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Summary

This thesis presents a novel Scene Recognition Strategy (SRS) suitable for bio-

mimetic navigation. The proposed SRS decomposes the scene recognition problem

into two phases. In the first phase, the scene in question is encoded into memory

by an automatic selection of salient landmarks. The choice of these landmarks

follows a modified computational model of human visual saliency to obtain initial

salient regions of interest (ROIs) in the scene. These regions are then encoded using

SURF (Speeded-Up Robust Features) keypoint descriptors over three colour spaces

- grayscale, saturation and hue to enhance the robustness of the SRS against illu-

mination changes. The SURF descriptors are then augmented with ordinal depth

information obtained from optic flow arising from a specialised form of motion

known as the Turn-Back-and-Look (TBL) flight, performed by certain species of

vii



Summary viii

bees and wasps. The use of ordinal depth together with the spatial configuration

information of these salient-SURF keypoints improves the robustness of the SRS

against viewpoint changes. A set of salient-SURF descriptors in one colour space

constitutes the Scene matrix. Combining the three Scene matrices together, one

for each colour space, form the Scene matrix cell that completely represents the

scene. The second phase is the scene decision phase. Given an input query or

test scene, represented by its Scene matrix cell, an effective scene decision mod-

ule is proposed to rapidly decide if the test scene matches one of the memorised

scenes in the reference database using a novel measure of scene similarity known

as the Global Configuration Coefficient. The final decision to accept or reject a

candidate match is obtained by estimating an adaptive decision threshold from the

statistics of the matches. Extensive tests and experimental results show that the

proposed SRS is accurate even for challenging scenes in both indoor and outdoor

environments.
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1

Chapter 1
General Introduction

This introductory chapter presents the problem of scene recognition - its defini-

tion; what properties are desired of a scene recognition algorithm; and the main

challenges in designing a reliable algorithm to perform scene recognition (sections

1.2–1.4). As scene recognition has important applications in biomimetics - an

emerging field that uses results from biology to construct working computational

models - the implications of this work are highlighted in the context of biomimetic

navigation (section 1.1). The scope of this thesis is then defined in section 1.5

together with a brief presentation of its main contributions (section 1.6).



1.1 Biomimetic navigation 2

1.1 Biomimetic navigation

Navigation is one of the most fundamental behaviours of animals. Animals have

evolved various strategies for effective navigation and this involves the development

of abilities such as to recognise a previously visited place. The latter forms an

integral component of what is known as the place (or scene) recognition-triggered

response [39, 113] in the domain of biomimetic navigation - the animat or biological

agent has a set of places in memory that is linked with a learnt set of actions that

it must take once it recognises that it has returned to the same place again. By

following a sequence of these actions that leads on from one learnt place to the

next, the agent successfully navigates from one point to another. This offers a

simple, yet elegant solution to the successful navigation of certain insects such as

bees [19]. An overview of insect navigation strategies can be found in [23] and

more recently in [24].

A reliable scene recognition system is crucial as the place recognition-triggered

response strategy, described above is classified as a low-level local navigation strat-

egy in [113] (Fig. 1.1). Each level, starting from homing to metric navigation,

increases in complexity and is built upon the successful implementation of the

strategy at the lower levels (i.e. before one can implement metric navigation,

topological navigation must have been implemented). From Fig. 1.1, the com-

plex navigation strategies such as topological and metric navigation depend on the
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successful implementation of the place recognition-triggered response. An effec-

tive solution to solving the scene recognition problem will thus pave the way for

more high-level strategies to be implemented. Furthermore, low-level navigation

is interesting as it is a common strategy employed by diverse groups of animals,

from humble bees that navigate between their nests and foraging sites to migra-

tory birds that fly across vast continents. Animal behavioural studies and human

psychophysical studies of navigation provide a wealth of information in designing

a successful biomimetic navigation strategy; and in this thesis, a few of these ideas

are used to achieve this goal.

Figure 1.1: 4 level hierarchical organisation of biomimetic navigation.
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1.2 Scene recognition

Scene or place recognition is defined as the ability, given an input query (test) image

and an image database containing several reference images, to recognise if a match

can be found between the test and one (or several) reference image(s). Although

this task may seem simple to humans, scene recognition remains in fact one of the

most difficult problems in computer vision due to the inherent complexity and large

variety of scenes that need to be taken into account. One may be able to recognise a

previously visited place with ease in the afternoon, even though the place was first

visited in the late evening many weeks before under different lighting and weather

conditions. How humans (or animals) are able to reliably recognise a scene viewed

under very different conditions remains one of the most challenging problems in

psychophysics. Modelling this behaviour to achieve a robust and general scene

recognition strategy (SRS) remains an open question in computer vision. This thesis

attempts to use several ideas from computer vision and biomimetics to propose a

novel and reliable SRS suitable for robotic navigation.

1.3 Characteristics of a good SRS

A successful SRS on a practical mobile system must possess two important char-

acteristics. Firstly, the strategy must be able to tolerate various types of image

distortions for the given test scene and find the correct match in its memory in
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spite of the distortions. Common image distortions considered in this thesis are

viewpoint and illumination changes (Fig. 1.2(left)) as well as changes in the scene

content (Fig. 1.2(right)) itself. This requirement is fundamental as practical sys-

tems suffer from wheel slippages and accumulative drift errors such that more often

than not, the agent upon returning to a previously visited place is presented with a

slightly distorted view of the same scene. In an outdoor environment, the change in

the position of the sun, the effect of clouds and the resultant movement of shadows

cast in the scene produces dramatic changes. Revisiting the same scene several

days or weeks later presents further challenges due to the dynamic nature of the

scenes. For example, natural erosion and human intervention can cause significant

differences in the scene content. An effective SRS that tolerates such changes is

said to be robust.

Figure 1.2: Various common image distortions.

Secondly, the same SRS must be able to discriminate dissimilar scenes from
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those found in the memory. This is an important aspect which many other authors

have ignored. The discriminatory power of the SRS is particularly important for

outdoor natural scenes where common features appear over several different scenes

(for instance, the same type of trees and bushes for a particular environment). A

naive method of matching only these features will certainly fail. The ambiguity

problem occurs in indoor scenes as well - man-made structures are often repeated

in the same environment such that different locations may possess a large number

of similar looking features that will easily confuse an algorithm based on simple

matching (Fig. 1.3). The ability to discriminate dissimilar scenes is also important

during the learning phase of the agent - any scenes that are rejected are ‘new’ and

should be added to the memory.

1.4 Challenges of scene recognition

The challenge of scene recognition is that the two desirable characteristics - robust-

ness and discriminatory power - are unfortunately mutually antagonistic. A SRS

that is too discriminatory is often not robust enough to tolerate even slight changes

in viewpoint and illumination. On the other hand, a SRS that is too robust will

not be discriminatory enough, leading to numerous false positive matches. A com-

promise between these two characteristics is often needed for most practical SRSs

and this is often set by the user or determined by a separate learning algorithm.
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Figure 1.3: Ambiguous scenes with similar features: outdoor natural (top) and
indoor (bottom).

This need to balance between robustness and discriminatory power is analogous

to the overfitting problem that is well known in machine learning [77] defined as:

the preference of a hypothesis that does not have the true lowest error of the

considered hypothesis, but that by chance has the lowest error on the training

data. The performance of the scene classifier depends on how it is trained. If the

training set of scenes have only very small differences, the classifier will be too

sensitive to such small changes, and is too discriminatory. If instead the training
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set are too varied, the sensitivity drops significantly and the classifier will be be

too robust for large changes which is also undesirable. The crucial problem is

the selection of the training set such that it captures just the right amount of

variability and consistency to train a balanced classifier. Nonetheless, the selection

of an optimal training set remains an open problem.

Designing a SRS that is general enough for a variety of environments (e.g. in-

doors and outdoors) is especially difficult. Different environments have different

requirements such as the choice of a good landmark - an indoor scene can use

strong corners while corners in a natural scene may be unreliable due to the foliage

and vegetation. Another factor that needs to be considered is the effect of natural

erosion that is more pronounced in a natural setting than in an indoor laboratory.

For example, trees may fall or tides may change over time and weather conditions

can dramatically change the scene content compared to the relative stability of

the scenes in an indoor environment. Changes in illumination which are less pro-

nounced indoors than outdoors provide another set of varying requirements that

needs to be taken into account (see Fig. 1.2 for good examples).

The simplifying assumptions in an indoor scene are the main reasons why re-

search in the past two decades had been focused on indoor robotic navigation.

‘Outdoor navigation’ have been limited to structured environments such as road

following [31]. The same authors in [31] concluded that for a robot to
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...stop at a stop sign under various illumination and background con-

ditions, we are still eons away.

This is a clear indication of the challenges that outdoor scene recognition pose.

1.5 Scope of the thesis

This thesis is concerned with the design of an effective SRS used in other applica-

tions such as biomimetic navigation. This thesis is inspired from various biological

models but does not propose a plausible model that describes how biological agents

perform scene recognition. The main idea is to use the clues available in nature

to design an effective solution to scene recognition, not to propose a radically new

model of animal navigation, which would be beyond the scope of this thesis. A

single calibrated camera with a limited field of view is used to capture the images.

The only input used in the work are the RGB images obtained from the camera.

No other imaging devices or sensors are used. The solution proposed here is thus

entirely limited to vision in the visible spectrum, perceivable by humans. The learn-

ing phase of the algorithm, where the SRS constructs the reference image database

is not considered here and is assumed to be available. Finally, it is assumed that

the image databases are of reasonably small sizes, so that a simple database query

system can be used without affecting the efficiency of the algorithm.
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1.6 Contribution of the thesis

This thesis addresses the problem of scene recognition from an entirely new perspec-

tive. Inspired from the domain of human psychophysics and animal behavioural

studies, a novel SRS that is robust to common image distortions and is general

enough for both indoor and outdoor environments is proposed. Fig. 1.4 illustrates

the various components of the proposed SRS, which are briefly presented in the

next paragraph.

Figure 1.4: The various components of the proposed SRS.

In this work, a modified computational model of visual saliency inspired from

[51] that includes several new composite feature cues is implemented to provide

an initial ‘mask’ to efficiently reduce the number of salient ROIs (regions of in-

terests) extracted from the scene. These ROIs are further encoded using SURF

(Speeded-Up Robust Features) [10] to obtain ‘salient-SURF’ keypoints/descriptors

for reliable matching. Motivated from special TBL (Turn-Back-and-Look) flights

observed in certain species of flying hymenopterans [61, 116], the descriptors are
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augmented with ordinal depth information computed from optical flow. In this

work, optical flow is induced by a camera that simulates the TBL. Other authors

[14, 63] have only used TBL to extract reliable landmarks for navigation and have

completely ignored the robustly obtainable ordinal depth. Combining the spatial

position (x, y, z) of the landmarks encodes the global spatial configuration of a

scene into a Scene matrix. By extracting these keypoints from the HSV colour

space and comparing their rank correlations, a simple measure of scene similarity

that is invariant to illumination [35, 92] and viewpoint changes is proposed. Fi-

nally, a novel scene decision module compares an input query test scene with a

database of reference scenes to arrive at a final decision to accept or reject the test

scene.

The work focuses particularly on outdoor natural environments that do not

contain man-made structures. Man-made objects often simplify the problem of

scene recognition because certain obvious and unique features exist in these objects

making the discriminating component of a SRS inconsequential. Instead, this thesis

applies ideas taken from animal and insect navigation strategies and formulates a

SRS that achieves a recognition performance far exceeding what current state of

the art systems achieve in both accuracy and generality.

The ultimate aim of this work is to model how these animals and insects achieve

robust and reliable scene recognition in natural outdoor environments. This is a

problem that is largely untouched by robotics and vision researchers due to its
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apparent complexity that often overwhelms many traditional algorithms.

Finally, this thesis highlights to the research community the importance of

testing the effectiveness of their SRS or navigation systems with challenging out-

door scenes so that further progress in practical outdoor navigation can be made.

The availability of several large image databases online1 of predominantly outdoor

scenery taken under various weather and lighting conditions serve this purpose.

1.7 Mathematical notation

Throughout the thesis, a set of standard mathematical notations is used. Scalar

values are denoted by italicised non-bold letters such as Gc or dthresh. Matrices

are denoted by bold non-italicised upper case letters such as Sm. Symbols that

are used to represent semantic objects are denoted by blackboard bold uppercase

letters. For example, Gcand refers to the candidate match in a typical scene decision

situation. Other notations will be specified when required throughout the thesis.

A list of mathematical symbols can be found in page xvii.

1.8 Outline of the thesis

The rest of this thesis is organised as follows. Several recent works related to scene

recognition, focusing on applications related to navigation are reviewed in chapter

1http://www.ece.nus.edu.sg/stfpage/eleclf/robust SRS.htm

http://www.ece.nus.edu.sg/stfpage/eleclf/robust_SRS.htm
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2. In chapter 3, important concepts related to the design of the proposed SRS

are explained. The next few chapters introduces the various subcomponents of

the proposed SRS. The use of visual saliency to extract useful landmarks in the

scene is described in chapter 4. The extracted landmarks or salient ROIs are then

encoded with SURF descriptors augmented with ordinal depth to form a Scene

matrix, described in chapter 5. Next, a simple scene decision module, where an

input test scene is compared with a database of reference scenes, is described in

chapter 6. The performance of the proposed SRS is then evaluated and analysed

using several image databases in chapter 7. Finally, chapter 8 concludes the thesis

and suggests future research directions, based on this work.
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Chapter 2
Literature Review

The problem of scene recognition has been explored by authors in diverse fields such

as visual SLAM (Simultaneous Localisation and Mapping), CBIR (Content-Based

Image Retrieval) and biomimetic navigation. In this chapter, recent works from

these fields are reviewed (sections 2.1–2.3) respectively, with a focus on biomimetic

navigation techniques that addresses the scene recognition problem. Since the

problem of determining scene equivalence is common in these three domains, it is

not surprising to see many works in the literature with solutions that are suitable

for multiple applications. The main aim of this chapter is to present what is

the current state of the art in scene recognition algorithms. At the same time,

certain shortcomings in these works are also discussed (section 2.4) that this thesis

attempts to address with the proposed SRS.
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2.1 Related work from visual SLAM

In the domain of visual SLAM, the problem of determining scene equivalence is

posed in the current robotics literature as the ‘loop closing problem’ or ‘robust

data-association problem’. Knowing that the mobile agent has returned to the

same location is crucial as SLAM requires that the uncertainty associated with a

current position is small in order to create a stable closed loop system. If scene

recognition fails, the robot is essentially lost, since the uncertainty of the robot’s

location grows out of bounds.

In the work of Newman and Ho [87], the loop closing problem is specifically

addressed in an indoor setting using a mobile robot that performs visual SLAM

along a corridor. The visual front end consists of the detection and extraction of

salient features using the Kadir-Brady scale saliency algorithm [54] that is com-

bined using MSER (Maximally Stable Extremal Regions) [71] to detect regions

that display both saliency and wide baseline stability. These regions are then en-

coded using Lowe’s SIFT (Scale Invariant Feature Transform) descriptors [68] for

reliable matching. The decision to determine if loop closing has occurred is based

entirely on the number of SIFT matches between the input query scene and the

reference scenes in the database (created after one loop). A fixed threshold is used

to either accept or reject the best matches. This threshold completely arbitrary

and can result in false positives given the large number of ambiguous features in
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an indoor environment.

The major problem with their approach is the use of two very different region

detection algorithms to extract stable ‘salient MSE’ regions that do not have much

overlap (Fig. 2.1). The results in Fig. 2.1 show that the number of SIFT descriptors

Figure 2.1: Solution from [87]. Kadir-Brady salient regions (left), MSER (middle)
and SIFT descriptors (right).

extracted from the full sized image (640x480) is very small, and only four are

matched in the example shown with another frame taken two seconds apart. The

authors do not explicitly explore (or show) the possibility of incorrect SIFT matches

that would have made the scene recognition difficult. As the authors have admitted

in their conclusions, the use of a fixed threshold to reject bad matches is not

satisfactory in practical applications and they propose to use supervised learning

techniques to determine the value of this important parameter.

As an extension to [87], laser scanners are employed in [86] to detect loop closing

in outdoor urban environments. A method to detect loop closing is proposed

that uses a similarity matrix that summarises the L2 distances of Harris-Affine
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Detectors [73] described by SIFT between any two image pairs taken in sequence

as the robot navigates. The authors suggest a method using rank reduction to

remove ambiguous and repetitive scenes in the similarity matrix while attempting

to fit a probabilistic model of scene similarity so as to detect a reliable loop closure.

The use of the 3D laser information is limited to recovering the current pose of

the robot, and it does not serve any purpose in determining loop closure. The

possibility using the valuable depth information obtained from the laser scanner

is completely ignored. Furthermore, the authors do not provide details on the

success of the loop closure detection in various situations and environments, and

the only example shown is a completely built-up scene with no natural vegetation

(Fig. 2.2). Furthermore, the authors do not discuss or present any results under

weather and illumination changes, which are the main challenges to outdoor visual

SLAM [31].

Figure 2.2: Two image sequences from [86]. Loop closure is detected for the
corresponding scene pairs between the top and bottom rows.

A large number of other works in the visual SLAM literature follows a similar
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framework described in [86, 87] to detect loop closure. Most of them ([3, 9, 76, 100])

use a combination of various SLAM algorithms and SIFT descriptors. For an

overview of SLAM and robotic navigation, refer to [34, 72]. A recent paper [65]

surveyed the current state of the art in visual SLAM and presented various solutions

using monocular and stereo camera systems.

2.2 Related work from CBIR

Image retrieval has grown in importance over the past two decades due partly

to the tremendous increase in information size and availability. This increase is

the result of the growth in information storage capacity (e.g. hard disks, DVD

optical drives) and the growth of the World Wide Web. The need to organise the

increasing amount of information and to retrieve them in the shortest time possible

is a topic of intense research. Database searching techniques, including CBIR, are

thus developed to address these issues.

A comprehensive review of CBIR techniques in [105] describes the general

framework of how an effective CBIR can be implemented by separating the de-

scription of the image content into two phases. Firstly an image processing step is

used to effectively choose regions of interests in the image to reduce the amount

of data to be manipulated. The second step provides unique descriptions of these

extracted regions. A decision is made from the amount of similarity between a pair
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of images using their descriptors. It is not surprising that certain authors have used

ideas in CBIR to solve the loop closing problem in visual SLAM (section 2.1). For

an application to be useful in CBIR, the major consideration is the efficiency in

database search techniques, which is equally important for real-time visual SLAM.

The work presented in [60] proposes a reduced SIFT feature descriptor by as-

suming that the robot navigates in an indoor office/lab environment and the cam-

era is orthogonal to the walls. The authors also claim that the majority of SIFT

features are extracted from the textured walls and not from the floors or ceilings

that are usually textureless. Reduction of the complexity of the SIFT descriptors

is based on removing the rotational components of the algorithm which becomes

redundant under these assumptions. However, the assumptions are based on sim-

plistic observations from two locations described in their paper (Fig. 2.3) and may

not be applicable even in general indoor scenes where the walls may be devoid

of texture. As the authors have admitted, although slight bumps may not affect

the effectiveness of their descriptors, a slope greater than twenty degrees will re-

duce the performance of the algorithm. This algorithm is only effective in a very

restricted set of environments, and cannot be used in general environments.

Other well known solutions to reduce the complexity of the SIFT descriptors

exist and they had been explored and compared with other competing descriptors

in a comprehensive review in [75]. One of them is PCA-SIFT proposed in [55].

PCA-SIFT attempts to reduce the computational complexity of SIFT by applying
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Figure 2.3: Two example scenes with reduced SIFT features from [60].

Principal Components Analysis (PCA) on the eigenspace produced just before the

final descriptor assignment step of SIFT. The PCA reduced eigenspace is computed

from a diverse image database of 21000 image patches which are not used in any of

their matching experiments. In the evaluation framework of [75], PCA-SIFT only

displayed an average performance and do not perform as well as SIFT in terms of

recall and precision [29], which are common evaluation metrics in machine learning.

The reduction in computational complexity using PCA-SIFT is however significant.

Another work in [118] uses a localised colour histogram technique adapted

from [104] to group the detected features together to represent a scene. Monte-

Carlo localisation techniques are then applied in the context of visual SLAM. The

detected features are integrated with non-linear functions over a range of Euclidean

motions that are shown in [104] to be invariant to rotation and translation. A

similarity score between the query image and reference images is computed from
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the intersections of the histograms normalised by the number of bins in the query

image. As is shown in [118], the system returns a number of resulting images ranked

by their level of similarity for a given query image (Fig. 2.4). This similarity score is

then integrated into a Monte-Carlo localisation algorithm to determine the weights

of the different returned image samples.

Figure 2.4: An input query image returns several closest matches. Data from
[118]

Another SRS (or visual SLAM) application motivated from CBIR techniques

used panoramic images [66]. A modified Harris detector is used to detect interest

points, which are then encoded by a scale invariant descriptor similar to SIFT.

The authors propose a novel technique of managing the growing image database

so that a reasonable database size is always assured for efficient recognition. This

is done by indexing the reference images with a set of image statistic data, derived

from the first and second derivatives of the Gaussian which are stored as separate

histograms. A similarity score based on the χ2 distance of the histograms is used
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to detect loop closure. The authors reported very good localisation results with

reliable loop closing using this method in an indoor environment.

2.3 Related work from biomimetics

In this section, the focus is on solutions in the literature inspired from biology

which provide clues in designing an efficient SRS. Such solutions are interesting

as animals possess remarkable scene recognition abilities that perform better than

many artificial solutions. Since the thesis is concerned about developing a SRS

suitable for biomimetic navigation, related works in the literature with close links

to the work in this thesis are presented.

The recent work of [42, 43] selects salient ROIs by constructing a general

saliency map that combines the computational model of bottom-up visual saliency

of Itti et al. [51] with a novel top-down saliency map constructed from prior knowl-

edge of preselected target locations known as the VOCUS system [41] (Fig. 2.5).

Note that the top-down saliency map is only used in an active search task for se-

lected targets used for loop closure detection. The salient ROIs are extracted from

the saliency map by choosing a rectangle of the same height and width of the most

salient regions (MSaRs) which are shown as crosses in the bottom right image of

Fig. 2.5. The authors encode the ROIs by detecting stable Harris-Laplace features
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Figure 2.5: Saliency map creation using VOCUS (left), extraction of salient ROIs
from MSaRs (middle) and loop detection by active search for a target (right), from
[43].

[73] and SIFT descriptors for reliable matching. Experiments in detecting loop clo-

sure are conducted in a small indoor hallway with constant ambient lighting that

does not pose much of a problem for the SIFT descriptors. The main objective

of the paper is to show that the reduction of features detected using salient ROIs

maintains a high detection rate for loop closure but there are no false positives

in the image database. From the experimental data shown (Fig. 2.5 (right)), the

number of Harris-Laplace features detected in the ROIs is certainly small and the

authors use only one single region, the dustbin in this case, containing only three

matched features for localisation. This is because the authors use regions that

are predicted to be at that position using odometry to perform an active search

for possible targets (e.g. the dustbin) to determine that the place was previously

visited [42]. The target regions are selected based on the criterion of their ability
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Figure 2.6: Examples of loop closure detection using a tracked target, from [42].

to be tracked over a large number of frames. The experimental results specific to

loop closure detection show that very small (and possibly unreliable) landmarks

may be used (Fig. 2.6). The loop closure experiments are conducted by simply

driving the robot around in circles. They do not consider what happens when the

environment contains many similar features which will have certainly made loop

closure detection more difficult. This is especially true when the robot takes a

different path and returns to the same place, rendering the prediction using odom-

etry unreliable. Furthermore, the simplistic assumption of finding a unique set of

targets for loop closure will fail in a dynamic outdoor environment that contains

numerous repeated features with significant changes in scene content.

The series of work by Bianco et al. [13–15, 63] that exploits the Turn-Back-

and-Look (TBL) behaviour observed in certain species of flying hymenopterans

(bees and wasps) [61] are closely related to the work presented in this thesis. The
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TBL motion is also known as zig-zag flights [116] or learning flights [121]. TBL

has been observed when young honeybees leave their nests for the first few times

and when they discover important feeding sites (e.g. flowers with abundant honey)

[61, 116, 121] and is believed to be important for the bees to recognise these scenes

on their return trip. The details of TBL and how it is exploited in this work is

discussed in section 3.5.

Figure 2.7: Preselected targets (boxed) from a static scene using the valley
method of [83], data from [15].

Motivated by the importance of TBL for scene recognition in insects, the work

of Bianco et al. hypothesised that this special motion allows the insect to per-

form a sort of testing procedure on the pre-selected landmarks by perturbing the

possible return paths with several arcs that resembles a typical TBL (Fig. 2.8).

Only the landmarks that are stable throughout the whole TBL phase executed

by the robot will be retained for navigation use. The landmarks are pre-selected
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from static images of the camera using a modified valley method for computing a

correlation metric of reliability for landmark selection [83] (Fig. 2.7). However,

Figure 2.8: Comparing the TBL motion of the artificial robot vs.a real TBL
motion of a wasp (left). Image frames captured with selected landmarks during
the TBL phase (right), data from [63].

the use of TBL as a testing framework is unlikely to be its main use. The insect

does not need to perform TBL in order to memorise how a target scene appears

from various approach angles. One can easily envisage other forms of flight (mov-

ing backwards and forwards for example) or even randomly stopping at various

positions to memorise the scene to check if the original landmarks are reliable or

not. The important question to ask is “Why are TBL flights designed in such a

fashion?”. The discussion of this question is deferred to section 3.5 where the im-

portance of this motion in extracting depth information from the scene structure

is highlighted.

Although insects and animals navigate in natural outdoor environments, there

are only a few related works in the biomimetic literature that attempt to propose

models that function in outdoor conditions. The work of Lambrinos et al. [58]
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employ navigational strategies for scene recognition inspired from the desert ant

Cataglyphis. They propose a new landmark navigation model known as the Average

Landmark Vector (ALV) model that is modified from the original snapshot model

proposed by Cartwright and Collett [19]. This model is also explored in [78] in a

robot that uses analog electronic components. Basically, the snapshot model as

it name implies, captures a 1D snapshot of the scene memorised by the animat.

The detected landmarks are represented as dark patches in a circular ring that

indicate the spatial position of the selected landmarks in terms of their angular

separation. Scene recognition using the snapshot model is very simple. Landmarks

of the same scene viewed with a slight distortion have slightly different angular

separation. Comparing the current scene and the stored snapshot is achieved by

simple vector additions/subtractions using radial and tangential vector components

that represent the position of the landmarks. The final resultant vector guides the

animat in a direction that reduces the difference between the currently viewed

scene and the stored snapshot (Fig. 2.9 (left)). The ALV model simplifies the

computations by storing an averaged vector of all the detected landmarks instead

of storing the individual radial and tangential components in the original snapshot

model (Fig. 2.9 (right)).

This model has been successfully tested on an outdoor mobile robot, Sahabot2,

that is equipped with several sensors that mimics that of the Saharan desert ant.

In order to validate the ALV model in a desert environment with virtually no
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Figure 2.9: Illustration of the snapshot model (left) and ALV model (right) shown
with the homing paths from different starting positions, data taken from [58, 78].

obvious visual cues, the experiments used artificial blocks to serve as landmarks to

test the homing strategies of this model (Fig. 2.10). The main problem with the

Figure 2.10: The Sahabot2 with various sensors (left). The testing arena with
artificial landmarks (middle). The simple visual processing used to extract the
landmarks (right), data from [58]

proposed ALV model is that it has only been validated in artificially manipulated

outdoor environments with obvious landmarks. The same holds for the snapshot
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model where in [19], only computer simulations are used to validate this method

in theory. The main problem is that real insects navigate in complex outdoor

environments and the selection of landmarks from these scenes is much harder.

