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SUMMARY 

 

The contemporary product design-to-manufacturing process involves a group of 

knowledge-intensive applications and functions. A distributed concurrent and 

collaborative engineering environment is thus desirable to assist the integration of all 

the phases of engineering activities together. System integration via network 

communications has been intensively studied. However, the challenges are still 

tremendous and the solutions vary in different application contexts and different 

development practices performed by different researchers. There are very few 

formulated system patterns to follow or effective approaches to dictate addressing 

relevant issues with good traceability from functional requirements to system 

implementation details.  

 

This thesis presents an effort to develop a network-integrated engineering environment 

while emphasizing on the pursuit of a formulated system integration approach with 

promising applications to a broad range of engineering process types. Collectively, this 

range of processes is called feature-driven engineering processes, every sub-process 

within which involves the handling of feature-based models, either feature model 

creation, feature model mapping, or model transformation from feature-based models 

to ordinary geometrical models. The proposed integration approach is centered on a 

concept of CAX framework which borrows ideas from the CAD framework, a notion 

widely used in the area of EDA (Electronic Design Automation) to turn collections of 

individual electronic design tools into coherent, effective and user-friendly design 

environments. The study was conducted in the context of developing a prototype for 
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CAD/CAM of progressive dies. It has been treated as the vehicle for validating the key 

concepts proposed in this research.  

 

Development of the desired integrated engineering environment based on the CAX 

framework approach began from characterizing the feature-driven engineering 

processes. This includes process decomposition, analysis, modeling and re-engineering, 

and identification of special properties required to be taken into account. The 

characterization effort in this study generates a group of IDEF0 activity models, a set 

of design change propagation properties and a special design transaction model. The 

key for complete system specification is to conceptually construct the CAX framework, 

which provides interfaces for all participating engineering tools. The framework 

consists of a workbench application accessible by all tool users, the framework kernel, 

a management database, and the raw design data base. Two steps are taken for 

framework construction. The first step is to make all implementation decisions to 

conceptualize a “skeletal” framework with the management database schema being 

empty. The second step is to develop the management database schema or relevant 

information models and further make the database coherently co-work with other 

components in the framework. Object-orientation has permeated the full system 

development process from beginning to end.  

 

The information models for database schema include two parts: one for realizing PDM 

(Product Data Management), the other for process management. The full course of 

information modeling was incremental, i.e., PDM, process management, and overall. 

The kernel of the PDM model is a novel design versioning scheme supporting design 

change propagation management. For the process management, it is modeled as a 
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semi-structured design flow allowing dynamic specification while the process is in 

execution. For the examination of the integration capabilities of the derived network-

integrated engineering environments, especially on how CE (Concurrent Engineering) 

strategy is supported, a demonstration session running on the developed prototype was 

worked out. The results show that the system exhibits advantages, which indirectly 

demonstrates the effectiveness of the proposed CAX framework integration approach. 

 

The thesis is concluded by a recommendation for CAD/CAM system developers to 

adaptively use this approach in other comparable areas if their targeted design-to-

manufacturing process can be roughly classified as a feature-driven engineering 

process. 
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CHAPTER 1   

INTRODUCTION 

 

Successful product design and development practice is reflected by the achievement of 

good design specifications in the design and manufacturing documents (or electronic 

files) and as short a lead time as possible for the development process. Typically, 

developing a quality product in a reduced lead time is heavily dependent on the team 

members’ knowledge, the cooperation among them and the tools they use. Among 

these three factors, the importance of the engineering tools for a company is becoming 

more outstanding with the constant increase of their functionalities enabled by new 

information technologies. One trend which can be seen in the past years is that much 

of the engineers’ knowledge has been coded into the computer system and many 

engineering tasks can be automatically completed by the newly created or revamped 

intelligent tools. Moreover, many cooperation activities have also become an inner 

function of the computer-based tools which support strategies， such as CSCW 

(Computer-Supported Cooperative Workspace). With more task-specific tools being 

introduced to assist engineering processes, engineers are no longer expected to 

separately use individual tools. Instead, they are immersed in an integrated engineering 
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environment consisting of a set of logically related tools, which operate in a 

coordinated manner.  

 

This thesis presents a systematic approach for the development of network-integrated 

engineering environments. Due to their complexity, such environments cannot be 

implemented in an ad hoc manner. Rather, their system architectures have to be 

designed either by following well-formulated patterns or based on creative use of the 

generic configuration principles of computer-based systems. Formal models have to be 

built to describe the data and operations of the system both precisely and at a high 

level of abstraction. Implementation strategies have to be devised to bring together the 

concepts and technologies involved.  

 

The current introductory chapter is an overview of the thesis. Section 1.1 takes a closer 

look into the nature of computer-integrated engineering environments, focusing on 

engineering process decomposition via feature-based modeling and mapping, as well 

as sub-processes reunification via advanced integration infrastructure. Section 1.2 

describes the objective of the research, its expected values and the research scope. 

Section 1.3 introduces several main fundamental notions used throughout this thesis. 

Finally, section 1.4 presents an overview of the rest of this thesis.  

 

1.1. “Integrated View” of Computer-Integrated Engineering Environment 

Contemporary network-integrated engineering environment has evolved from 

Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems 

which emerged in the early 1960’s and were originally designed for single users 

working in isolation to carry out a specific engineering task. One of the most important 
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underlying thrusts for the evolvement comes from industry’s ever-increasing 

requirements of design automation. While there have been considerable efforts devoted 

to improve design automation of a complex engineering process by decomposing it 

into small sub-processes to be easily automated, one can also observe a large number 

of later yet almost parallel efforts to integrate all the related data, sub-processes, 

activities, tools and resources so as to automate the process as a whole. Feature-based 

modeling and mapping plays an important role in engineering process decomposition 

as well as integration due to its ability to bridge the link between design and 

manufacturing. Advanced integration infrastructure makes it possible to coordinate and 

harmonize the activities which go on in the integrated system. Discussed in the 

following sub-sections are some details about these three interrelated subjects, 

evolvement of the Computer Assisted Product Development Environment (CAPDE), 

the roles of feature-based modeling and mapping in CAPDE and the need for advanced 

integration infrastructure.  

 

1.1.1. Evolvement of the CAPDE 

As shown in Fig. 1.1, since the 1970’s, there has been a growing trend in 

manufacturing firms towards the use of computer systems to perform many of the 

functions related to product design and development. Many types of computer-based 

engineering tools have been introduced to provide diverse services to the user, with 

notions, such as CAD, CAPP (Computer-Aided Process Planning), CAM, etc. Due to 

the limitation of information technology in the early days, traditional computer-based 

engineering tools dominated in providing interactive assistance to a single user to 

create, modify, store, and render product drawings, virtual solid models or 

specification documents within a specific engineering discipline in a specific product 
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life-cycle phase. With the advances of information technology, intelligent abilities 

were gradually encapsulated into the computer-based tools and the scope of design 

automation tools was extended from specific applications to integrated systems across 

disciplines and life-cycle phases (Teti & Kumara 1997). The prevalence of networked 

computing platforms since the 1990’s made another big improvement in that the 

engineering tools were able to benefit from the distributed computation paradigm. Not 

only was the engineering environment able to be designed as a monolithic application 

located on a standalone computer for single users’ use, but it was also able to leverage 

the resources on other computers and/or share information and knowledge with others 

in a multi-user environment (Regli 1997). Along a parallel trend, the past years also 

observed the improvements in the understanding of engineering activities from the 

perspective of application of computer technology. This helps to work out the best way 

to partition an entire product development process into sub-processes supported by 

individual tools and then deploy them enterprise- or virtual enterprise-wide so that an 

optimal integrated engineering environment is finally realized. For example, the 

Concurrent Engineering (CE) strategy has been used to fine-tune an integrated system 

by ensuring that the maximum engineering concurrency would be allowed (Prasad 

1996). While there are many approaches to use these strategies combining special 

computing technologies to develop optimal engineering environment, a methodology 

centered on feature modeling and mapping is especially significant for a wide category 

of products. The roles of feature modeling and mapping are discussed in the next sub-

section. 
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1.1.2. The Roles of Feature Modeling and Mapping Technologies in CAPDE 

It is widely recognized that an important point of a product development cycle is to 

generate an appropriate product information model, which is a common 

communication medium for designers, analysts, manufactures, and other product 

development people. The downstream product development data, such as that for 

tooling, manufacturing, assembly planning, etc., are then generated directly or 

indirectly from this product model. As such, the information encapsulated in the 

product model needs to be packageable and transportable among the participating 

agents in such a way that the intents and concerns of each are neither lost nor 

unaddressed. Features are seen by many researchers as the natural and most 

appropriate packaging of design information for manufacturing purposes to bridge the 

missing link between design and manufacturing (Dixon et al., 1989; Shah 1988). Using 

features, users can express easily the design intent by manipulating features directly, 

eliminating tedious intermediate steps. Also, the feature databases allow reasoning 

systems to perform tasks such as heuristic optimizing, manufacturability analysis, etc. 

It also contains knowledge to facilitate numerical control machine programming, 

Implementation 
strategy 

Engineering 
environment 

Manufacturing 
systems 

CAM CAD CAE CAPP CAD/CAPP/CAM/PDM 

Numerical 
Control 

(NC) 

DNC, 
CNC 

Flexible 
manufacturing 
system (FMS) 

Rapid prototyping 
Virtual prototyping 
Virtual manufacturing 

Application of Artificial 
Intelligence, CE, DFX, etc. 

1950 1960 1970 1980 1990 2000

Fig. 1.1. Evolvement of the computer-assisted product development environment 

(Tian et al., 2002) 
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process planning, and automatic finite element meshing (Shah 1988). In summary, 

features are an essential component of any intelligent design system (Dixon et al., 

1989). According to Hsiao (1990), three methods are used for creating feature-based 

models to virtually represent a product in CAPDE, namely, human-assisted feature 

definition, automatic feature recognition/extraction and design-by-features.  

 

The most important significance of feature technology is probably its assistance in 

engineering process automation. It is generally known that product design and 

development requires considerable human experience and decision making. Moreover, 

the engineering activities involved are classified into two types: creative and routine. 

While the conceptual design process can be seen as creative and too difficult to 

automate due to a lack of understanding of its nature, the downstream engineering 

processes are not exactly creative. As a routine design, the sequence of processes is 

well-structured, and thus feasible to be simulated in an intelligent CAPDE. This 

strategy is especially useful for a product that has a large portion of its lifecycle in 

developing its manufacturing process compared to developing its conceptual product 

model. In another words, it has a long development cycle that can be viewed as a step-

wise process chain. Each component process is used to accomplish a part of the 

engineering tasks, assisted by a specific application which has its own dedicated 

internal data model and can provide a set of desired engineering renderings. 

Specialized technology knowledge and modus operandi have to be used for problem 

solving in each component process (Zimmermann et al., 2002). One of the most 

important types of knowledge is how current tasks are dependent on those carried out 

by its previous processes or reflected in the data flows, to what extent and in what way 

the current process data model is dependent on that of the previous processes. Feature-
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based model is thus also the best option to be adopted as the corresponding 

intermediate models for all constituent component processes. This is because it can 

promote maximum extent of automation when generating these models using an 

approach called feature mapping (also called feature conversion or feature 

transformation): generating the new set of feature instances B from the given set A 

through knowledge-based reasoning supported by feature mapping knowledge base 

(Zimmermann et al., 2002).  

 

1.1.3. The Need For Advanced Integration Infrastructure and Associated System 

Building-up Methodologies 

Although feature technologies provide a mechanism to bridge the missing link between 

design and manufacturing, make the consecutive models interoperable and thus allow 

for expanded design automation across engineering processes, the overall process 

automation does not come free. Much further effort has to be invested to integrate the 

constituent feature-based models and the engineering processes for a specific subset of 

a product development cycle. It can be imagined that in such an engineering 

environment, engineers work on and manipulate various kinds of feature-based models 

which have to compatibly work together. More precisely, changes made in one model 

should be propagated to other models, and an overall integrity for the models must be 

maintained (Karsai & Gray 2000). Consider the simplest case of an engineering 

process that is composed of two models a and b and assisted with Tool A and Tool B 

respectively. Model b is dependent on Model a. Tool A is of feature-based modeling 

and Tool B is of feature-based mapping. Here, the feature-based modeling and 

mapping makes the semantic relationship between models a and b understandable by 

the computer system. Accordingly, much of the design effort can be saved by using 
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Tool B because of its ability to automatically derive the instance features in b 

according to its relationship with certain instance features in a. However, there are still 

several unaddressed factors which affect the design efficiency and productivity. For 

example, if the two tools are isolated and standalone, it will leave the designer with the 

problem of frequently entering and exiting two different environments to handle the 

tools separately since the engineering process is inherently iterative, as well as moving 

his design data from one tool to the other through file transfer. Furthermore, since 

there may exist several versions of models a and b in an engineering practice, the 

engineers should take the responsibility to ensure which pair of a and b are of 

compatible version throughout the development cycle even after a long period of 

interval for some reasons. Typically, the real-world product development process is a 

complex one and there are more than two tools involved. The amount of design data to 

be handled then multiplies accordingly. Moreover, what is also lacking in the complex 

real-world case includes the overall support for managing the design process. As a 

result, the need for complex data and process management in engineering tools 

integration suggests a need for advanced integration infrastructure. 

 

This need can be explained in that there exist some common functions that have to be 

shared by the constituent tools in the engineering process. These functions, the product 

data and process management in the above case, should hold semantics related to the 

global view of the overall engineering process. Further examination will indicate that 

the shared functions are unnecessarily limited to these two types aforementioned. A 

possible alternative is a common knowledge repository function (Zha et al., 2003), the 

design of which can be considered simultaneously with that of the data management 

system. Another more general alternative comes from the research on distributed and 
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collaborative CAX systems, which partition the functions of an application between 

the client side and the server side. It is found that a large group of distributed 

engineering applications (tools) usually constitute common modules, such as a solid 

modeler (Mervyn et al., 2003) which can be deployed and shared on the server side so 

that the computation efficiency and reusability of generic components can be enhanced. 

As a result, in order to be compatible with the concept of distributed design 

(Maropoulos 1995) and provide shared functions for the constituent tools, today’s 

engineering environment is increasingly demanding advanced integration 

infrastructure. Many other parts should also be integrated into this infrastructure apart 

from the above core functions, e.g., platforms (computers plus operating system 

software), physical networks and networking hardware, network protocols and network 

operating systems. Corresponding to this constantly advancing integration 

infrastructure, the associated methodologies are also required to be developed to solve 

all the relevant problems in the course to contrive a soundly integrated system. 

 

1.2. Research Objectives, Expected Outcomes and Research Scope 

The need for advanced integration infrastructure and associated system building-up 

methodologies has prompted remarkable efforts to be devoted to this direction. 

Chapter 2 gives a comprehensive literature review on these efforts. Observations based 

on the literature review are summarized and documented in advance at this instant to 

justify the research objectives, which are presented subsequently.  Expected outcomes 

and research scope are also detailed in this section. 

 

1.2.1. Summary of the Open Issues for Integrating Feature-driven Engineering 

Processes in Terms of Published Literatures 
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Although network-integrated product development environment is not a completely 

new topic in manufacturing engineering, there are still many significant aspects of such 

an environment that have not been receiving sufficient study. The community still 

lacks an effective systematic methodology for developing an ideal integrated system to 

cover the entire product development cycle for a specific type of products, especially 

one that has a structured feature-driven engineering process. In summary, the 

following issues are still open.  

• There hardly exist any generic and theoretically-strong approaches, following 

which the system developer can successfully develop a workable system. Most of 

the systems are given as they are, with no explanation on why these systems are 

devised in a particular way. 

• The functionality of the existing systems does not seem to be comprehensive 

enough, which is probably due to the fact that the underlying integration 

infrastructure may not be well-structured and flexible enough. Incorporating 

further preferable functional modules into an existing system may either be 

extremely difficult for the system developer because of the overwhelming re-

engineering efforts needed, or unwelcome to the end-users because of the 

unbearable operation complexity. 

• Most of the existing systems do not consider the encapsulation of the product 

development process knowledge, by which the users are able to identify what part 

of the tasks have been completed, what are ongoing and what are to be done next. 

Management of the process is fully up to the end-user, who may lose control in the 

complex and iterative product development process.  

• Data integration in most existing systems does not seem to operate at a well-

defined granularity level. It either operates at too fine a granularity level (such as 
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dots, lines, etc.), which makes the system inflexible, or at too coarse a granularity 

level (such as isolated electronic documents), which makes the system too loosely 

integrated such that heavy external coupling is required (Liang et al., 1999). It can 

also be noticed that much attention has been given to avoid traditional piecemeal 

implementation which causes the engineering environments to become a group of 

“automation islands”, but very few works have dealt with another important issue 

of avoiding hard-binding resilient modules together into a rigid monolithic super-

tool. 

• Most of the systems do not make full use of existing and newly-emerging 

information technologies, such as the OO (Object-Oriented or Object Orientation) 

modeling technologies, knowledge-based techniques and the Internet-based 

technologies. The product database management was either not taken into account 

or too limiting to provide strong knowledge reuse functions based on rich 

representation schemata and/or sufficient inference facilities. The performance of 

the system also needs to be further improved to meet the end-user’s ever-

demanding requirements. 

 

1.2.2. Research Problem Statement 

The objective of the research reported in this thesis was to study the integrated product 

development environment in the context of using a new approach that has a strong 

theoretical foundation. This approach is borrowed from the field of Electronic Design 

Automation (EDA). The key notion for this approach in its original area is related to 

using a CAD framework to integrate diverse logically related electronic CAD tools. In 

design automation in manufacturing engineering, not only CAD tools are involved, but 

other types of tools, such as that of CAM, CAE, CAPP, etc., may also be involved. The 
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collection of CAD, CAM, CAE and many other tools is usually called CAX, which 

means “computer-aided anything”. The notion of the CAD framework is extended to 

the CAX framework in the current study. Specifically, the problems that are mainly 

investigated in this research include: 

• How can a CAD framework methodology be conceptually applicable to the 

development of an integrated engineering environment for products which have a 

feature-driven process? 

• What are the adaptations that should be made to tailor the CAD framework to the 

CAX framework? 

• How to use the CAX framework to develop a network-integrated engineering 

system? 

• Is the CAX framework approach as effective as expected with adequate 

demonstrations on a physically developed prototype? 

 

The significance of studying these problems is reflected in several aspects, which will 

be elaborated in the following sub-sections. 

 

1.2.3. Development of a Prototype with a Long-term Objective for Industry 

Application 

The most apparent value of this research is that the result of the prototype may be used 

by the industry with some further developments according to the methodologies 

presented in this thesis and some other widely-known technologies. The scenarios 

supported by the developed system are not purely imaginary like those proposed by 

many other researchers, e. g. Urban et al. (1996), Qiang et al. (2001), Gerhard et al. 

(2001), Wang & Zhang (2002), Li et al. (2004), etc. They are abstracted from a real-
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world complex product development process of a type of sheet metal products using 

progressive dies. The implementation decisions are made by using the latest 

information technologies which are both challenging and easily available. Compared 

with existing systems in the prototype-focused area, like the NUS IPD system (Cheok 

& Nee 1998a, b; Jiang et al., 2000; Zhang et al., 2002), it has many advantages. Firstly, 

the system is more flexible with more function modules (engineering tools) easily 

integrated into the system. The scope is not limited to all aspects of die design, i.e., 

product feature modeling, unfolding, nesting, die operation planning and die 

configuration. Die manufacturing, i.e., die parts process planning and NC codes 

generation, can also be easily integrated into the system. Secondly, the data 

management and process management functions based on the CAX framework 

methodology are newly created and embedded into the system. Product data integrity 

has been improved with easy access and without data redundancy based on a shared 

product database, which also serves as a communication medium for the engineers 

involved. Engineering activities to drive product realization from upstream stage 

towards downstream stages are easier to master for the end-users and less error prone 

with maximum cross-process automation. Thirdly, the single-user operation mode has 

been extended to a multi-user one, which allows data/knowledge exchange and sharing 

among the engineering team-members and supports cooperation among participating 

engineering tools working in different computers that are geographically dispersed 

across the enterprise. Fourthly, the CAX framework provides intelligent facilities to 

upgrade the product database to a knowledge base, so that the design knowledge 

embedded in the past product models created by any team-members using the relevant 

engineering tools is naturally captured and easily retrieved when needed to help the 

users to interrogate solutions for the current case. This also lays a foundation to use 
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advanced Case-Based Reasoning (CBR) technology to further enhance system 

intelligence.  

 

1.2.4. Theoretical Value of the Present Research 

When developing an integrated engineering environment, the challenges are numerous 

and the solutions are diverse. The current study is theoretically important in this broad 

area in that it is not just another novel example system with some new technologies 

(such as the Internet technology) adopted and with plain implementation decisions 

described at a detailed level. Priority was firstly given to capture the underlying 

common principles to meet the challenges in a large range of engineering 

environments similar to what the case study has indicated. The proposed notion of 

feature-driven engineering processes abstracted from the case study may improve the 

understanding on how a category of complex engineering processes are decomposed 

into sub-processes and in what way these sub-processes interrelate with each other. 

The formulation of the captured principles and the success of using them in developing 

a concrete system may imply that a new system integration pattern, the CAX 

framework, has been discovered to enrich the current system design theories. Like 

other integration patterns, such as the Multi-Agent System (MAS), the CAX 

framework pattern provides reusable architecture templates to address recurring 

problems and implementation hints to ensure a strong likelihood of achieving a 

successful solution when it is tailored to any other applicable context. Emulated from 

its parents, the CAD framework, the CAX framework technology itself has a number 

of advantages as a system integration methodology. Benefits include cutting down 

product development time, increasing performance and quality of products under 

engineering, and making the development process less error-prone.  
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1.2.5. Other Potential Application Areas of the Research 

As conceived and tested in this research, the concept of feature-driven engineering 

process and its integration approach in a CAX framework have been intentionally 

biased to the development of an integrated engineering environment for sheet metal 

products using progressive dies. However, they may be also valuable outside this 

important area. A variety of product development cycles can be characterized as a 

feature-driven process and thus the current approach is applicable to them. For 

example, the development cycle of injection-molded products is very similar to that of 

the sheet metal stampings and also needs a set of feature modeling and mapping tools. 

For another example, most of Integrated Product and Process Design (IPPD) systems 

have a structured process pattern resembling the feature-driven engineering process 

model and thus might be promising application areas of the CAX framework approach. 

Here is a demonstrative IPPD scenario in a modern manufacturing environment: 

feature-based modeling of a car being integrated with another design automation tool 

to design car robotic arms, which are controlled to assemble the car. Another IPPD 

scenario described in the aforementioned literature review section, the integration of 

three tools (components): CAD, a process planner and an inspection planner (Marefat 

et al., 1993), may also benefit from the CAX framework approach. 

  

If removing the limitation to use feature models as the underlying operation models of 

the participating tools in the integrated engineering environment, the concept of the 

CAX framework would have a wider application scope. It would be open to any types 

of engineering tools, including CSCW and many other new generation ones focusing 

on distributed concurrent engineering. It is noted that these new generation tools are 
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currently conceived and tested as a subsidiary functional module outside the 

mainstream product design and development environments and need to work out a way 

to coherently integrate them with others sharing a common engineering task (Mervyn 

et al., 2003). The CAX framework can play the role of a software infrastructure that 

provides a common operating environment for all distributed concurrent engineering 

applications involved. Therefore, it may be able to fulfill the above need given that the 

underlying facilities are adjusted accordingly.  

 

1.2.6. Research Scope and Overall Approach 

As stated, this research concerns itself with the development of a network-integrated 

and distributed engineering environment using the CAX framework technology, a new 

concept derived from the CAD framework that is originally found in the area of EDA. 

The application context is the full product design and development cycle of 

mechanical products which have a feature-driven process model. To demonstrate the 

conceptual feasibility of this approach, the characteristics of the intended application 

context were investigated to make a comparison with that of a typical application 

context of a CAD framework. Instead of identifying all aspects of the analogy between 

them, the focus was placed on characterizing the relationship among a group of CAX 

(CAD) tools. It was revealed that the most important impetus underlying the research 

and application of the CAD or CAX framework is its ability to integrate a range of 

engineering tools which have a logically centralized coordinator. Similar to the CAD 

framework, the CAX framework is scalable and can be configured to encompass a 

range of functional components and thus can be allotted various roles. However, this 

research was mainly limited to its three basic roles: engineering data repository, 

engineering data manager and engineering process manager. Advanced functions, such 
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as knowledge repository support, cooperative engineering transactions, reusable 

CSCW-like services, etc., were mentioned wherever appropriate but not thoroughly 

studied.  

 

According to CAD framework principles, three well-formulated steps are 

recommended to be taken to develop a CAX framework-enabled engineering 

environment (Wolf 1994). The start point is to derive a model of the targeted 

engineering environment. This model provides a vocabulary of well-defined terms, and 

thereby a context for functional specifications. The second step is to identify the 

logical structure of the framework which indicates the details of the framework 

functions including the unspecified ones of the framework services. The final step is to 

complete the definition of the integrated engineering environment at the physical level. 

Many decisions are made at this step, which has no special principles to follow. This 

three-step pattern which allows iterations has been sequentially followed to initialize a 

practice to develop a prototype system at the beginning. However, the sequence was 

not eventually used to formulate the current development efforts and neither 

recommended to other interested researchers because of its absence of incorporation of 

the OO principles. A two-step strategy is used in this thesis. Firstly, a “skeletal” CAX 

framework up to the physical level is developed. Afterwards, the development effort is 

biased to concentrate on the most creative and challenging aspects: modeling and 

analyzing the desired engineering environment to generate an adequate schema for the 

management database and devise the required operations on the data. It is found that 

this two-step strategy is more natural for system developers and probably helpful in 

reducing unpleasant iterations before a satisfactory system specification is achieved 

given that the CAD framework principles have been acknowledged in advance.  
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To demonstrate the approach to develop an integrated engineering environment using 

the CAX framework technology, a full case study was conducted in the area of sheet 

metal products using progressive dies. A set of selective demonstrations was designed 

to assess the effectiveness of the approach. In summary, while there are many 

perspectives to view the CAX framework-enabled engineering environment with each 

one emphasizing particular aspects of the architecture, this research explored the 

system modeling perspective on the abstract level and the implementation perspective 

on the physical level using a case study to exemplify all the details involved.  

 

1.3. Terminology Statement 

Beginning from a broad scope in the development of an integrated and distributed 

engineering environment, the focus of this research was fine-tuned to a fully new topic, 

integrating distributed feature-driven engineering processes in a CAX framework. 

Viewing some complex engineering processes as “feature-driven” ones is an elegant 

way for processes integration. The underlying idea stems from “data-driven, 

information-driven or model-driven” where “model” now specifically refers to feature-

based model. The CAX framework is a key concept for this research topic, and 

probably requires a precise definition before presenting the details of this approach. 

 

In a broad sense, according to The Merriam-Webster Dictionary,  

 

“A framework is a skeletal, openwork, or structural frame.” 
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 It is noted that almost all the integrated and distributed engineering environments have 

their own framework as an architectural skeleton, on which the full system is based. 

Some of them are obviously denoted while others just obscurely contained in the 

system. In both cases, the framework for a specific integrated engineering environment 

usually plays a constricted role to act as an internal expedience personally-owned by 

the system developer for partitioning the domain, layering the architecture and fully 

specifying the system. Since no generic framework design principles and patterns are 

investigated and made available before the system design, all works are done from 

scratch and thus the development practice is often slow and unpredictable.  

 

The framework in the context of the current topic of “CAX framework” has a small 

difference with the above concept. It has semantics of an OO application framework in 

software engineering, where a precise definition is given as following: 

 

“A framework is a reusable, ‘semi-complete’ application that can be 

specialized to produce custom applications (Johnson & Foote 1988).” 

 

The primary benefits of OO application frameworks stem from the modularity, 

reusability, extensibility, and inversion of control they provide to developers (Fayad & 

Schmidt 1997). While the framework in this sense can be classified by their scope into 

three categories, system infrastructure frameworks, middleware integration 

frameworks and enterprise application frameworks (Fayad & Schmidt 1997), the 

framework in the current study falls into the level between the middleware integration 

framework and the enterprise application framework. It defines a semi-complete 

application that embodies engineering domain-specific object structures and 
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functionality. Components within it work together to provide a generic architectural 

skeleton for a family of related applications and the complete applications can be 

composed by inheriting from and/or instantiating these components.  

 

Therefore, the current CAX framework is not a spontaneous “by-product” throughout 

the course to develop an integrated engineering environment. It is a conscious effort to 

capture the common framework knowledge which may be recurrently applied in 

different context and encapsulate volatile implementation details behind stable 

interfaces. As has been mentioned above, this idea is inspired by the CAD framework 

in the area of EDA. The authoritative definition of CAD framework is given by the 

CAD Framework Initiative (CFI), the international consortium developing framework 

standards (CFI 1990b): 

 

“A CAD framework is a software infrastructure that provides a common 

operating environment for CAD tools.” 

 

Similarly, a CAX framework is a software infrastructure that provides a common 

operating environment for CAX tools. Various roles can be allotted to the CAX 

framework depending on the way in which it is specified. It can be basically exploited 

to integrate dispersed CAX tools for the tool users. It can also be exploited to achieve 

more effective collaborations among these users. In this sense, from the 

methodological perspective, the CAX framework is an enabling technology, which 

functions as the centric concept of the proposed integration approach for development 

of a network-integrated engineering environment. On the other hand, from the 

structural perspective, the CAX framework in a physical CAX framework-based 
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engineering environment is an integration tool or collaboration tool, which co-works 

with the surrounding CAX tools.  

 

1.4. Thesis Organization   

The remainder of this thesis is organized as following. Chapter 2 provides a 

comprehensive literature review on the existing efforts to develop an integration 

infrastructure for complex engineering systems so as to reinforce the above statements 

on the open issues for integrating feature-driven engineering processes. Chapter 3 

characterizes an engineering process from the perspective of feature-driven 

engineering. Process decomposition, dependency relationship identification and 

adequate design transaction models are comprehensively addressed. Chapter 4 presents 

an overview of the CAX framework-based integration approach. A “skeletal” CAX 

framework is incrementally derived from a small set of high level primitives. Chapter 

5 depicts how the “skeletal” CAX framework is enriched with the product data 

integration functions. A versioning control and configuration management model is 

presented. The corresponding operational issues are also addressed. Chapter 6 depicts 

how the “skeletal” CAX framework is enriched with another important function, the 

process management function. The finally-obtained system is a network-integrated 

engineering environment using an integration approach which is both data and process-

centric. Process management mechanism design and process modeling are emphasized 

and the overall information model including a UML sequence diagram is described. 

Chapter 7 presents the results of a demonstration session working on the prototype 

system. Chapter 8 summarizes the contributions made by this study and outlines areas 

of future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents a general review on past and current researches into system 

integration from design to manufacturing. Although a huge body of literatures can be 

found having relevance to this topic, it is far from being able to be treated as a formal 

discipline which has a consensus amongst its community on its research directions, 

scope, issues involved and reference paradigms. The objective of this survey is to gain 

insights into what kind of new research efforts may truly contribute to this area with 

both theoretical and practical values. Therefore, conclusions drawn from this survey 

may be repetitively used somewhere in Chapter 1 or the chapters following this one. 

The survey itself includes a historical perspective, some aspects significantly affecting 

integration and a suite of sample integration architectures. 

 

2.1. A Historical Perspective on System Integration from Design to Manufacturing 

Maybe to some researchers’ surprise, all activities from design to manufacturing were 

seamlessly integrated by nature in the beginning according to Cross (1989). Both 

design and manufacturing, if these terms were used by the people in that era, actually 

referred to the same activity to physically fabricate an artifact. Craftsman would design 

as they manufactured and manufacture as they designed (Jeremiah 18:4) (Mowchenko 
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1996). Separation of design and manufacturing into two islands of activities occurred 

when sophistication both on the design side and the manufacturing side progressed to 

such an extent that documenting and detailing the specifics of a design should be 

completed before manufacturing. Further, with the introduction of computer-based 

systems, more task-specific tools would be adopted to perform partial design or 

manufacturing activities, and more activity islands may be found in an entire 

development cycle from design to manufacturing.     

