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Summary 

 

Epidemiological evidence suggests that the efficacy of Mycobacterium bovis bacille 

Calmette-Guérin (BCG), as a tuberculosis (TB) vaccine in human populations, is 

influenced by prior sensitisation to environmental mycobacteria (Env). After priming 

with certain Env species and subsequent vaccination with BCG, murine hosts show 

reduced proliferation of BCG in vivo. This may be because memory responses to Env 

antigens are cross-reactive with antigens of other mycobacterium species. However, the 

immunological mechanisms underlying these effects remain unknown. This project 

aimed to uncover these mechanisms using a murine model of Mycobacterium chelonae 

sensitisation followed by intranasal BCG infection. Cytotoxic responses of splenocytes 

against autologous BCG-infected macrophages of mice sensitised with M. chelonae (a 

representation of Env), with or without subsequent intranasal BCG infection, were 

measured by a non-radioactive cytotoxicity assay. Splenocytes were sorted into CD4 and 

non-CD4 subsets to investigate the T cell subsets involved in these cytotoxic responses. 

The levels of relevant cytokines produced by splenic CD4+ and CD4- T cells were 

determined by ELISA. Env sensitisation increased cytotoxicity of splenic T cells against 

autologous BCG-infected macrophages, both before and after BCG challenge. This was 

especially noted at 3 weeks post-infection in the CD4+ fraction, which also contributed 

largely to the perforin production in those mice. However, the cytotoxicity was not 

directly correlated with IFN-γ production. Cytokine production and inflammatory cell 

count, at the site of infection (i.e. lung) was also determined, by flow cytometry. Reduced 

percentages of all inflammatory cells in the lungs of sensitised mice in response to 
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intranasal BCG, and a higher proportion of IL-10 producing cells in the lung tissue, 

relative to control mice, suggest induction of regulatory T cells following Env 

sensitisation. Thus, CD4+ mediated cytotoxicity in Env-primed mice against BCG-

infected cells is a mechanism behind the effect of Env exposure on subsequent BCG 

vaccination. The results of this work have an impact on the use of BCG as a vaccine as 

well as development of future vaccines against TB, given that many candidate TB 

vaccines on clinical trials currently involve BCG in prime-boost strategies or genetically-

modified BCG as a vector to carry novel antigens. 
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CHAPTER 1   LITERATURE REVIEW 
 

1.1  Tuberculosis situation in the world 

Tuberculosis (TB) is amongst the global leading causes of death by a single infectious 

pathogen. Human disease is mainly caused by members of the Mycobacterium 

tuberculosis (Mtb) complex, comprising of Mtb, M. bovis, M. africanum M. canettii and 

M. microti (Cosma, 2003). The World Health Organization (WHO) has declared TB a 

‘global emergency’, and estimates that two million people die from this curable disease 

annually. TB can be treated with a cocktail of antibiotics but this requires at least six 

months, with potential toxicity and cost issues. Due to poor availability or compliance to 

drug treatment, especially in poor developing areas, direct observed therapy (DOTS) is 

advocated but is difficult to administer. With the rising trend in HIV (human 

immunodeficiency virus) infections as well as the appearance of multiple-drug resistant 

(MDR) strains of Mtb, the TB situation worldwide is worsening, with almost nine million 

new cases in 2004 (WHO, 2006). 

 
 

1.2 Mycobacterim tuberculosis – an intracellular pathogen 

Tubercle bacilli are intracellular pathogens, surviving within lung macrophages after the 

human host inhales airborne droplets containing the bacteria.  Alveolar macrophages, 

which are believed to be the principal host cells of the bacteria, play dual roles in the 

lifestyle of Mtb – as a first line of cellular defence, as well as a site for bacterial survival 

and replication. The bacteria can escape the host immune system by interfering with 
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membrane trafficking and avoiding phagolysosomal fusion. Nonetheless, in infected 

individuals, dendritic cells (DCs) and macrophages recruited to the lung take up the 

bacteria, migrate to the draining lymph nodes and initiate T-helper 1 (Th1) responses by 

presenting Mtb antigens to T cells. Eventually, granulomas form in response to persistent 

intracellular Mtb. In these structures, macrophages, DCs, T cells and B cells surround 

single infected macrophages (Cosma, 2003). Any remaining Mtb can persist in a latent 

state in the host and reactivation of such bacteria leads to active disease. There is some 

evidence that latent mycobacteria survive under conditions of nutrient deprivation and 

hypoxia within granulomas by reducing their metabolic activity and persisting in a non-

dividing or slowly dividing state (Raja 2004).  

 

1.3 Immune responses to TB 

Protective immune responses against all mycobacteria depends on cell-mediated 

immunity provided by T cells. The intracellular lifestyle of Mtb makes T cell effector 

functions more important than antibodies in controlling or eliminating Mtb infections. 

Two major effector functions are the T helper and cytotoxic activities, which shall be 

further described below. 

 

1.3.1 T helper cells 

CD4+ T cells are the most important subset of T cells for controlling Mtb infections. This 

is clearly seen in numerous murine studies as well as in HIV-infected individuals, who 

have a significantly lowered CD4+ T cell count and are markedly more susceptible to TB 

(Flynn and Chan 2001; Elkins, 2003). The full range of effector mechanisms utilised by 
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CD4+ T cells in combating TB remains to be elucidated. However, the production of IFN-

γ in activating macrophages to release reactive oxygen and nitrogen intermediates is 

generally recognised as a key effector mechanism of CD4+ cells in murine models of TB 

(Flynn and Chan 2001). 

 

1.3.2 Cytotoxicity in response to M. tuberculosis  

Cytotoxic T lymphocytes (CTLs) have increasingly been reported in TB patients, and are 

likely to have major roles in anti-TB immunity (Lewinsohn, 1998). Potential cytolytic 

cell subsets involved in lysis of Mtb-infected macrophages are CD4+, CD8+ and γδ T 

cells, as well as natural killer (NK) cells. 

 

1.3.2.1  Natural killer (NK) cells 

NK cells are cytolytic effector cells of innate immunity, and have been shown to be 

involved in immune responses against TB. Human NK cells have been demonstrated to 

respond to live Mtb in vitro and increased NK activity is observed in active pulmonary 

TB patients (Yoneda, 1983; Esin, 1996). The expansion of NK cells after Mycobacterium 

bovis bacille Calmette- Guérin (BCG), or Mtb infection in mice has also been reported, 

suggesting a role for NK cells in immune responses against TB (Falcone, 1993; 

Junqueira-Kipnis, 2003). The direct role of NK cells in mycobacteria infections, 

however, is not well understood. 
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1.3.2.2  CD4+ cytolytic T cells 

Apart from being involved in T helper responses, CD4+ T cells can also exhibit 

cytotoxicity. Upregulation of mRNA for granulysin, perforin and granzymes A and B, is 

observed in human CD4+ T cells after in vitro stimulation with Mtb, indicating a cytolytic 

role of these cells against TB (Canaday, 2001). Furthermore, CD4+ cells from peripheral 

blood of patients with active TB have been reported to display cytotoxic responses 

against autologous Mtb-pulsed macrophages, and this cytotoxicity diminishes with 

severity of TB. However, it is unclear whether the opposite, where patients with less 

severe TB have better cytotoxic responses, holds true (De La Barrera, 2003). The same 

study shows that the CD4-mediated cytotoxicity occurs via the Fas/ Fas-ligand 

mechanism. However, other studies on CD4+ T cell clones have reported perforin-

dependent mechanisms for their cytolytic activity (Susskind, 1996; Kaneko 2000). 

 

1.3.2.3  CD8+ T cells 

The most widely reported cell type exhibiting cytotoxicity in TB studies is the CD8+ cell 

(Sousa, 2000; van Pinxteren, 2000). There is evidence for exocytosis of granule contents 

as the mechanism behind CD8+ CTLs in TB. Human CD8+ T cells exert cytotoxicity on 

Mtb-infected macrophages via a granule (perforin/ granzyme or granulysin)-dependent 

mechanism that is independent of Fas/ Fas-ligand interaction (Stenger, 1997; Stenger, 

1998). The perforin/ granzmye pathway is also suggested to be more important than the 

Fas/ Fas-ligand pathway in lysis of Mtb-infected macrophages by CD8+ CTLs in mice 

(Silva and Lowrie 2000). Another study showed that although granule exocytosis is 
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required for the cytotoxic activity of human CD8+ T cells, perforin inhibition did not 

affect restriction of Mtb growth (Canaday, 2001). 

 

1.3.2.4   γδ T cells 

γδ T cells are readily activated by Mtb and secrete antigen-specific IFN-γ (Ladel, 1995a). 

Murine studies with T cell receptor (TCR) δ gene deletion mutants show that γδ T cells 

play a major role in protective responses against TB, as these mice died after Mtb 

infection, while immunocompetent control mice survived (Ladel, 1995b). Futhermore, γδ 

T cell-mediated lytic activity is observed in ex vivo effector cells from TB patients (De 

La Barrera, 2003). 

 

1.4 Regulatory T cells (Treg) 

Regulatory T cells (Treg) exert suppressive effects on immune responses, and therefore 

are an important consideration when evaluating efficacy of immunity against infectious 

pathogens. Two Treg populations have been described, but not in infectious disease 

models – IL-10 secreting and naturally occurring Treg cells (O'Garra, 2004). Naturally 

occurring Tregs are a subset of CD4+ T cells that are able to suppress the effector 

functions of CD4+ and CD8+ T cells (Thornton and Shevach 1998; Murakami, 2002). 

These are of the CD4+CD25+ phenotype, and the transcription factor FoxP3 is known as a 

specific molecular marker for such cells (Fontenot, 2003; Fontenot and Rudensky 2005; 

Roncador, 2005). Activity of antigen-driven IL-10 secreting Treg cells does not seem to 

need FoxP3 (Vieira, 2004), but requires IL-10 and TGF-β (Groux, 1997). Treg cells of 
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the CD4+CD25high phenotype have been recently reported in TB patients, and an increase 

in frequency of these cells, together with elevated mRNA expression of FoxP3, is 

observed in the peripheral blood of these patients (Guyot-Revol, 2006). The authors 

suggest that Tregs expanded in patients with TB may contribute to suppression of 

immune responses against TB. In a murine study, however, antibody-mediated depletion 

of CD25+ cells prior to pulmonary infection with Mtb and BCG does not affect bacterial 

burden or pathology. The authors interpret this as implying a minor role for Tregs in the 

pathogenesis of Mtb infections in mice (Quinn, 2006). 

 

1.5 Roles of cytokines in M. tuberculosis infection 

Cytokines are produced by activated immune cells, often in response to an infection in 

general, or specifically to an antigen. Given the chronicity of Mtb infection, the role of 

cytokines in polarising the immune response at the inflammation site is significant as 

demonstrated by cytokine gene-deficient mice. The cytokines of relevance to this study 

will be described here. 

