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SUMMARY 
 
Antimicrobial peptides (AMPs) play a key role in the innate immune response. They can 

be ubiquitously found in a wide range of eukaryotes including mammals, amphibians, 

insects, plants, and protozoa. In lower organisms, AMPs function merely as antibiotics by 

permeabilizing cell membranes and lysing invading microbes. However, during evolution 

these peptides have become multifunctional molecules acting in the complex networks of 

higher organisms with additional properties such as having a mitogenic activity, 

antitumor activity or playing a role in adaptive immune responses. Hence, the AMPs are 

interesting targets to analyze transcriptional regulatory networks as their involvement in 

diverse pathways suggests. Understanding transcription regulation of any class of gene is 

a mammoth task, which can be approached from many angles. The author has focused on 

promoter region analysis of AMP genes, specifically to find transcription factor binding 

site motifs. The questions that were asked in the beginning of the thesis were, what are 

the promoter elements that regulate transcription of different AMP genes? Are they 

common across different AMP genes or specific to each AMP gene or AMP gene group? 

Are the promoter elements conserved across different species of an AMP gene group? 

Can promoter element modules be created out of these promoter elements? Can new 

AMP genes be found using the non-homology, promoter analysis based approach? This 

thesis has attempted to answer these questions by using examples of several AMP gene 

families. To be able to address the questions raised for this thesis, the author employed an 

array of computational biology techniques (sequence analysis based), supported by 

statistical evidence in a stepwise manner. The thesis begins with the creation of an 

antimicrobial peptide database (Chapter 3) that proved to be a good resource for the 
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research done for this thesis. Some prominent AMP families were analyzed in depth at 

peptide level and Hidden Markov Model (HMM) method was employed as a prediction 

tool to elucidate plausible important functional residues of some AMP families (Chapter 

4). The author further delved into the gene level of AMPs and used the antimicrobial 

peptide database as a starting point to narrow down the families to work on for 

transcription regulation. The author has also collaborated with RIKEN Institute, Japan, 

for this research and used FANTOM full-length cDNA repository from RIKEN that was 

unpublished data resource at the time this research began. 

Ab-initio motif finding method was used to find novel promoter elements (PEs*). 

The author was able to find common and different PEs between different species for 

AMP families (Chapter 5). The common, conserved PEs were used to develop specific 

models of promoters of co-regulated genes or genes having similar function (Chapter 6). 

These models were then used to search across the human promoter data for potentially 

new genes that have high possibility of being co-expressed as the target AMP gene group 

(Chapter 7). The search across the promoter regions of the human genome was done with 

the idea that the outcome will be a set of genes and/or new AMP genes themselves. Thus, 

this approach facilitates unfolding the relationship of AMP genes with other genes of the 

same pathway and helps us understand parts and functions of the underlying gene 

networks. This indirectly enriches the knowledge about the responses that cells generate 

while reacting to pathogen invasion and potentially can help in designing better 

antimicrobial drugs.  

*PE is abbreviation for Promoter Element, which has been used interchangebly with TFBS in this thesis 
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Part I Chapter 1: Introduction 
 
The art of being wise is knowing what to overlook. 
 
(William James) 
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1.1 Background on AMPs 
 
Antimicrobial peptides (AMPs) are integral components of innate immunity in many 

organisms. They may be broadly classified into two classes, those that are directly anti-

microbial, and those that are derived by proteolytic cleavage of a precursor. (Pazgier et 

al., 2006, Li et al., 2006, Shinnar et al., 2003 , Ibrahim et al., 2005 , von Horsten et al., 

2002).  

Mammals produce many different antimicrobial peptides that are active against a 

broad spectrum of pathogens, including Gram-positive and Gram-negative bacteria, 

rickettsia, protozoans, fungi and some viruses (Hancock and Diamond, 2000)  

Many AMPs are also involved in functions not directly associated with the innate 

immune response. For example, under normal physiological conditions, hepcidin is an 

important regulator of hepatic iron homeostasis, but at least in zebra fish it also acts as 

AMP (Shike et al., 2004). Another AMP, the neutrophil granule derived peptide cap37, 

which binds to Gram-negative bacterial endotoxins, also acts as signaling molecule 

causing the up-regulation of protein kinase C activity (Kamysz et al., 2003). Individual 

AMPs may have distinct functions in different locations (for example, at mucosal 

surfaces or in phagocytes), and must be regulated so as to be available when the pathogen 

challenge is presented. This instigates an interesting research problem, which is, to 

understand underlying transcriptional players for different families of AMP genes and 

networks in which they maybe involved and regulated.  
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1.2 Research issues investigated in this thesis 
 

AMPs are of commercial and academic interest due to their unique sequence 

properties and ability to attack an array of pathogens. Realizing the importance of these 

groups of genes, gene discovery efforts have been undertaken by many groups. For 

example, efforts were directed to the computational discovery of beta defensin producing 

genes (Scheetz et al., 2002,  Schutte et al., 2002). The method used is based on a 

similarity approach associated with HMM search and BLAST search of EST sequences 

mapped to confirm the transcription of these genes. However, this approach has some 

inherent limitations as both BLAST and HMMER analyses could not identify all known 

beta defensin genes, even not all used in the training of HMMER (Schutte et al., 2002). 

This was due to the fact that AMPs are highly diverse peptide sequences even within the 

same family and species (Maxwell et al., 2003, Tennessen, 2005). Hence, similarity can 

be very low in which case it is difficult to decide if putative hits obtained with low 

similarity can be considered being new AMPs. 

The discovery of new AMP coding genes (AMPcgs) can be considered a special 

case of the general gene discovery problem. The existing experimental and computational 

methods (Xiang and Chen, 2000, Iida and Nishimura, 2002, Maggio and Ramnarayan, 

2001, Zhang, 2002) are not specifically tuned to this gene class, which reduces chances 

for targeted search for AMP genes. For example, the common approach that can be used 

to search for new AMP members is homology search by tools like BLAST against known 

and ‘artificial’ (DNA translated) peptide sequences (Xiao et al., 2004, Zaballos et al., 

2004). While this approach is widely used, it suffers a serious problem related to the level 

of similarity through which one can infer that the predicted peptide belongs to the target 
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group. A new methodology for computational gene discovery has been proposed and 

used recently for some specific classes of genes (Frech et al., 1997, Wasserman and 

Fickett, 1998) based on the concept of modelling of the gene’s promoter region. This 

approach seems reasonable to use for the purpose of AMP gene discovery as literature 

reviews suggest that the promoter regions of the highly diverse AMPs are fairly 

conserved (Ganz, 2003). This can suitably complement homology based gene 

identification. This approach also facilitates in unfolding of possible new association of 

genes with other genes (in terms of co-regulation) of the same pathway and unearthing 

parts and functions of the underlying gene networks which earlier have not been reported 

(Cohen et al., 2006, Dohr et al., 2005).  

In this study, the major aim has been to use computational approaches to find the 

underlying PEs i.e. the transcription factor binding sites (TFBSs) and their organization 

across different AMP families. This is a challenging computational problem because of 

the difficulty finding true TFBSs in promoter regions .The TFBSs in promoter regions are 

very short motifs and their sequence variability has not been very well understood. 

Secondly, the promoter regions of genes can be several hundred to thousand base pairs 

long and the TFBSs can lie anywhere across the region. Finding true positive TFBSs has 

been the aim of many groups working on algorithms to predict the TFBS motifs (Hertz 

and Stormo, 1999,  Frith et al., 2004, Bailey and Elkan, 1995). The TFBS motifs, which 

are cis-elements and are present nearby each other in the promoter region, can be grouped 

into modules. Some of these modules* have been observed to be conserved across 

different classes of genes or across different species for the same genes. This 

phenomenon is particularly seen in genes of belonging to a particular classes and having 
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similar functions that co-express together under specific conditions (Werner et al., 2003, 

Werner, 2003, Werner, 2002). Thus, genes under the same conditions have similar TFBS 

patterns contained in their promoter regions. These TFBS patterns can be used to develop 

specific models of promoters of co-regulated genes and these models can be used to 

search across genome for potential new genes that also have high chance of being co-

expressed as the target gene group (Werner, 2001). Genes predicted on the basis of 

derived promoter models of the target AMP gene group are expected to be genes that 

could be part of the same pathway in which an AMP participates directly or indirectly 

(Niyonsaba et al., 2003, Wang et al., 2003, Moon et al., 2002). and some could be AMP 

genes. 

Using promoter region analysis to find new AMP genes and co-regulated genes is 

a first of its kind approach in the field of antimicrobial peptides. The results of this 

analysis can guide the way for experimental validation of the predicted set of genes. This 

thesis attempts to add knowledge to the understanding of transcriptional regulation of 

AMPs based on computational methods. 

In order to achieve this primary objective, the secondary objectives of this thesis 

include (a) building a comprehensive repository of AMPs and (b) integrating analysis 

tool for sequence based classification. These objectives lay the foundations that would 

facilitate future wider systematic studies of the various AMP families in addition to the 

goals of this thesis in exploring the promoter elements of AMP.  
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1.3 Objectives of this thesis  
 

Large-scale analysis of antimicrobial peptide genes at promoter level provides a global 

view on their transcriptional regulation level. This analysis in turn can support 

experimental studies by assisting in planning critical experiments and, when properly 

used, it can significantly improve the efficacy of experimental studies to understand 

transcriptional regulation. This research area is important for increasing our insight and 

knowledge about the little known area of transcriptional regulation of AMPs. In general, 

AMPs display an array of diverse functions and new information about their 

transcriptional regulation can help us understand their role and position in innate 

immunity, adaptive immunity and other related pathways in a better way. This would in 

turn have long-term implications in their role as potential drug candidates.  

The first step towards executing a systematic data mining strategy to deduce novel 

insights into huge amount of biological data is to provide an adequate data management 

pipeline. Thus, consolidating the scattered data on antimicrobial peptides into a 

centralized database is a prerequisite for a systematic large-scale analysis. Information 

gained from such analysis is useful for developing new analytical tools for study of novel 

antimicrobial sequences. 

Therefore, the specific objectives of this thesis were to: 

1. Build a database of antimicrobial peptides with integrated query, extraction and 

sequence analysis tools, (Chapter 3, 4) 

2. Extract and analyze the promoter dataset of AMP genes and find the key regulatory 

elements that are playing a role, (Chapter 5) 

3. Develop promoter models of AMP genes for several AMP families, (Chapter 6) and 
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4. Use promoter models to search across human promoter data for (Chapter 7) 

a) detection of new co-regulated genes, and 

b) deciphering parts of gene networks of which AMP genes are members.  

 

1.4 Contribution of this thesis 

 
AMP-coding genes and their products have been extensively analyzed with regard to 

evolution (Crovella et al., 2005  Patil et al., 2004, Xiao et al., 2004, Rodriguez de la 

Vega and Possani, 2005). Functional studies focusing on biochemical and immunological 

characterization have been performed on individual members (Krause et al., 2003 Kragol 

et al., 2001, Risso, 2000, Selsted et al., 1993). However, until now there has not been any 

comprehensive characterization of promoter regions among all mammalian AMPs. This 

study is unique in scale and methodology. The author has employed a combination of 

computational methods and proper statistical testing and, 1) identified in promoter 

regions of 77 genes representing 22 AMP families known and novel transcription factor 

binding motifs, 2) their combinations and conserved modules, and 3) linked them 

according to biological functions in context of the AMPs. 

The author’s original contributions to the field of antimicrobial peptides include: 

1) Organizing a large and unique data set of ~1788 entries of antimicrobial peptides 

from public databases and literature and creating a web-accessible, publicly 

available database (http://research.i2r.a-star.edu.sg/Templar/DB/ANTIMIC). 

This database of antimicrobial peptides is the most comprehensive resource 

(eukaryotic and prokaryotic) for researchers to identify antimicrobial peptides and 
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analyze their sequence which otherwise would involve multiple querying of other 

databases. Integration of Hidden Markov Model (HMM) based tool and using it to 

find the potentially important residues of functional importance in certain AMP 

families.  

2) Identifying common and specific putative regulatory elements (TFBS motifs) 

within the AMPcg’s promoter regions. These findings have been supported by 

literature evidence wherever possible.  

3) Developing promoter models of several AMP gene groups. To the best of the 

author’s knowledge and based on the literature search, there have been no 

attempts to model promoters of AMPcgs. 

4) Identifying likely co-regulated AMPcgs using AMP promoter models based on a 

scan across promoter regions of the human genome and determining parts of 

potential transcription regulatory networks in which some of the AMP genes are 

possibly involved. 

5) Providing a functional analysis of the genes so identified and their relation to 

particular gene networks. 

 
 
 

1.5 A summary of the thesis 

This thesis consists of three parts. Part I provides an introduction to the thesis, in terms of 

the importance of antimicrobial peptide research, objectives of the thesis and 

contributions of the thesis. Chapter 2 gives an overview of the field of antimicrobial 
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peptides and how bioinformatics is facilitating the understanding of AMPs at peptide and 

gene level (Chapter 1).  

Part II describes the implementation of specialized data warehouse of 

antimicrobial peptides – ANTIMIC integrated with bioinformatics tools (Chapter 3). In-

depth usage and sequence analysis done of AMP families using ANTIMIC Profile tool 

that is integrated in the ANTIMIC database is discussed in Chapter 4.  

Part III presents the original findings of the study that includes comparative 

genomic sequence analysis to find TFBSs by ab-initio motif searching approach using 

Dragon Motif Builder tool in several groups of AMPs (Chapter 5). The findings have led 

to some important observations about the families of TFs that may potentially regulate 

AMPcgs.TFBS modules were generated from the promoter analysis of some AMP groups 

and this provided insights into the concept of conserved TFBS framework in regulation 

of well-studied and novel AMP groups in Chapter 6. Chapter 7 presents the results of the 

scan done using the TFBS modules generated in Chapter 6 across human promoter 

dataset. 

Part IV (Chapters 8 and 9) discusses and draws conclusions from the 

bioinformatics-based approach to large-scale analysis of antimicrobial peptides. It also 

discusses future directions respectively. 

The work presented in this thesis has been published in the following journals, 

1) Brahmachary, M., Krishnan, S.P., Koh, J.L., Khan, A.M., Seah, S.H., Tan, T.W., 

Brusic, V. and Bajic, VB. ANTIMIC: a database of antimicrobial sequences. 

Nucleic Acids Res. 2004 Jan 1; 32(Database issue): D586-9. 
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2) Brahmachary, M., Schönbach, C., Yang, L., Huang, E., Tan, S.L., Chowdhary, R., 

Krishnan, S.P.T., Lin, C.-Y., Hume, D.A., Kai, C., Kawai, J., Carninci, P., 

Hayashizaki, Y. and Bajic, V.B.. Computational promoter analysis of mouse, rat and 

human antimicrobial peptide-coding genes (accepted in BMC Bioinformatics). 

 
Conference presentation 

 
a) A Hybrid Algorithm for Motif Discovery from DNA Sequences (Edward Wijaya, 

Kanagasabai Rajaraman, Manisha Brahmachary, Vladimir B. Bajic). Poster 

presented at Asia Pacific Bioinformatics Conference (APBC 2004) held in 

Singapore. 

 

b) Poster on ANTIMIC database for European Conference of Computational 

Biology (ECCB 2003, September) held in Paris. 

 

c) Poster on Ab-initio identification of Promoter Elements in Antimicrobial Peptide-

coding Genes in 17th International Conference on Genome Informatics, at 

Yokohama, Japan, December 18-20, 2006. 
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Part I: Chapter 2: Overview of AMPs  
 
The seat of knowledge is in the head, of wisdom, 
in the heart. 
 
(William Hazlitt) 
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2.1 Properties of antimicrobial peptides  
 
Antimicrobial peptides are ancient weapons of the innate immune system. They are 

categorized under the first line of defense system of complex higher organisms and 

probably the only defense system in simpler organisms like bacteria. They are widely 

present in the animal and plant kingdom. Hence, there are numerous families of these 

AMPs and new ones are been discovered regularly. They are an effective weapon against 

an array of pathogens. The antimicrobial peptides intelligently target the microbial 

cellular membrane and exploit the inherent difference between microbial cell membrane 

and multicellular plants and animals. They are mostly cationic peptides though there are 

examples of anionic peptides also which kill pathogens typically by permeabilizing their 

cell membrane. Interestingly, most pathogens have not been able to develop resistance 

against them. (Zasloff, 2002). 

These cationic AMPs usually have <100 amino acid residues, with at least two 

positive charges due to lysine and arginine residues and around 50% hydrophobic amino 

acids (Hancock and Diamond, 2000). There are more than 50 families of AMPs and more 

than 800 AMPs (Kamysz, 2005). Most AMPs are derived from larger precursors that 

include a signal sequence. They go through post-translational modifications that include 

proteolytic processing, and in some cases glycosylation (Bulet et al., 1993), carboxy-

terminal amidation and amino-acid isomerization, and halogenation (Zasloff, 2002). 

Many of these peptides are gene-encoded and synthesized by ribosomes. However, some 

peptides are derived as cleaved portions from larger proteins, such as buforin II from 

histone 2A (Park et al., 1996) and lactoferricin from lactoferrin (Bellamy et al., 1992). 

These peptides are known to be so diverse that the same peptide sequence is rarely 
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recovered from two different species of animal, even those closely related (Maxwell et 

al., 2003). Exceptions include peptides cleaved from highly conserved proteins, such as 

buforin II (Zasloff, 2002). However, within the antimicrobial peptides from a single 

species, and between certain classes of different peptides from diverse species, significant 

conservation of amino-acid sequences can be recognized in the pre-proregion of the 

precursor molecules (Simmaco et al., 1998). This suggests that the pre-proregion is 

probably conserved, as they are involved in secretion and intracellular trafficking of the 

peptide. The highly diverse nature of antimicrobial peptides arises from the need of each 

organism to adapt and survive in different microbial environments. Hence, even single 

mutations can dramatically alter the biological activity of these peptides (Boman, 2000).  

2.2 Mechanism of action of AMPs 

Antimicrobial peptides act by targeting the membranes of microbes that have a 

fundamental difference with multicellular animals. In bacterial membrane, the outermost 

leaflet of the membrane bilayer, which is the exposed surface, is heavily populated by 

lipids with negatively charged phospholipids head groups. In contrast, the outer leaflet of 

the membranes of plants and animals is composed principally of lipids with no net charge 

(Matsuzaki, 1999). Most of the lipids with negatively charged head groups are segregated 

into inner leaflet, facing the cytoplasm. Shai (1999), Matsuzaki (1999) and Huang (2000) 

proposed a model for AMP-bacterial membrane interaction (Shai, 1999 , Matsuzaki, 

1999, Yang L. et al., 2000). According to the model, the cationic peptides interact 

electrostatically with the negatively charged membrane. They adopt amphipathic 

structure where the positively charged residues are lined up on one side and the non-polar 

residues arranged on the other side of the peptide to be able to accommodate the specific 
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conditions at the membrane-water interface. This is followed by displacement of lipids, 

alteration of membrane structure and in certain cases entry of the peptide into the interior 

of the target cell. Three models have been proposed to describe the molecular events 

taking place during the peptide-induced leakage of the target cell. Figure 2.1 is a 

graphical representation of these models which have been discussed in detail in the 

following section. 

Figure 2.1: Mode of action of AMPs 

 

a) cationic antimicrobial peptide interact with anionic membrane surface  and 
form amphpathic structure. b) pore formation models; the AMPs  can integrate 
into the membrane in three ways barrel stave model, carpet model, aggregate 
model. Figure has been adopted from  (Koczulla and Bals, 2003) 
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2.2.1 Barrel stave model 

According to the barrel stave model after initial electrostatic binding to the outer leaflet 

of the bacterial membrane, alpha helical amphipathic peptides group together into barrel-

like clusters that line amphipathic trans-membrane pores. The non-polar side chains face 

the hydrophobic fatty acid tails at the inside of the phospholipids bilayer and the 

hydrophilic side-chains are pointed inward into the water-filled pore. Progressive 

recruitment of additional peptide monomers leads to a steadily increasing pore size. 

Leakage of intracellular components through these pores subsequently leads to cell death 

(van 't Hof et al., 2001).   

2.2.2 Carpet model 

The carpet model proposes that the AMP clusters cover the surface of the membrane like 

a carpet. The membrane then collapses at the point of saturation of the concentration of 

the AMPs. In a short period of time, wormholes are formed all over the membrane 

leading to an abrupt lysis of the microbial cell. The lipid layer bends back on itself like 

the inside of a torus. The lateral expansions in the polar head group region of the bilayer 

are filled up by individual peptide molecules (Shai, 2002). This model has been the 

proposed mechanism for magainins (Bechinger et al., 1993). 
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2.2.3 Aggregate Channel model 

Another model known as the aggregate channel model proposes that after binding to the 

phospholipids head groups, the peptides insert into the membrane and then cluster into 

unstructured aggregates that span the membrane. These aggregates are proposed to have 

water molecules associated with them providing channels for leakage of ions and 

possibly larger molecules through the membrane. This model essentially differs from the 

other two in the way that only short-lived trans-membrane clusters of an undefined nature 

are formed, which allow the peptides to cross the membrane without causing significant 

membrane depolarization. Once inside, the peptides proceed to their intracellular targets 

to exert their killing activities. Another mechanism that has been suggested on AMP-

bacterial membrane interactions focuses on self-promoted uptake of AMP (van 't Hof et 

al., 2001). The cationic peptides bind to the negatively charged LPS present on the 

surface of Gram-negative bacteria. In the process of binding to LPS, they displace cations 

like Ca2+ and Mg2+ that are necessary for cell surface stability. This causes disruption in 

the surface of membrane, and eventually with formation of pores, larger molecules enter 

the cell. This self promoted uptake pathway works not only in Gram-negative bacteria but 

also in Gram-positive bacteria (Nykanen et al., 1998 ). 

The ability of AMPs to bind non-specifically to negatively charged membranes and 

induce pore formation makes them capable of being able to attack a variety of microbes 

(Gram-positive, Gram-negative bacteria, fungi, virus, and protozoa). However, recently it 

has been discovered that AMPs also bind specifically to target molecules on the surface 

of pathogenic membranes to carry out their lytic activities. Nisin binds with high affinity 
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to Lipid II, the fatty acyl proteoglycan anchor in the bacterial membrane, from which it 

subsequently diffuses into the surrounding membrane (Brotz et al., 1998). Some plant 

defensins also use a similar strategy (Thevissen et al., 2000).   

After the AMPs bind to the cell surface of the pathogens, many of them do not 

kill the pathogen merely by permeabilizing the cell membrane. Several of the AMPs have 

intracellular targets that they bind to and inhibit, thus causing the death of the pathogen. 

Drosophila AMP, attacin blocks transcription of the omp gene in E.coli (Carlsson et al., 

1991). Bactenecins (Bac5, Bac7) inhibit protein and RNA synthesis of E.coli and 

Klebsiella pneumoniae by inhibiting the respiration pathway in addition to 

permeabilizing their membrane (Skerlavaj et al., 1990 ). PR-39 has been shown to kill 

E.coli by inhibiting its DNA and protein synthesis (Boman et al., 1993). Neutrophil 

antimicrobial peptide 2 (eNAP-2) from horse, target and inactivate microbial serine 

proteases like subtilisin A and proteinase K (Couto et al., 1993). 

2.3 Therapeutic applications of AMPs  

The short peptide length and versatility of AMPs in targeting a variety of pathogens has 

generated lot of interest in labs and pharmaceutical industries to create these peptides 

synthetically and also create hybrids of these peptides to increase efficacy of their 

functional range (Ferre et al., 2006, Saugar et al., 2006 , Hongbiao et al., 2005). AMPs 

also seem to be the potential answer to pathogens that have cleverly grown resistant to 

conventional antibiotics. Most pharmaceutical endeavors have been to develop topical 

applied agents from AMPs, as the long-term toxicology of these AMPs is not fully 

understood to facilitate development of safe oral drugs. One such example is magainin 
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analogue Pexiganan (Ge et al., 1999). Another hurdle is that many of these AMPs show 

effective pathogen killing in vitro, but in vivo efficient killing requires high concentration 

of AMPs that can cause host cell toxicity. Table 2.1 lists the AMPs that have been 

commercialized. 

Many other applications of AMPs as anti-infective agents have been 

demonstrated. AMPs have shown potential for being ‘chemical condoms’ to inhibit the 

spread of sexually transmitted diseases from pathogens like Neisseria, Chlamydia, human 

immunodeficiency virus (HIV), Herpes simplex virus (HSV) (Yasin et al., 2000). AMPs 

in tandem with the conventional antibiotics have shown to increase potency of antibiotics 

in vivo by facilitating access of antibiotics into the bacterial cell (Darveau et al., 1991, 

Giacometti et al., 2000). LL37 has been tested in animal model to alleviate pulmonary 

bacterial infection associated with cystic fibrosis (Bals et al., 1999). Medical devices 

such as intravenous catheters are laced with magainin peptides  

that are bound to them by covalent bonds and this facilitates inhibition of microbial 

colonization and growth on their surfaces (Haynie et al., 1995). AMPs are being used as 

imaging probes for bacterial and fungal infections due to their specific affinity for 

microbial membranes (Welling et al., 2000 ).  
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Table 2.1: Commercial Development of AMPs 

This table has been adopted from (Zasloff, 2002) and modified after (Gordon et al., 2005) 

 

 

Peptide  Source AMP Activity Target disease Company Stage 

Pexiganan (Msi-78) Magainin 2 Bacteria 
Infected Diabetic Food 
Ulcers  Magainin (Genaera)  

Completed Phase III; 
not approved by FDA, 
pending additional 
studies 

Mbi-226 Indolicidin Bacteria, Fungi Catheter Sepsis Micrologix  Phase III 

Mbi-594 

Cathelicidin- 
Based, Indolicidin-
like Bacteria Acne Micrologix Phase II, finished 

Iseganan  (Ib-367) Protegrin Bacteria, Fungi Mucositis  Intrabiotics Pharmaceuticals
Phase II, oral - topical 
use, failed 

P-113  Histatins Bacteria, Fungi Oral Candidiasis, Mucositis Demegen  Phase II 
Heliomycin   Bacteria Antibacterial  Entomed Preclinical 
Human 
Lactoferricin   Fungi   Am Pharma  Preclinical 

Xmp.629  Bpi Bacteria 
Antimicrobial Activity 
Against P. Acnes  Xoma Phase III 

Neuprex (Rbpi21) Bpi Bacteria 

Reduce Inflammatory 
Complications Associated 
With Pediatric Open Heart 
Surgery Patients  Xoma Phase I/II  
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2.4 Regulation of AMP genes 
 
Since AMPs can be both gene encoded peptides and cleaved products, it is likely that 

their induction and expression fall under numerous different regulatory mechanisms 

which are yet to be deciphered (Koczulla and Bals, 2003). Some parts of the regulatory 

mechanisms have been studied in AMPs like beta defensin, alpha defensins in human, 

mouse and bovine species (Wehkamp et al., 2004, Witthoft et al., 2005, Sherman et al., 

2006, O'Neil, 2003, Fang et al., 2003, Musikacharoen et al., 2001, Fehlbaum et al., 2000, 

Yamamoto et al., 2004). While expression of alpha defensins are generally constitutive 

(Chen et al., 2006), beta defensin expression in general is induced by different stimuli 

(Chen et al., 2006) like microbial signals, developmental signals, cytokines, 

neuroendocrine signals in tissue specific manner. For example hBD-2 expression gets up 

regulated by infections and inflammatory stimuli (Taguchi and Imai, 2006, Voss et al., 

2006, Rivas-Santiago et al., 2005, Kao et al., 2004). Factors like interleukins (IL-1alpha, 

IL-1beta), tumor necrosis factor-alpha, microorganisms (Gram-positive and Gram-

negative bacteria, Candida albicans) and LPS are some of the stimulatory agents for 

expression of beta defensins (Singh et al., 1998, O'Neil et al., 1999, Bals et al., 1999). 

NF-kB binding site has been found in promoter regions of beta defensins (Diamond et al., 

2000). Intracellular signaling probably includes NF-kB, NFIL-6, and JAK/STAT 

pathways (Kao et al., 2004, Jang et al., 2004). One of the mechanisms of induction of 

antimicrobial peptides has been deciphered in Drosophila (Imler and Bulet, 2005,  Naitza 

and Ligoxygakis, 2004) and an analogous mechanism exists in humans (Williams, 2001). 

It has been shown that Toll-like receptors recognize ligands like bacterial LPS and trigger 
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the signaling cascade that cause induction of some AMP genes (Danilova, 2006). 

Different signaling cascades are triggered by diverse pathogens in Drosophila. This yields 

different sets of peptides. For example, the Toll receptor pathway is activated in response 

to fungi or Gram-positive bacteria while the immune deficiency gene pathway is 

activated in response to Gram-negative bacteria (Lemaitre et al., 1997, Michel et al., 

2001, De Gregorio et al., 2002). However, a lot more needs to be known in terms of the 

regulatory mechanisms of AMPs.  

To understand the regulatory mechanism of AMPs or any other genes, the 

identification of regulatory elements is the first step. Computational biology can facilitate 

identification of these regulatory elements faster than experimental identification. Over 

the years, the growing amount of genomic sequences of different species has facilitated 

validation and fine-tuning of the computational protocols for transcriptional regulation 

analysis. The aim is to identify the right transcription factor binding sites in regulatory 

regions like promoters. Promoters are identified computationally through mapping TSS 

(Transcription Start Sites) of genes and extracting the upstream regions. Once this data is 

in hand, it is then possible to search for cis-regulatory elements computationally by 

screening genomic sequences for the presence of TFBS motifs that have already been 

identified. TFBSs are usually short (5–25 bp), degenerate sequence motifs that occur very 

frequently in the genome, hence a position weight matrix (PWM) is often used to 

quantitatively represent the binding specificity of these factors. More advanced 

algorithms also facilitate search for pairs or multiple TFBSs in a combination that could 

be biologically relevant. To reduce the number of false positives, comparative genomics 

between closely related species is taken into account to find more functionally relevant 
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TFBSs. Chapters 5, 6 and 7 discuss in details the various current approaches and 

algorithms that are been used to achieve the above stated objectives. 

The systematic integration of diverse data types (e.g., individual TFBS hits 

generated by PWM or IUPAC strings, expression data, sequence data from multiple 

organisms etc.) together with the development of progressively more sophisticated 

computational algorithms for promoter prediction, regulatory element identification, and 

TF coordination modeling, as well as the accumulation of experimental databases of 

genes and TFs (such as TRANSFAC, TRANSCompel, etc.), will synergistically yield 

new information and reduce data output to a manageable scale for further experimental 

validation, thus providing an integrated platform for deciphering the transcriptional 

regulatory networks.  

Figure 2.2 summarizes the general strategy that is implemented computationally 

in the research of transcription regulatory domain. The starting point is identification of 

promoter regions using either mRNA/EST mapping or in silico promoter prediction 

(Bajic et al., 2002, Sonnenburg et al., 2006). Co-regulated genes are then derived from 

expression profiling analysis to refine the promoter dataset to be analyzed. The promoters 

are subjected to TFBS or composite elements analysis. A predictive regulatory module 

can be further derived through statistical model building. The module or original TFBS 

can be used to find other genes regulated in a similar pattern. Comparative genomics 

(phylogenetic footprinting) can be used both target gene identification and TFBS 

identification. Expression profiling can also be used to validate the in silico target gene 

prediction. The ultimate test for validity of predictions made by computational methods is 

still in vivo experimental analysis. 
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 In the thesis, a slightly different strategy has been employed, although the essence 

of the general strategy is retained as shown in Figure 2.2. The author has first derived the 

TFBS modules from computational analysis of AMPcg promoter regions and scanned a 

larger promoter dataset to find other co-regulated genes. Thus, this study also shows 

extraction of putative co-regulated genes using computational approach. The co-regulated 

gene set is then compared to co-expression data derived from expression profiles as a 

reference to check for the validity of the scanned results. 
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Figure 2.2: Flowchart of computational analysis for transcriptional regulatory   
 based research 

This graphical representation has been redrawn from (Siggia, 2005). 
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Part II: Chapter 3: ANTIMIC database 
 
One who understands much displays a greater simplicity of character than one who 
understands little. 
 

(Alexander Chase) 
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3.1 Introduction 
 
New AMP peptides are being discovered continuously from different organisms 

experimentally and there is a vast amount of data on natural AMPs but it is not available 

through one central resource. Bioinformatics facilitates an effective way to store and 

analyze large volumes of complex biological data through creation of databases. This 

chapter focuses on resources containing antimicrobial peptide data, the creation of the 

ANTIMIC database by the author and bioinformatics applications for analysis of 

antimicrobial peptide data. 

 

3.2 Background 
 
 

3.2.1 Significance of bioinformatics in antimicrobial peptide research 
 

AMPs are important components of the innate immune system of many species. These 

peptides are found in eukaryotes, including mammals, amphibians, insects and plants, as 

well as in prokaryotes (Simmaco et al., 1998, Kylsten et al., 1990, Dangl and Jones, 

2001, Luders et al., 2003). Other than having pathogen-lytic properties, these peptides 

have other activities like antitumor activity, (Kamysz et al., 2003) mitogen activity, or 

they may act as signaling molecules (Kamysz et al., 2003). Their short length, fast and 

efficient action against microbes and low toxicity to mammals, have made them potential 

candidates as peptide drugs (Koczulla and Bals, 2003). In many cases, they are effective 

against pathogens, which are resistant to conventional antibiotics (Pereira, 2006). They 

can serve as natural templates for the design of novel antimicrobial drugs (Gordon et al., 

2005, Koczulla and Bals, 2003). 



 

 

27 

Resourceful use of the two approaches (experimental and bioinformatics) can facilitate 

great strides in understanding the properties and effect of AMPs in biological context. 

The main goal is the extraction of new knowledge from large-scale analysis of AMP data. 

The bioinformatics approach provides means for systematic study of a large number of 

AMPs, and facilitates experimental design and selection of key experiments.  

 

3.2.2 Sources for antimicrobial peptide data and related information  

 
 
Antimicrobial peptide related data and information can be found across various resources. 

The data include nucleotide and amino acid sequences, post-translational modifications, 

secondary structures and 3D structures deposited in public databases such as GenBank 

(Benson et al., 2005), Swiss-Prot (Bairoch et al., 2004) and PDB (Deshpande et al., 

2005). Structure-function information, and mutation studies data, is available in the 

literature. The advantages and disadvantages of these databases for the creation of a 

database of antimicrobial peptide will be reviewed in the next sections. The issues of data 

collection, cleaning and annotation when consolidating the scattered data have also been 

described.   

3.2.2.1 GenBank and GenPept databases 

 
Antimicrobial peptide data are extracted from GenPept protein database of GenBank 

(Benson et al., 2004) which contains publicly available translated nucleotide sequences 

found in GenBank. GenBank stores data that are direct submissions from labs and batch 

submissions from large-scale sequencing projects to help maintain accuracy, relevance 

and comprehensiveness of the database. However, records in these databases contain only 
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basic information such as the AMP sequence, its name, taxonomy of the source organism, 

and when available, a list of basic sequence features and references. Also, there are many 

instances of entries of partial peptide sequences being present though a different entry 

contains the whole peptide sequence of the same gene. Hence, a certain amount of 

redundancy remains in the Genbank database. The records need to be enriched with 

structural and functional information that is available in literature.  

3.2.2.2 Swiss-Prot and TrEMBL databases 
 
 
Swiss-Prot and TrEMBL (Bairoch et al., 2004) databases were also used as resources for 

extraction of data for creation of ANTIMIC database. These databases have a 

comprehensive collection of annotated protein sequences. They contain structural and 

functional information about peptide sequences that may include disulfide connectivity, 

information on secondary structure and protein family classification, among others. The 

information in the records expedites subsequent annotation when new structure-function 

information is available.  

3.2.2.3 Protein Data Bank (PDB) 
 
 
Analyzing antimicrobial 3D structures are important because function is related to its 

structural folding. Inclusion of 3D structural information to antimicrobial sequence 

analysis facilitates identification of residues that are important for structure and function. 

This in turn aids the process of designing effective synthetic antimicrobial peptides.    
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3.2.5 Issues on data collection, cleaning, annotation  
 
Different databases have different formats and variations in fieldnames that describe the 

same information. This poses problems when data needs to be extracted in an automated 

manner from these sources. 

For example, an AMP primary sequence is described in the ‘translation’ field of a 

GenBank record but in Swiss-Prot, it is described in the ‘sequence’ field. Standardization 

of data representation across different databases will definitely enable a smoother 

extraction process and cross-referencing of fields across different databases. For example, 

a standard field such as ‘translation’ can be used to describe AMP primary sequence 

regardless of data sources. The uniform data representation is critical because consistency 

is required for efficiency of subsequent analyses.  

When consolidating records from different databases, the same data may be 

duplicated in another database, resulting in data redundancy. Data cleaning involves 

removing these redundant records to improve on data quality. Data cleaning also involves 

detecting discrepancies in data information, highlighting, and subsequently correcting the 

conflicts.  

Records in the public databases typically contain basic information. Data 

annotation, also known as data enrichment or enhancement, is the process of furnishing 

critical commentary or explanatory notes. Data annotation enriches the data for 

extrapolation of meaningful insights from multi-source bits of information. Correlating 

the relevant information from multiple sources is critical for increasing the overall 

knowledge and understanding of a specific subject in the data warehouse (Karasavvas et 
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al., 2004). It is important to differentiate experimentally determined function from those 

that have been predicted computationally (Karp et al., 2001) because the latter require 

subsequent validation. This would allow researchers to verify and decrease the 

propagation of incorrect predicted function during data annotation.  

 

3.2.4 Data warehouses of antimicrobial peptides 

 
To the author’s knowledge, four antimicrobial databases exclusive of the author’s 

database (ANTIMIC) are currently available as major resources for the study of 

antimicrobial peptides. These meta-databases (databases for storing metadata (data that 

describes data) for a specific purpose) contain entries collected from different sources. 

An attempt has been made in Italy to consolidate information about AMPs and 

store it in a database called AMSdb (http://www.bbcm.univ.trieste.it/~tossi/search.htm). 

This database contains annotated AMP sequence data and enables a keyword search for 

categories such as ID, date, family, category, activity, organism source, and generic 

keywords. The AMSdb database consists of 804 entries (as of 05 August 2003) of 

eukaryotic origin only. This database does not provide any tools for the analysis of data. 

Another database (http://public-1.cryst.bbk.ac.uk/peptaibol/home.shtml), 

Peptaibol database, is a highly specialized one that contains over 300 entries of antibiotic 

peptides known as Peptaibols (Chugh and Wallace, 2001), that originate from fungal 

organisms like Trichoderma and Emericellopsis. This database enables users to search for 

information about Peptaibols by name, or Peptaibol group. It also allows for searching of 

entries using motifs specific for Peptaibols (that are known to have non-standard amino 

acid residues in them). The database stores Peptaibol entries with PDB entries and 
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enables users to view the structure from the database. The authors of this database have 

classified the Peptaibols into subfamilies based on the alignments of these sequences with 

common sequence features thought to be important for channel formation (Chugh and 

Wallace, 2001). 

The APD (the Antimicrobial Peptide Database) is another data resource for 

AMPs. It contains annotated information for 559 peptides (498 antibacterial, 155 

antifungal, 28 antiviral and 18 antitumor, some peptides are member of multiple groups). 

It has an interactive interface for peptide query, prediction and design. It also provides 

statistical data for a select group of or all the peptides in the database. Peptide information 

can be searched using keywords such as peptide name, ID, length, net charge, 

hydrophobic percentage, key residue, unique sequence motif, structure and activity. APD 

facilitates studying the structure–function relationship of antimicrobial peptides. The 

database can be accessed via a web-based browser at the URL: 

http://aps.unmc.edu/AP/main.html (Wang and Wang, 2004). 

 SAPD (Synthetic Antibiotic Peptides Database) 

(http://oma.terkko.helsinki.fi.8080/~SAPD) contains information about peptide 

antibiotics that have been that have been synthesized based on naturally occurring 

structures of antimicrobial peptides. This database caters to researchers who want 

information about the various structure manipulation experiments that have been done on 

AMPs. It contains only 22 entries of synthetic peptides with detailed information. 

 Compared to these databases, ANTMIC contains the most number of AMPs 

that cover sequences from both eukaryotes and prokaryotes. It has sequence analysis 

tools integrated with the database that are unique to this database. These tools are  
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sequence similarity search tool such as BLAST, a peptide structure viewer tool to view 

the 3-D peptide structure and analytical tools like the Antimic profile module, facilitate 

analysis and classification of AMPs. The details of these tools have been discussed in the 

following sections. 

 
Table 2.2: Comparison of the various antimicrobial peptide databases  
 

Database Data Tools Address 
No. of 

sequences 

ANTIMIC 
 

eukaryotic and 
prokaryotic peptide 

sequences 
AMP peptide 

structures 

BLAST(peptide), 
HMM based peptide 
sequence profiling 

tool 
for sequence –

function relationships 
of AMPs 

research.i2r.a-star.edu.sg/Templar/DB/ANTIMIC/ 
 

1788 
 

AMSdb 
 

eukaryotic peptide 
sequences 

AMP peptide 
structures 

 
 

http://www.bbcm.univ.trieste.it/~tossi/search.htm 
 

804 
 

Peptaibol 
database 

 

peptaibol AMPs only
peptaibol peptide 

structure 

sequence based 
classification 

 

http://public-1.cryst.bbk.ac.uk/peptaibol/home.shtml 
 

317 
 

APD eukaryotic peptide 
sequences 

tools for studying 
structure–function 

relationship of AMPs
http://aps.unmc.edu/AP/main.html 559 

SAPD 

peptide antibiotics 
synthesized based on 
naturally occurring 
structures of  AMPs

 http://oma.terkko.helsinki.fi.8080/~SAPD 22 

 

3.2.5 Bioinformatics tools 
 
 
The next step after creating a comprehensive collection of data and storing it in databases 

is the use of computational tools for analysis to extract biologically meaningful 

information. General bioinformatics tools commonly used in sequence analyses of 

antimicrobial peptide data include but are not limited to BLAST (Altschul et al., 1997) 

and Clustal W (Thompson et al., 1997). The BLAST search tool finds regions of local 
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similarity between query sequences and database sequences by calculating the statistical 

significance of matches. Uses of BLAST include inferring functional and evolutionary 

relationships between sequences as well as helping to identify members of gene families. 

Clustal W is a general purpose multiple sequence alignment program for nucleotide or 

protein sequences. It involves the optimal alignment of the greatest number of identical or 

similar residues into columns across many nucleotide or protein sequences. Patterns of 

aligned sequences can be used in the analysis of function, structure and phylogeny 

relationship between sequences.  
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3.3 Materials and methods  
 
Figure 3.1: Methodology for building the ANTIMIC database 
 
 

 

The ANTIMIC database contains an extensive collection of antimicrobial sequences from 

many families. The database has been created on an in-house data-warehousing platform 
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(BioWare, sdmc.i2r.a-star.edu.sg/Templar) that enables building of specialized 

searchable biological databases. BioWare comprises three program modules: BioWare 

Retreive Module retrieves raw data from diverse sources on the internet; BioWare-Prep 

Module processes retrieved data, and Templar Module integrates this information into a 

central repository. The processing includes generation of a report summary for removal 

of redundant entries, renumbering of entries, and other sub-modules like a module for 

generation of multiple alignments and a module for viewing cysteine bridge patterns to 

help the database creator to manage the information more efficiently. 

 

4.3.4 Data collection for the ANTIMIC database 
 
 
The data has been extracted from public databases. Specific keyword search terms like 

“alpha defensin” and generic keyword terms like “antibacterial”, “antifungal”, etc. were 

used within the BioWare Retrieve Module to search the NCBI’s GenBank and Swiss-Prot 

databases. 

 
3.3.2 Data filtering 
 
 
This preliminary data set was checked for duplicates and redundancies, with help of 

BioWare and manual curation. Entries that may have been the earlier versions of another 

entry were removed. This was facilitated by the BioWare-Prep Module that generates a 

sequence comparison report summary based on pair wise alignment of entries in the data 

set. Entries, that had 100% sequence identity, were reported as duplicates. Duplicates 

having the same name and taxon (organism source) were compared. The entry judged to 

contain the most complete information was kept while the others were not considered. 
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Duplicates originating from different source species were kept as separate entries. 

Sequences that shared fragment or partial identity, where one sequence was an identical 

fragment of another, were checked for their uniqueness by referring to both literature and 

the cross-references field from the public databases. Most of these entries were earlier 

versions of other entries in the data set and hence were deleted. All deleted entries were 

added to the ANTIMIC file of rejected entries (FRE), which is used to avoid future 

retrieval of the same entry during database updates. This resultant data set will be 

referred to in this text as the preliminary cleaned data set.  

Next, each of the entries were checked manually to ensure that they are the AMP 

entries and not irrelevant entries, examples including “Integrin” or “Reticulon 4 receptor 

precursor” which may have been picked up by the keyword search. Records eliminated at 

this step were recorded in the FRE. The final cleaned data set was used as the input to the 

Templar Module, and the online version of the ANTIMIC database was generated 

(http://research.i2r.a-star.edu.sg/Templar/DB/ANTIMIC/).  

The antimicrobial sequences were formatted into a blastable database and integrated to 

the ANTIMIC database. 

 

3.3.3 Antimicrobial structural data incorporation 

 
The ANTIMIC database has a structure viewer module that contains the PDB structures 

of antimicrobial sequences. The structure viewer was populated by searching the PDB 

database for 3-D structures of antimicrobial sequences present in the ANTIMIC database. 

PDB accession numbers present in the annotation of entries in the ANTIMIC database 

were linked to their corresponding 3-D structures. 
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3.3.4 Creating the ANTIMIC profile tool for antimicrobial classification 
 
A web-based antimicrobial peptide analysis tool named as ANTIMIC profile tool was 

created with the aim to facilitate tentative classification of query sequences into different 

antimicrobial families. It has three modules based on the HMMER software package 

(http://hmmer.janelia.org/), (Eddy, 1995). The ANTIMIC profile tool uses predefined 

antimicrobial-specific library of profiles, although users can generate profiles out of their 

specific sequences. The profile library has been created out of mature peptide regions of 

AMPs of different families. The mature peptide region from each of the AMP sequences 

of a family were extracted based on the annotation provided for the AMP sequence in 

Swiss-Prot or GenBank. The mature domains were then subjected to multiple sequence 

alignment using Clustal W (Thompson et al., 1994). The Clustal W output was further 

processed with hmmbuild (part of HMMER package) to create an HMM profile. This 

profile was stored as one of profiles of antimicrobial-specific library e.g. mellitin.hmm, 

protegrin.hmm etc. 

The ‘Query profile’ module of ANTIMIC tool was built by first constructing an 

antimicrobial HMM database. The HMM database was built by concatenation of single 

HMM profile files created from different AMP family sequences. The files were 

concatenated using the –A “append” option of hmmbuild program. Then the 

hmmcalibrate program was run to determine appropriate statistical significance 

parameters for a HMM prior to doing database searches.  
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After the HMM profile database was built, known antimicrobial query sequences 

were used to test the specificity of the HMM profiles in the database. Query sequences 

that do not have known antimicrobial function were also used as a negative test set (see 

chapter 4) to check the specificity of ‘Query profile’ program. 

The Query db module is based on the hmmsearch program of HMMER package. For the 

“Query db” module, the nr dataset from Genbank was downloaded in fasta format and the 

ANTIMIC database peptide sequences were downloaded in fasta format and these 

datasets were built into two different databases to be queried against by the HMM 

profiles created. Details of the various HMMER command options can be found in the 

HMMER userguide. Figure 3.1 summarizes the strategy to build the ANTIMIC database. 

 

3.4 ANTIMIC database features 

 
 
The ANTIMIC database is the most comprehensive source of natural AMPs to date that 

has been manually curated. The database currently has 1788 number of entries (last 

updated on October 2002) extracted from GenBank and Swiss-Prot. The entries come 

from both eukaryotic and prokaryotic organisms. The creation of the database is a 

systematic collection of AMP sequences and the first step in the computational approach 

to understand the transcriptional regulation of AMPs. Hence, the intention to create the 

database was to aid molecular analysis of AMPs. In addition to comprehensive peptide 

information and AMP specifics, ANTIMIC database has integrated data extraction tools, 

sequence similarity search tools, BLAST, peptide structure viewer tool, and analytical 
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tools like the ANTIMIC profile module, all of which facilitate analysis and classification 

of AMPs. Figure 3.2  gives the statistics of the data stored in ANTIMIC database.  

