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Summary 

Mechanical forces and deformation are among the key factors influencing 

the physiology of cells. How cells move, deform, and interact, as well as how they 

sense, generate, and respond to mechanical forces are dependent on their mechanical 

properties and these properties need to be studied and understood. Micropipette 

aspiration has been widely used to measure the viscoelasticity of cells in suspension, 

which has generally led to the development of spring-dashpot models. However, 

recent experiments performed on attached cells using other techniques strongly 

supported the power-law rheology model, which may potentially serve as a general 

model for cell rheology. Yet, this model has not been experimentally proven for 

suspended cells.  

In this dissertation, the micropipette aspiration technique was used to 

investigate the rheology of suspended NIH 3T3 fibroblasts with the aim of 

investigating whether the power-law rheology model also applies to cells in 

suspension. In the ramp tests, cells were subjected to linearly increasing suction 

pressure using pipettes of different diameters. The pipette diameter was found to 

have a significant effect on cell deformation, where for diameters smaller than ~ 5 

μm, nonlinear and inconsistent deformations were observed but for diameters larger 

than ~ 7 μm, deformation of the cells was found linear and consistent. Therefore, 

larger pipettes are more applicable than smaller ones for measuring the smeared 

rheology of NIH 3T3 fibroblasts.  

In the creep tests, cells were subjected to a step pressure applied using large 

pipettes. The power-law rheology model was found to accurately fit the creep 
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functions of suspended fibroblasts, providing new support to this model for 

suspended cells. Effect of cytoskeleton disruption on rheological properties was 

investigated. Disruption of actin filaments with cytochalasin D caused cells to 

appear softer but more elastic. In contrast, disruption of microtubules with high 

dosage of colchicine caused activation and stiffening of cells.  

Finite element method is an established and versatile engineering tool, 

particularly suited for the continuum mechanical analysis of cell deformation. 

However, a finite element model that incorporates the power-law rheology of cells 

was not available. Here, a finite element model incorporating the power-law 

rheology of cells was proposed. The initial-boundary-value problem of micropipette 

aspiration was solved numerically. Using consistent rheological properties, this 

model could predict the experimental observations obtained using both creep and 

ramp tests for suspended NIH 3T3 fibroblasts. The finite element simulation 

revealed departure from the half-space solution as a result of (i) finite cell radius 

with respect to pipette radius, (ii) large deformation and (iii) slippage. Approximate 

formulae were proposed based on simulation results, which allow direct 

interpretation of rheological properties of cells in micropipette aspiration. 

It is hoped that the experimental methodology and theoretical model 

proposed in this thesis will contribute to a more accurate evaluation of the 

viscoelastic properties of healthy and diseased cells and better understanding of the 

biological response of cells to mechanical stimuli. 
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Chapter 1 Introduction 

All living organisms are under the influence of forces. Scientific 

investigation on the response of biological tissues to mechanical forces has began 

since as early as in the 17th century, when Galileo Galilei (1564-1642) examined the 

strength of bones and Robert Hooke (1635-1703) investigated the elasticity of a 

number of biological materials. It was only in the mid 1960’s that modern 

biomechanics began to evolve with the development of continuum mechanics, 

computing technologies and systematic testing of biological tissues ranging from 

hard tissues such as bones to soft tissues such as blood vessels (Fung 1993; 

Humphrey 2003).  

A major thrust of biomechanics research is to promote better understanding 

of physiology and pathophysiology, as pointed out by Fung (1993). To this end, 

study on single cells is important because they are the basic units of life (Alberts et 

al. 2002). Cells generate forces to migrate, contract, divide and perform 

phagocytosis, blood cells are subject to deformation during circulation and neural 

cells respond to mechanical stimuli in hearing and touch. Also mechanical forces are 

known to regulate cell shape, migration, gene expression and even apoptosis. 

Therefore, cell mechanics investigates “how cells move, deform, and interact, as 

well as how they sense, generate, and respond to mechanical forces” (Zhu et al. 

2000). 

