations. The experimental results prove the effectiveness of our algorithm in reducing 

hotspots and show that it performs better than W.L. Hung’s 2D floorplanning algorithm 

[20] in terms of run time when testing on a set of MCNC benchmark circuits.
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Chapter 4

Variability Aware Floorplanning

The scaling of technologies towards the nanometer regime brings with it a 

challenging increase in the amount of variability due to uncertainty in initial estimates in 

the early phases of chip design. As the block and interconnect parameters such as block

dimensions show variability due to design uncertainty, the prediction of circuit 

performance is becoming a challenging task in early chip planning stage. To address the 

variability issue at the floorplanning stage, we develop a variability-aware floorplanner 

based on analytical approach to determine the best relative floorplan for all blocks with 

variable block characteristics. It can predict the ranges of area and wirelength of a design. 

This early prediction helps estimate the variability impacts on performance parameters 

such as delay at higher abstraction.

The remainder of the chapter is organized as follows. Section 4.1 describes the 

related work that has served as a source of motivation for this work. Section 4.2 gives the 

problem definition. Section 4.3 presents the variability-aware floorplanning algorithm 

based on affine arithmetic. Section 4.4 presents our experimental results and analyses. 

Finally, we conclude this chapter in the last section.

4.1 Motivation

In this section, we discuss some related work and the motivation for the research 

work presented in this chapter. Previous relevant works fall into two broad categories- the 

first is the prevalence of floorplanner of uncertain designs and the second is the various 

analytical approaches available for modeling variations.
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The first category of work studied floorplanning of uncertain designs. Bazargan

[2] developed a Nostradamus floorplanner for slicing floorplans to handle variations in 

block dimensions, introduced due to design uncertainty, at an early chip planning stage. 

He established that traditional floorplanners are incapable of handling uncertainty.

Bazargan considered the variations in block dimensions by creating distribution lists, each 

of which consisted of a pair of numbers: width/height of a block and its probability. Only 

certain discrete values and combinations of width and height for each block were 

accounted for. However, in practical problems where the internals of the design block are 

still not clear in the early decision stage, block dimensions can assume any value in a 

specified range of values. Our work takes into account the entire range of values for the 

block dimensions and all possible combinations of width and height for each block. 

Moreover, we develop the floorplanner for non-slicing floorplans and consider the 

wirelength estimations besides the chip area when testing on MCNC benchmarks.

The second category of related work dealing with the variability effects [32]-[35] 

falls in to the area of statistical static timing analysis (STA) that uses analytical approaches 

to find closed-form expressions for the distributions of the circuit delay under the presence 

of process variations. These methods use normal distributions [30], [31], interval valued 

analysis, probabilistic intervals [40] or mathematical statistical models for predicting the 

circuit performance parameters affected by variability. Our motivation of adopting the 

approach of analyzing the impact of variations in dimensions of modules on the floorplan 

metrics like chip area and wirelength stem from the work done in the area of timing 

analysis. 

Since floorplanning is an important stage in the VLSI design process that can 
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impact many design decisions, we intend to study the effects of variability on floorplan 

metrics and modify our floorplanning algorithm accordingly to make it less susceptible to 

variation effects due to uncertainty in initial estimates in the design prototyping stage. 

4.2 Problem Formulation

We define our problem in this work as follows: given the information of a set of 

modules including their areas and interconnections, the variability-aware floorplanning 

problem is that of placing the modules in the chip area satisfying a set of conditions and 

achieving the goal of determining the best relative floorplan with smallest range and 

average values of area and wirelength for specified variations in dimensions for each 

block while optimizing area and wirelength. This relative floorplan will ensure that it is 

least impacted by the effects of design uncertainty at an early stage, and thus, the resulting 

circuit performance parameters will be effected only slightly. In this work, we consider 

only the hard modules, i.e. modules that are not flexible in shape but are free to move and 

rotate.

Let B = {b1, b2, …, bn} be a set of n rectangular modules with block bi of width wi

and height hi, 1 < i < n, such that wi  lies in the range [Rmini, Rmaxi] and hi lies in the range 

[Smini, Smaxi] where Rmini, Rmaxi and Smini, Smaxi are the minimum and maximum values for wi  

and hi respectively. Figure 4.1 illustrates the ranges for width and height of a module. 

Each module is free to rotate. 
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                                    Smax     

                                                                     Smin

                                                      Rmin

                                                              Rmax  

               Figure 4.1: Width and height ranges of a module.

Let (xi, yi) denote the co-ordinates of the bottom-left corner of the rectangle bi, on a 

chip. A floorplan F is an assignment of xi and yi that lie in the ranges [xmini, xmaxi] and [ymini, 

ymaxi] respectively for each bi such that no two modules overlap. Figure 4.2 illustrates the 

possible location of left bottom coordinates (x, y) of the module within the bounding 

rectangle. 