 

1.5.1 Interferon γ (IFN-γ) 

IFN-γ is a key cytokine required for protection in Mtb infections. It is produced by NK 

cells early, and later by activated CD4+, CD8+ and γδ T cells, in Mtb infections. Although 

insufficient in limiting Mtb infections by itself, IFN-γ plays an important role of 

activating macrophages by inducing phagosome maturation and upregulating their 

antimicrobial molecules, such as iNOS (inducible nitrogen oxide synthase), reactive 

nitrogen intermediates and reactive oxygen species, against intracellular Mtb. Humans 
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who have genes defective for IFN-γ are susceptible to serious mycobacterial infections 

(Cooper, 1993; Jouanguy, 1996). In addition, IFN-γ gene disruption murine experiments 

proved a high susceptibility to Mtb in these mice (Cooper, 1993; Dalton, 1993; Flynn, 

1993). However, IFN-γ is weakly produced in patients with active pulmonary TB 

(Onwubalili, 1985; Vilcek, 1986), and some authors have suggested that this may be, in 

part, a cause for their susceptibility. 

 

Human studies in Malawi have demonstrated that among BCG vacinees, increases in 

IFN-γ responses to Mtb antigens were highest among those with low initial 

responsiveness to environmental mycobacterial (Env) antigens (Black, 2001a). Later 

studies done by the same group showed that prior to BCG vaccination, Malawi residents 

already have a higher IFN-γ response to Mtb purified protein derivative (PPD) and some 

Env species than UK individuals, likely due to Env sensitisation (Black, 2002; Weir, 

2006). An increased frequency of IFN-γ responses to Env was also observed in Malawi, 

but not in the UK, over time in non-vaccinated controls, reflecting the higher level of 

natural exposure to Env in Malawi than the UK (Weir, 2006). Different levels of natural 

exposure to Env have an impact on subsequent BCG vaccination, which will be discussed 

later. 

 

1.5.2 Interleukin 4 (IL-4) 

There have been studies showing increased expression of the Th2 cytokine IL-4 in human 

TB patients as well as murine TB models (Hernandez-Pando, 1996; Seah, 2000; van 

Crevel, 2000; Lienhardt, 2002). Some roles that IL-4 may play in immunity against TB as 
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well as in immunopathology have been suggested. Findings include activation of an 

inappropriate type of macrophages, a decrease in Toll-like receptor 2 (TLR2) expression 

and signalling, in addition to a downregulation of inducible nitric oxide synthase (iNOS) 

by IL-4 (Bogdan, 1994; Krutzik, 2003; Kahnert, 2006). IL-4 knockout (KO) studies in 

Balb/c mice have demonstrated that IL-4 KO mice were better able to control bacterial 

replication and produce Th1 cytokines like IFN-γ to combat the disease progression of 

TB than control mice (Hernandez-Pando, 2004). These findings point towards IL-4 as a 

cause for decreased immunity and increased immunopathology in TB. 

 

1.5.3 Transforming growth factor β (TGF-β) 

It has been shown that Mycobacterium vaccae–induced Treg cells priming anti-

inflammatory responses to ovalbumin produce IL-10 and transforming growth factor-β 

(TGF-β) (Zuany-Amorim, 2002). These cytokines have been described to have 

immunosuppressive roles and are produced by Treg cells. Treg cells have been shown to 

be expanded in TB patients and likely have roles in suppression of Th1-type immune 

responses in TB disease (Guyot-Revol, 2006). IL-10 and TGF-β have been suggested to 

down-regulate host immune responses against TB in lungs of human patients, which then 

lead to overt disease (Bonecini-Almeida, 2004). TGF-β has also been indicated, in vitro, 

to play a part in suppressing T cell responses to mycobacterial antigens in peripheral 

blood mononuclear cells (PBMCs) (Hirsch, 1996; Ellner 1997; Hirsch, 1997; Toossi and 

Ellner 1998). Some mechanisms behind the suppressive role of TGF-β include inhibition 

of lymphocyte proliferation and function, suppression of IL-2 production and blocking of 

IFN-γ –induced macrophage activation (Allen, 2004; Hernandez-Pando, 2006). A recent 
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study by Hernández-Pando et al (2006) demonstrated that the administration of TGF-β 

antagonist and cyclooxygenase inhibitor in mice controlled pulmonary TB to a similar 

extent as anti-microbial treatment alone. These experiments suggest that TGF-β is an 

important player in the defective cell mediated immunity (CMI) that leads to TB 

progression.  

 

1.5.4 Interleukin 10 (IL-10) 

There is evidence to show that IL-10 antagonises anti-microbial effector functions of 

macrophages and reduces the presentation of major histocompatibility complex (MHC) 

class II-peptide complexes at monocyte plasma membranes (Koppelman, 1997; Redpath, 

2001; de la Barrera, 2004). A recent study found that IL-10 in BCG-infected cells inhibits 

cathepsin S-dependent processing of the MHC class II invariant chain in human 

macrophages, therefore escaping immune surveillance by inhibiting the export of mature 

MHC class II molecules to the cell surface and reducing the presentation of 

mycobacterial peptides to CD4+ T cells (Sendide, 2005). Elevated levels of IL-10 are also 

seen in mice made susceptible to Mtb due to the absence of the transcription factor T-bet, 

implying that IL-10 has a part to play in TB progression as well (Sullivan, 2005). 

 

1.6 BCG as a vaccine 

Currently, BCG is the only available human vaccine against TB, and has seen almost a 

century of human usage. BCG is an attenuated strain of M. bovis, and was obtained after 

many years of continuous in vitro passage of a virulent M. bovis strain. In spite of the 

long history, it is not yet clear what are the exact immune mechanisms underlying 
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protection conferred by this vaccine. More importantly, scientists are now intensively 

investigating reasons why BCG has poor efficacy against adult forms of TB. The 

protective efficacy of BCG varies dramatically across different parts of the world – a 

geographical variation in BCG efficacy is observed, with between 0 – 80% efficacy noted 

in different areas. BCG-attributable protection is especially low in developing countries, 

such as parts of Asia and Africa, which are also the areas of high TB incidence.   

 

BCG has consistent ‘efficacy’ as a vaccine in murine models of TB – in this field, this is 

defined with respect to the ability to diminish Mtb bacterial burden upon subsequent TB 

infectious challenge – but even in mice, BCG vaccination never results in host 

elimination of subsequent TB infection.  Other candidate TB vaccines have not even been 

able to outshine this ‘protection’ provided by BCG in mice (Olsen, 2000; Skeiky, 2000; 

Orme, 2001; Doherty, 2004). In mice, BCG does induce high levels of IFN-γ production, 

and it has been argued that the magnitude of this response may be an immune correlate of 

protection (Al-Attiyah, 2004; Castanon-Arreola, 2005; Hovav, 2005). However, it is also 

evident that some candidate TB vaccines which elicit stronger IFN-γ responses than BCG 

are nonetheless less protective than BCG in terms of reducing TB bacterial burden. 

(Skinner, 2003). 

 

1.7 Environmental mycobacteria (Env) 

There are numerous species of mycobacteria that are free-living and ubiquitous in soil 

and open waters, termed Env, which are also known as non-tuberculous mycobacterium. 

Many of these are opportunistic pathogens. They rarely cause human disease, except 
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upon direct inoculation, but are common pathogens to people with  

immunocompromising conditions (Primm, 2004). 

 

1.8 Effect of environmental mycobacteria (Env) exposure on subsequent BCG 

vaccination 

Recent studies have proposed that immune modulation through exposure to Env affects 

the efficacy of BCG. These non-pathogenic mycobacteria belong to the same genus as 

Mtb and BCG, and many are genetically closely related to BCG. Human epidemiological 

studies have shown circumstantial evidence that efficacy of BCG vaccination is reduced 

in populations with high levels of exposure to Env (Black, 2001a; Black, 2002). BCG-

vaccinated individuals in the United Kingdom (UK) have post-vaccination increases in 

IFN-γ responses to PPDs from different species of Env, and the degree of change is 

correlated to the relatedness of the Env species to BCG, thereby providing evidence that 

memory T cells responding to BCG cross-react with Env antigens (Weir, 2006).  The 

efficacy of BCG has been demonstrated to be better in the UK compared to rural African 

areas such as Malawi, where exposure to Env is believed to be higher. The prevalence 

and magnitude of sensitivity to PPDs from Env before BCG vaccination have been 

shown to be higher in Malawi individuals than those in the UK, affirming that Env 

exposure is indeed higher in Malawi than in the UK (Black, 2001b, 2002, Weir, 2003). 

Malawi adults, upon BCG vaccination, have only moderate increases in IFN-γ and 

delayed type hypersensitivity (DTH) responses, while greater increases are seen in the 

UK individuals. The difference in BCG-attributable increases in IFN-γ and DTH 

responses together with the difference in Env exposure between these two populations 
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indicate a possible role of Env in interfering with the protective efficacy of BCG. The 

authors suggest that Env could possibly confer a level of immune protection to TB which 

subsequent BCG vaccination does not surpass. As a result, there may be little additional 

protection observed post-BCG in these populations, but the overall level of protection is 

still inadequate to completely prevent adult forms of TB. This ‘masking hypothesis’ thus 

suggests that Env-generated immunity masks the effects of BCG (Andersen and Doherty, 

2005). 

 

A second hypothesis – the ‘blocking’ hypothesis’ – is based on murine studies showing 

that prior sensitisation with certain species of Env reduces the replication of live BCG in 

the host, possibly through immune responses to antigens that are cross-reactive with BCG 

antigens (Buddle, 2002; de Lisle, 2005; Demangel, 2005). Brandt et al (2001) show that 

in mice exposed to live Env, subsequent BCG vaccinations result in transient immune 

responses that limit BCG multiplication, thereby reducing its numbers, and are unable to 

protect against TB. Another study also demonstrated that exposure to live Env, which are 

cleared with antibiotic treatment, followed by immunisation with BCG results in 

limitation in the replication of BCG in these mice as well as reduced protective effects of 

BCG against TB (Demangel, 2004). These studies support the ‘blocking’ hypothesis, 

which attributes the lack of BCG activity to the possibility that with prior Env exposure, 

memory responses cross-reactive with BCG antigens result in limitation of BCG 

multiplication thereby attenuating the desired effects of the live vaccine in continuously 

stimulating T cell responses. However, the specific nature of immunity invoked by Env 
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and therefore the reasons why the BCG showed reduced replication in Env-sensitised 

hosts were not addressed in those studies. 

  13  



CHAPTER 2   AIMS AND OBJECTIVES 
 

Epidemiological evidence suggests that the efficacy of Mycobacterium bovis bacille 

Calmette- Guérin (BCG) as a tuberculosis vaccine may be influenced by prior host 

sensitisation to environmental mycobacteria (Env). Recent work in our lab showed that 

mice sensitised with M. chelonae had cytotoxicity responses against autologous 

macrophages infected with BCG. Such cross-protective cytotoxic responses were most 

significant with M. chelonae amongst many Env species tested, and this formed the basis 

for the use of M. chelonae in our current project. This prior work of our lab thus suggests 

that it is cytotoxicity against BCG-infected macrophages that could be responsible for the 

observed reduction in BCG replication in Env-sensitised mice. However, another 

hypothesis may also be possible to explain the lack of BCG efficacy after Env 

sensitisation. A study by Zuany-Amorim et al (2002), showed that sensitisation with 

heat-killed M. vaccae (an Env species) gave rise to ovalbumin-specific regulatory T cells 

(Treg) that reduced the airway inflammation in mice with ovalbumin-induced 

eosinophilic airway inflammation. In our lab, after M. chelonae sensitisation followed by 

intranasal BCG administration, both lung BCG load as well as recruitment of 

inflammatory cells in these mice were markedly decreased. We showed that the adoptive 

transfer of a subset of T cells from Env-sensitised mice was responsible for this effect 

(Zhang et al, manuscript in preparation). This demonstrated that Env species, such as M. 

chelonae, have immunomodulatory effects that reduce the immune response to BCG.  
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In this project, murine M. chelonae sensitisation followed by intranasal BCG infection 

was used as the model to understand the phenomenon in humans of diminished vaccine 

efficacy of BCG after exposure to Env. We wished to test the hypotheses that 

cytotoxicity plays a role in immune responses induced by M. chelonae (as a 

representative of Env) against BCG, and that there was also a regulatory T cell response 

induced by Env sensitisation.  

