
B*-TREE REPRESENTATION BASED THERMAL AND
VARIABILITY AWARE FLOORPLANNING FRAMEWORK

SHEFALI SRIVASTAVA
(B.Tech. (Hons), CSJM University, India)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48639157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgements

First of all, I would like to express my deepest gratitude and appreciation to my supervisor

Dr. Ha Yajun, without whom, this thesis would not have materialized. I sincerely thank

him for his valuable guidance, suggestions and constant support throughout my M.Eng

thesis research work. I am grateful that he provided me with the opportunity to work on

the cutting-edge technology and the most important research areas in the VLSI domain,

which has further enhanced my career prospects in future. His emphasis on reasoning out

everything, on clarity in presentation of ideas and on looking at the holistic picture of a

problem has always guided me in the right direction. His persistence in conquering

difficulties in research and the enthusiasm for work have served as excellent examples for

me to follow throughout my career.

Finally, I would also like to thank all those who have directly or indirectly

provided advice and assistance during the course of my research work in the National

University of Singapore.

ii

Table of Contents

Acknowledgements...………………....…........i

Table of Contents...……..........…....ii

Summary..…………vi

List of Tables..……….viii

List of Figures...……...............iҳ

Chapter 1 Introduction.…………………………………………………….1

1.1 Overview……………………..…………………………………….………………....1

 1.1.1 Floorplanning ……………………………………………………………..…..1

 1.1.2 Thermal and Power Dissipation effects…………………………..………........2

 1.1.3 Design Prototyping...…………………………………………………….…….3

1.2 Problem Definition …………………………………………………………….….….4

1.3 Our Contributions……………………………………………………………….…….7

1.4 Organization of the Thesis…………………………………………………………....8

Chapter 2 Background and Related Work …………………….……….10

2.1 Floorplanning ……………………………………………………………………….10

 2.1.1 Topological Representation…………………………………………………..10

2.1.1.1 Normalized Polish Expression…………………………………...…..13

2.1.1.2 Sequence Pair…………………………………………………….…..15

2.1.1.3 Corner Block List…………………………………………………….18

 2.1.1.4 B*-Tree…………………………………………………………...…..21

2.1.1.5 Comparison of different Representations………………………..…...27

iii

 2.1.2 Block and Net Model……………………………………………………..…..28

2.1.2.1 Block Model and Pin Assignment …………………………….……..28

2.1.2.2 Half Perimeter Wirelength Estimation (HPWL) method ……….……30

 2.1.3 Cost Function…………………………………………………….….………..32

 2.1.4 Floorplanning Algorithms……………………………………………..….….33

2.1.4.1 Cluster Growth……………………………………………………….34

2.1.4.2 Genetic Algorithms…………………………………………………..37

2.1.4.3 Simulated Annealing....……….………………………………….…..38

 2.1.5 Floorplanning Methodology…………………………………………..….…..40

 2.2 Thermal and Power Dissipation effects……………………………………….……..41

2.2.1 Sources of Power Dissipation………………………………………………...41

2.2.1.1 Dynamic Power Dissipation………………………………………….42

2.2.1.1.1 Interconnect Power Dissipation………………………...…..43

2.2.2 Temperature Estimation……………………………………………………...44

2.2.2.1 Hotspot Tool………………………………………………………….46

 2.3 Variation Models.………………………………………………………………..…..47

2.3.1 Interval Arithmetic (IA)………………………………………………...…....49

2.3.2 Affine Arithmetic (AA)……………………………………………………....51

2.3.3 Monte Carlo Simulation ………………………………………..…………....54

Chapter 3 Interconnect Power and Thermal aware Floorplanning..….55

3.1 Motivation ……………………………………………………………………….….55

3.2 Problem Formulation………………………………………………………………..57

3.3 Interconnect Power and Thermal aware Floorplanning Algorithm……….….…......58

iv

 3.3.1 Methodology and Algorithm………………………………………….….…..58

 3.3.2 Interconnect Power Distribution……...………………………………….…...61

 3.3.3 Temperature Approximation .………………………………………………..66

3.4 Experimental Results ………….…………………………………………………….67

 3.4.1 Experimental Setup…………………………………………………………..67

 3.4.2 Results and Analyses ..……………………………………………………….69

 3.4.3 Discussion…………………………………………………………………....79

3.5 Conclusion…………………………………………………………………………...80

Chapter 4 Variability Aware Floorplanning…………………………....81

4.1 Motivation …………………………………………………………………………..81

4.2 Problem Formulation………………………………………………………………...83

4.3 Algorithm…………………………………………………………………………....87

 4.3.1 Monte Carlo Simulation Approach…………………………………………...91

 4.3.2 Our Approach………………………………………………………………....92

4.3.2.1 Determination of x Co-ordinates...………….………………………...93

4.3.2.2 Determination of y Co-ordinates…………....………………………..94

4.3.2.3 Determination of Area Range………………………………………...96

4.3.2.4 Determination of Wirelength Range……………………………….....96

4.4 Experimental Results………………………………………………………………...99

 4.4.1 Experimental Setup…………………………………………………………...99

 4.4.2 Results and Analyses………………………………………………………...100

 4.4.3 Discussion.…………………………………………………………………...102

4.5 Conclusion………………………………………………………………………….103

v

Chapter 5 Conclusions and Future Directions………………………....104

5.1 Conclusions ……………………………………………………………………......104

5.2 Future Directions…………………………………………………………………...105

Bibliography……………………………………………………………..107

vi

Summary

The evolution of deep submicron technologies has placed a high importance on

power dissipation and temperature of the chip. In addition, the increasing design

complexity is causing higher levels of uncertainty in design prototyping in the early chip

planning stages, thus leading to parameter variations which are posing an ever-increasing

challenge to performance analysis of high-speed designs. The purpose of this thesis is to

develop an interconnect power and thermal aware, and a variability-aware floorplanner

based on B*-Tree representation, to combat the effects of scaling technologies on

temperature and variations due to design uncertainty, separately. The thesis consists of

two parts which explain our work done in the areas of interconnect power and thermal

aware floorplanning, and variability-aware floorplanning as described below.

Interconnect power dissipation is becoming a performance bottleneck in sub

micron technologies leading to dramatic rise in chip temperatures which have negative

impact on chip performance and reliability. However, most prior work fail to consider the

switching activity of interconnects in deriving interconnect power dissipation and in

exploring a thermal-aware floorplan. This can result in peak temperatures being

underestimated by as much as 15oC according to our experiments. In this work, we present

an interconnect power and thermal aware floorplanner that aims at reducing hotspots and

distributing temperature evenly across a chip, while optimizing the traditional design

metrics, chip area and wirelength. Results demonstrate that our floorplanner is effective in

lowering peak temperatures by as much as 20% while providing floorplans that are as

compact as the traditional area oriented techniques with just a slight overhead of total

wirelength by 2% when testing on five MCNC benchmarks.

vii

The ever increasing growth of design complexity with the scaling of technologies

towards the nanometer regime brings with it a challenging increase in the amount of

variability due to uncertainty in initial estimates in early phases of the chip planning. With

the introduction of variations due to uncertainty in block characteristics such as width,

height and aspect ratio, a traditional deterministic floorplanner is unable to take block’s

variations into account and a variability-aware floorplanner is needed. In this work, we

use an affine arithmetic (AA) model to develop a fast and optimized variability-aware

floorplanner. The AA model enables a fast and accurate estimation of the variable range of

floorplan metrics such as area and wirelength in the presence of variations of each block’s

dimensions. Compared with the Monte Carlo simulation results, the average errors of

mean and range values computed by the proposed method are –0.78% & –12.96%

respectively for area, –2.43% & –13.23% respectively for wirelength and up to 100X

speed up by testing on five MCNC benchmarks. Our solution to this problem is also

interesting to related problems such as warehouse floorplanning.

viii

List of Tables

Table 2.1. Comparisons among the solution spaces and time complexity of various
floorplan representations………………………………………………………………...28

Table 2.2. Pin locations of a five terminal net………………………...………………...32

Table 3.1. MCNC benchmarks information……………………………………………..68

Table 3.2. Results considering traditional area and wirelength minimizations………....69

Table 3.3. Results using our thermal aware floorplanner……………………...……......70

Table 3.4. Comparison of runtime results for Hung’s floorplanner and our
floorplanner……………………………………………………………………………...72

Table 4.1. Ranges of width and height for each block……………...……………………86

Table 4.2. Values of width, height and location of each block………………...………..86

Table 4.3. Width, height and area of the floorplan layout of Figures 4.3 (a) and (b)……87

Table 4.4. Width, height and location of each block for B*-Tree 2.…………...………..88

Table 4.5. Width, height and area of the floorplan layout of Figures 4.5 (a) and (b)…...89

Table 4.6. MCNC benchmarks information…………………………………………....100

 Table 4.7. Results for area and wirelength using MC approach………………………..100

 Table 4.8. Results for area and wirelength using our approach………………………...101

Table 4.9. Area and wirelength comparison results of our algorithm and
Monte-Carlo simulation (MC) method………………………………...……………....101

ix

List of Figures

Figure 2.1: Slicing floorplan and its corresponding binary tree….………………….......11

Figure 2.2: Mosaic floorplan (wheel structure)………………………………………….12

Figure 2.3: General floorplan………………………………………………………...….12

Figure 2.4: Relationship among the solution spaces of slicing, mosaic and general
floorplans………………………………………………………………………………...13

Figure 2.5: Slicing floorplan, its NPE and the corresponding slicing tree……………....14

Figure 2.6: (a) Oblique grid for sequence pair (<4 3 1 6 2 5>, <6 3 5 4 1 2>) (b) Four cones
of block 1 (c) Corresponding packing. Dimensions for the six blocks are: 1 (4 × 6),
2 (3 × 7), 3 (3 × 3), 4 (2 × 3), 5 (4 × 3) and 6 (6 × 4)…...............……………………....16

Figure 2.7: The horizontal and vertical constraint graphs of a sequence pair <431625>,
<635412>) (a) Horizontal constraint graph (b) Vertical constraint graph………………17

Figure 2.8: Two different kinds of T-junction and orientation of the corner block
(CB) “f”………………………………………………………………………………….18

Figure 2.9: Deletion/Insertion of vertically oriented corner block “f”…………………...19

Figure 2.10: Deletion/Insertion of horizontally oriented corner block “f”………………19

Figure 2.11: A CBL list and the resultant floorplan……………………………………...21

Figure 2.12: (a) A placement (b) The corresponding B*-Tree………..…………………22

Figure 2.13: Pseudo code of algorithm for finding the placement from a corresponding
B*-Tree…………………………………………………………………………………..23

Figure 2.14: Adding a new module on top, we search the contour from left to right
and update it with the top boundary of the new module………………………………...24

Figure 2.15: Example showing the perturbations process on placement and its
corresponding B*-Tree…………………………………………...……………………...26

Figure 2.16: Block and terminal locations in a chip……………………………………..28

Figure 2.17: Pin locations on a block…………………………………………………....29

Figure 2.18: Different block orientations and corresponding pin locations………...…...30

x

Figure 2.19: Example of a five terminal net………………………………………...…...30

Figure 2.20: HPWL of a net……………………………………….……………………..31

Figure 2.21: Example of determination of HPWL of a five terminal net………………..31

Figure 2.22: Cluster growth floorplanning……………………………………………....34

Figure 2.23: Linear ordering algorithm…..……………………………………………...35

Figure 2.24: Classification of nets during linear ordering……...……...……………......36

Figure 2.25: Cluster growth algorithm………..……………………………….………...36

 Figure 2.26: Genetic algorithm flow…………………………………………………….38

Figure 2.27: Pseudo code of simulated annealing algorithm…………………………....40

Figure 2.28: Case 1: a) Power distribution profile b) Corresponding heat diffusion
flow……………………………………………………………………………………....45

Figure 2.29: Case 2: a) Power distribution profile b) Corresponding heat diffusion
flow……………………………………………………………………………………....45

Figure 2.30: Transfer thermal resistance matrix Rt ….………………………………… 46

Figure 3.1: Pseudo code of the interconnect power and thermal aware floorplanning
algorithm……………………………...60

Figure 3.2: Diagram showing relationship between temperature and switching activity
of interconnect………………………………..……………………………….................61

Figure 3.3: Pseudo code of the Calculate_Power algorithm…..………………………...63

Figure 3.4: Power distribution profile for case 1…………………………………….….64

Figure 3.5: Power distribution profile for case 2………………………………………..65

Figure 3.6: Comparison of peak temperatures for area optimization with/without
consideration of switching activity and thermal aware optimization…………………....71

Figure 3.7: Comparison of average temperatures for area optimization with
/without consideration of switching activity and thermal aware optimization…………..71

Figure 3.8: Floorplan of xerox with area optimization only……..……………....……....74

xi

Figure 3.9: Floorplan of xerox with area and thermal optimization………...…...……….74

Figure 3.10: Floorplan of hp with area optimization only……………..…………….…..75

Figure 3.11: Floorplan of hp with area and thermal optimization………………..….…..75

Figure 3.12: Floorplan of ami33 with area optimization only…………..……….….…...76

Figure 3.13: Floorplan of ami33 with area and thermal optimization…………..…….....76

Figure 3.14: Floorplan of ami49 with area optimization only…….…………..…….…...77

Figure 3.15: Floorplan of ami49 with area and thermal optimization…………...……....77

Figure 3.16: Floorplan of apte with area optimization, and area and thermal
optimization……………………………………………………………………………...78

Figure 4.1: Width and height ranges of a module………………………………………..84

 Figure 4.2: Left bottom co-ordinate ranges (x, y) of a module…………………………..84

Figure 4.3: (a) and (b): Impact of variability on chip area and location of modules…....86

 Figure 4.4: (a) B*-Tree 1 (b) B*-Tree 2………………………………………..………..88

Figure 4.5: (a) and (b): Impact of variability on chip area and location of modules for
B*-Tree 2.………………………………………………………………………………..88

Figure 4.6: Pseudo code of our floorplanning algorithm…………………………….......91

Figure 4.7: Pseudo code of placement using MC approach…………..………………….92

Figure 4.8: Pseudo code for determination of x and y co-ordinates using our
approach………………………………………………………………………………....95

Figure 4.9: Pseudo code of placement using our approach……………………………....98

1

Chapter 1

Introduction

1.1 Overview

Aggressive scaling of process technologies towards the nanometer regime has

enabled feature sizes to shrink continuously. This allows designers to pack more

functionality onto a single die. However, the increased level of integration within a single

die imposes rigid constraints on the power consumption budget and hence the temperature

profile of the chip. Also, it brings with it a challenging increase in the amount of

variability due to uncertainty in initial estimates in the early phases of VLSI design i.e.

design prototyping.

1.1.1 Floorplanning

Floorplanning is an important step in the VLSI design process to plan the positions

and orientations of a set of circuit modules on a chip in such a way that no blocks overlap

and the circuit performance is optimized. It can have drastic impacts on the quality and

flexibility of a design such as layout area, wirelength congestion, power density and

temperature of the chip. As technology moves into the deep-submicron era, circuit sizes

and complexities are growing rapidly and floorplanning has become more important than

ever before. With the introduction of uncertainty in the block dimensions at the time of

floorplanning, a variability-aware floorplanner can predict the ranges of area and

wirelength of a design that impact acceptability assessment of the chip architecture in the

early design decision stage.

2

There are two aspects in general when dealing with the floorplanning problem.

The first one is to find an appropriate topological representation (CBL, B*-Tree, O-Tree,

TBS, BSG, Sequence Pair, TCG etc.) in the form of a data structure to represent the

geometrical relationship among the blocks. The second aspect considers the application of

a stochastic search method on the representation to find an optimized floorplan. Most

floorplanning algorithms use simulated annealing to search for an optimal solution.

Floorplanning has been proven to be a NP-hard problem, hence, it is important to chose a

good representation and a searching methodology to perturb the infinite solution space to

search for a near optimal floorplan solution in less time. Most of the research is focused on

these two aspects of the floorplanning problem.

1.1.2 Thermal and Power Dissipation effects

Interconnects have become the center of attraction in terms of power consumption

and performance as the process technology scales into the deep sub micron region.

However, interconnects, unlike transistors, have not scaled down exponentially as we

move to nano meter era. This has led to an increase in the total capacitance of

interconnects and hence dynamic power dissipation despite the introduction of low

dielectric materials. Secondly, long interconnects, compared to the scaled transistors, are

becoming exceptionally long. In order to keep the delays of these long wires tractable,

repeaters and flip-flops are inserted to prevent performance degradation. However, these

additional components have detrimental impacts on interconnect power dissipation.

Power density directly translates into heat which may lead to a significant increase

in chip temperature. As a result, the temperature in modern high performance VLSI

circuits increases dramatically due to smaller feature size, higher packing density and

3

rising power consumption. The hotspot in a modern chip might have a temperature of

more than 100oC while the intrachip temperature differentials can be larger than 10~20oC

[41]. Temperature can have a dramatic impact on circuit performance, power, and

reliability: MOS current drive capability decreases approximately 4% for every 10oC

temperature increase while the leakage current increases exponentially with the

temperature increase resulting in thermal runaways. The interconnect resistance also

becomes larger with increasing temperature. For example, the resistivity of copper

increases by 39% from 20oC to 120oC. Higher resistivity causes longer interconnect RC

delay and hence performance degradation. The interconnect (Elmore) delay increases

approximately 5% for every 10oC increase in temperature [1]. Higher temperatures

accelerate electro migration failures and reduce the lifetime of the device. Finally, high

temperature of the chip makes cooling solutions significantly more expensive. Therefore,

it is very important to eliminate hotspots and have a thermal balanced design.

Power-aware design alone is not able to address the temperature challenge because the

thermal distribution profile depends on not only the power density but also the physical

size and location of each functional block. Therefore, even though it is related to the

power-aware design area, thermal-aware design itself is a distinct and important research

area.

1.1.3 Design Prototyping

Design prototyping has gathered much attention recently due to increasing

complexity of VLSI designs and the need for area and performance measures early in the

chip planning stage. Based on the assessment of the above measures, the chip architecture

is revisited and it is partially or completely redesigned accordingly to meet the design

4

specifications. This saves a lot of time and cost incurred otherwise due to changes made

after the actual implementation. Since design prototyping occurs very early in the design

phase, uncertainty exists in the circuit physical dimensions and the technology library

cells. This poses a challenging task to the designer to have initial estimates about area and

performance parameters of the chip. Therefore, we need to correctly model these

uncertainty variations not only to determine the correct expected circuit area and

performance of a design but also to correctly optimize the design such that the percentage

of parts that meet a specified performance target is maximized.