 

Wherever there were separate activity islands, integration efforts would be devoted to 

filling the gap sooner or later. Before computer-based tools were introduced for these 

activities, it is their cooperation and collaboration efforts between design engineers and 

manufacturing engineers that fully took this responsibility by translating and re-

implanting information encapsulated in designs into corresponding manufacturing 

specifications or the manufactured artifacts. Soon after the first computer-aided design 

tool “sketchpad” was produced by Ivan Sutherland at MIT in 1962, a team at General 

Motors Research Laboratories developed a system which not only displayed shapes on 

a screen, but also linked this information to NC controlled machines. This led in 1964 

to the construction of the first CAD/CAM system called DAC1 (Design Augmented by 

Computer) (Black 1996). Therefore, even at the early stage of the evolution of 

computer-aided systems, it was recognized that a unique system-level capability, 

integration from design to manufacturing, may be leveraged to alleviate engineers’ 

workload if adequately addressed. One of another earliest integrated systems reported 

in literature is ROMAPT (Chen 1982), which integrated the CAD system ROMULUS 

and the NC system APT. Throughout the 1980’s and 1990’s, an explosion of research 

interests into system integration from design to manufacturing can be observed, which 

leads to a special term, CIM (Computer-Integrated Manufacturing) or CAD/CAM 
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being used to collectively document all efforts along this line. According to its formal 

definition, CIM also concerns integration of production functions (Singh 1996), but the 

main issues addressed are almost identical.  

  

 Although system integration from design to manufacturing has advanced for over 30 

years and researches in this area are still active, it is difficult to clearly stage how it has 

been evolved. This is probably because there are no breakthrough methods out there 

although some methodological questions may be very tough. Most of the researches 

are devoted to broadening its application scope with introduction of a new (type of) 

system fitting to a particular new context with few radical methodological 

improvements. Few researches are contributed to making obvious progress in its 

theoretical and technique depth. While it is difficult to gain a clear picture of its 

evolution by defining a set of representative indicators as can be found in describing 

the evolution of CAD, one can notice that some strategies or core technologies with 

much formulation have strongly affected its evolvement. Taking a look into some 

details in these aspects not only helps to trace the technical evolvement but also helps 

to capture appropriate metrics to measure the value of a particular system integration 

effort. The strategies should not be viewed as evolution indicators because overlooking 

any one of them in a specific application does not necessarily bring about an 

immediate inferior solution.  

 

2.2. Some Aspects Driving System Integration from Design to Manufacturing 

Six significant aspects that drive system integration from design to manufacturing are 

presented in this section. They are information modeling, concurrent engineering, 

intelligent integration, data integration, process integration and object-orientation. 
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• Product and process modeling 

Information modeling, including product and process modeling, is probably one of the 

most useful analytical techniques employed to overcome integration barriers in data 

exchange and sharing amongst design and manufacturing software systems. The 

application of modeling helps in better understanding and easier handling of the 

modeled system by dealing with the purposely selected features. Respectively, product 

modeling develops data models and process modeling develops activity models. A data 

model defines the data elements and their relationships. An activity model describes a 

process activity and its sub-activities, as well as the data associated with the activity 

(Algeo et al., 1994).   

 

Two groups of researches may be viewed as the origins for all others in this aspect. 

One is known as the IDEF (Integration DEFinition) technique series including IDEF0, 

IDEF1 and IDEF2 modeling methods developed by the U.S. Air Force ICAM Program 

during the 1976 to 1982 timeframe (U.S. Air Force 1981). The other is known as the 

STEP (STandard for the Exchange of Product model data) standard suite (ISO 1994). 

The IDEF series includes an activity modeling language IDEF0 and an ER (Entity 

Relationship) modeling language IDEF1X which is an extension of IDEF1 and many 

others without receiving much concern. The core of the STEP standard suite is not 

restricted to information modeling methods themselves but have an ambitious aim at 

creating normalized object models to allow any manufacturing applications to share 

product data if semantically possible and desirable. The activity modeling method it 

used is IDEF0 and the data modeling methods it used is EXPRESS, a modeling 
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language of its own. EXPRESS and IDEF1X can be viewed as functionally identical 

but the former seems more popular probably because its modeling power is stronger.  

 

Two types of data sharing and thus application interpretability for integration are 

supported by STEP. One is within the same application areas but operating on 

heterogeneous platforms and the other is across many application areas in the entire 

product life cycle from design to manufacturing (Zhang et al., 2000). While STEP is 

quite successful in the first type of sharing through neutral representations of the 

product models across heterogeneous computation platforms, for example sharing 

CAD models between CATIA, Pro-E or any other CAD platforms, few successful real-

world stories can be found for STEP to be implemented with the second type of 

sharing across application areas even on the homogeneous platforms. This is probably 

because STEP proves to be too unwieldy (Hillebrand et al., 1998) in this aspect due to 

the expensive normalization which makes the developed models harder to process 

(Hardwick et al., 1996).  

 

However, the integration philosophy underlying the STEP standards has been widely 

used. In general, from the perspective of system analysis based on information 

modeling, implementing integration from design to manufacturing begins from its 

opposite side: decomposing the process into manageable sub-processes in terms of 

activity modeling. Examining the interoperability between the corresponding 

intermediate product data models for each sub-process is the next task and a global 

integration model capturing the common semantics shared by all participating 

intermediate models is probably required (Dhamija et al., 1997). IDEF0 has become 

the de facto activity modeling language and EXPRESS is a popular data modeling but 
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far from the only and best option. Most researchers select UML (Unified Modeling 

Language) as the data modeling language instead of EXPRESS probably because of 

UML’s broader acceptance in the software engineering world. It is yet noticed that the 

modeling practice is often more important than the language chosen (Lee 1999), 

because any one of them can be mapped to the other (Arnold & Podehl 1998). This 

thesis will use IDEF0 to perform process decomposition and activity modeling and 

UML to perform data modeling.     

 

• Concurrent engineering 

Technical advancement of system integration from design to manufacturing has been 

an evolutionary process attributed to an increase of awareness rather than a revolution 

driven by certain technology leaps. For example, integration was mainly perceived in 

its early days as a means to smooth the information transition from one lifecycle 

function module to the next for the purpose of reducing user effort and increasing 

consistency (Singh 1996; Black 1996). Increasingly with more experimental solutions 

to the problems in this aspect introduced to and acknowledged by industries, the 

limitations of the solutions were also recognized and more profound understanding to 

the tenet of integration came out: integration is much more than mere coupling of 

processes, or information flows between them, what one can call module-module 

interaction (Singh 1996). On the other hand, integration facilities should also allow 

effective user-user cooperation and user-module interaction. One of the most important 

management and engineering philosophies which have fostered such an increase of 

awareness of integration tenet is Concurrent Engineering (CE).  
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As “the art of decomposing a complex serial task into smaller, relatively independent 

tasks that can be executed in parallel” (CFI 1990a), CE advocates maximum 

concurrency of engineering activities involved in an engineering process for which an 

integrated system is about to be constructed. Ensuring that an integrated engineering 

system be able to fully support the CE strategy has been widely accepted as one of 

essential procedurals to specify an integrated system. Some integrated systems, such as 

the CONCERT (CONCurrent Engineering suppoRT) environment (Hanneghan et al., 

1995, 1998), may even be called a CE system firstly and any others next. The 

integration approach proposed in this thesis will also be linked to an examination on 

how CE is supported. 

 

• Knowledge-based system / intelligent integration 

Historically, knowledge-based systems contributed a lot to intelligent design and 

manufacturing mainly by providing new mechanisms to develop individual task-

specific CAX tools to automate a large proportion of routine design and manufacturing 

tasks.  It also has significant relevance to system integration from design to 

manufacturing in that there had ever been a great shortage of implementation means 

for system integration and knowledge-based system framework. The Blackboard 

Architecture (Hayes-Roth 1985; Nii 1996), offered a type of technical possibility. 

Although there is no agreement on what should be included in the integration 

infrastructure for a range of design and manufacturing applications to realize a truly 

integrated engineering environment, some basic functions would be inevitably 

involved. Examples of such functions include a unified and coherent user interface 

able to instantly navigate around the real-time participating applications, common 

product database shared by the participating applications, some context-sensitive 
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control logic to smooth the cooperation between corresponding applications, etc. 

Before the prevalence of the multi-process operating systems like the Microsoft 

Windows® and the OO programming tools like C++ and Java language, even realizing 

the coexistence of two applications in a single session is a big problem. Programming 

the control logic with some basic heuristic reasoning capabilities is also difficult for 

software developers using traditional procedural programming languages such as 

FORTRAN and C. It is natural that the knowledge-based system framework, the expert 

system shell, was selected by many researchers to function as an intermediary that 

operates in a loose integration fashion with the surrounding applications. One of the 

earliest works justifying the expert systems’ capability for system integration was 

contributed by Madison et al. (1988), who proposed an expert system translator to link 

the CAD and CAM and help them speak the same language. Another example system 

used an old-fashioned OO programming environment (Smalltalk-80, Version 4.0) to 

realize the integration of three tools (components): CAD, a process planner, and an 

inspection planner (Marefat et al., 1993). These components all share a common 

database that acts as an intelligent integrating agent. Note that the underlying 

integration mechanism through the expert system framework or the shell is actually 

attributed to a shared “blackboard” although this term may not be explicitly mentioned.  

 

The terminology of blackboard architecture based on the knowledge-based shell makes 

its integration capability more formally documented, easily understood and broadly 

recognized. Participating applications to be integrated are nothing more than special 

knowledge sources in the blackboard-based integrated engineering environment, which 

consists of a blackboard, an inference engine-enabled agenda controller and any 

number of knowledge sources. A design database used to store all the dynamic design 
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data produced by the surrounding applications is a de facto knowledge resource and 

thus the product data management function is always provided by such environments. 

Numerous integrated engineering environments based on the blackboard architecture 

have ever been reported. Some examples are listed in the following. Megale et al. 

(1991) introduced a CAD-CAM integration environment based on the blackboard 

architecture. Palani et al. (1994) developed an intelligent design environment which 

integrates a sheet metal part CAD module, an FEA module and a design evaluation 

module using the blackboard architecture. Fagan (1994) presented an integrated 

environment consisting of a myriad of computer-aided engineering design and analysis 

applications for engine crankshafts utilizing the blackboard approach as an 

implementation tool. Srihari et al. (1994) described a blackboard-based process 

planning system, which integrates a planning sub-system performing static process 

planning tasks and a dynamic information processing sub-system, for the surface 

mount manufacture of PCBs (Printed Circuit Boards). Roy et al. (1995) developed a 

knowledge-based process planning system using the CLIPS V6.0 expert system shell 

to integrate with a feature-based design system working on the CAEDS solid modeler 

through the blackboard architecture. Hayes (1995) described CHAMP, a conceptual 

architecture designed to support the task of passing information from CAD systems to 

CAPP systems. The proposed architecture facilitates CAD/CAPP integration through 

shared blackboards. 

 

One of the common features that can be found in all the above blackboard-based 

integrated environments is that they consist of at least one knowledge-based 

application which relies on the common expert system shell which functions as the 

basic platform for the blackboard. Today’s knowledge-based design and 
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manufacturing applications prefer to be compact, with the knowledge imbedded 

interiorly owing to the strong expressing and reasoning ability of the OO programming 

languages such as C++ and Java. No exterior expert shell is strongly needed. Further, 

the multi-process operating system such as Microsoft Windows® popularly available 

on PCs (Personal Computers) makes easy coexistence of multiple applications and 

resources. Therefore, the significance of the contribution of the knowledge-based 

systems towards system integration is reduced. This observation has been reinforced 

by the author’s experience gained when participating in the IPD (Intelligent 

Progressive Dies) project (Zhang et al., 2002) initiated by National University of 

Singapore and the Institute of High Performance Computing. As an integrated and 

intelligent toolkit for the design and manufacturing of progressive dies, IPD in its 

original version realizes the integration of a range of modules (applications) including 

a product feature modeler, an unfolder, a layout planner and a die configurator through 

an in-house knowledge base shell. The underlying architecture is compatible with the 

blackboard concept. However, the new version of IPD has removed the shell because 

the limited integration capability provided by the shell can almost come free in the 

Microsoft Windows® platform, and the knowledge bases as well as the inference 

engine provided by the shell to any individual module can be directly coded into that 

module.  

   

Nevertheless, the contribution made by the knowledge-based systems in the 

evolvement of system integration from design to manufacturing cannot be overlooked. 

For example, it has helped in improving the understanding on the integration problem, 

specifically what may be required to be included in a concrete integration 

implementation. It also helped to foster a new integration paradigm, the client-
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knowledge server architecture (Eriksson 1996) corresponding to the recent hot 

research atmosphere for distributed design and manufacturing owing to the emergence 

of the Internet-centric technologies. In this client-knowledge server architecture, the 

inference engine and knowledge bases (shared blackboard and basic knowledge 

sources) are located at a server computer, and interfaces are exported on demand via 

network connections to client computers where a common GUI (Graphic User 

Interface) application and purposely selected functional design/manufacturing 

applications are running. Integration in this architecture may be between two 

functional applications of different types or even the same type but running on 

different sites. The development efforts using this integration paradigm includes a 

computer-based design system proposed by Sriram & Logcher (1993). It provides a 

shared workspace, i.e., a blackboard, where multiple designers work in separate 

engineering disciplines. In this distributed and integrated environment for computer-

aided engineering (DICE) program, an OO database management system with a global 

control mechanism is utilized for coordination between distributed users and 

applications. Another such kind of effort is made by Zha & Du (2002) who developed 

a design platform with client-knowledge server architecture for collaborative design of 

Microelectromechanical systems (MEMS) through concurrent integration of multiple 

distributed knowledge sources and software. Although the client-knowledge server 

architecture realized some crucial integration functions in the distributed environment, 

these integration functions are far from sufficient for realizing a comprehensive 

integrated engineering environment consisting of a set of distributed CAD/CAM 

applications. This is probably one of the reasons why very few researchers selected the 

client-knowledge server architecture as a means to achieve more sophisticated 

integration architecture. They would rather develop distributed and integrated 
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engineering environments of their own on a project-by-project base from scratch using 

basic distribution and OO technologies (see the next section).  

 

• Product Data Management (PDM) / data integration 

PDM, a technology developed for the integration of CAX systems to manage product 

data centrally (Conaway 1995; Norrie 1995; Anonymous 1998; Fan 2000), is probably 

the only formulated and industrialized technology that has been being widely 

employed as an effective means to solve some integration problems involved in 

product development process from design to manufacturing. PDM can be exploited in 

the narrow sense or in the broad sense by the integrated engineering environments. 

However, it is unfortunate that in most cases, PDM is only stressed in the narrow sense 

and its influence on system integration in the broad sense has been inadequately 

addressed in the community of PDM. 

 

PDM in the narrow sense refers to a PDM application or PDM system, an off-the-shelf 

software tool. PDM in this sense can be traced back to the early 1980’s when many 

large corporations, often the leaders in the engineering-manufacturing industry, found 

their efficiency severely downgraded by the poor management of the huge bulk of 

electronic product lifecycle-related information using the traditional paper-based 

means (Liu & Xu 2001; Xu & Liu 2003). Driven by the ever-growing potential market 

of efficient product data management methodologies, several generations of 

commercial PDM systems have been introduced to the manufacturing industry and a 

multitude of PDM products are available on the market. While a PDM system is a 

crucial tool for the management of the large amount of data generated by computer 

applications to ensure that the right information is available to the right person at the 
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right time and in the right form throughout the enterprise, it can also function as an 

intermediary to integrate a set of interrelated applications like the above-mentioned 

intelligent blackboard. Iuliano (1995, 1997) described in detail how a PDM system 

(Adra Systems’ MatrixTM V3.0) is used to implement an integrated plug-compatible 

environment consisting of a CAD application (Parametric Technology Corporation’s 

Pro-EngineeringTM), a generative process planning application (Technomatrix’s 

ICEMTM Part) and a suit of manufacturing simulation applications (Deneb Robatics’ 

IgripTM, QuestTM and Virtual NCTM). However, the integration capability provided by 

PDM applications in this way is very restrictive. This is because the PDM application 

is primarily targeted to interface with end-users rather than the participating CAX 

applications involved in a product development process. Being utilized as an 

intermediary to integrate CAX applications is only its secondary function. It has no 

knowledge of the existence of the surrounding CAX applications to be integrated and 

the environment constructed in this way is a more loosely integrated one than that 

constructed using the blackboard architecture. Much manual effort from the end users 

is still required to make the full system work coherently and effectively.  

 

PDM in the broad sense refers to the PDM function which is a set of data integration 

decisions as a part of the development practice to realize a large integrated toolkit 

consisting of a myriad of CAX applications. PDM in this sense is far more important 

for system integration from design to manufacturing than PDM in the narrow sense 

because the PDM function is almost mandatory for any integrated engineering 

environment. Incorporation of an optimal PDM function within an integrated 

framework makes it possible to realize the maximum degree of integration for a given 

non-integrated process with the minimal artificial efforts required, especially in the 
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aspect of data integration. Fortunately, some researchers outside the conventional 

PDM community made considerable contributions in this aspect. For example, 

researchers from Arizona State University studied the mechanism to use an OO 

database system as a Shared Design Manager (SDM) to provide a blackboard for 

communication among CAD tools (Urban et al., 1996). SDM uses a STEP product 

model as a global conceptual view of data and is very flexible in the configuration of 

the design environment and in establishing communication. Based on the success of 

SDM, two other components, Integrated Product Database (IPDB) and a set of Data 

Access Interfaces (DAI) for each application type, were added to the environment. An 

Integrated Product Design Environment (IPDE) is then formed which allows 

CAD/CAM/FEA programs to share data dynamically and operate coordinately (Shah 

& Urban 1998). The data modeling aspect of IPDE was discussed by Liang et al. 

(1999).  The development result and demonstration of the IPDE was also elaborated 

especially in the aspect of database framework (Urban et al., 1999a). The feasibility of 

the use of Common Object Request Broker (CORBA) tool in the existing IPDE was 

further studied (Urban et al., 1999b). The feasibility study on employing the Oracle® 8 

object-relational data model to re-implement the database kernel in IPDE was also 

conducted by using the STEP EXPRESS conceptual modeling language (Urban et al., 

2000).  

 

Another representative effort dealing with data integration was made in the context of 

the SUKITS project (Schwartz & Westfechtel 1993). The SUKITS project is targeted 

at a posteriori integration of existing CAX applications into an integrated CIM system 

– the CIM Manager. The CIM Manager manages versioned, interdependent documents 

(including CAD designs for different purposes, CAPP plans, NC programs, and FEA 
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simulation results, etc.) which are combined into configurations. PDM in the SUKITS 

project is referred as product management, based on which process management and 

resource management were also enabled by the CIM Manager (Westfechtel 1996; 

Westfechtel 2000). The SUKITS architecture follows the client-server paradigm with 

CAX applications residing on the client computers and management tools provided by 

the server machines. Since the SUKITS prototype was heavily based on the software 

and services originally devoted to a different application domain, software engineering, 

its conceptual framework did not neatly address system integration issues for 

engineering processes from design to manufacturing. However, this research, as well 

as those presented in previous paragraph and many other similar ones (Rundensteiner 

1993; Wang et al., 1993;  Bounab & Godart 1998; Karsai & Gray 2000; Roller et al., 

2002a, b), laid a moderate foundation for understanding the PDM function-enabled 

system integration mechanism and making basic implementation decisions for 

designing an adequate integration architecture and addressing relevant issues. 

 

To summarize, the PDM functional module in an integrated engineering environment 

possesses a shared, persistent data vault or database engine for multiple CAX 

applications and manages “data about data” or meta data of the physical product data 

in an official and semantically unambiguous form. It contains the data object identity, 

pointers to product data, the relationships between product data, product structure 

relationships and administrative data. The meta data can be organized in multiple 

abstract levels and has a complicated information structure, hence data modeling 

should always be performed to precisely define its schema. One of the most important 

issues for data integration is probably versioning control and configuration 
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management. The state-of-art in this aspect will be presented in Chapter 5 when the 

author’s own data integration solution is proposed.  

 

The PDM in the broad sense plays a more significant system integration role than that 

in the narrow sense in that the PDM functional module in an integrated environment is 

at a higher level and monitors the participating CAX applications but the PDM system 

when being coupled for integration is parallel with others.  

 

One of the prominent features of PDM-based integration architecture that is different 

from the intelligent blackboard architecture is that the former is targeted at distributed 

and multi-user environments from the beginning of its emergence although the 

technologies it used before were quite distinct from that at present. Therefore, contrary 

to many researchers’ assertions, data integration in a distributed environment via 

network-enabled communication is far from a new topic. The effectiveness of some 

historically-proposed integration approach may still hold. New valuable research 

efforts may be required to carefully identify and better characterize specific application 

contexts in which the integration philosophy is to be enforced, derive a decent 

integration approach based on formulating and unifying historical achievements and 

experiment with more effective distribution technologies. 

 

• Workflow Management (WM) / process management / process integration 

The best system integration solution for a specific engineering process, if exists, is 

relative because the technologies in use would be continuously evolving. However, the 

primal thrust to and the ultimate goal for integration seems to be permanently located 

at the improvement of process automation, minimization of interruption and reduction 
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of the participants’ error-proneness. In the domain of EDA, one can observe two 

process control approaches indicating two levels of design automation (Schrmann & 

Altmeyer 1997). For the tool-based approach that is generally implemented with the 

early design systems, the designer is completely responsible for his design without 

having computer-based support for supervising the design process. For the task-based 

approach which is able to handle the increasing design complexity beyond the 

suitability of the tool-based approach, the shared data management function in the 

integrated framework is complemented with a computer-aided process management 

service, which can off-load the designer’s highly-demanding process management 

efforts. This observation implies that a similar process management service may be 

desirable to be devoted to design automation and process integration for the 

mechanical product development process from design to manufacturing. 

 

As Hillebrand et al. (1998) pointed out, a CE-compatible old-fashioned data 

integration mechanism based on a logically centralized information base is a necessary, 

but by no means sufficient precondition for the successful integration of a 

collaborative engineering process. Most engineering processes should be able to be 

characterized by following certain established patterns if the process knowledge is 

adequately captured; hence one should be able to superimpose suitable process models 

on the shared database system to supplement the traditional PDM mechanism. 

Unfortunately, very few researches have been devoted to clearly illustrating how the 

process models are specified and how such models are superimposed, or to simply put, 

the conventional data integration function is augmented with process management 

assistance. 
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It can be noticed that some PDM systems began in the 1990’s to make use of workflow, 

a concept primarily connoting a highly structured, repetitive process in a business 

management application (Georgakopoulos et al., 1995), to automate project 

management processes (Ramanathan 1996; Fan 2000). Likewise, researchers like 

Heimann & Westfechtel (1997) suggested the incorporation of the WM mechanism to 

integrate the activities performed by a set of CAX applications in a sequence following 

some rules. A WM system views a business process as a workflow consisting of a 

range of tasks (activities) with a predefined execution sequence and a group of 

predefined execution constraints. It allows the end-users not only to execute tasks 

defined in the workflow, but also define and modify the workflows themselves: the 

workflow is also a product on which participants are working (Heimann & Westfechtel 

1997). Process management support for some complex product development processes 

are both desirable and feasible because they are dramatically repeatable at the activity 

level like business processes and potential to be modeled as workflows to incorporate 

the WM technologies and facilities into the basic data integration infrastructure 

(Ramanathan 1996; McClatchey et al., 1998). This suggestion was, however, 

challenged by Hillerbrand et al. (1998) who argued that WM imposed too tight a 

discipline on the sequence of process steps (activities). The tight discipline can, 

however, be loosened in many ways such as using the intelligent agent-based approach 

to achieve dynamic process adaptability, which allows changes to the workflow during 

execution (Kim et al., 2001). The genuine obstacle to obstruct the use of the mature 

WM technologies and facilities is probably attributed to the fact that the engineering 

process is usually semi-structured and hence hard to handle because it is not clear how 

to balance flexibility and control (Westfechtel 2000). To tailor even the most amiable 

WM system to manage a specific engineering process is consequently almost of the 
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same difficulty as to develop a completely new process management system with a 

unique process definition model and process execution engine of its own. Therefore, 

some researches would rather develop process management methodologies, e.g., those 

proposed by Hillerbrand et al. (1998) and Zhang & Luttervelt (1995), outside the 

conventional WM conceptual framework. Even the workflow system within the 

integrated product development environment in the context of projects like the 

SUKITS project (Heimann & Westfechtel 1997) was quite different from the 

conventional WM systems. 

 

In summary, the presence of process management services is an important factor in the 

consideration for the development of system integration infrastructures for a complex 

engineering process. On the other hand, the design of a conceptual framework for 

process management and process integration is still an open research issue. This thesis 

will identify process management functions based on the space-state model, a generic 

mathematical model underlying all physical processes, and develop process 

management mechanisms based on the design flow concept, which was widely used in 

CAD framework in the domain of EDA.  

 

• Object-Oriented methods and distributed object technology 

All proposals to integrate a set of separate but logically related CAX applications into 

a unified and coherent engineering environment have been and will continuously be 

heavily dependent on the information technologies (IT) currently available. Many 

system integration initiatives did not finally find industrial applications because the 

advances in computing abilities have been so great that expectation has, in some case, 

run a little in front of reality (Black 1996). Of all IT advances that occurred during the 
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last two to three decades, OO methods as well as their successive distributed object 

technology are probably one of the most significant to affect the integrated system 

developers’ philosophy and practice. With the OO methods, it is outdated to utilize 

some specific intelligent technologies, such as the blackboard architecture to 

implement system integration. The following paragraphs examine in a wider scope the 

impact of OO methods and distributed object technology on the development of 

network-integrated engineering environment. 

 

OO is a software system developing method that uses abstraction with objects, 

encapsulated classes, communication via messages, object lifetime, class hierarchies, 

and polymorphism. It is a well-established and effective way to develop software, and 

is certainly the dominant method used to develop major software systems today. Note 

that application of the OO method is not just a practice of writing software programs 

using OO programming languages such as Java and C++. It actually covers the 

complete software development process—analysis of the problem, design of a solution, 

coding, and long-term maintenance. It is even said that any programming language can 

be used to write OO programs (and it has been done with C), and of course, a true OO 

programming language makes it radically easier (Wampler 2001). Advantages of using 

the OO approach to analyze and design CIM system architectures was recognized even 

in the late 1980’s as reported by McFadden (1989). However, the comprehensive use 

of the OO methods to solve system integration problems in comparison with the 

natural language- and process-oriented methods came at the beginning of this century 

(Law & Tam 2000). The next paragraph presents a full picture on how an elegant, 

easy-to-understand integration infrastructure design can be produced using OO 

methods given that a corresponding integration mechanism exists pre-conditionally.   
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One of big payoffs that OO can lead to is that the individual objects within a system 

can be implemented and tested separately.  On the other side, an integrated engineering 

environment including the integration infrastructure and the participating CAX 

applications is viewed as an OO system for the purpose of embracing OO methods in 

this case. If the interfaces between the CAX applications with the integration 

infrastructure are defined, the system-deductive principle makes the integration 

infrastructures to become another OO system independent of all the component CAX 

applications. In the simplest terms, designing an OO system consists of identifying 

which objects the system contains, the behaviors and responsibilities of those objects, 

and how the objects interact with each other (Wampler 2001). More specifically and 

according to Singh (1996), in designing the integration infrastructure system using the 

OO paradigm, a systematic procedure can be used as shown in Fig. 2.1. The first two 

steps in this figure are probably most challenging and a lot of analyzing efforts, like 

those described in the following chapters of this thesis may be required. The traditional 

functional and structural analysis concepts based on the top-down and/or bottom-up 

methods may be still obligatory to be assimilated. Incorporation of some intermediate 

functional abstractions, such as software components located between the global 

system level and the primitive object level may be especially supportive. In short, OO 

methods always mean good traceability from the system requirements to the final 

physical implementation. 
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From the viewpoint of functionality deployment, OO methods can be applied in four 

different modes to revolutionize the way product and process data is communicated 

and stored and the way applications are integrated (Conaway 1995):  (1) in the 

development of the underlying database management (sub-)system; (2) as an 

application interfacing mechanism; (3) in the development of the application user 

interfaces; and (4) in the development of the body of  middleware applications, which 

are common in the integrated architecture. Of these modes, widely recognized as one 

of the most important integration enablers is the second mode, which provides an OO 

software framework based on the distributed object technology to interface multiple 

applications. In this framework, the components of a system are normally defined as 

distributed objects and packaged as independent pieces of codes that can be accessed 

by remote clients by the method of invocation (Chen & Hsiao 1997). Typical 

distributed object technology includes CORBA (OMG 2002), Java Remote Method 

1. Develop a conceptual model by identifying key objects 

2. Associate attributes and methods with each object identified in step 1 

3. Arrange objects into class hierarchy while emphasizing reuse, specialization and generalization

4. Identify client/server relationships and messages among objects to capture system dynamics

5. Develop a prototype implementation to validate requirements 

Fig. 2.1. Systematic procedure to develop a software system using the OO paradigm  
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Invocation (RMI) (Sun 2002) and Distributed Common Object Mode (DCOM) 

(Microsoft 1998). Good overviews of these technologies have been made by, e.g., 

Urban et al. (2001) and Plasil & Stal (1998). Distributed object technologies in this 

sense are “lightweight”, robust and flexible for implementation to facilitate function-

shipping and data-shipping in a distributed computing environment at any scale. Those 

PDM functions normally only embraced by large-scale companies with 20,000 to 

50,000 users on the same system based on traditional distribution technologies can 

now be easily replicated in small and medium companies. This strongly justifies the 

novel two-step research efforts on system integration: firstly capture the desirable 

static and dynamic semantic relationships between all the CAX applications involved 

in a targeted engineering process; secondly, use OO methods to realize and maintain 

these relationships within the integration infrastructure without impairing the 

autonomy of each component application. 

  

• Summary of the reviewed aspects driving system integration from design to 

manufacturing 

The reviewed aspects affecting system integrations strongly justify research efforts 

having the following features. They should be undertaken accompanying 

comprehensive identification and characterization of a good application context where 

network-enabled integration strategy is indeed promising. Activity and data modeling 

are always required, and IDEF0 and EXPRESS or UML modeling methods 

respectively are recommended. Supporting CE strategy should be taken into account. 

Making the integration infrastructures as intelligent as possible is a must but the 

intelligence should preferably be compactly embedded within the corresponding 

software objects especially when no large-scale knowledge base is required. Data 
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integration and process integration are the most important integration functions to be 

incorporated in the system. OO methods should be used in the entire system 

development process to achieve an elegant, easy-to-understand system. 

 

2.3. Review of Several Representative Integration Architectures  

As stated, there is almost no widely accepted global reference architecture that can be 

easily geared to develop any specific integrated system across a set of distributed CAX 

applications. Researchers would rather develop their own architectures reflecting their 

own integration approaches on a project-by-project basis. This section examines seven 

representative architectures which define the components of a system and the 

relationships among those components. 

 

• MICS and PTCS (Thomas & Fischer 1996) 

The MICS architecture (Fig. 2.2 (a)) represents a hypothetical system that covers all 

major CAD/CAM functions and consists of four main components: a central database, 

a control module, application software packages with their wrappers and a 

communication channel. It does not support integration of distributed CAD/CAM 

software packages, although they can be plugged into the unified CAD/CAM system to 

realize data integration via the common database using wrappers and the 

communication channel. The control module is designed to organize and monitor the 

execution of activities in the system and automate the scheduling and execution of the 

activities. However, the MICS concept is only partially implemented with a subset of 

the overall CAD/CAM system in PTCS (Fig. 2.2(b)), which integrates two commercial 

CAD/CAM software packages, Pro-E® and ToolProTM. Further, there is only one 

wrapper for both CAD/CAM software packages and the wrapper is combined with the 

control module into a single module. The central database is connected to the 
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CAD/CAM system through the wrapper and control module. Both MICS and PTCS 

provide one consistent user interface to the CAD/CAM applications and thus a CE-

compatible common computer environment for the different CAD/CAM functions. 

Comparatively, the PTCS system is a more tightly integrated environment which is 

near to a super-tool both having advantages and limitations from the viewpoint of 

integration. 

 

• SDM and IPDE (Urban et al., 1996,1999a) (Fig. 2.3) 

As mentioned above, the development efforts from SDM to IPDE mainly address data 

integration issues to facilitate effective sharing and management of the engineering 

data produced by a set of distributed CAD/CAM/CAE applications. It has a very clear 

definition of the architecture which includes the integrated product database (IPDB), 

the shared data manager (SDM), and a set of domain access interfaces (DAIs). It is not 

just another PDM system because it is a tightly integrated system with sufficient 

flexibility desired by its targeted application context. The DAIs provide interfaces that 

allow different applications to directly request services from the SDM. The 

versioning/configuration management mechanism and the database schema carry 

Fig. 2.2. (a) Modular integration of CAD/CAM software (MICS) 
              (b) The Pro/E-ToolPro CAD/CAM system (PTCS) (Thomas & Fischer 1996) 

(a) (b) 
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semantics that are more specific to the application domain. The EXPRESS language is 

used in data modeling and the object-relational database Oracle® 8 is used to store the 

data. A key step is then taken to map the EXPRESS models into the Oracle® 8 

database schema. Metadata queries and design data queries are performed and 

coordinated in the networked environment. Process management/integration is not 

covered because its application context is data-intensive with a simple process pattern 

imposed. 