An attempt is made to validate the ALV model in an indoor environment [80]

where the same Sahabot2 is placed in a hallway with numerous features. The

authors use a similar method to extract landmark features, this time using an

adaptive threshold from a low-pass filtered strip of the unwrapped panoramic image

obtained from the environment (Fig. 2.11). The homing result of using the ALV

in this relatively complex environment is quite satisfactory and is surprising given

its extreme simplicity.

The ALV model in this indoor setup has a major unresolved problem, high-

lighted by the authors in [80]. The simple visual processing method is unable to

address the effects of lighting changes that make landmark detection unstable. The

main reason is due to the use of the adaptive threshold that extracts landmarks

from the filtered image strip. Landmarks are selected at locations that display long

segments of consistent intensities. A change in lighting conditions, however, vio-

lates the consistency assumption resulting in unreliable landmark detection. This

leads to wrong homing decisions by the robot. To the best knowledge of this au-

thor, there has been no subsequent work done on the ALV model in other real

environments.



2.4 Conclusion 30

Figure 2.11: The Sahabot2 tested in a hallway (top left). The modified visual
processing (right). The resulting homing vectors generated using ALV (bottom
left). All figures from [80].

2.4 Conclusion

This chapter has reviewed several related works in scene recognition from different

domains in the literature - visual SLAM, CBIR and biomimetics. This review is

not comprehensive but is meant to showcase a representative subset of related work

so that an idea of the current state of the art in scene recognition is established.

Several shortcomings of these works are evident from this review, and will be

discussed here.

Almost all of the works reviewed focused on indoor environments where the

complexity in terms of image distortions is greatly reduced. Even the few works [58,
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86] that explored scene recognition in an outdoor environment limited themselves

to built-up urban areas [86] or have manipulated the environment with artificial

landmarks [58]. In [86], although the robot did traverse a short distance on one

side of a park, the authors did not perform loop closure detection at that place and

even added that the natural scenery, considered as a “homogeneous foliage”, causes

problems in loop closure detection and are removed by rank reduction techniques

on the similarity matrix shown in Fig. 2.12 (left). The loop closure detection is in

fact tested in a purely built-up environment, where the smaller yellow loop overlaps

the larger white loop shown in Fig. 2.12 (right).

Figure 2.12: A similarity matrix with many off diagonal streaks that represents
false loop closure (left). The two loops performed by the robot (right). Figures
from [86].

The major problem of performing scene recognition in an outdoor environment

is the change in illumination that reduces ability of these algorithms to determine

reliable correspondences. This is because scene equivalence is determined solely
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by the number of correspondences which will fail in an outdoor natural environ-

ment with numerous similar features. Most of the works simply assumed that

correspondences will be reliable which is only true in an indoor environment with

consistent lighting and static man-made structures. This assumption is obviously

too simplistic in an outdoor environment. Changes in illumination, non-uniform

lighting as well as shadows from foliage cause significant distortion not addressed

by these works. Furthermore, almost all of the papers reviewed are tested in ideal

conditions where the scenes have zero dynamic content, for example, an empty

corridor or hallway. Natural environments are extremely dynamic with changes

caused by different weather conditions, natural erosion and human intervention.

Using the same algorithms in these challenging scenarios will fail as the original

assumptions in the design of the algorithms are violated.

It is interesting to see that almost all of the related work in the literature

concerning scene recognition is limited to the 2D pixel data of the image. There

is virtually no work done in extending scene recognition to include the z or depth

dimension. Although [86] tried to use depth information for ‘3D SLAM’, it is

entirely laser based which is extremely slow. A major contribution of this thesis

is to highlight the importance of depth information for scene recognition which is

discussed in section 3.5.1 and will be incorporated in the proposed SRS, described

in section 5.3.

Another interesting observation from this review is that most researchers have
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ignored the importance of the second criterion of a good SRS described in section

1.3, that is, the discriminatory power of the SRS against difficult and ambiguous

scenes. Works from the visual SLAM domain (e.g. [86, 87]) regarded this as a

highly improbable event as the robot odometry is able to give a prediction of the

expected location of the robot so that the search space for detecting loop closure

is greatly reduced. This is however not the case in the aptly named “kidnapped

robot” problem where the robot visits a new location for the first time. In this case,

the robot must realise that it has moved to a new environment and this involves

discriminating the new scenes from the old ones in memory. Other works such as

[42] only drove the robot in circles to simulate the kidnapped robot problem yielding

unconvincing results (see section 2.3). The rest of the other papers reviewed simply

ignored the possibility that false positives can occur.

The fact that scene recognition (and its variants) are explored by many dif-

ferent researchers from various domains highlight the inter-disciplinary nature of

scene recognition. The proposed SRS presented in this thesis is thus not only

limited to navigation but has potentially many other uses in different domains.

The contribution of this thesis is thus very general and extensions of the proposed

SRS to other domains such as visual SLAM or CBIR can be achieved with minor

modifications. The next chapter describes the important concepts introduced by

the proposed SRS that address the above shortcomings of these as well as many

other state of the art works in the literature.
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Chapter 3
Important Concepts

This chapter provides preliminary information required in understanding the pro-

posed SRS detailed in chapters 4–6. This is done so by introducing the core

concepts used in the SRS, presented in separate sections. The concept of visual

saliency and its use as a generalised landmark selector is first described in section

3.1. The concept of image descriptors is then introduced in 3.2. This is followed

in section 3.3 by a discussion of how ordinal measures improve robustness against

viewpoint changes. Since the proposed SRS is designed to be used in an outdoor

natural environment susceptible to illumination changes, the input RGB images

are converted to the HSV (hue, saturation, value) colour space which displays a

degree of illumination invariance in section 3.4. Finally the addition of depth in-

formation so as to improve the performance of scene recognition is explained in

section 3.5, motivated from the TBL motion introduced in section 2.3. As the aim
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of this chapter is to make clear the concepts, the details of how they are actually

implemented in the proposed SRS are reserved in the later chapters which will

reference the appropriate sections here as necessary.

3.1 Selecting good landmarks using visual saliency

This section introduces the notion of a landmark as well as the desirable character-

istics of a “good” landmark in section 3.1.1. The concept of visual saliency from

human psychophysics is then introduced as a tool to determine initial landmarks

or salient ROIs in section 3.1.2. Finally, several computational models of visual

saliency are introduced in section 3.1.3 where a saliency map is produced. This

map highlights the most salient regions in the scene as potential landmarks.

3.1.1 What makes a good landmark?

Landmarks are important in scene recognition as they serve as the basic compo-

nents that optimally represent the scene. This representation tries to optimise

certain important characteristics that define a good landmark. Using all the pixel

information to represent a given scene is not a practical solution as it is too mem-

ory intensive when many scenes need to be stored. Such a representation is also

not robust. A change in a few pixel intensities will make any comparison (usually

by correlation of the two images) yield unreliable results. This is likely to occur
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under the various image distortions this thesis considers - viewpoint changes, illu-

mination changes and changes in the scene content. Hence choosing intelligently

the important parts of the image as landmarks reduce significantly the memory

needed for scene representation and allow for faster recognition.

Certain regions of the image may be more tolerant to various forms of distor-

tions and are therefore useful for scene recognition. Such regions serve as good

potential landmarks. For example, a region of open space or a clearing in the dis-

tance that reveals the distant skyline (section 4.3) is robust to viewpoint changes

if there are no significant occluding objects in the foreground. Good landmarks

are thus robust to these distortions and can be detected with high repeatability.

Another important characteristic of a good landmark is its uniqueness. A

landmark that significantly stands out from the rest of the scene can be used simply

on its own to link this landmark with the scene in question. This is analogous

of landmarks that represent a particular city in the World - The Eiffel tower is

linked to Paris and the Big Ben is linked to London for example. Humans do

this association naturally as these landmarks uniquely identify the particular city.

The same reasoning goes to an unique and special landmark that identifies the

scene. However, the use of a single landmark to reliably identify a scene is very

rare in both indoor and outdoor environments, and even more so in an outdoor

natural environment where there are really no obvious or unique features to use

(Fig. 3.1). The lack of uniqueness in such scenes can be overcome by considering
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Figure 3.1: Dissimilar ambiguous indoor (top) and natural (bottom) scenes with
mismatched (cyan lines) but similar features.

several landmarks at once and how the landmarks are related to one another in

terms of their spatial arrangement. This is explored in section 3.3.

In conclusion, good landmarks are regions in a given scene that allow the scene

to be robustly identified under various image distortions. To this end, the land-

marks must be themselves robust to such distortions so that they display high

repeatability. Furthermore, the landmark or groups of landmarks must represent

uniquely the scene for reliable recognition.
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3.1.2 Visual saliency as tool for landmark selection

Knowing the characteristics of good landmarks, this section introduces the concept

of visual saliency that provides a tool for selecting potential landmarks in any given

scene. These initial landmarks are known as salient Regions of Interest (ROIs) for

the rest of the thesis.

Visual saliency is a concept from the domain of psychophysics, which is the

scientific study of psychology. Psychophysical studies of human perception attempt

to explain in a quantitative manner how humans perceive the environment. In the

case of visual saliency, psychophysicists explain how attention can be modelled

in perception so that the most visually important or salient regions are efficiently

detected. In the human visual system (HVS), visual perception begins in the retina

and follows on to two other separate pathways (Fig. 3.2) [45, 101]:

• What or Retino-geniculate pathway is where the majority (ninety percent)

of the visual signals go. These signals go to the Lateral Geniculate Nucleus

(LGN) that performs low level visual processing of the data and acts as

a relay station of these processed signals before they continue on to the

primary visual cortex (V1). V1 is located at the back of the head, near the

occipital lobe where further processing of the visual signals (edge detections,

orientation assignments) is done.

• Where or Collicular pathway is where the remaining signals go to. It involves
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the Superior Colliculus and is responsible for controlling eye movements and

visual attention in humans.

Figure 3.2: The two different visual pathways in the HVS: Retino-geniculate
(black) and Collicular (red) pathways. Adapted from [101].

When presented with a scene, human subjects perform rapid eye movements

known as saccades to move the focus of attention from one part of the scene to the

next. Between these saccades are moments of fixation where the eyes stop moving

to analyse the region where the attention is directed to. These saccadic movements

are necessary as the retina has a foveated, multi-resolution structure (Fig. 3.3).

The fovea contains only cone receptors needed for detailed colour vision and occu-

pies only 0.02% of the retinal surface area. This fovea is however responsible for

30% of the signals that go to V1. Since the fovea is located at the end of the visual
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Figure 3.3: Structure of a human eye showing the position of the fovea (macular)
and the visual axis.

axis of the eye, objects that are in the centre of focus are projected directly on the

fovea for detailed processing to be done. These saccades thus serve the purpose

of bringing the region of focus to the fovea so that detailed visual information can

be percieved. Such movements have been recorded in pyschophysical experiments

using a headmounted eye tracking device (Fig. 3.4(left)). The resulting scanpath

made by a human subject viewing a scene is recorded and superimposed over the

original image (Fig. 3.4(right)). From the scanpaths, one can distinguish between

the fixations and the saccades that bring the eye from one fixation point to the

next.

Having two separate visual pathways, one to decide where the eye should move

to focus attention on a particular region in a scene (Where pathway) and another

one to do further processing on that focused region (What pathway), together

with a foveated retina are part of an elegant solution to effectively reduce the
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Figure 3.4: A camera based eye tracker (left)[48]. A typical scanpath showing
saccades (red lines) between fixations (yellow points) (right)[88].

incoming visual information to only the most important regions needed for scene

understanding. These critical regions are thus the salient ROIs that contain the

most informative parts of the scene. Such regions can be exploited by biomimetic

visual systems to optimally reduce the incoming visual information by dedicating

resources to analyse these regions only. These regions should ideally possess similar

characteristics that define a good landmark: they are unique, robust and catch our

attention. The next crucial step is to determine a computational model of visual

saliency so that these salient ROIs can be extracted.

3.1.3 Computational model of visual saliency: Saliency Map

Given a scene, can an algorithm predict the fixation points when a human observer

scans the scene? Furthermore, can the algorithm predict the order of the saccades

that the human observer will makes? In this thesis, the first question is of concern
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since the link between the fixation points and salient ROIs was made clear in the

previous section while the order at which the fixation points (or a subset of them)

are selected are of lesser concern.

Significant research efforts from cognitive psychologists have proposed several

computational models to explain how human observers select these salient regions.

For an overview, please see [57, 88, 91, 112, 119]. Saliency is often defined in terms

of bottom-up or top-down. Bottom-up saliency, which is the focus of this thesis,

usually occurs at the onset of the presented scene to the human observer ([88, 89]).

The observer makes eye saccades and fixates at certain regions of the image due

to certain characteristics that are linked to how the fixation regions are chosen.

Top-down saliency usually follows thereafter and is affected by the mental state of

the observer: what he/she ‘likes’ to see or is instructed to see. Top-down saliency

is thus linked to the order at which the fixation points are viewed and is harder to

model than bottom-up saliency. It is therefore ignored in this work.

Central to the idea of a computational model of visual saliency is the formation

of a saliency map ([51, 88, 119]). A saliency map encodes the 2D spatial position

of the most conspicuous regions in an image. The higher the conspicuity of that

location, the brighter it will appear on the map. These regions are the salient ROIs

that serve as the initial landmarks for scene recognition.(see Fig. 3.5). The bright

regions correspond to locations on the image that have a high salience. These

regions are further processed by various image processing techniques to extract the
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salient ROIs.

Figure 3.5: A computed saliency map using the computational model of [88].

Several computational models of visual saliency have been proposed by different

authors. The work in this thesis is based on a modified computational model of

Itti et al. [51]. This model includes several new composite features suitable for

robust scene recognition in an outdoor environment. The details of this model,

as well as the details of how the salient ROIs are extracted from the resulting

saliency map are found in section 4.1. Note that the extracted salient ROIs are

simple regions with no additional information that facilitates identification of that

region in a matching procedure. This task of identifying and encoding a useful

and robust representation of the scene is undertaken by keypoints, described in the

next section.
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3.2 Image keypoint descriptors

In this section, the concept of keypoints and their corresponding descriptors is in-

troduced. An overview of keypoints detectors and descriptors is detailed in section

3.2.1. The need to use both salient ROIs extracted from the saliency map (section

3.1.3) and keypoints for reliable scene recognition is highlighted in section 3.2.2.

A brief review of the state of the art on keypoint detection and extraction in the

literature is found in section 3.2.3. The SURF keypoint descriptor used in this

thesis, introduced recently by Bay et al. [10], is also described.

3.2.1 Keypoints detectors and descriptors

Keypoints can be seen as the pixel (and sometimes even sub-pixel) equivalent of

the salient ROIs described earlier. They thus encode saliency locally, restricted to

a few pixels in general. Keypoints are locations in an image that possess desirable

characteristics similar to that of a good landmark. They are robust and invariant

to viewpoint and scale changes; they should be unique for correct identification and

they should also be highly repeatable and detectable under various forms of image

distortions. In [73], a set of these keypoints produces a covariant region. These

regions transform and change their shape covariantly with the camera movement

under various viewpoint distortions as shown in Fig. 3.6.

Keypoints are extracted from the image by keypoint detectors and the output
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Figure 3.6: A simple fixed circle (left and middle) is not sufficient to ensure
that the same region continues to be encoded under a typical viewpoint (affine)
transformation. Using an oval is necessary (right). From [73].

of these detectors is a set of keypoint descriptors. A typical descriptor usually

encodes its position and a vector that summarises and describes the keypoint based

on certain computations done on the image and/or a part of the image near the

keypoint (see Fig. 3.7 and Fig. 3.8 for illustrations of this).

The descriptors are designed so as to balance between the conflicting goals of

efficiency and uniqueness. A high-dimensional descriptor makes it unlikely that

another keypoint will possess the same descriptor, and this may cause erroneous

matching. However, such a descriptor may take an excessively long time to com-

pute and match with another descriptor. Descriptors thus provide a robust and

unique encoding for finding correspondences of the same scene under various image

distortions. This encoded information is shown in the next section to supplement

the initial salient ROIs detected.
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Figure 3.7: (Top row) The various stages in detecting SIFT descriptors: The de-
tected region. Gradiant image with a 4x4 location grid superimposed. Dimensions
of the 3D histogram containing the location and orientation of image sample points
around the keypoint. Two possible location grids are possible, Cartesian or log-
polar (from [75]). (Bottom row) Details of the computation of the SIFT descriptor.
The orientation and gradient magnitudes of image samples near the keypoint re-
gions are denoted as arrows and weighted by a Gaussian filter (left). Summing up
the orientation and gradient magnitudes of the image samples produces a set of
descriptors (right) (from [68]).

3.2.2 Salient ROIs versus covariant keypoints

Since salient ROIs and keypoints are two different methods of representing a scene,

this section considers an important question: why is there a need for two appar-

ently similar representations of the same scene? At first glance, either one of

the representations should be sufficient to encode the scene properly for accurate

recognition. The problem is illustrated using salient ROIs and SURF keypoints of

the same scene in Fig. 3.9.

Using only keypoints at a fixed threshold of sensitivity for the detector on the
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Figure 3.8: A vector of local characteristics is used to represent the detected
interest points (keypoints) on an image (denoted by ‘+’) (left). The authors used
a set of local differential invariants to compute the descriptors, summarised as a
vector of ‘local jets’ (right). Adapted from [98].

complete image produces a large number of keypoints, many of which may not even

be useful for scene recognition. The reason is due to the fact that the keypoint

detectors work on certain simplifying assumptions on the type of distortions that

it is designed to be robust against. The most common form of distortion can be

modelled by an affine transform as it can be easily evaluated using homographies.

However, this assumption is only true if the scene is largely planar or the scene

content is far away for the affine model to be valid [40, 81]. A large number of

redundant keypoints makes recognition less efficient as the computational effort to

compute correspondences over a pair of images is increased significantly. With more

keypoints, mismatches are also more likely to occur as the limited dimensionality

of the descriptors means that there is a higher chance of wrong correspondences for

very similar features. This reduces the reliability of the scene recognition. Instead,

by focusing the keypoint detection at the initial salient ROIs, only the most salient
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Figure 3.9: Comparison of keypoints and salient ROIs. Initially detected 920
SURF keypoints (left). Detecting SURF keypoints at the salient ROIs only pro-
duces 443 keypoints (right). Using less keypoints located at the most salient regions
reduces computational time with insignificant loss in accuracy.

and stable keypoints are detected and used for scene recognition. Furthermore,

the reduction in the total number of keypoints used improves the efficiency and

reduces the probability of mismatches. There is thus an overall improvement in

scene recognition performance.

It is possible to reduce to the number of detected keypoints by modifying the

detection threshold of sensitivity. This in turn reduces the computational effort of

the recognition algorithm. The main problem is that the density of the keypoints

is greatly diminished as can be seen in Fig. 3.10. Having fewer and sparser key-

points means that the importance associated with each keypoint is increased since

an important landmark may be encoded by just a few keypoints. Any mismatches,

occlusions or deformations at that keypoint will have an increased detrimental ef-

fect on the performance of the scene recognition algorithm. Extracting keypoints
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from salient ROIs allows keypoints of high density to be detected without much

overhead in computational effort. This can be seen in Fig. 3.9 where 443 dense

keypoints are detected with a threshold of 10. A comparable but sparsely dis-

tributed number using SURF keypoints alone can only be found by increasing the

threshold to 50 (Fig. 3.10 (middle)).

Figure 3.10: Increasing threshold values reduces the sensitivity of the SURF
keypoint detector, so that there are less initial keypoints detected.

This section has shown that instead of being two redundant representation of

the same scene, salient ROIs and keypoints are in fact complementary to each

other. This strategy of combining both salient ROIs and keypoints is detailed in

section 5.1.4.

3.2.3 State of the art on keypoint detectors and descriptors

Having introduced the concept of image keypoints, this section reviews some cur-

rent works in this domain.

The amount of work in the literature dedicated to finding stable and robust
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regions that are repeatable and unique over a large viewpoint change (or a change

modelled by an affine transformation) is immense. The highly cited work of Miko-

lalczyk et al.[73] surveyed and compared several affine-invariant region detectors;

the follow-up survey by Mikolalczyk and Schmid [75] on local descriptors com-

pared several algorithms proposed by different authors. A new descriptor termed

GLOH (Gradient Location and Orientation Histogram) is also introduced. GLOH

is shown to outperform SIFT which was the best performing descriptor in an ear-

lier survey by Mikolalczyk and Schmid [74]. Both GLOH and SIFT are 128D

vectors but GLOH is more computationally expensive than SIFT as it applies an

additional PCA (Principal Components Analysis) step to arrive at the descriptor

vector. The work in this thesis uses the recently introduced SURF descriptors that

further improves on these works.

An important extension of the evaluation framework described above to 3D

keypoints, proposed by Moreels and Perona [81, 82], addresses the fact that affine-

invariant keypoints may not perform as well as what the authors claimed in [73–75].

The main criticism is that the evaluation data, available online at http://www.

robots.ox.ac.uk/∼vgg/research/affine/index.html, consists of planar images

that allows the affine model of deformation to be valid. For 3D objects, however,

this assumption no longer holds and there exists no simple mathematical model to

predict these deformations (Fig. 3.11). The evaluation in [81, 82] concludes that

a combination of the Hessian-affine detector (a variant of a corner detector) and

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
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SIFT descriptor give the best results. The work of Fraundorfer and Bischof [40]

have also explored and evaluated the usefulness of such descriptors in 3D objects

and confirms that the conclusion in [73] is only valid for planar scenes.

Figure 3.11: (Top row) Two views of the “grafitti” scene from [73] under signif-
icant viewpoint change (left and right). Matched points are shown in the middle
and can be modelled by an affine transform. (Bottom row) Two views of a complex
3D object (left and right). Matched points from the two views are significantly
different and is hard to model (middle). Data from [82].

SURF, introduced by Bay et al. [10], combines the results of these previ-

ous works and attempts to improve the efficiency of SIFT by combining a Fast-

Hessian detector together with a descriptor based on the distribution of Haar-

wavelet responses limited to 64 dimensions. The speed of the SURF algorithm

draws mainly from the concept of integral images introduced in [115] where the

time needed to compute the SURF keypoints by convolving the image with large

box filters are reduced significantly. Experimental results in [10] showed that
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SURF outperformed the current state of the art (SIFT and GLOH as well as

many others reviewed in [75]) in terms of recognition accuracy and speed for

CBIR applications. This makes the SURF algorithm the descriptor of choice

in the proposed SRS. For this work, the latest version of SURF available online

(http://www.vision.ee.ethz.ch/∼surf/) is used. The structure of SURF de-

scriptors and how they are exploited in the proposed SRS are detailed in section

5.1.

Terminology

Since section 3.1, the terms features, keypoints, salient ROIs and landmarks have

been used, and it is important to differentiate between them. For clarity, their

definitions are given below.

Definition 3.1. Feature A feature is any pixel location on the image, occupying

one or many pixels. It is the most general term that does not convey any specific

meaning and it is used when no such meaning is needed.

Definition 3.2. Keypoint A keypoint is a special feature in an image that has

been chosen by a keypoint detector, and encoded by a corresponding descriptor.

Keypoints possess certain desirable characteristics such as affine-invariance and

good localisation.

Definition 3.3. Salient ROI A salient ROI is a particular region in an image

http://www.vision.ee.ethz.ch/~surf/
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detected from a saliency map. It is thus formed from a group/ensemble of features.

In the proposed SRS, these salient ROIs are the initial ‘landmarks’ that are further

validated by other intermediate steps.

Definition 3.4. Landmark A landmark is a particular region in an image that

possesses special characteristics and meaning. A landmark or group of landmarks

are used to identify a scene uniquely. A landmark is composed of a group/ensemble

of features. In the proposed SRS, landmarks are validated salient ROIs initially

extracted from a saliency map, encoded by keypoints descriptors.

Concluding this section, the important concept of image keypoints as the pixel

equivalent of salient ROIs is introduced. The importance of using keypoints and

salient ROIs together is also highlighted by the improvement in the reliability

and efficiency of the proposed SRS. Finally, a short review on the current keypoint

detectors/descriptors in the literature and an evaluation of the different algorithms

available led to the choice of using SURF descriptors in this work.

3.3 Ordinal measures of spatial configuration

This section highlights one of the most crucial concepts that this work exploits so

as to improve the robustness of the proposed SRS against viewpoint distortions.

As was pointed out in section 3.1, real scenes (indoors and outdoors) often possess

a lot of similar features such that matching a landmark or even several landmarks
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alone is insufficient and unreliable to determine the equivalence between two scenes.

Instead, the spatial configuration of the landmarks provides better discriminatory

information for scene recognition to be successful (section 3.3.1). In order to im-

prove the reliability of the proposed SRS, this thesis uses the concept of ordinal

measures that detects the spatial configuration of the landmarks and at the same

time improves the robustness of the proposed SRS to viewpoint changes. A math-

ematical treatment of ordinal numbers and measures is found in section 3.3.2. The

robustness of ordinal measures is reviewed in past works in section 3.3.3. This

thesis proposes a novel idea of ensuring viewpoint invariance by extending the use

of ordinal measures to the spatial configuration of the landmarks. This concept is

illustrated in section 3.3.4.

3.3.1 Spatial configuration of landmarks

Using only the landmarks alone in determining scene equivalence lacks the global

understanding of the complete scene structure when the spatial configuration of the

landmarks with respect to one another is considered instead. Although a certain

feature (a particular leaf from a particular tree, or a particular man-made object)

may be found in many scenes of the same environment, it is highly unlikely that this

feature from two different scenes will be found with the same spatial relationship

with other neighbouring features (Fig. 3.12).
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Figure 3.12: Two indoor scenes with the same features with very different spatial
configuration.

In other words, although the uniqueness of a single feature may not be reli-

able, by invoking the configuration of the feature together with its neighbours,

their uniqueness is greatly enhanced. This idea of using a local configuration of

landmark features has been explored in [98] which termed it as a semi-local con-

strained matching that gave good image retrieval results. In the proposed SRS,

scene equivalence is determined by the preservation of the global landmark config-

uration between matching scene features. Note that the landmark configuration

extends into the z (depth) direction. The inclusion of depth information, explained

later in section 3.5, plays an equally important role in improving the discriminatory

power of the proposed SRS.

3.3.2 Ordinal numbers and rank correlation metrics

This section presents a brief mathematical treatment of ordinal numbers and how

they can be compared using rank correlation measures. These concepts are ex-

ploited in the design of the proposed SRS so as to provide robustness against
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viewpoint changes (section 3.3.3).

A cardinal number is a number that indicates quantity or size but not order

except by comparison with another cardinal number. For example, the cardinal

number three represents a specific quantity, but it is only by comparison with an-

other cardinal number say five that one can conclude that three is smaller than five.

For cardinal numbers to exist, there must be a measurable scale for quantification.

An ordinal number on the other hand indicates order or position in a series,

such as first, second etc. Formally ordinal numbers in set theory are defined as the

order type of a well-ordered set and is an extension of whole numbers proposed by

Cantor [28]. In this thesis, all ordinal numbers belong to the set of finite ordinals,

Ω defined by Rubin [94]:

Definition 3.5. Let Ω denote the set of finite ordinals or ordinal numbers where

Ω = {1, 2, 3, · · · }.