1.2 Problem Definition

 The work in the thesis is inspired from the concerns at rising trends in accurate

thermal-conscious mechanisms and the impact of variations due to design uncertainty in

early planning stage of a chip fabricated with sub-micron technologies. Designers are

looking at developing new methods to tackle these problems at an early design stage so

that unnecessary work may be avoided at later stages. Floorplanning has been a major

focus of attention and research since it can impact many important design decisions at an

early stage.

 Many thermal-aware floorplanners exist that estimate the temperature of the

chip and help to reduce hotspots by clever floorplanning techniques. However, with the

onset of high switching activity circuits i.e. circuits which have high usage of specific

interconnects and increasing interconnect power dissipation, previous floorplanners fail to

provide accurate temperature estimates. Therefore, we need to consider the switching

activity of different interconnects in deriving the total power dissipation in a circuit. Since

the temperature of the chip depends largely on the power distribution profile in a chip,

5

neglecting any of the factors responsible for power dissipation will give a pessimistic

analysis of temperature estimates.

As designs are getting more complex, it is difficult to have the entire design (the

netlist and the database library) completely specified and available at the time of

floorplanning. This introduces uncertainty in block dimensions which then need to be

specified by a range of values for further evaluation. Floorplanning with uncertainty is the

process of obtaining an accurate floorplan with missing data. With the introduction of

variations in block characteristics such as width, height and aspect ratio, due to design

uncertainty, a traditional deterministic floorplanner is unable to take block variations into

account and a variability-aware floorplanner is needed. The traditional floorplanners

optimize design metrics to find one best fixed floorplan for blocks with only fixed block

characteristics. For example, an area driven traditional floorplanner might perform

optimizations to find one fixed floorplan that yields the minimum total area. It assumes

that each block has fixed block area or aspect ratio when estimating the total chip area.

However, the variability-aware floorplanner optimizes design metrics to find one best

relative floorplan for all blocks with variable block characteristics. For example, an area

driven variability-aware floorplanner might perform optimizations to find one relative

floorplan that yields the minimum average total area for all possible variations in the

range. It assumes that each block has variable block area or aspect ratio when estimating

the total chip area. As a result, with the introduction of variability in the dimensions for

each module, the conventional approach fails to estimate the ranges of area, wirelength

and other floorplan metrics.

To estimate the range caused by variations, two types of brute-force approaches

6

can be tried. The first approach assumes the worst-case magnitude for each variation but

the resulting floorplan will be very pessimistic. The second approach performs Monte

Carlo simulations to consider enough points in a very large variation space, although the

results are relatively accurate but the simulation time is extremely long. Both approaches

are not ideal to have a fast and accurate estimation of ranges.

To provide a fast yet accurate estimation of ranges caused by variations, the related

area in statistical static timing analysis (STA) uses analytical approaches to find

closed-form expressions for the distributions of circuit delays. These methods use normal

distributions, interval valued analysis, probabilistic intervals or mathematical statistical

models. We believe a similar approach is needed to quickly and accurately estimate the

floorplan metric ranges.

Thus, our problem definition consists of developing a floorplanning algorithm

with the objective of minimizing chip area and wirelength together with achieving two

major goals as outlined below:

 Accurate chip thermal modeling with the consideration of switching

activity of interconnects and netlength in determining interconnect power

dissipation together with the block power dissipation in a chip. The goal of

floorplanning algorithm is to evenly spread out the temperature on a chip

and thus reduce hotspots.

 Determining the range of total area and wirelength under the presence of

variations in dimensions of modules. The goal is to determine the best

relative floorplan with the smallest range and average for all possible

variations in total area and wirelength.

7

1.3 Our Contributions

We develop a floorplanner based on B*-Tree representation and use the simulated

annealing algorithm to get the best floorplan layout meeting the criteria as outlined in the

problem definition given earlier. The major contributions of the thesis are two fold.

 First, our work incorporates the feature of switching activity of

interconnects while calculating the power densities across the entire chip

and shows that it can lead to different power density profiles depending on

values of switching activity, keeping other parameters like positions and

dimensions of functional blocks and interconnect lengths constant. This

results in significant change in chip temperature leading to localized hot

spots. We then develop an interconnect power and thermal aware

floorplanner that aims at reducing hotspots and distributing temperature

evenly across a chip while optimizing the traditional design metrics, chip

area and wirelength. A thermal modeling tool called HotSpot is used to

determine the chip temperature profile. Our work is novel with regard to the

different floorplanning algorithms developed till recently for chip

temperature estimates as none of the previous works take switching activity

of the interconnects into account for determining the temperature of the

chip. Results in our work indicate that excluding switching activity in

interconnect power determination can result in peak temperatures to be

under estimated by as much as 15oC. Our floorplanner is effective in

lowering peak temperatures by as much as 20% while providing floorplans

that are as compact as the traditional area oriented techniques with a slight

8

overhead of total wirelength by 2% when testing on five MCNC

benchmarks.

 Second, we present a mathematical model using affine arithmetic to

estimate the range of floorplan metrics such as chip area and wirelength

under the given variations in dimensions for each module. Our work is a

breakthrough with reference to earlier related work that considers variations

of width and height of each block to be limited to certain discrete values in a

range. Also, we use more advanced analytical technique i.e. affine

arithmetic to perform range calculations on a set of MCNC benchmark

circuits. Moreover, we also determine range of wirelength in addition to the

range of area. We determine the most feasible B*-Tree as the solution

which can give the lowest range of values lying as close as possible to the

minimum average values of area and wirelength for a given set of

variations. We then run Monte Carlo simulations to verify the accuracy of

our affine arithmetic model. Experimental results show that, compared with

the Monte Carlo simulation results, the average errors of mean and range

values computed by the proposed method are –0.78% & –12.96%

respectively for area, –2.43% & –13.23% respectively for wirelength and

up to 100X speed up by testing on five MCNC benchmarks. Our solution to

this problem is also interesting to other related problems such as warehouse

floorplanning.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 gives the

9

background information on floorplanning, thermal and power dissipation effects, and

variations due to design uncertainty, which provide the base and framework for the work

done in this thesis. The chapter gives an overview of floorplanning concepts including the

description of B*-Tree and simulated annealing algorithm which have been used in our

work. Further, it describes the sources of power dissipation in a chip together with the role

of interconnects in determining power dissipation, and hence the temperature estimation

of the chip using a thermal modeling tool called Hotspot. Finally, the chapter gives a brief

overview of Monte Carlo simulation method, numerical computation methods i.e. interval

arithmetic and affine arithmetic which have been used for modeling variations. Chapter 3

reviews the previous work which has served as a source of motivation for this research

work and formally describes the problem definition, solution approach and experimental

results for our contribution towards making thermal-aware floorplanning more accurate

with the incorporation of switching activity of interconnects in deriving the power

dissipation in a chip. Chapter 4 presents the formal problem formulation for our

contribution towards developing a variability-aware floorplanner based on affine

arithmetic to enable a fast and accurate estimation of the variable range of floorplan

metrics such as area and wirelength in the presence of variations of block dimensions due

to design uncertainty. The chapter reviews the previous related work, explains our

variability-aware floorplanning algorithm in detail and presents the experimental results

based on both the Monte Carlo simulation approach and our approach. Chapter 5 draws

the conclusions and provides future research directions.

10

Chapter 2

Background and Related Work

In this chapter, we discuss some preliminary topics which will provide the

necessary ground framework for the work done in this thesis. The chapter is organized as

follows. Section 2.1 briefly discusses floorplanning concepts and the typical approach

followed to solve a floorplanning problem. It gives an overview of various topological

representations, block and net model including pin assignment and wirelength estimation

method, and various floorplanning algorithms. Section 2.2 discusses various causes of

power dissipation including interconnect power dissipation. It also explains the method to

estimate temperature together with a brief description of thermal modeling tool called

Hotspot. Section 2.3 explains Monte Carlo simulation method, and mathematical models

like interval arithmetic and affine arithmetic, which are used for modeling variations.

2.1 Floorplanning

Floorplanning is an important step in physical design of VLSI circuits to plan the

positions and orientations of a set of circuit modules on a chip in order to optimize the

circuit performance. The quality of the floorplan solution depends largely on the choice of

topological representation and the floorplanning algorithm selected to search over an

infinite solution space.

2.1.1 Topological Representation

In order to floorplan a circuit design, an abstract representation is needed to

represent the geometrical relation or topologies among blocks so that some algorithms can

11

be applied on to solve the problem. This abstract representation is called topological

representation and is commonly specified by a rectangular dissection of the floorplan

region. Floorplans can be divided into two categories, the slicing floorplans [4], [5] and

the non-slicing floorplans [6], [7], [8] and [9].

Slicing floorplan is a rectangular dissection that can be obtained by recursively

cutting a rectangle horizontally or vertically into two smaller rectangles. Slicing

floorplans are represented by slicing structures which can be modeled by a binary tree

with n leaves and n-i nodes where each node represents a vertical cut line or a horizontal

cut line and each leaf a basic rectangle. Figure 2.1 shows the slicing floorplan and its

corresponding binary tree.

 V

 H 5

 3 H

 V 4

 1 2

Figure 2.1: Slicing floorplan and its corresponding binary tree.

Non-slicing floorplans are further categorized into mosaic floorplans and general

floorplans. Mosaic floorplan is one which is dissected into exactly n rooms so that each

room is occupied by one and only one block. E.g. a wheel structure as shown in Figure 2.2.

In addition, there is no crossing cut in the mosaic floorplan.

 3

 1 2 5

4

12

Figure 2.2: Mosaic floorplan (wheel structure).

General floorplan is similar to mosaic floorplan in that non-slicing structures are

allowed. However, the floorplan region can be dissected into more than n rooms such that

some rooms are empty, i.e. not occupied by any block as in Figure 2.3.

 Deadspace

Figure 2.3: General floorplan.

Deadspace of a floorplan is the space that is wasted as shown in Figure 2.3.

Minimizing area is the same as minimizing deadspace. Deadspace percentage is computed

as

(A − ∑Ai) × 100% (2.1)
 ∑Ai

 where Ai is the area of each block i and A is the total area of the floorplan.

Slicing floorplan is a special case of mosaic floorplan and mosaic floorplan is a

special case of general floorplan. The relationship among the solution spaces of slicing,

mosaic and general floorplans is illustrated in Figure 2.4 on next page.

 3
 2

 5
4

1

13

 General

Figure 2.4: Relationship among the solution spaces of slicing, mosaic and general
floorplans.

Various topological representations like Normalized Polish Expression, B*-Tree

[10], O-Tree [6], Sequence Pair [11], Corner Block List (CBL) [12], Bounded Sliceline

Grid (BSG) [8], Transitive Closure Graph (TCG) [13] etc. have been proposed to

represent slicing and non-slicing floorplans. We briefly describe some of the most popular

representations below.

2.1.1.1 Normalized Polish Expression (NPE)

Normalized polish expression [5] proposed by Wong and Liu is used for

representing slicing floorplans. NPE removes the redundancy in the binary tree

representation, which is due to the existence of more than one binary tree corresponding to

the same slicing floorplan. An ideal data representation is one which is able to represent all

possible combinations of floorplan without having two or more data representations that

correspond to the same floorplan.

An expression, E = e1, e2, …, e2n-1, where ei Є {1, 2, …, n, H, V}, 1 < i < 2n-1, is a

polish expression of length 2n-1 iff

 Mosaic

 Slicing

14

 Every operand j, 1 < j < n, appears exactly once in the expression, and

 The expression E has the balloting property, i.e. for every sub-expression

Ei = e1, e2, …, ei , 1 < i < 2n-1, the number of operands is greater than the

number of operators.

A polish expression is said to be a normalized polish expression iff E has no consecutive

H’s and V’s (e.g. 16H7H25HV34HV).

We can view a normalized polish expression as a bottom UP description of a

slicing structure. In fact, we can interpret the symbols H and V as two binary operators

between slicing structures. If A and B are slicing structures, we can interpret AHB and

AVB as the resulting slicing structures obtained by placing B on top of A, and B to the

right of A, respectively. A postorder traversal of the slicing tree results in a NPE with V

and H as the operators, and the basic rectangles as operands (See Figure 2.5). This

expression specifies how to build the final slicing structure from smaller ones. Figure 2.5

shows the slicing floorplan, its NPE and the corresponding slicing tree.

 V

 V H

 H H 3 4

 H 7 2 5

 1 6

 NPE = 16H7H25HV34HV

Figure 2.5: Slicing floorplan, its NPE and the corresponding slicing tree.

7 5

 4
 6

 2

 1 3

15

2.1.1.2 Sequence Pair

Murata et al. [11] proposed the sequence-pair representation for rectangular

module placement. The main idea is to use a sequence pair to represent the geometric

relation of modules, place the modules on a grid structure and construct corresponding

constraint graphs to evaluate cost. This representation requires 2n[log n] space to encode a

sequence pair and there are (n!)2 combinations in total where n is the number of modules.

Further, the transformation between a sequence pair and a placement takes O(nlogn) time.

A sequence pair (Ґ+, Ґ-) is a pair of sequences of elements representing a list of

blocks. The two sequences Ґ+ and Ґ- are permutations of a given block set. The sequence

pair structure is actually a meta grid. Given a sequence pair, one can construct a 45 degree

oblique grid as shown in Figure 2.6 (a). For every block, the plane is divided by the two

crossing slope lines into four cones as shown in Figure 2.6 (b). Block 2 is in the right cone

of block 1, then it is to the right of block 1 [see Figure 2.6 (c)]. In general, the relative

positions between any two blocks a and b can be derived from a sequence pair (Ґ+, Ґ-) by

the following rules.

 Horizontal constraint:

If (Ґ+, Ґ-) = (<…a, …, b…>, <…a, …, b…>), block b is at the right side of

block a.

 Vertical constraint:

If (Ґ+, Ґ-) = (<…a, …, b…>, <…b, …, a…>), block b is below block a.

16

 For example, (Ґ+, Ґ-) = (<431625>, <635412>) is a sequence pair of block set {1, 2, 3, 4,

5, 6}. Figure 2.6 shows the oblique grid and packing of the sequence pair (<431625>,

<635412>).

 (a) (b)

 (c)

Figure 2.6: (a) Oblique grid for sequence pair (<4 3 1 6 2 5>, <6 3 5 4 1 2>) (b) Four
cones of block 1 (c) Corresponding packing. Dimensions for the six blocks are: 1 (4 ×
6), 2 (3 × 7), 3 (3 × 3), 4 (2 × 3), 5 (4 × 3) and 6 (6 × 4).

Evaluation of a Sequence Pair

In order to evaluate the corresponding floorplan of a sequence pair and

determine the position of each block, Murata et al. [11] used two weighted directed

constraint graphs Gh and Gv that are constructed according to horizontal and vertical

constraints of a sequence pair. Then, the longest path algorithm is invoked to determine

the longest paths of the two graphs. The longest paths of Gh and Gv are the width and

17

height of the corresponding placement of the sequence pair respectively. Figures 2.7 (a)

and (b) are examples of the weighted directed constraint graphs Gh and Gv of the sequence

pair (Ґ+, Ґ-) = (<431625>, <635412>).

(a) (b)

Figure 2.7: The horizontal and vertical constraint graphs of a sequence pair
(<431625>, <635412>) (a) Horizontal constraint graph (b) Vertical constraint graph.

 The time complexity of the longest path algorithm is O(n2) where n is the number

of blocks. It had been proved that the longest path of Gh is equivalent to the longest

common subsequence of Ґ+ and Ґ-, and the longest path of Gv is equivalent to the longest

common subsequence of Ґ+R and Ґ- where Ґ+R is the reverse sequence of Ґ+. Based on the

theorm, Tang et al. [7] used an effective data structure to determine the longest common

subsequence of a sequence pair in O(nloglogn) time. They use a complete binary tree and

a doubly-linked list to determine the longest common subsequence of a sequence pair. The

doubly linked list is used to keep the longest common subsequence during the evaluating

process and a complete binary tree is used to find the position of a new element which will

be inserted into the doubly-linked list.

18

2.1.1.3 Corner Block List (CBL)

Corner Block List is proposed by Hong et al. [12] to represent mosaic floorplan.

The corner block (CB) is the block at upper-right corner of the floorplan. The left and

bottom bounding segments of CB form a T-junction.

T-junction of 90o T-junction of 180o

 (a) Vertical CB (b) Horizontal CB

Figure 2.8: Two different kinds of T-junction and orientation of the corner block
(CB) “f”.

The orientation of CB is defined by the orientation of its T-junction. The

T-junction has only two types of orientations: T rotated by 90 degrees (Figure 2.8 (a)) and

by 180 degrees (Figure 2.8 (b)) counterclockwise respectively. If T is rotated 90 degrees

counterclockwise, the CB is vertically oriented, and its corresponding entry in list L is set

by a “0”. Otherwise, the CB is horizontally oriented, and the entry in list L is set by a “1”.

For example, in Figure 2.8 (a), the orientation of corner block “f” is vertical and is denoted

by “0” whereas in Figure 2.8 (b), the orientation of “f” is horizontal and is denoted by “1”.

f
 b

 c e

a d

e f
 a

 c d

 b

19

Bottom segment is moved upward

Insert f

Delete f

S1 = f;
L1 = 0;
T1 = {10};

Figure 2.9: Deletion/Insertion of vertically oriented corner block “f”.

Left segment is moved towards right

Insert f

Delete f

Figure 2.10: Deletion/Insertion of horizontally oriented corner block “f”.

Corner Block Deletion

The core idea of CBL representation is embodied in the corner block deletion

operation. The way to delete a CB depends on its orientation. To delete a CB which is

vertically oriented, its bottom segment is shifted to the top boundary of the floorplan and

the attached T-junctions (if any) are pulled along with the segment. Figure 2.9 illustrates

this operation. The corner block “f” is vertically oriented, thus, in order to delete this CB,

the bottom segment of its room is shifted to the top boundary and the attached T-junction

(in this case there is only one attached T-junction) is pulled along with the bottom

segment. If the CB is horizontally oriented, the left segment of its room is shifted to the

right boundary of the floorplan and the attached T-junctions (if any) are pulled along with

the segment. Figure 2.10 illustrates the deletion of horizontally oriented CB “f”.

f
 b

 c e

a d

 b c e

a d

 e
 a

 c d

 b

e f
 a

 c d

 b

20

Corner Block Insertion

Corner block deletion is the inverse of deletion. If the inserted CB is vertically

oriented, the horizontal segment from the top of the floorplan covering a designated

numbers of T-junctions is pushed down in order to create a room for the inserting CB.

