

DEVELOPMENT OF A NETWORK-INTEGRATED

FEATURE-DRIVEN ENGINEERING ENVIRONMENT

WANG GUOXIAN

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48639006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEVELOPMENT OF A NETWORK-INTEGRATED

FEATURE-DRIVEN ENGINEERING ENVIRONMENT

WANG GUOXIAN

(M.E. Tsinghua University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2006

Summary

 i

SUMMARY

The contemporary product design-to-manufacturing process involves a group of

knowledge-intensive applications and functions. A distributed concurrent and

collaborative engineering environment is thus desirable to assist the integration of all

the phases of engineering activities together. System integration via network

communications has been intensively studied. However, the challenges are still

tremendous and the solutions vary in different application contexts and different

development practices performed by different researchers. There are very few

formulated system patterns to follow or effective approaches to dictate addressing

relevant issues with good traceability from functional requirements to system

implementation details.

This thesis presents an effort to develop a network-integrated engineering environment

while emphasizing on the pursuit of a formulated system integration approach with

promising applications to a broad range of engineering process types. Collectively, this

range of processes is called feature-driven engineering processes, every sub-process

within which involves the handling of feature-based models, either feature model

creation, feature model mapping, or model transformation from feature-based models

to ordinary geometrical models. The proposed integration approach is centered on a

concept of CAX framework which borrows ideas from the CAD framework, a notion

widely used in the area of EDA (Electronic Design Automation) to turn collections of

individual electronic design tools into coherent, effective and user-friendly design

environments. The study was conducted in the context of developing a prototype for

Summary

 ii

CAD/CAM of progressive dies. It has been treated as the vehicle for validating the key

concepts proposed in this research.

Development of the desired integrated engineering environment based on the CAX

framework approach began from characterizing the feature-driven engineering

processes. This includes process decomposition, analysis, modeling and re-engineering,

and identification of special properties required to be taken into account. The

characterization effort in this study generates a group of IDEF0 activity models, a set

of design change propagation properties and a special design transaction model. The

key for complete system specification is to conceptually construct the CAX framework,

which provides interfaces for all participating engineering tools. The framework

consists of a workbench application accessible by all tool users, the framework kernel,

a management database, and the raw design data base. Two steps are taken for

framework construction. The first step is to make all implementation decisions to

conceptualize a “skeletal” framework with the management database schema being

empty. The second step is to develop the management database schema or relevant

information models and further make the database coherently co-work with other

components in the framework. Object-orientation has permeated the full system

development process from beginning to end.

The information models for database schema include two parts: one for realizing PDM

(Product Data Management), the other for process management. The full course of

information modeling was incremental, i.e., PDM, process management, and overall.

The kernel of the PDM model is a novel design versioning scheme supporting design

change propagation management. For the process management, it is modeled as a

Summary

 iii

semi-structured design flow allowing dynamic specification while the process is in

execution. For the examination of the integration capabilities of the derived network-

integrated engineering environments, especially on how CE (Concurrent Engineering)

strategy is supported, a demonstration session running on the developed prototype was

worked out. The results show that the system exhibits advantages, which indirectly

demonstrates the effectiveness of the proposed CAX framework integration approach.

The thesis is concluded by a recommendation for CAD/CAM system developers to

adaptively use this approach in other comparable areas if their targeted design-to-

manufacturing process can be roughly classified as a feature-driven engineering

process.

Acknowledgements

 iv

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor, Professor Andrew Y.

C. Nee, for his encouragement, guidance, support and valuable advice during the

whole course of my research. It has been a learning experience for me working with

him, not only academically, but also in other aspects of life such as career development.

I would also like to thank Dr. Zhang, Wenzu for his enthusiasm, support and assistance

for this research.

Special thanks are due to Dr. Cheok, Beng Teck and Dr. Lu, Chun for their supportive

co-supervision to my graduate study which was partly undergone at the Institute of

High Performance of Computing.

Thanks to my wife and my son for their suffering from my long absent spells in their

family life over the years.

Finally, I wish to thank the National University of Singapore and the Institute of High

Performance Computing for giving me the opportunity to pursue this Ph.D. degree

with financial support.

Table of Contents

 v

TABLE OF CONTENTS

Summary... i

Acknowledgements .. iv

Table of Contents .. v

List of Figures.. x

List of Tables .. xiii

List of Acronyms .. xiv

List of Notations ... xvi

CHAPTER 1 INTRODUCTION.. 1

1.1. “Integrated View” of a Computer-integrated Engineering Environment 2

1.1.1. Evolvement of the CAPDE ... 3

1.1.2. The Roles of Feature Modeling and Mapping Technologies in CAPDE.............. 5

1.1.3. The Need for an Advanced Integration Infrastructure and Associated System

Building-up Methodologies... 7

1.2. Research Objectives, Expected Outcomes and Research Scope 9

1.2.1. Summary of the Open Issues for Integrating Feature-driven Engineering

Processes in Terms of Published Literature .. 10

1.2.2. Research Problem Statement ... 11

1.2.3. Development of a Prototype with Long-term Objectives for Industry

Applications... 12

1.2.4. Theoretical Values of the Present Research .. 14

1.2.5. Other Potential Application Areas of the Research... 15

1.2.6. Research Scope and Overall Approach ... 16

1.3. Terminology Statement... 18

1.4. Thesis Organization... 21

Table of Contents

 vi

CHAPTER 2 LITERATURE REVIEW ... 22

2. 1. A Historical Perspective on System Integration from Design to

Manufacturing ... 22

2. 2. Some Aspects Driving System Integration from Design to Manufacturing. 24

2. 3. Review of Several Representative Integration Architectures 45

CHAPTER 3 CHARACTERIZING FEATURE-DRIVEN ENGINEERING

PROCESS... 55

3.1. Hacking the Complex Engineering Process: the Feature-driven Way......... 55

3.2. Process Decomposition and Information Flow ... 61

3.2.1. Moving Some Design Tasks in One Sub-Process ahead to Enter Its Upstream

Sub-Process ... 62

3.2.2. Formulated Process Decomposition and Information Flow: a Comprehensive

IDEF0 Activity Model... 67

3.3. Interdependence Semantics and Design Change Propagation Property...... 74

3.3.1. Global View of Interdependence Semantics in a Feature-driven Process: Design

Object Derivation Graph ... 74

3.3.2. Expanding the Feature Transformation Taxonomy Towards Dependency

Relationship Taxonomy... 78

3.3.3. Model Derivation Function ... 79

3.3.4. Design Change Propagation Property .. 82

3.4. A Special Design Transaction Model for Feature-driven Engineering

Process .. 84

3.4.1. The Means by Which an Engineering Tool Manipulates Relevant Data through

Design Sessions ... 85

3.4.2. Basic Design Transaction Model... 87

Table of Contents

 vii

3.4.3. A Special Design Transaction Model for Feature-driven Engineering Process. 88

3.4.4. Discussions on the Proposed Design Transaction Model.................................... 91

CHAPTER 4 OVERVIEW OF THE CAX FRAMEWORK INTEGRATION

APPROACH .. 93

4.1. Rationale of the CAX Framework Approach ... 94

4.2. Definition of Functional Requirements and System Architecture................ 97

4.2.1. Functional Requirements... 97

4.2.2. Some Basic Strategies for Defining the General Framework Architecture 98

4.2.3. The General System Architecture ... 101

4.3. A Roadmap of Implementation and the “Skeletal” Framework 102

4.3.1. A Roadmap of Implementation ... 102

4.3.2. Functionality Partition between the Client and the Server................................ 103

4.4. Some Basic Implementation Decisions for the CAX Framework-based

Network-integrated Engineering Environment.. 105

4.4.1. Platform and Programming Language... 106

4.4.2. The Wrapper and the Way to Make the CAX Tools Available on the Internet 107

4.4.3. DBMS for the Management Database... 110

4.4.4. File Transfer .. 111

CHAPTER 5 VERSION CONTROL AND CONFIGURATION

MANAGEMENT... 113

5.1. Version Control and Configuration Management Concepts....................... 113

5.2. A Version Control and Configuration Management Model........................ 116

5.2.1. Basic Concepts .. 116

5.2.2. Design Change Propagation Scope and Object Version Identification............. 119

5.2.3. Control of Configuration Version Creation... 125

Table of Contents

 viii

5.3. Specification of Operations .. 127

5.3.1. Operations on Projects... 128

5.3.2. Operations on Configurations.. 129

5.3.3. Operations on Design Objects ... 130

5.4. Application of the Proposed Model in the Integrated Progressive Die Design

and Manufacturing Engineering Environment .. 132

5.5. Towards a Comprehensive Information Model and a Full-fledged GUI

Design.. 139

CHAPTER 6 ENGINEERING PROCESS MANAGEMENT 140

6.1. A Process Management Mechanism Based on Design Flow Configuration

... 140

6.1.1. Overview ... 141

6.1.2. Process Representation.. 145

6.1.3. The Process Execution Engine .. 148

6.2. A Comprehensive Information Model... 150

6.3. Two UML Sequence Diagrams Highlighting the Basic Process Management

Functionality .. 157

CHAPTER 7 WORKBENCH GUI DESIGN AND SOME EXPERIMENTAL

RESULTS... 164

7.1. The Scope of the Demonstration Session... 164

7.2. Description of the Results for the Principal Demonstration Steps 167

7.3. Discussions.. 178

7.3.1. Evaluation.. 178

7.3.2. Concurrent Engineering Support ... 179

7.3.3. Further Predictable Capabilities .. 180

Table of Contents

 ix

CHAPTER 8 CONCLUSIONS... 183

8.1. Research Contributions and Discussions .. 183

8.2. Limitations ... 188

8.3. Future Directions... 190

References.. 193

Publications from This Research... 211

List of Figures

 x

LIST OF FIGURES

Fig. 1.1 Evolvement of the computer-assisted product development environment (Tian
et al., 2002) ... 5

Fig. 2.1 Systematic procedure to develop a software system using the OO paradigm. 43

Fig. 2.2 (a) Modular integration of CAD/CAM software (MICS) 46

(b) The Pro/E-ToolPro CAD/CAM system (PTCS) (Thomas & Fischer 1996)
... 46

Fig. 2.3 The SDM and IPDE architecture (Urban et al., 1996, 199a) 47

Fig. 2.4 An integrated framework for net shape product and process development
(Chen 1997) .. 48

Fig. 2.5 The CONCERT environment (Hanneghan et al., 1995,1998) 49

Fig. 2.6 Architecture of the SUKITS integrated development environment (Westfechtel
2000) ... 50

Fig. 2.7 The WWW-based integrated product development platform for sheet metal
concurrent design and manufacturing (Xie et al., 2001) 52

Fig. 2.8 Structure of feature-based collaborative development system (Wang & Zhang
2002) ... 53

Fig. 3.1 The feature-driven progressive die design and manufacturing process 58

Fig. 3.2 (a) Process decomposition under normal circumstance (Nee & Cheok 2001) 64

(b) Process decomposition following the conventional logic.......................... 65

(c) Process decomposition after process re-engineering 65

Fig. 3.3 Diagram A-0 .. 68

Fig. 3.4 Diagram A0 ... 68

Fig. 3.5 Diagram A1 ... 71

Fig. 3.6 Diagram A2 ... 72

Fig. 3.7 The Design Object Derivation Graph.. 76

Fig. 3.8 Two types of design changes propagation... 77

Fig. 3.9 Four possible means by which a tool manipulates relevant data..................... 86

Fig. 3.10 The basic design transaction model (Wolf 1994) .. 88

List of Figures

 xi

Fig. 4.1 The general system architecture (Wolf 1994) ... 101

Fig. 4.2 Creation of client/server with Java RMI.. 104

Fig. 4.3 Integrating a tool with the framework kernel through a wrapper.................. 108

Fig. 5.1 Product configurations... 114

Fig. 5.2 Multi-version database as a set of database versions 117

Fig. 5.3 Augmented layered transaction schema for handling engineering data
(Developed based on Fig. 6.6 in Wolf (1994)) ... 118

Fig. 5.4 Comparison of two versioning approaches ... 121

Fig. 5.5 Design change propagation scope and object version identification............. 123

Fig. 5.6 Information structures and the IsProactive attribute 126

Fig. 5.7 The computation logic to control creation of configuration version 127

Fig. 5.8 The configuration VDG for the example scenario 132

Fig. 5.9 Step 1 in the scenario: generating Con2 launched by a design change on
Product-Feature-Model ... 134

Fig. 5.10 Step 2 in the scenario: generating Con3 launched by a design change on Die-
Operation-Feature-Model.. 136

Fig. 5.11 Step 3 in the scenario: generating Con4 launched by a design change on
Part4-Feature-Model.. 138

Fig. 6.1 A meta process model for feature-driven engineering process 146

Fig. 6.2 Example compound design flow containing two activities and a sub-flow .. 147

Fig. 6.3 A comprehensive information model for the example implementation 152

Fig. 6.4 The design flow before (a) and after (b) the CAPP sub-flow is defined 156

Fig. 6.5 A UML sequence diagram highlighting process management functionality
(simple design transaction case).. 159

Fig. 6.6 A UML sequence diagram highlighting process management functionality
(complex design transaction case)... 161

Fig. 7.1 The snapshot of the user authentication window... 168

Fig. 7.2 The snapshot of the authentication failing alert window............................... 168

Fig. 7.3 Selection of on-line or off-line work-mode... 168

Fig. 7.4 Locate a project .. 169

List of Figures

 xii

Fig. 7.5 Locate a configuration version .. 170

Fig. 7.6 Open a configuration version to view its running design flow and composition
hierarchy.. 171

Fig. 7.7 Composition of the overall working window.. 173

Fig. 7.8 The grouped check-in alert dialog ... 175

Fig. 7.9 Design state change caused by a grouped check-in 175

Fig. 7.10 A design state at which two activities are concurrently performed............. 176

Fig. 7.11 Creation of a new configuration version ... 177

Fig. 7.12 The newly created configuration version .. 178

List of Tables

 xiii

LIST OF TABLES

Table 5.1 Operations on projects, configurations and design objects......................... 128

Table 7.1 Evolvement of a configuration version... 174

List of Acronyms

 xiv

LIST OF ACRONYMS

API Application Programming Interface;

BOM Bill Of Materials;

CAD Computer-Aided Design;

CAM Computer-Aided Manufacturing;

CAPDE Computer-Assisted Product Development Environment;

CAPP Computer-Aided Process Planning;

CAX Computer-Aided anything;

CBR Case-Based Reasoning;

CE Concurrent Engineering;

CFI CAD Framework Initiative;

CG Composition Graph;

CIM Computer-Integrated Manufacturing;

CIFS Common Internet File System;

CONCERT CONCurrent Engineering Support;

CSCW Computer-Supported Cooperative Workspace;

CORBA Common Object Request Broker Architecture;

DAI Data Access Interface;

DBV Database Version;

DCOM Distributed Common Object Mode;

DFA Design For Assembly;

DFM Design For Manufacturing;

DODG Design Object Derivation Graph;

DPM Data and Process Management;

EDA Electronic Design Automation;

ER Entity Relationship;

GUI Graphic User Interface;

IDEF Integration DEFinition;

IPD Intelligent Progressive Die;

IPDB Integrated Product Database;

IPPD Integrated Product and Process Design;

IPDE Integrated Product Design Environment;

IT Information Technology;

JVM Java Virtual Machine;

List of Acronyms

 xv

MEMS Microelectromechanical System;

MAS Multi-Agent System;

OO Object-Oriented or Object Orientation;

OODBMS Object-Oriented Database Management System;

PC Personal Computer;

PCB Printed Circuit Board;

PDM Product Data Management;

SDM Shared Design Manager;

STEP Standard for Exchange of Product model data;

UML Unified Modeling Language;

UOF Unit Of Function;

VRML Virtual Reality Modeling Language;

VDG Version Derivation Graph;

VM Virtual Machine;

WM Workflow Management.

List of Notations

 xvi

LIST OF NOTATIONS

ΔAB The information elements in model A with no correspondence in model B;

ΔBA The information elements in model B with no correspondence in model A;

f(), h() Function;

fa() Adjoint transformation function;

fb() Conjugate transformation function;

MA Model A;

MB Model B;

MC Model C;

U(n) Design operator through the user interface at time n;

X(n) The global design state at time n;

Y(n) The external appearance of the design state in the user interface at time n.

Introduction

 1

CHAPTER 1

INTRODUCTION

Successful product design and development practice is reflected by the achievement of

good design specifications in the design and manufacturing documents (or electronic

files) and as short a lead time as possible for the development process. Typically,

developing a quality product in a reduced lead time is heavily dependent on the team

members’ knowledge, the cooperation among them and the tools they use. Among

these three factors, the importance of the engineering tools for a company is becoming

more outstanding with the constant increase of their functionalities enabled by new

information technologies. One trend which can be seen in the past years is that much

of the engineers’ knowledge has been coded into the computer system and many

engineering tasks can be automatically completed by the newly created or revamped

intelligent tools. Moreover, many cooperation activities have also become an inner

function of the computer-based tools which support strategies， such as CSCW

(Computer-Supported Cooperative Workspace). With more task-specific tools being

introduced to assist engineering processes, engineers are no longer expected to

separately use individual tools. Instead, they are immersed in an integrated engineering

Introduction

 2

environment consisting of a set of logically related tools, which operate in a

coordinated manner.

This thesis presents a systematic approach for the development of network-integrated

engineering environments. Due to their complexity, such environments cannot be

implemented in an ad hoc manner. Rather, their system architectures have to be

designed either by following well-formulated patterns or based on creative use of the

generic configuration principles of computer-based systems. Formal models have to be

built to describe the data and operations of the system both precisely and at a high

level of abstraction. Implementation strategies have to be devised to bring together the

concepts and technologies involved.

The current introductory chapter is an overview of the thesis. Section 1.1 takes a closer

look into the nature of computer-integrated engineering environments, focusing on

engineering process decomposition via feature-based modeling and mapping, as well

as sub-processes reunification via advanced integration infrastructure. Section 1.2

describes the objective of the research, its expected values and the research scope.

Section 1.3 introduces several main fundamental notions used throughout this thesis.

Finally, section 1.4 presents an overview of the rest of this thesis.

1.1. “Integrated View” of Computer-Integrated Engineering Environment

Contemporary network-integrated engineering environment has evolved from

Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems

which emerged in the early 1960’s and were originally designed for single users

working in isolation to carry out a specific engineering task. One of the most important

Introduction

 3

underlying thrusts for the evolvement comes from industry’s ever-increasing

requirements of design automation. While there have been considerable efforts devoted

to improve design automation of a complex engineering process by decomposing it

into small sub-processes to be easily automated, one can also observe a large number

of later yet almost parallel efforts to integrate all the related data, sub-processes,

activities, tools and resources so as to automate the process as a whole. Feature-based

modeling and mapping plays an important role in engineering process decomposition

as well as integration due to its ability to bridge the link between design and

manufacturing. Advanced integration infrastructure makes it possible to coordinate and

harmonize the activities which go on in the integrated system. Discussed in the

following sub-sections are some details about these three interrelated subjects,

evolvement of the Computer Assisted Product Development Environment (CAPDE),

the roles of feature-based modeling and mapping in CAPDE and the need for advanced

integration infrastructure.

1.1.1. Evolvement of the CAPDE

As shown in Fig. 1.1, since the 1970’s, there has been a growing trend in

manufacturing firms towards the use of computer systems to perform many of the

functions related to product design and development. Many types of computer-based

engineering tools have been introduced to provide diverse services to the user, with

notions, such as CAD, CAPP (Computer-Aided Process Planning), CAM, etc. Due to

the limitation of information technology in the early days, traditional computer-based

engineering tools dominated in providing interactive assistance to a single user to

create, modify, store, and render product drawings, virtual solid models or

specification documents within a specific engineering discipline in a specific product

Introduction

 4

life-cycle phase. With the advances of information technology, intelligent abilities

were gradually encapsulated into the computer-based tools and the scope of design

automation tools was extended from specific applications to integrated systems across

disciplines and life-cycle phases (Teti & Kumara 1997). The prevalence of networked

computing platforms since the 1990’s made another big improvement in that the

engineering tools were able to benefit from the distributed computation paradigm. Not

only was the engineering environment able to be designed as a monolithic application

located on a standalone computer for single users’ use, but it was also able to leverage

the resources on other computers and/or share information and knowledge with others

in a multi-user environment (Regli 1997). Along a parallel trend, the past years also

observed the improvements in the understanding of engineering activities from the

perspective of application of computer technology. This helps to work out the best way

to partition an entire product development process into sub-processes supported by

individual tools and then deploy them enterprise- or virtual enterprise-wide so that an

optimal integrated engineering environment is finally realized. For example, the

Concurrent Engineering (CE) strategy has been used to fine-tune an integrated system

by ensuring that the maximum engineering concurrency would be allowed (Prasad

1996). While there are many approaches to use these strategies combining special

computing technologies to develop optimal engineering environment, a methodology

centered on feature modeling and mapping is especially significant for a wide category

of products. The roles of feature modeling and mapping are discussed in the next sub-

section.

Introduction

 5

1.1.2. The Roles of Feature Modeling and Mapping Technologies in CAPDE

It is widely recognized that an important point of a product development cycle is to

generate an appropriate product information model, which is a common

communication medium for designers, analysts, manufactures, and other product

development people. The downstream product development data, such as that for

tooling, manufacturing, assembly planning, etc., are then generated directly or

indirectly from this product model. As such, the information encapsulated in the

product model needs to be packageable and transportable among the participating

agents in such a way that the intents and concerns of each are neither lost nor

unaddressed. Features are seen by many researchers as the natural and most

appropriate packaging of design information for manufacturing purposes to bridge the

missing link between design and manufacturing (Dixon et al., 1989; Shah 1988). Using

features, users can express easily the design intent by manipulating features directly,

eliminating tedious intermediate steps. Also, the feature databases allow reasoning

systems to perform tasks such as heuristic optimizing, manufacturability analysis, etc.

It also contains knowledge to facilitate numerical control machine programming,

Implementation
strategy

Engineering
environment

Manufacturing
systems

CAM CAD CAE CAPP CAD/CAPP/CAM/PDM

Numerical
Control

(NC)

DNC,
CNC

Flexible
manufacturing
system (FMS)

Rapid prototyping
Virtual prototyping
Virtual manufacturing

Application of Artificial
Intelligence, CE, DFX, etc.

1950 1960 1970 1980 1990 2000

Fig. 1.1. Evolvement of the computer-assisted product development environment

(Tian et al., 2002)

Introduction

 6

process planning, and automatic finite element meshing (Shah 1988). In summary,

features are an essential component of any intelligent design system (Dixon et al.,

1989). According to Hsiao (1990), three methods are used for creating feature-based

models to virtually represent a product in CAPDE, namely, human-assisted feature

definition, automatic feature recognition/extraction and design-by-features.

The most important significance of feature technology is probably its assistance in

engineering process automation. It is generally known that product design and

development requires considerable human experience and decision making. Moreover,

the engineering activities involved are classified into two types: creative and routine.

While the conceptual design process can be seen as creative and too difficult to

automate due to a lack of understanding of its nature, the downstream engineering

processes are not exactly creative. As a routine design, the sequence of processes is

well-structured, and thus feasible to be simulated in an intelligent CAPDE. This

strategy is especially useful for a product that has a large portion of its lifecycle in

developing its manufacturing process compared to developing its conceptual product

model. In another words, it has a long development cycle that can be viewed as a step-

wise process chain. Each component process is used to accomplish a part of the

engineering tasks, assisted by a specific application which has its own dedicated

internal data model and can provide a set of desired engineering renderings.

Specialized technology knowledge and modus operandi have to be used for problem

solving in each component process (Zimmermann et al., 2002). One of the most

important types of knowledge is how current tasks are dependent on those carried out

by its previous processes or reflected in the data flows, to what extent and in what way

the current process data model is dependent on that of the previous processes. Feature-

Introduction

 7

based model is thus also the best option to be adopted as the corresponding

intermediate models for all constituent component processes. This is because it can

promote maximum extent of automation when generating these models using an

approach called feature mapping (also called feature conversion or feature

transformation): generating the new set of feature instances B from the given set A

through knowledge-based reasoning supported by feature mapping knowledge base

(Zimmermann et al., 2002).

1.1.3. The Need For Advanced Integration Infrastructure and Associated System

Building-up Methodologies

Although feature technologies provide a mechanism to bridge the missing link between

design and manufacturing, make the consecutive models interoperable and thus allow

for expanded design automation across engineering processes, the overall process

automation does not come free. Much further effort has to be invested to integrate the

constituent feature-based models and the engineering processes for a specific subset of

a product development cycle. It can be imagined that in such an engineering

environment, engineers work on and manipulate various kinds of feature-based models

which have to compatibly work together. More precisely, changes made in one model

should be propagated to other models, and an overall integrity for the models must be

maintained (Karsai & Gray 2000). Consider the simplest case of an engineering

process that is composed of two models a and b and assisted with Tool A and Tool B

respectively. Model b is dependent on Model a. Tool A is of feature-based modeling

and Tool B is of feature-based mapping. Here, the feature-based modeling and

mapping makes the semantic relationship between models a and b understandable by

the computer system. Accordingly, much of the design effort can be saved by using

Introduction

 8

Tool B because of its ability to automatically derive the instance features in b

according to its relationship with certain instance features in a. However, there are still

several unaddressed factors which affect the design efficiency and productivity. For

example, if the two tools are isolated and standalone, it will leave the designer with the

problem of frequently entering and exiting two different environments to handle the

tools separately since the engineering process is inherently iterative, as well as moving

his design data from one tool to the other through file transfer. Furthermore, since

there may exist several versions of models a and b in an engineering practice, the

engineers should take the responsibility to ensure which pair of a and b are of

compatible version throughout the development cycle even after a long period of

interval for some reasons. Typically, the real-world product development process is a

complex one and there are more than two tools involved. The amount of design data to

be handled then multiplies accordingly. Moreover, what is also lacking in the complex

real-world case includes the overall support for managing the design process. As a

result, the need for complex data and process management in engineering tools

integration suggests a need for advanced integration infrastructure.

This need can be explained in that there exist some common functions that have to be

shared by the constituent tools in the engineering process. These functions, the product

data and process management in the above case, should hold semantics related to the

global view of the overall engineering process. Further examination will indicate that

the shared functions are unnecessarily limited to these two types aforementioned. A

possible alternative is a common knowledge repository function (Zha et al., 2003), the

design of which can be considered simultaneously with that of the data management

system. Another more general alternative comes from the research on distributed and

Introduction

 9

collaborative CAX systems, which partition the functions of an application between

the client side and the server side. It is found that a large group of distributed

engineering applications (tools) usually constitute common modules, such as a solid

modeler (Mervyn et al., 2003) which can be deployed and shared on the server side so

that the computation efficiency and reusability of generic components can be enhanced.

As a result, in order to be compatible with the concept of distributed design

(Maropoulos 1995) and provide shared functions for the constituent tools, today’s

engineering environment is increasingly demanding advanced integration

infrastructure. Many other parts should also be integrated into this infrastructure apart

from the above core functions, e.g., platforms (computers plus operating system

software), physical networks and networking hardware, network protocols and network

operating systems. Corresponding to this constantly advancing integration

infrastructure, the associated methodologies are also required to be developed to solve

all the relevant problems in the course to contrive a soundly integrated system.

1.2. Research Objectives, Expected Outcomes and Research Scope

The need for advanced integration infrastructure and associated system building-up

methodologies has prompted remarkable efforts to be devoted to this direction.

Chapter 2 gives a comprehensive literature review on these efforts. Observations based

on the literature review are summarized and documented in advance at this instant to

justify the research objectives, which are presented subsequently. Expected outcomes

and research scope are also detailed in this section.

1.2.1. Summary of the Open Issues for Integrating Feature-driven Engineering

Processes in Terms of Published Literatures

Introduction

 10

Although network-integrated product development environment is not a completely

new topic in manufacturing engineering, there are still many significant aspects of such

an environment that have not been receiving sufficient study. The community still

lacks an effective systematic methodology for developing an ideal integrated system to

cover the entire product development cycle for a specific type of products, especially

one that has a structured feature-driven engineering process. In summary, the

following issues are still open.

• There hardly exist any generic and theoretically-strong approaches, following

which the system developer can successfully develop a workable system. Most of

the systems are given as they are, with no explanation on why these systems are

devised in a particular way.

• The functionality of the existing systems does not seem to be comprehensive

enough, which is probably due to the fact that the underlying integration

infrastructure may not be well-structured and flexible enough. Incorporating

further preferable functional modules into an existing system may either be

extremely difficult for the system developer because of the overwhelming re-

engineering efforts needed, or unwelcome to the end-users because of the

unbearable operation complexity.

• Most of the existing systems do not consider the encapsulation of the product

development process knowledge, by which the users are able to identify what part

of the tasks have been completed, what are ongoing and what are to be done next.

Management of the process is fully up to the end-user, who may lose control in the

complex and iterative product development process.

• Data integration in most existing systems does not seem to operate at a well-

defined granularity level. It either operates at too fine a granularity level (such as

Introduction

 11

dots, lines, etc.), which makes the system inflexible, or at too coarse a granularity

level (such as isolated electronic documents), which makes the system too loosely

integrated such that heavy external coupling is required (Liang et al., 1999). It can

also be noticed that much attention has been given to avoid traditional piecemeal

implementation which causes the engineering environments to become a group of

“automation islands”, but very few works have dealt with another important issue

of avoiding hard-binding resilient modules together into a rigid monolithic super-

tool.

• Most of the systems do not make full use of existing and newly-emerging

information technologies, such as the OO (Object-Oriented or Object Orientation)

modeling technologies, knowledge-based techniques and the Internet-based

technologies. The product database management was either not taken into account

or too limiting to provide strong knowledge reuse functions based on rich

representation schemata and/or sufficient inference facilities. The performance of

the system also needs to be further improved to meet the end-user’s ever-

demanding requirements.

1.2.2. Research Problem Statement

The objective of the research reported in this thesis was to study the integrated product

development environment in the context of using a new approach that has a strong

theoretical foundation. This approach is borrowed from the field of Electronic Design

Automation (EDA). The key notion for this approach in its original area is related to

using a CAD framework to integrate diverse logically related electronic CAD tools. In

design automation in manufacturing engineering, not only CAD tools are involved, but

other types of tools, such as that of CAM, CAE, CAPP, etc., may also be involved. The

Introduction

 12

collection of CAD, CAM, CAE and many other tools is usually called CAX, which

means “computer-aided anything”. The notion of the CAD framework is extended to

the CAX framework in the current study. Specifically, the problems that are mainly

investigated in this research include:

• How can a CAD framework methodology be conceptually applicable to the

development of an integrated engineering environment for products which have a

feature-driven process?

• What are the adaptations that should be made to tailor the CAD framework to the

CAX framework?

• How to use the CAX framework to develop a network-integrated engineering

system?

• Is the CAX framework approach as effective as expected with adequate

demonstrations on a physically developed prototype?

The significance of studying these problems is reflected in several aspects, which will

be elaborated in the following sub-sections.

1.2.3. Development of a Prototype with a Long-term Objective for Industry

Application

The most apparent value of this research is that the result of the prototype may be used

by the industry with some further developments according to the methodologies

presented in this thesis and some other widely-known technologies. The scenarios

supported by the developed system are not purely imaginary like those proposed by

many other researchers, e. g. Urban et al. (1996), Qiang et al. (2001), Gerhard et al.

(2001), Wang & Zhang (2002), Li et al. (2004), etc. They are abstracted from a real-

Introduction

 13

world complex product development process of a type of sheet metal products using

progressive dies. The implementation decisions are made by using the latest

information technologies which are both challenging and easily available. Compared

with existing systems in the prototype-focused area, like the NUS IPD system (Cheok

& Nee 1998a, b; Jiang et al., 2000; Zhang et al., 2002), it has many advantages. Firstly,

the system is more flexible with more function modules (engineering tools) easily

integrated into the system. The scope is not limited to all aspects of die design, i.e.,

product feature modeling, unfolding, nesting, die operation planning and die

configuration. Die manufacturing, i.e., die parts process planning and NC codes

generation, can also be easily integrated into the system. Secondly, the data

management and process management functions based on the CAX framework

methodology are newly created and embedded into the system. Product data integrity

has been improved with easy access and without data redundancy based on a shared

product database, which also serves as a communication medium for the engineers

involved. Engineering activities to drive product realization from upstream stage

towards downstream stages are easier to master for the end-users and less error prone

with maximum cross-process automation. Thirdly, the single-user operation mode has

been extended to a multi-user one, which allows data/knowledge exchange and sharing

among the engineering team-members and supports cooperation among participating

engineering tools working in different computers that are geographically dispersed

across the enterprise. Fourthly, the CAX framework provides intelligent facilities to

upgrade the product database to a knowledge base, so that the design knowledge

embedded in the past product models created by any team-members using the relevant

engineering tools is naturally captured and easily retrieved when needed to help the

users to interrogate solutions for the current case. This also lays a foundation to use

Introduction

 14

advanced Case-Based Reasoning (CBR) technology to further enhance system

intelligence.

1.2.4. Theoretical Value of the Present Research

When developing an integrated engineering environment, the challenges are numerous

and the solutions are diverse. The current study is theoretically important in this broad

area in that it is not just another novel example system with some new technologies

(such as the Internet technology) adopted and with plain implementation decisions

described at a detailed level. Priority was firstly given to capture the underlying

common principles to meet the challenges in a large range of engineering

environments similar to what the case study has indicated. The proposed notion of

feature-driven engineering processes abstracted from the case study may improve the

understanding on how a category of complex engineering processes are decomposed

into sub-processes and in what way these sub-processes interrelate with each other.

The formulation of the captured principles and the success of using them in developing

a concrete system may imply that a new system integration pattern, the CAX

framework, has been discovered to enrich the current system design theories. Like

other integration patterns, such as the Multi-Agent System (MAS), the CAX

framework pattern provides reusable architecture templates to address recurring

problems and implementation hints to ensure a strong likelihood of achieving a

successful solution when it is tailored to any other applicable context. Emulated from

its parents, the CAD framework, the CAX framework technology itself has a number

of advantages as a system integration methodology. Benefits include cutting down

product development time, increasing performance and quality of products under

engineering, and making the development process less error-prone.

Introduction

 15

1.2.5. Other Potential Application Areas of the Research

As conceived and tested in this research, the concept of feature-driven engineering

process and its integration approach in a CAX framework have been intentionally

biased to the development of an integrated engineering environment for sheet metal

products using progressive dies. However, they may be also valuable outside this

important area. A variety of product development cycles can be characterized as a

feature-driven process and thus the current approach is applicable to them. For

example, the development cycle of injection-molded products is very similar to that of

the sheet metal stampings and also needs a set of feature modeling and mapping tools.

