
A FRAMEWORK TO EXPLORE LOW-POWER

ARCHITECTURE AND VARIABILITY-AWARE

TIMING ESTIMATION OF FPGAS

LEE CHEE SING

(B.Eng.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48639075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

My sincere thanks go to my advisor, Assistant Professor Ha Yajun. Without his

help, this work would never have been possible. I have enjoyed a wonderful research

experience under his supervision as he has gone beyond the duties of a supervisor to

act as a mentor as well as a supporter.

I would also like to give special thanks to Professor Ben Chen (M. Eng./Ph.D.

Program Coordinator), who provided impetus for the project, laid down the initial

specifications and gave advices. Also, I would like to give a special acknowledgment to

Professor Jonathan Rose and Vaughn Betz (creators of VPR tool) from the University

of Toronto as well as Professor Jorge Stolfi (creator of affine arithmetic model) for

their help in formulating the technical aspects of this work. Their contribution of

ideas and software had greatly aided in the development of my research.

In addition, during this Master’s program, I have gained wonderful experience

working with different groups of people. Special thanks to Dr Heng Chun Huat for

his valuable contribution to the project on the designing of the reconfigurable buffer

for a low-power FPGA architecture. Thanks to Pu Yu and Kumaran, with who

have allow me to gain more insight to VLSI circuit designing in this project too.

Next, thanks to my hardware timing analysis project team (Zhang Wenjuan, Chen

Xiaolei and Loke Wei Ting), who have worked closely with me on the research on

ii

timing estimation in FPGAs. Also, thanks to my fellow colleagues, Shakith, Teo Jenn

Yue, Li Yanhui, Shefali, Zhang Wenjuan, Chen Xiaolei, Loke Wei Ting and Yu Heng

for the various knowledge enriching sharing mini-seminars that are organized by our

supervisor.

Last but not least, I would like to give special thanks to my family, friends and

anyone who is not mentioned here but had helped in one way or another.

iii

Contents

Acknowledgements ii

Table of Contents vii

Abstract viii

List of Figures xi

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

1.1 FPGA Architecture . 2

1.2 Process variation . 3

1.2.1 Traditional corner-based timing method 5

1.3 Problem definition . 5

1.3.1 Limitation of CAD tools . 7

iv

1.3.2 Limitation of power reduction in interconnects 7

1.3.3 Limitation of SSTA techniques 9

1.4 Proposed research approach . 9

1.4.1 Proposed CAD framework . 10

1.4.2 Proposed low power FPGA architecture 11

1.4.3 Proposed variability-aware timing estimation 11

1.5 Contributions . 12

1.6 Thesis organization . 12

2 Background and Related Works 14

2.1 FPGA routing architecture . 14

2.2 CAD flow for FPGA design . 18

2.3 Existing power estimation techniques 23

2.4 Existing SSTA techniques . 23

3 Modeling of the CAD Framework 26

3.1 Framework design approach . 26

3.2 Framework implementation approach 28

3.2.1 Initializing the architecture template 28

3.2.2 Editing the architecture template 33

3.2.3 CAD tool interface . 34

3.3 Routing resource graph . 38

v

3.4 Placement and routing processes . 38

3.4.1 Placement process . 40

3.4.2 Routing process . 44

4 Framework Experimental Results and Analysis 50

4.1 Display of generic FPGA architecture 51

4.2 Display of edited FPGA architecture 52

4.3 Display of architecture after placement and routing 54

4.4 Placement and routing results . 55

5 Case Study 1: A Low-power FPGA Architecture 59

5.1 Conventional switch block . 59

5.2 Reconfigurable switch block . 62

5.3 Proposed switch block and FPGA architecture 66

5.4 EDA support . 66

5.5 Power analysis . 69

6 Case Study 2: A Interval-based FPGA Timing Estimator 72

6.1 Deterministic timing estimation . 72

6.2 Modeling of process variation . 73

6.3 Introduction to interval arithmetic 74

6.4 Introduction to affine arithmetic . 75

6.5 Interval-based timing estimation . 77

vi

6.5.1 Modeling of Variation . 78

6.5.2 Comparison with Statistical modeling 80

6.5.3 Complexity . 81

6.6 Design methodology . 82

6.7 Timing delay analysis . 84

7 Conclusions and Future Work 91

7.1 Conclusion . 91

7.2 Future work . 93

Bibliography 95

vii

Abstract

This thesis is written in 3 main sections. First, a new CAD framework is designed.

As semiconductor technology gets scaled down, more transistors will be allowed to be

fabricated onto a single chip. There is a need for a new tool to handle the building

of larger FPGAs. Heterogeneity is brought into the development phase to improve

FPGAs’ qualities. We propose a framework to allow researchers to design arbitrary

architectures with the help of a graphical user interface. It enables the initialization

of essential circuit parameters to obtain a basic architectural layout. Editing of the

initial design can be performed to allow the creation of an arbitrary architectural

design. It is built in with placement and routing capabilities to test the feasibility

of the newly designed architecture. Different arbitrary architectures are being tested

using a set of MCNC benchmarks. Furthermore, porting of the designed architecture’s

resource graph to the current state-of-art VPR for more complete testing is made

available.

Second, we use the developed framework to investigate an alternative approach to

minimize the short-circuit power of FPGA global interconnects without the luxury of

viii

dual supply. A reconfigurable buffer, with programmable driving strength, is designed

and integrated into the FPGA switch block. EDA support is built into our framework

to test this new architecture. With our methodology, interconnect buffers can choose

the right driving strength based on the exact wire load after detailed routing. Our

simulation results show that, by applying larger driving strength along the critical

paths and relaxing the driving strength along the non-critical paths, the proposed

FPGA architecture can reduce the overall dynamic power by 6.10% - 10.05%, com-

pared with the conventional FPGA architecture. Our approach is complementary to

the existing dual supply voltage solution. Both techniques can be combined to further

reduce the overall dynamic power consumption.

Third, we use a developed framework VPR to explore a fast and accurate interval-

based timing estimator for variability-aware FPGA physical synthesis tools. As pro-

cess variations of deep sub-micron technologies have created significant timing un-

certainty, this generates the need for a new generation of variability-aware physical

synthesis tools for FPGAs. Ideally, variability-aware tools should be able to per-

form both timing variability estimation during the synthesis and timing variability

analysis after the synthesis. SSTA methods are being developed to perform the tim-

ing variability analysis after the synthesis, but they are computationally expensive

and not fast enough to provide the timing variability estimation during the synthe-

sis. Hence, we propose a fast and accurate interval-based method for the timing

variability estimation. This method uses correlation-aware affine intervals instead of

ix

probability density distributions to model timing uncertainties. Compared to Monte

Carlo simulations, we estimate the mean of timing variation within the accuracy of

1%, the average looseness range of about 22.6% and 4.5% for the Uniform and Gaus-

sian distribution respectively and a 1000X simulation speed-up. This work can be

easily extended to ASIC flows. Furthermore, using our developed framework, this

case study can be extended to non-regular architectures.

x

List of Figures

1.1 Corner-based timing analysis: 2n corners for n parameters 6

2.1 Types of FPGA architecture . 17

2.2 An island-style FPGA . 18

2.3 Typical FPGA CAD flow . 22

2.4 Complexity problem in path-based approach 25

3.1 Interface for initialization . 29

3.2 Logic block pins location . 30

3.3 Types of connection block connectivity 31

3.4 Types of switch block connectivity 32

3.5 FPGA routing architecture template 33

3.6 Edit CLB’s pin orientation . 35

3.7 Edit track information . 35

3.8 Edit connection box . 36

3.9 Edit switch box connectivity . 36

xi

3.10 Program interface . 37

3.11 Modeling FPGA routing as a directed graph 39

3.12 Pseudo-code for the simulated-annealing algorithm used in the place-

ment step . 41

3.13 Half-perimeter wavelength model . 42

3.14 Swapping between two logic blocks 43

3.15 Sample placement file . 44

3.16 Coordinate system used . 45

3.17 Pseudo-code for the Pathfinder negotiated congestion algorithm used

in the routing step . 47

3.18 Sample route file . 49

4.1 Graphical view of a sample of FPGA routing architecture 51

4.2 Segmentation view of a sample of FPGA routing architecture 52

4.3 An edited FPGA architecture with heterogeneity 53

4.4 An architecture after placement and routing 54

4.5 A selected CLB with its connectivity 55

4.6 A modified FPGA routing architecture template 57

5.1 Conventional switch blocks . 61

5.2 Reconfigurable buffer schematic . 62

5.3 Candidate circuits for a reconfigurable buffer cell 63

5.4 Circuit implementation of a reconfigurable buffer 64

xii

5.5 Equivalent circuits of configurable buffer 65

5.6 Switch point integrated with reconfigurable buffer 67

5.7 EDA flow for propose FPGA routing architecture 68

6.1 Geometry of wiring . 74

6.2 Joint range of two partially dependent quantities in Affine Arithmetic 78

6.3 The grid-based model to model correlations 80

6.4 Design flow chart . 83

6.5 Variation initialization interface . 84

6.6 Pseudo-code for AA timing analysis 85

6.7 MC initialization interface . 85

6.8 Frequency distribution of des using Gaussian distribution and single

stream for 10000 iterations (MC) . 87

6.9 Frequency distribution of des using Uniform distribution and single

stream for 10000 iterations (MC) . 87

6.10 Max no. of noise symbols on an AA variable to illustrate that com-

plexity does not grow with circuit’s size 88

xiii

List of Tables

1.1 CMOS technology roadmap . 4

3.1 Menu bar Options and descriptions 37

3.2 Temperature update schedule . 41

4.1 Minimum channel widths required to place and route 20 large bench-

mark circuits . 56

4.2 Minimum channel widths required to place and route 20 large bench-

mark circuits using modified architecture 58

5.1 New FPGA architecture energy consumption for 20 large benchmark

circuits . 70

6.1 Parameter and its variation . 86

6.2 Comparison of bounds of critical path (ns) - Uniform 89

6.3 Comparison of bounds of critical path (ns) - Gaussian 89

xiv

List of Abbreviations

AA Affine Arithmetic

ASIC Application-Specific Integrated Circuit

CAD Computer-Aided Design

CLB Configurable Logic Block

CMOS Complementary MetalOxideSemiconductor

DLL Delay-Lock Loop

EDA Electronic Design Automation

FPGA Field-Programmable Gate Array

GUI Graphical User Interface

HDL Hardware Description Language

I/O Input/Output

IA Interval Arithmetic

IOB Input/Output Block

LE Logic Element

xv

LUT Look-Up Tables

MPGA Mask-Programmable Gate Array

MCNC Microelectronics Corporation of North Carolina

PLD Programmable Logic Device

RRG Routing Resource Graph

RTL Register Transfer Level

STA Static Timing Analysis

SSTA Statistical Static Timing Analysis

SOC System-On-a-Chip

VPR Versatile Placement and Routing tool for FPGAs

VLSI Very Large Scale Integration

TTL Transistor-Transistor Logic

xvi

Chapter 1

Introduction

For the past few decades, microelectronics has been the technology in demand

for the development of both the hardware and software systems. With the continu-

ous increase in the level of integration of electronic devices, this form of technology

improves tremendously. The trend towards higher integration brings about the evolu-

tion of more sophisticated and faster systems to meet the increasing market demand.

As a result, the final products become better and cheaper.

Field programmable gate arrays (FPGAs) are first introduced during the mid-

1980s. At that time, FPGAs are only made up of transistor-transistor logic (TTL)

equivalent logic gates. With enhancements in the very-large-scale integration (VLSI)

processing technology, FPGAs have evolved to system-on-a-chips (SOC) with millions

of logic gates being packed together. Ever since, FPGA becomes a widely adopted

design at the heart of most electronic systems for its wide abundance of resources and

1

efficiency.

Moreover, with the discovering of new processing techniques over the recent years,

the semiconductor technology has been seen scaling down as predicted by the Moore’s

Law. This results in more transistors to be able to get fabricated onto a single chip;

and opens up more opportunities for researches to build larger and sophisticated FP-

GAs than ever. Furthermore, new features are continuously being discovered and

added into these FPGAs to cater for different design needs. For example, power

efficient FPGAs are being developed for portable electronic devices for which low

power consumption is a key requirement. As of today, we have seen numerous re-

searches with innovative ideas evolving and this has led to the development of FPGA

architectures of higher qualities and efficiencies.

1.1 FPGA Architecture

An FPGA architecture is made up of several millions of logic gates fused together.

In order to develop an optimized and efficient architecture is not an easy task. How-

ever, a good approach to start off is to first implement an architecture instance in

all the selected classes of FPGAs and evaluates their performances. The architecture

displaying the best combination of placement and routing results in terms of timing,

area or power is deemed to be the best. Previous researches [1–5] have shown that

a proper design of the routing architecture does play a major role in determining its

quality. The description of the architecture plays an important role in determining

2

the overall efficiency of the FPGA too.