Figures 2.9 and 2.10 illustrate the insertion operation of corner block “f” starting from the

floorplan shown in the right and obtaining the floorplan as shown in the left after insertion

of CB “f”. If the corner block is horizontally oriented, the operation is similar to those of

vertical oriented but instead of pushing the top segment, the vertical segment at the right of

the floorplan is pushed towards left.

It can be observed that the floorplan still remains mosaic after the deletion or

insertion operation.

Transformation from floorplan to CBL

CBL list is constructed by recursive deletion of CBs in the floorplan until there is

no CB left in the floorplan. For each deletion of a CB, its name is recorded in list S, its

orientation recorded in list L and the number of its attached T-junctions is recorded by the

same number of successive “1”s ended by a “ 0” in a binary list Ti (Figure 2.11). At the end

of deletions of all CBs, three lists are obtained: the block name list S = {Mn, Mn-1, ..., M1},

the orientation list L = {Ln, Ln-1, ..., L2} and the T-junction list T = {Tn, Tn-1, ..., T2}. Then

each list is reversed and all the items of the T-junction list are combined into a single

binary vector T. The triple (S, L, T) is called a corner block list.

21

Corner Block List

S = {a, b, c, d, e, f};

L = {0, 1, 1, 0, 0};

T = {0 10 0 0 10};

Figure 2.11: A CBL list and the resultant floorplan.

Transformation from CBL to floorplan

Construction of the floorplan from a CBL is the inverse process. Blocks are

inserted in turn either from the right for vertical orientation or from the top for horizontal

orientation, covering required number of T-junctions given by the corresponding entry in

list T. Figure 2.11 illustrates the resultant floorplan of a corner block list.

2.1.1.4 B*-Tree

We shall review the B*-Tree representation in this section. Chang et al. [10]

presented a binary tree based representation for a left and bottom compacted placement

called B*-Tree and showed its superior properties for operations. Given a placement P, we

can construct a unique B*-Tree in linear time by using a recursive procedure similar to the

depth first search (DFS) algorithm. Each node ni in a B*-Tree denotes a module. The root

of a B*-Tree corresponds to the module on the bottom-left corner. The left child nj of a

node ni denotes the module mj that is the lowest adjacent module on the right-hand side of

mi i.e.

xj = xi + wi (2.2)

The right child nk of a node ni denotes the module mk that is the lowest visible

module above mi and with the same x co-ordinate as mi i.e.

f
 b

 c e

a d

22

xk = xi (2.3)

Figures 2.12 (a) and (b) show a placement and its corresponding B*-Tree

respectively. The root n0 of the B*-Tree in Figure 2.12 (b) denotes that m0 is the module on

the bottom-left corner of the placement. For node n3 in the B*tree, n3 has a left child n4

which means that module m4 is the lowest adjacent module in the right-hand side of

module m3 (i.e. x4 = x3 + w3). n7 is the right child of n3 since module m7 is the visible

module over module m3 and the two modules have the same x co-ordinate (x7 = x3).

Figure 2.12: (a) A placement (b) The corresponding B*-Tree.

We shall show the procedure to get the placement from a B*-Tree. We first define a

permutation π which is the label sequence when we traverse the tree in depth-first search

order. The first element in permutation π is the root of tree. We now introduce a contour

structure which is used by Guo et al. in [6]. The contour structure is a doubly linked list of

modules, which describes the contour line in the current compaction direction. Without

the contour structure, the runtime for placing a new module is linear to the number of

modules. By maintaining the contour structure, the y co-ordinate for a newly inserted

 M0 M1
M2

 M3 M4

 M5

M6

M7
 M8

 M9

n0

n1 n3

n7n4

n6

n5

n2

n8

n9

23

module can be computed in O(1) time. For each module mi, let ψ(i) be the set of modules

mk with its order lower than mi in permutation π and interval (xk, xk + wk) overlaps interval

(xi, xi + wi) by a non-zero length. If ψ(i) is non-empty, we have

 yi = max k ε ψ(i) yk + hk (2.4)

 Otherwise yi = 0 (2.5)

The algorithm for finding the placement from a corresponding B*-Tree is outlined

in Figure 2.13 below. It uses a contour structure to reduce the run time for finding the y

co-ordinate of a module while solving the equations (2.4) and (2.5).

 Input: B*-Tree(π [0:n])
 Output: Placement with position (xi, yi) for each module mi

 Begin
 Set perm = 1

 Set contour = NULL
 Set current_contour = 0
 For code = 0 to n−1
 if code = 0 then
 Set current_module = π [perm]
 If current_contour = 0 then
 Set x[current_module] = x[current_contour] + w[current_contour]

 Else set x[curent_module] = 0
 End if

 Set y[current_module] = find_max_y (contour, current_module)
 Update_contour (contour, current_module)
 Set current_contour = current_module
 Set perm = perm + 1

 Else set current_contour = prev [current_contour]
End if

 End for
 End.

Figure 2.13: Pseudo code of algorithm for finding the placement from a
corresponding B*-Tree.

We use a variable current_contour to record the module where we want to insert

24

the next module in the contour. Figure 2.14 shows how find_max_y determines the y

co-ordinate of current module and how update_contour updates the contour structure

when we add a new module m8 to the placement. The old contour is composed of modules

m7, m3, m4, m6 and m5. After m8 is placed, the new contour becomes m7, m8, m4, m6 and m5.

Note that we only need to search modules m3 and m4 to get m8’s y co-ordinate y8 with the

contour structure.

Newly added module

Old Contour

 New Contour

Figure 2.14: Adding a new module on top, we search the contour from left to right
and update it with the top boundary of the new module.

We perturb a B*-Tree (a feasible solution) to another B*-Tree by using the following four

operations.

1 Op1: Rotate a module.

2 Op2: Move a module to another place.

3 Op3: Swap two modules.

To cope with rotated modules while performing Op1, when inserting a deleted node into a

B*-Tree, we can perform the operation twice at each position to find a better solution, one

for the original orientation, and the other for the rotated one. Op2 deletes and inserts a

module. For the deleted node associated with a rectangular module, we simply delete the

 M0 M1
M2

 M3 M4

 M5

M6

M7
 M8

25

node from the B*-Tree. Op2 and Op3 need to apply the Insert and Delete operations for

inserting and deleting a node to and from a B*-Tree. We explain the two operations as

below.

Deletion

 There are three cases for the deletion operation.

1 Case 1: A leaf node.

2 Case 2: A node with one child.

3 Case 3: A node with two children.

In Case 1, we simply delete the target leaf node. In Case 2, we remove the target node and

then place its only child at the position of the removed node. The tree update can be

performed in O(1) time. In Case 3, we replace the target node nt by either its right child or

left child nc. Then, we move a child of nc to the original position of nc. The process

proceeds until the corresponding leaf node is handled. It is obvious that such a deletion

operation requires O(h) time where h is the height of the B*-Tree. Note that in Cases 2 and

3, the relative positions of the modules might be changed after the operation, and thus, we

might need to reconstruct a corresponding placement for further processing.

Insertion

When adding a module, we may place it around some module. We define two

types of positions as follows.

1 Internal position: A position between two nodes in a B*-Tree.

2 External position: A position pointed by a NULL pointer.

Both these positions can be used for inserting a new node.

We explain the perturbation process with the help of an example in Figure 2.15

26

that illustrates all the three moves namely Op1, Op2 and Op3. We start with an initial

placement and then perform the three operations in the order, i.e. swapping two modules,

moving a module from one place to another and rotating a module successively. The

corresponding B*-Tree for each placement obtained after the perturbation process is given

below it as shown in the Figure 2.15. Note that the rotation operation does not change the

configuration of the B*-Tree, only the block orientation changes in the same position in

the placement.

 Op3 Op2 Op1

Figure 2.15: Example showing the perturbations process on placement and its
corresponding B*-Tree.

We summarize the advantages of B*-Tree as follows:

1. Based on ordered binary trees, B*-Trees are very easy for implementation and can

perform the respective primitive tree operations: search, insertion and deletion in only

O(1), O(1) and O(n) times while existing representations for non-slicing floorplans

need at least O(n) time for each of these operations where n is the number of modules.

0
4

3

2

1

0
4

3

2 1

0
4

3

2
1

0
4

3

2
1

0

1

2

34

0

1

3

24

0

12

34

0

12

34

27

2. B*-Tree is very flexible for handling the floorplanning problems with various types of

modules (e.g. hard, pre-placed, soft, and rectilinear modules) directly and efficiently.

They can handle non-slicing structures.

3. The correspondence between an admissible placement (i.e. which is compacted and

can neither move down nor move left) and its induced B*-Tree is 1-to-1 (i.e. no

redundancy). Further, the transformation between them takes only linear time.

4. B*-Trees do not need to construct constraint graphs for area cost evaluation. The area

cost after exchanging two modules can be recomputed incrementally on a B*-Tree.

Specifically, the modules ahead of the exchanged modules in the depth-first search

(DFS) of a B*-Tree remain unchanged. Therefore, we need to consider only the

modules behind the exchanged ones for cost update.

5. The solution space is smaller, i.e. O(n!22n-2/n1.5).

2.1.1.4 Comparison of different topological representations

The strength of each topological representation can be roughly evaluated by

looking at the upper bound of their solution space. Usually, lower the bound, better a

representation. Another way of evaluating the performance of the floorplan representation

is by looking at its time complexity to transform a floorplan to a placement configuration.

A good topological representation should be easily transformed into an actual placement.

We summarize the strengths and weaknesses of various topological representations used

more popularly in Table 2.1.

28

Table 2.1. Comparisons among the solution spaces and time complexity of various
floorplan representations.

2.1.2 Block and Net Model

Floorplan layout shows the locations of blocks and terminals. Characteristics and

arrangement of blocks as well as terminals need to be determined accurately. Net list is

described by a net model which also explains how to estimate wirelength.

2.1.2.1 Block Model and Pin Assignment

1 Origin for chip is at (0, 0). Blocks are specified by their lower left (x, y)

co-ordinates (positive numbers), and height and width as shown in Figure 2.16.

 Pin

(0,0) Pad

Figure 2.16: Block and terminal locations in a chip.

Data Structure Solution Space Time complexity

NPE O(n!23n/n1.5) O(n)
B*-Tree O(n!22n-2/n1.5) O(n)
O-Tree O(n!22n-2/n1.5) O(n)

Sequence Pair (n!)2 O(n2)
Corner Block List (CBL) O(n!23m) O(n)

Transitive Closure Graph (TCG) (n!)2 O(n2)
Bounded Sliceline Grid (BSG) n!C(n2,n) O(n

2
)

(6,6)

(2,3) (5,3)

 3

 1

 2

29

2 There are two types of terminals: terminals attached to the frame and terminals

attached to the blocks. The first type is denoted as pad and the second as pin as

shown in Figure 2.16.

3 Each block has a set of pins at locations specified by (x, y) co-ordinates as depicted

in Figure 2.17. The process of identifying a pin location is called pin assignment.

Note that the pin locations are determined relative to the chip’s origin and are

termed as absolute co-ordinates (xabs, yabs). Pin locations specified relative to

block’s lower left co-ordinates (x, y) are termed as relative co-ordinates (xrel, yrel).

Relationship between absolute and relative pin co-ordinates is given by the

following equations.

 xabs = x + xrel (2.6)

and yabs = y + yrel (2.7)

 P3(0,10) P4 (5,10) P5(10,10)

 P2(0,5) P6(10,5)

P1(0,0) P8 (5,0) P7 (10,0)

Figure 2.17: Pin locations on a block.

4 A block can be placed on a chip in any one of the four orientations as depicted in

Figure 2.18. Note that the pins rotate too with the block rotation and their locations

get modified accordingly.

Block

30

 P1 P2 P3 P5 P6 P7

 P3 P4 P5 P7 P8 P1

 P2 P6 P8 P4 P6 P2 P4 P8

 P1 P8 P7 P7 P6 P5 P5 P4 P3 P3 P2 P1

Figure 2.18: Different block orientations and corresponding pin locations.

5 A net is just a set of two or more pins. Figure 2.19 shows an example of a five

terminal net where two pins are from block 3, other two from blocks 1 and 2

respectively, and the fourth terminal is a pad. Exact wirelength of each net is not

known until routing is done.

Figure 2.19: Example of a five terminal net.

2.1.2.2 Half Perimeter Wirelength Estimation (HPWL) method

There are many methods available to estimate wirelength in a floorplan.

However, HPWL is the most popular method for wirelength estimation.

 We compute the HPWL of a net containing j terminals, each having location (xj,

yj) as follows:

 HPWLx = max (xj) – min (xj) (2.8)

31

 HPWLy = max (yj) – min (yj) (2.9)

 HPWL = HPWLx + HPWLy (2.10)

As shown in Figure 2.20, HPWL perimeter length metric for a two terminal net is

determined by enclosing the net in a rectangle and computing the semi perimeter of the

rectangle as below:

| rightX − leftX | + |topY − bottomY| (2.11)

Figure 2.20: HPWL of a net.

We illustrate the determination of HPWL by an example of a five terminal net

shown in Figure 2.19. The net consists of one chip pin i.e. pad and four other block pins.

HPWL is determined by enclosing the net in a rectangle as shown dotted in Figure 2.21

below. The semi perimeter of the rectangle gives the HPWL of the net.

HPWL of the rectangle = | rightX − leftX | + |topY − bottomY|

Figure 2.21: Example of determination of HPWL of a five terminal net.

Table 2.2 lists the (x, y) co-ordinates for all the pins in the net. We calculate the value of

32

HPWLx and HPWLy from equations (2.8) and (2.9) respectively. Finally, we sum up

HPWLx and HPWLy to yield the HPWL of the net.

Table 2.2. Pin locations of a five terminal net.

Pin
number

Pin
co-ordinates

(x, y)
1 (2, 7)
2 (4, 7)
3 (5, 3)
4 (6, 5)
5 (5, 10)

HPWLx = max (xj) – min (xj) = 6 – 2 = 4

HPWLy = max (yj) – min (yj) = 10 – 3 = 7

HPWL = HPWLx + HPWLy = 4 + 7 = 11

Total wirelength is given by the summation of lengths for all nets.

2.1.3 Cost Function

As the number of feasible solutions for a given instance of a floorplanning

problem is very large, floorplanning algorithms use cost function as a measure that allows

selecting superior floorplans with specific criteria. The possible criteria may be

minimizing area, wirelength, delays, optimizing routing structure, power density and

temperature of the chip or a combination of two or more of the above criteria. The specific

criterion ensures greater reliability and performance of the circuits. A commonly used

objective function is a weighted sum of area and wirelength:

Cost = α × A + β × L (2.12)

where A is the total area of the packing, L is the total wirelength, and α and β are constants.

33

2.1.4 Floorplanning Algorithms

Several floorplanning algorithms exist that search over a solution space to

determine the optimal floorplan solution. Floorplanning algorithms are classified into

three classes:

1. Constructive: These algorithms attempt to build up a feasible solution by starting

from a seed module; then, other modules are selected one at a time and added to the

partial floorplan. Algorithms that fall under this category are as below.

 Cluster Growth

 Partitioning and Slicing

 Mathematical Programming

 Rectangular Dualization

2. Knowledge-Based approach: A knowledge expert system is implemented consisting

of 3 basic elements.

 Knowledge base containing data describing the floorplan problem and its

current state.

 Rules stating how to manipulate the data in the knowledge base in order to

progress toward a solution.

 Inference engine controlling the application of the rules to the knowledge base.

3. Iterative: These algorithms employ techniques that start from an initial floorplan

which then undergoes a series of perturbations until a feasible floorplan is obtained or

no more improvements can be achieved. Algorithms that fall under this category are

enumerated as below.

34

 Simulated Annealing

 Force Directed Interchange

 Genetic Algorithm

Some of the most popular algorithms used in research are discussed in the section below.

2.1.4.1 Cluster Growth

Figure 2.22: Cluster growth floorplanning.

In this approach, the floorplan is constructed in a greedy fashion; one module at a

time until each module is assigned to a location of the floorplan. A seed module is selected

and placed into a corner of the floorplan (lower left corner). Then, the remaining modules

are selected one at a time and added to the partial floorplan while trying to grow evenly on

upper, diagonal, and right sides simultaneously (Figure 2.22), maintaining any stated

aspect ratio constraint on the modules as well as the chip itself and optimizing other

criteria. Criteria might include: minimization of wiring length, minimization of dead

space or both.

To determine the order in which the modules should be selected, the modules are

initially organized into a linear order. Linear ordering algorithms order the given module

netlist into a linear list so as to minimize the number of nets that will be cut by any vertical

line drawn between any consecutive modules in the linear order. Linear ordering is one of

Floorplan growth

35

the most widely used techniques for constructively building an initial placement

configuration. A general description of a linear ordering algorithm is given in Figure 2.23,

which is based on the linear ordering heuristic reported by Kang.

 Algorithm Linear_Ordering
 S: Set of all modules
 Order: Sequence of ordered modules // initially empty
 Begin

Seed = Select Seed module
Order = [Seed]
S = S – [Seed]
Repeat

 For each module m Є S
 Compute the gain for selecting module m
 gainm = number of nets terminated by m – number of new nets started by m
 End For
 Select the module m* with maximum gain
 If there is a tie then
 Select the module that terminates the largest number of nets
 Elseif there is a tie then
 Select the module that has the largest number of continuing nets

 Elseif there is a tie then
 Select the module with the least number of connections

 Else break remaining ties as desired
 Endif

 Order = [!Order, m*] //append m* to the ordered sequence
 S = S − {m*}

Until S = θ
 End.

Figure 2.23: Linear ordering algorithm.

First, a seed module is selected. The seed selection could be random or based on

the module connectivity with the I/O pads and/or the remaining modules. Then, the

algorithm enters a Repeat loop. At each iteration of this loop, a gain function is computed

for each module in the set of the remaining unordered modules. The module with the

maximum gain is selected, removed from the set of unordered modules and added to the

sequence of ordered modules. In case of a tie between several modules, the module which

36

terminates the largest number of started nets is selected. In case of another tie, the module

that is connected to the largest number of continuing nets is preferred. If we have one more

tie, the most lightly connected module is selected. Remaining ties are broken as desired.

The concept of net termination, starting of new nets and continuing nets are illustrated in

Figure 2.24.

Terminated nets New nets

 … … …

 Continuing net

Figure 2.24: Classification of nets during linear ordering.

 In the description of Figure 2.24, the notation !L is used to mean the elements of

sequence L. Curly braces ({}) are used with sets and square brackets ([]) are employed

with sequences. A general description of the cluster growth algorithm is given in Figure

2.25.

 Algorithm Cluster_Growth
 S: Set of all modules
 Begin

Order = Linear_Ordering(S)
Repeat

Nextmodule = b where Order = [b, !rest]
Order = rest
Select a location for b that will result in minimum increase in cost function

// Cost may be function of the contour of the partial floorplan, size and shape of
 b, and wiring length
Until Order = θ

 End.

