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Summary 

             Cell polarity is a fundamental property of cells. The budding yeast 

Saccharomyces cerevisiae is a model system for the study of cell polarity. Yeast cells 

first select a proper site to establish cell polarity. In this site, actin and septin 

cytoskeletons are organized to achieve polarized cell growth. Actin patches and actin 

cables are two essential organizations of actin cytoskeleton which are involved in the 

establishment and maintenance of polarized cell growth. Actin patches are required for 

endocytosis while actin cables are essential for the polarized vesicle transport. Upon 

internal and external signals, actin cytoskeleton undergoes a dramatic reorganization 

regulated by a large number of cytoskeleton-associated proteins, such as Pan1p, Sla1p 

and Bni1p. The functions of Pan1p and Sla1p are regulated by an important 

serine/throrine kinase Prk1p.  

               Septin cytoskeleton is required for cell morphogenesis and division in budding 

yeast. Septins form a heterooligomeric complex which localizes at the mother-daughter 

junction. Septin filaments also undergo assembly and disassembly in accordance with the 

progression of the cell cycle. 

               Syp1p was first identified as a multi-copy suppressor of profilin deletion mutant 

and its overexpression was found to cause an elongated bud phenotype. The functions of 

Syp1p in actin and septin cytoskeletons were investigated in depth in this study. Firstly, 

Syp1p is shown to be a novel substrate of Prk1p and its phosphorylation by Prk1p 

negatively regulates Syp1p’s functions. Secondly, Syp1p overexpression suppresses the 

bni1Δ mutants at non-permissive temperature. Syp1p overexpression also partially 

rescues the depolarized localization of actin of the bni1Δ mutant.  Thirdly, Syp1p is 



xvi 

found to colocalize with the actin cytoskeleton.  The localization of Syp1p is dependent 

on the intact actin cytoskeleton. Fourthly, Syp1p is discovered to physically interact with 

the actin patch-associated protein Sla1p. These results indicate that Syp1p has functional 

relationships with both actin cables and actin patches. 

In addition to its roles in the actin cytoskeleton, Syp1p is also discovered to be a 

new regulator of septin dynamics.  Firstly, Syp1p is found to colocalize with septin 

throughout the cell cycle. Secondly, Syp1p is able to interact directly with the septin 

subunit Cdc10p. Thirdly, Syp1p overexpression disorganizes the septin structure and 

induces the Swe1p-dependent elongated bud phenotype. Fourthly, in the syp1Δ mutant, 

the formation of a complete septin ring at the incipient bud site and the disassembly of 

the septin ring at the end of cell division were both significantly delayed. These results 

suggest that Syp1p is involved in the regulation of cell cycle-dependent dynamics of the 

septin cytoskeleton in yeast. 

               In summary, Syp1p is a novel regulator of cell polarity through its regulation of 

both actin and septin cytoskeleton organization. 
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Chapter 1 Introduction 

              The cytoskeleton filaments are fundamental structures to achieve polarized cell 

growth and directional cell division. The cytoskeleton is involved in the positioning of 

organelles or protein complexes, vesicle trafficking, cell shape maintenance and 

remodeling, and cell movement (Bretscher, 2003; Pruyne et al., 2004b). There are 

basically three forms of cytoskeleton elements: actin cytoskeleton, intermediate filaments 

and microtubules. Recently, septin filament has been known as another type of 

cytoskeleton critical for cell polarity (Douglas et al., 2005; Kinoshita, 2006; Spiliotis and 

Nelson, 2006).  A central feature of the cytoskeleton is its ability to reorganize rapidly in 

response to internal and external stimuli to allow a cell to perform its function and to 

survive in a harsh environment (Moseley and Goode, 2006). This dynamic organization 

of the cytoskeleton has to be properly regulated. Therefore, it is critical to understand 

how different associated proteins regulate the reorganization of the cytoskeleton.  

            The yeast Saccharomyces cerevisiae is a powerful system to study the 

mechanisms of cell polarity and regulation of cytoskeleton. Many findings from yeast 

have been shown to be conserved in higher organisms such as vertebrates (Pruyne et al., 

2004b). In the following literature reviews, the cellular polarization and the role of 

actin/septin cytoskeletons in polarized cell growth in yeast will be discussed in detail.   

 

1.1 Cell polarity and its mechanism in yeast 

           S. cerevisiae undergoes polarized growth during several stages of its life cycle 

(Fig.1.1) (Roemer et al., 1996b). In the presence of rich nutrients, yeast grows by 

budding, and the position of bud growth is known as the cell division plane (Fig. 1.1 and 

Fig. 1.2).  

    2   
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                                                                             Figure 1.1  Three forms of polarized 
cell growth in the Saccharomyces 
cerevisiae life cycle. Cells grown in a 
rich medium are round or oval and 
have defined budding patterns. When 
exposed to a low-nutrient medium, 
cells elongate and bud from the distal 
end to form pseudohyphae. Haploid 
cells exposed to pheromone from cells 
of the opposite mating type arrest in 
G1 and extend a projection toward 
their mating partner. (Reproduced with 
permission from Trends Cell Biol.) 
(Roemer et al., 1996b) 

            

           A second form of polarized growth in yeast is called pseudohyphal growth, which 

occurs when there is shortage of nutrients. Under these conditions, yeast cells elongate to 

form chains of cells (Fig. 1.1)(Gimeno et al., 1992; Roberts and Fink, 1994).  

            A third form of polarized growth in yeast occurs during the mating response. 

Haploid yeast has two cell types, MATa and MATα. Upon exposure to pheromone from 

cells of the opposite mating type, the cells are arrested in late G1 and form an elongated 

mating projection (shmoo) (Fig. 1.1) (Cross et al., 1988; Marsh et al., 1991).  

               Although bud growth, pseudohyphal growth, and the mating response are 

different cellular processes, each process undergoes similar steps to achieve polarized 

growth (Madden and Snyder, 1998; Casamayor and Snyder, 2002). First, a proper site for 

polarized growth is selected and established upon internal or external signals. Next, 

cytoskeletons are organized and polarized to the chosen sites. The cytoskeleton then 

targets polarized secretion to that site. During these different stages of polarized growth, 

both actin and septin cytoskeletons play critical roles in establishment and maintenance 

of cell polarity.  
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Figure 1.2 Different stages of budding during the cell cycle. 1) The cell first selects a 
defined site according to its ploidy for bud emergence during the late G1 stage of the cell 
cycle. 2) The established site then organizes a cytoskeleton network, which is required 
for targeting secretion to that site for bud emergence. After bud emergence, cell growth is 
restricted first at the bud tip (apical growth) (3) and then throughout the bud (isotropic 
growth) (4). When the bud reaches certain sites, the cell undergoes mitosis (5) and 
cytokinesis (6), and secretion is directed to the bud neck for the synthesis of septum and 
actomyosin ring that separates the mother and daughter. (Modified with permission from 
Annu Rev Cell Dev Biol.) (Pruyne et al., 2004b) 
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1.1.1 Bud site selection for polarized growth 

         Yeast cells choose a bud site according to its ploidy, with diploid cell budding from 

the poles of cells (bipolar pattern), and haploid budding from sites adjacent to their 

previous bud site (axial pattern) (Fig. 1.3) (Chant and Pringle, 1995; Roemer et al., 

1996b; Casamayor and Snyder, 2002). These budding patterns suggest that the 

polarization machinery recognizes the cortical cues that persist from the previous cell 

cycle. Initial insights into how this occurs came from a screen for mutants that altered the 

axial and bipolar budding patterns (Chant et al., 1991; Chant and Herskowitz, 1991). 

Three classes of proteins have been identified to be important for bud site selection. One 

class is required for axial budding, but does not affect the bipolar pattern (Fig. 1.4, Gene 

set I) (Chant and Herskowitz, 1991). These proteins include Bud3p (Chant et al., 1995), 

Bud4p (Sanders and Herskowitz, 1996), Axl2p/Bud10p (Halme et al., 1996; Roemer et 

al., 1996a) and Axl1p (Fujita et al., 1994). Mutations of these genes result in bipolar 

budding in haploid cells. Another class is important for the bipolar budding pattern of 

diploid cells and not required for haploid axial budding (Fig. 1.4, Gene set II) (Zahner et 

al., 1996), including Bud8p, Bud9p (Taheri et al., 2000; Harkins et al., 2001) and Rax2p 

(Chen et al., 2000). The third class is required for both axial and bipolar budding which 

includes the Ras-related GTPase, Rsr1p/Bud1p,  and its regulatory GTPase-activating 

protein (GAP) Bud2p and guanine-nucleotide exchange factor (GEF) Bud5p (Fig. 1.4, 

Gene set III) (Chant et al., 1991; Bender, 1993; Park et al., 1993). The Bud1p GTPase 

signaling module is thought to recruit bud formation components, such as Cdc42p, 

Cdc24p, and Bem1p (Fig. 1.4, Gene set IV), to the cortical region at the presumptive bud 

sites (Zheng et al., 1995; Park et al., 1997; Kozminski et al., 2003). 
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Figure 1.3 Axial and bipolar budding patterns in yeast cells. Staining with the 
calcofluor dye permits visualization of two types of scars on any yeast cell surface. The 
scar marking the place where the cell was initially attached to its mother (M) cell is called 
the birth scar, whereas smaller scars that originated by cytokinesis of the daughter (D) 
cells are named bud scars. Examination of the pattern of bud and/or birth scars reveals 
different budding patterns. The axial budding pattern is typically found in haploid MATa 
and MATα cells, and is characterized by adjacent budding to the birth scar in both mother 
and daughter cells. Diploid MATa/MATα cells follow a bipolar budding pattern in which 
daughter cells usually bud distally (that is, at the opposite pole to the birth scar), and the 
mother cell buds at either pole. The birth scar is represented by a curved black line, and 
subsequent bud scars are represented by curved white lines. (Reproduced with permission 
from Curr Opin Microbiol.) (Casamayor and Snyder, 2002). 
 

 

1.1.2 Establishment of polarized growth by Cdc42p  

         Deletion of any one of the bud site selection genes is not lethal. However, some 

genes that are involved in bud formation are essential. Factors required for bud formation 

were identified in screens for temperature-sensitive mutants that were arrested as 

enlarged, round unbudded cells at the restrictive temperature. Two essential factors 

identified in this way are the Rho-family GTPase Cdc42p (Adams et al., 1990; Johnson 

and Pringle, 1990) and its Rho-GEF Cdc24p (Sloat and Pringle, 1978; Zheng et al., 

1994). The third component Bem1p was identified as a scaffold protein that binds 

Cdc24p and Cdc42p (Zheng et al., 1995; Bose et al., 2001).  
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Figure 1.4 Summary of signaling pathways that lead to the polarity establishment 
during bud formation. Proteins belonging to the same functional group are framed in 
the same color (Gene sets I–VI). The dotted arrow represents hypothetic regulation of 
gene set II by the specific bud-site selection signals present in diploid cells. (Modified 
with permission from Curr Opin Microbiol.) (Casamayor and Snyder, 2002) 
 

           The polarity-establishing proteins are thought to promote the assembly of 

cytoskeleton components such as actins and septins to target the secretory vesicles to the 

bud site for bud formation (Fig. 1.4). The earliest events of polarized growth are the 
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depositions of the septin ring and assembly of  polarized actin cytoskeleton (Li et al., 

1995; Gladfelter et al., 2002).  

 

1.2 Yeast actin cytoskeleton  

1.2.1 Roles of yeast actin cytoskeleton in polarized growth 

          The Yeast actin cytoskeleton is required for cellular polarization at different stages 

of polarized growth. The actin cytoskeleton plays an important role in bipolar bud site 

selection and maintenance of polarized budding growth. The actin cytoskeleton is also 

required for maintaining the polarity of Cdc42p localization. In addition, the actin 

cytoskeleton is required for cell wall synthesis which is involved in polarity growth and 

morphogenesis.  

 

1.2.1.1 The role of actin cytoskeleton in bipolar bud site selection 

          Bipolar bud site selection requires the actin cytoskeleton and its associated proteins 

(Fig. 1.4, Gene set VI). Many act1 mutations have been found to affect the bipolar 

budding pattern (Drubin et al., 1993; Yang et al., 1997). These mutations do not affect 

the budding pattern of daughter cells but instead cause mother cells to bud randomly. The 

amino acids important for bud site selection were all mapped to a specific domain of the 

actin protein (Wertman et al., 1992; Yang et al., 1997), suggesting that this region of 

Act1p may recognize bipolar-specific proteins or cues. Mutations in genes encoding 

some actin-associated proteins (e.g. Sac6p, Srv2p, Sla1p, Sla2p, Rvs161p, Rvs167p) also 

cause defects in bipolar budding similar to those of the act1 mutations (Adams et al., 

1991; Crouzet et al., 1991; Bauer et al., 1993; Holtzman et al., 1993; Amberg et al., 
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1995; Freeman et al., 1996; Yang et al., 1997). In addition, the polarisome, a protein 

complex that regulates the assembly of actin filaments at the bud site (see section 1.2.4.3 

for more detail), plays a role in bipolar bud site selection (Valtz and Herskowitz, 1996; 

Amberg et al., 1997).  

             Several mechanisms are used by actin-associated proteins to participate in bipolar 

budding (Madden and Snyder, 1998). First, one or more of these proteins might interact 

with the Act1p domain required for bipolar budding. Second, the actin cytoskeleton at the 

incipient bud site and at the neck might help to target bud site selection components to 

their proper localization.  

 

1.2.1.2 The role of actin cytoskeleton in maintenance of the polarity of Cdc42p 

          The actin cytoskeleton is an important element for the maintenance of Cdc42p 

polarity through an actin-based positive feedback loop (Irazoqui et al., 2005). Cdc42p 

can polarize in the absence of filamentous actin (Gulli et al., 2000; Irazoqui et al., 2003), 

which suggests that actin cytoskeleton is not required for initial polarized localization of 

Cdc42p. However, actin cytoskeleton is required for the maintenance of Cdc42p polarity 

in the unbudded cells (Irazoqui et al., 2005). Firstly, Cdc42p disperses from the polarized 

site through actin patch-dependent endocytosis. Secondly, actin cables are required to 

counteract the dispersal and maintain the polarized localization of Cdc42p. These 

findings indicate an actin-based positive feedback loop for Cdc42p polarization.  
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1.2.1.3 The role of actin cytoskeleton in polarized growth 

          In addition to its role in establishing polarity through regulation of bipolar bud site 

selection and Cdc42p polarized localization, the actin cytoskeleton is also required for 

polarized growth. Unlike animal cells, which primarily use microtubule-based transport 

to establish and maintain cell polarity (Small and Kaverina, 2003), yeast cells employ 

actin cable-based transport to direct polarized cell growth (Bretscher, 2003). The 

involvement of actin cytoskeleton in polarized growth was discovered through the act1 

mutants. Temperature-sensitive mutations in ACT1 were found to exhibit polarity defects. 

At restrictive temperature, act1 mutant cells were arrested as either large unbudded cells 

or small budded cells with an enlarged mother cell, accompanied by phenotypes 

including delocalized chitin staining, cell lysis, and sensitivity to high osmolarity (Novick 

and Botstein, 1985; Wertman et al., 1992). Many of these phenotypes are probably 

caused by defects in polarized secretion which requires actin cables (Pruyne et al., 

2004b).  Actin cables are assembled at the bud site in G1 for targeting of growth and 

secretion to the future bud tip. During cytokinesis, actin cables are re-oriented to the bud 

neck and direct the secretion to the bud neck for septum formation. These cables function 

as polarized tracks for Type V myosin-dependent delivery of vesicles (Pruyne et al., 

1998; Karpova et al., 2000).  

 

1.2.2 Actin assembly and actin turnover 

          The actin cytoskeleton is a highly dynamic network composed of actin filaments 

and actin-associated proteins. Assembly of actin monomers into a filament involves an 

initial nucleation step, which has inherently slow efficiency due to instability of actin 
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dimers and trimers. The Arp2/3 complex and formins bypass the inefficient slow 

formation of actin dimers and trimers to nucleate actin polymerization (Welch and 

Mullins, 2002; Kovar, 2006). Actin assembly is highly directional and is known as 

treadmilling, a process by which the actin subunits are added at the barbed end and are 

dissociated at the pointed end (Wang, 1985). Addition of an ATP-actin subunit to the 

barbed end triggers hydrolysis of ATP bound to that subunit (Pollard et al., 2000). 

ADP-actin subunits dissociate from the pointed ends and the resulting ADP-actin 

monomers undergo nucleotide exchange (ADP to ATP) for subsequent rounds of 

barbed-end addition. Actin turnover refers to the collective dynamic events of actin 

subunits assembling at the filament barbed ends, dissociating from filament pointed 

ends and recycling of actin monomers for new rounds of polymerization (Moseley and 

Goode, 2006).  

             All eukaryotic cells contain a core set of actin-binding proteins that regulate 

actin filament assembly and turnover. These factors cooperate to drive the remodeling 

of the actin cytoskeleton in response to internal and external stimuli.  

 

1.2.3 Cortical actin patches 

1.2.3.1 Dynamic localization of cortical actin patches 

          The actin cytoskeleton consists of three distinct structures: cortical patches, cables, 

and actomyosin ring (Fig. 1.2) (Adams and Pringle, 1984; Amberg, 1998).  Both actin 

patches and actin cables are polarized toward regions of cell growth. Cortical actin 

patches undergo dynamic localization throughout the cell cycle (Kilmartin and Adams, 

1984). In unbudded G1 cells which grow isotropically, actin patches are distributed 
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randomly over the entire cell surface. During the budding period, the actin patches 

congregate first at the incipient bud site and later inside the bud with actin cables aligned 

toward them. During mitosis, actin patches are randomized within the mother and 

daughter cell, and at cytokinesis, they are polarized to the mother-bud neck again (Fig. 

1.2).  

 

1.2.3.2 Assembly of actin filament by Arp2/3 complex and its NPFs  

            Arp2/3 complex is required for the assembly of cortical actin patches (Moreau et 

al., 1996; Winter et al., 1997; Winter et al., 1999b). The Arp2/3 complex is composed of 

seven conserved subunits, including two actin-related proteins (Arp2p and Arp3p) and 

five unique proteins (Arc40p/p40, Arc35p/p35, Arc19p/p20, Arc18p/p21, and 

Arc15p/p15). Deletion of any subunit except ARC18 causes severe growth defects or 

lethality (Winter et al., 1999b) accompanied by endocytosis defects and severe or 

complete loss of cortical actin patches. It has been proposed that the Arp2/3 complex 

promotes actin assembly by mimicing the barbed end of a filament (Pollard and Beltzner, 

2002). The Arp2/3 complex can also bind to the sides of a preexisting (mother) actin 

filament and assemble a new (daughter) filament at a 70° angle, thus producing branched 

actin networks (Blanchoin et al., 2000; Amann and Pollard, 2001; Higgs and Pollard, 

2001). However, the Arp2/3 complex is a weak actin nucleator and requires nucleation-

promoting factors (NPFs) to enhance its activity. 

         There are five NPFs of Arp2/3 complex in budding yeast: Las17p, Myo3p, Myo5p, 

Pan1p, and Abp1p (Moseley and Goode, 2006). Each NPF has an acidic motif that binds 
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to the Arp2/3 complex (Fig. 1.5). Binding to actin is critical for the NPF activity of 

Las17p, Pan1p, and Abp1p.  

(i) Las17p/WASp 

             Las17p (also termed Bee1p) was the first NPF reported in yeast and was 

identified by its sequence homology with mammalian WASp (Li, 1997). Similar to  

Mammalian WASp, a homologous WA fragment (containing the WH2 domain and acidic 

motif) (Fig. 1.5) of Las17p can activate the Arp2/3 complex (Winter et al., 1999a). The 

NPF activity of full-length Las17p is much stronger than that of its WA fragment in vitro. 

This could be due to its binding to F-actin and/or the Arp2/3 complex by N-terminal 

regions (Rodal et al., 2003). The NPF activity of WASp can be inhibited by intra-

molecular interaction or inter-molecular interaction (Bompard and Caron, 2004). In both 

mechanisms, Rho GTPase activity can relieve the inhibition. For example, Cdc42p binds  

 

 

 

Figure 1.5 Schematics of yeast NPFs. Abbreviations: A, acidic; B, basic; CC, coiled-
coil; EH, Eps15 homology; EVH1, Ena/VASP homology 1; IQ, IQ binding; LR, long 
repeat; PP or PPP, polyproline; SH3, Src homology 3; TH1/2, tail homology 1/2; WH1, 
WASp homology 1; WH2, WASp homology 2. The proposed actin-binding domain of 
each NPF is colored red; acidic domains are yellow. Pan1p contains many Ark1/Prk1 
consensus phosphorylation sites in LR1 and LR2 (indicated by the circled P). 
(Reproduced with permission from Microbiol Mol Biol Rev.) (Moseley and Goode, 2006) 
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to the GTPase-binding domain (GBD) of N-WASp to relieve the auto-inhibition (Rohatgi 

et al., 2000), and Rac1p binds to the transinhibitory complex of WAVE1 to activate 

WAVE1 (Eden et al., 2002). Currently, it is not clear how Las17p activity is regulated. 

Las17p lacks a GBD domain and can not bind yeast Rho GTPases (Li, 1997). Purified 

full-length Las17p does not exhibit auto-inhibition and constitutively promotes Arp2/3 

complex to nucleate actin (Rodal et al., 2003). However, two Las17p associated proteins, 

Sla1p and Bbc1p, can directly inhibit Las17p activity (Rodal et al., 2003). Thus, 

transinhibition may be one mechanism to regulate Las17p activity. In addition, Las17p 

has many other binding proteins which may contribute to its activity regulation (Goode 

and Rodal, 2001).  

(ii) Pan1p 

          Pan1p is required for actin organization and endocytosis (Tang and Cai, 1996; 

Duncan et al., 2001). Pan1p can be recruited to patches through its interactions with 

End3p, Sla1p, and/or clathrin adaptors (Wendland and Emr, 1998; Tang et al., 2000). The 

NPF activity of Pan1p requires its A motif and the WH2 domain (Fig. 1.5), which 

interacts directly with the Arp2/3 complex and F-actin respectively (Toshima et al., 

2005). Through these interactions, Pan1p may recruit the Arp2/3 complex to the cortical 

patches for actin nucleation. The NPF activity of Pan1p is strongly inhibited in vitro by 

Prk1p phosphorylation (Toshima et al., 2005). 