                              ymax

                  
                              ymin

           
                                          

                                           xmin                      xmax 

Figure 4.2: Left bottom co-ordinate ranges (x, y) of a module.

The goal of floorplanning algorithm is to minimize 

(i) Chip area (i.e. minimum bounding rectangle of F),

(ii) Total wirelength (i.e. the summation of half bounding box of 

interconnections) induced by the assignment of bi’s and

(iii) The range for total area [Amin, Amax] and wirelength [WLmin, WLmax] 

obtained where Amin, Amax and WLmin, WLmax are the lowest minimum and 

maximum values for total area and wirelength respectively, that can be 

(x, y)   .
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computed for the placement of B (i.e. a set of n rectangular modules).

Since we can have several relative floorplans Fi in the solution space, we determine the 

best relative floorplan with the help of the cost function. The criteria listed above for 

determining the best solution, i.e. the goal of floorplanning problem can be 

mathematically formulated as a cost function given by the equation

Ci = α × Ai + β × WLi                                                                       (4.1)

where Ai and WLi are total area and wirelength metrics respectively for relative floorplan 

Fi, and α and β are constants which denote the relative weights of total area and wirelength 

respectively in the cost function, (α + β) ≤ 1. The objective of floorplanning is to find the 

floorplan with minimum value of Ci  i.e. 

Best floorplan => min (C1, C2, …, Cm)                      (4.2)

where m is the total number of relative floorplans evaluated. We will determine Ai and WLi 

later in section 4.3.

We illustrate the impact of variations in dimensions of each module on the range of 

chip area by an example. Let us consider a set B = {b1, b2, b3, b4, b5} of five rectangular 

modules with each block bi having variable width wi and height hi. Ranges of width and 

height for each block are listed in Table 4.1. Let Figure 4.3 (a) show the floorplan layout 

of the chip for a set of worst case randomly chosen values for width and height of each 

module. If we vary the values for width and height of each module such that the relative 

positions of modules remain the same, we get a different floorplan layout as shown in 

Figure 4.3 (b). Values of width and height for each module and their locations in (x, y) 

co-ordinates are listed in Table 4.2 for both the cases. 
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Table 4.1. Ranges of width and height for each block.

Block No. Wi range
[Rmin, Rmax]

Hi Range
[Smin, Smax]

1 [1,5] [2,4]
2 [1,3] [2,4]
3 [1,4] [2,6]
4 [1,2] [2,5]
5 [2,4] [2,4]

Figure 4.3: (a) and (b): Impact of variability on chip area and location of modules.

Table 4.2. Values of width, height and location of each block. 

Case 1: Figure 4.3 (a) Case 2: Figure 4.3 (b)
Block No. (w, h) for 

each block
Position 

(x, y)
(w, h) for 

each block
Position 

(x, y)
1 (4, 4) (0, 3) (3.5, 4) (0, 5)
2 (2, 2.5) (0, 0) (1.5, 2.5) (0, 0)
3 (3, 2.5) (2, 0) (2.5, 5) (1, 0)
4 (1, 5) (5, 0) (2, 3) (3, 0)
5 (2, 2.5) (3, 5) (3, 2.5) (3, 3)

On comparing Figures 4.3 (a) and (b), we can see that both have different values 

for width, height and location of left bottom co-ordinates (x, y) for each module as 

tabulated in Table 4.2. Table 4.3 presents the width, height and area (bounded rectangle) 

of the floorplan layout in both the cases. 

2 3

1

4

5

2

3

4

1

5
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Table 4.3. Width, height and area of the floorplan layout of Figures 4.3 (a) and (b).

Floorplan 
Metrics

Case 1:
Figure 4.3 (a)

Case 2:
Figure 4.3 (b)

Width 6 6
Height 10 9
Area 60 54

From Table 4.3, we observe that the value of chip area changes on changing the 

dimensions of each module. By trying all the possible combinations of different values of 

dimensions for each module, we get different floorplan layouts with different values of 

chip area. Thus, variability in dimensions produces variations in chip area. We intend to 

determine the range of variations in area and wirelength for a given set of modules, each 

with specified range of variations in dimensions, in our solution approach.

4.3 Algorithm

In this section, we describe the methodology adopted to solve the problem outlined 

in section 4.2. We first develop the simulated annealing floorplanning algorithm based on 

Monte Carlo simulation (MC) technique which is widely used to solve complex numerical 

problems. We then develop our own algorithm based on affine arithmetic to determine the 

ranges of chip area and wirelength. We use B*-Tree representation for our floorplanning 

algorithm as it is easy to implement, has a smaller solution space and time complexity, and 

many other advantages as outlined in chapter 2.1.1.4.