 

The objectives of this study are: 

1) To determine if Env sensitisation in a murine model primes for cytotoxicity 

against BCG-infected cells, and the cell subsets and cytokines involved. 

2) To examine evidence for a regulatory T cell response invoked by Env 

sensitisation, and the functional consequences on subsequent live BCG exposure. 
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CHAPTER 3  MATERIALS AND METHODS 

 

3.1 Mice  

BALB/c mice between 5 – 6 weeks old were purchased from the Centre for Animal 

Resources (CARE) and Biological Resources Centre (BRC). Mice were maintained in the 

departmental animal facility, housed in individual isolator cages (Alternative Design, US) 

with filter tops. Food and water were supplied ad lib, and autoclaved beddings were 

changed twice a week. All experiments were carried out with the approval of the 

institutional animal care and use committee. 

 

3.2 Bacteria 

Mycobacterium chelonae derived from clinical samples cultured on Lowenstein-Jensen 

media, was a generous gift from Dr Pam Nye, University College London Hospitals 

(UK). Mycobacterium bovis BCG (Pasteur) vaccine strain was donated by Dr William 

Jacobs, Jr (Albert Einstein College of Medicine, USA). All species were subsequently 

cultivated on Middlebrook 7H10 agar (refer to appendices), supplemented with oleic 

acid-albumin-dextrose-catalase (OADC; Difco), and single colonies picked for growing 

in Middlebrook 7H9 broth (Difco) + 20 % Tween 80 (refer to appendices). Some cultures 

were stored in 50 % glycerol aliquots at -80 °C before use. 
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3.3 Preparation of heat-killed and live mycobacterial cultures 

Mycobacterium bovis Bacille Calmette-Guérin (BCG) and Mycobacterium chelonae 

broth cultures were grown to mid-log phase. Required volumes of culture were 

subsequently centrifuged at 2500 x g for 10 min and washed twice with sterile phosphate 

buffered saline (PBS, prepared with nanopure water) before re-suspension in PBS. This 

bacterial suspension was passed via a syringe through a 27 G needle to reduce clumping, 

before absorbance was measured at 600 nm to estimate bacterial numbers (1 A600 ~ 2x108 

bacteria). Bacterial suspensions were diluted to obtain 1 x 106 cells/ 10 μl PBS or 1 x 107 

cells/ 50 μl PBS for murine immunisation and lymphocyte restimulation respectively. 

These preparations were subsequently heat-killed at 95 °C for 10 min, and stored at -20 

ºC until use. For intranasal infection of mice, 0.15 - 1 x 106 live BCG were re-suspended 

in a final volume of 10 μl PBS. Such preparations were kept at 37 ºC prior to infection. 

All BCG preparations were subjected to purity check and counting of the actual colony-

forming units (CFU) – bacteria were re-suspended in Middlebrook 7H9 and serial 

dilutions plated on Middlebrook 7H10 agar. Bacterial colonies were counted 3 weeks 

after incubation at 37 °C. 

 

3.4 Murine immunisation and live BCG challenge 

Mice were immunised thrice at weekly intervals with 106 heat-killed M. chelonae in 100 

μl sterile PBS, prepared as described above, via the intraperitoneal (i.p.) route. If live 
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BCG was given, it was prepared with sterile PBS. The infected mice were sacrificed at 

one week or three weeks post-infection.    

 

3.5 Trypan Blue exclusion assay 

To count viable murine cells, 10 μl of cell suspension was added to 10 μl of 0.04 % 

trypan blue dye (Merck, Germany) at room temperature and mixed by pipetting. 

Subsequently, 10 μl of the mixture was loaded into a single chamber of a 

haemocytometer for cell counting. Non-viable cells were stained blue because of their 

inability to limit the entry of the blue dye, while viable cells remain clear. Only unstained 

cells were enumerated. 

 

3.6 Isolation of murine peritoneal macrophages 

Mice were sacrificed by CO2 asphyxiation at appropriate time points. To harvest 

peritoneal macrophages, 5 ml of ice-cold RPMI 1640 supplemented with 2 mM L-

glutamine (RPMI) + 10 % fetal bovine serum (FBS) was injected into the peritoneal 

cavity via an 18G needle and the peritoneum gently massaged before withdrawal of the 

peritoneal fluid. This process was repeated with a new needle, and all peritoneal fluid was 

subsequently kept on ice, until use. Cell suspensions were centrifuged at 400 x g for 10 

min at 4°C, and cell pellet re-suspended in 2 ml of RPMI + 10 % FBS. Cell numbers 

were obtained and cells seeded into tissue culture wells to obtain adherent cells after 

overnight culture. 
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3.7 Isolation of murine splenocytes and lung tissue 

Lung tissue was subjected to enzymatic digestion in 1 ml of 0.34 PZ-U/ ml collagenase 

(NB 4 standard grade; Serva, Germany) at 37 °C for 1 h, but splenocytes were not 

treated. Both organs were homogenised through sterile 40 μm nylon cell strainers (BD 

Falcon). The cells were suspended in 5 ml of RPMI + 5 % FBS, centrifuged at 350 x g 

for 10 min, and the pellet re-suspended in 1 ml of 0.17 M NH4Cl (refer to appendices) for 

90 sec to lyse the red blood cells. The cells were immediately diluted in an additional 5 

ml of RPMI + 5 % FBS, centrifuged at 350 x g for 10 min, and cells re-suspended in 

RPMI + 5 % FBS before cell numbers were counted.  

 

B cells were depleted from splenocytes using Dynabeads Mouse pan B (B220; Dynal 

Biotech ASA, Oslo, Norway) at 1 bead: 1 splenocyte ratio. According to the 

manufacturer’s instructions, briefly, splenocytes were labelled with anti-CD19 linked to 

magnetic beads, in RPMI + 5 % FBS for 30 min at 4 °C. After negative magnetic 

selection, a portion of the B cell-depleted splenocytes were seeded at 2 x 106 cells/ ml of 

RPMI + 5 % FBS in a 24-well plate (Greiner) for antigen restimulation while the 

remaining B cell-depleted splenocytes underwent further CD4-sorting (see below). All 

experiments utilising murine splenocytes were derived following this treatment. 

 

3.8 Positive cell selection using magnetic beads 

CD4+ and CD4- T lymphocytes from B cell-depleted splenocytes were derived using the 
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CD4+ positive selection MACS kit (Miltenyi Biotec). Splenocytes were incubated in 

staining buffer, with CD4-specific antibodies coupled to magnetic beads at 4 °C for 15 

min in the dark, according to manufacturer’s instructions. Following processing through 

the AutoMACS (automated Magnetic Cell Sorting; Miltenyi Biotec) column, 

magnetically-labelled cells were separated from non-labelled cells using the ‘positive 

selection’ mode. The labelled and non-labelled cells were collected from the positive and 

negative ports respectively, in 5 ml of RPMI + 5 % FBS. Cells were subsequently 

counted, centrifuged at 350 x g for 10 min before re-suspension in appropriate volumes 

of RPMI + 5% FBS for experiments.  

 

3.9 Bronchoalveolar lavage (BAL) 

Bronchoalveolar lavage (BAL) was performed immediately after sacrificing the mice 

subjected to BCG challenge. Sterile PBS (600 μl) was instilled via the trachea into the 

lungs twice, and the BAL fluid withdrawn and centrifuged at 600 x g for 5 min. The 

supernatant was stored at -20 °C prior to cytokine analysis whereas the cells were re-

suspended in 160 μl of PBS, counted and diluted, if required, to a maximum 

concentration of 2 x 105 cells/ 150 μl PBS. The 150 μl cell suspension was loaded onto 

the Cytospin 3 (Thermo Shandon Fisher Scientific) centrifuge and cells concentrated onto 

a single spot on glass slides after spinning at 550 rpm for 5 min. The slides were heat-

treated, fixed in methanol for 15 min and stained with 10% Giemsa (Applichem, 

Germany) for 20 min. The number of macrophages, neutrophils, lymphocytes and 

eosinophils were obtained by visually counting the cells under the microscope, and their 

adjusted numbers in 1 ml of BAL fluid was calculated.    
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3.10 Cytokine analysis by ELISA 

Total splenocytes, CD4+ and non-CD4+ (CD4-) splenocytes were seeded at 2 x 106 cells/ 

ml in each well of a 24–well plate for re-stimulation. After 48 h of stimulation with heat-

killed M. chelonae, supernatants harvested from cell cultures were assayed by Enzyme-

Linked Immunosorbent Assay (ELISA) for the presence of IFN-γ, TGF-β (BD 

Pharmingen), IL-10 (R&D Systems) and IL-2, IL-4 (BioLegend), using the respective 

kits according to manufacturer’s instructions. All assays were based on the sandwich 

ELISA. The ELISA plate (Co-star or BD Falcon) wells were coated with diluted 

cytokine-specific capture antibody overnight, blocked using assay diluent, and 

subsequently incubated with culture supernatant or diluted recombinant cytokine 

standards. Biotinylated antibodies specific for the respective cytokines were used as the 

detecting antibody, and streptavidin- or avidin- horse radish peroxidase (HRP) were used 

in conjunction with TMB substrate to produce a colormetric change. The absorbance was 

read at 450 nm with a correction wavelength of 570 nm using the Magellan ELISA reader 

(Tecan, Switzerland) and the amount of cytokine in the samples was derived by 

interpolation from the standard curve. The detection limit for the ELISA assay used was 1 

pg/ ml for IL-4 and IL-2, 31.2 pg/ ml for IFN-γ and 62.5 pg/ ml for TGF-β .  

 

3.11 BCG killing assay by peritoneal macrophages 

Freshly isolated peritoneal cells were seeded at 2 x 105 cells/ 200 μl RPMI + 5% FBS in 

96-well round-bottom tissue culture plates and incubated overnight at 37 °C in 
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humidified air containing 5% CO2. The non-adherent cells were removed the next day, 

and fresh medium added with ferric ammonium citrate (FAC) at a working concentration 

of 50 μg/ml (refer to appendices). Wells were included for counting macrophages seeded 

after trypsinisation of the adherent cells.  

 

The macrophages in each of the test wells were infected with live BCG in 10 μl of 

Middlebrook 7H9 medium, at a MOI of 10:1, for 4 hours at 37 °C with 5 % CO2.  