 

 

• A collaborative framework for concurrent net shape product and process 

development (Chen 1997) (Fig. 2.4) 

This network-integrated engineering environment for development of net shape 

products and processes was designed as a client-server configuration. The servers 

include a process management server, a data server (managing material/tool specifics 

and standard components), a product data management server and a knowledge server. 

The client applications include four types of advisory tools, i.e., the product design 

advisory tool, the process design advisory tool, the die or mold design advisory tool, 

and the die or mold manufacturing process planning advisory tool. Product and 

die/mould design tools are loosely integrated into the environment on the client side 

Fig. 2.3. The SDM and IPDE architecture (Urban et al., 1996,1999a) 
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through a workbench (workspace) and one or more bins (storage area) for the 

developer. Remote access and control for the client applications to the servers was 

enabled by PC Anywhere TM, which is very unfamiliar to the community and no 

further details about the underlying communication mechanism were given. Much 

effort can be found dealing with system analysis and modeling that makes it distinct 

from others by the presence of some clues on how the system functional modules are 

identified. The data modeling practice was not consistent al along but mixed with 

several approaches including the currently almost outdated E-R (Entity-Relationship) 

modeling approach. Although the integration functions seem to be comprehensive, it is 

unclear how the constituent servers and client applications are coordinated to work 

together and the process management function was not developed to the 

implementation level. 

 
 

 

Fig.2.4. An integrated framework for net shape product and process development 
(Chen 1997)  
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• The CONCERT architecture (Hanneghan et al., 1995, 1998) (Fig. 2.5) 

 

 

The CONCERT (CONCurrent Engineering suppoRT) environment (Hanneghan, et al., 

1995, 1998) identifies three core support services that are considered important in 

distributed and integrated CE-compatible engineering environments. These highly co-

operative components are the repository support service, the CSCW support service 

and the distribution support service. CAX applications to be integrated are viewed as 

third-party or legacy applications. The CONCERT environment provides a sample of 

highly-flexible integration architecture in which data integration, process integration 

and even CSCW functions can be incorporated. However, it is at so high a conceptual 

level with lack of developments towards implementation that it is unclear how even a 

simple specific function is finally realized at the implementation level. 

 

• SUKITS (Westfechtel 2000) (Fig. 2.6) 

Fig. 2.5. The CONCERT environment (Hanneghan et al., 1995, 1998)  
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The data integration function, as well as process integration function in the SUKITS 

architecture, has been mentioned in the previous section. The entire architecture 

consists of a management system that is interfaced with a set of distributed tools for 

technical activities and informal cooperation. The management system is in turn 

composed of the following components: the communication system, the management 

database, the wrappers, the work environment GUI supporting tool activation and 

process management, the manager environment GUI supporting project managers and 

the modeling environment GUI to adapt the management system to a specific 

application domain. The SUKITS architecture is probably one of the most 

comprehensive distributed system integration from design to manufacturing. However, 

its conceptual framework is heavily based on the Graphic Theory and Graphic 

Fig. 2.6. Architecture of the SUKITS integrated development environment 
(Westfechtel 2000)  
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Language-oriented (rather than OO) software and services originally devoted to a 

different application domain, software engineering. This makes its contributions 

appreciated by very few people. Further, some specific functions such as versioning 

control of interdependent documents are very restrictive because it overlooked many 

prominent distinctions between a mechanical engineering process and a software 

engineering process.  

 

• The WWW-based integrated product development platform for sheet metal 

concurrent design and manufacturing (Xie et al., 2001) (Fig. 2.7) 

This proposed system seems to target at integrating all the design and manufacturing 

functions involved in the sheet metal product development process. It is claimed to 

consist of an unfolding module, a WWW-based data integration platform, 

design/manufacturing knowledge bases, data communication tools among different 

modules, a customer interface module, a RTCAPP module, a CAD module, a CAM 

module, a cost estimation and optimization module, a computer simulation platform 

and GUIs. However, it is not clear how these modules are logically organized into a 

unified system. It looks more like a description of a pool of non-integrated 

tools/modules although some of them provide some data integration functions shared 

by several others through using the WWW technologies and a web-based off-the-shelf 

PDM system, Pro/INTRALINK®. It is also unclear how the engineering activities 

performed by each design/manufacturing tool are integrated together to conclude a full 

development cycle by the end-users with the help of the integration modules. A lot of 

efforts were given to the product and process modeling (called information integration 

framework in the original paper) which tries to set up the desired interoperability from 

product design to downstream functions. However, only easy tasks were done there 
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and the whole description seems to be quite ambiguous from the viewpoint of 

relevance to the demonstration of an approach to develop an integrated system. 

 

• The architecture for a CAD/CAPP/CAM integrated system (Wang & Zhang 2002) 

(Fig. 2.8) 

This architecture supports integration of some distributed application subsystems 

including a feature-based CAD subsystem, a CAPP subsystem, a CAM subsystem, etc., 

and some common tool service subsystems including constraint management 

subsystem, evaluation and decision supported subsystem, database management 

subsystem, etc. The main integration functions provided can be viewed as residing on 

the data integration level and heavy database schema normalization efforts can be 

noticed since the relational database system is used. No explicit process management 

functions are provided although some other alternative functions shared by two or 

more subsystems are included in the system. No distributed object technology is used 

Fig. 2.7. The WWW-based integrated product development platform for sheet metal  
              concurrent design and manufacturing (Xie et al., 2001)  
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and the communication between subsystems is realized via low-level TCP/IP protocol 

on the Internet/Intranet network, which makes the developed system quite inflexible. 

 

• Summary of architectures 

There is only one element, the data integration component, common to all of the 

integration architectures, discussed above. A data integration function thus seems to be 

the minimal ingredient of a design-to-manufacturing integration architecture. Process 

integration function is the second most likely to be included in the architecture. Many 

other cross-disciplinary functions, such as the CSCW services and large-scale 

knowledge base-enabled DFM/DFA (Design For Manufacture / Design For Assembly) 

services, may be incorporated into the integration infrastructure depending on the 

application context. One common rule is that the integration infrastructure only 

concerns issues such as user-interface unification, interconnections between 

participating CAX applications and providing common services shared by at least two 

Fig. 2.8. Structure of feature-based collaborative development system (Wang & 
Zhang 2002)  
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other modules. All of these architectures have some features justified in the previous 

section, but none of them have all the features summarized. Additional limitations of 

these architectures have been presented in Chapter 1. 

 

A network-integrated engineering environment is always a large complex system. 

Architectures not only provide models representing different aspects of systems, but 

also provide approaches for integration functions. As the compendium to describe the 

interrelationships among components and the stages of system evolutionary trajectories, 

architectures are widely used to unify various component modules at different spatial 

levels and temporal stages, presenting the system as a holistic whole. Recognizing the 

significance of architectures, researchers are continuously improving existing 

architectures and probing for new ones. This thesis will begin developing an 

integrating architecture from a perspective completely different from those presented 

above. 
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CHAPTER 3 

CHARACTERIZING FEATURE-DRIVEN ENGINEERING PROCESS 

 

In this chapter, a unique perspective to address the complex engineering process is 

presented. From this perspective, one can identify a set of feature-driven engineering 

processes among its superset of more generic model-driven or data-driven engineering 

processes. Characterizing the feature-driven engineering processes is thoroughly 

studied in this chapter and regarded as the starting point to develop mechanisms for 

implementing an integrated engineering environment which explicitly incorporates 

these characteristics. The purpose is to reveal how an engineering process is 

decomposed and how to represent this decomposition, to identify different kinds of 

dependency relationships existing in the process and their properties, and to develop an 

adequate design transaction model to specify the interactions between a CAX tool and 

the shared data store. A collection of considerations that have not been covered in the 

current literature is highlighted wherever relevant. 

 

3. 1. Hacking the Complex Engineering Process: the Feature-driven Way 

Although the interest in computer supported product development environment has 

entered the Internet era, it still follows a so-called data model-driven approach (Borja 

et al., 2001) to improve a physical engineering process. This approach argues that 
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computer-aided engineering systems should be based on information data models in 

order to properly document the intermediate or final design results as a common 

communication medium for designers, analysts, manufacturers, and other product 

development people. As is universally acknowledged, the basic way to address a 

complex engineering process is to decompose it into a set of sub-processes and then 

(re-)integrate them as a whole, or briefly, “divide and conquer”. The data model-driven 

pattern makes it possible to decompose a complex engineering process into 

manageable sub-processes, each of which corresponds to a task-specific tool with a 

private database to yield a permanent data model. The model then becomes the 

information medium to enable process reintegration. However, due to the complexity, 

there are still several challenges when dealing with a practical process.  

 

Firstly, no commonly agreeable criterion is available for the definition of the 

decomposition because it is completely problem-specific. A good practice always 

implies a good decomposition scheme, and the achievement of such a scheme requires 

in-depth understanding of the focused process towards adequate process re-engineering. 

Secondly, the constituent sub-processes defined in whatever way are semantically 

interdependent and the dependency relationships are always present implicitly at 

various information abstraction levels. This makes it difficult to be captured and 

enforced completely and precisely. Therefore, the fuzzy process knowledge is always 

only exploited by human users who are fully responsible for process control while 

using traditional engineering systems following the plain data model-driven approach.  

 

Loosely speaking, downstream models are derived from upstream ones until a root 

model, i.e., the product design model. In another words, some information elements in 
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one data model may be recursively incorporated into other models in a transformed or 

even untransformed form as long as they are interoperable. Yet the traditional 

engineering tools are unaware of the derivation relationships and treat the data models 

independent of those from which they are derived. The overlapping information has to 

be reentered manually. The information derivation process has to fully rely on the 

users and the derived models have to be generated from scratch even though it can be 

potentially generated in a fully or partially automatic way. Furthermore, the 

maintenance of the interdependence relationship is also dependent on the users to 

ensure that the desired data consistency always holds in case of change propagations 

among the interdependent models involved in a project. 

 

To overcome these limitations of the normal model-driven approach, the feature 

technology has been employed to bridge the missing link between pairs of 

interdependent models. This is a promising mechanism to improve system integration 

and design automation. Based on this mechanism, relevant information, in terms of 

feature sets, encapsulated in one application model can be automatically derived from 

that in others through a so-called feature mapping process. Various feature mapping 

algorithms have been reported in different application contexts. They are all based on 

the same underlying principle: generating a new set of feature instances B from the 

given one A through knowledge-based reasoning supported by feature mapping 

knowledge bases (Zimmermann et al., 2002). For example, in the progressive die 

design process, the flat pattern features can be derived from the corresponding sheet 

metal product features, the die operation features from the flat pattern features, etc. 

This characteristic has led to the development of an intelligent design automation 
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system to automate certain design steps, like the IPD (Intelligent Progressive Dies) 

system (Jiang et al., 2000).  

 

Once the model-driven process is further narrowed down to a feature-driven process, it 

becomes possible to characterize the dependence relationships with additional insights 

because the feature notion can help precisely locate the specific constraints reflecting 

the dependency relationships. A feature-driven engineering process is thus a special 

type of model-driven process. The specialty lies in that there is a clear feature-driven 

“track” in the feature-driven process because the missing links between all the models 

Outputs Module(s) Involved Process Steps 

Feature-based 
Modeling 

Unfolding 

Configuration 

Die Parts Process 
Planning 

Defining 
Machining Paths 
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Operations 
Selection 

Staging 

Defining Insert 
Parameters, Relieves

Generating 3D 
Strip Layout 
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Fig. 3.1. The feature-driven progressive die design and manufacturing process 
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involved are explicitly bridged by features. For example, if the progressive die design 

and manufacturing process is only roughly viewed as a model-driven one, all the 

outputs from each process steps are either ordinary geometrical models, or design data 

sheets, or NC code files. It is implicit how these outputs are related to each other, and 

the whole process is difficult to control. If the process is revamped as a feature-driven 

one (Fig. 3.1), on the other hand, the backbone of the information flow of the process 

is a structured net of feature-based models which clearly indicates how the current 

process step relates to others at various levels of information details (see also Fig. 3.7). 

It is then possible to more properly control the process run.  

 

It is important to note that the definition of a feature-driven engineering process does 

not necessarily only include feature-based models in each step-process. It is not equal 

to a multiple feature mapping (or feature transformation, feature conversion) process 

since feature mapping restrictively refers to derivation of a task-specific feature model 

from other feature models (Shah 1988). The real central condition is that every step-

process involves the handling of a feature-based model, either feature model creation, 

feature model mapping, or transformation of feature-based models into ordinary 

geometrical models, design data sheets and/or NC codes. Despite the promise of the 

feature technology for improving the understanding of the nature of an engineering 

process, extra efforts are needed because currently reported works related to using 

computer technologies to improve feature-driven engineering processes are only 

limited to the identification of mechanisms for feature modeling and automatic feature 

mapping. This is crucial in automatic or semi-automatic generation of individual 

feature-based models but has little relevance to the improvement of system level 

integration. As such, when one feature-based application in one domain is required to 
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co-work with systems and programs in other domains, the integration functions, such 

as information sharing and exchange, have to solely depend on the generic integration 

mechanisms without any unique augmentation based on its own inherent 

characteristics. It is therefore desirable to examine the nature of the feature-driven 

engineering process from the viewpoint of system integration. 

 

As far as integration functions are concerned, it is found that a feature-driven 

engineering process can be further characterized in several new aspects with the target 

of developing a more relevant integrated engineering environment. Firstly, one can use 

the feature-driven “track” to identify all the model-model relationships to describe 

which model is dependent on other models revealing the global consistency 

requirements during the execution of the process. A feature-driven process can then be 

correctly configured to make the design state intuitively perceivable and manageable. 

This is called process management in this thesis. More details can be found in Chapter 

6. Secondly, one can embed the interdependence semantics into the product data 

manager to provide enhanced version control and configuration management support. 

Specifically, the interdependence semantics is represented by a design object 

derivation graph consisting of a special kind of “is-derived-from” references. This “is-

derived-from” reference does not exist between the new and the old versions of the 

same design object but between two different design object versions belonging to the 

same configuration version. Further, the ordinary “is-part-of” references found in 

common configuration manager have little relevance to the data consistency problem 

and thus are not a main concern. More significantly, the design changes due to version 

manipulations are identified to propagate in a special manner. A theoretical framework 

will be set up to reveal this special manner in the following. This framework expands 
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the taxonomy regarding the transformations between two feature spaces (feature_sets 

VS. feature_sets relationships) based on the feature space concept (Shah 1988) towards 

a definition of a new taxonomy regarding model-model dependency relationships 

between two design objects. Beginning from this interdependence semantics and the 

design change propagation property, a new version control and configuration 

management mechanism has been developed, which is elaborated in Chapter 5.  

   

3. 2. Process Decomposition and Information Flow 

In order to successfully implement the overall integration of a complex engineering 

process, it is firstly required to properly subdivide it into sub-processes and devise the 

corresponding data models (Yoon & Shaikh 2000). Accordingly, one of the important 

procedures towards comprehensively characterizing a feature-driven engineering 

process is to develop an adequate process model at a high abstraction level to reflect 

the process decomposition and information flow semantics. The typical way to reach 

this goal is through process analysis and re-engineering. Upon process analysis, the 

relevant domain knowledge is extensively exploited, so that the functional 

decomposition of the targeted process under the “conventional” but most approximate 

to the ideal circumstance is comprehensively analyzed and formally documented as a 

benchmark for process re-engineering. Upon process re-engineering, the tasks that 

need to be performed includes evaluation of each sub-process for its contribution to the 

entire process, as well as redefinition of the contents of certain sub-processes and 

corresponding data models and/or adjustment of sub-processes sequence. One of the 

essential techniques for process analysis and re-engineering is the IDEF0 activity 

modeling technology (U.S. Air Force 1981), which provides a formal way to describe 

the relevant results in terms of a set of incrementally refined IDEF0 diagrams.  
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Throughout this thesis, the progressive die design and manufacturing process is taken 

as an example to demonstrate the core issues addressed in the course of developing a 

network-integrated feature-driven engineering environment. Consequently, the process 

is also exemplarily used in this section to show how a feature-driven engineering 

process is decomposed into manageable sub-processes. This inevitably makes some 

concerns probably only important for the exemplified process but not necessarily for 

other feature-driven engineering processes. However, the underlying approach is 

generic for all others.  

 

Specifically, since a lot of literature has dealt with the progressive die design and 

manufacturing process (Cheok & Nee 1998a, b; Jiang et al., 2000), little effort is 

required to perform process analysis and re-engineering. The task that is required to be 

addressed seems to synthetically use the dispersed knowledge to generate a formal 

process decomposition description in terms of a set of IDEF0 diagrams, as presented in 

the second part of this section. However, a closer look at those amounts of process 

knowledge revealed that one important process decomposition adjustment that has 

historically been made when a widely accepted intelligent and integrated design tool 

was introduced. Such an adjustment may now be viewed as a common sense, but the 

explanations currently available seem to be shallow and vague. Therefore, this section 

begins from a discussion of the said adjustment, which is viewed as a part of the effort 

for process analysis and re-engineering.  

 

3.2.1. Moving Some Design Tasks in One Sub-Process ahead to Enter Its Upstream 

Sub-Process 
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The special process decomposition adjustment mentioned above occurs between two 

sub-processes within the progressive die design and manufacturing process, namely, 

die operation planning and die design. Conventionally, the former process includes 

nesting, operations selection and staging with the output being the Strip Layout 

Description; the latter process includes the design of punches, plates and the various 

types of ancillary components, with the output being the BOM and a collection of 

incrementally generated engineering descriptions for punches, punch plates, die blocks, 

etc. as well as all levels of assemblies (Fig 3.2(a)). By nature, iteration and feedback 

will definitely occur within each stage and even between stages. For example, a likely 

finding of insufficient consideration of the space requirement to place the punch on the 

punch plate when performing the die design may lead to re-staging of the stamping 

operations.  

 

With the introduction of intelligent die design tools, many of the die configuration 

tasks can be automated provided that some primitive information elements are input 

manually at first. The automatic die configuration is done through rule-based and/or 

model-based reasoning which extensively exploits the configuration knowledge 

reflecting the built-in spatial and topological relationships between the constituent 

components. The natural way to specifying such a system only involves reorganization 

of the internal task contents within the die configuration sub-process. Concretely, those 

tasks included in the Die Design box need to be regrouped into two sets. The first set 

contains all the interactive operations to collect all relevant primitive information 

elements. The second set contains those vital die configuration operations 

automatically accomplished by the intelligent tools to generate all the electronic die 

configuration descriptions. Since such task reorganization only occurs locally without 
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relevance to the global process definition, the process decomposition logic is still 

identical to the conventional one (Fig. 3.2(b)). The reason why the first set of design 

tasks are collectively called Interactive Design of “Insert Groups” is given in the 

following paragraph.  

 

Strip Layout 
Description 

…

Nesting 

Staging 

Operation Selection 

Punches, punch plates, die 
blocks, pads, cams, etc. 

Die Operation 
Planning 

Design of Stamping Tools 

Starting, Stopping, and Gaging 
the Strip 

Lifting and Stripping the Strip

Scrap Ejection 

Fastening and Locating 
Components

Other Die Components 

Die Design 

Pilots, gages and stops 

Lifters, stripper, springs 

Slug ejectors 

Dowels, screws 

Die shoes, guide posts, 
bushes, etc. 

Bill of 
Materials 

Die 
Drawings

Fig. 3.2. (a) Process decomposition under normal circumstance (Nee & Cheok 2001)
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Extra considerations, once made, strongly justify a process re-engineering effort to 

move the first set of tasks within the die design sub-process ahead to become a part of 

Fig. 3.2. (c) Process decomposition after process re-engineering 
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Fig. 3.2. (b) Process decomposition following the conventional logic 
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the die operation planning sub-process. To understand this, it is probably appropriate 

to begin from studying the requirements to support the execution of the first set of 

tasks. It is found that an extra data model needs to be devised to accommodate the 

ongoing interactive inputs which may last a long period of time across several turns of 

tool-runs. Further, the information elements in this data model can be partitioned into a 

number of clusters. Most of these clusters can be attached to the corresponding die 

operation descriptions contained in the strip layout model generated in the die 

operation planning sub-process. Although they may have no physical corresponding 

die operation description to attach, all other clusters can share a common information 

structure (class definition) with the above categories of clusters and a virtual 

corresponding die operation description may be applied. Therefore, if the first set of 

tasks within the die design sub-process are moved ahead to become a part of the die 

operation planning sub-process, the data models for each sub-process can be specified 

more rationally. Since a cluster of the information elements with the corresponding 

task to be moved can be loosely termed “Insert Group” or simply “Insert” (Jiang et al., 

2004), so the collection of this category of tasks is called Interactive Design of “Insert 

Groups”. Such a task move has some extra advantages. For instance, the end-user’s 

design operations can be more comfortable because the interactive operations are 

combined together while they are all actually performed in the same operation 

environment (e.g., AutoCAD environment for IPD). Further, iteration and feedback 

can be conducted within one sub-process, which improves convenience and efficiency. 

Fig. 3.2(c) shows the alteration of process decomposition after performing the above 

process re-engineering. The die design sub-process is now becoming a pure automatic 

die configuration process with very limited interactions with the end-user. Each Insert 
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Group is now owned by a particular die operation and should be moved and updated 

accordingly when the operation is moved and modified.  

 

3.2.2. Formulated Process Decomposition and Information flow: a Comprehensive 

IDEF0 Activity Model  

Based on the process analysis and re-engineering results, a formulated process 

decomposition and information flow model can be constructed in the form of an 

IDEF0 activity model. Although the IDEF0 activity model is not implementable, it 

unambiguously captures the process knowledge and clearly sets the context in which 

data requirements and data flow for a system under development are defined. It also 

lays the foundation to provide a global view of the interdependence semantics in a 

feature-driven process (see section 3.3.1). A comprehensive IDEF0 activity model, 

including four IDEF0 activity diagrams named A-0 (Fig. 3.3), A0 (Fig. 3.4), A1 (Fig. 

3.5) and A2 (Fig. 3.6) is developed for the progressive die design and manufacturing 

process in this thesis. 

 

Diagram A-0 (Fig. 3.3) describes the activity A0 which performs the overall function 

of the system. It models the global context in which the progressive die design and 

manufacturing activity takes place. The activity has input data from a description 

model of the sheet metal product using progressive dies. Mechanisms of the activity 

are die configuration templates, standard components, machining resource descriptions, 

material stock descriptions, standard process models, machinability data and standard 

cost reference. The outputs of the activity are BOM, die drawings, cost estimate, 

process plans and NC codes.  

 



 
Characterizing Feature-Driven Engineering Process 

 68

 

 

Standard Cost Reference

Material Stock Descriptions
Standard Process Models

  Die Drawings Product 
Description

Progressive 
Die Design

 
 
 

A1

Progressive Die 
Manufacturing 

(CAPP) 
 

 
 

A2

Die Configuration Templates

Standard Components 

BOM 

Feature-based Models 
of Machining Parts 

Cost Estimate 

Process Plans 

NC Codes 

Machining Resource Descriptions 

Fig. 3.4. Diagram A0 

Machinability Data

Machinability Data

Standard Process Models

Material Stock Descriptions

Product 
Description 

Progressive Die Design 
and Manufacturing 

 
 
 
 
 
 

A0

Die Configuration Templates 

Standard Components 

Machining Resource Descriptions 

Standard Cost Reference

  Die Drawings 

BOM 

Cost Estimate 

Process Plans 

NC Codes 

Fig. 3.3. Diagram A-0 



 
Characterizing Feature-Driven Engineering Process 

 69

The overall activity on level A-0 is decomposed into two activities (A1 and A2) in Fig. 

3.4, diagram A0. This diagram shows the relationship among the activities and the data 

inherited from the upper level (A-0). 

 

Activity A1, shown in diagram A0 and expanded in diagram A1, performs progressive 

die design. Die drawings and BOM are generated in this activity. A group of 

intermediate feature-based models of the constituent machining parts are also 

generated. These models are then treated as input to the activity A2.  

 

Activity A2, also shown in diagram A0 and expanded in diagram A2, performs 

progressive die manufacturing. It generates cost estimate, process plans and NC codes. 

Mechanisms of the activity are machining resource descriptions, material stock 

descriptions, standard process models, machinability data and standard cost reference. 

 

Fig. 3.5 shows that activity A1 is decomposed into four activities. Activity A11 

generates an electronic feature-based product model, which is used as input data by 

activity A12. Activity A12 generates a 2-D flat part drawing and an electronic feature-

based flat part model, which is used as input data by activity A13. Activity A13 

generates a 3-D strip layout model for users to check the stamping process planning 

result and an electronic feature-based die operation model, which is used as input data 

by activity A14. The 3-D strip layout model renders feedback information to the user 

and may be used as an input to activity A13. Activity A14 generates 3-D die models, 

die assembly tree (feature-based die configuration model), the BOM of the die 

assembly (including standard and non-standard subassemblies and components), all 

non-standard die component drawings and a range of electronic feature-based models 
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of all machining components in the die assembly. These feature-based models for the 

machining components are used as input by activity A2. The 3-D die models render 

feedback information to the user and may be used as an input to activity A14. 

 

Fig. 3.6 shows that activity A2, which performs process planning for a machining part, 

is decomposed into four activities. Activity A21 generates the process sequence, which 

are used as input data by activity A22. Activity A22 generates process plans, which is 

used as input data by activities A23 and A24. Activity A23 generates NC codes, which 

are used as input data by activity A24. The feature-based model of the machining part 

is used as input for the first three activities A21, A22 and A23. Activity A24 validates 

the process plans and NC codes. It generates the cost estimates, validated process plans 

and NC codes.  

 

In order to successfully implement the overall integration of a complex engineering 

process, it is required to properly subdivide it into proper sub-processes and devise the 

corresponding data models (Yoon & Shaikh 2000). Without doubt, such subdivision 

with corresponding data models will not have only one resolution. The activity IDEF0 

activity models are used to document, compare and analyze multiple alternatives. 

Process re-engineering may be conducted in the course of searching the optimal 

resolution. The IDEF0 models presented above are exactly the final result based on a 

great deal of efforts of documentation, comparison, analysis and process re-

engineering.    
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It should be noted that the description of the activities of an engineering process using 

an IDEF0 activity model can be recursively refined up to greater detail levels until the 

model is semantically descriptive enough to meet the requirement for decision-making 

or implementation. The model shown above only decomposes the progressive die 

design and manufacturing process into such a detailed level that every activity 

produces a complete intermediate feature-based model or final engineering renderings 

assisted by an individual CAD/CAM tool. In other words, creating internal information 

models (engineering databases) within corresponding computer-based tools 

participating in an integrated engineering environment is fully realized in one activity, 

but not necessarily across several activities. For example, the die operation model is 

fully created by the single activity A13, although A13 can be further decomposed into 

sub-activities, such as Selecting Piloting Method, Selecting Punches, Selecting 

Extrusion Operations, Staging, etc. (Cheok 1998). This is different from the ways 

adopted by some other IDEF0 models, in which the activities are decomposed into 

such a detailed level that one information model (document) generated in a computer-

based system may be realized through several activities. For example, the conceptual 

design IDEF0 activity model developed by Feng & Song (2000) encompasses a group 

of activities, which collectively represents a whole sub-process generating one single 

information model (database). Typically, an IDEF0 activity model at a level more 

detailed than that of the current model is used to capture the database schema of the 

information model or the concrete design process knowledge provided for users to use 

a task-specific engineering tool. The current IDEF0 model is used to capture 

characteristics and requirements of the interoperability between the various design and 

manufacturing phases, each of which generates an intermediate model or final 

engineering renderings. How these intermediate models are achieved and represented 
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in the computer-based tools kernel is not directly relevant to developing an appropriate 

system integration infrastructure, which only concerns the global view of these models 

and tools. Therefore, the current model has been at an exact decomposition level, not 

too high while not too low. 

 

3. 3. Interdependence Semantics and Design Change Propagation Property 

The interdependence semantics has been addressed in a few researches mainly as a 

secondary topic with respect to version control and configuration management. This 

section presents a formulated description on the interdependence semantics in a 

feature-driven process using the notions and terminologies found in the version 

management community. 

 

3.3.1. Global View of Interdependence Semantics in a Feature-driven Process: Design 

Object Derivation Graph 

As widely acknowledged, the ordinary versioning problem mainly concerns the 

management of the versioned complex and evolutionary design objects involved in 

designing artifacts consisting of components, which themselves in turn recursively 

consist of lower level components till the leaf level primitive components (Chou & 

Kim 1986; Ramakrishnan & Janaki 1996). In this case, when the users retrieve a 

version of a component, they need to be provided with the knowledge about its 

evolutionary track through a collection of its past versions and its lower level 

component versions used.  In general, the component version evolutionary history is 

maintained by a version derivation graph (VDG). The VDG of a versioned object vo 

consists of a tuple (V, D), where V is a non-empty set of versions of vo and D is a set of 

directed edges in V. Likewise, the composite reference (is-part-of) relationship is 
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maintained by a hierarchical diagram called a composition graph (CG) for the highest 

level object, the composite object, of an artifact in the hierarchy (Westfechtel 2000; 

Miles et al., 2000; Park & Yoo 1995). A CG of a composite object co is defined as a 

tuple (CO, CR) where CO is a set of component objects and CR is a set of directed edges 

on CO. 

 

For product data management of a feature-driven engineering process, the most 

important semantics which needs to be captured, is also a type of derived-from or 

dependent-on relationships existing in the collection of all versioned design objects 

involved in a process. However, this derived-from relationship is not between the new 

and old versions of the same versioned object but between two different objects 

probably labeled with the same version number to show that they share the same 

evolutionary pace. Similar to CG, this derived-from relationship can be represented by 

a design object derivation graph (DODG). A DODG for a specific feature-driven 

engineering process is defined as a tuple (DO, DR) where DO is a set of design objects 

and DR is a set of directed edges on DO. If (do1, do2) is in DR, do2 is then said to have a 

derivation reference to do1, or do2 is derived from do1. The main design objects in DO 

are feature-based models which are chained to act as the backbone of an engineering 

process initiated from an upstream engineering phase to the down-stream ones, 

including some concurrent ones in-between. From the feature-based models in the 

backbone, some ultimate engineering documents may be derived. Fig. 3.7 shows a 

DODG for the development process of sheet metal products using progressive dies 

based on the activity model presented in the previous section. A range of feature-based 

models, product feature model, flat pattern feature model, die operation feature model, 

die configuration feature model and a group of die part feature models constitute the 
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backbone of the entire engineering process. Flat pattern engineering drawing, 3-D strip 

layout model, die BOM and engineering drawings, die part process plans and NC 

codes are the ultimate engineering documents derived from the related feature-based 

models in the backbone. Typically, knowledge-based intelligent engineering tools are 

used for the derivation of the ultimate engineering documents from related the feature-

based models and down-stream feature-based models from their upstream ones while 

the ultimate engineering documents may be further refined by the help of universal 

engineering tools, such as AutoCAD. 

 
Fig. 3.7. The Design Object Derivation Graph 
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The DODG conceptually renders a full picture of the product data configuration of a 

feature-driven engineering project. It unambiguously specifies the information models 

to be generated and their dependency relationships. This makes all the product models, 

if mono-versioned, manageable by a certain dedicated integration infrastructure with 

assistances for users to track and control the data generation process mono-

directionally from a root model towards the downstream tasks. However, a practical 

engineering process needs to handle multi-versioned design objects. Once a new 

version of a design object in between the process is created, the design change may 

propagate upwards and/or downwards, and thus cause the process to proceed bi-

directionally, which generates new versions for both upward design objects (upward 

propagation versions) and downward design objects (downward propagation versions) 

in DODG (Fig. 3.8). The design change propagations through all the individual pairs 

of interdependent design objects are not identical, and it is necessary examine these 

with more details.  

 

 

Fig. 3.8. Two types of design changes 
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3.3.2. Expanding the Feature Transformation Taxonomy Towards Dependency 

Relationship Taxonomy 

With the global view of the dependence relationships in an entire engineering process 

being revealed, the subsequent sections will concentrate on characterizing the local 

model-model dependency relationships. In brief, they are classified into several 

categories, each of which has special design change propagation characteristics. Since 

the classification is an extension to the feature transformation taxonomy, which is 

based on the feature space concept introduced by Shah (1988), this section first 

examines the feature space concept and the feature transformation taxonomy.  

 

According to the feature space concept, the totality of information related to a product, 

in all its aspects, over its entire life cycle, and for all conceivable applications, defines 

a domain called a feature hyperspace. The actual feature spaces for the life cycle 

applications of a given product are subsets of this hyperspace. Various types of 

relationships can exist between two subspaces, which may be of the same or different 

dimensions. Feature spaces of the same dimension may be partially overlapping or 

completely disjoint. In the overlapping regions, one can find features with identical 

semantics. Between the feature spaces of unequal dimensions, information from a 

higher-dimensional domain may be selectively abstracted to suit a lower-dimensional 

domain. This is referred to as a projection transformation from n to (n-m) space. 