We first illustrate our solution approach by a simple example discussed previously 

in section 4.3. Figure 4.4 (a) shows the B*-Tree corresponding to the floorplan in Figure 

4.3. Figure 4.4 (b) shows the B*-Tree obtained by perturbing the B*-Tree in Figure 4.4 

(a). 
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Figure 4.4: (a) B*-Tree 1 (b) B*-Tree 2.

Now, if we repeat the same steps as followed in example in Figure 4.3, we obtain 

two sets of floorplans as shown in Figures 4.5 (a) and (b) with worst case random values of 

width wi and height hi for each block bi. Values of width and height for each module and 

their locations in (x, y) co-ordinates are listed in Table 4.4 for both the cases. 

Figure 4.5: (a) and (b): Impact of variability on chip area and location of modules 
for B*-Tree 2.

Table 4.4. Width, height and location of each block for B*-Tree 2.

Block Information Case 1: Figure 4.5 (a) Case 2: Figure 4.5 (b)
Block 
No.

Wi range
[Rmin, Rmax]

Hi Range
[Smin, Smax]

(w, h) for 
each block

Position 
(x, y)

(w, h) for 
each block

Position 
(x, y)

1 [1, 5] [2, 4] (2, 4) (0, 0) (1, 4) (0, 0)
2 [1, 3] [2, 4] (2, 3) (2, 0) (2, 3) (1 ,0)
3 [1, 4] [2, 6] (1, 4) (4, 0) (2, 6) (3, 0)
4 [1, 2] [2, 5] (1.5, 4) (0, 4) (2, 3) (0, 4)
5 [2, 4] [2, 4] (2, 4) (2, 3) (2, 3), (1, 7)

2

4

13

5

1

42

53

1
2

4
5

3 1

4

2

3
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Table 4.5 presents the width, height and area (bounded rectangle) of the floorplan 

layout in both the cases.

Table 4.5. Width, height and area of the floorplan layout of Figures 4.5 (a) and (b).

Floorplan 
Metrics

Case 1:
Figure 4.5 (a)

Case 2:
Figure 4.5 (b)

Width 6 5
Height 9 10
Area 54 50

On comparing the areas of Figures 4.3 (a) and (b) with those of Figures 4.5 (a) and 

(b) from Tables 4.3 and 4.5, we can see that the B*-Tree in Figure 4.4 (b) gives a smaller 

value of maximum area and range as compared to that given by B*-Tree in Figure 4.4 (a). 

Since the goal of floorplanning is to determine the smallest range and average value of 

total area, the floorplans corresponding to B*-Tree in Figure 4.4 (b) will be considered the 

best relative floorplan. Similarly, we can prove the optimality for the wirelength range 

also.

To determine the best relative floorplan corresponding to a unique B*-Tree with 

smallest range and average values of area and wirelength for specified variations in 

dimensions for each block, we develop a simulated annealing based algorithm based on 

B*-Tree as explained in chapter 2.1.2.4 for handling the placement with variations in 

dimensions of each module. The algorithm perturbs the B*-Tree to another B*-Tree by 

using the following three operations.

Op1: Rotate a module.

Op2: Move a module to another place.

Op3: Swap two modules.
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We apply both MC approach and our approach to perform placement for each feasible 

B*-Tree to determine the ranges of location of each module, total area [Amin, Amax] and 

wirelength [WLmin, WLmax] parameters. The placement algorithm is discussed in detail in 

subsequent sections for both the approaches. The perturbation process repeats until 

pre-defined termination conditions are met. The termination condition checks for the 

temperature value if it is greater than the threshold and convergent rate of solutions is 

greater than rejection rate. The best relative floorplan corresponds to the feasible B*-Tree

which gives the smallest range and average values for chip area and wirelength. In other 

words, among all the relative floorplans Fi, best relative floorplan is the one that has the 

lowest value of cost function. Cost function Ci is modified from equation (4.1) to

Ci = α * (Amean + Arange)i + β * (WLmean + WLrange)i                       (4.3)

where α and β are constants and  

Arange = (Amax − Amin), and                                           (4.4)

Amean = (Amin + Amax) / 2,                      (4.5) 

WLrange = (WLmax − WLmin) and                (4.6)

                 WLmean = (WLmin + WLmax) / 2               (4.7)

where Amin, Amax and WLmin, WLmax are the lowest minimum and maximum values for total 

area and wirelength respectively, that can be computed for the placement of B

corresponding to a particular B*-Tree. Figure 4.6 summarizes the flow of our algorithm. 
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Input: A set of modules bi (wi Є [Rmini, Rmaxi], hi Є [Smini, Smaxi]) and Netlist N
Output: Floorplan F of ranges of chip area [Amin, Amax] and total wirelength [WLmin, 
WLmax] and containing modules with ranges of locations [xmini, xmaxi] and [ymini, ymaxi] for 
each bi.
Begin
          Initialize temperature T
          Initialize a B*-Tree for the input blocks
       // Run B*-Tree based simulated annealing floorplanning algorithm.
          Do