Figure 3.3 shows the distribution of  ANTIMIC data based on structures of various AMP 

groups. As discussed earlier AMPs have highly variable primary sequences,  and they 

show some degree of conservation at structure level. Thus AMPs have been also 

classified based on their common structures (van 't Hof et al., 2001, Vizioli and Salzet, 

2002). A striking conservation is observed of AMPs that have disulfide bridges. For eg. 

defensins have been grouped as alpha, beta, theta based of their disulfide architectures 

(Chen et al., 2006). 

 

3.4.1 Database Organization 
 
 
Each ANTIMIC entry includes a concise description of the sequence, the scientific name 

and taxonomy of the source organism, bibliographic references, and a table of features 

listing areas of biological significance, coding regions, peptide regions, sites of mutations 

or modifications and the protein translation. 

The annotation of each entry in the database contains the following fields (Figure 

3.4): A unique accession number ‘DBACC’ that defines each record in the ANTIMIC 

database. The format is (D) (six digit number), where D denotes an entry of AMP and the 

six-digit number is a unique descriptor of the entry. Next, the field ‘Date’ identifies the 

date when the entry was made. The field ‘Locus Name’, ‘Sequence length’, and 

‘GenBank Division’ contain information on the locus, length of the sequence, and the 

division group to which the sequence belongs in GenBank. In some entries ‘GenBank 

Division’ is also known as ‘Molecular type’. The date when the entry was updated by 
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public database is shown in the field ‘GenBank Modification Date’ or, in some entries, as 

‘Release Date’. The ‘Name’ field contains the name of AMP used in literature, and if 

available, their common names. The field ‘Accession’ provides hyperlinks to the 

corresponding entries of the relevant external databases, GenBank and Swiss-Prot. The 

organism source of AMPs can be found in the ‘Source’ field and its taxonomy is shown 

in the ‘Species’ field. The ‘Reference’ field contains the literature references, with the 

author names and titles. Relevant comments or observations can be found in the 

‘Comment’ field. Structural features of AMPs, such as residues forming the disulfide 

bridges, helices or strands, are described in the field ‘Features’. Putative structural 

information derived by similarity to known structures is indicated as ‘By Similarty’. 

Many entries have the field ‘Link’ that links that entry other databases EMBL, Pfam, and 

ProDom etc. The field ‘Translation’ provides the amino acid sequences of an AMP entry. 

If the PDB structure is available, the field ‘Structure’ contains internal hyperlinks to the 

PDB structure stored in ANTIMIC database for relevant records. 

 

3.4.2 Integrated Tools 
 
 
The ANTIMIC database contains several integrated tools to help in the data extraction 

and analysis of AMP sequences. The data extraction and sequence viewing tools include:  

- Keyword search, 

- BLAST search, and  

- Structure viewer. 

The Keyword search feature allows users to search the database using keywords. 

The BLAST (Altschul et al., 1990) search enables users to perform sequence similarity 
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search against the antimicrobial sequences stored in the database. The structure viewer 

allows for the 3-D structures of individual AMPs to be viewed.  

The analysis-based tools consist of the ANTIMIC profile tool. This tool has 

multiple modules. The modules allow for building of new profiles, querying new 

sequences against the build profiles or against the predefined profile library, as well as 

against either ANTIMIC or nr databases. A detailed analysis done using ANTIMIC 

profile tool is discussed in Chapter 4. 

Users can access ANTIMIC entries by using either a simple keyword search such 

as species name, type of antimicrobial activity, Swiss-Prot or GenBank accession 

numbers, etc., or they can perform complex searches for more specific results by using 

more than one keyword with the support of Boolean operators. For example, a simple 

search would be to use a keyword like “Protegrin” to retrieve entries of this family. A 

complex search would be “mellitin and wasp” which will return mellitin family related 

entries that are specific to the wasp species. Therefore, any term that is present in the 

annotation of the entries can be used in combination with others to retrieve specific 

results. The results are displayed in a tabular form as a list. The list displays accession 

numbers, species from which AMP originates, and the antimicrobial sequence name. The 

accession number is hyperlinked within the database to the full data record. 

The database has integrated the BLAST program (Altschul et al., 1990 ) that 

consists of a set of similarity search programs for protein or DNA sequences. The 

BLAST feature allows users to perform sequence comparison using the BLAST 

algorithm. A query sequence of amino acid can be compared against all sequences in the 

ANTIMIC database. Users can choose to return the results either in standard BLAST 
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output or color-coded multiple sequence alignment generated by MView program 

(Brown et al., 1998). MView highlights the positions of conserved and homologous 

amino acids in the multiple sequence alignment returned by BLAST.  

For the antimicrobial sequences that have an entry in the PDB the corresponding 

peptide structures can be seen through the structure feature using the Chime (Horton, 

1999) or Swiss PDB viewer (Guex and Peitsch, 1997). The PDB files can also be 

downloaded. The latest version of Chime 2.6 SP4 is functional with Netscape Navigator 

(version 4.x) (Figure 3.5). 

3.5 Future work 
 
A database for antimicrobial peptides can prove to be very useful for scientists in 

academics and commercial organizations. For the ANTIMIC database to be consistently 

useful to the researchers, data enrichment with more data information on AMPs and 

regular updating is important. The ANTIMIC database can be further enriched by adding 

gene information, promoter sequences, gene information, transcript information, gene 

structure, orthologs and paralogs and gene ontology of known AMPs that have been 

extracted in the process of understanding AMP regulation. The peptide information can 

also be enriched in many ways. Some suggestions are peptide cleavage information, 

amino acid post translation modification of the peptides, known mechanism of action for 

AMPs and minimal inhibitory concentration (MIC) that can be appended to the existing 

AMP entries.  

New AMPs are being discovered regularly and hence the ANTIMIC database needs 

to be updated regularly. A semi-automated process with the help of BioWare is proposed 

to make regular updates possible. Keywords (AMP gene names, family names) of new 
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AMPs can be collected. BioWare can be used to search for annotation of these AMPs 

using the keywords and retain only the new entries. Secondly, the ANTIMIC profile tool 

can be facilitated to extract new AMP sequences based on profile searches. 

3.6 Conclusion 
 
ANTIMIC is a specialized database that has been built with the aim of making a 

comprehensive repository of natural AMPs complemented by data extraction and analysis 

tools to help further analysis of AMPs. One of the integrated tools, the ANTIMIC profile 

module, enables users to assign a new putative antimicrobial sequence to a family and 

functional domain. It also enables the capture of new peptide homologs from other public 

databases. Chapter 4 gives a detailed view of the utility of the ANTIMIC tool to datamine 

useful information on antimicrobial peptides. 
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Figure 3.2: Number of AMP entries in ANTIMIC database in terms of different  
  species  

 The ANTIMIC database has 1788 entries as of (June 2003) 

 
 
 
Figure 3.3: Number of AMP entries in ANTIMIC database in terms of different 

sequence properties 
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Figure 3.4: A typical ANTIMIC entry 
 

  
 
Full data record of AMP named 1PG1 from the protegrin family. Information about 
cysteine bridges is shown in color for simpler viewing. 
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Figure 3.5 Structure viewer image 
 
Structure viewer image shows the PDB structures of AMPs. The structures can be viewed with 
the Chime program that is compatible with Netscape Navigator. The figure shows the structure 
of beta defensin, (BNDB-12) from Bos taurus.  
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Part II: Chapter 4: HMM based sequence analysis of AMPs 
 
Every artist was first an amateur 
(Ralph Waldo Emerson) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

48 

4.1 Introduction 
 
 
In this chapter the author demonstrates the usage of the ANTIMIC profile tool that is 

integrated with the ANTIMIC database (Chapter 3). ANTIMIC profile tool can help to 

identify the plausible important residues for AMP peptides that are involved in their 

antimicrobial function. This tool can also facilitate in assigning new putative AMP 

sequences to AMP families based on HMM profile matches. It also facilitates search for 

new AMP sequences based on the profiles of different AMP families. 

4.2 Background 
 
4.3.4 Classification of AMPs based on sequence properties 
 
Attempts have been made to classify the huge and diverse collection of AMPs based on 

biochemical and structural features. The largest number of AMPs are cationic molecules. 

Based on structural features, cationic peptides are divided into three classes (Table 4.1). 

The first class consists of linear peptides forming alpha-helical structures. Examples under 

this class comes from cecropins originating from insects which are a family of 3-4kDa 

linear amphipathic peptides, magainins whose source is from frogs, and cleaved product of 

histone molecules (buforin II). The second class consists of cysteine-rich open ended 

peptides containing one or more disulfide bridges. Defensins, which originate from 

different mammalian species fall under this category. Defensins themselves are arranged in 

families based on structural differences. The third class comprises peptides rich in specific 

amino acids such as proline, glycine or histidine. AMPs like drosocin, metchnikowins from 

Drosophila are proline rich peptides. Attacins and diptericins are glycine rich peptides 

(Vizioli and Salzet, 2002).   
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There is a novel group of AMPs isolated from mammalian epithelia, which are 

anionic in nature (Table 4.2). The first class comprises of phosphorylated compounds like 

peptide B, enkelytin that are cleavage products of neuropeptide precursors like 

proenkephalin-A. The other group of anionic peptides are aspartic acid rich peptides like 

dermicidin. At present their mode of action is not clearly deciphered.  

There are also aromatic dipeptides that are AMPs. These are low molecular weight 

antibacterial compounds. Examples of these are N-beta-analyl-5-S-glutathionyl-3,4-

dihydroxyphenylalanine identified in Sarcophaga peregrina.Another class of anionic 

peptides are derived from oxygen binding proteins like lactoferrin from human and 

hemocyanin derived peptide from shrimp. Bactericidal activity of anionic peptides, 

aromatic peptides and oxygen derived peptides are weak compared to cationic peptides.  
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Table 4.1: Classification of cationic AMPs.  
  Reference (PMID)*: Pubmed Unique ID 
 

Structure and representative 
peptides Organism Antimicrobial activity 

Mode of 
antimicrobial 
activity 

PDB structure 
ID Reference (PMID)* 

Linear alpha-helix peptides      
Cecropins Insects, pig Bacteria, fungi, virus, Carpet  11807545, 10426426, 10333735 
Clavanin, styelin Tunicates Bacteria   10333735 

Magainin, dermaseptin Amphibians Bacteria, protozoa Torroidal pore 
2MAG 
(magainin) 11807545, 10333735 

Buforins Amphibians Bacteria, fungi Binds nucleic acids  11807545, 8573171 , 9514864  
Andropin Insects Bacteria   1899226 
Myeloid antibacterial peptide 27 
(mature peptide) Bovine Bacteria, fungi   8910461 
Antibacterial peptide BMAP-34 
(mature peptide) Bovine ?   9409740 
Linear peptides rich in certain 
amino acids      
Pro-rich:      

Drosocin, metchnikowin, Fruit fly Bacteria 
Inhibits enzymatic 
activity 

1MYN 
(Drosocin) 10426426 

Pyrrhocoricin, Hemipteran Bacteria, fungi   10426426 
Metchnikowin      
Bactenecin 5 (mature peptide 
region) Sheep Gram-negative bacteria   10417180  

Abaecin honey bee 
Gram-negative,Gram-
positive bacteria   7961803  

Gly-rich:      
Diptericins, attacins Dipterans Bacteria   10426426 
His-rich:      

Histatin Human Bacteria, fungi 
Inhibits enzymatic 
activity  11807545, 10333735 

Piscidins Fish Gram-positive, Gram-   11739390  
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negative bacteria 
Tyr-rich:      

Indolicidin Cattle Bacteria 

Alters cytoplasmic 
membrane septum 
formation, inhibits 
protein synthesis 1G8C 11807545, 10333735 

Single disulfide bridge      
Thanatin Hemipteran Bacteria, fungi  8TFV 11807545, 10426426, 10333738  
Cyclic dodecapeptide precursor 
(Cathelicidins) Bovine Bacteria   8706679 
Brevinins Frog Bacteria   11807545, 10333735 
Brain natriouretic peptides Human Bacteria, Fungi   11410403 
Two disulfide bridges      

Tachyplesin II 
Horseshoe 
crab Bacteria, fungi, virus Binds nucleic acids  11807545, 10333735, 10333738  

Androctonin Scorpion Bacteria, fungi  1CZ6 11807545, 10333738  
Lactoferricin Human Bacteria  1lfc 1599934 
Protegrins Pig Bacteria, fungi Torroidal pore 1lxe,1kwy  
Three disulfide bridges      

Alpha defensins Mammals Bacteria, fungi 

Inhibit protein 
synthesis (human 
alpha defensins)  11807545, 10333735 

Beta defensins Mammals Bacteria, fungi  

1IJV;1E4S;1KJ
5;1FD3;1FD4; 
1E4Q;1FQQ;1
KJ6;1KJ6;1E4
T;1E4R; 1bnb  11807545, 10333735 

Defensins Insects Bacteria, fungi, protozoa   10426426, 10333738 
Penaeidins Shrimp Bacteria, fungi   10333738, 11598107  
Saposin c-like pore forming 
peptides 

Entamooeba 
dispar Bacteria   10518795 

More than three disulfide 
bridges      

Tachycitin 
Horseshoe 
crab Bacteria, fungi  1DQC; 10333738 
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Drosomycin Fruit fly Fungi  1MYN; 10333738 
Gambicin Mosquito Bacteria, fungi, protozoa   11606751  
Heliomicin Lepidopteran Bacteria, fungi  1I2U;  11580275  
Defensins Plants Fungi   11807545, 10333739 



 
 

53 

Table 4.2: Classification of non-cationic AMPs.  
 This table has been modified from Vizioli and Salzet, 2002) 

 

 

Structure and representative peptides Organism Antimicrobial activity 
Reference 
(PMID)* 

I. Anionic peptides       
a. Neuropeptide derived:       

Enkelytin Bovine, human, Bacteria 
11192590, 
11377277 

Peptide B Bovine, human, Bacteria 
11192590, 
11377277 

  Leech, mussel     
b. Aspartic acid rich:       
H-GDDDDDD-OH Ovine Bacteria 8552650 
Dermcidin Human Bacteria 11694882 
Glu-rich       
Maximins 3/H5  Toad Gram-positive bacteria 11835991 

II. Aromatic dipeptides    
N-β-alanyl-5-S-glutathionyl- 
3,4-dihydroxyphenylalanine Flesh fly Bacteria, fungi 8662858 

p-Hydroxycinnamaldehyde Saw fly Bacteria, fungi 9923603 
Peptides derived from oxygen-binding 
III. Proteins   
Hemocyanin derived Shrimp Bacteria 11598107 
Hemoglobin derived Tick Bacteria 10464258 
Lactoferrin Human Bacteria, virus 11431038 
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 4.2.2  Computational classification methods 

In recent years, many computational approaches and tools have evolved to classify 

peptides in various ways. Hidden Markov Model (HMM) is one such approach besides 

Support vector Machine (SVM), Artificial Neural Networks (ANN), Decision trees and 

so on (Jia et al., 2006). HMM performs better than other machine learning methods in 

classifying proteins in family and superfamilies (Can et al., 2004). HMM is used to 

provide statistical representation of real biological processes. One example is 

classification and characterization of protein families (Bateman et al., 1999). HMM 

generates optimum multiple sequence alignment for a given protein family that can be 

used as a method for classification of protein sequences. HMMs can be considered as a 

scoring system that is based on probabilistic models of linear sequences.  

HMM profiles are able to capture the sequence properties for the set of peptide 

sequences. The profile generated can then be used to search for other sequences in a 

database that match this profile or a new sequence can be queried against the profile to 

see whether it matches the profile. This is possible as HMM inherently has probabilities 

assigned to each position of the alignment. In a typical HMM profile, the probability 

parameters are converted to additive log-odds scores before aligning and scoring a query 

sequence (Barrett et al., 1997). Therefore, if the probability of the match state emitting 

residue y is py, and the expected background frequency of residue z in the sequence 

database is fz, the score of residue z at this match state is log py/fz. The scoring takes into 

account gap alignments also which is different from gap alignments in other sequence 

alignment tools like BLAST. In HMM profile, for an insertion of length x, there is a state 

transition into insert state which costs log tMI. tMI is the state transition probability for 
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moving from match state to insert state, (x-1) state transitions for each subsequent insert 

state that cost log tII, and a state transition for leaving the insert state that costs log tIM 

(Eddy, 1998). 

 

4.2.3 ANTIMIC Profile tool 

 

The ANTIMIC profile tool integrated with the ANTIMIC database is based on 

HMMER (Eddy, 1998) (a program which uses Hidden Markov Models for motif 

description). The ANTIMIC profile tool is aimed at facilitating tentative classification of 

query sequences into different antimicrobial families. It uses predefined antimicrobial-

specific library of profiles, and also allows users to generate profiles out of their specific 

sequences. The profile library has been created out of mature peptide regions of AMPs of 

different families as discussed below. The ANTIMIC profile tool suggests positions, 

which represent the signature for the selected family and potentially may be crucial for 

antimicrobial activity, as well as those, which are ‘non-critical’ in the functional domain 

of a family of sequences. The profiles used by this module can serve as templates for 

suggesting to which family of antimicrobial sequence a query sequence may belong. The 

use of profiles enables capturing of homologs from public databases, which have a high 

likelihood of belonging to a particular family. 

The ANTIMIC profile tool has multiple modules . It consists of a profile-building 

module known as ‘Build profiles’ that enables the creation of profiles out of the 

sequences submitted by the user. The input sequences in this module can be in any format 

that is accepted by the program readseq, 
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(http://iubio.bio.indiana.edu/soft/molbio/readseq/). The module generates a Clustal W 

alignment of the sequences, which is used to generate the profile. The user can view the 

Clustal W alignment in the web browser. The result page gives the user the option to 

view the profile that has been generated or use the profile for querying. If the option of 

use profile is selected the user is directed to the ‘Query profile’ module. Using this 

module the user can input query sequences for query against the profile. The ‘Query 

profile’ module stores the profiles built by the user with an ID tag and stores a permanent 

profile library “antimicrobial.hmm”. The antimicrobial.hmm consists of HMM profiles of 

several families of AMPs. The families currently included are melittin, magainin, 

bacteriocin, cecropin, and protegrin. HMM profiles of individual families are also 

provided separately.  

The ‘Query profile’ module helps a user to predict to which family a query 

sequence most likely belongs to (based on primary sequence properties) and whether it is 

likely to share the same mode of action as the matched family of sequences. The results 

contain three sections: a ranked list of the best scoring HMMs; a list of the best scoring 

domains in order of their occurrence in the sequence; and alignments for the highest 

scoring domains. The matches are shown with scores (bits) and E-values. The bits score 

indicates how well the sequences match an HMM profile. E-value, which is calculated 

from bits score, shows the number of false positives that is expected to be seen at or 

above this bit score. Therefore, an E-value of 0.1 indicates that there is only a 10% space 

chance that the hit is a false or has come up by chance. Hence, a low E-value is best. The 

best hits appear on the top of the results list. The critical residues (highly conserved 
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residues) for both the query sequence and the consensus pattern for a family are shown in 

capital letters.  

The second module is known as ‘Query db’. Query db allows users to search for 

sequences in the GenBank ‘nr’ and ANTIMIC databases, which match specific profiles. 

These AMP profiles are predefined (for five AMP families) and could be used either as 

single profiles or as a library. Additionally, users may employ their own generated 

profiles.  

4.3 HMM profiles of some AMP families 
 
This section highlights a detailed analysis of HMM profiles generated for two AMP 

families (melittin, and beta-defensin) by ANTIMIC profile modules and its use in 

differentiating different query sequences.  

 
4.3.4 Melittin profile analysis 
 
Melittin are found in bees and are linear peptides without any disulfide bridges. They 

possess a highly asymmetric polar/non-polar amino acid distribution with six polar amino 

acids clustering at the c-terminal end (Maget-Dana, 1999). The peptides usually have a 

charge of +5 at pH 7 and a polar/non-polar amino acid ratio of 0.86 (Maget-Dana, 1999). 

Melittin is known to have a strong lytic activity towards red blood cells which is due to 

its amino acid residue tryptophan that plays a significant role in causing this hemolytic 

property (Blondelle et al., 1993). 

Six melittin sequences were taken and their mature peptide region extracted 

(Table 4.3). Using build profile module the sequences were aligned in a multiple 

sequence alignment and the HMM model was generated. A set of query sequences from 



 
 

58 

different sources were collected to test against the melittin HMM profile. This test dataset 

consisted of six analogs of melittin, which were different from the wild type melittin 

sequence by a few residues. All of these analogs had a substitution of an amino acid 

residue at different positions with tryptophan (W) residue (Blondelle et al., 1993). 

Studies have shown that Trp residue plays a critical role in binding peptides to cholesterol 

present in biological membranes through the indole moiety (de Kruijff, 1990). It also 

plays role in hemolytic activity of thiol-activated sequences (de Kruijff, 1990). Hence, 

these analogs have been synthesized to understand the effect of a second Trp residue on 

melittin’s hemolytic activity (Blondelle et al., 1993). Two cecropin-melittin hybrid 

sequences were included which have a part of cecropin AMP sequence and a part of 

melittin AMP sequence. These hybrid sequences have been created in experimental labs 

studying the effect of hybridizing two different AMP sequences to get a more efficacious 

AMP sequence (Wade et al., 1992, Juvvadi et al., 1999). Protegrin AMP sequence from 

pig (PG3_PIG P32196) was included in the dataset. Non-AMP sequence Acyl-CoA 

dehydrogenase family member 8 (ACAD8_HUMAN) was introduced in the dataset. 

Finally, two melittin sequences were put in the dataset. One melittin sequence consisted 

of only the mature peptide region while the other was the complete peptide sequence, 

proprepeptide (Table 4.4). 

The results of the query are shown in (Appendix 1, Supplementary Figure 4.1). 

The wild type, melittin mature peptide sequence and the melittin proprepeptide sequence 

both had the same E-value and the lowest E-value scores as expected. Hence, they were 

the closest sequences to the melittin profile. Protegrin and Acyl-CoA dehydrogenase 

family member 8 sequences were used as negative data to check against the melittin 
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profile. Both these sequences showed high E-value scores, which indicated their distance 

from the melittin profile. Acyl- CoA dehydrogenase had slightly lower score than 

protegrin as it was a longer sequence length and thus had more number of random 

matches. 

Next were the six melittin analogs all of which had nearly similar E-value scores. 

Mut5_L6 and mut13_L13 both had the same E-value scores, which was the lowest score 

in the group of melittin analogs. These two analogs have a substitution of Leu-> 

Tryptophan at position 6 and 13 respectively. Experimental evidence shows that a 

substitution of any of these two leucines with Trp leads to a decrease in hemolytic 

activity. The mut13_P14 is different from other analogs due to a Proline (P->W) 

(Tryptophan) substitution. This substitution leads to a small increase in hemolytic activity 

(Blondelle et al., 1993). Not surprisingly, this sequence had a slightly greater E-value 

than the rest of the analogs. The analogs were followed by the cecropin-melitin hybrid 

sequence (CecropinA(1-8)-Mel(1-18)). This was closer to the melittin profile as it had a 

greater part of melittin sequence in its sequence length. CA (1-7)M(2-9) on the other 

hand had a shorter melittin sequence contributing to the hybrid formation and hence did 

not show a favorable E-value score.  

This result shows that HMM based scoring system can be used to segregate 

sequences having different properties into groups based on differences in E-values. 

Analysis of the E-values of different test sequences shows that the melittin profile 

generated by HMM is able to differentiate between members of the melittin family and 

non-members. It can also differentiate sequences where residues are substituted at critical 

position that directly affects the function of the melittin sequence. Hence, this tool can be 
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used to create specific profiles out of analogs or mutated sequences to test against new 

query sequences for checking profile similarity. The next example demonstrates this 

point. 

 
4.3.4 Melittin analog profile analysis 
 
Another analysis that was done using HMM was to classify analogs of a particular family 

of AMP and create profiles out of it to observe the critical residues that cause certain 

properties of the AMP to increase or decrease. Melittin analogs were collected from 

literature (Blondelle et al., 1993) that show change in the hemolytic activity of melittin. 

Two different profiles were generated from analogs. One profile was created out of three 

analog sequences that had substitution of leucine residues with tryptophan at position 9, 

position 13 and position 16 of the wild type melittin residue. These sequences were 

observed to show decreased hemolytic activity in assays (Blondelle et al., 1993). A 

second profile was created out of seven analog sequences with tryptophan substitutions at 

positions 1, 7, 11, 12, 15, 23, 21. These sequences showed significant increase in the 

hemolytic activity of melittin.  

Next, these profiles were tested against a set of sequences for their specificity to 

see if they could differentiate between a sequence that has increased hemolytic activity and 

one that has decreased hemolytic activity. A set of four sequences was chosen to test 

against the profiles. Two were analogs with substitution of lysine-23 with tryptophan and 

leucine-16 with tryptophan. Lysine-23 substituted analog shows increased hemolytic 

activity while leucine-16 has decreased hemolytic activity (Blondelle et al., 1993). 

Mel_apicc mature peptide sequence representing the wild type melittin sequence was the 

third sequence in the test set. The fourth sequence was an analog with isoleucine 
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substituted with tryptophan at position 2. This sequence did not show any significant 

increase or decrease in activity compared to the wild type melittin sequence. 

Querying against the “increase hemolytic activity” profile showed that the wild 

type melittin sequence (mel_apicc) and K-23 (increased hemolytic activity) analog had 

the lowest E-values*. Leucine-16 that represents the analog with decreased hemolytic 

activity had a higher E-value than K-23. I-2 analog that showed no change in hemolytic 

activity and had a slightly higher E-value than L-16. Thus, the profile was able to 

differentiate the analog with increased activity from the one with decreased activity. 

It was observed that querying against the “decrease hemolytic activity” profile using the 

same test set, leucine-16 (L-16) and wild type melittin sequence had lower E-values than 

K-23 and I-2. Thus, L-16 was closer to this profile, an obvious outcome and K-23 was 

more distant to this profile as compared to L-16. 

Since the analogs have single substitutions in their sequences, the E-values to 

differentiate the two different categories of melittin analogs were not on a very wide scale 

difference. However, a significant difference in the E-values was observed that enabled 

ranking them on the basis of closeness to the profile. The test set sequences and the 

results of the analog profiles are in (Table 4.5, and Appendix 1, Supplementary Figure 

4.2). 

*Low E-values indicate the query is closer to a given a HMM profile 
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4.3.4 Beta-defensin profile analysis 
 
The melittin profile is an example of model dataset that is fairly conserved and 

homogenous in its sequences. Therefore, another AMP family was taken where the 

peptide sequences are not so well conserved among themselves, though they have been 

classified under the same beta-defensin family. The beta-defensin profile was made of 13 

different beta-defensin mature peptide sequences from human, mouse, and different 

monkey species (Table 4.3). The test dataset contained five sequences, which consisted 

of two beta defensin from different monkey species and one beta defensin from goat. 

Acyl-CoA dehydrogenase family member 8 (non-AMP) and protegrin (Table 4.4). 

Supplementary Figure 4.3 shows the results of the querying against the beta-defensin 

profile. Beta-defensin from BD01_CERPR (Preuss’ monkey) and BD01_PONPY 

(Orangutan) had the most favorable E-values (low E-value). Beta-defensin from goat had 

a different E-value indicating that it was not very close to the primate and rodent beta-

defensin sequences. The goat beta defensin sequence has residue substitutions in many 

conserved positions. The cysteine residue positions are conserved. However, its E-value 

is much lower compared to non beta-defensin sequence protegrin and non-AMP sequence 

(Acyl-CoA dehydrogenase family member 8) and is comparable to the other two monkey 

beta-defensin sequences. Protegrin and Acyl-CoA dehydrogenase family member 8 had 

very high E-value scores indicating they did not belong to this AMP profile. 

 
4.3.4 Querydb results 
 
Querydb enables to extract sequences from public databases that have similar sequence 

properties. NR (non-redundant) peptide database of NCBI is the public database , that has 
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been integrated to the ANTIMIC profile module. The nr dataset contains 137,010 peptide 

sequences. 

The melittin profile was searched against the nr database with a default E-value 

cutoff of 10 to test its specificity and sensitivity. The search returned three hits 

(Appendix 1, Supplementary Figure 4.4). The first two hits (gi|69550, gi|229444) with 

low E-value scores belonged to the melittin family. The third hit (gi|16121500) was a 

tyrosine-specific transport protein from the bacteria Yersinia pestis CO92 which does not 

belong to the melittin family. It perhaps appeared since some conserved residues of 

melittin domain matched the residues of the tyrosine-specific transport protein. This 

profile has a high sensitivity and fair specificity index and a good correlation coefficient 

(Table 4.6). 

The beta-defensin profile was searched against nr dataset with an E-value cutoff 

of 10. Search returned 12 hits (Supplementary Figure 4.5). The top most hit was beta-

defensin 1 from human which was also one of the sequences of the dataset used in 

creating the beta-defensin HMM profile. Majority of the hits were beta-defensins from 

different mammalian species (human, bovine, mouse, horse). Though the profile was 

generated using a number of primate species sequences, the primate sequences did not 

come up as hits since the nr dataset used for querying lacked monkey beta-defensins. The 

only sequence that was a false hit was, gi|230338 which is a trypsin peptide complex with 

Bowman-birk inhibitor. The sensitivity, specificity and correlation coefficient for beta-

defensin profile indicates that it has average sensitivity, high specificity and a fairly good 

correlation coefficient. Table 4.6 gives the sensitivity, specificity and correlation 

coefficient of the results from querying melittin and beta-defensin profile against nr 
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database. The overall quality of the profile search against the nr database has been 

calculated in terms of sensitivity, specificity and correlation coefficient with the 

following formula: 

Sensitivity (Sn) = TP/ (TP+FN) TP =True Positive; FN=: False negative; FP=: false 

positive 

Specificity (Sp) = TP/ (TP+ FP) 

Correlation coefficient (CC) = (TP*TN)- (FN*FP)/√(TP+FN)(TN+FP)(TP+FP)(TN+FN) 

 

 

4.4 Discussion  
 
HMM has been used as the method for creating peptide profiles of different AMP 

profiles. The author has taken examples of different families of AMPs and has attempted 

to show that using HMM profiles one can predict the salient functional residues and a 

possible change in the strength of the property, even with single mutations at some 

residues. This has been shown through the melittin analog properties example. This 

example can be extrapolated to design in-silico mutant peptides, which have a desired 

property provided apriori knowledge about a family of sequences exists. It has also been 

possible to differentiate between sequences that are evolutionary divergent though they 

belong to the same AMP family. This has been shown with the beta-defensin profile 

analysis.  

As a part of future work, HMM profiles can be created for the AMP families that 

have not been covered by this study. Comparison of HMM with other machine learning 

methods like ANN, SVM was beyond the scope of this thesis. These methods can be 
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tested on AMP families to compare performance of HMM with other methods. These 

methods can also be combined with HMM to see if a better classification method can be 

determined.   

 

4.5 Conclusion 

This study was to investigate the classes of AMP peptides and see if current 

classifications fit, and attempt to propose a computational method of classification that 

could be used across all AMPs based on the sequence properties. The HMM profiles 

were also set up find new AMPs. However, as previously reported and also observed, the 

variation and diversity of the AMP sequences even within the same family and species 

(Maxwell et al., 2003) makes is difficult to identify or predict new AMPs. Thus, a new 

approach is proposed that has been used recently for some specific classes of genes 

(Frech et al., 1997,  Wasserman and Fickett, 1998) based on the model of the gene’s 

promoter region. This approach seems reasonable to use for the purpose of AMP gene 

discovery as literature reviews suggest that the promoter regions of the highly diverse 

AMPs are fairly conserved (Ganz, 2003). This approach can be suitably complemented 

with homology based gene identification methods to increase the possibilities of 

extracting new AMPs from whole genomes. Chapter 5 and onwards shows 

implementation of this approach. 
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Table 4.3: Sequences from melittin and beta-defensin AMP family used to create HMM profiles 
 

melittin peptide_name Species sequence (mature_peptide) 
 MEL_APICC Apis cerana cerana  GIGAVLKVLTTGLPALISWIKRKRQQ  
 MEL_APICE Apis Cerana GIGAVLKVLTTGLPALISWIKRKRQQ 
 MEL_APIDO Apis dorsata GIGAILKVLSTGLPALISWIKRKRQE 
 MEL_APIFL Apis florae GIGAILKVLATGLPTLISWIKNKRKQ 
 MEL_VESMC Vespula maculifrons  GIGAVLKVLTTGLPALISWIKRKRQQ 
 MEL_APIME Apis mellifera  GIGAVLKVLATGLPALISWIKRKRQQ  
beta-defensin    
 BD01_MOUSE Mus musculus DQYKCLQHGGFCLRSSCPSNTKLQGTCKPDKPNCCKS 
 BD01_HUMAN Homo sapiens (Human)    DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK 
 BD01_PRECR Presbytis cristata (Silvered langur)  DHYNCVRSGGQCLYSACPIYTKIQGTCYHGKAKCCK 
 BD01_PREME Presbytis melalophos (Banded langur) DHYNCVRSGGQCLYSACPIYTKIQGTCYHGKAKCCK 
 BD01_PREOB Presbytis obscurus (Dusky langur) DHYNCVRSGGQCLYSACPIYTKIQGTCYHGKAKCCK 
 BD01_HYLLA Hylobates lar (Common gibbon) SDHYNCVRSGGQCLYSACPIYTKIQGTCYQGKAKCCK 
 BD01_GORGO Gorilla gorilla gorilla DHYNCVSSGGQCLYSACPIFTKIQGTCYGGKAKCCK 
 BD01_MACFA Macaca fascicularis (Crab eating macaque) DHYNCVRSGGQCLYSACPIYTRIQGTCYHGKAKCCK 
 BD01_MACMU Macaca mulatta (Rhesus macaque)    DHYNCVRSGGQCLYSACPIYTRIQGTCYHGKAKCCK 
 BD01_CERAE Cercopithecus aethiops (Green monkey) DHYNCVRSGGQCLYSACPIYTKIQGTCYHGKAKCCK 
 BD01_CERER Cercopithecus erythrogaster (Red-bellied monkey) HYICVRSGGQCLYSACPIYTKIQGTCYHGKAKCCK 
 BD01_PAPAN Papio anubis (Olive baboon)    DHYNCVRSGGQCLYSACPIYTRIQGTCYHGKAKCCK 
 BD01_CERPR Cercopithecus preussi (Preuss's monkey) DHYNCVRSGGQCLYSACPIYTKIQGTCYHGKAKCCK 
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Table 4.4: Sequences queried against melittin and beta-defensin profiles 
 

Name Sequence 
melittin test sequences  
mel_apicc (mature_peptide) (mellitin1) wildtype gigavlkvlttglpaliswikrkrqqg 
mut5_l6 (mutant mellitin) gigavwkvlttglpaliswikrkrqq 
mut13_l13 (mutant mellitin) gigavlkvlttgwpaliswikrkrqq 
mut1_g1 (mutant mellitin) wigavlkvlttglpaliswikrkrqq 
mut6_l7 (mutant mellitin) gigavlwvlttglpaliswikrkrqq 
mut10_t11 (mutant mellitin) gigavlkvltwglpaliswikrkrqq 
mut13_p14 (mutant mellitin) gigavlkvlttglwaliswikrkrqq 
cecropina(1-8)-melittin(1-18) ( mellitin hybrid) kwklpkkigigavlkvlttglpalis 
ca(1-7)m(2-9) kwklfkkigavlkvl 
Protegrin (PG3_PIG) glcycrrrfcvcv 

acyl-coadehydrogenasefamilymember8 (ACAD8_HUMAN) 

mlwsgcrrfgarlgclpgglrvlvqtghrsltscidpsmglneeqkefqkvafdfaaremapnmaewdqkelfpvdvmrkaaqlgfggv 
yiqtdvggsglsrldtsvifealatgctsttayisihnmcawmidsfgneeqrhkfcpplctmekfasycltepgsgsdaaslltsakkqgdh 
yilngskafisgagesdiyvvmcrtggpgpkgiscivvekgtpglsfgkkekkvgwnsqptravifedcavpvanrigsegqgfliavrglng 
griniascslgaahasviltrdhlnvrkqfgeplasnqylqftladmatrlvaarlmvrnaavalqeerkdavalcsmaklfatdecfaicnqal 
qmhggygylkdyavqqyvrdsrvhqilegsnevmrilisrsllqe 

mel_apicc(complete peptide) (melittin_complete) mkflvnvalvfmvvyisfiyaapepepapeaeaeadaeadpeagigavlkvlttglpaliswikrkrqqg 
beta-defensin test sequences  

acyl-coadehydrogenasefamilymember8 

mlwsgcrrfgarlgclpgglrvlvqtghrsltscidpsmglneeqkefqkvafdfaaremapnmaewdqkelfpvdvmrkaaqlgfggvyiqtdvggsglsr 
ldtsvifealatgctsttayisihnmcawmidsfgneeqrhkfcpplctmekfasycltepgsgsdaaslltsakkqgdhyilngskafisgagesdiyv 
vmcrtggpgpkgiscivvekgtpglsfgkkekkvgwnsqptravifedcavpvanrigsegqgfliavrglnggriniascslgaahasviltrd 
hlnvrkqfgeplasnqylqftladmatrlvaarlmvrnaavalqeerkdavalcsmaklfatdecfaicnqalqmhggygylkdyavqqyvrd 
srvhqilegsnevmrilisrsllqe 

Protegrin gglcycrrrfcvcv 
bd01_cerpr dhyncvrsggqclysacpiytkiqgtcyhgkakcck 
bd01_caphi qgirsrrschrnkgvcaltrcprnmrqigtcfgppvkccrkk 
bd01_ponpy sdhyncvssggqclysacpiftkiqgtcyrgkakcck 
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Table 4.5: Sequences queried against melittin analog profiles 

 
 

Name sequence 
melittin analogs  
K-23 GIGAVLKVLTTGLPALISWIKRWRQQ 
L-16 GIGAVLKVLTTGLPAWISWIKRKRQQ 
I-2 GWGAVLKVLTTGLPALISWIKRKRQQ 
melittin wild type  
mel_apicc 
(mature_peptide) GIGAVLKVLTTGLPALISWIKRKRQQG

 

Table 4.6: Sensitivity, Specificity, Correlation coefficient calculation 

AMP 
profile TP FN FP TN Sn Sp CC 
melittin 2 0 1 137008 1 0.66 0.99

beta-
defensin 11 9 1 136990 0.55 0.91 0.71

 

TP: true positive; FN: false negative; FP: false positive; TN: true negative; 
Sn: sensitivity; Sp: Specificity; CC: correlation coefficient 
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Part III:Chapter 5:  Ab-initio search for TFBS motifs 
 

Nothing great was ever achieved without enthusiasm. 
(Ralph Waldo Emerson) 
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5.1 Introduction 

 

From the previous chapter (Chapter 4), analysis of AMP sequences within a single family 

like defensins showed that there is considerable amount of variation in sequences even 

within the same family. This attributes to their ability to have a broad spectrum of 

antimicrobial activity (Pereira, 2006). Due to their inherent variability in sequence, AMPs 

demonstrate low levels of similarities for homology to be inferred (Patil et al., 2004, 

Maxwell et al., 2003, Hughes, 1999) thus, one alternative is to look at the regulatory 

regions of these AMPcgs to see if they are more homologous in terms of the regulatory 

elements. 

 The author examined the regulatory regions of AMP genes in the effort to 

investigate the presence of conserved motifs upstream of the highly diverse AMPs 

gathered in the ANTIMIC database described in Chapter 3. In particular, transcription 

factor binding site (TFBS) motifs were closely investigated. One of the main features of 

commonality amongst the highly diverse AMPs, and across AMP families, is their 

involvement in some kind of defense or defense related responses. It is therefore possible 

in principle that common regulatory mechanisms are involved in triggering their 

expression in response to an external threat. Their expression may be regulated by 

common transcription factors (TFs) that regulate the expression at the transcriptional 

level. Hence, the aim in this chapter was to uncover TFs or TF groups that are common to 

AMP genes, whose presence could be put into biologically relevant contexts for 

transcriptional regulation of AMP genes. Unsurprisingly, motifs discovered by ab-initio 
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methods show common features across various AMP gene families and some appeared to 

be specific to certain AMP families. 

Studies have been done using computational and experimental approaches to find 

conserved TFBS motifs across the same AMP gene within various species. For example, 

lactoferrin is a serum tranferring protein that is involved in the transport of ions (Fe3+) 

and in human and bovine is known to have antimicrobial activity (Bellamy et al., 1992, 

Bellamy et al., 1993). An analysis done on the promoter region of this gene from multiple 

species (human, mouse, bovine and porcine species) showed that they had some 

conserved regulatory elements. A non-canonical TATA box (GATAAA) with an adjacent 

Sp1 site was present in all the promoter regions. All the promoters had similar basic 

arrangement and a GC-rich sequence. Moreover, in two species, human and mouse, 

multiple steroid hormonal response elements specific only to these two species were 

found (Teng, 2002). However, there has been no attempt so far to find common motifs 

across different AMP genes across different species. This study demonstrates the first 

attempt to find common and taxon-specific motifs in a large scale manner across the 

AMP families based on the databases described in Chapter 3. 

This study has been the first in attempting to find common and specific motifs in 

such a large-scale manner across many AMP families. 
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5.2 Background 
 

5.2.1 Basic introduction of transcription, the key process involved in gene 
regulation 

Transcription is a complex process of decoding information present in DNA into mRNA 

molecules. This process depends on the collective action of transcription factors along 

with the core RNA polymerase II transcriptional machinery, and a variety of co-

regulators that bridge the DNA binding factors to the transcriptional machinery. In 

addition a number of chromatin remodeling factors that mobilize nucleosomes, and an 

array of enzymes that catalyze the covalent modification like acetylation, decacetylation, 

phosphorylation, metyhylation etc of histones and other proteins are also required 

(Kadonaga, 2004)  

Initiation of transcription requires the enzyme RNA polymerase and transcription 

factors. Transcription factors initiate transcription, but are not themselves part of RNA 

polymerase. The focus will be on RNA polymerase II and its promoter region as it is 

responsible for mRNA transcription. Polymerase II is not capable of initiating 

transcription on its own, without the co-factors. This is to check against unscheduled 

transcription, which can be disastrous for a cell.  

There are two major steps in the initiation of transcription. The first step is 

binding of different transcription factors (TFs) to upstream promoter and enhancer 

sequences to form a multi-protein complex. In the second step, this complex directly or 

indirectly recruits a polymerase II complexed with some general transcription factors 

(GTFs) to the core promoter. Subsequently, transcription is initiated by this initiation 

complex, which itself is subject to regulatory influences of TFs.  
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Transcriptional initiation is activated by two types of cofactors. They are 

transcriptional accessory factors (TAFs) and GTFs like TFIID, TFIIE, TFIIH, and TFIIF. 

The TAFs form the TFIID complex. TFIID binds to TATA box via TATA box binding 

protein (TBP). TFIID is involved in the transcription of most pol II promoters. TFIIE and 

TFIIH are two GTFs that are necessary for pol II to clear the promoter for elongation. 

TFIIF is required for bringing pol II into closer contact with the promoter region during 

the initiation process. In addition to these GTFs, there are several other transcriptional 

activators and repressor proteins (TFs) involved in transcriptional regulation. Only 

specific subsets of these factors bind directly with TAFs or form a ternary complex with 

TAF. Once the complete complex including TFs, TAFs, GTFs and pol II is assembled on 

the promoter, this is called the initiation complex, which is now competent to initiate 

RNA synthesis. 

5.2.2  Defining a eukaryotic promoter 
 
A eukaryotic promoter is defined as the region containing binding sites for transcription 

factors. RNA polymerase itself binds around the start point of transcription initiation on 

the gene, but does not directly contact the extended upstream region of the promoter. The 

difference between eukaryotic and prokaryotic promoter is that initiation at eukaryotic 

promoter involves a large number of factors that bind to a different cis-acting element. 

Bacterial promoters are largely defined in terms of the binding site for RNA polymerase 

in the immediate vicinity of the start point. The promoter region for RNA polymerase II 

is usually upstream of the start point of a gene beginning from the start of the first exon. 

Each promoter consists of characteristic sets of short conserved sequences that are 

recognized by appropriate class of factors. These cis-acting sites are usually spread over a 
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region of >200bp. Some of the elements and the factors that recognize them are common; 

they are found in a variety of promoters and are used constitutively. Others are specific, 

they identify particular class of genes and their use is regulated. The elements occur in 

different combinations in individual promoters. All RNA polymerase II promoters have 

sequence elements close to the start point that are bound by the basal apparatus and that 

establish the site of initiation. Sequences positioned further upstream determine whether 

the promoter is expressed in all cell types or is specifically regulated. Promoters that are 

constitutively expressed have upstream sequence elements that are recognized by 

ubiquitous activators. Promoters that are expressed only in certain times or places have 

sequence elements that require activators that are available only at certain times or places. 

Structurally, promoters contain the transcription start site (TSS) and contain a part of the 

first exon of a gene. 

A RNA polymerase II eukaryotic promoter contains different types of promoter 

elements in its structure. They are core promoters, proximal promoters, distal promoters, 

enhancer, silencers, boundary /insulators. (Butler and Kadonaga, 2002) 

Core promoters are usually within -35 to +35 region of promoter and contain the 

transcription start site (TSS). They constitute the general transcription factor binding sites 

involved in initiation of transcription like TATA box, Inr (initiator), BRE (TFIIB 

recognition element),DPE (downstream core promoter element). Each of these motifs 

have a specific function in the process of transcriptional regulation. It is important to note 

that each of these core promoter elements is found in some but not all core promoters. 

For example, TATA box is not found in all core promoters. In addition to the core 

promoter, other cis-acting DNA sequences that regulate RNA polymerase II transcription 
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include the proximal promoter, enhancers, silencers, and boundary/insulator elements. 

These elements contain recognition sites for a variety of sequence-specific DNA-binding 

factors that are involved in transcriptional regulation. The proximal promoter is the 

region in the immediate vicinity of the minimum promoter site (roughly from −250 to 

+250 nt). The minimum promoter is the region that is capable of initiating basal 

transcription and may include a few more sites located close to the TATA box or the 

TSS. The proximal promoter contains the functionally important regulatory controls and 

is present near the TSS. The distal part of promoter is also the most variable one with 

respect to composition as well as length. It can consist of binding sites for any of the 

transcription factors.  

Enhancers and silencers can be located many kilo base pairs from the 

transcription start site and act either to activate or to repress transcription. 

Boundary/insulator elements appear to prevent the spreading of the activating effects of 

enhancers or the repressive effects of silencers or heterochromatin (Butler and Kadonaga, 

2002). Figure 5.1 shows a graphical representation of the various promoter regions on 

the genome. 
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Figure 5.1: Schematic diagram of the different regions of a polymerase II promoter  
The shaded boxes, semicircle and triangle indicate the TF binding sites.DSE: Distal 
Sequence Element, INR:Initiator This diagram has been redrawn from (Werner, 1999).  
 

 

 
5.2.4 Computational methods for identification of regulatory elements in promoter 

region 
 
 

Many computational methods for predicting promoters have been developed over the last 

few years. In general, the algorithms can be divided into two groups. First, is the signal-

based approach, which relies on the recognition of relatively conserved signals and 

conserved spacing among patterns such as the TATA box, CCAAT box. Second, there is 

the content-based approach, which distinguishes promoter sequences from non-promoter 

sequences based on content differences such as triplet base-pair preferences around the 

TSS, hexamer frequencies in conservative 100-bp upstream regions, etc. using linear 

discriminant function (TSSG, TSSW) (Werner, 1999) or quadratic discriminant analysis 

(CorePromoter) (Werner, 1999). These programs have been able to predict about 13%–

54% of the promoters, correctly; each program also predicted a number of false positive 

promoters. To find the proximal promoter, the approach is to find the TSS. 