Cell mechanics was first pioneered by the experimental works of Crick and 

Hughes (1950), who probed the cytoplasm of fibroblasts with magnetic beads, and 

Mitchison and Swann (1954), who tested sea-urchin eggs with micropipette 
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aspiration. Early attempts before 1980’s were comparatively sparse and mainly 

focused on structurally simple cells, such as sea urchin eggs and red blood cells 

(RBCs). Thereafter, more systematic investigation were made on cell mechanics, 

exemplified by the burgeoning of various innovative experimental techniques on 

different types of cells and the development of a series of important theoretical 

works and mechanical models (Zhu et al. 2000; Kamm 2002; Bao and Suresh 2003; 

Lim et al. 2006).  

1.1 Structure of eukaryotic cells 

Typical eukaryotic animal cells are made of 70 ~ 85% of water and 10 ~ 

20% of proteins, with the rest being lipids, polysaccharides, RNA, DNA and small 

metabolites (Alberts et al. 2002). The major functional units of a cell are 

compartmentalized into various membrane-enclosed organelles, including the 

nucleus (Fig. 1.1). These organelles are dispersed in the cytoplasm, which is 

spanned by a system of protein filaments collectively called the cytoskeleton. The 

cytoskeleton provides a three-dimensional (3D) scaffold for the spatial organization 

of the organelles (Pangarkar et al. 2005; Dinh et al. 2006). There are mainly three 

types of cytoskeletal filaments: actin filaments, microtubules and intermediate 

filaments. The actin filaments (also called microfilaments) are two-stranded helical 

polymers with a diameter of 8 nm, mainly distributed close to the cell cortex. The 

microtubules, hollow cylinders with a diameter of 25 nm, irradiate from the center of 

the cell into the cytoplasm. The intermediate filaments are ropelike fibers with a 

diameter of around 10 nm, found throughout the cytoplasm and also within the 

nuclear envelop. The various cytoskeletal elements are crosslinked into a network by 
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various accessory proteins. However, the cytoskeleton is not a static structure. It 

undergoes constant remodeling and is capable of moving and contracting due to the 

action of motor proteins and the dynamic assembly and disassembly of the 

cytoskeletal polymers.  

 
 
 
 
 

Fig. 1.1. The eukaryotic cell is composed of a cell membrane, a cytoplasm (which includes 
the cytosol, cytoskeleton and various suspended organelles) and a nucleus (which houses the 
genetic materials) (Lim et al. 2006). 
 
 

The cytoskeleton serves a wide range of functions, one of the most important 

of which is to provide mechanical strength to the cells. In fact, the mechanical 

properties of the cells are predominantly determined by the cytoskeleton. This was 

demonstrated firstly by the fact that cytoskeletal networks reconstituted in vitro can 

approximately replicate mechanical properties of cells (Janmey et al. 1994; Gardel 

et al. 2006) and secondly, by the observation that disrupting the cytoskeletal 
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elements such as actin filaments will reduce the stiffness of cells (Petersen et al. 

1982; Wakatsuki et al. 2001). Therefore, cytoskeletal abnormalities in the molecular 

level may be manifested as changes in the mechanical properties of cells (Elson 

1988). Probing the mechanical properties of the cells might contribute to better 

understanding, diagnosis, and treatment of relevant diseases such as cancer, malaria, 

arthritis and some skin diseases  (Nash et al. 1989; Ward et al. 1991; Fuchs and 

Cleveland 1998; Trickey et al. 2000; Guck et al. 2005; Suresh et al. 2005).  

1.2 Viscoelastic properties of cells 

Quantification of the mechanical properties of cells has been intensely 

pursued in the past few decades (Bao and Suresh 2003; Lim et al. 2006). Based on 

the concept of continuum mechanics, the properties of cells are widely expressed in 

mechanical terms such as the Young’s modulus, viscosity, storage modulus and loss 

modulus. Various experimental techniques and mechanical models have been 

developed to measure these properties and will be reviewed in detail in Chapter 2. 

Unlike some common engineering materials, the cells are neither fluid-like or solid-

like, but exhibit strong viscoelastic behavior. If a constant force is imposed, the cells 

will creep whereas if a constant deformation is applied, the resisting force of the 

cells will relax over time. Therefore, the mechanical properties of cells can only be 

accurately described when the viscoelasticity of cells is taken into account properly.  