          Repeat
              Perturb 
              Placement 
              Compute Cost
              If Cost < Previous cost
                   Accept the move 
                    Else
                Prob = min (1, e−kΔc/T), where Δc = change in cost, k=constant

Rand = Random (0, 1)
               If Rand < Prob then
                          Accept the move
          Else
                          Reject the move

End if
    End if

          Until (Uphill moves > 2*N or Downhill moves < N)        
               T = 0.9 * T
          While (T > Threshold and Reject_rate < Converge_rate)

      End.

Figure 4.6: Pseudo code of our floorplanning algorithm.

4.3.1 Monte Carlo Simulation Approach

In the Monte Carlo simulation approach, we randomly generate the values for 

width and height that lie in the ranges [Rmini, Rmaxi] and [Smini, Smaxi] respectively for 

each block bi in the benchmark. We then do the placement for the corresponding 

B*-Tree as outlined in chapter 2.1.1.4. This process is repeated several times (k ~ 2n) to 

obtain several different floorplans with different combinations of random values of 

dimensions for each block. The range and average values of area and wirelengths are 
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computed according to equations 4.4, 4.5 and 4.6, 4.7 respectively for these set of 

floorplans corresponding to the unique feasible B*-Tree. Figure 4.7 presents the 

pseudo code for placement using MC approach. The complexity of MC approach is 

O(n2n) where n is the number of modules.

        Begin
             Loop:  Iterate (k ~ 2n) times
                        For each bi 

             Randomly assign (wi Є [Rmini, Rmaxi] and hi  Є [Smini, Smaxi])
                        End For

Calculate (xi, yi) for each bi according to conventional B*-Tree placement 
procedure.

                       Calculate total Area A and Wirelength WL
             End Loop
                        Calculate Amean, Arange, WLmean and WLrange

        End.

Figure 4.7: Pseudo Code of placement using MC approach.

4.3.2 Our Approach

In our algorithm approach, we evaluate the ranges of area and wirelength of a 

relative floorplan corresponding to each feasible B*-Tree by applying a series of affine 

arithmetic operations on affine operands as discussed below. During placement, we 

replace interval bound for width w = [Rmini, Rmaxi] and height h = [Smini, Smaxi] of each 

module bi by an affine form

                                        w
^

 = w0i + wkiεki,                                            

        where  w0i = (Rmini + Rmaxi ) / 2  and 

wki  = (Rmaxi  − Rmini) / 2  

                                                and h
^

 = h0i + hkiεki,                                       
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        where  h0i = (Smini + Smaxi ) / 2  and 

hki  = (Smaxi  −  Smini) / 2  

We assign the co-ordinates (xi, yi) for each bi  such that  xi and yi are interval bound and 

represented by an affine form.

x
^

= x0i + xkiεki   and   y
^

 = y0i + ykiεki 

We now describe the procedure for obtaining the placement, i.e. the range of location of 

each module, from a corresponding B*-Tree. We determine the ranges of x and y

co-ordinates for each module as discussed below.

4.3.2.1 Determination of x Co-ordinates

The root of a B*-Tree corresponds to the module on the bottom-left corner with 

coordinates (0, 0). The left child nj of a node ni denotes the module mj that is the lowest 

adjacent module on the right-hand side of mi, i.e. xj = xi + wi, according to equation 2.2. 

We represent xj in the affine form as a result of addition operation on two other affine 

operands xi and wi as   

xj = x0i + w0i  +  (xki + wki) εki                                                   (4.8)

The right child nk of a node ni denotes module mk that is the lowest visible module 

above mi and with the same x co-ordinate as mi, i.e. xk = xi, according to equation 2.3. xk is 

represented in the affine form as

  xk = x0i +  xki εki                                                                                 (4.9)

We thus perform addition and assignment affine operations according to equations 

(4.8) and (4.9) to determine the x co-ordinate of each module in the affine form depending 

on whether it is the left or the right child of any module in the B*-Tree. We then convert 

the affine expression for x co-ordinate to IA form to yield an almost-exact range [xmini,
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xmaxi] for each bi. 