(iii) Myo3p and Myo5p 

         Like Las17p, type I myosins Myo3p and Myo5p are required for actin patch 

assembly in the permeabilized cell assay (Lechler et al., 2000). Myo3p and Myo5p 

contain an N-terminal motor domain, a lipid-binding TH1 domain, an F-actin-binding 
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TH2 domain, an SH3 domain, and an Arp2/3 complex-binding A motif (Fig. 1.5). The 

TH2-SH3-A fragment of S. pombe myosin type I can activate the Arp2/3 complex  in 

vitro (Lee et al., 2000). Since the TH2-SH3-A fragment binds to F-actin weakly, the NPF 

activity of Myo3p and Myo5p was proposed to be enhanced by the interactions with other 

proteins such as Vrp1p and Las17p (Anderson et al., 1998; Evangelista et al., 2000; 

Lechler et al., 2000). Indeed, Vrp1p was found to stimulate Arp2/3 complex activation by 

Myo5p in vitro (Sun et al., 2006). 

(iv) Abp1p 

            Abp1p comprises an N-terminal ADF/cofilin homology (ADFH) actin-binding 

domain (ABD), two A motifs, a polyproline region, and a C-terminal SH3 domain (Fig. 

1.5). The NPF activity of Abp1p requires its A motifs and ADFH domain (Goode et al., 

2001). There are several reasons for Abp1p to be thought as a competitive antagonist of 

other NPFs during the patch development (Fig. 1.6). Firstly, Abp1p binds to the Arp2/3 

complex with high affinity, but has significantly weaker NPF activity compared to full-

length Las17p and Pan1p (Goode et al., 2001). Secondly, Abp1p attenuates the NPF 

activity of Las17p in vitro (D'Agostino and Goode, 2005). Thirdly, Abp1p is recruited to 

patches later than other NPFs (Kaksonen et al., 2003). The recruited Abp1p may target 

Ark1p and Prk1p kinases to the patches (Cope et al., 1999), which will phosphorylate 

Pan1p to disrupt the Pan1p-Sla1p-End3p complex (Zeng et al., 2001). Therefore, Abp1p 

is important for patch development. 
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1.2.3.3 Actin patches and endocytosis 

           Actin patches mediate endocytosis. The mutations in genes required for patch 

functions have endocytic defects. In addition, many proteins functioning in endocytosis 

were identified as patch components, including actin, Arc35p, Rvs167p, Sac6p, Sla2p, 

and Vrp1p (Kubler and Riezman, 1993; Munn et al., 1995; Engqvist-Goldstein and 

Drubin, 2003). Actin patches may also function in exocytosis. A number of patch-

associated protein mutants accumulate post-Golgi vesicles (Harsay and Bretscher, 1995; 

Mulholland et al., 1999), indicating temporal and spatial links between endocytosis and 

exocytosis. 

           There are several steps for the actin patch development corresponding to the 

different stages of endocytosis (Fig. 1.6) (Kaksonen et al., 2003; Kaksonen et al., 2005; 

Newpher et al., 2005). Endocytosis begins with the recruitment of early patch 

components by the cytosolic regions of membrane receptors (Fig. 1.6, Step 1) (Tan et al., 

1996; Howard et al., 2002). At this stage, the patches are non-motile. These early patches 

contain Las17p, Sla1p and Pan1p, but no actin. Clathrin and its adaptors are also 

recruited to this early endocytic patches. Next, patches move slowly along the cortex 

(0.05 to 0.1 µm/s). This slow patch movement is thought to benefit the vesicle scission 

(Fig. 1.6, Step2-3) (Kaksonen et al., 2003; Kaksonen et al., 2005). Once patches/vesicles 

leave the cell cortex, they move rapidly inward along the actin cables (Fig. 1.6, Step 4) 

(Huckaba et al., 2004). Slow patch movement in the cell cortex depends on an Arp2/3 

complex-based actin polymerization whereas rapid inward movement of patches depends 

on transport on cables.  
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Figure 1.6 Model for actin patch development. (Step 1) Receptors recruit early patch 
components to the cell cortex to form a relatively immobile complex. (Step 2) Slow patch 
movement at the cortex. (Step 3) Pan1p phosphorylation and/or the activities of Rvs161p, 
Rvs167p, and the type I myosins Myo3p and Myo5p promote vesicle scission and 
internalization. (Step 4) Endocytic vesicles move passively alone actin cable. (Modified 
with permission from Microbiol Mol Biol Rev.) (Moseley and Goode, 2006) 
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1.2.3.4 Role of Pan1p and Sla1p in patch development 

          Pan1p is a central coordinator for early patch formation and development through 

its binding to multiple early endocytic proteins and promoting actin filament assembly by 

activating the Arp2/3 complex. The initial endocytic components recruited to patches 

include clathrin, clathrin adaptors and multiple scaffolds such as Yap1801p and 

Yap1802p (AP180 homologues) (Newpher et al., 2005), Ent1p and Ent2p (epsin 

homologues) (Aguilar et al., 2003) , Ede1p (Eps15R homologue) (Gagny et al., 2000), 

Scd5p (Henry et al., 2003), Sla1p, and Sla2p (Howard et al., 2002) (Fig. 1.6, Step 1-2). 

Pan1p have been found to interact with most of these components. The EH domains of 

Pan1p can interact with the C-terminal regions of Yap1801p and Yap1802p which 

contain multiple Asparagine-Proline-Phenylalanine (NPF) tripeptide sequences 

(Wendland and Emr, 1998). Ent1p and Ent2p also interact with the EH domains of Pan1p 

through similar NPF motifs located in their C-terminal regions (Wendland et al., 1999). 

In addition to the adaptors and epsins, Pan1p has also been found to interact with Sla1p 

and End3p (Tang et al., 2000). 

             Sla1p can bind directly to receptors to promote their internalization (Howard et 

al., 2002). In addition to its interaction with Pan1p and End3p, Sla1p also appears to be 

important for recruiting other factors to the patches, such as Las17p (Li, 1997) and Sla2p 

(Gourlay et al., 2003). Sla2p is a multi-domain protein that has many functions in 

endocytosis (Peter et al., 2004; Newpher et al., 2005; Sun et al., 2005). Firstly, Sla2p 

helps to localize clathrin to patches (Newpher et al., 2005). Secondly, Sla2p may bind to 

and regulate Rvs167p, which promotes membrane curvature to facilitate vesicle budding 

(Peter et al., 2004). Thirdly, Sla2p binds directly to F-actin via its talin-like domain 
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(McCann and Craig, 1997, 1999). This domain, along with the clathrin adaptors, is 

required for cell growth and endocytosis. Fourthly, Sla2p binds to phosphoinositide 

PI(4,5)P (PIP2) to facilitate the internalization step of receptor-mediated endocytosis 

(Sun et al., 2005). Finally, Sla2p contributes to the regulation of Arp2/3 complex’s 

activity through interactions with two NPFs, Pan1p and Las17p, (Ayscough et al., 1999).   

             Pan1p and Las17p recruit and activate the Arp2/3 complex for actin assembly, 

leading to slow patch movement along the cortex (Kaksonen et al., 2003; Kaksonen et 

al., 2005). During this stage, two additional NPFs Abp1p and Myo3p/Myo5p are 

recruited. Abp1p in turn recruits the actin-regulating kinases Ark1p and Prk1p (Fig. 1.6, 

Step2), which regulate Pan1p functions through direct phosphorylation. 

 

1.2.3.5 Regulation of actin cytoskeleton and endocytosis by Prk1p  

           Prk1p, together with Ark1p and Akl1p, belong to the same family of 

serine/threonine kinases which also include a few homologous kinases from higher 

eukaryotic organisms (Smythe and Ayscough, 2003). One member of this family, AAK1, 

is important for the process of endocytosis in mammalian cells and phosphorylates 

subunit of the AP2 complexes with similar sequence specificity as Prk1p (Conner and 

Schmid, 2002; Ricotta et al., 2002). It is therefore possible that the mechanism of 

endocytosis regulation by Prk1p-like kinases is highly conserved from yeast to 

mammalian cells.  

         Prk1p phosphorylates the threonine residue within the [L/I/V/M]XX[Q/N/T/S]XTG 

motif (Huang et al., 2003). Loss-of-function mutations of PRK1 suppressed the pan1 and 

end3 mutations and caused a delay in the actin polarization and bud formation at the early 
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stage of the cell cycle (Zeng and Cai, 1999). Overexpression of Prk1p led to cell death 

accompanied by gross actin abnormalities (Zeng and Cai, 1999). Prk1p is able to 

phosphorylate Pan1p and Sla1p in vivo and in vitro in a sequence-specific manner (Zeng 

and Cai, 1999; Zeng et al., 2001). This phosphorylation affects many functions of Pan1p. 

Firstly, the phosphorylated N-terminus auto-inhibits the NPF activity of Pan1p C-

terminus (Toshima et al., 2005). Secondly, the F-actin binding activity of Pan1p was 

dramatically reduced upon phosphorylation (Toshima et al., 2005). Thirdly, 

phosphorylation of Pan1p disassembles the Pan1p– Sla1p– End3p trimeric complex (Fig. 

1.6, Step3) (Zeng et al., 2001). In addition to Pan1p and Sla1p, some other proteins that 

associate with Pan1p in the early endocytic patches are also phosphorylated by Prk1p. 

These proteins include Ent1p/Ent2p (Watson et al., 2001), Yap1801p/Yap1802p (Huang 

et al., 2003) and possibly Sla2p. Their phosphorylation was suggested to further enhance 

disassembly of the early patch components, promoting the fast movement of vesicles. 

Therefore, Prk1p negatively regulates the activity of early endocytic proteins in 

stimulating actin assembly and plays a critical role in endocytic patch development.  

              The negative regulation through phosphorylation by Prk1p as in the case of 

Pan1p seems to be a rather general mode of function for Prk1p. Scd5p, another protein 

containing three LxxTxTG motifs and known to be important for endocytosis and actin 

organization, has been demonstrated to be negatively regulated by Prk1p through direct 

phosphorylation (Henry et al., 2003; Huang et al., 2003). In addition to Pan1p, Sla1p, 

Ent1p, Ent2p, and Scd5p, there are many other yeast proteins that contain the Prk1p 

phosphorylation motifs, indicating that they might be the potential substrates of Prk1p. 

These proteins include Sla2p, Yap1801p, Yap1802p, Las17p, Ede1p, Chc1p, Arp2/3p, 
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Aip1p, Sac6p, Bni1p, Bnr1p, Bud6p, Spa2p, Bud2p, Bud3p and Syp1p (Huang et al., 

2003). Interestingly, most of these candidates are involved in assembly of actin 

cytoskeleton or establishment of cell polarity. Some of these proteins also show either 

physical or genetic interactions. Like Pan1p-Sla1p-End3p complex, the interactions of 

these proteins may also be affected by Prk1p phosphorylation. Therefore, it is important 

to know whether these candidates are the true phosphorylation targets of Prk1p in vivo.  

 

1.2.4 Actin cables  

          As discussed above, actin cables are utilized as transport track to direct polarized 

growth. Mutants of most factors required for cable assembly and stability have cell 

polarity defects. These factors include formins (Evangelista et al., 1997; Evangelista et 

al., 2002; Sagot et al., 2002a), tropomyosin (Pruyne et al., 1998), profilin (Pfy1p) 

(Haarer et al., 1990; Wolven et al., 2000), Bud6p (Amberg et al., 1997), Sac6p/fimbrin 

(Adams et al., 1989), capping proteins (Amatruda et al., 1992), and Srv2p (Vojtek et al., 

1991).  

 

1.2.4.1 Actin cable formation by Formins 

             Formins form a protein family with members found in fungi, plants, insects, 

nematodes, and vertebrates (Evangelista et al., 2003; Wallar and Alberts, 2003). Budding 

yeast has two formins, Bni1p [Bud neck interactor (Zahner et al., 1996)] and Bnr1p 

([BNI1-related (Imamura et al., 1997)], each with an N-terminal Rho GTPase-binding 

domain and C-terminal formin-homology FH1 and FH2 domains (Fig. 1.7). Formins 

promote actin cable assembly in an Arp2/3-independent manner. Deletion mutant of 
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either yeast formin is viable (Kohno et al., 1996; Imamura et al., 1997), but loss of both 

is lethal (Vallen et al., 2000; Ozaki-Kuroda et al., 2001). The conditional mutations of 

BNI1 in a cell with BNR1 deletion cause rapid loss of all cables upon shifting to the non-

permissive temperature. These observations suggest that both formins in yeast are 

involved in cable formation. FH1/FH2 domains of formins are required for cable 

formation, with the FH2 alone providing the core activity (Evangelista et al., 2002; 

Pruyne et al., 2002; Sagot et al., 2002b). Although formins alone can nucleate actin 

assembly, other proteins, such as profilin, are also important for the activity of formins in 

stimulating actin nucleation. 

 

 
 
Figure 1.7  Domain organization of budding yeast formins Bni1p and Bnr1p. GBD, 
Rho-GTPase binding domain; DID, Diaphanous inhibitory domain; SBD, Spa2-binding 
domain; FH1/FH2, forming homology; DAD, Diaphanous autoregulatory domain. 
 

1.2.4.2 Profilin promotes actin filament elongation 

             Profilin is a small (15kDa), abundant actin monomer-binding protein (Witke, 

2004). In all organisms examined, mutation of profilin is lethal and/or causes severe 

defects in cell polarity and actin organization. There are four known functions of profilin 

in promoting actin turnover and assembly. Firstly, it accelerates actin turnover by 

promoting nucleotide exchange (ATP for ADP) on G-actin (Mockrin and Korn, 1980). 

Secondly, it suppresses spontaneous actin assembly by inhibiting the interactions 
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between actin monomers (Pollard et al., 2000). Thirdly, it restricts actin monomer 

addition to filament barbed ends and blocks the addition to pointed ends (Pollard and 

Cooper, 1984). Fourthly, it can increase the rate of actin cable elongation mediated by 

formins, Bni1p and Bnr1p (Romero et al., 2004; Kovar et al., 2006).  

             Profilin can bind to the polyproline motifs in the FH1 domain of Bni1p and 

Bnr1p (Evangelista et al., 1997; Imamura et al., 1997). The FH1-FH2 domain of Bni1p 

assembles actin filaments equally well in the presence and absence of profilin. However, 

FH1-profilin binding is required for formins to assemble profilin-bound actin monomers 

(Sagot et al., 2002b; Pring et al., 2003). Thus, although the FH2 domain alone can 

assemble filaments using free actin monomers, the FH1 domain is required for filament 

assembly using profilin-bound actin monomers. Therefore, the FH1 domain is important 

for formin function in vivo, whereby profilin-bound actin monomers are the primary 

substrate available for actin assembly (Evangelista et al., 2002; Pruyne et al., 2002; Sagot 

et al., 2002a; Moseley et al., 2004). It has been proposed that profilin-FH1 interaction 

can increase the rate of filament elongation (Romero et al., 2004). 

 

1.2.4.3 Regulation of actin cable assembly by polarisome 

            Numerous polarity proteins localize primarily to the bud tip during bud 

emergence and growth. Just before the cell division, they are relocated to the bud neck, 

where they appear to promote cytokinesis. Some of these proteins, such as Spa2p, Pea2p, 

Bud6p, GTPase Cdc42p and two Cdc42p effectors, Bni1p and Gic2p may assemble into a 

functional complex termed the polarisome that helps to facilitate cable assembly 

(Fujiwara et al., 1998; Sheu et al., 1998; Jaquenoud and Peter, 2000). Bud6p and Cdc42p 
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are thought to regulate Bni1p directly to promote actin cable assembly (Evangelista et al., 

1997; Evangelista et al., 2002; Moseley et al., 2004), and Spa2p can directly interact with 

Bni1p and Pea2p (Fujiwara et al., 1998; Sheu et al., 1998). The localization of Bni1p 

requires Spa2p and Pea2p (Ozaki-Kuroda et al., 2001). Gic2p, which binds to Cdc42p 

and Bud6p, is also required for the localization of Bni1p and Bud6p in early bud 

emergence (Jaquenoud and Peter, 2000). 

 

1.2.4.4 Regulation of actin cable assembly by Rho GTPases 

             Mammalian formins mDia1p and mDia2p are auto-inhibited by interactions 

between their N-terminal diaphanous inhibitory domain (DID) and their C-terminal 

diaphanous autoregulatory domain (DAD ) (Watanabe et al., 1999; Alberts, 2001). This 

intra-molecular interaction abolishes actin nucleation activity of the FH2 domain (Li and 

Higgs, 2003). It has been shown that the auto-inhibition of mammalian formins can be 

overcome by direct binding of Rho GTPases to the N-terminal GTPase binding domain 

(GBD) (Watanabe et al., 1999; Alberts, 2001). Overexpression of N- and C-terminal 

truncations of  Bni1p and Bnr1p results in  excess actin assembly in vivo (Evangelista et 

al., 1997; Evangelista et al., 2002; Sagot et al., 2002a; Pruyne et al., 2004a), indicating 

that Bni1p and Bnr1p may be auto-inhibited like mDia1p and mDia2p. However, the 

direct interactions between N and C termini have not been reported for either Bni1p or 

Bnr1p. 

            Rho GTPases play important roles in yeast formin regulation in vivo. There are six 

different Rho GTPases in budding yeast: Rho1p, Rho2p, Rho3p, Rho4p, Rho5p, and 

Cdc42p. Bni1p interacts with Cdc42p, Rho1p, and possibly Rho3p and Rho4p (Kohno et 
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al., 1996; Evangelista et al., 1997), while Bnr1p binds to Rho4p (Imamura et al., 1997). 

Different Rho GTPases are required for regulation of formins in different cell cycle 

stages. Cdc42p is required for the control of formin-mediated actin assembly during bud 

emergence, Rho3p and Rho4p during bud growth, and Rho1p at cytokinesis (Tolliday et 

al., 2002; Dong et al., 2003). Rho1p is also required for formin regulation during the 

response to cell stress (Dong et al., 2003).  

 

1.2.5 Actin ring formation and cytokinesis 

           In addition to the role of polarized secretion, formins are required for actin ring 

formation during anaphase to achieve cytokinesis in budding yeast. Actin ring is 

assembled at the mother-bud neck and the position is determined by the site of bud 

emergence initiated in early G1 (Pruyne et al., 2004b). Many components important for 

cytokinesis are recruited to the bud neck , such as Myo1p, formins Bni1p and Bnr1p, two 

myosin light chains (Mlc1p and Mlc2p), Hof1p/Cyk2p, IQGAP (Iqg1p/Cyk1p), and 

Cyk3p (Balasubramanian et al., 2004). During anaphase, actin ring forms and constricts 

in a Myo1p-dependent manner to close the neck  to finish cytokinesis (Bi et al., 1998; 

Lippincott and Li, 1998b). Both Bni1p and Bnr1p are required for ring formation and 

function. It has been demonstrated that the actin ring can still be formed in either bni1 or 

bnr1 single mutants (Vallen et al., 2000). However, a temperature-sensitive formin 

mutant strain (bni1ts bni1) fails to assemble the ring  (Tolliday et al., 2002). Other factors 

which regulate actin cable formation, such as profilin and tropomyosin, are also required 

for actin ring assembly (Tolliday et al., 2002). Therefore, the mechanism of ring 

formation is highly similar to that of cable assembly.  
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1.3 Septin cytoskeleton 

              In addition to the actin ring, the septum is also required for cytokinesis. Septins 

are important structures to coordinate the septum formation and actin ring contraction. 

Septins were first identified in yeast Saccharomyces cerevisiae as a set of cdc mutants 

defective in cytokinesis and were subsequently found to be present in many other 

eukaryotic species including human (Hartwell, 1971; Longtine et al., 1996).  Their 

primary functions are structural in nature, which is to polymerize into microfilaments that 

participate in diverse cellular processes. Recently, emerging data have implicated septins 

in pathogenesis of diverse diseases including neoplasia, neurodegeneration and infections 

in mammals (Kartmann and Roth, 2001; Hall and Russell, 2004; Martinez and Ware, 

2004; Spiliotis and Nelson, 2006).  In budding yeast, septins play an essential role in 

many cell processes. In addition to their role in cytokinesis, septins are necessary for bud 

site selection. Septins also play at least two other important roles during bud growth, 

namely chitin deposition and morphogenesis checkpoint control (Lew, 2003). 

 

1.3.1 The role of septins in cell division and polarized growth 

1.3.1.1 Role of septins in cytokinesis 

             Septins are important for coordinating the septum formation and actin ring 

contraction.  Septins serve as a molecular scaffold for bud neck localization of the 

molecular machinery that assembles the actomyosin contractile ring and the septum 

(Longtine and Bi, 2003). Formation of the actomyosin ring depends on septin integrity 

    26   



Chapter 1 Introduction 

(Bi et al., 1998; Lippincott and Li, 1998b).  Septins also recruit enzymes, such as chitin 

synthase II, which are required for septum formation (Bi, 2001).  

            In addition to being a molecular scaffold, septins also serve as a diffusion barrier 

to maintain asymmetric distribution and compartmentalization proteins. Septins split into 

two separate rings prior to cytokinesis (Longtine et al., 1996), and the separated rings 

compartmentalize and restrict factors such as Spa2p and Chs2p at the bud neck 

(Dobbelaere and Barral, 2004). In wild-type cells, Spa2p diffuses freely within this small 

zone between the splitted septin rings. However, in cdc12-6 mutants, Spa2p and Chs2p 

rapidly diffuse away from the bud neck at non-permissive temperature (Dobbelaere and 

Barral, 2004). Therefore, septins serve as both scaffolds and compartments to localize 

cytokinetic machinery to the bud neck. 

 

1.3.1.2 Role of septins in axial bud site selection 

            Many proteins that localize to the bud neck are required for the axial budding 

pattern. Septins are one of the important complexes critical for axial bud site selection. 

Recognition of this complex by other bud site selection components such as Bud3p and 

Bud4p would establish polarized growth at proximal sites, resulting in the axial budding 

pattern (Fig. 1.3, Gene set V) (Chant & Stowers 1995, Flescher et al. 1993).  