Middlebrook 7H9 medium alone was added to negative control wells. At the end of the 4 

hour incubation, extracellular BCG was removed by washing the wells gently with 100 μl 

of RPMI + 5 % FBS. Macrophages were lysed by adding 200 μl of freshly prepared 0.1% 

saponin (Sigma-Aldrich). The supernatants from each well were centrifuged at 2000 x g 

for 10 min, and re-suspended in 100 μl of 7H9 medium. Serial dilutions of the resultant 

bacteria suspension were cultured in triplicates and colonies counted after 3 weeks of 

incubation. 

 

3.12 Flow Cytometry 

3.12.1 Cell surface markers 

Lung cells designated for flow cytometry were PBS-washed and 0.5 – 1 x 106 cells/tube 

re-suspended in 50 μl of staining buffer (PBS + 0.5 % bovine serum albumin (BSA; 

Sigma). The cells were stained for various cell surface markers by adding 2 μl of relevant 

antibodies per tube and incubated for 30 min on ice in the dark. Unbound antibodies were 

removed by washing with 1 ml of ice-cold PBS, and cells were fixed in 4 % 
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paraformaldehyde. Samples were kept at 4 °C in the dark before analysis by the flow 

cytometer (Cytomics FC500, Beckman Coulter). Fluorescence was analysed by 

measuring fluorescent intensity of the fluorochromes used, i.e. fluorescein isothiocyanate 

(FITC), phycoerythrin (PE), allophycocyanin (APC) or phycoerythrin-cyanate 7 (PE-

Cy7).  

 

Mouse specific mAbs CD3-FITC (hamster IgG1, κ), CD4-APC (rat IgG2a, κ), CD3-PE 

(hamster IgG1 κ), CD11b-FITC (rat IgG2b κ), CD11c-APC (hamster IgG1) were 

purchased from BD Bioscience, while biotin-CD8 (rat IgG2a, κ), streptavidin PE-Cy7, 

and CD49b/Dx5 (pan-NK) –FITC (rat IgM, κ) were purchased from BioLegend, and 

F4/80-biotin (rat IgG2b, κ) from Serotec. These mAbs were used with relevant isotype 

controls. CD49b (Dx5) is mainly expressed on NK cells and NKT cells, and can be used 

for the identification and isolation of NK cells. CD3, CD11b, F4/80 and CD11c are 

cellular markers for determining lymphocytes, neutrophils, macrophages and dendritic 

cells respectively. To determine absolute cell numbers of each cell type, the samples were 

spiked with fixed volumes of known concentrations of Flow-Count Fluorosphere® 

(Beckman Coulter) which provided the reference for cell numbers. 

 

3.12.2 Intracellular cytokine and perforin staining 

Lung cells for perforin staining were used directly, while those for cytokine staining were 

seeded at 1 x 106 cells in 1 ml of RPMI + 10 % FBS per well in 24 well flat-bottom tissue 

culture plates. In each well, 1 μl of 10 mM ionomycin and 200 μg/ml of phorbol 
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myristate acetate (PMA), in the presence of 3 μM monensin (Sigma), were added. After 6 

h of culture, the cells were centrifuged at 300 x g, 4 °C for 10 min, washed once in 1 ml 

of ice-cold staining buffer, surface stained and fixed for 5 min as described above. The 

cells were then permeabilised in 1 ml of PBS + 0.1 % saponin + 1 % FBS (PBS-S), and 

incubated in 50 μl of PBS + 0.1 % saponin + 0.1 % BSA (PBS-S/BSA) for 30 min on ice. 

Cells were subsequently stained in the dark with IL-10 PE, IFN-γ-PE or perforin-PE 

mAbs in PBS-S/BSA for 30 min at 4 °C, washed with PBS-S and finally re-suspended in 

200 μl of PBS/BSA. The anti-mouse mAbs used were IL-10-PE (rat IgG2b, κ, 

BioLegend) or IFN-γ-PE (rat IgG1 κ, BD Bioscience) or perforin-PE (eBiosciences), 

with relevant isotype controls. Samples were then analysed on the flow cytometer within 

24 h. 

 

3.13 Cytotoxicity assay 

3.13.1 Principle of assay  

A non-radioactive CytoTox 96® Assay kit (Promega) was used to measure cell-mediated 

cytotoxic responses following antigen stimulation. The CytoTox 96® Non-radioactive 

Assay is a colorimetric assay that quantitatively measures lactate dehydrogenase (LDH), 

a stable cytosolic enzyme that is released upon cell lysis. The conversion of a tetrazolium 

salt (INT) into a red formazan product by LDH released in culture supernatants was 

measured by a 30 min coupled enzymatic assay. The amount of red formazan formed is 

proportional to the amount of LDH released, which is also proportional to the number of 

lysed cells when the appropriate controls were subtracted. The amount of the formazan 
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was measured at 490 nm, with the reference wavelength at 650 nm. The percentage 

cytotoxicity was calculated as: 

 

% Cytotoxicity  

= (Experimental – Effector Spontaneous – Target Spontaneous) × 100) 

           Target Maximum – Target Spontaneous 

3.13.2 Cytotoxicity assay experimental set-up 

Freshly isolated murine peritoneal cells were seeded in triplicates at 1 x 105 and 2.5 x 105 

in 200 μl of RPMI + 5 % FBS for PBS- and M. chelonae- immunised mice respectively, 

in 96-well round-bottom tissue culture plates. The adherent cells after overnight culture 

were used as target cells. Separately, to generate effector cells, total B cell-depleted 

splenocytes were seeded at 1.5 x 106 cells/ ml in tissue culture flasks, while CD4+, CD4- 

and total B-cell depleted splenocytes were seeded at 2 x 106 cells/ ml in 24 well tissue 

culture plates for antigen stimulation. 

 

After 48 h of antigen stimulation using heat-killed M. chelonae at a bacteria to cell ratio 

of 10:1, non-adherent effector cells were harvested for viability count, and the culture 

media replaced with fresh RPMI without phenol red (Invitrogen) + 2 % FBS + FAC at a 

working concentration of 50 μg/ml. To evaluate adherent cell numbers, in certain wells, 

these cells were trypsinised and counted by trypan blue exclusion. Target (adherent) cells 

were infected with live M. bovis BCG at an infection ratio (MOI) of 10:1, with added 

FAC at a working concentration of 50 μg/ml to enhance intracellular mycobacteria 

growth. Extracellular bacteria were removed after 4 hours by gently aspirating the 

supernatant and washing the wells once with fresh complete media. The effector and 
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target cells were then co-cultured at an effector to target cell ratio of 10:1 and the entire 

plate was centrifuged at 250 x g for 4 min to allow for maximum contact between the 

effector cells and target macrophages. The plate was then incubated for 12 h at 37 °C in a 

humidified chamber with 5 % CO2. At the end of the co-culture, the plate was again 

centrifuged at 250 x g for 4 min to obtain the cell-free supernatant. Certain control wells 

were also set up – effector cells added to wells without target cells (‘Effector 

Spontaneous’), target cells without effector cells (‘Target Spontaneous’), and target cells 

vigorously scraped off the plate, subjected to freeze-thawing for 10 sec to lyse cells 

completely (‘Target Maximum’).  

 

Fifty microlitres of supernatant from each well were transferred into 96-well flat-bottom 

non-sterile plates and 50 μl of reconstituted substrate mixture from the assay kit was 

added to each well for 30 min at room temperature in the dark. Thereafter, 50 μl of stop 

solution was added. Intensity of colour change in individual wells was measured using 

the Magellan ELISA Reader (Tecan) at 490 nm with reference wavelength at 650 nm and 

the percentage cytotoxicity was calculated according to the formula given above.  

3.14 Statistical analysis 

Means of triplicate well assays were compared using a two-tailed Student t test. Where 

the distribution of data (especially from replicate mice) did not conform to a normal 

distribution, the medians of the experimental groups were compared using the non-

parametric Mann-Whitney U test, and the 25th and 75th percentiles were described for the 

distribution. Differences between groups were considered statistically significant when p 

< 0.05. 
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CHAPTER 4   RESULTS 

 

4.1 Distribution of inflammatory cells in lungs of BCG-infected mice  

The distribution of inflammatory cells in the lungs of PBS- and M. chelonae -immunised 

mice following BCG infection was examined. Three weeks after intranasal BCG 

instillation, cells in the bronchoalveolar lavage fluid (BALF) of infected mice were 

concentrated on slides and the number of macrophages, eosinophils, lymphocytes and 

neutrophils counted, based on their morphology (Fig. 1).  Absolute cell counts of total 

lung cells, dendritic cells (DCs), neutrophils, T cells and macrophages extracted from the 

inflamed whole lung tissue 1 week post-challenge were measured by flow cytometry 

(Fig. 2). 

 

In the BALF, overall there was a lower number of inflammatory cells induced by BCG 

infection in M. chelonae-sensitised mice compared to control mice (Fig. 1B), although 

the differences were not statistically significant. The absolute number of total cells, DCs, 

neutrophils, T cells and macrophages in the inflamed lung tissue 1 week after BCG 

infection was also lower in M. chelonae-immunised mice compared to control mice (Fig. 

2). This was especially evident in total cell count and macrophage count, where there was 

an approximately 2-fold difference between M. chelonae-immunised and control mice 

(p<0.05, Fig. 2). 
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Fig. 1: Cell counts of immune cells in the bronchoalveolar lavage fluid (BALF) of M. 
chelonae (M.che) sensitised and control (PBS) mice after BCG infection. BALF of 
immunised and control mice 3 weeks after BCG infection was obtained by flushing the 
lungs with PBS. Cells from the BALF were concentrated on glass slides, Giemsa 
stained, and cell numbers enumerated under the microscope. A: Immune cells were 
differentiated according to their morphology. M: macrophage, N: neutrophil, L: 
lymphocyte, E: eosinophil. B: Number of different immune cell types per ml of BALF. 
Data represents an average of four individual experiments comprising four mice per 
experimental group. Results are expressed as medians, 75th and 25th percentiles. 
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Fig. 2: Absolute cell count of immune cells in the lungs of M. chelonae 
sensitised and control mice after BCG infection. Lung single-cell suspensions 
from immunised (M.che) and control (PBS) mice 1 week post BCG infection 
were stained with monoclonal antibodies against CD11c (dendritic cells, DC), 
CD3 (T cells), CD11b (neutrophils) and F4/80 (macrophages), and analyzed by 
flow cytometry. Fluorospheres of known concentration were used concurrently 
to obtain an absolute cell count. The figure represents an average of two 
separate experiments comprising four mice per experimental group. Results are 
expressed as medians, 75th and 25th percentiles. Statistical significance was 
determined by non-parametric Mann Whitney-U test. *p<0.05 comparing 
immunised with control mice. 
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In order to further evaluate the distribution of possible effector immune cells in the 

inflamed lung, the distribution of cells with particular markers of interest, namely CD3 (T 

cells), CD4, CD8 (T cell subsets), and CD49b (NK cell) were observed by flow 

cytometry (Tables 1, 2, Fig. 3). The percentage of CD49b+, CD3+ and CD8+CD4- cells in 

the total lung cell population cell populations in the lung remained relatively similar for 

sensitised and control mice (Table 1). The proportion of CD4+CD8- cells in the T cell 

population was significantly higher in M. chelonae-immunised mice compared to control 

mice (p<0.01, M. chelonae- vs PBS-immunised mice; Table 2, Fig. 3). This suggests that 

M. chelonae sensitisation prior to BCG infection induces the expansion of CD4+ cells to a 

greater extent than without pre-sensitisation. 