Different approaches in describing an FPGA architecture have been adopted in

many of the existing frameworks. One brute force method to describe the routing

architecture is by manually specifying all the interconnections between the logic blocks

through the use of a routing resource graph (RRG). This enables researches to have

the flexibility in describing different forms of architectures. However, this method is

not practical as a typical FPGA RRG’s size can go up to megabytes or even larger.

Eventually, due to its inefficiency and impracticability, such a low level and detailed

specification is not applied.

A more practical approach is to first design a basic tile with its interconnections

manually and uses a program to automatically replicate that basic structure into an

array to form a complete architecture. This technique is applied by George in [5] to

design low energy FPGA architectures. Not only it is time consuming, this method

also shows limitation in terms of flexibility as the whole architecture is a replica of

the basic tile.

1.2 Process variation

With the continuous scaling of technology into the deep sub-micron regions, the

amount of variability increases significantly in the process parameters that have to be

accounted for. For example, more than 35% variations on the gate length are cited

for 90nm processes and they are even larger for 65 nm processes [6]. Also, as shown

3

in Table 1.1 [7], the magnitude of the parameter variations does not scale down as

fast as the nominal values. As such, the parameter variation, as a percentage of the

nominal value, gets larger with decreasing technology.

Parameters Nominal Values 3σ Values
Years 1997 1999 2002 2005 2006 1997 1999 2002 2005 2006

Leff [nm] 250 180 130 100 70 80 60 50 40 33
Tox [nm] 5 4.5 4 3.5 3 0.4 0.36 0.39 0.42 0.48
Vdd [V] 2.5 1.8 1.5 1.2 0.9 0.25 0.18 0.15 0.12 0.09
Vth [mV] 500 450 400 350 300 50 45 40 40 40
W [µu] 0.8 0.55 0.5 0.4 0.3 0.2 0.17 0.14 0.12 0.1
H [µm] 1.2 1 0.9 0.8 0.7 0.3 0.3 0.27 0.27 0.25
p [mΩ] 45 50 55 60 75 10 12 15 19 25

Table 1.1: CMOS technology roadmap

Process variations [8, 9] can be classified as inter-die variations, which affect the

entire chip, and intra-die variations, which are the results of layout-specific variations.

These variations are normally accompanied with a complex spatial or temporal cor-

relation structure. They create significant timing uncertainty and yield degradation.

This growing problem brings about the need to build the next generation variability-

aware electronic design automation (EDA) tools.

The above observation is especially important for FPGA vendors because they

are almost always the first to use the most advanced technologies. For example,

Xilinx is the first in the whole semiconductor industry to fabricate their Virtex-

2 FPGAs in 130nm, Virtex-4 in 90 nm, and Virtex-5 in 65nm processes. As the

process shrinks, variations in effective channel length, threshold voltage and gate oxide

thickness become more prominent. This will greatly influence the timing performance

4

of FPGAs. Hence, the FPGA physical synthesis tools need to consider the impact of

process variations on timing in order to help guide timing-driven optimizations.

1.2.1 Traditional corner-based timing method

Process variations and their correlations have been studied over the years. Their

importance accelerates as the technology continues to scale down. Traditionally, pa-

rameter variations and correlations are handled using the corner-based deterministic

static timing analysis as shown in Figure 1.1 [7]. From Figure 1.1(a), two corners

known as the worst case and best case are individually timed for a single parameter

variation. However, if the two parameter variations are of significance, four corners

are to be timed individually as shown in Figure 1.1(b). Hence, as the parameter vari-

ations increases, an exponential number of corners need to examine individually. This

makes the approach to be cumbersome and inefficient. In addition, the corner-based

approach only provides information on whether the circuit is able to function at the

extreme corners and not on the quantitative yield information which is more critical.

1.3 Problem definition

Although there had been existing works which are efficient in describing FPGA

architectures, reducing power usage and handling of process variations in FPGAs,

there are still many problems that need to be solved to improve them.

5

(a) Two corners for single parameter

(b) Four corners for two parameters

Figure 1.1: Corner-based timing analysis: 2n corners for n parameters

6

1.3.1 Limitation of CAD tools

Currently, there have been several promising computer-aided design (CAD) tools [1–

5] capable of describing routing architecture with enhanced design complexity, better

cost-saving or even improved efficiency. For example, Emerald [1] makes use of the

WireC schematics to describe its routing architecture. This method requires inputs

like routing architecture description, logic block architecture description and archi-

tecture specific metrics in order to provide the basic features needed in placement

and routing tools. In another example, the Versatile Placement and Routing tool

(VPR) [2,3] makes use of an FPGA architecture description language to describe its

routing architecture. An ”architecture generator” is used to convert this specifica-

tion into a detailed and complete architecture for future work on optimization and

visualization. However, both the Emerald and VPR CAD tools share a common limi-

tation. Their architecture description techniques limit the range of architectures only

to a selected class of templates. This limitation prevents the design of heterogeneous

architectures.

1.3.2 Limitation of power reduction in interconnects

Among the routing resources in an FPGA architecture, switch buffers are the most

important components that determine its performance. The buffer not only behaves

as an intermediate repeater to regenerate the signal, it also breaks a long RC network

to minimize the interconnect delay. Therefore, the buffer chosen must be large enough

7

to drive its downstream circuits. While buffers can be fully customized for various

applications in application specific integrated circuits (ASIC) design, FPGAs do not

have such freedom because they are pre-fabricated. Targeting at driving the worst

case of load normally results in having unnecessarily large buffers within a FPGA

chip. These oversized buffers can cause undesirable problems.

First, due to the non-zero rising and falling time of the input signal, a larger

buffer will result in larger peak and average short-circuit currents during the transition

period, hence resulting in an increase in the short circuit power. From the simulations,

it can be shown that the short-circuit power accounts for roughly 10% of the total

dynamic power, depending on the actual synthesized circuits. As a result, the dynamic

power, which consists of both the switching power and the short-circuit power, is

increased.

Second, a larger buffer creates more ground-bounce noise. In custom ASIC design,

large transient current is avoided by using the minimum required buffers. This will

minimize the ground bounce noise introduced by Ldi/dt, where L is the inductance

associated with the package pins, bonding wires and on-chip metal lines for power

routing. Ground bounce noise reduces the available noise margin for the digital cir-

cuits [10]. In addition, it also deteriorates the performance of the sensitive analog

circuit on the chip, such as delay-lock loop (DLL), which is crucial for the function-

ing of large digital circuits. If an oversized buffer is used within the FPGAs, large

transient current and thus large ground bounce noise are inevitable.

8

1.3.3 Limitation of SSTA techniques

In relation to process variation, there has been several works [11–21] considering

the impact of variations on circuit performances using statistical static timing analysis

(SSTA). These approaches are classified into various categories such as block-based,

path-based, incremental, etc. In [12, 14], the authors propose techniques to get the

bounds of the delay distributions instead of calculating the exact distributions using

path-based or block-based analysis techniques. In [16], the proposed approach does

an estimation based on a generic path analysis rather than evaluating every path

statistically. However, many of these researchers have advocated complicated SSTA

techniques, primarily due to handling correlation and path reconvergence during the

MAX operation fundamental to static timing analysis (STA). This leads to undesir-

able high computation complexity and large CPU overhead. Furthermore, most of

these statistical analysis techniques typically assume the circuit parameters as inde-

pendent random variables with a Gaussian distribution. This is not true in most

cases.

1.4 Proposed research approach

From the problem definitions above, we propose three approaches to solve each

of them individually. First, a CAD framework capable of designing heterogeneous

architecture is developed. Second, a FPGA architecture with reconfigurable buffer

9

is designed to allow different operating buffer modes to save power. Third, a novel

idea is proposed to handle process variations while considering spatial correlation and

path reconvergence.

1.4.1 Proposed CAD framework

In order to facilitate the designing of heterogeneous FPGA routing architecture, a

graphical user interface (GUI) framework is proposed. In this framework, an interface

is built to allow users to input essential parameters to generate a generic routing

architecture. This removes the hassle to come out with a descriptive language to

implement the architecture. After which, using the drawn architecture, users can

click on any components and do editing to them. With this flexibility, users can

design any kind of routing architectures that they desired. This eliminates any forms

of restriction or constrain that are encountered in the existing CAD tools.

After the design is finalized, a RRG is generated. This RRG is a detailed internal

representation of the routing architecture which specifies how each component in the

architecture is connected with each other. Placement and routing algorithms are

implemented to test the feasibility of the design architecture. The placer does the

placing of the logic blocks in the physical position of the FPGA while the router finds

the best path for all the nets.

10

1.4.2 Proposed low power FPGA architecture

In order to provide a way to minimize the transient current by using only the min-

imum required driving strength, the use of a reconfigurable buffer is proposed. The

concept behind our methodology is that, a large buffer can be physically considered

as a combination of smaller buffer cells. The different modes of driving strength can

be obtained through the binary combinations of the small buffer cells. We integrate

this reconfigurable buffer into the FPGA switch blocks. In this way, we are capable

of choosing the right driving strength for each wire based on their exact load after

detailed routing. By using larger driving strength along the critical paths and re-

laxing the driving strength along the non-critical paths, the overall dynamic power

consumption and transient current can be reduced.

1.4.3 Proposed variability-aware timing estimation

In order to perform a fast and accurate timing estimation for the variability-

aware FPGA physical synthesis tools, an interval-based method is proposed. Two

models are initially suggested: interval arithmetic (IA) and affine arithmetic (AA).

IA [22] is a surprisingly long-lived branch of range analysis. It makes use of intervals

to represent uncertainties in variables. However, it does not consider correlation

and dependency between the variables. On the other hand, AA [23], which is a

novel refinement of interval analysis, can be applied to the problem of circuit timing

analysis [24,25] and can preserve correlations among variables. With the motivation in

11

mind, we employ AA to propose a new interval-based timing estimation technique for

FPGAs with correlation and dependencies among process parameters being accounted

for. Furthermore, AA is chosen for its low complexity and distribution independent

property, in contrast to the existing SSTA methods.

1.5 Contributions

The work done for this thesis makes the following contributions:

1. Designed a CAD framework capable of producing an arbitrary FPGA routing

architecture.

2. Incorporated placement and routing algorithms to test the framework.

3. Designed a power efficient FPGA architecture.

4. Designed a fast interval-based timing estimator for FPGAs.

1.6 Thesis organization

The remainder of this thesis is organized as follows. The next chapter presents

some general background on the research topic and related works. Chapter 3 describes

the modeling of the proposed framework. Chapter 4 shows a design of an arbitrary

architecture and some generated results. Chapter 5 discusses a case study to investi-

gate a low-power FPGA switch block with reconfigurable buffers using our framework.

12

Chapter 6 presents another case study to investigate the use of the affine model to

handle process variations using VPR. Finally, Chapter 7 presents the conclusions and

suggestions for future work.

13

Chapter 2

Background and Related Works

This chapter begins with a general overview of the different types of the FPGA

routing architectures used in the academic research as well as in the industry. Next, a

description of a typical CAD flow for a FPGA design is illustrated. Finally, literature

reviews on the existing power estimation and SSTA techniques are presented.

2.1 FPGA routing architecture

There is a wide variety of FPGA architectures developed by various vendors.

These vendors include Actel, Altera, QuickLogic, Xilinx, and so on. Although the

exact structure of these FPGAs varies from vendor to vendor, all FPGAs consist of

three fundamental components needed to define a typical architecture:

1. Logic blocks capable of implementing multiple logic functions.

14

2. Logic blocks which support wide range of I/O signaling standard.

3. Routing resources used to realize all interconnections among the blocks.

The complexity of the logic block is classified into two types: coarse-grained and

fine-grained. A coarse-grained logic block contains substantial logic structures, look-

up tables (LUTs), flip-flops or programmable logic device (PLD) modules. As the

complexity of the logic block increases, more functions can be implemented. The

4-input LUT is most widely employed in coarse-grained architectures [26]. In fine-

grained architecture, it is made up of a large number of relatively simple logic blocks,

which consists of a few basic gates, multiplexes or transistors with programmable

interconnect resources. In terms of logic block and routing resource layout, FPGAs

can be further classified into four main architecture groups [26].

Row-based In row-based architecture, logic blocks are arranged in rows with its

routing resources separated by routing switches. The routing resources consist

of mainly horizontal wire segments of various lengths and a few vertical wire

segments which are used for routing between rows. (See Figure 2.1(a))

Hierarchical In hierarchical architecture, logic blocks and routing resources are dis-

played in a hierarchical mode. A two-dimensional array of programmable logic

blocks is used to implement the multi-level logic functions. Intra-level and

inter-level interconnections are used in this architecture. (See Figure 2.1(b)).

Sea-of-Gates In sea-of-gates architecture, fine-grained logic blocks are organized

15

in a symmetrical array manner. Routing resources are overlaid on top of

these blocks. This structure resembles the architecture used in the mask pro-

grammable gate arrays (MPGAs). (See Figure 2.1(c))

Island-Style In island-style architecture, logic blocks, also known as configurable

logic blocks (CLBs), are arranged in a symmetrical array with the Input/Output

Blocks (IOBs) on the periphery of the chip. Routing tracks have Manhattan

geometry, that is, they are either horizontal or vertical of various lengths. The

CLBs are typically coarse-grained and are separated by programmable routing

switches. (See Figure 2.1(d)).