This thesis will thus denote ordinal numbers using positive integers as defined

in 3.5. Although this notation does not distinguish between ordinal and cardinal

numbers, the context of the problem should make clear which number space the

measurements are placed. When objects are arranged in an order according to

some continuous and measurable quality, they are said to be ranked with respect

to that quality. The whole arrangement of these objects is called a ranking. Hence

ordinal numbers indicate the respective rank or position of an object in the ranking.
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Ordinal numbers are thus used when the precise quality cannot be measured or

cannot be measured with reliability for practical or theoretical reasons.

Ordinal measures are defined as mathematical computations using ordinal num-

bers. In particular, this thesis is interested in the similarity of the two rankings.

Rank correlations of ordinal numbers are used for this purpose. In this thesis, two

common rank correlations are used: Spearman’s ρ, Sρ and Kendall’s τ , Kτ [56, 70]

defined respectively in (3.1) and (3.2).

Sρ = 1− 6

∑
d2

n3 − n
(3.1)

Kτ =
2S

n(n− 1)
=

2(P −Q)

n(n− 1)

= 1− 4Q

n(n− 1)
=

4P

n(n− 1)
− 1

(3.2)

In (3.1), d is denoted as the difference between two rankings. For example,

if the ranking of a certain quality X is 3 while that of another quality Y is 8,

the difference in ranks is simply 8 − 3 = 5. This may seem at first illogical as

how can one subtract “third” from “eighth”? The implication of this difference

can be inferred as the difference in preference of one quality over another one. A

rank of 3 for X means that there are two other members in priority over it in that

particular ranking. Similarly for Y , there are seven members preferred over it in
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that ranking. Hence the difference of 5 between the two rankings shows by how

much the number of preferences in Y exceeds that of X. This number is thus a

cardinal number as it has a specific value that arises from counting [56]. n is the

maximum number of ranks in the data considered. For example, given a class of

twenty students ranked by their height, n = 20 in this case. Sρ is often considered

in the literature as a coefficient of weighted inversion between the ranked data sets

[56]. See Example A.2 for a demonstration of the computation of Sρ.

In (3.2), as in (3.1) n is the maximum number of ranks in the data considered.

S is the score obtained by comparing the rank of each element in the two rankings.

This score is obtained by considering the rank of each element in both sets with

respect to the other elements in the 2 sets. Comparison is done pair-wise and if

the comparisons are concordant with respect to the natural order which is defined

as increasing ranks, a score of P = +1 is given and a score of Q = −1 is given if

the comparisons do not respect the natural ordering. Summing up the individual

scores yields S. Hence S = P −Q. The number of possible pairwise combinations

possible is given by P + Q =
(

n
2

)
= 1

2
n(n − 1). The different variations of Kτ are

thus derived as shown in (3.2). Kτ is often seen as a coefficient of disarray between

the data sets considered [56]. Refer to Example A.3 for a demonstration of how

Kτ can be computed from sample ranked data.

As with all standard correlation metrics, both Sρ and Kτ range continuously

from {−1 · · · 1}. It is expected that both rank correlations will not give the same
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results except for the cases of perfect positive correlation (with a score of 1) and

perfect negative correlation (a score of −1). From [56], it was shown that the

differences between the two rank correlations lie in their scale of representation -

Sρ gives greater weight than Kτ to inversions of rank which are further apart. In

practice, it is found that for values that are not too close to unity, Sρ is 50% larger

in magnitude than Kτ but this is not a fixed rule.

Other rank correlation measures exist in the statistical literature, such as

Ulam’s distance, τB, that was used in [11] as well as Kemeny and Snell’s dis-

tance, dks, in which a normalised version was proposed in [69]. These measures

present possible future extensions of the proposed SRS.

3.3.3 Robustness from ordinal measures

In order to further improve the robustness of the SRS against viewpoint distortions,

a certain amount of tolerance to changes in the spatial relationship of the matched

features must be allowed. In [8], templates of features are stored in a local database

and are robustly matched to a potential scene using the idea of elastic template

matching. The idea is to allow the templates (or features) a restricted amount

of freedom to deform their spatial configuration resulting from viewpoint changes.

Similarly in the proposed SRS, this ‘freedom’ for the features to deform their spatial

configuration is incorporated by measuring a similarity of the spatial relationship
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in an ordinal scale.

The use of ordinal scales of measurement had been adopted to improve the

robustness of 2D pixel correlations, most of them in stereo matching problems (for

a good overview see [16, 52]. An extensive evaluation can be found in [96]). The

conversion to ranked pixels values is demonstrated in example 3.1 below:

Example 3.1. Suppose an image patch, W of size 3 × 3 containing raw pixel
intensity values is converted to a ranked pixel image patch, R. Since there are 9
elements in the patch, the ranked pixel values range from {1, 2, 3, · · · , 9}:

W =


10 30 70

20 50 80

40 60 100

 ⇒ R =


1 3 7

2 5 8

4 6 9


Now lets suppose W is subjected to certain perturbations that distorts one of the
raw pixel intensity value such that W → W′. Converting W′ to ranked pixels
values, R′ reveals the robustness of ordinal measures:

W → W′ =


10 30 70

20 50 80

40 60 255

 ⇒ R′ =


1 3 7

2 5 8

4 6 9


Since R′ = R, this shows that the conversion to an ordinal scale improves the
robustness of the pixel representation against random perturbations compared to
using raw pixel intensity values.

Zabih and Woodfill [120] introduced the rank and census transforms to increase

the robustness of standard image correlation algorithms against occlusions and

depth disparities while Bhat and Nayer[12] introduced κ as a robust measure of

correlation between two image patches by converting to an ordinal scale. The κ in

[12] is improved further by making it more discriminatory in [97]. Other authors
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(e.g. [69, 103]) have also similarly introduced other measures for computing image

similarity in an ordinal scale.

In the next section, an example scene containing very simple landmarks is used

to show the robustness of ordinal measures against viewpoint changes.

3.3.4 Viewpoint invariance from ordinal measures

The robustness of ordinal measures in providing a viewpoint invariant representa-

tion of the scene is illustrated here. For the sake of clarity, a pair of simple images

that contain only four distinct landmarks set against a white background are used.

The only difference between the two images is a slight viewpoint change to the

right (Fig. 3.13).

For the moment, one can assume that the SRS is able to reliably detect the

four landmarks and that reliable correspondences can be found between the two

images. The arrows in Fig. 3.13 show how the positions of the four landmarks have

changed as the camera shifts to the right. Although the landmarks have changed

in their absolute positions in the (x, z) directions, their ordinal positions remain in-

variant - the landmarks maintain the same order with respect to one another. The

preservation of this order can be detected using ordinal measures of the detected

landmarks. In other words, all the metric information of the landmark’s position is

converted to an ordinal scale. Hence only the ranks of the relative positions of the
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Figure 3.13: Slight viewpoint change between two images. The numbers indicate
the detected features that are highlighted.

landmarks are of concern. Rank correlations of the matched landmarks, introduced

in section 3.3.2 as a measure of similarity, can then be used. The proposed SRS

computes Sρ and Kτ (3.1,3.2) rank correlations over the three spatial directions

(x, y, z) (section 6.1.2 and (6.5)). A significant degradation in correlations scores

indicate that the ordinal positions of the matched landmarks are not preserved and

the scenes could be different. The case of a positive match is illustrated in Fig.

3.14. As some mismatches are likely to occur, it is expected that the value of Sρ

and Kτ will not be exactly 1 (perfect correlation), even for similar scenes.

In conclusion, this section has highlighted the importance of using the spatial
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Figure 3.14: Computing the rank correlations of a positive test scene. The
solid arrows represents correct matches while the dashed arrows represents wrong
matches. The colour blocks shows the matched features of the two scenes. The
rank correlations are computed over the three spatial directions (x, y, z).

configuration of landmarks that provides a complete and global view of the scene

structure for effective recognition. The concept of ordinal measures and its use-

fulness in providing a robust measure in image processing applications are also

briefly presented. Finally, an illustration of how rank correlations provide a ro-

bust measure to detect changes in the spatial configuration of scenes under various

viewpoint changes is shown. The details of how ordinal measures of spatial config-

uration are incorporated in the proposed SRS is found in section 5.3 as part of the

Scene matrix, ms. The use of rank correlations as a measure of similarity between

two scenes is detailed in section 6.1.2 using the Global Configuration Coefficient,

Gc.
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3.4 Illumination invariance using HSV colour space

This section describes the concept of an illumination-invariant representation of a

scene as well as its importance to outdoor scene recognition. The main challenges

of illumination changes are described in section 3.4.1 and a short review of past

works that motivated the use of the HSV colour space in this thesis is presented

in section 3.4.2.

3.4.1 Challenges of illumination changes in outdoor scenes

For the proposed SRS to be effective in natural outdoor environments, it must be

robust to a variety of changes in illumination caused by the change in the position

of the sun as well as changes in weather conditions. The effects of illumination

changes on two similar scenes taken at different times of the day are shown in Fig.

3.15. The top scene was taken under bright sunlight while the lower scene was

taken under diffused lighting on two different days. Furthermore, the two scenes

were taken under different weather conditions - a clear sunny day (top) vs.a hazy

overcast sky (bottom).

Analysing the RGB images of the two scenes reveal several challenges caused

by illumination changes that make outdoor scene recognition particularly difficult.

Firstly, there is a global change in illumination levels due to different weather

conditions. The top scene has pixel intensity values that are on the average higher
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Figure 3.15: Two RGB images and their HSV components under different illu-
mination conditions. Slight viewpoint distortions occur between the two scenes as
they were taken on different days.

than those in the bottom scene. This is due to the fact that the overcast sky

significantly reduces the amount of sunlight in the bottom scene. The haze particles

in the air further diffuse the sunlight, resulting in an overall reduction in intensity

values in the bottom scene. Secondly, the effects of shadows in the top scene

caused by the dense natural foliage and strong sunlight further compounds the

problem if one attempts to match it with the bottom scene which has virtually

no shadows. Shadows in natural environments produce patches of non-uniform or

local intensity changes that are unstable due to the movement of the sun. Such

periodic and dynamic changes make it necessary to incorporate an illumination-

invariant representation of the scene, described in the next section.
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3.4.2 Illumination-invariant representations

Because of the problems posed by global and local illumination changes in nat-

ural outdoor environments, several methods of removing shadows from a scene are

proposed so that an illumination-invariant representation can be achieved. The

highly cited works of Finlayson and other researchers have explored several tech-

niques to perform shadow removal. One of their work [36] showed how shadows can

be removed from a RGB image so that a shadowless grayscale image is produced.

This is achieved by determining a single scalar function derived from the RGB

image that is invariant to changes in colour and intensity. Applying this function

results in a 1D invariant image that depends only on its reflectance. By detecting

the shadow edges where the only changes are in colour and intensity, shadows are

easily removed from the invariant image. An extension of this work is shown in

[37] where the final result is a shadowless RGB image. This is done by extracting

edges from the original RGB image such that material edges are preserved while

shadow edges are removed, using the shadowless grayscale image as a mask. The

results are shown in Fig. 3.16.

Other works extended [36] by extracting the shadowless chromaticity image [32]

while another work [38] removed shadows by combining Land’s Retinex algorithm

[59] together with information on the shadow’s edge. Other methods transform

the original RGB image to other colour spaces such as hue [35] or saturation [92]
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Figure 3.16: The shadow removal algorithm of [36, 37]. Top row: Original RGB
image (left). Grayscale illumination invariant (middle). Grayscale normal (right).
Bottom row: Edge map of illumination-invariant image (left). Edge map of normal
grayscale (middle). Final shadowless RGB image (right).

which are shown to be robust against illumination changes. This is the method

that this thesis will adopt.

It is clear from Fig. 3.15 that merely using grayscale images is not robust

against the effects of shadows caused by the foliage and changes in overall illu-

mination levels. Any information concerning the landmarks, such as the SURF

descriptors (section 3.2), derived from the grayscale image are affected by shad-

ows. As a result, there will be few and incorrect correspondences if two scenes

are matched. By comparing the saturation and hue images of the two scenes, one

can see that the effect of illumination changes is almost completely removed in

these two colour spaces. That is, the SURF descriptors in these colour spaces are

almost illumination-invariant. However, the monotonic nature of the saturation
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and hue images may reduce the uniqueness of the descriptors and this may cause

mismatches to occur. In the proposed SRS, all the three colour spaces in HSV are

used to achieve a reasonable compromise.

This section has presented the concept of illumination invariance and its impor-

tance for a robust scene recognition algorithm to function effectively in a dynamic

outdoor environment. A short review of recent works in producing an illumination

invariant representation, mainly through the removal of shadows, highlighted the

usefulness of working in a different colour space other than RGB. This thesis uses

the HSV colour space to improve the performance of the proposed SRS (see section

5.1.1) and the improvement in recognition accuracy compared to using grayscale

alone is discussed in section 7.5.10.

3.5 Importance of depth information obtained

from TBL motion

This section continues from section 2.3 where the question “Why are TBL flights

designed in such a fashion?” is posed to address the purpose of TBL flights in

bees and wasps. Unlike Bianco’s hypothesis [13–15, 63] that TBL flights serve as

a testing framework to determine stable landmarks across a TBL arc, this thesis

argues that the special structure of TBL flights actually aids in depth recovery.
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More precisely, such flights aid in ordinal depth recovery of the scene structure

that is shown to be crucial for a viewpoint invariant representation of the scene

(section 3.3.1). In section 3.5.1, the importance of depth information for scene

recognition motivates the need to find a robust solution for its recovery. Section

3.5.2 gives an overview on TBL flights and shows how the special motion of this

flight can be used by bees and wasps to recover ordinal depth information.

3.5.1 Importance of depth information

The importance of depth information for outdoor scene recognition was briefly

mentioned in section 3.3.1 where it is required to describe the complete spatial

configuration of an ensemble of feature points (or landmarks). This is especially

true if the agent performing scene recognition is navigating in a confusing environ-

ment where only a few plant species dominate as shown in Fig. 3.17, resulting in

a distinct lack of highly unique features. In this environment, the discriminating

component for these ambiguous scenes are not the features themselves but how the

features are spatially related to one another.

Therefore, depth information plays an important role in enhancing the dis-

criminatory power of the proposed SRS for ambiguous scenes. Natural scenes that

the SRS encounters are often devoid of highly unique features on its own (Fig.

3.17) such that 2D features alone, may not provide sufficient information to tell
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Figure 3.17: Various scenes obtained at different positions along a footpath in
an enclosed mangrove forest. Notice the strong similarity in these scenes due to
the fact that only a few dominant plant species thrive in the harsh mangrove
environment. The ambiguity of these scenes makes recognition very difficult.

the scenes apart. Rather it is often the spatial arrangement or configuration of

an ensemble of features that defines a scene uniquely. Depth, being an integral

component that defines this spatial configuration should thus be included as it

enhances the information of each scene by a third dimension, the z dimension.

Besides reducing the ambiguity of difficult scenes, depth or more precisely or-

dinal depth was shown in section 3.3.4 to be a crucial component in providing a

viewpoint invariant representation of a scene. From Fig. 3.13, one can see that

changes in viewpoint for similar scenes preserve the relative orders of the spatial

positions of the landmarks, including ordinal depth. Using rank correlations in the

three spatial directions (x, y, z) enable the proposed SRS to effectively detect any
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degradation in the spatial ordering of the landmarks, which could indicate that the

scenes may be dissimilar.

Depth is also an important component in prioritising the importance of various

landmarks in the scene. As was mentioned in section 3.1.1, certain regions in

the scene provide important information that serves as good landmarks for scene

recognition. Landmark selection at different depths from the agent is an important

factor that should be taken into consideration. Landmarks that are far from the

agent in the background such as the skyline provide stable and robust features

that are relatively invariant to viewpoint changes and changes in scale (by moving

forward and backward) (Fig. 3.18).

Figure 3.18: The skyline (indicated in red) serves as a very useful and important
region for scene recognition in a relatively open beach environment.

However, unless the skyline is extremely obvious, the presence of foreground
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foliage near the agent may easily obstruct the skyline. The skyline is thus vul-

nerable to occlusions. Furthermore, features that are far away may be so stable

that they may appear in multiple instances of different scenes taken in the same

environment. This may confuse a SRS that matches different scenes based on the

far features alone (Fig. 3.19).

Figure 3.19: The far features in the skyline may not be useful in this case where
two dissimilar scenes possess remarkably similar skylines. Notice that the fore-
ground, however, is significantly different.

In order to discriminate between the two scenes shown in Fig. 3.19, it is neces-

sary to detect landmarks in the foreground, near the agent. Near features close to

the agent often identify the particular scene uniquely, and are important for the

discrimination of scenes that share common background features. Furthermore,

foreground features are also less likely to be occluded than background features

since they are nearer to the agent. However, because of their proximity to the

agent, even slight changes in the agent’s pose will induce significant distortions to
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these features. Near features are thus more vulnerable to viewpoint changes and

changes in scale.

The inclusion of depth information allows the landmark extraction stage of

the SRS to select and possibly weigh the importance of the landmarks differently

based on their spatial positions in depth. For scene recognition that requires good

resolution, the SRS must be highly discriminatory and sensitive to small changes

so that closely separated scenes can be distinguished. This can be done by giving

a higher weight or more importance to landmarks that are near. If the resolution

required for the application is not high, then far landmarks can be given a higher

weight so that a more global idea of the agent’s location can be used. The work

in providing a differential weighting in this thesis is described in section 4.4 in the

design of a depth-weighted saliency map for landmark extraction.

Depth also provides supplementary information important for successful nav-

igation. Obstacle avoidance is an important ability that requires the agent to

determine if a nearby object is on a collision course. By computing the time to

collision, the agent can change its original path to avoid possible dangers. Detect-

ing an open area in the immediate surroundings helps in path-planning and this

requires the agent to obtain reliable depth information. Before the agent plans

the route to use, it must also ensure that the current path is clear and free from

obstacles. If that is not the case, an alternate path that is safe and accessible must

found. Without depth information, the agent will not be able to perform these
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tasks effectively.

The next question is how can an artificial agent robustly recover this important

depth information? The TBL motion, discussed in the next section, provides a

possible solution.

3.5.2 Ordinal depth from TBL flight

Having motivated the importance of depth information for scene recognition, this

section explains how the motion of TBL flights, introduced in section 2.3 where

related works from biomimetics were reviewed, can be used as a robust and efficient

mechanism for ordinal depth extraction.

TBL flights

TBL flights, also known as zig-zag flights [116] or learning flights [121], are observed

in certain species of flying hymenopterans; (bees and wasps) (Fig. 3.20) which they

perform the first few times they approach or leave important sites, such as their

nests or new feeding grounds. The first two wasps (Bembix sp. and Bembecinus

sp.) shown in Fig. 3.20 practice what is known as progressive provisioning. That

is, the parent wasps have to provide the larvae with several helpings of the insect

prey to complete their life cycle. In order to do so, the parent wasps relocate and

open their nest several times to deliver the food. The wasps are remarkable in
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Figure 3.20: Three examples of common species of wasps from Singapore, all
taken along the sandy shores of Pulau Ubin. All the wasps are from the Digger
Wasp Family (Family Sphecidae). Left to right: Bembix sp., Bembecinus sp.,
Tachysphex sp. Thanks to Dr. Cheong L.F. for the beautiful pictures.

locating their well-hidden nests. After the nests are dug in the sand, the parent

wasp will carefully fill the entrance with sand, levelling the sand so that there is no

obvious marking. Bembix sp. hunts fierce insects such as Robber Flies and other

wasps. Bembicinus sp. hunts Homopteran insects. In Fig. 3.20 (middle), the

wasp is opening up its nest with the paralysed prey (a leafhopper) firmly clasped

under its abdomen. Tachysphex sp. usually hunts for Orthopteran insects such as

crickets. In Fig. 3.20 (right), the wasp has paralysed a cockroach which is partially

occluded by the body of the wasp.

The motion of several TBL flight paths are shown in Fig. 3.21. In a detailed

and illuminating study of TBL motion, Lehrer [61] conducted extensive studies

on the physiology and characteristics of TBL flights in both controlled indoor and

outdoor natural feeding dishes. Her observations on this particular form of flight

performed by the honeybees inspired her to coin the term “Turn-Back-and-Look”,
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because that exactly describes what the bee’s movement. From Fig. 3.21, it is clear

that not only does the bee turn back and look at the goal site, it also performs a

beautiful motion that consists of a series of increasing arcs near the vicinity of the

goal. For indoor targets where there is only a single entrance to the feeding dish

housed in a dark container, all the TBLs are performed in front of the entrance. For

open feeding dishes situated outside in a garden, the bees are observed to perform

TBL at various directions with respect to the sun’s position in the sky - TBL is

always performed with the sun behind the bees. The reason for this behaviour

is not exactly know, but a possible explanation could be that flowers are often

phototropic, that is, they follow the sun’s movement over the course of the day.

Bees could be using this strategy so that the flowers can be viewed at the best

position and illumination for recognition later.

Another interesting observation is that TBL is performed not only once but is

repeated several times. From Fig. 3.21(left), the first few TBLs were very long and

consist of very elaborate arcs around the target site lasting often as long as 8s.

The last few TBLs were very short (2s) with few arcs. The conclusion from this

observation is that TBL serves functions other than to learn the position of the

goal target, since the bee had to return successfully in order to perform subsequent

TBLs. It is likely that the bees were learning something about the target that

may not have been immediately important for knowing “where” the target is but

is crucial for future return trips. This is believed to be linked closely to the arc-like



3.5 Importance of depth information obtained from TBL motion 77

Figure 3.21: Several TBL flight paths from bees (left) and wasps (right). The
left panel shows the different stages (a) to (d) of a honeybee performing TBL
repeatedly in front of an indoor feeding dish, shown as a black dot surrounded by
an oval. The first few TBLs (a) and (b) are longer and contains more arcs and
repetitions while the final TBL (c) is much shorter. Once the TBL phase is over,
the bees fly directly away from the feeding dish (d). The right panel shows the
similarity of TBL flights with landmarks denoted as circles of several species of
wasps. Notice the significant arc-like motion made by the wasps. All data from
[63].

motion of the TBL flight itself shown in Fig. 3.21(right).

Recovery of ordinal depth from TBL motion

The TBL motion consists of a series of arcs centred about an object of interest

or target, with the direction of translation almost perpendicular to the line of

sight of the insect. The characteristics of TBL motion was measured in precise

studies reported in [116] (Fig. 3.22). It is thus highly likely that the significant

translational component in the TBL flight enables the insects to recover depth
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information of the target scene, shown to be important for scene recognition in

section 3.5.1.

Figure 3.22: The TBL of a wasp recorded in [116]. The circle is the target. Notice
the significant translational motion that is almost perpendicular to the target at
each arc formed. The complete path is shown on the right.

Note that there exists another kind of flight known as orientation or circular

flight [61, 121] that has important technical differences to TBL flights. Such flights

are longer and more obvious as the insects fly around in large increasing circles

above the target goal site. From [61], such orientation flights are performed as

soon as the bees fly out of the laboratory after collecting the food reward from the

indoor feeding dish. Lehrer hypothesised that the orientation flights serve to help

the bees in locating landmarks that are far from the goal site. Although both TBL

and orientation flights are apparently dissimilar, this thesis argues that the essence

of these motions and thus their main purpose seems to be the same. In both cases,

there is significant translational motion, with a greater rotation about the y axis
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in an orientation (circular) flight than a TBL arc. Once again, this translational

motion aids in depth recovery as there is no forward motion at all, which would

have otherwise made the recovery very difficult [22].

The real purpose of TBL is not known, but numerous observations from the

literature [62, 64] have suggested the usefulness of TBL in choosing suitable land-

marks for scene recognition. Besides using apparent size, it was concluded in [106]

that bees do in fact obtain distance information from selected features so as to

perform precise landing at feeding sites and at their nests [107]. Since TBL is also

performed at these locations, it is highly likely that TBL is used to obtain distance

information related to the selected features [25, 61, 121]. Since insects such as

bees do not have stereo vision, the most likely way to compute an estimate of this

depth is through optic flow arising from TBL flights [61, 121]. Based on computer

simulations of TBLs performed by wasps, Voss and Zeil [116] provide a qualitative

analysis of the optic flow vectors induced by such a motion and suggest how 3D

information of the scene might be obtained (Fig. 3.23).

As the TBL arc contains both translational and rotational components, any

depth information computed from optical flow measurements will be imprecise un-

less the rotational components can be accurately estimated. From [22], it was

shown that although metric depth information may be unreliable under such con-

ditions (lateral translation mixed with rotation), the depth orders can be obtained

with great robustness even when there are significant errors in the motion estimates



3.5 Importance of depth information obtained from TBL motion 80

Figure 3.23: Simulated optical flow as viewed from the head of a wasp undergoing
TBL motion. The target is a simple cylinder in the middle of the scene. (a)Optical
flow induced as rotational and translational vectors are adjusted to place the object
in the centre. (b)Optical flow induced at the start and end of a TBL arc where
there is nearly pure translation, as the wasp is about to change direction. Data
from [116].

or camera focal length. This motivates the use of ordinal depth in the proposed

SRS.

For the artificial agent, TBL thus provides a possible method to robustly re-

cover the depth information so important for effective scene recognition (section

3.5.1). Although many depth cues are available in an image, in the context of

navigation, motion information provides the most natural cue for depth recov-

ery. Unfortunately the structure from motion problem is a notoriously ill-posed

problem, from which it is very difficult to recover accurate metric depth informa-

tion. This problem can be circumvented by mimicking the TBL motion of flying

hymenopterans discussed in this section, as well as using only qualitative ordinal

depth information, thereby eschewing the need for accurate metric depth recovery.
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This section has provided an overview on the importance of depth information

for effective scene recognition. A robust and efficient method of ordinal depth

recovery, inspired from the TBL motion of bees and wasps is also presented. How

the proposed SRS exploits TBL motion to enhance the salient ROIs with ordinal

depth information is detailed in section 5.2.2. The contribution of ordinal depth

to the recognition accuracy of the SRS is discussed in section 7.5.5.

3.6 Final remarks

This chapter has introduced several important concepts related to the proposed

SRS. It is helpful to link these core concepts, summarised below, to the parts of

the thesis for easy reference. All the references link to the specific sections where

the concepts are first introduced.

• Visual saliency for reliable landmark detection (section 4.1)

• Encoding of the salient ROIs using SURF descriptors (section 5.1.4)

• Ordinal spatial configuration in the Scene matrix (section 5.3)

• Determining scene similarity using rank correlations (section 6.1)

• Illumination invariance using HSV colour space (section 5.1.1)

• Recovering ordinal depth from TBL motion (section 5.2.2)

The rest of the thesis will focus on presenting the design of the proposed SRS using

the concepts introduced. The next chapter begins this description by detailing how

the proposed SRS selects the initial salient ROIs using visual saliency.
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Chapter 4
Visual saliency for landmark extraction

This chapter describes the first stage of the proposed SRS with the selection of

visually salient initial landmarks, or salient ROIs from a computed saliency map.

The computational model of visual saliency adopted in this work is described in

section 4.1. This computational model includes several enhancements such as the

inclusion of new composite feature maps described in sections 4.2 and 4.3. The

final output is a depth-weighted saliency map (section 4.4) where the regions in

the foreground are made more salient than regions in the background using an

estimated dense ordinal proximity map. The depth-weighted saliency map indicates

regions of high salience as potential salient ROIs which are then extracted using

simple image morphological operations (section 4.5).
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4.1 Modified Itti’s computational model of visual

saliency

The usefulness of visual saliency in selecting initial salient ROIs for scene recogni-

tion had been explained in sections 3.1.2 and 3.1.3. In this section, an overview of

the modified computational model of visual saliency by Itti is detailed.