Figure 2.25: Cluster growth algorithm.

37

2.1.4.2 Genetic Algorithms

Genetic algorithms (GA) [3] are a class of search and optimization methods that

mimic the evolutionary principles in natural selection. They are implemented as a

computer simulation, in which a population of abstract representations (called

chromosomes) of candidate solutions (called individuals) to an optimization problem

evolves towards better solutions. Genetic algorithms are applied to floorplanning problem

to search for an optimized solution from an infinitely large solution space. Figure 2.26

shows a genetic algorithm optimization flow. The solution (i.e. representation of a

floorplan design) is usually encoded into a binary string called chromosome. Instead of

working with a single solution, the search begins with a random set of chromosomes

(floorplans) called initial population. Each chromosome is assigned a fitness score that is

directly related to the objective function of the optimization problem.

The population of chromosomes (floorplans) is modified to a new generation by

applying three operators similar to natural selection operators – Reproduction, Crossover

and Mutation. Reproduction selects good chromosomes based on the fitness function and

duplicates them. Crossover picks two chromosomes randomly and some portions of the

chromosomes are exchanged with a probability Pc. Finally, mutation operator changes a 1

to a 0 and vice versa with a small mutation probability Pm. A genetic algorithm

successively applies these three operators in each generation until a termination criterion

is met. It can very effectively search a large solution space while ignoring regions of the

space that are not useful. This algorithmic methodology leads to very time-efficient

searches. In general, a genetic algorithm has the following steps:

1. Generation of initial population.

38

2. Fitness function evaluation.

3. Selection of chromosome.

4. Reproduction, Crossover and Mutation operations.

100100
010011
…..
101100

 Y

N

1001 00׀1001 ׀11
0100 ׀11 0100׀00

010000 011000

Figure 2.26: Genetic algorithm flow.

2.1.4.3 Simulated Annealing

It is a technique to find a good solution to an optimization problem by trying

random variations of the current solution. A worse variation is accepted as the new

solution with a probability that decreases as the computation proceeds. The slower the

 Stop

 Begin

 Initial population

 Mutation

 Reproduction

 Fitness evaluation

 Crossover

Terminate?

39

cooling schedule or rate of decrease, the more likely the algorithm is to find an optimal or

near-optimal solution. An annealing algorithm needs four basic components:

 Solution space (e.g. slicing floorplan): These represent the possible

problem solutions over which we will search for an answer.

 Perturbation rules: A set of allowable moves that will permit us to move

from one feasible configuration to other as annealing proceeds.

 Cost function (e.g. area): Determines how “good” a particular solution is.

 Cooling schedule: To anneal the problem from a random solution to a

good, frozen placement.

We need a starting hot temperature and rules to determine when the current temperature

should be lowered, by how much the temperature should be lowered, a cooling schedule

(e.g. T = 0.9 * T) and when annealing should be terminated. The pseudo code for the

simulated annealing algorithm with reference to floorplan problem is outlined in Figure

2.27.

The simulated annealing algorithm starts by randomly choosing an initial B*-Tree.

Then, it perturbs a B*-Tree (a feasible solution) to another B*-Tree based on the

aforementioned Op1–Op3. The perturbation process converts one feasible B*-Tree to

another. We then do the placement for the corresponding B*-Tree and evaluate the cost

function. The move is accepted if the cost of the current solution is less than the previous

one or with a probability that is a decreasing function of annealing temperature

(Boltzmann function) as defined in the algorithm. For all other cases, the move is rejected.

At each temperature, we try enough moves until there are N uphill moves (bad moves) or

the total number of moves exceeds 2N where N is an increasing function of n (O(n)), the

40

number of basic rectangles. We use a fixed ratio temperature schedule i.e. T = 0.9 * T. We

terminate the annealing process if the number of accepted moves is less than 5% of all

moves made at a certain temperature or the temperature is low enough i.e. less than the

threshold. At last, we transform the resulting B*-Tree, i.e. the solution with the lowest

value of cost function, to the corresponding final admissible placement.

Begin
 Initialize temperature T
 Initialize a B*-Tree for the input blocks
 Do
 Repeat
 Perturb
 Placement
 Compute cost
 If cost < Previous cost
 Accept the move
 Else
 Prob = min (1, e−Δck/T), where Δc = change in cost, k = constant

 Rand = Random (0, 1)
 If Rand < Prob then
 Accept the move
 Else
 Reject the move

 End if
 End if
 Until (Uphill moves > 2*N or Downhill moves < N)

 T = 0.9 * T
 While (T > Threshold and Reject_rate < converge_rate)
End.

Figure 2.27: Pseudo code of simulated annealing algorithm.

2.1.5 Floorplanning Methodology

A floorplanning problem typically consists of an input as a benchmark suite that

consists of standard circuits (set of blocks with dimensions of each block, possible shapes

of each block, number of terminals for each block) with netlist that can be tested upon to

obtain an optimized floorplan.

41

We have to make certain selections, as given below, in floorplanning approach to

obtain the output which is a layout with orientations and positions of blocks.

1. Choice of floorplan representation: We select an appropriate floorplan

representation according to the input as well as implementation cost and run time.

2. Choice of cost function: Cost function contains parameters that determine the

criteria for selection of an optimized floorplan. E.g. area, wirelength, power etc.

3. Choice of floorplanning algorithm.

Selection of all these parameters will determine how good the optimized floorplan

solution is.

2.2 Thermal and Power Dissipation effects

Smaller feature size, higher packing density and rising power consumption lead to

dramatic temperature increase in modern high performance very large scale integrated

(VLSI) circuits, thereby resulting in serious timing and reliability concerns. Therefore, it

becomes important to identify the major power dissipation sources on a chip and quantify

them accurately. Both the device and interconnect power dissipation contribute towards

the estimation of the resulting chip temperature. This enables to optimize the on chip

thermal distribution profile, thereby eliminating hotspots.

2.2.1 Sources of Power Dissipation

Generally there are two sources of power dissipation in a chip:

1) Static power dissipation, which is switching independent and mostly

induced by various short-circuit and leakage currents.

2) Dynamic power dissipation, which arises from the switching activities of

42

logic circuits.

We take into account both static and dynamic sources of power dissipation while

calculating the power density of functional blocks and interconnects in the design.

2.2.1.1 Dynamic Power Dissipation

Dynamic power is the main source of power consumption on a chip at algorithm

and architecture levels. This is because short-circuit and leakage currents responsible for

static power,

(i) Can be reduced to less than 15% of the total chip power by smart circuit

design techniques [41], and

(ii) Are influenced mainly by the circuit design style used.

 Dynamic power dissipation mainly arises from two circuit behaviors:

1) Transient short-circuit current, and

2) Repeated charging and discharging of capacitive loads.

The short-circuit current is incurred due to transient conduction of both the pull-up and

pull-down circuits in the CMOS circuit. Because transition cannot realistically be instant,

it is possible that the shut-off network is turned on before the previously turned-on

network is shut off. This current, however, is not significant in most circuits and is often

ignored [27] and [28].

The major dynamic power consumption comes from the charging and discharging

of the state-keeping nodes. A low-to-high state transition corresponds to the charging up

of all the capacitors associated with that node; while a high-to-low transition corresponds

to the discharging of the node. With scaled feature sizes, the capacitance per unit area

increases, accompanied by the increased switching frequency. These trends lead to

43

significant dynamic power consumption in modern-day circuits.

The dynamic power dissipated is given by

Pdynamic = α × C × V 2 × F (2.13)

where α is the switching activity, F is the frequency of operation, V is the supply voltage

and C is the physical capacitance of the resources.

2.2.1.1.1 Interconnect Power Dissipation

Assuming the supply voltage and frequency of operation to be constant,

interconnect power dissipation depends on the switching activity and the capacitance of

the interconnects. The capacitance of the interconnect Cint is directly dependent on its

length Lint which is determined by the floorplan. Thus

Cint = k × Lint

where k is some constant. The switching activity depends on the number of times the

interconnect is accessed and the correlations between the data that it operates on. The

access in turn depends on the total number of data transfers in the algorithm while the

correlations depend heavily on the input data [26]. In other words, the switching activity

depends on how frequently a particular interconnect is used.

For example, two functional blocks that need to access each other very frequently

for data or information exchange will have their bus interconnects busy all the time,

leading to a greater current flow. This would lead to higher power dissipation compared to

when the interconnect is used less frequently. The lesser the interconnect is used, lesser is

the power consumption as the bus will be in high impedance state most of the time. Such

type of impact will be more pronounced in high frequency circuits. However, at the

floorplanning stage, we can safely assume that the switching activity depends mainly on

44

the number of accesses to interconnects, which in other words is the frequency of usage of

interconnects.

Thus, to minimize the interconnect power dissipation, it is important to consider

both the switching activity and the net length with the objective of minimizing the length

of interconnects, which have high switching activity, in the resulting floorplan. Hence,

interconnects which are heavily accessed or have high switching activity on them should

be made as short as possible to reduce the power dissipation and the wire delays.

2.2.2 Temperature Estimation

The temperature of the chip depends on the power consumption of each functional

block and the relative positions of the functional blocks. Also, the temperature greatly

depends on the power density profile of the chip, i.e. how the total power is distributed

among the various blocks on the chip. For the same total value of power dissipation and

the same floorplan layout, different distribution of power among various blocks can lead

to altogether different temperature profiles of the chip. This is due to the fact that heat

transfer depends on adjacent hot and cold blocks. Since high power blocks generate more

heat, placing them adjacent to low power density or colder blocks will lead to larger heat

diffusion than placing them closer to hot blocks. This will result in more spreading of heat,

thus reducing hotspot temperatures. The larger the temperature difference, the larger the

heat diffusion. Therefore, to reduce the maximum temperature of the chip, we should

surround blocks with high power density by blocks with low power density if possible.

We explain the impact of power density profile on heat diffusion with the help of

an example. Let there be four blocks with total power of 10 units. Let the power

distribution profile for one case be as given on the next page. The corresponding heat

45

diffusion flow is indicated besides the power distribution profile.

Figure 2.28: Case 1: a) Power distribution profile b) Corresponding heat diffusion flow.

 On changing the power density profile, as in case 2, we get a different corresponding heat

diffusion flow as given below.

Figure 2.29: Case 2: a) Power distribution profile b) Corresponding heat diffusion flow.

According to the general temperature-power equation

T = P × R (2.14)

where P is the power and R is the thermal resistance. Substituting the value of R, the

equation modifies to as given below

T = P × (t / k × A) = (P / A) × (t / k)

where t is the thickness of the chip, A is the area and k is the thermal conductivity of the

material. The equation can now be written as below

 T = d × (t / k) (2.15)

 A B
 P = 4 P = 2

 C D
 P = 3 P = 1

 A B
 P = 5 P = 1

 C D
 P = 1 P = 3

46

where d is the power density. Based on previous equation, we can conclude that

temperature is heavily dependent on power density. Thus, we can substitute power density

metric for temperature in thermal-aware calculations.

2.2.2.1 Hotspot Tool

Skadron et al. [29] proposed a thermal modeling tool called HotSpot which is easy

to use and computationally efficient for modeling thermal effects at the block level.

Hotspot provides a simple compact model where the heat dissipation within each

functional block and the heat flow among blocks are accounted for. An RC network of

thermal capacitances and resistances of functional modules are constructed and then

temperatures at the center of functional modules are calculated by using circuit-solving

techniques. The basic idea is that, we define the transfer thermal resistance Rij of

functional block i with respect to block j as the temperature rise at block i due to one unit

of power dissipated at block j:

 Rij = ∆ Tij / ∆ Pj

such that we can get a transfer thermal resistance matrix as Rt . For any power distribution

on the floorplan, we can calculate each block’s temperature by using the following

equation:

 T1 R
t
11 R

t
12 ………………… R

t
1m P1

 T2 R
t
21 R

t
22 ………………… R

t
2m P2

 =

 Tm R
t
m1 R

t
m2 ………………… R

t
mm Pm

Figure 2.30: Transfer thermal resistance matrix Rt .

47

where Pi is the power consumption and Ti is the temperature of the functional block i. The

transfer thermal resistance matrix can be obtained from Hotspot, given the floorplan for a

set of blocks.

The inputs to HotSpot are the floorplan description and the power consumption

number of individual modules. The specifications of heat spreader and heat sink are also

provided to define the heat-removing ability. The output of Hotspot is the temperature for

each module.

2.3 Variation Models

Design uncertainty greatly affects dimensions of blocks and interconnect lengths

in complex VLSI circuits at an early chip planning stage. There are many sources of

uncertainty, chief among them being: incomplete design of some blocks and incomplete

technology library of cells. The resulting variations affect other chip parameter

estimations like area, wirelength, delay and power etc, which need to be assessed for the

acceptability of chip architecture at the design decision stage.

We need methods and tools to model arbitrary variational CAD problems. Monte

Carlo analysis remains the gold standard for “arbitrary” problems- accurate, but often

intractably slow. To model the variations accurately in less time, we use some analytical

and statistical methods. Since we take into account the variations in dimensions of blocks

and interconnect lengths to determine the range of chip area and wirelength, we need to

perform arithmetic calculations on interval ranges. To facilitate such range computations,

we resort to the use of some kind of numerical computation methods.

Numerical Computations is the study of algorithms for the problems of continuous

mathematics. Many numeric computations are inherently approximate, i.e. they will not

48

deliver the “true” exact values of target quantities but only some values in some sense

“near” the true ones. The difference between a computed value and the “true” value of the

corresponding quantity is called the error of that computed value. In Self Validated

Computation (SVC), the accuracy of computed quantities is being tracked as part of the

process of computing them. So, if the magnitude of the error cannot be predicted, at least it

can be known a posteriori.

 Interval arithmetic (IA) and affine arithmetic (AA) are two such SVC models

based on range analysis, i.e. use ranges to approximate the accurate values. Whatever the

shape of allowed ranges, all range-based SVC models provide, for every function f:

Rm→Rn, a range extension F: Rm→Rn with the following property: If the input vector (x1,

…, xm) lies in the range jointly determined by the given approximate values X1, …, Xm,

then the quantities (z1, …, zn) = f (x1, …, xm) are guaranteed to lie in the range jointly

determined by approximate values (Z1, …, Zn) = F (X1, …, Xm).

The IEEE Floating-point Standard provides control over rounding, a feature that

is essential to SVC. The standard specifies precisely the results of exceptional operations

and reserves certain bit patterns to denote two “infinite” values and a series of error codes

or “not-a-numbers” (NaN).

 We use the notation < f > for the value of expression f in IEEE floating-point

arithmetic with the default rounding mode.

 We write ↑ f ↑ for a numerical float (possibly) that is greater than or equal to the

value of a formula f; that is, the value of f is rounded up to a representable number

(not necessarily the smallest one). Similarly, we write ↓ f ↓ for the value of f

rounded down to a representable number.

49

 In special cases, f can consist of a single, or two or more arithmetic operations.

2.3.1 Interval Arithmetic (IA)

Interval arithmetic (IA) [36] is a range-based model of numerical computation. In

IA, each real quantity x is represented by an interval x = [xlo, xhi] of real numbers. It means

that the true value of x is known to satisfy xlo ≤ x ≤ xhi.

(1) We define a non-empty interval as a set of this form:

 [xlo, xhi] = {x Є R: xlo ≤ x ≤ xhi},

 where xlo is in F U {-∞} and xhi is in F U {+∞}.

 We define an empty interval [] where the lower and upper bounds are not defined.

(2) The bounds of an interval are float values, possibly infinite, but its elements are

finite real quantities.

(3) A finite float x can be represented as an interval [xlo, xhi].

(4) The pairs: [+∞, +∞], [-∞, -∞], [NaN, NaN], [a, NaN], [NaN, a] are not valid, for

any float a.

Operations are defined on intervals e.g. negation, addition, translation, subtraction,

scaling, multiplication, reciprocal, division, square root, logarithm, exponential and sine

and co-sine etc. Other operations are midpoint, radius, meet (intersection), join (convex

hull). We present two examples of affine operations, namely addition and join below.

Example 1: Addition

 IA.add (x, y: interval): Interval ≡ | Computes x + y.

 if x = [] or y = [] then return []

 else return [↓ xlo + ylo ↓, ↑ xhi + yhi ↑]

50

Example 2: Join

 IA.join (x, y: interval): Interval ≡ | Returns x U y.

 if x = [] then return y

 else if y = [] then return x

 else return [min{xlo, ylo}, max{xhi, yhi}]

The main weakness of IA is its over-conservatism: the computed interval for a

quantity may be much wider than the exact range of that quantity. In long computation

chains, the relative accuracy of the computed interval decreases at an exponential rate and

finally the “error explosion” occurs. Some techniques to avoid error explosion are:

1. Avoid unfavorable correlations between the arguments of the IA operation.

Example: x = [4, 6], considering the evaluation of z ← x × (10 − x)

Using IA.sub and IA.mul, we get z = [16, 36]. However, a trivial analysis shows

that the exact range should be [24, 25].

So, the correlation between the arguments is unfavorable.

2. Combine several arithmetic operations into a single “macro operation” and write a

special-purpose IA routine for it.

Example: x = [-2, 2], considering the evaluation z ← x
2
. Since x

2
 = x × x, so we use

IA.mul and we get [-4, 4] which is of poor accuracy.

So, we can write a special routine (IA.sqr, for example) to deal with evaluation of

power.

Unfortunately, the previous techniques can only be applied to relatively simple operations

over restricted domains. When the expression to be computed is determined only at run

time or involves dozens of variables and operations, avoiding bad correlation is

51

impossible. We have to resort to more sophisticated SVC models, for example, affine

arithmetic (AA).

2.3.2 Affine Arithmetic (AA)

Affine arithmetic (AA) [37] is introduced to overcome the error explosion problem

occurred in IA. It provides a tighter bound for the computed quantities. In affine

arithmetic, each input or computed quantity x is represented by an affine form x
^

 which is a

first order polynomial

x
^

= x0 + x1ε1 + x2ε2 + …+ xnεn (2.16)

where x0, x1, x2, …, xn are known floating-point numbers, and ε1, ε2, ..., εn are symbolic

variables whose values are only known to lie in the range [-1,+1]. x0 is the ideal value of

the affine form . Each εj stands for an independent component of the total uncertainty. xj

gives the corresponding magnitude of component εj. It means, if we want to evaluate the

range of Z = x × y (x Є [a, b], y Є [c, d]), we will have to replace x and y with

Z = (x0 + x1ε1 + x2ε2 + …+ xnεn) × (y0 + y1ε1 + y2ε2 + …+ ynεn)

where xj is determined by a and b, and yj by c and d.