 However specification of the TSS can be difficult. It is also known that a growing 

number of genes have more than one TSS close to each other, known as alternative start 
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sites. Many algorithms that do promoter prediction are based on EPD (Eukaryotic 

Promoter Database). This database contains experimentally elucidated promoter regions 

for many eukaryotic species. Detection of exact location of TSSs is not a trivial problem 

and is often confronted with issues of false predictions. Algorithms that detected TSSs 

were based on the identification of TATA box sequences, which are often located ~30bp 

upstream of a TSS. However, TATA binding motif is found very frequently in the 

upstream region as much as in every 250 bp in long genome sequences, reflecting the 

promiscuous binding characteristics of the TATA-like sequences and thus this does not 

prove to be an effective approach. Newer algorithms have shifted the emphasis to the 

prediction of promoters that contain one or more TSS(s). This approach is biochemically 

more justified as many genes have multiple TSS(s). 

In human genome, the sequence property that is used to predict promoter region is 

based on differences in methylation of CpG dinucleotides. There are regions in the 

genome sequences >200 base pairs that have high G+C content, and are known as CpG 

islands. CpGs are methylated on cytosine as a phenomenon for regulation of gene 

activity. However, in regulatory sequences, like promoter region CpGs remain 

unmethylated unlike other regions where the CpG methylation can be up to 80%. 

(Wasserman and Sandelin, 2004) Methylated cytosines are mutated to adenosines at a 

high rate, resulting in a 20% reduction of CpG frequency in sequences without a 

regulatory function as compared with the statistically predicted CpG concentration. This 

imbalance in CG dinucleotide has been exploited in bioinformatics for detecting 

promoter sequences. Numerous methods have been developed that directly or indirectly 

detect promoters on the basis of the CG dinucleotide imbalance. The simple methods 
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based on frequency of CpG dinucleotides perform remarkably well at correctly predicting 

regions that are proximal to or that contain the sites of transcription initiation. Two 

commonly known methods – Eponine and FirstEF use divergent approaches. FirstEF 

finds regions in genes with higher concentration of CG dinucleotides than the local C and 

G concentrations would suggest. It subtly improves performance by restricting 

predictions to those regions that contain or are followed by a predicted 3’- splice site, 

thereby indicating the presence of a first exon. Eponine uses a neural network model that 

analyses the over-and under-represention of longer oligonucleotide sequences. As 

Eponine’s strand prediction is based on the identification of a TSS, which is an unreliable 

step, predictions of promoter orientation are not reliable. There is also the phenomenon of 

the presence of bidirectional promoters, which limits the ability of the current 

bioinformatics methods to accurately predict promoter orientation.  

It would be worthwhile to point to two recent programs for finding promoter 

regions- Dragon Promoter Finder (DPF) (Bajic et al., 2002) and Dragon Gene Start 

Finder (DGSF) (Bajic and Seah, 2003). DPF does a content analysis of the region around 

the predicted. It uses aritificial neural network (ANN). DGSF also uses ANN along with 

CpG islands and DPF output (Bajic et al., 2004). In a recent study on the whole human 

genome, DGSF appeared to be the most accurate promoter prediction program, while 

DPF was one with the second highest sensitivity. 

Not all transcription initiation sites are proximal to CpG islands and that the 

association between CpG dinucleotides and promoters is not present in all organisms. As 

only ~60% of human promoters are situated proximally to CpG islands, hence alternative 

approaches are required to identify a substantial portion of promoters. The identification 
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of promoter regions that lack CpG islands requires the use of transcript data. Recurrent 

alignment of the 5’edges of ESTs and /or full-length cDNAs can be indicative of 

promoter locations. Two programs that are based on mapping the 5’ most position (5’ 

untranslated mRNA sequence) of full-length cDNA to genome are – PromoSer 

(http://biowulf.bu.edu/zlab/PromoSer/) and FIE2 (http://research.i2r.a-

star.edu.sg/FIE2.0/). PromoSer identifies the TSS of a gene, by mapping all available 

mRNA and EST sequence data onto the genome and then tracks the overlapping 

alignments (denoted as a cluster) to determine the furthest possible extension to these 

sequences and hence determines the TSS. In many cases, PromoSer data set is enriched 

with full-length mRNA sequences produced by cap-trapping and oligo-capping methods, 

that facilitates higher confidence in the predictions. Table 5.1(a, b) list the promoter 

databases and the prediction tools. 
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Table 5.1a: Promoter databases 
 
 
Promoter databases   
Source URL Address Method of extraction (Data quality) 
Genomatix 
(GPD) http://www.genomatix.de/ Experimental verfied TSS (gold standard)   

TRED 
http://rulai.cshl.edu/cgi-
bin/TRED/tred.cgi?process=home 

1.known,curated (collected from EPD, DBTSS, GenBank) ; 
2.predicted  

DBTSS http://dbtss.hgc.jp/ 
oligo-capped cDNAs (experimentally confirmed full length cDNA) 
mapped to genome,alternate TSS accountable 

BU (PromoSer) http://biowulf.bu.edu/zlab/PromoSer/ 
map mRNA+EST-genome (full length mRNA data from refseq, 
oligo-captrapping in some cases. Alternative TSS sites accountable  

UCSC http://genome.ucsc.edu/ 

This includes only cases where the transcription start is annotated 
separately from the coding region start. Sequences 5000 bases 
upstream of annotated transcription start of RefSeq genes. 

EPD http://www.epd.isb-sib.ch/ experimental 

Ensembl http://www.ensembl.org/index.html 
pulls out upstream region based on EMBL mRNA records.   
No guarantee that the upstream regions are promoter regions and the 
TSS is right. 

Mpromdb 
http://bioinformatics.med.ohio-
state.edu/MPromDb/ Based on experimentally found TSS 

H-invitational 
database (Only 
TSS info) 

http://www.jbirc.aist.go.jp/hinv/index.j
sp Experimental (full length cDNA) 

Riken (Only TSS 
info) http://fantom.gsc.riken.go.jp/ CAGE tags (experimental) 
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Table 5.1b: Promoter prediction tools 
 

Promoter prediction programs URL Address 
Eponine http://www.sanger.ac.uk/Software/analysis/eponine 
FirstEF http://rulai.cshl.edu/tools/FirstEF 
Promoter Scan http://biosci.umn.edu/software/proscan/promoterscan.htm 
TSSG/TSSW http://dot.imgen.bcm.tmc.edu:9331/gene-finder/gf.html 
FunSiteP http://transfac.gbf.de/dbsearch/funsitep/fsp.html 
NNPP http://www-hgc.lbl.gov/projects/promoter.html 
PromFD http://beagle.colorado.edu/~chenq/Hypertexts/PromFD.html 
Dragon Promoter Finder http://research.i2r.a-star.edu.sg/promoter/promoter1_5/DPF.htm 

Dragon Gene Start Finder 
http://research.i2r.a-
star.edu.sg/promoter/dragonGSF1_0/genestart.htm 

PromoterInspector http://www.genomatix.de/ 
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FIE2 (5’ end Information Extraction v2) is another web based program that identifies and 

extracts nucleotide sequence region around the start of genes (promoter region) and their 

translation initiation site (TIS). It uses information provided by the National Center for 

Biotechnology Information’s (NCBI’s) LocusLink. FIE2 identifies the 5’-most end of a gene on 

its respective chromosome based on alignment of a selected set of mRNAs representative of the 

gene. The accuracy of the information extracted is therefore limited by the accuracy and 

completeness of the sequence annotation with regard to the completeness of the cDNA 

sequences till the 5’ untranslated region and sequence alignment provided by Locus Link. In 

addition, multiple TIS positions are also occasionally presented, for example, as a result of 

multiple alignments of transcript variants.  

The latest technique that brings us closer to accurate promoter prediction is CAGE tag 

transcripts. CAGE (Cap analysis of gene expression) is a cap-cloning technique that has been 

extended with a SAGE-like procedure to cleave the initial 5’ 20 nucleotides of full-length 

cDNAs. These oligomers are then ligated into long polymers and sequenced. Generation of these 

CAGE tags from transcripts that are derived from diverse tissues promises not only to facilitate 

improved promoter prediction, but also to provide insights into tissue-specificity. 

 
5.2.4 Detection of transcription factor binding sites 
 
DNA sequences that are a part of the promoter region do not give direct information about 

regulation. Promoters do not have fixed stretches of sequence homology, which are responsible 

for promoter function. The elements influencing transcriptional regulation that binds to promoter 

regions do so in short stretches of the region. These regions or motifs are known as transcription 

factor binding sites (TFBSs). TFBSs are motifs that are usually very short (5-30 nucleotides) and 
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gapless. These sites are interspersed with non-conserved sequences. The regulatory regions 

(promoters) that contain regulatory sites are very long (varying from several hundred to more 

than 1000 nucleotides). The actual regulatory DNA sites corresponding to a motif are called the 

instances of that motif. Every instance of a motif normally has the same length, but they may 

have slightly different sequence compositions. This variability of regulatory sites makes 

biological sense. Better gene expression control can be achieved by having regulatory sites with 

different intrinsic affinities for regulatory proteins. TFBSs do not show any significant specific 

pattern with respect to location and orientation within the promoter sequences. Identification of 

TFBSs computationally poses a problem since they are very short signals and have sequence 

variability that is not very well understood (Tompa et al., 2005). 

There are mainly two different computational approaches to detect TFBSs namely 

finding motifs with known TFBS Position Weight Matrices (PWMs) and secondly ab-initio 

motif search. The first approach is finding TFBSs on a sequence using matrix or other models of 

known TFBS. The binding sites are determined by experimental methods like deletion mapping 

and then mutagenesis of the regulatory sequences (TFBSs). A single TF can bind multiple target 

sequences having significant variation; hence, multiple sites are required to construct a model. 

The multiple binding sites are aligned. The sequence variability of the collection of binding sites 

strongly affects the downstream models for predicting additional sites. A consensus sequence is 

generated from the alignments of the multiple binding sites. To accurately reflect the 

characteristics at each position, a matrix that contains the number of observed nucleotides at each 

position is created. This is known as the position frequency matrix.  
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The frequency matrix is converted to a position weight matrix (PWM) in which normalized 

frequency values are converted to log-scale. PWM are also known as PSSM (position-specific 

scoring matrices). Since TFBSs are short, degenerate sequence motifs that can occur very 

frequently across a whole genome, the PWM provides a summary of the binding specificity of 

these TFs and hence is a representation of their binding specificity. Using the PWM, a DNA 

sequence can be scanned for known TF binding-site elements. Several programs have been 

developed to perform searches based on PWM and IUPAC: SIGNAL SCAN, MATRIX 

SEARCH, MatInspector, ConsInspector, TFSearch, etc. PWM based search is considered 

sensitive, however there are a few drawbacks of using PWM. Using PWM approach will yield 

only a small fraction of the predicted binding sites, which are functionally significant.  

Current matrix models are based on the assumption that a nucleotide at one position has 

no effect on the likelihood of a nucleotide being observed at an adjoining position. For a few 

cases in which large data collections have been generated to richly define binding, advanced 

models that incorporate higher-order interactions between positions have proved more effective  

(Wasserman and Sandelin, 2004).  

Another assumption is that TFs have strict spatial requirements in their binding sites that 

preclude variable spacing (Wasserman and Sandelin, 2004).  For some TFs, such as subset of the 

nuclear receptor family, variable spacing is allowed, rendering standard PWMs inappropriate for 

TFBS prediction. 

Another limitation of the matrix model based TFBS prediction is the construction of 

models for predicting binding sites for TFs is limited by the limited number of valid cis-

regulatory elements. 
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The recent advancement of microarray technology and the availability of a large number 

of complete genome sequences have resulted in a new approach to finding TFBSs. Genes are 

classified under different clusters based on their expression patterns. Genes in the same cluster 

are assumed to be co-regulated. However, it should be noted that co-expressed genes which are 

not co-regulated may not necessarily share same promoter features (Werner et al., 2003 ).  

          Computational approaches like ab-initio TFBS detection method can be used to discover 

regulatory elements. In ab-initio or de-novo approach, for a given set of co-regulated genes or 

genes belonging to same family, programs detect over-represented motifs in the regulatory 

regions. Some of the programs that use this approach are listed in Table 5.2. A prior knowledge 

of TFBSs is not needed in this approach and hence it is more relevant for searching new and 

highly conserved motifs within promoter regions as well as getting already known TFBSs (van 

Helden, 2003). Dragon Motif Builder, the program used in this thesis will be discussed in detail 

in this chapter. Appendix2 lists the DMB parameters. 
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Table 5.2: Programs for de novo prediction TFBS motifs.  
 
  This table has been taken from Tompa et al., 2005). *PMID (Pubmed Unique Identifier) 

 
 

 

Program Operating Principle URL Address 
Reference 
(*PMID) 

Align ACE 
Gibbs Sampling algorithm that returns a series of motifs as weight 
matrices that are over-represented in the input set http://atlas.med.harvard.edu/ 10698627 

ANN-Spec 
Models of the DNA-binding specificity of atranscription factor 
using a weight matrix 

http://www.cbs.dtu.dk/~work
man/ann-spec 10902194 

Consensus 
Model motifs using weight matrices, searching for the matrix with 
maximum information content 

http://bifrost.wustl.edu/consen
sus 10487864 

GLAM 

Gibbs sampling-based algorithm that automatically optimizes the 
alignment width and evaluates the statistical significance of its 
output. http://zlab.bu.edu/glam 14704356 

Improbizer 
Uses expectation maximization to determine weight matrices of 
DNA motifs that occur improbably often in the input sequences 

http://www.soe.ucsc.edu/~kent
/improbiser 15375261 

MEME 
Optimizes the E-value of a statistic related to the information 
content of the motif http://meme.sdsc.edu/ 7584439 

MITRA 
Uses an efficient data straucture to traverse the space of IUPAC 
patterns 

http://www.calit2.net/compbio
/mitra 12169566 

MotifSampler 
Matrix-based , motif-finding algorithm that extends Gibbs sampling 
by modeling the background with a higher order Markov model 

http://www.esat.kuleuven.acbe
/~dna/Biol/Software.html 11751219 

Oligo/dyad-analysis 
Detects overrepresented oligonucleotides with oligo-analysis and 
spaced motifs with dyad-analysis http://rsat.scmbb.ulb.ac.be/rsat 10734201 

SeSiMCMC 

Modification of Gibbs sampler algorithm that models the motif as a 
weight matrix, optionally with the symmmetry of a palindrome or of 
a direct repeat, and optionally with spacers 

http://favorov.hole.ru/gibbslfm
/ 15728117 

Weeder 

Consensus-based method that enumerates exhaustively all the oligos 
up to a maximum length and collects their ocuurences (with 
substitutions) from input sequences 

http://159.149.109.16/Toll/ind.
php 15215380 

YMF 
Uses an exhaustive search algorithm to find motifs with the greatest 
z-scores 

http://bio.cs.washington.edu/s
oftware.html#ymf 12824371 
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Dragon Motif Builder (DMB) (E Huang et al., 2005) is based on the Expectation 

Maximization (EM) algorithm. The Expectation maximization (EM) algorithm estimates 

the maximum likelihood of parameters in probabilistic models, where the model depends 

on unobserved (latent) variables. EM alternates between performing an expectation (E) 

step, which computes the expected value of the latent variables, and a maximization (M) 

step, which computes the maximum likelihood estimates of the parameters given the data 

and setting the latent variables to their expectation. 

In DMB, EM is used to estimate the probability density of the most popular 

patterns within a set of DNA sequences. The optimal motifs are predicted with pattern 

matching score function and the population of the motifs among the sequences. The EM 

algorithm iteratively augments the motif data by guessing the values of the optimal score 

and population with the sequence, and then re-estimates the parameters by assuming the 

“best” value for the motif group. In order to model the probability density of the data 

effectively, most likelihood function was implemented to choose the initial value that has 

highest converged likelihood value. The threshold coefficient for information content has 

been applied to improve the efficiency and accuracy of the search approach. 
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Figure 5.2: Schematic representation of the DMB algorithm 
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5.3 Materials and methods 
 
The strategy used to find the motifs in AMP promoter regions is schematically depicted 

in Figure 5.2. Most of the AMP sequences were extracted from the ANTIMIC database 

(Brahmachary et al., 2004) (http://www.research.i2r.org.sg/Templar/DB/ANTIMIC/) that 

contains the largest number of non-redundant AMPs (1,439) and GenBank.  TBLASTN 

(Altschul et al., 1990 ) with BLOSUM45 matrix was used to search 102,801 flcDNAs of 

the FANTOM collection (Carninci et al., 2005 ) (FANTOM1+2 (60,770) plus 

FANTOM3 (42,031)) against AMP protein sequences of ANTIMIC. Since TBLASTN 

translates the query sequence into six possible open-reading frames, cDNAs with short 

CDS below the protein-coding annotation threshold can be captured. From the translated 

flcDNA sequence out of 183 mouse candidates with sequence identities to known AMPs 

equal or greater than 60% over length of 100 residues or with E-value of 0.01 or less, five 

were identified as false positives by checking their stable gene name and gene ontology 

annotations. Less stringent threshold settings (i.e. 50% or 55%) applied to a test set of 

cathelicidins, alpha and beta defenins led to too many false positives (data not shown) 

without gaining any new AMPcg candidates among the FANTOM sequence set. 
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Figure 5.3: Workflow of promoter sequence set preparation and analysis 
 

  

AMP peptide sequences were collected from ANTIMIC and Genbank databases and 
searched with TBLASTN against FANTOM3 cDNA sequences applying a cut-off of 
equal or greater than 60% identity. The promoter regions [-1000, +200 nt] of mouse 
AMPcg, human and rat orthologs were extracted and submitted to Dragon Motif Builder 
(DMB) for ab initio motif searching. The resulting consensus motifs were passed to 
TRANSFAC and compared with known TFBSs using the PATCH program 
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5.3.2 Extraction of promoter regions 
 
The mouse flcDNA were annotated with their official gene names and symbols, 

associated representative cDNAs, chromosomal localization information, TUID 

(transcriptional unit ID) and CAGE TSS (transcription start site information based on 

CAGE tags) (Carninci et al., 2005). Human and rat orthologs were determined for the 

AMP-coding mouse flcDNAs, using the Entrez Gene (Maglott et al., 2005) and 

HomoloGene (Wheeler et al., 2005). In addition, each of these ortholog groups was 

manually checked for synteny. The promoter regions of the orthologs in human and rat 

were extracted using PromoSer (http://biowulf.bu.edu/zlab/PromoSer) (Halees et al., 

2003) and FIE2 (http://research.i2r.a-star.edu.sg/promoter/FIE2_1) (Chong et al., 2003, 

Halees et al., 2003) programs, as well as H-Invitational database (Fujii et al., 2004). All 

three resources provide estimated TSS locations based on mapping EST and flcDNA data 

to genomic sequences. The promoter regions extracted for mouse, human and rat covered 

(-1000, +200) relative to the estimated transcription start site (TSS) location. In the case 

of multiple TSS locations in human and rat sequences the most 5’ one was extracted. The 

TSS location of mouse sequences was determined by using the start position of the first 

exon of the FANTOM cDNA-genome mapping data 

(http://fantom31p.gsc.riken.jp/cage/download/mm5/cage.rep_tag.2004-11-

16.chr_all_gff.tar.gz). Mouse promoter sequences (-1000, +200) were then extracted by 

mapping the TSS location to the mouse genome data from UCSC 

(http://hgdownload.cse.ucsc.edu/goldenPath/mm5/chromosomes/). The final dataset 

contained 77 promoters from mouse, rat and human. Only seven mouse sequences had 

associated CAGE tag information (Supplementary Table 5.1). Therefore, TSS location 
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was estimated for all sequences based on the 5’end of the flcDNA data. For histone2a 

genes a region of (-200, +100) relative to the TSS was extracted because these genes 

appear to have bidirectional promoters within 200 nt of the TSS.  

 
5.3.2 Motif search  
 
 
The promoter sequences were submitted to the Dragon Motif Builder (DMB) program (E 

Huang et al., 2005) (http://research.i2r.a-star.edu.sg/DRAGON/Motif_Search/) for ab-

initio motif finding. The EM threshold was set to 0.85 for all families that lacked 

experimentally confirmed TFBSs in their promoters. One should note that there is no rule 

about what is the optimal threshold. In fact, the optimal threshold is likely to be different 

for different promoter sets. Thus, a somewhat arbitrary threshold of 0.85 was used 

because it resulted in relatively specific matrix families. Since the algorithm is heuristic, 

different thresholds usually produce different results. In the cases when there have been 

known functional TFBSs, for the AMpcg family, two different thresholds (0.85, 0.75) 

were used and the one selected was the one that fitted better to the experimentally 

confirmed TFBSs, as this would very roughly approximate selection of a more optimal 

threshold in these cases. The program was set to search for 20 motif families, with motifs 

of length 10 to 15 nt within each of the 22 AMPcg families. In total 440 motif families 

were identified. In the case of the histone2a family a shorter motif length of 8-12 nt was 

chosen because the promoter length of histone2a family was shorter than for the other 

families. After DMB identified the sequence motifs, Patch program (mismatch =0; motif 

length =6; species =all) was used (Wingender et al., 2000) of TRANSFAC professional 

database ver. 8.4 to infer potential transcription factors (TFs) that may bind to motifs of 
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these families. Promoter models were created from motifs that were conserved among the 

all promoter sequences of an AMPcg family.  

 To find motif families that are common across many AMPcg families, all 440 

motifs were combined and searched for the most commonly found sub-motif families in 

them. For this the DMB program was used for searching for motifs of 6-8 bp length. The 

reduction of motif length did not cause over-prediction of motifs since the search was 

restricted to sequences of the previously identified motifs of length 10-15 bp. Potential 

motif-binding TFs were identified by the Patch program as already described. 

For the penk family, three programs DMB, MEME (http://meme.sdsc.edu) 

(Bailey and Elkan, 1994) and Improbiser (http://www.soe.ucsc.edu/~kent/improbizer) 

were used to search for motifs of 10-15 nt length, based on EM algorithm. Improbiser can 

identify a maximum of six motif families. For MEME and DMB 20 motif families were 

identified and the top six families based on e-value, were selected. This threshold setting 

allowed us to obtain comparable results from three different programs. The motifs were 

then compared with TRANSFAC database entries to obtain TFs that can potentially bind 

to these motifs. Figure 5.3 shows the workflow of ab-inito based motif finding. 

 
5.3.3 Phylogenetic analysis 

 
Multiple sequence alignments and phylogentic analyses of alpha-defensin sequence were 

done using Clustal W (Thompson et al., 1994) and MEGA3.0 (Kumar et al., 2004). 

Alpha-defensin sequences covering (-1000, +200) region relative to TSS were extracted 

using the Ensembl (Birney et al., 2004) gene data export function. UPGMA (unweighted 

pair group method with arithmetic averages) phylogenetic trees for alpha-defensins were 
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constructed with Mega3.0 (Kumar et al., 2004) using Kimura 2-parameter methods with 

1000 bootstrap replications. 

 
5.3.4 Statistical significance of potential NHR-binding motifs 

  
All families were sorted according to the number of motifs that may bind NHR. Then, the 

author split AMPcg families into two groups, A and B. In group B the family that had the 

least number of such motifs was included. The remaining families were placed in group 

A. P-value was calculated for the enrichment in motifs that may bind NHR. The p-value 

is determined using the hypergeometric distribution and the right-side Fisher’s exact test 

and was corrected by the Bonferroni method for the 440 tests (this is the number of motif 

families identified; 20 motif families for each of the 22 AMPcg families). The author 

then excluded from group A the AMPcg family with the next least number of target 

motifs and added that family to group B. The P-value calculation was repeated. This 

process of eliminating AMPcg families from group A is repeated until A contained the 

last of the 22 AMPcg families. Based on the 21 p-values calculated this way 

(Supplementary Table 5.7), the one with the smallest value was determined, 2.81167E-

06 (Bonferroni corrected value = 0.001237134). This determines the group of 11 AMPcg 

families that are significantly enriched by motifs that potentially bind NHRs.  
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5.4 Results and discussion 
 

5.4.1 Novel AMP transcripts 
 
The FANTOM3 data set comprising more than 100,000 flcDNAs has recently been 

released (Carninci et al., 2005). Macrophages, cells of the innate immune system, were a 

major source of additional new flcDNAs in this set. ANTIMIC-derived AMP sequences 

were mapped to the FANTOM3 cDNA set to search by sequence similarity (TBLASTN) 

for candidate cDNAs encoding new members of AMP families. Of 183 mouse candidates 

with sequence identities to known AMPs equal or greater than 60% over length of 100 

residues or with E-value of 0.01 or less, five were identified as false positives by 

checking their stable gene name and gene ontology annotations. Thus, 178 AMPcg 

sequences belonging to 29 families were identified. One hundred and three new mouse 

transcripts belonging to the AMP families alpha-defensin, alpha2casein, apoa2, beta-

defensin, spag11, bpi, calgranulin, cathelicidin, cathepsinG, dbi, slpi, enhancer of 

rudimentary homolog, granulin, hepcidin, histone2a, IFN-inducible antiviral protein Mx, 

lactoferrin, lysozyme, mbp, melanotropin alpha, ovotransferrin, proenkeph alin 1, sap2, 

secretogranin, skiv2l, spyy, vasostatin, vip and zap, were found in the FANTOM3 

(without FANTOM1+2) sequence subset. All new members were sequenced from cDNA 

libraries of immune cells (i.e. macrophages), adipocytes and testis, among others, 

indicating that the transcriptome of inducible genes involved in innate immunity is still 

incomplete.  

The definition of true orthologies across species is difficult in multigene families 

associated with innate immunity, wherein gene duplication is a common feature of 

evolution even within the mammalia. For example, a review of the S100 (calgranulin) 
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family noted that there are three members of the myeloid-associated family (S100A8, A9 

and A12) in humans, but only two (S100A8 and A9) in mice (Ravasi et al., 2004). 

Correspondingly, it was found that the mouse AMP casein delta (csnd), defensin-related 

sequence cryptidin peptide (Defcr-rs1), mast cell protease family (mcpt2, mcpt4, mcpt8), 

and histone2a (Hist2h2aa2), did not have corresponding family members in human 

(Supplementary Table 5.2). On the other hand, the Rnase A family member Rnase 7 

was found in human, but was absent in mouse. Within the beta-defensin and alpha-

defensin family members, cDNA sequences confirm mouse-specific expansion reported 

in previous genome-based studies (Schutte et al., 2002 and Scheetz et al., 2002). 

The analysis was restricted to the three mammalian species as the approach was 

aimed at finding differences and similarities in mammalian orthologs of mouse data from 

the FANTOM3 project. Orthologs of mouse genes in invertebrates and cold-blooded 

vertebrates are too distant for such promoter analysis. Another problem is the absence of 

very accurate promoter data sets for these species, which are necessary for this type of 

analyses. This resulted in consideration of only a subset of bona fide orthologous mouse, 

human and rat promoter sequences representing only 22 out of 29 AMP families. . For 

these 22 AMP families, 31 promoter regions from mouse with the corresponding 30 and 

15 promoter orthologs from human and rat, respectively, were extracted (Supplementary 

Table 5.1). Mouse cryptidins were included in the alpha-defensin family because they 

represent a subfamily of alpha-defensins (Eckmann, 2005). The analyzed families and the 

sequence accessions of their members are listed in Supplementary Table 5.1 
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5.4.2 Promoters and ab-initio motif discovery 
 
 
Having assembled a set of candidate AMPcgs, the aim was to identify sets of potential 

transcriptional control elements common to all or some of these genes. For many of these 

genes, the precise TSSs have been identified through the high throughput CAGE 

technology, since macrophages were extensively polled with this method (Carninci et al., 

2005). However, for this thesis, (-1000 to +200) promoter region relative to the longest 

cDNA was chosen. The most common current approach to identification of motif 

complements amongst co-regulated genes is to search using predetermined position-

weight matrices for known TFBSs as available from TRANSFAC, JASPAR and other 

sources. This approach presumes that binding is not influenced by context. The author 

has used the ab-inito approach for finding TFBS motifs. . There are several ab-initio 

motif discovery programs available (Tompa et al., 2005). No program shows a distinct 

advantage over others on all data types. However, the author compared the performances 

of DMB (E Huang et al., 2005), an in-house developed program with two other 

programs, MEME (Bailey and Elkan, 1995) and Improbiser 

(http://www.soe.ucsc.edu/~kent/improbizer/improbizer.html). All three programs use ab-

inito motif discovery algorithms based on Expectation Maximization. Promoter 

sequences of the proenkephalin (penk) AMP group (4922504O09, HIX0007519.2, 

NM_017139) were used, which has been studied empirically in transfection assays. Penk 

promoters are known to possess a TATA box and respond to cyclic AMP, glucocorticoids 

and protein kinase C (AP1) agonists (Kobierski et al., 1999 , Garcia-Garcia et al., 1998 , 

Fu et al., 1997). Since Improbiser can identify only six motifs, the top six motifs 

produced by each of these systems were considered first. Among the top six motifs, 
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DMB- reported three motifs (TATA, AP-2, AP-1) that may bind TFs known to control 

the penk promoter (Fu et al., 1997 , Le et al., 2003). MEME reported one motif (TATA) 

and Improbiser two (NF-Y, TATA) motifs. As DMB and MEME can identify arbitrary 

number of motifs, top 20 motifs generated by DMB and MEME were considered. Seven 

DMB-derived motifs coincided with known TFBSs (TATA, NF-kappaB, AP-2, AP-1 

NFI/CTF, NF-Y, MZF1, MIG1, MBP-1) (Fu et al., 1997, Le et al., 2003) known to 

control the penk promoter. MEME yielded only three known penk promoter motifs 

(TATA, NFI/CTF, AP-1). Considering the differences in performance and the longer 

computation time of MEME, DMB was the preferred program for the entire analysis.  

 

5.4.3 Phylogenetic analysis of defensins 
 
 
Alpha-defensins are specific to mammals. Phylogenetic analyses of alpha-defensin 

protein-coding sequences was done to provide support for gene duplication events and 

rapid evolution under positive selection pressure (Patil et al., 2004). Gene duplication 

events have probably led to both species-specific and functionally diverse subsets of 

alpha-defensins, which should be also detectable in the upstream regulatory regions. The 

author was interested to see how promoter content reflects phylogenetic similarity. Nine 

alpha-defensin promoters of mouse, rat, chimpanzee and human were analyzed in terms 

of phylogenetic, functional and motif relationships. The UPGMA tree (Figure 5.4) shows 

two clusters. With the exception of rat Defcr4, the tree topology coincides with the 

previously reported (Patil et al., 2004) enteric (i.e. intestine) and myeloid/neutrophil cell 

expression of rat, mouse and human alpha-defensins. Enteric-expressed defensins are 

important to barrier function of the gut mucosal surface against bacteria, whereas 
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myeloid and neutrophil-specific defensins help macrophages and neutrophils to kill 

internalized bacteria. Human DEFA3, DEFA4, chimpanzee DEFA4 and rat Defa 

represent the myeloid-specific alpha-defensins. Mouse Defcr20, Defcr2, rat Defcr4, 

human and chimpanzee defa5 belong to the enteric-expressed group of alpha-defensins. 

Comparison of myeloid-expressed rat Defa with enteric-expressed mouse defcr2 

promoter regions showed that the common arrangement 20-7-4 of three promoter motifs 

was conserved in rodents (Figure 5.4). The annotation means that in the promoter region 

from 5’ to 3’ the order of motifs identified is: ‘motif20 – motif7 – motif4’. These three 

motifs potentially may bind: motif20 (AR PXR-1: RXR-alpha), motif7 (POU1F1a, 

POU2F1), motif4 (RAR-alpha1, RXR-alpha) (Table 5.3). This arrangement of motifs 

appears to be unique to mouse Defcr2 and rat Defa and thus, suggests association with 

the specific myeloid or enteric expression.  

A comparison of myeloid–specific human and chimpanzee sequences 

(Hosa_DEFA4, Patr_DEFA4, Hosa_DEFA3) and enteric sequences (Hosa_DEFA5 and 

Patr_DEFA5) showed that they share arrangement of four motifs (20-10-11-19). For 

myeloid-specific primate sequences Hosa_DEFA4, Patr_DEFA4, Hosa_DEFA3 a 

common arrangement of eight motifs (20-10-1-13-1-19-9-18-14) was found across the 

promoters. When myeloid-specific rat sequence Rano_DEF1 was included, only a 

common arrangement of three motifs (17-1-18) was found, that was specific to all 

myeloid sequences in the data set. Enteric primate sequences (Mumu_Defcr20, 

Mumu_Defcr2, Rano_Defcr4, Hosa_DEFA5, Patr_DEFA5) have an arrangement of three 

motifs (17-10-7) in common. Motif 17 (GMASTTCTKT) was found common between 

all the myeloid and enteric sequences in the data set. This motif contains a sub-motif that 
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is a putative binding site for IRF-1, IRF-3, NF-AT1, NF-AT2, NF-AT3, NF-AT4. In the 

case of rodent sequences (Rano_DEF1, Rano_DEFCR4) motifs 20, 7 and 16, associated 

with putative binding sites for YY1, STAT5A, IRF-1, IRF-3, NF-AT1, NF-AT2, NF-

AT3, NF-AT4 were common between the two sequences (Figure 5.4, Table 5.3, 

Supplementary Figure 5.1). The upstream regulatory regions of mouse cryptidin alpha-

defensins contained eight common motifs with similar positioning.  

The extremely low sequence homology of beta-defensin promoters of orthologs 

and paralogs among cow, mouse, rat, chimpanzee and human, together with different 

exon-intron structures suggests multiple events of functional changes or acquisition of 

new functions as a result of positive diversifying selection during evolution (Maxwell et 

al., 2003, Morrison et al., 2003, Semple et al., 2003. Additional analysis with 

RepeatMasker (http://www.repeatmasker.org) also revealed various retro-transposons in 

the upstream regions of rat and mouse beta-defensins that are absent in primates. 

Probably the most striking example of functional specialization in the primate lineage is 

SPAG11. SPAG11 is derived from the ancestral fusion of two beta-defensins. Expression 

of SPAG11 AMPs appear to be androgen-dependent and restricted to the male urogenital 

tract (Avellar et al., 2004). 
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Figure. 5.4 Motif distribution in alpha-defensin promoters 
 

 
 

The boxes represent the motifs found by ab-initio searching. The numbers (i.e. 13) in the boxes 
refer to different motifs. The grey line connecting the boxes denotes a promoter region of 1,200 
bp length. The broken arrow indicates the TSS. The species abbreviations are Rano: Rattus 
norvegicus, Mumu: Mus musculus; Patr: Pan troglodytes; Hosa: Homo sapiens. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

102 

Table 5.3 Common motifs found between groups of enteric and myeloid-specific alpha-defensin sequences  
 
The species abbreviations are Rano: Rattus norvegicus, Mumu: Mus musculus; Patr: Pan troglodytes; Hosa: Homo sapiens. 
Unknown: motif does not match any of the TRANSFAC-listed TF binding sites. 

 

Common 
Motif 

Consensus 
Motif Putative TFBS Gene name 

20 AGAARCTCAGS AR, PXR-1:RXR-alpha  
Hosa_defa4 (myeloid), Patr_defa4 (myeloid), Hosa_defa3 
(myeloid), Patr_defa5 (enteric) 

10 CATAMTACCTGA AP-1, c-Jun   
Hosa_defa4 (myeloid), Patr_defa4 (myeloid),  
Hosa_defa3 (myeloid),  Patr_defa5(enteric) 

11 KAGYTTTTWTCC GATA-1, NF-AT1,NF-AT2,GATA-6,GATA-3,NF-AT3,NF-AT4  
Hosa_defa4(myeloid), Patr_defa4 (myeloid), 
Hosa_defa3(myeloid), Patr_defa5(enteric) 

19 AGTAAAGCCA Unknown 
Hosa_defa4(myeloid), Patr_defa4 (myeloid), 
Hosa_defa3(myeloid), Patr_defa5(enteric) 

    
20 AGAARCTCAGS YY1 STAT5A  Rano_DEF1 (myeloid), Rano_DEFCR4 (enteric) 
17 GMASTTCTKT IRF-1 IRF-3 NF-AT1 NF-AT2 NF-AT3 NF-AT4 Rano_DEF1 (myeloid), Rano_DEFCR4 (enteric) 
6 GAAAAAAGAAT Unknown Rano_DEF1 (myeloid), Rano_DEFCR4 (enteric) 

    
20 AGAARCTCAGS AR PXR-1:RXR-alpha Rano_DEF1 (myeloid), Mumu_Defcr2 (enteric) 
7 AAAMATYCAT POU1F1a, POU2F1  Rano_DEF1 (myeloid), Mumu_Defcr2 (enteric) 
4 GAAGGACCAGC RAR-alpha1, RXR-alpha Rano_DEF1 (myeloid), Mumu_Defcr2 (enteric) 

    
17 GMASTTCTKT GR AR Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 
3 ATTCTCHTGGACA RXR-beta T3R-alpha1 T3R-beta1 USF1b USF1 GR Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 
9 CTCTTGCCTG C/EBPalpha  Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 

13 GGAATCAAGT Unknown Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 
10 CATAMTACCTGA AP-1 c-Jun Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 
5 CCTGCTCCCTGBT AR T3R-alpha RXR-alpha VDR Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 
8 TGTCCTGGTCC Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 

Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 

 

GR PR-alpha PR-beta PR B RAR-alpha1 RXR-beta RAR-gamma  
T3R-alpha T3R-beta1 T3R-beta2 HNF-4alpha RAR-alpha RAR-alpha:RXR-
gamma ,RAR-beta RAR-beta:RXR-alpha AR NFI/CTF RXR-alpha VDR 
ERR1 Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 

4 GAAGGACCAGC RAR-alpha1 RXR-alpha Mumu_Defcr20 (enteric), Mumu_Defcr2 (enteric) 
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5.4.4 Frequently occurring TF binding motifs conserved across many AMPcg 
families 

 
The transcriptional regulation of AMPcg families varies from family to family because of 

the different AMP characteristics and their tissue cell-specific expression. Thus, it would 

not be expected that different AMPcg families share considerable similarities in their 

promoters. It is thus challenging to explore if such similarities exist and whether a TF can 

be involved in the control of more than one AMPcg family. In this section, the author 

looked for possible common motifs that are shared across several AMPcg families (see 

Methods). By analyzing only those motif groups that were found to be shared by at least 

six AMPcg families, eight motif groups out of total of 94 motif instances were found 

from 31 mouse, 30 human and 15 rat AMP promoter sequences (Table 5.4). This 

suggests that, a core set of TFs exist that participate in transcription activation of many 

examined AMPcg families in all three examined species. 

 Species-specific differences were observed in the combination of motifs and 

positions relative to the TSS. Each of the motif families is represented by the consensus 

motif obtained from all motif instances in that family. The consensus motif AGGAAA is 

known to be recognized by TFs PEA3, c-Ets1, E74A, PU.1, LyF-1, c-Ets-2, ISGF-3, NF-

AT1, NF-AT2, NF-AT4 and DEAF-1. Consensus motifs ACAGCA and ATGGAG are 

specific for GR and Nkx2-1, respectively. Consensus motif CCCGCCCC corresponds to 

binding site for TFs Sp1/Sp3. TGGCATT recognizes TF NF-1. CCAGGG, ACCTGG 

and TCTTTC did not match to any known TFBS contained in the TRANSFAC database. 

These three consensus motifs could represent potentially novel cis-elements.  

 Comparison of the TFs associated with the predicted motifs showed that  four 

consensus motifs correspond to the published experimentally confirmed TFs of AMPcgs, 
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such as, GR for motif ACAGCA. This motif was conserved among 32 genes of ten 

different AMP families in mouse, rat and human. PEA3, c-Ets1, PU.1, LyF-1, c-Ets-2, 

NF-AT1, NF-AT2 and NF-AT4-specific motif AGGAAA was observed in 34 genes 

belonging to 11 AMPcg families. Sp1 and Sp3-specifc motif CCCGCCCC appeared in 

15 genes derived from six AMPcg families. NF-1 motif TGGCATT was present in 36 

genes of nine AMP families. All these motifs were found in human, mouse and rat AMP 

genes (see Table 5.4). Consensus motif CCAGGG was observed in 24 genes of eight 

AMPcg families. ACCTGG was present in 28 genes of seven AMPcg families. TCTTTC 

motif occurred in 26 genes of nine AMPcg families. 

 Four motifs appeared to be species- or lineage-specific. For example, AGGAAA 

motif was found only in three rodent genes of the lysozyme family. CCAGGG was 

absent in genes of the human Spag11 family. TGGCATT motif was absent in human 

genes of the Apoa2 and Spyy families. CCCGCCCC was not found in mouse genes of the 

Apoa2 family (Table 5.4). However, one should note that this observation has been made 

for the region of (-1000, +200) bp of the promoters. Similar species-specific differences 

were reported for the promoter of mouse and human Toll-like receptor 3 and its 

expression pattern (Heinz et al., 2003). It is possible that these AMP genes are regulated 

by different promoter regions in mouse and human. Due to lack of sufficient data on 

microbial context, signaling pathways and TF binding-data on AMPs, it remains to be 

seen whether these disparities reflect an exposure to a different microbe environment or a 

physiological differences. Thus, it can be concluded that in spite of differences in 

functions of AMPcg families and differences in their tissue cell-specific expression, their 

promoters share a number of common motifs. It is also possible that at least some of 
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these common motifs function as binding sites for unknown or undiscovered TFs. These 

motifs also represent interesting experimental targets, at least for the assessment of 

binding of TFs suggested through the computational analysis. 

Among the most frequently occurring motifs in promoters of AMPcgs the 

analysis identified three PEs (CCAGGG, ACCTGG and TCTTTC) that are not known to 

bind any of the TRANSFAC contained TFs and thus could likely represent novel cis-

elements. 
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Table 5.4: Motifs that are highly enriched among different AMP families. 
 

Pattern: The consensus of motif sequence found in the AMP sequences; TF name: 
Transcription Factor name associated with the motif; Total AMP: The number of 
AMP families that contain the motif; AMP family: The AMP families which 
contain the motif; Seq IDs: The mRNA ids of AMPcgs whose promoter sequences 
are analyzed; Mm: mouse, Hs: human, Rn: rat (if the motif is found in a species it is 
denoted by “+” else it is denoted by “-”). 

 

No. Pattern TF name Total AMP AMP Family Seq IDs Mm Hs Rn 

1 ACAGCA GR 10 Alpha defensin 

2010016B13, 2010016F14, 
NM_021010, NM_001926, 
NM_001925, NM_005217 + + -

    Apoa2 
I530003A11,HIT000032344.2, 

NM_013112 + + + 

    BPI 9230105K17,BC040955 + + - 

    Calgranulin 
F430201H11, NM_002965, 

NM_053587 + + + 

    Hepcidin NM_052971,2210420P15 + + - 

    Histone 2A 
9030420B16, NM_003512, 
1190022L06, NM_021052 + + - 

    Melanotropin alpha 
5730403F20, NM_000939, 

NM_139326 + + + 

    Secretogranin 
5730420J08,HIX0015625.2, 

NM_012526 + + + 

    Vasostatin 
G630083O06,HIX0011909.2,NM

_021655 + + + 

    ZAP 
F420004O17,HIX0007129.3,NM

_173045 + + + 

2 AGGAAA 

PEA3, c-
Ets1, E74A, 
PU.1, LyF-
1, c-Ets-2, 
ISGF-3, 
NF-AT1, 
NF-AT2, 
NF-AT4, 11 Alpha defensin 

2010016B13, 2010016F14, 
NM_021010, NM_001926, 
NM_001925, NM_005217 + + - 



 
 

107 

DEAF-1 

    BPI 9230105K17,BC040955 + + - 

    Calgranulin 
F430201H11, NM_002965, 

NM_053587 + + + 

    Cathelicidin 
F930015N03,NM_004345,AF484

553 + + + 

    Hepcidin 2210420P15,NM_052971 + + - 

    Histone 2A 
9030420B16,NM_003512,11900

22L06,NM_021052 + + - 

    Lysozyme 
9530003J23,I420013M05, 

NM_012771 + - + 

    MBP 
2510004C07,HIX0009634.2,NM

_031619 + + + 

    Proenkaphalin 
4922504O09,HIX0007519.2,NM

_017139 + + + 

    Secretogranin 
5730420J08,HIX0015625.2, 

NM_012526 + + + 

    VIP 9130007F05,HIX0006306.2 + + - 

3 CCAGGG unknown 8 Alpha defensin 
2010016B13,2010016F14, 
NM_021010,NM_001925 + + - 

    Spag11 9230111C08,NM_145087 + - + 

    BPI 9230105K17,BC040955 + + - 

    DBI 6720460E16,NM_020548 + + - 

    Granulin 
0610012H06,BC000324, 

NM_017113 + + + 

    Lysozyme 
9530003J23,I420013M05, 
AF099029,NM_012771 + + + 

    Melanotropin alpha 
5730403F20,NM_000939,NM_1

39326 + + + 

    SPYY 
0710005A05,C820007C10, 
HIX0006525.2,NM_012614 + + + 
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4 ACCTGG unknown 7 Betadefensin 

9230107O10, AF525930, 
D630029A12, BC033298, 
NM_031810, NM_153324, 
2310001F05, NM_004942, 
1700011J22, NM_152250, 
9230103N16, 4930563B01 + + + 

    BPI 9230105K17,BC040955 + + - 

    Calgranulin 
F430201H11, NM_002965, 

NM_053587 + + + 

    Cathelicidin 
F930015N03,NM_004345,AF484

553 + + + 

    Granulin 
0610012H06,BC000324, 

NM_017113 + + + 

    Lactoferrin 9830118D19,NM_002343 + + - 

    ZAP 
F420004O17,HIX0007129.3,NM

_173045 + + + 

5 ATGGAG Nkx2-1 10 Alpha defensin 

2010016B13,2010016F14, 
NM_001926,NM_001925,NM_0

05217 + + - 

    Calgranulin 
F430201H11, NM_002965, 

NM_053587 + + + 

    Cathelicidin 
F930015N03,NM_004345,AF484

553 + + + 

    DBI 6720460E16,NM_020548 + + - 

    Slpi 
2310075E18,HIT000038907.2,N

M_053372 + + + 

    Hepcidin 2210420P15,NM_052971 + + - 

    Lactoferrin 9830118D19,NM_002343 + + - 

    MBP 
2510004C07,HIX0009634.2,NM

_031619 + + + 

    VIP 9130007F05,HIX0006306.2 + + - 

    Vasostatin 
G630083O06,HIX0011909.2,NM

_021655 + + + 

6 TCTTTC unknown 9 Alpha defensin 
2010016B13,2010016F14, 
NM_001925,NM_005217 + + - 

    BPI 9230105K17,BC040955 + + - 

    Calgranulin 
F430201H11, NM_002965, 

NM_053587 + + + 
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    Slpi 
2310075E18,HIT000038907.2,N

M_053372 + + + 

    Hepcidin 2210420P15,NM_052971 + + - 

    MBP 
2510004C07,HIX0009634.2,NM

_031619 + + + 

    Melanotropin alpha 
5730403F20,NM_000939,NM_1

39326 + + + 

    SPYY 
0710005A05,HIX0006525.2,NM

_012614 + + + 

    ZAP 
F420004O17,HIX0007129.3,NM

_173045 + + + 

7 CCCGCCCC Sp1, Sp3 6 Alpha defensin 
2010016B13,2010016F14, 
NM_021010,NM_001926 + + - 

    Apoa2 HIT000032344.2,NM_013112 - + + 

    BPI 9230105K17,BC040955 + + - 
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5.4.5 Distribution of known TF binding motifs in AMPcg families 
 
Prior to discussing results of specific AMPcg families the predicted motifs were 

compared with the experimentally verified motifs documented in previous reports. The 

predicted motifs comprise binding sites for various immune-response related TFs (e.g. 

NF-kappaB) and nuclear hormone receptors (i.e. RXR alpha). The ab-initio determined 

motifs potentially bind 41 (59%) out of 70 experimentally confirmed TFs that participate 

in the control of these AMPcg families. Among members of the lactoferrin family, all 

experimentally reported TFs (SP1, C/EBP) were found. Six AMP families (zap, apoa2, 

calgranulin, granulin, spyy, bin1b/spag11) lacked published experimental information on 

associated TFs. DMB-predicted motifs for these families include 57 motifs conserved 

among mouse and human. Supplementary Table 5.3 shows a comparison between the 

motifs that were found by ab-initio approach versus those reported to be experimentally 

found for each of the AMPcg families. The list of experimentally detected TFs that is 

presented here is not exhaustive, but it well supports the ab-initio motif finding method. 