For another example, most of Integrated Product and Process Design (IPPD) systems

have a structured process pattern resembling the feature-driven engineering process

model and thus might be promising application areas of the CAX framework approach.

Here is a demonstrative IPPD scenario in a modern manufacturing environment:

feature-based modeling of a car being integrated with another design automation tool

to design car robotic arms, which are controlled to assemble the car. Another IPPD

scenario described in the aforementioned literature review section, the integration of

three tools (components): CAD, a process planner and an inspection planner (Marefat

et al., 1993), may also benefit from the CAX framework approach.

If removing the limitation to use feature models as the underlying operation models of

the participating tools in the integrated engineering environment, the concept of the

CAX framework would have a wider application scope. It would be open to any types

of engineering tools, including CSCW and many other new generation ones focusing

on distributed concurrent engineering. It is noted that these new generation tools are

Introduction

 16

currently conceived and tested as a subsidiary functional module outside the

mainstream product design and development environments and need to work out a way

to coherently integrate them with others sharing a common engineering task (Mervyn

et al., 2003). The CAX framework can play the role of a software infrastructure that

provides a common operating environment for all distributed concurrent engineering

applications involved. Therefore, it may be able to fulfill the above need given that the

underlying facilities are adjusted accordingly.

1.2.6. Research Scope and Overall Approach

As stated, this research concerns itself with the development of a network-integrated

and distributed engineering environment using the CAX framework technology, a new

concept derived from the CAD framework that is originally found in the area of EDA.

The application context is the full product design and development cycle of

mechanical products which have a feature-driven process model. To demonstrate the

conceptual feasibility of this approach, the characteristics of the intended application

context were investigated to make a comparison with that of a typical application

context of a CAD framework. Instead of identifying all aspects of the analogy between

them, the focus was placed on characterizing the relationship among a group of CAX

(CAD) tools. It was revealed that the most important impetus underlying the research

and application of the CAD or CAX framework is its ability to integrate a range of

engineering tools which have a logically centralized coordinator. Similar to the CAD

framework, the CAX framework is scalable and can be configured to encompass a

range of functional components and thus can be allotted various roles. However, this

research was mainly limited to its three basic roles: engineering data repository,

engineering data manager and engineering process manager. Advanced functions, such

Introduction

 17

as knowledge repository support, cooperative engineering transactions, reusable

CSCW-like services, etc., were mentioned wherever appropriate but not thoroughly

studied.

According to CAD framework principles, three well-formulated steps are

recommended to be taken to develop a CAX framework-enabled engineering

environment (Wolf 1994). The start point is to derive a model of the targeted

engineering environment. This model provides a vocabulary of well-defined terms, and

thereby a context for functional specifications. The second step is to identify the

logical structure of the framework which indicates the details of the framework

functions including the unspecified ones of the framework services. The final step is to

complete the definition of the integrated engineering environment at the physical level.

Many decisions are made at this step, which has no special principles to follow. This

three-step pattern which allows iterations has been sequentially followed to initialize a

practice to develop a prototype system at the beginning. However, the sequence was

not eventually used to formulate the current development efforts and neither

recommended to other interested researchers because of its absence of incorporation of

the OO principles. A two-step strategy is used in this thesis. Firstly, a “skeletal” CAX

framework up to the physical level is developed. Afterwards, the development effort is

biased to concentrate on the most creative and challenging aspects: modeling and

analyzing the desired engineering environment to generate an adequate schema for the

management database and devise the required operations on the data. It is found that

this two-step strategy is more natural for system developers and probably helpful in

reducing unpleasant iterations before a satisfactory system specification is achieved

given that the CAD framework principles have been acknowledged in advance.

Introduction

 18

To demonstrate the approach to develop an integrated engineering environment using

the CAX framework technology, a full case study was conducted in the area of sheet

metal products using progressive dies. A set of selective demonstrations was designed

to assess the effectiveness of the approach. In summary, while there are many

perspectives to view the CAX framework-enabled engineering environment with each

one emphasizing particular aspects of the architecture, this research explored the

system modeling perspective on the abstract level and the implementation perspective

on the physical level using a case study to exemplify all the details involved.

1.3. Terminology Statement

Beginning from a broad scope in the development of an integrated and distributed

engineering environment, the focus of this research was fine-tuned to a fully new topic,

integrating distributed feature-driven engineering processes in a CAX framework.

Viewing some complex engineering processes as “feature-driven” ones is an elegant

way for processes integration. The underlying idea stems from “data-driven,

information-driven or model-driven” where “model” now specifically refers to feature-

based model. The CAX framework is a key concept for this research topic, and

probably requires a precise definition before presenting the details of this approach.

In a broad sense, according to The Merriam-Webster Dictionary,

“A framework is a skeletal, openwork, or structural frame.”

Introduction

 19

 It is noted that almost all the integrated and distributed engineering environments have

their own framework as an architectural skeleton, on which the full system is based.

Some of them are obviously denoted while others just obscurely contained in the

system. In both cases, the framework for a specific integrated engineering environment

usually plays a constricted role to act as an internal expedience personally-owned by

the system developer for partitioning the domain, layering the architecture and fully

specifying the system. Since no generic framework design principles and patterns are

investigated and made available before the system design, all works are done from

scratch and thus the development practice is often slow and unpredictable.

The framework in the context of the current topic of “CAX framework” has a small

difference with the above concept. It has semantics of an OO application framework in

software engineering, where a precise definition is given as following:

“A framework is a reusable, ‘semi-complete’ application that can be

specialized to produce custom applications (Johnson & Foote 1988).”

The primary benefits of OO application frameworks stem from the modularity,

reusability, extensibility, and inversion of control they provide to developers (Fayad &

Schmidt 1997). While the framework in this sense can be classified by their scope into

three categories, system infrastructure frameworks, middleware integration

frameworks and enterprise application frameworks (Fayad & Schmidt 1997), the

framework in the current study falls into the level between the middleware integration

framework and the enterprise application framework. It defines a semi-complete

application that embodies engineering domain-specific object structures and

Introduction

 20

functionality. Components within it work together to provide a generic architectural

skeleton for a family of related applications and the complete applications can be

composed by inheriting from and/or instantiating these components.

Therefore, the current CAX framework is not a spontaneous “by-product” throughout

the course to develop an integrated engineering environment. It is a conscious effort to

capture the common framework knowledge which may be recurrently applied in

different context and encapsulate volatile implementation details behind stable

interfaces. As has been mentioned above, this idea is inspired by the CAD framework

in the area of EDA. The authoritative definition of CAD framework is given by the

CAD Framework Initiative (CFI), the international consortium developing framework

standards (CFI 1990b):

“A CAD framework is a software infrastructure that provides a common

operating environment for CAD tools.”

Similarly, a CAX framework is a software infrastructure that provides a common

operating environment for CAX tools. Various roles can be allotted to the CAX

framework depending on the way in which it is specified. It can be basically exploited

to integrate dispersed CAX tools for the tool users. It can also be exploited to achieve

more effective collaborations among these users. In this sense, from the

methodological perspective, the CAX framework is an enabling technology, which

functions as the centric concept of the proposed integration approach for development

of a network-integrated engineering environment. On the other hand, from the

structural perspective, the CAX framework in a physical CAX framework-based

Introduction

 21

engineering environment is an integration tool or collaboration tool, which co-works

with the surrounding CAX tools.

1.4. Thesis Organization

The remainder of this thesis is organized as following. Chapter 2 provides a

comprehensive literature review on the existing efforts to develop an integration

infrastructure for complex engineering systems so as to reinforce the above statements

on the open issues for integrating feature-driven engineering processes. Chapter 3

characterizes an engineering process from the perspective of feature-driven

engineering. Process decomposition, dependency relationship identification and

adequate design transaction models are comprehensively addressed. Chapter 4 presents

an overview of the CAX framework-based integration approach. A “skeletal” CAX

framework is incrementally derived from a small set of high level primitives. Chapter

5 depicts how the “skeletal” CAX framework is enriched with the product data

integration functions. A versioning control and configuration management model is

presented. The corresponding operational issues are also addressed. Chapter 6 depicts

how the “skeletal” CAX framework is enriched with another important function, the

process management function. The finally-obtained system is a network-integrated

engineering environment using an integration approach which is both data and process-

centric. Process management mechanism design and process modeling are emphasized

and the overall information model including a UML sequence diagram is described.

Chapter 7 presents the results of a demonstration session working on the prototype

system. Chapter 8 summarizes the contributions made by this study and outlines areas

of future work.

Literature Review

 22

CHAPTER 2

LITERATURE REVIEW

This chapter presents a general review on past and current researches into system

integration from design to manufacturing. Although a huge body of literatures can be

found having relevance to this topic, it is far from being able to be treated as a formal

discipline which has a consensus amongst its community on its research directions,

scope, issues involved and reference paradigms. The objective of this survey is to gain

insights into what kind of new research efforts may truly contribute to this area with

both theoretical and practical values. Therefore, conclusions drawn from this survey

may be repetitively used somewhere in Chapter 1 or the chapters following this one.

The survey itself includes a historical perspective, some aspects significantly affecting

integration and a suite of sample integration architectures.

2.1. A Historical Perspective on System Integration from Design to Manufacturing

Maybe to some researchers’ surprise, all activities from design to manufacturing were

seamlessly integrated by nature in the beginning according to Cross (1989). Both

design and manufacturing, if these terms were used by the people in that era, actually

referred to the same activity to physically fabricate an artifact. Craftsman would design

as they manufactured and manufacture as they designed (Jeremiah 18:4) (Mowchenko

Literature Review

 23

1996). Separation of design and manufacturing into two islands of activities occurred

when sophistication both on the design side and the manufacturing side progressed to

such an extent that documenting and detailing the specifics of a design should be

completed before manufacturing. Further, with the introduction of computer-based

systems, more task-specific tools would be adopted to perform partial design or

manufacturing activities, and more activity islands may be found in an entire

development cycle from design to manufacturing.

Wherever there were separate activity islands, integration efforts would be devoted to

filling the gap sooner or later. Before computer-based tools were introduced for these

activities, it is their cooperation and collaboration efforts between design engineers and

manufacturing engineers that fully took this responsibility by translating and re-

implanting information encapsulated in designs into corresponding manufacturing

specifications or the manufactured artifacts. Soon after the first computer-aided design

tool “sketchpad” was produced by Ivan Sutherland at MIT in 1962, a team at General

Motors Research Laboratories developed a system which not only displayed shapes on

a screen, but also linked this information to NC controlled machines. This led in 1964

to the construction of the first CAD/CAM system called DAC1 (Design Augmented by

Computer) (Black 1996). Therefore, even at the early stage of the evolution of

computer-aided systems, it was recognized that a unique system-level capability,

integration from design to manufacturing, may be leveraged to alleviate engineers’

workload if adequately addressed. One of another earliest integrated systems reported

in literature is ROMAPT (Chen 1982), which integrated the CAD system ROMULUS

and the NC system APT. Throughout the 1980’s and 1990’s, an explosion of research

interests into system integration from design to manufacturing can be observed, which

leads to a special term, CIM (Computer-Integrated Manufacturing) or CAD/CAM

Literature Review

 24

being used to collectively document all efforts along this line. According to its formal

definition, CIM also concerns integration of production functions (Singh 1996), but the

main issues addressed are almost identical.

 Although system integration from design to manufacturing has advanced for over 30

years and researches in this area are still active, it is difficult to clearly stage how it has

been evolved. This is probably because there are no breakthrough methods out there

although some methodological questions may be very tough. Most of the researches

are devoted to broadening its application scope with introduction of a new (type of)

system fitting to a particular new context with few radical methodological

improvements. Few researches are contributed to making obvious progress in its

theoretical and technique depth. While it is difficult to gain a clear picture of its

evolution by defining a set of representative indicators as can be found in describing

the evolution of CAD, one can notice that some strategies or core technologies with

much formulation have strongly affected its evolvement. Taking a look into some

details in these aspects not only helps to trace the technical evolvement but also helps

to capture appropriate metrics to measure the value of a particular system integration

effort. The strategies should not be viewed as evolution indicators because overlooking

any one of them in a specific application does not necessarily bring about an

immediate inferior solution.

2.2. Some Aspects Driving System Integration from Design to Manufacturing

Six significant aspects that drive system integration from design to manufacturing are

presented in this section. They are information modeling, concurrent engineering,

intelligent integration, data integration, process integration and object-orientation.

Literature Review

 25

• Product and process modeling

Information modeling, including product and process modeling, is probably one of the

most useful analytical techniques employed to overcome integration barriers in data

exchange and sharing amongst design and manufacturing software systems. The

application of modeling helps in better understanding and easier handling of the

modeled system by dealing with the purposely selected features. Respectively, product

modeling develops data models and process modeling develops activity models. A data

model defines the data elements and their relationships. An activity model describes a

process activity and its sub-activities, as well as the data associated with the activity

(Algeo et al., 1994).

Two groups of researches may be viewed as the origins for all others in this aspect.

One is known as the IDEF (Integration DEFinition) technique series including IDEF0,

IDEF1 and IDEF2 modeling methods developed by the U.S. Air Force ICAM Program

during the 1976 to 1982 timeframe (U.S. Air Force 1981). The other is known as the

STEP (STandard for the Exchange of Product model data) standard suite (ISO 1994).

The IDEF series includes an activity modeling language IDEF0 and an ER (Entity

Relationship) modeling language IDEF1X which is an extension of IDEF1 and many

others without receiving much concern. The core of the STEP standard suite is not

restricted to information modeling methods themselves but have an ambitious aim at

creating normalized object models to allow any manufacturing applications to share

product data if semantically possible and desirable. The activity modeling method it

used is IDEF0 and the data modeling methods it used is EXPRESS, a modeling

Literature Review

 26

language of its own. EXPRESS and IDEF1X can be viewed as functionally identical

but the former seems more popular probably because its modeling power is stronger.

Two types of data sharing and thus application interpretability for integration are

supported by STEP. One is within the same application areas but operating on

heterogeneous platforms and the other is across many application areas in the entire

product life cycle from design to manufacturing (Zhang et al., 2000). While STEP is

quite successful in the first type of sharing through neutral representations of the

product models across heterogeneous computation platforms, for example sharing

CAD models between CATIA, Pro-E or any other CAD platforms, few successful real-

world stories can be found for STEP to be implemented with the second type of

sharing across application areas even on the homogeneous platforms. This is probably

because STEP proves to be too unwieldy (Hillebrand et al., 1998) in this aspect due to

the expensive normalization which makes the developed models harder to process

(Hardwick et al., 1996).

However, the integration philosophy underlying the STEP standards has been widely

used. In general, from the perspective of system analysis based on information

modeling, implementing integration from design to manufacturing begins from its

opposite side: decomposing the process into manageable sub-processes in terms of

activity modeling. Examining the interoperability between the corresponding

intermediate product data models for each sub-process is the next task and a global

integration model capturing the common semantics shared by all participating

intermediate models is probably required (Dhamija et al., 1997). IDEF0 has become

the de facto activity modeling language and EXPRESS is a popular data modeling but

Literature Review

 27

far from the only and best option. Most researchers select UML (Unified Modeling

Language) as the data modeling language instead of EXPRESS probably because of

UML’s broader acceptance in the software engineering world. It is yet noticed that the

modeling practice is often more important than the language chosen (Lee 1999),

because any one of them can be mapped to the other (Arnold & Podehl 1998). This

thesis will use IDEF0 to perform process decomposition and activity modeling and

UML to perform data modeling.

• Concurrent engineering

Technical advancement of system integration from design to manufacturing has been

an evolutionary process attributed to an increase of awareness rather than a revolution

driven by certain technology leaps. For example, integration was mainly perceived in

its early days as a means to smooth the information transition from one lifecycle

function module to the next for the purpose of reducing user effort and increasing

consistency (Singh 1996; Black 1996). Increasingly with more experimental solutions

to the problems in this aspect introduced to and acknowledged by industries, the

limitations of the solutions were also recognized and more profound understanding to

the tenet of integration came out: integration is much more than mere coupling of

processes, or information flows between them, what one can call module-module

interaction (Singh 1996). On the other hand, integration facilities should also allow

effective user-user cooperation and user-module interaction. One of the most important

management and engineering philosophies which have fostered such an increase of

awareness of integration tenet is Concurrent Engineering (CE).

Literature Review

 28

As “the art of decomposing a complex serial task into smaller, relatively independent

tasks that can be executed in parallel” (CFI 1990a), CE advocates maximum

concurrency of engineering activities involved in an engineering process for which an

integrated system is about to be constructed. Ensuring that an integrated engineering

system be able to fully support the CE strategy has been widely accepted as one of

essential procedurals to specify an integrated system. Some integrated systems, such as

the CONCERT (CONCurrent Engineering suppoRT) environment (Hanneghan et al.,

1995, 1998), may even be called a CE system firstly and any others next. The

integration approach proposed in this thesis will also be linked to an examination on

how CE is supported.

• Knowledge-based system / intelligent integration

Historically, knowledge-based systems contributed a lot to intelligent design and

manufacturing mainly by providing new mechanisms to develop individual task-

specific CAX tools to automate a large proportion of routine design and manufacturing

tasks. It also has significant relevance to system integration from design to

manufacturing in that there had ever been a great shortage of implementation means

for system integration and knowledge-based system framework. The Blackboard

Architecture (Hayes-Roth 1985; Nii 1996), offered a type of technical possibility.

Although there is no agreement on what should be included in the integration

infrastructure for a range of design and manufacturing applications to realize a truly

integrated engineering environment, some basic functions would be inevitably

involved. Examples of such functions include a unified and coherent user interface

able to instantly navigate around the real-time participating applications, common

product database shared by the participating applications, some context-sensitive

Literature Review

 29

control logic to smooth the cooperation between corresponding applications, etc.

Before the prevalence of the multi-process operating systems like the Microsoft

Windows® and the OO programming tools like C++ and Java language, even realizing

the coexistence of two applications in a single session is a big problem. Programming

the control logic with some basic heuristic reasoning capabilities is also difficult for

software developers using traditional procedural programming languages such as

FORTRAN and C. It is natural that the knowledge-based system framework, the expert

system shell, was selected by many researchers to function as an intermediary that

operates in a loose integration fashion with the surrounding applications. One of the

earliest works justifying the expert systems’ capability for system integration was

contributed by Madison et al. (1988), who proposed an expert system translator to link

the CAD and CAM and help them speak the same language. Another example system

used an old-fashioned OO programming environment (Smalltalk-80, Version 4.0) to

realize the integration of three tools (components): CAD, a process planner, and an

inspection planner (Marefat et al., 1993). These components all share a common

database that acts as an intelligent integrating agent. Note that the underlying

integration mechanism through the expert system framework or the shell is actually

attributed to a shared “blackboard” although this term may not be explicitly mentioned.

The terminology of blackboard architecture based on the knowledge-based shell makes

its integration capability more formally documented, easily understood and broadly

recognized. Participating applications to be integrated are nothing more than special

knowledge sources in the blackboard-based integrated engineering environment, which

consists of a blackboard, an inference engine-enabled agenda controller and any

number of knowledge sources. A design database used to store all the dynamic design

Literature Review

 30

data produced by the surrounding applications is a de facto knowledge resource and

thus the product data management function is always provided by such environments.

Numerous integrated engineering environments based on the blackboard architecture

have ever been reported. Some examples are listed in the following. Megale et al.

(1991) introduced a CAD-CAM integration environment based on the blackboard

architecture. Palani et al. (1994) developed an intelligent design environment which

integrates a sheet metal part CAD module, an FEA module and a design evaluation

module using the blackboard architecture. Fagan (1994) presented an integrated

environment consisting of a myriad of computer-aided engineering design and analysis

applications for engine crankshafts utilizing the blackboard approach as an

implementation tool. Srihari et al. (1994) described a blackboard-based process

planning system, which integrates a planning sub-system performing static process

planning tasks and a dynamic information processing sub-system, for the surface

mount manufacture of PCBs (Printed Circuit Boards). Roy et al. (1995) developed a

knowledge-based process planning system using the CLIPS V6.0 expert system shell

to integrate with a feature-based design system working on the CAEDS solid modeler

through the blackboard architecture. Hayes (1995) described CHAMP, a conceptual

architecture designed to support the task of passing information from CAD systems to

CAPP systems. The proposed architecture facilitates CAD/CAPP integration through

shared blackboards.

One of the common features that can be found in all the above blackboard-based

integrated environments is that they consist of at least one knowledge-based

application which relies on the common expert system shell which functions as the

basic platform for the blackboard. Today’s knowledge-based design and

Literature Review

 31

manufacturing applications prefer to be compact, with the knowledge imbedded

interiorly owing to the strong expressing and reasoning ability of the OO programming

languages such as C++ and Java. No exterior expert shell is strongly needed. Further,

the multi-process operating system such as Microsoft Windows® popularly available

on PCs (Personal Computers) makes easy coexistence of multiple applications and

resources. Therefore, the significance of the contribution of the knowledge-based

systems towards system integration is reduced. This observation has been reinforced

by the author’s experience gained when participating in the IPD (Intelligent

Progressive Dies) project (Zhang et al., 2002) initiated by National University of

Singapore and the Institute of High Performance Computing. As an integrated and

intelligent toolkit for the design and manufacturing of progressive dies, IPD in its

original version realizes the integration of a range of modules (applications) including

a product feature modeler, an unfolder, a layout planner and a die configurator through

an in-house knowledge base shell. The underlying architecture is compatible with the

blackboard concept. However, the new version of IPD has removed the shell because

the limited integration capability provided by the shell can almost come free in the

Microsoft Windows® platform, and the knowledge bases as well as the inference

engine provided by the shell to any individual module can be directly coded into that

module.

Nevertheless, the contribution made by the knowledge-based systems in the

evolvement of system integration from design to manufacturing cannot be overlooked.

For example, it has helped in improving the understanding on the integration problem,

specifically what may be required to be included in a concrete integration

implementation. It also helped to foster a new integration paradigm, the client-

Literature Review

 32

knowledge server architecture (Eriksson 1996) corresponding to the recent hot

research atmosphere for distributed design and manufacturing owing to the emergence

of the Internet-centric technologies. In this client-knowledge server architecture, the

inference engine and knowledge bases (shared blackboard and basic knowledge

sources) are located at a server computer, and interfaces are exported on demand via

network connections to client computers where a common GUI (Graphic User

Interface) application and purposely selected functional design/manufacturing

applications are running. Integration in this architecture may be between two

functional applications of different types or even the same type but running on

different sites. The development efforts using this integration paradigm includes a

computer-based design system proposed by Sriram & Logcher (1993). It provides a

shared workspace, i.e., a blackboard, where multiple designers work in separate

engineering disciplines. In this distributed and integrated environment for computer-

aided engineering (DICE) program, an OO database management system with a global

control mechanism is utilized for coordination between distributed users and

applications. Another such kind of effort is made by Zha & Du (2002) who developed

a design platform with client-knowledge server architecture for collaborative design of

Microelectromechanical systems (MEMS) through concurrent integration of multiple

distributed knowledge sources and software. Although the client-knowledge server

architecture realized some crucial integration functions in the distributed environment,

these integration functions are far from sufficient for realizing a comprehensive

integrated engineering environment consisting of a set of distributed CAD/CAM

applications. This is probably one of the reasons why very few researchers selected the

client-knowledge server architecture as a means to achieve more sophisticated

integration architecture. They would rather develop distributed and integrated

Literature Review

 33

engineering environments of their own on a project-by-project base from scratch using

basic distribution and OO technologies (see the next section).

• Product Data Management (PDM) / data integration

PDM, a technology developed for the integration of CAX systems to manage product

data centrally (Conaway 1995; Norrie 1995; Anonymous 1998; Fan 2000), is probably

the only formulated and industrialized technology that has been being widely

employed as an effective means to solve some integration problems involved in

product development process from design to manufacturing. PDM can be exploited in

the narrow sense or in the broad sense by the integrated engineering environments.

However, it is unfortunate that in most cases, PDM is only stressed in the narrow sense

and its influence on system integration in the broad sense has been inadequately

addressed in the community of PDM.

PDM in the narrow sense refers to a PDM application or PDM system, an off-the-shelf

software tool. PDM in this sense can be traced back to the early 1980’s when many

large corporations, often the leaders in the engineering-manufacturing industry, found

their efficiency severely downgraded by the poor management of the huge bulk of

electronic product lifecycle-related information using the traditional paper-based

means (Liu & Xu 2001; Xu & Liu 2003). Driven by the ever-growing potential market

of efficient product data management methodologies, several generations of

commercial PDM systems have been introduced to the manufacturing industry and a

multitude of PDM products are available on the market. While a PDM system is a

crucial tool for the management of the large amount of data generated by computer

applications to ensure that the right information is available to the right person at the

Literature Review

 34

right time and in the right form throughout the enterprise, it can also function as an

intermediary to integrate a set of interrelated applications like the above-mentioned

intelligent blackboard. Iuliano (1995, 1997) described in detail how a PDM system

(Adra Systems’ MatrixTM V3.0) is used to implement an integrated plug-compatible

environment consisting of a CAD application (Parametric Technology Corporation’s

Pro-EngineeringTM), a generative process planning application (Technomatrix’s

ICEMTM Part) and a suit of manufacturing simulation applications (Deneb Robatics’

IgripTM, QuestTM and Virtual NCTM). However, the integration capability provided by

PDM applications in this way is very restrictive. This is because the PDM application

is primarily targeted to interface with end-users rather than the participating CAX

applications involved in a product development process. Being utilized as an

intermediary to integrate CAX applications is only its secondary function. It has no

knowledge of the existence of the surrounding CAX applications to be integrated and

the environment constructed in this way is a more loosely integrated one than that

constructed using the blackboard architecture. Much manual effort from the end users

is still required to make the full system work coherently and effectively.

PDM in the broad sense refers to the PDM function which is a set of data integration

decisions as a part of the development practice to realize a large integrated toolkit

consisting of a myriad of CAX applications. PDM in this sense is far more important

for system integration from design to manufacturing than PDM in the narrow sense

because the PDM function is almost mandatory for any integrated engineering

environment. Incorporation of an optimal PDM function within an integrated

framework makes it possible to realize the maximum degree of integration for a given

non-integrated process with the minimal artificial efforts required, especially in the

Literature Review

 35

aspect of data integration. Fortunately, some researchers outside the conventional

PDM community made considerable contributions in this aspect. For example,

researchers from Arizona State University studied the mechanism to use an OO

database system as a Shared Design Manager (SDM) to provide a blackboard for

communication among CAD tools (Urban et al., 1996). SDM uses a STEP product

model as a global conceptual view of data and is very flexible in the configuration of

the design environment and in establishing communication. Based on the success of

SDM, two other components, Integrated Product Database (IPDB) and a set of Data

Access Interfaces (DAI) for each application type, were added to the environment. An

Integrated Product Design Environment (IPDE) is then formed which allows

CAD/CAM/FEA programs to share data dynamically and operate coordinately (Shah

& Urban 1998). The data modeling aspect of IPDE was discussed by Liang et al.

(1999). The development result and demonstration of the IPDE was also elaborated

especially in the aspect of database framework (Urban et al., 1999a). The feasibility of

the use of Common Object Request Broker (CORBA) tool in the existing IPDE was

further studied (Urban et al., 1999b). The feasibility study on employing the Oracle® 8

object-relational data model to re-implement the database kernel in IPDE was also

conducted by using the STEP EXPRESS conceptual modeling language (Urban et al.,

2000).

Another representative effort dealing with data integration was made in the context of

the SUKITS project (Schwartz & Westfechtel 1993). The SUKITS project is targeted

at a posteriori integration of existing CAX applications into an integrated CIM system

– the CIM Manager. The CIM Manager manages versioned, interdependent documents

(including CAD designs for different purposes, CAPP plans, NC programs, and FEA

Literature Review

 36

simulation results, etc.) which are combined into configurations. PDM in the SUKITS

project is referred as product management, based on which process management and

resource management were also enabled by the CIM Manager (Westfechtel 1996;

Westfechtel 2000). The SUKITS architecture follows the client-server paradigm with

CAX applications residing on the client computers and management tools provided by

the server machines. Since the SUKITS prototype was heavily based on the software

and services originally devoted to a different application domain, software engineering,

its conceptual framework did not neatly address system integration issues for

engineering processes from design to manufacturing. However, this research, as well

as those presented in previous paragraph and many other similar ones (Rundensteiner

1993; Wang et al., 1993; Bounab & Godart 1998; Karsai & Gray 2000; Roller et al.,

2002a, b), laid a moderate foundation for understanding the PDM function-enabled

system integration mechanism and making basic implementation decisions for

designing an adequate integration architecture and addressing relevant issues.

To summarize, the PDM functional module in an integrated engineering environment

possesses a shared, persistent data vault or database engine for multiple CAX

applications and manages “data about data” or meta data of the physical product data

in an official and semantically unambiguous form. It contains the data object identity,

pointers to product data, the relationships between product data, product structure

relationships and administrative data. The meta data can be organized in multiple

abstract levels and has a complicated information structure, hence data modeling

should always be performed to precisely define its schema. One of the most important

issues for data integration is probably versioning control and configuration

Literature Review

 37

management. The state-of-art in this aspect will be presented in Chapter 5 when the

author’s own data integration solution is proposed.

The PDM in the broad sense plays a more significant system integration role than that

in the narrow sense in that the PDM functional module in an integrated environment is

at a higher level and monitors the participating CAX applications but the PDM system

when being coupled for integration is parallel with others.

One of the prominent features of PDM-based integration architecture that is different

from the intelligent blackboard architecture is that the former is targeted at distributed

and multi-user environments from the beginning of its emergence although the

technologies it used before were quite distinct from that at present. Therefore, contrary

to many researchers’ assertions, data integration in a distributed environment via

network-enabled communication is far from a new topic. The effectiveness of some

historically-proposed integration approach may still hold. New valuable research

efforts may be required to carefully identify and better characterize specific application

contexts in which the integration philosophy is to be enforced, derive a decent

integration approach based on formulating and unifying historical achievements and

experiment with more effective distribution technologies.

• Workflow Management (WM) / process management / process integration

The best system integration solution for a specific engineering process, if exists, is

relative because the technologies in use would be continuously evolving. However, the

primal thrust to and the ultimate goal for integration seems to be permanently located

at the improvement of process automation, minimization of interruption and reduction

Literature Review

 38

of the participants’ error-proneness. In the domain of EDA, one can observe two

process control approaches indicating two levels of design automation (Schrmann &

Altmeyer 1997). For the tool-based approach that is generally implemented with the

early design systems, the designer is completely responsible for his design without

having computer-based support for supervising the design process. For the task-based

approach which is able to handle the increasing design complexity beyond the

suitability of the tool-based approach, the shared data management function in the

integrated framework is complemented with a computer-aided process management

service, which can off-load the designer’s highly-demanding process management

efforts. This observation implies that a similar process management service may be

desirable to be devoted to design automation and process integration for the

mechanical product development process from design to manufacturing.

As Hillebrand et al. (1998) pointed out, a CE-compatible old-fashioned data

integration mechanism based on a logically centralized information base is a necessary,

but by no means sufficient precondition for the successful integration of a

collaborative engineering process. Most engineering processes should be able to be

characterized by following certain established patterns if the process knowledge is

adequately captured; hence one should be able to superimpose suitable process models

on the shared database system to supplement the traditional PDM mechanism.

Unfortunately, very few researches have been devoted to clearly illustrating how the

process models are specified and how such models are superimposed, or to simply put,

the conventional data integration function is augmented with process management

assistance.

Literature Review

 39

It can be noticed that some PDM systems began in the 1990’s to make use of workflow,

a concept primarily connoting a highly structured, repetitive process in a business

management application (Georgakopoulos et al., 1995), to automate project

management processes (Ramanathan 1996; Fan 2000). Likewise, researchers like

Heimann & Westfechtel (1997) suggested the incorporation of the WM mechanism to

integrate the activities performed by a set of CAX applications in a sequence following

some rules. A WM system views a business process as a workflow consisting of a

range of tasks (activities) with a predefined execution sequence and a group of

predefined execution constraints. It allows the end-users not only to execute tasks

defined in the workflow, but also define and modify the workflows themselves: the

workflow is also a product on which participants are working (Heimann & Westfechtel

1997). Process management support for some complex product development processes

are both desirable and feasible because they are dramatically repeatable at the activity

level like business processes and potential to be modeled as workflows to incorporate

the WM technologies and facilities into the basic data integration infrastructure

(Ramanathan 1996; McClatchey et al., 1998). This suggestion was, however,

challenged by Hillerbrand et al. (1998) who argued that WM imposed too tight a

discipline on the sequence of process steps (activities). The tight discipline can,

however, be loosened in many ways such as using the intelligent agent-based approach

to achieve dynamic process adaptability, which allows changes to the workflow during

execution (Kim et al., 2001). The genuine obstacle to obstruct the use of the mature

WM technologies and facilities is probably attributed to the fact that the engineering

process is usually semi-structured and hence hard to handle because it is not clear how

to balance flexibility and control (Westfechtel 2000). To tailor even the most amiable

WM system to manage a specific engineering process is consequently almost of the

Literature Review

 40

same difficulty as to develop a completely new process management system with a

unique process definition model and process execution engine of its own. Therefore,

some researches would rather develop process management methodologies, e.g., those

proposed by Hillerbrand et al. (1998) and Zhang & Luttervelt (1995), outside the

conventional WM conceptual framework. Even the workflow system within the

integrated product development environment in the context of projects like the

SUKITS project (Heimann & Westfechtel 1997) was quite different from the

conventional WM systems.

In summary, the presence of process management services is an important factor in the

consideration for the development of system integration infrastructures for a complex

engineering process. On the other hand, the design of a conceptual framework for

process management and process integration is still an open research issue. This thesis

will identify process management functions based on the space-state model, a generic

mathematical model underlying all physical processes, and develop process

management mechanisms based on the design flow concept, which was widely used in

CAD framework in the domain of EDA.

• Object-Oriented methods and distributed object technology

All proposals to integrate a set of separate but logically related CAX applications into

a unified and coherent engineering environment have been and will continuously be

heavily dependent on the information technologies (IT) currently available. Many

system integration initiatives did not finally find industrial applications because the

advances in computing abilities have been so great that expectation has, in some case,

run a little in front of reality (Black 1996). Of all IT advances that occurred during the

Literature Review

 41

last two to three decades, OO methods as well as their successive distributed object

technology are probably one of the most significant to affect the integrated system

developers’ philosophy and practice. With the OO methods, it is outdated to utilize

some specific intelligent technologies, such as the blackboard architecture to

implement system integration. The following paragraphs examine in a wider scope the

impact of OO methods and distributed object technology on the development of

network-integrated engineering environment.