 

1.3.1.3 Role of septins in cell wall synthesis 

              Septins are important for chitin deposition during cell wall synthesis. The cell 

wall is the extracellular matrix of the yeast cell and plays a critical role in cell polarity 

and morphogenesis (Cid et al., 1995). Chitin staining is prominent at the incipient bud 
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site, at the bud neck, and in the primary septum (i.e. bud scar) at the division site of the 

mother cells (Moore and Campbell, 1973; Shaw et al., 1991; Cid et al., 1995). The chitin 

ring at the neck is assembled by chitin synthase III (Chs3p) (Cid et al., 1995; Santos and 

Snyder, 1997). The localization of Chs3p to the bud neck is dependent on Chs4p 

(DeMarini et al., 1997; Trilla et al., 1997). Chs4p interacts with Bni4p, whose 

localization requires septins. A second chitin synthase, Chs2p, which is required for 

assembly of the primary septum, also depends on septins to polarize at the neck region 

(Cid et al., 1995).  

 

1.3.1.4 Morphogenesis checkpoint  

            Cell growth is tightly coordinated with every phase of the cell cycle. Damage or 

stress to either DNA itself or the DNA replication machinery will block nuclear division 

and cytokinesis.  The mechanisms that monitor DNA replication to initiate the cell cycle 

arrest are known as checkpoints (Hartwell and Weinert, 1989). A series of checkpoints 

also monitor the assembly of the mitotic spindle and nuclear division (Kops et al., 2005). 

Recently, a pathway that regulates the activity of Swe1p, the fission yeast Weelp 

homolog in budding yeast, has been identified as a morphogenesis checkpoint that 

coordinates the process of bud formation and mitosis by monitoring septin 

disorganization and actin perturbation (Fig. 1.8) (Lew, 2003; Keaton and Lew, 2006).  

             Many environmental stresses (including mild heat shock and osmotic shock) and 

mutations of the actin-associated proteins result in actin depolarization, accompanied by 

delay in bud formation and the nuclear cycle. Subsequent studies demonstrated that the 

cell cycle delay is due to the inhibitory effect of Swe1p on Cdc28p-G2/M cyclin kinases 

    28   



Chapter 1 Introduction 

which is required for entry to mitosis (Sia et al., 1996; McMillan et al., 1998; Alexander 

et al., 2001). Swe1p inhibits the Cdc28p-G2/M cyclin kinases by phosphorylating a 

 

 

              

Figure 1.8 Swe1p localization and degradation in yeast. Swe1p first accumulates in 
the nucleus of unbudded cells. Following bud emergence, Hsl1p becomes activated at the 
septin cortex. This enables Hsl1p to recruit Hsl7p, which in turn recruits Swe1p and 
Cdc5p (Polo) to the septin collar. Swe1p phosphorylated by Cdc28p (CDK) is primed for 
subsequent phosphorylation by Cdc5p (Polo) at the neck, leading to Swe1p degradation. 
Stresses that delay bud emergence prevent activation of Hsl1p, precluding neck targeting 
and/or degradation of Swe1p and enabling Swe1p to return to the nucleus. (Reproduced 
with permission from Curr Opin Microbiol.)  (Keaton and Lew, 2006)        

    29   



Chapter 1 Introduction 

conserved tyrosine on Cdc28p (Booher et al., 1993). Swe1p accumulates during late G1 

and S phase, and is degraded by the time of nuclear division. However, upon 

depolarization of the actin cytoskeleton and delay in budding, Swe1p becomes stabilized 

and in turn inhibits the Cdc28p-G2/M cyclins kinase. These findings indicate that a 

morphogenesis checkpoint is able to inhibit Swe1p degradation. 

            Swe1p degradation requires the formation of the Hsl1p-Hsl7p-Swe1p complex on 

the septins in the bud neck (Fig. 1.8)(Lew, 2003). Hsl1p can bind to septin directly and its 

bud neck localization and activation require the proper organization of septins (Theesfeld 

et al., 2003). Hsl1p at the bud neck then recruits an adaptor protein, Hsl7p, which in turn 

recruits Swe1p and Cdc5p to the septin collar (McMillan et al., 1999; Asano et al., 2005). 

Swe1p degradation requires the phosphorylation of Swe1p by Cdc5p and Cdc28p (Sia et 

al., 1998; Sakchaisri et al., 2004; Asano et al., 2005; Harvey et al., 2005; Watanabe et 

al., 2005). Therefore, the morphogenesis checkpoint begins with the septin cytoskeleton. 

Successful bud formation and the proper septin structure at the bud neck will result in 

Swe1p degradation, whereas stresses that delay bud formation or cause disorganization of 

the septin structure will block Swe1p degradation.  

             Although it is known that septin disorganization and bud formation trigger the 

morphogenesis checkpoint, it remains unclear how actin perturbation promotes Swe1p-

dependent arrest. Unlike septin disorganization which mislocalizes Hsl1p and Hsl7p from 

the bud neck, actin perturbation does not change the localization of Hsl1p and Hsl7p in 

the bud neck (Longtine et al., 2000; Theesfeld et al., 2003). However, Swe1p still moves 

from the bud neck upon actin perturbation (Longtine et al., 2000). Therefore, there are 

other factors responsible for the localization of Swe1p during actin perturbation. It is 
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necessary to investigate how the signal of actin perturbation is transmitted to the septin-

dependent Swe1p degradation pathway. It is required to identify more actin/septin 

associated proteins and to understand how these proteins regulate actin/septin 

organization. 

 

1.3.2 Organization and dynamic localization of Septins  

          Yeast cells produce seven septins, of which five (Cdc3p, Cdc10p, Cdc11p, Cdc12p, 

and Shs1/Sep7p) are engaged in the assembly of the ring-like septin filaments at the 

mother-bud junction during vegetative growth, and the other two (Spr3p and Spr28p) are 

expressed only during sporulation (Versele and Thorner, 2005). The yeast septins contain 

a GTPase domain that is flanked by a short basic amino acid region at the N-terminal side 

and by a conserved septin-unique domain at the C-terminal side (Fig. 1.9A). The region 

of basic amino acids is thought to bind phosphoinositide and is required for membrane 

attachment. Most S. cerevisiae septins, except Cdc10p,  contain a C-terminal coiled-coil 

domain which is required for protein-protein interaction (Fig. 1.9) (Frazier et al., 1998; 

Mendoza et al., 2002; Casamayor and Snyder, 2003; Versele et al., 2004; Farkasovsky et 

al., 2005). All five yeast septins (Cdc3p, Cdc10p, Cdc11p, Cdc12p and Shs1p) associate 

(Fig. 1.9B) to form the septin ring at the bud neck which marks the division site. The 

septin ring remains at the neck throughout most of the cell cycle and is the most 

important filament structure at the bud neck (Haarer and Pringle, 1987; Kim et al., 1991; 

Frazier et al., 1998; Longtine and Bi, 2003).  Various proteins are recruited to the septin 

rings to serve different functions such as cytokinesis and bud morphogenesis.  
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Figure 1.9 Primary structure and organization of S. cerevisiae mitotic septins. (A) 
Schematic depiction of the domain structure of yeast septins. Red box, N termini of 
variable length;  hatched box, phosphoinositide binding motif; light blue box, GTPase 
domain; white box, the variable C-terminal extensions containing, where indicated, a 
predicted coiled coil segment (wavy box). Asterisks denote known sites of covalent 
attachment of Smt3 (yeast SUMO). (B) Model for septin heteropentamer organization 
and assembly into filaments. Septin heteropentamers are assembled with the inter-septin 
contacts indicated and filaments are formed by the end-to-end polymerization of Cdc3–
Cdc12–Cdc11 complexes, with Cdc10 serving as a bridge to bundle the polymers into 
paired filaments. (Reproduced with permission from Mol Biol Cell.) (Versele et al., 2004) 

 

          The septin cytoskeleton in yeast undergoes structure reorganization during the 

different cell cycle stages. Yeast septins localize to the incipient bud site several minutes 

before bud emergence where they quickly organize into a ring. During bud growth, the 
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ring expands into an hourglass-like collar spanning the mother-bud neck. At the onset of 

cytokinesis, the septin collar splits into two septin rings with one each at the mother and 

daughter sides. After completion of cell division, the old septins normally disintegrate 

before the new septin structures are formed for the next cell cycle (Cid et al., 2001; 

Lippincott et al., 2001; Versele and Thorner, 2004; Iwase et al., 2006). The septin 

filament reorganization during cell cycle correlates with the dynamic properties of septin 

subunits as detected by FRAP (Fluorescence Recovery After Photobleaching) 

experiments (Dobbelaere et al., 2003).  At the early or late cell cycle stages, when septins 

are in the process of assembly or disassembly, the subunits of the septin filaments are 

replaceable. However, during the S, G2 and M phases, where the septins are in the state 

of a stable ring, the septin subunits are “frozen” (Dobbelaere et al., 2003).  The septin 

dynamics in budding yeast has made S. cerevisiae a good model to study the cell-cycle 

regulation of septin assembly and disassembly. 

 

1.3.3 Regulation of septin organization 

            Various proteins have been found to regulate septin organization at different cell 

cycle stages. The small GTPase Cdc42p and its guanine nucleotide exchange factor 

Cdc24p are required for assembly of the early septin ring at the bud site (Gladfelter et al., 

2002; Caviston et al., 2003; Iwase et al., 2006). The cycles of GTP loading and 

hydrolysis of Cdc42p were thought to promote septin ring assembly. Such cycles involve 

the proper functions of three Cdc42p-directed GTPase-activating proteins (GAPs) 

(Rga1p, Rga2p, and Bem3p). The kinases Cla4p and Ste20p, two effectors of Cdc42p, 
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also play an important role in the initial septin organization (Cvrckova et al., 1995; Weiss 

et al., 2000; Dobbelaere et al., 2003; Kadota et al., 2004; Versele and Thorner, 2004).  

            During bud growth, when the septin ring converts to the stable hourglass 

structure, the proteins Gin4p, Nap1p and Elm1p appear to play an important regulatory 

role (Bouquin et al., 2000; Mortensen et al., 2002; Okuzaki et al., 2003; Gladfelter et al., 

2004). Septin phosphorylation by Gin4p is thought to play a direct role in stabilizing 

septin filaments since septins in gin4∆ cells are found to be in fluid state (Dobbelaere et 

al., 2003). The gin4∆ cells form a series of septin bars across the bud neck which is 

parallel to the mother-daughter axis. Interestingly, similar bars are observed at the neck 

of shmoo projection (Longtine et al., 1998). Recently, it has been reported that septins are 

organized  as filaments aligned along the mother-daughter axis in the yeast bud neck 

(Vrabioiu and Mitchison, 2006). Cdc5p, Yck2p protein kinases and Bni5p (a protein with 

no known catalytic activity) have also been found to regulate septin ring organization 

(Robinson et al., 1999; Song and Lee, 2001; Lee et al., 2002). The mechanisms of how 

these proteins regulate septin organization are not clear.  

               Several proteins have been identified as regulators for septin ring disassembly at 

the end of the cell cycle. Late-G1 cyclin-CDK has been found to be required for the 

disassembly of the old septin rings (Moffat and Andrews, 2004). Phosphorylation of 

Cdc3p by Cln-activated Cdc28p cyclin-dependent kinase in G1 phase is thought to be 

necessary for septin disassembly (Tang and Reed, 2002). On the other hand, the 

dephosphorylation of septins by PP2A phosphatase also appears to be involved in proper 

septin disassembly (Mitchell and Sprague, 2001; Dobbelaere et al., 2003).  Despite all the 
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findings, the regulation of septin dynamics in yeast cell cycle still leaves much to be 

elucidated.  

 

1.4 Objectives and significances of the study 

          Although many factors were identified as actin or septin cytoskeleton regulators 

that help to achieve cell polarity through regulating the assembly and dynamics of 

cytoskeletons, little is known about how the actin and septin cytoskeletons are 

coordinated during cellular processes. It is therefore necessary to identify components 

that can associate with both cytoskeletons. The yeast protein Syp1p is a candidate that 

might regulate both cytoskeletons. Although little is known about Syp1p’s function, 

limited studies so far suggest that Syp1p may have functional interactions with both the 

actin cytoskeleton and septins. Syp1p was first identified as a multi-copy suppressor of a 

profilin deletion mutant (Marcoux et al., 2000), thus suggesting its function in the 

regulation of the actin cytoskeleton. Additionally,  Syp1p localizes to the bud neck and its 

overexpression can induce an elongated bud phenotype (Marcoux et al., 2000), similar to 

those proteins that are involved in the organization of septins (DeMarini et al., 1997; 

Lippincott and Li, 1998a; Kikyo et al., 1999). Interestingly, Syp1p contains two potential 

phosphorylation motifs of Prk1p kinase which is an important regulator of the actin 

cytoskeleton. Thus, it is also important to find out whether Syp1p is a substrate of Prk1p.  

           The objective of this thesis is to study: 1) whether Syp1p is a substrate of Prk1p; 

2) the function of Syp1p in the actin cytoskeleton; 3) the function of Syp1p in septins. 

From this study, the functions of Syp1p in the actin and septin cytoskeletons would be 

more clearly understood. 
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2.1     Materials 

2.1.1    Reagents and Antibodies 
 
Reagents used in this study and their sources are listed below unless otherwise stated: 

Description Source 

 Chemicals and reagents  
BDH Laboratory Supplies (UK) 
Sigma-Aldrich Chemical Company 
(USA) 

 Media components 
Difco Laboratories (USA) 
Sigma-Aldrich Chemical Company 
(USA) 

Restriction enzymes and modifying 
enzymes  for DNA recombination 

New England Biolabs (USA) 
Amersham (UK) 
Boehringer Mannheim (Germany). 

Latrunculin-A (LAT-A) Molecular Probes (USA) 
Biotechnology Centre (Singapore) Alpha Factor (α-factor) 
Sigma-Aldrich Chemical Company 
(USA) Calcofluor 

 

 

The antibodies used for protein analysis in this study were obtained from the following 
sources. 

Antibodies Source 
Rabbit polyclonal anti-HA Y-11 Santa Cruz Biotechnology (USA) 

Mouse monoclonal anti-Myc 9E10 Santa Cruz Biotechnology (USA) 

Mouse monoclonal anti-HA 12CA5 Boehringer Mannheim (Germany) 

HRP-conjugated sheep anti-mouse IgG Amersham (UK) 

 

2.1.2  Strains 

Table 1. Yeast strains used in this Study 

Strains Genotype 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 W303-1A   
MATa ura3-52 his3-200 ade2-101 lys2-801 trp1-901 leu2-3,112 canr  gal4-542 

gal80-538  URA3:: GAL1-lacZ 
SFY526      

YMC515 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1Δ::HIS3 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 cdc12::CDC12-GFP-

LEU2 
YMC517 

YMC516 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1Δ::HIS3 

    37   



Chapter 2 Materials and Methods 

cdc12::CDC12-GFP-LEU2 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 cdc12::CDC12-GFP-

LEU2p314 
YMC518 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 cdc12::CDC12-GFP-
LEU2pGAL-SYP1-HA-314 

YMC519 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 ::GAL-HA-URA YMC520 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 ::GAL-SYP1-HA-

URA 
YMC521 

US810 MATα ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 swe1Δ::HIS3  
YMC522  MATα ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 swe1Δ::HIS3::GAL-

HA-URA 
YMC523 MATα ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 swe1Δ::HIS3::GAL-

SYP1-HA-URA  
YMC524  MATα ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 swe1Δ::HIS3::GAL-

SYP1-Myc-URAp314 
YMC525  MATα ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 swe1Δ::HIS3::GAL-

SYP1-Myc-URApSWE1-HA-314  
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 cdc10::CDC10-GFP-

LEU2::GAL-HA-URA 
YMC526 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 cdc10::CDC10-GFP-
LEU2::GAL-SYP1-HA-URA 

YMC527  

YEF473-
1619 

MATα his3 leu2 lys2 ura3 trp1cdc10-1 

YMC528  MATα his3 leu2 lys2 ura3 trp1cdc10-1::cdc12::CDC12-GFP-LEU::GAL-HA-
URA 

YMC529 MATα his3 leu2 lys2 ura3 trp1cdc10-1::cdc12::CDC12-GFP-LEU::GAL-SYP1-
HA-URA 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 cdc12::CDC12-YFP-
LEU syp1::SYP1-CFP-URA 

YMC530 

YMC531 MATα his3 leu2 lys2 ura3 trp1cdc10-1 cdc12::CDC12-GFP-LEU syp1::SYP1-
CFP-URA 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1::SYP1-HA-URA YMC532  
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1::SYP1-GFP-

LEU 
YMC533 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1::SYP1-CFP-
URA 

YMC534 

MAT� his3 leu2 lys2 ura3 trp1cdc10-1 cdc12::SYP1-CFP-URA YMC535 
YWJ97 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-11 prk1Δ::HIS3 

syp1::SYP1-HA-URA 
MATa his3D200 leu2-3,112 ura3-52 tub2-201act1-3(act1-1) DDY335 
MATa his3D200 leu2-3,112 ura3-52 tub2-201act1-3(act1-1) syp1::SYP1-GFP-

LEU 
YWJ33 

YWJ40 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1Δ::HIS3 pSYP1-
GFP-314 
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MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 p316 YWJ63 
YWJ67 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1Δ::HIS3 p316 
YWJ68 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1Δ::HIS3 pGal-

SYP1-GFP-316 
YWJ69 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1Δ::HIS3 pGal-

SYP1AA-GFP-316 
YWJ70 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1Δ::HIS3 pGal-

SYP1EE-GFP-316 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pGal-SYP1-HA-316 YWJ89 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1pan1-4 p314 pFUR4-

316 
YWJ99 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 p314 pFUR4-316 YWJ100 
YWJ101 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1Δ::HIS3 p314 

pFUR4-316 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pSYP1-GFP-314 YWJ107 

YWJ128 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pfy1Δ::LEU2 p424 
YWJ129 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pfy1Δ::LEU2 p 

SYP1-GFP-424 
YWJ130 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pfy1Δ::LEU2 pGal-

SYP1AA-GFP-424 
YWJ131 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pfy1Δ::LEU2 pGal-

SYP1EE-GFP-424 
YWJ137 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pfy1Δ::LEU2 

syp1::SYP1-GFP-URA 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 sla1::SLA1-CFP-

TRP syp1::SYP1-YFP-URA 
YWJ184 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 sla1::SLA1-GFP-
LEU 

YWJ186 

YWJ189 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1Δ::HIS 
sla1::SLA1-GFP-LEU 

YGS36 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 bni1Δ::LEU  
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 sla1::SLA1-GFP-

LEU p314 
YWJ202 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 sla1::SLA1-GFP-
LEU pGAL-SYP1-HA-314 

YWJ203 

YWJ207 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 bni1Δ::LEU pSYP1-
GFP-314 

YWJ209 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 sla1Δ::TRP pSYP1-
GFP-314 

YWJ211 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 sla1Δ::TRP p316 
YWJ212 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 sla1Δ::TRP pGAL-

SYP1-HA-316 
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YWJ213 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 bni1Δ::LEU p316 
YWJ214 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 bni1Δ::LEU pGAL-

SYP1-HA-316 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1::SYP1-GFP-

LEU p313 
YWJ217 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 syp1::SYP1-GFP-
LEU pGAL-HA-SLA1-313 

YWJ218 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pGAL-HA-SLA1-
313 p316 

YWJ219 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 p313 pGAL-SYP1-
MYC-316 

YWJ220 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pGAL-HA-SLA1-
313 pGAL-SYP1-MYC-316 

YWJ221 

YWJ288 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pfy1Δ::LEU2 
YGS223 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 bni1Δ::URA 

MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 p424 YWJ720 
MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 pSYP1-HA-424 YWJ721 

YWJ722 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 bni1Δ::URA p424 
YWJ723 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 bni1Δ::URA pSYP1-

HA-424 
YWJ724 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 bni1Δ::URA pBNI1-

HA-314 
 
 
2.1.3   Constructs 

 
Table 2. Plasmids used in this study 

Construct Description 
Integration vector containing TRP1. (Sikorski and Hieter, 1989) pRS304 
Integration vector containing LEU2. (Sikorski and Hieter, 1989) pRS305 
Integration vector containing URA3. (Sikorski and Hieter, 1989) pRS306 
CEN6 HIS3 vector. (Sikorski and Hieter, 1989) pRS313 
CEN6 TRP1 vector. (Sikorski and Hieter, 1989) pRS314 
CEN6 LEU2 vector. (Sikorski and Hieter, 1989) pRS315 
CEN6 URA3 vector. (Sikorski and Hieter, 1989) pRS316 
High copy 2μ vector. (Sikorski and Hieter, 1989) pRS424 
2μ TRP1, GAL4 DNA binding domain (1-147 a.a.). (CLONTECH 
Laboratories, Inc. Cat. No. #K1612-1. (Louvet et al., 1997)  pGBKT7 

2μ LEU2, GAL4 activation domain (768-881 a.a.). (CLONTECH 
Laboratories, Inc. Cat. No. #K1612-1.(Chien et al., 1991) pGADT7 

pFA6a- Plasmid contains the ORF of the green fluorescent protein variant S65T  
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GFPS65T-
HIS3MX6 

(Yeast Resource Center, University of Washington) 

  
   pYAM1 pYep352-FUR4; FUR4 gene in multi-copy plasmid pYep352 with URA3 

marker, a gift from Dr. Alan Munn.  
Vector pBluescript SK (+), CMJ lab collection. pBKS (+) 

pBKS-SYP1 The SYP1 construct used for sub-cloning; the DNA coding region for 
Syp1p (1-870 a.a.) was generated by PCR and cloned into pBKS. 

pBKS-SYP1-
SalI/XbaI 

The DNA fragment encoding SYP1( SalI site / XbaI site) was cloned into 
pBKS; the construct was used to do site-directed mutagenesis. 

pGEX-LR2 DNA fragment encoding Pan1p (384-846 aa) was cloned into pGEX-4T-1 
(Zeng and Cai, 1999). 

pGEX-SLA1-
SH3 

GST-SH3; the DNA coding region for Sla1p (2-440 a.a.) was generated by 
PCR and cloned in frame into pGEX-4T-1 (Tang et al., 2000). 

pGEX-SLA1-
RP 

GST-SR; the DNA coding region for Sla1p (856-1244 a.a.) was generated 
by PCR and cloned in frame into pGEX-4T-1 (Tang et al., 2000). 

pGEX-SLA1-
NT 

GST-NT; The DNA coding region for Sla1p (1-854 a.a.) was generated by 
PCR and cloned in frame into pGEX-4T-1. 

pGEX-SYP1-
CT-WT 

DNA fragment encoding Syp1p (561-870 aa) was cloned into pGEX-4T-1. 

pGEX-SYP1-
CT-T577A 

DNA fragment encoding Syp1p (561-870 aa) was cloned into pGEX-4T-1, 
The Threonine at position 577 in Syp1p was mutated to Alanine. 

pGEX-SYP1-
CT-T588A 

DNA fragment encoding Syp1p (561-870 aa) was cloned into pGEX-4T-1, 
The Threonine at position 588 in Syp1p was mutated to Alanine. 

pGEX-SYP1-
CT-TATA 

DNA fragment encoding Syp1p (561-870 aa) was cloned into pGEX-4T-1, 
The Threonines at position 577 and 588 in Syp1p were mutated to 

Alanines. 
pGEX-CDC3 DNA fragment encoding Cdc3p (1-520 aa) was cloned into pGEX-4T-1. 
pGEX-CDC10 DNA fragment encoding Cdc10p (1-322 aa) was cloned into pGEX-4T-1. 
pGEX-CDC11 DNA fragment encoding Cdc11p (1-415 aa) was cloned into pGEX-4T-1. 
pGEX-CDC12 DNA fragment encoding Cdc12p (1-407 aa) was cloned into pGEX-4T-1. 