For each AMP family, motifs were found that did not match any of the known 

TRANSFAC-contained motifs and were reported as “unknown motifs”. Other set of 

motifs matched to known TFBS but were previously not reported to control AMPcgs. 

These new AMPcg-associated candidates are shown in Supplementary Table 5.4. 

 In this section, all the predicted TFs that potentially bind motifs identified for 

different AMPcg families have been categorized into ten tissue specific categories and 

two general categories of cell-cycle specific TFs and nuclear hormone receptors (NHRs). 

This work was done in collaboration with VB Bajic. Table 5.5 and Supplementary 

Table 5.5 show distribution of motifs identified by DMB across all AMP families. The 
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motifs were compared to TRANSFAC-contained motifs to determine their 

correspondence with the known TFBSs. Twelve different categories of TFs were 

considered. These are adipocyte-related, NHR, cell cycle-related, immune cell-specific, 

liver cell-specific, lung cell-specific, muscle cell-specific, nervous system-related, 

pancreatic beta cell-specific, pituitary gland-specific, eye-specific, and bone- (and teeth-) 

specific TFs. The categories were chosen based on supporting knowledge of links, for 

example between the immune system and a particular category. For example, microglia 

cells which are brain macrophages (Moran et al., 2004) would represent a link between 

the nervous system and immune system. The association of TFs with different TF groups 

is based on the TRANSFAC database collections and literature survey.  

 To determine the dominant TF categories that are potentially involved in control 

of AMPcg families, motifs that TFs could bind to were analyzed, as well as the 

distribution of the TFs across the 22 AMPcg families. For each of the AMPcg family 

only the top two-ranked TF categories were considered. The ranking was based on the 

proportion of motifs that potentially bind TFs of specific category in any AMPcg family. 

Cases were considered when TF-binding motifs associated with a particular TF category 

occurred in 25%, 30%, 35% or 40% of all motifs observed in an AMPcg family. Three 

TF categories (liver-specific, neuron system-specific, NHR) appeared to be either the first 

or second ranked in three out of four considered cases, and these TF categories, also 

represent the top ranked ones, overall. The results are summarized in Table 5.5. The 

appearance of NHRs in these top ranked TF groups is unexpected. If we require that at 

least 35% (7 out of 20) of the identified motifs for each of the AMPcg families can bind 

TFs from a particular group, NHR and neuron system specific TFs appear in 11 out of 22 
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AMPcg families. The next one is the group of liver-specific TFs (10 families), followed 

by adipocyte-specific TFs (8 families) and immune cell-specific TFs (5 families).  

 Further, the group of AMPcg families were determined that are most enriched in 

motifs that potentially bind NHRs. This group is determined as explained in Methods and 

contains 11 AMPcg families. Each of the families contains at least 35% (7 out of 20) of 

motifs that potentially bind NHRs. These 11 families are alpha-defensin, lactoferrin, 

hepcidin, bin1b, zap, dbi, cathelicidin, proenkaphalin, mbp, slpi, bpi. The statistical 

significance of the enrichment of NHR related motifs in this group is based on the 

Bonferroni corrected p-value obtained from the right-sided Fisher’s exact test (corrected 

p-value = 1.237e-003) (for the null hypothesis that there is no enrichment of NHR in the 

considered 11 families as compared to all 22 AMPcg families). The correction factor was 

440 that equals to the number of identified motifs in all 22 families. The parameters for 

p-value were: k = 92 (number of motifs that potentially bind NHRs in the group of 

families), n = 220 (number of motifs identified in 11 families), K = 139 (total number of 

motifs in all 22 families that potentially bind NHRs), N = 440 (total number of all 

identified motifs in all 22 families). The small p-value suggests that the enrichment of 

motifs that potentially bind NHRs is statistically highly significant for the considered 11 

AMPcg families out of 22 analyzed families.  

 Based on distribution of absolute number of TFBSs in different categories it was 

observed that Spag11, an epididymis-specific defensin, which is also important in 

inducing sperm maturation (Zhou et al., 2004) appears to be distinctly regulated 

compared to other members of the beta-defensin family (Yamaguchi et al., 2002). The 
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data shows that spag11-specific motifs are over-represented, compared to motifs of the 

beta-defensin family (Table 5.5).  

 On the other hand, if looking at the rank position of a particular TF group in 

individual AMPcg families (number of motifs that could bind TFs from a particular 

category), six TF categories emerge as dominant categories. These are, in order, liver-

specific, neuron system-specific, adipocyte-specific, NHR, immune-cell specific and 

lung-specific TFs. The ranking of TFs suggests that the functions of AMPs extend far 

beyond antimicrobial actions as mediators in energy metabolism and neuroendocrine 

regulations. The finding is reminiscent to multi-functionality of cytokines (i.e. IL6, TNF-

alpha, MIF etc.) in adipocytes, liver and immune cells during metabolic challenges and 

stress (Mohamed-Ali et al., 1998, Yudkin et al., 2000 and Sakaue et al., 1999). The 

results are presented in (Supplementary Table 5.5)  

 As a further support to the above finding, comparison with another dataset was 

performed to ascertain the claim that the TF groups that have been found to influence 

AMP gene groups are not non-specific for AMPs. To test this, motif search was carried 

out in similar manner on a set of 78 promoter sequences from non-immune, house 

keeping genes, considered as a negative data set. To determine if the usage of different 

categories of TFs is the same in AMP-genes and house keeping genes, a non-parametric 

ranksum test was performed (Conover, 1998 ). The ranksum test allows evaluation of 

actual population distributions rather than means of populations, which would be the 

typical test used to compare AMP families versus housekeeping genes.  

 Individual rank sum test was carried out for each of the six significant TF 

categories (AD, NHR, IMM, LIV, LUNG, NS), comparing the numbers of TFs in all 
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AMP families with the housekeeping gene set. The ranksum test gave a p-value is 

5.1872e-004 and the corrected p-value for 6 tests was 0.0031, indicating that the null 

hypothesis can be rejected, that assumes the same population of TFs influence AMP 

genes and housekeeping genes. Consequently, it is concluded that AMP genes and 

housekeeping genes utilize different groups of TFs in a significantly different manner. 

Among the six most utilized TF categories (AD, NHR, IMM, LIV, LUNG, NS) NHR 

was found indicating a potential link of the endocrine and immune response systems 

(Supplementary Table 5.6).  
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Table 5.5: Distribution of motifs associated with different tissue/function-specific TF groups among AMP families.  
 
Tissue/function-specific TF groups are AD: adipocyte-related TFs; NHR: nuclear hormone receptor TFs; CC: cell cycle-
related TFs; IMM: immune cell-specific TFs; LIV: liver cell-specific TFs; LUNG: lung cell-specific TFs; MUS: muscle cell-
specific TFs; NS: nervous system-related TFs; PAN: pancreatic B-cell related; PIT: pituitary gland-specific TFs; Eye: eye-
specific TFs; BS: bone-specific TFs. TF groups (AD, NHR etc.) that occur with highest frequency among AMP families are 
underlined. Cut-off indicates the minimum percentage of motifs in a TF family that can bind TFs from a particular 
tissue/function-specific group. 
 
 

Tissue/function-
specific TF groups AD NHR CC IMM LIV LUNG MUS NS PAN PIT EYE BS Cut-Off (%) 

Total no. of motifs 131 139 97 122 141 122 78 143 77 74 1 12  

17 18 8 14 19 16 4 17 5 5 0 0 25% 

14 12 7 11 14 10 4 15 3 2 0 0 30% 

8 11 3 6 10 5 2 11 2 1 0 0 35% 

No. of AMPcg 
families 

4 7 3 4 3 4 1 9 0 0 0 0 40% 

 

AMPcg Families AD NHR CC IMM LIV LUNG MUS NS PAN PIT EYE BS 

Alphadefensin 6 12 2 6 6 5 3 9 2 1 0 0 

Apoa2 5 5 5 4 5 5 4 6 4 3 0 0 

Betadefensin 6 5 4 6 6 5 2 8 2 3 0 1 

bin1b/spag11 9 9 3 5 10 10 6 10 5 2 0 3 

Bpi 6 7 8 8 8 5 8 7 7 4 0 0 

Calgranulin 8 5 6 9 9 6 7 11 7 5 1 2 
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Cathelicidin 4 8 6 8 5 5 1 6 3 5 0 1 

Dbi 7 8 4 5 7 6 4 6 1 4 0 0 

Slpi 6 7 3 6 6 5 3 8 5 4 0 0 

Granulin 6 5 6 4 6 6 4 5 4 3 0 0 

Hepcidin 10 9 3 7 11 11 3 9 6 7 0 0 

Histone 5 2 3 3 5 4 3 3 4 3 0 0 

Lactoferrin 7 10 3 4 7 6 4 8 3 1 0 0 

Lysozyme 4 2 4 3 4 4 3 3 2 1 0 0 

Mbp 6 7 9 9 7 6 6 7 2 6 0 2 

Melanotropinalpha 9 6 9 7 8 7 4 8 3 4 0 0 

Proenkaphalin 7 7 3 4 7 7 1 8 3 3 0 1 

Secretogranin 1 5 2 6 3 2 4 3 3 3 0 1 

Spyy 5 5 2 5 5 3 1 5 3 5 0 0 

Vip 3 3 3 4 3 2 1 3 3 1 0 1 

Vstn 4 4 3 3 5 4 3 4 1 2 0 0 

Zap 7 8 6 6 8 8 3 6 4 4 0 0 
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5.4.6 Motifs associated with nuclear hormone receptors (NHRs) 
 
NHR proteins function as dimeric molecules in the nucleus to regulate the transcription 

of target genes in a ligand-responsive manner (Nishikawa et al., 1995 and De Vos et al., 

1994). A number of PEs detected in the 22 AMPcg families potentially binds different 

TFs. Among them the most frequent is the family of NHRs that in the case includes 

(Table 5.6) AR (androgen receptor), GR (glucocorticoid receptor), RXR-alpha (retinoid 

X receptor alpha), VDR (vitamin D receptor), T3R-alpha (thyroid hormone receptor) and 

ER-alpha (estrogen receptor alpha), ERRalpha1 (Estrogen-related receptor alpha 1), 

RAR(retinoic acid receptor)-alpha, beta, gamma, LXR (liver X receptor)-alpha, beta, 

PPAR (peroxisome proliferator-activated receptor)-alpha, beta, gamma. GR, RXR-alpha, 

AR, VDR, T3R-alpha and RAR-alpha1.  
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Table 5.6: Distribution of individual TFs among AMP families  
 

TF No. AMP 
families 
with 
detected 
TF 

AMP family names 

GR 20 alpha defensin, apoa2, betadefensin, bin1b, bpi, calgranulin, cathelicidin, dbi, slpi, granulin, hepcidin, histone, 
 lactoferrin, lysozyme, mbp, melanotropinalpha, penk1, vip, vasostatin, zap 

RXR-alpha 18 alpha defensin, betadefensin, bpi, calgranulin, cathelicidin, dbi, slpi, granulin, hepcidin, histone,  
lactoferrin, mbp, melanotropinalpha, penk1, secretogranin, spyy, vip, zap 

AR 17 alpha defensin, apoa2, betadefensin, bin1b, bpi, calgranulin, cathelicidin, dbI, slpi, granulin, hepcidin, lactoferrin,  
mbp, melanotropinalpha, penk1, vasostatin, zap 

Sp1 16 apoa2, bpi, calgranulin, dbi, granulin, hepcidin, histone, lactoferrin, lysozyme, mbp, melanotropinalpha, penk1, 
secretogranin, spyy, vasostatin, zap 

VDR 16 alpha defensin, apoa2, betadefensin, bpi, calgranulin, cathelicidin, dbi, slpi, granulin, hepcidin, lactoferrin, mbp, 
secretogranin, spyy, vasostatin, zap 

T3R-alpha 15 alpha defensin, apoa2, betadefensin, bin1b, bpi, calgranulin, cathelicidin, dbi, slpi, hepcidin, mbp, melanotropinalpha, 
penk1, spyy, zap 

Meis-1a 15 alpha defensin, apoa2, betadefensin, calgranulin, cathelicidin, dbi, slpi, granulin, histone, lactoferrin, lysozyme, mbp, 
secretogranin, spyy, vip 

Meis-1b 15 alpha defensin, apoa2, betadefensin, bin1b, calgranulin, cathelicidin, dbi, slpi, granulin, histone, lysozyme, mbp, 
secretogranin, spyy, vip 

RAR-alpha1 14 alpha defensin, apoa2, betadefensin, bpi, calgranulin, cathelicidin, dbi, slpi, hepcidin, mbp, penk1, secretogranin, spyy, 
zap 

LXR-alpha:RXR-
alpha 13 alpha defensin, apoa2, betadefensin, bpi, calgranulin, cathelicidin, dbi, slpi, lactoferrin, mbp, secretogranin, vip, zap 

NF-1 13 apoa2, bin1b, calgranulin, cathelicidin, dbi, granulin, histone, lactoferrin, lysozyme, mbp, melanotropinalpha, vip, zap 
AP-2alphaA 13 apoa2, bin1b, bpi, cathelicidin, slpi, granulin, hepcidin, lysozyme, mbp, melanotropinalpha, penk1, spyy, vasostatin 
Nkx2-1 12 betadefensin, bin1b, bpi, calgranulin, cathelicidin, dbi, slpi, granulin, lysozyme, spyy, vip, zap 
c-Myb 12 bpi, calgranulin, cathelicidin, dbi, slpi, granulin, lysozyme, mbp, melanotropinalpha, vip, vasostatin, zap 
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Table 5.6: Comments  

GR is involved in the regulation of numerous physiological processes including 

lymphocyte e apoptosis, T cell development and inflammatory responses (Reichardt, 

2004). Several of the TFs found in the analysis are known to interact with GR, like AP-1, 

c-Ets-2 etc. AR has also been shown to play a role in the immune response. It appears that 

androgens have an influence on the developmental maturation of T and B lymphocytes 

(Olsen and Kovacs, 2001, Takeuchi et al., 1998). RXR-alpha binds to many other TFs 

forming complexes that can regulate multiple pathways, including immunomodulatory 

pathways. It has been shown that RXR-alpha binds to VDR, forming a heterodimer that 

inhibits NF-AT and plays a role in immunosuppression (Takeuchi et al., 1998). RXR-

alpha also binds to PPAR-gamma and causes an apoptotic signaling cascade in B cells 

through NF-kappaB activation (Schlezinger et al., 2002).  

VDR is the receptor protein for 1,25-dihydroxyvitamin D which is involved in 

regulating cell growth, modulating the immune system and the renin-angiotensin system 

(Holick, 2003). Recently, it has been shown that VDR can mediate the induction of 

antimicrobial peptide gene expression in human like beta-defensin 2 (Wang T.T. et al., 

2004, Wang Y. et al., 2004). The analysis of the beta-defensin family also shows the 

presence of VDR. T3R-alpha is another of the TFs to be found in high occurrence, 

covering 15 of the AMPcg families. It has been shown that T3R-alpha binds to thyroid 

hormone and is involved in the control of B-cell production level (Arpin et al., 2000). 

RAR-alpha1 is a receptor for retinoids and it is constitutively produced in adenoidal T and 

B cells (Ballow et al., 2003). LXR-alpha: RXR-alpha heterodimers function as sensors for 
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cellular oxysterols and, are transcriptional activators of genes that control sterol and fatty 

acid metabolism/homeostasis (Edwards et al., 2002). In summary, the occurrence of 

different families of NHR as most frequently occurring TFs among AMPcg families 

indicates an intricate regulatory network encompassing the endocrine (i.e. lipid 

metabolism) system and innate immunity system ( Table 5.6).  

NF-1 (nuclear factor 1) is known to be involved in regulation of genes associated 

with adipogenesis and signal transduction pathways induced by steroid hormones like 

vitamin D, thyrotropin Gronostajski, 2000. The AMP member diazepam binding inhibitor 

(Dbi), is known to have an NF-1 site that plays a crucial role in its transcription in the 

lipogenesis pathway (Hansen et al., 1991). 

 
5.4.7 Other TFs and their potential role in AMPs 
 
Several non-NHR TFs that frequently appear in genes of the 22 AMPcg families were 

also found. ( Table 5.6). Sp1 is a ubiquitous TF that is enriched in the numerous GC-rich 

housekeeping gene promoters, but also contributes to tissue-specific transcription. For 

example, it is detected in the promoters and enhancers of numerous erythroid cell-

expressed genes and appear to cooperate with lineage-restricted factors in directing their 

expression (Suico et al., 2004). Meis1a and Meis1b isoforms are homeoproteins related 

to the pre-B cell transformation protein family. Meis1a is implicated in the myelopoesis 

(Calvo et al., 2001) leading to the basophil, neutrophil and eosinophil granulocytes.  

Meis1a and Meis1b binding sites were detected in members of the apoa2, calgranulin, 

slpi, granulin, secretogranin, mbp, vip, lysozyme AMP families, suggesting a 

granulocyte-specific transcriptional control function. Calvo and co-workers (Calvo et al., 

2001) showed that Meis1a suppressed the G-CSF-induced transcription of neutrophil 
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differentiation-specific genes cytochrome b-245 beta, lactoferrin, early growth response-

1, neutrophil gelatinase B, and lipopolysaccharide receptor CD14. The unique C-terminus 

of Meis1a which was shown to specifically mediate protein kinase A and trichostatin 

activation (Huang et al., 2005) provides additional support for the functional differences 

of Meis1a and Meis1b. Meis1a in combination with other neutrophil-specific TFs (i.e. 

STAT1, STAT6 and NF-kappa B) may play an important role in the recruitment and 

activation of neutrophils seen in sepsis and Helicobacter pylori infection-induced iron-

deficiency (Baveye et al., 1999, Choe et al., 2003). Interestingly, hepcidin, which inhibits 

iron absorption from the small intestine during infection-induced inflammation, lacks 

Meis1, suggesting the induction of multiple alternative transcriptional regulation 

mechanisms during microbial pathogenesis. 

 
5.4.8 Suggested future experiments 
 

The analysis has generated a number of hypotheses that are in good concordance with 

some of the existing knowledge in the field. However, the computationally-inferred 

hypotheses can only be validated through experiments. The author proposes the following 

hypotheses which warrants for experimental validation.  

1. NHRs maybe involved as dominant group in regulating AMP genes. NHR 

candidates such as GR, RXR-alpha, AR, T3R-alpha, RAR-alpha, LXR-alpha:RXR-

alpha should be tested for  their presence in the promoter regions of AMP genes.  

2. VDR which is already known to be involved in directly regulating expression of 

beta defensins, also maybe involved in regulation of many other AMP genes as 
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listed in Table 5.6. Hence, the presence of VDR binding site should be validated 

experimentally in other AMP genes. 

3. NF-1 and NKX2-1 which have not yet been implicated to be involved 

immunomodulatory pathways have appeared frequently in many AMP genes in 

the analysis. 

4. C-myb transcriptional regulator is known to be invoved in cell proliferation, 

differentiation (Farrar et al., 1989, Ramsay, 2005). It is critical in lymphocyte 

development (Thomas et al., 2005). A hypothesis related to its role in 

neuroectodermal tumors alludes to activation of innate immune pathway due to 

inhibition of c-myb by antisense oligodeoxynucleotides (Pastorino et al., 2004). 

However, there is no consolidated evidence of its involvement in innate 

immunity. 

5. Meis1a as discuseed in the previous section has been implicated in regulation of 

lactoferrin, may also be involved in regulation of other AMPs under certain 

conditions. 

 The author proposes using microarray technology combined with chromatin 

immunoprecipitation (ChIP) profiling (Ren et al., 2000) to identify all the chromosomal 

locations that are occupied by a transcription factor. These experiments are expected to 

clarify which promoters and TFs are specific for certain tissue cells and how many 

AMPcgs are regulated by a TF, TF pair or multiple TFs. Eventually, the combination of 

both computational and experimental should permit us to construct mechanistic models 

of AMPcg regulatory transcription networks.  
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5.5 Conclusion 
 
The large-scale computational analysis of promoters of 22 families of AMPcgs across 

three mammalian species has allowed us to identify potential key transcription elements 

of these families. Promoter regions (-1000, +200) were analyzed and it is likely that the 

regulatory elements further upstream may have been missed, that might be important in 

the fine-tuning of the regulation of particular families of AMPcg. The results suggest a 

core set of transcription factors (TFs) that regulate the transcription in the mouse, rat and 

human AMPcg families examined. TFs of the liver, nervous system- specific and NHR 

group are significantly over represented. These TF groups consist of transcription 

regulators that are involved in diverse physiological functions, including control of 

embryonic development, cell differentiation and homeostasis, and also in immune 

response. Interestingly, NHRs appear more dominant than immune cell-specific TFs in 

the analyzed AMPcg families. Numerous experimental evidence show the involvement of 

NHRs in various immunomodulatory pathways (Reichardt, 2004, Hayes et al., 2003, Jeay 

et al., 2002, Reichardt et al., 2000). However, little is known about their direct 

involvement in innate immunity. Recently, there has been evidence that VDR plays a 

direct role in the induction of antimicrobial innate immune response (Wang T.T. et al., 

2004). This analysis concurs with this evidence and elucidates other members of the 

NHR family also, that could play a crucial role in antimicrobial innate immunity. Besides 

the NHR, putative binding sites of Sp1, Meis1a, Meis1b, NF-1 were also found to be 

prevalent across different AMPcg families. Three potential TF-binding motifs that are 

enriched in promoters of AMPcgs are novel. Four identified motifs were found to be 

species-specific. Phylogenetic analysis of alpha-defensins revealed potential TF-binding 
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motifs and motif combinations that are common in primates and rodents, and others that 

are species-specific and specific to enteric versus myeloid expression of alpha-defensins. 

  This analysis brings out the advantage of using a computational approach to 

analyze promoter regions, since the author was able to do a comprehensive analysis and 

get a bird’s eye view of the transcriptional regulators involved in multiple AMPcg 

families across different mammalian species.  

 In addition, 102 new motifs were discovered as candidate TFBS with a role in 

antimicrobial innate immunity. The actual experimental confirmation of the AMPcg 

transcription regulatory elements can only be accomplished by targeted research of 

infection or cellular stress models using time-course sampled tissue cell types. 

 After finding potential TFBS motifs for several of the AMP gene groups within 

different AMP families, it intrigues to know which of the TFBS motifs can appear 

together across promoter regions of same AMP gene across different species. It is 

probable that co-occuring TFBS motifs that are conserved across different species for a 

gene or conserved across a gene family have a role to play in transcription regulation and 

hence are not present in the regulatory region by chance. Chapter 6 elucidates this 

hypothesis in detail. 
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Part III: Chapter 6 Identification of transcription factor 

binding site modules 

The power of imagination makes us infinite. 
(John Muir) 
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6.1 Introduction 
 
In this chapter, the author analyzes in greater detail promoter regions of three AMP gene 

groups (Alpha defensin, Penk, Zap) that appeared in Chapter 5 so as to identify 

transcription factor (TF) binding motifs that are common among AMP genes of 

mammalian species (i.e. namely human, mouse and rat). In the case of alpha-defensins 

and penk, experimentally identified promoter elements were used to assess and interpret 

the predictions. For the zap family, the findings are novel, since no experimental data is 

present. Further, the author has attempted to identify Transcription Factor Binding Site 

modules (TFBS) module(s) or promoter models which are defined as a TF framework 

consisting of more than one motif found within a given distance and orientation (Werner 

et al., 2003).   

Identification of TFs that control the expression of a given gene is the first step to 

towards understanding the transcriptional regulatory network associated with a gene or a 

given class of genes. TFs mediate their effects via their cognate TFBSs. TFs work in 

combinations to bring out special-temporal expression of genes. Thus, a set of TFs that 

modulate a functional response may trigger a set of related genes associated with that 

functional response. Therefore, finding TFBS modules can lead us to predict other genes 

that are responsive to the same set of TFs (Dohr et al., 2005).  

A TFBS module or framework is a model consisting of two or more TFBSs 

found within a certain distance, having a defined order relative to each other and having 

the same strand orientation. It has been shown that TFBS organization in the promoter 

region plays an important role in transcriptional regulation (Fessele et al., 2001). Genes 
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expressed in the same tissue under similar conditions often share a common organization 

of regulatory binding elements. This organization appears to be conserved across 

different species whereas structure and function of a gene product may be more tolerant 

of gene mutations in the coding sequences. The specific arrangement of TFBSs increases 

the potential specificity of the system to affect gene mechanisms as co-regulation 

imposes stringent constraints on the evolution of the gene’s promoters. Thus the 

organization of promoter motifs can give essential clues about the transcriptional 

regulatory mechanisms at work in a specific biologic context and provide information 

about signal and tissue specific control of expression (Werner et al., 2003). It can thus be 

considered as a “footprint” or “signature” of transcriptional regulatory mechanisms at 

work in a specific biologic context (Werner et al., 2003). Figure 6.1 shows an example 

of a TFBS module. 

Dushay et al showed (Dushay et al., 2000) that promoter region of Drosophila 

AMPs, cecropin, diptericin, metchnikowin, attacin A and attacin B have a common TFBS 

module (Werner et al., 2003). The proximity of GATA, R1 and ICRE to kappaB sites 

was shown (Dushay et al., 2000) to be important for gene expression, as removal of these 

sites reduced the expression of cecropin and diptericin, despite the presence of intact 

kappaB sites. Thus, the presence of certain TFBSs in a particular order and position 

indicates a certain way of conservation that could be essential for induction of a particular 

gene. It is not just a random occurrence of these motifs in that region. Moreover, since 

these subregions of conserved positional arrangement of promoter motifs are usually 

sited at various distances from TSS in different species, they cannot be easily detected in 

most cases by the usual local alignment methods. 
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6.2 Background 
 
Prior studies have suggested that promoter modules are pathway-specific or cell- type- 

specific and hence cause the transcriptional response to specific signal transduction 

pathways, cell type-specific expression and events central to developmental regulation. 

A study (Werner et al., 2003) done of RANTES/CCL5 gene set corroborates this 

point. RANTES/CCL5 is a member of the -CC- subfamily of chemotactic cytokines 

which is involved in different stimuli and plays diverse roles in inflammatory processes. 

Analysis of the RANTES promoter in different cells like monocytes, T cells, astrocytes 

and mesangial cells show that there is an underlying group of six functionally 

characterized short regulatory elements forming a hierarchic organization in them. 

However, the combinations of these elements vary in the four different cell types (Werner 

et al., 2003). This sequence feature can be exploited to look for genes that are regulated 

by similar mechanisms.  

To predict TFBS module, gene expression (Segal et al., 2003, Ihmels et al., 2004, 

Kloster et al., 2005, Kloster et al., 2005, Wang et al., 2005) or DNAseI hypersensitivity 

data (Noble et al., 2005) are taken into account. Most of the methods derive a set of 

TFBS elements from a set of co-regulated genes or a set of genes with similar functions. 

The individual binding elements are then combined into one recognition module/model. 

Another approach is that a set of transcription-factor PWMs that are known to be 

co-occuring are used to identify genomic regions densely populated in putative sites for 

these TFs (Bailey and Noble, 2003, Frith et al., 2003, Johansson et al., 2003, Sinha et al., 

2003, Alkema et al., 2004). 
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To find functional binding sites and modules, the concept of phylogenetic 

footprinting is also used. Phylogenetic footprinting is a comparative genomic approach 

by which non-coding regions of orthologous genes from different species that are 

sufficiently evolutionarily distant (but not too distant) are aligned to detect the conserved 

regulatory elements interspersed between the real non-functional background sequences 

(Zhang and Gerstein, 2003). The major advantage of phylogenetic footprinting compared 

to other techniques is that it is capable of identifying regulatory elements specific even to 

single genes, as long as they are sufficiently conserved across species. This approach 

facilitates finding functional binding sites. However, it is important to note that many of 

the TFBSs that are detected computationally in the promoter region may not be 

functional. They may be false positives, or actually binding sites that are not used in the 

context of the gene studied. By comparing these sequences across species, phylogenetic 

footprinting can help reduce this problem to an extent. Table 6.1 lists the various 

transcription factor module finding programs. 
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Table 6.1: Transcription factor module finding programs 
 

* PMID – Pubmed Unique Identifier 

Program 
name URL Address Reference (PMID)* 
MSCAN http://mscan.cgb.ki.se/cgi-bin/MSCAN 15215379 
MAST http://meme.sdsc.edu/meme/mast.html 9520501 
Cluster 
Buster 

http://zlab.bu.edu/cluster-
buster/cbust.html 12824389 

CRÈME http://creme.dcode.org/ 12855471 
Module 
Scanner   14534164 
Dragon 
Promoter 
Mapper 

http://defiant.i2r.a-
star.edu.sg/projects/BayesPromoter/  16613910 

MCAST   14534166 
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6.3 Materials and methods 

Figure 6.1: Graphical representation of TFBS module generation 
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Figure 6.1 : (A,B): Orthologous promoter sequences are subjected to DMB motif finding 
program. (C,D): The motifs found by DMB are searched in the TRANSFAC database for 
known TFBSs using Patch program (TRANSFAC program). E: TFBS modules are 
generated by looking for all possible combinations of motifs common across all the input 
sequences which have the same relative order and strand orientation. The different 
colored line connectors (red,green,black) highlight the three different TFBS modules 
found by the program within a given distance cut-off. 
The possible combinations shown here are CREB-ETS-IRF-1, AP-1-ETS,CREB-IRF-1. 
In this study the minimum number of motifs (min.polymer) is set to 3 or more, therefore 
combinations below the min.polymer threshold  will not be shown in the final output by 
the program. PE: promoter element 
 

 
6.3.1 Data selection for generation of promoter models 
 
Alpha-defensins DEFA5, DEFA1, Penk and Zap promoter sequences covering (-1000, 

+200) relative to the estimated transcription start site (TSS) from human, mouse and rat 

were selected. The method of extraction was same as discussed in Chapter 5. Promoters 

of human orthologs were extracted using H-invitational database (Fujii et al., 2004) as 

well as PromoSer (http://biowulf.bu.edu/zlab/PromoSer)  (Halees et al., 2003s). All these 

resources provide estimated TSS locations based on mapping EST and full length cDNAs 

(flcDNA) data to genomic sequences. The TSS location of mouse sequences was 

determined by using the start position of the first exon of the FANTOM cDNA-genome 

mapping data (http://fantom31p.gsc.riken.jp/cage/download/mm5/cage.rep_tag.2004-11-

16.chr_all_gff.tar.gz). Mouse promoter sequences (-1000, +200) were then extracted by 

mapping the TSS location to the mouse genome data from UCSC 

(http://hgdownload.cse.ucsc.edu/goldenPath/mm5/chromosomes/).  
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6.3.2 Prediction of TFBS motifs 
 
The author aligned the (-1000,+200) promoter regions of the orthologs of an AMP family 

and subjected them to Dragon Motif Builder (DMB) (E Huang et al., 2005 ) program for 

prediction of TFBSs. The EM (Expectation Maximization) threshold of the DMB 

program was set to 0.85 for all AMP groups except for DEFA1, where it was set to 0.70 

as 0.85 appeared too stringent. The number of 10-15 nt motif candidates was restricted to 

a maximum of 20 for each of the AMPcg families. The author chose to search for 

maximum of 20 motifs as the optimum number that covers most of the promoter region 

of (-1000, +200) without overlap of motif candidate sequences. After DMB identified the 

sequence motifs, the Patch program (mismatch =0; motif length =6; species =all) 

(Wingender et al., 2000) of the TRANSFAC database ver. 8.4 was used to infer potential 

transcription factors (TFs) that may bind to these motif families. The motifs are reported 

in IUPAC nucleic acid codes format.Figure 6.1 shows the schema for the generation of 

TFBS modules. 

 

6.3.3 Generating the TFBS models 
 
 
The author searched for all possible combinations of motifs that were present in same 

order and same strand orientation for a given set of promoter sequences within a family 

and constrained by a defined range of distances between the motifs. A perl program 

(made by I2R Knowledge Discovery Group) was used that calculated TFBS models from 

the graphic motif representation file generated by DMB and user input of distance 

constraint in percentage and minimum number of motifs. Promoter models that contained 
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experimentally proven TFBSs – if available – for a particular AMP gene group along 

with other motif candidates or TFBSs within the given distance constraint, were selected. 

The minimum number of motifs per model was set to three. The distance constraint was 

tested for the interval of 1%–30% and promoter sequence length of 1200 bp. It was 

observed that promoter models having three or more motifs could be generated with 

distance percentages of 20 or 30. This distance percentage appeared to be optimal for the 

length of 1200 bp. Hence, the distance between two adjacent motifs in a promoter model 

ranges between one to 240bp or up to 300bp from each other. The motif combinations 

that appeared common across all promoters of a given AMP family were chosen as 

candidates for scanning the large promoter data set. 

 

 

6.4 Results  
 

6.4.1 Alpha defensin promoter model  
 

 
Human polymorphonuclear leukocytes (PMNs) or neutrophils express four defensins 

named human neutrophil peptides, HNP1 to HNP4. HNPs are also expressed in immature 

bone marrow cells, in HL-60 and human promyelocytic leukemia cells. Alpha defensin 5 

are enteric defensins expressed mainly in the Paneth cells and are constitutively produced 

(Cunliffe, 2003). Gene duplication events have probably led to both species-specific and 

functionally diverse subsets of alpha-defensins,which should be also reflected in the 

upstream regulatory regions. For example, enteric-expressed defensins are important to 

barrier function of the gut mucosal surface against bacteria, whereas myeloid and 
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neutrophil-specific defensins help macrophages and neutrophils to kill internalized 

bacteria (Patil et al., 2004). 

 The author analyzed HNP-1 (DEFA1) and HNP-3 (DEFA3) from human, which 

are paralogs and alpha-defensin 5 group orthologs (information extracted from Ensembl 

release 40- Aug 2006, http://www.ensembl.org). DEFA1 and DEFA3 have very similar 

promoter regions and are controlled by myeloid-specific regulation, even though they 

have different biochemical properties (Tsutsumi-Ishii et al., 2000).  

 The promoter model of the alpha-defensin 5 group contained four motif 

candidates in the order 15-12-19-5 within the distance threshold of 360 nt (Table 6.2, 

Figure 6.2a). Motif 5 and motif 15 did not correspond to any known TFBS. Motif 12 

represented potential binding sites for TFs namely LF-A1, GATA-1, COUP-TF2, NKX2-

1, NF-E3. GATA-1 is up-regulated by cytokine IL-1B during inflammatory responses 

(Chuen et al., 2004). Recently, it was  reported that human alpha defensin 5 (HD-5) binds 

to the cell membrane of intestinal epithelial cells and induces secretion of the interleukin 

(IL)-8. HD-5 may be playing a role in regulation of the intestinal inflammatory response 

 (de Leeuw et al., 2007). Hence, the presence of putative GATA-1 binding site in 

DEFA5  may indicate binding of GATA-1 to its promoter region and causing up-

regulation of its expression during inflammatory response as a positive feedback loop. 

Motif 19 corresponded to potential binding site for C\EBPalpha. Transcription factor 

C/EBPalpha is known to bind to promoter region of HNPs and regulate myeloid-specific 

genes (Tsutsumi-Ishii et al., 2000).   

The analysis of the promoter regions of DEFA1 and DEFA3 genes returned 

motifs for putative binding sites for CCAAT-binding factor, NF-Y represented by motif 
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10. Zic2 was represented by motif 20. Motif 14 corresponded to binding site for Ets 

transcription factor (c-Ets-2) binding site. Ets is known to bind to HNP1-3 promoter 

region (Tsutsumi-Ishii et al., 2000). Motif 5 represented putative binding sites for HNF-4, 

HNF-4alpha1, C/EBPalpha, C/EBPbeta. As the promoter regions for DEFA1 and DEFA3 

are highly conserved, the original model showed that all the 20 motifs have a conserved 

organization across the two promoter regions. Thus, a subset of consecutively positioned 

motifs was selected and a promoter model created that contained the motifs 10-20-13-5 

within a maximum allowable distance range of 240 nts between them (Table 6.2, Figure 

6.2b). 
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Table 6.2: Alpha defensin promoter models  
 

  Hs: Homo Sapiens, Mm: Mus musculus, 

 

AMP group 
Motif 
No. Motif Species Start End Putative TFBS 

Distance 
range 

                

alpha defensin 1 10 TTAGCCACAGCCAAT Hs 737 751 

 
CCAAT-binding factor (CTF CTF-1 
CTF-2 CTF-3 NF-1) NF-Y  240 

      Hs 730 744     
  20 AGTTGGTTGCTGCCT Hs 794 808 Zic2   
      Hs 787 801     
  14 CCTTCCCACCAAATT Hs 873 887 c-Ets-2   
      Hs 866 880     

  5 ATGGACCCAACAGAA Hs 919 933 
HNF-4 HNF-4alpha1 C/EBPalpha 
C/EBPbeta   

      Hs 912 926     
alpha defensin 5 15 GAAKMCTGCAR Mm 19 29 unknown 360 
      Hs 582 592     

  12 YMACACMTTGGRYY Mm 223 236 
LF-A1, GATA-1, COUP-TF2, NKX2-1, 
NF-E3   

      Hs 799 812     

  19 RGAGGSATKRA Mm 487 497 unknown   
      Hs 817 827     

  5 YATCCTTGCTG Mm 871 881 C\EBPalpha   
      Hs 1057 1067     



 

138 

 
 
 
 
 
 
Figure 6.2a: Motif arrangement in promoter region of mouse Defcr3 and its human ortholog (DEFA5) 
 The numbers (i.e. 15) in the boxes refer to different motifs. The grey line represents the (-1000, +200) promoter region 
that has been analyzed for motifs. The broken arrow indicates the TSS. 

 

 
 
 
 

Figure 6.2b: Motif arrangement in promoter region of human DEFA1 and its human paralog DEFA3 
The numbers (i.e. 10) in the boxes refer to different motifs. The grey line represents the (-1000, +200) promoter region 
that has been analyzed for motifs. The broken arrow indicates the TSS 
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Both the alpha defensin promoter models have TFBSs such as C/EBP and Ets that 

have experimentally proven to be present in the regulatory regions of this group of 

AMPs. This corroborates the viability of the strategy that has been implemented in 

this thesis to find TF motifs and promoter models. The other new TF motifs such as 

Zic2, NF-Y etc. could be interesting candidates for experimental validation in alpha 

defensin promoter regions. 

 
6.4.2 Promoter models of penk and zap families  
 
Penk and zap gene groups were chosen for detailed promoter analysis because 

penk1 represents a gene that has several experimentally identified promoter 

elements and this could be used as a benchmark to assess the accuracy of the 

computational analysis. For the zap family, to the best of the author’s knowledge, 

the results presented are completely new.  

 

6.4.3 Penk promoter analysis 

 

Penk1 is a neuropeptide-encoding gene that is known to be expressed primarily in 

mature nervous and neuroendocrine systems. The penk1 gene product is known to 

mimic the effects of opiate drugs. It plays a role in a number of physiologic 

functions, including pain perception and responses to stress. Experimental evidence 

shows that penk family members are also expressed in activated lymphocytes 

(Ovadia et al., 1996). Their expression is induced by bacterial endotoxins (i.e. 

lipopolysaccharide, LPS). Penk-derived peptides have immunomodulatory 
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properties ranging from augmenting CTL and NK cell, monocyte chemotaxis to 

being involved in pathophysiology of endotoxic shock (Ovadia et al., 1996, Salzet, 

2001). The penk1 promoter regions contain the experimentally characterized motifs 

for AP-1, CRE, NF-1, AP2, NF-Y, NF-kappaB, MZF-1 and PACH-1 (Le et al., 

2003, Liu et al., 2000). The computational analysis was able to identify all except 

PACH-1 because TRANSFAC 8.4 database lacked the corresponding motif. The 

motifs and corresponding TFBSs associated with the penk family are listed in 

Supplementary Table 6.1.  

In different enkephalin-expressing tumor cell-lines, as well as in adult 

enkephalinergic neurons, the rate of transcription of penk is modulated by several 

ubiquitous factors like NF-kappaB, AP-2, cAMP-response element binding protein, 

etc. (Le et al., 2003), whose DNA binding sites are located immediately upstream 

of TSS of penk (Uhl et al., 1991). This 200 bp DNA stretch is extremely well 

conserved among human (Comb et al., 1992), rat (Joshi and Sabol, 1991) and 

mouse (v Agoston et al., 1998) promoter regions. 

The computational analysis showed that motif 2 corresponds to the TATA 

box. Motif 5 represents a potential binding site for NF-kappaB and AP-2. Motif 9 

contains the putative binding site for NFI/CTF, and NF-Y. Motif 16 represents 

potential binding sites for MZF1, AP2 and NF-kappaB. Motif 3 corresponds to GR 

and AR. It has been found previously that GR is involved in activation of cAMP-

mediated transcription of penk in rats (Jenab and Inturrisi, 1995). Motif 1 appears as 

NHR representing motif. It contains the potential binding site for RXR-alpha, LXR-

alpha, ERRalpha1. An AP-1 site is known to be present in the penk promoter 
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(Macian et al., 2001) and is represented by motif 6. Motif 7 represents binding sites 

of c-Ets1, Elk-1, SAP-1a, SAP-1b, PEA3 and ELF-1, all of which belong to the Ets 

family of transcription factors. The expression of penk gene in epididymis is 

regulated by testicular factors that control expression via members of the Ets 

transcription family, (Hinton et al., 1998). Motif 12 represents putative USF family 

of transcription factors USF-1, USF1, USF2, USF2b and USF. These TFs are 

involved in the regulation of activity-dependent gene expression in neurons (Chen 

et al., 2003). They are found along with CREB (cAMP response element binding) 

binding elements in a number of promoters (Cvekl et al., 1994, Durham et al., 

1997, Kingsley-Kallesen et al., 1999) which indicates that the these two factors 

cooperatively activate transcription of calcium-inducible neuronal genes. Moreover, 

the rat penk gene is also known to be regulated by cyclic AMP and calcium 

pathways (Konradi et al., 2003), supporting the observation of USF TFBSs in the 

promoter of proenkephalin genes (Supplementary Table 6.1) 

 
6.4.3.1 Penk family promoter model 

 
The motifs shown in Table 6.3 were analyzed in terms of their orientation, 

positioning and mutual distance common to all three sequences (mouse, human, rat) 

to create promoter models. The arrangements of the motifs are shown in (Table 6.3 

and Figure 6.3). A single model arrangement 3-5-1-13 (representing motifs 3, 5, 1, 

13) common to all the three considered species was generated. The corresponding 

TFs that may bind to the motifs are: GR, AR (motif3), NF-kappaB, AP-2 (motif5). 

Motif1 represents potential binding sites for NHR (RXR-alpha, LXR-alpha, 
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ERRalpha1), while Motif13 potentially binds to various TFs including NHR (DSF 

GCN4 COUP-TF1 RAR-beta RXR-alpha RAR-alpha1 TLX Pax-2.1). 

 
 

 

Table 6.3: Motif arrangements in promoter region in mouse (4922504O09), 
human (HIX0007519.2) and rat (NM_017139) of Penk family members.  

 
Species Motif arrangement 
Hs,Rn 3-5-15-18-4-16-8-9-2-10-1-13 

Mm, Hs 7-12-3-5-1-13 
Hs, Rn 3-5-1-13-20 

Mm, Hs, Rn 3-5-1-13 
 
The species abbreviations are Hs: Homo sapiens; Mm: Mus musculus: Rn: Rattus 
norvegicus. 
 

Figure 6.3 Conserved Penk motif organization in mouse, rat and human 
 

 
 
The numbers (i.e. 1) in the boxes refer to different motifs. The grey line represents the 
analyzed (-1000, +200) promoter sequence. This figure is a graphical representation 
of the common motifs across sequences determined by DMB program. It is not drawn 
to scale. The broken arrow indicates the TSS. 

6.4.4  
 

6.4.4 Promoter elements and their organization in the zap family 

 

The AMP CCCH-type zinc finger protein (zap) family acts as an antiviral protein 

against Sindbis virus and retro-viruses like Eco-luc (Gao et al., 2002). Its antiviral 

activity is mediated through the disruption of viral messenger RNAs in the cytoplasm 

without affecting the levels of nuclear mRNA (Guo et al., 2004). The human and 
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mouse zap proteins contain one CCCH-type zinc finger, one PARP catalytic domain 

and one WWE domain. The rat protein contains only the CCCH-type zinc finger and 

WWE domains. It has been shown that different CCCH zinc finger proteins interact 

with the 3' untranslated region of various mRNA (Gao et al., 2002). A similar 

mechanism has been proposed for the zap interaction with viral RNA and subsequent 

exosome recruitment to degrade the mRNA (Gao et al., 2002). The zap gene (known 

as ZC3HAV1 in human and mouse) of human is located at chromosome 7 and is 

flanked by the other genes that are also CCCH-type zinc finger proteins. The mouse 

gene maps to chromosome 6 and is also flanked by CCCH-type zinc finger protein 

genes. The rat gene is located on chromosome 4.  

 The promoter regions of zap genes were analyzed. The zap promoter 

region  (Supplementary Table 6.2) contains a high number of motifs that are 

typically recognized by TFs of NHRs. Motifs 1, 2, 5, 6, 8, 9 and 14 correspond to 

binding sites of NHRs. Also, motifs that are associated with immune related TFs 

were identified. Motif 1 corresponds to E12, E47, c-Ets-2, LyF-1, USF-1. Motif 11 

is associated with NF-1. Motif 19 corresponds to binding sites for NF-AT1, NF-1 

and Ftz. Motif 20 corresponds to TFBSs for MTF-1. MTF-1 is known as metal-

regulatory transcription factor 1. It is required for the basal transcription of 

metallothionein I and II genes (Heuchel et al., 1994). It binds to metal response 

elements (MREs), which are related to Sp1. Heavy metals, but also oxidative stress 

(H2O2) and hypoxia can lead to increased MTF-1 activity and metallothionein 

expression (Zhang et al., 2003) (Murphy et al., 1999). MTF-1 has also been 

reported to regulate lymphocyte production (Wang Y. et al., 2004).  
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6.4.4.1 Zap family promoter model 
 

A motif arrangement for the zap promoter region that is common to all three 

species was identified (Table 6.4, Figure 6.4). The motif arrangement is in the 

order of 1-11-15-8-10-20 motifs. This arrangement corresponds to the following 

TFs, motif1 (Alfin1, RXR-alpha, VDR, E12, E47, MyoD, myogenin, EMF1, 

EMF2, EMF3, EMF4, Myf-5, c-Myc, USF2, CAN, E2A, DEP2, HEB, Ac, AS-C 

T3, Da, Sc, Sn, CLIM2, GATA-1, Lmo2, Tal-1, USF-1, NeuroD, NEUROD, LVa, 

PR B, AR, GR, c-Ets-2, ESE-1, HELIOS, LyF-1) - motif11 (NF-1, TGGCA-

binding protein) - motif15 (Unknown) - motif8 (LyF-1, RXR-beta, VDR) - motif10 

(Unknown) - motif20 (MTF-1). TFs in square brackets represent different TFs that 

potentially bind the associated motif.  

The positional arrangement shows the presence of the NHR binding sites. 

The presence of NF-1 TFBS in both penk and zap families, suggests that transcripts 

of these families might be induced by steroid hormones that interact with NF-1 

(Gronostajski, 2000). Zap protein is found in the liver and kidney at high levels. 

The presence of putative binding site for MTF-1, which is also localized in liver and 

kidney, suggests possible involvement of zap genes in metal regulation pathway or 

stress-related pathways like hypoxia.  

Table 6.4: Motif arrangements in promoter region in mouse (F420004O17), 
human (HIX0007129.3) and rat (NM_173045) of zap family members 
The species abbreviations are Hs: Homo sapiens; Mm: Mus musculus: Rn: Rattus 
norvegicus. 
 

Species Motif arrangement 
Mm, Hs 5-7-9-16-4-13-2-1-11-15-8-19-10-17-20-6
Mm, Hs 1-11-15-8-10-20 
Hs, Rn 1-11-15-8-10-20-18 

Mm, Hs, Rn 1-11-15-8-10-20 
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 Figure 6.4: Conserved Zap motif organization in mouse, human and rat 

 

 
 

 
The numbers (i.e. 1) in the boxes refer to different motifs. The grey line represents 
the analyzed (-1000, +200) promoter sequence. This figure is a graphical 
representation of the common motifs across sequences determined by the DMB 
program. It is not drawn to scale. 