Another possible feature space relationship is referred to as conjugate spaces, which 

contain features composed of different variations of the same elements. The adjoint 

space is another relationship created by associating elements in one subspace to certain 

elements in another subspace. Accordingly, four types of feature transformations 

between two feature sub-spaces exist, namely, identity, projection, conjugate and 
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adjoint transformations. For information transfer from one domain to another, there are 

also distinctions between unitary and multiple transformations.  

 

Apparently, the taxonomy given above is not a complete one, and like many other 

research works on feature mapping (Bronsvoort & Jansen 1993; Shah 1988; Wong & 

Leung 1995, 2000), the classification criterion used was vague: it interchangeably 

measures the relationships between the entire feature models (feature spaces) or that 

between specific partial feature sets encapsulated in the feature models. Based on these 

observations, a fairly complete taxonomy is developed and presented next. The 

classification criterion measures the relationships between any two data models 

involved in the feature driven engineering process, including the non-feature-based 

models, which are the final engineering outputs derived from a feature-based model in 

the backbone of the DODG.  

 

3.3.3. Model Derivation Function 

Expanded from the abstract concept of feature space, mathematical functions are used 

to describe the possible relationships between interdependent models. At the highest 

level, when one model MB is derived from MA, the model derivation function can be 

loosely denoted as  

)( AB MfM =  (3.1) 

The information elements in MB and MA are not limited to features, but can be of any 

types that a feature-driven engineering process may involve. This function covers the 

case where d MB /d MA = 0, which means MB is fully independent of MA.  
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The closest relationship between MB and MA is probably that the information elements 

in MB are variations of that in MA (conjugate transformation), which is denoted as    

)( AcB MfM =  (3.2) 

In most cases, MB may contain information elements with no correspondence in MA 

and vice versa. Let ΔAB denotes the information elements in A with no correspondence 

in B, and ΔBA denotes information elements in B with no correspondence in A.  

Another imaginable relationship will be information filtration (project transformation), 

which is denoted as 

)( ABMfM AcB Δ−=
 (3.3) 

Likewise, the information addition (adjoint transformation) relationship is denoted as   

BAMfM AcB Δ+= )(  (3.4) 

Unifying equations (3.2), (3.3) and (3.4), a generic derivation relationship between MB 

and MA can be integrally represented by 

BAABMfM AcB Δ+Δ−= )(  (3.5) 

from which equation (3.2), (3.3) or (3.4) can be seen as one of its special cases, e.g., 

when ΔBA =ΔAB = Φ, it becomes (3.2). 

 

While ΔBA denotes information elements in B additional to A, it can be further 

decomposed into two parts: those that can be fully deduced through a function ƒa with 

some elements in A as the arguments and those which are newly added independent 

elements, i.e.,  
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BAABMfBA Aa Δ ′+Δ ′−=Δ )(  (3.6) 

According to its “greyness” (the extent of awareness), the conjugate function ƒc and the 

addition function ƒa can be classified into three types, “black box”, “white box” and 

“grey box” transformations. In the case of "black box" transformations, the data 

sources and targets within a model pair are related through a transformation and to 

each other at a coarse-grain level. It can be determined that the data sources and targets 

are related through the transformation, but no data target can be precisely expressed as 

a specific function of a (set of) data source(s). In the case of "white box" 

transformations, the data sources and targets within the model pair are related through 

a transformation and to each other at a fine-grain level. Every data target can be 

precisely expressed as a specific function of a (set of) data source(s). In the case of 

“grey box” transformations, data sources and targets within the model pair are related 

to a transformation and to each other at a medium-grain level. Only a portion of the 

data targets can be precisely expressed as a specific function of a (set of) data source(s). 

In this sense, adding new information elements, either in the process of creating a new 

model or deriving a new model from a source model belonging to an upstream domain, 

can always be seen as a “black box” transformation where data sources are Φ. 

Consequently, at the collection level, the model derivation relationships from model A 

to B represented by equations (3.5) and (3.6) can also be classified into three types. If 

(Δ´BA = Φ) ∩ (ƒc and ƒa are both “white box”), the model transformations are “white 

box”; else if (ƒc and ƒa are both “black box”), the model transformations are “black 

box”; or else, the model transformations are “grey box”. 

 

Classifying feature model transformations into three types illustrates the fact there 

exist three ways to generate a target model from a given model or from the beginning. 
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For “white box” transformations, a fully automated design tool can be employed to 

realize the transformations merely through a push of a couple of buttons. For “black 

box” transformations, the knowledge about the derivation of a target model from a 

source model has to be kept in the designers’ mind and the target model has to be 

generated from scratch manually through an interactive design tool like creating a 

completely new model. For “grey box” transformation, a semi-automated design tool 

can be employed to automate part of transformation operations while manually 

realizing others.  

 

Using the feature-driven process shown in Figure 3.5 as an example, the process to 

derive the flat pattern model is a conjugate, “white box” and fully automatic 

transformation; the processes to derive the flat pattern engineering drawing, 3-D strip 

layout model, die BOM and engineering drawings, and die parts feature models are all 

projections, “white box” and fully automatic transformations; the processes to derive 

the die operation feature model, die configuration model, and die part process plans are 

all mixed, “grey box” and semi-automatic transformations. The derivation of die 

parts NC codes is a process to transform two source models into one. The derivation 

function is similar to equation (3.5) which has analogous properties and the process 

itself turns out to be a projection, “white box” and automatic transformation.  

 

3.3.4. Design Change Propagation Property  

This paragraph discusses the design change propagation property on how it lays the 

constraints for implementation of the data integration tools, specifically, the version 

control and configuration management tools. The details of the versioning control and 

configuration management concept are given in Chapter 5.  
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Existing research works dealing with design interdependency plainly assume that the 

interdependent models always affect each other and the design changes always 

propagate upwards and downwards (Westfechtel 2000; Baldwin & Chung 1995). 

However, when examining the interdependent relationships represented by equation 

(3.5) more closely, it can be found that the change of one model will not necessarily 

always cause a corresponding change to its immediate interdependent upstream models 

or downstream models. Specifically, when the changes are only limited to the part ΔBA 

(current model is MB and upstream interdependent models are MA), they will not 

propagate upwards. Likewise, when the changes are only limited to the part ΔAB 

(current model is MA and downstream interdependent models are MB), the design 

change will not propagate downwards.  Therefore, some design changes to a model in 

the DODG may propagate throughout the whole DODG, while others may only affect 

their near neighbors or have no effects on any neighbors. Furthermore, the 

determination of the design change propagation scope requires the knowledge of the 

specific information sets that have been changed and a highly intelligent “inference 

engine” to make adequate decisions based on these information sets. Since the version 

control and configuration management tool does not concern the interior information 

contents of the design object, making these decisions should be fully up to the designer. 

The promise of the version control and configuration management tool is to provide a 

comfortable context to execute the design change propagation scope after the decision 

is made during the versioning process.  

 

The difference between the automatic and manual (including semi-automatic) 

transformations has influences on the propagation property. For automatic propagation, 
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it will be meaningless to proactively perform design changes to the models derived 

from the upstream ones. The only way is to change those from which they are derived 

from. On the other hand, for manual propagation, the models can be changed to evolve 

to a new version either proactively or reactively. 

 

Using the feature driven-process shown in Figure 3.7 as an example, the flat pattern 

engineering drawing, 3-D strip layout model, die BOM and engineering drawings, die 

parts feature models, etc., are all models derived automatically and thus cannot directly 

and actively execute design changes while other models like the die configuration 

feature model allow for both proactive and reactive design changes. Furthermore, if a 

design change to the die configuration model is related to the shape of the punch, this 

design change is expected to propagate both upwards and/or downwards; if it is only 

related to a die plate, it can only lead to downwards design change propagation.  

 

3. 4. A Special Design Transaction Model for Feature-driven Engineering Process 

The previous section has shown that there are three ways to transform input data 

model(s) to output data model(s), namely, “white-box”, “grey-box” and “black-box” 

transformations. Consequently, three types of tools, automatic, semi-automatic and 

manual (interactive) engineering tools exist corresponding to the data manipulation 

ways. Such a rough classification is probably insufficient for dealing with registering 

an engineering tool into an environment. This section goes a little further from this 

point to identify the ways by which an engineering tool manipulates relevant data 

housed in the environment through design sessions. The implication of the data 

manipulation means is then studied with the target to develop an adequate design 
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transaction model to formally describe how engineering tools access design objects in 

the shared repository.  

 

3.4.1. The Means by Which an Engineering Tool Manipulates Relevant Data through 

Design Sessions 

An engineer starts interacting with an environment by initiating a design session which 

may span minutes, hours or even days. A long session may be decomposed into a set 

of short design sessions connected by saving and reloading an intermediate data model 

temporarily stored in a data store maintained by the environment. When the designer 

ends the session, an implicit save/check-in operation is issued for all relevant objects. 

Corresponding to the three types of engineering tools, there are four possible means by 

which a tool manipulates relevant data through design sessions (Fig. 3.9).  

 

The most popular data manipulation means is found with tools that heavily depend on 

user interactions and work like an editor (Fig. 3.9(a)). When a new design session 

begins, the engineering tool optionally loads the input design object(s) or reloads an 

intermediate design object into its working memory space and maps them into an 

incore (in-memory) data structure. The incore data structure can be distinct from the 

actual data format used for physical storage. When the design session pauses for some 

reasons, a SavePoint is created by the tool to make persistent the incore data structure 

in the environment. The final design result is a special SavePoint, which is no longer 

reloaded for revision by the tool. Therefore, the operation to create a SavePoint or the 

final design result is almost identical. 
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A variant to the above data manipulation means is shown in Fig. 3.9(b). The optional 

input design object(s) become(s) mandatory and must be reloaded again along with the 

intermediate data model maintained as the SavePoint when a new design session is 

resumed after a pause. The consumed design object(s) may be overwritten by other 

designers during the interval between the first and the current session starting point. 

This is a risk of damaging the data integrity. Fortunately, this risk can be removed by 

incorporating all the information within the consumed design object(s) into the incore 

data structure and further the corresponding output design object immediately after the 

first design session has been launched. In this sense, this case becomes the case shown 

in Fig. 3.9(a). 
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Another possible data manipulation means is found with automatic engineering tools. 

There is a single design session which automatically transforms the consumed design 

object(s) into produced (output) design object(s) (Fig. 3.9(c)). If the produced design 

object(s) is(are) required to be updated, the normal way is to perform the automatic 

transformation process again provided that the consumed design object(s) is(are) 

updated first. Updating the design object in the editor way through another design 

session may also be permitted when the current sub-process is followed by an 
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Fig. 3.9. Four possible means by which a tool manipulates relevant data 
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interactive sub-process, which is used to refine the automatically produced design 

object. A variant to this case is found with semi-automatic tools which need a large 

amount of interactions before invoking the last automatic reasoning procedure (Fig 

3.9(d)). Intermediate data models to function as SavePoints are required to ensure the 

resume of a half-done design. As discussed in Section 3.2.1, process re-engineering 

techniques can be used to move the interactive design tasks upwards to its preceding 

sub-process, which transforms the case shown in Fig 3.9(d) into the case shown in Fig. 

3.9(c).  

 

Therefore, all the engineering data manipulation means can be classified into two types: 

the Load-Interactively Operate-Save mode and the Load-Automatically Deduce-Save 

mode. Identification of the engineering data manipulation means is the foundation to 

develop an adequate design transaction model through which engineering tools interact 

with a shared data store monitored by a data manager, such as a PDM module.   

 

3.4.2. Basic Design Transaction Model 

Different data managers may adopt different design transaction models. The most 

widely used design transaction model is called the Check-Out/Check-In transaction 

model in which, “a design transaction corresponds to the period of time from the 

Check-Out to the corresponding Check-In” (Wolf 1994), as illustrated in Fig. 3.10. 

Once checked out by a particular tool via the data manager, the design object in the 

shared data store is applied a lock. The lock mechanism is implemented in the data 

manager, which may be a part of a larger integration framework providing more 

integration functions beyond that of data integration. Re-check-out of this design 

object is then prevented until it is successfully checked in again and the lock is 
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removed. The particular tool can then safely operate on a copy of a particular design 

object in its own working space for an uncertain period of time without worrying about 

that other users may also check out this design object and generate a conflicted update. 

It is important to note that a design transaction in this basic design transaction model is 

performed by a single engineering tool on a single design object and is the basic unit of 

consistency for operation by engineering tools on design data. 

 

3.4.3. A Special Design Transaction Model for Feature-Driven Engineering Process 

It can be easily found that the basic transaction model can only be directly used for the 

data-tool interaction case shown in Fig. 3.9(a). For the case shown in Fig. 3.9(c), it 

cannot be used directly. One way to overcome the deficiency of the basic transaction 

model is to use the workspace concept to collectively treat the consumed data and the 

produced data as a consistency unit (Katz et al., 1986; Rehm et al., 1988). A design 

transaction then denotes the manipulation of multiple design objects in a private 

workspace. Check-Out and Check-In operations are used to transfer design objects 

to/from the private workspace and the shared archive. Changes made in a private 

workspace are not visible to other engineers and the original replicas in the shared 

archive are locked to prevent unmanaged writes. Another similar way is to use the 
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Fig. 3.10. The basic design transaction model (Wolf 1994) 
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concept of complex objects which contain sub-objects and further represent a design 

information access pattern (Ranft et al., 1990). The consumed data and the produced 

data are collectively viewed as a complex object and accessed as a whole when 

checked out or in. One common problem for these two or other similar proposals is 

that they all involve a certain extent of unnecessary Check-Out of some design objects. 

Using the case described in Fig 3.9(c) as an example, suppose the produced design 

objects need to be updated based on pre-defined updates on consumed design objects. 

The corresponding design session only requires checking out the consumed design 

objects. The produced design objects are only required to be locked during the design 

session without need to be checked out. Check-out of the unnecessary design objects is 

a conservative strategy and may be tolerable if these design objects are of moderate 

size. Unfortunately, the feature-driven engineering process may involve produced 

design objects of very large sizes in some design sessions. For example, in the process 

to perform the progressive die configuration task with the die operation feature model 

as the consumed design objects (Fig. 3.7), the produced design objects include a huge 

set of die configuration descriptions. Therefore, the workspace or the complex objects 

strategy is not exactly adequate to define a transaction pattern for the case shown in 

Fig. 3.9(c). 

 

However, a slight augmentation to the basic design transaction model with 

introduction of three advance concepts can fill the gap and yield a well suitable design 

transaction model for feature-driven engineering processes. The first two concepts are 

termed virtual Check-Out and virtual Check-In as compared to the physical Check-

Out and physical Check-In in the basic transaction model. Specifically, the physical 

Check-Out operation performed at the beginning of a design transaction will produce a 
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set of copies of the design objects in the private workspace while applying a set of 

locks on the corresponding design objects stored in the shared repository. However, 

the virtual Check-Out operation only applies a set of locks on the corresponding design 

objects without producing physical design object copies in the private workspace. 

Similarly, the physical Check-In operation performed at the end of a design transaction 

will overwrite the value of the design objects to be checked in with the new values 

generated in the private space while removing the corresponding locks on the these 

design objects. However, the virtual Check-In operation only removes the 

corresponding locks on the corresponding design objects without overwriting their 

physical values provided that they are unchanged in the private workspace. In the 

implementation aspect, the physical-Check-Out/virtual-Check-In transaction equals to 

a read-only operation and the virtual-Check-Out/physical-Check-In means placing a 

lock on the corresponding design object at one predefined moment till a direct 

overwrite is performed.  

 

The third concept is termed transaction group, a terminology originally used by 

researchers such as Roller et al. (2002a) when dealing with synchronous cooperative 

work based on a shared engineering database. The grouping criteria here are purposely 

adjusted to reflect the requirements placed by the feature-driven engineering processes. 

Specifically, transactions on all the consumed design objects in a design session are 

viewed as a Transaction Group, which is a logical unit of work, and the transactions on 

all the produced design objects as well. In this sense, a design session with the working 

mode as shown in Fig. 3.9(c) involves two design Transaction Groups. The first group 

consists of a set of physical-Check-Out/virtual-Check-In transactions which are 

equivalent to read-only operations for the consumed design objects and thus can be 
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grouped automatically. The other group consists of a set of virtual-Check-

Out/physical-Check-In transactions for the produced design objects and ensures that 

those design objects are checked-in correctly and collectively overwrite their counter-

parts checked-out.  

 

3.4.4. Discussions on the Proposed Design Transaction Model 

According to the proposed design transaction model, a feature-driven engineering 

process may involve two types of design transactions. For highly interactive edit-style 

tools (Fig.3.9(a)), a standard physical-Check-Out/physical-Check-In transaction model 

will become effective. For automatic engineering tools (Fig.3.9(c)), a Transaction 

Group model including virtual Check-Out and virtual Check-In operations will become 

effective.  

 

It should be noted that the virtual Check-Out/Check-In operations are not performed 

explicitly by engineering tools like the physical Check-Out/Check-In operations. 

Instead, they are required to be performed implicitly and automatically along with a 

group of physical Check-Outs of the consumed design objects with the help of certain 

managerial tool. Therefore, the primitive operations involved in implementing the 

augmented design transaction model are still physical Check-Out and Check-In.  

 

The operation logic for the case shown in Fig.3.9(c) can now be clearly described as 

follows: once the consumed design objects are checked-out and the corresponding 

automatic engineering tool is initialized, the managerial tool automatically executes the 

virtual Check-In of the consumed design objects to finalize the design transactions on 

the consumed design objects within one Transaction Group; immediately after these 
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operations, the managerial tool executes the virtual Check-Out of the produced design 

objects and initializes a set of transactions on these design objects within another 

Transaction Group; this transaction Group is then terminated by the corresponding 

Check-In of the newly produced design objects by the automatic engineering tool.  

 

This operation logic clearly shows that the augmented design transaction model 

outperforms the workspace model in that it removes unnecessary operations to 

physically check-in the consumed design objects and check-out the produced design 

objects in a tool-run. The former can be removed because they are unchanged in the 

tool-run. The latter can be removed because they are not physically consumed by the 

tool and then unnecessarily present in the private workspace. 
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CHAPTER 4  

OVERVIEW OF THE CAX FRAMEWORK-BASED INTEGRATION 

APPROACH 

 

As stated, while there exist considerable conceptually potential integration approaches 

to be followed to build up a network-integrated engineering environment, this study 

favors the CAX framework-based approach due to the unique integration power of the 

CAX framework concept. With the help of this concept, the challenge to develop 

facilities to conveniently integrate multiple CAX tools into a coherent engineering 

environment can be overcome by introducing a common CAX framework for these 

tools. The components that are desirably incorporated into the framework can be easily 

identified and specified. It also leaves a large space for system developers to 

selectively and adaptively use those formulated components and services so that the 

framework can behave in a particular way compatible to a set of pre-specified 

requirements. This allows a special framework to be devised to provide the end-users 

with supports in sharing common information, process management, etc. This chapter 

presents an overview of the CAX framework-based integration approach, setting up a 

basis to develop advanced integration functions for feature-driven engineering 

processes. Those functions include the unique version/configuration and process 
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management services, which explicitly take into account the identified characteristics 

presented in the previous chapter. 

 

4. 1. Rationale of the CAX Framework Approach 

The most prominent characteristic of the CAX framework approach is that it 

transforms the complex tool integration missions into a definite process to develop a 

CAX framework for the distributed CAX tools or tool users. This section explains why 

the CAX framework concept can be employed to develop the desired integration 

facilities for the tools involved in a specific application domain, such as the feature-

driven engineering process. Basically, the integration power of the CAX framework is 

attributed to the roles that can be allotted to it.  

 

Analogous to the CAD framework (Wolf 1994), three basic roles can be allotted to the 

CAX framework so that an integrated engineering environment can be achieved. These 

roles are that of common product data repository, engineering data manager and 

engineering process manager. By playing the first role of a common product data 

repository, the CAX frameworks ensure that all the engineering data generated by the 

CAX tools is centrally stored in the common product data repository. It is thus possible 

to avoid the data redundancy and inconsistency problems which are always 

encountered in the product development process using a set of completely isolated 

engineering tools.  

 

The second role that can be allotted to the CAX framework is that of engineering data 

manager similar to a PDM module. By playing this role, the CAX framework can 

capture the global view of all the engineering data that are generated by dispersed 
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CAX tools and support versioning control and configuration management to improve 

data integrity and consistency. By nature, an engineering data management system is 

always attached to a common product data repository and a common product data 

repository always coexists with a management system. It is therefore understandable 

that the above two roles may be collectively referred as one role called a product data 

manager.  

 

The third role that can be allotted to the CAX framework is that of engineering process 

management similar to a WM module. By playing this role, the CAX framework can 

provide a design flow browser which enables the designer to inspect the status of his 

design and to invoke the right tools. Incorrect tool execution sequence and misuse of 

data sources can be avoided. Correct tool and data source selection can be rapidly 

identified without the need of extra efforts to search information that is unorganized.  

 

Due to its flexibility, extensibility, modularity, portability, and maintainability, the 

CAX framework may be allotted with additional roles apart from the above three basic 

roles inherited from the CAD framework concept. Some functions described in other 

relevant literature pertaining to a network-integrated engineering environment (see 

Chapter 2) may be implemented in the CAX framework. For example, the common 

product database can be extended to become a knowledge base or a knowledge 

repository through enlarging its database structures to richer representation schemata 

(Roller & Eck 1999). Inference facilities are accordingly added to provide more 

intelligence and active behavior to the database system at the same time. By using this 

intelligence and active behavior, two types of assistance can be attained to make an 

engineering process more productive and less error-prone. One of them is related to 
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reuse of the former good engineering designs stored in the product database to develop 

new analogous engineering designs by using an approach called Case-Based 

Reasoning (CBR) (Tor et al., 2003). The other is related to situation detection, 

semantic integrity enforcement, concurrency control, collaboration support, and 

storage management by using active database management systems (Roller & Eck 

1999). Therefore, the CAX framework can be allotted with a role of common 

knowledge repository for the end-users and the participating tools. Any other types of 

knowledge shared by the CAX tools (especially some intelligent CAX tools with a 

knowledge base attached) can also be centrally managed in this knowledge repository. 

 

Another possible design choice to make a CAX framework more powerful is to 

incorporate the CSCW service like that in the CONCERN architecture (Hanneghan et 

al., 1995, 1998) into it. This makes it possible to allot the CAX framework with a role 

of a CSCW service provider. Yet another possible design choice is to incorporate any 

sharable service, such as the geometric modeling service (Shah et al., 1997) into the 

CAX framework, which makes it possible to allot the CAX framework with the role of 

a common geometric modeling service provider. Participating CAX tools can then 

invoke this service once the need arises. In summary, any common services which are 

shared by multiple distributed users or client-side CAX tool applications can be 

incorporated into the CAX framework. Certain corresponding roles can then be 

allotted to the CAX framework. 

 

Once the CAX framework that can be allotted with the above roles is incorporated into 

the engineering environment, the CAX tool users can exploit both the dedicated 

functionalities provided by the tool they are using and the common integration 
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functions provided by the CAX framework. The tools can still run autonomously, but 

the design activities carried out on these tools are (semi-)automatically coordinated 

with the help of the CAX framework.      

 

4. 2. Definition of Functional Requirements and System Architecture 

With the confirmed confidence of the integration power of the CAX framework 

concept, the emphasis is now put on how to develop a CAX framework for the feature- 

driven engineering processes, such as the progressive die design and manufacturing 

process. There are a number of strategies that are used to define the functional 

requirements of the framework and the general system architecture. Some of them are 

adapted from those that are developed by the CAD framework researchers in the field 

of EDA. Others are developed from the beginning to address the domain-dependent 

issues involved in the development of the CAX framework, which aims at applications 

in the field of manufacturing engineering. 

 

4.2.1. Functional Requirements 

Definition of the functional requirements of the CAX framework needs to consider 

what integration functions are desirable by the CAX tools as well as the tool users and 

what functions the CAX framework can provide. Section 4.1 has shown  that the CAX 

framework can be allotted with diverse roles as mentioned above. However, it is found 

that what are most important for the system integration from design to manufacturing 

for the feature-driven engineering processes are still the three basic roles: common 

product data repository, engineering data manager and process manager, or simply the 

latter two roles. Therefore, the functional requirements of the CAX framework are 
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defined as providing product data management services and engineering process 

management services for the CAX tools and tool users.  

 

In this sense, the CAX framework can be compared to a lightweight PDM module 

combined with a WM module, which co-works with the CAX tools involved. As a 

lightweight module, it requires less demanding computing resources and no excessive 

system customization operations are required before running the system. It is possible 

that the CAX framework functions can be provided by customizing a heavyweight 

PDM/WM system. However, the customization approach is inferior because of the 

reasons presented in Chapter 2.  

 

4.2.2. Some Basic Strategies for Defining the General Framework Architecture 

The integration functions of the CAX framework are exactly the same as that of the 

CAD framework (Wolf 1994). However, due to the different working modes of the 

tools that interact with the framework and the different structure of the tool data that 

will be centrally managed by the framework, the internal structure of the CAD 

framework and the CAX framework would be different. Despite the differences, the 

effectiveness of some basic strategies for defining the general framework architecture 

(Wolf 1994) still holds. Some of these strategies are presented next.  

 

• Split the Framework into Framework Kernel and Workbench (Framework Tools)  

Apart from providing interfaces for the participating CAX tools, the CAX framework 

should also provide interfaces to the end-users so that they can be informed about the 

status of his design or initiate some framework actions. The framework is then split 

into two parts, the framework kernel and framework tools, the latter of which aims 
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specifically at interactions of the end-users with the framework. In manufacturing 

engineering, one may notice that the “workbench” module in many architecture 

(Hanneghan et al., 1998; Conaway 1995) takes the same responsibility as the 

framework tools. A workbench or workbench application is a common user interface 

to multiple applications used within a particular discipline. It provides a graphical 

front-end to the users so that they can access the services of the environment. 

Therefore, the CAX framework in this thesis is characterized by consisting of a 

workbench and the CAX framework kernel.  

    

• Separate Meta Data and “Raw” Engineering Data Handling 

There are two types of data that are maintained within the framework, the actual design 

data and the meta data which means “data about data”. The meta data owns pointers 

pointing to the design objects and are used to index the design data as well as to apply 

management strategies. Separation of meta data and “raw’ engineering data implies 

that the framework kernel should contain two built-in databases, the meta data 

database or management database and “raw” engineering data database or design 

object repository, to accommodate them respectively. The meta data is small in storing 

size compared to the volume of the corresponding “raw” engineering data. Further, the 

collection of the meta data in a project is of complex structure and a dedicated database 

management system with specially designed schema is required. On the other hand, the 

collection of the “raw” engineering data in a project is simply a collection of design 

objects which are identified by its file name. A part of a file system is then sufficient to 

take the responsibility to function as the design object database for a project.  

 

• Treat the Framework Kernel as Transaction Processing System  
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In the CAX framework kernel, any management service requests from the CAX tools 

(tool wrappers) or the workbench are eventually responded with certain operations to 

consult or update the administered state of the meta data or the engineering data. As 

stated, the meta data is stored in the management database and the engineering data is 

stored in the design object repository. It is therefore possible to use the transaction 

concept, which is widely used in the design of database management systems, to 

characterize the CAX framework kernel as a transaction processing system. A 

transaction is a sequence of operations that is either performed completely or not at all. 

It is a logical unit of work, which transforms a consistent state of the database into 

another consistent state (Gray & Reuter 1993). The use of the transaction concept 

provides convenient means to solve the problems of concurrency and recovery. 

Corresponding to the separation between the meta data and the engineering data 

handling, two main types of transactions are involved in the CAX framework kernel: 

meta data transactions and engineering data transactions. The meta data transaction 

carries the identical semantics of the conventional transactions. The design transaction 

is semantically different from the conventional transactions and relates to the way how 

the engineering tools manipulate engineering data. For the CAX framework dedicated 

to the feature-driven engineering process, the special design transaction model 

presented in Section 3.4.3 should be applied. The meta data transaction can be further 

classified into project transactions, configuration transactions, etc. These transactions 

should be properly layered (see Section 5.2.1) and coordinated to make the design data 

correctly checked out from and checked in to the design object repository. Treating the 

framework kernel as a transaction processing system justifies the strategy for the 

framework to adopt a standard database to store the meta data and a directory of file 

system to store the design objects.  
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4.2.3. The General System Architecture 

By using the framework design strategies presented above and consulting the CAD 

framework architecture described by Wolf (1994), the general system architecture of 

the CAX framework is defined in Fig. 4.1. In this architecture, the overall CAX 

framework-based engineering environment consists of the CAX tools and the CAX 

framework. The framework further comprises the workbench application, the 

framework kernel and two data stores, the management database and the design object 

repository. The management database stores meta data, which owns pointers pointing 
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to the design objects stored in the design object repository. The workbench application 

interacts with the framework kernel directly and the CAX tools via wrappers (see 

Section 4.4.2). The framework kernel is further decomposed into three components, 

the data and process management (DPM) kernel, the metadata handling component 

and the design data handling component. The overall architecture complies with the 

popular 3-tier strategy for the development of the Internet-based applications. The 

CAX tools and the workbench are the first tier or the user interface tier. The 

framework kernel is the middle tier or the logic tier. The management database and the 

design object repository are the third tier or the application data tier.     

 

4. 3. A Roadmap of Implementation and the “Skeletal” Framework 

This section overviews the main steps that are taken to develop the CAX framework 

up to the physical level beginning from the functional requirements and the general 

system architecture defined in the previous section. The “skeletal” framework, which 

refines the general system architecture by considering functionality partition between 

the server side and the client side, is also presented.  

 

4.3.1. A Roadmap of Implementation 

Wolf (1994) recommended developing a CAD framework via three main steps. The 

first step is to develop the “information architecture” that defines the information 

structure of the framework. The second step is to develop the “component 

architecture” that identifies the individual framework components and the 

dependencies between them. The final step is to develop the implementation 

architecture to define the internals of the framework at the physical level. It is found 

that this three-step approach is only appropriate without applying the OO concepts. If 
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the OO concept is incorporated, development of the information architecture and that 

of the implementation architecture can be combined in one run, because they are both 

the task to identify a set of object classes and their relationships. Further, it is found 

that most of the details of the component architecture can be specified without the need 

to know every detail of the information architecture. Therefore, it is decided to develop 

the current CAX framework through two steps. The first one is to develop a “skeletal” 

CAX framework up to the physical level. All the framework components are specified 

either using existing software products or are developed from the beginning. The 

second one is to develop an adequate schema for the management database and the 

information architecture for the components that need to be developed from the 

beginning. All the required user operations are also defined in this step so that the GUI 

can be easily devised.  

 

Of the above two steps to develop the CAX framework, the first one is relatively easy 

and the results are presented in the rest of this chapter. The second one is the most 

creative and challenging part of this thesis. It involves modeling and analyzing the 

desired engineering environment in two aspects , the product data management aspect 

and the engineering process management aspect, the latter being extended from the 

former. The next two chapters are respectively dedicated to deal with these two aspects 

to show how the unique product data management and engineering process 

management functions are incorporated into the CAX framework. Note that the system 

development route adopted in this study while using the CAX framework integration 

approach may be duplicated to develop a similar network-integrated engineering 

environment for applications in other domains.  
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4.3.2. Functionality Partition between the Client and the Server 

 

To make the general system architecture shown in Fig. 4.1 more specific so that a 

“skeletal” framework is defined, it is desirable to first partition the functionality 

between the client and the server. There are basically three possible levels at which to 

define the client/server boundary between a client process and a server process. Firstly, 

the client/server boundary may be defined at the highest level as indicated by the 

dotted line tagged with ‘High’ in Fig. 4.1. Only the user interface applications 

including the workbench and the CAX tools reside on the client side. This is a design 

of thin client/fat server. The other extreme is to place the client/server boundary at the 

lowest possible level as indicated by the dotted line tagged with ‘Low’ in Fig. 4.1. 

Only the management database and the design object repository as well as the 

corresponding data handlers reside on the server side. This is a design of fat client/thin 

server. These two extremes overload either the server or the client. The optimal 

solution, therefore, is to place the client/server boundary at the medium level as 

indicated by the dotted line tagged with ‘Mixed’ in Fig. 4.1. After re-grouping the 
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components on the client side and the server side based on this mixed approach, a 

“skeletal” framework is gained as shown in Fig. 4.2. Some details are depicted next. 