Figure 2.2 shows the details of a typical island-style FPGA architecture which

consists of three main routing resources: wire segments, connection block and switch

box. The wire segments or routing tracks [27] are the paths taken by a signal trans-

mitted from one source to its destinations (sinks). The length of a track may vary

across the architecture and is determined by the number of CLBs it spans. A connec-

tion block connects a pin of a logic block to a specific track in the channel. The switch

box [28] is a switch matrix that connects the tracks in a channel to other tracks in

the adjacent channels. The connection blocks’ and switch boxes’ patterns may vary

across the architecture.

16

(a) Row-based architecture (b) Hierarchical architecture

(c) Sea-of-Gates architecture (d) Island style architecture

Figure 2.1: Types of FPGA architecture

17

Figure 2.2: An island-style FPGA

2.2 CAD flow for FPGA design

To implement an FPGA architectural design, a series of steps is needed with

each step assisted by a CAD tool. A typical design procedure employed by most

commercial FPGA tools is shown in Figure 2.3.

Design Entry The description of a logic circuit can be specified using a register

transfer level (RTL) description. A hardware description language (HDL) such

as VHDL or Verilog can also be used. Alternatively, the circuit can be de-

scribed using schematic drawing with the help of a state machine language or

a schematic tool.

18

Synthesis & Optimization Logic synthesis does the generation of a detailed rep-

resentation of the circuit with all the features required for fabrication. Opti-

mization does the enhancement of the overall quality of the circuit in terms

of performance, area and ease of testing. During synthesis, the target design,

which is in terms of behavioral or logical description at the design entry level,

is converted into a netlist of gates. If a schematic design is available, the logic

design is already created. Using the logic design, an optimizer removes the re-

dundant logic gates and simplifies the logic operations to minimize the set of

gates used, while maintaining its functionality. This stage of the design phase

is known to be technology independent as the type of elements used in the final

circuit is not considered here.

Technology Mapping Once the design is generated, a technology-dependent map-

ping [29] tool is used to restructure the basic logic gates into k -LUT-sized

groups, where k is based on the specific FPGA architecture on which the design

is to be implemented. Conventional methods of technology mapping involve the

use of standard cell library with pre-defined circuits. However, these methods

require a large number of library cells. Hence, new algorithms for mapping are

developed with the following criterion:

1. LUT number minimization

2. Routability

3. Delay Minimization

19

Logic Block Packing In clustered FPGA architectures, a logic block is normally

made up of one or more logic elements (LE) [3]. A LE usually includes a k -LUT

and a flip-flop. State-of-art architecture usually uses a 4-input LUT. The main

objectives of the packing process are to combine the LUTs and latches into LEs

and group the LEs into CLBs. This packing aims to maximize the number of

LEs per CLB so as to minimize the number of signal connections between the

CLBs [3].

VPack proposed by Betz and Rose [30], is one of the best known packing tools

for clustered-based FPGAs. VPack first packs a flip flop and a LUT together

into a LE using a matching based method. These LEs are then packed in a

greedy manner into logic clusters by filling each cluster to its optimal capacity.

In this way, the number of used inputs to each cluster is minimized.

Placement When the circuit has been reduced to a netlist which describes the con-

nectivity between the logic blocks, a placement tool [31] is used to determine

the physical location of these blocks within the target FPGA according to its

physical view. During placement, parameters like overall layout size, total wire

length and delay are optimized. Several placement techniques are available in

the existing market. Wire-driven placement is placement which aims to optimize

the routing cost. Timing-driven placement [32] is applied to reduce the length

of critical path to meet timing constraints. Routability-driven placement [33]

balances the wire density across the architecture. Most commercially available

20

placement tools uses timing-driven placement as it is more efficient in improving

the speed of FPGA-based circuit as compared to wire-driven placement.

Routing Routing [34] is the process of assigning specific routing resources to each

net based on the RRG to realize the connectivity between logic blocks. Routing

a net corresponds to finding a path from a start node (source) to the end nodes

(sinks) with the help of the RRG. The design is acceptable and workable if and

only if the circuit is routable within the given resources available in the targeted

architecture. Routing algorithms aim to fulfill two objectives. First, they aim

to avoid congestion channels so that routing one net will not use up the routing

resource that another net needs. Second, they aim to optimize propagation

delay by routing critical nets with the shortest and fastest paths.

Simulation Simulation entails the analyzing of the circuit response to a set of input

stimuli over a time interval. After placement and routing have been done, the

implemented design is simulated to ensure its functionality. Any design errors

found is corrected at this stage.

Create Bitstream File & Download to FPGA With all the previous steps be-

ing successfully completed, the bitstream files can be generated for downloading

to the target FPGA architecture to implement the logic and interconnection

configurations. Once the FPGA is successfully programmed, it is ready for use.

21

Figure 2.3: Typical FPGA CAD flow

22

2.3 Existing power estimation techniques

Over the years, different techniques had been explored for power efficient FP-

GAs to prolong battery life. Dual supply voltage schemes had been proposed to

achieve lower dynamic power consumption. [35] presented a hierarchical interconnect

architecture with low voltage swing signaling circuit. [36,37] built the framework for

FPGA power evaluation and analysis. [38] achieved power reduction by pre-defined

dual-Vdd/dual-Vt fabrics. [39,40] employed the configurable dual-Vdd supply to ob-

tain a performance and power tradeoff. [41] proposed the voltage scaling scheme for

commercial FPGAs. The benefit brought by dual supply voltages is obvious as the

switching power is directly proportional to the square of the supply voltage. How-

ever, dual supply technique complicates the chip and system design. Either on-chip

or off-chip regulators need to be provided for dual supply techniques and extra power

routing is required. A huge number of configurable level converters are also needed to

avoid a Vdd-Low interconnect switch from driving a Vdd-High interconnect switch.

Hence, to explore new FPGA architectures like the above, a highly flexible design

framework is required.

2.4 Existing SSTA techniques

As mentioned in section 1.2.1, the traditional corner-based timing analysis is un-

able to accurately perform timing predictions, thus SSTA is proposed to replace this

23

method. SSTA has the ability to capture circuit variability by modeling delays as

statistical random variables and capture any possible correlation that exist between

the circuit components [17]. In general, SSTA does offer fast and accurate timing

predictions as compared to traditional corner-based timing analysis.

Existing SSTA approaches either assume Gaussian or non-Gaussian distributions.

Others may add in consideration for correlation effects. Most of these proposed

approaches are classified into two approaches: path-based SSTA [11–16] and block-

based SSTA [17–21]. In path-based SSTA, it aims to provide an estimation of the

circuit performance based on selected critical paths. This method is inefficient for

large circuit as the worst case complexity of selecting the critical paths statistically

grows exponentially with circuit size. Hence, path-based SSTA is not easily scalable

to manage large circuits.

The block-based SSTA works by progressive computation. In this method, every

component in the architecture is first treated as a timing block. Timing analysis is

done from block to block using the timing graph in a forward manner, without ever

tracking its history. Signals propagating through the timing blocks will sum up the

delays into the arrival time. Delays and arrival times are called the timing variables

of the circuit. Hence, the computation complexity for block-based SSTA is observed

to grow linearly with circuit size.

The complexity comparison between the path-based and block-based approaches

for a simple circuit is shown in Figure 2.4 [7]. From the figure, we notice that the

24

block-based approach shows 2.8x speedup even in such a simple case.

Figure 2.4: Complexity problem in path-based approach

However, to handle correlations among parameters, most approaches assume Gaus-

sian distributions, which is not entirely the case in digital circuits. Other distributions

require extensive computation, either for regression [42] or numerical integration [43].

On the whole, SSTA methods are computationally expensive and not fast enough to

provide the variability-aware timing estimation during the synthesis optimizations.

25

Chapter 3

Modeling of the CAD Framework

As mentioned in chapter 1, existing CAD tools do not provide enough flexibility

for users to design arbitrary FPGA routing architectures. We therefore need a tool

to fulfill this capability.

3.1 Framework design approach

The proposed architecture that can be designed is the island-style architecture

as seen in Figure 2.2. To specify this architecture, the number of CLBs and IOBs

need to be defined. An approach is to ask users to key in the specific number of

blocks required. However, this method does not allow users to specify the shape of

the architecture. Instead, we adopt another method, that is, to allow users to specify

the dimension of the architecture to achieve arbitrary shapes of the architecture to

be created.

26

Furthermore, the layout of the island-style architecture will cause the number of

IOBs to restrict the number of CLBs to be implemented or vice versa. This will result

in excess blocks being declared when trying to accommodate the required number of

CLBs or IOBs. Therefore, we allow users to have the flexibility to decide how many

IO pads are needed at each physical location of an IOB. With the flexibility to define

the dimension and number of IO pads, wastage of excess blocks declared is reduced

and the dimension of the FPGA architecture is made more compacted.

In addition, the flexibility of each logic block can be further enhanced by allowing

users to decide the number and the orientation of pins on the logic blocks. With this

freedom to define arbitrary positions of the pins on the logic blocks, the routability

and performance of the architecture can be improved.

Routing tracks play a critical role in routing performance, hence giving more

freedom to define arbitrary wire segments should be allowed. However, this approach

is too computational intensive. Instead, we constrain users to declare only single,

double, hex and long tracks in the architecture. To enhance routability, the double

and hex tracks are staggered [44]. In addition, we allow users to define the connectivity

pattern of the connection block and switch box. For the connection box, users can

decide how many tracks a pin can connect to in the channel. For the switch box,

users can specify which tracks in the adjacent channel that a particular track can

connect to.

After the basic parameters are defined, an initial architecture layout is generated.

27

In order for a more arbitrary architecture to be designed, we implement several pop-

up interfaces for users to alter some parameters when they double-click on a specific

resource of the architecture. These interfaces include the ability for users to change

the number or orientation of pins on any logic blocks, change the pins’ connectivity

to routing tracks, change the switch pattern in the switch box or change the types of

tracks in any channels.

3.2 Framework implementation approach

The proposed framework is developed in two phases. First, an interface that

is used for initializing the basic parameters to create a basic routing architecture

is created. Second, several additional interfaces are created which will pop-up by

double-clicking on the components of the drawn architecture. These interfaces allow

the editing of the corresponding clicked components. Once the design is finalized,

placement and routing can commence.

3.2.1 Initializing the architecture template

To begin the design of the architecture, certain basic parameters need to be spec-

ified. An initializing interface is thus set up to allow users to key in the necessary

parameters. Figure 3.1 shows the interface developed. Using this interface, it sim-

plifies the task to describe a generic FPGA architecture. An explanation of each

parameter settings is as follows.

28

Figure 3.1: Interface for initialization

In the top left hand corner, we have five different parameters that need to be

set. The first and second parameters state the width and height of the required

architecture respectively. The third parameter states the required number of IO pads

to be declared at a physical location of an IOB. The forth and fifth parameters indicate

the number of input pins and clock pins to be declared, respectively.

Next, on the lower left corner, users can define the orientation of the pins desired

by specifying the required number on each side of the logic block using the boxes

provided. Using these parameters, our framework is programmed to distribute the

input and output pins evenly around the entire perimeter of each logic block so as

to enhance routability. This technique is known as the full-perimeter pin position-

ing [45]. An example of a logic block with one clock, four input and two output pins

29

is illustrated in Figure 3.2.

Figure 3.2: Logic block pins location

On the upper right corner, there are five parameters. First, the timing budget

states the required timing constraint to be achieved for its critical path. This is

explained further when we introduce the idea on reconfigurable buffers in chapter 5.

The next four parameters allow different kinds of routing track to be specified by

stating the preferred number corresponding to the desired tracks. Single track means

that the track spans one logic block length, whereas the double and hex track spans

two and six logic block lengths, respectively. The long track spans the entire width

and height of the architecture.

On the lower right corner, three drop-down interfaces are shown. First, users

can define the types of buffers required in the architecture, that is, normal buffers

or programmable (reconfigurable) buffers. Second, we have the options to define the

different types of block connectivity, Fc, needed for all the pins of the blocks. Three

options on the style of the connection blocks are given. (See Figure 3.3)

30

1. Users can choose to have the pins connected to all available tracks.

2. Users can choose to have the pins connected to alternate tracks.

3. Users can choose to have the pins connected to 50% of the available tracks

randomly.

Figure 3.3: Types of connection block connectivity

For options 2 and 3, we ensure that the connection block pattern is pathologically

good by fulfilling the following conditions:

• Ensure each pin is connected to different wire types (if any).

• Ensure multiple pins on each side connect to alternate tracks.

• Ensure pins sharing the same channel share at least one common track.

• Ensure pins sharing the same channel connect to different tracks.

Third is the menu to define the switch connectivity, Fs, of the switch boxes. In this

framework, all switch boxes defined consist of only buffers and no pass transistors.