The cytoskeleton is a highly conserved structure (Mitchison 1995) and is 

qualitatively similar across different nucleated animal cell types (Alberts et al. 2002). 

Thus, one would expect the cytoskeleton of different nucleated animal cell types to 

have qualitatively similar passive viscoelastic behaviors. Furthermore, the generic 
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behavior of the cytoskeleton deformation should not depend on the measuring 

techniques. Therefore, it would be desirable to have a general viscoelastic model 

which can cover as many cell types as possible and as many experimental techniques 

as possible. Such a general model will potentially identify common features of 

cytoskeleton deformation and reveal the physical state of the cytoskeleton (e.g. as 

soft glass or as gel) (Fabry et al. 2001a; Bursac et al. 2005). In addition, having a 

general model will standardize the interpretation of mechanical properties and will 

allow the comparison of mechanical moduli across different cell types and across 

different experimental techniques.  

Micropipette aspiration had been widely used to perform creep tests on 

neutrophils, chondrocytes, endothelial cells and fibroblasts in suspension (Schmid-

Schonbein et al. 1981; Evans and Kukan 1984; Evans and Yeung 1989; Sato et al. 

1990; Ward et al. 1991; Tsai et al. 1993; Sato et al. 1996; Thoumine and Ott 1997a; 

Jones et al. 1999b; Thoumine et al. 1999; Trickey et al. 2000; Trickey et al. 2004). 

Most of the spring-dashpot viscoelastic models were proposed in the context of this 

technique and had widely been used for many other types of experiments (Lim et al. 

2006). However, several recent experiments performed over a wide range of cell 

types and organelles strongly supported the power-law rheology model (Fabry et al. 

2001a; Alcaraz et al. 2003; Lenormand et al. 2004; Yanai et al. 2004; Balland et al. 

2005; Dahl et al. 2005; Desprat et al. 2005). These latest experiments generally 

involved improved resolution in terms of time, frequency, and deformation 

measurement. Thus, the power-law rheology model could be a promising candidate 

for a general model of cell rheology. Yet, this model has not been confirmed with 
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micropipette aspiration for single cells, which is the basis for other competing 

models based on the spring-dashpot concept.  

In addition, most of the experiments that supported the power-law rheology 

model were performed on cells adherent to the substrate (or glass microplates in the 

case of microplate manipulation (Desprat et al. 2005)), with the exception of 

micropipette aspiration of the nuclei (Dahl et al. 2005). The power-law rheology 

model has not been proven for suspended eukaryotic cells. The rheology of cells in 

suspension becomes interesting especially when one considers the transport and 

trapping of white blood cells or metastatic cancer cells in the capillaries (Worthen et 

al. 1989; Yamauchi et al. 2005). If proven valid, the power-law rheology model will 

provide a common platform for comparing the rheological properties of both 

adhered and suspended eukaryotic animal cells.  

Lastly, probing adherent cells in suspension may lead to more consistent 

measurement of the passive mechanics of the cells. It is well known that most 

anchorage-dependent cells develop stress fibers and contractile stress (or prestress) 

while adherent to a substrate. The stiffness of the substrate influence the prestress 

(Discher et al. 2005; Saez et al. 2005), which in turn will modulate the stiffness and 

rheology of the cells (Wang et al. 2002; Stamenovic et al. 2004).  For the purpose of 

measuring the passive rheological behavior of the cell, detaching and suspending the 

cells will result in less internal active prestress and potentially allow more consistent 

measurement of the passive mechanics of the cells, as shown by the optical stretcher 

experiments (Guck et al. 2005; Wottawah et al. 2005).  
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As such, the rheology of suspended eukaryotic cells is worthy of study and 

the power-law rheology hypothesis for single cells needs to be tested with regards to 

micropipette aspiration. 

1.3 Finite element modeling of cell deformation 

Interpretation of the viscoelastic properties of cells has widely relied on 

linear viscoelasticity and analytical solutions (Lim et al. 2006). For example, the 

small deformation of an elastic sphere in micropipette aspiration had been solved 

analytically, while the viscoelastic properties were then derived using the elastic-

viscoelastic correspondence principle (Schmid-Schonbein et al. 1981; Theret et al. 