 

According to the mixed approach, the server object is mainly responsible for Meta 

Data Handling and a part of DPM functions.  This combined server object is now 

defined as ProjectManagerServer. The rest part of the DPM functions is collectively 

defined as ProjectManagerClient object which is located at the client side. Apart from 

the ProjectManagerClient object, also located at the client side are the workbench 

application and the engineering tools, which directly interface with the users, and the 

Design Data Handler, which is responsible for design data access and implemented 

based on the jCIFS open source client library (see Section 4.4.4). The DPM functions 

cannot be entirely allotted to the ProjectManagerServer because the Design Data 

Handler, which is frequently requested by the DPM, is located at the client side, 

otherwise, the communication overhead will be increased. User interface applications 

cannot directly request methods in the ProjectManagerServer object but through the 

ProjectManagerClient object which carefully sequences the operations on the meta 

data and design data. The ProjectManagerClient object calls the methods within the 

remote ProjectManagerServer object through a ProjectManager interface which is 

implemented by the ProjectManagerServer. The Java RMI communication facilities 

including the stub object on the client side and the skeleton object on the server side 

physically realize the client/server communication. The calling dependency and the 

creation of the client/server with Java RMI are elaborately illustrated in Fig. 4.2.  

 

4. 4. Some Basic Implementation Decisions for the CAX Framework-based 

Network-integrated Engineering Environment 
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To implement  a network-integrated engineering environment physically, a range of 

design choices should be made to define the system environment and to identify 

appropriate computer tools used in the system development process. This section 

presents some basic system implementation decisions with respect to development of 

an enterprise-affordable system using IT technologies and software products available 

at the time. It is obvious that these implementation decisions are not given as an only 

solution to the related implementation issues. Rather, multiple solutions are possible. 

Efforts have been devoted to optimize the current solution as satisfactory as possible 

among the alternatives available. However, the solution should evolve over time.  

 

4.4.1. Platform and Programming Language 

The platform is the basis of the entire environment, including the hardware and the 

operating system software, on which the framework and the tools are to run. 

Considering a range of factors, such as transparency of distribution and multi-user 

support, an enterprise-wide Microsoft® Windows-based Intranet is supposed to be the 

normal working platform. Design engineers from different departments can participate 

in the common network-integrated engineering environment to carry out a project 

smoothly. Working at home or in travel to access the centrally-managed data through 

the Internet is permitted.  

 

Despite its complexity, the CAX framework can be viewed as a programming model 

on top of the system environment and common basic services to unify the engineering 

tools with the meta data and design object repository. A common programming 

language, Java, is selected to define this model in this study. Selection of Java is 

appropriate since Java is an OO language with client/server capabilities running on the 
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JVM (Java Virtual Machines) available on the Microsoft® Windows platform. Further, 

remote communication between programs written using the Java programming 

language can be easily realized through the Java Remote Method Invocation (RMI) 

mechanism. The Java RMI system allows an object running in one JVM to invoke 

methods on an object running in another JVM. This is the reason why the Java RMI is 

used for creation of the client/server for the CAX framework in the current prototype 

implementation. 

 

4.4.2. The Wrapper and the Way to Make the CAX Tools Available on the Internet 

From the perspective of the end-users of the CAX tools, the CAX framework 

introduces three new operation types for them, i.e., browsing the design states 

(dynamic workflows and versions/configurations) maintained in the meta data database, 

check-out design objects from and check-in design objects to the shared data store 

across the network. It is easy to understand how to make these functions available in 

the workbench application because it is an internal part of the framework and 

developed from the beginning along with the other components within the CAX 

framework. Particularly, the workbench application is a GUI that communicates with 

the CAX framework kernel through an interface from which to retrieve meta data and 

check-out/check-in design objects (arrow 1 in Fig. 4.3). However, for the CAX tools, 

given that they are legacy applications that work independently, extra efforts are 

required so as to make the above functions available to these tools or to make the tools 

available to the CAX framework and thus on the Internet. Basically, there are two 

ways, the indirect way (arrow 4 in Fig. 4.3) and the direct way (arrow 3 in Fig. 4.3), 

for the CAX tool users to call the CAX framework functions. 
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In the indirect way, the user has to interchangeably work in the CAX tool environment 

and the workbench application environment. If he wants to browse the design states, he 

must leave the CAX tool environment and launch the workbench application that 

consists of a workflow browser and a version/configuration browser. If he decides to 

work on a certain design task and wants to check-out the corresponding design 

object(s), he first locates that design object(s), checks it (them) out and temporarily 

saves it (them) in the local disk with the help of the workbench application (arrow 5 in 

Fig. 4.3). Then, he returns to the CAX tool environment and opens the temporarily-

saved design object(s) (arrow 7 in Fig. 4.3). If he has finished a task using a CAX tool 

and want to check-in a (set of) design object(s) to the shared data store, he first saves it 

(them) in the local disk (arrow 8 in Fig. 4.3) and then accomplishes the check-in 

operation with the help of the workbench application (arrow 6 in Fig. 4.3). Apparently, 

the indirect way is not “transparent”. The required operations are error-prone and 

inconvenient for the end-users.       
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In the direct way, the user can achieve the above work mode without the need of either 

leaving the CAX tool environment or using the local disk to temporarily save the 

relevant design object(s). This is enabled by the wrapper that wraps the engineering 

tools and integrates them into the CAX framework to form a more tightly-integrated 

engineering environment. From the perspective of the CAX tool users, introduction of 

the wrapper means adding some extra menu items or buttons within the existing tool 

GUIs. Activating these menu items or buttons will further activate windows for the 

users to browse design states and check-out/check-in design objects. From the 

perspective of the system architecture, the wrapper is a specially written software layer 

which intercepts and re-routes commands issued in the tool application environment to 

call the services provided by the CAX framework kernel. The CAX tools can thus 

communicate with the CAX framework kernel so as to be available on the Internet 

bypassing the wrapper that is connected to the same interface as provided to the 

workbench application (arrow 2 in Fig. 4.3).  

 

The main challenge to implement a wrapper is to solve the relevant interoperability 

problems between the different programming languages used by the wrapper and the 

external application. In the current implementation test, the CAX tools were built on 

top of AutoCAD® which provides application developers with an Application 

Programming Interface (API) called ObjectARX®. ObjectARX® is a very powerful 

C++ runtime extension programming environment which allows external applications 

to execute operations on AutoCAD’s or the CAX tool’s data and monitor user 

functions, such as ‘saving’ and ‘loading’ of designs. Written in C++ language, the 

wrapper can call the methods in the CAX framework kernel, which is written in Java. 

For example, this website, http://www.javaworld.com/javaworld/javatips/jw-javatip17-
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p2.html, has explained in detail the way to call Java methods from C++. Other types of 

CAX tools if made to participate in a certain similar CAX framework can also use the 

above wrapping technology. For example, the Pro/ENGINEER® CAD system 

provides an API called Pro/DEVELOP®, which functions like the AutoCAD’s 

ObjectARX®. 

 

The tool wrapping mechanism allows the prototype implementation to be conducted 

incrementally. The first step can temporarily overlook the procedure to physically 

wrap the CAX tools to integrate them with the framework kernel, and uses the indirect 

way to test the framework functions bypassing the workbench application and the local 

disk. The second step is to incorporate the tools into the integrated environment 

through the wrapper based on successful development of a CAX framework. By 

isolating the development of the framework from that of the wrapper, the complexity 

of the required effort is significantly decreased.  

 

4.4.3. DBMS for the Management Database 

Sharing the meta data which is common to a number of CAX tools is the basis of a 

CAX framework-based engineering environment. It is expedient to use an OO 

database management system (OODBMS) as the meta data storage system for several 

reasons. Firstly, OODBMSs are well-suited for engineering applications due to their 

rich modeling power through the concepts of classification, inheritance, generalization 

and aggregation. Further, not only the state of the real world entities can be described 

using the attributes, but also the behaviors using the methods in the class definition 

(Ramakrishnan & Janaki 1996). Secondly, OODBMSs offer significant flexibility for 

handling highly interrelated data of different granularities on which different types of 
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access are performed. Thirdly, using OODBMS is in keeping with the OO nature of 

the entire CAX framework design thereby ensuring consistency throughout the project. 

The object management layer programmed in a certain programming language, such as 

Java, can create, load, delete, and store objects and further invoke their methods 

(Hanneghan et al., 1995, 1998). 

 

A number of OODBMSs have been used as the basic component of some integrated 

engineering environments. For example, OBST, an OODBMS freely available, has 

been used for the repository support service in the CONCERT environment 

(Hanneghan et al., 1995, 1998). In another example, ObjectStore® was chosen to 

integrate concurrent design processes with respect to storing design data, sharing 

design information, recording experience and increasing data reusability. Version 

management and schema evolution on top of this OO database system were also 

discussed (Hsiang et al., 1999). In another example, an OO database system, also 

ObjectStore®, was used to store VRML (Virtual Reality Modeling Language) objects 

so that they can be shared and updated by multiple users in real-time. Concurrency 

control mechanisms of the system were utilized to deal with the concurrency issues 

arising from simultaneous updates (Turgut et al., 2001).  

 

Based on a thorough review of the standard OODBMS products which were 

commercially or freely available, the current prototype implementation selected 

ObjectStore® to store and manage the meta data in the CAX framework.  

 

4.4.4. File Transfer 
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In the CAX framework, the meta data transactions manage the operations on the 

design data which are treated as large files with its own native data structure. Upon 

execution of an operation, such as creation, update or removal of a design object, the 

transfer of design object files takes place along with transfer of corresponding meta 

data within a series of carefully sequenced procedures. Section 4.2 has shown an 

approach to transfer meta data as parameters in RMI. This approach cannot be used for 

the transfer of design objects because they are large files and the transaction time 

associated with this may not be acceptable. One popular acceptable way to implement 

file transfer between two distributed locations is to automatically invoke an ftp 

operation external to RMI, simply using RMI as a notification mechanism. The 

server’s computing work can then be reduced because the framework server can focus 

on meta data operations. The disadvantage of this approach is the lack of code 

portability and the need for an additional ftp server which further needs a common 

directory to store the files “ftped” from the client, as well as the error log files created 

by the file transfer procedure (Urban et al., 1999b). The current study uses a more 

flexible and Java-compatible file transfer approach based on the CIFS (Common 

Internet File System) (Leach & Perry 1996). jCIFS SMB* client library (Anonymous 

1), which enables any Java application to remotely access shared files and directories 

on SMB file servers (i.e., a Microsoft® Windows "share"), is used to develop Java-

based client applications. A small amount of customization operations on the server 

side is needed given that the CIFS server is a built-in component in most Microsoft® 

workstations. Since SMB file servers on UNIX systems are also available, this 

approach is scalable to multiple computing operation platforms. 

 

* SMB or Server Message Block protocol is the file-sharing protocol at the heart of CIFS and thus the 

CIFS servers (clients) are also called SMB servers (clients). 
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CHAPTER 5 

VERSION CONTROL AND CONFIGURATION MANAGEMENT 

 

Chapter 3 has identified a comprehensive set of characteristics for a feature-driven 

engineering process. Chapter 4 designed a CAX framework-based network-integrated 

engineering environment with the management database schema and the corresponding 

user interface design being left open. From this chapter onwards, issues related to 

filling these openings will be addressed. The final integration functions provided by 

the developed engineering environment will be fully described. The most important 

and challenging procedure involved is information modeling which would 

comprehensively take into account the outcomes gained in Chapter 3. As explained 

above, the information modeling process is performed incrementally. This chapter 

focuses on the product data management aspect and a unique version control and 

configuration management model for feature-driven engineering process is presented. 

The next chapter focuses on process management aspects. 

 

5.1. Version Control and Configuration Management Concepts 

One of the main aims to integrate a range of engineering tools to form a coherent 

environment is to offer a uniform repository in which all data are stored and shared 

(Bounab & Godart 1998). Therefore, integrated engineering environments invariably 
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involve dealing with the management of a large number of different kinds of design 

objects created throughout the development life cycle. According to Chapter 2, 

providing such a function is attributed to the PDM or data integration mechanism. The 

main issues which are related are version control and configuration management. A 

brief introduction for this concept is first presented next. 

To make navigation easy, the tremendous amount of design data in the shared 

repository must be organized along certain dimensions dependent on different 

application contexts (Katz & Chang 1987). In general, all the data that describes the 

same physical entity should be organized such that it can be treated as a collection and 

the collections are in turn arranged into a hierarchy of directories. The state of a 

complete design object hierarchy is referred to as a configuration. Fig. 5.1 shows an 
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Fig. 5.1. Product configurations
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example of a product configuration for the design data structure involved in an 

integrated progressive die design and manufacturing process. If all the data and the 

configuration are of mono-version, the repository strictly maintains the latest state of 

every design object and the configuration with the last state introduced by the user will 

always replace the previous one. A network file system is probably sufficient to 

implement the repository in this case and no special product data management 

assistance is needed as long as the repository is accessible by distributed users and the 

problem of write contradictions to the same documents is resolved.  

 

However, the iterative and exploratory nature of the engineering process prompts the 

designers to generate and experiment with multiple alternative descriptions of a design 

before selecting one that satisfies the design requirements (Ahmed & Navathe 1991). 

The configuration is also treated as a versioned object and more than one configuration 

can coexist (Agrawal & Jagadish 1989). Selecting a version for each design object that 

constitutes the configuration is referred to as configuration management which should 

guarantee that the desired relationships such as “is-derived-from”, “is-a-component-of” 

and “is-dependent-on” are correctly maintained. Most of the past versioning solutions 

mainly concentrated on using certain references to correlate design object versions, as 

well as configuration versions (Beech & Mahbod 1988; Ramakrishnan & Janaki 1996; 

Miles et al., 2000; Carnduff & Goonetillake 2004). A reference to another version 

from within one version is also called a binding, which can be further classified into 

static and dynamic binding (Carnduff & Goonetillake 2004). Binding mechanisms are 

successfully used to deal with derivation (between different versions of the same 

design object) and composition relationships. However, few binding mechanism-

enabled versioning schemes capture design semantics such as a dependence of a 

manufacturing representation on its upstream product definition. Some proposals 
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(Baldwin & Chung 1995; Ramakrishnan & Janaki 1996; Westfechtel 2000) did 

provide certain assistance in the management of design semantics-oriented dependence 

relationships, but they provide no means to control the design change propagations 

while comprehensively taking into account the design change propagation properties 

inherent in the engineering processes. With the intention to overcome this deficiency, 

the next section presents a special version and configuration management model 

making the most of the identified characteristics of the feature-driven engineering 

process (Chapter 3), especially in the aspect of design change propagation properties. 

 

5.2. A Version Control and Configuration Management Model for Feature-driven 

Engineering Processes 

This section addresses the version control and configuration management issues 

relevant to development of the product data management functions in the integrated 

engineering environment for the feature-driven engineering process. There are some 

existing solutions for some of these issues, and accordingly, they are adaptively 

adopted in this study. For the other issues that are mainly resulted from incorporation 

of the design change propagation properties presented in Chapter 3, special solutions 

are developed.  

 

5.2.1. Basic Concepts 

The versioning model developed in this study makes use of some essential concepts 

found in the database version approach (Ahmed & Navathe 1991) with respect to the 

set-up of the basic version control and configuration management framework. Some 

adaptations are made accordingly based on the identified design change propagation 

properties. Design objects with organizational information including “structural 
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objects” (Katz & Chang 1987) are managed by a multi-version database, which is 

defined as a set of logically independent and identified database versions (DBVs) (Fig. 

5.2). Each DBV contains an exact configuration consisting of one version of each 

constituent object. Both the database version and the configuration version thus refer to 

the same thing and both terms are used interchangeably here-in-below. Version control 

both at the design object level and the configuration level is supported by a set of 

operations on the DBVs. Formally and fundamentally, a DBV is defined as a tuple 

composed of the DBV identifier and the set of versions of all the objects contained in 

the multi-version database, one version per object (Ahmed & Navathe 1991). This 

definition is further semantically augmented in this study to incorporate an additional 

information element, called version annotations which are explained later. 

 
The concept of database versions allows the use of another type of transactions 

different from the design transactions discussed in Chapters 3 and Chapter 4. This type 

of transactions, called configuration transactions, logically partitions arbitrary 

operations on a set of database versions (not design objects) into atomic units of work 

to transform each database version from a consistent state to another consistent state. 

Database Version … 
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Version Annotations: 
    Attributes:  
    Is-a-descendent-of:  

Launched-by:

A set of design object versions 
……

Database Version 3 

Version_ID 
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A set of design object versions 
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Version_ID 

Version Annotations: 
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A set of design object versions 
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Database Version 1 
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The-set-of-resultant-design-
object-versions {……} 

Fig. 5.2. Multi-version database as a set of database 
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Incorporation of the configuration transaction concept makes the layered transaction 

scheme discussed in Chapter 4 (page 100) consist of five layers respectively, tool 

execution, project transaction, configuration transaction, design transaction and design 

data operation. Each layer, apart from the uppermost one, is wrapped in the layer that 

is immediately above it by two operations to initiate and terminate it. For example, the 

project transaction wraps the configuration transactions, which further wrap the design 

transactions. It is important to note that the Check-In action of a design transaction 

may recursively refined by another versioning configuration transaction again (the 

dashed box in Fig. 5.3). Some properties of the configuration transactions are 

presented next. 

 

Tool Execution
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   Project    * 
Transaction Terminate 

Open Project  

Open Configuration 
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Close Configuration 

Configuration * 
Transaction 

    Design     * 
Transaction 

Fig. 5.3 Augmented layered transaction schema for handling engineering data 
(developed based on Fig. 6.6 in Wolf(1994)) 
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In the simplest case, a configuration transaction concerns one database version and 

may be non-versioning or versioning. A non-versioning transaction queries or updates 

a database version, causing it to evolve independently of the other database versions. 

On the other hand, a versioning transaction creates a new database version from a 

parent database version. A user operates on the multi-version database in the following 

way. Firstly, he chooses a database version via the database version identifier, which 

may be system-generated or manually specified by the user through a versioning 

transaction at its creation time. When the database version is chosen, the user may 

perform non-versioning transactions as if he works on a non-versioning database. The 

system will automatically identify object versions belonging to the database version 

chosen to provide desirable information to the users in relevant browsers or accept 

proper updates issued by the users. The user or the user application may also perform a 

versioning transaction to create a new (child) database version and then work on it. He 

may further work simultaneously on several database versions, embedding operations 

that are addressed to different database versions into a grouped transaction. The only 

requirement is that this grouped transaction must transform all the database versions 

accessed from one consistent state into another. To sum up, there are two levels of 

operations on a multi-version database to control versions and configurations. At the 

upper level, the user or the user application creates and deletes a specified database 

version or configuration versions. At the lower level, he reads, writes, creates and 

deletes a specified object in a specified database version representing a configuration.  

 

5.2.2. Design Change Propagation Scope and Object Version Identification 

In the course of the development of representations (design objects) involved in a 

feature-driven engineering process, once a new design object version (causal version) 
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is created, the changes made to the value of this object may require the value of some 

other objects to be changed consequently due to the dependency relationships. New 

versions (resultant versions) with the required resultant design changes being 

incorporated have to be created. Additionally, there may be some design objects that 

are not affected by the causal design changes and their new versions (unaffected 

versions), if created to guarantee data integrity, carry values identical to the old ones 

according to the design change property described in Chapter 3. The causal, resultant 

and unaffected design object versions belonging to a configuration should be correctly 

aggregated to form a new configuration version (or DBV). There are basically two 

versioning approaches to accomplish this aggregation process.  

 

To understand these two versioning approaches, consider an imaginary feature-driven 

feature process generating configurations that can be viewed as the variants of a 

configuration template shown in Fig. 5.4(a). In this figure, square objects d and e are 

structural objects, which have only object identifiers. Circular objects a, b and c are 

physical design objects, which have an object identifier and a value. e is composed of a 

and d, which is further composed of b and c. c is dependent on b, which is further 

dependent on a.   

 

In the most popular versioning approach, the bottom-up approach (Westfechtel 2000), 

is used, the configuration is treated as a composite object, a new version of which is 

created in a bottom-up way beginning from the creation of the leaf component object 

versions (Fig. 5.4(b)).  Supposing there is a given set of object versions a1, b1 and c1 

that are mutually consistent to belong to a configuration Con, a change made to a1 

leads to generation of object versions a2 directly and b2 indirectly. c in not affected by 
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this change and no object version c2 is generated. All object versions a1, a2, b1, b2 

and c1 are put into an uncontrolled version pool, from which Con1 and Con2 are 

constructed by manually selecting corresponding object versions through a binding 

process to define the desired composition and dependence relationships. Specifically, 

the new configuration version Con2 is defined to be composed of a2, b2 and c1. 

Further, c1 is dependent on b2, which is further dependent on a2 in this Con2. All 

these composition and dependence relationships are specified using explicit references 

to associate the interrelated object versions (Westfechtel 2000). The main drawback of 

this bottom-up approach is that the operations required can be cumbersome and error-

prone, especially for a complex feature-driven engineering process with many 

unaffected versions, which may recursively inherit value from upper-level unaffected 

versions.  

 

In order to overcome the deficiency of this bottom-up approach, the DBV approach 

controls the configurations in a top-down means (Fig. 5.4(c)). Before the entire object 

versions constituting a configuration are physically created with a valid value, the 

configuration version is created, or more precisely “pre-created”, in advance by a 

versioning transaction with a nil value being assigned to each constituent object 

version. The object versions are then read and updated with a valid value through non-

c b
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b' 
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b c

(a) Configuration 
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Version Pool
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Fig. 5.4. Comparison of two versioning approaches 
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versioning transactions. Compared with the bottom-up approach, no explicit 

component object versions are created outside the control of the configuration versions 

using the DBV approach. The template (or a set of configuration rules in the broad 

sense) allows the structure of a new configuration version to be created before all its 

constituent objects are created with a physical value. It is the subsequent “value 

assignment” process, not the binding process, to make e.g. Con2 completely 

constructed in a way to perform all the desired value changes (a  a', b  b' and c  

unchanged) compared to Con1. However, due to the existence of the unaffected 

versions in a configuration version, versions of the same object contained in different 

database versions may have identical values. If the relevant object versions are copied 

each time to create a new configuration version, large data redundancy will occur. An 

ideal way is to let the relevant object value be physically shared by several 

configuration versions. In this case, not all object versions can be uniquely denoted by 

a pair: its object name and a new version number distinct from its old one. A special 

mechanism is required to correctly associate the database version identifiers with its 

constituent object version identifiers when a new database version is created. Ahmed 

& Navathe (1991) used a set of dedicated database version stamps to construct the 

database version in such a way that it is possible to identify all the database version’s 

ancestors. However, this approach only dealt with the identification problem in the 

presence of composition relationships without taking into account the dependence 

relationships. Further, the identifier resolution process is still comparatively complex. 

 

An augmented DBV approach is then proposed in this study to extensively exploit the 

design change propagation properties of the feature-driven engineering process. The 

key of this approach is the introduction of a special set of version annotation attributes 
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for each configuration version to capture the change propagation semantics. With the 

help of the version annotations, the configuration versions can be easily constructed 

without data redundancy and all the constituent object versions with their values can be 

easily identified and accessed. 

  

   
 

In a feature-driven engineering process, the underlying motivation to launch a new 

configuration version is to react to the design changes made to one of the constituent 

design objects between its new and old versions. Consider a simple feature-driven 

engineering process (Fig. 5.5) which contains five tasks to generate five design objects, 

A, B, C, D and E, respectively. E is dependent on D which is recursively dependent on 

C till A. While working on a configuration version Vi, the user intends to try an 

alternative of C and create a new version of C. Immediately after starting the operation 

to create the new version C, the creation of the new configuration version Vi+1 

containing this new version of C is launched. Creation of new version C is successful 

only in the case that the configuration version Vi+1 is correctly “pre-created”. In the 

course of constructing the configuration version Vi+1, the user explicitly declares the 

new version for object C as the causal version. He then makes a decision on the design 

B 
Vi-1 

A C D E

Vi 

Vi+1 

Causal object version 

Resultant object version 

Unaffected object version 

Dependence relationship 

Version evolution 

Fig. 5.5 Design change propagation scope and object version identification 
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change propagation scope that the evolution of C will cause. In this case, objects B and 

D should make a resultant design change. He declares the versions of these two objects 

as resultant versions in the new configuration version. All the design object versions 

have no independent version numbers. They are uniquely identified by a pair: their 

object name identifiers and the version number of the configuration version to which 

they belong. In this way, the interdependent design objects evolve in phase to migrate 

from one version state to a new version state. All these information about the causal 

and resultant design object versions in the new configuration version is stored as the 

value of the annotation attributes, “Launched-by” and “The-set-of-resultant-design-

object-versions” respectively.  For the unaffected object versions, no explicit records 

are given to them, because they can be automatically identified by the information 

stored in the annotation attributes. Firstly, all other object versions apart from the 

causal and resultant versions are deemed as unaffected object versions. No “pre-

creation” of new versions for these objects is needed and their values are identical to 

that of the same objects in their parent configurations which are identified by another 

annotation attribute, “Is-a-decedent-of”. For example, the values of objects A and E in 

configuration version Vi+1 are identical to the counterparts in configuration version Vi. 

These value inheritance relationships may be recursive, like the way the object A 

behaves: its value in configuration version Vi is inherited from a further upper level 

ancestor in configuration version Vi-1. Once an operation needs to retrieve the real 

value, a simple resolution procedure is called to locate the original object version with 

a valid value according to its object name, the current configuration version it belongs 

to and further the value of its attribute “Is-a-decedent-of”.  
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In the example above, the dependence relationships do not need to be explicitly 

defined and stored in the management database. The laborious construction process is 

avoided to associate interdependent object versions with a set of references every time 

to create a new configuration version. Supports to the control of the dependence 

relationships are implemented in the computation logic layer which co-functions with 

another sub-system in the entire engineering environment to perform process 

management. The detail of this sub-system is depicted in next chapter. Simply put, for 

every configuration version, a dynamic design flow is configured to trace the tasks that 

have been done, the tasks that are at working and the tasks that are permitted or 

expected to come out next, using the interdependence knowledge.  

 

To implement this versioning strategy for the control of design change propagation in a 

feature-driven engineering process, the configuration version (database version) is only 

required to be instanced with a special identifier from a class type containing 

dedicatedly defined version annotation attributes. The identifier of the configuration 

version is bound to a unique version number to identify itself and all its constituent 

design object versions which have no independent version number. The annotation 

attributes store adequate information to identify the unaffected object versions which 

are not explicitly replicated to avoid data redundancy. 

 

5.2.3. Control of Configuration Version Creation 

The end-user has full control on the configuration version creation, but in an indirect 

way. The root configuration version is pre-created when a new project is created. The 

subsequent configuration versions are created in the interim to create a new design 

object version. The relationship between the project, configuration version and design 
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object version is illustrated in Fig. 5.6. According to the design change propagation 

properties, some design objects are not allowed to proactively undergo design changes 

because they are always automatically derived from upstream design descriptions. To 

implement this constraint in the management system, a special attribute, IsProactive is 

incorporated into the generic design object class (Fig. 5.6). The value of this attribute 

is predefined in the system during system development based on the engineering 

process knowledge. The inheritance property ensures every instance design object 

version carries this attribute.  

 
Creating a new configuration version (excluding the root configuration version) is 

performed in the following way (see Fig. 5.7). When the user or an engineering 

application requests through the wrapper an update to a design object in the shared 

repository, there are two possibilities. Firstly, if the value of the IsProactive attribute is 

true, there are two options for the end-user to select: either overwriting the previous 

version, or creating a new version. Further, if he selects overwriting the previous 

version, no new version for this design object, as well as for the configuration version, 

is created; if he selects creating a new version, before a new version of this design 
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Fig. 5.6. Information structures and the IsProactive attribute 
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object is created, a new configuration version containing this design object version is 

firstly created. Secondly, if the value of the IsProactive attribute is false, creation of a 

new version for this design object is prohibited and only a direct overwrite operation is 

permitted. 

 
The next section shows a set of operations on the configuration versions and design 

object versions to support the maintenance of data consistency and integrity with 

arbitrary design change causes. To emphasize again, as a result of the comprehensive 

consideration of the design change propagation properties deliberately identified, the 

implementation to control the design change propagation is quite straightforward and 

the system developed accordingly is easy to operate.   

 

5.3. Specification of Operations  

In this section, the methodological issues about the required version control and 

configuration management operations on the management database are discussed. 

Basically, the operations can be grouped into three categories: operations on projects, 

operations on configurations or configuration versions and operations on design 

objects or design object versions. They can also be classified into simple or complex 

true

Prepare to update a design object version

IsProactive?

Create new version?

Create a new configuration version 

false

true 
false

Overwrite 

Fig. 5.7 The computation logic to control creation of configuration version 
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operations. One simple operation contains exactly one query to the database. On the 

other hand, one complex operation may contain multiple queries. As stated, simple 

operations on configuration versions are performed by versioning transaction and 

simple operations on design object versions are performed by non-versioning 

transaction. Similarly, simple operations on the projects are performed by project 

transactions. Complex operations may be performed by a group of different types of 

transactions which are adequately nested.     

 

Table 5.1. Operations on projects, configurations and design objects 
List of operations 

Category 
Simple operations Complex operations 

Operations on projects Open, Close, Delete, Rename Create,  Import, Export

Operations on configurations Delete, Reconfigure Make-All-Inclusive 

Operations on design objects Delete, Check-Out Check-In 

 

5.3.1. Operations on Projects 

The Open, Close, Delete and Rename operations are all simple and the roles they take 

are self-explanatory. Other three operations on a project are explained in detail in the 

following. 

 

• Create 

A project has a set of attributes and may contain one or many configuration versions 

(Fig. 5.4). The Create operation defines all the attributes of a newly created project. 

Further, an empty root configuration version or an imported configuration version is 

initialized in the project container. In the case of initialization with an empty version, 

the constituent object versions belonging to the configuration version are pre-created 

with nil values. The object versions are then updated in the standard way using the 
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non-versioning transactions. In the case of initialization with an imported configuration, 

the pre-created configuration is imported from other projects instead of a newly 

created one. The Import operation on projects is invoked implicitly. 

 

• Import and Export 

After the initialization of a project, the newly created root configuration version may 

be explicitly overwritten by the Import operation internally or the Export operation 

externally. Specifically, the Import operation copies a full configuration version used 

in another project into the current project to replace the existing root configuration 

version. Likewise, the Export operation copies a full configuration version used in a 

current project into another project. The configuration version imported or exported 

should be all-inclusive (see below). Consequently, the Make-All-Inclusive operation 

will be invoked implicitly if unaffected versions with implicit values exist in the 

configuration version to be imported or exported.  

 

5.3.2. Operations on Configurations 

There are only a few types of explicit operations on configurations. This is because 

some operations on configurations are performed in the complex operations on projects 

or design objects. For example, the creation of root configuration versions is 

performed inside the project creation operation and the creation of subsequent 

configuration versions is performed inside the design object creation operation. 

Deletion of a configuration version is attributed to the Delete operation. Two other  

operations are explained in detail in the following. 

 

• Reconfigure 
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The Reconfigure operation is a simple operation and is used to edit the properties of a 

configuration version except the root configuration version, especially the annotation 

attributes. It provides a way to modify the design change propagation scope after the 

initial definition. In another words, it allows redefinition of the composition of a 

configuration version in terms of declaration of the causal object versions, resultant 

object versions and unaffected object versions contained in the configuration version.  

 

• Make-All-Inclusive 

In a configuration version, only the causal and resultant object versions are explicitly 

recorded by a physical value which is identified by its object ID and the corresponding 

configuration version number. The unaffected object versions are actually not 

explicitly included in the configuration version. Retrieval of the values of these object 

versions would need a dynamic translation of the relevant implicit information into 

explicit representations. This is not convenient in some cases when the user wants to 

browse in between the constituent object versions of a configuration or make group 

copy/check-out operation.  Therefore, it is sometimes desirable to perform a collection 

of translation operations on all unaffected object versions in one turn to make them all 

explicitly and permanently represented by a static valid value like the casual and 

resultant object versions. The Make-All-Inclusive operation is responsible for this 

function. Upon executing this operation, the normal dynamic translation process is no 

longer required when retrieving the unaffected object versions next time. The Make-

All-Inclusive operation is a complex operation, since it may recursively execute a set of 

versioning and non-versioning transactions.  

 

5.3.3. Operations on Design Objects 
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Operations on design objects support the design transaction model depicted in Chapter 

3 and the augmented layered transaction schema depicted in section 5.2.1. It may 

involve operations on the configuration version the corresponding design object 

version belongs to. This has been explained in section 5.2. In brief, three compact 

operations are used by the end user to explicitly operate on the design object versions 

while the configuration versions may be affected meanwhile.  

 

• Delete 

To delete an object in a particular configuration version, it is sufficient to update it 

with the nil value. 

 

• Check-Out 

To physically check-out a design object version belonging to a configuration version, 

its value must be identified and retrieved. This is presented in section 5.2.2. The actual 

Check-Out operation may be required to be executed within a group, and Check-out of 

this group of design objects bring on a set of virtual Check-In operations and virtual 

Check-Out operations (see section 3.4.3). 

 

• Check-In 

The check-in operation is one of the most important operations to implement the 

proposed versioning and configuration scheme. It can only be allowed when the 

IsProactive attribute is true. By a successful Check-In operation, the modified design 

object may be returned to create a new version or simply overwrite its former value. 