OO is a software system developing method that uses abstraction with objects,

encapsulated classes, communication via messages, object lifetime, class hierarchies,

and polymorphism. It is a well-established and effective way to develop software, and

is certainly the dominant method used to develop major software systems today. Note

that application of the OO method is not just a practice of writing software programs

using OO programming languages such as Java and C++. It actually covers the

complete software development process—analysis of the problem, design of a solution,

coding, and long-term maintenance. It is even said that any programming language can

be used to write OO programs (and it has been done with C), and of course, a true OO

programming language makes it radically easier (Wampler 2001). Advantages of using

the OO approach to analyze and design CIM system architectures was recognized even

in the late 1980’s as reported by McFadden (1989). However, the comprehensive use

of the OO methods to solve system integration problems in comparison with the

natural language- and process-oriented methods came at the beginning of this century

(Law & Tam 2000). The next paragraph presents a full picture on how an elegant,

easy-to-understand integration infrastructure design can be produced using OO

methods given that a corresponding integration mechanism exists pre-conditionally.

Literature Review

 42

One of big payoffs that OO can lead to is that the individual objects within a system

can be implemented and tested separately. On the other side, an integrated engineering

environment including the integration infrastructure and the participating CAX

applications is viewed as an OO system for the purpose of embracing OO methods in

this case. If the interfaces between the CAX applications with the integration

infrastructure are defined, the system-deductive principle makes the integration

infrastructures to become another OO system independent of all the component CAX

applications. In the simplest terms, designing an OO system consists of identifying

which objects the system contains, the behaviors and responsibilities of those objects,

and how the objects interact with each other (Wampler 2001). More specifically and

according to Singh (1996), in designing the integration infrastructure system using the

OO paradigm, a systematic procedure can be used as shown in Fig. 2.1. The first two

steps in this figure are probably most challenging and a lot of analyzing efforts, like

those described in the following chapters of this thesis may be required. The traditional

functional and structural analysis concepts based on the top-down and/or bottom-up

methods may be still obligatory to be assimilated. Incorporation of some intermediate

functional abstractions, such as software components located between the global

system level and the primitive object level may be especially supportive. In short, OO

methods always mean good traceability from the system requirements to the final

physical implementation.

Literature Review

 43

From the viewpoint of functionality deployment, OO methods can be applied in four

different modes to revolutionize the way product and process data is communicated

and stored and the way applications are integrated (Conaway 1995): (1) in the

development of the underlying database management (sub-)system; (2) as an

application interfacing mechanism; (3) in the development of the application user

interfaces; and (4) in the development of the body of middleware applications, which

are common in the integrated architecture. Of these modes, widely recognized as one

of the most important integration enablers is the second mode, which provides an OO

software framework based on the distributed object technology to interface multiple

applications. In this framework, the components of a system are normally defined as

distributed objects and packaged as independent pieces of codes that can be accessed

by remote clients by the method of invocation (Chen & Hsiao 1997). Typical

distributed object technology includes CORBA (OMG 2002), Java Remote Method

1. Develop a conceptual model by identifying key objects

2. Associate attributes and methods with each object identified in step 1

3. Arrange objects into class hierarchy while emphasizing reuse, specialization and generalization

4. Identify client/server relationships and messages among objects to capture system dynamics

5. Develop a prototype implementation to validate requirements

Fig. 2.1. Systematic procedure to develop a software system using the OO paradigm

Literature Review

 44

Invocation (RMI) (Sun 2002) and Distributed Common Object Mode (DCOM)

(Microsoft 1998). Good overviews of these technologies have been made by, e.g.,

Urban et al. (2001) and Plasil & Stal (1998). Distributed object technologies in this

sense are “lightweight”, robust and flexible for implementation to facilitate function-

shipping and data-shipping in a distributed computing environment at any scale. Those

PDM functions normally only embraced by large-scale companies with 20,000 to

50,000 users on the same system based on traditional distribution technologies can

now be easily replicated in small and medium companies. This strongly justifies the

novel two-step research efforts on system integration: firstly capture the desirable

static and dynamic semantic relationships between all the CAX applications involved

in a targeted engineering process; secondly, use OO methods to realize and maintain

these relationships within the integration infrastructure without impairing the

autonomy of each component application.

• Summary of the reviewed aspects driving system integration from design to

manufacturing

The reviewed aspects affecting system integrations strongly justify research efforts

having the following features. They should be undertaken accompanying

comprehensive identification and characterization of a good application context where

network-enabled integration strategy is indeed promising. Activity and data modeling

are always required, and IDEF0 and EXPRESS or UML modeling methods

respectively are recommended. Supporting CE strategy should be taken into account.

Making the integration infrastructures as intelligent as possible is a must but the

intelligence should preferably be compactly embedded within the corresponding

software objects especially when no large-scale knowledge base is required. Data

Literature Review

 45

integration and process integration are the most important integration functions to be

incorporated in the system. OO methods should be used in the entire system

development process to achieve an elegant, easy-to-understand system.

2.3. Review of Several Representative Integration Architectures

As stated, there is almost no widely accepted global reference architecture that can be

easily geared to develop any specific integrated system across a set of distributed CAX

applications. Researchers would rather develop their own architectures reflecting their

own integration approaches on a project-by-project basis. This section examines seven

representative architectures which define the components of a system and the

relationships among those components.

• MICS and PTCS (Thomas & Fischer 1996)

The MICS architecture (Fig. 2.2 (a)) represents a hypothetical system that covers all

major CAD/CAM functions and consists of four main components: a central database,

a control module, application software packages with their wrappers and a

communication channel. It does not support integration of distributed CAD/CAM

software packages, although they can be plugged into the unified CAD/CAM system to

realize data integration via the common database using wrappers and the

communication channel. The control module is designed to organize and monitor the

execution of activities in the system and automate the scheduling and execution of the

activities. However, the MICS concept is only partially implemented with a subset of

the overall CAD/CAM system in PTCS (Fig. 2.2(b)), which integrates two commercial

CAD/CAM software packages, Pro-E® and ToolProTM. Further, there is only one

wrapper for both CAD/CAM software packages and the wrapper is combined with the

control module into a single module. The central database is connected to the

Literature Review

 46

CAD/CAM system through the wrapper and control module. Both MICS and PTCS

provide one consistent user interface to the CAD/CAM applications and thus a CE-

compatible common computer environment for the different CAD/CAM functions.

Comparatively, the PTCS system is a more tightly integrated environment which is

near to a super-tool both having advantages and limitations from the viewpoint of

integration.

• SDM and IPDE (Urban et al., 1996,1999a) (Fig. 2.3)

As mentioned above, the development efforts from SDM to IPDE mainly address data

integration issues to facilitate effective sharing and management of the engineering

data produced by a set of distributed CAD/CAM/CAE applications. It has a very clear

definition of the architecture which includes the integrated product database (IPDB),

the shared data manager (SDM), and a set of domain access interfaces (DAIs). It is not

just another PDM system because it is a tightly integrated system with sufficient

flexibility desired by its targeted application context. The DAIs provide interfaces that

allow different applications to directly request services from the SDM. The

versioning/configuration management mechanism and the database schema carry

Fig. 2.2. (a) Modular integration of CAD/CAM software (MICS)
 (b) The Pro/E-ToolPro CAD/CAM system (PTCS) (Thomas & Fischer 1996)

(a) (b)

Literature Review

 47

semantics that are more specific to the application domain. The EXPRESS language is

used in data modeling and the object-relational database Oracle® 8 is used to store the

data. A key step is then taken to map the EXPRESS models into the Oracle® 8

database schema. Metadata queries and design data queries are performed and

coordinated in the networked environment. Process management/integration is not

covered because its application context is data-intensive with a simple process pattern

imposed.

• A collaborative framework for concurrent net shape product and process

development (Chen 1997) (Fig. 2.4)

This network-integrated engineering environment for development of net shape

products and processes was designed as a client-server configuration. The servers

include a process management server, a data server (managing material/tool specifics

and standard components), a product data management server and a knowledge server.

The client applications include four types of advisory tools, i.e., the product design

advisory tool, the process design advisory tool, the die or mold design advisory tool,

and the die or mold manufacturing process planning advisory tool. Product and

die/mould design tools are loosely integrated into the environment on the client side

Fig. 2.3. The SDM and IPDE architecture (Urban et al., 1996,1999a)

Literature Review

 48

through a workbench (workspace) and one or more bins (storage area) for the

developer. Remote access and control for the client applications to the servers was

enabled by PC Anywhere TM, which is very unfamiliar to the community and no

further details about the underlying communication mechanism were given. Much

effort can be found dealing with system analysis and modeling that makes it distinct

from others by the presence of some clues on how the system functional modules are

identified. The data modeling practice was not consistent al along but mixed with

several approaches including the currently almost outdated E-R (Entity-Relationship)

modeling approach. Although the integration functions seem to be comprehensive, it is

unclear how the constituent servers and client applications are coordinated to work

together and the process management function was not developed to the

implementation level.

Fig.2.4. An integrated framework for net shape product and process development
(Chen 1997)

Literature Review

 49

• The CONCERT architecture (Hanneghan et al., 1995, 1998) (Fig. 2.5)

The CONCERT (CONCurrent Engineering suppoRT) environment (Hanneghan, et al.,

1995, 1998) identifies three core support services that are considered important in

distributed and integrated CE-compatible engineering environments. These highly co-

operative components are the repository support service, the CSCW support service

and the distribution support service. CAX applications to be integrated are viewed as

third-party or legacy applications. The CONCERT environment provides a sample of

highly-flexible integration architecture in which data integration, process integration

and even CSCW functions can be incorporated. However, it is at so high a conceptual

level with lack of developments towards implementation that it is unclear how even a

simple specific function is finally realized at the implementation level.

• SUKITS (Westfechtel 2000) (Fig. 2.6)

Fig. 2.5. The CONCERT environment (Hanneghan et al., 1995, 1998)

Literature Review

 50

The data integration function, as well as process integration function in the SUKITS

architecture, has been mentioned in the previous section. The entire architecture

consists of a management system that is interfaced with a set of distributed tools for

technical activities and informal cooperation. The management system is in turn

composed of the following components: the communication system, the management

database, the wrappers, the work environment GUI supporting tool activation and

process management, the manager environment GUI supporting project managers and

the modeling environment GUI to adapt the management system to a specific

application domain. The SUKITS architecture is probably one of the most

comprehensive distributed system integration from design to manufacturing. However,

its conceptual framework is heavily based on the Graphic Theory and Graphic

Fig. 2.6. Architecture of the SUKITS integrated development environment
(Westfechtel 2000)

Literature Review

 51

Language-oriented (rather than OO) software and services originally devoted to a

different application domain, software engineering. This makes its contributions

appreciated by very few people. Further, some specific functions such as versioning

control of interdependent documents are very restrictive because it overlooked many

prominent distinctions between a mechanical engineering process and a software

engineering process.

• The WWW-based integrated product development platform for sheet metal

concurrent design and manufacturing (Xie et al., 2001) (Fig. 2.7)

This proposed system seems to target at integrating all the design and manufacturing

functions involved in the sheet metal product development process. It is claimed to

consist of an unfolding module, a WWW-based data integration platform,

design/manufacturing knowledge bases, data communication tools among different

modules, a customer interface module, a RTCAPP module, a CAD module, a CAM

module, a cost estimation and optimization module, a computer simulation platform

and GUIs. However, it is not clear how these modules are logically organized into a

unified system. It looks more like a description of a pool of non-integrated

tools/modules although some of them provide some data integration functions shared

by several others through using the WWW technologies and a web-based off-the-shelf

PDM system, Pro/INTRALINK®. It is also unclear how the engineering activities

performed by each design/manufacturing tool are integrated together to conclude a full

development cycle by the end-users with the help of the integration modules. A lot of

efforts were given to the product and process modeling (called information integration

framework in the original paper) which tries to set up the desired interoperability from

product design to downstream functions. However, only easy tasks were done there

Literature Review

 52

and the whole description seems to be quite ambiguous from the viewpoint of

relevance to the demonstration of an approach to develop an integrated system.

• The architecture for a CAD/CAPP/CAM integrated system (Wang & Zhang 2002)

(Fig. 2.8)

This architecture supports integration of some distributed application subsystems

including a feature-based CAD subsystem, a CAPP subsystem, a CAM subsystem, etc.,

and some common tool service subsystems including constraint management

subsystem, evaluation and decision supported subsystem, database management

subsystem, etc. The main integration functions provided can be viewed as residing on

the data integration level and heavy database schema normalization efforts can be

noticed since the relational database system is used. No explicit process management

functions are provided although some other alternative functions shared by two or

more subsystems are included in the system. No distributed object technology is used

Fig. 2.7. The WWW-based integrated product development platform for sheet metal
 concurrent design and manufacturing (Xie et al., 2001)

Literature Review

 53

and the communication between subsystems is realized via low-level TCP/IP protocol

on the Internet/Intranet network, which makes the developed system quite inflexible.

• Summary of architectures

There is only one element, the data integration component, common to all of the

integration architectures, discussed above. A data integration function thus seems to be

the minimal ingredient of a design-to-manufacturing integration architecture. Process

integration function is the second most likely to be included in the architecture. Many

other cross-disciplinary functions, such as the CSCW services and large-scale

knowledge base-enabled DFM/DFA (Design For Manufacture / Design For Assembly)

services, may be incorporated into the integration infrastructure depending on the

application context. One common rule is that the integration infrastructure only

concerns issues such as user-interface unification, interconnections between

participating CAX applications and providing common services shared by at least two

Fig. 2.8. Structure of feature-based collaborative development system (Wang &
Zhang 2002)

Literature Review

 54

other modules. All of these architectures have some features justified in the previous

section, but none of them have all the features summarized. Additional limitations of

these architectures have been presented in Chapter 1.

A network-integrated engineering environment is always a large complex system.

Architectures not only provide models representing different aspects of systems, but

also provide approaches for integration functions. As the compendium to describe the

interrelationships among components and the stages of system evolutionary trajectories,

architectures are widely used to unify various component modules at different spatial

levels and temporal stages, presenting the system as a holistic whole. Recognizing the

significance of architectures, researchers are continuously improving existing

architectures and probing for new ones. This thesis will begin developing an

integrating architecture from a perspective completely different from those presented

above.

Characterizing Feature-Driven Engineering Process

 55

CHAPTER 3

CHARACTERIZING FEATURE-DRIVEN ENGINEERING PROCESS

In this chapter, a unique perspective to address the complex engineering process is

presented. From this perspective, one can identify a set of feature-driven engineering

processes among its superset of more generic model-driven or data-driven engineering

processes. Characterizing the feature-driven engineering processes is thoroughly

studied in this chapter and regarded as the starting point to develop mechanisms for

implementing an integrated engineering environment which explicitly incorporates

these characteristics. The purpose is to reveal how an engineering process is

decomposed and how to represent this decomposition, to identify different kinds of

dependency relationships existing in the process and their properties, and to develop an

adequate design transaction model to specify the interactions between a CAX tool and

the shared data store. A collection of considerations that have not been covered in the

current literature is highlighted wherever relevant.

3. 1. Hacking the Complex Engineering Process: the Feature-driven Way

Although the interest in computer supported product development environment has

entered the Internet era, it still follows a so-called data model-driven approach (Borja

et al., 2001) to improve a physical engineering process. This approach argues that

Characterizing Feature-Driven Engineering Process

 56

computer-aided engineering systems should be based on information data models in

order to properly document the intermediate or final design results as a common

communication medium for designers, analysts, manufacturers, and other product

development people. As is universally acknowledged, the basic way to address a

complex engineering process is to decompose it into a set of sub-processes and then

(re-)integrate them as a whole, or briefly, “divide and conquer”. The data model-driven

pattern makes it possible to decompose a complex engineering process into

manageable sub-processes, each of which corresponds to a task-specific tool with a

private database to yield a permanent data model. The model then becomes the

information medium to enable process reintegration. However, due to the complexity,

there are still several challenges when dealing with a practical process.

Firstly, no commonly agreeable criterion is available for the definition of the

decomposition because it is completely problem-specific. A good practice always

implies a good decomposition scheme, and the achievement of such a scheme requires

in-depth understanding of the focused process towards adequate process re-engineering.

Secondly, the constituent sub-processes defined in whatever way are semantically

interdependent and the dependency relationships are always present implicitly at

various information abstraction levels. This makes it difficult to be captured and

enforced completely and precisely. Therefore, the fuzzy process knowledge is always

only exploited by human users who are fully responsible for process control while

using traditional engineering systems following the plain data model-driven approach.

Loosely speaking, downstream models are derived from upstream ones until a root

model, i.e., the product design model. In another words, some information elements in

Characterizing Feature-Driven Engineering Process

 57

one data model may be recursively incorporated into other models in a transformed or

even untransformed form as long as they are interoperable. Yet the traditional

engineering tools are unaware of the derivation relationships and treat the data models

independent of those from which they are derived. The overlapping information has to

be reentered manually. The information derivation process has to fully rely on the

users and the derived models have to be generated from scratch even though it can be

potentially generated in a fully or partially automatic way. Furthermore, the

maintenance of the interdependence relationship is also dependent on the users to

ensure that the desired data consistency always holds in case of change propagations

among the interdependent models involved in a project.

To overcome these limitations of the normal model-driven approach, the feature

technology has been employed to bridge the missing link between pairs of

interdependent models. This is a promising mechanism to improve system integration

and design automation. Based on this mechanism, relevant information, in terms of

feature sets, encapsulated in one application model can be automatically derived from

that in others through a so-called feature mapping process. Various feature mapping

algorithms have been reported in different application contexts. They are all based on

the same underlying principle: generating a new set of feature instances B from the

given one A through knowledge-based reasoning supported by feature mapping

knowledge bases (Zimmermann et al., 2002). For example, in the progressive die

design process, the flat pattern features can be derived from the corresponding sheet

metal product features, the die operation features from the flat pattern features, etc.

This characteristic has led to the development of an intelligent design automation

Characterizing Feature-Driven Engineering Process

 58

system to automate certain design steps, like the IPD (Intelligent Progressive Dies)

system (Jiang et al., 2000).

Once the model-driven process is further narrowed down to a feature-driven process, it

becomes possible to characterize the dependence relationships with additional insights

because the feature notion can help precisely locate the specific constraints reflecting

the dependency relationships. A feature-driven engineering process is thus a special

type of model-driven process. The specialty lies in that there is a clear feature-driven

“track” in the feature-driven process because the missing links between all the models

Outputs Module(s) Involved Process Steps

Feature-based
Modeling

Unfolding

Configuration

Die Parts Process
Planning

Defining
Machining Paths

Nesting

Operations
Selection

Staging

Defining Insert
Parameters, Relieves

Generating 3D
Strip Layout

Feature-based
Modeler

Unfolder

Drawings
Preparation

Module

Stamping Process

Planning Module

Configuration
Module

Die Parts

CAPP

Module

Drawings
Preparation

Module

Feature-based
Model

Flat Tree

Flat Pattern
Drawings

Plan Tree

3D Strip
Layout

Process Plans

NC Codes

Die Feature Model

BOM

Die 3D/2D Models

Part Feature ModelsDesign

Manufacturing

Fig. 3.1. The feature-driven progressive die design and manufacturing process

Characterizing Feature-Driven Engineering Process

 59

involved are explicitly bridged by features. For example, if the progressive die design

and manufacturing process is only roughly viewed as a model-driven one, all the

outputs from each process steps are either ordinary geometrical models, or design data

sheets, or NC code files. It is implicit how these outputs are related to each other, and

the whole process is difficult to control. If the process is revamped as a feature-driven

one (Fig. 3.1), on the other hand, the backbone of the information flow of the process

is a structured net of feature-based models which clearly indicates how the current

process step relates to others at various levels of information details (see also Fig. 3.7).

It is then possible to more properly control the process run.

It is important to note that the definition of a feature-driven engineering process does

not necessarily only include feature-based models in each step-process. It is not equal

to a multiple feature mapping (or feature transformation, feature conversion) process

since feature mapping restrictively refers to derivation of a task-specific feature model

from other feature models (Shah 1988). The real central condition is that every step-

process involves the handling of a feature-based model, either feature model creation,

feature model mapping, or transformation of feature-based models into ordinary

geometrical models, design data sheets and/or NC codes. Despite the promise of the

feature technology for improving the understanding of the nature of an engineering

process, extra efforts are needed because currently reported works related to using

computer technologies to improve feature-driven engineering processes are only

limited to the identification of mechanisms for feature modeling and automatic feature

mapping. This is crucial in automatic or semi-automatic generation of individual

feature-based models but has little relevance to the improvement of system level

integration. As such, when one feature-based application in one domain is required to

Characterizing Feature-Driven Engineering Process

 60

co-work with systems and programs in other domains, the integration functions, such

as information sharing and exchange, have to solely depend on the generic integration

mechanisms without any unique augmentation based on its own inherent

characteristics. It is therefore desirable to examine the nature of the feature-driven

engineering process from the viewpoint of system integration.

As far as integration functions are concerned, it is found that a feature-driven

engineering process can be further characterized in several new aspects with the target

of developing a more relevant integrated engineering environment. Firstly, one can use

the feature-driven “track” to identify all the model-model relationships to describe

which model is dependent on other models revealing the global consistency

requirements during the execution of the process. A feature-driven process can then be

correctly configured to make the design state intuitively perceivable and manageable.

This is called process management in this thesis. More details can be found in Chapter

6. Secondly, one can embed the interdependence semantics into the product data

manager to provide enhanced version control and configuration management support.

Specifically, the interdependence semantics is represented by a design object

derivation graph consisting of a special kind of “is-derived-from” references. This “is-

derived-from” reference does not exist between the new and the old versions of the

same design object but between two different design object versions belonging to the

same configuration version. Further, the ordinary “is-part-of” references found in

common configuration manager have little relevance to the data consistency problem

and thus are not a main concern. More significantly, the design changes due to version

manipulations are identified to propagate in a special manner. A theoretical framework

will be set up to reveal this special manner in the following. This framework expands

Characterizing Feature-Driven Engineering Process

 61

the taxonomy regarding the transformations between two feature spaces (feature_sets

VS. feature_sets relationships) based on the feature space concept (Shah 1988) towards

a definition of a new taxonomy regarding model-model dependency relationships

between two design objects. Beginning from this interdependence semantics and the

design change propagation property, a new version control and configuration

management mechanism has been developed, which is elaborated in Chapter 5.

3. 2. Process Decomposition and Information Flow

In order to successfully implement the overall integration of a complex engineering

process, it is firstly required to properly subdivide it into sub-processes and devise the

corresponding data models (Yoon & Shaikh 2000). Accordingly, one of the important

procedures towards comprehensively characterizing a feature-driven engineering

process is to develop an adequate process model at a high abstraction level to reflect

the process decomposition and information flow semantics. The typical way to reach

this goal is through process analysis and re-engineering. Upon process analysis, the

relevant domain knowledge is extensively exploited, so that the functional

decomposition of the targeted process under the “conventional” but most approximate

to the ideal circumstance is comprehensively analyzed and formally documented as a

benchmark for process re-engineering. Upon process re-engineering, the tasks that

need to be performed includes evaluation of each sub-process for its contribution to the

entire process, as well as redefinition of the contents of certain sub-processes and

corresponding data models and/or adjustment of sub-processes sequence. One of the

essential techniques for process analysis and re-engineering is the IDEF0 activity

modeling technology (U.S. Air Force 1981), which provides a formal way to describe

the relevant results in terms of a set of incrementally refined IDEF0 diagrams.

Characterizing Feature-Driven Engineering Process

 62

Throughout this thesis, the progressive die design and manufacturing process is taken

as an example to demonstrate the core issues addressed in the course of developing a

network-integrated feature-driven engineering environment. Consequently, the process

is also exemplarily used in this section to show how a feature-driven engineering

process is decomposed into manageable sub-processes. This inevitably makes some

concerns probably only important for the exemplified process but not necessarily for

other feature-driven engineering processes. However, the underlying approach is

generic for all others.

Specifically, since a lot of literature has dealt with the progressive die design and

manufacturing process (Cheok & Nee 1998a, b; Jiang et al., 2000), little effort is

required to perform process analysis and re-engineering. The task that is required to be

addressed seems to synthetically use the dispersed knowledge to generate a formal

process decomposition description in terms of a set of IDEF0 diagrams, as presented in

the second part of this section. However, a closer look at those amounts of process

knowledge revealed that one important process decomposition adjustment that has

historically been made when a widely accepted intelligent and integrated design tool

was introduced. Such an adjustment may now be viewed as a common sense, but the

explanations currently available seem to be shallow and vague. Therefore, this section

begins from a discussion of the said adjustment, which is viewed as a part of the effort

for process analysis and re-engineering.

3.2.1. Moving Some Design Tasks in One Sub-Process ahead to Enter Its Upstream

Sub-Process

Characterizing Feature-Driven Engineering Process

 63

The special process decomposition adjustment mentioned above occurs between two

sub-processes within the progressive die design and manufacturing process, namely,

die operation planning and die design. Conventionally, the former process includes

nesting, operations selection and staging with the output being the Strip Layout

Description; the latter process includes the design of punches, plates and the various

types of ancillary components, with the output being the BOM and a collection of

incrementally generated engineering descriptions for punches, punch plates, die blocks,

etc. as well as all levels of assemblies (Fig 3.2(a)). By nature, iteration and feedback

will definitely occur within each stage and even between stages. For example, a likely

finding of insufficient consideration of the space requirement to place the punch on the

punch plate when performing the die design may lead to re-staging of the stamping

operations.

With the introduction of intelligent die design tools, many of the die configuration

tasks can be automated provided that some primitive information elements are input

manually at first. The automatic die configuration is done through rule-based and/or

model-based reasoning which extensively exploits the configuration knowledge

reflecting the built-in spatial and topological relationships between the constituent

components. The natural way to specifying such a system only involves reorganization

of the internal task contents within the die configuration sub-process. Concretely, those

tasks included in the Die Design box need to be regrouped into two sets. The first set

contains all the interactive operations to collect all relevant primitive information

elements. The second set contains those vital die configuration operations

automatically accomplished by the intelligent tools to generate all the electronic die

configuration descriptions. Since such task reorganization only occurs locally without

Characterizing Feature-Driven Engineering Process

 64

relevance to the global process definition, the process decomposition logic is still

identical to the conventional one (Fig. 3.2(b)). The reason why the first set of design

tasks are collectively called Interactive Design of “Insert Groups” is given in the

following paragraph.

Strip Layout
Description

…

Nesting

Staging

Operation Selection

Punches, punch plates, die
blocks, pads, cams, etc.

Die Operation
Planning

Design of Stamping Tools

Starting, Stopping, and Gaging
the Strip

Lifting and Stripping the Strip

Scrap Ejection

Fastening and Locating
Components

Other Die Components

Die Design

Pilots, gages and stops

Lifters, stripper, springs

Slug ejectors

Dowels, screws

Die shoes, guide posts,
bushes, etc.

Bill of
Materials

Die
Drawings

Fig. 3.2. (a) Process decomposition under normal circumstance (Nee & Cheok 2001)

Characterizing Feature-Driven Engineering Process

 65

Extra considerations, once made, strongly justify a process re-engineering effort to

move the first set of tasks within the die design sub-process ahead to become a part of

Fig. 3.2. (c) Process decomposition after process re-engineering

…

Extended
Strip Layout
Description

…

Nesting

Staging

Operation Selection

Automatic Design of Punches, Ancillary
Components & Plates by Firing Rules Die Design

Descriptions

Die Operation
Planning

Automatic Die
Configuration

Interactive Design of “Insert Groups”

…

Strip Layout
Description

…

Nesting

Staging

Operation Selection

Interactive Design of “Insert Groups”

Automatic Design of Punches, Ancillary
Components & Plates by Firing Rules

Die Design
Descriptions

Die Operation
Planning

Die Design

Fig. 3.2. (b) Process decomposition following the conventional logic

Characterizing Feature-Driven Engineering Process

 66

the die operation planning sub-process. To understand this, it is probably appropriate

to begin from studying the requirements to support the execution of the first set of

tasks. It is found that an extra data model needs to be devised to accommodate the

ongoing interactive inputs which may last a long period of time across several turns of

tool-runs. Further, the information elements in this data model can be partitioned into a

number of clusters. Most of these clusters can be attached to the corresponding die

operation descriptions contained in the strip layout model generated in the die

operation planning sub-process. Although they may have no physical corresponding

die operation description to attach, all other clusters can share a common information

structure (class definition) with the above categories of clusters and a virtual

corresponding die operation description may be applied. Therefore, if the first set of

tasks within the die design sub-process are moved ahead to become a part of the die

operation planning sub-process, the data models for each sub-process can be specified

more rationally. Since a cluster of the information elements with the corresponding

task to be moved can be loosely termed “Insert Group” or simply “Insert” (Jiang et al.,

2004), so the collection of this category of tasks is called Interactive Design of “Insert

Groups”. Such a task move has some extra advantages. For instance, the end-user’s

design operations can be more comfortable because the interactive operations are

combined together while they are all actually performed in the same operation

environment (e.g., AutoCAD environment for IPD). Further, iteration and feedback

can be conducted within one sub-process, which improves convenience and efficiency.

Fig. 3.2(c) shows the alteration of process decomposition after performing the above

process re-engineering. The die design sub-process is now becoming a pure automatic

die configuration process with very limited interactions with the end-user. Each Insert

Characterizing Feature-Driven Engineering Process

 67

Group is now owned by a particular die operation and should be moved and updated

accordingly when the operation is moved and modified.

3.2.2. Formulated Process Decomposition and Information flow: a Comprehensive

IDEF0 Activity Model

Based on the process analysis and re-engineering results, a formulated process

decomposition and information flow model can be constructed in the form of an

IDEF0 activity model. Although the IDEF0 activity model is not implementable, it

unambiguously captures the process knowledge and clearly sets the context in which

data requirements and data flow for a system under development are defined. It also

lays the foundation to provide a global view of the interdependence semantics in a

feature-driven process (see section 3.3.1). A comprehensive IDEF0 activity model,

including four IDEF0 activity diagrams named A-0 (Fig. 3.3), A0 (Fig. 3.4), A1 (Fig.

3.5) and A2 (Fig. 3.6) is developed for the progressive die design and manufacturing

process in this thesis.

Diagram A-0 (Fig. 3.3) describes the activity A0 which performs the overall function

of the system. It models the global context in which the progressive die design and

manufacturing activity takes place. The activity has input data from a description

model of the sheet metal product using progressive dies. Mechanisms of the activity

are die configuration templates, standard components, machining resource descriptions,

material stock descriptions, standard process models, machinability data and standard

cost reference. The outputs of the activity are BOM, die drawings, cost estimate,

process plans and NC codes.

Characterizing Feature-Driven Engineering Process

 68

Standard Cost Reference

Material Stock Descriptions
Standard Process Models

 Die Drawings Product
Description

Progressive
Die Design

A1

Progressive Die
Manufacturing

(CAPP)

A2

Die Configuration Templates

Standard Components

BOM

Feature-based Models
of Machining Parts

Cost Estimate

Process Plans

NC Codes

Machining Resource Descriptions

Fig. 3.4. Diagram A0

Machinability Data

Machinability Data

Standard Process Models

Material Stock Descriptions

Product
Description

Progressive Die Design
and Manufacturing

A0

Die Configuration Templates

Standard Components

Machining Resource Descriptions

Standard Cost Reference

 Die Drawings

BOM

Cost Estimate

Process Plans

NC Codes

Fig. 3.3. Diagram A-0

Characterizing Feature-Driven Engineering Process

 69

The overall activity on level A-0 is decomposed into two activities (A1 and A2) in Fig.

3.4, diagram A0. This diagram shows the relationship among the activities and the data

inherited from the upper level (A-0).

Activity A1, shown in diagram A0 and expanded in diagram A1, performs progressive

die design. Die drawings and BOM are generated in this activity. A group of

intermediate feature-based models of the constituent machining parts are also

generated. These models are then treated as input to the activity A2.

Activity A2, also shown in diagram A0 and expanded in diagram A2, performs

progressive die manufacturing. It generates cost estimate, process plans and NC codes.

Mechanisms of the activity are machining resource descriptions, material stock

descriptions, standard process models, machinability data and standard cost reference.

Fig. 3.5 shows that activity A1 is decomposed into four activities. Activity A11

generates an electronic feature-based product model, which is used as input data by

activity A12. Activity A12 generates a 2-D flat part drawing and an electronic feature-

based flat part model, which is used as input data by activity A13. Activity A13

generates a 3-D strip layout model for users to check the stamping process planning

result and an electronic feature-based die operation model, which is used as input data

by activity A14. The 3-D strip layout model renders feedback information to the user

and may be used as an input to activity A13. Activity A14 generates 3-D die models,

die assembly tree (feature-based die configuration model), the BOM of the die

assembly (including standard and non-standard subassemblies and components), all

non-standard die component drawings and a range of electronic feature-based models

Characterizing Feature-Driven Engineering Process

 70

of all machining components in the die assembly. These feature-based models for the

machining components are used as input by activity A2. The 3-D die models render

feedback information to the user and may be used as an input to activity A14.

Fig. 3.6 shows that activity A2, which performs process planning for a machining part,

is decomposed into four activities. Activity A21 generates the process sequence, which

are used as input data by activity A22. Activity A22 generates process plans, which is

used as input data by activities A23 and A24. Activity A23 generates NC codes, which

are used as input data by activity A24. The feature-based model of the machining part

is used as input for the first three activities A21, A22 and A23. Activity A24 validates

the process plans and NC codes. It generates the cost estimates, validated process plans

and NC codes.

In order to successfully implement the overall integration of a complex engineering

process, it is required to properly subdivide it into proper sub-processes and devise the

corresponding data models (Yoon & Shaikh 2000). Without doubt, such subdivision

with corresponding data models will not have only one resolution. The activity IDEF0

activity models are used to document, compare and analyze multiple alternatives.

Process re-engineering may be conducted in the course of searching the optimal

resolution. The IDEF0 models presented above are exactly the final result based on a

great deal of efforts of documentation, comparison, analysis and process re-

engineering.