Users are given three options in this selection menu:

31

1. Tracks are connected to all tracks in the adjacent channels.

2. Tracks are connected to one track of each of the adjacent channels. (Fig-

ure 3.4(a))

3. Tracks are connected to alternate tracks of each of the adjacent channels. (Fig-

ure 3.4(b))

(a) 1-1 Connections (b) Alternate connections

Figure 3.4: Types of switch block connectivity

After the initial settings are done, the resulting FPGA routing architecture is

drawn. Figure 3.5 shows the design of a FPGA routing architecture of dimension 3 x

2.

32

Figure 3.5: FPGA routing architecture template

3.2.2 Editing the architecture template

After the architecture is drawn, users can click any of the template components:

logic blocks, routing channels, switch boxes or pins, to edit the original settings and

create a customized routing architecture. Four different interfaces are illustrated next.

First, an interface to edit the logic blocks is described. Upon clicking on any of the

CLBs, an interface is shown (See Figure 3.6). In this interface, users can re-initialize

the number or orientation of pins of the selected block by keying a new set of data in

the boxes provided. Three options are provided to allow users to specify whether to

apply the changes made to the current CLB, all CLBs or to alternate CLBs.

Second, an interface to edit the routing channels is shown. Users can select any of

the vertical or horizontal channel by clicking on it. Using the pop-up interface seen in

Figure 3.7, users can re-specify the kind of tracks desired for the selected channel. This

33

can be done by adding in new values in the corresponding spaces provided. Also, users

can specify whether to apply these changes to all vertical and/or horizontal channels

by checking the required boxes.

Third, an interface to edit the pin’s connectivity is illustrated. By clicking on

a pin of any logic blocks, an interface is produced as shown in Figure 3.8. In this

interface, it allows users to change the connectivity pattern of the selected pin to the

routing tracks it is facing. Four options are provided for users to indicate how the

changes can be applied to. The four options are: all pins of current block, all pins

of all similar blocks, alternate pins of current block or alternate pins of all similar

blocks.

Forth, an interface to edit the switch box connectivity is presented. Users can

click on any of the switch box to reconfigure its switch pattern. Figure 3.9 shows the

interface when a switch box is selected. Three options are given for users to choose

whether to apply the change made to the current switch box, all switch boxes or

alternate switch boxes. Having finalized the architecture, users can proceed to do

placement and routing to test the feasibility of their new design.

3.2.3 CAD tool interface

In this section, we introduce the features that our framework is able to perform.

Figure 3.10 shows the initial interface when the program is run. A description of the

various menu bar options is listed in Table 3.1.

34

Figure 3.6: Edit CLB’s pin orientation

Figure 3.7: Edit track information

35

Figure 3.8: Edit connection box

Figure 3.9: Edit switch box connectivity

36

Figure 3.10: Program interface

Menu bar Options Descriptions
File New Initialize new architecture

Exit Quit the application; prompts to save documents
View No display Enable/Disable graphics drawing

Toggle switch Toggle the switch box visible/invisible
Status bar Show or hide the status bar

Build Read Place File Read existing placement file
Read Net File Read netlist file
Create RRG Create Routing Resource Graph for VPR
Placement Commence Placement
Routing Commence Global/Detailed Routing

Help About Editor Display program information

Table 3.1: Menu bar Options and descriptions

37

3.3 Routing resource graph

After the FPGA routing architecture is finalized, an RRG is generated to specify

the resources in it. The RRG is essential as it contains all connectivity information

such as wires to which a given wire segment can connect and is used by the router to

make routing decisions.

The RRG [46] is described by a directed graph, G=(V,E), where the set of nodes

V corresponds to the functional block pins or wires in the routing architecture and

the set of edges E corresponds to the switches that connect these nodes. In addition,

the type of source and sink nodes are added to model the logically equivalent output

and input pins, respectively. This RRG can be either manually generated once the

routing architecture is being created or it will be automatically generated before

routing commences. The generated RRG can be ported to VPR too. Figure 3.11

shows the RRG corresponding to a portion of the architecture whose functional block

has 4 input pins and 1 output pin with 1 wire segment in both the vertical and

horizontal channels.

3.4 Placement and routing processes

Placement and routing are two mutually dependent processes. Placement is the

process of assigning functional blocks to their physical locations in the architecture.

In the island style FPGA architecture, the CLBs are arranged in a two-dimensional

38

Figure 3.11: Modeling FPGA routing as a directed graph

array with the IOBs on the periphery of the chip. Hence, placement is done us-

ing a coordinate system to track both x and y directions. Routing is the process

of finding a connected path from a source to its sinks using the available routing

resources. The RRG is used to enable fast retrieval of the inter-connections of the

various components. In typical CAD tools, placement and routing are carried out as

two independent phases. However, there are still cases where both are carried out

simultaneously.

In our framework, placement is carried out followed by routing. Global and de-

tailed routings are done in the routing phase. The RRG is used by the router to

locate physical paths available for each net. In global routing, all nets are routed

without any constraints. Detailed routing is done to establish physical connections

between the logic blocks by assigning distinct paths to individual nets, while consid-

ering constraints like congestion, signal performance, and resource utilization.

39

3.4.1 Placement process

In FPGA devices, there have been different placement techniques being adopted

to bind logic elements to a physical unit on the device. Different algorithms have also

been developed to suit the different types of architectures. All of these algorithms have

the ability to handle constraints and cost minimization. Typical placement constraint

includes user’s constraints to fix certain logic blocks at a particular location. On the

other hand, cost minimization includes the minimization of matrices like total wire

lengths, usage of routing resources, etc and also to reduce congestion to enhance

routability. Despite these constraints, all placement algorithms aim to present a good

placement for the router to complete its routing efficiently.

Placement algorithm

In our framework, the simulated annealing placement algorithm [3, 47] is imple-

mented. Its pseudo-code is shown in Figure 3.12. Initially, each block is randomly

assigned to an available vacancy in the target FPGA architecture to generate an ini-

tial placement solution. An initial temperature, T, is computed in a similar manner

to [48]. A range limiter Rlimit is introduced to allow blocks with that range to be

considered for swapping. Initially, Rlimit is set to the entire chip.

Next, pair-wise swapping is done and evaluated against a temperature sched-

ule [30]. A temperature schedule is computed as Tnew = α Told, where α depends

on the fraction of attempted moves that were accepted (Raccept) at Told as shown

40

in Table 3.2. At each temperature, there is a total of 10*(Nblocks)
1.33 swaps. The

placement cost which determines the acceptance of a swap is determined by a cost

function:

cost =
Nnets∑

n

q(n) ∗ [bbx(n) + bby(n)] (3.1)

1 S = Init Placement();
2 T = Init Temperature();
3 Rlimit = Init Range();
4 while(Exit Criterion() == false) /* outer loop */
5 { while(Inner Loop Criterion() == false) /* inner loop */
6 { Scandidate = Generate Move(Scurrent, Rlimit);
7 ∆C = Cost(Scandidate) - Cost(Scurrent);
8 /* calculate the changes in cost */
9 ran = random(0, 1);
10 /* create random float number between (0, 1) */
11 if(ran < e∆C/T)
12 Scurrent = Scandidate;
13 }
14 Update(T);
15 Update(Rlimit);
16 } /* end of outer loop */
17 /* get final placement S */

Figure 3.12: Pseudo-code for the simulated-annealing algorithm used in the placement
step

Fraction of moves accepted (Raccept) α
Raccept > 0.96 0.5

0.80 < Raccept ≤ 0.96 0.9
0.15 < Raccept ≤ 0.80 0.95

Raccept ≤ 0.15 0.8

Table 3.2: Temperature update schedule

For each net, bbx and bby are defined as the horizontal and vertical spans of its

bounding box. This is commonly known as the half-perimeter model (Figure 3.13)

41

which is widely used to estimate the wire-length of a net [49]. Given a block b with

coordinates (xb, yb), the half-perimeter of a net n is calculated as follows:

half−perimeter = [MAXbεn(xb)−MINbεn(xb)+1]+[MAXbεn(yb)−MINbεn(yb)+1]

(3.2)

Figure 3.13: Half-perimeter wavelength model

A q(n) factor [50] is introduced to compensate for any underestimation of the

wire-length by this model. This value depends on the number of sinks a net has to

connect. For nets with less than 3 terminals, q(n) is set to 1 and slowly increases to

2.79 for nets with 50 terminals. For large fan-out nets having more than 50 sinks, the

value of q(n) increases linearly as follows [30]:

q(n) = 2.7933 + 0.02626 ∗ (TerminalNumber − 50) (3.3)

An illustration showing the swapping of two CLBs during placement is shown in

Figure 3.14. Finally, the program will terminate when T < 0.005 * Cost / Nnets. A

placement file is then generated which shows the physical locations of all the logic

42

blocks. The format of this file is discussed in the following section.

Figure 3.14: Swapping between two logic blocks

Placement file format

After placement has been completed, a placement file is generated as shown in

Figure 3.15. The first line of the placement file lists the netlist used during the

placement. The second line of the file gives the size of the logic block array as per

designed. All the following lines have the following format:

block name x y sub-block physical location

The block name is the name of this block, as given in the input netlist file. x

and y are the row and column coordinates in which the block is placed, respectively.

The sub-block is applicable to IOBs. As we can have different number of pads on the

43

IOB, this sub-block number specify the pad position given the x and y coordinates.

For CLBs, the sub-block number is always zero. The physical location indicates the

physical placement of the block name on the architecture. Figure 3.16 shows the

coordinate system used via a 2 x 2 FPGA architecture.

Netlist file: sample.net
Array size: 2 x 2 logic blocks

#block name x y subblk block number
#————— — — ——– ————–
i 31 0 1 0 #1
i 56 0 1 1 #2
i 47 2 3 0 #3
i 34 0 2 0 #4
out: o 9 0 2 1 #5
o 1 2 1 0 #6
o 9 1 2 0 #7
o 2 1 1 0 #8
[93] 2 2 0 #9

Figure 3.15: Sample placement file

3.4.2 Routing process

In most FPGA devices, routing is carried out in two steps: global routing and

detailed routing. In global routing, the router assigns paths that a net can transverse

from its source to its destination(s). Its objective is to find the shortest possible

connection path with the least usage of routing elements and avoid congestion. Once

global routing is done, the regions or routing areas where congestion are likely to

occur are identified. Detailed routing then commences by assigning specific tracks

to the nets within the given routing regions and avoiding the identified congestion

44

Figure 3.16: Coordinate system used

regions where possible.

At present, there are several routing algorithms. These algorithms aim to satisfy

two criterions. First, they aim to minimize congestion cost such that each net will

not use up the routing resource that another net needs. These algorithms are known

to be routability-driven. An example is the Pathfinder negotiated congestion algo-

rithm [45] used in VPR. This algorithm aims to minimize the propagation delay by

routing critical nets first with the shortest path while minimizing the use of routing

resources. Second, they aim to minimize the critical path delay. Such algorithms are

called timing-driven. One example is the maze-routing algorithm based on Dijkstra’s

shortest path algorithm [51].

45

Routing algorithm

In our framework, the pathfinder negotiated congestion algorithm is implemented

as the routing algorithm. Its pseudo-code is shown in Figure 3.17 [45, 46]. Global

routing is first carried out followed by detailed routing. First, the router takes in the

starting point and computes the shortest path to the destination using breath-first

search. An evaluation cost function is formulated to measure the cost of a route from

its source to its targeted sink(s) [45,46]:

cost = (1 + hn.hfac) ∗ (1 + pn.pfac) + bn,n−1 (3.4)

The pn term measures the current congestion at a node. It is updated every time

any net is being ripped up and rerouted. hn refers to the past congestion at the current

node. It is updated after each iteration. Initially, hn is 0 and is increased after each

routing iteration. The bn,n−1 terms penalizes bends. Two controlling factors, hfac and

pfac, are used to force nets with alternative routes to avoid using congested paths.

Some modifications are done to the breadth-first search algorithm to improve its

efficiency [30]. The default algorithm is time-consuming as it requires k -1 iteration

to find the paths of k terminals of the net as after each path is found, its wave-

front is emptied and a new wave-front is formed for the subsequent sink. To remedy

this, all the terminals of each nets are arranged in terms of Manhattan distance from

their source, starting from the nearest to the furthest, prior to routing. After each

successful routing, the wave-front is not emptied but stored in a sorted order. When

a new iteration begins, the router will search through this set of data to find the

46

1 While shared resources exist (global router)
2 Loop over all signals i (signal router)
3 Rip up routing tree RTi

4 RTi ← si

5 Loop until all sinks tij have been found
6 Initialize priority queue PQ to RTi at cost 0
7 Loop until new tij is found
8 Delete lowest cost node m from PQ
9 Loop over fanouts n of node m
10 Add n to PQ at cost cn + Pim

11 End
12 End
13 Loop over nodes n in path tij to si (backtrace)
14 Update cn

15 Add n to RTi

16 End
17 End
18 End
19 End

Figure 3.17: Pseudo-code for the Pathfinder negotiated congestion algorithm used in
the routing step

nearest starting point and expand out to its designated sink. In this way, the router

takes a shorter amount of time to reach to its next sinks then having to expand its

wave-front from scratch.