SLA1 (2-1244) in pGADT7. The DNA coding region of Sla1p (aa 2-1244) 
was generated by PCR and cloned into pGADT7 (Zeng et al., 2001). 

pGADT7-
SLA1 
pGADT7-
SLA1-NT 

The DNA coding region for Sla1p (1-854 a.a.) was generated by PCR and 
cloned in frame into pGADT7 (Zeng et al., 2001). 

pGADT7-
SLA1-SR(RP) 

The DNA coding region for Sla1p (856-1244 a.a.) was generated by PCR 
and cloned in frame into pGADT7 (Zeng et al., 2001). 

pGADT7-
SLA1-SH3 

The DNA coding region for Sla1p (2-440 a.a.) was generated by PCR and 
cloned in frame into pGADT7 (Zeng et al., 2001). 

pGBKT7-SYP1 The DNA coding region for Syp1p (1-870 a.a.) was generated by PCR and 
cloned in frame into pGBKT7. 

pMC67 Vector with LEU marker, CMJ lab collection. 
pBKS-PFY1 PFY1 coding region with its upstream promoter was generated by PCR and 

cloned to pBKS vector. 
pBKS-PFY1- The plasmid used to create PFY1 deletion mutant. The fragment from PvuI 
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LEU site to Sal1I site of PFY1 in pBKS-PFY1 was replaced by the expressing 
region of LEU from pMC67.  

pSLA1c-CFP-
304 

SLA1c-CFP in  TRP1, integration plasmid pRS304, SLA1(1105-1244 a.a.)  
Tagged with GFP at its COOH-terminus in pRS304, can be linearized by  
SacI site within SLA1 sequence for integration. 

pSLA1c-GFP-
305 

SLA1c-GFP in  LEU2, integration plasmid pRS305, SLA1(1105-1244 a.a.)  
Tagged with GFP at its COOH-terminus in pRS305, can be linearized by  
SacI site within SLA1 sequence for integration (Zeng et al., 2001). 

pCDC12-GFP-
305 

DNA fragment encoding Cdc12p (1-407 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator in pRS305. 

pCDC10-GFP-
305 

DNA fragment encoding Cdc10p (1-322 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator in pRS305. 

pSYP1-GFP-
306 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator in pRS306. 

pSYP1-CFP-
306 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal CFP epitope followed by the ADH1 terminator in pRS306. 

pSYP1-YFP-
306 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal YFP epitope followed by the ADH1 terminator in pRS306. 

pSYP1-HA-306 DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator in pRS306. 

pGAL-SYP1-
HA-306 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator and placed under 
GAL1 promoter control in pRS306. 

pGAL-SYP1-
Myc-306 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal Myc epitope followed by the ADH1 terminator and placed under 
GAL1 promoter control in pRS306. 

pSWE1-HA-
314 

DNA fragment encoding Swe1p (1-819 aa) was cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator and placed under 
SWE1 promoter control in pRS314. 

BNI1 full length with HA tag in p314, a gift from Wang Junxiao.  pBNI1-HA-314 
pSYP1-HA-314 DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-

terminal HA epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS314. 

pSYP1AA-HA-
314 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS314. The Threonines at position 577 
and 588 in Syp1p were mutated to Alanines. 

pSYP1-GFP-
314 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS314. 

pSYP1N320-
GFP-314 

DNA fragment encoding Syp1p (1-320 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS314. 

pSYP1N475-
GFP-314 

DNA fragment encoding Syp1p (1-475 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS314. 
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pSYP1N600-
GFP-314 

DNA fragment encoding Syp1p (1-600 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS314. 

pSYP1N683-
GFP-314 

DNA fragment encoding Syp1p (1-683 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS314. 

pSYP1N731-
GFP-314 

DNA fragment encoding Syp1p (1-731 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS314. 

pSYP1N830-
GFP-314 

DNA fragment encoding Syp1p (1-830 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS314. 

pSYP1C473-
GFP-314 

DNA fragment encoding Syp1p (473-870 aa) was cloned in frame with a 
C-terminal GFP epitope followed by the ADH1 terminator and placed 
under SYP1 own promoter control in pRS314. 

pSYP1C600-
GFP-314 

DNA fragment encoding Syp1p (600-870 aa) was cloned in frame with a 
C-terminal GFP epitope followed by the ADH1 terminator and placed 
under SYP1 own promoter control in pRS314. 

pSYP1C731-
GFP-314 

DNA fragment encoding Syp1p (731-870 aa) was cloned in frame with a 
C-terminal GFP epitope followed by the ADH1 terminator and placed 
under SYP1 own promoter control in pRS314. 

pSYP1C473-820-
GFP-314 

DNA fragment encoding Syp1p (473-820 aa) was cloned in frame with a 
C-terminal GFP epitope followed by the ADH1 terminator and placed 
under SYP1 own promoter control in pRS314. 

pSYP1M320-600-
GFP-314 

DNA fragment encoding Syp1p (320-600 aa) was cloned in frame with a 
C-terminal GFP epitope followed by the ADH1 terminator and placed 
under SYP1 own promoter control in pRS314. 

pGAL-HA-
SLA1-313 

The N-terminal of  Sla1p (aa 2-1244) was tagged with HA and placed under
 GAL1 promoter control in pRS313. 

pGAL-SYP1-
HA-314 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator and placed under 
GAL1 promoter control in pRS314. 

pGAL-PRK1-
315 

PRK1 coding region was generated by PCR and placed under GAL1 
promoter control in vector derived from pRS315 (Zeng and Cai, 1999). 

pGAL-
PRK1D158Y -315 

PRK1D158Y under GAL1 promoter control in pRS315; generated by 
replacing the SmaI/SpeI fragment of pGAL-PRK1 with the SmaI/SpeI 
fragment of pPRK1D158Y (Zeng and Cai, 1999). 

pGAL-HA-
PRK1-316 

The PRK1 coding region was generated by PCR, cloned in frame with the 
HA epitope, and placed under GAL1 promoter control in pRS316 (Zeng 
and Cai, 1999). 

pGAL-SYP1-
HA-316 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator and placed under 
GAL1 promoter control in pRS316. 

pGAL-
SYP1N320-HA-
316 

DNA fragment encoding Syp1p (1-320 aa) was cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator and placed under 
GAL1 promoter control in pRS316. 
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DNA fragment encoding Syp1p (1-600 aa) was cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator and placed under 
GAL1 promoter control in pRS316. 

pGAL-
SYP1N600-HA-
316 

DNA fragment encoding Syp1p (600-870 aa) was cloned in frame with a 
C-terminal HA epitope followed by the ADH1 terminator and placed under 
GAL1 promoter control in pRS316. 

pGAL-
SYP1C600-HA-
316 
pGAL-
SYP1M320-600-
HA-316 

DNA fragment encoding Syp1p (320-600 aa) was cloned in frame with a 
C-terminal HA epitope followed by the ADH1 terminator and placed 
under GAL1 promoter control in pRS316. 

pGAL-SYP1-
MYC-316 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal MYC epitope followed by the ADH1 terminator and placed 
under GAL1 promoter control in pRS316. 

pGAL-SYP1-
GFP-316 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
GAL promoter control in pRS316. 

pGAL-
SYP1AA-GFP-
316 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
GAL promoter control in pRS316. The Threonines at position 577 and 
588 in Syp1p were mutated to Alanines.  

pGAL-SYP1EE-
GFP-316 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
GAL promoter control in pRS316. The Threonines at position 577 and 
588 in Syp1p were mutated to Glutamis Acids.  

pSYP1-HA-424 DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS424. 

pSYP1-GFP-
424 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS424. 

pSYP1AA-GFP-
424 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS424. The Threonines at position 577 
and 588 in Syp1p were mutated to Alanines. 

pSYP1EE-GFP-
424 

DNA fragment encoding Syp1p (1-870 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS424. The Threonines at position 577 
and 588 in Syp1p were mutated to Glutamis Acids.  

pSYP1N475-
GFP-424 

DNA fragment encoding Syp1p (1-475 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in Prs424. 

pSYP1N600-
GFP-424 

DNA fragment encoding Syp1p (1-600 aa) was cloned in frame with a C-
terminal GFP epitope followed by the ADH1 terminator and placed under 
SYP1 own promoter control in pRS424. 

pSYP1C473-
GFP-424 

DNA fragment encoding Syp1p (473-870 aa) was cloned in frame with a 
C-terminal GFP epitope followed by the ADH1 terminator and placed 
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under SYP1 own promoter control in pRS424. 
pSYP1C600-
GFP-424 

DNA fragment encoding Syp1p (600-870 aa) was cloned in frame with a 
C-terminal GFP epitope followed by the ADH1 terminator and placed 
under SYP1 own promoter control in pRS424. 

 

2.2     Methods 

2.2.1    Strains and culture conditions 

           The E. coli strain DH5α (GIBCO BRL, USA) was used as the host strain in this 

study for DNA recombination and plasmid amplification. The E. coli cells were cultured 

at 37oC in LB broth (1% bacto-tryptone, 0.5% bacto-yeast extract, 1% NaCl, pH 7.0) or 

on LB agar plates (LB containing 2% bacto-agar). 100 μg/ml Ampicilin (Sigma) or 25 

μg/ml Kanamycin (Sigma) was added to the media to select for cells carrying 

recombinant plasmids. 

           All yeast strains (see Table 1) used in this study were derived from the wild type 

strain W303, except for the strain SFY526, which was used in the two-hybrid assay. 

Gene deletion in YMC515 was created by integrating a S. pombe HIS5 selection cassette 

to replace the SYP1 chromosomal locus.  Gene deletion in YWJ288 was created by 

integrating a LEU2 selection cassette to replace the PFY1 chromosomal locus. YMC517, 

YMC520, YMC521, YMC532, YMC533, YWJ184 and YWJ186 were generated by 

integrating linearized pCDC12-GFP-305, pGAL-HA-306, pGAL-SYP1-HA-306, pSYP1-

HA-306, pSYP1-GFP-305, pSLA1c-CFP-304/pSYP1-YFP-306 and pSLA1c-GFP-305 

into wild-type cells, respectively.  The same strategy was used for the integration of 

pGAL-SYP1-Myc-306, pCDC10-GFP-305, pSYP1-CFP-306 and pSYP1-GFP-306 into 

respective strains.  Yeast cells were grown in standard yeast extract-peptone-dextrose 
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(YEPD; 1.1% yeast extract, 2.2% peptone, 0.006% adenine and 2% glucose) or synthetic 

complete (SC; 0.67% yeast nitrogen base without amino acids, 2% D-glucose and 0.2% 

amino-acids mix) medium lacking appropriate amino acids for plasmid maintenance.  In 

experiments requiring the expression of genes under the GAL1 promoter, raffinose 

instead of dextrose was used as the carbon source and galactose was later added for 

GAL1 induction. Hydroxyurea (HU, Sigma) was added to a final concentration of 15 

mg/ml where required.  

               For the examination of mating projection formation, overnight yeast cultures 

were diluted and refreshed at appropriate temperature for 2 hours, and α-factor was 

added to the culture to a final concentration of 6 μg/ml. Cells were further incubated at 

indicated temperatures for another 2 hours. 

 

2.2.2    Recombinant DNA methods 

          General recombinant DNA methods were performed essentially as described 

previously (Sambrook, 1989). Polymerase chain reaction (PCR) was carried out with Vent 

DNA polymerase. Restriction enzyme digestion was performed using the appropriate 

buffers supplied by the manufacturers. Blunt ending of DNA fragments was carried out 

using Klenow DNA polymerase. Dephosphorylation of cloning vectors was done using 

calf intestinal phosphatase (CIP). T4 DNA ligase was used for the ligation of DNA 

fragments. 

 

2.2.2.1 DNA Transformation of E. coli cells 
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          For heat shock transformation, DNA from ligation mix (7.5 μl) or plasmid DNA 

(less than 0.1 μg) was mixed with 50 μl KCM buffer (100 mM KCl, 30 mM CaCl2, 50 mM 

MgCl2), and 100 μl of competent cells. After incubation on ice for 30-45 min, the cells 

were heat shocked in a 43oC water bath for 50 seconds. The transformed cells were quickly 

chilled on ice for at least 1 min before being plated out on the LB agar plates with 

appropriate antibiotics according to the selection marker of individual plasmid. For 

electroporation transformation, DNA was added to 50 μl of the competent cells and 

incubated on ice for 10 min. This was followed by a high-voltage electroporation using the 

Gene Pulser (Bio-Rad, USA) according to the manufacturer's instructions.  The cells were 

then mixed with 950 μl of prewarmed LB broth and incubated at 37°C for 1 hour before 

being plated onto antibiotic-containing LB plates. 

 

2.2.2.2    Plasmid DNA preparation  

           Overnight bacterial culture (2.0 ml) was pelleted by centrifugation at full speed in 

a table-top centrifuge for 30 sec. The resulting pellet was resuspended in 250 μl of STET 

buffer (8% sucrose, 0.5% Triton X-100, 50 mM Tris-HCI pH8.0, 50 mM EDTA, 1 mg/ml 

freshly prepared lysozyme). The mixture was boiled in a 100oC water bath for 2 min and 

subsequently centrifuged at full speed for 5 min. After removal of the bacterial debris 

using a toothpick, 250 μl of isopropanol was added to the supernatant, and the mixture 

was mixed by vortex before being centrifuged at full speed (13,000 rpm) for 10 min. The 

DNA pellet was washed with 70% ethanol and then dissolved in 50 μl of TE buffer (10 

mM Tris-HCl, 1 mM EDTA, [pH8.0]) containing 0.1 μg/μl RNAase. 
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2.2.2.3     Site-directed mutagenesis 

             In vitro site-directed mutagenesis was performed using the QuickChangeTM Site-

Directed Mutagenesis Kit from STRATAGENE (USA). The plasmid pBKS-SYP1- 

SalI/XbaI (Table 2) was used as the template to generate the SYP1 mutations. PCR 

reaction was performed using Pfu DNA polymerase, and primers SYP1-T577A-5’: 5’-

CTCTCCTCTCAGATTGCTGGCGAGCTAAGAGAAC-3’ and SYP1-T577A-3’: 5’-

CTCTTAGCTCGCCAGCAATCTGAGAGGAGAGTGTGG-3’ to generate a mutated 

DNA containing the SYP1T577A mutation. The resulting PCR product was further treated 

with DpnI to remove the parental DNA template and to select for the mutation-containing 

synthesized DNA. The DNA that had incorporated the desired mutation was then 

transformed into E. coli for amplification. The SYP1T577E, SYP1T588A and SYP1T588E 

mutations were performed in the same way by using different sets of primers. All the 

mutations were confirmed by DNA sequencing.    

 

2.2.2.4     Plasmid constructions 

    For the generation of plasmids used in this study, please refer to the “Description” 

in Table 2.  

 

2.2.3     Yeast manipulations 

            Yeast genetic techniques were performed according to standard methods 

described previously (Rose, 1990).   

 

2.2.3.1     Yeast transformation 
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          The host cells were grown in appropriate medium to the log phase and harvested 

by centrifugation at 3000 rpm for 5 min. For each transformation, about 50 μl of the cell 

pellet was washed once in Li-TE buffer (0.1 M lithium acetate, 10 mM Tris-HCl pH 7.5, 

1 mM EDTA), and resuspended in 100 μl of yeast transformation mix (2 M LiAc : 50% 

PEG 8000 : 1 M DTT = 1:8:1). The cell suspension was then mixed with the plasmid 

DNA and 10 μl of salmon sperm carrier DNA (9.5 μg/μl salmon testes DNA, Sigma) 

followed by incubation at 45°C for 30 min. The cells were collected by centrifugation at 

low speed and resuspended in 1 ml of H2O. The cell suspension was spread onto selective 

plates and incubated at the appropriate temperature for 3 to 4 days.     

 
2.2.3.2 Two-hybrid assays 

            The MATCHMAKER system (Clontech Laboratories, USA) was used in two-

hybrid analysis. DNA fragments of SLA1 and the components of septins (CDC3, CDC10, 

CDC11 and CDC12) were fused in frame to the GAL4 activation domain on pGADT7 

(Table 2). DNA fragments of SYP1 were fused in frame to the DNA binding domain of 

GAL4 on pGBT7 as indicated in Table 2. Plasmids were cotransformed into the yeast 

strain SFY526 and the expression of each fusion protein was verified by Western blotting 

using either anti-HA or anti-Myc antibodies.  The β-galactosidase activities were 

measured on at least three different isolates of each co-transformation as described in the 

product protocol. 

 

2.2.3.3  Uracil uptake assay 

           The uracil uptake assay was carried out as described by Volland et al (Volland et 

al., 1994). Each testing strain was transformed with pYep352-FUR4 (pYAM1, Table 2) 
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to increase the production of uracil permease. The transformants were grown at 30°C or 

37°C to OD600 of 0.2-0.3, followed by the addition of 100 μg/ml Cycloheximide (Sigma).  

Samples were taken at 30 min interval to measure uracil uptake. The assay was 

performed by incubating 1 ml of yeast culture with 5 μM [14C]uracil (NEN) for 20 sec at 

30°C or 37oC followed by quick filtration through a Whatman GF/C filter. The filter was 

washed twice with ice-cold water and then counted for the retained radioactivity. Data 

were compiled from at least two independent experiments.  

 

2.2.3.4  Lucifer yellow uptake 

            The lucifer yellow (LY) uptake assay was performed as described previously 

(Dulic et al., 1991) with minor modifications. Cells were grown at 25°C in YEPD to 

early log phase, and cultures were kept at 25°C or preshifted to 37°C for 15 min before 

addition of lucifer yellow (Sigma-Aldrich) to 5 mg/ml. After incubation for 2 h at 25°C 

or 37°C, cells were collected and washed five times with PBS containing 10 mM sodium 

azide and 50 mM sodium fluoride, followed by suspension in Vectashield mounting 

medium (Vector Laboratories, Burlingame, CA) and observation by fluorescein 

isothiocyanate and Nomarski optics with a Leica DMAXA microscope equipped with a 

Hamamatsu C4742–98 digital camera. 

 

2.2.4    Fluorescence microscopy studies 

2.2.4.1   Staining of F-actin and chitin  

           The actin cytoskeleton was stained with rhodamine-conjugated phalloidin as 

described previously (Adams and Pringle, 1991) with minor modifications. Cells were 
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grown in appropriate media as mentioned in figure legends to a concentration of 4-8 X 

106 cells/ml. Cells were collected and fixed by  3.7% formaldehyde, 100 mM KH2PO4, 

100 mM K2HPO4  at 24°C for 1 hour. The fixation time can be decreased to 15 min for 

those cells containing GFP-tagged proteins which need to be observed together with actin 

structures.  Cells were then washed two times with PBS and incubated with PBS 

containing 0.1% Triton X-100 for 15 min. After washing again with PBS for two times, 

cells were incubated with PBS containing rhodamine-phalloidin (1:100) at 25°C for 30 

min. Cells were finally washed with PBS for four times and suspended in the Vectashield 

mounting medium before visualization.  For chitin staining, cells were fixed with 3.7% 

formaldehyde and stained with calcofluor (Sigma)  as described by Pringle (Pringle et al., 

1989).  The samples stained with actin or chitin were examined under a Leica DMAXA 

microscope equipped with a Hamamatsu C4742 digital camera. The analyses of actin 

organization and the budding scar patterns followed previous studies (Drubin et al., 1993; 

Chant and Pringle, 1995).  Actin depolarization was scored only in budded cells with 

small- and medium-sized buds. In cases where quantitation was required, at least 200 

cells were counted for each sample.   

              

2.2.4.2 Real time imaging of proteins with fluorescent tags   

For the time-lapse experiments, microscopy was performed with a Zeiss Axiovert 

200M microscope equipped with a Coolsnap HQ camera (Roper Scientific, Tucson, AZ). 

To visualize septin dynamics, the CS U22 Laser power supply and Cascade 512B camera 

were used. Yeast cells expressing GFP and/or CFP tagged proteins were allowed to grow 

to early log phase at 30°C.  Cells were harvested, resuspended in fresh media, and 
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adhered to the surface of an agarose (2 %) coated glass slide, covered with a cover slip 

and sealed with Vaseline.  All the imaging procedures were performed within a closed 

chamber at 30°C.  Images were acquired at the intervals of 1 min for Cdc12p-GFP and 2 

min for Syp1p-GFP or Syp1p-CFP/Cdc12p-GFP dual fluorescence with motorized GFP 

and CFP filters.  At each time point, 7 images (at a speed of 100 ms/image for septins or 

400 ms for Syp1p) were acquired at 0.5 μm increments, deconvolved, and reconstructed 

into 3D images.   

 

2.3        Protein Analysis 

2.3.1    Preparation of crude protein extracts using acid-washed 
               glass beads             

             Preparation of yeast extracts followed previous procedures (Zeng et al., 2001). 

Yeast strains were grown in appropriate conditions to mid-log phase (OD600 = 0.9 to 1.2). 