4.3.2.2 Determination of y Co-ordinates

We use the contour structure as explained in chapter 2.1.1.4 to find the y

co-ordinate of a module. Recall, that we first define a permutation π which is the label 

sequence when we traverse the tree in depth-first search order. The first element in 

permutation π is the root of the tree. The contour structure is a doubly linked list of 

modules, which describes the contour line in the current compaction direction. For each 

module mi, let ψ(i) be the set of modules mk with its order lower than mi in permutation π

and interval (xk, xk + wk) overlaps interval (xi, xi + wi) by a non-zero length. Since each 

variable is represented in the affine form, we define the absolute intervals for each 

variable as computed below.

 xk lies in the range [xmink, xmaxk] and wk in the range   [Rmink, Rmaxk].

 xk + wk gives an interval  [(xmink + Rmink ), (xmaxk + Rmaxk )]

Therefore, the interval (xk, xk + wk) takes the form as 

([xmink, xmaxk], [(xmink + Rmink), (xmaxk + Rmaxk)])                   

We now define the join operation on two intervals [xmink + xmaxk] and [(xmink + Rmink), (xmaxk 

+ Rmaxk)] to determine the final interval as 

                             (xmink, xmaxk + Rmaxk)          

Similarly, interval (xi, xi + wi) takes the form

                 (xmini, xmaxi + Rmaxi)                      

The y co-ordinate of a module i can hence be determined as follows: If ψ(i) is non-empty, 

we have from equations 2.4 and 2.5

            yi = max k ε ψ(i) yk + hk
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Otherwise yi = 0    

       where yk + hk lies in the interval [(ymink + Smink), (ymaxk + Smaxk)]

       Hence, in the affine form, 

             yi  = max k ε ψ(i) [(ymink + Smink ), (ymaxk + Smaxk )]  (4.10)

Otherwise  yi = 0  (4.11)

The interval with the maximum value will be the one that has the maximum value 

of (( ymaxk + Smaxk) − ( ymink + Smink))

          The algorithm for finding the placement from a corresponding B*-Tree is outlined 

in Figure 4.8. It uses a contour structure to reduce the run time for finding the y co-ordinate 

of a module while solving the equations (4.10) and (4.11).

Input: B*-Tree(π [0:n])
Output: Placement with position (xmini, xmaxi) for each module mi

Begin
       Set perm = 1
       Set contour = NULL
       Set current_contour = 0
       For code = 0 to n-1
            If code = 0 then
                 Set current_module = π [perm]
       If current_contour = 0 then
                 Set xmin[current_module] = xmin[current_contour] + Rmin[current_contour]
                 Set xmax[current_module] = xmax[current_contour] + Rmax[current_contour]
       Else set xmin[curent_module] = xmax[current_module] = 0
       End if
                 Set y[current_module] = find_max_y (contour, current_module)
                 update_contour (contour, current_module)
                 Set current_contour = current_module 
                 Set perm = perm + 1
            Else set current_contour = prev[current_contour]
            End if
       End For
End.

Figure 4.8: Pseudo code for determination of x and y co-ordinates using our 
approach.
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find_max_y determines the y co-ordinate of current module according to equations (4.10) 

and (4.11) as explained above. All the operations are affine operations which have been 

discussed in detail in this section above. 

4.3.2.3 Determination of Area Range

After determining the placement, i.e. the range of (x, y) co-ordinates for each 

block, we calculate the range of total area [Amini, Amaxi] for a relative floorplan 

corresponding to each feasible B*-Tree. 

To determine minimum area i.e. Amin, we select the maximum value of (xmini + 

Rmini) and (ymini + Smini) among all the blocks bi . These values denote the x co-ordinate of 

the rightmost and y co-ordinate of the topmost blocks respectively in the floorplan layout. 

Thus, Amin can be calculated as below

Amin = max i = 1 to n (xmini + Rmini) × max i = 1 to n (ymini + Smini) (4.12)

Similarly for determining maximum area i.e. Amax, we select the maximum value of (xmaxi 

+ Rmaxi) and (ymaxi + Smaxi) among all the blocks bi. Amax can be calculated as below

Amax = max  
i = 1 to n (xmaxi + Rmaxi) × max i = 1 to n (ymaxi + Smaxi) (4.13)

4.3.2.4 Determination of Wirelength Range

     We determine the wirelength estimation by the half perimeter wirelength 

(HPWL) method as explained in chapter 2.1.2.1. Before the placement, pin locations are 

specified relative to the block’s lower left co-ordinates. Absolute locations of pins are 

determined with respect to the origin of the chip after the placement. We use the 

information about the ranges of block locations determined from the placement to 

compute the ranges of pin locations and hence the wirelength range.
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  Each block bi has lower left co-ordinates (xi, yi) in the ranges [xmini, xmaxi] and 

[ymini, ymaxi] respectively. Let the relative pin locations with respect to block’s lower left 

co-ordinates, denoted as (xpi, ypi), lie in the ranges [xminpi, xmaxpi] and [yminpi, ymaxpi] 

respectively. Absolute pin locations, denoted as (xapi, yapi), are computed according to 

equations 2.6 and 2.7 as below. 

xapi = xi + xpi

yapi =  yi + yp

Expressing all the operands in affine form, we get

            xapi = (x0i + x0pi)  + (xkiεki + xkpiεkpi)              (4.14)

Similarly ,       yapi  = (y0i + y0pi)  + (ykiεki + ykpiεkpi)              (4.15)

where  xapi  and yapi lie in the ranges [(xmini + xminpi), (xmaxi + xmaxpi)] and [(ymini + yminpi ), (ymaxi 

+ ymaxpi)] respectively.