This has been presented in section 5.2.3. 
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5.4. Application of the Proposed Model in the Integrated Progressive Die Design 

and Manufacturing Engineering Environment 

This section shows how the proposed version control and configuration management 

model can be applied to the progressive die design and manufacturing processes to 

offer desirable version control and design change propagation management assistance. 

The composition template of a progressive die design and manufacturing project has 

been shown in Fig. 5.1. All the corresponding dependence relationships involved have 

been illustrated in Fig. 3.7. A sample versioning scenario is used to elaborate how the 

desirable versioning control and design change propagation support is achieved on a 

computer-based platform via performing corresponding operations defined above. In 

this scenario, the basic product design and manufacturing solution (Con1) is expected 

to spawn three tentative alternatives (Con2, Con3 and Con4 respectively) corresponding 

to three original design changes made to three different constituent design objects in 

Con1. Fig. 5.8 shows the configuration version derivation graph which has three 

version branches corresponding to three versioning steps which are detailed in the 

following.  Thorough understanding of this case study needs some progressive die 

design and manufacturing process knowledge which can be found in references (Cheok 

& Nee 1998a, b; Jiang et al., 2000; Zhang et al., 2002; Cheok 1998; Lee et al., 1993.) 

• Versioning step 1: propagation of a design change to generate Con2  from Con1 

Con1

Con2 Con3 Con4 

Fig. 5.8 The configuration VDG for the example scenario 
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This is a slight change made to the product design or the Product-Feature-Model 

(PFM). Specifically, angle α1 is changed to α2, as shown in Fig. 5.9. This will prompt 

a new version of PFM and further, a new configuration version coexistent with the old 

ones.  Suppose the initial Product-Feature-Model version is PFM. The check-in of 

new version PFM' causes change propagation. New configuration version Con2 is 

spawned to incorporate PFM'. Since the change on the product definition will affect all 

other design objects, the design change propagation scope in this case expands the 

whole configuration and there is no unaffected version. The attribute value of the “pre-

created” Con2 will be:    “Is-a-descendent-of” = Con1; “Launched-by” = PFM; The-

set-of-resultant-design-object-versions” = {FP, FPD, DO, SL, ……}. The initial value 

of the “pre-created” design object versions in Con2 apart from PFM' are all nil. After 

Con2 is successfully “pre-created”, a new dynamic design flow is generated for this 

configuration version to assist the user to trace the check-out of the tasks to be done 

and check-in of them when they have been done through non-versioning transactions. 

The detailed operation sequence for this versioning step is shown as follows: 

 

① Check-in a PFM  
② Update / Create a new version? – Create a new version. 
③Create a new configuration version, initialize its annotation attributes and the 
constituent design objects with nil value or imported values 
④ Select a design object from the dynamic design flow browser for Check-out 
⑤ Work on the design object in the work-space 
⑥ Check-in the work-done design object for update 
⑦ Repeat steps ④-⑥ 
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• Versioning step 2: propagation of a design change to generate Con3  from Con1 

This is a design change made to Die-Operation-Feature-Model (DO). Under normal 

circumstances, the particular iterative process to generate Die-Operation-Feature-

Model (DO) from Flat-Pattern-Feature-Model (FP) only involves the stamping 

process planning or strip layout (nesting and staging) without consideration of the 

placement of the punch on punch plate. The resulted DO is only a guess and tentative 

for confirmation by incorporating constraints which become explicit till to the next 

design stage. This will cause many tentative alternatives, potentially regarded as 

versions, most of which are only valid within the current design stage. In an integrated 

intelligent die design system like the IPD system (Jiang et al., 2000), the strip layout 

design process also includes the design of the shape of the upper body of the punch by 

adding some additional information such as insert parameters, relieves, etc., into the 

die operation feature model (see also section 3.2.1). This makes localized punch 

…

Initial causal version PFM Initial configuration version Con1 

New configuration version Con2 New causal version PFM΄ 

…

Design change propagation scope Legend: See Fig. 5.5 

Fig. 5.9. Step 1 in the scenario: generating Con2 launched by a design change on 
Product-Feature-Model

α1 

α2 
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contour constraints when staging the stamping operations. The version explosion 

problem is thus avoided by the users’ local iteration to eliminate unaccepted solutions 

immediately. If the use or disuse of an alternative still cannot be decided even having 

considered the contour constraints, it is a real case to embrace two or more versions of 

DO with respect to the entire configuration. In this case, only after almost all design 

objects consistent with an alternative in the entire configuration are generated, can the 

user make the last decision to to use or disuse this alternative. Fig. 5.10 shows the way 

to explore such kind of alternative corresponding to a design change adopting a new 

piercing sequence plan and thus updating the value of the Die-Operation-Feature 

Model version from DO to DO´. The check-in of DO´ causes change propagation. New 

configuration version Con3 is spawned to incorporate DO´. Since the change on DO 

will only affect all downwards design objects and not the upwards design objects, the 

design change propagation scope in this case covers all the design objects directly or 

indirectly dependent on DO. The attribute value of the “pre-created” Con3 will be:    

“Is-a-descendent-of” = Con1; “Launched-by” = DO; The-set-of-resultant-design-

object-versions” = {DC, DB, DW, P1FM, P2FM, P3FM, P4FM, ……}. All design 

object versions other than the causal and the resultant ones are unaffected versions. 

After Con3 is successfully “pre-created”, a new dynamic design flow is generated for 

this configuration version to trace the check-out of the tasks to be done and check-in of 

them when they are done through non-versioning transactions. The detailed operation 

sequence for this versioning step is shown as follows: 

 

① Check-in a DO  
② Update / Create a new version? – Create a new version. 
③Create a new configuration version, initialize its annotation attributes and the 
constituent design objects with nil value or imported values 
④ Select a design object from the dynamic design flow browser for Check-out 
⑤ Work on the design object in the work-space 
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⑥ Check-in the work-done design object for update 
⑦ Repeat steps ④-⑥ 
 

 
• Versioning step 3: propagation of a design change to generate Con4  from Con1 

This is a design change made to the shape of a notching punch on the strip layout to 

help save the costs of making the die. It so happens that this modification will affect 

the external profile of the flat pattern and hence the actual product. A new version of 

this notching punch feature model and a further new configuration version consisting 

of a corresponding new product design will be generated so that the die designer can 

discuss the effect of these changes with the product designer. Suppose the initial 

feature model for the notching punch is P4FM (Part4-Feature-Model). The designer 

tries to widen the slat of the punch so that the corresponding wing of the stamped-

product is shrunken, i.e., distance d1 is changed to d2 (Fig. 5.11). Since P4FM is 

automatically derived from its upstream design description, the Die-Configuration-

…

Initial configuration version Con1 

New configuration version Con3 

New version DO΄ as a causal version …
Design change propagation scopeLegend: See Fig.5.5 

Fig. 5.10. Step 2 in the scenario: generating Con3 launched by a design change on Die-
Operation-Feature-Model 

Initial version DO 

Cutting sequence 
plan is changed 
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Feature-Model (DC), and further the Die-Operation-Feature-Model (DO), it is not 

allowed to proactively perform design changes. Creation of new version of P4FM does 

not begin from a check-in operation on P4FM as in step 1 or step 2, but in an indirect 

way through a modification to DO and then DC, which then generates the desired new 

P4FM version P4FM´. The check-in of the modified DO´ causes change propagation. 

New configuration version Con4 is spawned to incorporate DO´, DC´ and P4FM´.  The 

change on DO in this case will affect all upwards design objects as well as partial 

downwards design objects: most of the relevant part feature models (except P4FM and 

some plates in the die structure), as well as the corresponding part process plans and 

part NC code documents may not be affected by this design change. Therefore, the 

design change propagation scope in this case covers all the upwards design objects and 

partial downwards design objects. The attribute value of the “pre-created” Con4 will be:    

“Is-a-descendent-of” = Con1; “Launched-by” = DO; The-set-of-resultant-design-

object-versions” = {PFM, FP, FPD, DO, SL, DB, DW, P1FM, P4FM, ……}. All design 

object versions other than the causal and the resultant ones such as P2FM, P3FM, are 

unaffected versions. After Con4 is successfully “pre-created”, a new dynamic design 

flow is generated for this configuration version to trace the check-out of the tasks to be 

done and check-in of them when they are done through non-versioning transactions. 

The detailed operation sequence for this versioning step is shown as follows: 

 

        (Decide to try a modification to a notching punch P4FM) 
 ① Check-out Die-Configuration-Feature-Model DO 
② Edit DO to DO ´ so that the desired P4FM´ can be achieved 
③ Check-in DO ´ 
④ Update / Create a new version? – Create a new version. 
⑤ Create a new configuration version, initialize its annotation attributes and the 
constituent design objects with nil value or imported values 
⑥ Automatically generate DC ´, and further P4FM´, P1FM´, P5FM´, etc. from DO ´ to 
replace DC, P4FM, P1FM, P5FM, etc. 
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⑦ Select a design object from the dynamic design flow browser for Check-out 
⑧ Work on the design object in the work-space 
⑨ Check-in the work-done design object for update 
⑩ Repeat steps ⑦-⑨ 

 

• Summary 

The above versioning scenario consisting of three steps is used to demonstrate the 

normal operations involved. In real circumstances, some other operations discussed in 

the previous section, such as “Reconfigure”, “Delete”, etc., may also be involved. It 

should be pointed out that the proposed version control and configuration model has 

attempted to be considered as theoretically comprehensive as possible. It can cover all 

possible cases which may occur in the progressive die design and manufacturing 

process. Furthermore, not only is the mechanism applicable to the progressive die 

design and manufacturing process, but it can also be geared to other types of feature-

driven processes, such as the integrated product and mould design and manufacturing 

processes, the integrated product and fixture design and manufacturing processes, etc. 

…
Design change propagation scope (excluding the 〇 objects)

…

The shape of the initial notching 
punch P4FM 

Initial configuration version Con1 

New configuration version Con4 

The shape of the new notching 
punch P4FM´ 

Legend: See Fig. 5.5 

Fig. 5.11. Step 3 in the scenario: generating Con4 launched by a design change on Part4-
Feature-Model 

d1 

d2 
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5.5. Towards a Comprehensive Information Model and a Full-fledged GUI 

Design 

Section 5.2.3 has shown the information structure for management of configuration 

and versioning with the emphasis to reveal the relationships between the project, 

configuration and design object. Clearly, this information structure only reflects a 

small part of the information requirements for the whole CAX framework-based 

network-integrated engineering environment. To derive a comprehensive data schema, 

other important issues that need to be considered include logical distribution of design 

data and design activities, design transactions and run-time information management, 

engineering process management, etc. The main method used to derive this data 

schema contains the components of perception, representation and validation while the 

modeling process is incremental. Different aspects of the engineering environment are 

expected to be specially addressed and represented in the overall data schema through 

a procedure of gradual refinement. To make the presentation concise, the 

comprehensive information model is only presented once in the next chapter after the 

process management issue is addressed. 

 

Similarly, a full-fledged GUI design is also only presented once in the next chapter 

after the process management operations become clear like the configuration 

management and versioning control operations depicted above.  
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CHAPTER 6  

ENGINEERING PROCESS MANAGEMENT 

 

Based on process decomposition, analysis and re-engineering, Chapter 3 has presented 

a first order approximation of the engineering process representation, a IDEF0 activity 

model. However, the IDEF0 activity model is only a static snapshot of the engineering 

process and further efforts are needed to develop an implemental model which can be 

incorporated into the CAX framework to provide process management support. This 

chapter presents a process management mechanism and addresses multiple process 

management issues especially in the aspect of process modelling. A comprehensive 

data schema is derived while taking into account the information requirements for 

process management, as well as other functions such as configuration and versioning 

management presented in the previous chapter. Validation of the data schema and the 

system behaviour is carried out through examining the sequence diagram for a typical 

use case. A full-fledged GUI is designed and some experimental results working on the 

prototype system through this GUI are reported to demonstrate the effectiveness of the 

proposed CAX framework-based integration approach.  

 

6.1. A Process Management Mechanism Based on Design Flow Configuration 
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A network-integrated engineering environment is expected to be much more than the 

incorporation of a platform on top of which a couple of tools can be tied together. On 

the other hand, many integration-flavored functions shared by the participating tools 

can be available to assist the end-users. Examples of such functions are product data 

management (data-centric integration) and process management (process-centric 

integration). Up to the previous chapter, only product data management functions are 

addressed without exceeding the concerns of the traditional data-centric integration 

approach. The limitation of the data-centric integration approach is that the end-users 

have to assume full responsibility for work-flow control, data consistency, integrity, 

maintenance and inter-process coordination and cooperation, generally without 

computer augmentation (Jeng & Eastman 1999). This section presents an advanced 

integration approach which is both data- and process-centric and allows an expanding 

set of system capabilities that off-load engineers from some of the above 

responsibilities and complexity. 

 

6.1.1. Overview 

If described in terms of a state-space model, the behaviour of a computer-supported 

engineering process can be represented by the following equations in terms of discrete 

functions:  

))(u),(x(f)(x nnn =+1 (6.1) 

))(x(h)(y nn = (6.2) 

where )1( +nx and )(nx denote the global design state at time 1+n  and n, 

)(nu denotes design operator through the user interface, )(ny denotes the external 

appearance of the design state in the user interface window.  
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The state-space model dictates that an integrated engineering environment may assist 

the end-user in four aspects: 

 

• Design tracking: keeps track of the state of the design and the design history—

maintain the state sequence )(nx in the integration infrastructure. All the tasks involved 

in the activity model are no longer treated individually and in an isolated way. Instead, 

a full picture about the progress of the whole project is captured in a certain way to 

make explicit what needs to be done throughout the process and what has been done so 

far. The engineering tools integrated into the infrastructure, as well as the end-users, 

may be informed about or control the migration of the design state.  

 

• Design state browse: provides facilities that allow the design engineer to browse in 

a highly convenient way through the administered state of design—realize 

function (.)h to obtain a virtualized output )(ny . Not only is the design state informed 

to the end-users, but also in an intuitive way.  

 

• Process execution guidance: supports the design engineer in efficiently executing 

design activities—provide implications of the desired )(nu at any moment during the 

process execution course. This assistance is probably mixed with the second aspect. 

Given that the integration infrastructure is “aware” of the state of design and is aware 

of possible ways of transforming this state of design to a new state, then it can advise 

the design engineer on tasks to perform next.  

 



 
Engineering Process Management 

 144

• Constraint enforcement: permits constraints on the design process to be defined 

and enforced—exploit the process knowledge related to state transformation 

function f(.) to assist the end-users. At any moment in between the starting and the 

ending point of an engineering process, a very knowledgeable integration system will 

allow only runs of tools for which valid input data is present, and support the design 

engineer by indicating which tools can and should be run. This helps to make the 

design process less error-prone and to improve productivity.  

 

All these potential engineering process management functions can be realized in the 

CAX framework-based process integration environment (Fig. 4.4). The mechanism is 

related to a set of interrelated techniques around a concept of design flow configuration. 

A design flow is a description of a design process in terms of design activities and 

temporal data, and control dependencies between design activities.  In the CAX 

framework kernel, both the design flow configuration information and its run time 

information are maintained. The configuration information is defined based on the 

process knowledge, one possible description form of which is the IDEF0 activity 

model. As a template defining placeholders for actual data, the design flow 

configuration is defined before the actual engineering process is started and relatively 

stable. The run time information is updated continuously in the course of the 

engineering process. It “colours” the template design flow by filling the placeholders 

with actual data items consumed and produced during actual tool runs.   

 

There are three ways to define a design flow configuration. In the case of well-

structured processes, the design flow is both predicted and repeated and can be 

described precisely. Therefore, the corresponding design flow configuration logic can 
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be predefined in the framework either within the kernel or the workbench application. 

No operations on the design flow configuration are opened to the end-users. In the case 

of unstructured processes, they are executed in a spontaneous and rather ad hoc 

manner (often called ad hoc workflows in the literature on workflow management 

(Dellen et al., 1997)). Comprehensive facilities need to be provided by the framework 

to the end-users to configure a design flow from scratch using primitives defined by a 

higher level meta process model or design flow templates. Located in the middle of the 

spectrum is the semi-structured process. Some parts can be precisely described by 

process fragments while others are determined by the creativity of the end-users. In the 

example case of the progressive die design and manufacturing process, it is almost a 

completely structured process apart from the design flow configuration of the CAPP 

(Computer-Aided Process Planning) tasks. The tasks for every progressive die part in 

need of performing CAPP are identical, but the number and the specific parts with an 

identifier cannot be pre-determined in advance until the die configuration task is 

finished. One possible way is to directly acquire this information through access to the 

internal of the feature-based progressive die description model. However, the 

framework is only allowed to access the meta data and this direct way should be 

avoided. Therefore, while a basic design flow can be presented to the end-users at the 

start of the process, it needs to be refined dynamically by small interventions. In the 

simplest case, the interventions can be done manually by the end-users through an 

interface within the workbench application. In the complex case, it can be done 

automatically by the workbench application which can identify those die parts in need 

of performing CAPP. The mechanism is like this: After the die configuration task is 

performed, a feature-based description for every die plate and punch is generated and 

stored in the shared repository in the form of a file. The meta data information 
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corresponding to these files is exactly the required information to configure the design 

flow for CAPP tasks. Therefore, the workbench application can query the meta data 

database to acquire the required information to refine the design flow configuration 

dynamically. While the structured and semi-structured process can be defined with the 

exactly required resources towards a compact system, they can also be viewed as an 

unstructured process towards a more generic and flexible system. 

 

With the design flow configuration and run time information maintained in the 

framework kernel, the domain neutral workbench application provides facilities to 

virtualize the design flow in a flow browser. The virtualization method used by the 

flow browser is termed flow colouring (ten Bosch et al., 1993): presenting the intricate 

relationships among tools and design objects in an intuitive way and further tracking 

the activities generating these design objects in the context of four possible lifecycle 

states respectively: “not ready”, “ready”, “done”, and “active” (see next sections). The 

flow browser permits the end-user to interact with a coloured design flow. It presents 

information about the structure and status of the design in an attractive and 

comprehensive way to the end-user. It also offers convenient means to navigate 

through the available information, to explore the state of design. That is, it makes the 

advanced process management services available to the end-users. 

 

6.1.2. Process Representation 

The first step to implement the above process management mechanism into the CAX 

framework-based network-integrated engineering environment is to develop an 

appropriate process representation which can be integrated into the management 

database data schema. At the highest level of abstraction, an engineering process is a 
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design flow which may consist of sub-flows. Further, a design flow must be modelled 

to offer constructs to describe engineering activities and dependencies between them. 

In generic sense, the design flow model for a feature-driven engineering process with 

three possible types of tools (i.e., automatic, semi-automatic and manual, see Chapter 3) 

involved can be derived from a meta process model shown in Fig. 6.1. This model is 

read as in the following. Design Flow is a general term for referring to a representation 

for the overall process or any levels of sub-process. It has a recursive definition and the 

leaf construct is Activity, i.e., the Activity IS-A Design Flow. The links between design 

activities and/or sub-flows are all captured in the Precedence Relationship class which 

is a tuple of Current (design) Flow and Preceding (design) Flow. The Activity has 

consumed and produced Design Objects. Its “state” attribute gets the following values: 

{“not ready”, “ready”, “done”, and “active”} which are somewhat self-explanatory. 

  

0..*

SubFlow

Produced Consumed

PrecedingFlow CurrentFlow 

DesignFlow 

Activity 
Name: 
Tool: 
State: 

PrecedenceRelationship 

DesignObject 

Fig. 6.1. A meta process model for feature-driven engineering process 
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The key constructs of the above generic design flow model are illustrated by the 

example compound design flow F1 in Fig.6.1. F1 has a sub-flow F2. Activity A1 and 

A2 are F1’s subtype instances. Activity A3 and A4 are F2’s subtype instances. At the 

sub-flow level, A1 is before A2 which is before F2. This is represented by PR1 and 

PR2. At the activity level, A2 is further refined with precedence both before A3 and A4 

while A3 and A4 can be concurrent. This is represented by PR3 and PR4. With 

appropriate methods defined in Design Flow class, definition of F1 can be transmitted 

from sub-flow level (diagram (b)) to activity level (diagram(c)) dynamically. In other 

words, the compound design flow F1 can either be in the form of (b) or (C). This 

simple example is helpful for understanding the nature of the progressive die design 

and manufacturing process which includes a CAPP sub-process that is unable to be 

decomposed to the activity level until certain information is available. 

   

PR1={C=(F1)A2; P=(F1)A1}

PR2={C=F2; P=(F1)A2} 

PR3={C=(F2)A3; P=(F1)A2}

PR4={C=(F2)A4; P=(F1)A2}
 
C: Current Flow  
P: Preceding Flow 
PR: Precedence Relationship 
 
(F1)A2 means Activity A2 is the child of 
DesignFlow F1. 

PR1 
PR3 

PR4 

A1 A2 

A3

A4

F1 
F2

PR2 

Fig. 6.2. Example compound design flow containing two activities  
and a sub-flow 

PR1 
A1 A2 

F1 

F2
PR2 

(a) 

PR1 PR3 

PR4 
A1 A2 

A3

A4

F1

(b) (c) 
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6.1.3. The Process Execution Engine 

The next essential step to implement the process management mechanism is to define 

the process execution engine. Basically, process execution involves traversing the 

activity precedence graph subject to: (a) precedence relationships among activities; (b) 

user actions; (c) resource availability (i.e., tool, network-connection availability). The 

execution algorithm checks constraints at two levels: 

• First level: State transition for each activity involved. For example, activity state is 

transited from “not ready” to “ready” when its predecessors are complete. 

 

• Second level: State transition for the process or sub-processes. For example, a sub-

process can be transited from “black-box” state to “white box” state when this sub-

process can be recursively decomposed to activity level so that the user can be 

instantly informed with the tasks to be done in detail through the design flow 

browser.  

 

Physically, the process execution engine is located in the CAX framework kernel, or 

specifically, the Data and Process Management Kernel (Fig. 4.1). It monitors the user 

actions and the engineering tools’ interactions with the framework kernel, and makes 

the corresponding modifications on the run-time representation of design flow 

configuration persistently stored in the meta data database. Definition of the process 

execution engine is closely pertinent to the ways to define the design flow 

configuration which carries the semantics of the activity precedence relationships. 

From the viewpoint of process execution engine, the three process definition ways 

viewing a process as unstructured, structured and semi-structured respectively, both 

have advantages and drawbacks. 
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If viewed as unstructured, the design flow configuration is defined through a process 

configuration engine before it is “executed”. After definition, the design flow 

configuration information is stored in the meta data database and will be loaded into 

the process execution engine at run time. It is possible for the already-defined design 

flow configuration to be redefined or adapted after it has been executed for a while 

according to the current process status. Therefore, a real-world engineering process 

may alternatively experience a process definition turn and a process execution turn. 

One advantage of this way is that the CAX framework can be adaptively configured 

for different application contexts once it is developed. Another advantage is its self-

adaptability in the run-time. The drawback of this way is its system complexity which 

requires more system development effort. 

 

If viewed as structured, the design flow configuration is hard-coded into the process 

execution engine. This way sacrifices flexibility and adaptability of the developed 

system, but saves system development efforts. Representing the dependence 

relationships into the data schema is unnecessary because the execution engine has this 

knowledge. Only isolated Activities need to be modeled in the data schema and the 

execution engine can automatically determine the precedence relationship between two 

activities according to their identifiers. The process execution algorithm is only 

relevant to the constraints at the first level. Process modeling becomes simplified, and 

so does the system implementation. Of course, the prerequisite to use this way is that 

the process itself is structured. 
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For the semi-structured progressive die design and manufacturing process focused in 

this study, some compromises were made between the above two ends. A full-featured 

process configuration engine is unnecessary and the process execution engine is 

equipped with almost all relevant process knowledge. Further, a special class is 

defined in the data schema at the sub-design flow level to make the process execution 

engine have some limited ability to reconfigure the design flow during the process 

execution course. The details of this aspect are presented in next section in which a 

comprehensive data schema is derived from the information requirements both for 

process management and other relevant functions addressed in the previous chapters.  

 

6.2. A Comprehensive Information Model 

According to the generic meta process model shown in Fig. 6.1, the definition of an 

engineering process involves an information entity of Design Object which is also 

encapsulated in the product data management model (Fig. 5.6, Chapter 5). According 

to Chapter 3, there should be a few common information entities representing run-time 

information for the CAX framework to maintain meta data—design data consistency, 

so that advanced product data management and process management services can be 

provided. It is therefore probably the right time at this moment to wrap-up all these 

dispersed information requirements together to derive a comprehensive meta data 

schema while refining the meta process model to a specific one for the progressive die 

design and manufacturing process. With this model, not only the process management 

mechanism, but also the version control and configuration management mechanism as 

well, is further revealed and validated from a global information structure view.  

 



 
Engineering Process Management 

 152

Fig. 6.3 shows the developed model with UML (Unified Modeling Language) notation 

(Fowler & Scott 1997). This model also goes beyond the meta data schema layer and 

further embraces the framework kernel application classes which operate on the meta 

data. Specifically, white classes in Fig. 6.3 are framework kernel application classes 

which are transient; that is, they are internal to the application's memory. Shaded 

classes represent the meta data schema and are persistence capable; that is, instances of 

them are stored in the ObjectStore® database. 

 

The collection of the transient classes and their relationships is a refinement of the 

component architecture (Fig. 4.2 in Chapter 4). The “ProjectManagerSever” class 

implements the behavior of a remote “ProjectManager” interface and runs on the 

server as a remote service. The remote interface is also implemented by a class running 

on the client as a proxy for the remote service. The “ProjectManagerClient” makes 

method calls on the proxy object. RMI sends this request to the remote JVM, and 

forwards it to the implementation. Any return values provided by the implementation 

are sent back to the proxy and then to the client's program. Functionally, the 

“ProjectManagerServer” controls user access, authentication, session management, 

and access to the meta data in the database.  It has a number of methods, each of which 

executes a meta data transaction in the ObjectStore® DBMS. The 

“ProjectManagerClient” class corresponds to a daemon in the client machine and 

makes the framework services available for workbench GUI and CAX tool wrappers. 

It correctly sequences the meta data operations and design data operations, the latter of 

which are performed by the “DesignDataHandler” class also on the client side.   
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<<RMI>> 

Produced

Consumed 7 
0..* 

0..* 

subHierarchy 

1..*

1..*

allProjects 

DesignTransaction 

complMode: 

addDesignTran() 

RunningDesignTran 

date: 
accMode: 

addRunDesTran() 
removeRunDesTran() 

Hierarchy 
 

addSubhierarchy() 
removeSubHier() 
addDesignObject() 
removeDesignOb()

DesignObject 

name: 
isProactive: 

setIsProactive() 

DesignObjectVersion 

data: 
physicalLocation: 

setPhysicalLocation() 

Activity 

activityStatus: 
tool: 
isAutomatic 
 
setActivityStatus() 

DesignFlow 

 
addCAPPSubflow() 
removeCAPPSubflow() 
 

CAPPSubflow 

 

addActivity() 

 

Project 

projectID: 

createConfiguration() 
deleteconfiguration() 
reConfiguration() 
makeAllInclusive() 

ProjectManagerClient 

 

getHierchy() 
getDesignFlow() 
checkOut() 
checkIn() 
groupCheckIn()

DesignDataHandler 

 

read() 
write() 
setLock() 
removeLock() 

3rd Part jCIFS 
Client Library 

Workbench GUI 
&  

CAX Tools  

ProjectManagerSever 

 
initialize() 
createProject() 
removeProject() 
isLocked() 
setDesignObVal() 
setActivityStatus() 

ConfigurationVersion 

versionNumber: 

initialize() 
addRunningDesignTran()
removeRunDesTran() 
addDesignTran()

3 

Fig. 6.3. A comprehensive information model for the example implementation 

0..*
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Two dotted lines in Fig. 6.3 divide the shaded meta data schema into three main parts, 

the run-time part in the left, the product data management part in the middle and the 

design flow management part on the right.  

 

The run-time part consists of two classes and defines the structure of the run-time 

information that is maintained to keep track of the design transactions performed to 

change the state of design. The “RunningDesignTran” class defines the running design 

transaction in which the corresponding design object is checked-out but not checked-in 

yet. A “lock” is thus applied on this design object in the shared repository to prevent 

unmanaged overwrites. After the running design transaction is successfully committed 

with a check-in operation, the corresponding “RunningDesignTran” object is 

destructed, the lock is removed, and another object instantiated from the 

“DesignTransaction” class is constructed in the database to record this committed 

design transaction. A virtual check-in has the same effect as a physical check-in in this 

course. The “DesignTransaction” class extends the “RunningDesignTran” class with 

an additional attribute “complMode” to indicate whether the design transaction is 

successful or failed. Failed design transaction does not destruct the corresponding 

“RunningDesignTran” object. The “accMode” attribute in “RunningDesignTran” class 

indicates whether the access mode is read-write or read-only. If it is read-only, 

successful check-out of the design object will immediately trigger a corresponding 

virtual check-in, and drive this running design transaction to be successfully 

committed. The design transaction group handled at the higher operation level is 

finally decomposed into individual design transactions represented by these two class 

objects. With the help of the run-time part information structure, the CAX framework 
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can maintain the consistency between the meta data and design data. This is the basis 

for support of product data management and process management.  

    

The product data management part defines the structure of the information that is 

maintained by the data management services. The central object type is 

“DesignObject”. As a refinement of the information structure shown in Fig. 5.6, all the 

versioning control and configuration management semantics presented in Chapter 5 is 

supported. Exceptionally, an object type of “Hierarchy” is highlighted in the middle 

between the “ConfigurationVersion” class and the “DesignObject” class to further 

depicts the configuration management semantics. A hierarchy may have multiple sub-

hierarchies and the leaf in the hierarchy is design objects. With the help of this 

“Hierarchy” class, design objects in a configuration are organized into a hierarchy like 

what is shown in Fig. 5.1. The operations on the “Hierarchy” object are equivalent to a 

sequence of bindings by which the composite object refers to its constituents (Carnduff 

& Goonetillake 2004). Due to the feature-driven engineering process being well-

structured, the “binding” process can be designed very easily. Firstly, it is applied on 

generic design objects rather than individual design object versions, so it is of dynamic 

binding and can be performed automatically. Secondly, only in two occasions are the 

Hierarchy generation operations required. The first occasion occurs when a new 

“ConfigurationVersion” object is created and almost all the constituents shown in Fig. 

5.1 in the hierarchy are determinate apart from the CAPP group. This is because how 

many parts with corresponding IDs in the die structure need to perform CAPP tasks is 

still unknown. The “initialize()” method in “ConfigurationVersion” class is responsible 

for this operation. The second occasion occurs when the above information is available 

and the internal structure for the CAPP group is then generated. The 
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“addSubHierarchy()” and the “addDesignOb()” method will be invoked for this 

operation.  After the hierarchy is created, the design object versions in the hierarchy 

are firstly “pre-created” with nil value and then updated with physical value but the 

“Hierarchy” object itself is relatively static.  

 

The design flow management part defines the structure of the design flow information 

and the corresponding run-time information that is maintained by the process 

management services. The central object type is “Activity”. As a refinement of the 

information structure shown in Fig. 6.1, the generic process management semantics 

presented above is exactly supported while the classes in the current information 

structure are re-defined in lower abstract level. This is because the properties of the 

example progressive die design and manufacturing process have been incorporated 

into the refined model to make the information structure more specific. Each 

“DesignFlow” object is now concretely defined to belong to a “ConfigurationVersion” 

object and no recursive representation for its hierarchy is applied. On the other hand, a 

design flow is fixedly defined as a two-level composition, i.e., a design flow has seven 

activities and zero to n CAPP sub-flows, each of which has three further activities. No 

precedence relationship between activities or sub-flows is captured in this model, 

because the user applications have been designed to be equipped with such knowledge 

and can decide the precedence relationships between two relevant activities as long as 

they are identified. Similar to the product data management part, only in two occasions 

are the operations on the design flow configuration required. The first occasion occurs 

when a new “ConfigurationVersion” object is created and all the seven constituent 

activities in the first level are defined with the containers for CAPP sub-flows empty 

because how many parts with corresponding IDs are in the die structure is still 
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unknown. The “initialize()” method in “ConfigurationVersion” class is responsible for 

this operation. The virtualized design flow after this initialization is shown in Fig. 6.4 

(a). The second occasion occurs when the above information is available and all the 

CAPP sub-flows are then defined with three activities in each. The 

“addCAPPSubflow()” method is invoked for this definition operation. The initial 

design flow represented by Fig. 6.4(a) is then changed to a new one represented by Fig. 

6.4(b). After the design flow is configured, “execution” of the process will update the 

“activityStatus” attribute accordingly.  