Characterizing Feature-Driven Engineering Process

 71

Die Configuration Templates

 Standard Components

3D Strip Layout Model

Generate
Feature-based
Product Model

A11 Generate
Feature-based
Flat Pattern

Model

A12 Generate
Feature-based
Die Operation

Model

A13 Generate
Feature-based
Configuration

Model

A14

Product
Description

Flat Pattern Drawing

Feature-based
Product Model

Feature-based Flat
Pattern Model

Feature-based Die
Operation Model Die Drawings

BOM

Feature-based Models
of Machining Parts

Fig. 3.5. Diagram A1

3D Die Models
Die Assembly Tree

Characterizing Feature-Driven Engineering Process

 72

 Standard Cost References

NC codes

Generate
Process

Sequences

A21 Generate
Process Plans

A22 Generate
NC Codes

A23 Validate

Plans and
NC codes

A24

Process Plans

Process
Sequences

Validated Process Plans

Cost Estimates

Validated NC Codes

Fig. 3.6. Diagram A2

Feature-based Model of
A Machining Part

Material Stock Descriptions

Standard Process Models

Machining Resource Descriptions

Machinability Data

Characterizing Feature-Driven Engineering Process

 73

It should be noted that the description of the activities of an engineering process using

an IDEF0 activity model can be recursively refined up to greater detail levels until the

model is semantically descriptive enough to meet the requirement for decision-making

or implementation. The model shown above only decomposes the progressive die

design and manufacturing process into such a detailed level that every activity

produces a complete intermediate feature-based model or final engineering renderings

assisted by an individual CAD/CAM tool. In other words, creating internal information

models (engineering databases) within corresponding computer-based tools

participating in an integrated engineering environment is fully realized in one activity,

but not necessarily across several activities. For example, the die operation model is

fully created by the single activity A13, although A13 can be further decomposed into

sub-activities, such as Selecting Piloting Method, Selecting Punches, Selecting

Extrusion Operations, Staging, etc. (Cheok 1998). This is different from the ways

adopted by some other IDEF0 models, in which the activities are decomposed into

such a detailed level that one information model (document) generated in a computer-

based system may be realized through several activities. For example, the conceptual

design IDEF0 activity model developed by Feng & Song (2000) encompasses a group

of activities, which collectively represents a whole sub-process generating one single

information model (database). Typically, an IDEF0 activity model at a level more

detailed than that of the current model is used to capture the database schema of the

information model or the concrete design process knowledge provided for users to use

a task-specific engineering tool. The current IDEF0 model is used to capture

characteristics and requirements of the interoperability between the various design and

manufacturing phases, each of which generates an intermediate model or final

engineering renderings. How these intermediate models are achieved and represented

Characterizing Feature-Driven Engineering Process

 74

in the computer-based tools kernel is not directly relevant to developing an appropriate

system integration infrastructure, which only concerns the global view of these models

and tools. Therefore, the current model has been at an exact decomposition level, not

too high while not too low.

3. 3. Interdependence Semantics and Design Change Propagation Property

The interdependence semantics has been addressed in a few researches mainly as a

secondary topic with respect to version control and configuration management. This

section presents a formulated description on the interdependence semantics in a

feature-driven process using the notions and terminologies found in the version

management community.

3.3.1. Global View of Interdependence Semantics in a Feature-driven Process: Design

Object Derivation Graph

As widely acknowledged, the ordinary versioning problem mainly concerns the

management of the versioned complex and evolutionary design objects involved in

designing artifacts consisting of components, which themselves in turn recursively

consist of lower level components till the leaf level primitive components (Chou &

Kim 1986; Ramakrishnan & Janaki 1996). In this case, when the users retrieve a

version of a component, they need to be provided with the knowledge about its

evolutionary track through a collection of its past versions and its lower level

component versions used. In general, the component version evolutionary history is

maintained by a version derivation graph (VDG). The VDG of a versioned object vo

consists of a tuple (V, D), where V is a non-empty set of versions of vo and D is a set of

directed edges in V. Likewise, the composite reference (is-part-of) relationship is

Characterizing Feature-Driven Engineering Process

 75

maintained by a hierarchical diagram called a composition graph (CG) for the highest

level object, the composite object, of an artifact in the hierarchy (Westfechtel 2000;

Miles et al., 2000; Park & Yoo 1995). A CG of a composite object co is defined as a

tuple (CO, CR) where CO is a set of component objects and CR is a set of directed edges

on CO.

For product data management of a feature-driven engineering process, the most

important semantics which needs to be captured, is also a type of derived-from or

dependent-on relationships existing in the collection of all versioned design objects

involved in a process. However, this derived-from relationship is not between the new

and old versions of the same versioned object but between two different objects

probably labeled with the same version number to show that they share the same

evolutionary pace. Similar to CG, this derived-from relationship can be represented by

a design object derivation graph (DODG). A DODG for a specific feature-driven

engineering process is defined as a tuple (DO, DR) where DO is a set of design objects

and DR is a set of directed edges on DO. If (do1, do2) is in DR, do2 is then said to have a

derivation reference to do1, or do2 is derived from do1. The main design objects in DO

are feature-based models which are chained to act as the backbone of an engineering

process initiated from an upstream engineering phase to the down-stream ones,

including some concurrent ones in-between. From the feature-based models in the

backbone, some ultimate engineering documents may be derived. Fig. 3.7 shows a

DODG for the development process of sheet metal products using progressive dies

based on the activity model presented in the previous section. A range of feature-based

models, product feature model, flat pattern feature model, die operation feature model,

die configuration feature model and a group of die part feature models constitute the

Characterizing Feature-Driven Engineering Process

 76

backbone of the entire engineering process. Flat pattern engineering drawing, 3-D strip

layout model, die BOM and engineering drawings, die part process plans and NC

codes are the ultimate engineering documents derived from the related feature-based

models in the backbone. Typically, knowledge-based intelligent engineering tools are

used for the derivation of the ultimate engineering documents from related the feature-

based models and down-stream feature-based models from their upstream ones while

the ultimate engineering documents may be further refined by the help of universal

engineering tools, such as AutoCAD.

Fig. 3.7. The Design Object Derivation Graph

1 2 4

3 5

6

7 P1
1

P1
2

P1
3

…

Design Object List

1. Product feature model 2. Flat pattern feature model
3. Flat pattern engineering drawings 4. Die operation feature model
5. 3-D strip layout model 6. Die configuration feature model
7. 3D die models, die BOM &engineering drawings Pn/1. Part_n feature model
Pn/2. Part_n process plan Pn/3. Part_n NC code documents

Characterizing Feature-Driven Engineering Process

 77

The DODG conceptually renders a full picture of the product data configuration of a

feature-driven engineering project. It unambiguously specifies the information models

to be generated and their dependency relationships. This makes all the product models,

if mono-versioned, manageable by a certain dedicated integration infrastructure with

assistances for users to track and control the data generation process mono-

directionally from a root model towards the downstream tasks. However, a practical

engineering process needs to handle multi-versioned design objects. Once a new

version of a design object in between the process is created, the design change may

propagate upwards and/or downwards, and thus cause the process to proceed bi-

directionally, which generates new versions for both upward design objects (upward

propagation versions) and downward design objects (downward propagation versions)

in DODG (Fig. 3.8). The design change propagations through all the individual pairs

of interdependent design objects are not identical, and it is necessary examine these

with more details.

Fig. 3.8. Two types of design changes

Current design task
Upstream design tasks Downstream design tasks

Downwards design change propagation

(a) Mono-directional design change propagation

Current design task
Upstream design tasks Downstream design tasks

Downward design change propagation

(b) Bi-directional design change propagation

Upward design change propagation

Dependent-on relationship

Tasks undone

Tasks ongoing

Tasks done

Characterizing Feature-Driven Engineering Process

 78

3.3.2. Expanding the Feature Transformation Taxonomy Towards Dependency

Relationship Taxonomy

With the global view of the dependence relationships in an entire engineering process

being revealed, the subsequent sections will concentrate on characterizing the local

model-model dependency relationships. In brief, they are classified into several

categories, each of which has special design change propagation characteristics. Since

the classification is an extension to the feature transformation taxonomy, which is

based on the feature space concept introduced by Shah (1988), this section first

examines the feature space concept and the feature transformation taxonomy.

According to the feature space concept, the totality of information related to a product,

in all its aspects, over its entire life cycle, and for all conceivable applications, defines

a domain called a feature hyperspace. The actual feature spaces for the life cycle

applications of a given product are subsets of this hyperspace. Various types of

relationships can exist between two subspaces, which may be of the same or different

dimensions. Feature spaces of the same dimension may be partially overlapping or

completely disjoint. In the overlapping regions, one can find features with identical

semantics. Between the feature spaces of unequal dimensions, information from a

higher-dimensional domain may be selectively abstracted to suit a lower-dimensional

domain. This is referred to as a projection transformation from n to (n-m) space.

Another possible feature space relationship is referred to as conjugate spaces, which

contain features composed of different variations of the same elements. The adjoint

space is another relationship created by associating elements in one subspace to certain

elements in another subspace. Accordingly, four types of feature transformations

between two feature sub-spaces exist, namely, identity, projection, conjugate and

Characterizing Feature-Driven Engineering Process

 79

adjoint transformations. For information transfer from one domain to another, there are

also distinctions between unitary and multiple transformations.

Apparently, the taxonomy given above is not a complete one, and like many other

research works on feature mapping (Bronsvoort & Jansen 1993; Shah 1988; Wong &

Leung 1995, 2000), the classification criterion used was vague: it interchangeably

measures the relationships between the entire feature models (feature spaces) or that

between specific partial feature sets encapsulated in the feature models. Based on these

observations, a fairly complete taxonomy is developed and presented next. The

classification criterion measures the relationships between any two data models

involved in the feature driven engineering process, including the non-feature-based

models, which are the final engineering outputs derived from a feature-based model in

the backbone of the DODG.

3.3.3. Model Derivation Function

Expanded from the abstract concept of feature space, mathematical functions are used

to describe the possible relationships between interdependent models. At the highest

level, when one model MB is derived from MA, the model derivation function can be

loosely denoted as

)(AB MfM = (3.1)

The information elements in MB and MA are not limited to features, but can be of any

types that a feature-driven engineering process may involve. This function covers the

case where d MB /d MA = 0, which means MB is fully independent of MA.

Characterizing Feature-Driven Engineering Process

 80

The closest relationship between MB and MA is probably that the information elements

in MB are variations of that in MA (conjugate transformation), which is denoted as

)(AcB MfM = (3.2)

In most cases, MB may contain information elements with no correspondence in MA

and vice versa. Let ΔAB denotes the information elements in A with no correspondence

in B, and ΔBA denotes information elements in B with no correspondence in A.

Another imaginable relationship will be information filtration (project transformation),

which is denoted as

)(ABMfM AcB Δ−=
 (3.3)

Likewise, the information addition (adjoint transformation) relationship is denoted as

BAMfM AcB Δ+=)((3.4)

Unifying equations (3.2), (3.3) and (3.4), a generic derivation relationship between MB

and MA can be integrally represented by

BAABMfM AcB Δ+Δ−=)((3.5)

from which equation (3.2), (3.3) or (3.4) can be seen as one of its special cases, e.g.,

when ΔBA =ΔAB = Φ, it becomes (3.2).

While ΔBA denotes information elements in B additional to A, it can be further

decomposed into two parts: those that can be fully deduced through a function ƒa with

some elements in A as the arguments and those which are newly added independent

elements, i.e.,

Characterizing Feature-Driven Engineering Process

 81

BAABMfBA Aa Δ ′+Δ ′−=Δ)((3.6)

According to its “greyness” (the extent of awareness), the conjugate function ƒc and the

addition function ƒa can be classified into three types, “black box”, “white box” and

“grey box” transformations. In the case of "black box" transformations, the data

sources and targets within a model pair are related through a transformation and to

each other at a coarse-grain level. It can be determined that the data sources and targets

are related through the transformation, but no data target can be precisely expressed as

a specific function of a (set of) data source(s). In the case of "white box"

transformations, the data sources and targets within the model pair are related through

a transformation and to each other at a fine-grain level. Every data target can be

precisely expressed as a specific function of a (set of) data source(s). In the case of

“grey box” transformations, data sources and targets within the model pair are related

to a transformation and to each other at a medium-grain level. Only a portion of the

data targets can be precisely expressed as a specific function of a (set of) data source(s).

In this sense, adding new information elements, either in the process of creating a new

model or deriving a new model from a source model belonging to an upstream domain,

can always be seen as a “black box” transformation where data sources are Φ.

Consequently, at the collection level, the model derivation relationships from model A

to B represented by equations (3.5) and (3.6) can also be classified into three types. If

(Δ´BA = Φ) ∩ (ƒc and ƒa are both “white box”), the model transformations are “white

box”; else if (ƒc and ƒa are both “black box”), the model transformations are “black

box”; or else, the model transformations are “grey box”.

Classifying feature model transformations into three types illustrates the fact there

exist three ways to generate a target model from a given model or from the beginning.

Characterizing Feature-Driven Engineering Process

 82

For “white box” transformations, a fully automated design tool can be employed to

realize the transformations merely through a push of a couple of buttons. For “black

box” transformations, the knowledge about the derivation of a target model from a

source model has to be kept in the designers’ mind and the target model has to be

generated from scratch manually through an interactive design tool like creating a

completely new model. For “grey box” transformation, a semi-automated design tool

can be employed to automate part of transformation operations while manually

realizing others.

Using the feature-driven process shown in Figure 3.5 as an example, the process to

derive the flat pattern model is a conjugate, “white box” and fully automatic

transformation; the processes to derive the flat pattern engineering drawing, 3-D strip

layout model, die BOM and engineering drawings, and die parts feature models are all

projections, “white box” and fully automatic transformations; the processes to derive

the die operation feature model, die configuration model, and die part process plans are

all mixed, “grey box” and semi-automatic transformations. The derivation of die

parts NC codes is a process to transform two source models into one. The derivation

function is similar to equation (3.5) which has analogous properties and the process

itself turns out to be a projection, “white box” and automatic transformation.

3.3.4. Design Change Propagation Property

This paragraph discusses the design change propagation property on how it lays the

constraints for implementation of the data integration tools, specifically, the version

control and configuration management tools. The details of the versioning control and

configuration management concept are given in Chapter 5.

Characterizing Feature-Driven Engineering Process

 83

Existing research works dealing with design interdependency plainly assume that the

interdependent models always affect each other and the design changes always

propagate upwards and downwards (Westfechtel 2000; Baldwin & Chung 1995).

However, when examining the interdependent relationships represented by equation

(3.5) more closely, it can be found that the change of one model will not necessarily

always cause a corresponding change to its immediate interdependent upstream models

or downstream models. Specifically, when the changes are only limited to the part ΔBA

(current model is MB and upstream interdependent models are MA), they will not

propagate upwards. Likewise, when the changes are only limited to the part ΔAB

(current model is MA and downstream interdependent models are MB), the design

change will not propagate downwards. Therefore, some design changes to a model in

the DODG may propagate throughout the whole DODG, while others may only affect

their near neighbors or have no effects on any neighbors. Furthermore, the

determination of the design change propagation scope requires the knowledge of the

specific information sets that have been changed and a highly intelligent “inference

engine” to make adequate decisions based on these information sets. Since the version

control and configuration management tool does not concern the interior information

contents of the design object, making these decisions should be fully up to the designer.

The promise of the version control and configuration management tool is to provide a

comfortable context to execute the design change propagation scope after the decision

is made during the versioning process.

The difference between the automatic and manual (including semi-automatic)

transformations has influences on the propagation property. For automatic propagation,

Characterizing Feature-Driven Engineering Process

 84

it will be meaningless to proactively perform design changes to the models derived

from the upstream ones. The only way is to change those from which they are derived

from. On the other hand, for manual propagation, the models can be changed to evolve

to a new version either proactively or reactively.

Using the feature driven-process shown in Figure 3.7 as an example, the flat pattern

engineering drawing, 3-D strip layout model, die BOM and engineering drawings, die

parts feature models, etc., are all models derived automatically and thus cannot directly

and actively execute design changes while other models like the die configuration

feature model allow for both proactive and reactive design changes. Furthermore, if a

design change to the die configuration model is related to the shape of the punch, this

design change is expected to propagate both upwards and/or downwards; if it is only

related to a die plate, it can only lead to downwards design change propagation.

3. 4. A Special Design Transaction Model for Feature-driven Engineering Process

The previous section has shown that there are three ways to transform input data

model(s) to output data model(s), namely, “white-box”, “grey-box” and “black-box”

transformations. Consequently, three types of tools, automatic, semi-automatic and

manual (interactive) engineering tools exist corresponding to the data manipulation

ways. Such a rough classification is probably insufficient for dealing with registering

an engineering tool into an environment. This section goes a little further from this

point to identify the ways by which an engineering tool manipulates relevant data

housed in the environment through design sessions. The implication of the data

manipulation means is then studied with the target to develop an adequate design

Characterizing Feature-Driven Engineering Process

 85

transaction model to formally describe how engineering tools access design objects in

the shared repository.

3.4.1. The Means by Which an Engineering Tool Manipulates Relevant Data through

Design Sessions

An engineer starts interacting with an environment by initiating a design session which

may span minutes, hours or even days. A long session may be decomposed into a set

of short design sessions connected by saving and reloading an intermediate data model

temporarily stored in a data store maintained by the environment. When the designer

ends the session, an implicit save/check-in operation is issued for all relevant objects.

Corresponding to the three types of engineering tools, there are four possible means by

which a tool manipulates relevant data through design sessions (Fig. 3.9).

The most popular data manipulation means is found with tools that heavily depend on

user interactions and work like an editor (Fig. 3.9(a)). When a new design session

begins, the engineering tool optionally loads the input design object(s) or reloads an

intermediate design object into its working memory space and maps them into an

incore (in-memory) data structure. The incore data structure can be distinct from the

actual data format used for physical storage. When the design session pauses for some

reasons, a SavePoint is created by the tool to make persistent the incore data structure

in the environment. The final design result is a special SavePoint, which is no longer

reloaded for revision by the tool. Therefore, the operation to create a SavePoint or the

final design result is almost identical.

Characterizing Feature-Driven Engineering Process

 86

A variant to the above data manipulation means is shown in Fig. 3.9(b). The optional

input design object(s) become(s) mandatory and must be reloaded again along with the

intermediate data model maintained as the SavePoint when a new design session is

resumed after a pause. The consumed design object(s) may be overwritten by other

designers during the interval between the first and the current session starting point.

This is a risk of damaging the data integrity. Fortunately, this risk can be removed by

incorporating all the information within the consumed design object(s) into the incore

data structure and further the corresponding output design object immediately after the

first design session has been launched. In this sense, this case becomes the case shown

in Fig. 3.9(a).

Characterizing Feature-Driven Engineering Process

 87

Another possible data manipulation means is found with automatic engineering tools.

There is a single design session which automatically transforms the consumed design

object(s) into produced (output) design object(s) (Fig. 3.9(c)). If the produced design

object(s) is(are) required to be updated, the normal way is to perform the automatic

transformation process again provided that the consumed design object(s) is(are)

updated first. Updating the design object in the editor way through another design

session may also be permitted when the current sub-process is followed by an

Tool In Out In Tool Out In Tool Out… …

First Design Session Intermediate Design Session Last Design Session

SavePoints

(a)

Tool In Out … …

First Design Session
Intermediate Design Session Last Design Session

SavePoint

(b)

Tool Out

In

In
Tool Out

In

In

Tool In

Single Design Session
(c)

Out

Tool In Out In Tool Out In Tool … …

First Design Session Intermediate Design Session Last Design Session

SavePoint

(d)

Out

Single Design Object Single or Multiple
Design Object

Optional Design Object(s)

Fig. 3.9. Four possible means by which a tool manipulates relevant data

Characterizing Feature-Driven Engineering Process

 88

interactive sub-process, which is used to refine the automatically produced design

object. A variant to this case is found with semi-automatic tools which need a large

amount of interactions before invoking the last automatic reasoning procedure (Fig

3.9(d)). Intermediate data models to function as SavePoints are required to ensure the

resume of a half-done design. As discussed in Section 3.2.1, process re-engineering

techniques can be used to move the interactive design tasks upwards to its preceding

sub-process, which transforms the case shown in Fig 3.9(d) into the case shown in Fig.

3.9(c).

Therefore, all the engineering data manipulation means can be classified into two types:

the Load-Interactively Operate-Save mode and the Load-Automatically Deduce-Save

mode. Identification of the engineering data manipulation means is the foundation to

develop an adequate design transaction model through which engineering tools interact

with a shared data store monitored by a data manager, such as a PDM module.

3.4.2. Basic Design Transaction Model

Different data managers may adopt different design transaction models. The most

widely used design transaction model is called the Check-Out/Check-In transaction

model in which, “a design transaction corresponds to the period of time from the

Check-Out to the corresponding Check-In” (Wolf 1994), as illustrated in Fig. 3.10.

Once checked out by a particular tool via the data manager, the design object in the

shared data store is applied a lock. The lock mechanism is implemented in the data

manager, which may be a part of a larger integration framework providing more

integration functions beyond that of data integration. Re-check-out of this design

object is then prevented until it is successfully checked in again and the lock is

Characterizing Feature-Driven Engineering Process

 89

removed. The particular tool can then safely operate on a copy of a particular design

object in its own working space for an uncertain period of time without worrying about

that other users may also check out this design object and generate a conflicted update.

It is important to note that a design transaction in this basic design transaction model is

performed by a single engineering tool on a single design object and is the basic unit of

consistency for operation by engineering tools on design data.

3.4.3. A Special Design Transaction Model for Feature-Driven Engineering Process

It can be easily found that the basic transaction model can only be directly used for the

data-tool interaction case shown in Fig. 3.9(a). For the case shown in Fig. 3.9(c), it

cannot be used directly. One way to overcome the deficiency of the basic transaction

model is to use the workspace concept to collectively treat the consumed data and the

produced data as a consistency unit (Katz et al., 1986; Rehm et al., 1988). A design

transaction then denotes the manipulation of multiple design objects in a private

workspace. Check-Out and Check-In operations are used to transfer design objects

to/from the private workspace and the shared archive. Changes made in a private

workspace are not visible to other engineers and the original replicas in the shared

archive are locked to prevent unmanaged writes. Another similar way is to use the

Design Object

T
O
O
L

Design
Transaction

Shared
Repository

Locked

Check-Out

Check-In

Fig. 3.10. The basic design transaction model (Wolf 1994)

Characterizing Feature-Driven Engineering Process

 90

concept of complex objects which contain sub-objects and further represent a design

information access pattern (Ranft et al., 1990). The consumed data and the produced

data are collectively viewed as a complex object and accessed as a whole when

checked out or in. One common problem for these two or other similar proposals is

that they all involve a certain extent of unnecessary Check-Out of some design objects.

Using the case described in Fig 3.9(c) as an example, suppose the produced design

objects need to be updated based on pre-defined updates on consumed design objects.

The corresponding design session only requires checking out the consumed design

objects. The produced design objects are only required to be locked during the design

session without need to be checked out. Check-out of the unnecessary design objects is

a conservative strategy and may be tolerable if these design objects are of moderate

size. Unfortunately, the feature-driven engineering process may involve produced

design objects of very large sizes in some design sessions. For example, in the process

to perform the progressive die configuration task with the die operation feature model

as the consumed design objects (Fig. 3.7), the produced design objects include a huge

set of die configuration descriptions. Therefore, the workspace or the complex objects

strategy is not exactly adequate to define a transaction pattern for the case shown in

Fig. 3.9(c).

However, a slight augmentation to the basic design transaction model with

introduction of three advance concepts can fill the gap and yield a well suitable design

transaction model for feature-driven engineering processes. The first two concepts are

termed virtual Check-Out and virtual Check-In as compared to the physical Check-

Out and physical Check-In in the basic transaction model. Specifically, the physical

Check-Out operation performed at the beginning of a design transaction will produce a

Characterizing Feature-Driven Engineering Process

 91

set of copies of the design objects in the private workspace while applying a set of

locks on the corresponding design objects stored in the shared repository. However,

the virtual Check-Out operation only applies a set of locks on the corresponding design

objects without producing physical design object copies in the private workspace.

Similarly, the physical Check-In operation performed at the end of a design transaction

will overwrite the value of the design objects to be checked in with the new values

generated in the private space while removing the corresponding locks on the these

design objects. However, the virtual Check-In operation only removes the

corresponding locks on the corresponding design objects without overwriting their

physical values provided that they are unchanged in the private workspace. In the

implementation aspect, the physical-Check-Out/virtual-Check-In transaction equals to

a read-only operation and the virtual-Check-Out/physical-Check-In means placing a

lock on the corresponding design object at one predefined moment till a direct

overwrite is performed.

The third concept is termed transaction group, a terminology originally used by

researchers such as Roller et al. (2002a) when dealing with synchronous cooperative

work based on a shared engineering database. The grouping criteria here are purposely

adjusted to reflect the requirements placed by the feature-driven engineering processes.

Specifically, transactions on all the consumed design objects in a design session are

viewed as a Transaction Group, which is a logical unit of work, and the transactions on

all the produced design objects as well. In this sense, a design session with the working

mode as shown in Fig. 3.9(c) involves two design Transaction Groups. The first group

consists of a set of physical-Check-Out/virtual-Check-In transactions which are

equivalent to read-only operations for the consumed design objects and thus can be

Characterizing Feature-Driven Engineering Process

 92

grouped automatically. The other group consists of a set of virtual-Check-

Out/physical-Check-In transactions for the produced design objects and ensures that

those design objects are checked-in correctly and collectively overwrite their counter-

parts checked-out.

3.4.4. Discussions on the Proposed Design Transaction Model

According to the proposed design transaction model, a feature-driven engineering

process may involve two types of design transactions. For highly interactive edit-style

tools (Fig.3.9(a)), a standard physical-Check-Out/physical-Check-In transaction model

will become effective. For automatic engineering tools (Fig.3.9(c)), a Transaction

Group model including virtual Check-Out and virtual Check-In operations will become

effective.

It should be noted that the virtual Check-Out/Check-In operations are not performed

explicitly by engineering tools like the physical Check-Out/Check-In operations.

Instead, they are required to be performed implicitly and automatically along with a

group of physical Check-Outs of the consumed design objects with the help of certain

managerial tool. Therefore, the primitive operations involved in implementing the

augmented design transaction model are still physical Check-Out and Check-In.

The operation logic for the case shown in Fig.3.9(c) can now be clearly described as

follows: once the consumed design objects are checked-out and the corresponding

automatic engineering tool is initialized, the managerial tool automatically executes the

virtual Check-In of the consumed design objects to finalize the design transactions on

the consumed design objects within one Transaction Group; immediately after these

Characterizing Feature-Driven Engineering Process

 93

operations, the managerial tool executes the virtual Check-Out of the produced design

objects and initializes a set of transactions on these design objects within another

Transaction Group; this transaction Group is then terminated by the corresponding

Check-In of the newly produced design objects by the automatic engineering tool.

This operation logic clearly shows that the augmented design transaction model

outperforms the workspace model in that it removes unnecessary operations to

physically check-in the consumed design objects and check-out the produced design

objects in a tool-run. The former can be removed because they are unchanged in the

tool-run. The latter can be removed because they are not physically consumed by the

tool and then unnecessarily present in the private workspace.

Overview of the CAX Framework-based Integration Approach

 94

CHAPTER 4

OVERVIEW OF THE CAX FRAMEWORK-BASED INTEGRATION

APPROACH

As stated, while there exist considerable conceptually potential integration approaches

to be followed to build up a network-integrated engineering environment, this study

favors the CAX framework-based approach due to the unique integration power of the

CAX framework concept. With the help of this concept, the challenge to develop

facilities to conveniently integrate multiple CAX tools into a coherent engineering

environment can be overcome by introducing a common CAX framework for these

tools. The components that are desirably incorporated into the framework can be easily

identified and specified. It also leaves a large space for system developers to

selectively and adaptively use those formulated components and services so that the

framework can behave in a particular way compatible to a set of pre-specified

requirements. This allows a special framework to be devised to provide the end-users

with supports in sharing common information, process management, etc. This chapter

presents an overview of the CAX framework-based integration approach, setting up a

basis to develop advanced integration functions for feature-driven engineering

processes. Those functions include the unique version/configuration and process

Overview of the CAX Framework-based Integration Approach

 95

management services, which explicitly take into account the identified characteristics

presented in the previous chapter.

4. 1. Rationale of the CAX Framework Approach

The most prominent characteristic of the CAX framework approach is that it

transforms the complex tool integration missions into a definite process to develop a

CAX framework for the distributed CAX tools or tool users. This section explains why

the CAX framework concept can be employed to develop the desired integration

facilities for the tools involved in a specific application domain, such as the feature-

driven engineering process. Basically, the integration power of the CAX framework is

attributed to the roles that can be allotted to it.

Analogous to the CAD framework (Wolf 1994), three basic roles can be allotted to the

CAX framework so that an integrated engineering environment can be achieved. These

roles are that of common product data repository, engineering data manager and

engineering process manager. By playing the first role of a common product data

repository, the CAX frameworks ensure that all the engineering data generated by the

CAX tools is centrally stored in the common product data repository. It is thus possible

to avoid the data redundancy and inconsistency problems which are always

encountered in the product development process using a set of completely isolated

engineering tools.

The second role that can be allotted to the CAX framework is that of engineering data

manager similar to a PDM module. By playing this role, the CAX framework can

capture the global view of all the engineering data that are generated by dispersed

Overview of the CAX Framework-based Integration Approach

 96

CAX tools and support versioning control and configuration management to improve

data integrity and consistency. By nature, an engineering data management system is

always attached to a common product data repository and a common product data

repository always coexists with a management system. It is therefore understandable

that the above two roles may be collectively referred as one role called a product data

manager.

The third role that can be allotted to the CAX framework is that of engineering process

management similar to a WM module. By playing this role, the CAX framework can

provide a design flow browser which enables the designer to inspect the status of his

design and to invoke the right tools. Incorrect tool execution sequence and misuse of

data sources can be avoided. Correct tool and data source selection can be rapidly

identified without the need of extra efforts to search information that is unorganized.

Due to its flexibility, extensibility, modularity, portability, and maintainability, the

CAX framework may be allotted with additional roles apart from the above three basic

roles inherited from the CAD framework concept. Some functions described in other

relevant literature pertaining to a network-integrated engineering environment (see

Chapter 2) may be implemented in the CAX framework. For example, the common

product database can be extended to become a knowledge base or a knowledge

repository through enlarging its database structures to richer representation schemata

(Roller & Eck 1999). Inference facilities are accordingly added to provide more

intelligence and active behavior to the database system at the same time. By using this

intelligence and active behavior, two types of assistance can be attained to make an

engineering process more productive and less error-prone. One of them is related to

Overview of the CAX Framework-based Integration Approach

 97

reuse of the former good engineering designs stored in the product database to develop

new analogous engineering designs by using an approach called Case-Based

Reasoning (CBR) (Tor et al., 2003). The other is related to situation detection,

semantic integrity enforcement, concurrency control, collaboration support, and

storage management by using active database management systems (Roller & Eck

1999). Therefore, the CAX framework can be allotted with a role of common

knowledge repository for the end-users and the participating tools. Any other types of

knowledge shared by the CAX tools (especially some intelligent CAX tools with a

knowledge base attached) can also be centrally managed in this knowledge repository.

Another possible design choice to make a CAX framework more powerful is to

incorporate the CSCW service like that in the CONCERN architecture (Hanneghan et

al., 1995, 1998) into it. This makes it possible to allot the CAX framework with a role

of a CSCW service provider. Yet another possible design choice is to incorporate any

sharable service, such as the geometric modeling service (Shah et al., 1997) into the

CAX framework, which makes it possible to allot the CAX framework with the role of

a common geometric modeling service provider. Participating CAX tools can then

invoke this service once the need arises. In summary, any common services which are

shared by multiple distributed users or client-side CAX tool applications can be

incorporated into the CAX framework. Certain corresponding roles can then be

allotted to the CAX framework.

Once the CAX framework that can be allotted with the above roles is incorporated into

the engineering environment, the CAX tool users can exploit both the dedicated

functionalities provided by the tool they are using and the common integration

Overview of the CAX Framework-based Integration Approach

 98

functions provided by the CAX framework. The tools can still run autonomously, but

the design activities carried out on these tools are (semi-)automatically coordinated

with the help of the CAX framework.

4. 2. Definition of Functional Requirements and System Architecture

With the confirmed confidence of the integration power of the CAX framework

concept, the emphasis is now put on how to develop a CAX framework for the feature-

driven engineering processes, such as the progressive die design and manufacturing

process. There are a number of strategies that are used to define the functional

requirements of the framework and the general system architecture. Some of them are

adapted from those that are developed by the CAD framework researchers in the field

of EDA. Others are developed from the beginning to address the domain-dependent

issues involved in the development of the CAX framework, which aims at applications

in the field of manufacturing engineering.

4.2.1. Functional Requirements

Definition of the functional requirements of the CAX framework needs to consider

what integration functions are desirable by the CAX tools as well as the tool users and

what functions the CAX framework can provide. Section 4.1 has shown that the CAX

framework can be allotted with diverse roles as mentioned above. However, it is found

that what are most important for the system integration from design to manufacturing

for the feature-driven engineering processes are still the three basic roles: common

product data repository, engineering data manager and process manager, or simply the

latter two roles. Therefore, the functional requirements of the CAX framework are

Overview of the CAX Framework-based Integration Approach

 99

defined as providing product data management services and engineering process

management services for the CAX tools and tool users.

In this sense, the CAX framework can be compared to a lightweight PDM module

combined with a WM module, which co-works with the CAX tools involved. As a

lightweight module, it requires less demanding computing resources and no excessive

system customization operations are required before running the system. It is possible

that the CAX framework functions can be provided by customizing a heavyweight

PDM/WM system. However, the customization approach is inferior because of the

reasons presented in Chapter 2.

4.2.2. Some Basic Strategies for Defining the General Framework Architecture

The integration functions of the CAX framework are exactly the same as that of the

CAD framework (Wolf 1994). However, due to the different working modes of the

tools that interact with the framework and the different structure of the tool data that

will be centrally managed by the framework, the internal structure of the CAD

framework and the CAX framework would be different. Despite the differences, the

effectiveness of some basic strategies for defining the general framework architecture

(Wolf 1994) still holds. Some of these strategies are presented next.

• Split the Framework into Framework Kernel and Workbench (Framework Tools)

Apart from providing interfaces for the participating CAX tools, the CAX framework

should also provide interfaces to the end-users so that they can be informed about the

status of his design or initiate some framework actions. The framework is then split

into two parts, the framework kernel and framework tools, the latter of which aims

Overview of the CAX Framework-based Integration Approach

 100

specifically at interactions of the end-users with the framework. In manufacturing

engineering, one may notice that the “workbench” module in many architecture

(Hanneghan et al., 1998; Conaway 1995) takes the same responsibility as the

framework tools. A workbench or workbench application is a common user interface

to multiple applications used within a particular discipline. It provides a graphical

front-end to the users so that they can access the services of the environment.

Therefore, the CAX framework in this thesis is characterized by consisting of a

workbench and the CAX framework kernel.

• Separate Meta Data and “Raw” Engineering Data Handling

There are two types of data that are maintained within the framework, the actual design

data and the meta data which means “data about data”. The meta data owns pointers

pointing to the design objects and are used to index the design data as well as to apply

management strategies. Separation of meta data and “raw’ engineering data implies

that the framework kernel should contain two built-in databases, the meta data

database or management database and “raw” engineering data database or design

object repository, to accommodate them respectively. The meta data is small in storing

size compared to the volume of the corresponding “raw” engineering data. Further, the

collection of the meta data in a project is of complex structure and a dedicated database

management system with specially designed schema is required. On the other hand, the

collection of the “raw” engineering data in a project is simply a collection of design

objects which are identified by its file name. A part of a file system is then sufficient to

take the responsibility to function as the design object database for a project.