Cells were harvested, washed once with the Stop mix (0.9% NaCl, 1 mM NaN3, 10 mM 

EDTA, 50 mM NaF) and resuspended in ice-cold lysis buffer (1% Triton X-100,  0.1% 

SDS, 100 mM NaCl, 50 mM Tris-HCl [pH7.2], 1 mM PMSF, 20 μg/ml leupeptin, 40 

μg/ml aprotinin, 0.1 mM Na-orthovanadate, 15 mM p-nitrophenyl phosphate (PNPP) ). 

200 μl of acid-washed 500-μm-diameter glass beads (Sigma) were added to the cell 

suspension and the cells were lysed by vortexing vigorously at 4°C. After two rounds of 

high speed centrifugation to pellet out the cellular debris, the supernatant was collected, 

snap-frozen in liquid nitrogen and stored at -80°C. Protein concentration was determined 

using the Coomassie Plus-200 Protein Assay Reagent (PIERCE, U.S.A). Crude protein 

extraction prepared by this method can be used for immunoprecipitation. 
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2.3.2   Preparation of total protein extracts using TCA precipitation 

         Cells equivalent to OD600=4 were harvested by centrifugation and resuspended in 

300 μl ice-cold water.  Then, 150 μl of YEX lysis buffer (1.85 M NaOH, 7.5% β-

mercaptoethanol) was added and the suspension was kept on ice for 10 min.  

Subsequently, 150 μl of 50% ice-cold TCA was added to the suspension which was 

further kept on ice for another 10 min.  The precipitate was collected by centrifugation at 

4°C for 5 min and then resuspended in a solution containing 100 μl of SDS-loading 

buffer (100 mM dithiothreitol, 50 mM Tris-HCl [pH 6.8], 2% SDS, 0.1% bromophenol 

blue, 10% glycerol)  and 15 μl 1 M Tris buffer [pH 8.0].  The preparation is ready for 

SDS-PAGE after boiling for 10 min.   

 

2.3.3 In vitro kinase assay and GST-fusion protein binding assay 

          Expression and purification of the fusion proteins were performed according to 

Zeng and Cai (Zeng and Cai, 1999). The GST-fusion protein expressing plasmids 

(pGEXs, Table 2) were transformed into E. coli strain DH5α. Transformants were grown 

to OD600 = 0.5, and induced with 1 mM isopropyl-β-D-thiogalactoside (IPTG) (Life 

Technologies, Inc.) at 37°C for 4 h to express the fusion proteins. Cells were collected by 

centrifugation and suspended in cold PBS. The suspensions were sonicated on ice to lyse 

the cells and the lysates were centrifuged at 10,000 rpm for 10 min in a Sorvall SS-34 

rotor. The supernatants were incubated with glutathione-Sepharose 4B beads (Pharmacia) 

for 30 min at room temperature, and then transferred to disposable columns (Pharmacia). 
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The beads were washed with PBS three times and the fusion proteins were eluted from 

the beads by elution buffer (10 mM glutathione, 50 mM Tris-HCl, pH 8.0). 

             For in vitro kinase assays, the polyclonal rabbit anti-HA antibody was used to 

precipitate HA-tagged Prk1p. The beads were first washed with the RIPA buffer (50 mM 

Tris-HCl, pH 7.2, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 150 mM 

NaCl) for five times, then three times with 25 mM MOPS (pH 7.2) and resuspended in 6 

µl of HBII buffer (60 mM β-glycerophosphate, 25 mM MOPS, pH 7.2, 15 mM p-

nitrophenylphosphate, 15 mM MgCl2, 5 mM EGTA, 1 mM dithiothreitol, 1 mM 

phenylmethylsulfonyl fluoride, 20 µg leupeptin/ml, and 0.1 mM sodium orthovanadate). 

The kinase assay was performed by incubating the beads with 5 µg of GST-fusion 

proteins, 0.5 µl of 1 mM ATP, 0.5 µl of [γ-32P] ATP (10 mCi/ml; New England Nuclear 

Inc.), 1 µl of 250 mM MOPS in a total volume of 20 µl at 25°C for 15 min, followed by 

addition of 3× loading buffer and 10% SDS-PAGE. The gels were first stained with 

Coomassie blue to visualize the protein bands. After pictures were taken, the gels were 

fixed, dried, and exposed to x-ray films.  

           To analyze the gel mobility change of Syp1p upon PRK1 overexpression, yeast 

strain (YWJ97) containing various plasmids (pRS315, pGAL-PRK1, and pGAL-

PRK1D158Y) were grown at 30°C to log phase followed by addition of galactose to 2%. 

After incubation for 5 h, cells were collected for immunoprecipitation (IP) of Syp1p-HA 

as described previously (Tang et al., 1997). To treat the immunoprecipitates with calf 

intestinal alkaline phosphatase (CIP), the protein A-Sepharose beads were washed with 

RIPA buffer, followed by incubation at 37°C with 1 µl of 10 U/µl CIP (Biolabs, Inc.) for 

30 min and boiling in the sample buffer.  
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              For GST-fusion protein binding experiments, yeast lysates containing Syp1p-HA 

was incubated with GST-fusion protein-coupled beads for 2 h at 4°C. The beads 

containing bound proteins were washed five times with RIPA buffer before eluted into 

SDS-PAGE sample buffer.  

2.3.4   Immunoprecipitation and Western blotting 

           Immunoprecipitation (IP) of Syp1p-HA was performed as described previously 

(Tang et al., 1997). About 800 μl of crude yeast cell lysate was incubated with either 

rabbit polyclonal anti-HA antibody Y-11 (1:100 dilution) or mouse monoclonal anti-Myc 

antibody 9E10 (1:80 dilution) to precipitate HA-tagged and Myc-tagged proteins. The 

mixture was incubated on ice for 1 hour and followed by incubation with Protein A/G 

PLUS-Agrose beads (SC-2003, Lot#A2004, Santa Cruz Biotechnology, pre-equilibrated 

in lysis buffer with protease inhibitors) for another 1 hour in the cold room with gentle 

agitation. The beads were then washed 4 times with RIPA buffer containing protease 

inhibitors. Proteins bound to immuno-complexes were released by boiling with SDS-

loading buffer for 10 min and then subjected to SDS-PAGE. 

             SDS-PAGE was performed according to standard protocols (Sambrook et al., 

1989) using the Mini-PROTEIN II electrophoresis cell (Bio-Rad, USA). The separation 

gel contained 8% to 12% of acrylamide mix (acrylamide:bisacrylamide, 29:1), 375 mM 

Tris-HCI [pH8.8] and 0.1% SDS. The stacking gel contained 5% acrylamide mix, 125 

mM Tris-HCl [pH6.8] and 0.1% SDS. Polymerization was induced by the addition of 

TEMED and freshly prepared ammonium persulfate (10%). Protein samples in SDS-

loading buffer were boiled for 8 min, and loaded onto the gel. Electrophoresis was carried 

out in Tris-glycine buffer (25 mM Tris, 250 mM glycine, 0.1% SDS). The rainbow 
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coloured high molecular weight protein marker (Amersham) or the prestained broad 

range protein marker (New England Biolabs) was used to estimate the size of proteins. 

                 After electrophoresis, the separated proteins were electro-transferred onto 

Immobilon PVDF membranes (Millipore, USA) using the liquid transfer cell (Bio-Rad, 

USA). The transfer buffer contained 3.30 g/L Tris and 14.4 g/L glycine. For 

immunodetection (Western blot), the membrane was incubated overnight at 4°C with 

blocking solution (PBS containing 0.05% Tween-20 and 5% skimmed milk). The 

membrane was then incubated with the primary antibody followed by the HRP-

conjugated secondary antibody. Each incubation lasted for 1 h at 25°C, followed by 

extensive wash with PBS containing 0.05% Tween-20. The antibody-antigen complexes 

were visualized with the Enhanced Chemiluminescence (ECL) system (Amersham, UK).        
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3.1 Introduction 
 
         This project was started with the objective of identifying new substrates of Prk1p. 

Prk1p is a serine/threonine protein kinase involved in endocytosis by regulating actin 

patch assembly in Saccharomyces cerevisiae (Smythe and Ayscough, 2003; Zeng and 

Cai, 2005). The threonine within [L/I/V/M]xx[Q/N/T/S]xTG motifs of Pan1p can be 

phosphorylated by Prk1p (Zeng and Cai, 1999). Many other actin patch proteins, such as 

Sla1p, Ent1p, Ent2p and Scd5p, also contain these motifs and may be regulated by Prk1p 

phosphorylation (Watson et al., 2001; Zeng et al., 2001; Huang et al., 2003). To advance 

our understanding in the regulation of actin dynamics in yeast, it is important to identify 

additional regulatory targets of Prk1p. 

            SYP1 was first identified as a multicopy suppressor of the yeast profilin deletion 

mutant (Marcoux et al., 2000), suggesting that it might play a role in actin cytoskeleton. 

However, the cellular and biochemical functions of Syp1p are still unknown. Syp1p 

contains two adjacent LxxQxTG motifs, which could be recognized by Prk1p. Therefore, 

it would be interesting to find out whether Syp1p is a phosphorylation target of Prk1p and 

how Prk1p regulates the function of Syp1p.   

 

3.2 Results 

3.2.1 Phosphorylation of Syp1p by Prk1p in vitro and in vivo 

               To answer the question of whether Syp1p is a substrate of Prk1p, a truncated 

Syp1-GST fusion protein containing the potential Prk1p phosphorylation motifs and three 

other mutants which had either one or both T mutated to A (Fig. 3.1A). Using these GST 

fusion proteins and GST alone as the negative control, in vitro kinase assays 
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Figure 3.1 Identification of Syp1p as a new phosphorylation target of Prk1p. (A) 
Schematic diagram of Syp1p showing the locations of two LxxQxTG motifs. The bars 
below the diagram represent the regions used for GST-fusion protein expression.  (B) In 
vitro phosphorylation of Syp1p by Prk1p. Phosphorylation results are shown in the upper 
panel as autoradiography and the input substrates visualized by the Coomassie blue 
staining of the same gel are shown in the lower panel. Immunoprecipitated HA-tagged 
Prk1p was added in lanes 1-6 as the kinase. Substrates used in lanes 1-5 were GST, GST-
WT, GST-T577A, GST-588A and GST-TATA respectively. Substrate in lane 6 was 
GST-LR2 fragment of Pan1p as a positive control. (C) Phosphorylation of Syp1p by 
Prk1p in vivo. YWJ97 (prk1∆::SYP1-HA) was transformed with vector pRS315, pGAL-
PRK1 or pGAL-PRK1D158Y. Syp1p from cells containing different plasmids was 
immuno-precipitated by HA antibody and analyzed by SDS-PAGE and immunoblotting. 
The immunoprecipitates in lane 4 were incubated with 1 μl of CIP for 30 min at 37°C 
prior to loading.  (D) In vivo phosphorylation of Syp1p. Strain YMC515 (syp1Δ) was 
transformed with vector pRS314, pSYP1-HA-314 or pSYP1AA-HA-314. Syp1-HA from 
cells containing different plasmids was immunoprecipitated and subsequently 
immunoblotted with anti-HA and anti-PThr antibodies.  
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Were carried out and the results are shown in Fig. 3.1B.  Indeed, Syp1p can be 

phosphorylated by Prk1p in vitro (Fig. 3.1B, lane 2) and this phosphorylation was 

abolished when the two phosphorylation sites (T) were mutated to Alanine (A) (Fig. 

3.1B, lane 5). The proteins which contained only a single mutation can still be 

phosphorylated by Prk1p (Fig. 3.1B, lane 3, 4), indicating that each of the motifs can be 

recognized by Prk1p in vitro. Although these two phosphorylation sites contain the same 

conserved amino acids L, Q and G in the LxxQxxTG motif (Fig. 3.1 A), the 

phosphorylation intensity of T577A (Fig. 3.1B, Lane 3) is much higher than that of 

T588A (Fig. 3.1 B, lane 4). This result suggests that the T588 site is more efficiently 

phosphorylated by Prk1p than the T577 site.  

           To further confirm that Syp1p is a new substrate of Prk1p, in vivo experiments 

were performed in a host that overproduced the kinase. Syp1p (tagged with HA) was 

immunoprecipitated (IP) from cell lysates and resuspended in loading buffer for SDS-

PAGE analysis. As shown in Figure 1C, in the absence of Prk1p overexpression, Syp1p-

HA migrated as a single band on the gel (Fig. 3.1C, lane 1). In contrast, the band of 

Syp1p extracted from cells with Prk1p overexpression exhibited a mobility shift and 

became smeared (Fig. 3.1C, lane 3).  This phenomenon was not observed when the IP 

sample was treated with calf intestine phosphatase (CIP) before loading (Fig. 3.1C, lane 

4). The retarded band was also not observed in Syp1p-HA precipitated from cells 

overexpressing the kinase-dead mutant of PRK1 (Fig. 3.1C, lane 2). These results 

indicate that the gel-mobility change observed in Syp1p-HA extracted from Prk1p- 

overproducing cells was likely due to its phosphorylation by Prk1p.    
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            To answer whether Syp1p can be phosphorylated by endogenous Prk1p, an in 

vivo kinase assay was carried out using anti-phospho-Threonine antibody. Syp1p or its 

AA mutant (tagged with HA) was expressed in syp1∆ cells and directly precipitated from 

cell lysates by TCA to preserve its maximum phosphorylated states for SDS-PAGE 

analysis. As shown in Fig. 3.1D, the wild type Syp1p could be detected by the anti-

phospho-Threonine antibody (lane2), whereas Syp1AAp was not (lane 3). These results 

demonstrated that Syp1p can be phosphorylated by Prk1p in vitro and possibly in vivo.  

 
3.2.2 Effect of Prk1p phosphorylation on Syp1p 

          The functions of Prk1p substrates identified so far were negatively regulated by 

Prk1p phosphorylation. For example, Pan1p or Ent1p phosphorylation by Prk1p 

negatively regulates the formation and activity of Pan1p-End3p-Sla1p or Pan1p-Ent1p 

complex (Watson et al., 2001; Zeng et al., 2001).  As a novel substrate of Prk1p, the 

Prk1p phosphorylation effect on Syp1p was next investigated.  Syp1p was first identified 

as a multicopy suppressor of the pfy1Δ mutant. The two threonine phosphorylation sites 

of Syp1p were mutated to either glutamine or alanine to mimic constitutively 

phosphorylated or dephosphorylated Syp1p, respectively. Serial dilutions of cells 

transformed with either empty vector or with 2μ SYP1 and its mutant plasmids were 

spotted onto rich medium and grown at 25°C and 37°C for 2 days. The results are shown 

in Fig. 3.2,  pfy1Δ cells were viable but sensitive to 37°C treatment (Fig. 3.2A, row 2).  

At non-permissive temperature, cells transformed with high copy SYP1 (Fig. 3.2A, row 

3) grew better than those with the vector, but still weaker than the wild type cells (Fig. 

3.2A, row 1). These findings indicate that high copy SYP1 is able to partially suppress the 

temperature sensitivity (ts) of pfy1Δ cells. The other two mutated SYP1 could also 
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partially suppress the ts of pfy1∆ (Fig. 3.2A, row 4, 5). However, the suppression activity 

of Syp1pEE was weaker compared with the wild-type Syp1p and the Syp1pAA mutant. 

These results indicate that phosphorylation of Syp1p by Prk1p may negatively regulate 

the ability of Syp1p on pfy1∆ suppression.  

 

 

 
Fig. 3.2 Effect of Syp1p phosphorylation by Prk1p on pfy1Δ suppression (A) and 
bud morphogenesis (B). (A) Strain YWJ288 (pfy1∆) was transformed with high copy 
vector p424, pSYP1-GFP-424, pSYP1AA-GFP-424, or pSYP1EE-GFP-424 to get trains 
YWJ128, YWJ129, YWJ130 and YWJ131 respectively. These strains were cultured in 
rich medium overnight at 25°C. Serial dilutions of overnight cultures were spotted onto 
rich medium and grown at 25°C and 37°C for 2 d. (B) Strain YMC515 (syp1Δ) was 
transformed with vector p316, pGal-SYP1-GFP, pGal-SYP1AA-GFP or pGal-SYP1EE-
GFP. The resulting strains, YWJ67 (vector), YWJ68 (pGal-SYP1), YWJ69 (pGal-
SYP1AA) and YWJ70 (pGal-SYP1EE), were cultured in raffinose at 30°C to log phase 
followed by addition of galactose to 2% to induce Syp1p expression.  After 7 h, samples 
were taken, sonicated and prepared for microscopy.  The quantitative data of cell 
morphology are shown in the right panel.  Bar, 5 μm. 
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           The effect of SYP1pAA and SYP1pEE overexpression on elongated bud induction 

was also studied. In the cells overexpressing Syp1pAA, some of the elongated buds were 

much longer than the ones induced by wild-type Syp1p (Fig. 2B). The percentage of 

elongated buds found in cells overexpressing Syp1pAA was also higher (34%) than in 

cells overexpressing wild-type Syp1p (24%). However, in the cells overexpressing 

Syp1pEE, the percentage of cells with elongated buds was only about 10%. These results 

suggest that the phosphorylation of Syp1p by Prk1p inhibits the function of Syp1p in the 

formation of elongated buds.  

 

3.3 Discussion 

3.3.1 Syp1p is a new regulatory target of Prk1p 

         Based on the presence of recognition sequence of Prk1p in Syp1p and its possible 

function in actin cytoskeleton, Syp1p was chosen for study of its functional relationship 

with Prk1p. Indeed, the results showed that Syp1p can be phosphorylated by Prk1p in 

vitro and possibly in vivo as well. The functions of Syp1p in suppression of pfy1Δ mutant 

and elongated bud induction also appear to be affected by phosphorylation. These 

findings suggest that Syp1p is a novel regulatory target of Prk1p.  

            Prk1p is known to be involved in the regulation of cell polarity. Firstly, many 

proteins such as Bni1p, Bnr1p, Bud6p, Spa2p, Bud2p and Bud3p, which contain 

canonical phosphorylation motifs of Prk1p play a role in polarity establishment, but not 

endocytosis (Huang et al., 2003). Bni1p and Bnr1p are formins in yeast which are 

required for actin cable formation so as to establish polarized secretion (Evangelista et 

al., 2002; Sagot et al., 2002a). Both Bud6p and Spa2p are components of the polarisome 
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which is important for regulating the activity of formins and other cell polarity functions 

(Fujiwara et al., 1998; Moseley and Goode, 2005). Bud2p and bud3p, together with 

septins, are necessary for bud site selection (Chant, 1999). It is possible that Prk1p plays 

a role in cell polarity through regulating the functions or interactions of these proteins. 

Secondly, overexpressing Prk1p or Ark1p resulted in cells with elongated buds or other 

abnormally shaped buds (Cope et al., 1999). These phenotypes are similar to the mutants 

with disorganized septins. This observation suggests that Prk1p kinase family has a role 

in cell polarity. Therefore, it would be interesting to study whether Syp1p has functional 

relationships with these Prk1p potential targets.  

              To understand the mechanisms of how Prk1p regulates the functions of Syp1p, it 

is necessary to study the molecular functions of Syp1p and identify the interaction 

partners of Syp1p. In the following chapters, the findings of Syp1p functions in actin 

cytoskeleton (chapter 4) and septins (chapter 5) will be presented. 
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4.1 Introduction 

               Limited studies so far suggest that Syp1p may play a role in actin cytoskeleton 

in relation to cell polarity. Overexpressing Syp1p restores the actin polarity in the 

profilin-deleted cell (Marcoux et al., 2000).  Profilin-deficient cells have depolarized 

actin patches but no actin cable, which result in large, rounded cells that undergo cell 

lysis at high temperature. These phenotypes are consistent with the molecular function of 

profilin in promoting formin-nucleated actin cable assembly (Sagot et al., 2002b; 

Moseley et al., 2004). Therefore, the function of Syp1p in cell polarity might be related 

to actin cable formation. In addition to its possible role in actin cables, Syp1p may play a 

role in the organization or regulation of actin patches. Firstly, similar to cortical actin 

patches, Syp1p is localized to the sites of cell growth, such as incipient bud site, bud neck 

and bud tip (Marcoux et al., 2000). Secondly, using the tandem-affinity purification 

(TAP) and mass spectrometry in a large-scale approach, Syp1p was found in the Las17p 

complex (Gavin et al., 2002). Las17p is an important NPF of Arp2/3p complex required 

for actin patches formation (Li, 1997). The Las17p complex also includes Sla1p and 

Sla2p; both of which are regulators of actin patches. These findings indicate that Syp1 

may also have a role in the function or regulation of actin patches. Indeed, Syp1p was 

found to associate with Sla1p physically in this study (see section 4.2.3). Therefore, three 

perspectives on the functions of Syp1p in actin cytoskeleton were investigated: 1) its 

functional relationship with profilin (Pfy1p) and Bni1p; 2) the localization 

interdependence between Syp1p and actin cytoskeleton; 3) its functional relationship with 

Sla1p.   
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4.2 Results 

4.2.1 Functional relationship between Syp1p and Pfy1p/Bni1p 

4.2.1.1 Syp1p overexpression partially suppresses the phenotypes of pfy1Δ mutant 

           As demonstrated in chapter 3, Syp1p overexpression partially suppressed ts of 

pfy1Δ cells. To test whether high copy of SYP1 can suppress other phenotypes of pfy1Δ 

mutant, the sensitivity to Calcofluor White (CFW) was examined. Calcofluor White 

amplifies the effect of cell wall defects, causing the mutant cells to stop growing at low 

concentrations of CFW (Ram et al., 1994). pfy1Δ cells have cell wall defects and 

abnormal chitin deposition (Haarer et al., 1990). pfy1Δ cells are sensitive to growth on 

CFW-containing medium at 25°C (Fig. 4.1A, row 2). However, high copy of SYP1 could 

not suppress the growth sensitivity of pfy1Δ cells on the Calcofluor White medium (Fig. 