The computational model of visual saliency proposed by Itti et al. [51] is one

the most popular models of the human attention system. The original work made

predictions of how human attention shifts from one salient region to another, by

applying a Winner-Takes-All (WTA) algorithm on the resulting saliency map that

is produced. The original model is shown in Fig. 4.1 (left). In this work, a modified

version of this model that uses several new composite features, Cf , suitable for scene

recognition in outdoor environments is proposed (Fig. 4.1 (right)).

Definition 4.6. Composite features Composite features, denoted as Cj
f for the

jth composite feature, are image regions that are deemed to be potentially salient.

They are used by the saliency algorithm to determine if salient ROIs exist in these

regions.

Apart from the original intensity and orientation composite features, a modified

opponent-colour composite feature using the concept of colour constancy for an

illumination invariant representation (section 3.4.2) proposed in [111] is used. This
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Figure 4.1: Left: Itti’s original computational model of visual saliency [51]. Right:
The modified computational model of visual saliency with several new composite
features.

representation was shown in [111] to be able to robustly extract salient regions

under varying illumination. Furthermore, two new composite features, namely

long edges and skyline, are extracted from the image if they exist. The salience of

each composite feature is computed and represented as a conspicuity map. Unlike

the equal weights that are used in [51] to combine the conspicuity maps together,

the entropy of the individual conspicuity map is used instead to weigh each map

before combination to form the saliency map. A final additional step involves

modulating the saliency map with an estimated dense ordinal proximity map so as

to finally obtain a depth-weighted saliency map.

The three composite features - intensity, orientation and opponent-colour, are

extracted by various algorithms detailed in [51, 111]. These features are well-known

in the psychophysics literature as potentially salient regions that model well the
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human attention system. The intensity features are extracted by simply converting

the original RGB image to grayscale while the orientation features are obtained

by convolving the intensity (grayscale) image with a set of Gabor filter banks [85].

The four opponent-colour channels R′, G′, B′, Y ′ are computed directly from the

normalised RGB channels, r, g, b. See [51] for details of the computations. The

various composite features extracted are shown in Fig. 4.2. The next two sections

focus on the remaining two novel composite features introduced in this thesis.

Figure 4.2: Various composite features extracted from the input RGB image:
intensity (grayscale), orientation (gabor) and opponent colours.
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4.2 Detecting long edges as composite features

The contribution of this thesis is the addition of two new composite features,

long edges and skyline, so as to enhance the robustness and accuracy of the final

detected salient ROIs in natural outdoor environments. Long edges are known

in the literature as an extremely useful and viewpoint invariant salient feature

[47, 105] that are robust against illumination changes and occlusions. Such long

edges were exploited in natural sceneries to reliably detect tree trunks for outdoor

visual SLAM [5, 6] and to detect certain species of trees for navigation [17]. In

this work, the edge composite map is extracted by applying Canny’s method [18]

on the intensity image (Fig. 4.3).

Figure 4.3: An edge map (right) detected for the saliency algorithm using Canny’s
method.
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4.3 Skyline as useful composite features

The skyline is used by several authors in past works for scene recognition in navi-

gation. This is especially true for flying vehicles where the segmentation of the sky

from the ground is important in determining the bank and yaw angles, which are

needed to ensure the stability of the vehicle [109, 110]. For land-based navigation,

faraway landmarks such as mountain peaks are detected and used for localisation

([7, 26, 27, 108]). A recent and original approach in [53] showed that the skyline

of buildings in an urban environment offers a simple but effective representation

for scene recognition. The use of the skyline for scene recognition has also been

hypothesised by behavioural scientists for certain species of bees and wasps [79].

It is known that these flying hymenopterans have a visual system that is sensitive

to UV, green and blue colours. A colour-contrast mechanism is proposed that

enables such insects to extract the skyline reliably under a variety of illumination

conditions. In particular, the sky contains a larger proportion of UV than the

(typically) green vegetation which absorbs the UV from the sky. The UV-green

contrast mechanism was shown in experiments by [79] to be reliable in segmenting

the sky (which looks brighter) from the vegetation (which looks darker) from a

variety of lighting conditions at different times of the day (from dawn till dusk).

Motivated from these results, the utility of the skyline in the context of our

proposed SRS is very clear. The skyline is in fact one of the most distinctive
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and robust features that conveys a coarse idea of the agent’s position. As was

briefly mentioned in section 3.1.1, the skyline remains unchanged for significant

distortions in the agent’s pose. Lateral translations do not affect it much and it

is almost invariant to changes in depth since the skyline is composed of objects

in the far distant background. The drawback of using the skyline lies in the fact

that it compromises the discriminatory power of the SRS (see section 3.5.1) - it is

possible that two very different locations possess similar skylines. Nevertheless, it

is shown in the experimental results using real outdoor scenes (section 7.4) that

the complexity of the various features (trees, bushes and other objects) makes it

highly unlikely that such an ambiguous scenario will occur.

The skyline is detected from an image by assuming that the sky has the fol-

lowing properties: 1) It is in the top half of the image; 2) It is more luminous

(brighter) than the ground; 3) It contains a higher percentage of the blue colour

component when compared to the ground. Furthermore, as the sky contains rela-

tively few objects, it is relatively textureless compared to the ground that contains

abundant vegetation. The skyline is thus defined as the intersection between the

sky and ground. Fig. 4.4 summarises the various stages in the skyline detection

algorithm for a natural outdoor scene.

The first step of the algorithm detects edges using Canny’s method, similar to

section 4.2. Since the sky has less textures, there should be less edges extracted

from the potential sky region. Assuming furthermore that the sky is at the top
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Figure 4.4: Steps (1–8) of the skyline detection algorithm. See text for details.
The final skyline is shown in red superimposed over the original RGB image.

half of the image, the algorithm performs several image morphological operations

of dilation and filling to create a labelled image that should represent the segmented

sky-ground regions. In order to obtain the skyline, pixel columns are extracted and

the first pixel counting from the top that shows a significant change in luminosity

and blueness is classified as the skyline. The process is repeated until the full width

of the image is processed. Note that the accuracy of this algorithm is based entirely

on the assumptions stated above. There are some cases where these assumptions
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fail, such that the skyline is detected with errors (Fig. 4.5). Nonetheless, such

errors are rare and they do not degrade the performance of the proposed SRS

significantly.

Figure 4.5: Two examples of erroneous skylines detected. Left: The presence of
haze and the sea makes the sky almost indistinguishable. Right: Artificial lighting
in the ceiling mimics the sky that confuses the algorithm.

4.4 From image pyramids to saliency maps

With the five composite features extracted, the saliency algorithm creates a set of

Gaussian image pyramids [93] by filtering the composite features repeatedly with

a low pass Gaussian filter, G over several spatial scales (Fig. 4.1). All the initial

image sizes are resampled to 512× 384 to give the largest spatial scale 1 together

with seven other smaller scales. Each scale produces a subsampled image that

contains half the resolution of the image at the preceding scale. This procedure
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can be summarised as


Pj

1 = Cj
f , j ∈ {col, int, ort, edge, sky}

Pj
k+1 =↓ 2(Pj

k ∗G), k ∈ {1 · · · 7}

(4.1)

where {col, int, ort, edge, sky} and k are the five composite features and the spatial

scales respectively. Pj
k is the pyramid image of the jth composite feature at the

kth spatial scale. ∗ and ↓ 2 are the convolution and down-sampling operator

respectively. A set of Pj
k is created for each composite feature, forming a set

composite feature maps. An example of the intensity composite feature maps at

eight different scales is shown in Fig. 4.6.

Figure 4.6: Image pyramids of the intensity composite feature maps formed by
the repeated application of the ↓ 2 operator and convolution with a Gaussian.

For each set of composite feature maps, a set of six normalised difference maps,

Pj
diff (i), for the ith difference, is obtained by computing the difference between
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two pyramid images at different scales (c, s). This procedure models the centre-

surround difference mechanism found in the receptive fields of the retina and LGN

[45, 51, 101]:

Pj
diff (i) = N1(‖Pj

c −Pj
s‖)

c ∈ {2, 3, 4} , s ∈ {c + d} , d ∈ {3, 4} , i ∈ {1 · · · 6}
(4.2)

where j represents the composite features as before and N1, known as content based

global non-linear amplification [50], is used as a normalisation procedure to promote

salient features in each of the difference maps. Maps with isolated salient features

which are more conspicuous are promoted while maps with numerous comparable

peak responses are suppressed. N1 consists of two simple steps:

1. Each Pj
diff is normalised to a fixed range 0 · · ·Mg where Mg is the global

maximum of the difference maps.

2. Multiply each Pj
diff by (Mg − mav)

2 where mav is the mean of the local

maxima of the difference maps.

Hence maps with a local maxima that are near to the value of the global

maximum will yield a small (Mg−mav)
2 that effectively suppresses this map while

maps with a few isolated salient features are globally promoted since (Mg −mav)
2

is large. The effect of N1 is shown in Fig. 4.7.

Summing up the difference maps for the jth composite feature and applying N1
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Figure 4.7: Normalisation using N1 to two Pj
diff , intensity and orientation com-

posite features. Data from [51].

again yields the various conspicuity maps, Cj, that represents the saliency of each

composite feature:

Cj = N1(
∑

i

Pj
diff (i)) (4.3)

These conspicuity maps, Cj, each weighted by the entropy of the individual Cj,

are then combined and normalised by N2, by a procedure that recursively applies a

large Difference of Gaussian(DoG) filter over the conspicuity maps. The main idea

is to model the centre-on ganglion cells that approximate the feature combination

strategy of the visual cortex [45, 50, 101]. The output is known as the depth-free
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saliency map, Sm:

Sm = N2(
∑

j

H(Cj)×Cj) (4.4)

where H(·) is the entropy operator defined by Shannon [117], with larger weights

given to conspicuity maps that have a higher entropy. Following the work in [33],

it was shown that weighing the conspicuity maps by their entropy gave a more

distinctive and robust representation of the final saliency map, Sm, that is similar

to the saliency maps produced in [33, 43, 51]. From section 3.5.1, the importance of

the depth information in prioritising which parts of the scene are more important

was highlighted. In the proposed SRS, this depth information is integrated into

Sm to form the depth-weighted saliency map, Sdm by

Sdm = D̂prox × Sm
(4.5)

where D̂prox is a dense ordinal proximity map that estimates the depths of the 3D

points associated to the image features. In addition to the importance of depth

in encoding the spatial configuration of the landmarks (section 3.5.1), needed for

a viewpoint invariant representation of the scene (section 3.3.4), the motivation of

adding a depth component to the SRS manifold comes from human psychological

studies. These studies show that humans tend to focus attention at a particular
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depth plane [2, 84]. By increasing the salience of features that are nearer, the SRS

tends to pick out features that are of immediate relevance to various tasks such as

recognising near obstacles and immediate dangers. In the case of insect navigation,

experiments from [21] found that bees tend to select objects and features nearer to

the target goal site as such features define the scene more accurately. This means

that a mechanism to determine the distance of the selected feature is necessary.

The estimation of D̂prox from optical flow is detailed in section 5.2.3 using simulated

TBL motion. Examples of conspicuity maps and Sdm are shown in Fig. 4.8.

With the depth-weighted saliency map obtained, the next section shows how

the salient ROIs are extracted from Sdm.

4.5 Salient ROIs from the saliency map

The computed Sdm represents a one-to-one mapping of the salient regions associ-

ated with the input RGB image. This is clearly shown when the saliency map is

compared side by side with the RGB image (Fig. 4.9).

Simple image morphological operations are then applied to extract the salient

ROIs from Sdm. The algorithm can be summarised in the following steps:

1. Edges are detected from the input Sdm using Canny’s method [18] with an

initial predefined threshold, tedge to form an edge map.
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Figure 4.8: The five conspicuity maps derived from the RGB image are combined
by N2 to form Sdm. D̂prox is not shown.
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Figure 4.9: A one-to-one mapping of the most salient regions (boxed) can be
found in the original RGB image (boxed in the same colour).

2. Dilate the edges with a suitably chosen structuring element such that broken

edges are connected together. In this work, disk and cross shaped elements

are used.

3. The connected edges delimit the edge map into the salient ROIs which are

then filled and counted. The number of ROIs detected is returned and if this

number is not between the minimum and maximum number of salient ROIs

desired, the algorithm goes back to step 1 with a suitably adjusted tedge.

4. The filled edge map with the salient ROIs is resized to the same scale as

the original RGB image so that the coordinates of the ROIs are comparable

with the original image. The perimeters of the resized edge map are then

extracted which delimit the salient ROIs.
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Fig. 4.10 illustrates the various intermediate steps in extracting the salient

ROIs from the input Sdm. The output is a labelled map, Lm, that identifies each

salient ROI with a particular number. This map is used as a mask to indicate

which regions of the image are salient for further by SURF in the next chapter.

Notice that the salient ROIs occupy only specific regions on the image. From

this step onwards, the proposed SRS will focus all processing at these regions only,

improving the efficiency of the algorithm since less data is processed. This models

well the attentional strategy employed by the HVS (section 3.1.2) that similarly

focuses the processing of the incoming visual information only at the most salient

locations.

4.6 Final remarks

This section has described the initial step in the proposed SRS that uses a modified

computational model of visual saliency to produce a depth-weighted saliency map,

Sdm. Using this saliency map, salient ROIs are extracted which is represented as

labelled regions in Lm. The next chapter shows how Lm is used to indicate which

regions of the image are encoded with SURF features for the final representation

of the scene into the Scene matrix.
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Figure 4.10: Steps 1–8 that describe the various stages of extracting the salient
ROIs using various image morphological operations. The iterative method to de-
termine tedge is not shown here. Lm is shown in false colours and the extracted
salient ROIs are boxed in white and highlighted in green (step 8).
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Chapter 5
The Scene Matrix

This chapter continues from chapter 4 where the salient ROIs are extracted from

the depth-weighted saliency map Sdm. These ROIs are represented as labelled

regions Lm. How these regions are encoded by SURF descriptors is detailed in

section 5.1. Ordinal depth obtained from TBL motion is then estimated so as to

augment the descriptors with important depth information (section 5.2). The aug-

mented SURF descriptors at the salient ROIs, termed as salient-SURF descriptors

are then validated and combined into a compact Scene matrix, ms that represents

the scene completely (section 5.3).

It is important to note that at this stage of the algorithm, two Sdm are created

together with two resulting Lm from two closely separated frames (with a small

change in position) of the same scene. These two frames will be denoted as Si
m,Li

m

for i ∈ {1, 2} for the first frame and second frame respectively. For simplicity, the
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description will drop the superscript i when no distinction is needed between these

two frames. Using two frames allows the algorithm to robustly recover ordinal

depth (section 5.2) and to validate the resulting salient-SURF keypoints before

incorporating them into the scene matrix, ms (section 5.3).

5.1 Encoding the salient ROIs using SURF de-

scriptors

The concept of image(keypoint) descriptors and their usefulness for scene recog-

nition was discussed in section 3.2. Combining salient ROIs and such descriptors

was shown in section 3.2.2 to be complementary in improving the general perfor-

mance of the proposed SRS. From these concepts, this section details how SURF

keypoints and its corresponding descriptors are used and combined with salient

ROIs for a robust and reliable representation of the scene.

5.1.1 Illumination invariance in HSV colour space

The importance and robustness of using the HSV colour space was shown in sec-

tion 3.4. In section 3.4.2, it was shown that illumination changes distort scenes

significantly. Thus, it is crucial to use an illumination-invariant representation of
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the scene as input to the proposed SRS. The current work achieves illumination in-

variance by encoding the salient ROIs with SURF descriptors over the HSV colour

space. As was shown in section 3.4.1, using grayscale images alone for SURF de-

scriptors is very sensitive to illumination changes and this causes the descriptors to

be very different for the same scene under different illumination, leading to poor

recognition (see Figs.3.15 and 5.1).

Figure 5.1: A scene with varying illumination and their grayscale and saturation
components. The hue component is not shown. Top: Morning scene with the sun
shining in the foreground. Bottom: Evening scene with the sun blocked by the
foliage.

From Fig. 5.1, it is evident that the grayscale images of the two scenes differ

significantly whereas the saturation image is stable over many features (e.g. the

tree trunk). Of course, the saturation space is not always invariant to illumination
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changes and in some cases is less stable than the grayscale or hue spaces. To

achieve generality and accuracy against various forms of illumination distortions,

all three colour spaces are used to compute the SURF keypoints (section 3.4.2). An

important point to note is that the SURF keypoints detected for each colour space

are kept separate during the SURF matching process described in section 5.1.3. A

keypoint detected in say, the hue space should not be matched to a keypoint in

the saturation space. The reason is that the SURF descriptors are unique to each

colour space - mixing the SURF descriptors over the different colour spaces may

lead to even more false matches!

5.1.2 Structure of the SURF descriptor

The SURF descriptor associated with a SURF keypoint is made up of a 6D localisa-

tion and a 64D description components [10]. The structure of this 70D descriptor

is as follows:

Definition 5.7. Structure of SURF descriptor The complete SURF descriptor of

a SURF keypoint is a 70 element vector: [x y a b a l desc] where (x, y) are the

x and y coordinates(subpixel) of the position of the keypoint. a represents the

scale at which the keypoint is detected. b represents the corner strength of the

keypoint which is detected by a Hessian matrix (section 3.2.3). l is the sign of

the Laplacian [+1,−1] that allows for rapid matching. The first six elements form
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the localisation component while the 64D desc vector forms the actual description

component that is used for determining correspondences.

Since a scene contains a number of keypoints, the set of all the descriptors are

grouped into a Descriptor matrix defined as:

Definition 5.8. Descriptor matrix A scene containing Nd keypoints are grouped

into a Nd × 70 Descriptor matrix with the following structure: [x y a b a l Desc]

where the elements are all matrices and Desc is the set of SURF description

components from the Nd keypoints.

The next section describes how this descriptor is used for determining corre-

spondences between keypoints from two scenes.

5.1.3 Determining correspondences from descriptors

In order to match the SURF descriptors between two scenes, Lowe’s nearest neigh-

bour ratio method [68] for matching SIFT descriptors is used. The use of the

nearest neighbour distance ratio threshold was found to improve the robustness

of SIFT and to yield acceptable matching accuracy in the performance evaluation

of [75]. As SURF is basically a SIFT-based descriptor, using this threshold also

benefits SURF; in fact there are even more gains in performance due to the reduced

vector size of SURF (64D versus 128D for SIFT). Note that in this work, only the

64D desc component of the complete SURF descriptor is used for matching.
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The nearest neighbour ratio method is interesting as it does not use a simple

distance measure to determine if two keypoints are matching using their descrip-

tors. Instead, the ratio of the Euclidean distances of the closest match, Lclose, and

the second closest match, L2close, known as the distance ratio, dratio, is used as the

measure of similarity:

dratio =
Lclose

L2close

, dratio ∈ {0 · · · 1} (5.1)

As was explained in [68], using this measure allows the matching algorithm to

discard keypoints that do not have good matches. The main idea is that for

matches that are correct, the closest match is significantly closer than the closest

incorrect match (second closest neighbour) for reliable matching. On the other

hand, false matches are likely have their second closest neighbour nearer to the

closest match, brining dratio closer to unity. Hence a dratio threshold that is near

to 1 allows for more relaxed matching at the expense of a higher false detection

rate, while a small threshold only allows for very constrained matching with very

low false detection rates. In this thesis, the dratio threshold is fixed at 0.83. This

value achieves good positive matches and rejects the majority of bad matches in

practice.
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Enforcing uniqueness constraint in matching

As Lowe’s original MATLAB R© code for SIFT descriptor matching (available on-

line at http://www.cs.ubc.ca/∼lowe/keypoints/) does not guarantee against

repeated matches (a many-to-one mapping) of the SIFT descriptors, mismatches

can occur between a SIFT feature with many SIFT features. This problem is even

more likely to occur for SURF due to its reduced vector dimensions that results in

a possible reduction in uniqueness of the descriptor (Fig. 5.2).

Figure 5.2: Numerous many-to-one SURF matches (cyan lines) using the origi-
nal Lowe’s matching algorithm (circled) result in unpredictable scene recognition:
Wrong recognition (top) and correct recognition with some mismatches (bottom).

This uniqueness constraint had been posed by Ullman [114] in his minimal

http://www.cs.ubc.ca/~lowe/keypoints/
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mapping theory to effectively solve the correspondence problem using three intu-

itive local criteria to establish good global mapping between any two image frames.

These three criteria are:

1. Principle of Similarity : similar features are matched;

2. Principle of Proximity : close features should be matched;

3. Principle of Mutual Exclusion: only one-to-one mappings are allowed, which

is the uniqueness constraint.

In a ground breaking work, Scott and Longuet-Higgins [99] proposed an algorithm

to match point features that encompasses Ullman’s second and third principles

(proximity and mutual exclusion) using Singular Value Decomposition(SVD). This

work was extended by Sharpiro and Brady [102] who used an eigenvalue approach to

further constrain the matchings. In [90], Pilu improved the original Scott-Longuet-

Higgins (SLH) algorithm by the use of SVD over a correlation-weighted proximity

matrix that contains the cross-correlation values of the image features that en-

forces Ullman’s first principle (the feature similarity principle) that complements

the SLH algorithm. In this thesis, Pilu’s algorithm is adapted to SURF descriptors

by constructing a similar correlation matrix without computing the SVD which is

computationally expensive since there could be many SURF keypoints (> 1000).

The justification for applying SVD is to impose the uniqueness constraint by mak-

ing the proximity matrix orthogonal which is useful for perfect image registration.
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Since this possibility is extremely unlikely in a practical SRS system on a mobile

agent, the uniqueness constraint can be reliably approximated for most scenarios

without performing SVD.

A brief description of the matching strategy follows. Note that the description

below applies only to one particular colour space which can be extended to all the

three colour spaces that the descriptors are encoded in (section 5.1.4). Denoting

the two SURF descriptors as (Desc1,Desc2) containing (Nd(Desc1), Nd(Desc2))

SURF keypoints respectively as inputs:

1. Construct the dot-product matrix, mdotp of the SURF descriptors by

mdotp = Desc1 • (Desc2)T (5.2)

where • is the dot product operator and T represents the transpose of the

matrix. mdotp optimises the computations since MATLAB R© is optimised for

matrix operations.

2. Compute the arccos of mdotp which is a close approximation of the ratio of

Euclidean distances when the angles between the input vectors are small.

This forms the proximity matrix, mprox:

mprox = − arccosmdotp (5.3)
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where the negative sign is necessary for the algorithm to perform a maximum

search for the closest match that has numerically the smallest distance in a

non-negative mprox.

3. Using Pilu’s algorithm [90], a search for the maximum of each row and column

in mprox is performed with the indices saved as separate variables. Comparing

the indices of the maximal elements, only the indices that are maximum in

both the rows and columns are accepted as potential correspondences. This

step ensures a one-to-one matching as shown in Fig. 5.3.

Figure 5.3: Ensuring one-to-one correspondences using mprox. The poten-
tial matches (red elements) are the maximum values in both the columns and
rows of mprox.

4. Finally the potential correspondences are accepted if their values are smaller

than the predefined threshold for dratio, with smaller values representing bet-

ter matches.

Using this algorithm results in better SURF correspondences due to the uniqueness

constraint as can be seen in Fig. 5.4



5.1 Encoding the salient ROIs using SURF descriptors 110

Figure 5.4: The same matching examples of Fig. 5.2 are shown here after invoking
the uniqueness constraint. The top scene is correctly recognised and the bottom
scene has fewer mismatches.

5.1.4 Combining SURF and salient ROIs

The process of combining the SURF descriptors and salient ROIs is very straight-

forward and can be summarised by the following steps, given the Lm of the salient

ROIs and the original RGB image as inputs:

1. The input RGB image is converted to the HSV colour space.

2. For each colour space, SURF keypoint detection is applied only to the areas

indicated by Lm. Hence only the salient ROIs are processed in order to detect

SURF keypoints.

3. Finally the associated SURF descriptors of the detected SURF keypoints at
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the salient ROIs are extracted and saved into a cell matrix, with each cell

occupied by the SURF descriptors in one of the three colour spaces.

Figure 5.5: The cell matrix containing SURF descriptors from three colour spaces
are kept separated in each cell.

A cell matrix is a special data structure in MATLAB R© that combines different

data structures into a single complex superstructure. This allows easy manipulation

of complex data that often contains incompatible formats by storing the data

into separate cells which can be of differing dimensions. In this work, since the

SURF descriptors in the three colour spaces must be kept separate, the cell matrix

contains three cells, one for the descriptors from each colour space (Fig. 5.5). The

SURF keypoints detected over the three colour spaces are shown in Fig. 5.6.

With SURF keyoints extracted and encoded by their descriptors at the salient

ROIs, only the depth information is lacking that describes the complete spatial

configuration of the scene structure. This depth information is obtained from two

closely separated frames of the same scene described in the next section.
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Figure 5.6: Right: SURF keypoints detected superimposed over the original RGB
image. The keypoints are marked by the cyan ‘x’ while the yellow circles represent
the scale at which the keypoints are detected. The saliency map (left) and salient
ROIs (middle) are shown together for comparison.

5.2 Ordinal depth from simulated TBL motion

Depth has been shown to be an important component of the proposed SRS (section

3.5.1) that should be included for effective outdoor scene recognition of natural

environments. Being an integral component that describes the scene structure, the

inclusion of ordinal depth was shown in section 3.3.4 to be useful in providing a

viewpoint invariant representation of the scene. The link between TBL motion

and the possible recovery of ordinal depth information was discussed in section

3.5.2 due to the large translational components in this motion. In this section, the

details of how the proposed SRS recovers this ordinal depth information from two

closely separated frames of the same scene are presented.
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Figure 5.7: TBL arcs created by moving the video camera along increasingly
bigger arcs (a1 to a4). At each arc, the camera is moved in a continuous fashion
from position p1 to p3. At each position, two slightly displaced frames (f1, f2) are
obtained for ordinal depth estimation.

5.2.1 Inducing optic flow from TBL

In order to recover the ordinal depth of a scene, artificial TBL motion is induced

by moving a digital video camera in a series of arcs and taking a pair of image

frames at specific locations along each arc (Fig. 5.7).

From the image frames, optic flow can be computed using several methods. In
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this thesis, a correlation-based technique employing SURF keypoints extracted in

the previous step (section 5.1.4) as features are used to determine the optic flow. As

the descriptors are designed to be affine and illumination invariant (section 3.2.1),

this makes the computation of the optic flow more robust against image distortions

arising from viewpoint changes, which is a known problem in standard correlation

techniques. Furthermore, optic flow derived from correlation-based techniques does

not smooth over flow discontinuities unlike traditional differential methods [49].

From the conclusion in [25], it was suggested that the end points of the TBL

arcs (positions p1 and p3) are more likely to be memorised by the insect during TBL

due to its enhanced stability when the insect slows down and begins to change its

direction in a new arc (see Fig. 3.23(b) for the optic flow vectors induced at that

moment). Motivated from these observations, most of the image frames are taken

at three locations corresponding to positions p1 to p3. Although it is not known

whether position p2 is really used by the insects to memorise scene information,

bees and wasps are observed to approach the target directly [25, 61] once the TBL

phase is over. The scene data captured at position p2 is thus useful as an input

query scene for the proposed SRS’s scene decision module (section 6.2). Fig. 5.8

shows the same scene taken from the three different positions of the TBL arc that

are used to construct an image database for testing the proposed SRS (section

7.1.4).
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Figure 5.8: Three views of the same scene along a simulated TBL arc. Left
to right: positions p3 to p1. Notice the significant occlusions for this enclosed
mangrove environment as the viewpoint changes.