The approximation error incurred in each AA operation normally has a quadratic

dependency on the size of the input intervals. Therefore, if the input intervals are small

enough, each operation will provide a fairly tight estimate of the exact range of the

corresponding quantity.

Addition, subtraction and simple scaling are easily seen to yield the affine form

directly. In affine operations, for a function, if f (x, y) is an affine function of x and y,

namely f (x, y) = αx + βy + ζ, then z can be represented by an affine form directly,

52

Z <= αx
^

 +βy
^

 +ζ = (αx0 +βy0 +ζ) + (αx1 +βy1) × ε1 + … + (αxn +βyn) × εn

This will yield an almost-exact range (except for round-off error) of z in terms of εj in the

input range.

The general rule for approximating the result of a non-affine operation (e.g. x, /,

exp) on affine operands is to seek an affine form that is a linear combination of the

operands along with a new term (ε) to account for the error. The range of the actual result

should lie within the range of this affine approximation. In non-affine operations, if in z =

f (x, y), f can not be represented by an affine form, then we need to add the approximation

error, namely

Z
^

 = f a (e1,…,en) + zkεk = z0 + z1ε1 + … znεn + zkεk

where f a is the affine operation and zkεk represents the approximation error as well as the

round-off error.

Round-off errors can not be avoided, so in order to provide guaranteed enclosure,

every affine form should add an extra term zkεk. E.g. Z = X + Y should add the extra term

zkεk. The handling of round-off errors increases the code complexity and execution time of

AA operations. In applications where those errors are known to be unimportant (because

they are dominated by uncertainties in the input data, etc), round-off error control can be

ignored.

We explain the non-affine operation with the help of an example. Let’s consider a

multiplication operation z
^

 = x
^

 × y
^

 where x
^

 = 30 − 4ε1 + 2ε2 and

y
^

 = 20 + 1ε1 + 3ε2 , then

53

z
^

 = 600 + 10ε1 + 40ε2 + 30ε3 + (-4ε1 + 2ε2) (3ε1 + 1ε3)

The quadratic term (-4ε1 + 2ε2) (3ε1 + 1ε3) can be treated as the error term whose range is

[-24, 24] writ large. Hence, z
^

 is in the range of 600 + 104 = [496, 704]. Analysis shows

that the actual range of z
^

 is [528, 675], so AA results in only 1.42 times wider than the

actual range. If IA is used, the resulting range is [384, 863], 3.26 times wider than the

actual range.

Thus, AA gives more precise estimation than IA and is a preferred method in range

calculations where accuracy is essential. To find the best estimation, Chebyshev

approximation can be used.

To convert from AA to IA, we define the smallest interval that contains all

possible values of x
^

. Every affine form x
^

 = x0 + x1ε1 + x2ε2 + … + xnεn implies a bound of

the ideal quantity x, namely r, i.e.

x Є x = [x0 – r, x0 + r] (2.17)

where r is the total deviation of x
^

, ∑ N
j = 1 (xj). It is the smallest interval that contains all

possible values of x
^

. However, this conversion discards all correlation information in x
^

.

To convert from IA to AA, we replace every ordinary interval bound x = [a, b] for

an ideal quantity x by x
^

= x0 + xkεk where

x0 = (a + b) / 2 , (2.18)

xk = (b − a) / 2 (2.19)

 and εk a new noise symbol not occurred anywhere before.

54

2.3.3 Monte Carlo Simulation

Monte Carlo simulation [39] is a method for iteratively evaluating a deterministic

model using sets of random numbers as inputs. This method is often used when the model

is complex, nonlinear or involves more than just a couple uncertain parameters. It is used

for analyzing uncertainty propagation where the goal is to determine how random

variation, lack of knowledge or error affects the sensitivity, performance or reliability of

the system that is being modeled. Monte Carlo simulation is categorized as a sampling

method because the inputs are randomly generated from probability distributions to

simulate the process of sampling from an actual population. So, we try to choose a

distribution for the inputs that most closely matches data we already have or best

represents our current state of knowledge. The data generated from the simulation can be

represented as probability distributions (or histograms) or converted to error bars,

reliability predictions, tolerance zones and confidence intervals. A simulation can

typically involve over 10,000 evaluations of the model.

Monte Carlo simulation method is generally used as a base for comparison with

the proposed algorithm to verify the accuracy and effectiveness of the algorithm to

evaluate the deterministic model by some other approach.

55

Chapter 3

Interconnect Power and Thermal aware Floorplanning

Thermal aware floorplanning has become of paramount importance recently due

to scaling technologies and many more research efforts are directed towards determining

accurate temperature estimates of the chip. Since thermal aware floorplanning requires

knowledge of both the power density profile and the relative positions of blocks, accurate

estimations of both the factors are essential. In our work, we seek to do accurate thermal

conscious floorplanning by considering the above factors with in-depth analysis. In this

chapter, we describe our interconnect power and thermal aware floorplanning algorithm

based on accurate power estimations by taking into account the effect of switching activity

of interconnects on the power dissipation and hence the temperature estimations of the

chip.

The chapter is organized as follows. Section 3.1 reviews previous work related to

this research. Section 3.2 formulates the problem. We present our approach in evaluating

the impact of interconnects during floorplanning process in section 3.3. Section 3.4

presents and discusses experimental results. We conclude this chapter in the last section.

3.1 Motivation

In this section, we discuss some relevant work that has been a source of motivation

for the research work presented in this chapter. Previous works related to this work fall

into two broad categories- the first is the prevalence of thermal aware floorplanners and

thermal modeling tools, and the second is the interconnect power estimates.

The first category of work studied thermal or temperature aware floorplanning

56

algorithms at the micro architectural level. For example, Han et al. [15] used an Alpha

floorplan to analyze the impact of floorplanning on the maximum temperature. The

tradeoff between performance and temperature is explored in [14]. W.L. Hung [16] used

the genetic algorithm approach. These papers consider that the power density can increase

due to the placement of blocks, that have high power consumption, close together.

However, all the above work neglected the interconnect power consumption. Tools for

modeling thermal effects on chip-level placement have been developed [10], [17], [18]

and [19]. Nevertheless, interconnect power factor is never the center of attention in these

floorplanning/placement techniques.

Recently, W.L. Hung [20] developed a floorplanner that considers the interconnect

power consumption in exploring a thermal-aware floorplan. However, the drawback of

their approach is that they have only considered the interconnect lengths in calculating the

distribution of total interconnect power across the chip. They have not accounted for the

switching activity of the interconnects in the power density formulations, which can lead

to erroneous chip temperature estimates. Our work uses a similar approach to theirs but

also takes into account the effect of switching activity which has a significant impact on

the power density profile of the chip and thus the average and peak temperatures.

The second category of related work studied interconnect effects. Interconnect

buffers are now first-order timing and power considerations in VLSI design [21]. This

change has imposed challenges across all design levels. It is no longer possible to

accurately produce the power consumption and performance of a design without prior

knowledge about its floorplan to predict the structure of its interconnect. A number of

researchers have considered the impacts of chip-level interconnect in power and

57

performance aspects [22], [23] and [24]. There has been significant work done at

high-level synthesis stage. Prabhakaran [25] presented a new algorithm that combines

physical design and high-level synthesis with the objective of minimizing interconnect

energy dissipation. Mehra [26] considered architectural synthesis and power reduction

techniques. However, none of the above papers consider the thermal or temperature

effects. Our work focuses mainly on thermal effects in addition to the power dissipation at

floorplanning stage.

There are numerous works on the determination of device power dissipation with

accurate analysis. However, interconnect power dissipation is still an ongoing area of

research with the sharp rising impact of interconnects on power dissipation of the chip

with scaling technologies as discussed in chapter 1.2. Therefore, we mainly focus on

interconnect power dissipation in our work and seek to accurately model it, considering all

the major factors like switching activity of interconnects which has been ignored till now

at the floorplanning stage. We then intend to do interconnect power and thermal aware

floorplanning based on accurate determination of power dissipation.

3.2 Problem Formulation

We define our problem in this work as follows: given the information of a set of

modules including their areas, interconnections and power consumptions, the interconnect

power and thermal aware floorplanning problem is that of placing the modules in the chip

area satisfying a set of conditions and achieving the goal of distributing the temperature

evenly across the chip by taking into account the power dissipation due to switching

activity of interconnects while optimizing area and wirelength. In this work, we consider

only the hard modules, i.e. modules that are not flexible in shape but are free to move and

58

rotate.

Let B = {b1, b2, …, bm} be a set of m rectangular modules with block bi of width

Wi, height Hi, area Ai, and an original power density Pi, 1 < i < m. Each module is free to

rotate. Let (xi, yi) denote the co-ordinates of the bottom-left corner of the rectangle bi on a

chip. A floorplan F is an assignment of (xi, yi) for each bi such that no two modules

overlap. The goal of interconnect power and thermal aware floorplanning algorithm is to

minimize

(i) Chip area (i.e. minimum bounding rectangle of F).

(ii) Wirelength (i.e. the summation of half bounding box of interconnections) and

(iii) Both peak and average temperatures across the chip.

3.3 Interconnect Power and Thermal aware Floorplanning Algorithm

In this section, we describe our methodology to develop the interconnect power

and thermal aware floorplanning algorithm by taking into account the effect of switching

activity of interconnects on the power dissipation and hence the temperature estimations

of the chip.

3.3.1 Methodology and Algorithm

We first developed a traditional simulated annealing floorplanning algorithm

having the cost function (equation 2.12)

C = α × A + β × WL

where A is the total area of the packing, WL is the total wirelength, and α and β are

constants which denote the relative weights of area and wirelength respectively in the cost

function, (α + β) ≤ 1 . We use B*-Tree representation for our floorplanning algorithm as

59

its easy to implement, has a smaller solution space and time complexity, and many other

advantages as outlined in chapter 2.1.1.4. Since our floorplanner considers only the hard

modules, we perturb the B*-Tree (a feasible solution) to another B*-Tree by using the

following three operations

Op1: Rotate a module.

Op2: Move a module to another place.

Op3: Swap two modules.

We obtained a floorplan description which gives the positions and dimensions of

various functional blocks together with the length of different interconnects in the netlist.

We then calculated the power density values for different modules by taking into account

the interconnect induced power consumptions with and without the considerations of

switching activity of the interconnects. Hotspot tool was then used to determine the

temperature profile of the chip based on floorplan description and power density values

calculated for various blocks as the inputs to the tool. But Hotspot has a limitation that it

models thermal effects only at the per module level. It does not model the thermal effects

arising due to interconnect power dissipation directly. So, we devised a mechanism

similar to [20] to distribute the power consumed by each net to the connecting modules as

explained in the next section on interconnect power distribution. Finally, we make our

floorplanner interconnect power and thermal aware by modifying the cost function as

discussed in the section on temperature approximations. Figure 3.1 on the next page

summarizes the flow of our algorithm.

60

Input: A set of modules bi (Wi, Hi, Ai and Pi), Netlist N and total interconnect power TIP.
Output: Floorplan F of chip area (A), total wirelength (WL), average and peak
temperatures (Tavg and Tpeak), and containing modules with locations (xi, yi).
Begin
 Initialize temperature T
 Initialize a B*-Tree for the input blocks
 For each net j Є N

 α[j] = Random number Є (0, 1)
 End For
 // Run B*-Tree based simulated annealing floorplanning algorithm to obtain F
 Do

 Repeat
 Perturb

 Placement
 Call Calculate_Power algorithm to determine total block power TPi

 Compute cost
 If cost < Previous cost
 Accept the move
 Else

 Prob = min (1, e−Δck/T), where Δc = change in cost, k = constant
 Rand = Random (0, 1)

 If Rand ≤ Prob then
 Accept the move

 Else
 Reject the move

 End if
 End if

 Until (Uphill moves > 2*N or Downhill moves < N)
 T = 0.9 * T
 While (T > Threshold and Reject_rate < Converge_rate)
 Apply F and TPi to Hotspot tool to obtain Tavg and Tpeak

End.

Figure 3.1: Pseudo code of the interconnect power and thermal aware floorplanning
algorithm.

Figure 3.2 shows the diagram depicting the relationship between temperature

profile and the effect of switching activity of interconnects on power density profile of the

chip.

61

 For Interconnects

 P = α × C × V 2 × F

 Net Length Architecture dependent

Figure 3.2: Diagram showing relationship between temperature and switching
activity of interconnect.

3.3.2 Interconnect Power Distribution

To account for the interconnect induced power consumptions in the Hotspot

thermal modeling tool, we distribute the power consumed by each interconnect or net to

the connecting modules in the floorplan. We accomplish this goal by taking the intuition

that power consumption of a module is relative to capacitance and capacitance is

proportional to the module area [20]. We thus distribute the net power to a connecting

module in proportion of its module area and total area of all the modules connected in a

net. Given a particular value of total interconnect power, we then calculate the proportion

Temperature Profile

Power density of Blocks and
Interconnects

Positions and Dimensions of
Blocks + Net Lengths

Floorplan Description

Number of
accesses to
nets.

62

of total interconnect power assigned to each net with and without considering the effect of

switching activity of nets. As outlined in section 2.2 earlier, interconnect power

dissipation depends on both the net length and switching activity of interconnects. The

switching activity of interconnect depends on its frequency of usage which is further

dependent on the specific design and the internal functionality as discussed in section

2.2.1.2 on interconnect power dissipation.

For calculation of net power without considering the switching activity, only net

length will be used as the criteria for dividing the total interconnect power among different

nets as proposed in [20]. We calculate the net power by the formula

 NPj = NLj × TIP (3.1)
 WL

where NPj is the net power, NLj is the net length of net j in the netlist containing N number

of nets, TIP is the total interconnect power and WL is the total wirelength given by

 WL = ∑ N
j=1 NLj (3.2)

When switching activity is considered in addition to net length, we calculate the net power

by the formula

 NPj = (NLj × αj) × TIP (3.3)
 (∑ N

j=1 (NLj × αj))

 where αj is the switching activity of net j.

Thus, the amount of net power that contributes to the connecting module bi of the

net j can be stated as follows:

MPij = Ai × NPj (3.4)
 TAj

where MPij indicates the amount of power from net j contributing to module bi, Ai

represents the area of functional module bi and TAj tells the total area of connected

63

modules of net j.

Following the above procedure, we can obtain for a particular module, the

contributions of power from each net in the netlist. Besides this, each module has its own

internal power consumption stated as the original module power P which is obtained

experimentally for real circuits. Finally, we sum up such contributions from each net and

the original module power to obtain the total power TPi of each module bi as

TPi = Pi + ∑ N
j=1 MPij (3.5)

Figure 3.3 presents the Calculate_Power algorithm for calculating the interconnect

aware power values for all the modules. The algorithm has a runtime complexity of O(nm)

where n is the number of nets in the netlist and m is the number of modules in the

benchmark.

Begin
 For each module bi
 For each net j Є N
 NPj = ((NLj × α j) / ∑ N

j=1 (NLj× α j)) * TIP
 MPij = (Ai / TAj) × NPj
 Calculate ∑ N

j=1 MPij
 End For
 TPi = Pi + ∑ N

j=1 MPij
 End For
End.

Figure 3.3: Pseudo code of the Calculate_Power algorithm.

We now illustrate our algorithm in determining the impact of switching activity of

interconnects on power distribution profile with the help of an example. Let there be four

blocks A, B, C and D, each of equal dimensions, and with original power Pi values as 5, 1,

1 and 3 units respectively. Let there be two interconnects AB and CD of lengths 2 and 3

units respectively, and having switching activity values of 0.4 and 0.2 respectively. Let the

64

total interconnect power be 4 units. Now, we determine the power density profile for both

the cases when switching activity is considered in power estimations and when it is not

considered.

Case 1: Power estimations considering only interconnect lengths.

Step 1. Net power NPAB = 2 × 4 = 1.6
 (2+3)

 Net power NPCD = 3 × 4 = 2.4
 (2+3)

Step 2. The amount of net power contributing to the connecting modules A and B of the

net AB, MPA = 1/2 × 2.9 = 1.45

and MPB = 1/2 × 2.9 = 1.45

Similarly, amount of net power contributing to the connecting modules C and D of the net

CD, MPC = 1/2 × 1.1 = 0.55

and MPD = 1/2 × 1.1 = 0.55

Thus, the total power of each module can be calculated by summing up the original

module power with net power contributions to each module. The total power of each

module and the power distribution profile is shown in Figure 3.4 below.

Figure 3.4: Power distribution profile for case 1.

 A B

 P = 5 + 1.45 P = 1 + 1.45
 = 6.45 = 2.45

 C D
P = 1 + 0.55 P = 3 + 0.55
 = 1.55 = 3.55

65

Case 2: Power estimations considering both interconnect lengths and switching activity

values.

Step 1. Net power NPAB = 2 ×0 .4 × 4 = 2.9
 (2 × 0.4 + 3 × 0.1)

 Net power NPCD = 3 × 0.1 × 4 = 1.1
 (2 × 0.4 + 3 × 0.1)

Step 2. The amount of net power contributing to the connecting modules A and B of the

net AB, MPA = 1/2 × 1.6 = 0.8

 and MPB = 1/2 × 1.6 = 0.8

Similarly, amount of net power contributing to the connecting modules C and D of the net

CD, MPC = 1/2 × 2.4 = 1.2

and MPD = 1/2 × 2.4 = 1.2

Thus, the total power of each module can be calculated by summing up the original

module power with net power contributions to each module. The power distribution

profile is shown in Figure 3.5 below.

Figure 3.5: Power distribution profile for case 2.

From the above example, we observe different power distribution profiles for the

two cases. This will lead to different heat diffusion flows as explained in section 2.2.2 and

 A B
P = 5 + 0.8 P = 1 + 0.8
 = 5.8 = 1.8

 C D
P = 1 + 1.2 P = 3 + 1.2
 = 2.2 = 4.2

66

hence different values of average and peak temperature of the chip. Therefore, switching

activity must be considered together with the net length for correct chip temperature

estimations.

3.3.3 Temperature Approximation

Since thermal effects are influenced by relative placement of blocks as discussed

in section 2.2.2, therefore, it is imperative to include temperature in the cost function in the

floorplanning algorithm to achieve an optimum floorplan with reduced hotspots.

However, it is prohibitively time consuming to involve the temperature calculations every

time when evaluating a large number of solutions during simulation procedure. Other than

using the actual temperature values, we have adopted the power density metric as a

thermal-conscious mechanism in our floorplanner. We can substitute the temperature for

the power density, according to equation (2.15), to approximate the 3-tie temperature

function

CT = (T − To) / To

proposed in [17] to reflect the thermal effect on a chip. As such, the 3-tie power density

function is defined as

P = (Pmax − Pavg) / Pavg (3.6)

where Pmax is the module with the maximum power density while Pavg is the average

power density of all modules.