Moreover, instead of allowing the algorithm to go through all the adjacent vertexes

of the map and to avoid overly circuitous routes, we reduce the search by the router

to at most 3 channels outside the boundary of the source pin and the sink pin. Once

routing is successfully completed, a routing file is generated.

47

Routing file format

The first line of the routing file [3] gives the FPGA architecture size. The remain-

der of the routing file lists the detailed routing for each net. Each routing net begins

with the word net and its count, followed by the name of the net given in the netlist

file in brackets. The following lines define the routing of the net. Each line begins

with a keyword that identifies a type of routing segment.

The keywords used are SOURCE (output pin from which the net starts), SINK

(input pin where the net terminates), OPIN (output pin), IPIN (input pin), CHANX

(horizontal channel) and CHANY (vertical channel). Each routing net begins with

a SOURCE and ends in a SINK. In brackets after the keyword is the coordinates of

this routing resource based on Figure 3.16.

Next, the pad number (if the SOURCE, SINK, IPIN or OPIN is on an IOB),

pin number (if the IPIN or OPIN was on a CLB), class number (if the SOURCE

or SINK was on a CLB) or track number (for CHANX or CHANY) is listed. The

pad or pin number indicates the pin reference number given to each pin of each logic

block. Class number ‘0’ indicates the CLB is a SINK and ‘1’ indicates the CLB is a

SOURCE. As for the track number, track 1 is the topmost track of CHANX, while

in CHANY track 1 is the leftmost track.

For an N -pin net, we need N -1 distinct wiring paths to connect all the pins.

The first wiring path goes from a SOURCE to a SINK. The routing segment listed

immediately after the SINK is the part of the existing routing to which the new path

48

attaches. An example of the routing file for a net is listed in Figure 3.18.

Net 1 (i 31)

SOURCE (1,0) Pad: 1 # This source is an input pad at (1,0)
OPIN (1,0) Pad: 1

CHANX (1,0) Track: 1
CHANY (1,1) Track: 2

IPIN (2,1) Pin: 5
SINK (2,1) Class: 0 # Sink for pins of class 0 on a CLB

CHANX (1,0) Track: 1 # Note: Connection to existing routing
IPIN (1,1) Pin: 1
SINK (1,1) Class: 0

Figure 3.18: Sample route file

49

Chapter 4

Framework Experimental Results

and Analysis

In this chapter, three experiments have been set up to show the capabilities and

qualities of our design framework. The first experiment shows a sample of an arbitrary

FPGA architecture which our framework can design. The second experiment shows

the placement, routing and user interface that the framework can support to develop

heterogeneous FPGA architectures. The third experiment compares our framework

to VPR and demonstrates that our framework can further optimize an architecture

for better performance.

50

4.1 Display of generic FPGA architecture

Figure 4.1 shows a sample of a generic FPGA routing architecture. It shows the

entire architecture of size 6 x 6, with IOBs surrounding the CLBs and each channel is

of width four, which consist of one of the four kinds of the routing tracks. Each IOB

location is assigned two pads while each CLB has the pin configuration as shown in

Figure 3.2. Figure 4.2 shows the same FPGA routing architecture with the routing

switches not displayed. Notice that the “start points” of the longer tracks (double,

hex and long) are staggered [44] to enhance routability.

Figure 4.1: Graphical view of a sample of FPGA routing architecture

51

Figure 4.2: Segmentation view of a sample of FPGA routing architecture

4.2 Display of edited FPGA architecture

Figure 4.3 shows an edited architecture from the first experiment. It features dif-

ferent channel widths, connectivity and switch box patterns. Notice that the changes

applied have made the architecture to be non-uniformed, which are not possible using

present tools.

52

(a) Edited FPGA architecture

(b) Edited FPGA architecture without routing switches

Figure 4.3: An edited FPGA architecture with heterogeneity

53

4.3 Display of architecture after placement and

routing

A sample designed architecture from the second experiment after placement and

routing is shown in Figure 4.4. Notice that there are some blocks in white. These are

the unused blocks. Next, to show the connectivity of each block, users can click on

the desired block. The selected block with all its nets will be highlighted as shown

in Figure 4.5. The selected block is in grey. Its fan-out blocks are indicated using

cross-stitches and its fan-in blocks are indicated with diagonal lines.

Figure 4.4: An architecture after placement and routing

54

Figure 4.5: A selected CLB with its connectivity

4.4 Placement and routing results

We have performed a third experiment to compare the quality of our framework

with VPR [30]. Table 4.1 shows the comparison of the minimum number of tracks

per channel for a successful routing between our framework and VPR on a set of 20

MCNC benchmark circuits. All the results shown were obtained with a logic block

consisting of a 4-input LUT and a flip flop. Each logic block’s pin can be connected

to all tracks in the adjacent channel(s) (Fc = W). Each wire segment is of length

one and can connect to one wire segment of each of the adjacent channels through

55

disjoint switch boxes (Fs = 3). Each benchmark is routed with a maximum of 100

iterations. If circuit has not successfully routed in the given number of tracks in 100

iterations, it is assumed to be unroutable with channels of that width. When running

the experiment using VPR, the placement cost function is set to use the bounding-box

calculation and the router uses the breadth-first search algorithm.

Circuits VPR GUI Circuits VPR GUI
alu4 9 9 bigkey 6 6

apex2 10 10 clma 10 11
apex4 11 11 diffeq 7 7
des 7 7 dsip 5 6
ex5p 11 12 elliptic 9 9

ex1010 9 10 frisc 11 11
misex3 10 10 s298 6 7

pdc 15 15 s38417 6 7
seq 10 10 s38584.1 7 8
spla 12 12 tseng 6 6

Table 4.1: Minimum channel widths required to place and route 20 large benchmark
circuits

As shown in Table 4.1, it has proven that our framework is capable of performing

reasonably good placement and routing that is comparable to that of the current

state-of-the-art VPR. From the results, out of the 20 benchmark circuits, 13 of them

are able to route within the same minimum channel width compared to VPR. 7 of

the benchmark circuits (clma, dsip, ex5p, ex1010, s298, s38417, s38584.1) manage to

route with an addition channel. Though both experiments are carried out using the

same algorithm, the results differ due to that the placement algorithm only guarantee

a local minima instead a global minima solution. With a random initial placement,

it leads to a different placement solution and hence, a different routing solution.

56

Figure 4.6: A modified FPGA routing architecture template

Next, we perform another experiment with the exact same settings but with a

modified architecture using our framework. In this architecture, we change the orien-

tation of the pins of all the alternate logic blocks as seen in Fig. 4.6. In Table 4.2, it

shows the minimum number of tracks per channel to route the 20 MCNC benchmark

circuits using the modified architecture.

From the results shown, we had obtained a better minimum channel width in 7

of the benchmark circuits comparing to our previous experiment. But in comparison

to VPR, we obtained the same total track count number in all benchmark circuits.

This is partially due to having more options being opened up for routability with

a heterogenous architecture. Hence, this proves that with our framework, we can

57

further optimized an architecture to obtain better results compared to what VPR

can do.

Circuits VPR GUI Circuits VPR GUI
alu4 9 9 bigkey 6 6

apex2 10 10 clma 10 11
apex4 11 11 diffeq 7 6
des 7 7 dsip 5 5
ex5p 11 12 elliptic 9 9

ex1010 9 9 frisc 11 11
misex3 10 9 s298 6 6

pdc 15 15 s38417 6 7
seq 10 10 s38584.1 7 7
spla 12 11 tseng 6 6

Table 4.2: Minimum channel widths required to place and route 20 large benchmark
circuits using modified architecture

58

Chapter 5

Case Study 1: A Low-power FPGA

Architecture

In this chapter, we investigate a power efficient architecture that targets at min-

imizing the short-circuit power of FPGA global interconnects without the luxury of

dual supply. The proposed architecture, EDA support and power analysis are covered

in the following sections.

5.1 Conventional switch block

A routing switch block is located at the intersection of a horizontal channel and

a vertical channel. Figure 5.1(a) illustrates the structure of a subset switch block,

which consists of many switch points. Over the years, three basic types of switch

points have been presented in literature.

59

The switch point shown in Figure 5.1(b) is an un-buffered switch [52,53]. It is very

area-efficient and works quite well for short connections. However, its performance

degrades significantly for long connections which cause the delay to grow quadratically

with the wire length. In addition, as pass transistor switch does not provide signal

regeneration, the signal amplitude is reduced for long connections. Hence, this lowers

the available noise margin at the subsequent input stage. Using try-state buffer as

an intermediate repeater to avoid the quadratic delay and regenerate the signal is

essential in modern FPGA design.

Figure 5.1(c) and Figure 5.1(d) show two buffered switches used in VPR [30]. The

tri-state buffer consists of an inverter (or inverter chain) and a pass transistor [54].

When the pass transistor is switched off, the tri-state buffer produces a floating output

node that is totally disconnected from its input. Figure 5.1(c) shows a bi-directional

tri-state buffer. This buffer provides the best fan-out capability but it increases the

area significantly. In addition, it is slower in short connections as compared to the

un-buffered switch.

The switch shown in Figure 5.1(d) combines the advantages of both the pass

transistors and the buffers to achieve a better area and fan-out tradeoff; and makes

compromise between long and short connections. Other designs of routing switches

based on Figure 5.1(d) have been presented in [55]. Because of its popularity in

academic work, this buffer is used as a comparison to our proposed reconfigurable

buffered switch.

60

(a) Switch Block Schematic (b) Un-buffered switch point

(c) Bi-directional buffered switch point

(d) Mixed switch point

Figure 5.1: Conventional switch blocks

61

5.2 Reconfigurable switch block

The proposed reconfigurable buffer is shown in Figure 5.2. Different driving

strengths can be obtained through the binary combinations of the buffer cells. The

proposed buffer consists of one mixed buffer cell with minimum driving strength of f 0

in parallel with n reconfigurable buffer cells; each has a driving strength of f 1, f 2, . . .

and f n respectively. A total of 2n programmable driving strengths can be achieved for

the proposed reconfigurable buffer. The resulting driving strength can be expressed

as follows:

f = f0 +
n∑

k=1

bkfk (5.1)

where bk is the control bit for the kth buffer cell.

Figure 5.2: Reconfigurable buffer schematic

Three possible implementations of a reconfigurable buffer cell are shown in Fig-

ure 5.3. The buffer cell in Figure 5.3(a) is the most area-efficient but it has the worst

delay performance. Both buffer cells in Figure 5.3(b) and Figure 5.3(c) employ the

62

stacked architecture design, which result in usage of an additional PMOS transistor.

However, they both give a good delay performance. The buffer cell in Figure 5.3(b)

has poor input and output isolation with slightly faster switching. The buffer cell

in Figure 5.3(c) provides better isolation with slightly slower switching. Comparing

the merits of the candidate buffers, the buffer cell in Figure 5.3(c) proves to be most

suitable for our design. A detailed implementation of the whole reconfigurable buffer

is shown in Figure 5.4.

(a) (b) (c)

Figure 5.3: Candidate circuits for a reconfigurable buffer cell

To perform the timing analysis, the interconnect path in the FPGA is modeled as

a first-order RC network by the EDA software. The reconfigurable buffer is modeled

as an equivalent pull-up or pull-down RC network for low-to-high or high-to-low

63

Figure 5.4: Circuit implementation of a reconfigurable buffer

transition respectively, as illustrated in Figure 5.5. The load capacitance (CL) consists

of the intrinsic and the extrinsic capacitance. The intrinsic capacitance, Cint, is

made up of the total drain diffusion capacitances of the reconfigurable buffer. The

extrinsic capacitance, Cext, includes the wire load capacitance and the input gate

capacitance of the subsequent stages. Whenever the reconfigurable buffer is switching

between the different operating modes, the load capacitance can be treated as a

fixed value despite the slight variations due to the different operating modes. Only

the equivalent resistance is varied. The total resistance can be approximated as a

parallel combination of the on-resistances of all the on-transistors. In our framework,

the resistance values for each operating mode have been extracted earlier using the

SPECTRE simulation and pre-characterized for subsequent timing analysis.

Since the reconfigurable buffer can be physically considered to be made up of a

group of smaller buffer cells, our proposed reconfigurable buffer does not introduce

64

(a) low-to-high transition

(b) high-to-low transition

Figure 5.5: Equivalent circuits of configurable buffer

65

significant input gate capacitance or intrinsic capacitance. Hence, the switching power

consumed by the reconfigurable buffer and the conventional buffer should be identical

if their extrinsic load capacitances are the same. However, the reconfigurable buffer

can lower the short circuit power and the ground bounce noise due to the reduced

transient current.

5.3 Proposed switch block and FPGA architecture

In our FPGA design, the reconfigurable buffer is made up of three buffer cells,

which is controllable with two SRAM bits so as to generate four different driving

modes. Inside the proposed switch block, all the buffers are implemented using the

reconfigurable buffers. As for the routing architecture, all the switch blocks are

replaced with the new switch blocks. The schematic of the new switch is shown

in Figure 5.6.