       HPWL of a net j consisting of k number of pins is calculated according to equations 

2.8 and 2.9 as below

       HPWLxj =  max i = 1 to k (xapi) – min i = 1 to k (xapi)

HPWLyj =  max i = 1 to k (yapi) – min i = 1 to k (yapi)

Thus , HPWLj = HPWLxj  + HPWLyj

HPWLj  = max i = 1 to k (xapi + yapi) − min i = 1 to k (xapi + yapi) (4.16)

(xapi + yapi) lies in the range [(xmini + xminpi  + ymini + yminpi), (xmaxi + xmaxpi  + ymaxi + ymaxpi)]. 

max i = 1 to k (xapi + yapi) is given by the maximum value of  ((xmaxi + xmaxpi  + ymaxi + ymaxpi) −

(xmini + xminpi  + ymini + yminpi)) among all such values for k pins. 
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Similarly, min i = 1 to k (xapi + yapi) is given by the minimum value of ((xmaxi + xmaxpi  

+ ymaxi + ymaxpi) − (xmini + xminpi  + ymini + yminpi)) among all such values for k pins. Let u and 

v be the two pins for which maximum and minimum values are found respectively in the 

equation 4.16. Thus,

HPWLminj  = min ((xapu + yapu) − (xapv + yapv))                 (4.17)

HPWLmaxj  = max ((xapu + yapu) − (xapv + yapv))       (4.18)

Total wirelength is determined by summing up the HPWL of all nets. 

WL = ∑ N 
j=1 HPWLj

The maximum and minimum values of total wirelength are determined as follows,

WLmin   =  ∑ N 
j=1 HPWLminj                 (4.19)

and  WLmax   =  ∑ N 
j=1 HPWLmaxj          (4.20)

Our algorithm for placement is summarized in Figure 4.9. The complexity of our 

algorithm is O(n).

         Begin
                  For each bi

Convert wi, hi and (xi, yi) to affine form.
      End For 
      Calculate [xmini, xmaxi] and [ymini, ymaxi] for each bi according to pseudo code in
      Figure 4.8

           Calculate [Amin, Amax] according to equations 4.12 & 4.13 
           Calculate [WLmin, WLmax] according to equations 4.19 & 4.20
           Calculate Amean & Arange and WLmean & WLrange according to equations 4.4 to 4.7

         End.

Figure 4.9: Pseudo code of placement using our approach.
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4.4 Experimental Results

To evaluate our affine arithmetic based floorplanning algorithm, we performed a 

set of two experiments. First experiment was conducted using the Monte Carlo simulation 

approach. It presents the ranges of area and wirelength and the B*-Tree corresponding to 

the best feasible solution. Second experiment demonstrates the effectiveness of our 

algorithm in deriving the ranges of area and wirelength for the best feasible solution. We 

then compare the results of MC approach with those of our algorithm to verify its 

accuracy.

4.4.1 Experimental Setup

The experimental setup is as follows. The simulated annealing floorplanning 

algorithm is implemented in C++ programming language on an Intel Pentium 4, 1.73 GHz 

PC with 1 GB RAM. The operating system is RedHat Linux v6.1, kernel version 2.4. 

The experiments were performed on a set of five MCNC benchmark circuits that 

consists of hard modules. We tested all these benchmarks. Table 4.6, on the next page,

gives the information of MCNC benchmarks. Since the benchmarks contain modules with 

fixed dimensions, we adopt a procedure to convert fixed dimensions into variable 

dimensions for use in our floorplanning algorithm. We calculate the ranges of width and 

height of each block to be within + 2% of the given fixed dimensions for width and height 

in each MCNC benchmark circuit. However, any value typically in the range 0-5% can be 

provided depending on the impact of design uncertainty on each block.
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Table 4.6. MCNC benchmarks information.

                         

   

In the simulated annealing process, the temperature was decreased at a constant rate (0.9). 

We terminate the annealing process if the rejection rate of moves exceeds the convergent 

rate of 0.85 at a certain temperature or the temperature decreases beyond the threshold 

value of 0.1. 