1988; Sato et al. 1990). These analytical solutions are limited to small deformation 

and cannot correctly account for the slippage between the cell and the pipette wall. 

However, many mechanical investigations involved large deformation of cells (Van 

Vliet et al. 2003). More importantly, cells frequently experience large deformation 

in its daily life, which may lead to certain biochemical responses through the process 

of mechanotransduction  (Wang et al. 1993; Vogel and Sheetz 2006). As such, 

mechanical modeling of cells should take into consideration the large deformation 

induced.  

Finite element method solves initial-boundary-value problems numerically 

and can overcome some of the simplifying assumptions made by analytical methods 

(Bathe 1996). It has increasingly been applied to the mechanical modeling of cells 

(e.g. Dong and Skalak 1992; Drury and Dembo 1999; Drury and Dembo 2001; 

Mijailovich et al. 2002; Baaijens et al. 2005; Zhou et al. 2005a). Thus, the finite 

element simulation of the viscoelastic deformation of cells under micropipette 
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aspiration may lead to more accurate determination of the rheological properties. In 

addition, a large-strain viscoelastic finite element model with experimental 

verification may contribute towards the study of mechanotransduction by predicting 

the distribution of stress and strain within cells (Guilak et al. 1999; Humphrey 2001; 

Charras and Horton 2002a; Charras and Horton 2002b; Charras et al. 2004; Lim et al. 

2006). However, a finite element model for describing the power-law rheology of 

the cells is still not available.  

1.4 Objectives and scope of work 

In view of the above, as the power-law rheology model has not been proven 

for suspended cells or for micropipette aspiration of cells, the main objectives of this 

research are:  

a. To experimentally investigate the rheology of suspended eukaryotic animal 

cells using the micropipette aspiration technique and to test the power-law rheology 

hypothesis in this context. 

b. To develop a large-deformation finite element model of cells based on the 

power-law rheology and to verify it with the experiments performed in (a). 

It is hoped that the experimental methodology and theoretical model put 

forward in this thesis will contribute to a more accurate evaluation of the viscoelastic 

properties of cells and better understanding of the biological response of cells to 

mechanical stimuli.  

To fulfill the objectives, the scope of this study will include the following: 
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1. A systematical review of the published mechanical models of cells. The 

review will examine the strength and limitations of each model as well as the impact 

of improved experimental techniques on the evolution of mechanical models.  

2. NIH 3T3 fibroblasts are chosen as a model system. The cells, while in 

suspension, will be subjected to linearly increasing suction pressure with 

micropipette aspiration (ramp tests). The main intention of ramp tests is to optimize 

the pipette size for producing linear and reproducible deformation of cells, which is 

the prerequisite for obtaining accurate creep function in creep experiments. The 

ramp tests will also provide approximate calibration for deformation measurement in 

micropipette aspiration.  

3. Creep tests will be carried out next on suspended fibroblasts using suitable-

sized pipettes. Based on creep deformation, creep function is interpreted and used to 

evaluate the accuracy of the power-law rheology model, in comparison with spring-

dashpot ones. In addition, the effect of drug treatments on the mechanical properties 

of cells will be investigated to understand the relative contribution of two major 

cytoskeletal filaments. 

4. A finite-strain viscoelastic model will be proposed for eukaryotic cells based 

on the power-law rheology. Finite element simulation is carried out to simulate the 

micropipette aspiration experiments, including both ramp tests and creep tests. 

Validation of the model is carried out by comparing the simulation results with those 

of experiments.  

1.5 Organization 

The organization of the remainder of this thesis is as follows:  
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Chapter 2 is the literature review on experimental techniques and mechanical 

models for studying cell mechanics.   

Chapter 3 describes the experimental materials and methods for studying 

fibroblasts.  

Chapters 4 and 5 present the rheology of NIH 3T3 fibroblasts studied with 

micropipette aspiration. In Chapter 4, the results for ramp tests are reported. The 

results for creep tests will be presented in Chapter 5.  

Chapter 6 presents the finite element simulation of micropipette aspiration of 

the suspended cells.  

The last chapter concludes the thesis by summarizing the major contributions 

and points out potential future directions.  