 
 

Table 1: Percentage of different subsets of cells out of total lung cells. Lung 
single-cell suspensions from immunised and control mice, 1 week post BCG 
infection, were stained with CD3, CD4, CD8 and/ or CD49b (natural killer cell, 
NK)-specific mAbs, followed by flow cytometry. Results are expressed as mean ± 
standard deviation (SD) of two individual experiments. Each experimental group 
comprises four mice. Statistical significance was determined by two-tailed Student’s 
t test. *p<0.01 comparing immunised with control mice. 
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Table 2: Percentage of different subsets of cells out of lymphocyte gate. Lung 
single-cell suspensions from immunised and control mice, 1 week post BCG 
infection, were stained with CD4, CD8 and CD3 (T cell)-specific mAbs, and 
analysed by flow cytometry. Data shown are gated on CD3 cells.The mean ± 1 
SD for the whole experimental group is shown (4 mice per group) and 
incorporates data from two independent experiments. Statistical significance was 
determined by two-tailed Student’s t test. *p<0.01 comparing immunised with 
control mice. 
 

Fig. 3: Distribution of different subsets of cells in the infected lung (gated on 
CD3+ T cells). Data shown are gated on CD3 cells. For the same experiment 
illustrated above, a single representative experiment is shown here, mean data 
for the experimental groups is presented in the table above.  

Fig. 3: Distribution of different subsets of cells in the infected lung (gated on 
CD3

  

+ T cells). Data shown are gated on CD3 cells. For the same experiment 
illustrated above, a single representative experiment is shown here, mean data 
for the experimental groups is presented in the table above.  
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4.2 Cytokine expression in different cell subsets in BCG-infected lungs  
 

It was postulated that differential cytokine expression may account for the observed 

differences in inflammatory responses between M. chelonae-sensitised and control mice 

one week after BCG infection. Thus, the percentage of lung T cells producing IFN-γ or 

IL-10 and their surface markers (CD4+ or CD8+) in the infected mice was analysed by 

flow cytometry (Figs. 4-6, Tables 3, 4).  

 

A predominant percentage of IFN-γ producing T cells were CD4+ in both control and 

sensitised mice (CD4+: CD8+ ratio 1.6 and 2.2 respectively; Fig. 4A). M. chelonae-

sensitised mice had a higher proportion of CD4+ cells among T cells producing IFN-γ 

(55.5 ± 5.9 %) compared to control mice (48.1 ± 7.3 %). In particular, among the IFN-γ 

producing T cells, cells of the CD4+CD8- phenotype were of a significantly higher 

proportion in M. chelonae-sensitised mice (45.8 ± 4.8 %) compared to control mice 

(35.75 ± 2.5 %) (p<0.05). 

 

Within each of the CD4+ and CD8+ T cell populations, a higher percentage of IFN-γ+ 

cells was observed in the lungs of sensitised mice compared to control mice (Table 3, 

Fig. 5). This difference was more obvious in the CD4+ T cell population, where 13.3 ± 

0.81 % of CD4+ cells was producing IFN-γ in sensitised mice, as compared to 8.8 ± 2.5 

% in control mice (p<0.05, Fig. 5, Table 3). 
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Fig. 4: Distribution of various cell types among CD3+ cells producing IFN-γ or IL-
10. Lung single-cell suspensions from immunised and control mice, 1 week post BCG 
infection, were stimulated with PMA and ionomycin, and treated with monensin for 6 
h. Cells were stained for expression of  CD4, CD8, CD3, and either IFN-γ or IL-10 
before analysis by flow cytometry. The analysis was focused only on cytokine-
positive cells within the CD3 (T cell) gate. Results for the whole experimental group is 
shown (4 mice per group) and are expressed as mean % of each cell subset out of all 
IFN-γ+ (A) or IL-10+ (B) cells ± 1 SD. Results incorporate data from two independent 
experiments. Statistical significance was determined by two-tailed Student’s t test. 
*p<0.05, **p<0.001 comparing immunised with control mice. 
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In summary, with respect to cytokine production in BCG-infected lungs, CD4+ cells 

comprised the predominant population of cells producing IFN-γ and IL-10. In addition, it 

was generally observed that a higher level of cytokine, in M. chelonae-sensitised than 

control mice, was secreted within the CD4+ and CD8+ populations. 

 

Considering the CD4+ and CD8+ T cell populations separately, a higher percentage of 

cells producing IL-10 was observed in sensitised mice compared to control mice (Fig, 

Table 4, Fig. 6). Within the CD4+ T cell population, 14.4 ± 1.9 % in sensitised mice were 

producing IL-10, as compared to 10.2 ± 2.2 % in control mice, while in the CD8+ 

population, 10.6 ± 1.8 % and 6.7 ± 1.3 % was producing IL-10 for sensitised and control 

mice respectively (Fig. 6, Table 4). 

  

 

A similar trend for CD4+ T cells was observed for IL-10 production. The CD4+ cells were 

predominant over CD8+ cells in the IL-10+ T cell population of both experimental groups 

of mice (CD4+: CD8+ ratio 1.6 and 2.2 respectively in control and M. chelonae-sensitised 

mice; Fig. 4B). Considering only the T cells producing IL-10, M. chelonae-sensitised 

mice had a higher percentage in the CD4+ population (61.6 ± 6.9 %) compared to control 

mice (47.5 ± 7.3 %). This was particularly evident in the CD4+CD8- population (47.1 ± 

0.6 % and 34.0 ± 2.4 % for sensitised and control mice respectively, p < 0.01, Fig. 4B).  
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Fig. 5: IFN-γ production in lung T cell subsets. Lung single-cell suspensions from immunised and control 
mice, 1 week post BCG infection, were stimulated with PMA and ionomycin, and treated with monensin for 6 h. 
Cells were stained for expression of CD4, CD8, CD3, and  IFN-γ before analysis by flow cytometry. (A): 
Distribution of CD4 and CD8 T cells, after gating on CD3 cells, in  PBS and M. chelonae-immunised mice. (B): 
Percentage of IFN-γ+ cells, gated on CD4+CD8- and CD8+CD4- cells. A single representative experiment is 
shown in A and B, the group mean data is presented in the table below. 35 



Table 3: Percentage of CD4+ or CD8+ cells expressing IFN-γ (CD3 gated 
cells). Based on the same experiment described above in Fig. 5, the mean ± 1 SD 
for the whole experimental group is shown (4 mice per group) and incorporates 
data from two independent experiments. Statistical significance was determined 
by Student’s t test. *p<0.05 comparing immunised with control mice. 
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Fig. 6: IL-10 production in lung T cell subsets. Lung single-cell suspensions from immunised and control mice, 1 
week post BCG infection, were stimulated with PMA and ionomycin, and treated with monensin for 6 h. Cells were 
stained for expression of CD4, CD8, CD3, and  IL-10 before analysis by flow cytometry. (A): Distribution of CD4 and 
CD8 T cells, after gating on CD3 cells, in  PBS and M. chelonae-immunised mice. (B): Percentage of IL-10+ cells, 
gated on CD4+CD8- and CD8+CD4- cells. A single representative experiment is shown in A and B, the group mean data 
is presented in the table below. 
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Table 4: Percentage of CD4+ or CD8+ cells expressing IL-10 (CD3 gated 
cells). For the same experiment illustrated above in Fig. 6, the mean ± 1 SD 
for the whole experimental group is shown (4 mice per group) and 
incorporates data from two independent experiments. Statistical significance 
was determined by Student’s t test. *p<0.05 comparing immunised with 
control mice.  
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4.3 Distribution of CD4+ and CD4- cells in the spleen 

 

Splenocytes from mice were subjected to red cell and B cell depletion, then magnetically 

sorted into CD4+ or CD4- cells. This was done to compare the cytotoxic activity of the 

two cell populations, in control and M. chelonae-sensitised mice, with and without 

subsequent BCG infection. The relative distribution of the two cell types was first 

assessed by direct cell counting after sorting. As shown in Table 5, the proportions of 

CD4+ and CD4- cells were similar in both sensitised and control mice, and the 

proportions were not significantly affected by BCG infection.  

 

 

 

 

 

 

 

Table 5: Percentages of CD4 (CD4+) and non-CD4 (CD4-) cells in murine splenocytes 
in presence or absence of BCG infection. Single-cell suspensions of splenocytes from 
immunised and control mice were magnetically sorted into CD4 or non-CD4 cell 
portions. Cells were counted and numbers of each cell population calculated as a 
percentage of the total splenocyte cell number. Data are expressed as mean ± 1 SD. 
Results for the whole experimental group is shown (4 mice per group) and incorporates 
data from four (non-infected) and five (BCG infected) independent experiments. 
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4.4 Cytotoxic activity following BCG challenge 

Prior work in this lab has found that, comparing M. chelonae-immunised and control 

mice subjected to live BCG intra-nasal infection, the BCG load in the lungs of sensitised 

mice was 1 log lower than in control mice, at 3 weeks post-infection. It was postulated 

that this may be due to lymphocytes in M. chelonae-sensitised mice having higher 

cytotoxic activity than those in control mice. Thus, the cytotoxicity of different cell 

fractions in the infected murine spleens, against autologous BCG-infected macrophages 

was investigated.  

 

Cytotoxicity against BCG-infected autologous target cells was measured in splenocytes 

from M. chelonae-immunised and control mice 1 week and 3 weeks following intranasal 

BCG infection. All splenocytes were stimulated with heat-killed BCG for 48 h before 

carrying out the cyotoxicity assay.  

 

At 1 week post-infection, total splenocytes and CD4+ splenocytes from immunised mice 

had similar cytotoxic activity as the same cell subsets from PBS mice (Fig. 7A). CD4- 

splenocytes, on the other hand, showed lower cytotoxicity in sensitised mice, and a 3-fold 

difference was seen between sensitised and control mice (Fig. 7A). In contrast, at 3 

weeks post-infection, M. chelonae-sensitised mice showed 5- and 6-fold higher cytotoxic 

activity in CD4+ and CD4- cells respectively, compared to control mice (Fig. 7B). The 

difference was less marked in the total splenocyte population – there was approximately 

2-fold higher cytotoxicity in sensitised mice (Fig. 7B). 

 

  40  



 

  41  

A 

B 

Total CD4+ CD4-

%
 c

yt
ot

ox
ic

ity
/ P

B
S

 m
ic

e

0

100

200

300

400

500

600

700
Total CD4+ CD4-

%
 c

yt
ot

ox
ic

ity
/ P

BS
 m

ic
e

0

20

40

60

80

100

120

Total CD4+ CD4-

%
 c

yt
ot

ox
ic

ity
/ P

B
S 

m
ic

e

0

50

100

150

200

250
C 



 

  42  

Fig. 7: % cytotoxicity attributable to M. chelonae sensitisation. Splenocytes from 
immunised and control mice were sorted into different fractions (CD4+ or CD4-) and 
re-stimulated in vitro with heat-killed M. chelonae. Cytotoxicity of stimulated cells 
against autologous BCG-infected macrophages was quantified. The ratio of 
cytotoxicity exhibited by cells of immunised relative to control mice is shown (i.e. 
cytotoxicity of immunised mice/PBS mice x 100%). Data represent a mean of 3 
independent experiments. The graphs show cells from mice 1 week (A), 3 weeks (B) 
after intra-nasal BCG infection and without BCG infection (C). 
 