 

6.5 Discussion 
 
The author has shown that using ab-intio approach of finding significant motifs in 

promoters it is possible to generate models out of the motifs that could identify 

potentially co-regulated genes in a large data set. This approach does not require 

prior knowledge of the TFBSs that are present in the promoter regions. It is purely 

based on finding statistical over-representation of motifs across a set of sequences. 

The TFBS modules have been created from promoter regions of genes of orthologs, 

but the concept of phylogenetic footprinting has not been applied. The reason is that 

though phylogenetic footprinting may help in detecting functional binding sites, it 

restricts the region of motif search to only the conserved regions. In this study, 

motifs detected in the promoter regions were spread across the entire promoter 

region and not restricted to only the conserved regions between the orthologs. It 

was observed that with ab-initio search- known TFBSs motifs were also detected in 

non-conserved region of the promoters of AMP genes thus allaying the need for 

phylogenetic footprinting approach.  
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  Some putative motifs in defa1, defa5, penk and zap promoter models are 

good candidates for experimental validation.  For example, motif 12 of DEFA5 

promoter model represents a potential binding site for LF-A1, GATA-1, COUP-

TF2, NKX2-1, NF-E3. Motif 10 of DEFA1 represents putative binding sites for 

CCAAT-binding factor, NF-Y represented by motif 10. Motif 20 of DEFA1 

represents Zic2. Many of the new motifs are located in the proximity to 

transcriptional start sites, suggesting that they have a role in mediating the binding 

of bona fide trans-factors. 

 

6.6 Conclusion 
 
The author was able to find a set of TFBS motifs that were present across all 

orthologous genes of the three AMP gene groups (alpha defensin, penk, zap). 

Promoter models on orthologs of three AMP gene groups were created. Both alpha 

defensin and penk had known TFBS and new TFBS motifs in their promoter 

models. Alpha defensin models contained known TFBS motifs like C/EBPalpha 

and some new motifs. Examples of new motifs are Zic2 (motif 20 of DEFA1), LF-

A1, GATA-1, COUP-TF2, NKX2-1, NF-E3 (motif 12 of DEFA5). Penk promoter 

model had known TFBS motifs like motif 3 (GR), motif5 (AP-2) and new motifs 

such as motif 1 (RXR-alpha, LXR-alpha, ERRalpha1) and motif 13 (DSF, GCN4, 

COUP-TF1, RAR-beta, RXR-alpha, RAR-alpha1, TLX, Pax-2.1).  

Zap promoter model indicates a linkage of zap, with NHRs and metal regulatory 

transcriptional control of innate immunity and oxidative stress. As stated in section 

6.1 (Introduction), finding TFBS modules can lead us to predict other genes that are 
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responsive to the same set of TFs. Chapter 7 exemplifies this hypothesis using the 

alpha defensin promoter models. 
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Part III: Chapter 7:  Implicated gene regulatory networks 
in AMPcg activities 

 
Work spares us from three evils: boredom, vice, and need. 
(Voltaire)  
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7.1 Introduction 
 
 

In lower organisms, AMPs function merely as antibiotics by permeabilizing the cell 

membranes and lysing the invading microbes. However, during evolution these peptides 

have become multi-functional molecules acting in complex gene networks of higher 

organisms with additional properties like playing role as a mitogen or, taking part in 

adaptive immune responses (Kamysz et al., 2003). Hence, it is likely that AMP genes are 

a part of more than one transcriptional co-regulation network. In support of this 

statement, experiments have revealed that TFBSs like USF2 and (Nicolas et al., 2001), 

NKX2.2 (Wei et al., 20051) are present in the promoter regions of some of the AMPcgs, 

are also involved in regulating the expression of non-immune gene pathways. The 

objective of this study has been to identify for the two different alpha defensin gene 

groups, candidate co-regulated genes that could be part of the same transcription 

regulation networks or otherwise be members of common activation phenomenon. 

From the previous chapter (Chapter 6), two gene groups of alpha-defensins (alpha 

defensin 1 and alpha defensin 5) were selected that represent different cell origin. Alpha 

defensin 1 genes are expressed in the neutrophils whereas alpha defensin 5 genes are 

specific for paneth cells. For alpha defensin 5, human and mouse ortholog sequences 

were taken for the study. For alpha defensin 1, only human paralogs (defa1, defa3) were 

considered for promoter modeling. Defensins of neutrophil origin in human do not have 

corresponding mouse orthologs originating from neutrophils, thus alpha defensin 1 gene 

group was restricted to human sequences only. Using the shared TFBS organization 
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modules the human promoter dataset was scanned in search for genes that have a similar 

modular organization of elements in their promoters as that of the parent set of AMP 

genes. The predicted gene hits were then checked against co-expressed genes with the 

parent AMP genes that were extracted out of gene expression data.  

7.2 Background  
 
7.2.1 Gene regulatory networks (GRNs) 

 
One gene can affect the expression of another gene by binding the gene product (protein 

such as TF) of one gene to the promoter region of another gene. Looking at more than 

two genes, regulatory networks can be referred as the regulatory interactions between the 

genes. Central to the computation of gene regulatory network (GRN) are DNA 

recognition sequences (TFBSs) with which TFs associate. When active transcription 

factors associate with the promoter region of target genes, they can function to 

specifically repress (down-regulate) or induce (up-regulate or activate) synthesis of the 

corresponding RNA. The immediate molecular output of a GRN is the constellation of 

RNAs and proteins encoded by network target genes. The resulting cellular outputs are 

changes in the structure, metabolic capacity, or behavior of the cell mediated by new 

expression of up-regulated proteins and elimination of down-regulated proteins. When 

creating a GRN, genes can be viewed as nodes in the network, with input being proteins 

such as TFs and outputs being the level of gene expression (Veiga et al., 2006). The node 

itself can also be viewed as a function, which can be obtained by combining basic 

functions upon the inputs.   

Mathematical models of GRNs have been developed to allow predictions of the 

models to be tested. Various modeling techniques have been used, including boolean 
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networks (Klamt et al., 2006, Chaves et al., 2005), Petri net (Matsuno et al., 2000), 

Bayesian networks (Werhli et al., 2006) and sets of differential equations (Chen et al., 

2005). Conversely, techniques have been proposed for generating models of GRNs that 

best explain a set of co-expressed genes (Dohr et al., 2005 ).  

The key yet unsolved problem with GRNs is identification of genes that form a particular 

network. This chapter approaches the generation of GRNs based on the later technique as 

discussed in the previous paragraph in the context of specific alpha defensins gene groups 

in human. The author shows a plausible approach to find genes that are part of the same 

GRN on the assumption that they a) share the same promoter model and b) are also co-

expressed with the alpha-defensin 1 and 5 genes. TFs that bind motifs in the common 

promoter model are likely to be among the key drivers of co-expression of genes in the 

network.  

 

7.2.2 Examples of known gene regulatory networks in AMPs (defensins) 
 
 
Alpha defensins originating from the paneth cells exhibit numerous non-antimicrobial 

functions such as regulation of cell volume, chemotaxis, mitogenicity, and inhibition of 

natural killer cell activity (Ouellette, 1997). Mouse cryptidins 2 and 3 when administered 

apically can reversibly stimulate human T-84 intestinal epithelial cells to secrete chloride 

ion. This indicates that alpha defensins of paneth cells not only are components of the 

immune network of the crypt lumen but also influence the environment of the lumen by 

influencing other functional networks.(Ouellette, 1997). 
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 Toll receptor (TLR) -mediated activation of AMPs specifically defensins is the 

most well-studied pathway (Froy, 2005). Many of the TLRs are involved in activation of 

defensin sythesis such as TLR2, TLR3, TLR4, TLR5, TLR6 and TLR9  

(Froy, 2005). TLR mediated activation of alpha defensins takes place in natural killer 

(NK cells) (Chalifour et al., 2004). CD56+CD3– NK cells and some CD56+CD3+ T 

lymphocytes constitutively express alpha defensins (HNP-1, HNP-2 and HNP-3). NK 

cells CD56+CD3– and CD56+CD3+ are stimulated by the outer membrane protein A 

from Klebsiella pneumoniae and flagellin, that are the ligands of TLR2 and TLR5, 

respectively (Froy, 2005). This results in intracellular up regulation and secretion of alpha 

defensins. This phenomenon is different from the synthesis of alpha defensins in 

neutrophils which are constitutively produced and stored in phagosomes.  
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7.3 Materials and Methods 
 
Figure 7.1 Workflow of generation of promoter models, scan across promoter 

dataset and analysis of gene hits  
(The motifs shown in this diagram are examples, not representative TFBS models of the alpha defensin 
promoters) 
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7.3.1 Preparation of the promoter dataset 
 
Preparation of the human target promoter data set to be scanned by the promoter models 

was done using cDNA data from H-invitational database, as well as Tag cluster groups 

from Fantom3 collection 

(ftp://fantom.gsc.riken.jp/FANTOM3/boundary_set/end5_clusters.txt.gz). cDNAs from 

H-invitational dataset were compared using the BLAT program against the human 

genome HG17 that was downloaded from UCSC 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg17/chromosomes/). Only those cDNAs 

that satisfied  95% identity and 90% of the sequence length mapped to the human 

genome were chosen. The regions covering (-3000, +3000) inclusive of the gene were 

then extracted. Using information from the Tag cluster (TC) data, cDNAs were chosen 

based on their chromosome, strand, TSS location and number of tags. To chose the most 

accurate TSS position the following approach was implemented.  

If the first 5' nucleotide of the CAGE tag or 5’ ditag 

(http://fantom31p.gsc.riken.jp/cage_analysis/export) coincided with the first 5′ nucleotide 

of the full-length cDNA (http://fantom.gsc.riken.go.jp/download.html), the TSS 

determined by this tag was selected. In cases when this condition did not hold, we 

selected TSSs where it we had information of a representative TSS location from a tag 

cluster that has at least ten tags, the representative TSS is supported by at least six tags, 

and there is at least one other piece of transcriptional evidence associated with this tag 

cluster (expressed sequence tag, full-length cDNA, or long SAGE; 

http://fantom.gsc.riken.go.jp/download.html). The resultant dataset had in total 10,255 

sequences of human.  
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7.3.2 Quality assessment of the promoter models 
 
In order to decide on the quality of the models, the sensitivity and specificity of the 

models were calculated. The models were validated using “leave-one-out-cross validation 

method (Nason, 1996). To determine sensitivity of the models the following procedure 

was applied. The DEFA1 training set had three promoter sequences, which consisted of 

DEFA1 (human), DEFA3 (human) and MNP1A (monkey). Two of the promoter 

sequences were used to generate the promoter model and the third sequence excluded. 

Then the promoter model was tested on the excluded sequence. This was done with each 

of the sequence in the training set. The sensitivity of each test was calculated. The 

average sensitivity of the model has been reported in (SupplementaryTable 7.1). Similar 

validation was done for DEFA5 model. The training set had 3 sequences that included the 

DEFA5 human, defcr3 mouse and defcr2 mouse (ortholog of DEFA5 human). The 

average sensitivity of DEFA5 model emerged as 100% (Supplementary Table 7.1). The 

cross validation was done with a small number of sequences in the training set as only 

orthologous genes having quality promoter sequence were chosen. 

 Specificity of the models was determined with a slightly different approach. All 

the three promoter sequences of DEFA1 training set were used to create a model. This 

model was applied to a test set of 18 AMP promoter sequences from different families. 

The model was able to pull out all the true positives ie. orthologs of DEFA1, DEFA3 in 

the test set and also some false positives.  

Thus, the specificity of this model with three sequences was 45%. The results are 

shown in (Supplementary Table 7.1). To make the model more specific, only two 
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sequences DEFA1, DEFA3 were taken into consideration. DEFA5 model pulled out only 

the DEFA5 related sequences from the test set. DEFA5 model showed 100% specificity. 

7.3.3 Scanning the promoter data 

When a suitable model could be generated that fulfilled the criterion as discussed in 

Chapter 6, (Section 6.2), it was chosen to scan the promoter data set for human. Position 

weight matrices (PWM) for each of the motifs (generated in the DMB results) contained 

in an AMP promoter model were used to scan the target human promoter data set of 

length 3000 upstream and 3000 downstream. The length of 3000 downstream was taken 

as many genes have multiple TSSs, which are spread across adjacently over a region 

(Bajic et al., 2006). Not all TSSs in the region are functional and it is the functional TSS, 

which helps to determine the actual starting point of the promoter region. To take into 

account the entire TSS region, the length of 3000 downstream was considered.  

The initial scanning of the promoter dataset was done based on a threshold which 

was the same as the threshold set to search motif using DMB (see section 2). If the 

threshold returned too few hits (less than 4 hits) then it was lowered to allow matching of 

the matrix model to ~250–300 genes, that would be a manageable number of genes to do 

further analysis. Only those promoters of the human target data set emerged as hits if the 

matched model contained all the motifs present in the same order as within the promoter 

model and were above or equal to the set matrix score threshold.  

 
 
 
 
7.3.4 Comparison with expression data 
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To validate the model matches and assess if the predicted genes are likely to be part of 

the co-regulation network, hits were compared to co-expressed genes extracted from 

microarray expression data. The sources of microarray data were UCSC Expression 

(GNF Atlas 1) http://genome.ucsc.edu/cgi-bin/hgNear, NCBI GEO 

(http://www.ncbi.nlm.nih.gov/geo/) and Standford microarray database (http://genome-

www5.stanford.edu/). From UCSC genome browser and Stanford microarray database 

data of co-expressed genes was obtained for the parent AMP genes (DEFA1, DEFA5). 

From GEO, normal human tissue expression profile (HG-U95A), GDS422 consisting of 

12 different tissue types were chosen and GDS260 representing data derived from 

pathogen exposure (Leishmania major, Leishmania donovani, Toxoplasma gondii, 

Mycobacterium tuberculosis, Brugia malyi) and immune response was taken. Using 

Pearson correlation coefficient, the genes that had similar gene expression profiles to the 

DEFA1, DEFA3, DEFA5 genes were selected. The cutoff of the correlation coefficient 

was above 60%. The selected genes comprised the co-expression data that was compared 

with promoter model predicted genes. The sample points with detection call = absent 

were not considered. 

Collection of gene expression data from various experiments yielded a set of 

genes, which are co-expressed with the parent AMP genes. These set of genes were 

compared to the predicted list of genes produced by the scan and the common genes 

found were grouped as matched genes.  

 
 
 
 
7.3.5 Statistical significance of predicted genes from the scan  
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All the predicted genes from a single model were matched to co-expressed genes as 

described in section 5 (section 7.3.4). The p-value was calculated for the enrichment in 

genes that are potentially co-regulated with each of the parent AMP gene (DEFA1, 

DEFA5). The p-value was determined using the hypergeometric distribution and the 

right-side Fisher’s exact test (Fisher, 1922) and was corrected by the Bonferroni method 

(Supplementary Table 7.2). 

 
7.3.6 Analysis based on Gene Ontology 
 
To classify the promoter model hits according to function GO terms were extracted based 

on biological process and molecular function. FATIGO (http://www.fatigo.org/) (Al-

Shahrour et al., 2004) facilitated extraction and clustering of genes based on GO terms 

and pathways. The GO terms of the co-expressed genes were compared to GO terms of 

the model matches* to identify groups of genes, which have common GO categories. 

This is an indirect comparison approach that indicates that possibly the predicted gene set 

has genes which have same function as the genes from microarray data set and hence are 

probably co-regulated with the AMP genes of interest. The significance of this 

comparison of the GO terms in the two sets (predicted versus experimentally found co-

expressed genes) has been statistically computed using Fisher’s exact test and the p-

values are corrected for multiple testing (Al-Shahrour et al., 2004). 

Figure 7.1 shows the schema for the promoter model scan and the post scan analysis 
 
* model matches are the genes that emerged from promoter model scanning of the promoter dataset and has 
been use interchangeably with the word gene hits in this thesis 
 

 

7.3.7 Finding common co-regulators and targets for the candidate network genes  
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The author identified common regulators and targets of gene hits through literature 

search. This was done to in order to decipher whether these genes are already known to 

be component of common pathways. 

 

7.4 Results and Discussion 
 
Using promoter models from different alpha-defensin groups and scanning 10,255 human 

promoters, the author identified sets of human genes that are likely to be co-regulated 

with parent alpha defensin groups. To validate the gene hits as plausible co-regulated 

gene candidates for a particular AMP gene, the following functional and regulatory based 

comparisons were done: 

a. The gene hits were compared to co-expressed genes of AMPs to identify 

genes that are present in both datasets, 

b. Functional comparison based on GO terms was undertaken between the 

co-expressed gene group and the predicted gene hits to observe 

similarities, 

c. Gene hits that could not be identified in co-expressed gene data were 

grouped as unmatched gene hits which are possibly novel co-regulated 

genes, 

d. The novel genes were compared and grouped alongwith the parent AMP 

gene based on the functions (GO based) 

e. The novel genes were also compared with respect to function with the 

gene hits that emerged in the co-expressed gene data (matched gene hits) 

and, 
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f. Common regulators, transcription factors and downstream targets were 

looked at to deduce underlying common factors between the gene hits 

which potentially causes them to be co-regulated. 

The following sections demonstrate the above points in details. 

 

7.4.1 Alpha defensins 
 
Alpha defensin (HNP1-4) also known as neutrophil defensins are synthesized 

constitutively by the bone marrow precursors of neutrophils (Selsted and Ouellette, 

2005). The neutrophil defensins are then packaged in azurophil granules of neutrophils 

and comprise 30–50% of azurophil granule protein (Ganz et al., 1985, Ganz, 1987, Rice 

et al., 1987). The azurophil granules then fuse with phagocytes where they kill 

endocytosed microbes. Alpha defensins are thus only secreted when the neutrophils are 

stimulated. Alpha defensin 5 is an enteric defensin expressed mainly in the paneth cells 

and are constitutively produced (Cunliffe, 2003). Paneth cell alpha defensins are released 

when the cells are stimulated by cholinergic agonists and prokaryotic microbial antigens. 

HNP-1 (DEFA1 gene product) has been also been found to be expressed in by NK and T 

cells (Yang D. et al., 2000 ). They are present in blood, bone marrow, plasma, spleen and 

thymus. Alpha defensin 1 is an antimicrobial peptide that is chemotactic for T cells and 

inhibits classical complement pathway (van den Berg et al., 1998). It inhibits adenoviral 

infection and may play a role in tumor cell proliferation (Bastian and Schafer, 2001,  

Muller et al., 2002 ,  Aarbiou et al., 2002). Alpha defensin 5 is an antimicrobial and 

antifungal agent that is associated with, nasal polyps (Frye et al., 2000), inflammatory 

bowel disease (Schmid et al., 2004) and Crohn’s disease (Wehkamp et al., 2005). It is 
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found in colon, female reproductive tract, ileum, intestine, jejunum, small intestine, 

stomach and urogenital tract.  

The specific regulatory elements and pathways that regulate alpha defensin 

synthesis and release in different tissues have not been well characterized. It was 

observed that promoter regions of pairs of defensin genes from the same site of 

expression, for example HNP1 and HNP4, and HD5 and HD6 (paneth cell specific) 

reveal marked similarities even in cases where the peptide sequence is highly divergent  

(Mallow et al., 1996). Currently, existing knowledge about the promoter regions of 

human alpha defensins implies that they have binding sites for myeloid transcription 

factors that are essential for their transcription in HL-60 myeloid cell line (Ma et al., 

1998), but otherwise no detailed study of alpha defensin promoter structure has been 

published. This study provides the first more detailed analysis of these promoters. To 

date, no TFBS module or cis-regulatory module has been published for alpha defensins. 

 
7.3.1 Scanned gene hits with alpha defensin models 
 
 
The promoter model for alpha defensin 5 identified 240 unique promoters in the human 

promoter data set with a threshold of 0.77 (Supplementary Table 7.3a, Supplementary 

Table 7.3b). Out of 240, 177 gene hits matched experimentally found co-expressed data 

(73.75%). The co-expressed gene data set with DEFA5 consisted of 729 genes collected 

from various experiments (see section 7.3.4). However, out of 729, only 226 genes had 

their promoters in the human promoter data set. To determine the significance of match 

of the 177 gene hits with co-expressed data, statistical test was done (section 7.3.5). This 

yielded a Bonferroni corrected p-value of 1.765e-071 (Supplementary Table 7.2), which 
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indicated that predictions of genes that are co-expressed by DEFA5 based on promoter 

model is very good.  

For alpha defensin 1 scanning the human promoter dataset with a threshold setting 

of 0.65, yielded 104 hits (Supplementary Table 7.4a, Supplementary Table 7.4b). The 

collection of co-expressed genes for alpha defensin 1 and alpha defensin 3 was 472. 

Promoters for 51 genes were found in the human promoter dataset. Out of 51 promoters, 

17 hits emerged in the prediction list. Hence, 17 genes coincided with experimentally 

found co-expressed genes with DEFA1 and DEFA3 genes. Similar statiscal test was 

carried out in this case. The p-value of these predicted genes (17 genes) was 3.72E-18. 

It was observed that the number of genes that emerged as hits using the promoter 

model for DEFA1-3 was less, although a lower threshold was used for scanning as 

compared to DEFA5 genes. DEFA1 and DEFA3 promoter regions are highly similar. 

Hence, the promoter model generated consisted of most of the 20 motifs in the same 

order in both the promoter regions of DEFA1 and DEFA3. However, having several 

motifs in a model makes the model highly restrictive. Hence, a optimal number (3–4) 

motifs should be used to have a promoter model. For DEFA1, DEFA3, there were several 

combinations that could be used. The author chose the model that had more number of 

motifs that corresponded to known TFBSs found in the promoter region of DEFA1-3. It 

is likely that although two of the motifs are known to occur in alpha defensin promoters, 

the combination of all the four motifs in the promoter model may have not been found in 

many promoters of the human data set and in DEFA1-3 co-expressing genes.  

 

7.3.2 Some interesting gene hits from DEFA1and DEFA5 promoter model scan 
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Alpha defensins are known to be involved in adaptive immune pathways other than their 

main role as antimicrobial peptides of innate immunity. Some of the scanned gene hits 

for DEFA1, DEFA3 and DEFA5 have direct or indirect association with immune 

pathways. These gene hits have been discussed in the following paragraphs.  

CX3CL1 was one of the gene hits that emerged from both DEFA1, DEFA5 promoter 

model scan. It is a membrane-expressed protein promoting cell-cell adhesion, which also 

is a soluble molecule inducing chemotaxis. It is known that besides having chemotactic 

property, some chemokines like CXCL4, CXCL9, CXCL10, CXC11, CTAP3, RANTES 

also have antimicrobial activity (Krijgsveld et al., 2000  Durr and Peschel, 2002). 

CX3CL1 did not appear in the co-expressed data for either DEFA1 or DEFA5. However, 

its functional property of being associated with the immune pathway, and having 

common promoter elements makes it a probable co-expressed gene with DEFA1-3 and 

DEFA5.  

DEFA1 gene hit, FKBP12 is an immunophilin, which plays a role in immuno-regulation 

and basic cellular processes involving protein folding and trafficking. It complexes with 

immunosuppressor protein FK506 and inhibits calcineurin which is involved in activation 

of NF-kappaB (Odom et al., 1997). Inhibition of calcineurin in fungal pathogen 

Cryptococcus neoformans adversely effects virulence (Odom et al., 19975). It also 

interacts with several other intracellular signal transduction proteins including type I 

TGF-beta receptor. Model match for DEFA1, VSIG2 is a member of the immunoglobulin 

domain cell adhesion molecule (cam). Another gene hit of DEFA1 scan, PSMB8 is 

involved in the process of antigen presentation (Schwarz et al., 2000). Model hits CPNE6 

and CPNE4 belong to the C2 domain family which are Ca2+-dependent membrane-
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targeting module found in many cellular proteins involved in signal transduction or 

membrane trafficking. C2 domains are unique among membrane targeting domains in 

that they show a wide range of lipid selectivity for the major components of cell 

membranes, including phosphatidylserine and phosphatidylcholine. CCND2, which is a 

G1/S phase specific cyclin was one of the hits that coincided with expression data for 

DEFA1, DEFA3 genes. CCND2 and alpha defensins are over-expressed in colon cancer 

when induced by a carcinogen, PhIP (Fujiwara et al., 2004). The model matches with 

DEFA1 promoter model are reported in (Supplementary Table 7.4a) and (Supplementary 

Table 7.4b). INS (insulin) emerged as another gene hit that is implicated to be expressed 

in thymus and induces tolerance in CD8+ T cells (Ma et al., 2000). Insulin is involved in 

alpha-beta T-cell activation (Ma et al., 2000). 

DEFA5 scan result yielded seven gene hits were grouped under immune response namely 

HLA-DMA, ILF2, G10P1, TTF, IFI30, AIF1, DHLAG. HLA-DMA, AIF1, DHLAG. 

TTF, DHLAG are involved in lymphocyte differentiation (Table 7.1). CKLFSF6 is 

another gene hit that belongs to the chemokine-like factor gene superfamily, which is a 

novel gene family and has properties that indicate that it has chemokine and chemotaxis 

activity (Han et al., 2003).   

 
Table 7.1 is a summary of DEFA1 and DEFA5 gene hits that have been discussed in the 

previous paragraphs. Figure 2a and Figure 2b show the regulatory networks for the 

genes listed in Table 7.1. The networks were created using Ingenuity system software 

(www.ingenuity.com).  

In the DEFA1 regulatory network (Figure 2a), TNF and IL-15 are the key 

regulators. TNF controls expression of INS and is also regulated by INS (Hostens et al., 
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1999, Iida et al., 2001). Other genes such as CCND2, CX3CL1, PSMB8 are regulated by 

TNF (Banno et al., 2004, Li et al., 2002), Banno et al., 2004). IL-15 regulates PSMB8, 

DEFA1 (Tourkova et al., 2005, Liu et al., 2002). DEFA1 is known to bind to SERPING1 

and inhibit the classical complement pathway (van den Berg et al., 1998). SERPING1 

decreases the mRNA expression of TNF-alpha in mouse (Liu et al., 2003). Whether the 

DEFA1, SERPING1 interaction has any direct effect on TNF-alpha expression is 

unknown. 

For the DEFA5 network (Figure 7.2b), IFNG (interferron, gamma), PTEN 

(phophatase and tensin homolog) and ILF3 (inteleukin enhancer binding factor, 3) are at 

the core of the network. IFNG indirectly regulates many of the genes that have been 

listed in Table 7.1 for DEFA5, such as CX3CL1 (Ludwig et al., 2002), AIF1 (Autieri et 

al., 2000), IFIT1 (Okumura et al., 2003), HLA-DMA (Muczynski et al., 1998), CD74 

(DHLAG) (Cao et al., 2000). It appears that PTEN indirectly acts as a negative regulator 

for DEFA5 expression. It decreases binding of DNA and a protein-protein complex 

consisting of human beta catenin (ctnnb1) and of human Tcf (Persad et al., 2001) that 

activate DEFA5 expression (Schwartz et al., 2003). PTEN negatively regulates IFI30 

(Matsushima-Nishiu et al., 2001). 
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Table 7.1 Selected gene hits of DEFA1 and DEFA5 
H-inv ID: Ids from the H-Invitational database 

H-inv ID Gene symbol Gene Description Pathway Tissue origin 
     
HIT00003749
0 CX3CL1 

chemokine (C-X3-C motif) ligand 1; 
small inducible 

 Cytokine-cytokine 
receptor interaction Brain,neuroblastoma 

HIT00003224
7 

FKBP12, 
FKBP1A FK506-binding protein 1A (EC 5.2.1.8)  

mTOR signalling 
pathway Placenta,choriocarcinoma

HIT00003313
8 VSIG2 

Immunoglobulin subtype domain 
containing protein, 
 complete cds.   Colon,adenocarcinoma 

HIT00003014
5 Y2,PSMB8 

Similar to Proteasome subunit beta type 8 
precursor  
(EC 3.4.25.1)   Skin,melanoticmelanoma.

HIT00003823
5 CPNE6 

Copine VI (Neuronal-copine) (N-copine), 
partial cds.   Brain,hypothalamus 

HIT00003667
3 CPNE4 Copine IV, complete cds   Brain,neuroblastoma 

HIT00003514
6 CCND2 G1/S-specific cyclin D2, partial cds. 

Cell cycle, Wnt 
signaling pathway, 
Focal adhesion, Jak-
Stat signaling 

Bonemarrow,chronicmyel
ogenousleukemia 

HIT00003232
5 INS Insulin precursor, complete cds. 

 Regulation of actin 
cytoskeleton,  Insulin 
signaling pathway, 
Dentatorubropallidolu
ysian atrophy 
(DRPLA) Pancreas 

DEFA5        
HIT00003525
3 HLA-DMA 

majorhistocompatibilitycomplex,classII,D
Malphaprecursor; 

Cell adhesion 
molecules (CAMs)  Skeletal Muscle 

HIT00002957
1 ILF2 NF45protein,completecds.   

 Lung, small cell 
carcinoma 

HIT00003119
2 CKLFSF6 

chemokine-
likefactorsuperfamily6(Homosapiens), 
completecds.    Ovary, adenocarcinoma 

HIT00004002
5 G10P1 

SimilartoInterferon-
inducedproteinwithtetratricopeptide   

 Pancreas, Spleen, adult 
pooled 

HIT00003660
9 TTF 

Rho-relatedGTP-
bindingproteinRhoH(GTP-
bindingproteinTTF),   

 Primary B-Cells from 
Tonsils 

HIT00003842
4 DHLAG 

HLAclassIIhistocompatibilityantigen,gam
machain(HLA-DR   

 Primary B-Cells from 
Tonsils 

HIT00003438
9 AIF1 

SimilartoAllograftinflammatoryfactor-
1(AIF-1)(Daintain),    Prostate 

HIT00003910
6 IFI30 

interferon,gamma-
inducibleprotein30preproprotein;   

 Skin, melanotic 
melanoma, high MDR. 

HIT00003749
0 CX3CL1 

chemokine(C-X3-
Cmotif)ligand1;smallinduciblecytokine 

Cytokine-cytokine 
receptor interaction  Brain, neuroblastoma 
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Figure 7.2a Network of DEFA1 and genes that resulted from the promoter model 
matching 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
The dotted lines indicate indirect relationships and the other lines indicate direct 
relationship. The grey shaded circles and boxes are the genes of interest found by the 
promoter model scan. Rhombuses: enzymes, rectangle: ligand dependent nuclear 
receptor, oval horizontal circles: transcription regulator, oval vertical circles: 
transmembrane receptor.  
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Figure 7.2b: Network of DEFA5 and genes that resulted from the promoter model 

matching 
 

 
 
The dotted lines indicate indirect relationships and the other lines indicate direct 
relationship. The grey shaded circles and boxes are the genes of interest found by the 
promoter model scan. Rhombuses: enzymes, rectangle: ligand dependent nuclear 
receptor, oval horizontal circles: transcription regulator, oval vertical circles: 
transmembrane receptor 
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7.4.4 Comparison of gene hits with co-expressed genes for DEFA1, DEFA3 

The author compared the predicted gene hits with co-expressed gene data for human 

DEFA1 and DEFA3 and found eleven genes (CCND2, ABHD2, TMED9, ARB2, 

FKBP12, MARS, MEA1, CNOT2, PIAS2, CASP5, RSU) that overlapped with the co-

expressed gene data sets of DEFA1 and DEFA3. Another set of model matches 

(UGT2B11, DDX23, MARCH5, ZNF33A, VSIG2, PSMB8) had similar protein domains 

and GO functions to the co-expressed genes of DEFA1 and DEFA3 (UGT2B15, DDX27, 

MARCH3, ZNF167, VSIG4, PSMB4) respectively (Supplementary Table 7.4a). The 

gene hits that did not overlap with the co-expressed data set were grouped as “unmatched 

gene hits”. These unmatched gene hits that had GO terms were compared with DEFA1, 

DEFA3 GO terms of co-expressed gene group to determine if they could be categorized 

under similar GO categories. Several GO categories were common and significant in both 

the unmatched gene group and the co-expressed gene group (Supplementary Figure 

7.1). The common GO categories that came up were regulation of cellular physiological 

process, defense response, regulation of metabolism, signal transduction, primary, 

cellular and macromolecule metabolism, biosynthesis. 

Next, all the gene hits from DEFA1, DEFA3 model with GO terms were 

compared with GO terms for entire co-expressed gene dataset for DEFA1, DEFA3. The 

results showed that biological processes like regulation of cellular and physiological 

process, cell communication, and response to stimulus had significantly comparable 

percentage of genes represented in both data sets. The significance of this comparison 
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was determined by p-values as shown in Supplementary Figure 7.2. The null hypothesis 

in this comparison was that the genes from the two groups (predicted versus co-

expressed) fall under similar GO categories. This hypothesis was supported by the 

corrected p-values as shown in column 4 of Supplementary Figure 7.2. The high p-

values indicated that the gene groups were not significantly different, therefore, the null 

hypothesis was true. Therefore, many of the predicted genes for DEFA1, DEFA3 appear 

to have similar functions to the experimentally derived co-expressed genes for DEAF1, 

DEFA3. 

 Comparison was also performed at molecular function level. The results 

indicated that, protein binding, nucleic acid binding, ion binding, oxido-reductase 

activity, ion transporter activity, hydrolase activity and transferase activity had significant 

number of genes represented from both data sets for these categories (Supplementary 

Figure 7.3).  

 
7.4.5 Gene ontology based clustering for DEFA1 gene hits 
 
For alpha defensin 1 group, gene hits were clustered based on GO biological process and 

molecular function. Clustering based on GO biological process showed 13 hits 

categorized under cellular metabolism and primary metabolism. MIP, FTL, ATP5S, 

CPNE6, SRPR, SEC5L1 are involved in the process of transport. Six genes (TAF11, 

MYST2, CCND2, CHD2, CNOT2, CCNI) came under regulation of cellular 

physiological process. APBB1IP, CX3CL1, FMOD, INS are involved in signal 

transduction processes. Three genes UGT2B11, MIP, CX3CL1 were categorized under 

the GO category response to external stimulus (Supplementary Table 7.5a). Analysis of 

all gene hits at GO molecular function level showed nucleic acid binding function as the 
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most significant function covering 10 hits. Next was function category of hydrolase 

activity with CHD1L, CHD2, DDX23, and SRPR under its category (Supplementary 

Table 7.5b).  

7.4.6 Alpha defensin 5 gene hits 

 
 
Alpha defensin 5 promoter model yielded 240 unique gene hits. The predicted gene list 

was divided into two groups as previously done with DEFA1 gene hits One group 

consisted of those genes that matched expression data (co-expressed gene data for 

DEFA5 human) and the other section had those that did not match (Supplementary 

Tables 7.3a, and 7.3b). GO based analysis of matched gene group with respect to 

biological process showed that the largest number of gene hits came under cellular, 

primary and macromolecular metabolism (Supplementary Table 7.6a). The next two 

categories that had many genes clustered under them were regulation of cellular 

physiological process, localization and transport. Seven hits, HLA-DMA, ILF2, G10P1, 

TTF, IFI30, AIF1, DHLAG were grouped under immune response. 

GO based clustering in the unmatched group also had cellular, primary and 

macromolecular metabolism categories having the highest number of genes 

(Supplementary Table 7.6b). 

GO biological functions like immune response, signal transduction, transport, 

cellular, primary and macromolecular metabolism, cell cycle, localization and a few other 

categories showed comparable number of genes between the matched group and 

unmatched group of predicted genes (Supplementary Figure 7.4). The significance of 

the comparison is depicted by the corrected p-values in (Supplementary Figure 7.4). 
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This perhaps indicates that although the genes in the unmatched category do not coincide 

with experimentally found co-expressed genes for DEFA5, they have similar functions to 

the co-expressed genes for DEFA5. Another observation was that many of the genes in 

both the matched and unmatched groups for alpha defensins came under non-immune 

categories like metabolism, transport and localization. These findings support the 

multifunctionality of defensins and their involvement in pathways other then innate 

immunity. In fact, some of these functions may be attributed to the tissue cell ontogeny 

and evolutionary adaptations. Table 7.2 lists the significant GO categories for the 

unmatched (novel) gene hits of DEFA1 and DEFA5. 
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Table 7.2: The GO terms having the maximum number of novel (predicted gene hits 
not in the co-expressed gene data) gene hits from DEFA1 and DEFA5 
 

DEFA1    

GO biological function DEFA1_umatched gene hits No. of genes 

primary metabolism 

 
FARS1 DPM1 CHD1L MTMR5 HRMT1L1 PECI 
KIAA0065 MYST2 H1F0 ALDR1 TMPRSS1 LSM6 GUK1 
FKBP1A KIAA0929 KIAA0935 CPNE6 CHD2 MIZ1 
TAF11 PDCD9 KBL NCL PFD4 RODH KIAA0060 ARAF 
INS 28 

cellular metabolism 

 
FARS1 DPM1 CHD1L MTMR5 HRMT1L1 PECI 
KIAA0065 MYST2 H1F0 NDUFS5 TMPRSS1 LSM6 
GUK1 FKBP1A KIAA0929 KIAA0935 CHD2 MIZ1 
TAF11 PDCD9 KBL NCL PFD4 RODH KIAA0060 ARAF 
INS 27 

macromolecule metabolism 

 
FARS1 DPM1 CHD1L MTMR5 HRMT1L1 MYST2 H1F0 
ALDR1 TMPRSS1 LSM6 FKBP1A KIAA0935 CHD2 
PDCD9 NCL PFD4 KIAA0060 ARAF INS 19 

establishment of localization 

 
NTT73 ATP5S BGP1 CX3CL1 FTL NDUFS5 CPNE6 
SEC5L1 INS 9 

signal transduction 

 
BGP1 HRMT1L1 CX3CL1 FKBP1A KIAA0929 FMOD 
APBB1IP ARAF INS 9 

regulation of metabolism KIAA0065 MYST2 KIAA0929 CHD2 MIZ1 TAF11 INS 7 

biosynthesis FARS1 DPM1 GUK1 PDCD9 KBL RODH INS 7 

transport NTT73 ATP5S FTL NDUFS5 CPNE6 SEC5L1 INS 7 

regulation of cellular physiological process KIAA0065 MYST2 KIAA0929 CHD2 MIZ1 TAF11 CCNI 7 

cell organization and biogenesis MYST2 H1F0 PEX11G CHD2 4 

nitrogen compound metabolism FARS1 KBL KIAA0060 INS 4 

catabolism RODH KIAA0060 INS 3 

cell cycle MIZ1 CCNI DCTN3 3 

regulation of organismal physiological process CX3CL1 INS 2 

cell-cell adhesion BGP1 CX3CL1 2 

positive regulation of cellular process CX3CL1 FKBP1A 2 

immune response CX3CL1 INS 2 

defense response CX3CL1 INS 2 

cell-cell signaling CPNE6 INS 2 

regulation of signal transduction FKBP1A 1 
 
DEFA5    

GO biological function DEFA5_unmatched_genes No. of genes 

cellular metabolism 

 
PCCX1 NPD002 VPS11 TRIM9 EFCBP1 ELE1 RPS27L 
RBM3 PSMA7 MXD3 H2AFX EPM2A USP39 13 

primary metabolism 

 
PCCX1 VPS11 TRIM9 ELE1 RPS27L RBM3 PSMA7 
MXD3 H2AFX EPM2A USP39 11 

macromolecule metabolism 

 
VPS11 TRIM9 RPS27L RBM3 PSMA7 H2AFX EPM2A 
USP39 8 

establishment of localization NPD002 VPS11 CX3CL1 VIM TFIP11 KCNMA1 6 
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transport NPD002 VPS11 VIM TFIP11 KCNMA1 5 

regulation of cellular physiological process PCCX1 YWHAG ELE1 MXD3 EPM2A 5 

signal transduction YWHAG TENC1 CX3CL1 ELE1 PDZK2 5 
 
Table 7.2 continued    

regulation of metabolism PCCX1 ELE1 MXD3 EPM2A 4 

biosynthesis EFCBP1 RPS27L EPM2A 3 

positive regulation of cellular process CX3CL1 ELE1 2 

catabolism PSMA7 USP39 2 

cell organization and biogenesis YWHAG H2AFX 2 

cell-cell signaling YWHAG KCNMA1 2 

cell cycle YWHAG H2AFX 2 
 
 

7.4.7 Common regulators and targets of the predicted gene hits  

Common transcriptional regulators and common targets for the gene hits for each of the 

gene groups (DEFA1, DEFA5) were looked at to understand the commonalities in 

transcription regulation of the predicted gene hits. These links between the gene hits and 

the common regulators and targets is substantiated by literature evidence. 

For DEFA1 gene hits, ADP is involved in regulation of DEFA1, H1F0 (h1 

histone family, member 0) and INS (insulin) (Paone et al., 2002, Adamietz et al., 1978, 

Petit et al., 1989).  

Model matches of DEFA1, INS (insulin), MARS (methionine-tRNA synthetase), 

H1F0 (h1 histone family, member 0), AKR1B1 (aldose reductase) are involved in cell 

differentiation function (Table 7.3), a function that is common with DEFA1, DEFA3. 

HNP1-3 (DEFA1, DEFA3) is known to be involved in mucin cell differentiation 

(Aarbiou et al., 2004). The neutrophil defensins have mitogenic properties as 

demonstrated on epithelial cells and fibroblast (Murphy et al., 1993). DEFA1 gene hits, 

INS, CCND2, CEACAM1, FKBP1A, TNPO1, NCL, SBF1, H1F0, CCNI also appear to 

be involved in various mitogenic functions (Table 7.3). Moreover, INS is known to 
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synergistically act with the defensins in the mitogenic process (Murphy et al., 1993. 

Many of the DEFA1 gene hits such as NCL, MIP, INS, CEACAM1, PDCD4, CCND2, 

ARAF1, AKR1B1, H1F0 are regulated by protein kinase C. Interestingly, DEFA1 

inhibits protein kinase C (PKC) activity in CD4+T cells (Chang et al., 2005) causing 

inhibition of HIV-1 replication. 

Model hits INS, H1F0 are reglated by various hormones like glucocoticoid, 

progesterone and thyroid stimulating hormone. 

For the alpha defensin 5gene hits, GFAP, BGN, TXNRD1, CLG4A, NAALAD1, 

MMP2, FOLH1 and F3 have TNF (tumor necrosis factor) involved in their regulation. 

TNF-alpha expression is up-regulated by alpha defensins (Chaly et al., 2000). A common 

regulator of some of the DEFA5 gene hits is interleukin 1-beta (IL1B). It is involved in 

regulation of FABP1, MMP2, F3 and AIF1. IL1B has been observed to stimulate MMP2 

in cultured rat astrocytes. IL1B positively regulates F3, AIF1, IFI30 and negatively 

effects FABP1. DEFA5 gene hits CX3CL1, YWHAG, VIM and PSMA7 come under 

cytokine regulation.  

Some of the DEFA5 gene hits have known regulatory effects on other gene hits. 

For example, the gene Claudin-2 is also involved in the formation of intestinal epithelial 

barrier and its gene expression is up-regulated when stimulated with interleukins 

(Kinugasa et al., 2000). Claudin-2 (CLDN2) and Discoidin domain receptor 2 (DDR2) 

indirectly increase the protein activity of another DEFA5 gene hit, MMP2. Likewise, 

HSPA14 increases the protein secretion of CCL4. MLL binds to the promoter of HOXA9 

and increases its mRNA abundance.  

Table 7.3 gives a detailed overview of regulators and targets.  
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Transcription factors (TFs) that regulate many of these genes were also looked at. 

Supplementary Table 7.7 gives a list of the common TFs found across the predicted 

gene hits. These TFs were found across various genes by implementing FATIGO plus 

analysis module for finding transcription factors (Al-Shahrour et al., 2006). Some of the 

TFs found across several of these genes are immune system regulatory factors. HNF-1, 

CDX, Nkx2-5, GATA-4, LXR, PXR, CAR, COUP, RAR, Oct-1, and NF-kappaB are the 

commonly found TFs across both the matched and unmatched gene sets for DEFA5. NF-

kappaB is a key regulatory transcription factor for genes involved in response to 

infection, inflammation, stress (Baeuerle and Henkel, 1994) , (Sica et al., 1997) , 

(Quinlan et al., 1999) , (Hiroi and Ohmori, 2003). GATA-4 is also known to be involved 

in regulation of immune system (Su et al., 2004). Nkx2-5, GATA-4, HNF-1, CDX are the 

common TFs found in both the matched and unmatched predicted gene hits for DEFA1. 

HNF-3alpha, Evi-1 were the two other TFs that were found in genes that matched 

experimental co-expressed data set for DEFA1. Both Defa1 and DEFA5 gene hits have 

common TFs such as NF-kappB. Nkx2-5,GATA-4,CDX etc.. 
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Table 7.3 Common regulators and common targets of DEFA1 and DEFA5 predicted 
genes 
 
(*PMID: Pubmed unique identifier). --->  indicates regulation, ---+> positive regulation, 
 -----| negative regulation 
 

Defa1       
Type Nodes Effect References (PMID)* 

Regulators       
ProtModification ADP ---> DEFA1   12060767 

ProtModification ADP ---> H1F0   729572 

MolTransport ADP ---> INS   2686791 

Regulation glucocorticoid --+> INS positive 11121405 

Regulation thyroid stimulating hormone --+> INS positive 11473059 

Regulation progesterone --+> H1F0 positive 8187766 

Regulation PKC�INS negative 11246878 

ProtModification PKC->H1F0   3028404 

Regulation PKC->MIP   2541249 

ProtModification PKC ---> NCL   10811822 

ProtModification PKC ---> CEACAM1   10754323 

Regulation PKC --+> PDCD4 positive 2752524 

Expression PKC --+> CCND2 positive 11120786 

Regulation PKC --+> ARAF1 positive 8621729 

Regulation PKC --+> AKR1B1 positive 12527382 

Targets       
Regulation INS differentiation 11872678, 10385414 

Regulation DEFA1 differentiation 9352884 

Regulation MARS differentiation 4331137 

Regulation H1F0 differentiation 1988682 

Regulation AKR1B1 differentiation 151810922 

Regulation DEFA3 differentiation 12871849 

Regulation INS mitogenesis 10706096, 12183434 

Regulation CCND2 mitogenesis 11691826 

Regulation CEACAM1 mitogenesis 11694516 

Regulation FKBP1A mitogenesis 11226255 

Regulation TNPO1 mitogenesis 9388191 

Regulation NCL mitogenesis 12506112, 10811822 

Regulation SBF1 mitogenesis 12704202 

Regulation H1F0 mitogenesis 15694489 

Regulation CCNI mitogenesis 11054536 

Defa5       
Expression TNF ---> GFAP   8622125 

Regulation TNF ---> BGN   11322893 

Regulation TNF --+> TXNRD1 Positive 14584040 



 

178 

Regulation TNF --+>CLG4A Positive 10233890 

Regulation TNF --+> NAALAD1 Positive 12744776 

MolSynthesis TNF --+> F3 Positive 9002957 

Regulation IL1B ---| FABP1 Negative 10477831 

Regulation IL1B ---> MMP2   8945720 

Regulation IL1B --+> F3 Positive 12429585 

Regulation IL1B --+> AIF1 Positive 10894811 

Regulation IFNG --+> IFI30 Positive 12215441 

 

7.4.8 Commonality and differences between DEFA1 and DEFA5 gene hits 

DEFA1 and DEFA5 genes belong to the same AMP family and hence it is expected that 

they would have similar functions and perhaps be involved in similar gene networks. 

Interestingly, the gene hits that emerged from both the models did not have a significant 

overlap. This instigates the curiosity to compare the gene hits of DEFA1 and DEFA5 and 

observe the commonalities and differences between them. 

DEFA1 and DEFA5 gene hits (104, 240 respectively) were compared based on 

their GO terms and pathways. It was observed that metabolic activity, signal 

transduction, localization, biosynthesis, transport, cell death, neuro-physiological process, 

cell activation and immune response were the common GO function categories between 

DEFA1 and DEFA5 gene hits (Figure 7.3, Supplementary Table 7.8). However, some 

GO functions were exclusive to either group of gene hits as discussed later in this section. 