4.1A, row 3). Consistently, chitin deposition was still abnormal in these cells with Syp1p 

overexpression (Fig. 4.1B, frame c). To investigate whether overexpressing Syp1p 

restores actin polarity to pfy1Δ cells, the actin cytoskeleton in pfy1∆ cells overexpressing 

Syp1p was studied in detail. In pfy1∆ cells overexpressing Syp1p, actin patches are more 

concentrated in the small bud and the mother-daughter necks compared to cells with 

control vector (Fig. 4.1C, frame c, arrows). However, numerous actin patches were still 

observed in the mother site of the small-budded cells with Syp1p overexpression whereas 

there were only few actin patches observed in the mother cells in the wild-type control 

(Fig. 4.1C). Additionally, there was no actin cable visible in pfy1∆ cells transformed with 

either vector or high copy of SYP1 (Fig. 4.1C, frame b-c). These results indicate that 

overexpressing Syp1p partially suppresses the actin cytoskeleton defect of pfy1∆ cells.  
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Figure 4.1 Syp1p overexpression partially suppressed phenotypes of pfy1Δ mutant. 
The strains YWJ128 (pfy1Δ/vector) and YWJ129 (pfy1Δ/424-SYP1) were used in these 
experiments. W303 transformed with empty vector was used as a positive control. (A) 
The strains were grown on YEPD plate, replica-plated onto YEPD plate containing 1 
mg/ml Calcofluor White (CFW), and incubated at 25°C for 1 day before being 
photographed. (B-C) The strains were grown at 25°C to log phase and fixed for 
Calcofluor White staining (B) and actin staining using phalloidin (C). The arrows show 
the polarized actin in Syp1p overexpressing cells.  Bars, 5 μm. 
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4.2.1.2 Syp1p overexpression suppresses the phenotypes of bni1∆ mutant 

             Profilin is an important stimulator of Bni1p-dependent actin cable formation 

(Sagot et al., 2002b). The bni1 bnr1 mutant has similar cell polarity defects as the pfy1∆ 

mutant, such as defective morphogenesis and depolarized actin patches (Imamura et al., 

1997).  To understand the molecular mechanism behind the suppression of profilin 

deletion mutant by high copy SYP1, the functional relationship between Syp1p and Bni1p 

was investigated. First, suppression of the temperature sensitivity of bni1∆ mutant by 

Syp1p overexpression was tested. Indeed, the temperature sensitivity of bni1Δ cells could 

be suppressed by Syp1p overexpression (Fig. 4.2A). bni1Δ cells expressing high copy 

SYP1 still grew at 38oC whereas the mutant cells with control vector were inviable (Fig. 

4.2A).  

             To investigate whether overexpressing Syp1p could also suppress the actin defect 

of  bni1Δ cells, the mutant cells transformed with control vector, one copy of BNI, or 

high copy of SYP1 were grew overnight at 37°C before actin staining.  bni1Δ cells 

showed severe defects: the cell morphology was abnormal with large round cells attached 

together indicative of cytokinesis defect; no actin cable was visible and the actin patches 

lost the polarity and distributed randomly in the cell cytosol (Fig. 4.2B, middle).  One 

copy of BNI1 could restore the normal morphology and actin cable formation to the 

bni1Δ cells (Fig. 4.2B, left).  High copy SYP1 also suppressed some of the deficient 

phenotypes of bni1Δ mutant. In the bni1Δ cells overexpressing Syp1p, the cell size 

became normal although cytokinesis defect still existed. Additionally, actin patches 

localized to the cell membrane periphery instead of diffusing to the cytoplasm as in the 
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Figure 4.2 Syp1p overexpression partially suppressed phenotypes of bni1Δ mutant. 
(A). W303 and bni1∆ (YGS223) cells were transformed with vector p424 or pSYP1-HA-
424 to get the trains YWJ720 (W303/424), YWJ721 (W303/424-SYP1), YWJ722 
(bni1∆/424) and YWJ723 (bni1∆/424-SYP1). These strains were grown at 28°C on YPD 
plate. The plate was replica-plated onto two YPD plates. These replica plates were 
incubated at 28°C and 37°C for 2 days respectively. (B) The strains, YWJ724 
(bni1∆/314-BNI1), YWJ722 (bni1∆/424) and YWJ723 (bni1∆/424-SYP1) were grown at 
25°C to log phase. The temperature was then shifted to 37°C and the cells grew another 
16 hours at this temperature. The samples were fixed and stained with phalloidin. Bar, 5 
μm. 
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bni1Δ cells. However, actin patches still lost their polarity and no cables were visible in 

these cells (Fig. 4.2B, right). These results indicate that overexpressing Syp1p partially 

suppresses the deficient phenotypes of bni1Δ cells.  

 

4.2.1.3 Polarized localization and function of Syp1p depend on profilin and Bni1p 

            To study whether Pfy1p and Bni1p were required for the Syp1p localization, 

SYP1-GFP was integrated into both the pfy1Δ and bni1Δ mutants to observe its 

localization. At 25°C, the localization of Syp1-GFP was normal in  pfy1Δ cells. However, 

at 30oC, Syp1p-GFP was diffused to the cell membrane periphery (Fig. 4.3A). In 

addition, pfy1Δ cell was observed to have cytoplasmic Syp1p-GFP (Fig. 4.3A, arrow 

heads), which was not seen in wild-type cells.  These findings suggest that the polarized 

localization of Syp1p is dependent on profilin. The diffusion of Syp1p is more severe in 

bni1Δ cells than in  pfy1Δ cells at the same temperature. Syp1p was depolarized even at 

25°C in bni1Δ cells (Fig. 4.3B). Syp1p could no longer concentrate to the small bud in 

bni1Δ cells (Fig. 4.3B) whereas this localization pattern was still observed in some pfy1Δ 

cells (Fig. 4.3A). These results indicate that both Pfy1p and Bni1p are required for the 

polarized localization of Syp1p. Since actin cytoskeleton loses its polarity in both pfy1Δ 

and bni1Δ mutants, the depolarization of Syp1p in these mutants could be due to the actin 

cytoskeleton defect.  

             In addition to the depolarization of Syp1p, BNI1 deletion also abolished the 

elongation bud phenotype caused by Syp1p overexpression (Fig. 4.4). Overexpressing 

Syp1p in wild-type cells results in hyper-polarized cells with elongated buds as 

previously reported (Fig. 4.4, top) (Marcoux et al., 2000). However, there was no 
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elongated bud observed in bni1Δ cells with Syp1p overexpression (Fig. 4.4, bottom). 

Similar result was also observed in pfy1Δ cells (data not shown). These findings suggest 

that the hyperpolarized growth induced by Syp1p overexpression is dependent on Bni1p 

and profilin. 

 

 

 
Figure 4.3 Depolarization of Syp1p localization in pfy1 and bni1 mutants.  (A) W303 
and pfy1Δ mutant integrated with SYP1-GFP (strains YMC533 and YWJ137 
respectively) were grown to mid-log phase in YEPD at 25°C and then shifted to 37°C for 
1 h. Syp1p-GFP of different samples was visualized. Arrow heads show Syp1p-GFP in 
the cytoplasm. (B)  W303 and bni1Δ mutant transformed with pSYP1-GFP-314 (strains 
YWJ107 and YWJ207 respectively) were grown to mid-log phase in YEPD at 25°C and 
examined for the Syp1p-GFP localization. Bars, 5 μm. 
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Figure 4.4 BNI1 deletion abolished the 
elongated bud induced by Syp1p 
overexpression. YWJ63 (W303/vector), 
YWJ89 (W303/pGal-SYP1-HA), YWJ213 
(bni1Δ/vector), YWJ214 (bni1Δ/pGal-
SYP1-HA) were induced for Syp1p 
overexpression for 7 h as stated above.  
The samples were taken and examined for 
morphology. Bar, 5 μm. 

 

 

4.2.2  Localization interdependency between Syp1p and actin cytoskeleton 

4.2.2.1 Dependency of Syp1p polarized localization on actin cytoskeleton 

To further investigate the functional relationship between Syp1p and actin 

cytoskeleton, the localization pattern of Syp1p and that of actin cytoskeleton were 

compared. Syp1p-GFP was found to colocalize with actin cortical patches in different 

cell cycle stages (Fig. 4.5).  For example, both Syp1p and actin patches concentrated to 

the incipient bud site in unbudded cells (Fig. 4.5, frame 1-2), localized to the tip and/or 

membrane periphery of small buds (Fig. 4.5, frame 3-5), formed two large patches with 

one each at the mother and daughter sides of the neck in large budded cells (Fig. 4.5, 

frame 6-7). However, Syp1p-GFP do not colocalized with actin cables as shown in 

Figure 4.5, frame 2, 3, 6. Also, when the bud was growing, some fraction of Syp1p-GFP 

was observed to remain concentrated at the mother-daughter neck while most of the actin 

patches already localized to the buds (Fig. 4.5, frame 4-5).  These results indicate that the 
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cellular localization of Syp1p is tightly linked to actin patches at the active growth sites 

and Syp1p may play additional roles in the bud neck.  

             The cellular localization of Syp1p was also found to be strictly dependent on 

actin cytoskeleton.  Upon treatment with Lat A, a drug that disassembles the actin 

filaments (Ayscough, 1998), Syp1p-GFP was diffused to the whole cell membrane 

periphery (Fig. 4.6A). Before Lat A treatment, both Syp1p-GFP and actin polarized to the 

bud or bud neck (Fig. 4.6A, left). However, after 15 minutes of Lat A treatment, the actin 

filaments disassembled and were diffused to all over the cytoplasm; similarly, Syp1p lost 

its polarized localization (Fig. 4.6A, right), but was still able to localize to the membrane 

periphery. In the control cells which were treated with DMSO, both Syp1p and actin 

cytoskeleton remained polarized (Fig. 4.6A).  

 

 

 
Figure 4.5 Colocalization between Syp1p and actin cytoskeleton. W303 strain 
integrated with SYP1-GFP (YMC533) was cultured to mid-log phase in YEPD at 30°C 
and stained with phalloidin. The sample was examined for Syp1p-GFP and actin 
cytoskeleton. The frames show the different cell cycle stages.  The images of Syp1p-GFP 
and actin are merged into yellow. Bar, 5 μm. 
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               To further study the dependency of Syp1p polarized localization on actin 

cytoskeleton, the act1-1 ts mutant was used to examine the localization of Syp1p at non-

permissive temperature. At the permissive temperature, the act1-1 mutant grew well.  

Under this condition, both Syp1p-GFP and actin cytoskeleton displayed a normal pattern 

of localization similar to the wild-type strain (Fig. 4.6B, upper).  However, at the non-

permissive temperature of 37°C, actin patches depolarized to all over the cell membrane 

periphery (Fig. 4.6B, lower). Similarly, Syp1p lost its polarity and diffused to cell 

membrane as well (Fig. 4.6B, lower). These results further indicate that the polarity of 

Syp1p localization is dependent on the intact actin cytoskeleton. 

 

4.2.2.2  Polarity defects of actin patches in cells overexpressing Syp1p 

            Although the localization of actin cytoskeleton is normal in syp1Δ cells (Marcoux 

et al., 2000),  it was found that Syp1p overexpression resulted in the depolarization of 

actin patches. As shown in Fig. 4.7A, overexpressing Syp1p induced elongated buds (Fig. 

4.7A, arrows, also see chapter 5 for more details). The organization of actin patches in a 

fraction of the cells was abnormal. Numerous patches were observed in the mother site in 

42% of budded cells (small- and medium-sized buds) although actin patches also 

localized in the elongated bud (Fig. 4.7A). In comparison, only about 19% of the budded 

cells displayed depolarized actin patches in the vector control (Fig. 4.7A). These results 

suggest that Syp1p overexpression depolarizes the actin patches in yeast. These 

observations also suggest that the actin patches in cells overexpressing Syp1p have two 

types of distribution: one is localized in the elongated bud to support the hyperpolarized 

growth; the other is depolarized in the mother site. 
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Figure 4.6 The dependence of Syp1p polarized localization on actin cytoskeleton. (A) 
Actin-dependent manner of Syp1p polarity. The strain YMC533 (W303::SYP1-GFP) was 
cultured to mid-log phase in YEPD at 30°C and then treated with Lat A or DMSO for 15 
min. The samples were stained with phalloidin and examined for Syp1p-GFP and actin 
cytoskeleton. The images of Syp1p-GFP and actin are merged into yellow. (B). 
Depolarization of Syp1p localization in actin mutant. The act1-1 mutant (DDY335) 
integrated with SYP1-GFP (YWJ33) was grown to mid-log phase in YEPD at 25°C and 
then shifted to 37°C for 1 h. The samples were fixed and stained with phalloidin. Bars, 5 
μm.   
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           It is known that defects of actin cytoskeleton organization are often accompanied 

by random bud site selection (Yang et al., 1997). Wild-type haploid yeast cells normally 

form the new bud from a position proximal to the previous division site, and this is 

referred to as the axial budding pattern (Chant and Pringle, 1991; Casamayor and Snyder, 

2002).  Budding patterns can be examined and scored by staining cells with Calcofluor 

which labels chitin deposited on the cell wall of bud sites. To gather additional evidence 

of the actin cytoskeleton defect in cells overexpressing Syp1p, the budding pattern of the 

cells with Syp1p overexpression was examined.  The wild-type strain used in this study, 

W303, has been shown to contain a bud4 mutation and therefore exhibits a higher ratio of 

bipolar budding pattern (Voth et al., 2005). Consistently, most of cells expressing the 

empty vector displayed the axial or bipolar budding pattern (Fig. 4.7B, upper), whereas 

for cells with Syp1p overexpression, 30% of cells displayed random budding pattern, 

which is 15% more than the cells expressing the control vector (Fig. 4.7, bottom) (about 

200 cells with more than 3 bud scars were scored). This random bud site selection was 

chosen by cells regardless of whether the cell is in a normal morphology or with an 

elongated bud (Fig. 4.7B, bottom). This shows that cells overexpressing Syp1p were 

defective in bud site selection. The results also confirmed the finding that Syp1p 

overexpression results in the depolarization of actin patches.  

 

4.2.3 Association of Syp1p with Sla1p 

4.2.3.1 Interaction between Syp1p and Sla1p in vitro and in vivo 

              The interdependence of localization of Syp1 and actin cytoskeleton suggests that 

Syp1p may interact with actin or actin-associated proteins. There is no actin binding 
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Figure 4.7 Syp1p overexpression depolarized actin cytoskeleton and chitin 
deposition. The strains, YWJ63 (vector) and YWJ89 (Gal-SYP1-GFP) were grown at 
30°C to log phase and added 2% galactose to induce Syp1p overexpression for 7 hours. 
The samples were fixed for actin cytoskeleton staining using phalloidin (A) and bud scar 
staining using calcofluor white (B). The statistical data of actin depolarization and 
budding patterns are shown in the right panels. Arrows show the elongated buds and 
arrow heads indicate the depolarized actin patches.  Bars, 5 μm. 
 
 
 
 

motif in the Syp1p sequence and the interaction between Syp1p and actin was not 

observed by the yeast two-hybrid assay (data not shown). Therefore, it is unlikely that 

Syp1p can bind directly to actin. It has been reported that Syp1p is found in the complex 

of Las17p (Gavin et al., 2002), which also includes End3p, Bzz1p, Sla1p and Sla2p that 
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are regulators of actin patches. To investigate which proteins in the Las17p complex can 

directly interact with Syp1p, Sla1p was first chosen as a potential interaction partner of 

Syp1p. Firstly, the localization patterns of Syp1-YFP and Sla1-CFP were examined using 

cells that contained both tagged proteins.  Syp1-YFP was found to colocalize with Sla1-

CFP during various cell cycle stages (Fig. 4.8A). However, during bud growth, some 

fraction of Syp1-YFP remained at the mother-daughter neck while most of Sla1-CFP 

localized to the buds (Fig. 4.8A, frame 3, arrow).  These results indicate that the cellular 

localization of Syp1p is linked to Sla1p at the active growth sites especially at the early 

and late cell cycle stages.  

To study whether the localizations of Sla1p and Syp1p are inter-dependent, the 

localization of Syp1-GFP in sla1∆ cells and that of Sla1-GFP in syp1∆ cells were 

examined. No defect in Sla1-GFP localization was observed, indicating that Syp1p is not 

required for Sla1p to localize properly (Fig. 4.8B, bottom).  The cellular localization of 

Syp1p, however, was found to be dependent on Sla1p. At 25oC, Syp1-GFP was diffused 

to the whole cell membrane periphery in sla1∆ cells (Fig. 4.8B, upper).  

  The overexpression effects on the localizations of both proteins were also 

examined using wild-type cells transformed with either SYP1 or SLA1 under GAL1 

promoter.  Overexpressing Sla1p induced depolarization of Syp1p (Fig. 4.8C, left). The 

Syp1-GFP was diffused to the cytoplasm.  On the other hand, overexpression of Syp1p 

also caused depolarization of Sla1p (Fig. 4.8C, right). In cells overexpressing Syp1p, the 

cortical patches of Sla1p depolarized to the whole cell membrane periphery. These results 

indicate that the polarized localization of Syp1p is dependent on Sla1p. 
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Figure 4.8 Sla1p is required for the polarized localization of Syp1p. (A) 
Colocalization of Syp1p and Sla1p. W303-1A integrated with SYP1-YFP and SLA1-CFP 
(YWJ184) was cultured to mid-log phase in YEPD at 30°C and fixed for visualization of 
DIC, Syp1-YFP and Sla1-CFP.  The images of Syp1-YFP and Sla1-CFP are merged into 
yellow.  (B) Depolarization of Syp1p localization in sla1 mutant. The strains YWJ40 
(syp1Δ/pSYP1-GFP), YWJ209 (sla1Δ/pSYP1-GFP), YWJ186 (W303::SLA1-GFP) and 
YWJ189 (syp1Δ::SLA1-GFP) were grown to mid-log phase in YEPD at 25°C. The 
samples were fixed for visualization of Syp1-GFP or Sla1-GFP. (C) Overexpression 
effect on the localization of Syp1p or Sla1p. The strains, YWJ217 (W303::SYP1-
GFP/vector), YWJ218 (W303::SYP1-GFP/pGal-SLA1) , YWJ202 (W303::SLA1-
GFP/vector) and YWJ203 (W303::SLA1-GFP/pGal-SYP1) were grown at 30°C to log 
phase and added 2% galactose to induce Sla1p or Syp1p overexpression for 7 hours.  The 
samples were examined for Syp1-GFP or Sla1-GFP localization. Bars, 5 μm. 
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           To investigate the possibility that Syp1p may physically associate with Sla1p in 

vivo, the two hybrid assay was carried out. As shown in Figure 4.9A upper panel, the full 

length Sla1p and different Sla1p truncations were used to test the interaction with full 

length Syp1p.  Indeed, Syp1p demonstrated binding activity with full length Sla1p and its 

N-terminus (Fig. 4.9A).  To further ascertain the interaction, two GST-SLA1 truncation 

fusion proteins, the N-terminus containing SH3 domains (SH3) and the C-terminus 

containing Sla1 repeat (RP), were used to precipitate Syp1-HA from the yeast cell 

lysates.  As shown in Figure 7B, Sla1p N-terminus was able to pull down Syp1p readily 

(Figure 7B, lane 3) whereas the Sla1p C-terminal region was not. These results suggest 

that Syp1p may bind to Sla1p SH3 domains.  

            The interaction between Syp1p and Sla1p was further confirmed using the co-

immuno-precipitation (CO-IP) assay. Wild-type cells were transformed with pGal-SLA1-

HA and/or pGal- SYP1-Myc. The extracts from cell lysates were subjected to immuno-

precipitation by the anti-HA and anti-Myc antibody respectively. As shown in the Fig. 

4.10 lane 5, a weak Syp1-Myc band was detected. However, the Syp1-Myc was not 

detected in the control samples (Fig. 4.10, lane2 and 8). These results indicate that Sla1p 

can pull down Syp1p in vivo. When using anti-Myc to IP Syp1-Myc, Sla1-HA was 

detected in the Syp1-Myc complex (Fig. 4.10, lane 6). The Sla1-HA band was not 

detected in the control samples (Fig. 4.10, lane 3 and 9). These findings suggest that 

Syp1p and Sla1p indeed associate with each other in vivo. 
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Figure 4.9 Physical interaction between Syp1p and Sla1p. (A) Two-hybrid interaction 
between pGBKT7-SYP1 and pGADT7-SLA1 full length or N-terminal/ C-terminal 
truncations was shown as the β-galactosidase activities. The schematic structures of Sla1p 
and its truncations NT, RP, SH3 are showed in the upper panel. (B) SH3 domains of 
Sla1p were required for Syp1p interaction by GST fusion proteins binding assay. 
Different Sla1p truncations (SH3 and RP as shown in A) were expressed as GST-fusion 
proteins and purified from bacteria. The yeast lysate was extracted from cells integrated 
with SYP1-HA (strain YMJ532).  The GST-fusion proteins were incubated with yeast 
lysate.  The precipitates were separated by gel electrophoresis, transferred to membrane, 
and immunoblotted with anti-HA antibody to detect Syp1p (left).  After that, the 
membrane was stained with Coomassie blue to detect GST and GST-Sla1p fusion 
proteins (right). The arrow indicates the Syp1p protein pulled down by Sla1p SH3 
domains. The arrow heads show the GST or GST fusion proteins. 
 
 
 
 

 

 Figure 4.10 Co-immunoprecipitation 
between Syp1p and Sla1p. Equal amounts 
of protein extracts prepared from W303 
containing GAL1-SYP1-Myc (YWJ221, C), 
SLA1-HA (YWJ219, A), or both (YWJ220, 
B), were subjected to anti-HA or anti-Myc 
immunoprecipitation (IP) and followed by 
SDS-PAGE and immunoblotting (IB).
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4.2.3.2 Mapping binding regions on Syp1p for Sla1p 
 
            The above results showed that Syp1p is able to interact with Sla1p N-terminal 

region which contains three SH3 domains. Since the motifs for SH3 interaction usually 

contain poly-prolines (Sparks et al., 1996; Mayer, 2001) , the poly-proline region in the 

primary sequence of Syp1p was possibly the domain to bind Sla1p. The poly-proline 

region is found to be located in the central region of Syp1p including residues 410-570 

(Fig. 4.11A). The secondary structure of Syp1p was also analyzed by DNASTAR 

software.  The alpha helix distribution and the hydrophilic plot were shown in Fig. 4.11B. 