5.4 EDA support

In order to describe our proposed FPGA architecture, additional design parame-

ters and modules are included into our framework. These modules include a Timing-

Analyzer module that configures the buffer modes to meet timing requirements and

a Power-Evaluator module that evaluates the power utilization of a circuit. An illus-

tration of the design flow for the proposed architecture is shown in Figure 5.7.

66

Figure 5.6: Switch point integrated with reconfigurable buffer

Initially, for a given circuit, all its buffers are set to the best mode with the

largest driving strength. After the circuit has been successfully placed and routed,

the Timing-Analyzer is initiated. It traces through all the nets in the circuit and

obtains the circuit’s critical path delay. This delay is checked against the preset

timing budget. If the timing constraint is violated, the circuit is re-placed and re-

routed. Once the timing budget is met, all buffers are tuned to their worst case mode

with the smallest driving strength. Timing analysis is then performed again to check if

the new critical path delay met the timing constraint. This procedure continues until

the critical path delay falls within the indicated range. This reduces the computation

time of the tool which tends to increase exponentially if the buffer operating mode

is optimized individually. Upon the successful completion of the timing check and

67

Figure 5.7: EDA flow for propose FPGA routing architecture

68

buffer tuning, the power evaluation is performed using our Power-Evaluator to report

the overall power consumption.

5.5 Power analysis

When performing the power evaluation, two FPGA architectures are tested; one

with the reconfigurable buffers and the other with the conventional buffers. In this

simulation, the reconfigurable buffer is set to have four different driving strength

modes. Each of them can provide a rail-to-rail output swing for a typical wire load

capacitance. In relation to fan-out capability, the best operation mode (mode 3) of

the reconfigurable buffer is similar to the conventional buffer.

The actual layout area is calculated by considering many implementation issues,

such as the distribution of the routing wires, the SRAM bit lines, power routing,

the clock tree layout, etc. In order to minimize the area overhead of the new switch

block, we adopt the layout design proposed in [56]. Using STMicroelectronics’ 0.18µm

technology, the layout of the new switch block introduces 20.5% area overhead due to

the additional SRAMs which is not present in the conventional buffered switch block.

Despite the additional area overhead, the new switch block does give some ad-

vantages. It increases the spacing of the routing wires, thus improving the intercon-

nect delay and minimizing crosstalk noise. In addition, since the total chip area is

dominated by the routing wires, this additional area overhead is relatively small as

compared to the FPGA chip with conventional buffered switch blocks.

69

The same set of 20 MCNC benchmark circuits and conditions stated earlier in

section 4.4 are chosen for simulation. A timing budget of 100ns is set using the option

seen in Figure 3.1. The proposed reconfigurable buffer is set to its best mode (mode 3)

as the initial buffer mode for the new architecture such that the two architectures are

starting with the same driving strength. Table 5.1 summarizes the energy consumed

by the conventional architecture and the new architecture.

Power (w)
Circuit Buffers Used Conventional Reconfigurable Saving

Buffers Buffers (%)
alu4 19730 0.232 0.211 9.14

apex2 28377 0.321 0.291 9.49
apex4 20444 0.228 0.206 9.66
des 22739 0.352 0.328 6.94
ex5p 18025 0.199 0.179 9.77

ex1010 64184 0.732 0.663 9.44
misex3 20280 0.232 0.210 9.41

pdc 93315 0.998 0.898 10.05
seq 26086 0.295 0.267 9.51
spla 62436 0.689 0.622 9.74

bigkey 17549 0.262 0.243 7.25
clma 124161 1.405 1.271 9.52
diffeq 13964 0.176 0.161 8.61
dsip 12112 0.216 0.203 6.10

elliptic 42481 0.506 0.461 9.06
frisc 51806 0.587 0.531 9.52
s298 17792 0.227 0.208 8.47

s38417 57859 0.738 0.676 8.50
s38584.1 56368 0.726 0.665 8.43

tseng 9178 0.119 0.109 8.42

Table 5.1: New FPGA architecture energy consumption for 20 large benchmark cir-
cuits

As shown in Table 5.1, our new FPGA architecture reduces the total power by

6.10% - 10.05%, and 8.85% on average, when compared with the conventional FPGA

70

architecture. In our simulation, we observed that the majority of the buffers used

for each benchmark circuit are located along the non-critical paths. Hence, these

buffers can be relaxed to lower the fan-out mode without violating the specified

timing constraint. Generally, the power reduction tends to increase when the number

of reconfigurable buffers along the non-critical paths increases. However, since the

reduced power only accounts for the short-circuit power of the global interconnects,

which only contributes to about 10% of the total dynamic power, it sets the upper

bound of the achievable power reduction in our approach.

71

Chapter 6

Case Study 2: A Interval-based

FPGA Timing Estimator

In this chapter, we use VPR to explore a fast and accurate interval-based timing

estimator for variability-aware FPGA physical synthesis tools. The proposed model

and timing delay analysis are covered in the following sections.

6.1 Deterministic timing estimation

In the traditional deterministic FPGA timing estimation [57], a directed acyclic

graph representing the circuit structure is utilized. Each node in the graph represents

either the input pins or the output pins of basic circuit elements. Edges are added

between the inputs and outputs of the logic blocks and between pins which the circuit

netlist specifies. Each edge is annotated with the delay required to pass through the

72

circuit element. This delay is based on the Elmore delay model. The Elmore delay

of a source-sink path is [58]:

Td =
∑

iεSource−sinkpath

Ri · C(subtreei) + Td,i (6.1)

where Td,i, is the intrinsic delay of a buffer if element i is a buffer and 0 otherwise.

Ri is the equivalent resistance of element i. C(subtreei) is the total downstream

capacitance of the subtree rooted at element i.

To obtain the delay of a path, the transversal begins at nodes with no incident

edges and each node is labeled with a signal arriving Tarrival, of 0. Each node which

has incidents edges from the labeled nodes is marked with its arrival time as:

Tarrival(i) = MAX∀∈fanin(i){Tarrival(j) + delay(i, j)} (6.2)

where node i is the node being labeled and delay (i, j) is the delay value marked

on the edge joining node j to node i. This procedure continues until every node is

labeled.

6.2 Modeling of process variation

In this work, we will be focusing on modeling structural variations and delay

variations. In structural variations, 4 components are considered: metal thickness

(T), inter-layer dielectric (H), line-width (W) and gate length (L) (See Figure 6.1).

These variations do result in adverse changes in the electrical properties which include

the resistance (R) and capacitance (C). These electrical parameter variations bring

73

about direct impacts to the performance of the circuit. Hence, an accurate model of

interconnect geometry variation is essential for an accurate circuit simulation.

Figure 6.1: Geometry of wiring

In delay variations, variations in the buffer intrinsic delays, sub-block delays and

logic delays are considered. These variations are due to the device variations which

are not modeled in VPR [3, 49]. Instead, each of these delays is of a deterministic

value defined in the architecture file obtained using SPICE simulations in VPR. These

delay variations do affect the performance of the circuit significantly.

6.3 Introduction to interval arithmetic

IA was introduced by R.E. Moore in the 1960s [22]. It is a range-based model for

numerical computation. In this model, each unknown quantity x is being represented

in the form x = [a, b], where the ‘true’ value of x lies in the range of a and b with

a≤b. Arithmetic operations (add, subtract, multiply, etc) can be applied such that

each computed interval is guaranteed to contain the unknown value of the quantity

74

it represents. The rules to perform IA are as follows:

[a, b]− [c, d] = [a− d, b− c]

[a, b] + [c, d] = [a + c, b + d]

[a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

[a, b]/[c, d] = [a, b] · [1/d, 1/c]

(6.3)

Though IA provides a simple and relatively efficient solution to computational

problems, its inability to provide precise data is one of its major setbacks. As IA

tends to be too conservative, the computed interval of a quantity may be much

wider than the expected range. This is particularly accentuated in long computation

chains, where the intervals computed at one stage are the inputs for the next stage.

An example to illustrate is when we evaluate the expression x -x where x is in the

range [2, 8]. Using IA, we get [2-8, 8-2] = [-6, 6] instead of [0, 0], which is the true

range of the expression. Hence, IA is not able to model any form of correlation or

dependency between the quantities. To rectify this problem, much research have been

carried out [59–61], but at the expense of additional computations.

6.4 Introduction to affine arithmetic

AA was introduced by Comba and Stolfi in the early 1990s [23]. This model

is an improvement of the IA model but with an increased complexity and cost in

representing the interval value. However, this extra information gives AA a tighter

interval bound and keeps track of the correlations between quantities which IA is

75

unable to provide. In AA, the unknown quantity x is represented by an affine form

which is a first-degree polynomial:

x̂ = x0 +
N∑

i=1

xiεi (6.4)

x0 is defined as the central value of the affine form x̂. The coefficient xi are the

partial derivatives defined using floating-point numbers. The εi are the noise symbols

whose values are unknown but assumed to lie in the range [-1, 1]. Each noise symbol

i represent an independent share of the total uncertainty of the variable x, while the

corresponding coefficient xi gives the magnitude of its error.

In AA, the arithmetic operations between the affine forms ensure that the depen-

dencies between the quantities are preserved. These operations are divided into two

categories: affine operations and non-affine operations. Examples of affine operations

are:

x̂± ŷ = (x0 ± y0) +
N∑

i=1

(xi ± yi)εi

αx̂ = (αx0) +
N∑

i=1

(αxi)εi

x̂± α = (x0 ± α) +
N∑

i=1

xiεi

(6.5)

The non-affine operations include operations for which the representation of the

result requires additional noise symbols on top of the same noise symbols of the

operands. The result of a non-affine operation can be formulated as follows:

ẑ = f(x0 + x1ε1 + . . . + xNεN , y0 + y1ε1 + . . . + yNεN) (6.6)

76

The key feature of the AA model is its ability to model correlation between two

quantities through the sharing of common noise symbols. The magnitude and sign

of the dependency is determined from the coefficients assigned to the noise symbols.

For example, given two affine forms:

x̂ = 10 + 2ε1 + 1ε2 − 1ε4

ŷ = 20− 3ε1 + 1ε3 + 4ε4

(6.7)

From this data, we observed that x lies in [6, 14] and y lies in [12, 28]. As both

x and y share the same noise symbols ε1 and ε4 with non-zero coefficients, they are

not entirely independent of each other. Note that the signs of the coefficients are not

meaningful in themselves as the sign of i is arbitrary. However, the relative sign of

xi and yi defines the direction of the correlation. Hence, using AA, the pair (x, y) is

constrained to fall within the dark shaded region as seen in Figure 6.2. However, if

IA were to be used, this dependency would be lost. In fact, using IA, the pair (x, y)

is only known to lie in the rectangle shown in light grey in Figure 6.2.

6.5 Interval-based timing estimation

As AA provides the abilities to model various variations using different noise sym-

bols and at the same time maintain the correlation between these symbols, it is chosen

as the ideal model. With the AA model, we are able to accurately track how each

variation gets propagated during the placement and routing using the noise symbols.

With the affine interval obtained, measurements to counteract these variations can

77

Figure 6.2: Joint range of two partially dependent quantities in Affine Arithmetic

be then developed to improve the quality of the circuit performance.

6.5.1 Modeling of Variation

To model the variation, the affine library is built into VPR. Parameters that need

to account for the above variations are defined as affine variables in VPR. To facilitate

users to define the degree of each variation, we modify VPR’s graphics engine into

a Windows MFC application and created an input interface for users to state the

desired bounds of each variation. This allows greater flexibility for future researchers

to test the effects of the different types and combinations of variations have on the

circuit performance. Here, we name the modified VPR model as W VPR.

To model the structural variations, variations in R and C are used. But initial

results show that we are not able to handle correlation at this abstraction level.

Instead, a low level implementation is applied to obtain the R and C using W,

78

H, T and L as stated in Section 6.2. The formulas used to obtain R and C are

indicated in (6.8) and (6.9), respectively [10]. Using these equations, noise coefficients

of different signs are generated and this creates correlations between the same noise

symbols.

R =
ρ · L
W · T (6.8)

C = εox ·
[
W

H
+ 0.77 + 1.06

(
W

H

)0.25

+ 1.06

(
T

H

)0.5]
(6.9)

Although correlation is handled, several extra noise symbols are created while

using these equations. This affects the complexity significantly. To reduce the com-

plexity, we sum up the positive and negative coefficients of the extra noise symbols of

R and C and assign them into two new noise symbols respectively as demonstrated

in (6.10). All similar parameters will share these two noise symbols and any other

extra noise symbols that are generated during the program flow (place and route).

To model spatial correlation as well, we have adopted the idea in [19,62], that is, each

parameter is re-initialized to contain a unique noise symbol based on its grid position

in FPGA. An example is illustrated in Figure 6.3.

x = x0 + x1ε1 + x2ε2 − x3ε3 + x4ε4 − x5ε5

x = x0 + x1ε1 + (x2 + x4)ε2 − (x3 + x5)ε3

(6.10)

Note: ε1 is the unique noise symbol for R and C, while the rest are generated due to

equations (6.8) and (6.9) and are global to all.