• Treat the Framework Kernel as Transaction Processing System

Overview of the CAX Framework-based Integration Approach

 101

In the CAX framework kernel, any management service requests from the CAX tools

(tool wrappers) or the workbench are eventually responded with certain operations to

consult or update the administered state of the meta data or the engineering data. As

stated, the meta data is stored in the management database and the engineering data is

stored in the design object repository. It is therefore possible to use the transaction

concept, which is widely used in the design of database management systems, to

characterize the CAX framework kernel as a transaction processing system. A

transaction is a sequence of operations that is either performed completely or not at all.

It is a logical unit of work, which transforms a consistent state of the database into

another consistent state (Gray & Reuter 1993). The use of the transaction concept

provides convenient means to solve the problems of concurrency and recovery.

Corresponding to the separation between the meta data and the engineering data

handling, two main types of transactions are involved in the CAX framework kernel:

meta data transactions and engineering data transactions. The meta data transaction

carries the identical semantics of the conventional transactions. The design transaction

is semantically different from the conventional transactions and relates to the way how

the engineering tools manipulate engineering data. For the CAX framework dedicated

to the feature-driven engineering process, the special design transaction model

presented in Section 3.4.3 should be applied. The meta data transaction can be further

classified into project transactions, configuration transactions, etc. These transactions

should be properly layered (see Section 5.2.1) and coordinated to make the design data

correctly checked out from and checked in to the design object repository. Treating the

framework kernel as a transaction processing system justifies the strategy for the

framework to adopt a standard database to store the meta data and a directory of file

system to store the design objects.

Overview of the CAX Framework-based Integration Approach

 102

4.2.3. The General System Architecture

By using the framework design strategies presented above and consulting the CAD

framework architecture described by Wolf (1994), the general system architecture of

the CAX framework is defined in Fig. 4.1. In this architecture, the overall CAX

framework-based engineering environment consists of the CAX tools and the CAX

framework. The framework further comprises the workbench application, the

framework kernel and two data stores, the management database and the design object

repository. The management database stores meta data, which owns pointers pointing

Framework Kernel

CAX
Tool 1

CAX
Tool 2

CAX
Tool 3

Workbench
Application

Data and Process Management Kernel

Meta Data Handling

Design Data Handling

Meta Data Design Objects

“Raw” Design
Data Database

Management
Database

Fig. 4.1. The general system architecture (Wolf 1994)

Tier 1

Tier 2

Tier 3

High

Mixed

Low

Overview of the CAX Framework-based Integration Approach

 103

to the design objects stored in the design object repository. The workbench application

interacts with the framework kernel directly and the CAX tools via wrappers (see

Section 4.4.2). The framework kernel is further decomposed into three components,

the data and process management (DPM) kernel, the metadata handling component

and the design data handling component. The overall architecture complies with the

popular 3-tier strategy for the development of the Internet-based applications. The

CAX tools and the workbench are the first tier or the user interface tier. The

framework kernel is the middle tier or the logic tier. The management database and the

design object repository are the third tier or the application data tier.

4. 3. A Roadmap of Implementation and the “Skeletal” Framework

This section overviews the main steps that are taken to develop the CAX framework

up to the physical level beginning from the functional requirements and the general

system architecture defined in the previous section. The “skeletal” framework, which

refines the general system architecture by considering functionality partition between

the server side and the client side, is also presented.

4.3.1. A Roadmap of Implementation

Wolf (1994) recommended developing a CAD framework via three main steps. The

first step is to develop the “information architecture” that defines the information

structure of the framework. The second step is to develop the “component

architecture” that identifies the individual framework components and the

dependencies between them. The final step is to develop the implementation

architecture to define the internals of the framework at the physical level. It is found

that this three-step approach is only appropriate without applying the OO concepts. If

Overview of the CAX Framework-based Integration Approach

 104

the OO concept is incorporated, development of the information architecture and that

of the implementation architecture can be combined in one run, because they are both

the task to identify a set of object classes and their relationships. Further, it is found

that most of the details of the component architecture can be specified without the need

to know every detail of the information architecture. Therefore, it is decided to develop

the current CAX framework through two steps. The first one is to develop a “skeletal”

CAX framework up to the physical level. All the framework components are specified

either using existing software products or are developed from the beginning. The

second one is to develop an adequate schema for the management database and the

information architecture for the components that need to be developed from the

beginning. All the required user operations are also defined in this step so that the GUI

can be easily devised.

Of the above two steps to develop the CAX framework, the first one is relatively easy

and the results are presented in the rest of this chapter. The second one is the most

creative and challenging part of this thesis. It involves modeling and analyzing the

desired engineering environment in two aspects , the product data management aspect

and the engineering process management aspect, the latter being extended from the

former. The next two chapters are respectively dedicated to deal with these two aspects

to show how the unique product data management and engineering process

management functions are incorporated into the CAX framework. Note that the system

development route adopted in this study while using the CAX framework integration

approach may be duplicated to develop a similar network-integrated engineering

environment for applications in other domains.

Overview of the CAX Framework-based Integration Approach

 105

4.3.2. Functionality Partition between the Client and the Server

To make the general system architecture shown in Fig. 4.1 more specific so that a

“skeletal” framework is defined, it is desirable to first partition the functionality

between the client and the server. There are basically three possible levels at which to

define the client/server boundary between a client process and a server process. Firstly,

the client/server boundary may be defined at the highest level as indicated by the

dotted line tagged with ‘High’ in Fig. 4.1. Only the user interface applications

including the workbench and the CAX tools reside on the client side. This is a design

of thin client/fat server. The other extreme is to place the client/server boundary at the

lowest possible level as indicated by the dotted line tagged with ‘Low’ in Fig. 4.1.

Only the management database and the design object repository as well as the

corresponding data handlers reside on the server side. This is a design of fat client/thin

server. These two extremes overload either the server or the client. The optimal

solution, therefore, is to place the client/server boundary at the medium level as

indicated by the dotted line tagged with ‘Mixed’ in Fig. 4.1. After re-grouping the

Network

Workbench

ProjectManagerClient

Stub

Skeleton

ProjectManagerSever

Meta Data Design Objects

DesignDataHandler

Java RMI
Communication

Fig. 4.2. Creation of Client/Server with Java RMI

CAX Tools

Wrappers

Overview of the CAX Framework-based Integration Approach

 106

components on the client side and the server side based on this mixed approach, a

“skeletal” framework is gained as shown in Fig. 4.2. Some details are depicted next.

According to the mixed approach, the server object is mainly responsible for Meta

Data Handling and a part of DPM functions. This combined server object is now

defined as ProjectManagerServer. The rest part of the DPM functions is collectively

defined as ProjectManagerClient object which is located at the client side. Apart from

the ProjectManagerClient object, also located at the client side are the workbench

application and the engineering tools, which directly interface with the users, and the

Design Data Handler, which is responsible for design data access and implemented

based on the jCIFS open source client library (see Section 4.4.4). The DPM functions

cannot be entirely allotted to the ProjectManagerServer because the Design Data

Handler, which is frequently requested by the DPM, is located at the client side,

otherwise, the communication overhead will be increased. User interface applications

cannot directly request methods in the ProjectManagerServer object but through the

ProjectManagerClient object which carefully sequences the operations on the meta

data and design data. The ProjectManagerClient object calls the methods within the

remote ProjectManagerServer object through a ProjectManager interface which is

implemented by the ProjectManagerServer. The Java RMI communication facilities

including the stub object on the client side and the skeleton object on the server side

physically realize the client/server communication. The calling dependency and the

creation of the client/server with Java RMI are elaborately illustrated in Fig. 4.2.

4. 4. Some Basic Implementation Decisions for the CAX Framework-based

Network-integrated Engineering Environment

Overview of the CAX Framework-based Integration Approach

 107

To implement a network-integrated engineering environment physically, a range of

design choices should be made to define the system environment and to identify

appropriate computer tools used in the system development process. This section

presents some basic system implementation decisions with respect to development of

an enterprise-affordable system using IT technologies and software products available

at the time. It is obvious that these implementation decisions are not given as an only

solution to the related implementation issues. Rather, multiple solutions are possible.

Efforts have been devoted to optimize the current solution as satisfactory as possible

among the alternatives available. However, the solution should evolve over time.

4.4.1. Platform and Programming Language

The platform is the basis of the entire environment, including the hardware and the

operating system software, on which the framework and the tools are to run.

Considering a range of factors, such as transparency of distribution and multi-user

support, an enterprise-wide Microsoft® Windows-based Intranet is supposed to be the

normal working platform. Design engineers from different departments can participate

in the common network-integrated engineering environment to carry out a project

smoothly. Working at home or in travel to access the centrally-managed data through

the Internet is permitted.

Despite its complexity, the CAX framework can be viewed as a programming model

on top of the system environment and common basic services to unify the engineering

tools with the meta data and design object repository. A common programming

language, Java, is selected to define this model in this study. Selection of Java is

appropriate since Java is an OO language with client/server capabilities running on the

Overview of the CAX Framework-based Integration Approach

 108

JVM (Java Virtual Machines) available on the Microsoft® Windows platform. Further,

remote communication between programs written using the Java programming

language can be easily realized through the Java Remote Method Invocation (RMI)

mechanism. The Java RMI system allows an object running in one JVM to invoke

methods on an object running in another JVM. This is the reason why the Java RMI is

used for creation of the client/server for the CAX framework in the current prototype

implementation.

4.4.2. The Wrapper and the Way to Make the CAX Tools Available on the Internet

From the perspective of the end-users of the CAX tools, the CAX framework

introduces three new operation types for them, i.e., browsing the design states

(dynamic workflows and versions/configurations) maintained in the meta data database,

check-out design objects from and check-in design objects to the shared data store

across the network. It is easy to understand how to make these functions available in

the workbench application because it is an internal part of the framework and

developed from the beginning along with the other components within the CAX

framework. Particularly, the workbench application is a GUI that communicates with

the CAX framework kernel through an interface from which to retrieve meta data and

check-out/check-in design objects (arrow 1 in Fig. 4.3). However, for the CAX tools,

given that they are legacy applications that work independently, extra efforts are

required so as to make the above functions available to these tools or to make the tools

available to the CAX framework and thus on the Internet. Basically, there are two

ways, the indirect way (arrow 4 in Fig. 4.3) and the direct way (arrow 3 in Fig. 4.3),

for the CAX tool users to call the CAX framework functions.

Overview of the CAX Framework-based Integration Approach

 109

In the indirect way, the user has to interchangeably work in the CAX tool environment

and the workbench application environment. If he wants to browse the design states, he

must leave the CAX tool environment and launch the workbench application that

consists of a workflow browser and a version/configuration browser. If he decides to

work on a certain design task and wants to check-out the corresponding design

object(s), he first locates that design object(s), checks it (them) out and temporarily

saves it (them) in the local disk with the help of the workbench application (arrow 5 in

Fig. 4.3). Then, he returns to the CAX tool environment and opens the temporarily-

saved design object(s) (arrow 7 in Fig. 4.3). If he has finished a task using a CAX tool

and want to check-in a (set of) design object(s) to the shared data store, he first saves it

(them) in the local disk (arrow 8 in Fig. 4.3) and then accomplishes the check-in

operation with the help of the workbench application (arrow 6 in Fig. 4.3). Apparently,

the indirect way is not “transparent”. The required operations are error-prone and

inconvenient for the end-users.

Local
Disk

Intranet/Internet

CAX Tool

Fig.4.3. Integrating a tool with the framework kernel through a wrapper

 CAX Framework Kernel

Wrapper
Workbench

Application

<<Meta data retrieve, Check-out, Check-in>>

1 2

4 3

5

6

78

Overview of the CAX Framework-based Integration Approach

 110

In the direct way, the user can achieve the above work mode without the need of either

leaving the CAX tool environment or using the local disk to temporarily save the

relevant design object(s). This is enabled by the wrapper that wraps the engineering

tools and integrates them into the CAX framework to form a more tightly-integrated

engineering environment. From the perspective of the CAX tool users, introduction of

the wrapper means adding some extra menu items or buttons within the existing tool

GUIs. Activating these menu items or buttons will further activate windows for the

users to browse design states and check-out/check-in design objects. From the

perspective of the system architecture, the wrapper is a specially written software layer

which intercepts and re-routes commands issued in the tool application environment to

call the services provided by the CAX framework kernel. The CAX tools can thus

communicate with the CAX framework kernel so as to be available on the Internet

bypassing the wrapper that is connected to the same interface as provided to the

workbench application (arrow 2 in Fig. 4.3).

The main challenge to implement a wrapper is to solve the relevant interoperability

problems between the different programming languages used by the wrapper and the

external application. In the current implementation test, the CAX tools were built on

top of AutoCAD® which provides application developers with an Application

Programming Interface (API) called ObjectARX®. ObjectARX® is a very powerful

C++ runtime extension programming environment which allows external applications

to execute operations on AutoCAD’s or the CAX tool’s data and monitor user

functions, such as ‘saving’ and ‘loading’ of designs. Written in C++ language, the

wrapper can call the methods in the CAX framework kernel, which is written in Java.

For example, this website, http://www.javaworld.com/javaworld/javatips/jw-javatip17-

Overview of the CAX Framework-based Integration Approach

 111

p2.html, has explained in detail the way to call Java methods from C++. Other types of

CAX tools if made to participate in a certain similar CAX framework can also use the

above wrapping technology. For example, the Pro/ENGINEER® CAD system

provides an API called Pro/DEVELOP®, which functions like the AutoCAD’s

ObjectARX®.

The tool wrapping mechanism allows the prototype implementation to be conducted

incrementally. The first step can temporarily overlook the procedure to physically

wrap the CAX tools to integrate them with the framework kernel, and uses the indirect

way to test the framework functions bypassing the workbench application and the local

disk. The second step is to incorporate the tools into the integrated environment

through the wrapper based on successful development of a CAX framework. By

isolating the development of the framework from that of the wrapper, the complexity

of the required effort is significantly decreased.

4.4.3. DBMS for the Management Database

Sharing the meta data which is common to a number of CAX tools is the basis of a

CAX framework-based engineering environment. It is expedient to use an OO

database management system (OODBMS) as the meta data storage system for several

reasons. Firstly, OODBMSs are well-suited for engineering applications due to their

rich modeling power through the concepts of classification, inheritance, generalization

and aggregation. Further, not only the state of the real world entities can be described

using the attributes, but also the behaviors using the methods in the class definition

(Ramakrishnan & Janaki 1996). Secondly, OODBMSs offer significant flexibility for

handling highly interrelated data of different granularities on which different types of

Overview of the CAX Framework-based Integration Approach

 112

access are performed. Thirdly, using OODBMS is in keeping with the OO nature of

the entire CAX framework design thereby ensuring consistency throughout the project.

The object management layer programmed in a certain programming language, such as

Java, can create, load, delete, and store objects and further invoke their methods

(Hanneghan et al., 1995, 1998).

A number of OODBMSs have been used as the basic component of some integrated

engineering environments. For example, OBST, an OODBMS freely available, has

been used for the repository support service in the CONCERT environment

(Hanneghan et al., 1995, 1998). In another example, ObjectStore® was chosen to

integrate concurrent design processes with respect to storing design data, sharing

design information, recording experience and increasing data reusability. Version

management and schema evolution on top of this OO database system were also

discussed (Hsiang et al., 1999). In another example, an OO database system, also

ObjectStore®, was used to store VRML (Virtual Reality Modeling Language) objects

so that they can be shared and updated by multiple users in real-time. Concurrency

control mechanisms of the system were utilized to deal with the concurrency issues

arising from simultaneous updates (Turgut et al., 2001).

Based on a thorough review of the standard OODBMS products which were

commercially or freely available, the current prototype implementation selected

ObjectStore® to store and manage the meta data in the CAX framework.

4.4.4. File Transfer

Overview of the CAX Framework-based Integration Approach

 113

In the CAX framework, the meta data transactions manage the operations on the

design data which are treated as large files with its own native data structure. Upon

execution of an operation, such as creation, update or removal of a design object, the

transfer of design object files takes place along with transfer of corresponding meta

data within a series of carefully sequenced procedures. Section 4.2 has shown an

approach to transfer meta data as parameters in RMI. This approach cannot be used for

the transfer of design objects because they are large files and the transaction time

associated with this may not be acceptable. One popular acceptable way to implement

file transfer between two distributed locations is to automatically invoke an ftp

operation external to RMI, simply using RMI as a notification mechanism. The

server’s computing work can then be reduced because the framework server can focus

on meta data operations. The disadvantage of this approach is the lack of code

portability and the need for an additional ftp server which further needs a common

directory to store the files “ftped” from the client, as well as the error log files created

by the file transfer procedure (Urban et al., 1999b). The current study uses a more

flexible and Java-compatible file transfer approach based on the CIFS (Common

Internet File System) (Leach & Perry 1996). jCIFS SMB* client library (Anonymous

1), which enables any Java application to remotely access shared files and directories

on SMB file servers (i.e., a Microsoft® Windows "share"), is used to develop Java-

based client applications. A small amount of customization operations on the server

side is needed given that the CIFS server is a built-in component in most Microsoft®

workstations. Since SMB file servers on UNIX systems are also available, this

approach is scalable to multiple computing operation platforms.

* SMB or Server Message Block protocol is the file-sharing protocol at the heart of CIFS and thus the

CIFS servers (clients) are also called SMB servers (clients).

Version Control and Configuration Management

 114

CHAPTER 5

VERSION CONTROL AND CONFIGURATION MANAGEMENT

Chapter 3 has identified a comprehensive set of characteristics for a feature-driven

engineering process. Chapter 4 designed a CAX framework-based network-integrated

engineering environment with the management database schema and the corresponding

user interface design being left open. From this chapter onwards, issues related to

filling these openings will be addressed. The final integration functions provided by

the developed engineering environment will be fully described. The most important

and challenging procedure involved is information modeling which would

comprehensively take into account the outcomes gained in Chapter 3. As explained

above, the information modeling process is performed incrementally. This chapter

focuses on the product data management aspect and a unique version control and

configuration management model for feature-driven engineering process is presented.

The next chapter focuses on process management aspects.

5.1. Version Control and Configuration Management Concepts

One of the main aims to integrate a range of engineering tools to form a coherent

environment is to offer a uniform repository in which all data are stored and shared

(Bounab & Godart 1998). Therefore, integrated engineering environments invariably

Version Control and Configuration Management

 115

involve dealing with the management of a large number of different kinds of design

objects created throughout the development life cycle. According to Chapter 2,

providing such a function is attributed to the PDM or data integration mechanism. The

main issues which are related are version control and configuration management. A

brief introduction for this concept is first presented next.

To make navigation easy, the tremendous amount of design data in the shared

repository must be organized along certain dimensions dependent on different

application contexts (Katz & Chang 1987). In general, all the data that describes the

same physical entity should be organized such that it can be treated as a collection and

the collections are in turn arranged into a hierarchy of directories. The state of a

complete design object hierarchy is referred to as a configuration. Fig. 5.1 shows an

Part 3

3D Strip Layout Model

Flat Pattern Feature Model

Progressive Die Design and Manufacture Project XXX
Product Feature Model
Flat Pattern

2D Flat Pattern Engineering Drawing

Die Operation

Die Configuration
Die configuration Feature Model
BOM sheets
Engineering Drawings

CAPP Group

Part 2
Part Feature Model
Part Process Plan
Part NC codes

Part 1
Part Feature Model
Part Process Plan
Part NC codes

... ...

Die Operation Feature Model

... ...

Fig. 5.1. Product configurations

Version Control and Configuration Management

 116

example of a product configuration for the design data structure involved in an

integrated progressive die design and manufacturing process. If all the data and the

configuration are of mono-version, the repository strictly maintains the latest state of

every design object and the configuration with the last state introduced by the user will

always replace the previous one. A network file system is probably sufficient to

implement the repository in this case and no special product data management

assistance is needed as long as the repository is accessible by distributed users and the

problem of write contradictions to the same documents is resolved.

However, the iterative and exploratory nature of the engineering process prompts the

designers to generate and experiment with multiple alternative descriptions of a design

before selecting one that satisfies the design requirements (Ahmed & Navathe 1991).

The configuration is also treated as a versioned object and more than one configuration

can coexist (Agrawal & Jagadish 1989). Selecting a version for each design object that

constitutes the configuration is referred to as configuration management which should

guarantee that the desired relationships such as “is-derived-from”, “is-a-component-of”

and “is-dependent-on” are correctly maintained. Most of the past versioning solutions

mainly concentrated on using certain references to correlate design object versions, as

well as configuration versions (Beech & Mahbod 1988; Ramakrishnan & Janaki 1996;

Miles et al., 2000; Carnduff & Goonetillake 2004). A reference to another version

from within one version is also called a binding, which can be further classified into

static and dynamic binding (Carnduff & Goonetillake 2004). Binding mechanisms are

successfully used to deal with derivation (between different versions of the same

design object) and composition relationships. However, few binding mechanism-

enabled versioning schemes capture design semantics such as a dependence of a

manufacturing representation on its upstream product definition. Some proposals

Version Control and Configuration Management

 117

(Baldwin & Chung 1995; Ramakrishnan & Janaki 1996; Westfechtel 2000) did

provide certain assistance in the management of design semantics-oriented dependence

relationships, but they provide no means to control the design change propagations

while comprehensively taking into account the design change propagation properties

inherent in the engineering processes. With the intention to overcome this deficiency,

the next section presents a special version and configuration management model

making the most of the identified characteristics of the feature-driven engineering

process (Chapter 3), especially in the aspect of design change propagation properties.

5.2. A Version Control and Configuration Management Model for Feature-driven

Engineering Processes

This section addresses the version control and configuration management issues

relevant to development of the product data management functions in the integrated

engineering environment for the feature-driven engineering process. There are some

existing solutions for some of these issues, and accordingly, they are adaptively

adopted in this study. For the other issues that are mainly resulted from incorporation

of the design change propagation properties presented in Chapter 3, special solutions

are developed.

5.2.1. Basic Concepts

The versioning model developed in this study makes use of some essential concepts

found in the database version approach (Ahmed & Navathe 1991) with respect to the

set-up of the basic version control and configuration management framework. Some

adaptations are made accordingly based on the identified design change propagation

properties. Design objects with organizational information including “structural

Version Control and Configuration Management

 118

objects” (Katz & Chang 1987) are managed by a multi-version database, which is

defined as a set of logically independent and identified database versions (DBVs) (Fig.

5.2). Each DBV contains an exact configuration consisting of one version of each

constituent object. Both the database version and the configuration version thus refer to

the same thing and both terms are used interchangeably here-in-below. Version control

both at the design object level and the configuration level is supported by a set of

operations on the DBVs. Formally and fundamentally, a DBV is defined as a tuple

composed of the DBV identifier and the set of versions of all the objects contained in

the multi-version database, one version per object (Ahmed & Navathe 1991). This

definition is further semantically augmented in this study to incorporate an additional

information element, called version annotations which are explained later.

The concept of database versions allows the use of another type of transactions

different from the design transactions discussed in Chapters 3 and Chapter 4. This type

of transactions, called configuration transactions, logically partitions arbitrary

operations on a set of database versions (not design objects) into atomic units of work

to transform each database version from a consistent state to another consistent state.

Database Version …

Version_ID

Version Annotations:
 Attributes:
 Is-a-descendent-of:

Launched-by:

A set of design object versions
……

Database Version 3

Version_ID

Version Annotations:
 Attributes:
 Is-a-descendent-of:

Launched-by:

A set of design object versions
……

Database Version 2

Version_ID

Version Annotations:
 Attributes:
 Is-a-descendent-of:

Launched-by:

A set of design object versions
……

Database Version 1

Version_ID

Version Annotations:
 Comments:
 Is-a-descendent-of:
 Launched-by:

The-set-of-resultant-design-
object-versions {……}

Fig. 5.2. Multi-version database as a set of database
i

Version Control and Configuration Management

 119

Incorporation of the configuration transaction concept makes the layered transaction

scheme discussed in Chapter 4 (page 100) consist of five layers respectively, tool

execution, project transaction, configuration transaction, design transaction and design

data operation. Each layer, apart from the uppermost one, is wrapped in the layer that

is immediately above it by two operations to initiate and terminate it. For example, the

project transaction wraps the configuration transactions, which further wrap the design

transactions. It is important to note that the Check-In action of a design transaction

may recursively refined by another versioning configuration transaction again (the

dashed box in Fig. 5.3). Some properties of the configuration transactions are

presented next.

Tool Execution

Initialize
 Project *
Transaction Terminate

Open Project

Open Configuration

Close Project

Close Configuration

Configuration *
Transaction

 Design *
Transaction

Fig. 5.3 Augmented layered transaction schema for handling engineering data
(developed based on Fig. 6.6 in Wolf(1994))

CheckOut CheckIn
Design Data *

Operation

Configuration
Transaction

Version Control and Configuration Management

 120

In the simplest case, a configuration transaction concerns one database version and

may be non-versioning or versioning. A non-versioning transaction queries or updates

a database version, causing it to evolve independently of the other database versions.

On the other hand, a versioning transaction creates a new database version from a

parent database version. A user operates on the multi-version database in the following

way. Firstly, he chooses a database version via the database version identifier, which

may be system-generated or manually specified by the user through a versioning

transaction at its creation time. When the database version is chosen, the user may

perform non-versioning transactions as if he works on a non-versioning database. The

system will automatically identify object versions belonging to the database version

chosen to provide desirable information to the users in relevant browsers or accept

proper updates issued by the users. The user or the user application may also perform a

versioning transaction to create a new (child) database version and then work on it. He

may further work simultaneously on several database versions, embedding operations

that are addressed to different database versions into a grouped transaction. The only

requirement is that this grouped transaction must transform all the database versions

accessed from one consistent state into another. To sum up, there are two levels of

operations on a multi-version database to control versions and configurations. At the

upper level, the user or the user application creates and deletes a specified database

version or configuration versions. At the lower level, he reads, writes, creates and

deletes a specified object in a specified database version representing a configuration.

5.2.2. Design Change Propagation Scope and Object Version Identification

In the course of the development of representations (design objects) involved in a

feature-driven engineering process, once a new design object version (causal version)

Version Control and Configuration Management

 121

is created, the changes made to the value of this object may require the value of some

other objects to be changed consequently due to the dependency relationships. New

versions (resultant versions) with the required resultant design changes being

incorporated have to be created. Additionally, there may be some design objects that

are not affected by the causal design changes and their new versions (unaffected

versions), if created to guarantee data integrity, carry values identical to the old ones

according to the design change property described in Chapter 3. The causal, resultant

and unaffected design object versions belonging to a configuration should be correctly

aggregated to form a new configuration version (or DBV). There are basically two

versioning approaches to accomplish this aggregation process.

To understand these two versioning approaches, consider an imaginary feature-driven

feature process generating configurations that can be viewed as the variants of a

configuration template shown in Fig. 5.4(a). In this figure, square objects d and e are

structural objects, which have only object identifiers. Circular objects a, b and c are

physical design objects, which have an object identifier and a value. e is composed of a

and d, which is further composed of b and c. c is dependent on b, which is further

dependent on a.

In the most popular versioning approach, the bottom-up approach (Westfechtel 2000),

is used, the configuration is treated as a composite object, a new version of which is

created in a bottom-up way beginning from the creation of the leaf component object

versions (Fig. 5.4(b)). Supposing there is a given set of object versions a1, b1 and c1

that are mutually consistent to belong to a configuration Con, a change made to a1

leads to generation of object versions a2 directly and b2 indirectly. c in not affected by

Version Control and Configuration Management

 122

this change and no object version c2 is generated. All object versions a1, a2, b1, b2

and c1 are put into an uncontrolled version pool, from which Con1 and Con2 are

constructed by manually selecting corresponding object versions through a binding

process to define the desired composition and dependence relationships. Specifically,

the new configuration version Con2 is defined to be composed of a2, b2 and c1.

Further, c1 is dependent on b2, which is further dependent on a2 in this Con2. All

these composition and dependence relationships are specified using explicit references

to associate the interrelated object versions (Westfechtel 2000). The main drawback of

this bottom-up approach is that the operations required can be cumbersome and error-

prone, especially for a complex feature-driven engineering process with many

unaffected versions, which may recursively inherit value from upper-level unaffected

versions.

In order to overcome the deficiency of this bottom-up approach, the DBV approach

controls the configurations in a top-down means (Fig. 5.4(c)). Before the entire object

versions constituting a configuration are physically created with a valid value, the

configuration version is created, or more precisely “pre-created”, in advance by a

versioning transaction with a nil value being assigned to each constituent object

version. The object versions are then read and updated with a valid value through non-

c b

a'

b'

a

e

a
d

b c

(a) Configuration
template (b) Bottom-up approach (c) Basic DBV approach

a1

a2

b1

b2

c1

Version Pool

Con1 Con2 Con1 Con2

eq.

Fig. 5.4. Comparison of two versioning approaches

Version Control and Configuration Management

 123

versioning transactions. Compared with the bottom-up approach, no explicit

component object versions are created outside the control of the configuration versions

using the DBV approach. The template (or a set of configuration rules in the broad

sense) allows the structure of a new configuration version to be created before all its

constituent objects are created with a physical value. It is the subsequent “value

assignment” process, not the binding process, to make e.g. Con2 completely

constructed in a way to perform all the desired value changes (a a', b b' and c

unchanged) compared to Con1. However, due to the existence of the unaffected

versions in a configuration version, versions of the same object contained in different

database versions may have identical values. If the relevant object versions are copied

each time to create a new configuration version, large data redundancy will occur. An

ideal way is to let the relevant object value be physically shared by several

configuration versions. In this case, not all object versions can be uniquely denoted by

a pair: its object name and a new version number distinct from its old one. A special

mechanism is required to correctly associate the database version identifiers with its

constituent object version identifiers when a new database version is created. Ahmed

& Navathe (1991) used a set of dedicated database version stamps to construct the

database version in such a way that it is possible to identify all the database version’s

ancestors. However, this approach only dealt with the identification problem in the

presence of composition relationships without taking into account the dependence

relationships. Further, the identifier resolution process is still comparatively complex.

An augmented DBV approach is then proposed in this study to extensively exploit the

design change propagation properties of the feature-driven engineering process. The

key of this approach is the introduction of a special set of version annotation attributes

Version Control and Configuration Management

 124

for each configuration version to capture the change propagation semantics. With the

help of the version annotations, the configuration versions can be easily constructed

without data redundancy and all the constituent object versions with their values can be

easily identified and accessed.

In a feature-driven engineering process, the underlying motivation to launch a new

configuration version is to react to the design changes made to one of the constituent

design objects between its new and old versions. Consider a simple feature-driven

engineering process (Fig. 5.5) which contains five tasks to generate five design objects,

A, B, C, D and E, respectively. E is dependent on D which is recursively dependent on

C till A. While working on a configuration version Vi, the user intends to try an

alternative of C and create a new version of C. Immediately after starting the operation

to create the new version C, the creation of the new configuration version Vi+1

containing this new version of C is launched. Creation of new version C is successful

only in the case that the configuration version Vi+1 is correctly “pre-created”. In the

course of constructing the configuration version Vi+1, the user explicitly declares the

new version for object C as the causal version. He then makes a decision on the design

B
Vi-1

A C D E

Vi

Vi+1

Causal object version

Resultant object version

Unaffected object version

Dependence relationship

Version evolution

Fig. 5.5 Design change propagation scope and object version identification

Version Control and Configuration Management

 125

change propagation scope that the evolution of C will cause. In this case, objects B and

D should make a resultant design change. He declares the versions of these two objects

as resultant versions in the new configuration version. All the design object versions

have no independent version numbers. They are uniquely identified by a pair: their

object name identifiers and the version number of the configuration version to which

they belong. In this way, the interdependent design objects evolve in phase to migrate

from one version state to a new version state. All these information about the causal

and resultant design object versions in the new configuration version is stored as the

value of the annotation attributes, “Launched-by” and “The-set-of-resultant-design-

object-versions” respectively. For the unaffected object versions, no explicit records

are given to them, because they can be automatically identified by the information

stored in the annotation attributes. Firstly, all other object versions apart from the

causal and resultant versions are deemed as unaffected object versions. No “pre-

creation” of new versions for these objects is needed and their values are identical to

that of the same objects in their parent configurations which are identified by another

annotation attribute, “Is-a-decedent-of”. For example, the values of objects A and E in

configuration version Vi+1 are identical to the counterparts in configuration version Vi.

These value inheritance relationships may be recursive, like the way the object A

behaves: its value in configuration version Vi is inherited from a further upper level

ancestor in configuration version Vi-1. Once an operation needs to retrieve the real

value, a simple resolution procedure is called to locate the original object version with

a valid value according to its object name, the current configuration version it belongs

to and further the value of its attribute “Is-a-decedent-of”.

Version Control and Configuration Management

 126

In the example above, the dependence relationships do not need to be explicitly

defined and stored in the management database. The laborious construction process is

avoided to associate interdependent object versions with a set of references every time

to create a new configuration version. Supports to the control of the dependence

relationships are implemented in the computation logic layer which co-functions with

another sub-system in the entire engineering environment to perform process

management. The detail of this sub-system is depicted in next chapter. Simply put, for

every configuration version, a dynamic design flow is configured to trace the tasks that

have been done, the tasks that are at working and the tasks that are permitted or

expected to come out next, using the interdependence knowledge.

To implement this versioning strategy for the control of design change propagation in a

feature-driven engineering process, the configuration version (database version) is only

required to be instanced with a special identifier from a class type containing

dedicatedly defined version annotation attributes. The identifier of the configuration

version is bound to a unique version number to identify itself and all its constituent

design object versions which have no independent version number. The annotation

attributes store adequate information to identify the unaffected object versions which

are not explicitly replicated to avoid data redundancy.

5.2.3. Control of Configuration Version Creation

The end-user has full control on the configuration version creation, but in an indirect

way. The root configuration version is pre-created when a new project is created. The

subsequent configuration versions are created in the interim to create a new design

object version. The relationship between the project, configuration version and design

Version Control and Configuration Management

 127

object version is illustrated in Fig. 5.6. According to the design change propagation

properties, some design objects are not allowed to proactively undergo design changes

because they are always automatically derived from upstream design descriptions. To

implement this constraint in the management system, a special attribute, IsProactive is

incorporated into the generic design object class (Fig. 5.6). The value of this attribute

is predefined in the system during system development based on the engineering

process knowledge. The inheritance property ensures every instance design object

version carries this attribute.