5.2.2 Estimating ordinal depth from optic flow

This section details how optic flow, obtained from simulated TBL motion, can be

computed from SURF correspondences. Once the optic flow vectors are obtained,

ordinal depth can easily estimated.

Obtaining optic flow information from two image frames is very simple and

direct. The procedure is summarised in the followinf steps. Denoting the two

sets of Descriptor matrices, (Desc1,Desc2) (definition 5.8), with the superscripts

representing the two image frames (f1, f2) respectively as inputs:

1. Using the procedure described in section 5.1.3, initial SURF correspondences

are determined from Desc1 and Desc2 for each colour space.

2. Since there is always a small number of wrong matches, the proposed SRS at-

tempts to remove these wrong matches by applying the well-known RANSAC
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(RANdom SAmple Concensus) on the 8-point algorithm [46] so as to deter-

mine a likely geometric transformation between the keypoints in the two

image frames. The geometry of this transformation is encoded as the Fun-

damental Matrix, F1→2. Keypoints that do not satisfy the epipolar geometry

are subsequently removed by RANSAC. SURF matches that remain at the

end of this procedure are said to be epipolar-verified.

3. Denoting (x1, y1) as the coordinates of a SURF keypoint in f1 that is matched

to a keypoint with coordinates (x2, y2) in f2, the optic flow vector (u, v) in

the (x, y) directions from f1 to f2 is then given as:


u = x1 − x2

v = y1 − y2

(5.4)

Repeating (5.4) for all the epipolar-verified SURF matches yields the set of

optic flow vectors that describes the motion of the SURF keypoints from f1

to f2.

The above procedure is illustrated and summarised in Fig. 5.9.

From Appendix B, it can be shown that the depth recovered from optic flow

under TBL motion possess ordinal invariance and hence this depth is termed the
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Figure 5.9: Steps summarising the computation of the optic flow between two
image frames. Top: SURF keypoints from both frames, (Desc1,Desc2). Middle:
Epipolar-verified SURF matches after RANSAC, with the correspondences shown
as cyan lines. Bottom: The optical flow vectors between the matched keypoints
are illustrated as arrows.
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ordinal depth, Zord:

Zord =
−f

u + ωyf
(5.5)

where ωy is the estimated rotation along the vertical y axis (usually small) and f

is the estimated focal length of the camera in pixels. [22] proved that even if the

estimates for ωy and f are erroneous, the recovered scaled depth is related to the

true scaled depth by a relief transformation that preserves the order of the depths.

Since the exact value of ωy is not crucial (see Appendix B for more details), it is

acceptable to approximate ωy = 0. Thus Zord provides the ordinal depth estimate

required by the propose SRS. In order to keep to a certain comparable scale,

the computed Zord is normalised between [1 Zmax] where Zmax is the expected

maximum optical flow for the camera motion. Any flow that is larger than Zmax

is discarded before normalisation.

5.2.3 Ordinal depth adjustment using AHC

Although the depth orders recovered are invariant to errors in ωy and f , noise

and inaccuracies in determining the optic flow will affect the validity of the depth

order recovered. This is especially true for points that have very close depth values

and are susceptible to have their estimated depth orders reversed. To circumvent

this problem, no attempt is made to resolve depth orders for depths that are very
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close together. Instead, these depths are clustered into various depth layers by

applying a distance based agglomerative hierarchical clustering(AHC) algorithm

to the initial estimated ordinal depths.

The number of clusters, Nclust to be formed is estimated from the number of

epipolar-verified SURF matches used to compute optical flow. In this work, Nclust

is set between 20% to 25% of the number of SURF matches. The adjusted ordinal

depth of a certain keypoint uses the mode value of the cluster that it belongs. This

is illustrated clearly in Fig. 5.10. Notice that the depths of the various parts of

the tree in Fig. 5.10 are more consistently ordered except at one keypoint. This

reduces the errors incurred in the later stages when the ordinal depth is compared

(section 6.1.2 and (6.5)). AHC is simple but depends a lot on the choice of the

number of intial clusters, Nclust, to form and is not guaranteed to produce perfect

depth layer segmentation. It is however a reasonable compromise when one needs

to have a simple but efficient method to adjust the overly refined initial ordinal

depths.

Note that the numbers in red associated with the SURF keypoints in Fig. 5.10

are not the ordinal depth, Zord introduced previously (5.5) but is the reciprocal of

Zord known as ordinal proximity, dprox where

dprox =
1

Zord

(5.6)



5.2 Ordinal depth from simulated TBL motion 120

Figure 5.10: Using AHC to remove inconsistencies in the proximity (red numbers)
associated with each SURF keypoint. The top area in the green box is expanded
to highlight the effects of the depth orders before and after AHC (bottom). Except
for one keypoint (circled), the other keypoints associated with the distant tree have
consistent depths after applying AHC.



5.2 Ordinal depth from simulated TBL motion 121

The reason for using dprox is due to the need to promote regions that are nearer to

the camera as they contain more unique information related to the scene (section

3.5.1). Hence the weights of keypoints near to the camera, with a smaller Zord,

must be larger, and the weights of faraway keypoints are smaller. This is integrated

into the proposed SRS by the formation of the dense ordinal proximity map, D̂prox

from the optic flow computed to form the depth-weighted saliency map, Sdm (4.5).

D̂prox is constructed by convolving a large Gaussian filter, Glarge, to spread the

dprox into regions that do not have any detected keypoints. This effectively converts

the originally sparse proximity map into a pseudo-dense proximity map:

D̂prox = Dprox ∗Glarge
(5.7)

where Dprox is the set of all the dprox computed from (5.6) that represents the sparse

ordinal proximity map associated with the detected keypoints. The transformation

from Dprox to D̂prox is illustrated in Fig. 5.11.

The SURF descriptors after AHC are then augmented with the adjusted dprox

to form the so called salient-SURF descriptors used in the formation of the Scene

matrix, described in the next section.
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Figure 5.11: From the sparse ordinal proximity map Dprox estimated from the

optic flow vectors (Fig. 5.9 (bottom)), the dense ordinal proximity map D̂prox is
obtained by convolution with a large Gaussian filter, Glarge.

5.3 Constructing the Scene Matrix

The sparse ordinal proximity map, Dprox, that contains the ordinal proximity, dprox,

associated with each SURF keypoint detected at the salient regions can now be

combined with the Descriptor matrix (definition 5.8) to form the Scene matrix,

ms, that contains a set of salient-SURF descriptors.

Definition 5.9. The Scene matrix and salient-SURF keypoints/descriptors The

Scene Matrix extends the Descriptor matrix by incorporating the ordinal proximity,

dprox associated with each epipolar-verified SURF keypoint into a Nd × 71 matrix

with the following structure: ms = [x y dprox a b a l Desc] for a scene with Nd

keypoints. The SURF keypoints are now localised in the three spatial directions

(x, y, z) and are called salient-SURF keypoints. Each row in ms forms a complete

descriptor known as the salient-SURF descriptor.
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From the structure of ms, one can see that the inclusion of dprox completely

describes the position of the keypoints in an ordinal scale. This has been shown to

be robust against viewpoint changes in section 3.3.4.

Since the proposed SRS encodes the salient-SURF keypoints separately for

the three (HSV) colour spaces, three different scene matrices are equally created,

denoted as mj
s, j ∈ {H, S, V }. A cell matrix ( similar to section 5.1.4) is used

to combine the Scene matrices together to form the Scene cell matrix denoted as

Ms:

Definition 5.10. The Scene cell matrix The Scene cell matrix, Ms combines the

scene matrices from the three colour spaces together with the following structure:〈
mH

s ,mS
s ,mV

s

〉
where (H, S, V ) represent the hue, saturation and value (grayscale)

colour spaces respectively. The notation 〈·〉 represents a cell matrix.

The structure of Ms is illustrated in Fig. 5.12.

Figure 5.12: Combining three different ms from different colour spaces into a
Scene cell matrix.

The final set of salient-SURF keypoints (from all three colour spaces) is illus-

trated in Fig. 5.13 and the Scene cell matrix is stored into the local memory of
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Figure 5.13: The final set of salient-SURF keypoints saved in the scene matrices.
These keypoints are epipolar-verified and have their ordinal proximities adjusted
by AHC.

the agent after this procedure. From this point onwards, the scene is completely

represented by its three scene matrices mj
s, which will be used in determining the

similarity score for scene recognition. This novel similarity metric, as well as the

details of how an input query scene is processed by the proposed SRS is detailed

in section 6.1.2.
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5.4 Final remarks

This chapter has detailed how salient ROIs are combined with SURF keypoints to

form salient-SURF keypoints/descriptors used to create the Scene matrix ms. The

ordinal depth Zord, and ordinal proximity dprox, are recovered from the optic flow of

simulated TBL motion which are then integrated into the salient-SURF descriptors

for a complete description of the scene structure in the three spatial directions

(x, y, z). The three scene matrices, constructed from separate colour spaces, are

combined into the Scene cell matrix that represents the scene. This Scene cell

matrix is used in the Scene decision module of the proposed SRS, described in the

next chapter.
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Chapter 6
The Scene Decision module

This chapter describes the process of scene decision, that is, given an input query

(test) scene and a database of reference scenes, can the proposed SRS decide if the

test scene matches one (or some) of the reference scenes? In this work, the final

decision of the proposed SRS is binary - accept the test scene as a reliable match

or reject the test scene as unreliable.

The fundamental requirement in the design of a reliable scene decision module

is a measure of scene similarity between two scenes. In this work, a novel scene

similarity metric, known as the Global Configuration Coefficient, Gc, is formulated

in section 6.1. This metric is computed from the Scene matrix cells, Ms, of the two

scenes that are being compared (definition 5.10). Using this measure, the scene

decision procedure with a reference database is described in section 6.2 as a two

step process. A candidate match is first determined after comparing the test scene
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with all of the scenes in the reference database (section 6.2.1). This is followed

by validating the candidate match using an adaptive decision threshold computed

from the statistics of the matches (section 6.2.2). The final decision of accepting

or rejecting the candidate match is based entirely on this estimated threshold. A

discussion on how this threshold actually performs for true positives and negatives

is presented in section 6.2.3. Finally, a modification to the decision threshold is

proposed for the case of a difficult ambiguous scene in section 6.2.4.

6.1 A novel scene similarity metric

In this section, a novel measure of scene similarity that is fundamental to the scene

decision module is formulated. The inherent shortcomings of using only feature

matches alone as a similarity measure are first discussed in section 6.1.1. Using

the concept of ordinal measures introduced in section 3.3, rank correlations of the

spatial configuration of the salient-SURF keypoints encoded in the Scene matrix are

used to improve the reliability of the proposed similarity measure against viewpoint

changes, which is presented in section 6.1.2.

6.1.1 Using matches alone for similarity is unreliable

Given two scenes, a reference scene stored in the agent’s memory and an input test

scene, encoded by their respective Scene matrix cells, M1
s and M2

s, is it possible to
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compare and conclude that these two scenes are taken from the same location or

not, even under significant viewpoint and illumination distortions (see Fig. 1.2)?

A simple solution would be to attempt to match the salient-SURF keypoints of

the two scenes (section 5.1.3). The larger the number (or percentage) of matches,

the more likely the scenes are from the same location. This simple method has

several disadvantages. Firstly, the correctness and uniqueness of the matches are

assumed. In cases where the image distortions are small, the salient-SURF matches

are quite reliable and this assumption holds. This may be untrue, however, when

difficult scenes are presented. Ambiguity occurs when the keypoints are considered

independently from the entire scene context and mismatches of very similar looking

features occur. For example, repeated structures such as shelves, posters (indoor),

branches and leaves (outdoors) are often not unique and distinct enough for reliable

recognition (Figs.1.3,3.1 and see section 3.1.1).

Secondly, although a descriptor may be salient (and possibly unique) within

the same image, its uniqueness is not guaranteed over the full range of images that

the agent may encounter in its environment. This is not a fault but a limitation

of the descriptor that only has local knowledge of the scene it encodes but lacks

the global knowledge of the scenes in the whole database. This means that relying

on the number of matches alone is not going to work since the matches may be

one-to-many. That is, a keypoint may be matched to a number of similar looking

keypoints from different locations.
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Thirdly, another problem with using this simple method is the threshold needed

to reliably reject bad matches. A fixed threshold is obviously not going to work for

the large variety of scenes that the SRS encounters (indoors and outdoors) with

various degrees of distortions. The computation of an adaptive threshold is also

not obvious using just the number (or percentage) of matches alone. A positive

match, for example, could occur with only a small number of matches for scenes

that possess significant image distortions (Fig. 6.1).

Figure 6.1: Using the number of matches alone as a measure of scene similarity
is highly unreliable. The correspondences are shown as lines connecting matched
keypoints across the images. Left: True positives with 15 and 19 matches, Right:
Mismatched false positives (negatives) with 24 and 18 matches.

From Fig. 6.1, one can see that dissimilar scenes may have more matches

(which are of course wrong) than true positives. Using the number of matches

alone as a similarity metric is thus highly unreliable. Instead, the discriminating

information is in the spatial configurations of the keypoints which are preserved for
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true positives and non-existent for dissimilar cases (see section 3.3.1). Graphically,

the lines connecting true positives are more ordered than negative scenes since

the spatial configurations of the correctly matched keypoints are preserved. Such

orderliness is not present at all for dissimilar (negative) scenes.

6.1.2 The Global Configuration Coefficient, Gc

This section continues from the discussion of the previous section by formulating

a novel measure of similarity known as the Global Configuration Coefficient, Gc.

This similarity metric addresses the shortcomings of using the number of matches

alone by including the global landmark/keypoint configuration information into its

design. This configuration information exploits the previously introduced concepts

of rank correlation measures. From section 3.3.4, the usefulness of an ordinal scale

for viewpoint invariant scene recognition is highlighted - as long as the viewpoint

change is not too extreme, the spatial configuration of the matched keypoints is

preserved. Using rank correlations of the ordinal positions of the matched keypoints

(section 3.3.2), a measure of similarity sensitive to the rank orders of the spatial

configuration is introduced.

Suppose two scenes are presented, represented by their individual Scene matrix

cells (M1
s, M2

s). The first step is to match the salient-SURF keypoints separately

over the three colour spaces using the procedure described in section 5.1.3. These
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initial matches are then validated by RANSAC so as to remove any erroneous

matches that do not respect the epipolar constraint (section 5.2.2):

ṁj
kp = mj

1s ↔ mj
2s, j ∈ {H, S, V } (6.1)

where the scene matrices of the first and second scenes from the jth colour space

are denoted by (mj
1s,m

j
2s) respectively. The symbol ↔ denotes the salient-SURF

matching procedure together with verification by RANSAC. Next, the matched

keypoints in the three colour spaces, denoted as ṁj
kp for the jth colour space, are

grouped together to form the Matching matrix, Ṁkp:

Ṁkp =
[
ṁH

kpṁ
S
kpṁ

V
kp

]
(6.2)

Grouping the matches together into one matrix loses all information concerning

the colour space from which the keypoints originate. This is justifiable as the

main reason for separating the keypoints and scene matrices into separate cells is

to prevent mismatches of the keypoints across incompatible colour spaces (section

5.1.1). Since no more matching is required after this step, combining the matches

together into Ṁkp simplifies the implementation of the proposed SRS significantly.

The structure of Ṁkp is defined as:

Definition 6.11. Matching matrix The Matching matrix Ṁkp, is a Nmatch × 6
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matrix where Nmatch denotes the number of matches between two scenes with the

following structure: Ṁkp = [x1 y1 d1prox x2 y2 d2prox] The matrix retains only the

localisation information of the matched keypoints of the two scenes, denoted by

the subscripts (1, 2) respectively.

Next, a novel similarity metric known as the Global Configuration Coefficient,

Gc, is defined with Ṁkp as the input:

Gc(Ṁkp) =
N%test

200
× (Sρ + Kτ ) (6.3)

where N%test is the percentage matches with respect to the test (first) scene given

by:

N%test =
Nmatch

N1d

× 100 (6.4)

and N1d denotes the original number of salient-SURF keypoints in the test scene.

(Sρ, Kτ ) are the means of the positive Spearman’s ρ (3.1) and Kendall’s τ (3.2) rank

correlations in the three spatial (x, y, z) directions (see Fig. 3.14 for an illustration)

given as:

Sρ =
1

3

∑
i

Si
ρ, i ∈ {x, y, z}

Kτ =
1

3

∑
i

Ki
τ , i ∈ {x, y, z}

(6.5)
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where Spearman’s ρ and Kendall’s τ of a particular direction are denoted as

(Si
ρ, K

i
τ ), i ∈ {x, y, z}. The rank correlations are computed from the elements

of the Matching matrix, Ṁkp (definition 6.11), given as:



Sx
ρ = Sρ(Ṁkp(x1), Ṁkp(x2))

Sy
ρ = Sρ(Ṁkp(y1), Ṁkp(y2))

Sz
ρ = Sρ(Ṁkp(d1prox), Ṁkp(d2prox))

(6.6)

and



Kx
τ = Kτ (Ṁkp(x1), Ṁkp(x2))

Ky
τ = Kτ (Ṁkp(y1), Ṁkp(y2))

Kz
τ = Kτ (Ṁkp(d1prox), Ṁkp(d2prox))

(6.7)

Using the mean values penalise the rank correlation when one (or more) of its

spatial configuration does not preserve the ordering constraint of the matched

keypoints. This is the usually the case when the scenes are dissimilar. Although

mismatches occur in all cases, the degradation in the rank correlations is expected

to be less pronounced when two scenes are similar.

The formulation of Gc (6.3) combines both the local keypoint similarity and

the global configuration of the matched keypoints together into a simple measure
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of similarity. The local similarity is indirectly captured by N%test that measures

the percentage of the keypoint matches stored in Ṁkp. The global configuration

of the matched keypoints is captured in the mean rank correlations, Sρ and Kτ .

Gc is thus close to 1 for a perfect match with a high N%test that preserves the

overall spatial configuration. For dissimilar scenes, Gc is near to zero with very

few matches (small N%test) and the rank correlations of the mismatched keypoints

are likely to be small too as the spatial configuration is not preserved.

The incorporation of N%test is important as the use of rank correlations is highly

dependent on the number of matched keypoints. This is because a small number

of matches is often not statistically significant for the computed rank correlations

to be useful. For example, if only three keypoints are matched in the test scene, it

is very likely that the three keypoints will have a similar configuration with many

scenes in the reference database. One can thus view the formulation of (6.3) as

weighing the confidence of the rank correlations by N%test.

In practice, the effects of wrong correspondences and occlusions due to image

distortions often degrade Gc significantly (between 0.3 to 0.4), even for positive

scenes. This degradation is, nonetheless, usually more pronounced in negative

scenes. As the amount of image distortions increases, this degradation will get even

worse. This means that using a fixed threshold for scene decision is not feasible

in practice. An adaptive threshold, estimated from (6.3) and (6.5), is presented in

section 6.2.2 as a reliable alternative.
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6.2 Determining scene equivalence from a data-

base

This section extends the use of Gc with a reference database, Dref , of Nref scenes

each defined by their individual Scene matrix cell, denoted as Mi
s, i ∈ {1, 2, · · ·Nref}

for the ith reference scene. Given an input query scene, represented by Mtest
s , the

objective of this section is to show how a final decision that either accepts or

rejects Mtest
s is made. This is done in two phases detailed in the following two

sections.

6.2.1 Determining the candidate match

The first phase proceeds by making Nref pairwise comparisons between the in-

put test scene, Mtest
s , and the Nref reference scenes in the database, Dref . Each

comparison computes Gc using (6.3) which is stored in a Nref × 8 Match statistic

matrix, Πs. Besides Gc, each row of Πs contains N%test and the rank correlations in

the three spatial directions denoted as (Si
ρ, K

i
τ ), i ∈ {x, y, z}. Πs has the following

structure:

Πs =
[
N%test Sx

ρ Sy
ρ Sz

ρ Kx
τ Ky

τ Kz
τ Gc

]
(6.8)
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where each term on the right hand side is a column vector of size Nref and corre-

sponds to the statistic collected over all pairwise comparisons.

The candidate match, Gcand, is the reference scene that yields the largest Gc in

Πs:

Gcand = max(Gc) (6.9)

Gcand thus represents the best match score that is produced by the pairwise com-

parisons. It is the reference scene that resulted in the most matches with Mtest
s

with the least distortion in the global configuration of the matched keypoints. The

whole process of extracting Gcand is illustrated in Fig. 6.2.

Figure 6.2: Extracting Gcand from a reference database. Multiple pairwise com-
parisons are made with each reference scene in the database to form a Match
statistic matrix, Πs. The best score in Gs represents the candidate match score,
Gcand, which is then selected (highlighted in yellow).
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Since the test scene can be a positive with a matching scene in the database,

or a negative with no matching scenes in the database, Gcand must be validated by

a decision module. Hence, the remaining crucial problem is to propose a decision

threshold, Dt, such that a decision, Df on Gcand

Df =


ACCEPT if Gcand ≥ Dt

REJECT if Gcand < Dt

(6.10)

can be made. This is shown in the second phase of the decision module, where an

adaptive decision threshold is proposed.

6.2.2 Adaptive decision threshold

In this section, a decision threshold Dt, is estimated so that (6.10) can be used to

accept or reject the candidate match, Gcand. Dt can be a fixed threshold learnt by

presenting the SRS with a series of training scenes of the environment before actual

scene recognition or it can be estimated from Πs. As this work is concerned with

natural outdoor scenes with a large dynamic range, the latter method is chosen

as it is adaptive to various environments and does not require any training images

from the environment which may be totally unknown or outdated. Furthermore,

some positive scenes may have only a few matches due to large distortions or dim

illumination that degrade Gc so much so that using a fixed Dt becomes impractical,
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as is shown in Fig. 6.1.

The first step in estimating Dt is to construct the Decision matrix, ∆s from

the best few matches in Πs. These matches are determined based on two criteria,

in terms of their Gc and also in terms of N%test:

1. From the first column vector of Πs that contains N%test, the Nref matches

are sorted based on N%test. The matches with N%test > t%, where t% is a

fixed percentage threshold, are retained.

2. Next, using the last column vector of Πs, the elements in Gc are ranked so

that only the Ntop Gcs are retained. Ntop is a fixed number that determines

how many best few matches are retained.

3. Finally, ∆s is obtained by combining the results in the first two steps so that

only matches that are significant (the intersections of the first two steps) in

both N%test and Gc are retained for the estimation of Dt.

In this work, the values for the fixed parameters (t%, Ntop) are set at (10%, 5)

respectively. The number of rows that remain is denoted as Nbest and this forms

the Nbest × 8 ∆s where the structure is detailed below:

Definition 6.12. Structure of ∆s The Decision matrix, ∆s is a Nbest × 8 ma-

trix with the following structure: ∆s =
[
N%∆ Sx

ρ∆ Sy
ρ∆ Sz

ρ∆ Kx
τ∆ Ky

τ∆ Kz
τ∆ Gc∆

]
where the subscript ∆ is added to emphasise the difference in the column vectors
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between ∆s and Πs.

A Threshold vector, Ξs, containing 7 elements is constructed from ∆s that has

the same structure as a row in Πs (without the Gc):

Ξs =
[
N%Ξ Sx

ρΞ Sy
ρΞ Sz

ρΞ Kx
τΞ Ky

τΞ Kz
τΞ

]
(6.11)

The elements in Ξs, once determined, are used to compute directly the estimate

of the Dt defined as:

Dt =
N%Ξ

200
× (S̃ρΞ + K̃τΞ) (6.12)

where (S̃ρΞ, K̃τΞ) are derived from the means of the rank correlations in Ξs:


S̃ρΞ = 1

3

∑
i

Si
ρΞ, i ∈ {x, y, z}

K̃τΞ = 1
3

∑
i

Ki
τΞ, i ∈ {x, y, z}

(6.13)

The rest of the section describes how the elements in Ξs are derived from ∆s.

The first element of Ξs, N%Ξ, is given the value of the candidate match, N%cand

(see Fig. 6.2 on the structure of Πs) if the candidate match row is found in ∆s; if
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not, the largest N%∆ in N%∆ is used:

N%Ξ =


N%cand if Gcand ∈ ∆s

max (N%∆) otherwise

(6.14)

The reason for this assignment rule is very simple - if Gcand /∈ ∆s, it is likely to

be unreliable and should be rejected. Using the largest N%∆ will give us a Dt that

is likely to be larger than Gcand since N%Ξ determines partially the value of Dt

(6.12). Invoking (6.10) allows the proposed SRS to effectively reject the unrelible

Gcand.

The rest of the elements in Ξs are determined in a three step process:

1. Collect the rank correlations over the three spatial directions together to form

a composite rank correlation matrix, denoted as (Σρ∆,Λτ∆):


Σρ∆ =

[
Sx

ρ∆ Sy
ρ∆ Sz

ρ∆

]
Λτ∆ = [Kx

τ∆ Ky
τ∆ Kz

τ∆]

(6.15)

2. Compute the median value among the elements of (Σρ∆,Λτ∆), denoted as
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med(Σρ∆), med(Λτ∆) and take the minimum among the two values to deter-

mine a threshold for significant rank correlations, trank:

trank = min (med(Σρ∆), med(Λτ∆)) (6.16)

The value of trank is limited to a maximum value so that a sufficient number

of rank correlations can be used to estimate Dt from Ξs (see the next step).

A trank that is too large yields too few rank correlations for the subsequent

computations to be reliable. In this work, trank is limited to 0.6.

3. Using trank, the statistics of the rank correlation elements in Ξs are deter-

mined by computing once again the median of these rank correlation entries

that are larger than trank in ∆s.


Si

ρΞ = med
{
Si

ρ∆|Si
ρ∆ . trank

}
, i ∈ {x, y, z}

Ki
τΞ = med {Ki

τ∆|Ki
τ∆ . trank} , i ∈ {x, y, z}

(6.17)

where the . operator represents a ‘>’ comparison between the elements of a

vector on the LHS with a scalar on the RHS. Using trank ensures that only

the most significant rank correlations that contribute to the best matches in

∆s are used in the computation of Dt in (6.12).

With Dt determined, the proposed SRS arrives at the final decision Df , to
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accept or reject the input test scene by comparing Dt and the candidate match

score Gcand (6.10). The next section explains briefly how Dt actually works in

providing a reasonable adaptive threshold for the scene decision module.

6.2.3 How Dt works

The design of Dt, estimated from the best few matches in ∆s, is useful as a

reasonable threshold as Dt represents what one can term as an average match that

sets the benchmark for reliability. If Gcand is indeed a reliable match, most if not

all of its elements should have higher values than the corresponding entries in ∆s.

The intuitive idea of using the median of the rank correlations of the Nbest

matches in ∆s (6.17) is illustrated in Fig. 6.3. The six median rank correlation

components are shown as boxes - black boxes have values that differ significantly

from Gcand. Since the candidate match must be in the Nbest matches in the case of

a true positive match, the majority of the rank correlations for Dt used in (6.13)

will be smaller than the components of the candidate match (black boxes with ‘<’

sign). This will make Dt smaller than Gcand for the match to be accepted (6.10).

For the negative case, since the percentage matches are likely to be small, the

number of Nbest matches is expected to be fewer. As was highlighted earlier in

section 6.1.2, the reliability of the rank correlations degrades significantly with

fewer matches. This makes the rank correlations contributing to Dt to be varied,
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Figure 6.3: An illustration of how Dt, computed from the best few matches in
∆s, arrives at providing a reasonable threshold in the case of a positive scene (top)
and a negative scene (bottom), see text for details.

with more contribution from reference scenes having rank correlations that are

likely to be larger (black boxes with ‘>’ sign) than that of the candidate match.