The cost function used in simulated annealing in the interconnect and thermal

aware floorplanning algorithm can now be written as

Cost = α × A + β × WL + γ × P (3.7)

where α, β and γ are constants which denote the relative weights of A, WL and P

67

respectively in the cost function, (α + β + γ) ≤ 1. At the end of execution of our

floorplanner, we obtain the floorplan description and the power numbers for each module

including the interconnect power contributions from all nets. We then use the block model

of HotSpot to provide the temperature estimations of the chip.

3.4 Experimental Results

To evaluate our interconnect power and thermal aware floorplanning algorithm,

we performed a series of three experiments. First experiment was conducted using the

traditional area and wirelength metrics in the cost function. It presents peak and average

temperatures when only the net length of interconnects is used in deriving the power

density profile of the chip. Second experiment includes the effect of switching activity in

addition to net length of interconnects in deriving the power density profile of the chip.

Finally, we prove the effectiveness of our algorithm in reducing the hotspots in the third

experiment.

3.4.1 Experimental Setup

The experimental setup is as follows. The simulated annealing floorplanning

algorithm is implemented in C++ programming language on an Intel Pentium 4, 1.73 GHz

PC with 1 GB RAM. The operating system is RedHat Linux v6.1, kernel version 2.4. The

experiments were performed on a set of five MCNC benchmark circuits that consists of

hard modules. We tested all these benchmarks. Table 3.1 gives the information of MCNC

benchmarks.

68

 Table 3.1. MCNC benchmarks information.

The widely used method of half-perimeter bounding box (HPWL) model as

explained in section 2.1.2 is adopted to estimate the wire length. Power values in the range

of 0.05mW to 3W were randomly assigned to the modules in different benchmarks due to

lack of information on the internals of each module. These power values are the typical

values in modern high performance circuits such as microprocessors. The total net power

is assumed to be 30% of total power of modules due to lack of information for the MCNC

benchmarks. Random values in the range 0-1 were assigned to switching activity for

various interconnects as we do not know the internal functionality of the MCNC

benchmark circuits. Random selection of values for module power and switching activity

of various interconnects will impact the runtime complexity of the algorithm further by

O(n+m) where n is the number of nets in the netlist and m is the number of modules in the

benchmark.

In the simulated annealing process, the temperature was decreased at a constant

rate (0.9). We terminate the annealing process if the rejection rate of moves exceeds the

convergent rate of 0.85 at a certain temperature or the temperature decreases beyond the

threshold value of 0.1.

The final results are based on average of the results of 100 test runs for each

benchmark circuit for a particular set of power values of the modules. We consider area

Circuit Block # Net # Pin # Pad #
apte 9 97 214 73

xerox 10 203 696 2
hp 11 83 264 45

ami33 33 123 480 42
ami49 49 408 931 22

69

optimization as the main criterion in the cost function to obtain floorplans with the

smallest area possible for all the benchmarks.

3.4.2 Results and Analyses

Table 3.2 shows the experiment results of our approach when considering only the

traditional metrics (area and wire) with and without the consideration of switching activity

of interconnects. We list the area, wirelength, Tpeak, Tavg and deadspace for each of the

circuit. The run time of the approach is also provided. Note that the area, wirelength,

deadspace and runtime for both the experiments are the same. Only values of Tpeak and

Tavg are affected by the inclusion of switching activity of interconnects.

Table 3.2. Results considering traditional area and wirelength minimizations.

The peak and average temperature results from these tables also reiterate the

importance of including the switching activity of interconnects in determination of power

consumption, which most prior works ignore. The difference between peak and average

temperatures not considering switching activity of interconnects in power estimation

(Tpeak and Tavg) and considering it (Tpeak (Sa) and Tavg (Sa)) is 15oC on the average.

Table 3.3 presents the results of applying our interconnect power and thermal

aware floorplanning algorithm. When taking thermal effect into account together with the

Circuit Area
(mm2)

WL
(mm)

Tpeak

(oC)
Tavg

(oC)
Tpeak

(Sa)
(oC)

Tavg

(Sa)
(oC)

Run
Time
(Sec)

Dead
Space
(%)

apte 47.31 653.51 90.15 62.63 91.25 63.87 2.48 1.59
xerox 20.42 402.88 156.55 85.08 169.75 99.90 4.47 5.26

hp 9.20 280.79 396.75 164.52 410.75 174.37 5.47 4.03
ami33 1.22 83.74 964.67 810.33 979.94 818.34 53.68 5.40
ami49 38.84 1061.42 599.87 294.14 605.75 298.42 60.13 8.75

70

area and wirelength metrics, our floorplanner can reduce the peak and average

temperatures by as much as 20% while increasing the wirelength by 2% and providing a

comparable chip area as compared to the floorplan generated using traditional metrics.

 Table 3.3. Results using our thermal aware floorplanner.

Figures 3.6 and 3.7 show the peak and average temperatures respectively of all

five MCNC benchmarks with/without consideration of switching activity of interconnects

for area optimization only as well as area and thermal optimizations. It shows that the area

optimization with the consideration of switching activity (Sa) of interconnects in deriving

power dissipation results in highest peak and average temperatures for all benchmarks.

The temperature can be effectively reduced through interconnect power and thermal

aware optimization combined with area constraint such that lower temperature is achieved

with the same compact floorplan. The hotspot temperature (peak temperature) is reduced

by as much as 20% in circuit xerox in Figure 3.6. The overall average temperature is

reduced by around 1~19 oC as shown in Figure 3.7.

Circuit Area
(mm2)

WL
(mm)

Tpeak

(Sa)
(oC)

Tavg

(Sa)
(oC)

Run
Time
(Sec)

Dead
Space
(%)

apte 47.31 653.51 89.85 62.59 3.06 1.59
xerox 20.42 410.26 125.34 80.65 5.49 5.26

hp 9.33 283.83 316.25 162.20 6.87 5.37
ami33 1.22 86.55 907.45 803.56 65.70 5.40
ami49 39.05 997.65 531.95 284.77 71.12 9.24

71

Figure 3.6: Comparison of peak temperatures for area optimization with/without
consideration of switching activity and thermal aware optimization.

Figure 3.7: Comparison of average temperatures for area optimization with/without
consideration of switching activity and thermal aware optimization.

However, some benchmarks could not achieve large temperature reduction. For

example, the hotspot temperature reduction for apte is only 1.4oC. The reason behind this

is that the power density is relatively high for a limited small area and deadspace is very

less to allow heat in hotter regions to flow through more dead areas that consume no

Area (with/without sa) Vs Thermal optim. (avg)

0
100
200
300
400
500
600
700
800
900

apte xerox hp ami33 ami49

Circuits

T
em

p
er

at
u

re
 (

'C
)

area opt

area opt with sa

area opt + T

Area (with/without sa) Vs Thermal optim. (peak)

0

200

400

600

800

1000

1200

apte xerox hp ami33 ami49

Circuits

T
em

p
er

at
u

re
 (

'C
)

area opt

area opt with sa

area opt + T

72

power. Thus, there is not much flexibility for algorithm to discover a good solution. As

observed from Table 3.3, apte has a very small deadspace of 1.59%, thus restricting the

heat flow and hence the temperature reduction. xerox has a fairly large deadspace of

5.26% and relatively larger area compared to other benchmark circuits, which allow

greater heat flow and hence it achieves large temperature reduction by 20%.

 Note that the runtime is almost comparable in both the cases i.e. using traditional

metrics and our thermal aware approach.

Table 3.4. Comparison of runtime results for Hung’s floorplanner and our
floorplanner.

Table 3.4 shows the runtime comparisons between W.L. Hung’s 2D floorplanner

[20] and our floorplanner using the MCNC benchmarks. We note that both the

floorplanners use the randomly selected values in the similar ranges for the power of

different blocks in the benchmark circuits and the total net power, thus affecting the run

time complexity in a similar way. However, our floorplanner uses additional randomly

selected values for the switching activity of different nets, which can slightly increase the

run time. But as observed from the table above, clearly, our floorplanner has a much

shorter runtime, thus proving the simplicity of our interconnect power and thermal aware

Circuit Hung’s floorplanner
Dual Intel Xeon (3.2

GHz, 2GB RAM)

Run Time (Sec)

Our floorplanner
Intel Pentium4, (1.73

GHz, 1 GB RAM)

Run Time (Sec)
apte - 3.06

xerox 13 5.49
hp 25.78 6.87

ami33 101 65.70
ami49 240 71.12

73

floorplanning algorithm. Other parameters like area and wirelength are not considered for

comparison because we have used hard modules in our work where as W.L Hung’s

floorplanner is based on soft modules, which achieves much larger reduction in area due

to adjustment of aspect-ratio of the soft blocks. Since wirelength estimates depend on the

relative positions of different blocks and eventually their area, therefore, they are also not

considered for comparison.

To show the pre-thermal and post thermal effects on the arrangement of blocks, we

present the floorplan layout for all the benchmarks for both the above cases. Figures 3.8 to

3.16 show the floorplans of various benchmarks using the area optimization factor only

and that using our interconnect power and thermal aware floorplanning algorithm.

74

xerox thermal

Figure 3.8: Floorplan of xerox with area optimization only.

Hp trad

Figure 3.9: Floorplan of xerox with area and thermal optimization.

75

Figure 3.10: Floorplan of hp with area optimization only.

 Figure 1. Florplan of ami33 with Area-wirelength optimization

Figure 3.11: Floorplan of hp with area and thermal optimization.

76

Figure 3.12: Floorplan of ami33 with area optimization only.

Figure 3.13: Floorplan of ami33 with area and thermal optimization.

77

Figure 3.14: Floorplan of ami49 with area optimization only.

Figure 3.15: Floorplan of ami49 with area and thermal optimization.

78

Figure 3.16: Floorplan of apte with area optimization only, and area and thermal
optimization.

From the above figures, we observe that the floorplan layout changes considerably

after the thermal optimization for most of the benchmarks. However, for the benchmark

apte, we observe that the floorplan layout remains the same before and after the thermal

optimization though the temperature results are different for both the cases as seen from

the Tables 3.2 and 3.3. Also, the wirelength value changes. This can be explained by

considering the fact that one or many of the blocks would have undergone double rotations

at the same location in order to meet the thermal constraints as specified in the cost

function. This results in the change of pin locations and hence the netlength. Thus, the

power distribution contribution from the nets which have their netlength value changed

will affect the power density profile of the chip. Hence, we get different temperature

estimations, compared to traditional area optimization, in the thermal optimization

approach.

79

3.4.3 Discussion

Since our goal is to mainly study the impact of power distribution profile of the

chip, obtained by including the power dissipation, considering switching activity of the

interconnects, on chip temperature estimations, we have presented the results for the

experiments performed with only one particular set of power values randomly chosen for

all the modules in the benchmark. However, we also performed experiments with different

set of power values and observed a similar behavior in the results for temperature

estimations. Thus, we can safely draw conclusions about the variations in temperature

estimations with and without considering the switching activity of interconnects, and our

interconnect power and thermal aware floorplanning algorithm from only one set of

experimental results.

However, since the power distribution profile depends on both the netlength and

switching activity of interconnects, we chose to run the tests 100 times to ensure that we

cover the maximum variation in temperature estimations that can be evaluated by

assigning different sets of random values to switching activity of each interconnect.

As the cost function plays an important role in selecting the quality of the floorplan

based on some specific criteria, we arbitrarily assigned the values of α, β and γ in the cost

function and perform the entire set of experiments with those fixed values to obtain the

same quality of floorplans for different benchmarks. This avoids unambiguous

interpretation of results.

We can achieve further temperature reductions by using our interconnect power

and thermal aware floorplanning algorithm if we relax the area and wirelength constraints.

This will allow more dead areas to be created to allow heat in hotter regions to flow

80

through them that consume no power. But this is beyond the scope of our goal of

interconnect power and thermal aware floorplanning problem stated in section 3.2.

Based on the above results and discussion, we state that more attention should be

drawn to switching activity of interconnects in future technologies and it is imperative to

include switching activity together with length of interconnects in deriving power

estimates in guiding any thermal-aware floorplanning.

3.5 Conclusion

In this chapter, we have presented our interconnect power and thermal aware

floorplanner based on B*-Tree representation. The problem has been formulated as a

floorplanning optimization problem under interconnect power dissipation considerations.

Then, we have explained the entire methodology followed in developing the algorithm.

We have discussed how to incorporate switching activity of interconnects in determining

power dissipation estimations. Further, we have shown how to make temperature

approximations, and the effect of placement and power density profile on temperature

estimations. The experimental results prove the effectiveness of our algorithm in reducing

hotspots and show that it performs better than W.L. Hung’s 2D floorplanning algorithm

[20] in terms of run time when testing on a set of MCNC benchmark circuits.

81

Chapter 4

Variability Aware Floorplanning

The scaling of technologies towards the nanometer regime brings with it a

challenging increase in the amount of variability due to uncertainty in initial estimates in

the early phases of chip design. As the block and interconnect parameters such as block

dimensions show variability due to design uncertainty, the prediction of circuit

performance is becoming a challenging task in early chip planning stage. To address the

variability issue at the floorplanning stage, we develop a variability-aware floorplanner

based on analytical approach to determine the best relative floorplan for all blocks with

variable block characteristics. It can predict the ranges of area and wirelength of a design.

This early prediction helps estimate the variability impacts on performance parameters

such as delay at higher abstraction.

The remainder of the chapter is organized as follows. Section 4.1 describes the

related work that has served as a source of motivation for this work. Section 4.2 gives the

problem definition. Section 4.3 presents the variability-aware floorplanning algorithm

based on affine arithmetic. Section 4.4 presents our experimental results and analyses.

Finally, we conclude this chapter in the last section.

4.1 Motivation

In this section, we discuss some related work and the motivation for the research

work presented in this chapter. Previous relevant works fall into two broad categories- the

first is the prevalence of floorplanner of uncertain designs and the second is the various

analytical approaches available for modeling variations.

82

The first category of work studied floorplanning of uncertain designs. Bazargan

[2] developed a Nostradamus floorplanner for slicing floorplans to handle variations in

block dimensions, introduced due to design uncertainty, at an early chip planning stage.

He established that traditional floorplanners are incapable of handling uncertainty.

Bazargan considered the variations in block dimensions by creating distribution lists, each

of which consisted of a pair of numbers: width/height of a block and its probability. Only

certain discrete values and combinations of width and height for each block were

accounted for. However, in practical problems where the internals of the design block are

still not clear in the early decision stage, block dimensions can assume any value in a

specified range of values. Our work takes into account the entire range of values for the

block dimensions and all possible combinations of width and height for each block.

Moreover, we develop the floorplanner for non-slicing floorplans and consider the

wirelength estimations besides the chip area when testing on MCNC benchmarks.

The second category of related work dealing with the variability effects [32]-[35]

falls in to the area of statistical static timing analysis (STA) that uses analytical approaches

to find closed-form expressions for the distributions of the circuit delay under the presence

of process variations. These methods use normal distributions [30], [31], interval valued

analysis, probabilistic intervals [40] or mathematical statistical models for predicting the

circuit performance parameters affected by variability. Our motivation of adopting the

approach of analyzing the impact of variations in dimensions of modules on the floorplan

metrics like chip area and wirelength stem from the work done in the area of timing

analysis.

Since floorplanning is an important stage in the VLSI design process that can

83

impact many design decisions, we intend to study the effects of variability on floorplan

metrics and modify our floorplanning algorithm accordingly to make it less susceptible to

variation effects due to uncertainty in initial estimates in the design prototyping stage.

4.2 Problem Formulation

We define our problem in this work as follows: given the information of a set of

modules including their areas and interconnections, the variability-aware floorplanning

problem is that of placing the modules in the chip area satisfying a set of conditions and

achieving the goal of determining the best relative floorplan with smallest range and

average values of area and wirelength for specified variations in dimensions for each

block while optimizing area and wirelength. This relative floorplan will ensure that it is

least impacted by the effects of design uncertainty at an early stage, and thus, the resulting

circuit performance parameters will be effected only slightly. In this work, we consider

only the hard modules, i.e. modules that are not flexible in shape but are free to move and

rotate.

Let B = {b1, b2, …, bn} be a set of n rectangular modules with block bi of width wi

and height hi, 1 < i < n, such that wi lies in the range [Rmini, Rmaxi] and hi lies in the range

[Smini, Smaxi] where Rmini, Rmaxi and Smini, Smaxi are the minimum and maximum values for wi

and hi respectively. Figure 4.1 illustrates the ranges for width and height of a module.

Each module is free to rotate.

84

 Smax

 Smin

 Rmin

 Rmax

 Figure 4.1: Width and height ranges of a module.

Let (xi, yi) denote the co-ordinates of the bottom-left corner of the rectangle bi, on a

chip. A floorplan F is an assignment of xi and yi that lie in the ranges [xmini, xmaxi] and [ymini,

ymaxi] respectively for each bi such that no two modules overlap. Figure 4.2 illustrates the

possible location of left bottom coordinates (x, y) of the module within the bounding

rectangle.

 ymax

 ymin

 xmin xmax

Figure 4.2: Left bottom co-ordinate ranges (x, y) of a module.

The goal of floorplanning algorithm is to minimize

(i) Chip area (i.e. minimum bounding rectangle of F),

(ii) Total wirelength (i.e. the summation of half bounding box of

interconnections) induced by the assignment of bi’s and

(iii) The range for total area [Amin, Amax] and wirelength [WLmin, WLmax]

obtained where Amin, Amax and WLmin, WLmax are the lowest minimum and

maximum values for total area and wirelength respectively, that can be

(x, y) .

85

computed for the placement of B (i.e. a set of n rectangular modules).

Since we can have several relative floorplans Fi in the solution space, we determine the

best relative floorplan with the help of the cost function. The criteria listed above for

determining the best solution, i.e. the goal of floorplanning problem can be

mathematically formulated as a cost function given by the equation

Ci = α × Ai + β × WLi (4.1)

where Ai and WLi are total area and wirelength metrics respectively for relative floorplan

Fi, and α and β are constants which denote the relative weights of total area and wirelength

respectively in the cost function, (α + β) ≤ 1. The objective of floorplanning is to find the

floorplan with minimum value of Ci i.e.

Best floorplan => min (C1, C2, …, Cm) (4.2)

where m is the total number of relative floorplans evaluated. We will determine Ai and WLi

later in section 4.3.