Creating a new configuration version (excluding the root configuration version) is

performed in the following way (see Fig. 5.7). When the user or an engineering

application requests through the wrapper an update to a design object in the shared

repository, there are two possibilities. Firstly, if the value of the IsProactive attribute is

true, there are two options for the end-user to select: either overwriting the previous

version, or creating a new version. Further, if he selects overwriting the previous

version, no new version for this design object, as well as for the configuration version,

is created; if he selects creating a new version, before a new version of this design

1…*

1…*

1

1

Project

DesignObjectVersion

GenericDesignObject

IsProactive: Boolean

ConfigurationVersion

<<Version Annotations>>

Is-composed-of

Is-a-type-of

Fig. 5.6. Information structures and the IsProactive attribute

Version Control and Configuration Management

 128

object is created, a new configuration version containing this design object version is

firstly created. Secondly, if the value of the IsProactive attribute is false, creation of a

new version for this design object is prohibited and only a direct overwrite operation is

permitted.

The next section shows a set of operations on the configuration versions and design

object versions to support the maintenance of data consistency and integrity with

arbitrary design change causes. To emphasize again, as a result of the comprehensive

consideration of the design change propagation properties deliberately identified, the

implementation to control the design change propagation is quite straightforward and

the system developed accordingly is easy to operate.

5.3. Specification of Operations

In this section, the methodological issues about the required version control and

configuration management operations on the management database are discussed.

Basically, the operations can be grouped into three categories: operations on projects,

operations on configurations or configuration versions and operations on design

objects or design object versions. They can also be classified into simple or complex

true

Prepare to update a design object version

IsProactive?

Create new version?

Create a new configuration version

false

true
false

Overwrite

Fig. 5.7 The computation logic to control creation of configuration version

Version Control and Configuration Management

 129

operations. One simple operation contains exactly one query to the database. On the

other hand, one complex operation may contain multiple queries. As stated, simple

operations on configuration versions are performed by versioning transaction and

simple operations on design object versions are performed by non-versioning

transaction. Similarly, simple operations on the projects are performed by project

transactions. Complex operations may be performed by a group of different types of

transactions which are adequately nested.

Table 5.1. Operations on projects, configurations and design objects
List of operations

Category
Simple operations Complex operations

Operations on projects Open, Close, Delete, Rename Create, Import, Export

Operations on configurations Delete, Reconfigure Make-All-Inclusive

Operations on design objects Delete, Check-Out Check-In

5.3.1. Operations on Projects

The Open, Close, Delete and Rename operations are all simple and the roles they take

are self-explanatory. Other three operations on a project are explained in detail in the

following.

• Create

A project has a set of attributes and may contain one or many configuration versions

(Fig. 5.4). The Create operation defines all the attributes of a newly created project.

Further, an empty root configuration version or an imported configuration version is

initialized in the project container. In the case of initialization with an empty version,

the constituent object versions belonging to the configuration version are pre-created

with nil values. The object versions are then updated in the standard way using the

Version Control and Configuration Management

 130

non-versioning transactions. In the case of initialization with an imported configuration,

the pre-created configuration is imported from other projects instead of a newly

created one. The Import operation on projects is invoked implicitly.

• Import and Export

After the initialization of a project, the newly created root configuration version may

be explicitly overwritten by the Import operation internally or the Export operation

externally. Specifically, the Import operation copies a full configuration version used

in another project into the current project to replace the existing root configuration

version. Likewise, the Export operation copies a full configuration version used in a

current project into another project. The configuration version imported or exported

should be all-inclusive (see below). Consequently, the Make-All-Inclusive operation

will be invoked implicitly if unaffected versions with implicit values exist in the

configuration version to be imported or exported.

5.3.2. Operations on Configurations

There are only a few types of explicit operations on configurations. This is because

some operations on configurations are performed in the complex operations on projects

or design objects. For example, the creation of root configuration versions is

performed inside the project creation operation and the creation of subsequent

configuration versions is performed inside the design object creation operation.

Deletion of a configuration version is attributed to the Delete operation. Two other

operations are explained in detail in the following.

• Reconfigure

Version Control and Configuration Management

 131

The Reconfigure operation is a simple operation and is used to edit the properties of a

configuration version except the root configuration version, especially the annotation

attributes. It provides a way to modify the design change propagation scope after the

initial definition. In another words, it allows redefinition of the composition of a

configuration version in terms of declaration of the causal object versions, resultant

object versions and unaffected object versions contained in the configuration version.

• Make-All-Inclusive

In a configuration version, only the causal and resultant object versions are explicitly

recorded by a physical value which is identified by its object ID and the corresponding

configuration version number. The unaffected object versions are actually not

explicitly included in the configuration version. Retrieval of the values of these object

versions would need a dynamic translation of the relevant implicit information into

explicit representations. This is not convenient in some cases when the user wants to

browse in between the constituent object versions of a configuration or make group

copy/check-out operation. Therefore, it is sometimes desirable to perform a collection

of translation operations on all unaffected object versions in one turn to make them all

explicitly and permanently represented by a static valid value like the casual and

resultant object versions. The Make-All-Inclusive operation is responsible for this

function. Upon executing this operation, the normal dynamic translation process is no

longer required when retrieving the unaffected object versions next time. The Make-

All-Inclusive operation is a complex operation, since it may recursively execute a set of

versioning and non-versioning transactions.

5.3.3. Operations on Design Objects

Version Control and Configuration Management

 132

Operations on design objects support the design transaction model depicted in Chapter

3 and the augmented layered transaction schema depicted in section 5.2.1. It may

involve operations on the configuration version the corresponding design object

version belongs to. This has been explained in section 5.2. In brief, three compact

operations are used by the end user to explicitly operate on the design object versions

while the configuration versions may be affected meanwhile.

• Delete

To delete an object in a particular configuration version, it is sufficient to update it

with the nil value.

• Check-Out

To physically check-out a design object version belonging to a configuration version,

its value must be identified and retrieved. This is presented in section 5.2.2. The actual

Check-Out operation may be required to be executed within a group, and Check-out of

this group of design objects bring on a set of virtual Check-In operations and virtual

Check-Out operations (see section 3.4.3).

• Check-In

The check-in operation is one of the most important operations to implement the

proposed versioning and configuration scheme. It can only be allowed when the

IsProactive attribute is true. By a successful Check-In operation, the modified design

object may be returned to create a new version or simply overwrite its former value.

This has been presented in section 5.2.3.

Version Control and Configuration Management

 133

5.4. Application of the Proposed Model in the Integrated Progressive Die Design

and Manufacturing Engineering Environment

This section shows how the proposed version control and configuration management

model can be applied to the progressive die design and manufacturing processes to

offer desirable version control and design change propagation management assistance.

The composition template of a progressive die design and manufacturing project has

been shown in Fig. 5.1. All the corresponding dependence relationships involved have

been illustrated in Fig. 3.7. A sample versioning scenario is used to elaborate how the

desirable versioning control and design change propagation support is achieved on a

computer-based platform via performing corresponding operations defined above. In

this scenario, the basic product design and manufacturing solution (Con1) is expected

to spawn three tentative alternatives (Con2, Con3 and Con4 respectively) corresponding

to three original design changes made to three different constituent design objects in

Con1. Fig. 5.8 shows the configuration version derivation graph which has three

version branches corresponding to three versioning steps which are detailed in the

following. Thorough understanding of this case study needs some progressive die

design and manufacturing process knowledge which can be found in references (Cheok

& Nee 1998a, b; Jiang et al., 2000; Zhang et al., 2002; Cheok 1998; Lee et al., 1993.)

• Versioning step 1: propagation of a design change to generate Con2 from Con1

Con1

Con2 Con3 Con4

Fig. 5.8 The configuration VDG for the example scenario

Version Control and Configuration Management

 134

This is a slight change made to the product design or the Product-Feature-Model

(PFM). Specifically, angle α1 is changed to α2, as shown in Fig. 5.9. This will prompt

a new version of PFM and further, a new configuration version coexistent with the old

ones. Suppose the initial Product-Feature-Model version is PFM. The check-in of

new version PFM' causes change propagation. New configuration version Con2 is

spawned to incorporate PFM'. Since the change on the product definition will affect all

other design objects, the design change propagation scope in this case expands the

whole configuration and there is no unaffected version. The attribute value of the “pre-

created” Con2 will be: “Is-a-descendent-of” = Con1; “Launched-by” = PFM; The-

set-of-resultant-design-object-versions” = {FP, FPD, DO, SL, ……}. The initial value

of the “pre-created” design object versions in Con2 apart from PFM' are all nil. After

Con2 is successfully “pre-created”, a new dynamic design flow is generated for this

configuration version to assist the user to trace the check-out of the tasks to be done

and check-in of them when they have been done through non-versioning transactions.

The detailed operation sequence for this versioning step is shown as follows:

① Check-in a PFM
② Update / Create a new version? – Create a new version.
③Create a new configuration version, initialize its annotation attributes and the
constituent design objects with nil value or imported values
④ Select a design object from the dynamic design flow browser for Check-out
⑤ Work on the design object in the work-space
⑥ Check-in the work-done design object for update
⑦ Repeat steps ④-⑥

Version Control and Configuration Management

 135

• Versioning step 2: propagation of a design change to generate Con3 from Con1

This is a design change made to Die-Operation-Feature-Model (DO). Under normal

circumstances, the particular iterative process to generate Die-Operation-Feature-

Model (DO) from Flat-Pattern-Feature-Model (FP) only involves the stamping

process planning or strip layout (nesting and staging) without consideration of the

placement of the punch on punch plate. The resulted DO is only a guess and tentative

for confirmation by incorporating constraints which become explicit till to the next

design stage. This will cause many tentative alternatives, potentially regarded as

versions, most of which are only valid within the current design stage. In an integrated

intelligent die design system like the IPD system (Jiang et al., 2000), the strip layout

design process also includes the design of the shape of the upper body of the punch by

adding some additional information such as insert parameters, relieves, etc., into the

die operation feature model (see also section 3.2.1). This makes localized punch

…

Initial causal version PFM Initial configuration version Con1

New configuration version Con2 New causal version PFM΄

…

Design change propagation scope Legend: See Fig. 5.5

Fig. 5.9. Step 1 in the scenario: generating Con2 launched by a design change on
Product-Feature-Model

α1

α2

Version Control and Configuration Management

 136

contour constraints when staging the stamping operations. The version explosion

problem is thus avoided by the users’ local iteration to eliminate unaccepted solutions

immediately. If the use or disuse of an alternative still cannot be decided even having

considered the contour constraints, it is a real case to embrace two or more versions of

DO with respect to the entire configuration. In this case, only after almost all design

objects consistent with an alternative in the entire configuration are generated, can the

user make the last decision to to use or disuse this alternative. Fig. 5.10 shows the way

to explore such kind of alternative corresponding to a design change adopting a new

piercing sequence plan and thus updating the value of the Die-Operation-Feature

Model version from DO to DO´. The check-in of DO´ causes change propagation. New

configuration version Con3 is spawned to incorporate DO´. Since the change on DO

will only affect all downwards design objects and not the upwards design objects, the

design change propagation scope in this case covers all the design objects directly or

indirectly dependent on DO. The attribute value of the “pre-created” Con3 will be:

“Is-a-descendent-of” = Con1; “Launched-by” = DO; The-set-of-resultant-design-

object-versions” = {DC, DB, DW, P1FM, P2FM, P3FM, P4FM, ……}. All design

object versions other than the causal and the resultant ones are unaffected versions.

After Con3 is successfully “pre-created”, a new dynamic design flow is generated for

this configuration version to trace the check-out of the tasks to be done and check-in of

them when they are done through non-versioning transactions. The detailed operation

sequence for this versioning step is shown as follows:

① Check-in a DO
② Update / Create a new version? – Create a new version.
③Create a new configuration version, initialize its annotation attributes and the
constituent design objects with nil value or imported values
④ Select a design object from the dynamic design flow browser for Check-out
⑤ Work on the design object in the work-space

Version Control and Configuration Management

 137

⑥ Check-in the work-done design object for update
⑦ Repeat steps ④-⑥

• Versioning step 3: propagation of a design change to generate Con4 from Con1

This is a design change made to the shape of a notching punch on the strip layout to

help save the costs of making the die. It so happens that this modification will affect

the external profile of the flat pattern and hence the actual product. A new version of

this notching punch feature model and a further new configuration version consisting

of a corresponding new product design will be generated so that the die designer can

discuss the effect of these changes with the product designer. Suppose the initial

feature model for the notching punch is P4FM (Part4-Feature-Model). The designer

tries to widen the slat of the punch so that the corresponding wing of the stamped-

product is shrunken, i.e., distance d1 is changed to d2 (Fig. 5.11). Since P4FM is

automatically derived from its upstream design description, the Die-Configuration-

…

Initial configuration version Con1

New configuration version Con3

New version DO΄ as a causal version …
Design change propagation scopeLegend: See Fig.5.5

Fig. 5.10. Step 2 in the scenario: generating Con3 launched by a design change on Die-
Operation-Feature-Model

Initial version DO

Cutting sequence
plan is changed

Version Control and Configuration Management

 138

Feature-Model (DC), and further the Die-Operation-Feature-Model (DO), it is not

allowed to proactively perform design changes. Creation of new version of P4FM does

not begin from a check-in operation on P4FM as in step 1 or step 2, but in an indirect

way through a modification to DO and then DC, which then generates the desired new

P4FM version P4FM´. The check-in of the modified DO´ causes change propagation.

New configuration version Con4 is spawned to incorporate DO´, DC´ and P4FM´. The

change on DO in this case will affect all upwards design objects as well as partial

downwards design objects: most of the relevant part feature models (except P4FM and

some plates in the die structure), as well as the corresponding part process plans and

part NC code documents may not be affected by this design change. Therefore, the

design change propagation scope in this case covers all the upwards design objects and

partial downwards design objects. The attribute value of the “pre-created” Con4 will be:

“Is-a-descendent-of” = Con1; “Launched-by” = DO; The-set-of-resultant-design-

object-versions” = {PFM, FP, FPD, DO, SL, DB, DW, P1FM, P4FM, ……}. All design

object versions other than the causal and the resultant ones such as P2FM, P3FM, are

unaffected versions. After Con4 is successfully “pre-created”, a new dynamic design

flow is generated for this configuration version to trace the check-out of the tasks to be

done and check-in of them when they are done through non-versioning transactions.

The detailed operation sequence for this versioning step is shown as follows:

 (Decide to try a modification to a notching punch P4FM)
 ① Check-out Die-Configuration-Feature-Model DO
② Edit DO to DO ´ so that the desired P4FM´ can be achieved
③ Check-in DO ´
④ Update / Create a new version? – Create a new version.
⑤ Create a new configuration version, initialize its annotation attributes and the
constituent design objects with nil value or imported values
⑥ Automatically generate DC ´, and further P4FM´, P1FM´, P5FM´, etc. from DO ´ to
replace DC, P4FM, P1FM, P5FM, etc.

Version Control and Configuration Management

 139

⑦ Select a design object from the dynamic design flow browser for Check-out
⑧ Work on the design object in the work-space
⑨ Check-in the work-done design object for update
⑩ Repeat steps ⑦-⑨

• Summary

The above versioning scenario consisting of three steps is used to demonstrate the

normal operations involved. In real circumstances, some other operations discussed in

the previous section, such as “Reconfigure”, “Delete”, etc., may also be involved. It

should be pointed out that the proposed version control and configuration model has

attempted to be considered as theoretically comprehensive as possible. It can cover all

possible cases which may occur in the progressive die design and manufacturing

process. Furthermore, not only is the mechanism applicable to the progressive die

design and manufacturing process, but it can also be geared to other types of feature-

driven processes, such as the integrated product and mould design and manufacturing

processes, the integrated product and fixture design and manufacturing processes, etc.

…
Design change propagation scope (excluding the 〇 objects)

…

The shape of the initial notching
punch P4FM

Initial configuration version Con1

New configuration version Con4

The shape of the new notching
punch P4FM´

Legend: See Fig. 5.5

Fig. 5.11. Step 3 in the scenario: generating Con4 launched by a design change on Part4-
Feature-Model

d1

d2

Version Control and Configuration Management

 140

5.5. Towards a Comprehensive Information Model and a Full-fledged GUI

Design

Section 5.2.3 has shown the information structure for management of configuration

and versioning with the emphasis to reveal the relationships between the project,

configuration and design object. Clearly, this information structure only reflects a

small part of the information requirements for the whole CAX framework-based

network-integrated engineering environment. To derive a comprehensive data schema,

other important issues that need to be considered include logical distribution of design

data and design activities, design transactions and run-time information management,

engineering process management, etc. The main method used to derive this data

schema contains the components of perception, representation and validation while the

modeling process is incremental. Different aspects of the engineering environment are

expected to be specially addressed and represented in the overall data schema through

a procedure of gradual refinement. To make the presentation concise, the

comprehensive information model is only presented once in the next chapter after the

process management issue is addressed.

Similarly, a full-fledged GUI design is also only presented once in the next chapter

after the process management operations become clear like the configuration

management and versioning control operations depicted above.

Engineering Process Management

 141

CHAPTER 6

ENGINEERING PROCESS MANAGEMENT

Based on process decomposition, analysis and re-engineering, Chapter 3 has presented

a first order approximation of the engineering process representation, a IDEF0 activity

model. However, the IDEF0 activity model is only a static snapshot of the engineering

process and further efforts are needed to develop an implemental model which can be

incorporated into the CAX framework to provide process management support. This

chapter presents a process management mechanism and addresses multiple process

management issues especially in the aspect of process modelling. A comprehensive

data schema is derived while taking into account the information requirements for

process management, as well as other functions such as configuration and versioning

management presented in the previous chapter. Validation of the data schema and the

system behaviour is carried out through examining the sequence diagram for a typical

use case. A full-fledged GUI is designed and some experimental results working on the

prototype system through this GUI are reported to demonstrate the effectiveness of the

proposed CAX framework-based integration approach.

6.1. A Process Management Mechanism Based on Design Flow Configuration

Engineering Process Management

 142

A network-integrated engineering environment is expected to be much more than the

incorporation of a platform on top of which a couple of tools can be tied together. On

the other hand, many integration-flavored functions shared by the participating tools

can be available to assist the end-users. Examples of such functions are product data

management (data-centric integration) and process management (process-centric

integration). Up to the previous chapter, only product data management functions are

addressed without exceeding the concerns of the traditional data-centric integration

approach. The limitation of the data-centric integration approach is that the end-users

have to assume full responsibility for work-flow control, data consistency, integrity,

maintenance and inter-process coordination and cooperation, generally without

computer augmentation (Jeng & Eastman 1999). This section presents an advanced

integration approach which is both data- and process-centric and allows an expanding

set of system capabilities that off-load engineers from some of the above

responsibilities and complexity.

6.1.1. Overview

If described in terms of a state-space model, the behaviour of a computer-supported

engineering process can be represented by the following equations in terms of discrete

functions:

))(u),(x(f)(x nnn =+1 (6.1)

))(x(h)(y nn = (6.2)

where)1(+nx and)(nx denote the global design state at time 1+n and n,

)(nu denotes design operator through the user interface,)(ny denotes the external

appearance of the design state in the user interface window.

Engineering Process Management

 143

The state-space model dictates that an integrated engineering environment may assist

the end-user in four aspects:

• Design tracking: keeps track of the state of the design and the design history—

maintain the state sequence)(nx in the integration infrastructure. All the tasks involved

in the activity model are no longer treated individually and in an isolated way. Instead,

a full picture about the progress of the whole project is captured in a certain way to

make explicit what needs to be done throughout the process and what has been done so

far. The engineering tools integrated into the infrastructure, as well as the end-users,

may be informed about or control the migration of the design state.

• Design state browse: provides facilities that allow the design engineer to browse in

a highly convenient way through the administered state of design—realize

function (.)h to obtain a virtualized output)(ny . Not only is the design state informed

to the end-users, but also in an intuitive way.

• Process execution guidance: supports the design engineer in efficiently executing

design activities—provide implications of the desired)(nu at any moment during the

process execution course. This assistance is probably mixed with the second aspect.

Given that the integration infrastructure is “aware” of the state of design and is aware

of possible ways of transforming this state of design to a new state, then it can advise

the design engineer on tasks to perform next.

Engineering Process Management

 144

• Constraint enforcement: permits constraints on the design process to be defined

and enforced—exploit the process knowledge related to state transformation

function f(.) to assist the end-users. At any moment in between the starting and the

ending point of an engineering process, a very knowledgeable integration system will

allow only runs of tools for which valid input data is present, and support the design

engineer by indicating which tools can and should be run. This helps to make the

design process less error-prone and to improve productivity.

All these potential engineering process management functions can be realized in the

CAX framework-based process integration environment (Fig. 4.4). The mechanism is

related to a set of interrelated techniques around a concept of design flow configuration.

A design flow is a description of a design process in terms of design activities and

temporal data, and control dependencies between design activities. In the CAX

framework kernel, both the design flow configuration information and its run time

information are maintained. The configuration information is defined based on the

process knowledge, one possible description form of which is the IDEF0 activity

model. As a template defining placeholders for actual data, the design flow

configuration is defined before the actual engineering process is started and relatively

stable. The run time information is updated continuously in the course of the

engineering process. It “colours” the template design flow by filling the placeholders

with actual data items consumed and produced during actual tool runs.

There are three ways to define a design flow configuration. In the case of well-

structured processes, the design flow is both predicted and repeated and can be

described precisely. Therefore, the corresponding design flow configuration logic can

Engineering Process Management

 145

be predefined in the framework either within the kernel or the workbench application.

No operations on the design flow configuration are opened to the end-users. In the case

of unstructured processes, they are executed in a spontaneous and rather ad hoc

manner (often called ad hoc workflows in the literature on workflow management

(Dellen et al., 1997)). Comprehensive facilities need to be provided by the framework

to the end-users to configure a design flow from scratch using primitives defined by a

higher level meta process model or design flow templates. Located in the middle of the

spectrum is the semi-structured process. Some parts can be precisely described by

process fragments while others are determined by the creativity of the end-users. In the

example case of the progressive die design and manufacturing process, it is almost a

completely structured process apart from the design flow configuration of the CAPP

(Computer-Aided Process Planning) tasks. The tasks for every progressive die part in

need of performing CAPP are identical, but the number and the specific parts with an

identifier cannot be pre-determined in advance until the die configuration task is

finished. One possible way is to directly acquire this information through access to the

internal of the feature-based progressive die description model. However, the

framework is only allowed to access the meta data and this direct way should be

avoided. Therefore, while a basic design flow can be presented to the end-users at the

start of the process, it needs to be refined dynamically by small interventions. In the

simplest case, the interventions can be done manually by the end-users through an

interface within the workbench application. In the complex case, it can be done

automatically by the workbench application which can identify those die parts in need

of performing CAPP. The mechanism is like this: After the die configuration task is

performed, a feature-based description for every die plate and punch is generated and

stored in the shared repository in the form of a file. The meta data information

Engineering Process Management

 146

corresponding to these files is exactly the required information to configure the design

flow for CAPP tasks. Therefore, the workbench application can query the meta data

database to acquire the required information to refine the design flow configuration

dynamically. While the structured and semi-structured process can be defined with the

exactly required resources towards a compact system, they can also be viewed as an

unstructured process towards a more generic and flexible system.

With the design flow configuration and run time information maintained in the

framework kernel, the domain neutral workbench application provides facilities to

virtualize the design flow in a flow browser. The virtualization method used by the

flow browser is termed flow colouring (ten Bosch et al., 1993): presenting the intricate

relationships among tools and design objects in an intuitive way and further tracking

the activities generating these design objects in the context of four possible lifecycle

states respectively: “not ready”, “ready”, “done”, and “active” (see next sections). The

flow browser permits the end-user to interact with a coloured design flow. It presents

information about the structure and status of the design in an attractive and

comprehensive way to the end-user. It also offers convenient means to navigate

through the available information, to explore the state of design. That is, it makes the

advanced process management services available to the end-users.

6.1.2. Process Representation

The first step to implement the above process management mechanism into the CAX

framework-based network-integrated engineering environment is to develop an

appropriate process representation which can be integrated into the management

database data schema. At the highest level of abstraction, an engineering process is a

Engineering Process Management

 147

design flow which may consist of sub-flows. Further, a design flow must be modelled

to offer constructs to describe engineering activities and dependencies between them.

In generic sense, the design flow model for a feature-driven engineering process with

three possible types of tools (i.e., automatic, semi-automatic and manual, see Chapter 3)

involved can be derived from a meta process model shown in Fig. 6.1. This model is

read as in the following. Design Flow is a general term for referring to a representation

for the overall process or any levels of sub-process. It has a recursive definition and the

leaf construct is Activity, i.e., the Activity IS-A Design Flow. The links between design

activities and/or sub-flows are all captured in the Precedence Relationship class which

is a tuple of Current (design) Flow and Preceding (design) Flow. The Activity has

consumed and produced Design Objects. Its “state” attribute gets the following values:

{“not ready”, “ready”, “done”, and “active”} which are somewhat self-explanatory.

0..*

SubFlow

Produced Consumed

PrecedingFlow CurrentFlow

DesignFlow

Activity
Name:
Tool:
State:

PrecedenceRelationship

DesignObject

Fig. 6.1. A meta process model for feature-driven engineering process

Engineering Process Management

 148

The key constructs of the above generic design flow model are illustrated by the

example compound design flow F1 in Fig.6.1. F1 has a sub-flow F2. Activity A1 and

A2 are F1’s subtype instances. Activity A3 and A4 are F2’s subtype instances. At the

sub-flow level, A1 is before A2 which is before F2. This is represented by PR1 and

PR2. At the activity level, A2 is further refined with precedence both before A3 and A4

while A3 and A4 can be concurrent. This is represented by PR3 and PR4. With

appropriate methods defined in Design Flow class, definition of F1 can be transmitted

from sub-flow level (diagram (b)) to activity level (diagram(c)) dynamically. In other

words, the compound design flow F1 can either be in the form of (b) or (C). This

simple example is helpful for understanding the nature of the progressive die design

and manufacturing process which includes a CAPP sub-process that is unable to be

decomposed to the activity level until certain information is available.

PR1={C=(F1)A2; P=(F1)A1}

PR2={C=F2; P=(F1)A2}

PR3={C=(F2)A3; P=(F1)A2}

PR4={C=(F2)A4; P=(F1)A2}

C: Current Flow
P: Preceding Flow
PR: Precedence Relationship

(F1)A2 means Activity A2 is the child of
DesignFlow F1.

PR1
PR3

PR4

A1 A2

A3

A4

F1
F2

PR2

Fig. 6.2. Example compound design flow containing two activities
and a sub-flow

PR1
A1 A2

F1

F2
PR2

(a)

PR1 PR3

PR4
A1 A2

A3

A4

F1

(b) (c)

Engineering Process Management

 149

6.1.3. The Process Execution Engine

The next essential step to implement the process management mechanism is to define

the process execution engine. Basically, process execution involves traversing the

activity precedence graph subject to: (a) precedence relationships among activities; (b)

user actions; (c) resource availability (i.e., tool, network-connection availability). The

execution algorithm checks constraints at two levels:

• First level: State transition for each activity involved. For example, activity state is

transited from “not ready” to “ready” when its predecessors are complete.

• Second level: State transition for the process or sub-processes. For example, a sub-

process can be transited from “black-box” state to “white box” state when this sub-

process can be recursively decomposed to activity level so that the user can be

instantly informed with the tasks to be done in detail through the design flow

browser.

Physically, the process execution engine is located in the CAX framework kernel, or

specifically, the Data and Process Management Kernel (Fig. 4.1). It monitors the user

actions and the engineering tools’ interactions with the framework kernel, and makes

the corresponding modifications on the run-time representation of design flow

configuration persistently stored in the meta data database. Definition of the process

execution engine is closely pertinent to the ways to define the design flow

configuration which carries the semantics of the activity precedence relationships.

From the viewpoint of process execution engine, the three process definition ways

viewing a process as unstructured, structured and semi-structured respectively, both

have advantages and drawbacks.

Engineering Process Management

 150

If viewed as unstructured, the design flow configuration is defined through a process

configuration engine before it is “executed”. After definition, the design flow

configuration information is stored in the meta data database and will be loaded into

the process execution engine at run time. It is possible for the already-defined design

flow configuration to be redefined or adapted after it has been executed for a while

according to the current process status. Therefore, a real-world engineering process

may alternatively experience a process definition turn and a process execution turn.

One advantage of this way is that the CAX framework can be adaptively configured

for different application contexts once it is developed. Another advantage is its self-

adaptability in the run-time. The drawback of this way is its system complexity which

requires more system development effort.

If viewed as structured, the design flow configuration is hard-coded into the process

execution engine. This way sacrifices flexibility and adaptability of the developed

system, but saves system development efforts. Representing the dependence

relationships into the data schema is unnecessary because the execution engine has this

knowledge. Only isolated Activities need to be modeled in the data schema and the

execution engine can automatically determine the precedence relationship between two

activities according to their identifiers. The process execution algorithm is only

relevant to the constraints at the first level. Process modeling becomes simplified, and

so does the system implementation. Of course, the prerequisite to use this way is that

the process itself is structured.

Engineering Process Management

 151

For the semi-structured progressive die design and manufacturing process focused in

this study, some compromises were made between the above two ends. A full-featured

process configuration engine is unnecessary and the process execution engine is

equipped with almost all relevant process knowledge. Further, a special class is

defined in the data schema at the sub-design flow level to make the process execution

engine have some limited ability to reconfigure the design flow during the process

execution course. The details of this aspect are presented in next section in which a

comprehensive data schema is derived from the information requirements both for

process management and other relevant functions addressed in the previous chapters.

6.2. A Comprehensive Information Model

According to the generic meta process model shown in Fig. 6.1, the definition of an

engineering process involves an information entity of Design Object which is also

encapsulated in the product data management model (Fig. 5.6, Chapter 5). According

to Chapter 3, there should be a few common information entities representing run-time

information for the CAX framework to maintain meta data—design data consistency,

so that advanced product data management and process management services can be

provided. It is therefore probably the right time at this moment to wrap-up all these

dispersed information requirements together to derive a comprehensive meta data

schema while refining the meta process model to a specific one for the progressive die

design and manufacturing process. With this model, not only the process management

mechanism, but also the version control and configuration management mechanism as

well, is further revealed and validated from a global information structure view.

Engineering Process Management

 152

Fig. 6.3 shows the developed model with UML (Unified Modeling Language) notation

(Fowler & Scott 1997). This model also goes beyond the meta data schema layer and

further embraces the framework kernel application classes which operate on the meta

data. Specifically, white classes in Fig. 6.3 are framework kernel application classes

which are transient; that is, they are internal to the application's memory. Shaded

classes represent the meta data schema and are persistence capable; that is, instances of

them are stored in the ObjectStore® database.

The collection of the transient classes and their relationships is a refinement of the

component architecture (Fig. 4.2 in Chapter 4). The “ProjectManagerSever” class

implements the behavior of a remote “ProjectManager” interface and runs on the

server as a remote service. The remote interface is also implemented by a class running

on the client as a proxy for the remote service. The “ProjectManagerClient” makes

method calls on the proxy object. RMI sends this request to the remote JVM, and

forwards it to the implementation. Any return values provided by the implementation

are sent back to the proxy and then to the client's program. Functionally, the

“ProjectManagerServer” controls user access, authentication, session management,

and access to the meta data in the database. It has a number of methods, each of which

executes a meta data transaction in the ObjectStore® DBMS. The

“ProjectManagerClient” class corresponds to a daemon in the client machine and

makes the framework services available for workbench GUI and CAX tool wrappers.

It correctly sequences the meta data operations and design data operations, the latter of

which are performed by the “DesignDataHandler” class also on the client side.

Engineering Process Management

 153

<<RMI>>

Produced

Consumed 7
0..*

0..*

subHierarchy

1..*

1..*

allProjects

DesignTransaction

complMode:

addDesignTran()

RunningDesignTran

date:
accMode:

addRunDesTran()
removeRunDesTran()

Hierarchy

addSubhierarchy()
removeSubHier()
addDesignObject()
removeDesignOb()

DesignObject

name:
isProactive:

setIsProactive()

DesignObjectVersion

data:
physicalLocation:

setPhysicalLocation()

Activity

activityStatus:
tool:
isAutomatic

setActivityStatus()

DesignFlow

addCAPPSubflow()
removeCAPPSubflow()

CAPPSubflow

addActivity()

Project

projectID:

createConfiguration()
deleteconfiguration()
reConfiguration()
makeAllInclusive()

ProjectManagerClient

getHierchy()
getDesignFlow()
checkOut()
checkIn()
groupCheckIn()

DesignDataHandler

read()
write()
setLock()
removeLock()

3rd Part jCIFS
Client Library

Workbench GUI
&

CAX Tools

ProjectManagerSever

initialize()
createProject()
removeProject()
isLocked()
setDesignObVal()
setActivityStatus()

ConfigurationVersion

versionNumber:

initialize()
addRunningDesignTran()
removeRunDesTran()
addDesignTran()

3

Fig. 6.3. A comprehensive information model for the example implementation

0..*

Engineering Process Management

 154

Two dotted lines in Fig. 6.3 divide the shaded meta data schema into three main parts,

the run-time part in the left, the product data management part in the middle and the

design flow management part on the right.

The run-time part consists of two classes and defines the structure of the run-time

information that is maintained to keep track of the design transactions performed to

change the state of design. The “RunningDesignTran” class defines the running design

transaction in which the corresponding design object is checked-out but not checked-in

yet. A “lock” is thus applied on this design object in the shared repository to prevent

unmanaged overwrites. After the running design transaction is successfully committed

with a check-in operation, the corresponding “RunningDesignTran” object is

destructed, the lock is removed, and another object instantiated from the

“DesignTransaction” class is constructed in the database to record this committed

design transaction. A virtual check-in has the same effect as a physical check-in in this

course. The “DesignTransaction” class extends the “RunningDesignTran” class with

an additional attribute “complMode” to indicate whether the design transaction is

successful or failed. Failed design transaction does not destruct the corresponding

“RunningDesignTran” object. The “accMode” attribute in “RunningDesignTran” class

indicates whether the access mode is read-write or read-only. If it is read-only,

successful check-out of the design object will immediately trigger a corresponding

virtual check-in, and drive this running design transaction to be successfully

committed. The design transaction group handled at the higher operation level is

finally decomposed into individual design transactions represented by these two class

objects. With the help of the run-time part information structure, the CAX framework

Engineering Process Management

 155

can maintain the consistency between the meta data and design data. This is the basis

for support of product data management and process management.