 



 

4.5 Cytotoxic activity in M. chelonae-sensitised mice  

 

The same experiments, except with heat-killed M. chelonae stimulation for 48 h, were 

performed in the sensitised and control mice without BCG challenge, to see if this 

differential cytotoxicity already existed prior to the BCG infection. This was proven to be 

true, but the differences were less prominent than in the infected mice. Total splenocytes 

in sensitised mice had almost 2-fold higher cytotoxic activity in comparison to control 

mice (Fig. 7C). For CD4+ and CD4- cell subsets, the M. chelonae-sensitised mice showed 

approximately 2-fold and 1.5-fold higher cytotoxicity respectively, compared to control 

mice (Fig. 7C).  

 

The data on cytotoxicity suggest that M. chelonae sensitisation induces better cytotoxicity 

than without sensitisation, be it at a pre-infection or 3-weeks post-infection stage. It is 

notable though, that at 1 week post-BCG challenge, M. chelonae sensitisation did not 

seem to have an augmentative effect on cytotoxicity compared to control mice. 

 

4.6 Perforin expression in BCG-infected lungs  

 

To look at differential expression of perforin as a marker of cells with cytotoxic potential 

within infected murine lungs, the percentage of CD4+, CD8+ or CD49b+ cells expressing 

perforin in mice with or without pre-sensitisation with M. chelonae was obtained by flow 

cytometry (Fig. 8, Table 6).  
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Fig. 8: Distribution of perforin producing cells in the lung. Lung single-cell 
suspensions from immunised and control mice, 1 week post BCG infection, were 
stained for expression of CD4, CD8, CD49b (NK cell), and perforin before 
analysis by flow cytometry. The analysis was focused only on perforin-positive 
cells. % of each cell subset within the perforin-expressing population is expressed 
as mean ± 1 SD. Results for the whole experimental group is shown (4 mice per 
group) and incorporates data from two independent experiments. 
 



 

When only the perforin-positive cells were considered, the CD4+CD8- were found to be 

the predominant perforin-producing cell type, accounting for approximately 70% of the 

perforin+ cells, in both M. chelonae-sensitised and control mice (Fig. 8). Although not 

statistically significant, sensitised mice had a greater percentage of lung cells expressing 

perforin that were CD4+CD8- than control mice (Fig. 8).  However, in the control mice, 

the CD49b+ population accounted for a higher percentage of the perforin-expressing cells 

than in sensitised mice (4.7% vs 1.9% of perforin+ cells respectively, Fig. 8). 

 

 

 

 

 

 

 

 

 
Table 6: Percentage of perforin-expressing cells within each immune cell subset 
in the lung. Lung single-cell suspensions from immunised and control mice 1 
week post BCG infection were stained for expression of CD4, CD8, CD49b and 
perforin before analysis by flow cytometry. Each cell subset was gated separately, 
to derive the % of perforin-expressing cells within each cell subset. The mean ± 1 
SD for the whole experimental group is shown (4 mice per group) and incorporates 
data from two independent experiments. 
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In both sensitised and control mice, there were 3-fold more CD4+ cells producing 

perforin than CD8+ cells (Table 6). Considering perforin expression within each 

individual cell population (i.e. CD4+, CD8+ and CD49b+), the proportion of CD4+ and 

CD8+ cells producing perforin was similar in sensitised and control mice. However 

within the CD49b+ cell population of M. chelonae-sensitised mice, 14.7% expressed 

perforin, whereas only 7.6% of the CD49b+ cells in control mice were perforin-positive 

(Table 6).  

 

4.7 Macrophage mycobactericidal activity 

 

The mycobactericidal activity of macrophages has an important role in limiting BCG 

growth. As M. chelonae sensitisation is known to result in reduced BCG survival in vivo 

3 weeks after infection, the reduced BCG load could be related to increased cytotoxic T 

cell activity and/or improved macrophage bactericidal activity. To evaluate if the 

macrophages of sensitised and control mice differed in their BCG killing abilities, 

peritoneal macrophages from each group of mice were infected in vitro with BCG for 4 

hours and the surviving bacteria counts were subsequently enumerated by culture. There 

was no difference in the BCG colony-forming units in the wells derived from sensitised 

and control mice (3.1 ± 3.2% vs 3.4 ± 4.3% of the original amount of BCG inoculated for 

PBS- vs M. chelonae-immunised mice), indicating that M. chelonae sensitisation had no 

direct effect on the ability of macrophages to kill BCG. 
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4.8 Cytokine production following M. chelonae sensitisation 

 

It was postulated that the differential cytotoxicity and differential recruitment of immune 

cells to the BCG infected lungs attributable to M. chelonae sensitisation could be related 

to the cytokines produced by the cells post-sensitisation. Cytokines were assayed 1 week 

after M. chelonae or PBS immunisation, as well as 1 and 3 weeks after sensitisation 

followed by intranasal BCG infection. Only splenocytes were studied as it was not 

possible to obtain sufficient lung cells to perform the same assay.  Total splenocytes, 

CD4+ or CD4-splenocytes were cultured for 48 hours with either heat-killed M. chelonae 

(pre-infection mice) or BCG (post-infection mice), and cytokine production measured in 

their supernatants by ELISA. 

 

4.8.1 IL-10 production  

 

IL-10 was investigated as a possible reason for the reduced inflammatory cell recruitment 

to the lungs of infected mice.  In the pre-infection mice, in all the different cell fractions, 

M. chelonae-immunised mice showed significantly higher levels of IL-10 production 

than PBS-immunised mice (p<0.01, p<0.001 and p<0.05 for total splenocytes, CD4- and 

CD4+ cells respectively; Fig. 9A). In cells from M. chelonae-sensitised mice, CD4- cells 

produced the highest amount of IL-10, and this was significantly higher than the levels of 

IL-10 produced by total splenocytes (p<0.05) and CD4+ cells (p<0.001; Fig. 9A). 
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Fig. 9: IL-10 production by splenocytes from M. chelonae-immunised and control (PBS) mice pre- and post-BCG 
infection. Splenocytes from immunised and control mice pre-infection (A), 1 week post-infection (B) and 3 weeks post-
infection (C), were sorted into different fractions (CD4+ or CD4-) and re-stimulated in vitro with either heat-killed M. 
chelonae (S = stimulated) or PBS (US = unstimulated). The concentration of secreted IL-10 in the cell supernatants was 
determined by ELISA. Data shown in A and B represent one of two independent sets of experiments with similar results. 
Results in A and B are expressed as medians, 75th and 25th percentile of four mice per experimental group. Statistical 
significance was determined by non-parametric Mann-Whitney U test. Data shown in B represent a single experiment, 
expressed as mean ± 1 SD. Statistical significance for B was determined by Student’s t test. *p<0.05, **p<0.01, 
***p<0.001 comparing immunised with control mice. §: p<0.05, §§: p<0.01, §§§: p<0.001 comparing between different 
cell types in immunised mice. N.D. = not detectable or below detection limit of the assay kit. 
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One week following BCG infection, a similar trend was observed. Total splenocytes and 

CD4- cells of M. chelonae-sensitised mice secreted more IL-10 than the corresponding 

fractions in control mice (p<0.01; Fig. 9B). There was no difference in IL-10 production 

by CD4+ cells between immunised and PBS mice. The secretion of IL-10 was 

approximately 5-fold higher in total splenocytes and CD4- cells than CD4+ cells in M. 

chelonae-sensitised mice (p<0.01; Fig. 9B). At 3 weeks post-BCG challenge, IL-10 

levels remained higher for all cell subsets in sensitised mice than control mice (p<0.01 

for total and CD4+ cells; Fig. 9C). However, it is evident that the levels of IL-10 

production were decreasing in the order pre-infection > 1 week > 3 weeks post-infection. 

 

4.8.2 IL-4 and TGF-β production 

 

IL-4 and TGF-β are known to have immunosuppressive roles, and are cytokines 

produced by certain types of regulatory T cells (Mills and McGuirk 2004). In view of the 

reduced inflammatory cell count in lungs of M. chelonae-sensitised mice, these cytokines 

were studied in the splenocytes of these mice and the PBS-immunised mice. Both 

cytokines were not detectable in any of the splenocytes fractions, for both M. chelonae-

immunised and control mice, with and without BCG infection.  
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4.8.3 IL-2 production  

 

As IL-2 is produced by proliferating T cells, the IL-2 levels secreted by different subsets 

of splenocytes were studied. In the pre-infection mice, the levels of IL-2 were marginally 

higher in total and CD4+ splenocytes of sensitised mice than PBS mice, but this was not 

statistically significant. IL-2 was not detectable in CD4- cells in both groups of mice (Fig. 

10A).  At both 1 and 3 weeks following BCG challenge, the total splenocytes in M. 

chelonae-sensitised mice produced higher levels of IL-2 than control mice, but the IL-2 

production in CD4- splenocytes was still not detectable (Fig. 10B, 10C). 



  51      
        

Fig. 10: IL-2 production by splenocytes from M. chelonae-immunised and control (PBS) mice pre- and post-BCG infection. 
Splenocytes from immunised and control mice pre-infection (A), 1 week post-infection (B) and 3 weeks post-infection (C), were 
sorted into different fractions (CD4+ or CD4-) and re-stimulated in vitro with either heat-killed M. chelonae (S = stimulated) or 
PBS (US = unstimulated). The concentration of secreted IL-2 in the cell supernatants was determined by ELISA. Data shown in 
A and B represent one of two independent sets of experiments with similar results. Results in A and B are expressed as medians, 
75th and 25th percentile of four mice per experimental group. Data shown in B represent a single experiment, expressed as mean 
± 1 SD. N.D. = not detectable or below detection limit of the assay kit. 
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4.8.4 IFN- γ production  

 

IFN- γ is known to be a cytokine required for good Th1 type immunity against 

pathogenic mycobacteria, and it is important for activation of macrophages as well as 

cytotoxic T cells. It was postulated that differential IFN- γ production may account for 

the differences between the mice in cytotoxicity and reduction of BCG load.  

 

Mice subjected to M. chelonae sensitisation showed a small deficit of IFN-γ secretion 

relative to control mice in total (p<0.05) and CD4- (not statistically significant) cells in 

the splenocytes (Fig. 11A). On the other hand, CD4+ cells in M. chelonae-immunised 

mice secreted significantly more IFN-γ than control mice (p<0.05; Fig. 11A). Comparing 

IFN-γ levels among the different subsets of splenocytes in the mice post-sensitisation but 

prior to BCG infection, CD4- cells were the predominant IFN-γ producing population, 

secreting the highest levels of IFN-γ (p<0.05 CD4- vs CD4+; Fig. 11A).  