 

Note that the information structure in Fig. 6.3 is defined in the way that the process 

management is performed on top of the product data management which is further 

performed on top of the run-time design transaction management. The “Activity” class 

which has “Consumed” and “Produced” “DesignObjects” is responsible for bridging 

CAPP 
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Fig. 6.4. The design flow before (a) and after (b) the CAPP sub-flow is defined 
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the product data management part and the process management part. The dependence 

relationships between “DesignObjectVersions” in a configuration version are derived 

from that between “DesignObjects” and the later is determined by the activity 

precedence relationships. Therefore, no such semantics need to be explicitly captured 

in the information model and further the versioning and configuration management is 

orthogonal to these dependence relationships owing to the advantages of the database 

version approach (see Chapter 5).  

 

6.3. Two UML Sequence Diagrams Highlighting the Basic Process Management 

Functionality 

The comprehensive information model shown in previous section defines the meta data 

schema and provides a static information structure view for the entire system in terms 

of relevant object types and their relationships. Both the product data management and 

process management mechanisms are enabled and manifested by this model. To make 

the defined system more robust, it is usually desirable to examine its internal behaviour 

and dynamics to trace the sequence of reactions that achieve the specific purposes. One 

of reasonable ways is to check up all the main operations involved like in the previous 

chapter where the key is to define individual operations and the interactions between 

the live objects within the system can be easily recognized from this operation 

specification. Once the process management functions are involved, however, 

operations on an object at a certain level are always conducted in the context of a net 

of complicated interactions with others. It is found that the best way to understand the 

dynamics in this aspect is to use a formal behaviour modelling technology like the 

UML sequence diagrams (Fowler & Scott 1997). As such, this section presents two 

UML diagrams to describe the interactions that occur during two typical process 
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execution scenarios, with one being simplistic and the other being complex due to the 

involvement of automatically refining the process configuration dynamically (Fig. 6.5 

and Fig. 6.6). From this diagram, it can also make clear what happens in the meta 

database and design database corresponding to the changes made on the design state in 

the course of a process execution.  
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Fig. 6.5. A UML sequence diagram highlighting process management functionality 
(simple design transaction case) 
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Fig. 6.5 shows the process execution logic when a simple design transaction is 

performed. In this scenario, the user opens a project, navigates the project space to a 

specific product configuration version, views the design objects already generated in 

the hierarchy and the design state in the design flow browser, finds out the task ready 

to perform—a half-done task 4 “Generate die operation feature model” (see Fig. 6.4), 

checks-out the corresponding half-done “die operation feature model” design object, 

after finishing design, checks-in this design object back to the shared product database. 

One of important methods in this operation sequence directly relevant to process 

management support is “getDesignFlow” initiated by a “ProjectManagemerClient” 

object to retrieve the activity (with corresponding activity status) structure of the 

design flow belonging to certain configuration version. With this query result, the 

design flow browser renders an intuitive “coloured” design flow. The user can then 

easily decide what to do next. Another important method in this aspect is 

“setActivtyStatus”, which is invoked to change the activity status in the course to 

complete the “checkOut” and “checkIn” operations. All invocations to the methods 

belonging to objects located on the server side should at first pass a 

“ProjectManagerServer” object which implements a remote interface as a part of the 

RMI mechanism. The “checkOut” and the “checkIn” operations trigger a sequence of 

other corresponding operations following the rules defined in Chapter 4 to maintain the 

meta data /design data consistency. Since the “checkOut” and the “checkIn” operations 

bracket a simple design transaction, a running design transaction is added into the meta 

database when the design object is checked-out to prevent uncontrolled write. When 

the corresponding design object is checked-in, a completed design transaction is added 

into the meta database while the above running design transaction is removed. Note 

that the design transaction record is monotonously added without remove. 
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Fig. 6.6. A UML sequence diagram highlighting process management functionality (complex design transaction case) 
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Fig. 6.6 shows the process execution logic when a complex design transaction is 

performed. In this scenario, the user has finished tasks 4 and 5 listed in Fig. 6.4 and 

begins to perform tasks 6 and 7 and all the first tasks for each CAPP group task. All 

these tasks are performed automatically by an intelligent engineering tool in one turn 

after the user checks out the die operation model into the working memory. A design 

transaction bracketed by a physical check-out and a virtual check-in of the consumed 

design object and a design transaction group bracketed by virtual check-out and 

physical check-in of the produced design objects are involved in this scenario 

according to the design transaction model defined in Chapter 3. Since the design 

transaction on the consumed design object is equivalent to a read-only check-out, 

operations to perform this design transaction are simplistic and they are not reflected in 

the diagram. Therefore, only operations related to the design transaction group on the 

produced design objects are depicted in the diagram. The operations begin from a 

virtual “groupCheckOut” method invocation once the user push a button in the design 

tool to begin to automatically perform tasks 6 and 7 and others. It is a virtual one 

because no corresponding design objects are physically checked-out by this operation 

which only sets locks on them and makes relevant changes on mete data to maintain 

consistency with the design data. The virtual “groupCheckIn” operation begins from 

retrieval of running design transaction records to guarantee the corresponding running 

design transaction existent there. It then removes the directory lock and clear former 

contents in the directory. Sub-directories with constituent design objects in the form of 

Fig. 5.1 are created in the shared design object repository. Only after the operations on 

design data are finished, will the operations on meta data begin through invocation of 

another “groupCheckIn” method belonging to the “ProjectManagerServer” object. 

These operations include removal of the running design transaction and creation of 
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design transaction record, setting of relevant pointers pointing to the physical locations 

of the sub-directories and design objects and most importantly, reconfiguration of the 

CAPP sub-flow group with corresponding activity status set. If the CAPP sub-flow 

group is empty at first, the above operations make a change from what is shown in Fig. 

6.4(a) to what in (b). If it is not empty at first, the change is from one type to another 

type of what is shown in Fig. 6.4(b) with different contents of CAPP sub-flows. The 

corresponding activity statuses are finally set to complete the “groupCheckIn” 

operation.  

 

It should be noted that the operations involved in the above two scenarios occur within 

the same product configuration version and thus are all non-versioning according to 

Chapter 5. It is possible that the check-in operation may result in a versioning 

transaction to create a new configuration version depending on the user’s option. This 

aspect of semantics is intentionally neglected due to space limit.  
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CHAPTER 7 

WORKBENCH GUI DESIGN AND SOME EXPERIMENTAL RESULTS 

 

Using the CAX framework approach, a prototype system of a network-integrated 

feature-driven engineering environment for the progressive die design and 

manufacturing process has been developed in this study. This chapter gives some look-

and-feels about what the system eventually comes into view in front of the end-users. 

A full-fledged workbench GUI designed to make the internal functionalities 

approachable is described and some experimental results working on the prototype 

system through this GUI are reported to further demonstrate the effectiveness of the 

proposed CAX framework integration approach. 

 

7.1. The Scope of the Demonstration Session 

It is impossible, and probably also unnecessary to carry out all implementation details 

to offer a full-featured physical software system for the purpose of proof-of-concept. 

Therefore, the prototype system developed in the current study does not intend to 

reveal all the potential capabilities of the theory presented above. On the other hand, 

only those distinct from other counter-systems using different integration approaches 

are selected as the implementation blue print. Especially, emphasis is put on 

development of the workbench GUI because this GUI offers an interface to access 
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almost all the significant functionalities attributed to the proposed integration approach. 

A non-trivial demonstration session running on this GUI was worked out to 

demonstrate the system capabilities as well as to provide a vehicle to give a feel of the 

manner how the system works internally. Since the workbench GUI functions as the 

control panel of the CAX framework which is located at the middle layer between the 

engineering tools and the global repository, the launch of this application also activates 

a daemon which intercepts requests from the engineering tools. Therefore, as 

envisioned in the final industrialized version of this prototype, executions of some 

most important functions like check-in and check-out are often originally fired within 

the engineering tools GUI, not the workbench GUI. However, the workbench GUI also 

offers a channel to perform these functions provided that the corresponding documents 

generated by engineering tools are available (this is called flexible, multi-perspective 

entry to the engineering process (Madni & Madni 1997)). If these functions work well 

in the workbench GUI, it is easy to make them finally work in the engineering tools 

GUI through wrappers (see Chapter 4). Hence, it is reasonable for this demonstration 

session to be all inclusive in the workbench GUI. Similarly, measures were also taken 

to simplify the running logic underlying the GUI. Some components may be 

temporarily absent or replaced with alternatives. They are individually experimented in 

isolation and expected to be encompassed into the full system at the commercialization 

development stage. For example, the RMI mechanism has been studied with simple 

examples but not physically encapsulated in the system which enables the 

demonstration session. Instead, only a local OODB is used to support the 

demonstration. In this way, the response latency due to network communication when 

fine-tuning the prototype is avoided and the effectiveness of the result is not affected. 

This procedure was also applied to the experiment on the jCIFS protocol.   
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After the above measures were taken, the main concerns of this study were made to 

avoid being diffused by secondary topics but constantly focused on the novel 

methodologies. In particular, the demonstration session aims to demonstrate: 

• Product configuration and engineering process definition as well as its verification. 

For any progressive die design and manufacturing projects, the product 

configuration and process activity structure should comply with some common rules 

with respect to the composition relationship, activity precedence relationship and 

design object dependence relationship. Given that this knowledge has been captured, 

the context-sensitive product configuration hierarchy and design flow controlled by 

such rules were defined and made virtualized for verification. 

• Control of product evolution. In one progressive die design and manufacturing 

lifecycle, the project is required to be controlled to generate multiple versions at the 

configuration level and each version evolves from initialization to finalization. 

• Virtualization of design state transition (at the document level) along with the 

product evolution. The evolution of the product is thus perceived intuitively through 

execution of the workbench application. 

• Complete version control and configuration management support. The operations, 

the specification of which is based on the versioning model presented in Chapter 5, 

are finally linked to one or a set of mouse or key input actions. 

• Control of design change propagation scope. As a part of the version and 

configuration management functionality, this special issue is highlighted in the 

demonstration session.  
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• Dynamic design flow configuration. The CAPP sub-flow is automatically configured 

in the way presented in Chapter 6, once the framework kernel is informed with 

relevant information. 

• Process execution tracking. Design flow coloring techniques are used to differentiate 

various states for each constituent activity and thus convey the progress of an 

executing engineering process to the end-users.  

• Application of context-sensitive constraints for executing process. For example, 

certain operations may not be allowed or may be alerted with important hints before 

they are performed. Note that not all possible constraints have been explored, and 

only a few of typical ones are exemplified in the demonstration session. 

• Scalability to incorporate general distribution support services. User authentication, 

off-line work mode support, data replication and other distribution-relevant issues 

were only superficially demonstrated in the demonstration session.   

      

7.2. Description of the Results for the Principal Demonstration Steps 

The developed demonstration session is composed of the following principal steps: 

• Application launch, user authentication and work mode selection 

The demonstration application was written in Java and developed within the Borland 

Software Corporation’s JBuilder® environment. After launching the run command, the 

first window shown to the user allows him to log into the system (Fig. 7.1). If the input 

personal information is not correct or the network connection is not ready, a re-login 

request window from which working-on-local-repository (off-line) mode can be 

selected comes out (Fig. 7.2). When the user enters the main working window either in 

the on-line or off-line mode, he can change between these two working modes 

alternatively through pushing one of two buttons in the lower part of the window (Fig. 
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7.3).  Note that the underlying logic to support the user authentication and work-mode 

selection was not implemented because the former is purely a mundane software 

coding effort and the latter is relevant to application of the persistent cache technology 

(Wang et al., 2004) which is out of the scope of this research. 

 

 

 

 

 

 

 

• Location of a project to view its constituent configuration versions 

Fig. 7.1. The snapshot of the user authentication window 

Fig. 7.2. The snapshot of the authentication failing alert window 

Fig. 7.3. Selection of On-line or Off-line work-mode 
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Upon entering the main working window, the entries to all the projects managed by the 

framework kernel is presented to the user for the location of a project to perform 

related operations on projects. Some control logic is shown below. If no project is 

selected, all operations apart from the operation New which means creating a new 

project are disabled (Fig. 7.4). Only one project is permitted to be selected and once it 

is selected, apart from the Close operations, all others are enabled (Fig. 7.4). After the 

project is opened with the Open operation, selection of a project is disabled and the 

project selection record is fixed on the one already selected to alert the user which 

project is currently opened; the Close operation is enabled and the Open and Delete 

operations are disabled (Fig. 7.5).   

                 

 

• Location of a configuration version to view its detailed project progress state 

Once a project is selected to open, the main working window is broken down to two 

windows: the project window and the configuration version window. If no 

configuration version is selected, all operations are disabled (Fig. 7.5). Only one 

configuration version is permitted to be selected and once it is selected, apart from the 

Fig. 7.4. Locate a project 
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Close View operations, all others are enabled (Fig. 7.5). After the configuration version 

is opened by the View Status operation, in the configuration version window, selection 

of a configuration version is disabled and the configuration version selection record is 

fixed on the one already selected to alert the user which configuration is currently 

opened; the Close View operation is enabled and the View Status and Delete operations 

are disabled; in the project window, the Close operation is also disabled until the Close 

View operation is performed on the opened configuration version (Fig. 7.6).  Note that 

there is no operation on creation of a new configuration version. This is because such 

an operation is performed implicitly within the operation on new design object version 

creation which is in turn within the design object Check-in operation. 

     

 Fig. 7.5 Locate a configuration version 
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• Launch of the design flow window and the composition hierarchy window 

Once a configuration version is opened by a View Status operation, the working 

window is enriched with another two most important windows: the design flow 

window in lower-left corner and composition hierarchy window in the right side (Fig. 

7.7). The design flow window is deigned for visualizing the design flow status. It 

consists two parts: the annotation and viewing control panel and the view port to 

render the 2D design flow drawing. Specific tasks (activities) are represented by 

numbers when rendering so as to keep the drawing neat. The drawing consists of nodes 

representing a design activity and directional lines representing the precedence 

relationship. The nodes is “coloured” into any one of four patterns representing four 

types of activity status.  In order to obtain the best virtualization effect, the drawing 

can be panned and zoomed and the node can be moved and resized. Further, the 

control panel can be hidden to allow more space for drawing rendering. The 

composition hierarchy window is designed for visualizing the project composition and 

progress status in terms of design objects (versions). It is also used to receive users’ 

operations on design objects, especially the check-in and check-out operations to drive 

Fig. 7.6 Open a configuration version to view its running design flow and 
composition hierarchy 
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the engineering process to evolve. The structural design objects correspond to no 

physical documents. They are used as directory to reflect the composition relationships. 

The physical design objects are also “coloured” to differentiate between causal, 

unchanged, pre-created resultant and updated resultant design object versions. The 

operations are activated through a pop-up menu attached to a selected design object. 

The Check-in menu item has two branches to make it further refined whether it will 

create a new version or simply overwrite the old value. For the design objects with the 

IsProactive attribute (see Chapter 5) being false, such as the Die Configuration 

Feature Model, the Create New Version operation is always disabled.  
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• Simulation of the evolvement of a configuration version 

The configuration version under simulation is V3.0 belonging to Project3. Its causal 

design object is Product Feature Model. All other design objects are resultant design 

objects which are pre-created with nil value at first and then updated via non-

versioning transaction. The simulation begins from an intermediate state at which the 

Flat Pattern Feature Model and Flat Pattern Engineering Drawing have been finished 

and the activity 4 “Create die operation feature model” is ready for performing. The 

simulation result is summarized in Table 7.1. 

Table 7.1 Evolvement of a configuration version 
Sequence 

No. 
Operation on Name of the 

operation 
Changes occurring in 

the Design Flow 
Changes Occurring in 

the Hierarchy 

1 Die Operation 
Feature Model Check-Out 

  
--  

2 Die Operation 
Feature Model 

Check-In … 
Update  

for 
Die Operation 
Feature Model 

3 3D Strip 
Layout Model 

Check-In … 
Update 

 
 

 
 

 

 

 

for 
3D Strip Layout 

Model 

• Grouped check-in and configuring design flow dynamically 

With the evolvement of the selected configuration version, when it comes to the point 

to check-in the Die Configuration Feature Model, this means that the die design tool 

begins automatically configuring the progressive die, and a range of documents are 

generated. According to the augmented design transaction model presented in Chapter 

3, these documents should be checked-in in a group. So when a check-in operation is 

performed upon the Die Configuration Feature Model, a dialogue window springs out 

to alert the user to make sure it is ready for performing such an operation (Fig. 7.8). 

After it is confirmed, the condition for refinement of the CAPP sub-flow is satisfied, it 

then extends to the activity level. Correspondingly, the hierarchy is also made to 
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incorporate all the CAPP documents with the Part Feature Models being generated by 

the current operation and others being pre-created with nil value (Fig. 7.9). 

 

   

            

 

 

Fig. 7.8. The grouped check-in alert dialog 

Fig. 7.9. Design state change caused by a grouped check-in  
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• Concurrently performing multiple CAPP  engineering activities 

When the configuration version evolves to the stage of performing CAPP activities, 

many components are involved, but the design tasks for each component are identical, 

and further, the activity group for one component is independent of that for other 

components. Fig. 7.10 shows the design state after a couple of check-out/check-in 

operations from the above design state. Two engineering activities are concurrently 

performed at this design state. 

               
 

• Creation of a new configuration version 

Suppose right at the above design state, an engineer (may be different from those 

working on CAPP tasks) comes up with a new idea to try an alternative for the strip 

layout design and makes a decision to generate a new version of Die Operation Feature 

Model. This needs to firstly check-out the Die Operation Feature Model, make certain 

modifications, and then check it back into the global repository to create a new version. 

When performing check-out, no changes occur apart from that on activity 4, the state 

Fig. 7.10. A design state at which two activities are concurrently performed 
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of which is transited from “done” to “active”. When performing check-in, before a new 

version for this design object is created, a new configuration version is created through 

a window shown in Fig. 7.11. After the user input required information for the coming 

new configuration version, such as its version ID, its unchanged and resultant design 

object versions, a new configuration version is created, which can be observed in the 

configuration version window where a new configuration version record identified by 

the ID input a moment ago is added. The design state in terms of running design flow 

and composition hierarchy for this newly created configuration version is shown in Fig. 

7.12.   

 

 

 

Fig. 7.11 Creation of a new configuration version 
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7.3. Discussions 

7.3.1. Evaluation 

The research prototype developed in this study was primarily employed for 

demonstration sessions. It is not a complete system implementation but focuses on 

what can be expected in the user interface and what novel capabilities can be reaped 

from the corresponding fully-specified system. Moreover, it is intended to be replaced 

by a stable and comprehensive system in the future. However, this does not mean that 

these capabilities are pending. On the other hand, they should be considered as 

determinative with adequate confidence since the system specification in the aspect of 

data structure and operation sequence has been evaluated by the proven UML models. 

Eventually realizing a comprehensive system is mainly a matter of time because the 

system specifications and the UML models have been developed in this study. The 

current prototype has about 4,000 lines of codes excluding adaptive reuse of about 

40,000 lines of open-source codes for virtualization of the design flow. It is estimated 

that the number of the lines of codes for the complete system may be of several times 

of the current one. 

Fig. 7.12. The newly created configuration version 



 
Workbench GUI Design and Some Experiment Results  

 180

 

The GUI design itself is also significant since the design state information maintained 

in the framework kernel will become useless if it is not adequately virtualized in the 

user interface. Process management assistance firstly means intuitively informing the 

user about the design state so that he can avoid loss of track in the process and can 

immediately perform what is exactly required to be done at the moment with all 

required resources available. The demonstration session described above may be able 

to strengthen this statement.    

 

Even if the complete system is achieved finally, it is still difficult to obtain reasonably 

justified statements such as “introduction of the management system x has improved 

our productivity by y percent” (Westfechtel 2000).  Therefore, evaluation based on the 

examination of the individual system capabilities instead of waiting for comprehensive 

experiment results in the field is probably the only option that can be adopted to 

demonstrate the effectiveness of methodology. The following paragraph summarizes 

the system capabilities in supporting concurrent engineering and presents some 

additional predictable capabilities which is not demonstrated in the demonstration 

session but can be obtained with relatively uncomplicated efforts.  

    

7.3.2. Concurrent Engineering Support 

Section 7.2 has depicted the way the system supports performing multiple CAPP 

engineering activities concurrently. This only reflects one aspect relevant to such 

capabilities as assisting the execution of the CE strategy. Another two aspects include: 
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• Facilitating information sharing and exchanging. All the product development 

results-related information including that for the intermediate premature versions is 

stored in the global repository and can be easily retrieved. This allows the maximum 

extent of concurrency among different development activities in a predictive way 

based on the information available and the down-stream engineering activities may 

be launched in advance without unnecessarily waiting for the release of the decisive 

design.  

 

• Facilitating concurrent performance of engineering activities belonging to different 

configuration versions. Because the versioning scheme is set at the configuration 

level, this logically makes the works on one configuration version to be relatively 

independent of that on another. Therefore, several engineers may be allotted to work 

on a number of different versions simultaneously in a controlled way. The 

achievement of an optimum solution based on comparing multiple alternatives may 

come earlier than the current practice which has no similar versioning control and 

configuration management support.   

 

7.3.3. Further Predictable Capabilities 

Based on the ideas gained from the study performed by researchers such as Madni & 

Madni (1997), the current system has the potential to be equipped with capabilities 

such as: 

 

• Creation and update of project progress reports 

In the engineering practice, an engineer may often be required to produce a progress 

report urgently by some persons at a higher managerial level. He then consults relevant 
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design members and collects relevant information dispersed in different places. After 

the report comes to the person who is calling for it, he may just say, “OK”, and then 

glances over the report and may shelf the report casually, without knowing where it 

has been kept. Yet the designer may be required to repeat the same work patiently 

again and again. The current system has good potential in relieving the engineers from 

such mal-practices. Since almost all the relevant information has been maintained in 

the global repository, creation of progress reports may be realized by just a push of a 

button and some small additional effort on refining the draft automatically generated 

by the system. 

  

• Replay of design and process history 

For running an engineering process, even for a sign-off project, it is possible to replay 

the whole design process history to show how the current state is reached from 

initiation. This is probably especially important for training novice engineers. 

 

• Recovery from engineering process “breakdowns” 

For some reasons, for example, if a key engineer in a project leaves the company, an 

engineering process may be interrupted suddenly. The current system can help the 

recovery of the halted process easily by re-allotting the role to a replacement engineer, 

provided that the management role is added. The newly appointed engineer can be 

easily updated with the knowledge about the history and the current state of the 

process as if he has been participating in the project from the beginning. 

  

• Context-sensitive designer guidance 
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The above paragraphs have shown context-sensitive constraints which prevent the 

users from performing error-prone operations. Similarly, context-sensitive designer 

guidance can be added to the current system. This handy guidance should outperform 

the use of a thick design manual.   
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CHAPTER 8  

CONCLUSIONS 

 

The extensive capability of a widely-known system integration approach centered on a 

CAD framework for EDA has driven this study to use an analogous approach centered 

on a CAX framework for developing network-integrated engineering environments in 

the area of manufacturing engineering. This chapter concludes the study that has been 

presented and discussed in this thesis. 

 

8.1. Research Contributions and Discussions 

To sum up, the main contributions of this study include: 

• Comprehensively characterizing the feature-driven engineering process, a promising 

area to apply the CAX framework approach. This has been regarded as the starting 

point to develop a network-integrated engineering environment, which explicitly 

takes into account the characteristics identified. These characteristics themselves are 

significant in many other aspects. For example, the identified characteristics 

reflecting the model-model relationships between two interdependent step-processes 

in terms of equations (3.5) and (3.6) can be expansively exploited. They can improve 

the understanding why design automation is possible, what is the limit of design 

automation and how to design mechanisms to implement design automation or 

design change propagation automation. 
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• Development of an integration architecture based on the CAX framework approach. 

By adaptively using the concepts and principles found in the CAD framework 

approach, the architecture is incrementally built up beginning from identification of 

the functional requirements of the CAX framework. Two types of integration 

functions, the product data management and the process management, are provided 

by the framework. This makes the framework comparable to a light-weight 

PDM/WM module for the participating CAX tools. OO strategy is used to develop 

the framework and a two-step implementation roadmap is recommended. Firstly, a 

“skeletal” framework is derived while a range of basic implementation decisions are 

made. The second step is to develop the product data and the process management 

model as the management database schema, based on which the information 

structure of the whole framework is developed.  

• Development of a version control and configuration management model supporting 

the management of design change propagations. A very broad spectrum of semantic 

and operational issues is addressed.  

• Development of a process control model which views a feature-driven engineering 

process as a semi-structured design flow allowing dynamic specification while 

process is executing. 

• Development of a prototype which uses the above architecture and product data and 

process management models. The prototype is a network-integrated engineering 

environment for CAD/CAM of progressive dies. It has been the vehicle for 

validating many of the relevant conceptions and proposals.  

 

Based on the experience to develop the prototype system and the completion of a 

demonstration to illustrate its capabilities, it can be concluded that: the CAX 
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framework integration approach can turn a collection of distributed but logically 

related CAX tools into effective user-friendly environments with value-added 

integration functions, such as product data management and process management; It is 

therefore recommended for CAD/CAM system developers to adaptively use this 

approach if their targeted design-to-manufacturing process can be roughly classified as 

a feature-driven engineering process.  

 

In general, the key points to the main procedures for applying the CAX framework 

approach can be briefly summarized as following:  

• Integration should begin from adequate process decomposition, analysis, modeling 

and re-engineering. IDEF0 activity modeling is the most important tool to carry out 

this mission. 

• From the global view, the network-integrated engineering environment developed 

based on the CAX framework approach is composed of a set of CAX tools and the 

CAX framework, which further consists of a workbench application accessible by all 

the tool users, the framework kernel, a management database and the raw design 

data repository.  

• Development of the framework can take two steps. The first step is to make all 

implementation decisions to conceptualize a “skeletal” framework with the 

management database schema being empty. Such decisions include those dealing 

with how to interface design tools and the framework (simply how to wrap), what 

roles are allotted to the framework, how to partition the framework functions 

between the client side and the server side, what languages are used to program the 

framework kernel, etc. The second step is to develop the management database 

schema or relevant information models and further make the database coherently co-
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work with other components in the framework. For achieving the coherence, the 

information models for database schema (state-permanent part in the information 

models) and those for describing the working modules in the system (state-transient 

part in the information models) should be linked together for performing system 

analysis and making the adequate decisions. Object-orientation should permeate the 

full system development process from beginning to end. For example, OO 

programming languages, OO modeling methods, ODBMS, distributed object 

technologies are recommended to be used wherever relevant. 

• The information models for database schema typically include two parts: one for 

realizing PDM, the other for process management. The full information modeling 

course should be incremental. A good modeling sequence works like this: PDM at 

first, process management and then, overall at last.  

• Examination on how the CE strategy is supported is another factor in need for 

consideration throughout the whole system development process even including the 

system evaluation and improvement phase.  

 

It is important to note that these points are very compatible with those comparative 

points made in Chapter 2 based on a comprehensive survey on principal aspects 

driving system integration from design to manufacturing 

 

Compared with the CAD framework approach which became mature in the 1990’s, the 

CAX framework approach makes full use of the latest system analysis strategies, such 

as OO, and relevant information technologies, such as the distributed object 

technology RMI.. Especially, building the CAD framework includes three steps to 

incrementally build the information architecture, the component architecture and the 



 
Conclusions 

 188

implementation architecture (Wolf 1994) because various system definition and 

implementation primitives have to be used. On the other hand, building the CAX 

framework is recommended to take two easy-to-follow steps because a common 

primitive, or object, can be used. Of course, it is possible for the CAD framework to 

evolve to also use the OO methods. This makes both the CAD framework and the 

CAX framework have no radical methodological differences apart from in that the 

CAD framework is applicable to EDA, while the CAX framework to manufacturing. 

To the author’s best knowledge, there is no literature that deals comprehensively with 

CAD framework in the OO context. Therefore, the current effort to develop an OO 

CAX framework for manufacturing may be useful to develop an OO CAD framework 

for EDA. In brief, while comprehensively making use of the OO technologies, the 

current CAX framework emulates the CAD framework which already has a strong 

theoretical foundation. This allows the system developers to easily specify the desired 

integration infrastructure for a range of dispersed, but logically related, CAX tools.  

      

The effectiveness of the CAX framework approach is probably due to its intelligent 

ability to address the integration problem like a human manager who is responsible for 

maintaining global process cohesion between individual sub-processes carried out with 

the help of a set of isolated engineering tools. Specifically, in order to integrate an 

engineering process within an enterprise, or even a virtual enterprise, it is natural to 

(logically) centralize all the distributed engineering data, manage them at a high 

abstract level and help users to drive the engineering process through a process 

knowledge-enabled utility based on the design status captured by a management 

database. The low level data consistency problem is left to be locally handled by the 

individual engineering tools. In this way, the requirement of remote computing 
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resources for the goal of information sharing and exchange can be minimized and thus 

the system performance can be optimized. The effectiveness of the CAX framework 

approach is also reflected in its conformance to the CE philosophy, which has been 

elaborated in Chapter 7.   

 

8.2. Limitations 

There are some limitations that can be observed in this study. The details are depicted 

as follows.  

 

• One important limitation is that the demonstration session presented in Chapter 7 is 

brief and the demonstration steps involved in this demonstration session are loosely 

related. One solution to this limitation is to broaden the scope of the demonstration. 

Two demonstration sessions would be adopted accordingly. The current 

demonstration session including eight demonstration steps could be classified into 

“an introductory demonstration session to show the basic system functions”. 

Another demonstration session, “a sequential demonstration session corresponding 

to a progressive die design process scenario”, would be added. To ensure the 

sufficient complexity, this scenario can be defined as a part of the versioning 

scenario in Chapter 5, specifically, versioning step 1: propagation of a design change 

to generate Con2 from Con1. With the help of this new demonstration session, the 

thesis can be expected to illustrate more explicitly the key concepts presented and 

implemented. 

 

• One of additional limitations is that several conceptually feasible advanced functions 

were not implemented and tested in the currently developed CAX framework, thus 
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the potential of the proposed approach was not fully demonstrated. These advanced 

functions, such as cooperative engineering transactions, project-level activities 

management, reusable CSCW-like services, etc., were mentioned where appropriate, 

but not thoroughly studied. It also needs to be pointed out that further technological 

developments are required to offer a full-featured system for industrial application 

based on the prototype.  

 

• Another limitation is that the current CAX framework was not strictly designed as a 

configurable, reusable, ‘semi-complete’ application that can be specialized to 

produce the prototype-like custom applications. Instead, it was directly modeled as 

based on the application instance schema, rather than a meta-schema, which is the 

schema of the schema and can be used to generate the above instance schema by the 

system interactively and semi-automatically at the framework configuration time. 

This decision is attributed to the fact that more application contexts beyond the 

progressive die design and manufacturing process should be investigated before a 

general meta-schema can be developed. If based on only one specific application 

context, the developed meta-schema may not have generic representative ability. It is 

believed this limitation does not affect the generic sense of the approach: if it is used 

to develop another engineering environment applicable to a new context, the system 

information modeling schema can be easily achieved by adapting those given in this 

thesis.  

 

• Yet another limitation is that the current CAX framework only supports the 

traditional PDM-like integration at the coarse-grain level, i.e., the file (design object) 

level. The tighter integration at the lower information level, such as the feature level, 
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is not explored. The coarse-grain integration strategy is compatible to the current 

process decomposition strategy to divide the overall information space (apart from 

the final engineering outputs) or feature space into a collection of sub-spaces. Each 

sub-space corresponds to an isolated feature-based model, such as the product 

feature model, the flat pattern feature model, the die operation feature model, etc. 

The study does not demonstrate whether it is possible to unite all the isolated 

feature-based models into one unified feature-based model based on a re-designed 

feature taxonomy covering the overall feature space. If the unified feature model 

exists, the CAX framework can be built on this model. Further, carrying out the full 

die design process means incrementally achieving this single feature-based model 

rather than a set of independent feature-based models.  In this way, all the design 

activities are by nature tightly integrated at the feature level. 

  

8.3. Future Directions 

There are several directions for future research with respect to development of the 

network-integrated feature-driven engineering environment based on the CAX 

framework approach, apart from those immediate system improvements described in 

Chapter 7.  

 

• One important research issue is to refine the functional requirements of the network-

integrated system for the intended application area – the progressive die design and 

manufacturing, from new perspectives, such as asynchronous collaboration. Since 

accomplishing a progressive die design and manufacturing project entails extensive 

asynchronous collaborations among a multi-disciplinary work team, it is strongly 

desirable for the system to make more efficient the asynchronous communication of 
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design changes among the team. The current CAX framework attempts to mainly 

provide product data and process management assistance for the end-users 

individually. Storing and managing the design changes among the team members 

was not explicitly taken into account. If the CAX framework is made to explicitly 

support asynchronous collaboration, the down-stream engineers can collaborate with 

their up-stream partners more efficiently. Consequently, the collaboration 

characteristics of the progressive die design and manufacturing processes need to be 

investigated. Special design transaction models, such as the cooperative engineering 

transaction model, may be required to be developed and adopted. The most 

appropriate selection of implementation technologies needs to be made based on a 

comparison among a pool of alternatives, including those adopted in this study.  