DEFA5 gene hits had involvement in more varied functions than DEFA1 gene hits. This 

could be due to the unequal number of gene hits emerging from the different model 

scans. DEFA5 gene hits appeared to be more involved in cell differentiation, organ 

development and cell growth functions compared to DEFA1 gene hits (Figure 7.4, 

Figure 7.5, Supplementary Table 7.8). 
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In terms of pathway level comparison, both DEFA1 and DEFA5 gene hits were 

involved in metabolic pathways such as prostaglandin and leukotriene, fructose and 

mannose, starch and sucrose, tyrosine, purine, galactose metabolism etc. Other pathways 

that had gene hits from both groups comprised of the WNT signaling pathway, MAPK 

signaling, insulin signaling and cell cycle. The GO comparison shows that genes from 

both alpha defensin groups are involved in signal transduction. Since GO function terms 

and pathways of a gene are interdependent, it is not surprising to see these signaling 

pathways emerge in the analysis of AMP co-regulated genes. MAPK signaling pathway 

is involved in innate immune responses as it is involved in activation of macrophages 

(Schorey and Cooper, 2003). WNT-signaling pathway has a important role to play in 

organ development, and dysregulated WNT signaling causes tumors. Recently its role has 

been implicated at several stages of lymphocyte development and in the self-renewal of 

haematopoietic stem cells (Staal and Clevers, 2005). The GO analysis of DEFA1 and 

DEFA5 gene hits show that many of them are involved in organ development (Figure 

7.4, Figure 7.5, Supplementary Table 7.8). Insulin signaling pathway is indirectly 

involved in the regulation of the immune system (McKenzie et al., 2006). Pathways that 

affect innate immunity have not been studied as well as that of adaptive immunity. An 

analysis of this kind indicates that many known pathways that in the current knowledge 

have no link to immune related mechanisms may perhaps be involved in direct or indirect 

ways in regulation of the latter. 

Within the data analyzed, some pathways appeared to be exclusive to a single 

gene group such as the Jak-Stat signaling pathway that involved gene hits of the DEFA1 
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group only. DEFA5 gene hits were involved in calcium signaling pathway. Table 7.4 

shows the comparison of DEFA5 and DEFA1 gene hits with respect to pathways.  
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Figure 7.3: GO biological functions that are common between DEFA1 and DEFA5 gene hits 
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Figure 7.4: GO functions of DEFA5 gene hits that are exclusive to DEFA5 group 
 

 

 

Figure 7.5: GO functions of DEFA1 gene hits that are exclusive to DEFA1 group 
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Table 7.4: Comparison of DEFA1 and DEFA5 gene hits based on pathways 
The p-values are calculated by Fisher’s exact test  and multiple corrections have been done using the FDR procedure 
(Benjamini, 1995)  

Common pathways between DEFA1 and DEFA5             
Pathways DEFA1 genes No. of genes DEFA5 genes No of genes Unadjusted pvalue Adjusted pvalueFDR 
Focal adhesion CAV2 CCND2 2 PARVA 1 5.55E-01 1 
Cell cycle CCND2 1 YWHAG CCNB 2 1 1 
Prostaglandin and leukotriene metabolism CBR1 1 KIAA0106 1 1 1 
Wnt signaling pathway CCND2 1 NMP238 1 1 1 
Fructose and mannose metabolism ALDR1 1 PFKL 1 1 1 
Insulin signaling pathway INS 1 PFKL MNK1 2 1 1 
Starch and sucrose metabolism DDX23 1 UGP2 NUDT5 2 1 1 
Folate biosynthesis DDX23 1 NUDT5 1 1 1 
Purine metabolism GUK1 1 PRIM1 NUDT5 2 1 1 
Tyrosine metabolism HRMT1L1 1 AOC1 1 1 1 
Galactose metabolism ALDR1 1 PFKL UGP2 2 1 1 
Pentose and glucuronate interconversions ALDR1 1 UGP2 1 1 1 
Histidine metabolism HRMT1L1 1 AOC1 1 1 1 
Tryptophan metabolism HRMT1L1 1 MID1 AOC1 2 1 1 
MAPK signaling pathway ARRB2 CASP5 2 MAP2K1IP1 MNK1 2 1 1 
Glycine, serine and threonine metabolism KBL 1 AOC1 1 1 1 
DEFA1_specific pathway             
Pathways DEFA1 genes No.of genes DEFA5 genes No. of  genes Unadjusted pvalue Adjusted pvalueFDR 
Selenoamino acid metabolism HRMT1L1 MARS 2 No genes 0 1.55E-01 1 
Jak-STAT signaling pathway PIAS2 CCND2 2 No genes 0 1.55E-01 1 
Regulation of actin cytoskeleton INS 1 No genes 0 4.00E-01 1 
Methionine metabolism MARS 1 No genes 0 4.00E-01 1 
Dentatorubropallidoluysian atrophy (DRPLA) INS 1 No genes 0 4.00E-01 1 
N-Glycan biosynthesis DPM1 1 No genes 0 4.00E-01 1 
Pyruvate metabolism ALDR1 1 No genes 0 4.00E-01 1 
Oxidative phosphorylation NDUFS5 1 No genes 0 4.00E-01 1 
N-Glycan degradation KIAA0935 1 No genes 0 4.00E-01 1 
Nitrobenzene degradation HRMT1L1 1 No genes 0 4.00E-01 1 
Aminoacyl-tRNA synthetases MARS 1 No genes 0 4.00E-01 1 
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Glycerolipid metabolism ALDR1 1 No genes 0 4.00E-01 1 
Aminosugars metabolism KIAA0060 1 No genes 0 4.00E-01 1 
Aminophosphonate metabolism HRMT1L1 1 No genes 0 4.00E-01 1 
Androgen and estrogen metabolism HRMT1L1 1 No genes 0 4.00E-01 1 
Fatty acid metabolism PECI 1 No genes 0 4.00E-01 1 
DEFA5_specific pathway             
Pathways DEFA1 genes No. of genes DEFA5 genes No. of genes Unadjusted pvalue Adjusted pvalueFDR 
Alkaloid biosynthesis II No genes 0 AOC1 KIAA0106 2 5.09E-01 1 
Pyrimidine metabolism No genes 0 TXNRD1 PRIM1 2 5.09E-01 1 
Cell adhesion molecules (CAMs) No genes 0 HLA-DMA CLDN2 2 5.09E-01 1 
Adherens junction No genes 0 SNAI1 SLUG 2 5.09E-01 1 
Phenylalanine metabolism No genes 0 AOC1 KIAA0106 2 5.09E-01 1 
Calcium signaling pathway No genes 0 HER3 CCNB 2 5.09E-01 1 
Prion disease No genes 0 GFAP 1 1 1 
Neurodegenerative Disorders No genes 0 GFAP 1 1 1 
Proteasome No genes 0 PSMA7 1 1 1 
Methane metabolism No genes 0 KIAA0106 1 1 1 
Glycolysis / Gluconeogenesis No genes 0 PFKL 1 1 1 
Bile acid biosynthesis No genes 0 NPD002 1 1 1 
Stilbene, coumarine and lignin biosynthesis No genes 0 KIAA0106 1 1 1 
Nucleotide sugars metabolism No genes 0 UGP2 1 1 1 
1- and 2-Methylnaphthalene degradation No genes 0 NPD002 1 1 1 
Glycosylphosphatidylinositol(GPI)-anchor biosynthe No genes 0 PIGT 1 1 1 
2,4-Dichlorobenzoate degradation No genes 0 KIAA0106 1 1 1 
Valine, leucine and isoleucine degradation No genes 0 AUH 1 1 1 
Ribosome No genes 0 RPS27L 1 1 1 
DNA polymerase No genes 0 PRIM1 1 1 1 
beta-Alanine metabolism No genes 0 AOC1 1 1 1 
Tight junction No genes 0 CLDN2 1 1 1 
Pentose phosphate pathway No genes 0 PFKL 1 1 1 
Protein export No genes 0 SPC18 1 1 1 
Butanoate metabolism No genes 0 KIAA0106 1 1 1 
O-Glycan biosynthesis No genes 0 WBSCR17 1 1 1 
Arginine and proline metabolism No genes 0 AOC1 1 1 1 
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7.5 Discussion 
 

Using promoter models of alpha defensin, the human promoter dataset was scanned. 

Several of the predicted model hits matched with experimental co-expressed gene data.  

 

The selection of genes from the promoter data set by the promoter models is dependent 

on the specificity of the motifs that are contained in the promoter model and the threshold 

that is used to scan the data set  

The caveats of this work is that it had limited gene expression data to analyze 

which cover the various stimuli for studying co-expressed genes for parent AMP genes. 

Secondly, the promoter data set was limited since it did not cover promoter regions for 

the entire human genome. This is because the choice of TSS position was determined 

using strict rules (section 7.3.1), which greatly decreased the possibility of false TSSs, 

but the number of promoter sequences extracted was also decreased.  

CX3CL1 is one of the predicted genes that came up for both the DEFA1 and 

DEFA5 model scan. CX3CL1 is one of the chemotaxins that stimulate NK cells (Morris 

and Ley, 2004). NK cells are known to produce alpha defensins and are directly involved 

in protection against microorganisms (Chalifour et al., 2004). CKLFSF6 is another 

interesting gene hit that emerged from DEFA5 scan. This recently discovered gene that 

belongs to a novel gene family also indicates that chemotaxins are probably co-regulated 

along with genes of innate immunity.  

The author found immune defense related genes for both DEFA1 and DEFA5 

scans. DEFA1 hits were FKBP12, PSMB8, and DEFA5 hits were HLA-DMA, ILF2, 

G10P1, TTF, IFI30, AIF1, DHLAG. These genes are known to be co-expressed with 
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DEFA1, DEFA5 respectively. These findings corroborate the strategy that the author has 

used to find co-regulated genes for the AMP genes of interest. 

The author compared the gene hits of DEFA1 and DEFA5 and found that both 

groups have a significant number of genes involved in metabolic pathways, signal 

transduction, biosynthesis, transport, cell death besides immune response. This supports 

the hypothesis that AMPs are involved in other pathways besides immune related ones. 

This analysis also indicated that though DEFA1 and DEFA5 belong to the same AMP 

family and have similarities in their transcription regulatory pathways, they still have 

some differences in terms of the different pathways they maybe involved in. However 

this statement may not be conclusive as the analysis was done based on GO terms and 

pathways which limits the number of genes that are taken consideration from the original 

pool of gene hits due to lack of annotation. 

This analysis elucidate novel gene which are potentially co-regulated with the 

alpha defensins. This claim is backed up by the fact that these gene hits share the same 

promoter model with the alpha defensin genes. Furthermore, the gene hits have been 

subjected to different types of analyses based on GO term classification, expression data 

comparison, common transcription factors and regulators.  

Though these results are just a drop in the sea of latent knowledge of 

transcriptional regulatory pathways for AMPs, it gives a glimpse of the complex interplay 

of different pathways and genes that could possibly be involved in influencing innate 

immunity and vice-versa. 

.  

7.6 Conclusion 
 

The objective of this study was to find co-regulated genes for the two different 

alpha defensin genes, which have different sites of expression. To do this, the regulatory 
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elements in the promoter regions of the alpha defensin genes were searched and TFBS 

modules were found. These modules were then used to scan human promoter dataset to 

find potentially co-regulated genes. Promoter regions were analyzed for alpha defensin 

1/alpha-defensin 3 and alpha-defensin 5 genes in human and mouse orthologs using ab-

initio motif searching algorithm. 

Seventeen predicted hits from alpha-defensin 1 promoter model scan and 177 

predicted hits from alpha-defensin 5 coincided with experimentally found co-expressed 

genes with DEFA1, DEFA3 and DEFA5 genes. 

The scan results reported gene hits CX3CL1 (chemokine (C-X3-C motif) ligand 

1), an immunophilin FKBP12 (FK506-binding protein 1A), VSIG2 which is a member of 

the immunoglobulin domain cell adhesion molecule (cam), INS (insulin), PSMB8 which 

is involved in the process of antigen presentation to promoter model of DEFA1. Gene 

hits from DEFA5 promoter model HLA-DMA, ILF2, G10P1, TTF, IFI30, AIF1, 

DHLAG are immune genes. CX3CL1 comes up in scan for both DEFA1 and DEFA5 

promoter model. CKLFSF6 is a gene that belongs to a novel superfamily of chemokine-

like factor that emerged as a DEFA5 gene hit. 

All the gene hits for DEFA1, DEFA5 emerged due to complete match of all 

motifs that made the promoter modules. However, not all gene hits matched 

experimentally found co-expressed genes. Comparison of functions of gene hits and the 

co-expressed genes showed significant similarity. This could probably indicate that these 

gene hits maybe co-regulated with DEFA1, DEFA5 respectively.  
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Part IV: Chapter 8  Discussion and Conclusion 

It is hard to fail, but it is worse never to have tried to succeed. 
(Theodore Roosevelt) 
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Computational biology appeared as a specialized discipline in the last quarter of the 20th 

century, and it is revolutionizing how biological research is conducted. Researchers are 

increasingly conducting searches in public databases for characterized sequences that 

match theirs before doing experiments to determine their function. Bioinformatics 

narrows down the number of essential experiments needed and thus expedites the 

discovery process. Technological innovations in biology have made possible the genome 

sequencing of various organisms, which has generated a tremendous amount of sequence 

data deposited in the databases. Inferring knowledge from these data has become a 

priority. Computational biology facilitates extraction of knowledge by high throughput 

analysis of vast chunks of data, which is not otherwise possible simply by experiments. 

This thesis exemplifies this statement by showing the usage of various computational 

methods to derive new knowledge from the antimicrobial peptide dataset. The main 

emphasis of this study has been to analyze the promoter region of AMPs and deduce 

promoter elements. However, in due course of the study many other interesting and novel 

results have been generated at both peptide and genomic level of AMPs. 

The following paragraphs summarize the results of this thesis and discuss the 

implications of the findings. 

8.1 Database of antimicrobial peptides 
 
Databases serve as valuable resource for exploration of antimicrobial peptides, allowing 

users to query complex biological questions that may usually involve searching multiple 

sources. . In this thesis, the author created a publicly accessible database of antimicrobial 

peptides called ‘ANTIMIC’. ANTIMIC contains 1788 entries from both eukaryotic and 

prokaryotic origin. The process of creation of the database consisted of systematic data 
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collection, curation and cleaning that has been documented in Chapter 3 and can be 

reproduced if needed to update and enrich the database further. During the process of 

data collection and cleaning the public database records, some errors in the data were 

identified and corrected. Examples of errors include high redundancy due to maintenance 

of the same sequence in different public databases, discrepancies in primary sequences 

and conflicting annotation. Data checking and correction are thus critical for the 

improvement of data quality. Interpretation of unclean data is normally inaccurate and 

errors will be propagated in subsequent analysis where high data quality is important for 

accurate predictions. The creation of the ANTIMIC database was the first step towards a 

systematic sequence analysis of antimicrobial peptides. It helped in collating and 

systematizing the scattered information of antimicrobial peptides in one place and in easy 

access of information, which would help in the analysis process.  

Data classification usually is the next step computational step applied to the data 

that facilitates better understanding of the data and sets ground for prediction work. There 

are two principal approaches taken for data classification, manual and automatic. Manual 

classifications are based on human expertise, facilitated by bioinformatic analyses, to 

cluster data into particular groups that share common properties defined by domain 

experts. Examples include the manually curated Swiss-Prot and PROSITE databases. The 

other approach is automatic classifications that depend on algorithms or models. 

Examples of automatic classification algorithms include self-organized maps, artificial 

neural network, and support vector machines which belong to the fields of artificial 

intelligence and machine learning ProDom (Kapetanovic et al., 2004), and DOMO 

(Gracy and Argos, 1998), Pfam among others, address classification more systematically 
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with automated processes that classify entire protein sequence databases. The advantage 

of manual classification is the high quality of clustering but the final classification result 

may be irreproducible because of differences in the experts’ knowledge. In contrast, 

automation is fully reproducible because of fixed rules written in computer programs and 

scalable to large data set, but implies caveat that the same threshold is used in the process 

and this may not be the optimal choice, thus potentially opening a way for the 

propagation of errors caused in this manner. 

Multiple alignments of protein sequences are an effective way of classifying and 

also identifying conserved amino acids that provide clues to functional relationships 

among proteins. The patterns of amino acid variability in multiple sequence alignments 

reveal evolutionary pressure, mutation, recombination and genetic drift that spans 

millions of years Valdar, 2002. Conserved residues could be critical to the structure and 

function of a peptide. However, multiple alignments alone can go as far as aligning 

multiple sequences and indicating the conserved residues. To be able to increase the 

applicability of multiple alignments, HMMs are introduced. HMM approach models 

expectations of what unknown members of a protein family could be through the use of 

probabilities calculated from multiple alignments and assuming independence (except 

within consecutive deletions and insertions) among amino acids of a protein. Thus, each 

position is modeled separately; the concatenation of these amino acid probabilistic 

models is the protein model (Amitai, 1998). The author, implemented the HMM based 

machine learning approach to create a score based method of classification of AMPs  that 

can be used to query for new AMPs and also predict the classification of new AMPs into 

known or new AMP families. HMM profiles or “signatures” were created for AMPs 
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based on prior knowledge of the AMP families. These profiles also proved to be useful in 

tagging of conserved residues that could potentially be important for the antimicrobial 

function for a particular family of AMP. The HMM based software was integrated into 

the ANTIMIC database as the ANTIMIC profile module.  

 

8.2 Comparative genomic analysis of AMPs to find transcriptional regulatory 
 elements 
 
Understanding regulation of a gene or gene family at transcription level in recent years 

has gained momentum due to high-throughput genome sequencing of whole genomes and 

experimental techniques that have made it possible to explore non-coding regions. This 

understanding can be expedited through computational methods. Comparative genomics 

has long held the promise for the identification of response elements in eukaryotic 

genomes (Hardison et al., 1997).  Initially, searches for regulatory elements were 

conducted with consensus sequences and positional weight matrices and were confined to 

the detection of known elements. Now, ab-initio approaches show great potential for the 

identification of response elements in eukaryotic organisms (Lawrence et al., 1993, Roth 

et al., 1998). Ab-initio approach on regulatory region of multiple species and validation 

with co-expression information from DNA expression analysis experiments brings a 

powerful way to determine new regulatory elements. This approach allows for 

elucidation of new promoter elements (TFB motifs) which are previously unknown. This 

work shows implementation of this approach in understanding antimicrobial peptides and 

the author was able to find new insights into the transcriptional regulation of AMPs. 

In order to collate the promoter sequences of various AMP genes, the author 

started with identification of AMP-coding cDNAs in the FANTOM3 data set and their 
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orthologous human or rat sequences. TBLASTN search was done on the FANTOM3 

dataset using the ANTIMIC sequences and some additional AMP sequences from 

GenBank. The author was able to find 103 mouse AMP members that were new in 

FANTOM3. The sequences belonged to 28 families (alpha-defensin, alpha2casein, 

apoa2, beta-defensin, spag11, bpi, calgranulin, cathelicidin, cathepsinG, dbi, slpi, 

enhancer of rudimentary homolog, granulin, hepcidin, histone2a, IFN-inducible antiviral 

protein Mx, lactoferrin, lysozyme, mbp, melanotropin alpha, ovotransferrin, 

proenkephalin 1, sap2, secretogranin, skiv2l, spyy, vasostatin, vip and zap).  

The extraction of promoter sequences of AMPs involved a systematic collection 

from various sources. Mouse promoter sequence extraction involved sequential steps of 

finding the TSS location that was determined by using the start position of the first exon 

of the FANTOM cDNA-genome mapping data. Upstream region of 1000 base pairs and 

downstream region of 200 base pairs were then extracted by mapping the TSS location to 

the mouse genome data from UCSC. 

The promoter analysis was done on genes from 22 AMP families. The promoter 

regions of AMPcgs in the three species (human, mouse and rat) were screened for motifs 

by an ab-initio motif finding method and analyzed for promoter characteristics (TFBS 

motifs). Many of the motifs that were detected are known from previous experimental 

studies to be involved in control of AMPs (Chapter 5). This corroborates the 

computational method used to detect TFBS motifs. The analysis showed that the key 

transcriptional regulators are likely to be TFs of the liver-, nervous system-specific and 

NHR group. Nuclear hormone receptors (NHRs) were prominent among the core TF 

group. NHR such as GR, RXR-alpha, AR, VDR, T3R-alpha and RAR-alpha1 emerged as 
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the frequently occurring NHR, some of which are implicated in immune responses. Non-

NHR TFs such as Meis1a and Meis1b, Sp1, NF-1, AP-2 and c-Myb were the other TFs 

found in various AMP families. These TF groups consist of transcription regulators that 

are involved in diverse physiological functions, including control of embryonic 

development, cell differentiation and homeostasis, but also in immune response. This 

reiterates that AMPs are involved in  pathways other than innate immunity.  

The analyses of the promoter regions of AMPs lead to several other interesting 

observations. Analysis of alpha defensin promoter regions showed that the conservation 

of the motifs across different species correlated to the phylogenetic groupings that have 

been studied previously by other groups for alpha defensins (Chapter 5). It was observed 

that the motif combinations that are shared between myeloid and enteric specific alpha 

defensins largely differ between rodents and primates. The rat Defa and enteric-expressed 

mouse defcr2 promoter regions share the motifs 20 (AR PXR-1: RXR-alpha) –7 

(POU1F1a, POU2F1) – 4 (RAR-alpha1, RXR-alpha) (20-7-4) arrangement (Chapter 6). 

In contrast, the primate myeloid–expressed (Hosa_DEFA4, Patr_DEFA4, Hosa_DEFA3) 

and enteric-expressed (Hosa_DEFA5 and Patr_DEFA5) alpha defensins share the motif 

organization (20-10-11-19) (Chapter 5). This small study acts as an example of 

investigating phylogeny with respect to regulatory content analysis. It initiates a new 

perspective into the study of evolution of various AMP gene families to find out about 

their common ancestry and divergence and intrigues further investigation on whether a 

classification maybe possible based on regulatory regions and gene structure for AMP 

genes. 
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Three potential TF-binding motifs that were enriched in promoters of AMPcgs are 

novel. This sets precedence for experimental validation of these cis-elements. (Chapter 

5). Another four motifs were found to be species-specific or lineage-specfic in the context 

of regulation of individual AMPcg families. (Chapter 5). 

 

The next step was to look at cohorts of putative TFBS motifs and deduce a 

common framework or model of TFBS. The author generated promoter models for 

PENK, DEFA5, DEFA1 and ZAP AMP genes (Chapter 6). Most of these models 

consisted of known and novel TFBSs. This has been the first attempt to generate 

promoter models for AMP families. 

The significance of these models was in their usage to be able to extract co-

regulated genes that share the same promoter models. This was demonstrated with the 

alpha defensin promoter models (DEFA1, DEFA5). The promoter models (alpha 

defensins) were used to scan the human promoter dataset (Chapter 7). The scanned hits 

found using the promoter models coincided with known co-expressed genes of the parent 

AMPs (Chapter 7) and this vindicates the computational approach used.  Many novel 

gene hits emerged in the promoter model scan that had similar GO based categorization 

as the experimentally known co-expressed gene group (Chapter 7) indicating the 

possibility that these genes can also be co-expressed under different conditions with 

AMPs. CX3CL1 is one of the predicted genes that came up for both the DEFA1 and 

DEFA5 model scan which is not known to be experimentally co-expressed with alpha 

defensins. However, its function as a chemotaxin and involvement in adaptive immune 

response indicates that it maybe possibly co-expressed with alpha defensins. Results also 
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show that the scanned gene hits for alpha defensins are also regulated by immune 

pathway related TFs such as NF-kappaB, GATA-4 and Evi-1 (Chapter 7). From the 

comparison of DEFA1 and DEFA5 gene hits it can be extrapolated that though there are 

many common pathways such as cell cycle, MAPK signaling pathway, insulin signaling 

pathway, etc.) in which both gene groups are involved, there are also different pathways 

which appear exclusive to only one gene group (either DEFA1 or DEFA5) such as 

methionine metabolism, androgen and estrogen metabolism, selenoamino acid 

metabolism which showed up only for DEFA1 gene hits. etc. (Chapter 7). Glycolysis, 

pyrimidine metabolism, alkaloid biosynthesis II etc were some pathways that were 

observed only for the DEFA5 genes. Therefore, this is perhaps an indication that though 

DEFA1 and DEFA5 belong to the same AMP family, they are involved in different gene 

networks. The methodology of promoter element analysis is applicable to any multigene 

families with diverse functions (i.e. cytokines and chemokine ligands and receptors) and 

more importantly for establishing basic functional assignments for transcripts with 

unknown functions.  

In summary, this analysis shows that AMPs from different families have multiple 

roles in cells, which implies that they are likely to be regulated in such a manner that they 

can fulfill their roles. This means that we should expect great variability in their 

promoters. However, since they also have some common roles in immune response, we 

also expect that part of their promoter characteristics could be similar.  
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A great part of the author’s computational findings fit into the current knowledge 

about regulation of AMPs and also generate new hypotheses that await experimental 

validation. This study acts as a paradigm for the use of computational tools such as DMB 

, module generation program etc. to understand parts of  regulatory regions for any set of 

genes and collation of the data to fit a bigger network of the underlying workings of the 

transcriptional regulation.  

This thesis unveils opputunities for development and expansion of research in the 

area of transcriptional regulation of AMPs and also other gene families. 

Two principal directions for the development of bioinformatics in the field of 

antimicrobial peptides and transcriptional regulation, are namely the development of 

databases and computational analysis. The development of database includes data update 

on top of data integration, data cleaning and integration of bioinformatic tools. Data 

update focuses on adding new antimicrobial peptide sequences identified and new 3D- 

structures solved. The author suggests that the ANTIMIC database can be enriched 

further with additional annotation to make it a comprehensive and composite repository. 

It can contain in addition to the current version additional information of the known gene 

structures, promoter regions, transcription factors that have been published in literature 

for antimicrobial peptides and also computationally found into the data warehouse. The 

new data can help to verify hypotheses made during analyses of initial dataset while new 

information can provide insights for further analysis. 

 

 



 
 

198 

 

 

 
 
 
 
 
 
 
 
 
 
 

Part IV: Chapter 9: Future work 

Years teach us more than books. 
(Berthold Auerbach) 
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9.1 Experimental work 

In recent years, there has been a rapid increase in our knowledge of understanding the 

role of regulatory regions as “switches” of various pathways and onset of diseases. Both 

experimental and computational tools have improved over the years to enable such a 

growth in our understanding. Now it is very much feasible to deduce missing links in  

pathways by application of a combination of experimental and computational techniques. 

For example,  a study reported the use of promoter analysis to identify novel genes 

showing functional relevance in cell proliferation in a colon cancer model. The analysis 

yielded some known proliferation-associated genes, such as HERG1 and MCM7, and a 

number of genes not previously implicated in cell proliferation in cancer, such as 

TSPAN3, Necdin and APLP2. Suppression of TSPAN3 and APLP2 by siRNA was 

performed and confirmed by RT-PCR. It was seen that inhibition of these genes 

significantly inhibited cell proliferation in colon cancer cell line (Moss AC, 2007). 

In another example, promoter modeling was applied to link disease-associated 

genes to potential regulatory networks. This approach was applied to a Maturity Onset 

Diabetes of the Young (MODY)-associated gene list, which yielded two models 

connecting functionally interacting genes within MODY-related insulin/glucose signaling 

pathways (Dohr et al., 2005). 

Another group has identified some novel potential transcriptional regulators and 

pathways involved at different stages of spermatogenesis based on bioinformatic and 

promoter analysis. The analysis was done on SAGE data on the transcriptome of mouse 

type A spermatogonia (Spga), pachytene spermatocytes (Spcy), and round spermatids 

(Sptd) (Lee et al., 2006). 
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In this thesis as well,  a number of hypotheses has been generated that have good 

concordance with some of the existing knowledge in the field of AMPs and innate 

immunity. However, the computationally inferred hypotheses can only be tested in 

experiments. This section  discusses the novel findings obtained from the analyses and 

the experimental approaches to validate them. 

1. Several of the NHR group TFs such as RXR-alpha, AR, T3R-alpha, RAR-

alpha, LXR-alpha:RXR-alpha appear as the frequently occurring  candidates in 

AMPS. Their presence in the promoter regions requires validation.   

2. VDR and GR have been reported in scientific literature to be regulating 

expression of some AMP genes such as beta defensins. Our analysis 

indicates their presence in many other AMP genes. 

3. NF-1 and NKX2-1 which have not yet been implicated to be involved 

immunomodulatory pathways have appeared frequently in many AMP 

genes in the analysis.  

4. Transcriptional regulator c-myb is involved in lymphocyte development. 

Experimental validation of its functional binding site in atleast an AMP 

gene can indicate its direct involvement in innate immunity. 

The author suggests genome-scale location analysis (Ren et al., 2000) followed by 

chromatin immunoprecipitation (ChIP) can identify promoters bound by the 

computationally predicted TFs in various tissue cells. These experiments are expected to 
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clarify which promoters and TFs are specific for certain tissue cells and how many 

AMPcgs are regulated by a TF, TF pair or multiple TFs.  

This study has also elucidated genes that are novel candidates for co-regulation with 

AMPs such as CX3CL1. Microarray experiments that are pathway specific or ligand 

specific stimulated such as LPS and TNF can be carried out to validate co-expression of 

the candidate genes with certain AMP genes.  

Another experimental approach could be knocking out of a particular AMP gene and 

checking for the effects of the deletion on a pathway of interest from the suggested 

pathways in this study. This can facilitate validation of a involvement of a particular 

AMP gene in regulation of the pathway. Eventually, the combination of both 

computational and experimental will facilitate construction of mechanistic models of 

AMPcg regulatory transcription networks. 

 

9.2 Computational work 
 
Expression arrays yield high dimensional data that facilitates the deduction of temporal 

and special activation of groups of genes. Through this technology it has been possible to 

find the differential gene expression patterns in normal and diseased tissues as well as the 

response of tissues to the application of therapeutic reagents.  

Computational analysis on gene expression data such as application of clustering 

algorithms facilitate elucidation of co-regulated set of genes. Information about 

underlying transcriptional regulatory networks responsible for the observed expression 

patterns is not directly deductible based on cDNA sequenes used to generate the arrays. 
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Regulation of expression is determined to a large extent by the promoter sequences of the 

individual genes (and/or enhancers). The availability of the complete human genome 

sequence now provides the molecular basis for the identification of many regulatory 

regions. Promoter sequences for specific cDNAs can be obtained reliably from genomic 

sequences by exon mapping or by mapping full length cDNAs. A sufficient pool of  

promoter sequences can allow deduction to candidates in a network solely on  

bioinformatic analysis as has been demonstrated in this thesis. Generation of promoter 

models based on comparative promoter analysis of co-regulated genes and groups of 

genes leads the way to understanding regulatory networks. Such modules represent the 

molecular mechanisms through which regulatory networks influence gene expression. 

This approach also provides a powerful alternative for elucidating the functional features 

of genes with no detectable sequence similarity, by linking them to other genes on the 

basis of their common promoter structures. 

As a part of future work, the author thus proposes promoter model scanning 

across whole genomes (for eg. human, mouse) to find putatively new AMP related 

sequences that can not be extracted by BLAST or other sequence similarity tools due to 

short length of the exon or low similarity.  

Another possibility is for generation of promoter models for other AMP families 

that have not been addressed in this thesis for example beta-defensins and promoter scan 

with the models generated. This will enable expansion of our knowledge in the realm of 

regulatory networks in which AMP genes are involved.  
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 It would also be interesting to do the scan across other available promoter 

datasets like mouse and rat and do a comparative genomic study of the gene hits for a 

particular AMP model to find how similarities and differences among them.   

In this thesis, the author restricted the findings of regulatory elements in the promoter 

region. The same computational approach can be extended to find the regulatory 

elements in intergenic regions and 3’UTR region. This would lead to novel findings in 

these regulatory regions of which we have limited knowledge in current time.  
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Supplementary Tables and Figures for Chapter 5 
 
Supplementary Table 5.1 AMPcg families and representative members in 
mouse, rat and human 
Mm: Mus musculus; Hs: Homo sapiens; Rn: Rattus norvegicus: TUID: transcriptional 
unit ID; CTSS: transcription start site (TSS) information based on CAGE tags. 
 

AMP Family Gene symbol Species Representative 
CloneID/Accession 

TUID CTSS

Alpha defensin 2010016B13Rik Mm 2010016B13 
175722

No 

  2010016F14Rik Mm 2010016F14 
168136

No 

  defa5 Hs NM_021010 - - 
  defa6 Hs NM_001926 - - 
  defa4 Hs NM_001925 - - 
  defa3 Hs NM_005217 - - 
Apoa2 (apolipoprotein A-II) Apoa2 Mm I530003A11 

83109
No 

  APOA2 Hs HIT000032344.2 - - 
  Apoa2 Rn NM_013112 - - 
Beta defensin 9230107O10Rik Mm 9230107O10 

103672
No 

  DEFB28 Hs AF525930 - - 
  Defb1 Mm D630029A12 169116 Yes 
  DEFB1  Hs BC033298 - - 
  Defb1 Rn NM_031810 -  - 
  Defb23 Mm 1700012K18 121132 Yes 
  DEFB123 Hs NM_153324 - - 
  Defb4 Mm 2310001F05 168175 No 
  DEFB4 Hs NM_004942 - - 
  Defb36 Mm 1700011J22 168985 Yes 
  DEFB105a Hs NM_152250 - - 
  Defb12 Mm 9230103N16 77756 No 
  Defb19 Mm 4930563B01 81337 No 
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BPI 
(Bactericidal/permeability-
increasing) 

9230105K17Rik Mm 9230105K17 

112251

No 

  BPI Hs BC040955 - - 
Bin1b/SPAG11 Spag11 Mm 9230111C08 168760 No 
  SPAG11 Hs NM_016512 -  - 
  Spag11 Rn NM_145087 - -  
Cathelicidin Camp Mm F930015N03 112000 Yes 
  CAMP Hs NM_004345 - -  
  cramp Rn AF484553 - -  
Calgranulin S100a9 Mm F430201H11 83114 Yes 
  S100a9 Hs NM_002965 - - 
  S100a9  Rn NM_053587 - - 
DBI (Acyl-CoA-binding 
protein family) 

Dbi  Mm 6720460E16 102356 Yes 

  DBI  Hs NM_020548 - -  
Slpi (skin-derived 
antileukoproteinase) 

Slpi Mm 2310075E18 
75903 

No 

  SLPI Hs HIT000038907.2 - - 
  Slpi Rn NM_053372 - -  
Granulin Grn Mm 0610012H06 104193 Yes 
  GRN Hs BC000324 - - 
  Grn Rn NM_017113 - - 
Hepcidin 1810073K19Rik Mm 2210420P15 

168118
Yes 

  LEAP2 Hs NM_052971 - - 
Histone 2A derived defense 
peptide 

Hist1h2ac Mm 9030420B16 112273 No 

  HIST1H2AC Hs NM_003512 - -  

  Hist1h2ae Mm 1190022L06 112736 No 
  HIST1H2AE Hs NM_021052 - -  

Lactoferrin Ltf Mm 9830118D19 173811 No 
  LTF Hs NM_002343 - - 
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Lysozyme 9530003J23Rik Mm 9530003J23 
106239

No 

  Lyzs Mm I420013M05 111075 Yes 
  LYZS Hs AF099029 - - 
  Lyzs Rn NM_012771 - - 
MBP (Myelin Basic Protein) Prg2 Mm 2510004C07 

112877
No 

  PRG2 Hs HIX0009634.2 - - 
  prg2 Rn NM_031619 - - 
Melanotropin alpha (Pro-
opiomelanocortin family) 

Pomc1 Mm 5730403F20 151196 No 

  POMC1 Hs NM_000939 -  - 
  Pomc1 Rn NM_139326 -  - 
PENK (Proenkaphalin) 
(opioid neuropeptide family) 

Penk1 Mm 4922504O09 

179452

Yes 

  PENK Hs HIX0007519.2 - - 
  Penk-rs Rn NM_017139 - - 
Secretogranin I 
(chromogranin/secretogranin 
family) 

Chgb Mm 5730420J08 

177050

Yes 

  CHGB Hs HIX0015625.2 - - 
  Chgb Rn NM_012526 - - 
SPYY (Skin peptide 
tyrosine-tyrosine) (NPY 
family) 

Npy Mm 0710005A05 

72959 

Yes 

  Pyy Mm C820007C10 111251 Yes 
  NPY Hs HIX0006525.2 - - 
  Npy Rn NM_012614 - - 
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Vasostatin (Chromogranin 
A) 
(chromogranin/secretogranin 
family) 

Chga Mm G630083O06 

83089 

Yes 

  CHGA Hs HIX0011909.2 - - 
  Chga Rn NM_021655 - - 
VIP (Vasoactive intestinal 
peptide) (Glucagon family) 

Vip Mm 9130007F05 
112113

No 

  VIP Hs HIX0006306.2 - - 
ZAP (CCCH type, antiviral 
1) 

Zc3hav1 Mm F420004O17 
99218 

Yes 

  ZC3HAV1 Hs HIX0007129.3 - - 
  Zap Rn NM_173045 - - 
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Supplementary Table 5.2 FANTOM3 dataset-derived AMP transcripts which 
were new to mouse and absent in human 
 

Riken clone ID/ 
GenBank acession 

Gene Symbol 

D730003B11 1..1.1.1.1.1.1 Csnd
D730017I01 Csnd 
D730018F19 Csnd 
D730018I02 Csnd 
D730032K03 Csnd 
D730045O16 Csnd 
D730048M03 Csnd 
2010300L12 Defcr-rs1 
2010319H24 Defcr-rs1 
5033416M10 Mcpt2 
G630050E22 Mcpt4 
9030622B11 Mcpt8 
0610031H01 Hist2h2aa2 
1700048I17 Hist2h2aa2 
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Supplementary Table 5.3 TFs associated with ab initio-predicted TFBSs that coincided with experimental data.  
 

References are cited at the end of Supplementary material section 
 

AMP family Experimentally determined TFs References  Predicted TFs matching 
experimental confirmed 

TFs 
Alpha defensin CAAT, PEBP2/CBF (Yamamoto et al., 2004) PEBP2/CBF 

Beta defensin NF-KAPPAB, AP-1, NF-IL6, MEF, VDR 

(Harder et al., 2000),(Vora et al., 
2004),(Lu et al., 2004), (Wang T.T. et al., 
2004) AP-1,MEF(C-ETS1),VDR 

BPI AML-1, PU.1, SP3/SP1,C/EBP,USF, NF-KB, C-REL (Lennartsson et al., 2003 ) SP3/SP1,AML-1,NF-KB 

Cathelicidin VDR, NF-IL6, RAR,IL-6RE 
(Wang T.T. et al., 2004), (Frohm Nilsson 
et al., 1999), (Wu et al., 2000 ) VDR, RAR, IL-6 RE 

DBI 
SREBP, SP1, PPAR-ALPHA,AP-1, C/EBP, HNF-3, RXR-ALPHA, 
NF-1/CTF , AP-2 

(Sandberg et al., 2005), (Elholm et al., 
1996) 

SREBP, SP1,AP-1,RXR-
ALPHA,NF-1/CTF 

Hepcidin C/EBP-ALPHA (Courselaud et al., 2002 ) C/EBPALPHA 

Histone 2A TBP,OCT-1,CAAT box, 
(Oswald et al., 1996 ), (Albig et al., 1999 
), (Trappe et al., 1999 ) Oct-1, CAAT 

Lactoferrin SP1, C/EBP 
(Teng, 2002 ), (Khanna-Gupta et al., 
2000 ) SP1, C/EBP 

Lysozyme SP1,MEF,C/EBP (Suico et al., 2004 ) MEF (C-ETS1),SP-1 

MBP NKX2.2,SP1,SOX10,PAX3, NF-KB 

(Wei et al., 2005), (Wei et al., 2004 ), 
(Wei et al., 2003), (Slutsky et al., 2003 ), 
(Huang et al., 2002 ) SP1 

Melanotropin-alpha SRE,AP-1, AP-2 LIKE, CAAT BOX (Deen et al., 1991 ) AP-1, AP-2 LIKE 

Proenkaphalin1 
TATA, AP-2, NF-KAPPAB,MZF-1,MYC PACH1,CREB,CRE, 
NF1,AP-1 

(Liu et al., 2000 ), (Kobierski et al., 1999 
), (Fu et al., 1997) (Le et al., 2003) 

AP-1, NF1, TATA,AP2,NF-
KB,MZF-1,NF-Y, 

Secretogranin I SP-1, CRE, TATA (Pohl et al., 1990), (Mahata et al., 2002) SP-1, TATA 

Vasostatin OLF/EBF, SP1,CREB,GR 

(Persson et al., 2004), (Mahapatra et al., 
2003), (Hocker et al., 1998), (Rozansky 
et al., 1994) GR,SP-1 

VIP OCT-1,MEF-2,STAT,AP-1,CRE (Hahm and Eiden, 1998) STAT1,AP-1,POUF1A(OCT-
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1) 

Slpi GR,PR, IRF-1 
(Hayashi et al., 2004), (King et al., 2003), 
(Nguyen et al., 1999) GR, PR 

Apoa2 NA NA NA 
Calgranulin NA NA NA 

Granulin NA NA NA 
SPYY NA NA NA 
ZAP NA NA NA 

Bin1b/SPAG11 NA NA NA 
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Supplementary Table 5.4 Total number of motifs found for each AMP family  

 
Unknown: motif does not match any of the TRANSFAC-listed TF binding sites 

 
AMP family new TFs Unknown motifs total 

Alpha-defensin 73 3 77 
Apoa2 36 6 42 

BPI 113 4 120 
Beta-defensin 78 8 89 

Bin1b/SPAG11 75 3 78 
Calgranulin 162 4 166 
Cathelicidin 75 3 81 

DBI 53 1 59 
Granulin 67 3 70 
Hepcidin 59 3 63 

Histone 2A 83 12 97 
Lactoferrin 46 4 52 
Lysozyme 30 9 41 

MBP 67 2 70 
Melanotropin alpha 81 1 84 

Proenkaphalin1 54 3 85 
SPYY 58 5 63 

Secretogranin I 31 6 39 
Slpi 94 5 101 
VIP 54 3 60 

Vasostatin 19 9 30 
ZAP 77 5 82 
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Supplementary Table 5.5. Ranking of TF groups according to their frequency of appearance in different AMP families.  
For example, under rank 1, AD is the the most frequently occurring TF group in five of the AMP families that are listed in Table 5.5. 
Underlined numbers indicate the TF groups that are high-ranking such as liver-specific, nervous system-related, adipocyte-related, 
nuclear hormone-related, immune cell-specific and lung-specific TFs. 
 

Tissue/Function-specific TF groups 
Rank AD NHR CC IMM LIV LUNG MUS NS PAN PIT EYE BS 

1 5 6 5 6 9 5 1 7 0 1 0 0 
2 6 6 2 2 6 3 0 4 1 0 0 0 
3 4 1 1 2 5 1 1 3 1 0 0 0 
4 3 2 0 0 1 1 0 3 1 1 0 0 
5 0 3 2 4 1 4 3 5 2 2 0 0 
6 1 0 1 5 0 3 4 0 1 2 0 0 
7 0 1 4 3 0 2 4 0 5 2 0 0 
8 2 1 3 0 0 2 1 0 5 4 0 0 
9 0 1 4 0 0 1 4 0 2 3 0 2 
10 1 1 0 0 0 0 4 0 4 6 0 4 
11 0 0 0 0 0 0 0 0 0 1 14 16 
12 0 0 0 0 0 0 0 0 0 0 8 0 

Avg. 
k

3.32 3.55 5.27 3.95 2.05 4.32 7.05 2.77 7.18 7.77 11.36 10.64 
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Supplementary Table 5.6: Ranksum test of AMPcg families versus house keeping genes 

Unadjusted p-value is p-value from the ranksum test for each AMP family vs. house keeping gene set. Adjusted p-value: p-value corrected for 
multiplicity testing for 6 TF groups that are being tested: namely, AD, NHR, IMM, LIV, LUNG, NS, these are the most frequently present TF 
groups across all AMP families. Seven AMP families have corrected P-value less than 0.05 and thus the null hypothesis that the two distributions 
are the same can be rejected. This means the distirbution of these families of TFs and those in the testes AMP families are different. 

AMP Families AD NHR CC IMM LIV LUNG MUS NS PAN PIT EYE BS 
Unadjusted 

p-value 
Adjusted 
p-value 

Alphadefensin 6 12 2 6 6 5 3 9 2 1 0 0 0.5591 1 
Apoa2 5 5 5 4 5 5 4 6 4 3 0 0 0.0074 0.0444 

Betadefensin 6 5 4 6 6 5 2 8 2 3 0 1 0.124 0.744 
bin1b/spag11 9 9 3 5 10 10 6 10 5 2 0 3 0.7614 1 

Bpi 6 7 8 8 8 5 8 7 7 4 0 0 0.3293 1 
Calgranulin 8 5 6 9 9 6 7 11 7 5 1 2 0.8165 1 
Cathelicidin 4 8 6 8 5 5 1 6 3 5 0 1 0.1503 0.9018 

Dbi 7 8 4 5 7 6 4 6 1 4 0 0 0.2576 1 
Slpi 6 7 3 6 6 5 3 8 5 4 0 0 0.2199 1 

Granulin 6 5 6 4 6 6 4 5 4 3 0 0 0.0269 0.1614 
Hepcidin 10 9 3 7 11 11 3 9 6 7 0 0 0.4387 1 
Histone 5 2 3 3 5 4 3 3 4 3 0 0 0.0004 0.0024 

Lactoferrin 7 10 3 4 7 6 4 8 3 1 0 0 0.3922 1 
Lysozyme 4 2 4 3 4 4 3 3 2 1 0 0 0 0 

Mbp 6 7 9 9 7 6 6 7 2 6 0 2 0.3562 1 
Melanotropinalpha 9 6 9 7 8 7 4 8 3 4 0 0 0.5525 1 

Proenkaphalin 7 7 3 4 7 7 1 8 3 3 0 1 0.2883 1 
Secretogranin 1 5 2 6 3 2 4 3 3 3 0 1 0.0013 0.0078 

Spyy 5 5 2 5 5 3 1 5 3 5 0 0 0.002 0.012 
Vip 3 3 3 4 3 2 1 3 3 1 0 1 0 0 
Vstn 4 4 3 3 5 4 3 4 1 2 0 0 0.0001 0.0006 
Zap 7 8 6 6 8 8 3 6 4 4 0 0 0.4358 1 

Control set                           
House_Keeping_genes 4 12 5 14 7 6 4 7 4 5 0 1   
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Supplementary Table 5.7 P-value table of motif groups.  
 

The row with bold-face values indicates the boundary of eleven AMP families that were significantly enriched in predicted 
NHR-binding motifs relative to the whole AMP family set. 

 
No. of NHR 

binding 
motif 

candidates in 
subpopulation 

 

No. of motifs 
from all 
families 

included in 
subpopulations 

No. of 
NHRbinding 

motif 
candiates 

 

Total 
population 

(motifs 
from 

all 
families) 

 

Bonferroni 
correction 

factor 

P-value Bonferroni 
corrected p-value 

No. of groups 
included in 
statistically 

significant set 
 

137 420 139 440 440 0.023154572 1 21
135 400 139 440 440 0.000884858 0.389337708 20
132 380 139 440 440 0.000128334 0.056466838 19
128 360 139 440 440 5.62042E-05 0.024729858 18
123 340 139 440 440 5.99005E-05 0.026356217 17
118 320 139 440 440 4.74915E-05 0.020896267 16
113 300 139 440 440 3.08239E-05 0.013562527 15
108 280 139 440 440 1.69494E-05 0.00745775 14
103 260 139 440 440 7.94636E-06 0.0034964 13
98 240 139 440 440 3.14129E-06 0.001382167 12
92 220 139 440 440 2.81167E-06 0.001237134 11
85 200 139 440 440 5.55134E-06 0.002442591 10
78 180 139 440 440 9.01694E-06 0.003967454 9
71 160 139 440 440 1.22648E-05 0.005396502 8
64 140 139 440 440 1.39428E-05 0.006134828 7
56 120 139 440 440 3.3908E-05 0.014919519 6
48 100 139 440 440 6.8438E-05 0.030112705 5
40 80 139 440 440 0.000112308 0.049415705 4
31 60 139 440 440 0.000399135 0.175619353 3
22 40 139 440 440 0.001106333 0.486786677 2
12 20 139 440 440 0.006893247 1 1
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Figures for Chapter 5 
 

Supplementary Figure 5.1. UPGMA tree for alpha-defensin promoter regions analyzed in this study  
The tree topology coincides with the exception of rat Defcr4 with the previously reported enteric (i.e. intestine) and 
myeloid/neutrophil cell expression of rat, mouse and human alpha-defensins. The cluster comprising Hosa-defa3, -defa4, Patr-defa4 
and Rano-Defa represents myeloid-specific alpha-defensins. Mumu-Defcr20, -Defcr2, Rano-Defcr4, Hosa-defa5 and Patr-defa5 
represent the enteric-expressed group of alpha-defensins. The species abbreviations are Mumu: Mus musculus; Hosa: Homo sapiens; 
Patr: Pan troglodytes; Rano: Rattus norvegicus.  
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Supplementary Tables and Figures for Chapter 6  

Supplementary Table 6.1 TFs that correspond to ab-initio predicted motifs derived from Penk family promoter regions.  
 