79

Figure 6.3: The grid-based model to model correlations

6.5.2 Comparison with Statistical modeling

In statistical modeling, variables are often modeled as a random variable that is

represented using a probability density function (p.d.f.) or a cumulative distribution

function (c.d.f.). The MAX and ADD operators [14] are often used to join these

variables. Canonical timing model [20, 21] is also proposed to address the correla-

tions through shared parameter variations. Using this model, a block delay and its

covariance with another block delay can be evaluated.

Comparing with the existing techniques of statistical modeling, our work does

take the form of the canonical timing model. However, using the AA model, we

are unable to represent a variable using either a p.d.f. or c.d.f. as AA does not

store the distribution of the variable. Although this is a drawback, AA allows quick

80

extraction and good estimation of the bounds of the variation without the hassle to

handle distribution of the variations. Still, when comparing it with the traditional

corner-based approach, AA is better in terms of runtime and accuracy.

6.5.3 Complexity

Having seen the existing works discussed in section 2.4 to solve SSTA problems,

we realize that many of these researches have employed complicated SSTA techniques

to handle correlations and path reconvergence. To the best of our knowledge, most

SSTA techniques have a complexity ranging from O(n) to O(n2) or have complexities

which increase exponentially with the number of logic gates.

However, in our proposed technique, the AA model that is used to handle the

process variation has a low complexity. In AA, the complexity of its arithmetic

operators is of O(m) where m is the max number of noise symbols in any of the

operands. And this complexity does not increase exponentially with circuit size.

More details are presented in Section 6.7.

Though our complexity is of O(n), but in terms of runtime, our model is more

efficient compared to any SSTA of the same complexity. This can be proven in terms

of the number of operations at a node. In existing SSTA, the ADD and MAX oper-

ations are performed to obtain a variable’s distribution before obtaining the required

bound. This is computational intensive as the distribution of the variations is tracked.

However, in the case of AA, no distribution information is involved. Its operations

81

mainly does simple arithmetics to alter the coefficients of the noise symbols. In an-

other words, our proposed technique has a complexity of O(n) but with a faster

computation of the bounds. Also its complexity is dependent on the nature of the

circuit and independent of the circuit’s size.

6.6 Design methodology

In this section, we describe the design flow that is undertaken. Our simulation

methodology is summarized into the flow chart in Figure 6.4. First, we require users

to extract the layout and connectivity variations from their actual model or test-

bench circuits. A pop-up interface in W VPR as shown in Figure 6.5 is created for

users to input these values. These variations are to be indicated in terms of percent-

age deviation from their central values. Using these variations and the architecture

specifications, the circuit is initialized.

To carry out AA simulations, its library is added into W VPR. This library is

slightly modified to account for the 3σ deviation. All affected parameters in W VPR

are declared as AA variables. The required test-bench circuit is first placed and

routed. After which, the circuit’s routed netlist is retrieved to build an affine timing

graph. Transversal of the timing graph is done to obtain the critical path delay and

its affine range. A pseudo code for the AA timing analysis is presented in Figure 6.6.

To validate our proposed methodology via AA to track process variation, a Monte

Carlo [63,64] (MC) Simulation is created. A MC library is included into W VPR. In

82

Figure 6.4: Design flow chart

the MC simulation, an interface as shown in Figure 6.7 is created to allow users to

choose the type of distribution (Uniform/Gaussian) required, the number of iterations

needed for the experiment and whether to use a single or multiple streams for the

random number generation. For the Gaussian distribution, the confidence interval is

set at 3σ deviation.

To start MC simulation, each circuit’s routed netlist is first retrieved. Next, in

each iteration, a new set of parameter values is generated and the timing graph is

rebuilt. Transversal of the graph is performed to calculate the new critical path delay.

Once the MC simulation is completed, a histogram of frequency distribution can be

plotted using the new set of critical path delays obtained. Using this set of data, the

83

Figure 6.5: Variation initialization interface

bound for each circuit in the MC simulation is also extracted and compared with the

one obtained from AA to test its accuracy.

6.7 Timing delay analysis

To prove the speed and accuracy of our method, we perform simulations to com-

pare our estimation results with that of Monte Carlo simulations. Our simulations

use the following VPR setup. Each FPGA logic block comprises of 2 slices. Each

slice has 2 4-inputs LUT and 2 flip-flops. Each logic block’s pin is connected to all

84

1 Declare affine sources l, t, w, h;
2 for ∀ di ∈ G | d is a delay node
3 G is the RRG
4 for ∀ (vi,ei) ∈ (V,E) | V = {m|m is a node ∧ m∈T};
5 E = {n|n is a edge ∧ n∈T;}
6 T is the timing graph;
7 do {
8 Init affine model();
9 /* Initialize variable with affine value */
10 /* v ← affine model value (abstracted) */
11 /* l, t, w, h ← affine model value */
12 Calculate wire RC();
13 /* using equations (6.8) and (6.9) */
14 Compute delay();
15 /* e ← Delay (Elmore delay) based on calculated R and C */
16 }
17 Update RRG(); /* Re-initialize G */
18 Update timing graph(); /* Re-initialize T */
19 Get critical path(); /* Obtain affine model of critical path*/

Figure 6.6: Pseudo-code for AA timing analysis

Figure 6.7: MC initialization interface

85

tracks in the adjacent channel(s) (Fc = W). Each wire segment is of length one and

is connected to one wire segment of each of the adjacent channels through disjoint

switch boxes (Fs = 3). All wire segments are connected by try-state buffers. Each

benchmark is routed with a maximum of 30 iterations to obtain the minimal num-

ber of tracks per channel width. When running the experiment using W VPR, the

placement cost function is set to use bounding-box calculation, and the router uses

the breadth-first search algorithm.

Parameter Variation (%)
Length (L) 20
Width (W) 5
Height (H) 20
Thickness (T) 5
Sub-block delay (SD) 5
Logic delay (LD) 5
Buffer delay (BD) 5

Table 6.1: Parameter and its variation

Table 6.1 shows the percentage variations setting for each parameter. The same set

of variations is applied to both the AA and MC simulation. The values are arbitrary

set but more emphasis is on the interconnect variations for their importance in the

deep sub-micron era. Figure 6.8 shows a histogram of the frequency distribution of a

benchmark circuit des using the Gaussian distribution and single stream. Figure 6.9

shows the Uniform distribution of the same circuit. In both the figures, we observe

that our implemented MC simulation gives a desired distribution of the delays and

this justifies itself as a good base of comparison to our AA model.

In Figure 6.10, it shows the maximum number of noise symbols seen on an AA

86

Figure 6.8: Frequency distribution of des using Gaussian distribution and single
stream for 10000 iterations (MC)

Figure 6.9: Frequency distribution of des using Uniform distribution and single stream
for 10000 iterations (MC)

87

variable in each of the benchmark circuit in ascending order based on their architec-

ture size. From the experiment, we observe that the AA variable with the largest

number of noise symbols is always the last node on the critical path. From the results

shown, this number does not grow proportionally with the circuit’s size. As a critical

path is defined as going from a primary input or latch output to a primary output or

latch input, its length depends on how the circuit is described in the netlist. Hence,

a small circuit may have a longer critical path delay compared to a large circuit. In

the context of complexity, this proves that the AA model’s complexity is independent

on circuit’s size but dependent on how the netlist of the circuit is described.

Figure 6.10: Max no. of noise symbols on an AA variable to illustrate that complexity
does not grow with circuit’s size

To evaluate the accuracy of the delay bound using our model, we compare it

against the MC analysis using both Uniform and Gaussian distribution. Also, we

define a metric looseness (6.11) to quantify the accuracy of our results. The loose-

ness [65] indicates the ratio of the size of the MC interval to the size of the AA

88

Circuits No. of AA model Uniform (MC) Looseness Mean diff
nets Range Mean Range Mean (%) (%)

apex4 927 [23.5 , 25.9] 24.7 [23.9 , 25.6] 24.8 37.8 -0.2
ex5p 912 [19.8 , 21.9] 20.8 [20.1 , 21.5] 20.8 49.4 0.3

misex3 1019 [20.1 , 22.1] 21.1 [20.4 , 21.8] 21.1 40.1 -0.1
alu4 1029 [23.3 , 25.7] 24.5 [23.3 , 25.5] 24.4 6.9 0.4
s298 1287 [60.9 , 66.3] 63.6 [61.0 , 65.5] 63.2 19.3 0.5
dsip 1306 [16.1 , 17.5] 16.8 [16.0 , 17.5] 16.8 -7.3 0.1

bigkey 1649 [21.4 , 23.1] 22.2 [21.3 , 23.0] 22.2 1.7 0.3
des 1794 [23.7 , 26.0] 24.8 [23.9 , 25.7] 24.8 32.5 0.3

Average - - - - 22.6 0.2

Table 6.2: Comparison of bounds of critical path (ns) - Uniform

Circuits No. of AA model Gaussian (MC) Looseness Mean diff
nets Range Mean Range Mean (%) (%)

apex4 927 [23.5 , 25.9] 24.7 [23.6 , 25.7] 24.7 11.7 0.2
ex5p 912 [19.8 , 21.9] 20.8 [19.9 , 21.6] 20.7 19.2 0.3

misex3 1019 [20.1 , 22.1] 21.1 [20.1 , 22.0] 21.1 4.5 0
alu4 1029 [23.3 , 25.7] 24.5 [23.4 , 25.6] 24.5 6.1 0
s298 1287 [60.9 , 66.3] 63.6 [60.7 , 66.3] 63.5 -3 0.1
dsip 1306 [16.1 , 17.5] 16.8 [16.1 , 17.4] 16.7 9.4 0.3

bigkey 1649 [21.4 , 23.1] 22.2 [21.2 , 23.2] 22.2 -14.4 0.2
des 1794 [23.7 , 26.0] 24.8 [23.7 , 26.0] 24.8 2.5 0

Average - - - - 4.5 0.1

Table 6.3: Comparison of bounds of critical path (ns) - Gaussian

interval. The sign means that affine interval is smaller (negative) or larger (positive).

looseness = (
AA Interval

MC Interval
− 1)× 100% (6.11)

With reference to Table 6.2 and Table 6.3, we observe that our AA model has

an average looseness of 22.6% and 4.5% for the Uniform and Gaussian distribution

using single stream respectively. The large value of looseness is partially due to that

AA accounts for the worst case of the simulation. However, worst case scenario is

89

seldom reached in real situations. Hence, the interval obtained in AA is slightly over-

pessimistic. Though our AA model gives a large interval, its mean is well-matched

to about 0.2% and 0.1% deviation from that obtained in the Uniform and Gaussian

distribution respectively. This demonstrates its accuracy in timing estimation.

Furthermore, having the need to only run an iteration with AA to obtain such

accurate bound certainly proves its efficiency compared to running 10000 iterations

to obtain a slightly tighter bound in a MC simulation. This speed-up can go as high

as 1000X when running on a 2.6GHz Pentium PC.

90

Chapter 7

Conclusions and Future Work

7.1 Conclusion

In this thesis, the work contribution is divided into 3 main sections. First, we

have presented a new framework using a GUI interface to facilitate the designing

and developing of a heterogeneous island-style FPGAs. This framework has the

ability to generate an architecture template and allow editing to create an irregular

architecture. The implementation is done in two phases: an initialization phase and

an editing phase. In the initialization phase, a standard set of parameters is required

for the tool to come up with an arbitrary design of the FPGA architecture. These

parameters include the dimensions of the proposed architecture, number of desired

pins on blocks, desired tracks to be included, connection box connectivity and switch

block connectivity. In the editing phase, users are allowed to alter the above set

91

of parameters to their preference to create a more arbitrary architecture. Once the

architecture is finalized, a RRG is generated to facilitate the routing decisions or for

porting to VPR for more complete testing.

The placement and routing techniques are implemented in the framework to test

the designed architecture. The placement technique implemented is the simulated

annealing algorithm. In each iteration, the blocks are swapped against a tempera-

ture schedule. Placement stops when a local minimum solution is achieved. Routing

is done using a pathfinder negotiated congestion algorithm. Global routing is done

first followed by detailed routing. Ripping and rerouting of nets is carried out at

every iteration till a physical route is found for all nets. Once placement and routing

have successfully been completed, by clicking on a specified block, its nets and con-

nected blocks are highlighted. This can be verified against the generated output files

(xxx.place and xxx.route) before implementing it onto the FPGA.

Next, we have presented a case study using our framework to investigate the

effectiveness of a power efficient FPGA architecture. Our preliminary simulation

results have shown that, by applying larger driving strength along the critical paths

and relaxing the driving strength along non-critical paths, the proposed architecture

can reduce the overall dynamic power by 6.10% - 10.05%, and 8.85% on average,

when compared with the conventional architecture. It also helps reduce the transient

current and thus the ground bounce noise. The proposed technique is complementary

to and can be combined with the existing dual supply to further improve the power

92

performance.