Based on the above analyzed results, a series of Syp1p truncations tagged with HA were 

made for the GST-Sla1 SH3 fusion protein binding assay (Fig. 4.11C). The N-terminal 

region (residues 1-600) was further truncated into two parts, one containing the analyzed-

alpha-helix region (residues 1-320) and the other containing the poly prolines (residues 

320-600). As shown in Fig. 4.11D, the N-terminal region (residues 1-600, lane 2) could 

associate with Sla1p SH3 domains as strongly as full length Syp1p (lane 1) whereas the 

C-terminal region ( residues 600-870, lane 3) could not be precipitated by Sla1p. Further 

mapping of the N-terminal region showed that the residues 320-600 (Fig. 4.11E, lane 5) 

containing the poly prolines can interact with Sla1p very strongly whereas the residues 1-

320 (Fig. 4.11E, lane 4) showed very weak binding activity. These results indicate that 

Syp1p possibly utilizes its poly-proline region to physically interact with Sla1p SH3 

domains.  
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Figure 4.11 The regions of Syp1p required for Sla1p interaction. (A) The poly-
proline region (410-570 aa) in the primary sequence of Syp1p. The proline amino acid is 
highlighted as the bold character “P”.  (B) The secondly structure of Syp1p analyzed by 
DNASTAR Protean software. The distribution of alpha helixes or hydrophilic amino 
acids is shown.  (C) The schematic structures of Syp1p and its series truncations.  The 
full length Syp1p and its different truncations were expressed from GAL1 promoter. The 
left number 1-6 indicate the different plasmids used in the experiments below. Numbers 
on the top of bars indicate the amino acid positions.  (D-E) Yeast lysates were extracted 
from different strains transformed with plasmids 1-5 respectively. The GST-SH3 fusion 
protein and GST alone were beads-immobilized and incubated with yeast lysates. The 
following binding assay procedures were the same as the one mentioned in Fig. 4.9B. 
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4.2.3.3  No endocytosis defect in syp1Δ cells or cells overexpressing Syp1p 

          Sla1p is important for the actin-mediated endocytosis (Tang et al., 2000; Warren et 

al., 2002; Piao et al., 2007). To examine whether Syp1p also plays a role in endocytosis, 

the SYP1 deletion cells and Syp1p overexpressed cells were used to assay endocytic 

function. Uptake of the fluorescence marker Lucifer yellow (LY) was used to monitor the 

fluid-phase endocytosis (Dulic et al., 1991). In syp1∆ cells, clear LY staining in the 

vacuoles could be observed (Fig. 4.12A). This result indicates that Syp1p was not 

required for the fluid-phase endocytosis. To examine whether Syp1p is required for the 

receptor-mediated endocytosis, Uracil uptake (Fur4p assay) was carried out (Volland et 

al., 1994). Uracil uptake was very slow in the positive control pan1-4 mutant which is 

kown to have endocytosis defect (Tang et al., 1997) (Fig. 4.12B). However, both wild 

type and SYP1 deletion cells had similar uracil uptake rate, although at the first time point 

the uptake rate of syp1∆ cells appeared slower (Fig. 4.12B). These results indicate that 

Syp1p is not required for the receptor-mediated endocytosis.  

              The LY uptake assay was further carried out in cells overexpressing Syp1p. The 

clear LY staining in the vacuoles can be observed in these cells (Fig. 4.12C), indicating 

that there is no endocytosis defect in cells overexpressing Syp1p. In summary, these 

observations imply that Syp1p is not required for endocytosis. 
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Figure 4.12 SYP1 deletion and overexpression did not cause endocytosis defects. (A) 
LY uptake in wild-type (W303) and syp1Δ (YMC515) cells. The cells were grown at 
30°C to log phase. After 2 h of incubation with LY, cells were examined under a 
microscope with fluorescein isothiocyanate and Nomarski optics. (B) Fur4p assay in the 
W303 (YWJ100), syp1Δ (YWJ101) and pan1-4 (YWJ99) cells. Uracil uptake (permease 
activity) was measured at 37°C at various time points after the addition of cycloheximide. 
The results are expressed as a percentage of the initial activity. (C) LY uptake in YWJ63 
(W303/vector) and YWJ89 (W303/Gal-SYP1) cells. The Strains were grown at 30°C to 
log phase and 2% galactose was added to induce Syp1p overexpression for 7 hours. After 
2 h of incubation with LY at 25°C or 37°C, cells were examined under a microscope with 
fluorescein isothiocyanate and Nomarski optics. Bars, 5μm. 
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4.3 Discussion 

         Since its identification as a multi-copy suppressor of the PFY1 deletion mutant 

(Marcoux et al., 2000), the exact function of Syp1p in actin cytoskeleton has remained 

largely unknown. In this study, the functional relationship between Syp1p and actin 

cytoskeleton was investigated. Syp1p was found to have functional relationships with 

profilin and Bni1p. The localization of Syp1p was also revealed to be tightly related to 

actin cytoskeleton. Additionally, Syp1p was shown to be able to physically interact with 

Sla1p. 

 

4.3.1 Evidence for Syp1p functioning in actin cytoskeleton organization        

          Although syp1Δ cells had no significant alterations in the organization or the 

function of the actin cytoskeleton, several lines of evidence suggest that Syp1p functions 

in actin cytoskeleton organization. Firstly, overexpressing Syp1p partially suppresses the 

deficient phenotypes of bni1∆ and pfy1Δ mutants. These suppressions might be due to the 

partial restoration of proper actin cytoskeleton organization. Secondly, overexpressing 

Syp1p partially depolarizes the actin patches in wild-type cells. Although actin patches 

were concentrated in the elongated buds of the cells overexpressing Syp1p, numerous 

actin patches were also found in mother cells. These findings suggest that Syp1p plays a 

role in actin patch organization or its regulation. Thirdly, Syp1p colocalizes with the actin 

cytoskeleton throughout most of the cell cycle.  Additionally, the polarized localization of 

Syp1p is highly dependent on the integrity of actin cytoskeleton. Syp1p loses its 

polarized localization in the mutants of genes which are required for the actin 

cytoskeleton organization, such as BNI1, PFY1, SLA1, and ACT1. These observations 
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indicate that the function of Syp1p is linked to the actin cytoskeleton. Fourthly, Syp1p 

physically interacts with Sla1p in vitro and in vivo.  Syp1p was found to interact with 

Slap directly in the two hybrid assay and can be precipitated from cell extracts by Sla1p 

SH3 domain. Finally, the N-terminal region of Syp1p is homologous with the domains 

whose functions are related to actin cytoskeleton or trafficking (Fig. 4.13 and table 3), 

such as Tesp/Cip4p homology domain (Lippincott and Li, 2000; Chitu and Stanley, 

2007), Sec7p domain (Zeghouf et al., 2005), Kinesin-like domain (Endow, 2003) and 

Sla2p domain (Holtzman et al., 1993; Engqvist-Goldstein et al., 1999). In summary, the 

functions of Syp1p are related to actin cytoskeleton organization.  

 

 

 

 
Figure 4.13 The conserved domains in Syp1p through searching the proteins 
databases. The conserved domains on the Syp1p were searched using the program in 
NCBI website for the conserved domains search against SMART, Pfam and KOG 
databases under the threshold of E-value below 10. The matching domains which have 
more than 10% homology with Syp1p primary sequences and function in cytoskeleton or 
trafficking are shown as the bars and listed in Table 3. The numbers above the scale 
present the length of amino acid sequence.   
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Table 3. The homologous domains with Syp1p through searching against databases  

 

   Homologous domains Pct.  
Aligned 

Match 
region(aa)

E-
value 

1 smart00055, Fes/CIP4 homology domain, cytoskeleton   67 28-107 0.051 

2 smart00222, Sec7, Sec7 domain, trafficking   22 145-191 2.6 

3  pfam03148, Tektin, Tektin family, cytoskeletal proteins   40 20-182 0.88 

4 pfam00038, Filament, Intermediate filament protein   40 42-180 1.8 

5 KOG0243, Kinesin-like protein , cytoskeleton protein   21 35-268 0.0009

6  KOG2176, Exocyst complex, subunit SEC15, trafficking   23 74-242 0.3 

7   KOG0307, Vesicle coat complex COPII, trafficking   12.9 397-532 0.38 

8    KOG0980, Actin-binding protein SLA2, cytoskeleton   27 20-269 0.92 

9    KOG0243, Kinesin-like protein, cytoskeleton   11.8 13-132 1.6 
 

 
 

 

4.3.2 Functional relationship between Syp1p and profilin/ Bni1p 

             Syp1p may play a role in actin organization through regulation of profilin and 

Bni1p. Firstly, the localization of Syp1p is similar to many polarity proteins such as 

polarisome components, Bni1p, Spa2 and Bud6p (Madden and Snyder, 1998; Sheu et al., 

1998; Ozaki-Kuroda et al., 2001). All of them first appear at the incipient bud site, then 

localize to the bud tip during bud growth and finally to the bud neck again during 

cytokinesis. Secondly, overexpressing Syp1p suppresses the ts phenotype and actin 

patches depolarization of the pfy1Δ and bni1Δ mutants.  
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              Bni1p/profilin stimulates actin cable assembly. Actin cables are responsible for 

polarization of cortical patches. Therefore, the restoration of acitn patch polarity by 

Syp1p overexpression is possibly due to enhancing cable formation. However, in both 

pfy1Δ and bni1Δ  mutants with Syp1p overexpression, the actin cable is still invisible. It 

is possible that cables could be partially restored but they are difficult to be observed by 

fluorescene microscopy.  

            The restoration of actin patch polarization by Syp1p overexpression in the pfy1Δ 

and bni1Δ mutants could also be due to other mechanisms that bypass the actin cable 

formation. For example, overexpressing Rho2p, a GTPase which is not required for 

formin activity, can restore the polarity of profilin deletion mutant by bypassing the need 

for actin cables (Marcoux et al., 2000). Another example is that Sec3p, a protein that 

functions in exocytosis and does not directly regulate actin, suppressed the profilin 

mutation  pfy1-111 when overexpressed (Finger and Novick, 1997). Therefore, the 

mechanism of the suppression of bni1Δ and pfy1Δ mutants by Syp1p overexpression 

might be similar as the one of Rho2p or Sec3p.  

 

4.3.3 Functional relationship between Syp1p and Sla1p 

          Sla1p plays an important role in actin patch-mediated endocytosis (Holtzman et al., 

1993; Warren et al., 2002). This study has demonstrated that Syp1p colocalizes with 

Sla1p and its polarized localization is dependent on Sla1p. Syp1p is also discovered to 

interact with Sla1p SH3 domain. It was suspected that Syp1p might also be involved in 

actin-mediated endocytosis. However, although Syp1p overexpression depolarizes the 

localization of Sla1p, there is no endocytic defect found in the cells overexpressing 
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Syp1p. These results suggest that Syp1p might not be required for the function or 

regulation of actin-mediated endocytosis.  

            However, Syp1p may be involved in the Sla1p-regulated actin organization.  

Sla1p forms a complex with Arp2/3 activators, such as Pan1p  and Las17p to regulate 

actin patch organization (Tang et al., 2000; Warren et al., 2002). It has been reported that 

the Sla1p SH3 domain inhibits the actin-polymerization activity of Las17p (Rodal et al., 

2003). As the poly-proline region of Syp1p can interact with the Sla1p SH3 domain, 

Syp1p might play a role in the regulation of Las17p-mediated actin assembly through its 

association with Sla1p. The interaction between Syp1p and Sla1p might release the 

inhibition of Las17p by Sla1p. This hypothesis may explain why overexpressing Syp1p 

results in depolarized actin patches in the mother cells. It is worthwhile to test the actin 

assembly activity of Las17p regulated by Syp1p and Sla1p in vitro and in vivo.  

                The random budding phenotype caused by Syp1p overexpression suggests that 

Syp1p may cooperate with Sla1p or other actin-associated proteins to achieve the bipolar 

bud site selection. Although the mechanism is still unknown, many actin-associated 

proteins, especially the proteins for regulating actin patch assembly, such as Pan1p, Sla1p 

and Abp1p, cause random bud site selection in the diploid cells rather than the 

preferential bipolar budding pattern (Tang and Cai, 1996; Yang et al., 1997). The wild 

type strain used in this study, W303, exhibits a higher ratio of bipolar budding pattern 

(Voth et al., 2005); and overexpressing Syp1p results in higher percentage of random bud 

site selection , which is similar to the phenotype of some mutants of actin cytoskeleton-

associated proteins. These results suggest that Syp1p might play a role in bipolar bud site 

selection through its interaction with actin patch-associated proteins. 
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5.1 Introduction 

        Syp1p was first identified as a high copy suppressor of pfy1Δ mutant (Marcoux et 

al., 2000). However, several observations suggest that Syp1p has other function in 

addition to its role in actin cytoskeleton. Firstly, the localization pattern of Syp1p is 

different from that of actin cytoskeleton (setion 4.2.2, Fig. 4.6). Throughout most stages 

of the cell cycle, a fraction of Syp1p always stays in the bud neck. Especially in the 

medium-budded cell, most of actin patches localize to the bud whereas a portion of 

Syp1p still localize at the bud neck. These findings suggest that Syp1p has some function 

in the bud neck. Additionally, overexpressing Syp1p results in the elongated bud 

phenotype, similar to those proteins that are involved in the organization of septins 

(Lippincott and Li, 1998a; Longtine et al., 1998; Gladfelter et al., 2004; Gladfelter et al., 

2005). Therefore, the functional relationship between Syp1p and septins was investigated 

in this study. 

 

5.2 Results 

5.2.1 Syp1p overexpression causes Septin disorganization 

First of all, the hypothesis that the elongated bud phenotype induced by Syp1p 

overproduction could be attributed to septin abnormalities was examined.  The strain 

integrated with CDC12-GFP was transformed with GAL1-SYP1-HA plasmid.  After 7 

hours of galactose induction at 30oC, elongated buds became evident in some population 

of cells (Fig. 5.1A, arrow heads).  Quantitative analysis showed that 46% of single 

nucleus (excluding the ones with very small buds) and 23% of two nuclei budded cells 

had elongated bud.  These ratios did not change greatly after further incubation for a few  
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Figure 5.1  Septin disorganization caused by Syp1p overexpression. (A) Wild-type cell 
containing CDC12-GFP (YMC517) was transformed with pGal-SYP1-HA or the vector. The 
resulting strains, YMC518 (vector) and YMC519 (pGal-SYP1-HA), were cultured in raffinose at 
30°C to log phase followed by addition of galactose to 2% to induce Syp1p expression.  After 7 
h, samples were taken, sonicated and prepared for microscopy.  The elongated buds are marked 
by arrow heads and disorganized septin structures by arrows. The quantitative data of cell 
morphology and septin organization in the budded cells are shown in the right panels.  (B) Left. 
YMC520 (W303::vector), YMC521 (W303:: Gal-SYP1-HA), YMC522 (swe1Δ::vector), 
YMC523 (swe1Δ::Gal-SYP1-HA) were induced for Syp1p overexpression for 7 h as stated above.  
The samples were taken and examined for morphology.  Right. The swe1∆ strain integrated with 
Gal-SYP1 transformed with vector (YMC524) or SWE1 (YMC525) were cultured and induced 
for Syp1p overexpression for 7 h and examined similarly as stated above. Bars, 5 μm. 
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more hours in galactose (data not shown).  Interestingly, many Syp1p-overexpressing 

cells exhibited a septin organization defect of one kind or another (Fig. 5.1A, arrows).  

Some cells had deformed septin filaments at the bud neck (Fig. 5.1A, arrow 1-3); others 

had their septin filaments diffused to the cell membrane (Fig. 5.1A, arrow 4-7) and still 

others had little or no septin filaments visible.  Overall, about 34% of single nucleus and 

57% of two nuclear budded cells displayed abnormal septin structures.  In comparison, 

similar septin abnormalities were rarely found in the vector-transformed control cells.  

This experiment indicates that Syp1p overexpression can disrupt the normal septin 

organization and the septin defects may be the cause of the elongated bud phenotype 

exhibited by some of these cells.  Same results were also obtained using Cdc10-GFP as a 

septin filament marker (data not shown). 

             It has been reported that septin defects induce bud elongation through the Swe1p-

dependent cell cycle delay (Longtine et al., 2000; Lew, 2003).  To investigate whether 

the elongated bud phenotype in the Syp1p overexpression cells is dependent on Swe1p, 

the same experiment was carried out in the swe1∆ mutant.  As shown in Figure 5.1B, 

deletion of SWE1 effectively suppressed the elongated-bud phenotype caused by 

overexpression of Syp1p (Fig. 5.1B), and reintroducing the SWE1 gene back into the 

mutant restored the phenotype (Fig. 5.1B).  This result confirms the bud elongation 

caused by Syp1p overexpression to be Swe1p-dependent, and thereby supports the 

suggestion that Syp1p may function to affect septin organization in vivo. 

Cells experiencing Syp1p overexpression over a more prolonged period of time 

also exhibited cytokinesis defects.  When overnight cultures in galactose were diluted 

into fresh galactose medium and allowed to continue the Syp1p expression for another 7 
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h, about 40% of cells became multi-budded (Fig. 5.2A).   Accordingly, the septin 

organization was also abnormal in these multi-budded cells (Fig. 5.2A, arrows).   

 

 

 
Figure 5.2 Cytokinesis defect and septin disorganization in α-factor treated cells 
caused by Syp1p overexpression.  (A) Wild type cells containing CDC10-GFP was 
integrated with vector or Gal-SYP1-HA in the ura3 locus, and the respective strains 
(YMC526 and YMC527) were cultured overnight at 30°C in galactose medium followed 
by dilution into fresh galactose medium and incubated for another 7 hr.  The arrow head 
marks a multi-budded cell.  The arrows show the septin defect in the multi-budded cells.  
The quantitative data of the multi-budded cells are shown in graphs in the right panel.  
(B) The strains described in (A) were cultured at 30°C to log phase and induced by 
galactose for 3 h followed by addition of α-factor for 2 h.  The samples were taken for 
examination by microscopy.  The arrow heads show the septin defect in the cell 
overexpressed Syp1p. The quantitative data of septin disorganization are shown in graphs 
in the right panel. Bars, 5 μm. 
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In addition to its role in vegetative growth, the septin cytoskeleton has also been 

reported to take part in the mating process (Giot and Konopka, 1997). During mating 

pheromone treatment, the yeast cells form a projection termed “shmoo”, with the septins 

rearranged into arrays along the projection axis (Longtine et al., 1998).  To examine 

whether overexpression of Syp1p would affect septin organization during shmoo 

formation, the cells were induced by galactose for 3 h before addition of α factor into the 

same medium.  After another 2 h of incubation, remarkable septin organization defects 

were observed in these cells.  The percentage of cells with typical fibrous septin 

structures was decreased to 18% from 57% in the control cells (Fig. 5.2B).  The majority 

of the abnormal septin structures were similar to those found in the Syp1p overexpression 

cells without α factor treatment shown in Figure 5.1A, except that more pronounced 

septin aggregations were evident in this case (Fig. 5.2B, arrow heads).   

Furthermore, synthetic effects between septin mutants and Syp1p overexpression 

were observed.  Syp1p overexpression caused extraordinarily long buds in the cdc10-1 

mutant at 25oC (Fig. 5.3, arrows), accompanied by severe septin disorganizations.  There 

were no clear septin rings at the bud neck.  Instead, the septins were present as clumps 

with irregular locations in these cells (Fig. 5.3, arrow head).  At 31oC, which is a 

permissive temperature for the cdc10-1 mutant, Syp1p overexpression caused cell death 

(Fig. 5.3, right).  Same synthetic effects were also observed between Syp1p 

overexpression and another septin mutant cdc3 (data not shown).  Taken together, these 

findings confirm that overexpression of Syp1p can lead to severe defects in septin 

organization and suggest that Syp1p is functionally related to septins in yeast. 
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Figure 5.3 Synthetic lethality between cdc10 and Syp1p overexpression.  Left. The 
septin mutant cdc10-1 (YEF473-1619) containing CDC12-GFP was integrated with 
vector or Gal-SYP1-HA to generate YMC528 and YMC529 respectively.  The strains 
were cultured at 25°C to log phase and induced with galactose for 6 h.  The samples were 
taken for examination by microscopy. The arrows indicate the elongated bud cells and 
arrowheads show the septin defect in the elongated bud cells.  Right. YMC526 
(W303::vector), YMC527 (W303::Gal-SYP1), YMC528 and YMC529 were patched on a 
plate and allowed to grow at 25oC for 2 days and followed by replica-plating onto a fresh 
plate and incubated at 31oC for 2 days. Bar, 5 μm. 
 

 

5.2.2 Abnormal septin structures in HU-arrested syp1∆ cells 

As reported previously (Marcoux et al., 2000), deletion of the SYP1 gene 

generates no obvious defects in cell growth and actin organization.  In this study, syp1Δ 

cells also appeared to have normal septin structure in standard YEPD medium.  However, 

syp1Δ cells arrested with the DNA synthesis inhibitor hydroxyurea (HU) displayed much 

more elongated buds than wild type cells (Fig. 5.4A, lower left).  The mutant cells also 

exhibited a septin morphology different from that of wild type cells.  Their septin rings at 

the neck were generally bigger (Fig. 5.4A, lower right).  Upon careful measurement, the 

diameter of the septin ring at the mother-daughter neck of syp1Δ cells was 1.9 +/- 0.3 μm, 
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compared with 1.6 +/- 0.2 μm in the parental wild type cells (n>100 for each strain, Fig. 

5.4B).   This finding, together with the elongated bud morphology, suggests that the 

septin ring in the HU-arrested syp1Δ mutant may be functionally and structurally 

abnormal.   

 

 

 
Figure 5.4  Septin abnormality of the syp1Δ cells upon HU treatment.  (A) YMC517 
(W303::CDC12-GFP) and YMC516 (syp1Δ::CDC12-GFP) were cultured to log phase 
and were treated with HU for 3 hr.  The samples were collected to examine cell 
morphology and septin structures.  Bars, 5 μm.  (B) The Graph showing the diameter of 
septin rings in wild type and syp1Δ cells as measured by the MetaMorph software.  
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5.2.3 Association of Syp1p with septins 

Although Syp1p localizes to the bud neck, its localization pattern and that of 

septins have not been directly compared.  The localization patterns of Syp1-CFP and 

Cdc12-YFP in live cells were therefore examined. The two markers were found to be 

colocalized with each other in the cells of different cell cycle stages (Fig. 5.5A).  For 

example, both proteins localized to the incipient bud site in unbudded cells (Fig. 5.5A, 

arrow 1), stayed at the mother-bud neck in small budded (Fig. 5.5A, arrow 2) and large 

budded cells (Fig. 5.5A, arrow 3), and remained faintly at the division sites on both 

mother and daughter cells after cell separation (Fig. 5.5A, arrow 4).  However, the neck 

localization of Syp1p-CFP was diminished in large budded cells in comparison with 

Cdc12p-YFP (for example, Fig. 5.5A, arrow 3). When the two markers were 

superimposed, Syp1p-CFP was found to be localized at the exterior of the septin ring on 

the mother side of the collar. These results suggest that the cellular localization of Syp1p 

closely coincides with that of septins.  