All motifs were detected in mouse, rat and human sequences. The underlined TF binding sites are known to bind TFs in the 
proenkephalin promoter region (Liu et al., 2000, Kobierski et al., 1999, Fu et al., 1997, Le et al., 2003). The species abbreviations are 
Hs: Homo sapiens; Mm: Mus musculus: Rn: Rattus norvegicus. Unknown: motif does not match any of the TRANSFAC-listed TF 
binding sites.   
 
Motif 

no. 
Motif 

occurance 
Species Motif TF name 

1 3 Mm,Hs,Rn CCAGTAACCTGCG FXR:RXR-alpha LXR-alpha:RXR-alpha LXR-beta:RXR-alpha ERRalpha1 
2 3 Mm,Hs,Rn TATAAAGTGGCTGT TFIID TBP 
3 3 Mm,Hs,Rn GATCTAAAGAAGAAA AR GR 
4 3 Mm,Hs,Rn CCAAGTCCGTC SF-1 GR 
5 3 Mm,Hs,Rn TTAAGATCCCCA NF-kappaB1 NF-kappaB2 NF-kappaB2 precursor AP-2alpha AP-2alphaA 
6 3 Mm,Hs,Rn GTGATDCAGGA AP-1 c-Fos c-Jun JunD  
7 3 Mm,Hs,Rn TCCAGVAAGDH c-Ets-1 Elk-1 SAP-1a SAP-1b SRF PEA3 ELF-1 
8 3 Mm,Hs,Rn CAGGCGTCGGCGCG DREB1A ZF5 E2F 
9 3 Mm,Hs,Rn CGATTGGGGCGCGC NFI/CTF CTF NF-Y  

10 3 Mm,Hs,Rn CCAGAVAGGCAG UBP-1 GATA-1 GATA-3 Meis-1a Meis-1b GATA-4 RXR-beta VDR MOT3 
11 3 Mm,Hs,Rn CCGGGTCCTA Unknown 
12 3 Mm,Hs,Rn AGCCCGTGBC USF-1 USF1 USF2 USF2b USF HMBP EmBP-1a 

13 3 Mm,Hs,Rn GTGACTTTGCCCCA 
DSF GCN4 COUP-TF1 RAR-beta RXR-alpha RAR-alpha1 TLX Pax-2.1  
Pax-2.2 IRF-4 IRF-8 AP-2alpha AP-2alphaA C/EBPgamma PPAR-gamma:RXR-alpha 
VDR LXR-alpha:RXR-alpha 

14 3 Mm,Hs,Rn GATCTGTBTT Sox2 Meis-1a Meis-1b GR 
15 3 Mm,Hs,Rn TGAAATTTGG Unknown 

16 3 Mm,Hs,Rn GCTGTGGGGACGTCC 
AML1 AML1a AML1c MZF1 MIG1 MZF-1 AP-2alpha AP-2alphaA MBP-1 (1) NF-
kappaB1 NF-kappaB2 NF-kappaB2 precursor 

17 3 Mm,Hs,Rn BHHCAAGAGGA Unknown 
18 3 Mm,Hs,Rn GGAAGGGGCAG VDR LXR-alpha:RXR-alpha CAC-binding protein NF-E2 PPAR-gamma:RXR-alpha Sp1 

19 3 Mm,Hs,Rn AHGCCCCAACC 
Sp1 PPAR-gamma:RXR-alpha VDR LXR-alpha:RXR-alpha AP-2alphaA ADR1 
C/EBPalpha C/EBPbeta 

20 3 Mm,Hs,Rn GGACAGGATG Meis-1a Meis-1b Elk-1 SAP-1a SAP-1b SRF E47 Fli-1 Net TCF 
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Supplementary Table 6.2   TF binding sites that correspond to ab-initio-predicted motifs derived from Zap family promoter 
regions.  
 
The species abbreviations are Hs: Homo sapiens, Mm: Mus musculus, Rn: Rattus norvegicus. Unknown: motif does not match any of 
the TRANSFAC-listed TF binding sites. 

.Motif 
No 

Motif 
occurrence 

Species Motif TF binding sites 
 

1 3 Mm,Hs,Rn CTCCACCTGTTCCTT 

 
Alfin1,RXR-alpha,VDR,E12,E47,MyoD,myogenin,EMF1,EMF2,EMF3,EMF4,Myf-5,c-Myc,USF2,CAN,E2A,DEP2,HEB 
,Ac,AS-C T3,Da,Sc,Sn, 
CLIM2,GATA-1,Lmo2,Tal-1,USF-1,NeuroD,NEUROD,LVa,PR B,AR,GR,c-Ets-2,ESE-1,HELIOS,LyF-1 

2 3 Mm,Hs, Rn TCACCGCACT ER-alpha,ABI4,AML1a 

3 3 Mm,Hs, Rn CTGGGGGGCCC MIG1,Sp1,ZAC-1a 

4 3 Mm,Hs, Rn AAGCAGTTGGT c-Myb,c-Myc,E47,NeuroD,NEUROD,E12,MyoD,MyoD:E12,myogenin,Myogenin:E12,Dec-02,c-Myb:HES-1 

5 3 Mm,Hs, Rn GGCTCTTTAATT 

 
AR,GR,LF-A1,RAR-alpha1,RAR-beta,RAR-gamma,RORalpha1,RXR-beta2,LXR-alpha:RXR-alpha,LXR-beta:RXR-alpha, 
T3R-alpha,FXR:RXR-alpha, PXR-1:RXR-alpha,COUP,FOR1,FOR2,ER-alpha,AP-1,RXR-alpha,TAF(II)28,LXR-
alpha,VDR,TR2-11,PPAR-gamma, 

6 3 Mm,Hs, Rn CATGACCCTGGAG RXR-gamma,CAR:RXR-alpha,Nkx2-1 

7 3 Mm,Hs, Rn ACTCTAAGGTAT Unknown 

8 3 Mm,Hs, Rn ATTCGCTCTCCC LyF-1,RXR-beta,VDR 

9 3 Mm,Hs, Rn GGTTTACCTT CAR:RXR-alpha,LXR-alpha:RXR-alpha,SXR,RAR-beta,RAR-gamma,RXR-alpha,RAR-alpha1,ER-alpha 

10 3 Mm,Hs, Rn GAGCGGCACC Unknown 

11 3 Mm,Hs, Rn AATATCCAAG NF-1,TGGCA-binding protein 

12 3 Mm,Hs, Rn AGCAGCATCA Unknown 

13 3 Mm,Hs, Rn GAGAGTAACAA GATA-6,GCN4,PR B 

14 3 Mm,Hs, Rn AATAGGACTT GR 

15 3 Mm,Hs, Rn CGGATTTGAGGACGC Unknown 

16 3 Mm,Hs, Rn AAAATCATCTT Otx2,GATA-3 

17 3 Mm, Rn TAAGTTTCGATTCT Unknown 

18 3 Mm,Hs, Rn GGAGTCTGGAGG Nkx2-1 

19 3 Mm, Rn GAGTTGGAAAGCGA NF-AT1,NF-1,Ftz 

20 3 Mm,Hs, Rn GTGCGCCCACGG MTF-1 
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Supplementary Tables and Figures for Chapter 7  
 

 
Supplementary Table 7.1: Specificity and Sensitivity of the promoter models 
 

AMP group 
Gene 

names Refseq Id Species Sensitivity Specificity 
            

alpha defensin 1 DEFA1 NM_004084 Hs 100 
  DEFA3 NM_005217 Hs 100 

  MNP1A NM_001032862 Mmu 100 
          

5/5+6 
  

        Average(100%) 45.4% 
            

alpha defensin 5 DEFA5 NM_021010 Hs 100 
  Defcr2 U03028 Mm 100 

  Defcr3 NM_007850 Mm 100 3/3+0 
            
        Average (100%) 100% 
            

 
   The specificity was calculated with the formula: (Sp) = TP/ (TP+ FP) ; TP: True positive, FP: False Positive 
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Supplementary Table 7.2: Statistical significance of predicted genes from promoter model scan  
 
The null hypothesis tested is that proportions A=k/n and B=K/N of genes are the same. The Bonferroni corrected p-value indicates 
that these two proportions are very different and implies that predictions of genes that are co-expressed by DEFA5 based on promoter 
model is very good (A >> B). 

 
    AMP model     
DEFA1 Parameters Values 
Total no. of promoters scanned N 10255 
Total no. genes predicted K 104 
Total no. of coexpressed genes that are present in the 
promoter dataset n 51 
Total no. of genes that matched coexpressed genes k 17 
  bonferroni correction factor 10255 

   
P_value = 3.62347894569854e-022,  
corrected P_value = 3.71587765881385e-018 

      
DEFA5     
Total no. of promoters scanned N 10255 
Total no. genes predicted K 240 
Total no. of coexpressed genes that are present in the 
promoter dataset n 226 
Total no. of genes that matched coexpressed genes k 177 
  bonferroni correction factor 10255 

   
 P_value = 1.07817800604295e-278, corrected P_value = 
1.10567154519705e-274 
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Supplementary Table 7.3a: DEFA5 predicted genes that matched co-expression data 
     
H-inv Ids: Unique gene identifier from H-Invitational  database 
 
 

H-inv IDs Gene Names Gene Description Tissue Pathway 
HIT000036029 SNAI1 SimilartoEscargot/snail protein homolog(Fragment),partial cds.  Testis, embryonal carcinoma Adherens junction 
HIT000036885 SLUG SimilartoSlugprotein,complete cds.  Uterus, leiomyosarcoma Adherens junction 
HIT000039321 TAF11 TBP-associatedfactor11;TAF11 RNApolymeraseII,TATAbox  Lung, small cell carcinoma Basal transcription factors 
HIT000031115 HER3 SimilartoReceptorprotein-tyrosinekinaseerbB-3 precursor(EC  Placenta, choriocarcinoma Calcium signaling pathway 

HIT000032887 CCNB G2/mitotic-specificcyclinB1,partial cds.  Placenta, choriocarcinoma 
Calcium signaling pathway,Cell 
cycle 

HIT000036690 CLDN2 PMP-22/EMP/MP20andclaudinfamilyprotein, complete cds.  Colon, adenocarcinoma 
Cell adhesion molecules 
(CAMs),Tight junction 

HIT000036966 PIGT 

 
Phosphatidylinositolglycan class T precursor (Homosapiens) 
 
  Skin, melanotic melanoma. 

Glycosylphosphatidylinositol(G
PI)-anchor biosynthesis 

HIT000032824 PFKL Phosphofructokinase, liver;  Lung, large cell carcinoma 

Insulin signaling 
pathway,Galactose 
metabolism,Fructose and 
mannose 
metabolism,Glycolysis / 
Gluconeogenesis,Pentose 
phosphate pathway 

HIT000031158 MNK1 Similar to MAPkinase-interactingserine/ threoninekinase1  Placenta, choriocarcinoma 

Insulin signaling 
pathway,MAPK signaling 
pathway 

HIT000002234 MAP2K1IP1 

 
Mitogen-activated protein kinase kinase1i nteracting protein1; 
  bone marrow MAPK signaling pathway 

HIT000011725 WBSCR17 Similar to Williams-Beurensyndromecritical region gene17,  Brain O-Glycan biosynthesis 

HIT000036299 GFAP Glialfibrillary acidic protein(Homosapiens),completecds. 
 Brain, glioblastoma with EGFR 
amplification 

Prion 
disease,Neurodegenerative 
Disorders 
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HIT000042159 
KIAA0106,PRD
X6 Peroxiredoxin 6;antioxidantprotein2;non-seleniumglutathione  Brain 

Prostaglandin and leukotriene 
metabolism,Alkaloid 
biosynthesis II,Methane 
metabolism,Phenylalanine 
metabolism,Stilbene, coumarine 
and lignin biosynthesis,2,4-
Dichlorobenzoate 
degradation,Butanoate 
metabolism 

HIT000036745 SPC18 Microsomal signalpeptidase 18kDasubunit   Colon, adenocarcinoma Protein export 
HIT000038280 TXNRD1 Similar to thioredoxinreductase1; KM-102-derivedreductase-like  Lung, large cell carcinoma Pyrimidine metabolism 

HIT000032334 PRIM1 DNA primases mallsubunit  
 Bone marrow, chronic myelogenous 
leukemia 

Pyrimidine metabolism,Purine 
metabolism,DNA polymerase 

HIT000031313 UGP2 SimilartoUTP--glucose-1-phosphateuridylyl transferase2  Lymph, Burkitt lymphoma 

Starch and sucrose 
metabolism,Galactose 
metabolism,Nucleotide sugars 
metabolism,Pentose and 
glucuronate interconversions 

HIT000029290 NUDT5 NudixhydrolaseNUDT5,partial cds.  Placenta, choriocarcinoma 

Starch and sucrose 
metabolism,Purine 
metabolism,Folate biosynthesis

HIT000036950 MID1 Similar to DNA-3-methyladenine glycosylase (EC3.2.2.21)  Pancreas, epithelioid carcinoma Tryptophan metabolism 

HIT000038917 AUH AU-bindingprotein/enoyl-CoAhydratase,complete cds.  Testis, embryonal carcinoma 
Valine, leucine and isoleucine 
degradation 

HIT000031341 NMP238 RuvB-like1 (EC3.6.1.-) (49-kDa TATAbox-binding)  Lung, small cell carcinoma Wnt signaling pathway 
HIT000001945 B5R1 Cytochromeb5reductase1,partial cds.  adrenal gland   
HIT000001890 HSPA14 Similar to Circadian OSCILLATORREGULATOR   adrenal gland   
HIT000002063 BC040106 Conservedhypotheticalprotein,completecds.  Blood   

HIT000042336 
KIAA0198,PLA
GL2 Similar toPLAGL2 (Pleiomorphicadenomagene-like2),partialcds.  bone marrow   

HIT000040748 H3F3A HistoneH3familyprotein,complete cds. 
 Bone marrow, acute myelogenous 
leukemia   

HIT000037755 MRS1 Pannexin1,complete cds.  Bone, osteosarcoma   

HIT000000234 
KIAA0517,NA
RF 

Similar to Tripartitemotifprotein2 (Neuralactivity-related) 
  Brain   

HIT000000363 KIAA0638, Pleckstrin-likedomaincontainingprotein,complete cds.  Brain   
HIT000001102 KIAA1387, EVH1domaincontainingprotein,complete cds.  Brain   
HIT000001339 KIAA1624, Conservedhypotheticalprotein,partial cds.  Brain   
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HIT000001461 
KIAA1745,KIA
A1745 Semaphorin4Bprecursor,complete cds.  Brain   

HIT000025239 
DKFZp564L023
,UBQLN1 ubiquilin1 isoform1(Homosapiens),completecds.  Brain   

HIT000042245 
KIAA0091,KIA
A0091 Membrane-boundtranscriptionfactorsite-1protease precursor   Brain   

HIT000042312 
KIAA0175,PK3
8 Similar to Proteinkinase PK38(Maternal embryonic leucinezipper)  Brain   

HIT000011833 LOC148137 Conserved hypothetical protein,partialcds.  Brain   
HIT000011902 BX647638 Zn-finger,C2H2 type domain containing protein,partial cds.  Brain   
HIT000012048 AF454939 Conserved hypothetica lprotein,complete cds.  Brain   
HIT000015894 FLJ33708 Hypothetical protein,complete cds.  Brain   
HIT000021463 KBTBD6 BTB/POZ domaincontainingprotein,partial cds.  Brain   
HIT000021509 RCBTB1 Regulatorofchromosomecondensation,RCC1 family protein,  Brain   

HIT000040515 RDH1 11-cis retinoldehydrogenase(EC1.1.1.105)(11-cisRDH),complete 
 Brain, anaplastic oligodendroglioma 
with 1p/19q loss   

HIT000035181 MGC17330 Kringledomaincontainingprotein,complete cds. 
 Brain, anaplastic oligodendroglioma 
with 1p/19q loss   

HIT000041611 GALT4 Beta-1,3-galactosyltransferase4 (EC2.4.1.62)(Beta-1,3-GalTase  Brain, fetal, whole pooled   
HIT000037657 TMSB10 thymosin, beta10(Homosapiens),completecds.  Brain, glioblastoma   
HIT000039547 LAG1 Similar to Longevity assurance homolog1(UOG-1protein)(LAG1)  Brain, hypothalamus   
HIT000041220 CDH14 Cadherin-18 precursor (Cadherin-14),complete cds.  Brain, hypothalamus   
HIT000039784 MKI67IP Nucleolar protein interacting with the FHAdomain of pKi-67  Brain, hypothalamus   
HIT000030877 BGN Biglycan precursor (Bone/cartilageproteoglycanI)(PG-S1),  Brain, neuroblastoma   
HIT000031004 CLG4A 72kDa typeIV collagenase precursor(EC3.4.24.24)  Brain, neuroblastoma   
HIT000033725 SPIN1 General substrate ransporter family protein,partial cds.  Brain, neuroblastoma   
HIT000033832 ATPAF1 ATP synthasemitochondrialF1complexassemblyfactor1;homolog  Brain, primitive neuroectodermal   
HIT000038173 RPP40 ribonucleaseP1;ribonucleaseP(40kD);ribonucleaseP,40kD  Brain, primitive neuroectodermal   
HIT000031528 TRX1 Thioredoxin(ATL-derivedfactor)(ADF)(Surfaceassociated  Cervix, carcinoma   
HIT000033663 BK215D111 RNA-bindingproteinregulatorysubunit,completecds.  Cervix, carcinoma   
HIT000034876 GT197 Beclin1(Coiled-coilmyosin-likeBCL2-interactingprotein)  Cervix, carcinoma   
HIT000038327 UCC1 Mammalianependyminrelatedprotein-1precursor(MERP-1)(UCC1  Cervix, carcinoma   
HIT000035576 FLJ20605 MOSCN-terminalbetabarreldomaincontainingprotein,complete  Cervix, carcinoma   
HIT000040926 7h3 RhoGAPdomaincontainingprotein,completecds.  Cervix, carcinoma   
HIT000007962 PTD015 PTD015protein(Homosapiens),completecds.  Colon   
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HIT000008584 FLJ21657 Conservedhypotheticalprotein,completecds.  Colon   
HIT000032907 HOX1G HomeoboxproteinHox-A9(Hox-1G),partialcds.  Colon, adenocarcinoma   
HIT000037949 APOL1 apolipoproteinL1isoformaprecursor;apolipoproteinL;  Colon, adenocarcinoma   
HIT000039048 SLC17A5 solutecarrierfamily17(anion/sugartransporter),member5;  Colon, adenocarcinoma   

HIT000041727 FABPL Fattyacid-bindingprotein,liver(L-FABP),partialcds. 
 Colon, Kidney, Stomach, adult, whole 
pooled   

HIT000020679 C9orf150 Conservedhypotheticalprotein,completecds.  Heart   
HIT000027595 AL832683 Hypotheticalprotein,completecds.  human adipose   
HIT000027097 AL832185 Questionabletranscript,completesequence.  human cervix   
HIT000028510 DTX1 SimilartoDELTEX1,completecds.  human endometrium carcinoma cell line   
HIT000028526 SPATS2 Conservedhypotheticalprotein,completecds.  human endometrium carcinoma cell line   
HIT000009540 AK026266 C2domaincontainingprotein,partialcds.  human small intestine   
HIT000010243 HRPT2 RNApolIIaccessoryfactor,Cdc73familyprotein,partialcds.  human small intestine   
HIT000010276 DDX31 SimilartoRNAhelicase(Fragment),partialcds.  human small intestine   
HIT000002335 ARP11 Actin-relatedprotein10(hARP11),completecds.  Hypothalamus   
HIT000002429 CR612307 Conservedhypotheticalprotein,completecds.  Hypothalamus   
HIT000003106 PAK1IP1 PAK1interactingprotein1;PAK1-interactingprotein;  ileal mucosa   
HIT000002946 AK000471 Hypotheticalprotein,completecds.  ileal mucosa   
HIT000012430 PODXL podocalyxin-likeprecursor;podocalyxin(Homosapiens),partial  Kidney   

HIT000016815 LTB4DH 
SimilartoNADP-dependentleukotrieneB412-
hydroxydehydrogenase  Kidney   

HIT000025305 
DKFZp566N20
24,NESH NESHprotein;newmoleculeincludingSH3(Homosapiens),partial  Kidney   

HIT000035749 MAP17 17kDamembraneassociatedprotein(DD96protein),completecds.  Kidney, hypernephroma   
HIT000037427 MRPS36 Conservedhypotheticalprotein,completecds.  Kidney, hypernephroma   
HIT000032241 ISOT Ubiquitincarboxyl-terminalhydrolase5(EC3.1.2.15)(Ubiquitin  Kidney, renal cell adenocarcinoma   
HIT000038939 HST Alcoholsulfotransferase(EC2.8.2.2)(Hydroxysteroid  Liver   
HIT000020824 HSS N-sulphoglucosaminesulphohydrolaseprecursor(EC3.10.1.1)  Lung   
HIT000020830 TYRO10 Discoidindomainreceptor2precursor(EC2.7.1.112)(Receptor  Lung   
HIT000034497 ATPIF1 MitochondrialATPaseinhibitor,IATPfamilyprotein,completecds.  Lung, large cell carcinoma   
HIT000040234 TRIM38 Zn-finger,RINGdomaincontainingprotein,completecds.  Lung, large cell carcinoma   
HIT000037644 HSPC117 ProteinofunknownfunctionUPF0027familyprotein,completecds.  Lung, mucoepidermoid carcinoma   
HIT000029637 PRDX2 peroxiredoxin2isoforma;thioredoxin-dependentperoxide  Lung, small cell carcinoma   
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HIT000029675 DRG2 DevelopmentallyregulatedGTP-bindingprotein2(DRG2),partial  Lung, small cell carcinoma   
HIT000030859 HO2 Hemeoxygenase2(EC1.14.99.3)(HO-2),completecds.  Lung, small cell carcinoma   
HIT000032455 NEC2 Neuroendocrineconvertase2precursor(EC3.4.21.94)(NEC2)(PC2)  Lung, small cell carcinoma   
HIT000034802 TALDOR Transaldolase(EC2.2.1.2),partialcds.  Lung, small cell carcinoma   
HIT000029571 ILF2 NF45protein,completecds.  Lung, small cell carcinoma   
HIT000031956 BC051849 Conservedhypotheticalprotein,completecds.  Lung, small cell carcinoma   
HIT000033592 MRPS2 RibosomalproteinS2,bacterialandorganelleformfamilyprotein,  Lung, small cell carcinoma   
HIT000037835 FLJ20013 2OG-Fe(II)oxygenasesuperfamilyprotein,completecds.  Lung, small cell carcinoma   
HIT000039948 NAALAD1 GlutamatecarboxypeptidaseII(EC3.4.17.21)(Membraneglutamate  Lung, Spleen, fetal, pooled   
HIT000039962 GRID GRB2-relatedadaptorprotein2(GADSprotein)(Growthfactor  Lung, Spleen, fetal, pooled   
HIT000027727 TMEM30A EukaryoticproteinofunknownfunctionDUF284familyprotein,  lymph node   
HIT000033379 SAP114 Splicingfactor3subunit1(Spliceosomeassociatedprotein114)  Lymph, Burkitt lymphoma   
HIT000036615 RF1 Eukaryoticpeptidechainreleasefactorsubunit1(eRF1)  Lymph, Burkitt lymphoma   
HIT000031846 AY736034 Cyclin-likeF-boxdomaincontainingprotein,completecds.  Lymph, Burkitt lymphoma   
HIT000040146 SATT NeutralaminoacidtransporterA(SATT)(Alanine/serine/cysteine/  Lymph, lymphoma   
HIT000032665 AP2B1 adaptor-relatedproteincomplex2,beta1subunit;adaptin,beta2  Muscle, rhabdomyosarcoma   
HIT000033210 TOMM34 MitochondrialimportreceptorsubunitTOM34(Translocaseofouter  Muscle, rhabdomyosarcoma   
HIT000034687 STX6 Syntaxin6,completecds.  Muscle, rhabdomyosarcoma   
HIT000031771 NAT9 GCN5-relatedN-acetyltransferasedomaincontainingprotein,  Muscle, rhabdomyosarcoma   
HIT000003861 TMEM33 ProteinofunknownfunctionUPF0121familyprotein,completecds.  ovarian cancer   
HIT000003917 RNMTL1 tRNA/rRNAmethyltransferase(SpoU)familyprotein,completecds.  ovarian cancer   
HIT000030149 NIFIE14 SimilartoSeventransmembranedomainprotein,completecds.  Ovary, adenocarcinoma   
HIT000031192 CKLFSF6 chemokine-likefactorsuperfamily6(Homosapiens),completecds.  Ovary, adenocarcinoma   
HIT000034621 MRPL4 mitochondrialribosomalproteinL4isoforma(Homosapiens),  Ovary, adenocarcinoma   
HIT000032704 BRMS1L Conservedhypotheticalprotein,completecds.  Ovary, adenocarcinoma   
HIT000006074 SCAND2 SimilartoSCANdomain-containingprotein2isoform2;SCAN  ovary, tumor tissue   
HIT000010815 MSTP028    ovary, tumor tissue   
HIT000039978 OSR1 odd-skippedrelated1;odz(oddOz/ten-m)related1(Homo  Pancreas, Spleen, adult pooled   
HIT000040025 G10P1 SimilartoInterferon-inducedproteinwithtetratricopeptide  Pancreas, Spleen, adult pooled   

HIT000004408 
2410046H15RI
K SimilartoVitaminDreceptor-interactingproteincomplex  Placenta   

HIT000004626 STAU2 SimilartoDouble-strandedRNA-bindingproteinStaufen2long  Placenta   
HIT000030398 HN1 HN1protein(Hematologicalandneurologicalexpressed1protein),  Placenta, choriocarcinoma   
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HIT000030438 COX4AL NeighborofCOX4,completecds.  Placenta, choriocarcinoma   
HIT000032034 DIA1 NADH-cytochromeb5reductase(EC1.6.2.2)(B5R),partialcds.  Placenta, choriocarcinoma   
HIT000037948 HRBL HIV-1Revbindingprotein-like;Rev/Rexactivationdomainbinding  Placenta, choriocarcinoma   
HIT000038651 TIN2 TERF1-interactingnuclearfactor2(TRF1-interactingnuclear  Placenta, choriocarcinoma   
HIT000038816 CTRP6 Complement-c1qtumornecrosisfactor-relatedprotein6precursor,  Placenta, choriocarcinoma   
HIT000030311 MGC5509 Conservedhypotheticalprotein,completecds.  Placenta, choriocarcinoma   
HIT000036138 C2orf30 Conservedhypotheticalprotein,partialcds.  Placenta, choriocarcinoma   
HIT000036609 TTF Rho-relatedGTP-bindingproteinRhoH(GTP-bindingproteinTTF),  Primary B-Cells from Tonsils   
HIT000038424 DHLAG HLAclassIIhistocompatibilityantigen,gammachain(HLA-DR  Primary B-Cells from Tonsils   
HIT000033818 BAP29 SimilartoB-cellreceptor-associatedprotein29(BCR-associated  Prostate   
HIT000034389 AIF1 SimilartoAllograftinflammatoryfactor-1(AIF-1)(Daintain),  Prostate   
HIT000035173 F3 Tissuefactorprecursor(TF)(CoagulationfactorIII)  Prostate, adenocarcinoma.   
HIT000041853 MBD1 methyl-CpGbindingdomainprotein1isoform3(Homosapiens),  Prostate, carcinoma   
HIT000017568 SAP61 SimilartoSplicingfactor3Asubunit3(Spliceosomeassociated  skeletal muscle   
HIT000033787 C20orf114 Lipid-bindingserumglycoproteinfamilyprotein,completecds.  Skeletal Muscle   
HIT000038179 MRPL46 Conservedhypotheticalprotein,completecds.  Skeletal Muscle   
HIT000035898 MOV34L 26Sproteasomenon-ATPaseregulatorysubunit7(26Sproteasome  Skin, melanotic melanoma, high MDR.   
HIT000039106 IFI30 interferon,gamma-inducibleprotein30preproprotein;  Skin, melanotic melanoma, high MDR.   
HIT000031594 TGT Ubiquitincarboxyl-terminalhydrolase14(EC3.1.2.15)(Ubiquitin  Skin, melanotic melanoma.   
HIT000031679 LGALS4 Galectin-4(Lactose-bindinglectin4)(L-36lactosebinding  Skin, melanotic melanoma.   
HIT000032173 TSSC3 tumorsuppressingsubtransferablecandidate3;imprintedin  Skin, melanotic melanoma.   
HIT000034611 ARFL3 ADP-ribosylationfactor-likeprotein3,partialcds.  Skin, melanotic melanoma.   
HIT000034822 D17WSU104E SimilartoDNAsegment,Chr17,WaynestateUniversity104,  Skin, melanotic melanoma.   
HIT000035389 COL9A3 Collagenalpha3(IX)chainprecursor,partialcds.  Skin, melanotic melanoma.   

HIT000036085 RPMS13 
28SribosomalproteinS26,mitochondrialprecursor(MRP-
S26)(MRP-  Skin, melanotic melanoma.   

HIT000031571 TBC1D17 RabGAP/TBCdomaincontainingprotein,completecds.  Skin, melanotic melanoma.   
HIT000021780 AK096925 Questionabletranscript.  small intestine   
HIT000021855 MTMR11 Conservedhypotheticalprotein,partialcds.  small intestine   

HIT000015332 
FLJ00386,CTG7
A Positivecofactor2glutamine/Q-rich-associatedprotein(PC2  Spleen   

HIT000028634 MSZF13 SimilartoMszf13(Fragment),completecds.  Stomach   
HIT000014799 IOPPP Inorganicpyrophosphatase(EC3.6.1.1)(Pyrophosphatephospho-  Testis   
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HIT000018125 SOC socius(Homosapiens),completecds.  Testis   

HIT000025493 
DKFZp434E248
, GTP-bindingprotein,HSR1-relatedfamilyprotein,completecds.  Testis   

HIT000026715 
DKFZp434C212
0,KIAA1667 Hermansky-Pudlaksyndrome4protein(Light-earproteinhomolog),  Testis   

HIT000038574 LABH2 Abhydrolasedomaincontainingprotein2(ProteinPHPS1-2),  Testis   
HIT000040591 BC093018 Conservedhypotheticalprotein,partialcds.  Testis   
HIT000035842 HDHD1A Haloaciddehalogenase-likehydrolasefamilyprotein,partialcds.  Testis, embryonal carcinoma   
HIT000038990 CCDC12 Conservedhypotheticalprotein,completecds.  Testis, embryonal carcinoma   

HIT000013018 FLJ31842 
TRAM,LAG1andCLN8homologydomaincontainingprotein,compl
ete  Tongue   

HIT000002015 LOC51255 SimilartoGenomicDNA,chromosome3,P1clone MSJ3,  umbilical cord blood   
HIT000031071 CEV14 SimilartoThyroidreceptorinteractingprotein11(TRIP-11)  Uterus, endometrium adenocarcinoma   
HIT000031086 DDX49 DEAD/DEAHboxhelicasedomaincontainingprotein,partialcds.  Uterus, endometrium adenocarcinoma   
HIT000031778 RNUT1 SNURPORTIN1(RNA,Utransporter1),completecds.  Uterus, endometrium adenocarcinoma   
HIT000035511 LOC113444 Conservedhypotheticalprotein,completecds.  Uterus, endometrium adenocarcinoma   
HIT000034247 GM2A GangliosideGM2activatorprecursor(GM2-AP)(Cerebrosidesulfate  Uterus, leiomyosarcoma   
HIT000034834 SCAM1 SimilartoVinexin(SH3-containingadaptormolecule-1)(SCAM-1),  Uterus, leiomyosarcoma   
HIT000037450 TCF3G Hepatocytenuclearfactor3-gamma(HNF-3G)(Forkheadboxprotein  Uterus, leiomyosarcoma   
HIT000038271 PIM2 Serine/threonine-proteinkinasePim-2(EC2.7.1.37)(Pim-2h),  Uterus, leiomyosarcoma   
HIT000033497 DENR Density-regulatedproteinDRP1familyprotein,completecds.  Uterus, leiomyosarcoma   
HIT000035667 CBX6 Chromodomaincontainingprotein,completecds.  Uterus, leiomyosarcoma   
HIT000010634 D-UBP-64E SimilartoUbiquitincarboxyl-terminalhydrolase64E(EC3.1.2.15)  whole embryo, mainly body   
HIT000007420 TMEM35 Conservedhypotheticalprotein,completecds.  whole embryo, mainly body   
HIT000003470 DERP7 Dermalpapilladerivedprotein7,completecds.  whole embryo, mainly head   
HIT000004995 COPS7A SimilartoCOP9complexsubunit7A(COP9(Constitutive  whole embryo, mainly head   
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Supplementary Table 7.3b: DEFA5 predicted genes that did not match co-expression data 

  
H-inv IDs Gene Names Gene Description Tissue Pathway 
HIT000002506 FAM45A Conservedhypotheticalprotein,completecds.  adipose tissue   

HIT000001878 C9orf32 
EukaryoticproteinofunknownfunctionDUF858familyprotein
,  adrenal gland   

HIT000036637 MRPL20 RibosomalproteinL20familyprotein,completecds.  Bone marrow, acute myelogenous leukemia   

HIT000033794 TM4SF1 
transmembrane4superfamilymember1;membranecomponen
t,  Bone marrow, chronic myelogenous leukemia   

HIT000020388 EFCBP1 EFhandcalciumbindingprotein1;synaptotagmininteracting  Brain   

HIT000042208 
KIAA0049,M17
S2 

membranecomponent,chromosome17,surfacemarker2;1A1-
3B;  Brain   

HIT000021327 TENC1 Hypotheticalprotein,completecds.  Brain   

HIT000040002 FLJ10560 
Cyclase-
associatedproteindomaincontainingprotein,completecds.  Brain, adult, 6 pooled whole brains   

HIT000035185 LRRN6A Cysteine-richflankingregion,N-terminaldomaincontaining 
 Brain, anaplastic oligodendroglioma with 
1p/19q loss   

HIT000037490 CX3CL1 chemokine(C-X3-Cmotif)ligand1;smallinduciblecytokine  Brain, neuroblastoma 

Cytokine-
cytokine receptor 
interaction 

HIT000036260 TRIM9 Zn-finger,RINGdomaincontainingprotein,completecds.  Brain, neuroblastoma   

HIT000038709 
CG13951/CG88
03 SimilartoLethal(2)k10201protein(WunenregionBprotein),  Cervix, carcinoma   

HIT000007959 SCD5 SimilartoAcyl-CoA-desaturase,partialcds.  Colon   

HIT000040664 PDZK2 
natrium-phosphatecotransporterIIaC-terminal-
associatedprotein  Colon, Kidney, Stomach, adult, whole pooled   

HIT000019739 RASSF4 SimilartoRasandRabinteractor2(Rasinteraction/interference  corpus callosum   
HIT000021028   Conservedhypotheticalprotein,completecds.  Esophagus   
HIT000008909 SPBC15D416 SimilartoCellcyclecontrolproteincwf22,partialcds.  human small intestine   
HIT000002750 KIAA1125 ProteinkinaseCbindingprotein1(Rack7)(CutaneousT-cell  ileal mucosa   

HIT000002981 ZMYND13 
SimilartoAnkyrinrepeatandMYNDdomaincontainingprotein
1  ileal mucosa   
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HIT000002897   Non-protein-codingtranscript,completesequence.  ileal mucosa   
HIT000002952   Hypotheticalprotein,completecds.  ileal mucosa   

HIT000032347 EPM2A 
Similartoepilepsy,progressivemyoclonustype2A,Laforadise
ase  Kidney, hypernephroma   

HIT000029867 NANH Sialidase1precursor(EC3.2.1.18)(Lysosomalsialidase)  Kidney, renal cell adenocarcinoma   
HIT000036261 H2AFX H2Ahistonefamily,memberX;H2AXhistone(Homosapiens),  Lung, small cell carcinoma   

HIT000036226 NPD002 acyl-CoenzymeAdehydrogenasefamily,member9;acyl-CoA  Lung, small cell carcinoma 

1- and 2-
Methylnaphthale
ne 
degradation,Bile 
acid biosynthesis

HIT000031933 PSMA7 
Proteasomesubunitalphatype7(EC3.4.25.1)(Proteasomesubu
nit  Lung, small cell carcinoma Proteasome 

HIT000005469 FAM26B Conservedhypotheticalprotein,completecds.  Mammary gland   
HIT000001825   Ubiquitouslyexpressedtranscriptfamilyprotein,completecds.  normal pituitary   
HIT000004129 PARVA Alpha-parvin(Calponin-likeintegrin-linkedkinasebinding  ovarian cancer Focal adhesion 

HIT000032059 

C1orf91, RP4-
622L5,RP4-
622L5.3 novel protein, similar to AASL548  Ovary, adenocarcinoma   

HIT000035989 TREB5 
Xboxbindingprotein-1(XBP-
1)(TREB5protein),completecds.  Ovary, adenocarcinoma   

HIT000006270 ACTR8 Actin-relatedprotein8,completecds.  ovary, tumor tissue   
HIT000005768 RAB3GAP1 Conservedhypotheticalprotein,partialcds.  ovary, tumor tissue   
HIT000006553 VPS11 Vacuolarproteinsorting11(hVPS11)(PP3476),completecds.  ovary, tumor tissue   

HIT000010702 ZDHHC12 
Zn-
finger,DHHCtypedomaincontainingprotein,completecds.  ovary, tumor tissue   

HIT000006231 ZNF447 Zn-finger,C2H2typedomaincontainingprotein,completecds.  ovary, tumor tissue   
HIT000001936 ARBP SimilartoBrainprotein44-likeprotein(Apoptosis-regulating  Pituitary   
HIT000001783 RPS27L ribosomalproteinS27-likeprotein;40SribosomalproteinS27  Pituitary Ribosome 

HIT000017381 AOC1 
Amiloride-sensitiveamineoxidase(copper-
containing)precursor  Placenta 

Tryptophan 
metabolism beta-
Alanine 
metabolism 
Phenylalanine 
metabolism 
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Histidine 
metabolism 
Glycine, serine 
and threonine 
metabolism 
Alkaloid 
biosynthesis II 
Arginine and 
proline 
metabolism 
Tyrosine 
metabolism 

HIT000013380 VIM SimilartoVimentin,partialcds.  Placenta   
HIT000017327   Non-protein-codingtranscript,completesequence.  Placenta   

HIT000030493 ELE1 
Nuclearreceptorcoactivator4(NCoA-
4)(70kDaandrogenreceptor  Placenta, choriocarcinoma   

HIT000032951 RBM3 RNA-bindingregionRNP-1(RNArecognitionmotif)domain  Placenta, choriocarcinoma   

HIT000029861 SERS 
Seryl-tRNAsynthetase(EC6.1.1.11)(Serine--
tRNAligase)(SerRS),  Placenta, choriocarcinoma   

HIT000032280 ALEX3 ALEX3protein;armproteinlostinepithelialcancers,X  Skin, melanotic melanoma, high MDR.   
HIT000036559 ADPRHL2 ADP-ribosylglycohydrolasefamilyprotein,completecds.  Skin, melanotic melanoma.   

HIT000032646 
OBFC2B,MGC2
731 Conservedhypotheticalprotein,completecds.  Skin, melanotic melanoma.   

HIT000036906 PCCX1 
CpGbindingprotein(ProteincontainingPHDfingerandCXXC
domain  Skin, melanotic melanoma.   

HIT000035319 TFIP11 tuftelininteractingprotein11(Homosapiens),completecds.  Skin, melanotic melanoma.   

HIT000013648 MXD3 
SimilartoMAXdimerizationprotein3(Homosapiens),complet
ecds.  small intestine   

HIT000014896 
FLJ00187,MSZF
13 SimilartoMszf13(Fragment),completecds.  Spleen   

HIT000014696   G-proteinbetaWD-40repeatcontainingprotein,partialcds.  Testis   
HIT000022539   Hypotheticalprotein,completecds.  Testis   
HIT000007189 DAK Dakkinasedomaincontainingprotein,completecds.  thyroid gland   
HIT000012628 NDEL1 nudEnucleardistributiongeneEhomologlike1(A.nidulans);  Tongue   

HIT000012948 USP39 
SimilartoU4/U6.U5tri-snRNP-
associated65kDaprotein,partial  Tongue   
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HIT000012839   Ankyrinrepeatcontainingprotein,completecds.  Tongue   
HIT000017137   Conservedhypotheticalprotein,partialcds.  Tongue   
HIT000023156 KCNMA1 Hypotheticalprotein,completecds.  Uterus   

HIT000040041 
DYNC1LI2,DN
CLI2 

Dynein,cytoplasmic,lightintermediatepolypeptide2,complet
e  Uterus, leiomyosarcoma   

HIT000039050 YWHAG 14-3-3proteingamma(ProteinkinaseCinhibitorprotein-1)  Uterus, leiomyosarcoma Cell cycle 
HIT000004823   Hypotheticalprotein,completecds.  whole embryo, mainly head   
HIT000007314   Hypotheticalprotein,completecds.  whole embryo, mainly head   
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Supplementary Table 7.4a DEFA1 predicted genes that matched co-expression data 

 
H-inv ID Gene symbol Gene Description Pathway Tissue origin 

HIT000035146 CCND2 
G1/S-specific cyclin D2, 
partial cds. 

hsa04110 Cell cycle, hsa04310 
Wnt signaling pathway, hsa04510 
Focal adhesion,hsa04630 Jak 

Bone marrow, chronic myelogenous 
leukemia 

HIT000042211 
KIAA0065, MSZF68, 
ZNF33A 

 
Similar to Mszf68 
(Fragment), partial cds. 
   Brain 

HIT000037044 MIZ1, PIAS2 

 
Protein inhibitor of 
activated STAT X isoform 
alpha  
   Brain, glioblastoma 

HIT000035490 MARS 

 
methionine-tRNA 
synthetase; methionine 
tRNA ligase; methionyl-
tRNA 

hsa00271 Methionine metabolism,  
hsa00450 Selenoamino acid 
metabolism,  
hsa00970 Aminoacyl-tRNA 
synthetases Brain, neuroblastoma 

HIT000033138 VSIG2 

 
Immunoglobulin subtype 
domain containing 
protein, complete cds. 
   Colon ,adenocarcinoma 

HIT000030627 MEA1, MEA 

 
Male-enhanced antigen-1 
(Mea-1), complete cds. 
   Eye, retinoblastoma 

HIT000003137 CNOT2 

 
CCR4-NOT transcription 
complex, subunit 2; 
NOT2 (negative) 
   Ileal mucosa 
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HIT000040168 UGT2B11 

 
UDP-
glucuronosyltransferase 
2B4 precursor, 
microsomal  
 

hsa00040 Pentose and glucuronate 
interconversions 
hsa00150 Androgen and estrogen 
metabolism,  
hsa00500 Starch and sucrose 
metabolism, hsa00860 Porphyrin 
and chlorophyll metabolism Liver 

HIT000030833 DDX23 

DEAD/DEAH box 
helicase domain 
containing protein, partial 

hsa00500 Starch and sucrose 
metabolism,  
hsa00790 Folate biosynthesis Lung,smallcellcarcinoma 

HIT000033214 ARB2, ARRB2 
Beta-arrestin 2 (Arrestin, 
beta 2), partial cds. MAPK signalling Muscle,rhabdomyosarcoma 

HIT000032247 FKBP12, FKBP1A 
FK506-binding protein 
1A (EC 5.2.1.8)  mTOR signalling pathway Placenta,choriocarcinoma 

HIT000030153 TMED9 
Emp24/gp25L/p24 family 
protein, complete cds.   Skin,melanoticmelanoma. 

HIT000030145 Y2, PSMB8 

Similar to Proteasome 
subunit beta type 8 
precursor (EC 3.4.25.1)   Skin,melanoticmelanoma. 

HIT000030885   

Caspase-1 precursor, p45 
family protein, complete 
cds.   Skin,melanoticmelanoma. 

HIT000038574 LABH2, ABHD2 

Abhydrolase domain 
containing protein 2 
(Protein PHPS1-2),   Testis 

HIT000037134 MARCH5 

Zn-finger, RING domain 
containing protein, 
complete cds.   Uterus,leiomyosarcoma 

HIT000032576 RSU 
Ras protein 1 (Rsu-1) 
(RSP-1), complete cds. n/a Brain,primitiveneuroectodermal 
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Supplementary Table 7.4b: Gene hits from DEFA1 promoter model scan that did not match co-expressed gene data for  
    DEFA1, DEFA3 

 

H-inv ID Gene name Gene Description Pathway 1..1.1.1.2 Tissue 

HIT000014970 SSB3 
SPRY domain-containing SOCS box protein 
SSB-3 (Homo sapiens)   adiposetissue 

HIT000041181 NA 
Pleckstrin putative G-protein interacting domain 
containing   

Bonemarrow, 
chronicmyelogenousleukemia 

HIT000000028 
KIAA0322, NEDL1, 
HECW1 NEDD4-like ubiquitin ligase 1, complete cds.   brain 

HIT000000210 KIAA0494, 
Calcium-binding EF-hand domain containing 
protein, complete cds.   brain 

HIT000000384 KIAA0659, C11orf11 Lipase, class 3 family protein, partial cds.   brain 

HIT000025067 DKFZp564C047, STAM2 
Signal transducing adaptor molecule 2; STAM-
like protein 

hsa04630  
Jak-STAT 
signaling 
pathway brain 

HIT000040216 NA Chaperonin Cpn60   Brain, hippocampus 
HIT000029388 NICE-3, C1orf43 NICE-3 protein (Homo sapiens), complete cds.   Cervix, carcinoma 

HIT000008039 PSARL 
Rhomboid-like protein family protein, complete 
cds.   colon 

HIT000030636 CASM,LSM1 
U6 snRNA-associated Sm-like protein LSm1 
(Small nuclear   Eye,retinoblastoma 

DKFZp686K0367, Kaiso (Homo sapiens), complete cds.   
HIT000028516 ZNF-kaiso,ZBTB33   

humanendometriumcarcinomace
llline 

HIT000009149 NA 
Prolyl 4-hydroxylase, alpha subunit family 
protein, complete cds.   humansmallintestine 

HIT000033091 LZIC Conserved hypothetical protein, complete cds.   Kidney,renalcelladenocarcinoma 
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HIT000029686 SUCLG1,SUCLG1 
Succinyl-CoA ligase (GDP-forming) alpha-
chain, mitochondrial 

hsa00020  
Citrate cycle 
(TCA 
cycle),hsa00
640  
Propanoate 
metabolism Lung,smallcellcarcinoma 

HIT000031367 ACY1,ACY1 
Aminoacylase-1 (EC 3.5.1.14) (N-acyl-L-
amino-acid amidohydrolase) 

hsa00220  
Urea cycle 
and 
metabolism 
of amino 
groups Lung,smallcellcarcinoma 

DKFZp762G014,KIAA117
2, 

CTD-binding SR-like protein RA4 (Fragment). 
Splice isoform 2,   

HIT000029034 SFRS15   melanoma(MeWocellline) 

HIT000003713 RBM28 
RNA-binding region RNP-1 (RNA recognition 
motif) domain   ovariancancer 

HIT000004151 NA 
Amino acid/polyamine transporter, family II 
protein, complete cds.   ovariancancer 

HIT000004194 FLJ10858,NEIL3 
DNA glycosylase hFPG2 (Homo sapiens), 
complete cds.   ovariancancer 

HIT000037144 EDF1,NA 
endothelial differentiation-related factor 1 
isoform alpha;   Pancreas,epithelioidcarcinoma 

HIT000004532 LARP6 
RNA-binding protein Lupus Lal domain 
containing protein, complete   placenta 

HIT000030445 MDHA,MDH1 
Malate dehydrogenase, cytoplasmic (EC 
1.1.1.37), partial cds.   Placenta,choriocarcinoma 

HIT000034068 ECHS1,ECHS1 
Enoyl-CoA hydratase, mitochondrial precursor 
(EC 4.2.1.17) (Short   Placenta,choriocarcinoma 

HIT000038819 ZNF183 
Zn-finger, C-x8-C-x5-C-x3-H type domain 
containing protein,   Placenta,choriocarcinoma 

HIT000035139 GPIP4,PIP 
Prolactin-inducible protein precursor (Secretory 
actin-binding   Prostate 

HIT000039309 TCF5,CEBPB 
CCAAT/enhancer binding protein beta (C/EBP 
beta)    

Skin,melanoticmelanoma,highM
DR. 
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HIT000029801 RING5,SLC39A7 
Histidine-rich membrane protein Ke4, partial 
cds.   Skin,melanoticmelanoma. 