Lastly, we have presented a fast and accurate interval-based method for the timing

variability estimation of FPGAs. The method uses correlation-aware affine intervals

instead of probability density distributions to model timing uncertainties. Although

affine arithmetic methods provide no indication of distribution owing to its interval-

istic nature, it can quickly and accurately estimate the mean and range of timing

variability for an iteration of physical synthesis optimization, so as to guide the op-

timization to the right direction. Compared to Monte Carlo simulations, we have

shown that the mean of timing variation falls within an accuracy of 1%, the average

range looseness is about 22.6% and 4.5% for the Uniform and Gaussian distribution

respectively and a 1000X simulation speed-up. This work can also be easily extended

to the case of ASICs. Furthermore, using our developed framework, we can extend

this case study to non-regular architectures.

7.2 Future work

Suggestions for future improvement to this framework is to implement more func-

tionality, enhance the flexibility and make the tool more user-friendly. A library with

different templates of FPGA architectures can be implemented to give the designers

more choices. Furthermore, the usefulness of this tool can be further enhanced by

making it able to implement other architecture style and their non-uniform routing

structures. An accurate power model can also be developed and integrated into this

93

framework so as to allow for more accurate power analysis to be done.

In addition, we may continue to study how to better integrate the process vari-

ations into the W VPR model to permit correlation cancelation where applicable.

This will tighten the bounds while not affecting its central value. Another suggestion

for the future work is to add in more abstraction levels in order to model the differ-

ent types of process variations to a much greater depth. A SSTA method can also

be added into VPR to provide a full variability-aware FPGA timing estimation and

analysis.

94

Bibliography

[1] D. Cronquist and L. McMurchie. Emerald - an architecture-driven tool compiler

for fpgas. In ACM/SIGDA International Symposium on Field Programmable

Gate Arrays, pages 144 – 150, 1996.

[2] V. Betz. Architecture and CAD for speed and Area Optimization of FPGAs. PhD

thesis, University of Toronto, 1998.

[3] J. Rose V. Betz and A. Marquardt. Architecture and CAD for Deep-Submicron

FPGAs. Kluwer Academic Publisher, 1999.

[4] V. Betz and J. Rose. Automatic generation of fpga routing architectures from

high-level descriptions. In ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, pages 175 – 184, 2000.

[5] V. George. Low Energy Field-Programmable Gate Array. PhD thesis, University

of California, 2000.

[6] S. R. Nassif. Modeling and analysis of manufacturing variations. In IEEE Custom

Integrated Circuits Conference, pages 223 – 228, 2001.

95

[7] L. Zhang. Statistical Timing analysis for digital circuit design. PhD thesis,

University of Wisconsin-Madison, 2005.

[8] D. Boning and S. Nassif. Models of process variations in device and interconnect.

Design of High Performance Microprocessor Circuits, 2000.

[9] S. Sapatnekar. Timing. Kluwer Academic Publishers,, 2004.

[10] A. Chandrakasan J. Rabaey and B. Nikolic. Digital integrated circuits: a design

perspective (2nd edition). Prentice-Hall Publication, 2003.

[11] L. C. Wang J. J. Liou, A. Krstic and K. T. Cheng. False-path-aware statistical

timing analysis and efficient path selection for delay testing and timing valida-

tion. In Design Automation Conference, pages 566 – 569, 2002.

[12] M. Orshansky and K. Keutzer. A general probabilistic framework for worst case

timing analysis. In Design Automation Conference, pages 556 – 561, 2002.

[13] V. Zolotov S. Sundareswaran M. Zhao K. Gala A. Agarwal, D. Blaauw and

R. Panda. Statistical delay computation considering spatial correlations. In

Asia and South Pacific - Design Automation Conference, pages 271 – 276, 2003.

[14] V. Zolotov A. Agarwal and D. Blaauw. Statistical timing analysis using bounds

and selective enumeration. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pages 1243 – 1260, 2003.

96

[15] M. Orshansky. Fast computation of circuit delay probability distribution for

timing graphs with arbitrary node correlations. In ACM/IEEE TAU Workshop,

2004.

[16] F. N. Najm and N. Menezes. Statistical timing analysis based on a timing yield

model. In Design Automation Conference, pages 460 – 465, 2004.

[17] A. Devgan and C. Kashyap. Block-based static timing analysis with uncertainty.

In International Conference on Computer Aided Design, pages 607 – 614, 2003.

[18] S. B. Vrudhula S. Bhardwaj and D. Blaauw. Tau: Timing analysis under uncer-

tainty. In International Conference on Computer Aided Design, pages 615 – 620,

2003.

[19] H. Chang and S. S. Sapatnekar. Statistical timing analysis considering spatial

correlations using a single pert-like traversal. In International Conference on

Computer Aided Design, pages 621 – 625, 2003.

[20] D. Blaauw A. Agarwal and V. Zolotov. Statistical timing analysis for intra-

die process variations with spatial correlations. In International Conference on

Computer Aided Design, pages 900 – 907, 2003.

[21] K. Ravindran C. Visweswariah and K. Kalafala. First-order parameterized block-

based statistical timing analysis. In ACM/IEEE TAU Workshop, pages 17 – 24,

2004.

97

[22] R. E. Moore. Interval Analysis. Prentice-Hall Publication, 1966.

[23] J. Stolfi and L. H. de Figueiredo. An introduction to affine arithmetic. In TEMA

Tend. Mat. Apl. Comput., pages 297 – 312, 2003.

[24] C. L. Harkness and D. P. Lopresti. Interval methods for modeling uncertainty in

rc timing analysis. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, pages 1388 – 1401, 1992.

[25] James D. Ma and R. A. Rutenbar. Fast interval-valued statistical interconnect

modeling and reduction. In International Symposium on Physical Design, pages

159 – 166, 2005.

[26] J. Rose S. Brown, R. J. Francis and Z. G. Vranesic. Field-Programmable Gate

Arrays. Kluwer Academic Publishers, 1992.

[27] V. Betz J. Swartz and J. Rose. A fast routability-driven router for fpgas. In

International Workshop on Field-Programmable Gate Arrays, pages 140 – 149,

1998.

[28] J. Rose and S. Brown. Flexibility of interconnection structures for field-

programmable gate arrays. IEEE Journal of Solid-State Circuits, pages 277

– 282, 1991.

98

[29] J. Cong and Y. Ding. Flowmap: An optimal technology mapping algorithm for

delay optimization in lookup-based fpga designs. IEEE Transactions on Com-

puter Aided Design of Integrated Circuits and Systems, pages 1 – 13, 1994.

[30] V Betz and J Rose. Vpr: A new packing placement and routing tool for fpga

research. In International Workshop on Field-Programmable Logic and Applica-

tion, pages 213 – 222, 1987.

[31] W. Sun and C. Sechen. Efficient and effective placement for very large circuits.

IEEE Transactions on Computer Aided Design of Integrated Circuits and Sys-

tems, pages 349 – 359, 1995.

[32] V. Betz A. Marquardt and J. Rose. A fast routability-driven router for fpgas.

In ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

pages 203 – 213, 2000.

[33] A. Mukherjee G. Parthasarathy, M. Marek-Sadowska and A. Singh. Interconnect

complexity-aware fpga placement using rent’s rule. In International workshop on

System-level interconnect prediction, pages 115 – 121, 2001.

[34] M. Khellah S. Brown and G. Lemieux. Segmented routing for speed- performance

and routability in field-programmable gate arrays. IEEE Journal of VLSI Design,

pages 275 – 291, 1996.

[35] E. Kusse and J. Rabaey. Low-energy embedded fpga structures. In International

Symposium on Low Power Electronics and Design, pages 150 – 160, 1998.

99

[36] L. He F. Li, D. Chen and J. Cong. Architecture evaluation for power efficient

fpgas. In ACM/SIGDA International Symposium on Field Programmable Gate

Arrays, pages 175 – 184, 2003.

[37] L. He F. Li, D. Chen and J. Cong. Power modeling and characteristics of field

programmable gate arrays. IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, pages 1712 – 1724, 2005.

[38] L. He F. Li, Y. Lin and J. Cong. Low-power fpga using pre-defined dual-

vdd/dual-vt fabrics. In ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, pages 42 – 50, 2004.

[39] Y. Lin F. Li and L. He. Fpga power reduction using configurable dual-vdd. In

Design Automation Conference, pages 735 – 740, 2004.

[40] Y. Lin F. Li and L. He. Circuits and architectures for field programmable gate

array with configurable supply voltage. IEEE Transactions on Very Large Scale

Integration Systems, pages 1035 – 1047, 2005.

[41] P. H. Leong W. Luk C. T. Chow, L. S. M. Tsui and S. J. E. Wilton. Dynamic

voltage scaling for commercial fpgas. In International Conference on Field Pro-

grammable Technology, pages 173 – 180, 2005.

[42] V. Khandelwal and A. Srivastava. A general framework for accurate statisti-

cal timing analysis considering correlations. In Design Automation Conference,

pages 89 – 94, 2005.

100

[43] S. Narayan H. Chang, V. Zolotov and C. Visweswariah. Parameterized block-

based statistical timing analysis with non-gaussian parameters, nonlinear delay

functions. In Design Automation Conference, pages 71 – 76, 2005.

[44] S. Brown M. Khellah and Z. Vranesic. Minimizing interconnection delays in

array-based fpgas. In IEEE Custom Integrated Circuits Conference, pages 181 –

184, 1994.

[45] V. Betz and J. Rose. Directional bias and non-uniformity in fpga global routing

architectures. In International Conference on Computer Aided Design, pages 652

– 659, 1996.

[46] S. A. Hauck C. Ebeling, L. McMurchie and S. Burns. Placement and routing

tools for the triptych fpga. IEEE Transactions on Very Large Scale Integration

Systems, pages 473 – 482, 1995.

[47] C. Sechen and A. S. Vincente. The timber-wolf placement and routing package.

Journal of Solid-State Circuits, pages 510 – 522, 1985.

[48] F. Romeo M. Huang and A. S. Vincentelli. An efficient general cooling schedule

for simulated annealing. In International Conference on Computer Aided Design,

pages 381 – 384, 1986.

[49] K. Shahookar and P. Mazumder. Vlsi cell placement techniques. ACM Computing

Surveys, pages 143 – 220, 1991.

101

[50] C. Cheng. An accurate and efficient placement routability modeling. In Inter-

national Conference on Computer Aided Design, pages 690 – 695, 1994.

[51] C. Lee. An algorithm for path connections and its applications. IRE Transactions

on Electronic Computers, pages 346 – 365, 1961.

[52] J. Rose K. Chung G. Paez P. Chow, S. O. Seo and I. Rahardja. The design of

an sram-based field programmable gate array-part i: architecture. IEEE Trans-

actions on Very Large Scale Integration Systems, pages 191 – 197, 1999.

[53] J. Rose K. Chung G. Paez P. Chow, S. O. Seo and I. Rahardja. The design of

an sram-based field programmable gate array-part ii: circuit design and layout.

IEEE Transactions on Very Large Scale Integration Systems, pages 321 – 330,

1999.

[54] V. Betz and J. Rose. Circuit design, transistor sizing and wire layout of fpga

interconnect. In IEEE Custom Integrated Circuits Conference, pages 171 – 174,

1999.

[55] G. Lemieux and D. Lewis. Circuit design of routing switches. In ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages 19 – 28,

2002.

[56] H. Schimit and V. Chandra. Fpga switch block layout and evaluation. In

ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

pages 11 – 18, 2002.

102

[57] G. Smith R. Hitchcock and D. Cheng. Timing analysis of computer hardware.

IBM Journal of Research and Development, pages 100 – 105, 1983.

[58] T. Okamoto and J. Cong. Buffer steiner tree construction with wire sizing for in-

terconnect layout optimization. In International Conference on Computer Aided

Design, pages 44 – 49, 1996.

[59] N. Femia A. Cirillo and G. Spagnuolo. An interval mathematics approach to

tolerance analysis of switching converters. In IEEE Power Electronics Specialists

Conference, pages 1349 – 1355, 1996.

[60] N. Femia and G. Spagnuolo. Identification of dc-dc switching converters charac-

teristics for control systems design using interval mathematics. In IEEE Work-

shop on Computers in Power Electronics, pages 97 – 104, 1996.

[61] N. Femia and G. Spagnuolo. Genetic optimization of interval-arithmetic based

worst case circuit tolerance analysis. IEEE Transactions on Circuits and Systems

- Part I, pages 1441 – 1456, 1999.

[62] J. Singh and S. Sapatnekar. Statistical timing analysis with correlated non-

gaussian parameters using independent component analysis. In Design Automa-

tion Conference, pages 155 – 160, 2006.

[63] Jianwu Lin Enver Yucesan Chun-Hung Chen, Karen Donohue. Efficient approach

for monte carlo simulation experiments and its applications to circuit systems

design. Annual Simulation Symposium, pages 65 – 71, 2001.

103

[64] M. H. Shi D. Zhou H. X. Gao, X. H. Ma and Y. T. Yang. A novel monte carlo

method for fpga architecture research. In International Conference Solid-State

and Integrated Circuits Technology, pages 1944 – 1947, 2004.

[65] J. D. Ma A. Singhee, C. F. Fang and R. A. Rutenbar. Probabilistic interval-

valued computation: toward a practical surrogate for statistics inside cad tools.

In Design Automation Conference, pages 167 – 172, 2006.

104