The product data management part defines the structure of the information that is

maintained by the data management services. The central object type is

“DesignObject”. As a refinement of the information structure shown in Fig. 5.6, all the

versioning control and configuration management semantics presented in Chapter 5 is

supported. Exceptionally, an object type of “Hierarchy” is highlighted in the middle

between the “ConfigurationVersion” class and the “DesignObject” class to further

depicts the configuration management semantics. A hierarchy may have multiple sub-

hierarchies and the leaf in the hierarchy is design objects. With the help of this

“Hierarchy” class, design objects in a configuration are organized into a hierarchy like

what is shown in Fig. 5.1. The operations on the “Hierarchy” object are equivalent to a

sequence of bindings by which the composite object refers to its constituents (Carnduff

& Goonetillake 2004). Due to the feature-driven engineering process being well-

structured, the “binding” process can be designed very easily. Firstly, it is applied on

generic design objects rather than individual design object versions, so it is of dynamic

binding and can be performed automatically. Secondly, only in two occasions are the

Hierarchy generation operations required. The first occasion occurs when a new

“ConfigurationVersion” object is created and almost all the constituents shown in Fig.

5.1 in the hierarchy are determinate apart from the CAPP group. This is because how

many parts with corresponding IDs in the die structure need to perform CAPP tasks is

still unknown. The “initialize()” method in “ConfigurationVersion” class is responsible

for this operation. The second occasion occurs when the above information is available

and the internal structure for the CAPP group is then generated. The

Engineering Process Management

 156

“addSubHierarchy()” and the “addDesignOb()” method will be invoked for this

operation. After the hierarchy is created, the design object versions in the hierarchy

are firstly “pre-created” with nil value and then updated with physical value but the

“Hierarchy” object itself is relatively static.

The design flow management part defines the structure of the design flow information

and the corresponding run-time information that is maintained by the process

management services. The central object type is “Activity”. As a refinement of the

information structure shown in Fig. 6.1, the generic process management semantics

presented above is exactly supported while the classes in the current information

structure are re-defined in lower abstract level. This is because the properties of the

example progressive die design and manufacturing process have been incorporated

into the refined model to make the information structure more specific. Each

“DesignFlow” object is now concretely defined to belong to a “ConfigurationVersion”

object and no recursive representation for its hierarchy is applied. On the other hand, a

design flow is fixedly defined as a two-level composition, i.e., a design flow has seven

activities and zero to n CAPP sub-flows, each of which has three further activities. No

precedence relationship between activities or sub-flows is captured in this model,

because the user applications have been designed to be equipped with such knowledge

and can decide the precedence relationships between two relevant activities as long as

they are identified. Similar to the product data management part, only in two occasions

are the operations on the design flow configuration required. The first occasion occurs

when a new “ConfigurationVersion” object is created and all the seven constituent

activities in the first level are defined with the containers for CAPP sub-flows empty

because how many parts with corresponding IDs are in the die structure is still

Engineering Process Management

 157

unknown. The “initialize()” method in “ConfigurationVersion” class is responsible for

this operation. The virtualized design flow after this initialization is shown in Fig. 6.4

(a). The second occasion occurs when the above information is available and all the

CAPP sub-flows are then defined with three activities in each. The

“addCAPPSubflow()” method is invoked for this definition operation. The initial

design flow represented by Fig. 6.4(a) is then changed to a new one represented by Fig.

6.4(b). After the design flow is configured, “execution” of the process will update the

“activityStatus” attribute accordingly.

Note that the information structure in Fig. 6.3 is defined in the way that the process

management is performed on top of the product data management which is further

performed on top of the run-time design transaction management. The “Activity” class

which has “Consumed” and “Produced” “DesignObjects” is responsible for bridging

CAPP
Sub-Flow

Group

Fig. 6.4. The design flow before (a) and after (b) the CAPP sub-flow is defined

1 2 4

3 5

6

7

1 2 4

3 5

6

7

P1
1

P1
2

P1
3

…

P2
1

P2
2

P2
3

P3
1

P3
2

P3
3

(b)

(a)

Task List

1. Generate product feature model

2. Generate flat pattern feature model

3. Generate flat pattern engineering
drawings

4. Generate die operation feature model

5. Generate 3-D strip layout model

6. Generate die configuration feature
model

7. Generate 3D die models, die BOM
&engineering drawings

Pn/1. Generate part_n feature model

Pn/2. Generate part_n process plan

Pn/3. Generate part_n NC code
documents

Engineering Process Management

 158

the product data management part and the process management part. The dependence

relationships between “DesignObjectVersions” in a configuration version are derived

from that between “DesignObjects” and the later is determined by the activity

precedence relationships. Therefore, no such semantics need to be explicitly captured

in the information model and further the versioning and configuration management is

orthogonal to these dependence relationships owing to the advantages of the database

version approach (see Chapter 5).

6.3. Two UML Sequence Diagrams Highlighting the Basic Process Management

Functionality

The comprehensive information model shown in previous section defines the meta data

schema and provides a static information structure view for the entire system in terms

of relevant object types and their relationships. Both the product data management and

process management mechanisms are enabled and manifested by this model. To make

the defined system more robust, it is usually desirable to examine its internal behaviour

and dynamics to trace the sequence of reactions that achieve the specific purposes. One

of reasonable ways is to check up all the main operations involved like in the previous

chapter where the key is to define individual operations and the interactions between

the live objects within the system can be easily recognized from this operation

specification. Once the process management functions are involved, however,

operations on an object at a certain level are always conducted in the context of a net

of complicated interactions with others. It is found that the best way to understand the

dynamics in this aspect is to use a formal behaviour modelling technology like the

UML sequence diagrams (Fowler & Scott 1997). As such, this section presents two

UML diagrams to describe the interactions that occur during two typical process

Engineering Process Management

 159

execution scenarios, with one being simplistic and the other being complex due to the

involvement of automatically refining the process configuration dynamically (Fig. 6.5

and Fig. 6.6). From this diagram, it can also make clear what happens in the meta

database and design database corresponding to the changes made on the design state in

the course of a process execution.

Engineering Process Management

 160

5.4.2: setActivityStatus

5.4.1: addrunningDesignTran

:ProjectManagerClient

1.1: initialize
1: openProject

ClientGUI

:DesignDataHandler

:ProjectManagerServer

:RunningDesignTran

:DesignTran

:Activity

:DesignObjectVersion

1.2: getProjects

2.1: getConfig
2: viewConfig

3.1: getHierarchy
3: viewHierarchy

4.1: getDesignFlow
4: viewDesignFlow

5.1: getPhysLoc
5: checkOut

5.2: read

5.3: setLock

5.4: checkOut

5.1.1: getPhysLoc

5.1: getPhysLoc

6.2.2: setActivityStatus

6.2.1: removeRunDesignTran

6.1: getRunDesignTran 6: checkIn

6.2: checkIn

6.2.3: addDesignTran

5.2: removeLock
5.1.1: getPhysLoc

5.3:write

6.1.1: getRunDesignTran

Fig. 6.5. A UML sequence diagram highlighting process management functionality
(simple design transaction case)

Engineering Process Management

 161

Fig. 6.5 shows the process execution logic when a simple design transaction is

performed. In this scenario, the user opens a project, navigates the project space to a

specific product configuration version, views the design objects already generated in

the hierarchy and the design state in the design flow browser, finds out the task ready

to perform—a half-done task 4 “Generate die operation feature model” (see Fig. 6.4),

checks-out the corresponding half-done “die operation feature model” design object,

after finishing design, checks-in this design object back to the shared product database.

One of important methods in this operation sequence directly relevant to process

management support is “getDesignFlow” initiated by a “ProjectManagemerClient”

object to retrieve the activity (with corresponding activity status) structure of the

design flow belonging to certain configuration version. With this query result, the

design flow browser renders an intuitive “coloured” design flow. The user can then

easily decide what to do next. Another important method in this aspect is

“setActivtyStatus”, which is invoked to change the activity status in the course to

complete the “checkOut” and “checkIn” operations. All invocations to the methods

belonging to objects located on the server side should at first pass a

“ProjectManagerServer” object which implements a remote interface as a part of the

RMI mechanism. The “checkOut” and the “checkIn” operations trigger a sequence of

other corresponding operations following the rules defined in Chapter 4 to maintain the

meta data /design data consistency. Since the “checkOut” and the “checkIn” operations

bracket a simple design transaction, a running design transaction is added into the meta

database when the design object is checked-out to prevent uncontrolled write. When

the corresponding design object is checked-in, a completed design transaction is added

into the meta database while the above running design transaction is removed. Note

that the design transaction record is monotonously added without remove.

Engineering Process Management

 162

2.1: getRunDesignTran

ClientGUI

1.3.2: setActivityStatus

1.3.1: addrunningDesignTran

:ProjectManagerClient :DesignDataHandler :ProjectManagerServer

:DesignObjectVersion:DesignTran :Activity

:CAPPSubflow

1.1: getDirectory
1: groupCheckOut

1.2: setDirectoryLock

1.3: checkOut

1.1.1: getDirectory

2.2: getDirectory

2.7.3: *[for each] setDirectory

2.7.1: removeRunDesignTran

2: groupCheckIn

2.7: groupCheckIn

2.7.2: addDesignTran

2.3: removeDirectoryLock

2.2.1: getDirectory

2.4: clearDirectory

:DesignFlow

:Hierarchy

2.1.1: getRunDesignTran

2.5: *[for each]createSubDirectory

2.6: *[for each] write

:RunningDesignTran

2.7.4: *[for each] setPhysLoc
2.7.5: clearCAPPSubflow
2.7.6: *[for each]addCAPPSubflow
2.7.6: *[3]addActivity

2.7.6: *[for each] setActivityStatus

Fig. 6.6. A UML sequence diagram highlighting process management functionality (complex design transaction case)

Engineering Process Management

 163

Fig. 6.6 shows the process execution logic when a complex design transaction is

performed. In this scenario, the user has finished tasks 4 and 5 listed in Fig. 6.4 and

begins to perform tasks 6 and 7 and all the first tasks for each CAPP group task. All

these tasks are performed automatically by an intelligent engineering tool in one turn

after the user checks out the die operation model into the working memory. A design

transaction bracketed by a physical check-out and a virtual check-in of the consumed

design object and a design transaction group bracketed by virtual check-out and

physical check-in of the produced design objects are involved in this scenario

according to the design transaction model defined in Chapter 3. Since the design

transaction on the consumed design object is equivalent to a read-only check-out,

operations to perform this design transaction are simplistic and they are not reflected in

the diagram. Therefore, only operations related to the design transaction group on the

produced design objects are depicted in the diagram. The operations begin from a

virtual “groupCheckOut” method invocation once the user push a button in the design

tool to begin to automatically perform tasks 6 and 7 and others. It is a virtual one

because no corresponding design objects are physically checked-out by this operation

which only sets locks on them and makes relevant changes on mete data to maintain

consistency with the design data. The virtual “groupCheckIn” operation begins from

retrieval of running design transaction records to guarantee the corresponding running

design transaction existent there. It then removes the directory lock and clear former

contents in the directory. Sub-directories with constituent design objects in the form of

Fig. 5.1 are created in the shared design object repository. Only after the operations on

design data are finished, will the operations on meta data begin through invocation of

another “groupCheckIn” method belonging to the “ProjectManagerServer” object.

These operations include removal of the running design transaction and creation of

Engineering Process Management

 164

design transaction record, setting of relevant pointers pointing to the physical locations

of the sub-directories and design objects and most importantly, reconfiguration of the

CAPP sub-flow group with corresponding activity status set. If the CAPP sub-flow

group is empty at first, the above operations make a change from what is shown in Fig.

6.4(a) to what in (b). If it is not empty at first, the change is from one type to another

type of what is shown in Fig. 6.4(b) with different contents of CAPP sub-flows. The

corresponding activity statuses are finally set to complete the “groupCheckIn”

operation.

It should be noted that the operations involved in the above two scenarios occur within

the same product configuration version and thus are all non-versioning according to

Chapter 5. It is possible that the check-in operation may result in a versioning

transaction to create a new configuration version depending on the user’s option. This

aspect of semantics is intentionally neglected due to space limit.

Workbench GUI Design and Some Experiment Results

 165

CHAPTER 7

WORKBENCH GUI DESIGN AND SOME EXPERIMENTAL RESULTS

Using the CAX framework approach, a prototype system of a network-integrated

feature-driven engineering environment for the progressive die design and

manufacturing process has been developed in this study. This chapter gives some look-

and-feels about what the system eventually comes into view in front of the end-users.

A full-fledged workbench GUI designed to make the internal functionalities

approachable is described and some experimental results working on the prototype

system through this GUI are reported to further demonstrate the effectiveness of the

proposed CAX framework integration approach.

7.1. The Scope of the Demonstration Session

It is impossible, and probably also unnecessary to carry out all implementation details

to offer a full-featured physical software system for the purpose of proof-of-concept.

Therefore, the prototype system developed in the current study does not intend to

reveal all the potential capabilities of the theory presented above. On the other hand,

only those distinct from other counter-systems using different integration approaches

are selected as the implementation blue print. Especially, emphasis is put on

development of the workbench GUI because this GUI offers an interface to access

Workbench GUI Design and Some Experiment Results

 166

almost all the significant functionalities attributed to the proposed integration approach.

A non-trivial demonstration session running on this GUI was worked out to

demonstrate the system capabilities as well as to provide a vehicle to give a feel of the

manner how the system works internally. Since the workbench GUI functions as the

control panel of the CAX framework which is located at the middle layer between the

engineering tools and the global repository, the launch of this application also activates

a daemon which intercepts requests from the engineering tools. Therefore, as

envisioned in the final industrialized version of this prototype, executions of some

most important functions like check-in and check-out are often originally fired within

the engineering tools GUI, not the workbench GUI. However, the workbench GUI also

offers a channel to perform these functions provided that the corresponding documents

generated by engineering tools are available (this is called flexible, multi-perspective

entry to the engineering process (Madni & Madni 1997)). If these functions work well

in the workbench GUI, it is easy to make them finally work in the engineering tools

GUI through wrappers (see Chapter 4). Hence, it is reasonable for this demonstration

session to be all inclusive in the workbench GUI. Similarly, measures were also taken

to simplify the running logic underlying the GUI. Some components may be

temporarily absent or replaced with alternatives. They are individually experimented in

isolation and expected to be encompassed into the full system at the commercialization

development stage. For example, the RMI mechanism has been studied with simple

examples but not physically encapsulated in the system which enables the

demonstration session. Instead, only a local OODB is used to support the

demonstration. In this way, the response latency due to network communication when

fine-tuning the prototype is avoided and the effectiveness of the result is not affected.

This procedure was also applied to the experiment on the jCIFS protocol.

Workbench GUI Design and Some Experiment Results

 167

After the above measures were taken, the main concerns of this study were made to

avoid being diffused by secondary topics but constantly focused on the novel

methodologies. In particular, the demonstration session aims to demonstrate:

• Product configuration and engineering process definition as well as its verification.

For any progressive die design and manufacturing projects, the product

configuration and process activity structure should comply with some common rules

with respect to the composition relationship, activity precedence relationship and

design object dependence relationship. Given that this knowledge has been captured,

the context-sensitive product configuration hierarchy and design flow controlled by

such rules were defined and made virtualized for verification.

• Control of product evolution. In one progressive die design and manufacturing

lifecycle, the project is required to be controlled to generate multiple versions at the

configuration level and each version evolves from initialization to finalization.

• Virtualization of design state transition (at the document level) along with the

product evolution. The evolution of the product is thus perceived intuitively through

execution of the workbench application.

• Complete version control and configuration management support. The operations,

the specification of which is based on the versioning model presented in Chapter 5,

are finally linked to one or a set of mouse or key input actions.

• Control of design change propagation scope. As a part of the version and

configuration management functionality, this special issue is highlighted in the

demonstration session.

Workbench GUI Design and Some Experiment Results

 168

• Dynamic design flow configuration. The CAPP sub-flow is automatically configured

in the way presented in Chapter 6, once the framework kernel is informed with

relevant information.

• Process execution tracking. Design flow coloring techniques are used to differentiate

various states for each constituent activity and thus convey the progress of an

executing engineering process to the end-users.

• Application of context-sensitive constraints for executing process. For example,

certain operations may not be allowed or may be alerted with important hints before

they are performed. Note that not all possible constraints have been explored, and

only a few of typical ones are exemplified in the demonstration session.

• Scalability to incorporate general distribution support services. User authentication,

off-line work mode support, data replication and other distribution-relevant issues

were only superficially demonstrated in the demonstration session.

7.2. Description of the Results for the Principal Demonstration Steps

The developed demonstration session is composed of the following principal steps:

• Application launch, user authentication and work mode selection

The demonstration application was written in Java and developed within the Borland

Software Corporation’s JBuilder® environment. After launching the run command, the

first window shown to the user allows him to log into the system (Fig. 7.1). If the input

personal information is not correct or the network connection is not ready, a re-login

request window from which working-on-local-repository (off-line) mode can be

selected comes out (Fig. 7.2). When the user enters the main working window either in

the on-line or off-line mode, he can change between these two working modes

alternatively through pushing one of two buttons in the lower part of the window (Fig.

Workbench GUI Design and Some Experiment Results

 169

7.3). Note that the underlying logic to support the user authentication and work-mode

selection was not implemented because the former is purely a mundane software

coding effort and the latter is relevant to application of the persistent cache technology

(Wang et al., 2004) which is out of the scope of this research.

• Location of a project to view its constituent configuration versions

Fig. 7.1. The snapshot of the user authentication window

Fig. 7.2. The snapshot of the authentication failing alert window

Fig. 7.3. Selection of On-line or Off-line work-mode

Workbench GUI Design and Some Experiment Results

 170

Upon entering the main working window, the entries to all the projects managed by the

framework kernel is presented to the user for the location of a project to perform

related operations on projects. Some control logic is shown below. If no project is

selected, all operations apart from the operation New which means creating a new

project are disabled (Fig. 7.4). Only one project is permitted to be selected and once it

is selected, apart from the Close operations, all others are enabled (Fig. 7.4). After the

project is opened with the Open operation, selection of a project is disabled and the

project selection record is fixed on the one already selected to alert the user which

project is currently opened; the Close operation is enabled and the Open and Delete

operations are disabled (Fig. 7.5).

• Location of a configuration version to view its detailed project progress state

Once a project is selected to open, the main working window is broken down to two

windows: the project window and the configuration version window. If no

configuration version is selected, all operations are disabled (Fig. 7.5). Only one

configuration version is permitted to be selected and once it is selected, apart from the

Fig. 7.4. Locate a project

Workbench GUI Design and Some Experiment Results

 171

Close View operations, all others are enabled (Fig. 7.5). After the configuration version

is opened by the View Status operation, in the configuration version window, selection

of a configuration version is disabled and the configuration version selection record is

fixed on the one already selected to alert the user which configuration is currently

opened; the Close View operation is enabled and the View Status and Delete operations

are disabled; in the project window, the Close operation is also disabled until the Close

View operation is performed on the opened configuration version (Fig. 7.6). Note that

there is no operation on creation of a new configuration version. This is because such

an operation is performed implicitly within the operation on new design object version

creation which is in turn within the design object Check-in operation.

 Fig. 7.5 Locate a configuration version

Workbench GUI Design and Some Experiment Results

 172

• Launch of the design flow window and the composition hierarchy window

Once a configuration version is opened by a View Status operation, the working

window is enriched with another two most important windows: the design flow

window in lower-left corner and composition hierarchy window in the right side (Fig.

7.7). The design flow window is deigned for visualizing the design flow status. It

consists two parts: the annotation and viewing control panel and the view port to

render the 2D design flow drawing. Specific tasks (activities) are represented by

numbers when rendering so as to keep the drawing neat. The drawing consists of nodes

representing a design activity and directional lines representing the precedence

relationship. The nodes is “coloured” into any one of four patterns representing four

types of activity status. In order to obtain the best virtualization effect, the drawing

can be panned and zoomed and the node can be moved and resized. Further, the

control panel can be hidden to allow more space for drawing rendering. The

composition hierarchy window is designed for visualizing the project composition and

progress status in terms of design objects (versions). It is also used to receive users’

operations on design objects, especially the check-in and check-out operations to drive

Fig. 7.6 Open a configuration version to view its running design flow and
composition hierarchy

Workbench GUI Design and Some Experiment Results

 173

the engineering process to evolve. The structural design objects correspond to no

physical documents. They are used as directory to reflect the composition relationships.

The physical design objects are also “coloured” to differentiate between causal,

unchanged, pre-created resultant and updated resultant design object versions. The

operations are activated through a pop-up menu attached to a selected design object.

The Check-in menu item has two branches to make it further refined whether it will

create a new version or simply overwrite the old value. For the design objects with the

IsProactive attribute (see Chapter 5) being false, such as the Die Configuration

Feature Model, the Create New Version operation is always disabled.

Workbench GUI Design and Some Experiment Results

 174

Fig. 7.7. C
om

position of the overall w
orking w

indow

Workbench GUI Design and Some Experiment Results

 175

• Simulation of the evolvement of a configuration version

The configuration version under simulation is V3.0 belonging to Project3. Its causal

design object is Product Feature Model. All other design objects are resultant design

objects which are pre-created with nil value at first and then updated via non-

versioning transaction. The simulation begins from an intermediate state at which the

Flat Pattern Feature Model and Flat Pattern Engineering Drawing have been finished

and the activity 4 “Create die operation feature model” is ready for performing. The

simulation result is summarized in Table 7.1.

Table 7.1 Evolvement of a configuration version
Sequence

No.
Operation on Name of the

operation
Changes occurring in

the Design Flow
Changes Occurring in

the Hierarchy

1 Die Operation
Feature Model Check-Out

--

2 Die Operation
Feature Model

Check-In …
Update

for
Die Operation
Feature Model

3 3D Strip
Layout Model

Check-In …
Update

for
3D Strip Layout

Model

• Grouped check-in and configuring design flow dynamically

With the evolvement of the selected configuration version, when it comes to the point

to check-in the Die Configuration Feature Model, this means that the die design tool

begins automatically configuring the progressive die, and a range of documents are

generated. According to the augmented design transaction model presented in Chapter

3, these documents should be checked-in in a group. So when a check-in operation is

performed upon the Die Configuration Feature Model, a dialogue window springs out

to alert the user to make sure it is ready for performing such an operation (Fig. 7.8).

After it is confirmed, the condition for refinement of the CAPP sub-flow is satisfied, it

then extends to the activity level. Correspondingly, the hierarchy is also made to

Workbench GUI Design and Some Experiment Results

 176

incorporate all the CAPP documents with the Part Feature Models being generated by

the current operation and others being pre-created with nil value (Fig. 7.9).

Fig. 7.8. The grouped check-in alert dialog

Fig. 7.9. Design state change caused by a grouped check-in

Workbench GUI Design and Some Experiment Results

 177

• Concurrently performing multiple CAPP engineering activities

When the configuration version evolves to the stage of performing CAPP activities,

many components are involved, but the design tasks for each component are identical,

and further, the activity group for one component is independent of that for other

components. Fig. 7.10 shows the design state after a couple of check-out/check-in

operations from the above design state. Two engineering activities are concurrently

performed at this design state.

• Creation of a new configuration version

Suppose right at the above design state, an engineer (may be different from those

working on CAPP tasks) comes up with a new idea to try an alternative for the strip

layout design and makes a decision to generate a new version of Die Operation Feature

Model. This needs to firstly check-out the Die Operation Feature Model, make certain

modifications, and then check it back into the global repository to create a new version.

When performing check-out, no changes occur apart from that on activity 4, the state

Fig. 7.10. A design state at which two activities are concurrently performed

Workbench GUI Design and Some Experiment Results

 178

of which is transited from “done” to “active”. When performing check-in, before a new

version for this design object is created, a new configuration version is created through

a window shown in Fig. 7.11. After the user input required information for the coming

new configuration version, such as its version ID, its unchanged and resultant design

object versions, a new configuration version is created, which can be observed in the

configuration version window where a new configuration version record identified by

the ID input a moment ago is added. The design state in terms of running design flow

and composition hierarchy for this newly created configuration version is shown in Fig.

7.12.

Fig. 7.11 Creation of a new configuration version

Workbench GUI Design and Some Experiment Results

 179

7.3. Discussions

7.3.1. Evaluation

The research prototype developed in this study was primarily employed for

demonstration sessions. It is not a complete system implementation but focuses on

what can be expected in the user interface and what novel capabilities can be reaped

from the corresponding fully-specified system. Moreover, it is intended to be replaced

by a stable and comprehensive system in the future. However, this does not mean that

these capabilities are pending. On the other hand, they should be considered as

determinative with adequate confidence since the system specification in the aspect of

data structure and operation sequence has been evaluated by the proven UML models.

Eventually realizing a comprehensive system is mainly a matter of time because the

system specifications and the UML models have been developed in this study. The

current prototype has about 4,000 lines of codes excluding adaptive reuse of about

40,000 lines of open-source codes for virtualization of the design flow. It is estimated

that the number of the lines of codes for the complete system may be of several times

of the current one.

Fig. 7.12. The newly created configuration version

Workbench GUI Design and Some Experiment Results

 180

The GUI design itself is also significant since the design state information maintained

in the framework kernel will become useless if it is not adequately virtualized in the

user interface. Process management assistance firstly means intuitively informing the

user about the design state so that he can avoid loss of track in the process and can

immediately perform what is exactly required to be done at the moment with all

required resources available. The demonstration session described above may be able

to strengthen this statement.

Even if the complete system is achieved finally, it is still difficult to obtain reasonably

justified statements such as “introduction of the management system x has improved

our productivity by y percent” (Westfechtel 2000). Therefore, evaluation based on the

examination of the individual system capabilities instead of waiting for comprehensive

experiment results in the field is probably the only option that can be adopted to

demonstrate the effectiveness of methodology. The following paragraph summarizes

the system capabilities in supporting concurrent engineering and presents some

additional predictable capabilities which is not demonstrated in the demonstration

session but can be obtained with relatively uncomplicated efforts.

7.3.2. Concurrent Engineering Support

Section 7.2 has depicted the way the system supports performing multiple CAPP

engineering activities concurrently. This only reflects one aspect relevant to such

capabilities as assisting the execution of the CE strategy. Another two aspects include:

Workbench GUI Design and Some Experiment Results

 181

• Facilitating information sharing and exchanging. All the product development

results-related information including that for the intermediate premature versions is

stored in the global repository and can be easily retrieved. This allows the maximum

extent of concurrency among different development activities in a predictive way

based on the information available and the down-stream engineering activities may

be launched in advance without unnecessarily waiting for the release of the decisive

design.

• Facilitating concurrent performance of engineering activities belonging to different

configuration versions. Because the versioning scheme is set at the configuration

level, this logically makes the works on one configuration version to be relatively

independent of that on another. Therefore, several engineers may be allotted to work

on a number of different versions simultaneously in a controlled way. The

achievement of an optimum solution based on comparing multiple alternatives may

come earlier than the current practice which has no similar versioning control and

configuration management support.

7.3.3. Further Predictable Capabilities

Based on the ideas gained from the study performed by researchers such as Madni &

Madni (1997), the current system has the potential to be equipped with capabilities

such as:

• Creation and update of project progress reports

In the engineering practice, an engineer may often be required to produce a progress

report urgently by some persons at a higher managerial level. He then consults relevant

Workbench GUI Design and Some Experiment Results

 182

design members and collects relevant information dispersed in different places. After

the report comes to the person who is calling for it, he may just say, “OK”, and then

glances over the report and may shelf the report casually, without knowing where it

has been kept. Yet the designer may be required to repeat the same work patiently

again and again. The current system has good potential in relieving the engineers from

such mal-practices. Since almost all the relevant information has been maintained in

the global repository, creation of progress reports may be realized by just a push of a

button and some small additional effort on refining the draft automatically generated

by the system.

• Replay of design and process history

For running an engineering process, even for a sign-off project, it is possible to replay

the whole design process history to show how the current state is reached from

initiation. This is probably especially important for training novice engineers.

• Recovery from engineering process “breakdowns”

For some reasons, for example, if a key engineer in a project leaves the company, an

engineering process may be interrupted suddenly. The current system can help the

recovery of the halted process easily by re-allotting the role to a replacement engineer,

provided that the management role is added. The newly appointed engineer can be

easily updated with the knowledge about the history and the current state of the

process as if he has been participating in the project from the beginning.

• Context-sensitive designer guidance

Workbench GUI Design and Some Experiment Results

 183

The above paragraphs have shown context-sensitive constraints which prevent the

users from performing error-prone operations. Similarly, context-sensitive designer

guidance can be added to the current system. This handy guidance should outperform

the use of a thick design manual.

Conclusions

 184

CHAPTER 8

CONCLUSIONS

The extensive capability of a widely-known system integration approach centered on a

CAD framework for EDA has driven this study to use an analogous approach centered

on a CAX framework for developing network-integrated engineering environments in

the area of manufacturing engineering. This chapter concludes the study that has been

presented and discussed in this thesis.

8.1. Research Contributions and Discussions

To sum up, the main contributions of this study include:

• Comprehensively characterizing the feature-driven engineering process, a promising

area to apply the CAX framework approach. This has been regarded as the starting

point to develop a network-integrated engineering environment, which explicitly

takes into account the characteristics identified. These characteristics themselves are

significant in many other aspects. For example, the identified characteristics

reflecting the model-model relationships between two interdependent step-processes

in terms of equations (3.5) and (3.6) can be expansively exploited. They can improve

the understanding why design automation is possible, what is the limit of design

automation and how to design mechanisms to implement design automation or

design change propagation automation.

Conclusions

 185

• Development of an integration architecture based on the CAX framework approach.

By adaptively using the concepts and principles found in the CAD framework

approach, the architecture is incrementally built up beginning from identification of

the functional requirements of the CAX framework. Two types of integration

functions, the product data management and the process management, are provided

by the framework. This makes the framework comparable to a light-weight

PDM/WM module for the participating CAX tools. OO strategy is used to develop

the framework and a two-step implementation roadmap is recommended. Firstly, a

“skeletal” framework is derived while a range of basic implementation decisions are

made. The second step is to develop the product data and the process management

model as the management database schema, based on which the information

structure of the whole framework is developed.

• Development of a version control and configuration management model supporting

the management of design change propagations. A very broad spectrum of semantic

and operational issues is addressed.

• Development of a process control model which views a feature-driven engineering

process as a semi-structured design flow allowing dynamic specification while

process is executing.

• Development of a prototype which uses the above architecture and product data and

process management models. The prototype is a network-integrated engineering

environment for CAD/CAM of progressive dies. It has been the vehicle for

validating many of the relevant conceptions and proposals.

Based on the experience to develop the prototype system and the completion of a

demonstration to illustrate its capabilities, it can be concluded that: the CAX

Conclusions

 186

framework integration approach can turn a collection of distributed but logically

related CAX tools into effective user-friendly environments with value-added

integration functions, such as product data management and process management; It is

therefore recommended for CAD/CAM system developers to adaptively use this

approach if their targeted design-to-manufacturing process can be roughly classified as

a feature-driven engineering process.

In general, the key points to the main procedures for applying the CAX framework

approach can be briefly summarized as following:

• Integration should begin from adequate process decomposition, analysis, modeling

and re-engineering. IDEF0 activity modeling is the most important tool to carry out

this mission.

• From the global view, the network-integrated engineering environment developed

based on the CAX framework approach is composed of a set of CAX tools and the

CAX framework, which further consists of a workbench application accessible by all

the tool users, the framework kernel, a management database and the raw design

data repository.

• Development of the framework can take two steps. The first step is to make all

implementation decisions to conceptualize a “skeletal” framework with the

management database schema being empty. Such decisions include those dealing

with how to interface design tools and the framework (simply how to wrap), what

roles are allotted to the framework, how to partition the framework functions

between the client side and the server side, what languages are used to program the

framework kernel, etc. The second step is to develop the management database

schema or relevant information models and further make the database coherently co-

Conclusions

 187

work with other components in the framework. For achieving the coherence, the

information models for database schema (state-permanent part in the information

models) and those for describing the working modules in the system (state-transient

part in the information models) should be linked together for performing system

analysis and making the adequate decisions. Object-orientation should permeate the

full system development process from beginning to end. For example, OO

programming languages, OO modeling methods, ODBMS, distributed object

technologies are recommended to be used wherever relevant.

• The information models for database schema typically include two parts: one for

realizing PDM, the other for process management. The full information modeling

course should be incremental. A good modeling sequence works like this: PDM at

first, process management and then, overall at last.

• Examination on how the CE strategy is supported is another factor in need for

consideration throughout the whole system development process even including the

system evaluation and improvement phase.

It is important to note that these points are very compatible with those comparative

points made in Chapter 2 based on a comprehensive survey on principal aspects

driving system integration from design to manufacturing

Compared with the CAD framework approach which became mature in the 1990’s, the

CAX framework approach makes full use of the latest system analysis strategies, such

as OO, and relevant information technologies, such as the distributed object

technology RMI.. Especially, building the CAD framework includes three steps to

incrementally build the information architecture, the component architecture and the

Conclusions

 188

implementation architecture (Wolf 1994) because various system definition and

implementation primitives have to be used. On the other hand, building the CAX

framework is recommended to take two easy-to-follow steps because a common

primitive, or object, can be used. Of course, it is possible for the CAD framework to

evolve to also use the OO methods. This makes both the CAD framework and the

CAX framework have no radical methodological differences apart from in that the

CAD framework is applicable to EDA, while the CAX framework to manufacturing.

To the author’s best knowledge, there is no literature that deals comprehensively with

CAD framework in the OO context. Therefore, the current effort to develop an OO

CAX framework for manufacturing may be useful to develop an OO CAD framework

for EDA. In brief, while comprehensively making use of the OO technologies, the

current CAX framework emulates the CAD framework which already has a strong

theoretical foundation. This allows the system developers to easily specify the desired

integration infrastructure for a range of dispersed, but logically related, CAX tools.

The effectiveness of the CAX framework approach is probably due to its intelligent

ability to address the integration problem like a human manager who is responsible for

maintaining global process cohesion between individual sub-processes carried out with

the help of a set of isolated engineering tools. Specifically, in order to integrate an

engineering process within an enterprise, or even a virtual enterprise, it is natural to

(logically) centralize all the distributed engineering data, manage them at a high

abstract level and help users to drive the engineering process through a process

knowledge-enabled utility based on the design status captured by a management

database. The low level data consistency problem is left to be locally handled by the

individual engineering tools. In this way, the requirement of remote computing

Conclusions

 189

resources for the goal of information sharing and exchange can be minimized and thus

the system performance can be optimized. The effectiveness of the CAX framework

approach is also reflected in its conformance to the CE philosophy, which has been

elaborated in Chapter 7.

8.2. Limitations

There are some limitations that can be observed in this study. The details are depicted

as follows.

• One important limitation is that the demonstration session presented in Chapter 7 is

brief and the demonstration steps involved in this demonstration session are loosely

related. One solution to this limitation is to broaden the scope of the demonstration.

Two demonstration sessions would be adopted accordingly. The current

demonstration session including eight demonstration steps could be classified into

“an introductory demonstration session to show the basic system functions”.