The result is a Dt that is larger than Gcand which rejects the negative match by

invoking (6.10).

Furthermore, as Dt is estimated from the Nbest matches in ∆s, it evolves to-

gether with Gcand. Hence, Dt is adaptive and varies for different test scenes and
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reference databases. This adaptability of Dt is a critical component for the pro-

posed SRS to perform in vastly different environments under different image condi-

tions. A complex outdoor natural test scene with numerous occlusions (especially

in enclosed or highly cluttered forest scenes) and illumination changes (especially

those dimly lit with few distinct features) will generally give lower absolute values

of Gc even for positive matches. An indoor scene typically yields higher values

of Gc as the features are more well defined and there are less image distortions

due to occlusions and illumination changes. Such global changes in the absolute

values of Gc does not affect the performance of the proposed SRS since Gcand is

obtained from the best match (6.9) and Dt is estimated from the statistics of the

best few matches in ∆s (6.12). This results in an adaptive threshold that reflects

the current environment of the test scene so that a reliable decision can be made

on Gcand.

However, there must be an absolute minimum acceptable threshold for Dt to

be effective. The candidate match cannot be accepted if Gcand is very small. A

minimum threshold, Dmin represents the minimum value that we can accept Gcand

before it is considered as unreliable and is rejected immediately. The final decision,
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Df must take this into account:

Df =


ACCEPT if (Gcand ≥ Dmin) ∩ (Gcand ≥ Dt)

REJECT otherwise

(6.18)

The choice of Dmin is however application dependent. A small value of Dmin

increases the robustness of the algorithm to large image distortions that tend to

degrade Gc rapidly, at the expense of losing discriminatory power for ambiguous

scenes. This will result in more false positives in the SRS. Once again, this is an

illustration of the antagonism between robustness and discriminatory power of any

practical SRS, highlighted in section 1.4. In this work, Dmin is set between 0.01 to

0.03 so as to tolerate a larger amount of image distortions that the proposed SRS

encounters.

Three examples are illustrated in Appendix C for three cases of Gcand - A

positive match (C.1), a negative match (C.2) and finally an ambiguous match

(C.3). These examples show how Dt adapts itself to various situations for a reliable

decision to be made. The case of an ambiguous match is detailed in the next section.

6.2.4 Scene decision for ambiguous cases

The above procedure of estimating Dt will fail if the Decision matrix ∆s is empty.

Since ∆s is constructed from the best few matches in Πs based on Gc and N%test
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(section 6.2.2), an empty ∆s will occur if there are no matches that concurrently

satisfy the two criteria - some matches may have a high Gc but a small N%test and

vice versa. In this case, Dt cannot be estimated from the procedure described in

section 6.2.2 above and the test scene in this case is deemed to be ambiguous.

It is highly likely that Gcand is an unreliable match since the pairwise matching

with the entire database does not produce a single good match in terms of Gc and

N%test and is thus inconclusive. The solution proposed is based on the assumption

that a good positive match is not likely to result in such an ambiguous case and

hence this match should be rejected as unreliable if possible.

Once an ambiguous case is detected, the scene decision module will set Dt =

Gcand directly. From (6.10), all matches will be accepted if no more modifications

are made. Instead, Dmin is further modified to a higher value, denoted as D∗
min

which makes it more likely to reject unreliable matches (6.18). An illustration of

how changing the value of Dmin to D∗
min helps in rejecting an unreliable Gcand is

shown in Fig. 6.4

This procedure is justified on the basis that since Dt is effectively unable to

decide if Gcand should be accepted, one can only heuristically decrease the tolerance

for false matches in this unreliable case. This is done by directly manipulating the

value of Dmin, making it larger to D∗
min so that it is unlikely the Gcand is accepted.

However, this does not rule out the possibility that the scene is a true positive and
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Figure 6.4: For the case of ambiguous scenes, Dt cannot be computed for scene
decision. Instead, modifying the value of Dmin to a higher D∗

min value allows such
ambiguous scenes to be rejected.

should be accepted. Gcand must then be larger than D∗
min for acceptance which is

still possible if the true positive has N%cand or Gcand that are very near (but lower)

than the threshold criteria for constructing ∆s. In this work, D∗
min is set to 0.05.

An example of a positive ambiguous test scene is shown in Appendix C.3.2 that

demonstrates how this procedure works.

6.3 Final remarks

This chapter completes the description of the proposed SRS with the scene decision

module. A novel similarity measure is introduced, known as the Global Configura-

tion Coefficient, Gc which combines both 2D pixel correlation information (N%test)

as well as rank correlation measures of the spatial configuration in (Sρ, Kτ ). Gc is

then used in an extended framework for determining scene equivalance between an
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input test scene and a reference image database. This framework describes how the

initial candidate match, Gcand is extracted and validated by estimating an adaptive

decision threshold, Dt (6.10). Modifications to the procedure for ambiguous scenes

are also considered in (6.18). Finally, examples which show how Dt can produce a

reasonable threshold are illustrated in Appendix C for a variety of common cases

of Gcand.

The next chapter describes the experimental setup and tests that are used to

validate the proposed SRS’s performance and effectiveness for a variety of environ-

ments under various image distortions. A detailed discussion of the experimental

results follows thereafter, and attempts to highlight the contribution of the various

components to the recognition accuracy of the proposed SRS.
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Chapter 7
Experimental Results and Discussion

This chapter presents the experiments conducted to verify the proposed SRS. The

experimental setup is first introduced in section 7.1 where the four different im-

age databases used are described. The experimental procedure is subsequently

presented in section 7.2 where various measures of recognition accuracy are intro-

duced so as to evaluate the performance of the proposed SRS. In order to highlight

the performance of the proposed SRS, several comparative studies with various sim-

ilarly designed SRSs are described in section 7.3. The results of the experiments

are summarised in section 7.4, and various interesting examples from the image

databases are highlighted. Finally, an analysis and discussion of the experimental

results are presented in section 7.5.
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7.1 Experimental setup

In this section, the four image databases used in all the experiments are de-

scribed. These databases contain images taken from four different environments

(their referenced name in this thesis is denoted in bold) - indoors(IND), a sandy

shore(UBIN), a tropical rainforest(NS) and a mangrove forest(SBWR). For this

thesis, the distinction between reference and test scenes is based on how the image

scenes are used in the experiments - scenes that make up the reference database,

Dref , are reference scenes while scenes used for testing the recognition accuracy of

the proposed SRS are test scenes. In order to validate the robustness and discrim-

inatory power of the proposed SRS (section 1.3), the scenes in the database often

contain significant image distortions. A summary of the four databases is shown

in Table 7.1 where the number of scenes used in each environment is shown as a

triplet (Nref Npos Nneg) which are respectively the number of reference, positive

and negative scenes used in the particular database. Some typical example scenes

from the four databases are shown in Fig. 7.1. The following sections describe the

databases in greater detail. More examples of the reference and test scenes used

in the experiments are shown in Appendix D.3.
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Table 7.1: The four databases used in the experiments.

Database (Nref , Npos, Nneg) Type
IND (18, 25, 21) Indoor
UBIN (20, 63, 69) Outdoor coastal
NS (20, 41, 52) Outdoor varied
SBWR (15, 15, 16) Outdoor enclosed

7.1.1 Database IND

This database consists of indoor scenes taken under typical lighting conditions.

Included is a set of artificial scenes with simple features that are configured differ-

ently in space, so as to test the usefulness of rank correlations in detecting changes

in the ordinal configuration of ambiguous scenes sharing the same features (Fig.

7.1(IND: top)). Another set of images contains scenes from a typical office/factory

with significant clutter and people moving around (Fig. 7.1(IND: bottom)). This

database verifies the robustness of the proposed SRS against various image distor-

tions due to viewpoint changes and human movements. The database also tests

the proposed SRS’s ability to discriminate ambiguous scenes containing numerous

similar features that confuse other methods (e.g. [3, 76, 87])

7.1.2 Database UBIN

This database consists of outdoor images taken predominantly along a sandy shore

and among the surrounding vegetation of an island. It is the nesting habitat of

many species of tropical sand-digging wasps (section 3.5.2 and Fig. 3.20) where
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Figure 7.1: Various challenging test (left) and reference scenes (right) of the
four databases, two rows ((t)op,(b)ottom) shown per scene. IND: ambiguous
scenes(t) and viewpoint changes with significant clutter(b), UBIN: clear vs.hazy
overcast sky(t) with differences in tides and shadows vs.leaves swept up(b), NS:
non-uniform illumination(t) and changes in scene content due to rain and tree
fall(b) and SBWR: numerous occlusions due to dense vegetation. See text for a
detailed description of each database.

one can see them making foraging trips to and fro their nests in an unerring man-

ner. The scenes are taken on two different days a month apart from each other at

around the same time but under very different weather conditions. The reference

scenes are taken on a clear sunny day while a portion of the test scenes are taken

under very hazy (dim) conditions. Furthermore, the test scenes have also suffered

from significant changes due to natural erosion and the dynamic nature of a coastal

environment. For example, the reference scenes are taken at low tides while the
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test scenes are taken at high tides which make this database very challenging (Fig.

7.1(UBIN: top)). Human intervention can also cause scenes taken from similar

places to appear very different - leaves being swept up as well as the addition/re-

moval of man-made structures in the scene (Fig. 7.1(UBIN: bottom)) further

makes the recognition of this database difficult. Using this database will verify the

robustness of the proposed SRS against such changes in a simple and open coastal

environment with relatively sparse vegetation. The skyline is also particularly

evident in such an environment which is exploited to aid in scene recognition.

7.1.3 Database NS

The NS database consists of scenes with lush green vegetation taken at a primary

swamp forest in a nature reserve. The test scenes are varied in structure, from

enclosed forests to semi-open clearings such as streams and ponds (Fig. 7.2).

Figure 7.2: The NS database consists of three environments: Enclosed forest
(left), streams and ponds (middle) and semi-open clearings (right).

There are three sets of test scenes. The first set is taken from the morning till
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noon time on a clear day, the second set is taken three weeks later from the period

between the late afternoon and the evening, also on a clear day while the third

set is taken at around noontime on a hazy, cloudy day one week after the second

set. As the first two sets are taken on clear days at very different times, changes

in illumination caused by the movement of the sun are particularly evident. The

effects of shadows and the non-uniform lighting in the environment due mainly

to the foilage can be quite drastic and are particularly challenging (Fig. 7.1(NS:

top)). Finally, because of the separation in time between the three sets of test

scenes, changes due to the dynamic nature of the environment add to the difficulty

in recognising the scenes (Fig. 7.1(NS: bottom)).

7.1.4 Database SBWR

In contrast to the ‘openness’ of the UBIN database, SBWR contains relatively

complex scenes taken from an enclosed tropical mangrove forest. As the mangrove

environment is dominated by a few plant species, this database contains many

similar-looking vegetation, and is characterised by dense foliage and numerous

occlusions (Fig. 7.1(SBWR)). The difficulty in recognition is compounded as the

reference scenes are taken purposely at random points in the forest, with no distinct

landmarks that could be used by human observers, unlike the other two databases

of natural scenes.
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The design of the reference database is also slightly different than the other

three databases. Many of the reference scenes are represented by two or three

snapshots of the same scene at the beginning, middle and end of a TBL arc. This

is motivated by the increased complexity of the environment which requires for its

representation several slightly displaced snapshots of the same scene as they indeed

look remarkably different (Fig. 5.8)! Furthermore, several authors have hypothe-

sised that the view at the endpoints of the TBL arcs are remembered by insects as

they contain useful information for scene recognition (see [25]’s conclusion on the

purpose of TBL flights and section 5.2.1). The reference database constructed in

this case thus models this statement.

This database tests the proposed SRS’s tolerance to such natural scenes with

many occlusions and clutter, common in an enclosed forest.

7.2 Experimental procedure

The experimental procedure evaluates the performance of the proposed SRS by

computing the recognition accuracy in terms of positive acceptance, Pacc and posi-

tive rejection, Prej rates (in %) when positive and negative test scenes from the four

databases are presented respectively to the proposed SRS. The entire procedure

mimicks a typical scene recognition situation (section 6.2) - a reference database

Dref of Nref reference scenes is constructued and scene recognition is performed
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with Ntest test scenes with the database. Obviously Ntest = Npos+Nneg. The entire

evaluation procedure is summarised in the following steps:

1. The Scene matrix cells, Ms (section 5.3), of all of the images (both reference

and test scenes) in the database are first extracted from the raw input images

and saved.

2. The reference image database, Dref , is constructed. Ideally this step should

be performed automatically by a separate algorithm that decides which scenes

are distinct enough to be used as reference images. This can be achieved

in a practical navigation system during the learning phase when the agent

explores its environment for the first time. For this work, one assumes that

this has been done and the Nref reference images are chosen manually to

produce Dref .

3. The rest of the Ms are then grouped into two test sets containing Npos positive

or Nneg negative scenes depending if Dref contains a known positive match

for the test scenes or not.

4. The two test sets containing Npos and Nneg scenes are then used to obtain the

positive acceptance and positive rejection accuracies (Pacc, Prej) respectively.

This is done by presenting a test scene matrix cell, Mtest
s to the scene decision

module as described in section 6.2 so as to obtain the final decision, Df on

the test scene. Different runs of the scene decision module for the same scene
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may yield different results due to the fact that RANSAC is implemented in

matching the salient-SURF keypoints between the test and reference scenes

similar to the method used to extract ordinal depth by TBL (section 6.1.2).

The accuracy of the proposed SRS for the same test scene may thus vary

over several trials. In order to arrive at a reasonable estimation of the recog-

nition accuracy, the scene decision with the same test scene is repeated for

Niter times. At each iteration, a correct decision is given one point while an

incorrect decision is given zero point. For positive scenes, a correct decision

occurs when the SRS correctly matches the reference scene in the database.

For negative scenes, a correct decision effectively rejects the scene since no

reliable matches can be found. This is done by comparing Df with a known

database of correct response the SRS should give if there are no errors. In

this work, Niter is fixed at 20 for all of the experiments.

The recognition accuracies (Pacc, Pneg) is given as the percentage of correct

decision over all the (Npos, Nneg) test scenes with each scene iterated over Niter

times:

Pi =

∑
B

Nj ×Niter

× 100, j ∈ [(acc, pos), (rej, neg)]

B =


1 if Df is correct

0 if Df is incorrect

(7.1)
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The overall recognition accuracy, Poverall is obtained by combining (Pacc, Prej) to-

gether as a weighted average:

Poverall =
PaccNpos + PrejNneg

Ntest

(7.2)

The above procedure is repeated for the four databases described in section 7.1

so as to validate the SRS’s robustness against various image distortions imposed

by these databases. The results of the recognition accuracy of the proposed SRS

is given in section 7.4.

7.3 Comparative studies with similarly designed

SRSs

In order to have a better understanding of how the proposed SRS functions, a series

of five comparative studies are conducted over several variants of the proposed

SRS. The objective is to find out how the different components of the proposed

SRS contribute to the recognition rates presented in section 7.4. This is done by

enabling/disabling the two main components in the scene decision module (section

6.2) - the spatial configuration (x, y, z) and the HSV (hue, saturation and value

(grayscale)) colour space. Throughout this chapter, the short-forms of the colour

spaces are used - hue for hue, sat for saturation and gs for grayscale. The variants
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of the proposed SRS (with their short-forms in bold) are described in the following

paragraphs.

‘Simple’ SRS (SimpSRS): This variant uses only the percentage matches,

N%test over the three colour spaces in the match statistic matrix Πs (6.8) to deter-

mine if a match is found in the reference database, Dref . The ordinal configuration

is entirely ignored. The aim is to show the inadequecies of using this naive method

for scene recognition. As was explained in section 6.1.1, one of the problems faced

by this method is the determination of a reliable threshold for accepting a can-

didate match as reliable or not. In this comparative study, two fixed percentage

thresholds (@10%, @5%) are used for scene decision by comparing it with the per-

centage matches in the candidate match, N%cand. If N%cand is greater than the

threshold, Gcand is accepted. If this is not the case, the candidate match is then

rejected.

Disable one spatial component (DIS 1spatial i): One of the three ordinal

measures of the spatial components i ∈ {x, y, z} is disabled over all the three

colour spaces. The aim of this comparative study is to observe how the recognition

rates are affected when only two of the spatial components are preserved.

Enable one spatial component (EN 1spatial i): Similar to the previous vari-

ant, only one out of the three ordinal measures of the spatial components i ∈

{x, y, z} is enabled over the three colour spaces.
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Disable one colour component (DIS 1col j): In this variant, the three ordinal

measures are preserved while one of the colour space j ∈ {hue, sat, gs} is disabled

- only two colour spaces are used in this comparative study.

Enable one colour component (EN 1col j): This final variant uses only one

colour component in j ∈ {hue, sat, gs} while preserving the full spatial configura-

tion of the matches found.

In all the five comparative tests, the three recognition accuracies: Pacc, Prej and

Poverall (7.1,7.2) are computed using the procedure described in section 7.2. All of

the results are compared to the proposed SRS that serves as the baseline. The next

section presents the results of all the comparative studies as well as the recognition

accuracies of the proposed SRS for the four databases.

7.4 Experimental results

The recognition accuracy in terms of Pacc, Prej and Poverall defined in (7.1, 7.2) of the

proposed SRS and the five variants in the comparative studies are summarised in

tabular form for easy comparison over the four databases. All the tables containing

the results are listed as follows: Proposed SRS: Table 7.2; SimpSRS: Table 7.3;

DIS 1spatial: Tables (7.4,7.5,7.6); EN 1spatial: Tables (7.7,7.8,7.9); DIS 1col:

Tables (7.10,7.11,7.12); EN 1col: Tables (7.13,7.14,7.15).

The tables referenced are presented in the next few pages.
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Table 7.2: Proposed SRS

Database Pacc Prej Poverall

IND 96.6 94.52 95.65
UBIN 94.84 100 97.54
NS 100 99.42 99.67
SBWR 99.33 100 99.68

Table 7.3: SimpSRS@10% and 5% threshold

Pacc Prej Poverall

Database 10% 5% 10% 5% 10% 5%
IND 87.2 93.8 80.95 38.1 84.35 68.37
UBIN 40.71 71.27 94.2 43.48 68.67 56.74
NS 46.46 66.59 96.15 73.08 74.25 70.22
SBWR 42 80 100 87.5 71.94 83.87

Table 7.4: DIS 1spatial x

Database Pacc Prej Poverall

IND 86.8 90.24 88.37
UBIN 88.57 76.81 82.42
NS 92.44 86.63 89.19
SBWR 91.67 100 95.97

Table 7.5: DIS 1spatial y

Database Pacc Prej Poverall

IND 83.6 86.19 84.78
UBIN 79.84 72.46 75.98
NS 80.12 90.38 85.86
SBWR 80 93.75 87.1

Table 7.6: DIS 1spatial z

Database Pacc Prej Poverall

IND 85.8 90 87.72
UBIN 88.41 76.81 82.35
NS 92.44 86.54 89.14
SBWR 90 100 95.16

Table 7.7: EN 1spatial x

Database Pacc Prej Poverall

IND 83.6 86.19 84.78
UBIN 80.24 72.46 76.17
NS 80.24 90.38 85.91
SBWR 80 93.75 87.1

Table 7.8: EN 1spatial y

Database Pacc Prej Poverall

IND 95.8 73.1 85.43
UBIN 84.92 66.67 75.38
NS 90.24 88.17 89.09
SBWR 99 100 99.52

Table 7.9: EN 1spatial z

Database Pacc Prej Poverall

IND 83.8 87.14 85.33
UBIN 79.92 72.46 76.02
NS 80.12 90.38 85.86
SBWR 80 93.75 87.1



7.4 Experimental results 162

Table 7.10: DIS 1col gs

Database Pacc Prej Poverall

IND 75.4 91.43 82.72
UBIN 46.83 69.57 58.71
NS 70.73 86.54 79.57
SBWR 73.33 75 74.19

Table 7.11: DIS 1col sat

Database Pacc Prej Poverall

IND 85.4 90.48 87.72
UBIN 83.89 75.36 79.43
NS 87.8 88.46 88.17
SBWR 93.33 100 96.77

Table 7.12: DIS 1col hue

Database Pacc Prej Poverall

IND 96.2 81.19 89.35
UBIN 81.75 84.06 82.95
NS 80.49 94.23 88.17
SBWR 86.67 93.75 90.32

Table 7.13: EN 1col gs

Database Pacc Prej Poverall

IND 84 80.95 82.61
UBIN 79.37 71.01 75
NS 78.05 90.38 84.95
SBWR 86.67 93.75 90.32

Table 7.14: EN 1col sat

Database Pacc Prej Poverall

IND 76 85.71 80.43
UBIN 38.1 57.97 48.48
NS 65.85 75 70.97
SBWR 60 62.5 61.29

Table 7.15: EN 1col hue

Database Pacc Prej Poverall

IND 44 80.95 60.87
UBIN 28.57 44.93 37.12
NS 48.78 53.85 51.61
SBWR 46.67 43.75 45.16

A few illustrative examples of the resulting matches are highlighted in the

sections that follow. They aim to demonstrate the robustness and generality of the

proposed SRS against various image distortions in both indoor and outdoor natural

environments. The figures show the matched reference scene on the left and the

test scene on the right. The correspondences are shown as cyan lines connecting

the matched keypoints across the two images.
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7.4.1 Database IND results

The IND scenes contain a few artificial scenes that test the usefulness of ordi-

nal measures in encoding the landmark configuration for robust scene recognition.

Fig. 7.3 (top) shows a positive test scene where a viewpoint change to the right by

∼ 20◦ is correctly recognised. This does not always work when the landmarks are

not correctly matched, as is shown in Fig. 7.3 (bottom). The negative scene high-

Figure 7.3: Correctly matched IND positive scene (top). Incorrectly matched
IND negative scene (bottom).

lights clearly the limitations of using ordinal measures. If a landmark is improperly

matched or not matched at all, the robustness that ordinal measures should give

becomes an impediment to effective discrimination of ambiguous scenes. The un-

matched landmark shown in the example is unfortunately the crucial landmark



7.4 Experimental results 164

that has changed in its x and z position. Because of its relatively small size, the

number of SURF keypoints it contains is equally small in number and this makes

the change statistically insignificant. Although this is unlikely to happen in real

scenes where numerous features of various sizes exist, it highlights one of the many

possible future improvements for the proposed SRS (section 8.3).

Another set of test scenes with clutter and people working in a typical office

highlights the tolerance of the proposed SRS to such dynamic changes in the scene

(Fig. 7.4).

Figure 7.4: Tolerance to clutter and people in the IND database: small changes
(top), large changes (bottom).

This is due to the accuracy of the salient-SURF keypoints in finding reliable

matches between the test and reference images in the database and confirms the
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formulation of Gc (section 6.1.2) and adaptive decision threshold, Dt (section 6.2.2)

in detecting scene equivalence for difficult scenes with significant dynamic content.

For example, in Fig. 7.4 (bottom), the test scene (left) contains significant occlu-

sion caused by people sitting in front of the table which would have made scene

recognition particular difficult. However, the encoded salient-SURF keypoints are

matched with high accuracy on regions that are not occluded. This preserves the

spatial configuration of the test scene with the true reference scene in the data-

base, which enables the scene decision module to ignore these dynamic changes for

reliable scene recognition.

7.4.2 Database UBIN results

Varying weather conditions as well as natural and man-made interventions con-

tribute to the abundant dynamic changes in this database. As was highlighted in

section 7.1.2, the main challenge of this database is the significant image distortion

due to the long time difference between certain test scenes and the reference scenes.

The proposed SRS is however tolerant to an extent to these changes and produces

excellent results as illustrated in Fig. 7.5. The main reason for the proposed SRS’s

tolerance is that the skyline is exploited to provide invariant and stable features

for reliable recognition even under such extreme image distortions. This robust-

ness from using the skyline may however lead to a loss of discriminatory power of
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Figure 7.5: Challenging UBIN test scenes with significant image distortion -
viewpoint, weather and illumination changes.

the proposed SRS when different scenes may share the same skyline (sections 4.3

and 3.5.1). This is especially common in open places such as the coastal areas in

the UBIN database. An example of a mismatched scene1 with similar skyline is

shown in Fig. 7.6 (which is the same as in Fig. 3.19). This is clearly an important

limitation of using the skyline as a composite feature for scene recognition. This

particular test scene is difficult as the changes in the foreground are too significant

for reliable matching and only the skyline is reliable. Since there are a few reference

scenes with similar skylines (as they were taken along the same coastal stretch),

the best match using the skyline information is incorrect for this particular test

1the mismatched scene is around 50m from the correct reference scene
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scene.

Figure 7.6: A mismatched UBIN scene with similar skyline.

7.4.3 Database NS results

The NS scenes are characterised by a mix of enclosed and semi-enclosed forest

scenes with significant weather and illumination changes (section 7.1.3). This is

due to the fact that the three sets of test scenes are collected at different times of

the day, on three different days under different weather conditions. Nonetheless,

the proposed SRS achieves a very impressive Poverall = 99.67% which is almost

the same as the SBWR database. Fig. 7.7 shows three positive test scenes that

are recognised despite significant non-uniform illumination, viewpoint changes and

image distortions due to natural erosion. Some of the changes are so significant that

even this author was initially unaware that they were taken at similar locations!

The strength of the proposed SRS is clearly evident - even scenes that may confuse

human observers could be reliably detected by the algorithm, making it a useful
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tool for reliable and robust navigation in complex outdoor environments performed

by future autonomous artificial agents.

Figure 7.7: Difficult NS test scenes that are correctly recognised.

7.4.4 Database SBWR results

The SBWR database contains enclosed mangrove forest scenes with an augmented

reference database as described in section 7.1.4. This reference database models
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after the TBL arc by having several reference snapshots of the same scene. Using

this augmented database greatly improves the recognition accuracy of the proposed

SRS despite the fact that the skyline is unusable. From Table 7.2, one can see that

the SBWR test scenes reported the highest Poverall = 99.68% compared to the

other databases. Since the proposed SRS tends to match the closest reference

snapshot, an additional information about the approximate position of where the

test scene is located on the TBL arc can be obtained. Fig. 7.8 illustrates two

input test scenes that are correctly recognised in spite of the high complexity of

the scenes with numerous occlusions.

Figure 7.8: Matched SBWR test scenes with significant occlusions and viewpoint
distortions.

The few examples given in this section serve only to provide an illustrative idea
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of the potential of the proposed SRS in recognising difficult scenes under various

image distortions in both indoor and outdoor natural environments. A better

understanding of how the components of the proposed SRS contribute to correct

recognition is discussed next. This is done by analysing the recognition accuracy

of the proposed SRS and its variants presented in this section.

7.5 Analysis and discussion of experimental re-

sults

A detailed analysis of the experimental results is presented in this section. The

analysis is separated into several subsections that focus on the contribution of a

particular component to the recognition accuracies,(Pacc, Prej, Poverall), of the pro-

posed SRS. Section 7.5.1 analyses the contribution of ordinal measures in general

by comparing the Proposed SRS with SimpSRS. The contributions of the or-

dinal measures in the three spatial directions (x, y, z), denoted as (xom, yom, zom),

are analysed in sections 7.5.2–7.5.4. An evaluation of the relative importance of

the three ordinal measures follows in section 7.5.5. The contributions of the three

colour (gs, sat, hue) components, denoted as (gsc, satc, huec), are analysed in sec-

tions 7.5.6–7.5.8. Section 7.5.9 then evaluates the relative importance of the three

colour spaces. Finally, section 7.5.10 concludes this section based on the results of
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the analysis.