 

In contrast, after BCG infection, M. chelonae sensitisation clearly induced an increased 

secretion of IFN-γ in infected mice. All subsets of splenocytes in sensitised mice had 

higher levels of IFN-γ than in PBS mice at 1 week post BCG infection (p<0.05 and 

p<0.01 for CD4- and CD4+ cells respectively; Fig. 11B). CD4+ cells were the major 

contributor to production of IFN-γ, in the M. chelonae-sensitised mice. However, just as 

for IL-10, the levels of IFN-γ produced in all subsets generally were lower in the mice 1 
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week post-infection than in the immunised mice without infection. Data for mice 3 weeks 

post-infection were not available.  

 

Overall, the cytokine studies suggest that significant levels of IFN-γ, IL-10 and IL-2 

induction in the spleen may be attributable to M. chelonae sensitisation, but compared to 

the lung cytokine-expressing cells, the cell types involved in each organ may be different.  



Total (S) CD4 - (S) CD4 + (S)

IF
N

g 
(n

g/
m

l)

0

5

10

15

20

* 

** 

Total (S) CD4 - (S) CD4 + (S)

IF
N

g 
(n

g/
m

l)

0

5

10

15

20

M.che
PBS

       * 

     * 

§ §

§ 
§

A B 

 

  54      
        

Fig. 11: IFN- γ production by splenocytes from M. chelonae-immunised and control (PBS) mice pre-infection and at 1 
week post BCG infection. Splenocytes from immunised and control mice pre-infection (A) and 1 week post-infection (B), 
were sorted into different fractions (CD4+ or CD4-) and re-stimulated in vitro with either heat-killed M. chelonae (S = 
stimulated) or PBS (US = unstimulated). The concentration of IFN- γ secreted in the cell supernatants was determined by 
ELISA. Data shown represent one of two independent sets of experiments with similar results. Results are expressed as 
medians, 75th and 25th percentile of four mice per experimental group. Statistical significance was determined by non-
parametric Mann-Whitney U test. *p<0.05, **p<0.01, comparing immunised with control mice. §: p<0.05, §§: p<0.01 
comparing between cell types in immunised mice. N.D. = not detectable or below detection limit of the assay kit.  
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CHAPTER 5   DISCUSSION 
 

Why BCG fails to protect against TB in certain human populations is of much research 

interest as it affects current efforts to design an improved TB vaccine. Several studies 

have proposed that pre-exposure to Env has an adverse effect on the efficacy of 

subsequent BCG vaccination (Black, 2001; de Lisle, 2005; Demangel, 2005). However, 

the immunological mechanisms behind this phenomenon have not been explained. Prior 

work in this lab has shown that cytotoxicity against autologous BCG-infected 

macrophages in M. chelonae-sensitised mice was higher than in PBS-immunised control 

mice, and also relative to several other Env. In addition, BCG counts in the lungs 3 weeks 

after intra-nasal infection were 1 log lower in M. chelonae-immunised mice relative to 

control mice. This project therefore sought to further explore the role of cytotoxicity as a 

possible reason for the Env effect on BCG as well as the cell types and cytokines 

involved.  

 

5.1 Cytolytic activity of different cell subsets 

For many years, helper T cells were the main focus in numerous TB-related studies due 

to their ability to activate macrophage killing of intracellular mycobacteria by producing 

IFN-γ. In recent years, however, studies have shown that cytolytic T cells, mainly CD8+ 

cells, also have a role to play in immune responses against Mtb (Sousa, 2000; van 

Pinxteren, 2000). It would seem that lysis of cells harbouring mycobacteria would be an 

effective protective mechanism in mycobacteria infections, hence the importance of 

cytolytic cells against intracellular pathogens such as Mtb. This has clearly been seen in 
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murine studies where CD8 T cells are necessary for limiting Mtb infection (Flynn, 1992; 

Sousa, 2000; van Pinxteren, 2000; Rolph, 2001), although some studies have also 

suggested otherwise (Mogues, 2001).  

 

In this study, both CD4+ and CD4- splenocytes in M. chelonae-sensitised mice induced 

greater cytotoxicity against autologous BCG-infected macrophages than control mice 3 

weeks following BCG challenge (Fig. 7B). As the ability of macrophages alone in M. 

chelonae-immunised mice to kill BCG was the same as control mice (refer to Section 

4.7), the difference seen in cytotoxicity of sensitised mice is likely to be due to the 

effector cells and not the macrophages.  

 

Natural killer (NK) cells have also been involved in immune responses against TB, as 

shown by increased NK activity in active pulmonary TB patients, as well as an increase 

in NK cell number after BCG or Mtb infection in mice (Yoneda, 1983; Falcone, 1993; 

Junqueira-Kipnis, 2003).  However, as NK cell depletion in mice infected with Mtb does 

not affect bacterial load in the lung, it is proposed that NK cells probably contributes to 

early resistance, but do not have a substantial role in TB immunity (Junqueira-Kipnis, 

2003). Given the low percentage of perforin producing cells that were CD49b+ (Fig. 8), 

as well as the low proportion of CD49b+ cells present in the total lung population (Table 

1), it was likely that the role of NK cells in killing BCG-infected lung cells was small. 

Nonetheless, the percentage of CD49b+ cells producing perforin was higher in M. 

chelonae-immunised than control mice (Table 6), suggesting the possibility that M. 
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chelonae sensitisation increased the killing activity of NK cells against BCG, thereby 

contributing to clearing of the infection to some extent. 

 

5.2 Cytotoxic CD4+ T cells  

 
CD4+ T cells are commonly known to have ‘helper’ functions. They have been 

characterised as Th1 or Th2 cells based on the cytokines produced, and how these affect 

cellular and humoral immunity. There is now abundant evidence that CD4+ cells can also 

have cytotoxic functions, with lytic capacity observed in cell lines and CD4+ T cell clones 

of mice and humans (Lukacher, 1985; Littaua, 1992; Mahon, 1995; Norris, 2001; Aslan, 

2006). In addition, recent work has reported the presence of cytolytic CD4+ cells in vivo 

in a range of human pathologies such as viral infections (HIV, viral hepatitis and CMV) 

(Appay, 2002; Zaunders, 2004; Aslan, 2006). It is suggested that in infection immunity, 

especially in chronic viral infections, CD4+ CTLs have a major effector role in limiting 

the infection, as the frequency of such CTLs increases with disease, but decreases with 

clearance of infection. Furthermore, CD4+ CTLs have been shown to include antigen-

experienced (i.e. memory) cells in vivo, and are shown to display a surface phenotype and 

functional profile characteristic of terminally differentiated effector cells (Appay, 2002; 

Aslan, 2006). This implies CD4+ CTLs as fully functional effector cells, and not merely 

being present in infections.  

 

This project showed that in sensitised mice, CD4+ cells are the most important subset of 

splenocytes involved in cytotoxicity against BCG-infected cells. This supports prior work 
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in our lab showing that in the M. chelonae-sensitised mice, the splenocytes that are 

depleted of CD4 cells showed significantly reduced cytotoxicity. The cytolysis mediated 

by CD4+ T cells may act via the perforin-granzyme pathway, since at 1-week post-BCG 

infection, CD4+ cells in the lung comprised the predominant cell subset among perforin-

expressing cells in both M. chelonae- and PBS-immunised mice (Fig. 8). An increased 

frequency of CD4+ CTLs expressing granzymes and perforin, compared to healthy 

controls, is observed in humans with viral infections, indicating perforin as a possible 

mechanism of cytolysis (Aslan, 2006). More directly, cytolytic activity of CD4+ CTLs 

has been shown to be mediated by perforin in an ex vivo experiment, where cytotoxicity 

was markedly reduced upon inhibition of the perforin pathway (Appay, 2002).  

 

It has been reported in murine studies that cytotoxic activity of CD4+ CTLs are primarily 

perforin dependent rather than Fas/ Fas-ligand dependent, but only in the absence of 

CD8+ cells (Williams and Engelhard 1996; Williams and Engelhard 1997).  CD4+ CTLs 

act via both pathways in the presence of CD8+ cells, indicating a possible role of CD8+ 

cells in regulating the perforin-mediated pathway of cytotoxicity (Williams and 

Engelhard 1997). However, it is observed in gld transgenic mice with defective Fas 

ligand, that cytotoxicity of CD4+ cytolytic T cells is substantially reduced, suggesting that 

in other model systems, the Fas /Fas ligand may be the main pathway of murine CD4+-

mediated cytotoxicity (Hanabuchi, 1994; Ju, 1994; Stalder, 1994). This pathway was not 

studied in the current project, and warrants further investigation. To elucidate the 

mechanisms behind the cytotoxic activity of CD4+ cells, it will be useful to inhibit the 
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different cytolytic pathways, e.g. through the use of anti-Fas antibodies or concanamycin 

A, and subsequently measure the cytotoxicity of CD4+ cells in the future.  

 

5.3 Cytotoxicity is higher at later time-points after BCG infection 

 

As shown in Fig. 7C, M. chelonae sensitisation induced higher cytotoxicity of autologous 

BCG-infected macrophages than PBS-immunised mice in all splenocyte fractions. This 

trend was augmented at 3 weeks post-BCG infection, but was not observed at 1-week 

post-infection (Fig. 7A, 7B). The influence of M. chelonae on immunity following 

subsequent pathogenic mycobacteria (i.e. BCG) exposure is likely to be due to induction 

of memory T cells by M. chelonae — others in our lab have shown that the population of 

CD44+ CD62L- cells is expanded in the sensitised mice. As such, it was likely that the 

higher cytotoxicity observed in sensitised mice compared to control mice pre-infection 

and at 3 weeks following BCG challenge was due to memory T cells cross-reactive to 

common mycobacterial antigens. The difference in cytotoxicity seen between 1-week and 

3 weeks post-BCG challenge could be attributable to the presence of regulatory T cells 

(Treg).  This is evidenced by the higher levels of IL-10 secreted by splenocytes at 1-week 

post-BCG challenge than at 3 weeks in sensitised mice (Fig. 9B, 9C).  These may have 

contributed to the lower inflammatory cell recruitment and thus lower cytotoxicity in M. 

chelonae-sensitised mice at 1-week post-BCG infection. (Figs. 2, 9B) 
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5.4 Possible induction of regulatory T cells by M. chelonae sensitisation 

M. vaccae (an Env species) induces ovalbumin-specific CD4+CD45RBlow Treg cells that 

secrete IL-10 and TGF-β. These have been shown to reduce the airway inflammation in 

mice with ovalbumin-induced eosinophilic airway inflammation, after sensitisation with 

heat-killed M. vaccae (Zuany-Amorim, 2002). Our present data show that recruitment of 

inflammatory cells to the lungs of M. chelonae -sensitised mice was decreased 1 week 

after BCG challenge, as shown by cell counts in the BALF (Fig. 1) and absolute cell 

counts in the lung (Fig. 2). This could be attributable to an upregulation of Treg cells in 

the lung after M. chelonae sensitisation. 