HIT000014971 ZNF414  
Zn-finger, C2H2 type domain containing 
protein, complete cds.     

HIT000000974 KIAA1258,GDA 
Guanine deaminase (EC 3.5.4.3) (Guanase) 
(Guanine aminase)   adiposetissue 

HIT000000279 KIAA0562, Similar to Glycine-, glutamate-,   brain 
  

 
HIT000042167 

 
KIAA1293,KIAA1293, 
FDPS 

 
Farnesyl pyrophosphate synthetase (FPP 
synthetase) (FPS) (Farnesyl  

 
brain 

KIAA0142,KIAA0142, 
DEFINITION: Rho guanine nucleotide 
exchange factor 7 (PAK-interacting exchange   

HIT000042279 ARHGEF7   brain 

HIT000041526 ATP6V0A1  
V-type ATPase, 116 kDa subunit family 
protein, complete cds.   brain 

HIT000035869 MRPS10,MRPS10 
Mitochondrial 28S ribosomal protein S10 
(MRP-S10) (MSTP040),   Brain,adult,6pooledwholebrains 

HIT000041711 OPTN,OPTN,NRP 
optineurin; tumor necrosis factor alpha-
inducible cellular protein   Brain,primitiveneuroectodermal 

HIT000015206 UBAP1,NA 
ubiquitin associated protein (Homo sapiens), 
complete cds.   Cervix,carcinoma 

HIT000038183 VAMP5,NA 
vesicle-associated membrane protein 5 
(myobrevin) (Homo sapiens),   humanlung 

HIT000035479 NA PPR repeat containing protein, complete cds.   Lung 
HIT000030704 HIG2, NA Hypoxia-inducible protein 2, complete cds.   Lung,smallcellcarcinoma 
HIT000030303 YIF1 Hrf1 family protein, complete cds.   Lung,smallcellcarcinoma 

HIT000032951 RBM3 
RNA-binding region RNP-1 (RNA recognition 
motif) domain   Placenta,choriocarcinoma 

HIT000017533 STEAP2  
NADP oxidoreductase, coenzyme F420-
dependent family protein,   Placenta,choriocarcinoma 

HIT000039707 ORF1-FL49  
Molluscan rhodopsin C-terminal tail family 
protein, complete cds.   prostate 

HIT000021780 NA Questionable transcript.   
Skin,melanoticmelanoma,highM
DR. 

HIT000007696 FLJ00011,PDZK7 
DEFINITION: PDZ/DHR/GLGF domain 
containing protein, complete cds.   smallintestine 
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HIT000038678 APRIL,ANP32B 
Acidic leucine-rich nuclear phosphoprotein 32 
family member B   spleen 

Model hits which 
are hypothetical 
protein        Testis,embryonalcarcinoma 
HIT000029004 DKFZp547B1713,  Conserved hypothetical protein, complete cds.     
HIT000039620 NA Conserved hypothetical protein, complete cds.   brain 
HIT000028000 DKFZp451M2119,  Hypothetical protein, complete cds.   Brain,hippocampus 
HIT000033703 NA Conserved hypothetical protein, complete cds.   humanspinalcord 
HIT000032617 C14orf160 Conserved hypothetical protein, complete cds.   Lung,smallcellcarcinoma 
HIT000020033 NA Hypothetical protein, complete cds.   Placenta,choriocarcinoma 
HIT000013900 PACRG Conserved hypothetical protein, complete cds.   substantianigra 
HIT000021200 NA Conserved hypothetical protein, partial cds.   testis 
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Supplementary Table 7.5a: Alpha defensin1 predicted genes clustered based on GO 
       biological function  
 

Percentage: The number of genes that have a particular GO term / total number of genes 
that have a GO term 

 
 Clustering based on 
GO level 4        
GO ID GO Biological function Gene name Percentage 

GO:0044237 cellular metabolism 

NDUFS5 MARCH5 TAF11 
DPM1 UGT2B11 MYST2 
CHD2 H1F0 PECI CNOT2 
DDX23 MARS INS  48.15 

GO:0044238 primary metabolism 

MARCH5 TAF11 DPM1 
UGT2B11 MYST2 CHD2 H1F0 
CPNE6 PECI CNOT2 DDX23 
MARS INS  48.15 

GO:0006810 Transport 
MIP FTL ATP5S CPNE6 SRPR 
SEC5L1  22.22 

GO:0051234 establishment of localization 
MIP FTL ATP5S CPNE6 SRPR 
SEC5L1  22.22 

GO:0051244 
regulation of cellular physiological 
process 

TAF11 MYST2 CCND2 CHD2 
CNOT2 CCNI  22.22 

GO:0043170 macromolecule metabolism 
MARCH5 DPM1 H1F0 MARS 
INS  18.52 

GO:0043283 biopolymer metabolism 
MYST2 CHD2 H1F0 DDX23 
MARS  18.52 

GO:0007165 signal transduction APBB1IP CX3CL1 FMOD INS  14.81 
GO:0019222 regulation of metabolism TAF11 MYST2 CHD2 CNOT2  14.81 
GO:0007049 cell cycle DCTN3 CCND2 CCNI  11.11 
GO:0007267 cell-cell signaling MIP CPNE6 INS  11.11 
GO:0009605 response to external stimulus UGT2B11 MIP CX3CL1  11.11 
GO:0007155 cell adhesion TMEM8 CX3CL1  7.41 
GO:0008104 protein localization SRPR SEC5L1  7.41 
GO:0009058 Biosynthesis DPM1 MARS  7.41 
GO:0009887 Organogenesis CPNE6 KRT5  7.41 
GO:0016043 cell organization and biogenesis CHD2 H1F0  7.41 
GO:0045045 secretory pathway SRPR SEC5L1  7.41 
GO:0050877 neurophysiological process MIP CPNE6  7.41 
GO:0051301 cell division DCTN3 CCND2  7.41 
GO:0001775 cell activation CX3CL1  3.7 
GO:0006928 cell motility CX3CL1  3.7 
GO:0006950 response to stress CX3CL1  3.7 
GO:0006955 immune response CX3CL1  3.7 
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Supplementary Table 7.5b: Alpha defensin1 predicted genes clustered based on 
molecular function.  

 
Percentage: (The number of genes that have a particular GO term / total number of genes in the 
dataset that have  GO annotation ) 

 
 
GO ID GO molecular function Gene Names Percentage 

GO:0003677 DNA binding 
CHD1L TAF11 MYST2 CHD2 NCL 
H1F0  23.08 

GO:0017076 purine nucleotide binding 
CHD1L CHD2 DDX23 SRPR MARS 
NUBP2  23.08 

GO:0003723 RNA binding NCL DDX23 AKAP1 SRPR MARS  19.23 
GO:0016817 hydrolase activity, acting on acid anhydrides CHD1L CHD2 DDX23 SRPR  15.38 
GO:0043169 cation binding MARCH5 MYST2 FTL CPNE6  15.38 
GO:0046872 metal ion binding MARCH5 MYST2 FTL CPNE6  15.38 
GO:0008026 ATP-dependent helicase activity CHD1L CHD2 DDX23  11.54 
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Supplementary Table 7.6a: DEFA5 predicted genes that matched co-expressed genes classified based on GO 
biological function 
 Percentage: The number of genes that have a particular GO term / total number of genes in  the dataset that 
have a GO annotation 

Biological Function Genes 
No.of 
genes Percentage 

cellular metabolism 

CLG4A KIAA0175 MRPL4 PRIM1 AP2B1 SLUG ATPIF1 ILF2 PRDX2 
TXNRD1 MBD1 TTF DENR TAF11 SCAND2 ISOT HER3 LTB4DH 
TOMM34 TSSC3 HSPA14 CEV14 ATPAF1 KIAA0106 SPC18 APOL1 
KIAA0517 TYRO10 SAP61 MRPS36 PFKL NMP238 MRPS2 NUDT5 
KIAA1667 MKI67IP SAP114 AUH MID1 UGP2 TRIM38 NEC2 MNK1 
PLAGL2 UBQLN1 RPP40 DHLAG GM2A RNMTL1 KIAA0091 TRX1 
CBX6 HOX1G NAALAD1 PIM2 
 55 67.9 

primary metabolism 

 
CLG4A KIAA0175 MRPL4 PRIM1 AP2B1 SLUG ATPIF1 ILF2 MBD1 
TTF DENR TAF11 SCAND2 ISOT HER3 LTB4DH TOMM34 TSSC3 
HSPA14 CEV14 ATPAF1 KIAA0106 SPC18 APOL1 KIAA0517 TYRO10 
SAP61 MRPS36 PFKL NMP238 MRPS2 NUDT5 KIAA1667 MKI67IP 
SAP114 AUH MID1 UGP2 TRIM38 NEC2 MNK1 PLAGL2 UBQLN1 
RPP40 DHLAG GM2A RNMTL1 KIAA0091 TRX1 CBX6 HOX1G 
NAALAD1 PIM2 
 53 65.43 

macromolecule metabolism 

CLG4A KIAA0175 MRPL4 PRIM1 AP2B1 DENR ISOT HER3 TOMM34 
HSPA14 ATPAF1 SPC18 APOL1 KIAA0517 TYRO10 SAP61 MRPS36 
PFKL NMP238 MRPS2 NUDT5 KIAA1667 MKI67IP SAP114 AUH 
MID1 UGP2 TRIM38 NEC2 MNK1 UBQLN1 RPP40 DHLAG RNMTL1 
KIAA0091 TRX1 CBX6 NAALAD1 PIM2 39 48.15 

regulation of cellular physiological process 
SLUG ATPIF1 ILF2 PRDX2 CCNB MBD1 TTF TAF11 SCAND2 
NMP238 MNK1 PLAGL2 AIF1 DHLAG TRX1 CBX6 HOX1G 17 20.99 

establishment of localization 
STX6 AP2B1 TXNRD1 STAU2 TTF TOMM34 APOL1 SATT MSTP028 
BAP29 SLC17A5 KIAA1667 CTRP6 ARFL3 NESH DHLAG COL9A3 17 20.99 

Transport 
STX6 AP2B1 TXNRD1 STAU2 TTF TOMM34 APOL1 SATT MSTP028 
BAP29 SLC17A5 KIAA1667 CTRP6 ARFL3 DHLAG COL9A3 16 19.75 

regulation of metabolism 
SLUG ATPIF1 ILF2 MBD1 TTF TAF11 SCAND2 NMP238 MNK1 
PLAGL2 TRX1 CBX6 HOX1G 13 16.05 

signal transduction 
TXNRD1 TTF HER3 TYRO10 DRG2 ARFL3 TRIM38 MNK1 DHLAG 
PAK1IP1 10 12.35 

immune response HLA-DMA ILF2 G10P1 TTF IFI30 AIF1 DHLAG 7 8.64 

response to pest, pathogen or parasite HLA-DMA AIF1 DHLAG 3 3.7 
 
hemopoietic or lymphoid organ  
development TTF DHLAG TRX1 3 3.7 

lymphocyte differentiation TTF DHLAG 2 2.47 
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Supplementary Table 7.6b: DEFA5 novel predicted genes classified based on GO biological function 

 
Percentage: The number of genes that have a particular GO term / total number of  genes in the dataset 
that have a GO annotation 

 
 

Biological Function Genes 
No. of 
genes Percentage 

cellular metabolism 

 
PCCX1 NPD002 VPS11 TRIM9 EFCBP1 ELE1 RPS27L 
RBM3 PSMA7 MXD3 H2AFX EPM2A USP39 
 13 65 

primary metabolism 

 
PCCX1 VPS11 TRIM9 ELE1 RPS27L RBM3 PSMA7 MXD3 
H2AFX EPM2A USP39 
 11 55 

macromolecule metabolism 

 
VPS11 TRIM9 RPS27L RBM3 PSMA7 H2AFX EPM2A 
USP39 
 8 40 

establishment of localization 

 
NPD002 VPS11 CX3CL1 VIM TFIP11 KCNMA1 
 6 30 

Transport 

 
NPD002 VPS11 VIM TFIP11 KCNMA1 
 5 25 

signal transduction 

 
YWHAG TENC1 CX3CL1 ELE1 PDZK2 
 5 25 

immune response 

 
CX3CL1 
 1 5 

response to pest, pathogen or parasite 

 
CX3CL1 
 1 5 
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Supplementary Table 7.7: Common regulatory elements found across the predicted set of genes from DEAF1 and 
DEFA5 models.  

 
The transcription factors here are predicted using FATIGO+ (http://babelomics.bioinfo.cipf.es/fatigoplus/cgi-
bin/fatigoplus.cgi) 

 
Transcription 

factors 
DEFA5 
Matched gene hits 

Genes No. of 
genes 

HNF-1 

 
STX6 CLG4A HLA-DMA AK000471 KIAA0175 MRPL4 AP2B1 WBSCR17 SLUG ATPIF1 
RDH1 UCC1 ILF2 RPMS13 TMEM30A RCBTB1 PRDX2 HDHD1A G10P1 BC093018 CCNB 
STAU2 MBD1 TTF DENR TAF11 SCAND2 SPATS2 ISOT LGALS4 TIN2 HER3 PIGT LTB4DH 
TOMM34 TSSC3 HSPA14 HRBL CEV14 PODXL ATPAF1 KIAA0106 SPC18 IFI30 APOL1 
SATT KIAA0517 TYRO10 MSTP028 KIAA1745 BAP29 DRG2 SAP61 DDX49 TMSB10 BGN 
MRPS36 COPS7A DERP7 AK096925 PFKL NMP238 KBTBD6 MRPS2 SLC17A5 AF454939 
NUDT5 BRMS1L KIAA1667 MKI67IP MRS1 SAP114 BC051849 CTRP6 DDX31 GFAP AUH 
AK026266 ARFL3 MID1 UGP2 SNAI1 RNUT1 TRIM38 NEC2 MNK1 PLAGL2 UBQLN1 RPP40 
HN1 AIF1 KIAA1624 NESH LABH2 DHLAG TMEM35 MRPL46 CCDC12 TMEM33 RNMTL1 
CKLFSF6 KIAA0091 TRX1 CBX6 MAP2K1IP1 HOX1G CLDN2 NAALAD1 COL9A3 PIM2 
PAK1IP1 KIAA0638 
 112 

CDX 

 
STX6 HLA-DMA KIAA0175 MRPL4 AP2B1 WBSCR17 SLUG TBC1D17 ATPIF1 RDH1 UCC1 
ILF2 RPMS13 TMEM30A RCBTB1 PRDX2 HDHD1A G10P1 BC093018 CCNB STAU2 MBD1 
TTF DENR TAF11 SCAND2 SPATS2 ISOT LGALS4 TIN2 HER3 PIGT LTB4DH TOMM34 
TSSC3 HSPA14 HRBL CEV14 PODXL ATPAF1 KIAA0106 SPC18 IFI30 APOL1 SATT 
KIAA0517 TYRO10 MSTP028 KIAA1745 BAP29 DRG2 SAP61 DDX49 TMSB10 BGN MRPS36 
COPS7A DERP7 AK096925 NMP238 KBTBD6 MRPS2 SLC17A5 AF454939 NUDT5 BRMS1L 
MKI67IP MRS1 SAP114 BC051849 CTRP6 DDX31 GFAP AUH AK026266 ARFL3 MID1 UGP2 
SNAI1 RNUT1 TRIM38 NEC2 MNK1 PLAGL2 UBQLN1 RPP40 HN1 AIF1 KIAA1624 NESH 
LABH2 DHLAG TMEM35 MRPL46 CCDC12 TMEM33 RNMTL1 CKLFSF6 KIAA0091 TRX1 
CBX6 MAP2K1IP1 HOX1G CLDN2 NAALAD1 COL9A3 PIM2 PAK1IP1 KIAA0638 
 109 

Nkx2-5 
 
STX6 CLG4A HLA-DMA AK000471 KIAA0175 MRPL4 AP2B1 WBSCR17 SLUG ATPIF1 108 
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RDH1 UCC1 ILF2 RPMS13 TMEM30A RCBTB1 PRDX2 HDHD1A G10P1 BC093018 CCNB 
STAU2 TTF DENR TAF11 SCAND2 SPATS2 ISOT LGALS4 TIN2 HER3 PIGT LTB4DH 
TOMM34 TSSC3 HSPA14 HRBL CEV14 PODXL ATPAF1 KIAA0106 SPC18 IFI30 APOL1 
SATT KIAA0517 TYRO10 MSTP028 KIAA1745 BAP29 DRG2 SAP61 DDX49 TMSB10 
MRPS36 COPS7A DERP7 AK096925 PFKL NMP238 KBTBD6 MRPS2 SLC17A5 AF454939 
NUDT5 BRMS1L KIAA1667 MKI67IP SAP114 BC051849 CTRP6 DDX31 GFAP AUH 
AK026266 ARFL3 MID1 UGP2 SNAI1 RNUT1 TRIM38 NEC2 MNK1 PLAGL2 UBQLN1 RPP40 
HN1 AIF1 KIAA1624 NESH LABH2 DHLAG TMEM35 MRPL46 CCDC12 TMEM33 RNMTL1 
CKLFSF6 KIAA0091 TRX1 CBX6 MAP2K1IP1 CLDN2 NAALAD1 COL9A3 PIM2 PAK1IP1 
KIAA0638 
 

GATA-4 

STX6 CLG4A HLA-DMA AK000471 KIAA0175 MRPL4 AP2B1 WBSCR17 SLUG TBC1D17 
ATPIF1 RDH1 UCC1 ILF2 RPMS13 TMEM30A RCBTB1 PRDX2 HDHD1A G10P1 BC093018 
CCNB STAU2 MBD1 TTF DENR TAF11 SCAND2 SPATS2 ISOT LGALS4 HER3 PIGT 
LTB4DH TOMM34 TSSC3 HSPA14 HRBL CEV14 PODXL ATPAF1 KIAA0106 SPC18 APOL1 
SATT KIAA0517 TYRO10 MSTP028 KIAA1745 BAP29 DRG2 SAP61 DDX49 TMSB10 
MRPS36 COPS7A DERP7 AK096925 NMP238 MRPS2 SLC17A5 AF454939 NUDT5 BRMS1L 
KIAA1667 MKI67IP MRS1 SAP114 BC051849 CTRP6 DDX31 GFAP AUH AK026266 ARFL3 
MID1 UGP2 SNAI1 RNUT1 TRIM38 NEC2 MNK1 PLAGL2 UBQLN1 RPP40 HN1 AIF1 
KIAA1624 NESH LABH2 DHLAG TMEM35 MRPL46 CCDC12 TMEM33 RNMTL1 CKLFSF6 
KIAA0091 TRX1 CBX6 MAP2K1IP1 HOX1G CLDN2 NAALAD1 COL9A3 PIM2 PAK1IP1 
KIAA0638 
 108 

LXR, PXR, CAR, 
COUP, RAR 

 
STX6 CLG4A HLA-DMA AK000471 KIAA0175 MRPL4 AP2B1 WBSCR17 TBC1D17 RDH1 
UCC1 ILF2 RPMS13 TMEM30A RCBTB1 PRDX2 HDHD1A G10P1 CCNB STAU2 MBD1 TTF 
DENR TAF11 SCAND2 SPATS2 ISOT LGALS4 TIN2 HER3 PIGT LTB4DH TOMM34 TSSC3 
HSPA14 HRBL CEV14 PODXL ATPAF1 KIAA0106 SPC18 IFI30 APOL1 SATT KIAA0517 
TYRO10 MSTP028 KIAA1745 BAP29 DRG2 SAP61 DDX49 TMSB10 BGN MRPS36 COPS7A 
DERP7 PFKL NMP238 KBTBD6 MRPS2 SLC17A5 AF454939 NUDT5 BRMS1L KIAA1667 
MKI67IP MRS1 SAP114 BC051849 CTRP6 DDX31 GFAP AUH AK026266 ARFL3 UGP2 SNAI1 
RNUT1 TRIM38 MNK1 PLAGL2 UBQLN1 RPP40 HN1 AIF1 KIAA1624 NESH LABH2 DHLAG 
TMEM35 MRPL46 CCDC12 TMEM33 RNMTL1 CKLFSF6 KIAA0091 TRX1 CBX6 HOX1G 
CLDN2 NAALAD1 COL9A3 PIM2 KIAA0638 
 105 

Oct-1 

 
STX6 CLG4A HLA-DMA AK000471 KIAA0175 MRPL4 AP2B1 WBSCR17 SLUG TBC1D17 
ATPIF1 RDH1 UCC1 ILF2 RPMS13 TMEM30A HDHD1A G10P1 BC093018 CCNB STAU2 TTF 104 
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DENR TAF11 SCAND2 SPATS2 ISOT TIN2 HER3 PIGT LTB4DH TOMM34 TSSC3 HSPA14 
HRBL CEV14 PODXL ATPAF1 KIAA0106 SPC18 IFI30 APOL1 SATT KIAA0517 TYRO10 
MSTP028 KIAA1745 BAP29 DRG2 SAP61 DDX49 TMSB10 MRPS36 COPS7A DERP7 
AK096925 NMP238 KBTBD6 MRPS2 SLC17A5 AF454939 NUDT5 BRMS1L KIAA1667 
MKI67IP MRS1 SAP114 BC051849 CTRP6 DDX31 GFAP AUH ARFL3 MID1 UGP2 SNAI1 
RNUT1 TRIM38 NEC2 MNK1 PLAGL2 UBQLN1 RPP40 HN1 AIF1 KIAA1624 NESH LABH2 
DHLAG TMEM35 MRPL46 TMEM33 RNMTL1 CKLFSF6 KIAA0091 TRX1 CBX6 MAP2K1IP1 
HOX1G CLDN2 NAALAD1 PIM2 PAK1IP1 KIAA0638 
 

Cdc5 

 
STX6 CLG4A HLA-DMA AK000471 KIAA0175 AP2B1 WBSCR17 SLUG TBC1D17 ATPIF1 
RDH1 UCC1 RPMS13 TMEM30A RCBTB1 HDHD1A G10P1 BC093018 CCNB STAU2 MBD1 
TTF DENR TAF11 SCAND2 SPATS2 ISOT LGALS4 TIN2 HER3 PIGT LTB4DH TOMM34 
HSPA14 HRBL CEV14 PODXL ATPAF1 KIAA0106 SPC18 IFI30 APOL1 SATT KIAA0517 
TYRO10 MSTP028 KIAA1745 BAP29 DRG2 SAP61 TMSB10 MRPS36 COPS7A DERP7 
AK096925 NMP238 KBTBD6 MRPS2 SLC17A5 AF454939 NUDT5 BRMS1L KIAA1667 
MKI67IP MRS1 BC051849 CTRP6 DDX31 AUH AK026266 ARFL3 MID1 UGP2 SNAI1 RNUT1 
TRIM38 NEC2 MNK1 PLAGL2 UBQLN1 RPP40 HN1 KIAA1624 NESH LABH2 DHLAG 
TMEM35 MRPL46 TMEM33 RNMTL1 CKLFSF6 KIAA0091 TRX1 CBX6 MAP2K1IP1 HOX1G 
CLDN2 NAALAD1 COL9A3 PIM2 PAK1IP1 KIAA0638 
 102 

NF-kappaB 

 
STX6 CLG4A HLA-DMA AK000471 KIAA0175 MRPL4 AP2B1 WBSCR17 SLUG TBC1D17 
ATPIF1 RDH1 UCC1 ILF2 RPMS13 TMEM30A RCBTB1 PRDX2 HDHD1A G10P1 BC093018 
CCNB STAU2 MBD1 TTF DENR TAF11 SCAND2 SPATS2 ISOT LGALS4 TIN2 PIGT LTB4DH 
TOMM34 TSSC3 HSPA14 CEV14 PODXL ATPAF1 KIAA0106 IFI30 APOL1 SATT KIAA0517 
MSTP028 KIAA1745 BAP29 DRG2 SAP61 TMSB10 BGN MRPS36 COPS7A DERP7 AK096925 
PFKL NMP238 KBTBD6 MRPS2 SLC17A5 AF454939 BRMS1L KIAA1667 MKI67IP MRS1 
SAP114 BC051849 CTRP6 DDX31 GFAP AUH AK026266 MID1 UGP2 SNAI1 RNUT1 TRIM38 
NEC2 MNK1 UBQLN1 RPP40 HN1 AIF1 KIAA1624 NESH LABH2 DHLAG MRPL46 CCDC12 
TMEM33 RNMTL1 CKLFSF6 CBX6 MAP2K1IP1 HOX1G CLDN2 NAALAD1 COL9A3 PIM2 
PAK1IP1 KIAA0638 
 102 
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Unmatched gene 
hits 

LXR, PXR, CAR, 
COUP, RAR 

PCCX1 YWHAG NPD002 VPS11 TENC1 TRIM9 FAM45A CX3CL1 AOC1 EFCBP1 ADPRHL2 
ALEX3 VIM ELE1 PDZK2 ZMYND13 TFIP11 RPS27L RBM3 PSMA7 MXD3 FAM26B ACTR8 
H2AFX DNCLI2 EPM2A USP39 NDEL1 LRRN6A KCNMA1 ZDHHC12 TM4SF1 
 32 

CDX 

PCCX1 YWHAG NPD002 VPS11 TENC1 TRIM9 FAM45A CX3CL1 AOC1 EFCBP1 ADPRHL2 
ALEX3 VIM ELE1 PDZK2 ZMYND13 TFIP11 RPS27L RBM3 PSMA7 MXD3 FAM26B ACTR8 
H2AFX DNCLI2 EPM2A USP39 NDEL1 LRRN6A KCNMA1 ZDHHC12 TM4SF1 
 32 

HNF-1 

PCCX1 YWHAG NPD002 VPS11 TENC1 TRIM9 FAM45A CX3CL1 AOC1 EFCBP1 ADPRHL2 
ALEX3 VIM ELE1 PDZK2 ZMYND13 TFIP11 RPS27L RBM3 PSMA7 MXD3 FAM26B ACTR8 
H2AFX DNCLI2 EPM2A USP39 NDEL1 LRRN6A KCNMA1 ZDHHC12 TM4SF1 32 

Nkx2-5 

PCCX1 YWHAG NPD002 VPS11 TENC1 TRIM9 FAM45A CX3CL1 AOC1 EFCBP1 ADPRHL2 
ALEX3 VIM ELE1 PDZK2 ZMYND13 TFIP11 RPS27L RBM3 MXD3 FAM26B ACTR8 H2AFX 
DNCLI2 EPM2A USP39 NDEL1 LRRN6A KCNMA1 ZDHHC12 TM4SF1 
 31 

GATA-4 

PCCX1 YWHAG NPD002 VPS11 TENC1 TRIM9 FAM45A CX3CL1 AOC1 EFCBP1 ADPRHL2 
ALEX3 VIM ELE1 PDZK2 ZMYND13 TFIP11 RPS27L RBM3 MXD3 FAM26B ACTR8 H2AFX 
DNCLI2 EPM2A USP39 NDEL1 LRRN6A KCNMA1 ZDHHC12 TM4SF1 
 31 

Oct-1 

PCCX1 YWHAG NPD002 VPS11 TENC1 TRIM9 CX3CL1 AOC1 EFCBP1 ADPRHL2 ALEX3 
VIM ELE1 PDZK2 ZMYND13 TFIP11 RPS27L RBM3 PSMA7 MXD3 FAM26B ACTR8 H2AFX 
DNCLI2 EPM2A USP39 NDEL1 LRRN6A KCNMA1 ZDHHC12 TM4SF1 
 31 

NF-kappaB 

PCCX1 NPD002 VPS11 TENC1 TRIM9 FAM45A CX3CL1 AOC1 EFCBP1 ADPRHL2 ALEX3 
VIM ELE1 PDZK2 ZMYND13 TFIP11 RPS27L RBM3 MXD3 FAM26B ACTR8 H2AFX DNCLI2 
EPM2A USP39 NDEL1 LRRN6A KCNMA1 ZDHHC12 TM4SF1 
 30 

DEFA1  
Matched gene hits   

PPAR direct repeat 1 
 
RBM3 ATP6V0A1 STEAP2 LZIC ARHGEF7 SFRS15 PACRG PSARL RBM28 FDPS 10 

Nkx2-5 
 
RBM3 ATP6V0A1 STEAP2 LZIC ARHGEF7 SFRS15 PACRG PSARL RBM28 FDPS 10 

Cdc5 
 
RBM3 ATP6V0A1 STEAP2 LZIC ARHGEF7 SFRS15 PACRG PSARL RBM28 FDPS 10 

GATA-4  10 
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RBM3 ATP6V0A1 STEAP2 LZIC ARHGEF7 SFRS15 PACRG PSARL RBM28 FDPS 

CDX 
 
RBM3 ATP6V0A1 STEAP2 LZIC ARHGEF7 SFRS15 PACRG PSARL RBM28 FDPS 10 

HNF-1 
 
RBM3 ATP6V0A1 STEAP2 LZIC ARHGEF7 SFRS15 PACRG PSARL RBM28 FDPS 10 

NF-kappaB 
 
RBM3 ATP6V0A1 STEAP2 LZIC ARHGEF7 SFRS15 PACRG PSARL RBM28 FDPS 10 

Unmatched gene 
hits   
Nkx2-5 CCND2 CNOT2 MARS VSIG2 DDX23 5 
GATA-4 CCND2 CNOT2 MARS VSIG2 DDX23 5 
CDX CCND2 CNOT2 MARS VSIG2 DDX23 5 
TFIIA CCND2 CNOT2 MARS VSIG2 DDX23 5 
HNF-3alpha CCND2 CNOT2 MARS VSIG2 DDX23 5 
Evi-1 CCND2 CNOT2 MARS VSIG2 DDX23 5 
HNF-1 CCND2 CNOT2 MARS VSIG2 DDX23 5 
Oct-1 CCND2 CNOT2 MARS VSIG2 DDX23 5 
LXR, PXR, CAR, 
COUP, RAR CCND2 CNOT2 MARS VSIG2 DDX23 5 
TFII-I CCND2 CNOT2 MARS VSIG2 DDX23 5 

 

Supplementary Table 7.8 Comparison of DEFA1 and DEFA5 gene hits based on GO terms.  
 

This table lists the common and different GO categories for DEFA1 and DEFA5 gene hits 
 

Gene Ontology : biological process. Level: 4 DEFA1_genes No. of genes DEFA5_genes 
 No. of  
genes 

Unadjusted 
pvalue 

Adjusted pvalue 
FDR 

COMMON GO categories 
  

 

immune response INS PSMB8 CX3CL1 3 

TTF AIF1 DHLAG HLA-
DMA ILF2 G10P1 IFI30 
CX3CL1 8 7.18E-01 1 

macromolecule metabolism 
DPM1 CHD1L H1F0 
TMPRSS1 CHD2 NCL INS 25 

CLG4A KIAA0175 DENR 
HER3 ATPAF1 SPC18 47 7.25E-01 1 
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FARS1 MTMR5 HRMT1L1 
ALDR1 PDCD9 KIAA0060 
PSMB8 PIAS2 MARS PFD4 
ARAF DDX23 MYST2 
LSM6 FKBP12 KIAA0935 
MARCH5 CASP5 

SAP61 VPS11 TRIM9 
PFKL NMP238 MKI67IP 
SAP114 RPS27L UGP2 
MID1 NEC2 UBQLN1 
RPP40 DHLAG RNMTL1 
KIAA0091 PIM2 
NAALAD1 MRPL4 
PRIM1 AP2B1 PSMA7 
ISOT EPM2A USP39 
TOMM34 HSPA14 
APOL1 TYRO10 
KIAA0517 MRPS36 
MRPS2 NUDT5 
KIAA1667 AUH RBM3 
TRIM38 MNK1 H2AFX 
TRX1 CBX6 

neurophysiological process ARRB2 CPNE6 2 

RDH1 YWHAG 
CKLFSF6 KCNMA1 
SLUG 5 1 1 

cell activation INS 1 TTF DHLAG 2 1 1 

regulation of cellular physiological process 

CHD2 CCNI CNOT2 
KIAA0065 PIAS2 MYST2 
KIAA0929 MIZ1 CCND2 
CASP5 10 

PCCX1 ATPIF1 PRDX2 
TTF YWHAG NMP238 
MXD3 AIF1 DHLAG 
SLUG ILF2 ELE1 MBD1 
CCNB SCAND2 EPM2A 
MNK1 PLAGL2 TRX1 
CBX6 HOX1G 21 1 1 

catabolism 
RODH INS KIAA0060 
PSMB8 4 

CLG4A PFKL PSMA7 
ISOT USP39 KIAA0106 
NUDT5 AUH GM2A 9 1 1 

regulation of metabolism 

CHD2 INS CNOT2 
KIAA0065 PIAS2 MYST2 
KIAA0929 MIZ1 8 

PCCX1 ATPIF1 TTF 
NMP238 MXD3 SLUG 
ILF2 ELE1 MBD1 
SCAND2 EPM2A MNK1 
PLAGL2 TRX1 CBX6 
HOX1G 16 1 1 

regulation of signal transduction FKBP12 1 
TTF YWHAG TRIM38 
PAK1IP1 4 1 1 

cellular metabolism 

DPM1 CHD1L H1F0 
TMPRSS1 CHD2 NCL 
RODH INS FARS1 CNOT2 
MTMR5 HRMT1L1 
KIAA0065 NDUFS5 PDCD9 
KIAA0060 PSMB8 PIAS2 
GUK1 MARS PFD4 ARAF 
DDX23 PECI MYST2 LSM6 
FKBP12 KIAA0929 
KIAA0935 MARCH5 MIZ1 33 

PCCX1 CLG4A 
KIAA0175 ATPIF1 
PRDX2 TXNRD1 DENR 
TTF HER3 LTB4DH 
TSSC3 ATPAF1 SPC18 
SAP61 VPS11 TRIM9 
PFKL NMP238 MKI67IP 
SAP114 RPS27L UGP2 
MID1 MXD3 NEC2 
UBQLN1 RPP40 DHLAG 67 1 1 
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CASP5 KBL RNMTL1 KIAA0091 
PIM2 NAALAD1 MRPL4 
PRIM1 AP2B1 SLUG 
ILF2 EFCBP1 ELE1 
MBD1 PSMA7 SCAND2 
ISOT EPM2A USP39 
TOMM34 HSPA14 
CEV14 KIAA0106 
APOL1 TYRO10 
KIAA0517 NPD002 
MRPS36 MRPS2 NUDT5 
KIAA1667 AUH RBM3 
TRIM38 MNK1 PLAGL2 
H2AFX GM2A TRX1 
CBX6 HOX1G 

nervous system development CPNE6 1 
KIAA1745 YWHAG 
SNAI1 3 1 1 

negative regulation of physiological process INS MIZ1 2 
ATPIF1 YWHAG AIF1 
DHLAG SLUG MBD1 6 1 1 

biosynthesis 
DPM1 RODH INS FARS1 
PDCD9 GUK1 MARS KBL 8 

DENR RPS27L DHLAG 
MRPL4 EFCBP1 EPM2A 
MRPS36 MRPS2 
KIAA1667 MNK1 10 2.88E-01 1 

establishment of localization 

NTT73 SEC5L1 INS BGP1 
NDUFS5 ATP5S FTL 
CPNE6 8 

TXNRD1 TTF MSTP028 
VPS11 CTRP6 DHLAG 
KCNMA1 COL9A3 STX6 
AP2B1 TFIP11 STAU2 
TOMM34 APOL1 SATT 
BAP29 NPD002 SLC17A5 
KIAA1667 VIM ARFL3 
NESH 22 5.16E-01 1 

protein localization SEC5L1 INS 2 

TTF VPS11 DHLAG 
STX6 AP2B1 TOMM34 
BAP29 KIAA1667 ARFL3 9 5.05E-01 1 

cell cycle CCNI DCTN3 MIZ1 CCND2 4 
YWHAG AIF1 PIM2 
CCNB H2AFX 5 4.74E-01 1 

primary metabolism 

DPM1 CHD1L H1F0 
TMPRSS1 CHD2 NCL 
RODH INS FARS1 CNOT2 
MTMR5 HRMT1L1 
KIAA0065 ALDR1 PDCD9 
KIAA0060 PSMB8 PIAS2 
GUK1 MARS PFD4 ARAF 
DDX23 PECI MYST2 LSM6 
FKBP12 KIAA0929 
KIAA0935 CPNE6 
MARCH5 MIZ1 CASP5 
KBL 34 

PCCX1 CLG4A 
KIAA0175 ATPIF1 DENR 
TTF HER3 LTB4DH 
TSSC3 ATPAF1 SPC18 
SAP61 VPS11 TRIM9 
PFKL NMP238 MKI67IP 
SAP114 RPS27L UGP2 
MID1 MXD3 NEC2 
UBQLN1 RPP40 DHLAG 
RNMTL1 KIAA0091 
PIM2 NAALAD1 MRPL4 
PRIM1 AP2B1 SLUG 63 4.59E-01 1 
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ILF2 ELE1 MBD1 
PSMA7 SCAND2 ISOT 
EPM2A USP39 TOMM34 
HSPA14 CEV14 
KIAA0106 APOL1 
TYRO10 KIAA0517 
MRPS36 MRPS2 NUDT5 
KIAA1667 AUH RBM3 
TRIM38 MNK1 PLAGL2 
H2AFX GM2A TRX1 
CBX6 HOX1G 

cell organization and biogenesis 
H1F0 CHD2 MYST2 
PEX11G 4 

TIN2 YWHAG TMSB10 
NMP238 MID1 DHLAG 
STX6 AP2B1 TOMM34 
BAP29 KIAA1667 ARFL3 
H2AFX CBX6 14 4.24E-01 1 

transport 

NTT73 SEC5L1 INS 
NDUFS5 ATP5S FTL 
CPNE6 7 

TXNRD1 TTF MSTP028 
VPS11 CTRP6 DHLAG 
KCNMA1 COL9A3 STX6 
AP2B1 TFIP11 STAU2 
TOMM34 APOL1 SATT 
BAP29 NPD002 SLC17A5 
KIAA1667 VIM ARFL3 21 3.79E-01 1 

signal transduction 

APBB1IP INS BGP1 
HRMT1L1 FMOD PIAS2 
ARAF ARRB2 FKBP12 
KIAA0929 10 

PDZK2 TXNRD1 TTF 
HER3 YWHAG DHLAG 
TENC1 ELE1 TYRO10 
DRG2 ARFL3 TRIM38 
MNK1 PAK1IP1 14 3.44E-01 1 

nitrogen compound metabolism 
INS FARS1 KIAA0060 
MARS KBL 5 AUH 1 1.44E-02 1 

cell death INS PDCD9 CASP5 3 
PRDX2 TSSC3 YWHAG 
DHLAG BAP29 5 7.16E-01 1 

positive regulation of physiological process INS PIAS2 2 ILF2 ELE1 2 5.97E-01 1 
cell-cell signaling INS CPNE6 2 YWHAG NEC2 KCNMA1 3 6.62E-01 1 
positive regulation of physiological process INS PIAS2 2 ILF2 ELE1 2 5.97E-01 1 

GO categories exclusive for one AMP gene group 
  
  

Gene Ontology : biological process. Level: 4 DEFA1_genes No. of genes DEFA5_genes No. of  genes 
Unadjusted 

pvalue 
Adjusted pvalue 

FDR 

cellular localization No genes 0 

DHLAG STX6 
AP2B1 TOMM34 
BAP29 KIAA1667 
ARFL3 7 9.62E-02 1 

reproductive organismal physiological process BGP1 1 No genes 0 3.27E-01 1 
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vasculature development BGP1 1 No genes 0 3.27E-01 1 
ion homeostasis FTL 1 No genes 0 3.27E-01 1 
ectoderm development KRT5 1 No genes 0 3.27E-01 1 
cell proliferation No genes 0 AIF1 DHLAG PIM2 3 5.51E-01 1 
hemopoietic or lymphoid organ development No genes 0 TTF DHLAG TRX1 3 5.51E-01 1 
cartilage development No genes 0 SNAI1 1 1 1 
skeletal development No genes 0 SNAI1 TFIP11 2 1 1 
male sex differentiation No genes 0 ELE1 1 1 1 
lymphocyte differentiation No genes 0 TTF DHLAG 2 1 1 
cellular morphogenesis No genes 0 NMP238 1 1 1 
regulation of cell growth No genes 0 NMP238 1 1 1 
regulation of developmental pigmentation No genes 0 KIAA1667 1 1 1 
neuron differentiation No genes 0 YWHAG 1 1 1 
response to oxidative stress No genes 0 PRDX2 KIAA0106 2 1 1 
response to wounding No genes 0 AIF1 DHLAG 2 1 1 
embryonic hemopoiesis No genes 0 TRX1 1 1 1 
cell growth No genes 0 NMP238 1 1 1 
positive regulation of development No genes 0 KIAA1667 1 1 1 
mesoderm development No genes 0 SLUG 1 1 1 
development of primary sexual characteristics No genes 0 ELE1 1 1 1 
embryonic organ development No genes 0 TRX1 1 1 1 
taxis No genes 0 CKLFSF6 1 1 1 
regulation of cell differentiation No genes 0 YWHAG 1 1 1 
regulation of hydrolase activity No genes 0 HRBL 1 1 1 
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Figures for Chapter 7 
 

Supplementary Figure 7.1: Alpha defensin 1 unmatched gene hits (did not match 
with co-expressed gene list for DEFA1, DEFA3) compared with co-expressed genes 
of DEFA1,DEFA3 

 

    
c 

Supplementary Figure 7.1: The orange bar indicates the unmatched gene hits and 
the green bar indicates the co-expressed genes for DEFA1, DEFA3. The raw p-
values and corrected p-values are shown in column 3 and column 4 respectively 



 
 

292 

Supplementary Figure 7.2: All alpha defensin 1 predicted genes compared with co- 
    expressed genes in terms of GO biological function 

 

 
 

Supplementary Figure 7.2: The orange bar represents the co-expressed genes and green bar 
represents predicted genes 
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Supplementary Figure 7.3: All alpha defensin 1 predicted genes compared with co-
    expressed genes in terms of GO molecular function 

 

 
 
 

Supplementary Figure 7.3:. The orange bar indicates the co-expressed genes and green bar 
indicates predictedgenes 
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Supplementary Figure 7.4: DEFA4 novel predicted genes compared with  
  matched predicted genes grouped based on GO biological function 

 

 
 

Supplementary Figure 7.4: The orange bar is the matched predicted genes and green bar 
is unmatched predicted genes 
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Appendices 

 

Great spirits have always encountered violent opposition from mediocre minds. 
(Albert Einstein) 
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Appendix 1 
 
Supplementary Material for Chapter 4 
 
Figure 4.1: Melittin profile query profile results: 
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Figure 4.1: The mellitin profile is tested against a set of 12 sequences which include 
mel_apicc (mature_peptide), melittin analogs: mut5_l6, mut13_l13, mut1_g1, mut6_l7, 
mut10_t11, mut13_p14, melittin hybrid: cecropina(1-8)-melittin(1-18), ca(1-7)m(2-9), 
non-melittin sequences: protegrin (PG3_PIG), acyl-coadehydrogenasefamilymember8 
(ACAD8_HUMAN), mel_apicc(complete peptide) (melittin_complete). The E-value and 
score indicate the statistical significance of similarity of the sequence to the profile. A 
lower E-value score indicates a better match. Analysis of the E-values of different test 
sequences shows that the melittin profile generated by HMM is able to differentiate 
between members of the melittin family and non–members. 
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Figure 4.2: Melittin analog profile analysis 
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Figure 4.2: The mellitin profiles categorizing decreased hemolytic activity, increased 
hemolytic activity is tested against a set of melittin analogs, K-23, L-16, I-2 and normal 
melittin sequence melittin wild type, mel_apicc (mature_peptide). The profiles could 
distinguish between mutants with decreased hemolytic activity and increased hemolytic 
activity. 
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Figure 4.3: Beta-defensin profile query profile results 
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Figure 4.3:  The beta-defensin profile is tested against a set of five sequences co-
adehydrogenase family member 8, Protegrin, bd01_cerpr, bd01_caphi, bd01_ponpy . 
Analysis of the E-values of different test sequences shows that the beta-defensin profile 
generated by HMM is able to differentiate between members of the beta-defensin family 
and non–members.  
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Figure 4.4: Melittin query db results 
 
 

 
 
Figure 4.4: The melittin profile was queried against the nr database and three sequences 
were extracted by the profile. Two of the sequences were melittin sequences. 
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Figure 4.5: Beta-defensin querydb results 
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Figure 4.5:  The beta-defensin profile was queried against the nr database and 12 
sequences were extracted. Eleven sequences were beta defensin sequences.
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Appendix 2 
 
List of parameters of the  Dragon Motif Builder program 
 

Parameter Explanation 
Infile input file 
Outfile output file 
EMSearchOption EM search option 1)EM1 2) EM2 
RandomLimit Random Peak scan coefficient: 10-100 recommented, higher value= long search time 
motiflength User specified motif length 
EMmaxLength Maximun length for motif, ONLY applicable for EM2 
motifNum number of motifs user wants 
IterationThreshod Maximun iteration for one search, program will terminate the search when exceeds the threshold 
ICThreshold Information content threshold, to maintain the result's IC quality. Vary 0 - 2 

EMCriteria 
EM eliminating criteria. 1-> Eliminate the identified motif patterns  
2- >Eliminate the sequences which contain the sequences 

revCompOption 0-> No reverval completement 1-> Reversal completement option 
dirOption 0-> Forward strand search 1-> Inverse strand search 
Selectpos position segment analysis 0- full sequence length analysis 1-> Segment sequences anlysis 
Startpos Segment start position, 
Endpos Segment end position 
EMThreshold EM search threshold, vary 0-1 

bgAnalysis 

background analysis, 0-> no background analysis, 1-> analysis with internal generation background 
sequences,  
2-> user induce background sequences, 3-> user specified the background sequences with the percentage  
4-> user define the background sequence by their own data file 

KeepZero Remove the poor patterns from the group 
nucleatideA percentage of A NN in the background sequences 0-100 
nucleatideC percentage of C NN in the background sequences 0-100 
nucleatideG percentage of G NN in the background sequences 0-100 

nucleatideT 
percentage of T NN in the background sequences 0-100 
 NOTE: nucleatideA+nucleatideC+nucleatideG+nucleatideT = 100 

appearOption pattern appearance option 0-> Single 1-> Pair 2-> Single&Pair 
pairDistance pattern pair distance 
MarkovModelorder Markov Model order, recommented 3rd order 
bgSeqFile background sequence file 
MarkovTable Markov loop-up table 
PlotGraph graph plotting option 0-> No, 1-> Yes 
EValue background pattern appearance threshold 
bgMaxlen  the background length that user specified 
ContrastCoeff  contrast ratio btw the target and background, range from 0-1 
PThreshold  p-value threshold range from 0 -1 
controlOption  0-> no e and p value control, 1-> e value control, 2-> p value control, 3 -> both 
EPIteration  number of iteration for the p & e value control before we relax the threshold condition 
ERatio  number of relaxation coefficient for e value 

 