We illustrate the impact of variations in dimensions of each module on the range of

chip area by an example. Let us consider a set B = {b1, b2, b3, b4, b5} of five rectangular

modules with each block bi having variable width wi and height hi. Ranges of width and

height for each block are listed in Table 4.1. Let Figure 4.3 (a) show the floorplan layout

of the chip for a set of worst case randomly chosen values for width and height of each

module. If we vary the values for width and height of each module such that the relative

positions of modules remain the same, we get a different floorplan layout as shown in

Figure 4.3 (b). Values of width and height for each module and their locations in (x, y)

co-ordinates are listed in Table 4.2 for both the cases.

86

Table 4.1. Ranges of width and height for each block.

Block No. Wi range
[Rmin, Rmax]

Hi Range
[Smin, Smax]

1 [1,5] [2,4]
2 [1,3] [2,4]
3 [1,4] [2,6]
4 [1,2] [2,5]
5 [2,4] [2,4]

Figure 4.3: (a) and (b): Impact of variability on chip area and location of modules.

Table 4.2. Values of width, height and location of each block.

Case 1: Figure 4.3 (a) Case 2: Figure 4.3 (b)
Block No. (w, h) for

each block
Position

(x, y)
(w, h) for

each block
Position

(x, y)
1 (4, 4) (0, 3) (3.5, 4) (0, 5)
2 (2, 2.5) (0, 0) (1.5, 2.5) (0, 0)
3 (3, 2.5) (2, 0) (2.5, 5) (1, 0)
4 (1, 5) (5, 0) (2, 3) (3, 0)
5 (2, 2.5) (3, 5) (3, 2.5) (3, 3)

On comparing Figures 4.3 (a) and (b), we can see that both have different values

for width, height and location of left bottom co-ordinates (x, y) for each module as

tabulated in Table 4.2. Table 4.3 presents the width, height and area (bounded rectangle)

of the floorplan layout in both the cases.

2 3

1

4

5

2

3

4

1

5

87

Table 4.3. Width, height and area of the floorplan layout of Figures 4.3 (a) and (b).

Floorplan
Metrics

Case 1:
Figure 4.3 (a)

Case 2:
Figure 4.3 (b)

Width 6 6
Height 10 9
Area 60 54

From Table 4.3, we observe that the value of chip area changes on changing the

dimensions of each module. By trying all the possible combinations of different values of

dimensions for each module, we get different floorplan layouts with different values of

chip area. Thus, variability in dimensions produces variations in chip area. We intend to

determine the range of variations in area and wirelength for a given set of modules, each

with specified range of variations in dimensions, in our solution approach.

4.3 Algorithm

In this section, we describe the methodology adopted to solve the problem outlined

in section 4.2. We first develop the simulated annealing floorplanning algorithm based on

Monte Carlo simulation (MC) technique which is widely used to solve complex numerical

problems. We then develop our own algorithm based on affine arithmetic to determine the

ranges of chip area and wirelength. We use B*-Tree representation for our floorplanning

algorithm as it is easy to implement, has a smaller solution space and time complexity, and

many other advantages as outlined in chapter 2.1.1.4.

We first illustrate our solution approach by a simple example discussed previously

in section 4.3. Figure 4.4 (a) shows the B*-Tree corresponding to the floorplan in Figure

4.3. Figure 4.4 (b) shows the B*-Tree obtained by perturbing the B*-Tree in Figure 4.4

(a).

88

Figure 4.4: (a) B*-Tree 1 (b) B*-Tree 2.

Now, if we repeat the same steps as followed in example in Figure 4.3, we obtain

two sets of floorplans as shown in Figures 4.5 (a) and (b) with worst case random values of

width wi and height hi for each block bi. Values of width and height for each module and

their locations in (x, y) co-ordinates are listed in Table 4.4 for both the cases.

Figure 4.5: (a) and (b): Impact of variability on chip area and location of modules
for B*-Tree 2.

Table 4.4. Width, height and location of each block for B*-Tree 2.

Block Information Case 1: Figure 4.5 (a) Case 2: Figure 4.5 (b)
Block
No.

Wi range
[Rmin, Rmax]

Hi Range
[Smin, Smax]

(w, h) for
each block

Position
(x, y)

(w, h) for
each block

Position
(x, y)

1 [1, 5] [2, 4] (2, 4) (0, 0) (1, 4) (0, 0)
2 [1, 3] [2, 4] (2, 3) (2, 0) (2, 3) (1 ,0)
3 [1, 4] [2, 6] (1, 4) (4, 0) (2, 6) (3, 0)
4 [1, 2] [2, 5] (1.5, 4) (0, 4) (2, 3) (0, 4)
5 [2, 4] [2, 4] (2, 4) (2, 3) (2, 3), (1, 7)

2

4

13

5

1

42

53

1
2

4
5

3 1

4

2

3

5

89

Table 4.5 presents the width, height and area (bounded rectangle) of the floorplan

layout in both the cases.

Table 4.5. Width, height and area of the floorplan layout of Figures 4.5 (a) and (b).

Floorplan
Metrics

Case 1:
Figure 4.5 (a)

Case 2:
Figure 4.5 (b)

Width 6 5
Height 9 10
Area 54 50

On comparing the areas of Figures 4.3 (a) and (b) with those of Figures 4.5 (a) and

(b) from Tables 4.3 and 4.5, we can see that the B*-Tree in Figure 4.4 (b) gives a smaller

value of maximum area and range as compared to that given by B*-Tree in Figure 4.4 (a).

Since the goal of floorplanning is to determine the smallest range and average value of

total area, the floorplans corresponding to B*-Tree in Figure 4.4 (b) will be considered the

best relative floorplan. Similarly, we can prove the optimality for the wirelength range

also.

To determine the best relative floorplan corresponding to a unique B*-Tree with

smallest range and average values of area and wirelength for specified variations in

dimensions for each block, we develop a simulated annealing based algorithm based on

B*-Tree as explained in chapter 2.1.2.4 for handling the placement with variations in

dimensions of each module. The algorithm perturbs the B*-Tree to another B*-Tree by

using the following three operations.

Op1: Rotate a module.

Op2: Move a module to another place.

Op3: Swap two modules.

90

We apply both MC approach and our approach to perform placement for each feasible

B*-Tree to determine the ranges of location of each module, total area [Amin, Amax] and

wirelength [WLmin, WLmax] parameters. The placement algorithm is discussed in detail in

subsequent sections for both the approaches. The perturbation process repeats until

pre-defined termination conditions are met. The termination condition checks for the

temperature value if it is greater than the threshold and convergent rate of solutions is

greater than rejection rate. The best relative floorplan corresponds to the feasible B*-Tree

which gives the smallest range and average values for chip area and wirelength. In other

words, among all the relative floorplans Fi, best relative floorplan is the one that has the

lowest value of cost function. Cost function Ci is modified from equation (4.1) to

Ci = α * (Amean + Arange)i + β * (WLmean + WLrange)i (4.3)

where α and β are constants and

Arange = (Amax − Amin), and (4.4)

Amean = (Amin + Amax) / 2, (4.5)

WLrange = (WLmax − WLmin) and (4.6)

 WLmean = (WLmin + WLmax) / 2 (4.7)

where Amin, Amax and WLmin, WLmax are the lowest minimum and maximum values for total

area and wirelength respectively, that can be computed for the placement of B

corresponding to a particular B*-Tree. Figure 4.6 summarizes the flow of our algorithm.

91

Input: A set of modules bi (wi Є [Rmini, Rmaxi], hi Є [Smini, Smaxi]) and Netlist N
Output: Floorplan F of ranges of chip area [Amin, Amax] and total wirelength [WLmin,
WLmax] and containing modules with ranges of locations [xmini, xmaxi] and [ymini, ymaxi] for
each bi.
Begin
 Initialize temperature T
 Initialize a B*-Tree for the input blocks
 // Run B*-Tree based simulated annealing floorplanning algorithm.
 Do

 Repeat
 Perturb
 Placement
 Compute Cost
 If Cost < Previous cost
 Accept the move
 Else
 Prob = min (1, e−kΔc/T), where Δc = change in cost, k=constant

Rand = Random (0, 1)
 If Rand < Prob then
 Accept the move
 Else
 Reject the move

End if
 End if

 Until (Uphill moves > 2*N or Downhill moves < N)
 T = 0.9 * T
 While (T > Threshold and Reject_rate < Converge_rate)

 End.

Figure 4.6: Pseudo code of our floorplanning algorithm.

4.3.1 Monte Carlo Simulation Approach

In the Monte Carlo simulation approach, we randomly generate the values for

width and height that lie in the ranges [Rmini, Rmaxi] and [Smini, Smaxi] respectively for

each block bi in the benchmark. We then do the placement for the corresponding

B*-Tree as outlined in chapter 2.1.1.4. This process is repeated several times (k ~ 2n) to

obtain several different floorplans with different combinations of random values of

dimensions for each block. The range and average values of area and wirelengths are

92

computed according to equations 4.4, 4.5 and 4.6, 4.7 respectively for these set of

floorplans corresponding to the unique feasible B*-Tree. Figure 4.7 presents the

pseudo code for placement using MC approach. The complexity of MC approach is

O(n2n) where n is the number of modules.

 Begin
 Loop: Iterate (k ~ 2n) times
 For each bi

 Randomly assign (wi Є [Rmini, Rmaxi] and hi Є [Smini, Smaxi])
 End For

Calculate (xi, yi) for each bi according to conventional B*-Tree placement
procedure.

 Calculate total Area A and Wirelength WL
 End Loop
 Calculate Amean, Arange, WLmean and WLrange

 End.

Figure 4.7: Pseudo Code of placement using MC approach.

4.3.2 Our Approach

In our algorithm approach, we evaluate the ranges of area and wirelength of a

relative floorplan corresponding to each feasible B*-Tree by applying a series of affine

arithmetic operations on affine operands as discussed below. During placement, we

replace interval bound for width w = [Rmini, Rmaxi] and height h = [Smini, Smaxi] of each

module bi by an affine form

 w
^

 = w0i + wkiεki,

 where w0i = (Rmini + Rmaxi) / 2 and

wki = (Rmaxi − Rmini) / 2

 and h
^

 = h0i + hkiεki,

93

 where h0i = (Smini + Smaxi) / 2 and

hki = (Smaxi − Smini) / 2

We assign the co-ordinates (xi, yi) for each bi such that xi and yi are interval bound and

represented by an affine form.

x
^

= x0i + xkiεki and y
^

 = y0i + ykiεki

We now describe the procedure for obtaining the placement, i.e. the range of location of

each module, from a corresponding B*-Tree. We determine the ranges of x and y

co-ordinates for each module as discussed below.

4.3.2.1 Determination of x Co-ordinates

The root of a B*-Tree corresponds to the module on the bottom-left corner with

coordinates (0, 0). The left child nj of a node ni denotes the module mj that is the lowest

adjacent module on the right-hand side of mi, i.e. xj = xi + wi, according to equation 2.2.

We represent xj in the affine form as a result of addition operation on two other affine

operands xi and wi as

xj = x0i + w0i + (xki + wki) εki (4.8)

The right child nk of a node ni denotes module mk that is the lowest visible module

above mi and with the same x co-ordinate as mi, i.e. xk = xi, according to equation 2.3. xk is

represented in the affine form as

 xk = x0i + xki εki (4.9)

We thus perform addition and assignment affine operations according to equations

(4.8) and (4.9) to determine the x co-ordinate of each module in the affine form depending

on whether it is the left or the right child of any module in the B*-Tree. We then convert

the affine expression for x co-ordinate to IA form to yield an almost-exact range [xmini,

94

xmaxi] for each bi.

4.3.2.2 Determination of y Co-ordinates

We use the contour structure as explained in chapter 2.1.1.4 to find the y

co-ordinate of a module. Recall, that we first define a permutation π which is the label

sequence when we traverse the tree in depth-first search order. The first element in

permutation π is the root of the tree. The contour structure is a doubly linked list of

modules, which describes the contour line in the current compaction direction. For each

module mi, let ψ(i) be the set of modules mk with its order lower than mi in permutation π

and interval (xk, xk + wk) overlaps interval (xi, xi + wi) by a non-zero length. Since each

variable is represented in the affine form, we define the absolute intervals for each

variable as computed below.

 xk lies in the range [xmink, xmaxk] and wk in the range [Rmink, Rmaxk].

 xk + wk gives an interval [(xmink + Rmink), (xmaxk + Rmaxk)]

Therefore, the interval (xk, xk + wk) takes the form as

([xmink, xmaxk], [(xmink + Rmink), (xmaxk + Rmaxk)])

We now define the join operation on two intervals [xmink + xmaxk] and [(xmink + Rmink), (xmaxk

+ Rmaxk)] to determine the final interval as

 (xmink, xmaxk + Rmaxk)

Similarly, interval (xi, xi + wi) takes the form

 (xmini, xmaxi + Rmaxi)

The y co-ordinate of a module i can hence be determined as follows: If ψ(i) is non-empty,

we have from equations 2.4 and 2.5

 yi = max k ε ψ(i) yk + hk

95

Otherwise yi = 0

 where yk + hk lies in the interval [(ymink + Smink), (ymaxk + Smaxk)]

 Hence, in the affine form,

 yi = max k ε ψ(i) [(ymink + Smink), (ymaxk + Smaxk)] (4.10)

Otherwise yi = 0 (4.11)

The interval with the maximum value will be the one that has the maximum value

of ((ymaxk + Smaxk) − (ymink + Smink))

 The algorithm for finding the placement from a corresponding B*-Tree is outlined

in Figure 4.8. It uses a contour structure to reduce the run time for finding the y co-ordinate

of a module while solving the equations (4.10) and (4.11).

Input: B*-Tree(π [0:n])
Output: Placement with position (xmini, xmaxi) for each module mi

Begin
 Set perm = 1
 Set contour = NULL
 Set current_contour = 0
 For code = 0 to n-1
 If code = 0 then
 Set current_module = π [perm]
 If current_contour = 0 then
 Set xmin[current_module] = xmin[current_contour] + Rmin[current_contour]
 Set xmax[current_module] = xmax[current_contour] + Rmax[current_contour]
 Else set xmin[curent_module] = xmax[current_module] = 0
 End if
 Set y[current_module] = find_max_y (contour, current_module)
 update_contour (contour, current_module)
 Set current_contour = current_module
 Set perm = perm + 1
 Else set current_contour = prev[current_contour]
 End if
 End For
End.

Figure 4.8: Pseudo code for determination of x and y co-ordinates using our
approach.

96

find_max_y determines the y co-ordinate of current module according to equations (4.10)

and (4.11) as explained above. All the operations are affine operations which have been

discussed in detail in this section above.

4.3.2.3 Determination of Area Range

After determining the placement, i.e. the range of (x, y) co-ordinates for each

block, we calculate the range of total area [Amini, Amaxi] for a relative floorplan

corresponding to each feasible B*-Tree.

To determine minimum area i.e. Amin, we select the maximum value of (xmini +

Rmini) and (ymini + Smini) among all the blocks bi . These values denote the x co-ordinate of

the rightmost and y co-ordinate of the topmost blocks respectively in the floorplan layout.

Thus, Amin can be calculated as below

Amin = max i = 1 to n (xmini + Rmini) × max i = 1 to n (ymini + Smini) (4.12)

Similarly for determining maximum area i.e. Amax, we select the maximum value of (xmaxi

+ Rmaxi) and (ymaxi + Smaxi) among all the blocks bi. Amax can be calculated as below

Amax = max
i = 1 to n (xmaxi + Rmaxi) × max i = 1 to n (ymaxi + Smaxi) (4.13)

4.3.2.4 Determination of Wirelength Range

 We determine the wirelength estimation by the half perimeter wirelength

(HPWL) method as explained in chapter 2.1.2.1. Before the placement, pin locations are

specified relative to the block’s lower left co-ordinates. Absolute locations of pins are

determined with respect to the origin of the chip after the placement. We use the

information about the ranges of block locations determined from the placement to

compute the ranges of pin locations and hence the wirelength range.

97

 Each block bi has lower left co-ordinates (xi, yi) in the ranges [xmini, xmaxi] and

[ymini, ymaxi] respectively. Let the relative pin locations with respect to block’s lower left

co-ordinates, denoted as (xpi, ypi), lie in the ranges [xminpi, xmaxpi] and [yminpi, ymaxpi]

respectively. Absolute pin locations, denoted as (xapi, yapi), are computed according to

equations 2.6 and 2.7 as below.

xapi = xi + xpi

yapi = yi + yp

Expressing all the operands in affine form, we get

 xapi = (x0i + x0pi) + (xkiεki + xkpiεkpi) (4.14)

Similarly , yapi = (y0i + y0pi) + (ykiεki + ykpiεkpi) (4.15)

where xapi and yapi lie in the ranges [(xmini + xminpi), (xmaxi + xmaxpi)] and [(ymini + yminpi), (ymaxi

+ ymaxpi)] respectively.

 HPWL of a net j consisting of k number of pins is calculated according to equations

2.8 and 2.9 as below

 HPWLxj = max i = 1 to k (xapi) – min i = 1 to k (xapi)

HPWLyj = max i = 1 to k (yapi) – min i = 1 to k (yapi)

Thus , HPWLj = HPWLxj + HPWLyj

HPWLj = max i = 1 to k (xapi + yapi) − min i = 1 to k (xapi + yapi) (4.16)

(xapi + yapi) lies in the range [(xmini + xminpi + ymini + yminpi), (xmaxi + xmaxpi + ymaxi + ymaxpi)].

max i = 1 to k (xapi + yapi) is given by the maximum value of ((xmaxi + xmaxpi + ymaxi + ymaxpi) −

(xmini + xminpi + ymini + yminpi)) among all such values for k pins.

98

Similarly, min i = 1 to k (xapi + yapi) is given by the minimum value of ((xmaxi + xmaxpi

+ ymaxi + ymaxpi) − (xmini + xminpi + ymini + yminpi)) among all such values for k pins. Let u and

v be the two pins for which maximum and minimum values are found respectively in the

equation 4.16. Thus,

HPWLminj = min ((xapu + yapu) − (xapv + yapv)) (4.17)

HPWLmaxj = max ((xapu + yapu) − (xapv + yapv)) (4.18)

Total wirelength is determined by summing up the HPWL of all nets.

WL = ∑ N
j=1 HPWLj

The maximum and minimum values of total wirelength are determined as follows,

WLmin = ∑ N
j=1 HPWLminj (4.19)

and WLmax = ∑ N
j=1 HPWLmaxj (4.20)

Our algorithm for placement is summarized in Figure 4.9. The complexity of our

algorithm is O(n).