We consider area optimization as the main criterion in the cost function to obtain 

floorplans with the smallest range and average values of area possible for all the 

benchmarks. To balance the accuracy and run time, we chose to run 10,000 iterations for 

the Monte Carlo simulation.

4.4.2 Results and Analyses

Table 4.7 shows the results for area and wirelength for MC approach. For each test 

case, the mean and range values are listed together with the minimum and maximum 

values. The run time for MC approach is also provided.

Table 4.7. Results for area and wirelength using MC approach.

Circuit Block # Net # Pin # Pad #
apte 9 97 214 73

xerox 10 203 696 2
hp 11 83 264 45

ami33 33 123 480 42
ami49 49 408 931 22

Circuit Amean

(mm2 )
[Amin, Amax]

(mm2 )
Arange

(mm2 )
WLmean 

(mm )
[WLmin, WLmax]

(mm)
WLrange

(mm )
Run 
Time 
(min)

apte 47.96 [46.61, 49.31] 2.70 450.84 [443.78, 457.9] 14.12 15.78
xerox 9.98 [9.25, 10.71] 1.46 270.18 [268.13, 272.22] 4.09 23.05

hp 20.63 [19.94, 21.31] 1.37 471.16 [462.23, 480.08] 17.85 49.85
ami33 1.21 [1.20, 1.22] 0.02 86.23 [85.03, 87.43] 2.40 97.41
ami49 38.64 [37.54, 39.74] 2.20 1075.14 [1059.76, 1090.51] 30.75 167.24
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Table 4.8 shows the results for area and wirelength for our algorithm approach. 

The run time for our algorithm is also provided.

Table 4.8. Results for area and wirelength using our approach.

We can see that the run time of our algorithm on all test cases is very fast. The 

circuit with the longest run time, ami49, was analyzed in only about 67 seconds while the 

MC simulation required 167 minutes.

Table 4.9 shows a comparison of the results for area and wirelength of MC

approach with those of our algorithm. The results of our algorithm can be seen to be very 

close to the MC results: the average error for area is –0.78% for the mean and –12.96% for 

the range. The average error for wirelength is –2.43% for the mean and –13.23% for the 

range. 

Table 4.9. Area and wirelength comparison results of our algorithm and 
Monte-Carlo simulation (MC) method.

Circuit Amean

(mm2 )
[Amin, Amax]

(mm2 )
Arange

(mm2 )
WLmean 

(mm )
[WLmin, WLmax]

(mm)
WLrange

(mm)
Run 
Time 
(sec)

apte 48.15 [46.6, 49.7] 3.10 458.13 [450.01, 466.24] 16.23 5.92

xerox 10.09 [9.25, 10.92] 1.67 274.61 [272.42, 276.79] 4.37 7.47
hp 20.84 [20.07, 21.60] 1.53 484.34 [474.29, 494.39] 20.10 32.32

ami33 1.22 [1.20, 1.23] 0.03 89.98 [88.33, 91.63] 3.30 57.72
ami49 38.88 [37.68, 40.08] 2.40 1098.41 [1081.64, 1115.17] 33.53 67.08

E = (MC − Our) / MC   %
Circuit Amean  E       

(%)
Arange E  

(%)
WLmean  E  

(%)
WLrange  E  

(%)
apte -0.39 -0.13 -1.59 -13.00

xerox -1.09 -12.57 -1.61 -6.40
hp -1.00 -10.45 -2.72 -11.19

ami33 -0.81 -33.33 -4.14 -27.27
ami49 -0.61 -8.33 -2.11 -8.29
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We observe that the results of mean and range from our approach are larger than 

those from MC approach for both area and wirelength. This negative value of error can be 

explained by considering the fact that MC approach typically evaluates the model based 

on computations on the actual values obtained by random generation whereas our 

approach predicts the range of values by mathematical modeling. Also, AA accounts for 

the worst case of the simulation. However, worst case scenario is seldom reached in real 

situations. Hence, the interval obtained in AA is slightly over-pessimistic. 

We also observe that the error for mean is smaller than the error for range both for 

the area and wirelength. This is due to the fact that Monte Carlo simulations do not cover 

the worst case scenarios correctly, and hence the larger error in range estimation. 

However, mean values are well matched to those from our algorithm since they are based 

on typical values normally encountered in real simulations.

Above results demonstrate the accuracy and effectiveness of our algorithm based 

on the affine arithmetic model to estimate the area and wirelength ranges of a floorplan in 

the presence of dimension variations.

4.4.3 Discussion

Although we have chosen to perform our experiments with the consideration of 

area minimization as the main criterion in the cost function, we obtain similar behavior in 

the results pattern if we consider both area and wirelength minimizations as the objective. 