 

• Another future research issue is to re-construct the information architecture of the 

CAX framework using a medium-grain information primitive, i.e., feature. The 

overall die development process needs to be re-engineered and the process 

decomposition needs to be refined to allow generation of one unified feature model 

instead of a set of smaller feature models for one project. The design change 

propagation mechanism currently based on the concept of configuration version can 

be easily made available within the unified feature model because a configuration 

version corresponds to a version of the unified feature model. Further, the 

dependence relationships among feature-based models can be precisely represented 

by the constraints among the features in the unified feature model. Therefore, 

automatic design change propagation is possible if the constraints is captured and 

implemented in the unified feature model. The UOF (Unit Of Function) concept 

(Urban et al., 2000) may be useful in this case to view both the medium-grain 
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features and the coarse-grain engineering outputs as UOFs.  Correspondingly, the 

object-relational (instead of OO) database management system like the Oracle® 

database system is recommended to be adopted because of its strong ability to 

uniformly represent the information elements at different levels. The management 

database can also adopt Oracle® database system. Therefore one common database 

system, instead of two different ones, can be used. 

 

• Yet another future research issue is to re-construct the implementation architecture 

of the CAX framework using web service technology (Tamine & Dillmann 2003, 

Molinari et al., 2004, Wu, et al., 2004) which has been rapidly developing since a 

few years ago. More development efforts are required to be spent on the server side. 

It can become more explicit to observe that the system built in this way is working 

on the network and the remote resources/services are exploited by local applications 

or users when needed. 

 

• Apart from further development based on the current study on the CAX framework 

for progressive die design and manufacturing, it is also valuable to investigate the 

applicability of this approach in other areas. With more application contexts studied, 

one can then consider making the CAX framework configurable so that its 

information architecture can be generated according to different application contexts 

from a high level meta-schema instead of being predefined in advance at the instance 

schema level.    

 



 
References 

 194

REFERENCES  

 

1. Agrawal, R. & Jagadish, H.V. 1989. On correctly configuring versioned objects. 

Proceedings of the 15th International Conference on Very Large Databases, 

Amsterdam, The Netherlands (VLDB '89), August 1989:  367-374. 

2. Algeo, A.M.E., Feng, C.S. & Ray, R.S. 1994. A State-of-the-art Survey on 

Product Design and Process Planning Integration Mechanisms. An Internal 

Report of National Institute of Standards and Technology: NISTIR 5548.  

3. Ahmed, R. & Navathe, S.B. 1991. Version management of composite objects 

in CAD databases. Proceedings of the 1991 ACM SIGMOD International 

Conference on Management of Data, Denver, Colorado, USA: 218-227. 

4. Anonymous 1. Web publication available at: http://jcifs.samba.org/ 

5. Anonymous 1998. Product Data Management: the Definition, an Introduction 

to Concepts, Benefits and Terminology. CIM-data.  

6. Arnold, F. & Podehl, G. 1998. Best of Both Worlds - A Mapping from 

EXPRESS-G to UML. Lecture Notes In Computer Science. Selected papers 

from the First International Workshop on The Unified Modeling Language 

«UML»'98: Beyond the Notation. 1618: 49-63. 

7. Baldwin, R.A. & Chung, M.J. 1995. Managing engineering data for complex 

products. Research in Engineering Design - Theory, Applications, and 

Concurrent Engineering 7(4): 215-231. 

8. Beech, D. & Mahbod, B. 1988. Generalized version control in an object-

oriented database. Proceedings of the 4th IEEE International Conference on 

Data Engineering, Los Angeles, CA, USA, February 1988: 14-22. 



 
References 

 195

9. Black, R. 1996. Design and Manufacture: an Integrated Approach. Macmillan 

Press Ltd. Basingstoke, Hampshire.  

10. Borja, V., Bell, R. & Harding, J.A. 2001. Assisting design for manufacture 

using the data model driven approach. Proceedings of the Institution of 

Mechanical Engineers, Part B (Journal of Engineering Manufacture, 215(B12): 

757-1771. 

11. Bounab, M. & Godart, C. 1997. Tool integration in distributed environment: an 

experience report in a manufacturing framework. Journal of System Integration 

8: 31-45. 

12. Bounab, M. & Godart, C. 1998. Tool integration in distributed environments: 

an experience report in a manufacturing framework. Journal of System 

Integration 8: 31-51.  

13. Bronsvoort, W.F. & Jansen, F.W., 1993. Feature modelling and conversion - 

key concepts to concurrent engineering. Computers in Industry 21(1): 61-86. 

14. Carnduff, T.W. & Goonetillake, J.S. 2004. Configuration management in 

evolutionary engineering design using versioning and integrity constraints. 

Advances in Engineering Software 35(3-4): 161-177. 

15. CFI Architecture Technique Subcommittee. 1990a. Suggested Framework 

Problem Statement. CAD Framework Initiative.  

16. CFI Architecture Technology Subcommittee. 1990b, August. CAD framework 

users, goals and objectives, Version 0.91. CAD Framework Initiative. 

17. Chen, B.T.F. 1982, September. ROMAPT: a new link between CAD and CAM. 

Computer Aided Design 14(5):261-266. 



 
References 

 196

18. Chen, Y. & Hsiao, Y.T. 1997. A collaborative data management framework for 

concurrent product and process development. International Journal of 

Computer Integrated Manufacturing 10(6): 364–376. 

19. Chen, Y.M. 1997, Development of a computer-aided concurrent net shape 

product and process development environment. Robotics and Computer-

Integrated Manufacturing 13(4): 337-360. 

20. Cheok, B.T. 1998.  Intelligent Techniques for Progressive Die Design. PhD 

thesis, National University of Singapore. 

21. Cheok, B.T. & Nee, A.Y.C. 1998 (a). Configuration of progressive dies. 

Artificial Intelligence for Engineering Design, Analysis and Manufacturing. 

AIEDAM, 12(5): 405-418. 

22. Cheok, B.T. & Nee, A.Y.C. 1998 (b). Trends and developments in the 

automation of design and manufacture of tools for metal stampings. Journal of 

Materials Processing Technology 75(1-3): 240-252. 

23. Chou, H.T. & Kim, W. 1986. Unifying framework for version control in a 

CAD environment. Proceedings of the 12th International VLDB Conference, 

Kyoto, Japan, August 1986: 336-344. 

24. Conaway, J. 1995, December. Integrated Product Development: The 

Technology. A white paper © Winners Consulting Group. Available at 

http://www.pdmic.com/articles/ jconaway.html 

25. Cross, N. 1989. Engineering Design Methods. John Wiley and Sons, Chichester, 

UK.  

26. Dellen, B., Maurer, F. & Pews, G. 1997. Knowledge-based techniques to 

increase the flexibility of workflow management. Data & Knowledge 

Engineering 23(3): 269-295. 



 
References 

 197

27. Dhamija, D., Koonce, D.A. & Judd, R.P. 1997. Development of a unified data 

meta-model for CAD-CAPP-MRP-NC verification integration. Computers & 

Industrial Engineering 33(1-2): 19-22. 

28. Dixon, J.R., Cunningham, J.J. & Simmons, M.K. 1989. Research in designing 

with features. Intelligent CAD I: Proceedings of IFIP TC/WG 5.2 Workshop on 

Intelligent CAD (edited by H. Yoshikawa and D. Gossard), Boston, MA, USA, 

October 1987: 137-148. 

29. Eriksson, H. 1996. Expert systems as knowledge servers. IEEE Expert 14: 14-

19. 

30. Fagan, D.J. 1994. A blackboard approach to the integration of crankshaft 

analysis applications. Proceedings of the 10th  IEEE Conference on Artificial 

Intelligence for Applications, San Antonio, Texas, USA, March 1994: 231 – 

237. 

31. Fan, I.S. 2000, December. The Power of PDM. Manufacturing Engineer: 224-

228.  

32. Fayad, M.E. & Schmidt, D.C. 1997. Object-oriented application frameworks. 

Communications of the ACM 40(10): 32-38. 

33. Feng, S. C. & Song, E.Y. 2000, November. Information Modeling on 

Conceptual Design Integrated with Process Planning. Recent Advances in 

Design for Manufacture, DE-Vol.109, Proceedings of the 2000 International 

Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 

November 2000: 123-130. 

34. Fowler, M. & Scott, K. 1997. UML distilled: applying the standard object 

modeling language. addison-Wesley. 



 
References 

 198

35. Georgakopoulos, D., Hornick, M. & Sheth, A. 1995. An overview of workflow 

management: from process modeling to workflow automation. Distributed and 

Parallel Databases 3:119-153.  

36. Gerhard, J.F., Rosen, D., Allen, J.F. & Mistree, F. 2001. A distributed product 

realization environment for design and manufacturing. Transactions of the 

ASME, Journal of Computing and Information Science in Engineering 1(3): 

235–244. 

37. Gray, J. & Reuter, A. 1993. Transaction Processing: Concepts and Techniques. 

Morgan Kaufmann, San Mateo, California. 

38. Hanneghan, M., Merabti, M., & Colquhoun, G. 1995. The Design of an Object-

Oriented Repository to Support Concurrent Engineering. Proceedings of the 

1995 International Conference on Object-Oriented Information Systems 

(OOIS'95), Dublin, Ireland, December 1995: 200-215. 

39. Hanneghan, M., Merabti, M., & Colquhoun, G. 1998. CONCERT: A 

Middleware-Based Support Environment for Concurrent Engineering. 

Proceedings of 2nd International Symposium on Tools and Methods for 

Concurrent Engineering (TMCE'98), Manchester Metropolitan University, UK, 

April 1998: 446-455. 

40. Hardwick, M., David L., Rando, T. & Morris, K.C. 1996. Sharing 

manufacturing information in virtual enterprises. Communications of the ACM 

39(2): 46-54. 

41. Hayes-Roth, B. 1985. A blackboard architecture for control. Artificial 

Intelligence 26(3): 251-321.  

42. Hayes, C.C. 1995. Flexible, Interactive Integration Architecture for Extraction 

of CAPP Information from CAD. Proceedings of the ASME Computer 



 
References 

 199

Integrated Concurrent Design Conference, September 1995, Boston, MA, USA: 

825-833.  

43. Heimann, P. & Westfechtel, B. 1997. A Generalized Workflow System for 

Mechanical Engineering. Proceedings Workshop Arbeitsplatzrechner-

Integration zur Prozeßverbesserung, Aachen, Germany, Softwaretechnik-

Trends. 17(3): 21-24. 

44. Hillebrand, G., Krakowski, P., Lockemann, P.C.  & Posselt, D. 1998. 

Integration-based Cooperation in Concurrent Engineering. Proceedings of the 

2nd Enterprise Distributed Object Computing Workshop (EDOC’'98), La Jolla, 

CA, USA, November 1998: 344-355. 

45. Hsiang, K.-K., Du, T. C.-T. & Cheng, H.-W. 1999. Applying Object-oriented 

database technologies in concurrent design processes. International Journal of 

Computer Integrated Manufacturing 12(3): 251-264. 

46. Hsiao, W.C.D. 1990. Feature-Based Mapping and Manufacturability 

Evaluation with an Open Set Feature Modeler. Ph. D Thesis. Arizona State 

University. 

47. ISO 10303-1. 1994. Industrial automation systems and integration: product 

data representation and exchange. Part 1, Overview and fundamental 

principles. International Organization for Standardization. ISO Geneva.  

48. Iuliano, M. 1995. Overview of the Manufacturing Engineering Toolkit 

Prototype. NISTIR 5730. National Institute of Standards and Technology, 

Gaithersburg, MD. 

49. Iuliano, M. 1997. The Role of Product Data Management in the Manufacturing 

Engineering ToolKit. NISTIR 6042. National Institute of Standards and 

Technology, Gaithersburg, MD. 



 
References 

 200

50. Jiang, R.D., Leow, L.F., Cheok, B.T. & Nee, A.Y.C. 2000. IPD- A Knowledge-

based Progressive Die Design System. Proceedings of the 5th International 

Conference on Computer Integrated Manufacturing, Technologies for the New 

Millennium Manufacturing, Singapore, March 2000:1048-1059. 

51. Jiang, R.D., Zhang, W.Z. & Cheok, B.T. 2004. Object-Oriented Feature Based 

Development for Progressive Dies. Proceedings of the International Conference 

on Scientific and Engineering Computation (IC-SEC 2004). Singapore, June 

2004 (CD publication).  

52. Jeng, T.S. & Eastman, C.M. 1999. Design process management. Computer-

Aided Civil and Infrastructure Engineering 14(1): 55-67. 

53. Johnson, R. & Foote, B. 1988. Designing Reusable Classes. Journal of Object-

Oriented Programming, 1 (2), 22-35. 

54. Karsai, G & Gray, J. 2000, March. Design Tool Integration: an Exercise in 

Semantic Interoperability. Proceedings of the IEEE Engineering of Computer-

based Systems, Edinburgh, UK, March 2000: 272-278. 

55. Katz, R.R., Bhateja, R., Chang, E.E.L., Gedye, D. & Trijanto, V. 1987. Design 

version management. IEEE Design and Test 14: 12-22. 

56. Katz, R.H., Chang, E. & Kahn, K.M., 1986. A Version Server for Computer-

Aided Design Database. ACM/IEEE 24th Design Automation Conference, Las 

Vegas, NV, USA, June 1986: 27-33. 

57. Katz, R.H. & Chang, E. 1987. Managing Change in a Computer-Aided Design 

Database. Proceedings of the 13th International Conference on Very Large Data 

Bases, Brighton, GB, September 1987: 455-462.  



 
References 

 201

58. Kim, Y., Kang, S.H., Lee, S.H. & Yoo, S.B. 2001. A distributed, open, 

intelligent product data management system. International Journal of 

Computer Integrated Manufacturing 14(2): 224-235.  

59. Law, H.W. & Tam, H.Y. 2000. Object-Oriented analysis and design of 

computer aided process planning systems. International Journal of Computer-

Integrated Manufacturing 13(1): 40-49.  

60. Lee, Y. T. 1999. Information Modeling: From Design to Implementation. 

Proceedings of the Second World Manufacturing Congress, Universities of 

Durham, Durham, U.K., September 27-30, 1999: 315-321. 

61. Lee, I.B.H., Lim, B.S. & Nee, A.Y.C. 1993. Knowledge-based process 

planning system for the manufacture of progressive dies. International Journal 

of Production Research 31(2): 251-278.  

62. Leach, P. and Perry, D., 1996, CIFS: A Common Internet File System. Web 

publication available at: http://www.microsoft.com/mind/1196/cifs.asp. 

63. Li, W.D, Fuh, J.Y.H. & Wong, Y.S. 2004. An Internet-enabled integrated 

system for co-design and concurrent engineering. Computers in Industry 55 (1): 

87-103.  

64. Liang, J., Shah J.J., D'Souza, R., Urban, S.D., Ayyaswamy, K, Harter, E & 

Bluhm, T. 1999. Synthesis of consolidated data schema for engineering 

analysis from multiple STEP application protocols. Computer-Aided Design 31 

(7): 429-447. 

65. Liu, T. & Xu, X. 2001. A review of web-based product data management 

systems. Computers in Industry. 44: 251-262. 

66. Madison, E.M.D, Wilbur, G.L.T. & Wu, J.C.T. 1988. Data-driven CIM. 

Computers in Mechanical Engineering, May/June 1988:38-42. 



 
References 

 202

67. Madni, A.M. & Madni, C.C. 1997. An adaptive wide-area design process 

manager for collaborative multichip module design. Proceedings of 1997 IEEE 

Multi-Chip Module Conference (MCMC '97), Santa Cruz, CA, February 4-5, 

1997: 63-72. 

68. Maropoulos, P.G. 1995. Review of research in tooling technology, process 

modeling and process planning. Computer Integrated Manufacturing Systems, 

8 (1): 13-20. 

69. Marefat, M., Malhotra, S. & Kashyap, R.L. 1993. Object-oriented intelligent 

computer-integrated design, process planning, and inspection. Computer 26(3): 

54-65. 

70. McClatchey, R., Kovacs, Z., Estrella, F., Le Goff, J.-M., Chevenier, G., Baker, 

N., Lieunard, S., Murray, S., Le Flour, T. & Bazan, A. 1998. The integration of 

product data and workflow management systems in a large scale engineering 

database application. Proceedings of the 1998 International Database 

Engineering and Applications Symposium (IDEAS’98), Cardiff, Wales, U.K., 

July 8-10, 1998: 296–302.  

71. McFadden, F.R. 1989. Object-oriented techniques in computer integrated 

manufacturing. Proceedings of the Twenty-Second Annual Hawaii 

International Conference on System Sciences, Kailua-Kona, HI, USA, June 

1989: 64-69. 

72. Megale, A., Martins, F., Sakamoto, F., Bueno, A.L. & Rodrigues, V. 1991. 

Using a Blackboard Architecture in CAD-CAM Systems Integration. 

Proceedings of the 3rd International Conference on Industrial and Engineering 

Applications of Artificial Intelligence and Expert Systems (IEA/AIE '90), 

Charleston, SC, USA, July 1990: 131-140.  



 
References 

 203

73. Mervyn, F., Kumar, A. S., Bok, S.H. & Nee, A.Y.C. 2003. Development of an 

Internet-enabled interactive fixture design system. Computer Aided Design 

35(10): 945-957. 

74. Microsoft. 1998. Microsoft White Paper: Windows DCOM Architecture. 

75. Miles, J.C., Gray, W.A., Carnduff, T.W., Santoyridis, I. & Faulconbridge, A. 

2000. Versioning and configuration management in design using cad and 

complex wrapped objects. Artificial Intelligence in Engineering 14(3): 249-260. 

76. Mowchenko, M. 1996. Intelligent Independent Features: Manufacturing 

Features Which Ensure Their Own Manufacturability. A PhD thesis presented 

to the University of Calgary.  

77. Molinari, M., Nammuni, K. & Cox, S. 2004. Integration of chargeable web 

services into engineering applications. Proceedings of the UK e-Science All 

Hands Meeting 2004, 31 August – 3 September, Nottingham, UK. Available at:  

http://www.allhands.org.uk (accessed in July 2006) 

78. Nee, A.Y.C. & Cheok, B.T. 2001. Intelligent techniques for the planning, 

design, and manufacture of progressive dies. in Computer-Aided Design, 

Engineering, and Manufacturing: Systems Techniques and Applications (CRC 

Press) Volume III: 7.1-7.27. 

79. Nii, P. H. 1996. Blackboard systems: the blackboard model of problem solving 

and the evolution of blackboard architectures. AI Magazine. Summer 1996: 38-

53. 

80. Norrie C.M. 1995. Integration approaches for CIM. Proceedings of the 1995 

ACM SIGMOD international conference on Management of data, San Jose, 

California, USA, May 1995: 470. 



 
References 

 204

81. OMG 2002. Common Object Request Broker Architecture (CORBA/IIOP), 

version 3.0, formal/2002-06-01. Object Management Group. 

82. Oussalah, C & Urtado, C. 1997. Complex object versioning. Lecture Notes in 

Computer Science v1250: 259-272. 

83. Palani, R., Wagoner, R.H. & Narasimhan, K. 1994. Intelligent design 

environment: a knowledge-based simulation approach for sheet metal forming. 

Journal of Materials Processing Technology 45: 703-708.  

84. Park, H.J. & Yoo, S.I. 1995. Implementation of a Version Manager on an 

Object-Oriented Database Management System. Proceedings of the 1995 

International Conference on Object Oriented Information Systems (OOIS'95), 

Dublin, Ireland, UK, 18-20 December 1995: 323-336. 

85. Plasil, F. & Stal, M. 1998. An architectural view of distributed objects and 

components in CORBA, Java RMI and COM/DCOM. Software Concepts and 

Tools 19: 14-28.  

86. Prasad, B. 1996. Concurrent Engineering Fundamentals, Volume I: Integrated 

Product and Process Organization and Volume II: Integrated Product 

Development. Prentice Hall PTR. 

87. Qiang, L., Zhang, Y.F. & Nee, A.Y.C. 2001. A distributive and collaborative 

concurrent product design system through the WWW/Internet. The 

International Journal of Advanced Manufacturing Technology 17:315-322.   

88. Ramakrishnan, R. & Janaki, R.D. 1996. Modeling design versions. Proceedings 

of the 22nd International conference on VLDB (VLDB’96). Mumbai (Bombay), 

India, September 1996: 556-566. 

89. Ramanathan, J. 1996. Process improvement and data management. IIE 

Solutions 28 (12): 24 - 27. 



 
References 

 205

90. Ranft, M.A., Rehm, S. & Dittrich, K.R. 1990. How to share work on shared 

objects in design database. Proceedings of the Sixth IEEE International 

Conference on Data Engineering,  February 5-9, 1990, Los Angeles, California, 

USA: 575-583 

91. Regli, W.C. 1997. Internet-enabled Computer Aided Design. IEEE Internet 

Computing 1(1): 39-50. 

92. Rehm, S., Raupp, T., Ranft, M., Langle, R., Hartig, M., Gotthard, W., Dittrich, 

K. & Abramowitz, K. 1988. Support for design process in a structurally object-

oriented database system. In Dittrich, K.R., editor, Proc. 2nd Intern Workshop 

on Object-Oriented Database Systems, Bad Münster am Stein-Ebernburg, FRG, 

September 27-30, 1988: 80-97.  

93. Roller, D. & Eck, O. 1999. Knowledge based techniques for product database. 

International Journal of Vehicle Design 21(2/3): 243-265. 

94. Roller, D., Eck, O. & Dalakakis, S. 2002a. Integrated version and transaction 

group model for shared engineering databases. Data & Knowledge Engineering 

42: 223-245. 

95. Roller, D., Eck, O. & Dalakakis, S. 2002b. Advanced database approach for 

cooperative product design. Journal of Engineering Design 13(1): 49-61. 

96. Roy, U., Bharadwaj, B., Chavan, A. & Mohan, C.K. 1995. Development of a 

feature based expert manufacturing process planner. Proceedings of the 1995 

IEEE 7th International Conference on Tools with Artificial Intelligence, 

Herndon, VA, USA, November 05 - 08, 1995: 63-70.  

97. Rundensteiner, E.A. 1993. Design tool integration using object-oriented 

database views.  Proceedings of the 1993 IEEE/ACM International Conference 

on Computer-Aided Design, Santa Clara, CA, USA, November 1993: 104-107. 



 
References 

 206

98. Schrmann, B. & Altmeyer, J. 1997. Modeling design tasks and tools - the link 

between product and flow model. Proceedings of the 34th ACM/IEEE Design 

Automation Conference, Anaheim, CA, USA, June 1997: 564-569. 

99. Schwartz, J. & Westfechtel, B. 1993. Integrated data management in a 

heterogenous CIM environment. Proceedings of the 7th IEEE Annual European 

Computer Conference (COMPEURO 93): Computers in Design, 

Manufacturing, and Production, Paris, France, 24-27 May 1993: 248-257. 

100. Shah, J.J., Dedhia, H., Pherwani, V. & Solkhan, S. 1997. Dynamic interfacing 

of applications to geometric modeling services via modeler neutral protocol. 

Computer-Aided Design 29 (12): 811-824. 

101. Shah, J.J. 1988. Feature transformations between application-specific feature 

spaces. Computer-Aided Engineering Journal 5(6):247-255. 

102. Shah, J.J. & Urban, S.D. 1998, September. Integrated product design 

environment. DARPA-RaDEO Final Report. ASU Design Automation lab. 

103. Singh, N. 1996. System Approach to Computer-Integrated Design and 

Manufacturing. New York: Wiley.  

104. Srihari, K., Amal Cecil, Joe & Emerson, C.R. 1994. Blackboard-based process 

planning system for the surface mount manufacture of PCBs. International 

Journal of Advanced Manufacturing Technology 9(3): 188-194.  

105. Sriram, D. & Logcher, R. 1993. The MIT Dice project. IEEE Computer 

26 (1): 64 – 65. 

106. Sun. 2002. Java 2 platform Enterprise Edition Specification v1.4.  

107. Tamine, O. & Dillmann, R. 2003. KaViDo—A web-based system for 

collaborative research and development processes. Computers in Industry 52(1): 

29-45. 



 
References 

 207

108. ten Bosch, K. O., van der Wolf, P. & Bingley, P. 1993. Flow-based user 

interface for efficient execution of the design cycle. Proceedings of the 1993 

IEEE/ACM International Conference on CAD, Santa Clara, CA, USA, 

November 1993: 356-363. 

109. Teti, R. & Kumara, S.R.T. 1997. Intelligent computing methods for 

manufacturing systems. CIRP Annuals—Manufacturing Technology 46(2):629-

652. 

110. Thomas, K. K. & Fischer, W. G. 1996. Integrating CAD/CAM software for 

process planning applications. Journal of Materials Processing Technology 61 

(1996): 87-92.  

111. Tian, G.Y., Yin, G.F. & Taylor, D. 2002. Internet-based manufacturing: a 

review and a new infrastructure for distributed intelligent manufacturing. 

Journal of Intelligent Manufacturing 13(5):323-338  

112. Tor, S.B., Britton, G.A., & Zhang, W.Y. 2003. Indexing and retrieval in metal 

stamping die design using case-based reasoning. Journal of Computing and 

Information Science in Engineering 3: 353-362. 

113. Turgut, D., Aydin, N., Elmasri, R. & Turgut, B. 2001. Utilizing object-oriented 

databases for concurrency control in virtual environments. Proceedings of  the 

25th International Computer Software and Applications Conference 

(COMPSAC 2001), Invigorating Software Development, Chicago, IL, USA, 8-

12 October 2001: 409-414. 

114. Urban, S.D., Ayyaswamy, K., Fu, L., Shah, J., Liang, J. 1999a. Integrated 

product data environment: data sharing across diverse engineering applications. 

International Journal of Computer Integrated Manufacturing 12 (6): 525-540. 



 
References 

 208

115. Urban, S.D., Dietrich, S.W., Saxena, A. & Sundermier, A. 2001. 

Interconnection of distributed components: an overview of current middleware 

solutions. Journal of Computing and Information Science in Engineering. 1: 

23-31, ASME. 

116. Urban, S.D., Fu, L. & Shah, J.J. 1999b. The implementation and evaluation of 

the use of CORBA in an engineering design application. Software-Practice & 

Experience 29 (14): 1313-1338. 

117. Urban, S.D., Shah J.J., Liu, H. & Rogers, M. 1996. The shared design manager: 

Interoperability in engineering design. Integrated Computer-Aided Engineering 

3 (3): 158-177. 

118. Urban, S.D., Tjahjadi, M. & Shah, J.J. 2000. A case study in mapping 

conceptual designs to object-relational schemas. Concurrency-Practice and 

Experience 12 (9): 863-907. 

119. U.S. Air Force. 1981. Integrated Computer-Aided Manufacturing (ICAM) 

Architecture. Part II. Material Laboratory, U.S. Air Force Wright Aeronautical 

Laboratories. 

120. Wampler, B. 2001. The essence of Object-Oriented Programming with JavaTM 

and UML. Addison Wesley Professional.  

121. Wang, G.R., Yu, G., Zhou, Y.F., Shan, J.D. & Zheng, H.Y. 1993. 

DODBMS/CIM: A distributed object-oriented database management system 

for CIM applications. Proceedings of the 10th IEEE Region Conference on 

Computer, Communication, Control and Power Engineering, Beijing, China 

19-21 October 1993: 303-306. 

122. Wang, G.X,  Zhang, W.Z,  Lu, C., Nee, A.Y.C. 2004. A distributed, persistent 

and transactional cache for knowledge-based engineering, Proceedings of the 



 
References 

 209

International Conference on Scientific and Engineering Computation (IC-SEC-

2004) (CD publication), Singapore, June 2004. 

123. Wang, H.F. & Zhang, Y.L. 2002. CAD/CAM integrated system in 

collaborative development environment. Robotics and Computer Integrated 

Manufacturing, 18: 135–145. 

124. Westfechtel, B. 1996. Integrated product and process management for 

engineering design applications. Integrated Computer-Aided Engineering, 3 (1): 

20-35. 

125. Westfechtel, B. 2000. Models and Tools for Managing Development Processes. 

Berlin; New York: Springer-Verlag. 

126. Wolf, P.V.D. 1994. CAD Frameworks: Principles and Architecture. Dordrecht: 

Kluwer Academic, Boston. 

127. Wong, T.N. & Leung, C.B. 1995. Feature conversion between neutral features 

and application features. Computers & Industrial Engineering, 29(1-4): 625-

629. 

128. Wong, T.N. & Leung, C.B. 2000. An Object-Oriented Neutral Feature Model 

for Feature Conversion. International Journal of Production Research, 38(15): 

3573-3601. 

129. Wu, T., Xie, N. & Blackhurst, J. 2004.  Design and implementation of a 

distributed information system for collaborative product development. Journal 

of Computing and Information Science in Engineering 4(4): 281-293. 

130. Xie, S.Q., Tu, P.L., Aitchison, D., Dunlop, R. & Zhou, Z. D. 2001. A WWW-

based integrated product development platform for sheet metal parts intelligent 

concurrent design and manufacturing. International Journal of Production 

Research 39(17): 3829-3852. 



 
References 

 210

131. Xu, X. & Liu, T. 2003.  A Web-enabled PDM system in collaborative design 

environment. Robotics and Computer-Integrated Manufacturing 19: 315-328.  

132. Yoon, D.H. & Shaikh, F. Z. 2000. Integrating CAD and CAM with CORBA. 

Proceedings 7th IEEE International Conference and Workshop on the 

Engineering of Computer Based Systems (ECBS 2000), Edinburgh, UK, April 

2000: 3-8. 

133. Zha, X. F. & Du, H. 2002. Web-based collaborative framework and 

environment for designing and building robotic systems. Proceedings of the 

2002 IEEE International Conference on Robotics and Automation (ICRA 2002), 

Washington, DC, USA, May 11-15, 2002: 2196-2201. 

134. Zha, X.F., Sriram, R.D. & Lu, W.F. 2003. Knowledge intensive collaborative 

decision support for design process. Proceedings of DETC’03, ASME 2003 

Design Engineering Technical Conferences and Computers and Information in 

Engineering Conference, Chicago, IL USA, 2-6 September 2003: 425-438. 

135. Zhang, W.J. & Luttervelt, C.A. 1995. On the Support of Design Process 

Management in Integrated Design Environment. CIRP Annals - Manufacturing 

Technology 44(1): 105-108. 

136. Zhang, W.Z., Jiang, R.D., Cheok, B.T. & Nee, A.Y.C. 2002. An innovative and 

practical design automation system for progressive dies. Proceedings of the 

Institution of Mechanical Engineers, Part B: Journal of Engineering 

Manufacture 216(12): 1611-1619. 

137. Zhang, Y.P., Zhang, C. & Wang, H.P. 2000. Internet based STEP data 

exchange framework for virtual enterprises. Computers in Industry 41(1): 51-

63. 



 
References 

 211

138. Zimmermann, J.U., Haasis, S., & Van Houten, F.J.A.M. 2002. ULEO-

Universal Linking of Engineering Objects. CIRP Annals - Manufacturing 

Technology 51(1): 99-102. 

 



 
Publications from This Research 

 212

PUBLICATIONS FROM THIS RESEARCH 

• Journal paper: Zhang WZ, Wang GX, Cheok BT, Nee AYC. A Functional 

Approach for Standard Component Reuse, International Journal of Advanced 

Manufacturing Technology Volume 22, Issue 1-2, 2003, Pages 141-149. 

• Conference paper: Wang GX, Zhang WZ, Nee AYC. Virtual Knowledge 

Repository for Intelligent and Distributed Feature-driven Product Realization. 

Presented in the conference of 34th International MATADOR Conference, 7 – 9 July 

2004, Manchester, UK.  

• Conference paper: Zhang WZ, Wang GX, Lu C, Nee AYC. An Agent-based 

Organization of Web Services in a Computational Grid, Presented in the 

International Conference on Scientific and Engineering Computation (IC-SEC 2004), 

30 June – 2 July, Singapore. 

• Conference paper: Wang GX, Zhang WZ, Lu C, Nee AYC. A Distributed, 

Persistent and Transactional Cache for Knowledge-based Engineering, 

Presented in the International Conference on Scientific and Engineering 

Computation (IC-SEC 2004), 30 June – 2 July, Singapore. 

• Journal paper: Zhang WZ, Wang GX,   Lu C, Nee AYC.  A Staged Approach for 

Feature Extraction from Sheet Metal Part Models, International Journal of 

Production Research, in press. 

• Journal paper: Wang GX, Zhang WZ, Nee AYC. An Integration Framework for 

Digital Progressive Die Design and Manufacturing, Journal of Wuhan University 

of Technology, in press. 

 