 

Chapter 2 Literature Review on Cell Mechanics 

Throughout life, living cells in the human body are constantly subject to 

mechanical stimulations, which may arise from both the external environmental and 

internal physiological conditions. Depending on the direction, magnitude and 

distribution of these mechanical stimuli, cells can respond in a variety of ways. For 

example, fluid shear in the blood vessels can regulate the gene expression of 

endothelial cells (Chien 2003). The dynamic compression of cartilage are known to 

modulate the proteoglycan synthesis of chondrocytes (Buschmann et al. 1995). Bone 

cells respond to mechanical stimuli by regulating the bone homeostasis and 

structural strain adaptation (Cowin 2002). Studies have also shown that many 

biological processes, such as growth, differentiation, migration, and even apoptosis 

are influenced by changes in cell shape and micromechanical environment (Chen et 

al. 1997; Boudreau and Bissell 1998; Huang and Ingber 1999; Schwartz and 

Ginsberg 2002). Therefore, mechanics plays an important role in regulating the 

physiology of a wide range of cells and thus, the study of cell mechanics may 

benefit human health by contributing to cellular and tissue engineering and other 

healthcare applications (Mow et al. 1994; Guilak et al. 2003).  

Studies have also revealed that correlations exist between the diseased state 

and the aberrant mechanical properties of cells (Suresh et al. 2005). Two most 

prominent cases are malaria and cancer, where deviations in the cellular mechanical 

properties are directly related to their pathology. For example, healthy human RBCs 

are flexible and can pass through blood vessels to supply oxygen to the tissues and 
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organs. Unfortunately, these cells are also coveted by the protozoan Plasmodium 

falciparum, the single-cell parasites that cause malaria. Invasion of the parasites 

causes gross changes in mechanical properties of the RBCs (Nash et al. 1989; Cooke 

et al. 2001; Glenister et al. 2002; Zhou et al. 2004a; Zhou et al. 2004b; Zhou et al. 

2005b), which lead to impairment of blood flow, possibly resulting in coma and 

even death (Miller et al. 2002; Dondorp et al. 2004). In the case of cancer, genetic 

mutations not only cause uncontrolled division of cells but also increase their ability 

to invade other tissues. The cytoskeleton of cancer cells was generally found to be 

more compliant than their normal counterparts (Thoumine and Ott 1997a; Guck et al. 

2005), which has been suggested to facilitate cancer cell metastasis (Ward et al. 

1991; Beil et al. 2003). In addition, alterations in mechanical properties of cells have 

also been implicated in other types of diseases such as sickle cell anemia (Kaul and 

Fabry 2004) and arthritis (Jones et al. 1999b). Therefore, the mechanical properties 

of certain types of cells can indicate their diseased state. Mechanical testing of cells 

may potentially find applications in clinical diagnostics.  

Finally, many drugs are known to increase or decrease the mechanical 

properties of living cells. For example, the chemotactic agent f-Met-Leu-Phe (fMLP) 

can increase the stiffness of neutrophils (Worthen et al. 1989; Zahalak et al. 1990); 

cytochalasin D and latrunculin B can disrupt the actin filament cytoskeleton and 

adversely affect the stiffness of cells (Sato et al. 1990; Wakatsuki et al. 2001; 

Nagayama et al. 2006); and colchicines can disrupt the microtubules in the 

cytoskeleton of neutrophils although this will not significantly affect the mechanical 

properties as actin filaments are still the primary structural elements (Tsai et al. 
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1998). Therefore, if a disease is caused by mechanical abnormalities of cells (e.g. in 

the case of malaria), drugs might be administered to intervene with them and this 

may lead to more effective therapy.  

In view of the above, cell mechanics is an important subject of study and 

mechanical properties of cells are of fundamental and practical interest. The works 

more closely relevant to the current study will be examined next.  

2.1 Experimental techniques in cell mechanics 

For the purpose of studying the mechanical properties of cells, various 

experimental techniques have been employed (Fig. 2.1) (Van Vliet et al. 2003). 

Micropipette aspiration (Mitchison and Swann 1954) applies a hydrostatic suction 

pressure to the cell surface via a micropipette (Fig. 2.1(a)). Atomic force microscope 

(AFM) (Fig. 2.1(f)) (Hoh and Schoenenberger 1994), cell indenter (Petersen et al. 