Another demonstration session, “a sequential demonstration session corresponding

to a progressive die design process scenario”, would be added. To ensure the

sufficient complexity, this scenario can be defined as a part of the versioning

scenario in Chapter 5, specifically, versioning step 1: propagation of a design change

to generate Con2 from Con1. With the help of this new demonstration session, the

thesis can be expected to illustrate more explicitly the key concepts presented and

implemented.

• One of additional limitations is that several conceptually feasible advanced functions

were not implemented and tested in the currently developed CAX framework, thus

Conclusions

 190

the potential of the proposed approach was not fully demonstrated. These advanced

functions, such as cooperative engineering transactions, project-level activities

management, reusable CSCW-like services, etc., were mentioned where appropriate,

but not thoroughly studied. It also needs to be pointed out that further technological

developments are required to offer a full-featured system for industrial application

based on the prototype.

• Another limitation is that the current CAX framework was not strictly designed as a

configurable, reusable, ‘semi-complete’ application that can be specialized to

produce the prototype-like custom applications. Instead, it was directly modeled as

based on the application instance schema, rather than a meta-schema, which is the

schema of the schema and can be used to generate the above instance schema by the

system interactively and semi-automatically at the framework configuration time.

This decision is attributed to the fact that more application contexts beyond the

progressive die design and manufacturing process should be investigated before a

general meta-schema can be developed. If based on only one specific application

context, the developed meta-schema may not have generic representative ability. It is

believed this limitation does not affect the generic sense of the approach: if it is used

to develop another engineering environment applicable to a new context, the system

information modeling schema can be easily achieved by adapting those given in this

thesis.

• Yet another limitation is that the current CAX framework only supports the

traditional PDM-like integration at the coarse-grain level, i.e., the file (design object)

level. The tighter integration at the lower information level, such as the feature level,

Conclusions

 191

is not explored. The coarse-grain integration strategy is compatible to the current

process decomposition strategy to divide the overall information space (apart from

the final engineering outputs) or feature space into a collection of sub-spaces. Each

sub-space corresponds to an isolated feature-based model, such as the product

feature model, the flat pattern feature model, the die operation feature model, etc.

The study does not demonstrate whether it is possible to unite all the isolated

feature-based models into one unified feature-based model based on a re-designed

feature taxonomy covering the overall feature space. If the unified feature model

exists, the CAX framework can be built on this model. Further, carrying out the full

die design process means incrementally achieving this single feature-based model

rather than a set of independent feature-based models. In this way, all the design

activities are by nature tightly integrated at the feature level.

8.3. Future Directions

There are several directions for future research with respect to development of the

network-integrated feature-driven engineering environment based on the CAX

framework approach, apart from those immediate system improvements described in

Chapter 7.

• One important research issue is to refine the functional requirements of the network-

integrated system for the intended application area – the progressive die design and

manufacturing, from new perspectives, such as asynchronous collaboration. Since

accomplishing a progressive die design and manufacturing project entails extensive

asynchronous collaborations among a multi-disciplinary work team, it is strongly

desirable for the system to make more efficient the asynchronous communication of

Conclusions

 192

design changes among the team. The current CAX framework attempts to mainly

provide product data and process management assistance for the end-users

individually. Storing and managing the design changes among the team members

was not explicitly taken into account. If the CAX framework is made to explicitly

support asynchronous collaboration, the down-stream engineers can collaborate with

their up-stream partners more efficiently. Consequently, the collaboration

characteristics of the progressive die design and manufacturing processes need to be

investigated. Special design transaction models, such as the cooperative engineering

transaction model, may be required to be developed and adopted. The most

appropriate selection of implementation technologies needs to be made based on a

comparison among a pool of alternatives, including those adopted in this study.

• Another future research issue is to re-construct the information architecture of the

CAX framework using a medium-grain information primitive, i.e., feature. The

overall die development process needs to be re-engineered and the process

decomposition needs to be refined to allow generation of one unified feature model

instead of a set of smaller feature models for one project. The design change

propagation mechanism currently based on the concept of configuration version can

be easily made available within the unified feature model because a configuration

version corresponds to a version of the unified feature model. Further, the

dependence relationships among feature-based models can be precisely represented

by the constraints among the features in the unified feature model. Therefore,

automatic design change propagation is possible if the constraints is captured and

implemented in the unified feature model. The UOF (Unit Of Function) concept

(Urban et al., 2000) may be useful in this case to view both the medium-grain

Conclusions

 193

features and the coarse-grain engineering outputs as UOFs. Correspondingly, the

object-relational (instead of OO) database management system like the Oracle®

database system is recommended to be adopted because of its strong ability to

uniformly represent the information elements at different levels. The management

database can also adopt Oracle® database system. Therefore one common database

system, instead of two different ones, can be used.

• Yet another future research issue is to re-construct the implementation architecture

of the CAX framework using web service technology (Tamine & Dillmann 2003,

Molinari et al., 2004, Wu, et al., 2004) which has been rapidly developing since a

few years ago. More development efforts are required to be spent on the server side.

It can become more explicit to observe that the system built in this way is working

on the network and the remote resources/services are exploited by local applications

or users when needed.

• Apart from further development based on the current study on the CAX framework

for progressive die design and manufacturing, it is also valuable to investigate the

applicability of this approach in other areas. With more application contexts studied,

one can then consider making the CAX framework configurable so that its

information architecture can be generated according to different application contexts

from a high level meta-schema instead of being predefined in advance at the instance

schema level.

References

 194

REFERENCES

1. Agrawal, R. & Jagadish, H.V. 1989. On correctly configuring versioned objects.

Proceedings of the 15th International Conference on Very Large Databases,

Amsterdam, The Netherlands (VLDB '89), August 1989: 367-374.

2. Algeo, A.M.E., Feng, C.S. & Ray, R.S. 1994. A State-of-the-art Survey on

Product Design and Process Planning Integration Mechanisms. An Internal

Report of National Institute of Standards and Technology: NISTIR 5548.

3. Ahmed, R. & Navathe, S.B. 1991. Version management of composite objects

in CAD databases. Proceedings of the 1991 ACM SIGMOD International

Conference on Management of Data, Denver, Colorado, USA: 218-227.

4. Anonymous 1. Web publication available at: http://jcifs.samba.org/

5. Anonymous 1998. Product Data Management: the Definition, an Introduction

to Concepts, Benefits and Terminology. CIM-data.

6. Arnold, F. & Podehl, G. 1998. Best of Both Worlds - A Mapping from

EXPRESS-G to UML. Lecture Notes In Computer Science. Selected papers

from the First International Workshop on The Unified Modeling Language

«UML»'98: Beyond the Notation. 1618: 49-63.

7. Baldwin, R.A. & Chung, M.J. 1995. Managing engineering data for complex

products. Research in Engineering Design - Theory, Applications, and

Concurrent Engineering 7(4): 215-231.

8. Beech, D. & Mahbod, B. 1988. Generalized version control in an object-

oriented database. Proceedings of the 4th IEEE International Conference on

Data Engineering, Los Angeles, CA, USA, February 1988: 14-22.

References

 195

9. Black, R. 1996. Design and Manufacture: an Integrated Approach. Macmillan

Press Ltd. Basingstoke, Hampshire.

10. Borja, V., Bell, R. & Harding, J.A. 2001. Assisting design for manufacture

using the data model driven approach. Proceedings of the Institution of

Mechanical Engineers, Part B (Journal of Engineering Manufacture, 215(B12):

757-1771.

11. Bounab, M. & Godart, C. 1997. Tool integration in distributed environment: an

experience report in a manufacturing framework. Journal of System Integration

8: 31-45.

12. Bounab, M. & Godart, C. 1998. Tool integration in distributed environments:

an experience report in a manufacturing framework. Journal of System

Integration 8: 31-51.

13. Bronsvoort, W.F. & Jansen, F.W., 1993. Feature modelling and conversion -

key concepts to concurrent engineering. Computers in Industry 21(1): 61-86.

14. Carnduff, T.W. & Goonetillake, J.S. 2004. Configuration management in

evolutionary engineering design using versioning and integrity constraints.

Advances in Engineering Software 35(3-4): 161-177.

15. CFI Architecture Technique Subcommittee. 1990a. Suggested Framework

Problem Statement. CAD Framework Initiative.

16. CFI Architecture Technology Subcommittee. 1990b, August. CAD framework

users, goals and objectives, Version 0.91. CAD Framework Initiative.

17. Chen, B.T.F. 1982, September. ROMAPT: a new link between CAD and CAM.

Computer Aided Design 14(5):261-266.

References

 196

18. Chen, Y. & Hsiao, Y.T. 1997. A collaborative data management framework for

concurrent product and process development. International Journal of

Computer Integrated Manufacturing 10(6): 364–376.

19. Chen, Y.M. 1997, Development of a computer-aided concurrent net shape

product and process development environment. Robotics and Computer-

Integrated Manufacturing 13(4): 337-360.

20. Cheok, B.T. 1998. Intelligent Techniques for Progressive Die Design. PhD

thesis, National University of Singapore.

21. Cheok, B.T. & Nee, A.Y.C. 1998 (a). Configuration of progressive dies.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

AIEDAM, 12(5): 405-418.

22. Cheok, B.T. & Nee, A.Y.C. 1998 (b). Trends and developments in the

automation of design and manufacture of tools for metal stampings. Journal of

Materials Processing Technology 75(1-3): 240-252.

23. Chou, H.T. & Kim, W. 1986. Unifying framework for version control in a

CAD environment. Proceedings of the 12th International VLDB Conference,

Kyoto, Japan, August 1986: 336-344.

24. Conaway, J. 1995, December. Integrated Product Development: The

Technology. A white paper © Winners Consulting Group. Available at

http://www.pdmic.com/articles/ jconaway.html

25. Cross, N. 1989. Engineering Design Methods. John Wiley and Sons, Chichester,

UK.

26. Dellen, B., Maurer, F. & Pews, G. 1997. Knowledge-based techniques to

increase the flexibility of workflow management. Data & Knowledge

Engineering 23(3): 269-295.

References

 197

27. Dhamija, D., Koonce, D.A. & Judd, R.P. 1997. Development of a unified data

meta-model for CAD-CAPP-MRP-NC verification integration. Computers &

Industrial Engineering 33(1-2): 19-22.

28. Dixon, J.R., Cunningham, J.J. & Simmons, M.K. 1989. Research in designing

with features. Intelligent CAD I: Proceedings of IFIP TC/WG 5.2 Workshop on

Intelligent CAD (edited by H. Yoshikawa and D. Gossard), Boston, MA, USA,

October 1987: 137-148.

29. Eriksson, H. 1996. Expert systems as knowledge servers. IEEE Expert 14: 14-

19.

30. Fagan, D.J. 1994. A blackboard approach to the integration of crankshaft

analysis applications. Proceedings of the 10th IEEE Conference on Artificial

Intelligence for Applications, San Antonio, Texas, USA, March 1994: 231 –

237.

31. Fan, I.S. 2000, December. The Power of PDM. Manufacturing Engineer: 224-

228.

32. Fayad, M.E. & Schmidt, D.C. 1997. Object-oriented application frameworks.

Communications of the ACM 40(10): 32-38.

33. Feng, S. C. & Song, E.Y. 2000, November. Information Modeling on

Conceptual Design Integrated with Process Planning. Recent Advances in

Design for Manufacture, DE-Vol.109, Proceedings of the 2000 International

Mechanical Engineering Congress and Exposition, Orlando, Florida, USA,

November 2000: 123-130.

34. Fowler, M. & Scott, K. 1997. UML distilled: applying the standard object

modeling language. addison-Wesley.

References

 198

35. Georgakopoulos, D., Hornick, M. & Sheth, A. 1995. An overview of workflow

management: from process modeling to workflow automation. Distributed and

Parallel Databases 3:119-153.

36. Gerhard, J.F., Rosen, D., Allen, J.F. & Mistree, F. 2001. A distributed product

realization environment for design and manufacturing. Transactions of the

ASME, Journal of Computing and Information Science in Engineering 1(3):

235–244.

37. Gray, J. & Reuter, A. 1993. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, San Mateo, California.

38. Hanneghan, M., Merabti, M., & Colquhoun, G. 1995. The Design of an Object-

Oriented Repository to Support Concurrent Engineering. Proceedings of the

1995 International Conference on Object-Oriented Information Systems

(OOIS'95), Dublin, Ireland, December 1995: 200-215.

39. Hanneghan, M., Merabti, M., & Colquhoun, G. 1998. CONCERT: A

Middleware-Based Support Environment for Concurrent Engineering.

Proceedings of 2nd International Symposium on Tools and Methods for

Concurrent Engineering (TMCE'98), Manchester Metropolitan University, UK,

April 1998: 446-455.

40. Hardwick, M., David L., Rando, T. & Morris, K.C. 1996. Sharing

manufacturing information in virtual enterprises. Communications of the ACM

39(2): 46-54.

41. Hayes-Roth, B. 1985. A blackboard architecture for control. Artificial

Intelligence 26(3): 251-321.

42. Hayes, C.C. 1995. Flexible, Interactive Integration Architecture for Extraction

of CAPP Information from CAD. Proceedings of the ASME Computer

References

 199

Integrated Concurrent Design Conference, September 1995, Boston, MA, USA:

825-833.

43. Heimann, P. & Westfechtel, B. 1997. A Generalized Workflow System for

Mechanical Engineering. Proceedings Workshop Arbeitsplatzrechner-

Integration zur Prozeßverbesserung, Aachen, Germany, Softwaretechnik-

Trends. 17(3): 21-24.

44. Hillebrand, G., Krakowski, P., Lockemann, P.C. & Posselt, D. 1998.

Integration-based Cooperation in Concurrent Engineering. Proceedings of the

2nd Enterprise Distributed Object Computing Workshop (EDOC’'98), La Jolla,

CA, USA, November 1998: 344-355.

45. Hsiang, K.-K., Du, T. C.-T. & Cheng, H.-W. 1999. Applying Object-oriented

database technologies in concurrent design processes. International Journal of

Computer Integrated Manufacturing 12(3): 251-264.

46. Hsiao, W.C.D. 1990. Feature-Based Mapping and Manufacturability

Evaluation with an Open Set Feature Modeler. Ph. D Thesis. Arizona State

University.

47. ISO 10303-1. 1994. Industrial automation systems and integration: product

data representation and exchange. Part 1, Overview and fundamental

principles. International Organization for Standardization. ISO Geneva.

48. Iuliano, M. 1995. Overview of the Manufacturing Engineering Toolkit

Prototype. NISTIR 5730. National Institute of Standards and Technology,

Gaithersburg, MD.

49. Iuliano, M. 1997. The Role of Product Data Management in the Manufacturing

Engineering ToolKit. NISTIR 6042. National Institute of Standards and

Technology, Gaithersburg, MD.

References

 200

50. Jiang, R.D., Leow, L.F., Cheok, B.T. & Nee, A.Y.C. 2000. IPD- A Knowledge-

based Progressive Die Design System. Proceedings of the 5th International

Conference on Computer Integrated Manufacturing, Technologies for the New

Millennium Manufacturing, Singapore, March 2000:1048-1059.

51. Jiang, R.D., Zhang, W.Z. & Cheok, B.T. 2004. Object-Oriented Feature Based

Development for Progressive Dies. Proceedings of the International Conference

on Scientific and Engineering Computation (IC-SEC 2004). Singapore, June

2004 (CD publication).

52. Jeng, T.S. & Eastman, C.M. 1999. Design process management. Computer-

Aided Civil and Infrastructure Engineering 14(1): 55-67.

53. Johnson, R. & Foote, B. 1988. Designing Reusable Classes. Journal of Object-

Oriented Programming, 1 (2), 22-35.

54. Karsai, G & Gray, J. 2000, March. Design Tool Integration: an Exercise in

Semantic Interoperability. Proceedings of the IEEE Engineering of Computer-

based Systems, Edinburgh, UK, March 2000: 272-278.

55. Katz, R.R., Bhateja, R., Chang, E.E.L., Gedye, D. & Trijanto, V. 1987. Design

version management. IEEE Design and Test 14: 12-22.

56. Katz, R.H., Chang, E. & Kahn, K.M., 1986. A Version Server for Computer-

Aided Design Database. ACM/IEEE 24th Design Automation Conference, Las

Vegas, NV, USA, June 1986: 27-33.

57. Katz, R.H. & Chang, E. 1987. Managing Change in a Computer-Aided Design

Database. Proceedings of the 13th International Conference on Very Large Data

Bases, Brighton, GB, September 1987: 455-462.

References

 201

58. Kim, Y., Kang, S.H., Lee, S.H. & Yoo, S.B. 2001. A distributed, open,

intelligent product data management system. International Journal of

Computer Integrated Manufacturing 14(2): 224-235.

59. Law, H.W. & Tam, H.Y. 2000. Object-Oriented analysis and design of

computer aided process planning systems. International Journal of Computer-

Integrated Manufacturing 13(1): 40-49.

60. Lee, Y. T. 1999. Information Modeling: From Design to Implementation.

Proceedings of the Second World Manufacturing Congress, Universities of

Durham, Durham, U.K., September 27-30, 1999: 315-321.

61. Lee, I.B.H., Lim, B.S. & Nee, A.Y.C. 1993. Knowledge-based process

planning system for the manufacture of progressive dies. International Journal

of Production Research 31(2): 251-278.

62. Leach, P. and Perry, D., 1996, CIFS: A Common Internet File System. Web

publication available at: http://www.microsoft.com/mind/1196/cifs.asp.

63. Li, W.D, Fuh, J.Y.H. & Wong, Y.S. 2004. An Internet-enabled integrated

system for co-design and concurrent engineering. Computers in Industry 55 (1):

87-103.

64. Liang, J., Shah J.J., D'Souza, R., Urban, S.D., Ayyaswamy, K, Harter, E &

Bluhm, T. 1999. Synthesis of consolidated data schema for engineering

analysis from multiple STEP application protocols. Computer-Aided Design 31

(7): 429-447.

65. Liu, T. & Xu, X. 2001. A review of web-based product data management

systems. Computers in Industry. 44: 251-262.

66. Madison, E.M.D, Wilbur, G.L.T. & Wu, J.C.T. 1988. Data-driven CIM.

Computers in Mechanical Engineering, May/June 1988:38-42.

References

 202

67. Madni, A.M. & Madni, C.C. 1997. An adaptive wide-area design process

manager for collaborative multichip module design. Proceedings of 1997 IEEE

Multi-Chip Module Conference (MCMC '97), Santa Cruz, CA, February 4-5,

1997: 63-72.

68. Maropoulos, P.G. 1995. Review of research in tooling technology, process

modeling and process planning. Computer Integrated Manufacturing Systems,

8 (1): 13-20.

69. Marefat, M., Malhotra, S. & Kashyap, R.L. 1993. Object-oriented intelligent

computer-integrated design, process planning, and inspection. Computer 26(3):

54-65.

70. McClatchey, R., Kovacs, Z., Estrella, F., Le Goff, J.-M., Chevenier, G., Baker,

N., Lieunard, S., Murray, S., Le Flour, T. & Bazan, A. 1998. The integration of

product data and workflow management systems in a large scale engineering

database application. Proceedings of the 1998 International Database

Engineering and Applications Symposium (IDEAS’98), Cardiff, Wales, U.K.,

July 8-10, 1998: 296–302.

71. McFadden, F.R. 1989. Object-oriented techniques in computer integrated

manufacturing. Proceedings of the Twenty-Second Annual Hawaii

International Conference on System Sciences, Kailua-Kona, HI, USA, June

1989: 64-69.

72. Megale, A., Martins, F., Sakamoto, F., Bueno, A.L. & Rodrigues, V. 1991.

Using a Blackboard Architecture in CAD-CAM Systems Integration.

Proceedings of the 3rd International Conference on Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems (IEA/AIE '90),

Charleston, SC, USA, July 1990: 131-140.

References

 203

73. Mervyn, F., Kumar, A. S., Bok, S.H. & Nee, A.Y.C. 2003. Development of an

Internet-enabled interactive fixture design system. Computer Aided Design

35(10): 945-957.

74. Microsoft. 1998. Microsoft White Paper: Windows DCOM Architecture.

75. Miles, J.C., Gray, W.A., Carnduff, T.W., Santoyridis, I. & Faulconbridge, A.

2000. Versioning and configuration management in design using cad and

complex wrapped objects. Artificial Intelligence in Engineering 14(3): 249-260.

76. Mowchenko, M. 1996. Intelligent Independent Features: Manufacturing

Features Which Ensure Their Own Manufacturability. A PhD thesis presented

to the University of Calgary.

77. Molinari, M., Nammuni, K. & Cox, S. 2004. Integration of chargeable web

services into engineering applications. Proceedings of the UK e-Science All

Hands Meeting 2004, 31 August – 3 September, Nottingham, UK. Available at:

http://www.allhands.org.uk (accessed in July 2006)

78. Nee, A.Y.C. & Cheok, B.T. 2001. Intelligent techniques for the planning,

design, and manufacture of progressive dies. in Computer-Aided Design,

Engineering, and Manufacturing: Systems Techniques and Applications (CRC

Press) Volume III: 7.1-7.27.

79. Nii, P. H. 1996. Blackboard systems: the blackboard model of problem solving

and the evolution of blackboard architectures. AI Magazine. Summer 1996: 38-

53.

80. Norrie C.M. 1995. Integration approaches for CIM. Proceedings of the 1995

ACM SIGMOD international conference on Management of data, San Jose,

California, USA, May 1995: 470.

References

 204

81. OMG 2002. Common Object Request Broker Architecture (CORBA/IIOP),

version 3.0, formal/2002-06-01. Object Management Group.

82. Oussalah, C & Urtado, C. 1997. Complex object versioning. Lecture Notes in

Computer Science v1250: 259-272.

83. Palani, R., Wagoner, R.H. & Narasimhan, K. 1994. Intelligent design

environment: a knowledge-based simulation approach for sheet metal forming.

Journal of Materials Processing Technology 45: 703-708.

84. Park, H.J. & Yoo, S.I. 1995. Implementation of a Version Manager on an

Object-Oriented Database Management System. Proceedings of the 1995

International Conference on Object Oriented Information Systems (OOIS'95),

Dublin, Ireland, UK, 18-20 December 1995: 323-336.

85. Plasil, F. & Stal, M. 1998. An architectural view of distributed objects and

components in CORBA, Java RMI and COM/DCOM. Software Concepts and

Tools 19: 14-28.

86. Prasad, B. 1996. Concurrent Engineering Fundamentals, Volume I: Integrated

Product and Process Organization and Volume II: Integrated Product

Development. Prentice Hall PTR.

87. Qiang, L., Zhang, Y.F. & Nee, A.Y.C. 2001. A distributive and collaborative

concurrent product design system through the WWW/Internet. The

International Journal of Advanced Manufacturing Technology 17:315-322.

88. Ramakrishnan, R. & Janaki, R.D. 1996. Modeling design versions. Proceedings

of the 22nd International conference on VLDB (VLDB’96). Mumbai (Bombay),

India, September 1996: 556-566.

89. Ramanathan, J. 1996. Process improvement and data management. IIE

Solutions 28 (12): 24 - 27.

References

 205

90. Ranft, M.A., Rehm, S. & Dittrich, K.R. 1990. How to share work on shared

objects in design database. Proceedings of the Sixth IEEE International

Conference on Data Engineering, February 5-9, 1990, Los Angeles, California,

USA: 575-583

91. Regli, W.C. 1997. Internet-enabled Computer Aided Design. IEEE Internet

Computing 1(1): 39-50.

92. Rehm, S., Raupp, T., Ranft, M., Langle, R., Hartig, M., Gotthard, W., Dittrich,

K. & Abramowitz, K. 1988. Support for design process in a structurally object-

oriented database system. In Dittrich, K.R., editor, Proc. 2nd Intern Workshop

on Object-Oriented Database Systems, Bad Münster am Stein-Ebernburg, FRG,

September 27-30, 1988: 80-97.

93. Roller, D. & Eck, O. 1999. Knowledge based techniques for product database.

International Journal of Vehicle Design 21(2/3): 243-265.

94. Roller, D., Eck, O. & Dalakakis, S. 2002a. Integrated version and transaction

group model for shared engineering databases. Data & Knowledge Engineering

42: 223-245.

95. Roller, D., Eck, O. & Dalakakis, S. 2002b. Advanced database approach for

cooperative product design. Journal of Engineering Design 13(1): 49-61.

96. Roy, U., Bharadwaj, B., Chavan, A. & Mohan, C.K. 1995. Development of a

feature based expert manufacturing process planner. Proceedings of the 1995

IEEE 7th International Conference on Tools with Artificial Intelligence,

Herndon, VA, USA, November 05 - 08, 1995: 63-70.

97. Rundensteiner, E.A. 1993. Design tool integration using object-oriented

database views. Proceedings of the 1993 IEEE/ACM International Conference

on Computer-Aided Design, Santa Clara, CA, USA, November 1993: 104-107.

References

 206

98. Schrmann, B. & Altmeyer, J. 1997. Modeling design tasks and tools - the link

between product and flow model. Proceedings of the 34th ACM/IEEE Design

Automation Conference, Anaheim, CA, USA, June 1997: 564-569.

99. Schwartz, J. & Westfechtel, B. 1993. Integrated data management in a

heterogenous CIM environment. Proceedings of the 7th IEEE Annual European

Computer Conference (COMPEURO 93): Computers in Design,

Manufacturing, and Production, Paris, France, 24-27 May 1993: 248-257.

100. Shah, J.J., Dedhia, H., Pherwani, V. & Solkhan, S. 1997. Dynamic interfacing

of applications to geometric modeling services via modeler neutral protocol.

Computer-Aided Design 29 (12): 811-824.

101. Shah, J.J. 1988. Feature transformations between application-specific feature

spaces. Computer-Aided Engineering Journal 5(6):247-255.

102. Shah, J.J. & Urban, S.D. 1998, September. Integrated product design

environment. DARPA-RaDEO Final Report. ASU Design Automation lab.

103. Singh, N. 1996. System Approach to Computer-Integrated Design and

Manufacturing. New York: Wiley.

104. Srihari, K., Amal Cecil, Joe & Emerson, C.R. 1994. Blackboard-based process

planning system for the surface mount manufacture of PCBs. International

Journal of Advanced Manufacturing Technology 9(3): 188-194.

105. Sriram, D. & Logcher, R. 1993. The MIT Dice project. IEEE Computer

26 (1): 64 – 65.

106. Sun. 2002. Java 2 platform Enterprise Edition Specification v1.4.

107. Tamine, O. & Dillmann, R. 2003. KaViDo—A web-based system for

collaborative research and development processes. Computers in Industry 52(1):

29-45.

References

 207

108. ten Bosch, K. O., van der Wolf, P. & Bingley, P. 1993. Flow-based user

interface for efficient execution of the design cycle. Proceedings of the 1993

IEEE/ACM International Conference on CAD, Santa Clara, CA, USA,

November 1993: 356-363.

109. Teti, R. & Kumara, S.R.T. 1997. Intelligent computing methods for

manufacturing systems. CIRP Annuals—Manufacturing Technology 46(2):629-

652.

110. Thomas, K. K. & Fischer, W. G. 1996. Integrating CAD/CAM software for

process planning applications. Journal of Materials Processing Technology 61

(1996): 87-92.

111. Tian, G.Y., Yin, G.F. & Taylor, D. 2002. Internet-based manufacturing: a

review and a new infrastructure for distributed intelligent manufacturing.

Journal of Intelligent Manufacturing 13(5):323-338

112. Tor, S.B., Britton, G.A., & Zhang, W.Y. 2003. Indexing and retrieval in metal

stamping die design using case-based reasoning. Journal of Computing and

Information Science in Engineering 3: 353-362.

113. Turgut, D., Aydin, N., Elmasri, R. & Turgut, B. 2001. Utilizing object-oriented

databases for concurrency control in virtual environments. Proceedings of the

25th International Computer Software and Applications Conference

(COMPSAC 2001), Invigorating Software Development, Chicago, IL, USA, 8-

12 October 2001: 409-414.

114. Urban, S.D., Ayyaswamy, K., Fu, L., Shah, J., Liang, J. 1999a. Integrated

product data environment: data sharing across diverse engineering applications.

International Journal of Computer Integrated Manufacturing 12 (6): 525-540.

References

 208

115. Urban, S.D., Dietrich, S.W., Saxena, A. & Sundermier, A. 2001.

Interconnection of distributed components: an overview of current middleware

solutions. Journal of Computing and Information Science in Engineering. 1:

23-31, ASME.

116. Urban, S.D., Fu, L. & Shah, J.J. 1999b. The implementation and evaluation of

the use of CORBA in an engineering design application. Software-Practice &

Experience 29 (14): 1313-1338.

117. Urban, S.D., Shah J.J., Liu, H. & Rogers, M. 1996. The shared design manager:

Interoperability in engineering design. Integrated Computer-Aided Engineering

3 (3): 158-177.

118. Urban, S.D., Tjahjadi, M. & Shah, J.J. 2000. A case study in mapping

conceptual designs to object-relational schemas. Concurrency-Practice and

Experience 12 (9): 863-907.

119. U.S. Air Force. 1981. Integrated Computer-Aided Manufacturing (ICAM)

Architecture. Part II. Material Laboratory, U.S. Air Force Wright Aeronautical

Laboratories.

120. Wampler, B. 2001. The essence of Object-Oriented Programming with JavaTM

and UML. Addison Wesley Professional.

121. Wang, G.R., Yu, G., Zhou, Y.F., Shan, J.D. & Zheng, H.Y. 1993.

DODBMS/CIM: A distributed object-oriented database management system

for CIM applications. Proceedings of the 10th IEEE Region Conference on

Computer, Communication, Control and Power Engineering, Beijing, China

19-21 October 1993: 303-306.

122. Wang, G.X, Zhang, W.Z, Lu, C., Nee, A.Y.C. 2004. A distributed, persistent

and transactional cache for knowledge-based engineering, Proceedings of the

References

 209

International Conference on Scientific and Engineering Computation (IC-SEC-

2004) (CD publication), Singapore, June 2004.

123. Wang, H.F. & Zhang, Y.L. 2002. CAD/CAM integrated system in

collaborative development environment. Robotics and Computer Integrated

Manufacturing, 18: 135–145.

124. Westfechtel, B. 1996. Integrated product and process management for

engineering design applications. Integrated Computer-Aided Engineering, 3 (1):

20-35.

125. Westfechtel, B. 2000. Models and Tools for Managing Development Processes.

Berlin; New York: Springer-Verlag.

126. Wolf, P.V.D. 1994. CAD Frameworks: Principles and Architecture. Dordrecht:

Kluwer Academic, Boston.

127. Wong, T.N. & Leung, C.B. 1995. Feature conversion between neutral features

and application features. Computers & Industrial Engineering, 29(1-4): 625-

629.

128. Wong, T.N. & Leung, C.B. 2000. An Object-Oriented Neutral Feature Model

for Feature Conversion. International Journal of Production Research, 38(15):

3573-3601.

129. Wu, T., Xie, N. & Blackhurst, J. 2004. Design and implementation of a

distributed information system for collaborative product development. Journal

of Computing and Information Science in Engineering 4(4): 281-293.

130. Xie, S.Q., Tu, P.L., Aitchison, D., Dunlop, R. & Zhou, Z. D. 2001. A WWW-

based integrated product development platform for sheet metal parts intelligent

concurrent design and manufacturing. International Journal of Production

Research 39(17): 3829-3852.

References

 210

131. Xu, X. & Liu, T. 2003. A Web-enabled PDM system in collaborative design

environment. Robotics and Computer-Integrated Manufacturing 19: 315-328.

132. Yoon, D.H. & Shaikh, F. Z. 2000. Integrating CAD and CAM with CORBA.

Proceedings 7th IEEE International Conference and Workshop on the

Engineering of Computer Based Systems (ECBS 2000), Edinburgh, UK, April

2000: 3-8.

133. Zha, X. F. & Du, H. 2002. Web-based collaborative framework and

environment for designing and building robotic systems. Proceedings of the

2002 IEEE International Conference on Robotics and Automation (ICRA 2002),

Washington, DC, USA, May 11-15, 2002: 2196-2201.

134. Zha, X.F., Sriram, R.D. & Lu, W.F. 2003. Knowledge intensive collaborative

decision support for design process. Proceedings of DETC’03, ASME 2003

Design Engineering Technical Conferences and Computers and Information in

Engineering Conference, Chicago, IL USA, 2-6 September 2003: 425-438.

135. Zhang, W.J. & Luttervelt, C.A. 1995. On the Support of Design Process

Management in Integrated Design Environment. CIRP Annals - Manufacturing

Technology 44(1): 105-108.

136. Zhang, W.Z., Jiang, R.D., Cheok, B.T. & Nee, A.Y.C. 2002. An innovative and

practical design automation system for progressive dies. Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture 216(12): 1611-1619.

137. Zhang, Y.P., Zhang, C. & Wang, H.P. 2000. Internet based STEP data

exchange framework for virtual enterprises. Computers in Industry 41(1): 51-

63.

References

 211

138. Zimmermann, J.U., Haasis, S., & Van Houten, F.J.A.M. 2002. ULEO-

Universal Linking of Engineering Objects. CIRP Annals - Manufacturing

Technology 51(1): 99-102.

Publications from This Research

 212

PUBLICATIONS FROM THIS RESEARCH

• Journal paper: Zhang WZ, Wang GX, Cheok BT, Nee AYC. A Functional

Approach for Standard Component Reuse, International Journal of Advanced

Manufacturing Technology Volume 22, Issue 1-2, 2003, Pages 141-149.

• Conference paper: Wang GX, Zhang WZ, Nee AYC. Virtual Knowledge

Repository for Intelligent and Distributed Feature-driven Product Realization.

Presented in the conference of 34th International MATADOR Conference, 7 – 9 July

2004, Manchester, UK.

• Conference paper: Zhang WZ, Wang GX, Lu C, Nee AYC. An Agent-based

Organization of Web Services in a Computational Grid, Presented in the

International Conference on Scientific and Engineering Computation (IC-SEC 2004),

30 June – 2 July, Singapore.

• Conference paper: Wang GX, Zhang WZ, Lu C, Nee AYC. A Distributed,

Persistent and Transactional Cache for Knowledge-based Engineering,

Presented in the International Conference on Scientific and Engineering

Computation (IC-SEC 2004), 30 June – 2 July, Singapore.

• Journal paper: Zhang WZ, Wang GX, Lu C, Nee AYC. A Staged Approach for

Feature Extraction from Sheet Metal Part Models, International Journal of

Production Research, in press.

• Journal paper: Wang GX, Zhang WZ, Nee AYC. An Integration Framework for

Digital Progressive Die Design and Manufacturing, Journal of Wuhan University

of Technology, in press.