As shown in Figure 5.4A, Syp1p was not required for septins to localize to the 

neck region. The cellular localization of Syp1p, however, was found to be strictly 

dependent on septins.  At the permissive temperature, the cdc10-1 mutant grew well with 

normal cell morphology.  Under this condition, both Syp1-CFP and Cdc12-GFP 

displayed normal pattern of localization similar to the one of wild type strain (Fig. 5.5B, 

left).  At the non-permissive temperature of 37oC, on the other hand, septins became 

completely diffused all over the cell (Fig. 5.5B, right), whereas Syp1p similarly lost the 

neck localization and was diffused as well.   

 

    100   



Chapter 5 Functional Relationship between Syp1p and the septin cytoskeleton 

 

 

Figure 5.5 Co-localization between Syp1p and septins.  (A) W303 strain integrated 
with SYP1-CFP and CDC12-YFP (YMC530) was examined for Syp1-CFP and Cdc12-
YFP localizations. The arrows and numbers show the positions of the proteins at different 
cell cycle stages.  (B) YMC517 (WT::CDC12-GFP), YMC531 (cdc10-1:: CDC12-GFP), 
YMC534 (WT::SYP1-CFP) and YMC535 (cdc10-1:: SYP1-CFP) was cultured at 25°C to 
log phase and one half of the culture was shifted to 37°C and the other half remained to 
be incubated at 25oC.  After 5 h, the cells were collected and fixed for visualization of 
Syp1-CFP and Cdc12-GFP.  Bars, 5 μm.   
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Figure 5.6 Physical interaction between Syp1p and septins.  (A) Two-hybrid 
interaction between Syp1p and septins shown as the β-galactosidase activities. (B) 
Different septin components were expressed as GST-fusion proteins and purified from 
bacteria. The yeast lysate was prepared from the cell integrated with SYP1-HA 
(YMC532).  The GST fusions were beads-immobilized and incubated with yeast lysate.  
The precipitates were separated by gel electrophoresis, transferred to membrane, and 
immunoblotted with anti-HA antibody to detect Syp1p (upper).  After that, the membrane 
was stained with Coomassie blue to detect GST and GST-septin fusion proteins (lower). 
The arrows indicate different GST-septin fusion proteins.  
 

 

These results suggest that Syp1p may physically associate with septins in vivo.  

To investigate this possibility, the two hybrid assay was firstly used to examine the 

interactions of Syp1p with different septin subunits.  Indeed, Syp1p demonstrated a clear 

binding activity with Cdc10p (Fig. 5.6A).  To further ascertain the interaction, GST-

fusion protein pull-down assay was carried out to precipitate Syp1p-HA from the yeast 

cell lysates.  As shown in Figure 5.6B, Cdc10p was able to pull down Syp1p readily (Fig. 

5.6B, lane 4).  Cdc12p could also pull down Syp1p in this assay, albeit somewhat less 

efficiently than Cdc10p (Fig. 5.6B, lane 6).  Longer exposure revealed that a small 
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amount of Syp1p was also present in the binding reactions of Cdc3p and Cdc11p, but not 

in that of the GST control.  These results suggest that Syp1p may bind to the septin 

filaments at a region involving Cdc10p as a major part of it.   

 

5.2.4 Dynamic localization of Syp1p in live cells 

            To better understand the function of Syp1p in septins, the dynamic behavior of 

Syp1-GFP in live cells was studied using time-lapse fluorescent microscopy.  In the early 

cell cycle stage, Syp1-GFP appeared at the incipient bud site about 8 minutes before bud 

emergence (Fig. 5.7A, arrows).  After bud emergence, it stayed on as a ring at the base of 

the bud (Fig. 5.7A and B, arrow heads). As the bud grew bigger, a portion of Syp1-GFP 

started to appear on the cortex of the bud, while the signals at the bud neck were fading 

away and eventually disappeared completely (Fig. 5.7C, frame 8, arrow).  About 16 

minutes later, some Syp1-GFP signals began to congregate to the bud neck (Fig. 5.7C, 

frame 12, arrow head).  This pattern remained until the completion of cytokinesis (Fig. 

5.7C, frame 15). After cell division, Syp1-GFP re-appeared at the incipient bud site in 

both mother and daughter cells as the next cell cycle initiated (Fig. 5.7C, frame 16).  

Therefore, the dynamic behavior of Syp1p in live cells correlates very well with that of 

septins.   
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Figure 5.7  Dynamic localization of Syp1-GFP during the cell cycle.  (A-B) Time-lapse 
fluorescence images of Syp1-GFP during and after bud emergence.  The images were taken at 2-
min intervals. The strain was YMC533. The arrows in (A) show the first appearance of Syp1-
GFP at the incipient bud site.  The arrowheads indicate the base of the buds. (C) Time-lapse 
fluorescence images of Syp1-GFP comprising the late cell cycle stages and the early stages of the 
next cycle.  The images were taken at an interval of 4 min.  YMC533 was prepared as described 
above.  The arrow indicates the disappearance of Syp1-GFP from the neck. The arrowhead shows 
the reappearance of Syp1-GFP.  Bars, 5 μm. 
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5.2.5 The effects of SYP1 deletion on septin dynamics  

To investigate the possible roles of Syp1p in the regulation of septin organization, 

the septin dynamics in syp1∆ cells were analyzed.  Wild type and syp1∆ cells carrying 

locus-integrated CDC12-GFP were examined with time-lapse microscopy.  As shown in 

Figure 5.8A, Cdc12-GFP first appeared in both the wild type and the syp1∆ cells as a 

hazy, irregularly shaped patch at the incipient bud site (Fig. 5.8A, arrows), which took 

about 4 min in the wild type to transform into a complete septin ring (Fig. 5.8A, upper, 

arrow head).  On the other hand, the same process took nearly twice as long in the syp1∆ 

cell (Fig. 5.8A, lower, arrow head).  Statistically, the average time needed for formation 

of a complete ring in syp1∆ cells (n= 21) was 8 ± 2 minutes, compared with only 5 ± 1 

minutes in the wild type cells (n= 33).  After the septin ring formation, the ring stayed in 

the mother-bud neck until its disassembly.  The time was calculated from the point of 

ring formation to the point when the septin ring started to decrease in intensity (start of 

septin disassembly), and it was about 75 min in both wild type and syp1∆ cells (n>10 for 

each strain).  Then the time from the start of septin disassembly to septin disappearance 

in either the mother or the daughter side of the neck was defined as septin disassembly 

time.  It was found that the septin disassembly time at the daughter side was significantly 

longer in syp1∆ cells than that in wild type cells.  In the wild type cell, the septin 

disassembly time at the mother side was about 20 min (Fig. 5.8B, upper, frame 1 through 

frame 10, arrowhead), while it was 28 min at the daughter side (Fig. 5.8B, upper, frame 1 

through frame 14, arrowhead).  In the syp1∆ cell, the mother side septin disassembly time 

was about 22 min, close to that of wild type (Fig. 5.8B, lower, frame 1 through frame 11,  
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Figure 5.8 Abnormal septin dynamics in syp1∆ cells and cells overexpressing Syp1p.  
YMC517 (WT) and YMC516 (syp1Δ) containing CDC12-GFP were observed for live cell septin 
dynamics. (A) The images were taken at an interval of 1 min. The arrows indicate the nascent 
septin structures appearing at the incipient bud sites. The arrowheads mark the point when a 
complete septin ring was formed.  (B) The images were taken at an interval of 2 min.  The 
arrowheads in frame 2 mark the point when the septin ring started to decrease in intensity. The 
arrowheads in frame 10 and 14 of the wild type cell, and in frame 11 and 18 of the mutant, mark 
the point when the old septins disappeared in mother and daughter cells, respectively.  (C) The 
images were taken at an interval of 1 min.  YMC518 (vector) and YMC519 (Gal-SYP1) 
containing CDC12-GFP were induced for Syp1p expression by galactose for 3 h, before being 
examined by microscopy. The arrowheads indicate the point when septin rings begin to 
disassemble in the vector-containing (upper) and the GAL-SYP1 containing (lower) cells.  Two 
representative GAL-SYP1 containing cells were shown: normal looking (a) and with an elongated 
bud (b).  Bars, 5 μm. 
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arrowhead).  However, the disassembly time in the daughter side was 36 min (Fig. 5.8B, 

lower, frame 1 through frame 18, arrowhead).  The statistical data compiled from 40 wild 

type cells and 60 syp1∆ cells are consistent with the conclusion that the average time 

required for septin disassembly at the daughter side of the cell is about 10 minutes longer 

in syp1∆ cells (42 ± 13 minutes) than in wild type (32 ± 12 minutes). The mutant, 

nevertheless, had a similar time frame as the wild type for disassembly of the septin ring 

at the mother side of the neck, which is usually much fainter in the first place.  

The above observation suggests that Syp1p may be required for septin 

disassembly in the late stage of cell cycle.  If this was the case, one could expect to see 

accelerated septin disassembly in cells overexpressing Syp1p.  To put this possibility to a 

test, the Cdc12-GFP marker was followed in live cells that contained Gal-SYP1.  Wild 

type cells undergoing galactose shift routinely have a longer time frame of septin 

disassembly than in glucose.  Whether this is due to a cell cycle response to galactose 

pulse or to other metabolic effects on the septin dynamics are not known.  After 3 h in 

galactose, the septin ring in the vector control cell slowly and gradually decreased in 

intensity over a long time (more than 30 min) before completely disappeared (Fig. 5.8C, 

upper).  Under the same condition, however, the septins in the cells overexpressing 

Syp1p disassembled very rapidly (Fig. 5.8C, lower).  The rings disappeared as rapidly as 

just a few minutes, regardless whether the cell is in a normal morphology or with an 

elongated bud (Fig. 5.8C).  Statistical data indicate that the average disassembly time was 

about 45 min in the control cells (n=12), and 13 min in Syp1p overexpression cells 

(n=20).  These results are consistent with the observation of the delayed septin 
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disassembly in the syp1Δ mutant, and further support the conclusion that Syp1p functions 

in the disassembly of septin filaments in late cell cycle stages.   

In summary, two possible functions of Syp1p in the regulation of septin dynamics 

have been identified. The early cell cycle function is related to the ring formation at the 

new budding site and the late one is the promotion of septin disassembly at the mother-

daughter neck.  

 

5.2.6 Effects of SYP1 deletion on the bud site selection  

The representative budding patterns of this strain manifested by new septin formation 

were shown in the left panel of Figure 5.9A. Interestingly, syp1∆ cells were observed to 

be more inclined to select a proximal budding pattern than their parental cells.  There 

were at least 80% of syp1∆ mother cells choosing the axial budding pattern, 20% more 

than wild type mother cells (Fig. 5.9A, right, n>40 for each strain).  However, the 

difference in the daughter cell budding patterns between the wild type and syp1∆ cells 

was negligible (Fig. 5.9A, right).  The budding patterns of the first and second generation 

of budding were specifically analyzed in both wild type and syp1∆ cells by Calcofluor 

staining.  For the first generation budding, the budding pattern was scored by the position 

of the bud in relation to the birth scar (Fig. 5.9B, left).   For the second generation cells 

which already had a bud scar, the pattern was determined by the bud position in relation 

to the bud scar (Fig. 5.9B, left).  The quantitative data is shown in the right panel of 

Figure 5.9B. It was found that in the first two cycles of cell division, syp1∆ cells 

consistently showed a higher ratio (20% more) of the axial budding pattern than wild type 

cells (n>100 for each strain).  These results suggest that Syp1p may play a role in the bud 
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site selection. As septins are also required for bud site selection (Zahner et al., 1996), the 

effect of syp1∆ on the bud site selection may be due to its effect on septins.  

 

 

 

Figure 5.9  Effect of the syp1∆ mutation on bud site selection.  (A) The bud site 
selection pattern in wild-type and syp1∆ cells by observing the new septin formation.  
YMC517 (wild type) and YMC516 (syp1∆) containing CDC12-GFP were observed 
under a time-lapse microscope.  The budding pattern (proximal or distal) was determined 
by the position of new septins relative to the division site.  The arrows indicate the 
division site and the arrowheads show the new septin rings being assembled.  BD, before 
division; OS, old septin; NS, new septin.  The statistical data are shown in the right panel.  
(B) The budding selection pattern in wild-type and the syp1∆ cells stained with 
Calcofluor.  W303 and YMC515 (syp1∆) were grown at 30°C to log phase and fixed for 
Calcofluor staining as mentioned in Materials and Methods.  Two kinds of cells were 
analyzed. One contains only one bud and no bud scar (the first generation) and the other 
contains one bud and one scar (the second generation).  The budding pattern (proximal or 
distal) was determined by the position of new bud relative to the birth scar or bud scar. 
The arrows show the previous division sites. The statistical data are shown in the right 
panel.  Bars, 5 μm. 
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5.3 Discussion 

Inspired by the observations that Syp1p localizes to the bud neck and its 

overexpression causes bud elongation, its functional relationship with the septin 

cytoskeleton was specifically analyzed in this study.  Using biochemical and live cell 

imaging methods, Syp1p is revealed to be a septin binding protein involved in the 

regulation of septin cytoskeleton dynamics during the yeast cell cycle.    

 

5.3.1 Evidence for Syp1p functioning in septin organization 
 

  The evidence to support the conclusion that Syp1p functions in septin 

organization is multifold.  Firstly, Syp1p colocalized with septins throughout most of the 

cell cycle.  It appears at the new bud site in the early stage of cell cycle at the same time 

as septins, and they remain localized together at the division site after cell separation.  

Several other proteins in budding yeast, such as Gin4p, Bni4p, and Bnr1p, exhibit a 

similar pattern of cellular localization, all of which are involved in septin organization or 

cell morphogenesis (Gladfelter et al., 2001).   Secondly, Syp1p physically interacts with 

septins in vitro.  Syp1p was found to interact with Cdc10p directly in the two hybrid 

assay.   In addition to Cdc10p, Syp1p can also be precipitated from cell extracts by 

Cdc12p, and more weakly by other septins, suggesting that Syp1p associates with the 

septin complex in vivo.  Consistent with the physical interaction between Syp1p and 

septin filaments, the localization of Syp1p is dependent on the integrity of septins at the 

neck.  Thirdly, overexpression of Syp1p can dismantle the normal septin organization and 

induce phenotypes attributable to septins such as bud elongation and unsuccessful 

cytokinesis.  Overexpression of Syp1p also causes cell lethality in septin mutants such as 
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cdc10 and cdc3.   Fourthly, the syp1∆ mutation and Syp1p overexpression both affect the 

septin assembly and disassembly at specific cell cycle stages.  And finally, the pattern of 

bud site selection is altered in the syp1∆ mutant, a phenotype also attributable to septin 

organization.  All these results strongly suggest a functional relationship between Syp1p 

and septin organization.   

 

5.3.2 Interaction between Syp1p and septins 

Cdc10p is the only septin protein able to interact with Syp1p in the two hybrid 

assay.  The binding activity between Syp1p and Cdc10p is at a similar level to the 

binding between Cdc10p and Bni4p, which was used as a positive control in the assay 

(data not shown).  Cdc10p is also the one that can precipitate down Syp1p from cell 

extracts most efficiently, although GST fusion proteins of Cdc12p, Cdc3p and Cdc11p 

are also able to associate with Syp1p in this assay at variably lower efficiencies.  In 

addition, both the N-terminal region of Cdc10p, which includes the GTP binding domain, 

and the C-terminal region, which includes the septin unique domain, are able to pull 

down Syp1p with a comparable efficiency (data not shown).  In this experiment, Cdc11p 

was also detected in the precipitates along with Syp1p.  These findings strongly suggest 

that Syp1p binds to the septin filaments at a region where Cdc10p is a main part of the 

interacting interface.  Similar cases have been reported before in both yeast and 

mammalian cells, in which septin binding proteins have been found to interact with the 

septin filaments (Lee et al., 2002; Mortensen et al., 2002; Sheffield et al., 2003).   

Cdc10p is a unique septin subunit in that, as the model of septin filament 

assembly suggests (Fig. 1.9B) (Versele et al., 2004), it is not a part of the 
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heteropentameric complex that serves as the building block of the septin filament.  

Instead, Cdc10p acts as a bridge to link polymer septin complexes into paired filaments 

by interacting with the Cdc12p-Cdc3p complex (Versele et al., 2004).  Cdc10p, therefore, 

is ideally the best target for regulating the assembly and disassembly of septin filaments.  

The finding that Syp1p binds to the septin complex mainly by interacting with Cdc10p 

fits very well with the suggested role of Syp1p in regulating the assembly and 

disassembly of septin filaments.  

 

5.3.3 Regulation of septin dynamics by Syp1p 

The role of Syp1p in regulating the assembly and disassembly of septin filaments 

is also well supported by its dynamic cellular localizations.  Syp1p and septins appears 

simultaneously during G1, localizing together at the incipient bud site about 8-10 min 

before bud emergence.  Syp1p remains co-localized with septins at the bud neck until late 

at the large-budded stage.  Prior to cytokinesis, Syp1p re-localizes to the bud neck and 

remains there until the cell has divided and septins disassembled.  The dynamic behavior 

of Syp1p and its persistent co-localization with septins around cell cycle, suggest that 

Syp1p may regulate the septin organization at different cell cycle stages.  Indeed, in 

syp1∆ cells, the septin dynamics are altered at least at two stages of cell cycle.  Early in 

the cell cycle of the wild-type cells, septins first appear at the incipient bud site as cloudy 

and irregular structures, as has also been observed recently by Iwase et al (Iwase et al., 

2006).  They then transform into a jagged ring, which further develops into a complete 

ring.  The whole process takes about 4-5 min.  However, in syp1∆ cells, the jagged ring 

persists for a longer time and the process of forming a complete ring lasts twice as long 
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as in the wild type.  In the absence of Syp1p, therefore, the septin ring formation at the 

beginning of the cell cycle is delayed. 

Another aspect of septin dynamics that is altered in syp1∆ cells is the septin 

disassembly at the daughter side of the neck in a late stage of the cell cycle. syp1∆ cells 

consistently show a delay of 8-10 min in this process compared with the wild type. The 

disassembly at the mother side of the neck appears to be unaffected.  This observation, 

however, should be taken with caution, given the fact that the distribution of septin 

filaments at the two sides of the neck is overwhelmingly uneven in this strain 

background.  Nevertheless, the finding that the septin filaments persist significantly 

longer in syp1∆ cells during the later stage of the cell cycle strongly indicates that Syp1p 

is required for disassembly of the old septin filaments.  This notion is further supported 

by the result of the Syp1p overexpression experiment, in which the septin ring is found to 

be disassembled at a rate several times faster than in the control.  The remarkably 

accelerated septin disassembly resulted from Syp1p overexpression may also explain the 

lethality caused by Syp1p overexpression to the septin mutants. 

It has been reported that the septin disassembly after cytokinesis requires septin 

phosphorylation and dephosphorylation by the Cdc28-Cln kinase and PP2A phosphatase, 

respectively (Tang and Reed, 2002; Dobbelaere et al., 2003; Moffat and Andrews, 2004). 

It will be interesting to investigate whether the Syp1p-promoted disassembly of septins is 

involved in the same pathway or not. 

 

5.3.4 The possible links between actin cytoskeleton and septins through Syp1p 
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           In this study, Syp1p is demonstrated to interact with both actin cytoskeleton and 

septin cytoskeleton. The functional linkage between Syp1p-actin and Syp1p-septin 

interactions is still unclear. Nevertheless, it is found that the localization of Syp1p to the 

budding site and the neck is abolished by the treatment of Latrunculin A, an actin 

filament toxin, or by a mutation in the actin gene (Fig.4.7). Therefore, Syp1p’s function 

in septin organization is possibly dependent on actin cytoskeleton.  

The functional relationship between actin cytoskeleton and septins has emerged 

recently. Septin is necessary for maintenance of polarity of actin cytoskeleton (Barral et 

al., 2000) and for the actomyosin rings contraction during the cytokinesis (Takizawa et 

al., 2000; Lippincott et al., 2001). Actin cytoskeleton is also involved in septin 

organization and functions. It has been reported that the initial septin ring assembly 

requires the actin cytoskeleton in budding yeast (Kadota et al., 2004). The initial septin 

ring was found to be much larger in bni1cla4 double mutant or in cell treated with LatA. 

These findings indicate that actin cytoskeleton can affect septin organization. However, 

the mechanism of how actin regulates the formation of initial septin ring is unknown. As 

the actin cytoskeleton associated protein Syp1p also play a role in the initial septin ring 

formation, it will be worthwhile to investigate whether and how Syp1p-actin interaction 

can regulate this septin dynamics. 

             Recently, the studies about how actin cytoskeleton responses to stress signals 

have been reported (McMillan et al., 1998; Harrison et al., 2001; McNulty and Lew, 

2005; Clotet et al., 2006). Under stressful condition, the actin cytoskeleton rearranges 

very quickly and then causes cell arrest to adjust to this stress environment. This stress 

response has been discovered as a morphogenesis checkpoint which regulates the septin-
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dependent Swe1p stability upon actin disorganization (McMillan et al., 1998; Keaton and 

Lew, 2006). As the localization of Syp1p is sensitive to mild actin disruption, it would be 

interesting to investigate whether Syp1p is a mediator that links the actin disorganization 

to Swe1p stability. 

             To conclude, the functional relationship between Syp1p and actin/septin 

cytoskeleton has been demonstrated in this study. Syp1p is shown to be a novel substrate 

of Prk1p and has functional relationship with both actin cable and actin patch-related 

proteins. Overexpressing Syp1p partially suppresses the pfy1Δ and bni1Δ mutants. Syp1p 

is also found to interact with actin-associated protein Sla1p. In addition to the relationship 

with actin cytoskeleton, Syp1p physically interacts with septin filaments and is involved 

in the processes of septin ring formation in the early stage of cell cycle and septin 

disassembly in the later stage of cell cycle. Through its functional relationship

with actin and septin cytoskeletons, Syp1p may play a role in cell polarized growth and 

division.
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