1982), microplate manipulation (Fig. 2.1(c)) (Thoumine and Ott 1997b) and tensile 

tester (Miyazaki et al. 2000) utilize the application of a pushing or pulling force on 

the cell surface. Magnetic tweezers (Crick and Hughes 1950; Bausch et al. 1998) 

and magnetic twisting cytometry (MTC) (Wang et al. 1993; Maksym et al. 2000) 

impose a torque or force to magnetic beads coupled to the cell surface or 

internalized into the cytoplasm (Fig. 2.1(e)). Optical tweezers (Henon et al. 1999; 

Lim et al. 2004) traps and moves organelles or microbeads coupled to or 

internalized by the cell (Fig. 2.1(b)). Optical stretcher (Guck et al. 2001) deforms the 

whole cell by applying optical force to the cell surface (Fig. 2.1(d)). Microrheology 

of the cytoplasm can be non-invasively inferred from intracellular particle tracking 
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(Yamada et al. 2000; Tseng et al. 2002). These techniques generally probe different 

aspects of the mechanical behaviors of the cells. Because of the heterogeneity and 

viscoelasticity of cells, the measured mechanical properties are very dependent on 

the techniques. For example, the reported elastic modulus for eukaryotic cells spans 

several orders of magnitude, varying from a few of Pa to thousands of Pa 

(Stamenovic and Coughlin 1999; Lim et al. 2006). Therefore, multiple factors need 

to be considered for obtaining consistent and reproducible results with the 

mechanics of cells. 

 

 
(a) Micropipette aspiration 

 

 
(b) Optical tweezers 

 

 
(c) Microplate manipulation 

 

 
(d) Optical stretcher 

 

 
(e) MTC 

 

 
(f) AFM indentation 

Fig. 2.1. Experimental techniques for measuring mechanical properties of living cells  (Lim 
et al. 2006).  
 
 

The research performed herein is based on the micropipette aspiration 

method. Mitchison and Swann (1954) first developed the micropipette aspiration 

method based on the principle of hydrostatic pressure transmission. The system 

composes of two main parts, a glass micropipette that directly sucks the cell and a 

hydrostatic system that controls the suction pressure in the pipette (Fig. 2.2). 
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Significant progress has since been made in micropipette production, pressure 

control and calibration, automation and computers, and cell imaging, but the 

working mechanism remains essentially the same (Hochmuth 2000).  

 
 

Fig. 2.2. The first experimental setup of micropipette aspiration (Mitchison and Swann 
1954). 
 
 

Micropipette aspiration has played a key role in clarifying the mechanical 

properties of cells. Mitchison and Swann (1954) performed micropipette aspiration 

on sea-urchin eggs (~ 100 μm in diameter). Subsequently, this technique has been 

adapted to measure the mechanical properties of the much smaller red blood cells 

(Band and Burton 1964; Evans 1973) and white blood cells (Schmid-Schonbein et al. 

1981; Evans and Kukan 1984). More recently, the micropipette aspiration technique 

has been applied to study the rheology of anchorage-dependent eukaryotic cells, 

including endothelial cells, fibroblasts and chondrocytes  (Sato et al. 1987b; Jones et 

al. 1999b; Thoumine et al. 1999).  

Micropipette aspiration is therefore very suitable for evaluating the 

rheological properties of cells and will also be adopted for the current study. One 

approach to derive the mechanical moduli of cells from the experimental results is 

through mechanical models, which will be systematically reviewed in the next 

section.  
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2.2 Mechanical models for eukaryotic cells 

2.2.1 Overview 

An overview of the mechanical models developed in the past few decades is 

shown in Fig. 2.3.  

Fig. 2.3. An overview of mechanical models for living cells (Lim et al. 2006).  
 