7.5.1 Proposed SRS vs.SimpSRS

The results presented in Tables 7.2 and 7.3 are compared. The superiority of the

Proposed SRS over SimpSRS which uses only the percentage matches as a

decision criterion is evident. The proposed SRS achieves generally better recogni-

tion accuracy, (Pacc, Prej, Poverall) in all four databases. Table 7.3 also highlights

an important shortcoming of using a fixed rejection threshold - different rejection

thresholds affect the accuracy of the databases differently and there is no simple

method to determine in advance a good threshold that will achieve a high Pacc

without compromising Prej. As one can observe, decreasing the threshold from

@10% to @5% improves Pacc but degrades Prej which is a clear illustration of

the conflicting requirements posed by the robustness (measured by Pacc) and the

discriminatory power (measured by Prej) of any SRS.

7.5.2 Contribution of xom

The results in Tables 7.5 and 7.9 are compared where the only parameter that is

changed is the addition of xom. In terms of Pacc, the four databases report virtually

no significant change in positive recognition accuracy when xom is used. This is

not a surprising result for positive scenes that preserves xom in general. Similarly
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for Prej, the difference between the results when xom is added is extremely small.

Hence the addition of xom plays only a small role in improving the discriminatory

power of the SRS which is already high when zom is used alone. This is an indication

that other spatial/colour components contain more distinctive features for better

discrimination.

7.5.3 Contribution of yom

Tables 7.4 and 7.9 are compared as the only parameter that is changed is yom.

In terms of Pacc, the addition of yom generally improves the positive recognition

accuracy from 3%(IND) to 12%(NS). This is an indication that a small amount

of invariance is encoded in yom that aids in positive recognition. In terms of Prej,

three databases (UBIN, SBWR and IND) reported small improvements of vary-

ing degrees from 3.1%(IND) to 6.25%(SBWR) while there is a slight degradation

of in Preg for NS scenes (-3.75%). This shows that with the exception for the

NS database, yom does encode a small amount of distintiveness that allows for

effective discrimination. The slight degradation observed in the NS scenes, how-

ever, indicates that the distintiveness encoded in yom for this database is not very

significant.
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7.5.4 Contribution of zom

Tables 7.5 and 7.7 are compared separately from Tables 7.4 and 7.8 where the

only parameter that changes is the addition of zom. Databases NS and UBIN

reported similar results where the addition of zom preserves Pacc. This is again due

to the fact that ordinal measures are preserved in general for positive scenes. The

other two databases, SBWR and IND, however reported a degradation in Pacc

when zom is added to yom (Table 7.4): -7.33%(SBWR) and -9%(IND). Detailed

analysis of the results attributes the degradation in database SBWR to its greater

complexity with numerous occlusions that severely affected the estimation of Zord

(section 5.2.2). For database IND, the degradation is due entirely to the ambiguous

test scenes (Fig. 7.3 (top)) with numerous similar features that caused many

mismatches to occur. The addition of zom probably amplified the effect of such

errors that is reflected in Πs. This in turn affects the reliablity of the decision

threshold, Dt. Gcand is likely to be seen as highly unreliable and is falsely rejected

by Dt, lowering Pacc.

In terms of Prej, the IND and UBIN databases display a significant improve-

ment in discriminatory power with the addition of zom to yom: 17.14%(IND) and

10.16%(UBIN) while it remains constant and high when zom is added to xom in

both databases. This indicates that for these two databases, zom encodes a signif-

icant amount of distinctiveness among the test scenes for effective discrimination,
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which is more than yom and is of equal importance to xom. For the remaining two

cases (NS, SBWR), the addition of zom does not contribute to any significant

changes in Prej. This indicates that zom does not contain enough distinct features

for discrimination in the two databases. Comparing the results of the two previous

sections reveals that for the NS database, Prej remains largely unaffected by the

addition of ordinal measures on the whole. This indicates that all three spatial

ordinal measures, (xom, yom, zom) are equally significant in determining the Prej of

the proposed SRS. This initial observation is confirmed in section 7.5.5.

7.5.5 Relative importance of (xom, yom, zom)

The relative importance of (xom, yom, zom) are determined in terms of Pacc and Prej

separately in this section. The relative rankings of the components are then de-

noted as (· · · ) for Pacc and [· · · ] for Prej. A slight abuse in notations is used in

this section: the symbols (>, =) are used to denote a greater and equal contribu-

tion respectively of a particular component to the particular recognition accuracy

(Pacc, Prej) concerned. The optional symbol ∼ denotes a slight difference in con-

tribution of the components. Three comparisons are made between (xom, yom),

(zom, xom) and (zom, yom). From the results of the pairwise comparisons, one can

conclude on the overall relative importance of the three ordinal measures.
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Between xom and yom

Tables 7.6, 7.7 and 7.8 are compared. In terms of Pacc, database NS and UBIN

display a common trend where yom is slightly more important than xom with a gen-

erally higher, and hence complementary, combined Pacc when both ordinal measures

are used together (Table 7.6). (yom ∼> xom)

For databases SBWR and IND, yom is more significantly important than xom

but the combined Pacc actually degrades (but remains high) when both ordinal

measures are used together: 90%(SBWR, IND). A closer analysis of the two

databases shows that most of the viewpoint changes occur in the x spatial direction,

resulting in more mismatches when xom is used with yom. (yom > xom)

In terms of Prej, xom is more dominant than yom by various amounts for the

three databases: 2.21%(NS), 5.79%(UBIN), 13.09%(IND) which is also comple-

mentary when both ordinal measures are used together. This follows the general

observation that because most of the viewpoint distortion occurs in the x direc-

tion, xom thus encodes more distinctive information that aids in discrimination.

[xom > yom]

For the SBWR database, the situation is interestingly reversed - yom is more

dominant than xom by 6.25% but the combined Prej remains constant @100%.

This shows that the two ordinal measures are complementary. The reason for

the dominence of yom over xom is attributed once again to the complexity of the
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SBWR test scenes - the numerous mismatches in the x spatial direction degrade

Prej. [yom > xom]

Between zom and xom

Tables 7.5, 7.7 and 7.9 are compared. In terms of Pacc, all the four databases report

virtually equal importance between zom and xom with no significant variations when

both ordinal measures are used. This confirms that an equal amount of invariance

is encoded in these two ordinal measures for positive recognition. (zom = xom)

Similarly for Prej, all the databases display almost equal dominance between

zom and xom with no significant variation when both measures are used. This is

not a surprising result as both the x and z spatial directions capture significant

distinctiveness that aids in discrimination. [zom = xom]

Between zom and yom

Tables 7.4, 7.8 and 7.9 are compared. In terms of Pacc, all the four databases

report similar results with yom being more significant than zom. The variation

in the combined accuracy when both ordinal measures are used is however small.

(yom > zom)

In terms of Prej, databases NS, UBIN and IND display a dominance of zom

over yom: 2.21%(NS), 5.79%(UBIN) and 14.04%(IND). This is once again due

to the fact that most of the distinctiveness of the test scenes occur in the z spatial
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direction while the y spatial direction remains largely invarient. The combined Prej

for the three databases are in general complementary. [zom > yom]

Database SBWR interestingly reports a reversed trend, with yom being more

dominant (@100%) than the zom (@93.75%) with a combined accuracy that is

maintained @100%. This can be explained by the errors in estimating Zord in the

complex SBWR test scenes that reduces Prej slightly. [yom > zom]

Relative importance

From the results of the comparisons in terms of Pacc, the relative importance is

given as:

Pacc ⇒


(yom ∼> xom = zom) for NS and UBIN

(yom > xom = zom) for IND and SBWR

(7.3)

For NS and UBIN, the difference between all three ordinal measures is very small.

This confirms the fact that positive scenes preserve the ordinal configuration such

that the use of just one ordinal measure is usually sufficient. For IND and SBWR

scenes, however, the distortions in xom and zom emphasise the importance of yom

in preserving the invariance needed for positive recognition.
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In terms of Prej, the relative importance is given as:

Prej ⇒


[xom = zom > yom] for NS, UBIN and IND

[yom > xom = zom] for SBWR

(7.4)

This is an important result that justifies the use of Zord in the proposed SRS. From

the three databases (NS, UBIN and IND), zom is equally dominant as xom and is

more important than yom in encoding the distinctiveness of the scenes for effective

discrimination. For the NS database, the difference in dominance is very small and

this confirms the initial suggestion in section 7.5.4 that the distinctiveness of the

test scenes is captured equally over the three ordinal measures. This is attributed

to the variability of the scene structure in NS (section 7.1.3). For UBIN and IND,

the main reason for the dominance of zom and xom over yom is due to the fact that

more distinctiveness is encoded in these two directions that aids in discrimination.

Overall, the test scenes tend to maintain a general ‘orderliness’ in the y direction

for the same environment. For example, in UBIN, the structure of sky (top),

vegetation (middle) and ground (bottom) is maintained throughout and this tends

to lower the usefulness of yom in discrimination.

The interesting results come from SBWR that has a greater emphasis on

yom then xom and zom which are equally dominant. This is attributed to the

complex scene structure of SBWR. The degradation in Prej when xom and zom
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are used makes yom relatively more important. This highlights a crucial factor that

determines the discriminating power of the proposed SRS - only the most stable

and reliable ordinal measures are useful (yom in this database) for discrimination.

7.5.6 Contribution of gsc

Tables (7.12, 7.14) and Tables (7.11, 7.15) are compared. In terms of Pacc, the

inclusion of gsc generally improves Pacc: by 14.64%(NS) to 43.65%(UBIN)(satc +

gsc) and by 39.1%(NS) to 55.32%(UBIN)(huec + gsc), with the + sign denoting

the use of two colour components. This is an indication that the invariance encoded

by the keypoints in gsc is greater than the other two colour components. This is

due to the fact that there are more keypoints detected in gs for reliable positive

recognition.

In terms of Prej, the three outdoor databases: NS, UBIN and SBWR dis-

play a general trend where the addition of gsc improves Prej: by 19.23%(NS) to

31.25(SBWR)(satc + gsc) and by 34.61%(NS) to 56.25%(SBWR)(huec + gsc).

Once again, this improvement can be attributed to the fact that the keypoints

encoded in gs are more distinctive and abundent for better discrimination. Fur-

thermore the monochromatic nature of the outdoor databases, that contains sig-

nificant natural vegetation, reduces the uniqueness of huec and satc keypoints for

discrimination (section 3.4.2).
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For the IND scenes, there are two surprising observations. The first observation

is that huec and satc encode a surprisingly significant amount of information. The

Prej of 80.95% when huec is used alone and 85.71% when satc is used alone are

surprisingly good (Tables 7.14, 7.15). This highlights the fact that for indoor scenes

with many man-made features of various colours, huec and satc are clearly more

discriminatory than the outdoor databases. The second surprising observation is

in the addition of gsc that enhances Prej of huec to 90.48% while combining with

satc causes a slight degradation to 81.19%. It is possible that gsc is less reliable

for indoor scenes compared to satc, due to a large number of ambiguous features

which becomes virtually indistinguishable in grayscale, a case that was stated in

the design of ‘CSIFT’ that uses colour information for better discrimination [1].

This ambiguity is less pronounced when used in conjunction with huec, since the

huec maps are usually more different (and hence complementary) from the gsc

maps as compared to the satc maps (Fig. 7.9).

7.5.7 Contribution of satc

Tables(7.12, 7.13) and Tables(7.10, 7.15) are compared. In terms of Pacc, the

addition of satc improves Pacc in general: by 0%(SBWR) to 12.2%(IND)(gsc +

satc) and by 18.26%(UBIN) to 31.4%(IND)(huec + satc). It is interesting to see

that the improvement is the largest for the IND. This is an indication that for
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Figure 7.9: Two IND scenes with their HSV components. Comparing the
grayscale images vs.the hue images reveals the strong dissimilarity between the
two colour spaces. On the other hand, saturation images bear a stronger resem-
blance to grayscale.

indoor scenes, satc encodes more useful information for positive recognition than

in outdoor scenes.

The same trend is seen in the case of Prej. satc provides more distinct keypoints

for better discrimination when added to huec and complements the use of gsc in all

the four databases: by 10.48%(IND) to 32.7%(NS)(huec +satc) and 0%(SBWR)

to 13.05%(UBIN)(huec + gsc). This highlights the importance of using satc to

enhance the discriminatory power of the proposed SRS.
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7.5.8 Contribution of huec

Tables(7.10, 7.14) and Tables(7.11, 7.13) are compared. In terms of Pacc, the

addition of huec in general improves slightly the combined Pacc in all the four

databases. The small improvments in Pacc with the addition of huec, however,

is an indication that it only plays a minor but complementary role in positive

recognition.

In terms of Prej, the addition of huec to the other colour components improves

in general Prej over the three outdoor databases. The small improvement with satc

and slight degradation/improvement with gsc is a hint that the distinctiveness of

the features encoded in huec is rather small. This is true as there are usually

less huec keypoints detected than in the other colour spaces. This reduces their

contribution to the discriminatory power of the proposed SRS.

The interesting result comes from IND where the improvement for (huec +gsc)

is the largest among the four databases (9.35%). This is attributed to the indoor

nature of the scenes where huec provides more discriminating information than

gsc.

7.5.9 Relative importance of (gsc, satc, huec)

Similar to the evaluation of the relative importance of the three spatial compo-

nents in section 7.5.5, the relative importance of the three colour components
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(gsc, satc, huec) in determining Pacc and Prej are evaluated by making three pair-

wise comparisons between (gsc, satc), (gsc, huec) and (satc, huec). The results of

these comparisons are similarly enclosed in (· · · ) for Pacc and [· · · ] for Prej with

the symbols (>, =,∼) retaining the same meanings as defined in section 7.5.5. The

overall relative importance can then be inferred.

Between gsc and satc

Tables 7.12, 7.13 and 7.14 are compared. In terms of Pacc, gsc is more significant

and complementary with satc in all the four databases.(gsc > satc)

In terms of Prej, the three outdoor databases (NS, UBIN and SBWR) report

the same dominance for gsc over satc which are also complementary. This shows

that gsc contains more distinctive features for reliable discrimination.[gs > sat]

The most interesting results come from IND, with satc being slightly more

important than gsc by 4.76% and a combined Prej that has a slight degradation

(-4.52%). This is an indication that for indoor scenes, satc is more discrimina-

tory than gsc. The small degradation in the combined Prej may be due to the

unreliablity of the gsc keypoints in IND (section 7.5.6). [satc ∼> gsc]

Between gsc and huec

Tables 7.11, 7.13 and 7.15 are compared. In terms of Pacc, gsc plays a more signif-

icant and complementary role with huec over the four databases. The reason for
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this dominance can be explained by the monochromatic (green) nature of the out-

door databases. Although huec is somewhat invariant to lighting and illumination

changes, the keypoints are unreliable due to their small number and this in turn

degrades Pacc. The smaller number of huec keypoints even in IND affects similarly

its usefulness for positive recognition. (gsc > huec)

In terms of Prej, the three outdoor databases display the same general trend

- gsc is clearly more dominant and complementary with huec for discrimination.

The weakness of the huec keypoints in discrimination is due to the monochromatic

environment that results in many mismatches, hence degrading its discriminatory

power. [gsc > huec]

Once again, IND displays a different trend from the outdoor databases, with

huec being of equal importance as gsc with a high Prej of 80.95% and a combined

Prej that is complementary @90.48%. As was explained in section 7.5.6, the huec

maps are more different than gsc maps in an indoor environment compared to satc

maps. The test scenes are thus more distinctive in huec + gsc. The equidominance

of the two colour spaces clearly shows the usefulness of huec for discrimination in

indoor scenes. [huec = gsc]

Between satc and huec

Tables 7.10, 7.14 and 7.15 are compared. In terms of Pacc, satc is clearly more

significant than huec with a generally improved Pacc when the two components
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are used together. This shows that satc, when compared to huec, encodes more

invariant information for positive recognition. (satc > huec)

In terms of Prej, all the four databases display the same general trend with

satc being more dominant and complementary with huec. This shows that satc

does encode in general a greater amount of distinctiveness than huec. The inter-

esting observation is in IND as satc is only slightly more important than huec

by 4.76% while the other outdoor databases reported significantly larger improve-

ments: 21.15%(NS), 13.04%(UBIN) and 18.75%(SBWR). The combined Prej is

also interesting for IND that reported the highest Prej of 91.43%. These two obser-

vations indicate that the distinctiveness encoded by huec and satc for IND scenes

is clearly more significant compared to other outdoor databases which follows the

results in the previous subsections. [satc > huec] for (NS, UBIN and SBWR)

and [satc ∼> huec] for IND.

Relative importance

The relative importance of the three colour components in terms of Pacc is given

as:

Pacc ⇒ (gsc > satc > huec) (7.5)
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This result confirms that the use of gsc is often sufficient for reliable positive recog-

nition in the literature (e.g. [68, 98]). What is interesting from the above analysis

is that the addition of the other two colour components are in general comple-

mentary as they improve the combined Pacc when used with gsc. This shows that

when used appropriately, huec and satc do contribute to Prej for outdoor scenes

with illumination changes. Furthermore, the additional information contributed by

huec and satc also improves Pacc for IND scenes. This contribution is, however,

smaller than gsc because less keypoints are detected, especially in monochromatic

outdoor scenes. With less keypoints, the reliability in determining a positive match

is called into question as a single mismatch can degrade Gc, making positive recog-

nition difficult.

In terms of Prej, the relative importance of the three colour components is given

as:

Prej ⇒


[gsc > satc > huec] for NS, UBIN and SBWR

[satc ∼> gsc = huec] for IND

(7.6)

For the three outdoor databases (NS, UBIN and SBWR), the usefulness of gsc

in encoding the distinctiveness of the scenes for discrimination is evident. Simi-

lar to the Pacc case, the addition of huec and satc information in general further
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improves Prej and are thus complementary. The monochromatic nature of the out-

door scenes, however, contains a lot of invariant information captured in huec (and

to a lesser extent in satc) which makes huec and satc less reliable for discrimina-

tion. The reliability is further reduced as there are less of huec and satc keypoints

detected than the gsc keypoints.

The most important and surprising result comes from IND that justifies the

use of huec and satc for improved discrimination. From (7.6), one can see that the

distinctiveness of IND scenes are more evenly spread apart in the different colour

components. satc is the most important colour component while huec is equally

important as gsc in discriminating indoor scenes. This result clearly deviates from

the conclusion drawn from the outdoor databases. For indoor scenes containing

numerous man-made structures, the use of satc and huec even equals or surpasses

the discriminatory role that gsc originally possesses.

7.5.10 Conclusion and discussion of the analysis

For the spatial ordinal measures (xom, yom, zom), the addition of just one ordinal

measure often improves the recognition accuracies (Pacc, Prej) compared to Simp-

SRS (Table 7.3). This highlights the importance of ordinal measures in improving

the performance of the SRS. In particular, the importance of zom, ignored in the

majority of literatures, is clearly shown for effective scene recognition. In terms of
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Pacc, zom is equally important as xom (7.3) while in the case of Prej, zom is even

more significant than yom for NS, UBIN and IND databases (7.4). The only

exception is in SBWR where the complexity of the scene structure reduces the

improvement rendered by xom and zom.

For the colour components, (gsc, satc, huec), the analysis confirms the useful-

ness of gsc for effective recognition. The main reason for gsc’s dominance is the

fact that a larger number of gsc keypoints is detected and this increases the relia-

bility of gsc for positive recognition as well as effective discrimination of negative

scenes. The use of the other two colour components is also shown to be comple-

mentary in improving Pacc and Prej. Most importantly, the contribution of huec

and satc in improving the Prej of IND scenes by encoding more distinctive infor-

mation is highlighted (7.6). Comparing Proposed SRS vs.EN 1col gs (Tables

7.2 and 7.13) shows that using all three colour components produce significant im-

provements in the recognition accuracies (Pacc, Prej, Poverall) compared to using gsc

alone. The results in terms of Poverall are summarised below, denoted as (Poverall

of EN 1col gs → (to) the Poverall of Proposed SRS) +(percentage change):

• IND(82.61%→95.65%) +13.04%

• UBIN(75%→97.54%) +22.54%

• SBWR(90.32%→99.68%) +9.36%

• NS(84.95%→99.67%) +14.72%

From the above results, the use of more colour components thus comes at only a
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slight increase in computational time and storage (due to the extraction, matching

and storage of extra salient-SURF keypoints) and is justified by the significant

improvement (from 9.36% to 22.54%) in Poverall.

In conclusion, for a particular component to contribute effectively to positive

acceptance of matching scenes (measured by Pacc) and positive rejection (measured

by Prej), it must have the following characteristics:

Invariance. The greater the invariance encoded by a particular component,

spatial or colour, the larger is the contribution of that particular component in

determining the Pacc for two positive scenes. An invariant component that is

robust and tolerant to all forms of image distortions (viewpoint, illumination as

well as natural erosion) is highly valuable for positive recognition under various

viewing conditions.

Distinctiveness. In contrast with invariance, the greater the amount of dis-

tinctiveness encoded by a particular component, the larger is its contribution in

determining Prej between two very similar (but different) scenes for discrimina-

tion. Such a component is able to detect significant changes in the scene structure

(for spatial measures) or distinct properties in one of the colour spaces (for colour

measures) that enhances the discriminatory power of the SRS. For example, in the

IND database, the satc component is more significant for discriminating indoor
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scenes than gsc (7.6). This is because man-made objects become more distinguish-

able under the sat colour space compared to gs which improves the discriminatory

power of the proposed SRS.

Proportion. As the proposed SRS uses the percentage matches, N%test, in the

partial computation of Gc (6.3) and in the determination of the adaptive threshold

Dt (section 6.2.2) and (6.12), the proportion of a particular colour component

determines the importance of the component’s contribution to Pacc and/or Prej.

This is clearly shown by the use of huec to improve the recognition of outdoor

scenes under varying illumination. Although huec encodes invariance that should

aid in positive recognition, the relatively small number of huec keypoints compared

to gsc or satc keypoints reduces its contribution.

Reliability. For a component to contribute significantly to Pacc and/or Prej,

not only must it encode enough invariance and/or distinctiveness in sufficient num-

bers, it must also be reliable and tolerates potential mismatches in the keypoints.

A component that is unreliable with numerous mismatches severely degrades the

performance of the proposed SRS. A good example is seen in the NS database

where the addition of one or two ordinal measures (Tables 7.4–7.9) compared to

the Prej@10% threshold of SimpSRS (Table 7.3) shows a degradation of between

5.77% to 9.61%. A similar (but smaller) degradation is observed for SBWR too.

The usefulness of ordinal measures is in fact a double-edged sword - when the scenes

are not too complex and the salient-SURF keypoints are mostly reliable, ordinal
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measures often maintain and even enhance the overall recognition accuracy of the

SRS (section 3.3.4). However when large amounts of distortions (lighting, view-

point and occlusions) occuring in the scenes (e.g. NS, SBWR) lead to mismatches

in the keypoints, the ordinal measures are affected and Prej is reduced significantly.

Note that the same component may possess multiple characteristics that con-

tribute to both Pacc and Prej. For example, a certain component may contain

sufficient distinct features for discrimination of negative scenes, and it may also en-

code sufficient invariant information that aids in the recognition of positive scenes.

This depends on whether or not the scene is a positive or negative test scene that

contributes to Pacc or Prej respectively (section 7.2).

7.6 Final remarks

This chapter has presented the details of how the proposed SRS is validated using

four challenging image databases. Comparative studies with variants of the pro-

posed SRS with a detailed analysis of the results confirms that the inclusion of Zord

and the HSV colour space improves in general the performance of the proposed

SRS.

From the analysis of the recognition results, the proposed SRS using all three

ordinal measures and colour components reports the best overall recognition accu-

racy in terms of (Pacc, Prej and Poverall) compared to all variants of the SRS over
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the four databases. The results presented thus shows that the proposed SRS is

general, robust and is able to discriminate a variety of challenging and difficult

scenes under various image distortions. All of these are desirable characteristics of

a good SRS discussed in section 1.3.



193

Chapter 8
Conclusions

In this concluding chapter, the main characteristics of the proposed SRS are re-

viewed in section 8.1. The major concepts introduced in this work are also reviewed

in section 8.2. Finally, the thesis closes in section 8.3 with some concluding remarks

on potential future research directions that could be undertaken as an extension

to the work presented in this thesis.

8.1 Characteristics of the proposed SRS

This thesis has introduced a novel SRS that to the best of this author’s knowledge

surpasses all other competing scene recognition algorithms that exist in the liter-

ature (chapter 2). The novel SRS has the following characteristics that make it

stand out from other algorithms:
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Generality. The proposed SRS reports very good recognition rates for a wide

variety of scenes, from cluttered indoor scenes with people moving around, dynam-

ically changing open natural scenes to enclosed forested areas. This generality is

assured because the proposed SRS extracts landmarks from salient ROIs with no

prior assumptions on the type of environment that is encountered (section 7.4).

Robustness. The various image distortions - viewpoint changes, changes in

illumination as well as changes in the scene structure due to natural erosion, cli-

matic changes and human intervention, exist in all the test scenes. The proposed

SRS is able to tolerate these changes and find a positive match, if it exists, in the

reference scene. The ability to have such a good degree of robustness is built upon

three features in the design of the proposed SRS. Firstly, the use of ordinal mea-

sures of spatial correlation in the three directions (x, y, z) (section 3.3) enhances

the robustness of the SRS to viewpoint changes. Secondly, the use of the three

colour components (H, S, V ) (section 3.4) improves the robustness of the SRS to

illumination changes for outdoor scenes and provides more discriminatory infor-

mation for indoor scenes. Lastly, a reliable final decision can be made by the scene

decision module thanks to the design of the adaptive decision threshold, Dt, that

evolves with the changes in the scene content (section 6.2.2).

Discriminatory power. The proposed SRS is able to discriminate ambiguous

scenes that contain similar features and effectively reject them using the scene

decision module. The discriminatory power of the proposed SRS comes from the
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formulation of Gc (6.3) that includes the spatial configuration information of the

matched keypoints that provides a greater amount of information on the scene

structure. An ambiguous scene with similar features may have numerous matches

with a certain reference scene, but it is unlikely to possess a similar scene structure

(section 3.3.1). This will degrade Gc and is a clear indication that the test scene is

unreliable. Additional discriminatory information is included as the salient-SURF

keypoints are matched over three colour spaces and this was shown to enhance the

Prej of the proposed SRS compared to when grayscale information alone is used

(section 7.5.10).

Accuracy. The recognition results of the proposed SRS are highly reliable

and accurate. These results are also repeatable when the same test images are

used again. A certain amount of instability may occur for extremely ambiguous

scenes in which numerical instabilities in the scene decision module may cause

varying decisions to arise from repeated iterations of same test scene (section 7.2).

For scenes that are obviously matching or are obviously different, however, the

proposed SRS is able to reliably accept or reject these scenes with little difficulty.

8.2 Review of important concepts introduced

Several new concepts introduced by this thesis contribute to the excellent perfor-

mance of the proposed SRS which are summarised in the next few paragraphs.
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A modified saliency map. This thesis extends the original saliency map model

of [51] by including long edges and the skyline as new composite features to detect

stable and salient regions in a scene (sections 4.2 and 4.3). The saliency map is

subsequently weighted by a dense ordinal proximity map, D̂prox, obtained from

optic flow (4.5) in order to enhance the saliency of regions in the immediate sur-

roundings for better discrimination of ambiguous scenes. For example, two scenes

may share many common features in the background but it is the foreground that

discriminates them from one another.