Since the goal of our floorplanning algorithm is to predict the ranges of area and 

wirelength under the variations in dimensions of modules, we can obtain the results for 

any combination of weights assigned to α and β in the cost function.
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4.5 Conclusion

In this chapter, we have presented our variability-aware floorplanner. The problem 

has been formulated as a floorplanning optimization problem under variations in 

dimensions for each module resulting due to design uncertainty in early chip planning 

stage. An example has been provided to make the problem clearer. Then, we have 

explained the entire methodology followed in developing the MC based algorithm and our 

algorithm. In our algorithm, we have explained the procedure for getting the placement 

from a corresponding B*Tree using the contour structure. Finally, the experimental results 

presented prove the effectiveness of our algorithm in determining the ranges of area and 

wirelength under variations in dimensions of each module. We compare the results of our 

algorithm from MC approach and show that it performs better than MC approach in terms 

of run time by testing on a set of MCNC benchmark circuits.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

With the aggressive scaling of process technologies towards the deep submicron 

region, increased levels of integration within a singe die have imposed rigid constraints on 

the power budget and hence the temperature estimations of a chip. Also, the challenging 

increase in the amount of variability due to uncertainty in block and interconnect physical 

parameters across early phases of design has led to the need for variability-aware 

mechanisms that can correctly model these variations. In this thesis, we have discussed 

two significant works related to the area of interconnect power and thermal aware 

floorplanning, and variability-aware floorplanning.

In the first part of the thesis, we have shown how to improve the temperature 

distributions of a chip and reduce hotspots when considering heavily used interconnect 

circuits through interconnect power and thermal aware floorplanning. We have presented 

an interconnect power and thermal aware floorplanner that takes into account the effects 

of the switching activity of interconnects in deriving power consumption in estimating the 

peak temperatures. We have demonstrated that the peak temperatures can be 

underestimated by as much as 15oC without including switching activity of interconnects 

in determination of power. Finally, we have shown the effectiveness of our floorplanner in 

reducing peak temperatures by as much as 20% using MCNC benchmarks with a 

comparable area and a penalty of 2% in terms of the total wirelength. Chip temperatures 

are expected to further increase in future designs based on deep sub-micron technology 

and heavy interconnect usages, thus making the benefits of interconnect power and 
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thermal aware floorplanning even more prominent.

In the second part of the thesis, we have developed a variability-aware 

floorplanning algorithm. Variability issues at floorplanning stage have not been studied 

with much importance upto now. We have presented a B*-Tree based floorplanning 

algorithm based on affine arithmetic to determine the ranges of chip area and wirelength in 

the presence of variations in dimensions of each module. We have verified the accuracy of 

the method with Monte Carlo simulation. The average errors of mean and standard 

deviation values computed by the proposed method are −0.78% & −12.96% respectively 

for area, and −2.43% & −13.23% for wirelength respectively by testing on five MCNC 

benchmarks. The fast run time of our algorithm proves its superiority over Monte Carlo 

simulation approach. Further increase in uncertainty and hence variability effects in future 

complex designs will make the benefits and significance of our affine arithmetic based 

floorplanning algorithm even more prominent.

5.2 Future Directions

Since the increase in variations in block and interconnect parameters pose a 

challenge to the performance analysis of high-speed designs, many other important 

parameters like power dissipation and temperature of the chip will also be drastically 

impacted. As we have discussed in our work, power dissipation and temperature has 

become more crucial with shrinking technologies and need to be modeled accurately. 

With the combined effect of variability impacts, these parameters will become of 

paramount importance and will need to be studied in greater detail in early phases of chip 

planning i.e. design prototyping.

         Thus, the work done in our thesis opens door for future research in the area of 
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variability-aware floorplanning taking into account thermal and power dissipation of 

device and interconnects. Since design uncertainty affects the power and temperature of 

the chip besides the timing of circuits considerably, we need to predict the ranges of these 

parameters as well, under the presence of variations in dimensions of modules. The 

projected future work will be based on combining the power dissipation effects with the 

variations to yield variable ranges of temperature and power dissipation besides the chip 

area and wirelength.  

The projected future work will estimate the range of power dissipation for each 

functional block by taking into account the range of its area. Similarly, range of power 

dissipation of each interconnect will be determined by taking into account the range of its 

netlength. Range of area of each block and range of netlength for each interconnect is 

already determined in our variability-aware floorplanner. Further, it will compute the 

range of power distribution profile of the chip by considering the variations in netlength 

and area as mentioned above. Range of temperature estimations of the chip will be 

determined using the range of power dissipation values for each block and the ranges of 

floorplan metrics like area and wirelength.

Thus, our work done in this thesis provides a promising framework for significant 

future work in the direction of computing impacts of design uncertainty on power 

dissipation and temperature estimations of the chip at the floorplanning stage.
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