 Begin
 For each bi

Convert wi, hi and (xi, yi) to affine form.
 End For
 Calculate [xmini, xmaxi] and [ymini, ymaxi] for each bi according to pseudo code in
 Figure 4.8

 Calculate [Amin, Amax] according to equations 4.12 & 4.13
 Calculate [WLmin, WLmax] according to equations 4.19 & 4.20
 Calculate Amean & Arange and WLmean & WLrange according to equations 4.4 to 4.7

 End.

Figure 4.9: Pseudo code of placement using our approach.

99

4.4 Experimental Results

To evaluate our affine arithmetic based floorplanning algorithm, we performed a

set of two experiments. First experiment was conducted using the Monte Carlo simulation

approach. It presents the ranges of area and wirelength and the B*-Tree corresponding to

the best feasible solution. Second experiment demonstrates the effectiveness of our

algorithm in deriving the ranges of area and wirelength for the best feasible solution. We

then compare the results of MC approach with those of our algorithm to verify its

accuracy.

4.4.1 Experimental Setup

The experimental setup is as follows. The simulated annealing floorplanning

algorithm is implemented in C++ programming language on an Intel Pentium 4, 1.73 GHz

PC with 1 GB RAM. The operating system is RedHat Linux v6.1, kernel version 2.4.

The experiments were performed on a set of five MCNC benchmark circuits that

consists of hard modules. We tested all these benchmarks. Table 4.6, on the next page,

gives the information of MCNC benchmarks. Since the benchmarks contain modules with

fixed dimensions, we adopt a procedure to convert fixed dimensions into variable

dimensions for use in our floorplanning algorithm. We calculate the ranges of width and

height of each block to be within + 2% of the given fixed dimensions for width and height

in each MCNC benchmark circuit. However, any value typically in the range 0-5% can be

provided depending on the impact of design uncertainty on each block.

100

Table 4.6. MCNC benchmarks information.

In the simulated annealing process, the temperature was decreased at a constant rate (0.9).

We terminate the annealing process if the rejection rate of moves exceeds the convergent

rate of 0.85 at a certain temperature or the temperature decreases beyond the threshold

value of 0.1.

We consider area optimization as the main criterion in the cost function to obtain

floorplans with the smallest range and average values of area possible for all the

benchmarks. To balance the accuracy and run time, we chose to run 10,000 iterations for

the Monte Carlo simulation.

4.4.2 Results and Analyses

Table 4.7 shows the results for area and wirelength for MC approach. For each test

case, the mean and range values are listed together with the minimum and maximum

values. The run time for MC approach is also provided.

Table 4.7. Results for area and wirelength using MC approach.

Circuit Block # Net # Pin # Pad #
apte 9 97 214 73

xerox 10 203 696 2
hp 11 83 264 45

ami33 33 123 480 42
ami49 49 408 931 22

Circuit Amean

(mm2)
[Amin, Amax]

(mm2)
Arange

(mm2)
WLmean

(mm)
[WLmin, WLmax]

(mm)
WLrange

(mm)
Run
Time
(min)

apte 47.96 [46.61, 49.31] 2.70 450.84 [443.78, 457.9] 14.12 15.78
xerox 9.98 [9.25, 10.71] 1.46 270.18 [268.13, 272.22] 4.09 23.05

hp 20.63 [19.94, 21.31] 1.37 471.16 [462.23, 480.08] 17.85 49.85
ami33 1.21 [1.20, 1.22] 0.02 86.23 [85.03, 87.43] 2.40 97.41
ami49 38.64 [37.54, 39.74] 2.20 1075.14 [1059.76, 1090.51] 30.75 167.24

101

Table 4.8 shows the results for area and wirelength for our algorithm approach.

The run time for our algorithm is also provided.

Table 4.8. Results for area and wirelength using our approach.

We can see that the run time of our algorithm on all test cases is very fast. The

circuit with the longest run time, ami49, was analyzed in only about 67 seconds while the

MC simulation required 167 minutes.

Table 4.9 shows a comparison of the results for area and wirelength of MC

approach with those of our algorithm. The results of our algorithm can be seen to be very

close to the MC results: the average error for area is –0.78% for the mean and –12.96% for

the range. The average error for wirelength is –2.43% for the mean and –13.23% for the

range.

Table 4.9. Area and wirelength comparison results of our algorithm and
Monte-Carlo simulation (MC) method.

Circuit Amean

(mm2)
[Amin, Amax]

(mm2)
Arange

(mm2)
WLmean

(mm)
[WLmin, WLmax]

(mm)
WLrange

(mm)
Run
Time
(sec)

apte 48.15 [46.6, 49.7] 3.10 458.13 [450.01, 466.24] 16.23 5.92

xerox 10.09 [9.25, 10.92] 1.67 274.61 [272.42, 276.79] 4.37 7.47
hp 20.84 [20.07, 21.60] 1.53 484.34 [474.29, 494.39] 20.10 32.32

ami33 1.22 [1.20, 1.23] 0.03 89.98 [88.33, 91.63] 3.30 57.72
ami49 38.88 [37.68, 40.08] 2.40 1098.41 [1081.64, 1115.17] 33.53 67.08

E = (MC − Our) / MC %
Circuit Amean E

(%)
Arange E

(%)
WLmean E

(%)
WLrange E

(%)
apte -0.39 -0.13 -1.59 -13.00

xerox -1.09 -12.57 -1.61 -6.40
hp -1.00 -10.45 -2.72 -11.19

ami33 -0.81 -33.33 -4.14 -27.27
ami49 -0.61 -8.33 -2.11 -8.29

102

We observe that the results of mean and range from our approach are larger than

those from MC approach for both area and wirelength. This negative value of error can be

explained by considering the fact that MC approach typically evaluates the model based

on computations on the actual values obtained by random generation whereas our

approach predicts the range of values by mathematical modeling. Also, AA accounts for

the worst case of the simulation. However, worst case scenario is seldom reached in real

situations. Hence, the interval obtained in AA is slightly over-pessimistic.

We also observe that the error for mean is smaller than the error for range both for

the area and wirelength. This is due to the fact that Monte Carlo simulations do not cover

the worst case scenarios correctly, and hence the larger error in range estimation.

However, mean values are well matched to those from our algorithm since they are based

on typical values normally encountered in real simulations.

Above results demonstrate the accuracy and effectiveness of our algorithm based

on the affine arithmetic model to estimate the area and wirelength ranges of a floorplan in

the presence of dimension variations.

4.4.3 Discussion

Although we have chosen to perform our experiments with the consideration of

area minimization as the main criterion in the cost function, we obtain similar behavior in

the results pattern if we consider both area and wirelength minimizations as the objective.

Since the goal of our floorplanning algorithm is to predict the ranges of area and

wirelength under the variations in dimensions of modules, we can obtain the results for

any combination of weights assigned to α and β in the cost function.

103

4.5 Conclusion

In this chapter, we have presented our variability-aware floorplanner. The problem

has been formulated as a floorplanning optimization problem under variations in

dimensions for each module resulting due to design uncertainty in early chip planning

stage. An example has been provided to make the problem clearer. Then, we have

explained the entire methodology followed in developing the MC based algorithm and our

algorithm. In our algorithm, we have explained the procedure for getting the placement

from a corresponding B*Tree using the contour structure. Finally, the experimental results

presented prove the effectiveness of our algorithm in determining the ranges of area and

wirelength under variations in dimensions of each module. We compare the results of our

algorithm from MC approach and show that it performs better than MC approach in terms

of run time by testing on a set of MCNC benchmark circuits.

104

Chapter 5

Conclusions and Future Directions

5.1 Conclusions

With the aggressive scaling of process technologies towards the deep submicron

region, increased levels of integration within a singe die have imposed rigid constraints on

the power budget and hence the temperature estimations of a chip. Also, the challenging

increase in the amount of variability due to uncertainty in block and interconnect physical

parameters across early phases of design has led to the need for variability-aware

mechanisms that can correctly model these variations. In this thesis, we have discussed

two significant works related to the area of interconnect power and thermal aware

floorplanning, and variability-aware floorplanning.

In the first part of the thesis, we have shown how to improve the temperature

distributions of a chip and reduce hotspots when considering heavily used interconnect

circuits through interconnect power and thermal aware floorplanning. We have presented

an interconnect power and thermal aware floorplanner that takes into account the effects

of the switching activity of interconnects in deriving power consumption in estimating the

peak temperatures. We have demonstrated that the peak temperatures can be

underestimated by as much as 15oC without including switching activity of interconnects

in determination of power. Finally, we have shown the effectiveness of our floorplanner in

reducing peak temperatures by as much as 20% using MCNC benchmarks with a

comparable area and a penalty of 2% in terms of the total wirelength. Chip temperatures

are expected to further increase in future designs based on deep sub-micron technology

and heavy interconnect usages, thus making the benefits of interconnect power and

105

thermal aware floorplanning even more prominent.

In the second part of the thesis, we have developed a variability-aware

floorplanning algorithm. Variability issues at floorplanning stage have not been studied

with much importance upto now. We have presented a B*-Tree based floorplanning

algorithm based on affine arithmetic to determine the ranges of chip area and wirelength in

the presence of variations in dimensions of each module. We have verified the accuracy of

the method with Monte Carlo simulation. The average errors of mean and standard

deviation values computed by the proposed method are −0.78% & −12.96% respectively

for area, and −2.43% & −13.23% for wirelength respectively by testing on five MCNC

benchmarks. The fast run time of our algorithm proves its superiority over Monte Carlo

simulation approach. Further increase in uncertainty and hence variability effects in future

complex designs will make the benefits and significance of our affine arithmetic based

floorplanning algorithm even more prominent.

5.2 Future Directions

Since the increase in variations in block and interconnect parameters pose a

challenge to the performance analysis of high-speed designs, many other important

parameters like power dissipation and temperature of the chip will also be drastically

impacted. As we have discussed in our work, power dissipation and temperature has

become more crucial with shrinking technologies and need to be modeled accurately.

With the combined effect of variability impacts, these parameters will become of

paramount importance and will need to be studied in greater detail in early phases of chip

planning i.e. design prototyping.

 Thus, the work done in our thesis opens door for future research in the area of

106

variability-aware floorplanning taking into account thermal and power dissipation of

device and interconnects. Since design uncertainty affects the power and temperature of

the chip besides the timing of circuits considerably, we need to predict the ranges of these

parameters as well, under the presence of variations in dimensions of modules. The

projected future work will be based on combining the power dissipation effects with the

variations to yield variable ranges of temperature and power dissipation besides the chip

area and wirelength.

The projected future work will estimate the range of power dissipation for each

functional block by taking into account the range of its area. Similarly, range of power

dissipation of each interconnect will be determined by taking into account the range of its

netlength. Range of area of each block and range of netlength for each interconnect is

already determined in our variability-aware floorplanner. Further, it will compute the

range of power distribution profile of the chip by considering the variations in netlength

and area as mentioned above. Range of temperature estimations of the chip will be

determined using the range of power dissipation values for each block and the ranges of

floorplan metrics like area and wirelength.

Thus, our work done in this thesis provides a promising framework for significant

future work in the direction of computing impacts of design uncertainty on power

dissipation and temperature estimations of the chip at the floorplanning stage.

107

Bibliography

[1] J. Srinivasan, S.V. Adve, P. Bose, and J. Rivers. “The Impact of Technology Scaling
on Lifetime Reliability”. In Proc. of International Conference on Dependable Systems and
Networks, June 2004.

[2] K. Bazargan, S. Kim and M. Sarrafzadeh. “NOSTRADAMUS: A Floorplanner of
Uncertain Designs”. In Proc. ISPD, 1998.

[3] Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning,
New York: Addison-Wesley, 1989.

[4] R.H.J.M. Otten. “Automatic Floorplan Design”. In Proc. DAC, 1992, pp.261-267.

[5] D. F. Wong, and C. L. Liu, “A New Algorithm for Floorplan Design”. In Proc. DAC,
1986, pp.101-107.

[6] P.N. Guo, C.K. Cheng, and T. Yoshimura. “An O-Tree Representation of Non-Slicing
Floorplan and Its Applications”. In Proc. 36th DAC, June 1999, LA, U.S.A, pp. 268-273.

[7] X. Tang, and D.F Wang. “FAST SP: A Fast Algorithm for Block Placement based on
Sequence Pair”. In Proc. ASP-DAC, 2001, pp 521-526.

[8] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. “Module Placement on
BSG-Structure and IC Layout Applications”. In Proc. ICCAD, Nov. 1996, CA, U.S.A.,
pp. 484-491.

[9] T.C. Wang, and D.F. Wong. “An Optimal Algorithm for Floorplan and Area
Optimization”. In Proc. DAC, 1990, pp.180-186.

[10] Y.C. Chang, Y.W. Chang, G.M. Wu, and S.W. Wu. “B*-Trees: A New
Representation for Non-Slicing Floorplans”. In Proc. 37th DAC, June 2000, CA, U.S.A.,
pp. 458-463.

[11] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. “VLSI module placement
based on rectangle-packing by the sequence pair”. In IEEE Trans. Computer-Aided
Design, Dec. 1996, vol. 15, pp. 1518-1524.

[12] X. Hong, G. Huang, T. Cai, J. Gu, S. Dong, C.K. Cheng, and J. Gu. “Corner Block
List: An effective and efficient topological representation of non-slicing floorplan”. In
Proc. ICCAD, Nov. 2000, CA, U.S.A, pp. 8-12.

[13] J.M. Lin and Y.W. Chang. “TCG: A Transitive Closure Graph-Based Representation
for Non-Slicing Floorplans”. In Proc. 38th DAC, June 2001, NV, U.S.A., pp. 764-769.

[14] Thermal-aware 3D Microarchitectural Floorplanning. A Technical Report, May 20,

108

2005, http://www.cs.virginia.edu/ techrep/CS-2005-08.pdf.

[15] Y. Han, I. Koren and C.A. Moritz. “Temperature Aware Floorplanning”. In Second
Workshop on Temperature-Aware Computer Systems, 2005.

[16] W.L. Hung, C. Addo-Quaye, T. Theocharides, Y. Xie, N. Vijaykrishnan, and M. J.
Irwin. “Thermal-aware floorplanning using genetic algorithms”. In Proc. ISQED, 2005.

[17] J. Cong, J.Wei, and Y. Zhang. “A Thermal-Driven Floorplanning Algorithm for 3D
ICs”. In Proc. ICCAD, 2004.

[18] C. Chu and D.F. Wong. “A matrix synthesis approach to thermal placement”. In Proc.
ISPD, 1997.

[19] Brent Goplen and Sachin Sapatnekar. “Efficient Thermal Placement of Standard
Cells in 3D ICs using a Force Directed Approach”. In Proc. ICCAD, 2003.

[20] W.L. Hung, G.M. Link, Yuan Xie, N. Vijaykrishnan, and M. J. Irwin. “Interconnect
and Thermal-aware Floorplanning for 3D Microprocessors”. In Proc. 7th ISQED, 2006.

[21] J. Cong and D.Z. Pan. “Interconnect performance estimation models for design
planning”. In IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
June 2001, pp. 739-752.

[22] P. Kapur, G. Chandra, and K.C. Saraswat. “Power estimation in global interconnects
and its reduction using a novel repeater optimization methodology”. In Proc. DAC, 2002.

[23] D. Sylvester and K. Keutzer. “Getting to the bottom of deep submicron”. In Proc.
ICCAD, 1998.

[24] W. Liao and L. He. “Full-chip interconnect power estimation and simulation
considering concurrent repeater and flip-flop insertion”. In Proc. ICCAD, 2003.

[25] P. Prabhakaran and P.Banerjee. “Simultaneous Scheduling, Binding and
floorplanning for Interconnect Power Optimization”. In Proc. 12th International
Conference on VLSI Design – ‘VLSI for the Information Appliance’, 1999, pp. 423.

[26] R.mehra, L.M Guerra and J.M Rabeay. “Low power Architectural synthesis and the
impact of exploiting locality”. Journal. VLSI signal processing, vol. 13, No. 8, pp. 877-88,
Aug 1996.

[27] N. S. Kim, T.M. Austin, D. Blaauw, T.N. Mudge, K. Flautner. J. S. Hu, M.J. Irwin,
M.T. Kandemir, and N. Vijaykrishnan, “Leakage current: Moore's law meets static
power”. In IEEE Computer, vol. 36, no. 12, pp. 68-75, 2003.

[28] S.M. Martin, K. Flautner, T. Mudge, and D. Blaauw. “Combined dynamic voltage

109

scaling and adaptive body biasing for lower power microprocessors under dynamic
workloads”. In Proc. ICCAD, 2002, pp. 721-725.

[29] K. Skadron, T. Abdelzaher, and M. Stan. "Control-Theoretic Techniques and
thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management". In
Proc. HPCA 2002.

[30] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao,K. Gala, and R.
Panda. “Statistical delay computation considering spatial correlations”. In Proc.
ASP-DAC, Kitakyushu, Japan, Jan. 2003, pp. 271-276.

[31] M. Berkelaar. “Statistical delay calculation, a linear time method” (Personal
communication).

[32] M. Orshansky and K. Keutzer, “A general probabilistic framework for worst case
timing analysis”. In Proc. ACM/IEEE DAC, June 2002, pp. 556-561.

[33] S. Tsukiyama, M. Tanaka, and M. Fukui. “A statistical static timing analysis
considering correlations between delays”. In Proc. ASP-DAC, Jan. 2001, pp. 353-358.

[34] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula. “Computation and refinement
of statistical bounds on circuit delay”. In Proc. DAC, June 2003, pp. 348-353.

[35] J. Liou, K. Cheng, S. Kundu, and A. Krstic. “Fast statistical timing analysis by
probabilistic event propagation”. In Proc. ACM/DAC, June 2001, pp. 661-666.
[36] R.E Moore, Interval Analysis, prentice Hall, 1966.

[37] J. Stolfi and L.H. de Figueiredo. "An introduction to affine arithmetic". TEMA Tend.
Mat. Apl. Computing, 4, No. 3 (2003), 297-312.

[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated
Annealing”. Science, 1983, 220, (4598), pp. 671-680.

[39] G.S. Fishman. Monte Carlo: Concepts, Algorithms, and Applications,
Springer-Verlag, 1995.

[40] V. Axelrad and J. Kibarian. “Statistical aspects of modern IC designs”. In Proc.28th
European Solid-State Device Research Conference, Bordeaux, France, Sept. 1998, pp.
309-321.

 [41] http://www.isonics.com

[42] Naveed A. Sherwani. Algorithms For VLSI Physical Design Automation. Kluwer
Academic Publishers, 3rd edition, 1999.

110

[43] M. Sarrafzadeh, C.K. Wong. An Introduction to VLSI Physical Design.
McGraw-Hill, 1996.