Efficient SURF keypoint matching. A fast and efficient keypoint matching

algorithm inspired from Lowe’s work [68] is introduced. The matching algorithm

imposes a uniqueness constraint that results in more correct correspondences (sec-

tion 5.1.3). Furthermore, the improved efficiency in the matching algorithm allows

a large number of features (>1000) to be encoded in the Scene matrix, ms, of each

colour space for effective recognition.

The Scene matrix and Scene matrix cell. A novel and compact representa-

tion of the scene structure is proposed using the Scene matrix cell, Ms, that encodes

the augmented salient-SURF keypoints over the three (H, S, V ) colour spaces, with

each colour space represented by an individual Scene matrix, mj
s, j ∈ {H, S, V }.

The structure of ms allows for easy computation of the rank correlations of the

spatial configuration in order to determine the Gc between two Scene matrix cells.
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The Global Configuration Coefficient, Gc. In order to determine a mea-

sure of similarity between two scenes, a novel measure of scene similarity termed

the Global Configuration Coefficient, Gc, is introduced. This similarity metric ex-

ploits the spatial configuration information of the matched salient-SURF keypoints

between the scenes. The inherent robustness of the proposed SRS is therefore de-

rived partially from the design of Gc, which is computed in part from the rank

correlations of ordinal measures in the three spatial directions (x, y, z) (section

6.1.2).

Computation of an adaptive decision threshold, Dt. In order to come to a

decision to accept the query scene as a positive match or to reject it as a negative

match, a certain decision threshold must be determined beforehand. A novel and

intuitive method is introduced that uses the best few matches of the query scene

with the database to estimate a reasonable adaptive threshold, Dt (section 6.2.2).

The premise is based on the observation that for a true positive scene, the rank

correlation components that compute Gc tend to agree with one another while in

the opposite situation, a negative scene will cause a lot of fluctuations in these

components (Fig. 6.3). The construction of Dt thus attempts to use only the

most stable of these components among the best few matches so as to discriminate

between difficult positive and negative test scenes (section 6.2.3).

Various comparative studies on the recognition accuracy of the proposed

SRS are also conducted so as to determine which components contribute to positive
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recognition and/or positive rejection (section 7.3). The main components tested are

the three ordinal measures of spatial configuration (xom, yom, zom) as well as the

three colour components (huec, satc, gsc) from the HSV colour space. From the

experimental results and subsequent analysis presented, the relative importance of

the components are determined (section 7.5). A discussion of the results in section

7.5.10 also reveals certain characteristics that a component must possess so as to

contribute to the recognition accuracy.

8.3 Future research directions

Although the proposed SRS achieves excellent recognition accuracy, there remain

several aspects of the algorithm that can be improved in future projects. The

following paragraphs briefly describe these aspects that future research should focus

on.

Combined saliency-SURF detector/descriptor. The current version of

the proposed SRS separates the detection of salient ROIs and the detection of

SURF keypoints into two operations (section 1.6). The main reason is that SURF

was created to be a stand-alone application which is independent of the saliency

algorithm presented. Potential future work should attempt to integrate the two

components together so that a combined descriptor of the detected salient ROIs

that retains the accuracy of the original SURF keypoints can be used. A combined
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keypoint descriptor presents several advantages. Firstly, the descriptor can be

designed to encode more information concerning the size and global position of the

salient ROIs. This allows for better detection of important missing regions when

the two scenes are compared (see Fig. 7.3(bottom)). Secondly, the descriptor

can encode directly the same keypoint position over the three colour spaces which

should lead to a better discrimination of the keypoints for even more accurate

matching. Currently, different keypoints are detected in different colour spaces.

Improved segmentation of the scene structure for ordinal depth adjustment.

In this work, a simple procedure using AHC is proposed to ‘smooth out’ the in-

consistencies in the ordinal depth estimation so that the computation of the rank

correlations will be more accurate (section 5.2.3). The current procedure suffers

from two major problems. Firstly, the determination of a prior number of depth

layers in the scene is often difficult and is compounded by the fact that the scenes

used are often complex natural scenes with large depth variations. Secondly, the

large number of occlusions and depth variations at the boundaries and within the

vegetation itself (for e.g. trees and bushes) imply that AHC will often give erro-

neous depth estimates at such regions since the algorithm takes the mode of the

depth in the cluster formed. A possible solution is to use advanced segmentation

techniques that use for example the texture of a region [95] or colours (see [20, 30]

for a good survey) as a preprocessing step to delimit homogeneous regions in the

scene. AHC can then be applied separately to these regions to prevent the depth
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estimate from spreading across region boundaries.

Improving the reliability of keypoint matching. Errors in keypoint

matching do affect the recognition accuracy of the proposed SRS as was discussed in

section 7.5.10. The main problem is that N%test in (6.3) assumes that the matches

are correct but this is not always the case. The current version of the SRS toler-

ates the errors by computing an adaptive threshold, Dt, that reflects the current

state of the matching by the heuristic that there should be more bad matches for

a negative test scene compared to a positive test scene (section 6.2.3). However,

this assumption could be wrong, especially for positive test scenes that suffer from

significant image distortions that make rejecting the wrong matches even more cru-

cial. The wrong matches may overwhelm the correct matches and this may cause

Dt to wrongly reject the positive match. This is however a challenging task as the

discriminatory power of the SRS will be affected. This is because a negative match

will only have false matches that degrade the rank correlations. This degradation

is therefore an important indicator to reject the test scene. Hence, if all the bad

matches are removed, the rank correlations would become insignificant altogether.

A better solution would be to match not only the keypoints but also groups of

keypoint together, similar to the technique of semi-local contrained matching in-

troduced in [98]. This can be easily achieved in the proposed SRS as the keypoints

are already grouped into salient ROIs.

Differential weighting of salient regions. A problem highlighted in the
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experimental results with the UBIN database (Fig. 7.6) showed that false recog-

nition can occur for natural scenes that share a similar skyline. The problem occurs

because the landmarks in the scene are equally important. This is clearly not al-

ways true. Background features in the skyline alone are insufficient to determine

a positive match as many reference scenes from the same environment may pos-

sess the same skyline. The definition of saliency must therefore be extended to a

larger scale, over the whole database if possible. Features that are salient over the

whole database will be weighed less than unique features that identify a partic-

ular scene. The computation of the Gc must also be modified. Highly weighted

keypoint matches will increase Gc while the matching of common (or non-globally

salient) keypoints alone will only yield a weak Gc as there are insufficient unique

matches to conclude a positive match. This results in a new definition of match

similarity, denoted as Gcw modified from (6.3), where the subscript w stands for

‘weighted’:

Gcw(Ṁkp) =
N%test

200
× (Sρw + Kτw) (8.1)

where Sρw, Kτw are the weighted means of the rank correlations computed by as-

signing different weights to keypoint matches between the two scenes. Another

solution would be to modify the saliency algorithm such that the dense ordinal

proximity map, D̂prox (4.5), is used directly as one of the composite feature maps
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(Fig. 4.1). This will enable features that are in the immediate vicinity to be

extracted as salient ROIs.

Semi-local computations of N%test. Gc is partially computed from N%test

which is the percentage matches between the salient-SURF keypoints of two scenes.

This N%test is however computed globally, with respect to the total number of

keypoints in the test scene. The problem with this approach is that the salient

region information from which the keypoints originate is completely ignored. Hence

an important and critical change in the scene may not be detected if it does not

significantly degrade the computed N%test. This could be caused by the small size

of the landmark involved as was highlighted in one of the experimental results (Fig.

7.3(bottom)). Future revisions of the proposed SRS should modify the computation

of N%test such that it is computed with respect to the individual salient ROIs. If

a particular region is completely ignored, a potential mismatch may have occured.

The downside of this method is that the SRS’s robustness to changes in the scene

content is degraded, which is especially true for dynamic natural environments. A

possible solution would be to incorporate a certain size information that scales with

the current scene structure (e.g. a close up shot with large objects or a scene with

numerous small objects and clutter) and determine a size threshold that allows the

proposed SRS to ignore or retain the degradation caused by missing landmarks.

Improved efficiency in scene decision. The pairwise comparisons made with

the reference database of Nref scenes have a complexity of O(dNref ) where d = 64
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is the dimension of the SURF keypoints. This naive method is obviously not

going to work when Nref increases with d remaining constant. A large database

containing Nref > 1000 means that the SRS must use an efficient search algorithm

to determine the best Ntop matches with the database as fast as possible (section

6.2). The problem of effective database searching has been well researched in the

CBIR literature. A solution presented in [44] uses an optimised Approximated

Nearest Neighbour (ANN) matching algorithm [4] by constructing a Kd-tree of

the detected features in the reference scenes which are subsequently used for fast

matching. Future work should explore using similar methods by modifying the

structure of the Scene matrix, ms, and the Scene matrix cell, Ms, for more efficient

matching.

Automatic selection of reference scenes. The reference scenes used in

all the experiments are selected manually from the complete database. Further-

more, the majority of the reference databases are created using scenes that this

author thinks are distinct enough for navigation. Future work should focus on how

such scenes can be detected using a global measure of saliency in the database,

discussed earlier in this section. Ideally, reference scenes should contain certain

distinctive and unique features that make them stand out from the whole database

so that recognition is facilitated (section 3.1.1). Modelling how humans organise

and choose salient objects from the database remains a difficult and open problem.

Such models are more complex than the model of human attention proposed in
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[51] which is only relevant for a single image. They will likely entail modelling how

salient landmarks are organised and compared before these landmarks are selected

as globally-salient landmarks.

When to update the reference database? Another fundamental problem

that this thesis does not address is how the reference database, Dref , should be

updated. A good updating algorithm optimises memory usage and reduces the

time needed for database searching as the database size should be kept small. This

problem is linked to the automatic selection of reference scenes discussed above.

Reference scenes should be updated whenever novel test scenes are encountered

by the agent. Such novel scenes are usually rejected with a very low Gc and are

analysed for globally salient features in the database. Old and redundant reference

scenes are periodically removed from the database by computing a certain threshold

of global-salience which changes whenever new scenes are added. Old scenes that

fall below this threshold are then rejected.

Future extensions of the proposed SRS include the incorporation of the al-

gorithm with a working practical visual SLAM system for extensive testing of the

scene recognition accuracy on a real mobile agent. This agent should be able nav-

igate in various environments - indoors and outdoors, as well as under different

illumination and weather conditions so as to validate and improve the proposed

SRS further. A parametric learning module, using neural networks for example,

can be added to the proposed SRS so that the various parameters and global
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thresholds that control the SRS can be calibrated for a particular environment.

The algorithm should be ported to a high-level programming language (C++ or

Java) for further improvements in the speed and efficiency of the algorithm.

8.4 Closure

This chapter has summarised the major work of this thesis - the introduction of a

novel SRS that is general and effective for a variety of challenging environments.

The robustness and discriminatory power of the proposed SRS are achieved by

exploiting the novel use of ordinal measures on the spatial configuration (section

3.3.4) of the salient ROIs, extracted from a novel depth-weighted saliency map (sec-

tion 4.4). The extracted ROIs are encoded by salient-SURF keypoints augmented

with ordinal depth (section 5.2) that are useful for determining good correspon-

dences (section 5.1.4). These keypoints are extracted from the HSV colour space so

as to provide an illumination invariant representation of the scene (section 3.4). A

simple decision module, using an adaptive decision threshold, is proposed to effec-

tively accept or reject positive and negative test scenes (section 6.2). The proposed

SRS is also validated using extensive tests on challenging image databases. The

superior performance of the proposed SRS, as well as the contribution of its various

components to the recognition accuracy, are highlighted when it is compared with

several similar variants (section 7.5).
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The chapter has also presented the potential future research directions that

should be undertaken to improve the current SRS. These improvements are aimed

at increasing the speed and accuracy of the proposed SRS so that even ambiguous

scenes can be recognised. The integration of the proposed SRS in a practical visual

SLAM framework is the ultimate objective of any future work.

The potential applications of the proposed SRS are not only limited to bio-

mimetic navigation. The same strategy can be modified for applications such as

CBIR or visual SLAM loop closing that were reviewed in chapter 2. Since the

proposed SRS is shown to perform remarkably well for complex outdoor natural

environments, its potential use as a navigational aid for soldiers or hikers in the

field holds interesting possibilities. Humans tend to get lost in unfamiliar and

often confusing environments such as in an enclosed forest. The proposed SRS,

however, has been shown to be remarkably accurate for such confusing environ-

ments (e.g. SBWR). Furthermore, using the proposed SRS as a navigational aid

is useful in environments where current navigational technologies (e.g. GPS) re-

main unusable due to the thick forest foliage. Finally, by incorporating different

saliency algorithms or different decision thresholds, the proposed SRS provides the

fundamental framework to develop a future SRS that will one day approach or

even surpass the scene recognition capabilities of insects or even humans.
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Appendix A
Demonstration of rank correlation

measures

In this appendix, the computations of Spearman’s ρ (3.1) and Kendall’s τ (3.2)

are demonstrated using two numerical examples.

Example A.2. Computation of Sρ Consider two rankings of 10 elements (A,B),

the difference, d of two rankings and the square of the differences d2 are shown

below.

Table A.1: Computation of Sρ

A : 7 4 3 10 6 2 9 8 1 5
B : 5 7 3 10 1 9 6 2 8 4
d 2 -3 0 0 5 -7 3 6 -7 1
d2 4 9 0 0 25 49 36 9 49 1

Summing the bottom row of d2 gives the component
∑

d2 in (3.1). With n = 10
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and
∑

d2 = 182, one obtains Sρ = −0.103.

Example A.3. Computation of Kτ Consider the same two rankings of 10 elements

(A,B) together with the natural order ranking Nr as shown below.

Table A.2: Computation of Kτ

Nr : 1 2 3 4 5 6 7 8 9 10
A : 7 4 3 10 6 2 9 8 1 5
B : 5 7 3 10 1 9 6 2 8 4

The number 1 ranking in B has 6 above in ranking A. In Nr, ranking 6 has four

members to its right, so the current score now is 4 and delete 6 from N. Moving

on to the number 2 ranking in B, it has a 8 in A. Since 8 has two members to

its right in Nr, the current score is 4 + 2 and 8 is deleted from Nr. Continuing

this way until all the members in Y are compared leads to the full score, P , given

as P = 4 + 2 + 5 + 3 + 2 + 1 + 1 + 2 + 1 + 0 = 21. Applying (3.2), one obtains

Kτ = 4(21)
10(9)

− 1 = −0.07.



Appendix B
Derivation of Zord from optical flow

The optical flow (u, v) of an image location p at (x, y) by a projection of a scene

point P at (X, Y, Z) in the world is given by [67]:

u = utrans + urot =
W

Z
(x− fU

W
) + urot

=
W

Z
(x− fU

W
) +

ωxxy

f
− ωy(

x2

f
+ f) + ωzy

v = vtrans + vrot =
W

Z
(y − fV

W
) + vrot

=
W

Z
(y − fV

W
)− ωyxy

f
+ ωx(

y2

f
+ f)− ωzx

(B.1)

where (U, V,W ) and (ωx, ωy, ωz) are the translation and rotation components re-

spectively. f is the focal length in pixels. (utrans, vtrans) are the horizontal and

vertical components of the flow due to translation and (urot, vrot) are the horizon-

tal and vertical components of the flow due to rotation. Z is the depth of scene

point P that corresponds to the imaged point p. The focus of expansion (FOE)
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(x0, y0) is given by (fU
W

, fV
W

). For the case of TBL [61] motion, W → 0 and the

rotation (ωx, ωy, ωz) → (0, ωy, 0), one can thus simplify (B.1) to:

u = −fU

Z
+ urot = −fU

Z
− ωy(

x2

f
+ f) ⇒ Z =

−fU

u− urot

v = −fV

Z
+ vrot = −fV

Z
− ωyxy

f
⇒ Z =

−fV

v − vrot

(B.2)

Combining the results in (B.2), one can write:

Z =
−(fU, fV ) · (nx, ny)

(u− urot, v − vrot) · (nx, ny)
(B.3)

where (nx, ny) is an unit vector specifying a direction from which Z is recovered. As

the TBL motion can be approximated by a lateral translation, one can approximate

(U, V ) as (U, 0) and set (nx, ny) → (1, 0) to obtain the scaled depth, Z
U

from (B.3):

Z

U
=

−f

u + ωyf
(B.4)

where the second order flow in the term that contains ωy is ignored. From [22], it

is proven that even if the estimates for ωy and f are in error, the recovered scaled

depths are related to the true scaled depths by a relief transformation and thus

the order of the depths will be preserved. Since the exact value of ωy is not crucial,

one can approximate it as zero. Henceforth the scale depth, Z
U

recovered in (B.4)

is denoted as Zord, the ordinal depth which is shown in (5.5).



Appendix C
Demonstration of scene decision using Dt

The effectiveness of Dt in three common scenarios that the proposed SRS encoun-

ters are demonstrated using the NS and UBIN databases (section 7.1). The same

parameters used to obtain the results in section 7.4 are similarly used. For each

case, how the Threshold vector, Ξs (6.11), is obtained from the Decision matrix,

∆s (definition 6.12), and the Match statistic matrix, Πs (6.8), detailed in section

6.2.2, is shown. The three cases considered are: a typical positive case, a negative

case and finally an ambiguous case.

C.1 Positive case

The test scene used for this example is Nat2 14 shown in Fig. C.1 (left). After

running the test scene with the reference database, Dref , one obtains Gcand = 0.40

220



C.1 Positive case 221

(6.9) from the 19th row of Πs, denoted as Πs(19):

Πs(19) =

[
45.0 1.0 1.0 0.68 0.98 0.98 0.67 0.40

]

Following the procedure in section 6.2.2, ∆s is obtained as a row vector:

∆s =

[
45.0 1.0 1.0 0.68 0.98 0.98 0.67 0.40

]

Ξs is then obtained as:

Ξs =

[
45.0 1.0 1.0 0.68 0.98 0.98 0.67

]

and Dt = 0.40 = Gcand in this case. Applying (6.10) yields:

Df = ACCEPT

Gcand is thus accepted as a positive match (Fig. C.1). This is an extremely simple

case as the test scene has only suffered a slight viewpoint change from the reference

scene in Dref . This explains why ∆s only contains a single row, and this row is the

correctly matched Gcand. This highlights the importance of the equality in (6.10)

for accepting Gcand as a positive match since Gcand = Dt for such cases.
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Figure C.1: Matched reference scene (right) with the test scene (left).

C.2 Negative case

The input test scene is Nat2 66a shown in Fig. C.2. This is a negative test scene

Figure C.2: Input negative test scene.

as there are no reference scenes in Dref that correspond to this particular location.

Nonetheless, because the general environment is almost the same, many similar

features exist that may confuse the salient-SURF correspondences. Dt is however

designed to detect such ambiguities to reject this scene. After comparing the test
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scene with Dref , one obtains Gcand = 0.035 from the 4th row of Πs:

Πs(4) =

[
12.0 0.57 0.31 0.11 0.39 0.25 0.10 0.035

]

Following the procedure in section 6.2.2, ∆s is obtained as:

∆s =


12.0 0.57 0.31 0.11 0.39 0.25 0.10 0.035

11.0 −0.18 0.19 0.60 −0.19 0.10 0.58 0.021


∆s shows that there are two competing matches, including that of Gcand. These

two matches are then used to obtain Ξs:

Ξs =

[
12.0 0.57 0.31 0.60 0.39 0.25 0.58

]

Comparing Ξs to Πs, one can see that most of the elements in Ξs comes from the

match that yields Gcand. This is not a surprise, as Gcand is obtained from the best

performing match in the whole database. However, a reliable match should give

more or less consistent rank correlations that will be reflected in Ξs. Notice that

the 4th element, Sz
ρΞ, takes on the value of the 2nd row in ∆s which is larger than

that found in the row belonging to Gcand. This is an indication that Gcand does

not respect the general configuration for a true match with a significant reduction
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in its own Sz
ρΞ. Using Ξs to compute Dt gives Dt = 0.054. Applying (6.10) yields:

Df = REJECT

as Gcand < Dt. This example highlights the importance of the rank correlations in

rejecting scenes with similar features and different scene structures.

C.3 Ambiguous case

A match is defined as ambiguous when ∆s is empty (section 6.2.4). Two test cases

are considered: Nat2 38a (NS) as a negative test scene and Nat27a (UBIN) as

a positive test scene (Fig. C.3). Both of these test scenes yield an empty ∆s but

the correct Df is made by the proposed SRS.

Figure C.3: Nat2 38a (left) and Nat27a (right) input test scenes.



C.3 Ambiguous case 225

C.3.1 Ambiguous rejection

Running the image Nat 38a through the pairwise comparisons with Dref , one

obtains Gcand = 0.018 from the 2nd row of Πs:

Πs(2) =

[
3.8 0.37 0.70 0.44 0.28 0.61 0.41 0.018

]

Following the procedure in section 6.2.2 yields an empty ∆s as the number of

matched keypoints are small. This means that this match is likely to be unreli-

able and should be rejected. The alternate procedure described in section 6.2.4 is

followed where Dt = Gcand = 0.018 immediately and Dmin is modified to a larger

value D∗
min = 0.05. Applying (6.18) for the ambiguous case, one obtains the final

decision as:

Df = REJECT

since Gcand < Dmin = 0.05. The importance of manipulating Dmin is thus high-

lighted as ambiguous scenes require a higher threshold to prevent false matches

from occurring.
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C.3.2 Ambiguous acceptance

The likelihood of an ambiguous test scene that has a positive match in Dref is low

as most positive scenes usually have sufficient matches with their true matching

scenes to prevent ambiguity. This condition does arise, however, when the positive

test scene has undergone significant distortions. A positive ambiguous match is

different from the negative case as Gcand tends to be larger due to the better

preservation of the rank correlations. Running the image Nat27a through the

pairwise comparisons with Dref gives Gcand = 0.036 from the 19th row of Πs:

Πs(19) =

[
7.0 0.61 0.68 0.45 0.41 0.54 0.39 0.036

]

Since the number of matches are small, ∆s is empty. This is caused by the large

viewpoint change between the test image and the reference image that reduces the

number of common features between the two scenes available for an unambiguous

recognition. The result is that all of the matches, including the true positive match

has a percentage match below t% = 10% (section 6.2.2). The procedure described

in section 6.2.4 is followed, by adjusting the value of Dmin from 0.01 to 0.03 for

the SBWR database. Fixing Dt = Gcand = 0.036, Df is determined as:

Df = ACCEPT
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Figure C.4: Ambiguous positive scene: Reference scene (left) with the test scene
(right). The correspondences are shown as cyan lines.

since Gcand > Dmin (6.18). This test scene is thus accepted in spite of its initial

ambiguity (Fig. C.4).

These two examples highlight the effectiveness of the proposed SRS in handling

difficult ambiguous cases. The crucial idea is to adjust the value of Dmin as soon

as the ambiguity is detected. The main problem is the value to set for Dmin, which

is entirely left to the discretion of the user. A very large value is almost certain to

reject all ambiguous matches and is not likely to identify difficult positive scenes

which may not be desirable. On the other hand, a value that is too small will run

the risk of false positives that should be rejected. As was mentioned in section 8.3,

since these parameters are entirely application dependent, a learning algorithm can

be implemented to determine the optimum range of values to obtain the highest

recognition accuracy.



Appendix D
Reference Database and Test scenes

This appendix shows two examples of the MATLAB R© console output of the

proposed SRS for two test cases: a positive scene (section D.1) and a negative

scene (section D.2). Examples from the four databases (section 7.1) of reference

scenes in Dref together with their corresponding test scenes are shown in section

D.3.

D.1 MATLAB R© output for a positive scene

The Console output 1 comes from a positively matched scene in the NS database

(Fig. D.1 (left)).

As can be seen from this positive example, because the scene is correctly recog-

nised, the rank correlations are preserved with a significant number of matches

228
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Figure D.1: Sample matched positive reference scene (left) with the input test
scene (right). Correspondences are shown as cyan lines.

****** Scene Matching Algorithm version 5.0 ******

Running scene matching routines with 20 reference scenes...

....................done.

***** Results of the Scene Matching Algorithm version 5.0 ********

********* Global Statistics *******

Threshold for SURF matching: 0.82,

Threshold (adaptive) for decision metric: 0.0904533

Threshold for statistical significance: 0.6,

Absolute min for decision metric: 0.01

Threshold for RANSAC tolerance: 0.02,

Number of RANSAC iterations performed: 5

Threshold for min RANSAC points: 20, Points per RANSAC trials used: 10

Number of matches found: 28

Percentage of matches found: 12.1739 percent

******** Detailed results *******

Spearman’s rho for x coordinate: 0.963875

Kendall’s tau for x coordinate: 0.899471

Spearman’s rho for y coordinate: 0.970443

Kendall’s tau for y coordinate: 0.878307

Spearman’s rho for depth: 0.384551

Kendall’s tau for depth: 0.36141

matched weighted Global correlation using Spearman’s rho: 0.0468149

matched weighted Global correlation using Kendall’s tau: 0.0439978

Mean of the Global correlation: 0.0904533

********* Match Decision *********

Match is found with:Nat2_4_f2191_2197

displaying the matched scenes...

displaying the correspondences...

Saving results and matlab figures...

Done.

Elapsed time is 15.313000 seconds.

Console output 1: Positive recognition.
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found. This results in a Gcand (Global correlation) that is equal to the decision

threshold, Dt(Threshold (adaptive)) computed, and the test scene is thus ac-

cepted. The matched reference scene together with the correspondences found are

shown in Fig. D.1.

D.2 MATLAB R© output for a negative scene

The Console output 2 comes from a rejected (negative) scene in the NS database

(Fig. D.2)

Figure D.2: The negative sample test scene shown with extracted salient-SURF
keypoints.

As can be seen, because this is a negative test scene, all of the rank correlations

are low with only a small number of matches found. This results in a small Gcand

which is threshold rejected.
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****** Scene Matching Algorithm version 5.0 ******

Running scene matching routines with 20 reference scenes...

....................done.

***** Results of the Scene Matching Algorithm version 5.0 ********

********* Global Statistics *******

Threshold for SURF matching: 0.82,

Threshold (adaptive) for decision metric: 0.05

Threshold for statistical significance: 0.6,

Absolute min for decision metric: 0.01

Threshold for RANSAC tolerance: 0.02,

Number of RANSAC iterations performed: 5

Threshold for min RANSAC points: 20, Points per RANSAC trials used: 10

Number of matches found: 17

Percentage of matches found: 5.43131 percent

******** Detailed results *******

Spearman’s rho for x coordinate: 0.0367647

Kendall’s tau for x coordinate: 0

Spearman’s rho for y coordinate: 0.25

Kendall’s tau for y coordinate: 0.132353

Spearman’s rho for depth: 0.2125

Kendall’s tau for depth: 0.204545

matched weighted Global correlation using Spearman’s rho: 0.00199681

matched weighted Global correlation using Kendall’s tau: 0

Mean of the Global correlation: 0.00909393

********* Match Decision *********

No reliable matches were found in the database.

Saving results and matlab figures...

Done.

Elapsed time is 15.938000 seconds.

Console output 2: Rejection of a negative test scene.

D.3 Sample positive results from the four data-

bases

In the following few figures, the recognition results for various challenging positive

test scenes are presented that illustrate the performance of the proposed SRS. The

results for the four databases are shown separately in each figure. The matched

reference scene is shown on the left and the input test scene is shown on the right

with the correspondences shown as cyan lines. The complete image database is

submitted electronically with the attached CD-ROM containing this thesis.
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Figure D.3: IND database matches.
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Figure D.4: UBIN database matches.
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Figure D.5: NS database matches.



D.3 Sample positive results from the four databases 235

Figure D.6: SBWR database matches.