 

Cells of the CD4+CD25+ phenotype are known to be Treg cells, which secrete IL-10, and 

have been shown to exist in TB patients (Dieckmann, 2005; Guyot-Revol, 2006; 

Shevach, 2006). Extensive flow cytometric phenotyping of cells from M. chelonae-

sensitised mice performed previously in our lab has shown that the sensitisation markedly 

increases the regulatory T cell proportions – these cells are 

CD4+CD25+CD27+Foxp3+CD44+CD62L-. There is some debate as to whether such Treg 

cells actually diminish the anti-mycobacterial immunity of the host, or are simply a 

response to the inflammation induced by TB infection (Guyot-Revol, 2006; Quinn, 

2006). In the lungs of sensitised mice at 1-week post-infection, CD4+ T cells were the 

predominant subset among IL-10 producing cells (Fig. 4B). Moreover, comparing M. 

chelonae- and PBS-immunised mice, the percentage of IL-10+ cells that were CD4+CD8- 

was significantly higher in M. chelonae-sensitised mice (Fig. 4B). M. chelonae 

immunisation also induced a significant increase in the proportion of CD4+ and CD8+ 
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cells producing IL-10 in the lung (Table 4, Fig. 6). These data provide evidence that at 

the site of BCG instillation, which is also the organ with maximal inflammation, there is 

upregulation of Treg responses that is augmented by prior M. chelonae-sensitisation.  

 

It is intriguing to note that, in contrast to the lungs, the highest production of IL-10 in the 

spleens of these M. chelonae- immunised mice appears to be attributable to the CD4- 

cells, which produced the highest amounts of IL-10 (Fig. 9B). We also know from prior 

work in this lab, that splenic BCG counts were several logs lower than in the lungs. It is 

possible that suppressor T cells are present in the CD4- population of splenocytes. This 

could explain the very low levels of IL-2 in this cell fraction pre- and post- infection (Fig. 

10). CD8+ cells have been known to produce IL-10 in multiple sclerosis (Killestein, 

2003). Additionally, recent studies have demonstrated the presence of a CD8+CD25+ 

subset of cells in MHC class-II deficient mice exhibiting regulatory activity, as well as a 

phenotypically distinct subset of CD8+ cells secreting IL-10 that is a lineage of 

suppressor T cells (Bienvenu, 2005; Noble, 2006). Hence, it is possible that the high 

levels of IL-10 seen in the CD4- fraction of splenocytes were secreted by a subset of 

CD8+ suppressor cells. Such cells warrant further characterisation in my future work. 

 

IL-10 has been shown to reduce presentation of mycobacterial antigens to CD4+ T cells 

by inhibiting cathepsin-S dependent processing of MHC class II invariant chain in human 

macrophages infected with BCG (Sendide, 2005). This suggests that IL-10 induction is 

an immune evasion strategy of mycobacteria to enable their persistence in the host. It is 

therefore also possible that the IL-10 levels observed in the culture supernatants (Fig. 9) 
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were attributable to BCG-infected macrophages. However, given that IL-10 was more 

significantly expressed in splenocyte fractions of sensitised mice that had significant 

cytotoxic activity than in control mice, this explanation is less likely. Instead, it is more 

possible that Tregs secreting IL-10 were down-regulating the murine inflammatory 

responses to BCG, similar to the requirement for IL-10 in suppressing excessive 

intestinal inflammation observed in IL-10 deficient mice (Kuhn, 1993; Berg, 1996). 

Hence, whereas Tregs may have an important role in reducing the potentially immuno-

pathogenic inflammatory responses in TB disease, this mechanism may also likewise 

reduce the host’s immune cell recruitment and inflammatory responses which are crucial 

for the response to live BCG administered as a vaccine. To further confirm that Treg cells 

are responsible for the IL-10 production in our model system, Treg phenotyping (looking 

for FoxP3+ CD25+ CD127- cells) in the infected lung at both 1 week and 3 weeks 

following BCG infection will be done in future work. 

 

5.5 Role of IFN-γ in cytotoxic responses  

The CD4+ cells were the predominant population producing IFN-γ in the BCG-infected 

lung, and this was augmented by M. chelonae-sensitisation. This was in spite of the 

elevated expression of IL-10 in such mice. IFN-γ, a proinflammatory cytokine produced 

in T helper 1 (Th1) responses, activates macrophages by inducing phagosome maturation 

and upregulating their antimicrobial molecules, such as iNOS and reactive oxygen 

species, against intracellular Mtb. IFN-γ is also known to be involved in T cell cytolytic 

activity, and in some TB- as well as non-TB-related studies, and the extent of cytotoxicity 

is proportional to levels of IFN-γ production (Maraskovsky, 1989; Diamond and Gill 
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2000; Pathan, 2000). However, with respect to our experimental system, total and CD4- 

splenocytes had less IFN-γ production but higher cytotoxic activity in sensitised mice 

(Figs. 7C, 11A). The only exception was the splenic CD4+ cell fraction, which showed 

more than 2-fold higher cytotoxic activity in M. chelonae- than PBS-immunised mice, 

correlating with the higher levels of IFN-γ produced by the former (Fig. 7C, 11A). At 1-

week post-BCG infection, splenocytes generally produced higher levels of IFN-γ in 

sensitised than control mice, with CD4+ cells secreting 4-fold higher IFN-γ than the other 

subsets of cells in immunised mice (Fig. 11B). However, cytotoxic activity of total and 

CD4+ cells was similar in immunised and control mice, while CD4- cells in sensitised 

mice showed 3-fold lower cytotoxicity than control mice (Fig. 7A). The above results 

suggest that in our experimental system, the cytotoxicity of sensitised mice against BCG-

infected cells may not be entirely linked to IFN-γ production levels.  

 

5.6 Effects of Env sensitisation on BCG-induced immunity 

Together with evidence from earlier work in this lab showing that lungs of M. chelonae-

sensitised mice had lower BCG counts than that of control mice 3 weeks post-BCG 

challenge, pre-sensitisation to Env, such as M. chelonae, induced better cytotoxicity and 

would seem protective if BCG infection were considered as a surrogate model for TB 

infection. This is consistent with the observation that priming with Env provides, to some 

extent, protective immunity to other mycobacteria (Brown, 1985).  

 

However, the dual effects of Env-sensitisation described in this study – induction of 

cytolytic T cells against BCG-infected macrophages and down-regulation of 
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inflammatory responses to BCG – are not beneficial for the prospects of BCG as a 

vaccine. BCG works only as a live vaccine, and immune responses to Mtb wanes if BCG 

is no longer viable (Olsen, 2004). As such, the replication of BCG is essential for it to be 

effective as a vaccine. Immunity primed by Env sensitisation blocks BCG replication, 

thereby reducing its protective efficacy, so such priming is disadvantageous to BCG as a 

vaccine (Brandt, 2002).  Nonetheless, this effect may be species-specific. Demangel et al 

have shown that murine sensitisation with certain species of Env reduces BCG counts 

without diminishing protective efficacy against Mtb challenge (Demangel, 2005). 

 

The data presented show that M. chelonae could induce Treg cells, thereby reducing the 

extent of inflammation at the site of infection, and yet Env-sensitisation clearly also 

increases the cytolytic activity of T cells against infected macrophages. Whereas Env 

sensitisation has a negative influence on BCG vaccine, the direct effects of immunity 

conferred by such sensitisation may be helpful in the response to pathogenic TB 

infection. A good balance of regulatory and activated pathogen-specific cells in Env-

immunised mice, where inflammatory responses are not excessive, yet appropriate 

effector T cell responses are maintained, would be optimal. This could be the basis on 

which another well-studied Env species, M. vaccae, may work as a TB vaccine – it is 

currently undergoing clinical trials (Stanford and Stanford 1994; Corlan, 1997; Waddell, 

2000; Mwinga, 2002; Vuola, 2003). It is important to note, though, that pre-sensitisation 

to naturally acquired doses of Env are unlikely to protect fully against TB, since rural 

populations in many African countries have been shown to have high levels of exposure 

to Env but still have high TB incidence.  
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It has also been shown, in a small scale study, that when the BCG vaccine is given early 

at birth, before possible exposure to Env, the longevity of the recall response to BCG, and 

hence the BCG-attributable immunity, is still lower in Malawi, where Env exposure is 

high than in the UK where Env exposure is low (Ben-Smith, communicated in ‘TB 

Vaccines for the World 2006’ conference, Vienna). It is possible that Env exposure even 

after BCG vaccination may limit the memory response induced by BCG. We intend to 

model this in young mice and extend the present study to understand how M. chelonae 

priming affects post-BCG memory responses.  

 

Given our present understanding on the effects of Env priming, such effects would be 

likely to affect any vaccine approach that is based on live BCG.  This raises doubts of 

whether development of future vaccines against TB should revolve around live BCG as 

the mainstay with or without genetic modifications. Unfortunately, such is the approach 

of at least three new TB candidates on clinical trial now (Bosch 2004; Matee, 2007).  

This is of concern as populations in most high TB incidence areas also have high Env 

exposure. Perhaps emphasis in research for new TB vaccines should therefore be focused 

on vaccines that do not cross-react with Env antigens – candidates in this direction would 

include subunit vaccines based on TB-specific proteins such as ESAT-6, which are not 

found in BCG.  
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5.7 Conclusion 

This study demonstrated that murine M. chelonae sensitisation induced an increase in 

cytotoxic responses against autologous BCG-infected macrophages, both pre- and post- 

BCG challenge. CD4+ T cells were the major T cell subset involved in cytotoxicity 

primed by M. chelonae against BCG and peforin played a role in this process. Upon M. 

chelonae- sensitisation and subsequent infection with BCG, there was a reduction in lung 

inflammatory responses, and increase in IL-10 production. Taken together with the 

phenotypic characterization of the cells involved by others in our lab, this suggests the 

induction of Tregs which diminish the recruitment of inflammatory cells to the site of live 

BCG vaccination. This is the first work that elucidates the actual immune mechanisms 

that govern the epidemiologically observed phenomenon of reduced BCG vaccine 

efficacy in populations exposed to environmental mycobacteria.  
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APPENDICES 

Middlebrook 7H9 broth 
 

Distilled 7H9 broth 50% 20% OADC 
Volume 

water powder Glycerol Tween 80  
400 ml 356.4 ml 1.88 g 1.6 ml 2 ml 40 ml 

 
All ingredients, except OADC, were added and autoclaved at 121 °C for 15 min. OADC 
was added before use. 
 
Middlebrook 7H10 broth 
 

Distilled 7H9 broth 50% 20% OADC 
Volume 

water powder Glycerol Tween 80  
400 ml 353.6 ml 7.6 g 4 ml 2 ml 40 ml 

 
All ingredients, except OADC, were added and autoclaved at 121 °C for 15 min. The 
agar was left to cool to 55 °C before OADC was added. The liquefied agar was aliquoted 
into 60 mm petri dishes and allowed to set. 
 
 
Complete supplement for BCG infection (10X FAC) 
 

Distilled Ferric Ammonium Sodium 
Volume 

water Citrate (FAC) glutamine 
L-

asparagine 

50 ml 50 ml 25 mg 1 g 1g 
 
All ingredients were added at room temperature and mixed by stirring.  Medium was 
sterilised by filter through a 0.22 μm filter.  
 
 
Red blood cell lysis solution (0.17 M NH4Cl) 
 

Nanopure Ammonim 
chloride Volume 

water (NH4Cl) 
10 ml 10 ml 90 mg 

 
All ingredients were added at room temperature and mixed by stirring.  Adjust pH to 7.3 
and autoclave at 121 °C for 15 min. Solution was stored at 4 °C before use. 
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