 

Generally, these models are derived using either the microstructural 

approach or the continuum approach. The former deems the cytoskeleton as the 

main structural component and is especially developed for investigating cytoskeletal 

mechanics in adherent cells (Satcher and Dewey 1996; Stamenovic et al. 1996; Boey 

et al. 1998; Boal 2002; Stamenovic and Ingber 2002; Coughlin and Stamenovic 

2003). For suspended cells such as erythrocytes, the microscopic spectrin-network 

model (Boey et al. 1998; Li et al. 2005) was developed to investigate the 

Mechanical models 
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Cortical shell-
liquid core models 
• Maxwell 
• Newtonian  
• Shear thinning 

Cytoskeletal models 
for adherent cells 

• Open-cell foam 
(Satcher and 
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• Tensegrity 
(Stamenovic et al. 
1996) 

• Tensed cable 
networks 
(Coughlin and 
Stamenovic 2003)  

Micro/Nanostructural Approach  
 (See review by (Boey et al. 1998; 

Stamenovic and Ingber 2002)) 

Spectrin-network 
model for RBCs 

(Boey et al. 1998; 
Li et al. 2005) 

Biphasic model Viscoelastic models 

Smeared models 
• Elastic solid 
• Standard linear solid 
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contribution of the cell membrane and spectrin network to the large deformation of 

red cells.  

On the other hand, the continuum modeling approach treats the cell as a 

continuum material with certain mechanical properties (Humphrey 2003; Lim et al. 

2006). From experimental observations, the appropriate constitutive material models 

and the associated parameters are then derived. Although providing less insight into 

the detailed molecular mechanical events, the continuum approach is easier and 

more straightforward to use in computing the mechanical properties of the cells if 

the biomechanical response at the cell level is all that is needed. This approach has 

been adopted in this thesis and the continuum models will be reviewed next, with 

emphasis on the constitutive modeling of the viscoelastic behavior of cells.  

2.2.2 Cortical shell-liquid core models 

The cortical shell-liquid core (CSLC) models were first developed mainly to 

account for the rheology of neutrophils in micropipette aspiration. The Newtonian 

liquid drop model, the shear thinning liquid drop model and the Maxwell liquid drop 

model fall under this category.  

2.2.2.1 Newtonian liquid drop model 

Leukocytes behave like a liquid drop and adopt a spherical shape when 

suspended. They can deform continuously into a micropipette with a smaller 

diameter when the pressure difference exceeds a certain threshold (Fig. 2.4(a)) and 

can recover its initial spherical shape upon release (Evans and Kukan 1984) (Fig. 

2.4(b) – (d)).  
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Fig. 2.4. Deformation of a cell in micropipette aspiration. (a) Partial aspiration of a cell at a 
fixed pressure (ΔP). (b) – (d) A cell is completely aspirated into a pipette, held for a certain 
period of time and then expelled from the pipette to observe its recovery process.  
 
 

The Newtonian liquid drop model was thus developed by Yeung and Evans 

(1989) in an attempt to simulate the flow of such liquid-like cells into the 

micropipette. In this model, the cell interior was assumed to be a homogeneous 

Newtonian viscous liquid and the cell cortex was taken as a fluid layer with constant 

surface tension (Fig. 2.5(a)). In a simple shear test where a Newtonian fluid with 

viscosity, µ, is subjected to a shear stress, τ (τ = 2µ), the change of the shear strain, γ, 

with time (t) is shown in Fig. 2.5(b). 

 

 

Fig. 2.5. The Newtonian liquid drop model:  (a) The cell is modeled as a Newtonian liquid 
droplet enclosed by a cortical layer with constant tension, To. (b) This plot shows the creep 
response of a Newtonian liquid with viscosity, µ when subjected to a stress, τ (τ = 2µ).  
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The constitutive relations of the Newtonian fluid used by Yeung and Evans 

(1989) are described by  

 
                T T p

μ=

= ∇ + ∇ = ∇ + ∇ = +

τ γ
γ u u γ v v τ σ I

 (2.1) 

where σ and τ are the total and deviatoric stress tensors, respectively; γ is the 

engineering strain tensor same as defined by Ferry (1980) and are equal to the 

deviatoric strain tensor due to assumed incompressibility; γ  is the strain rate; µ is 

the shear viscosity; I is the unit tensor; u is the displacement field, and v is the 

velocity field. Note that the creep response of Newtonian fluid involves no sudden 

change in strain and the strain is not recoverable upon unloading (Fig. 2.5(b)). 

In micropipette aspiration experiment, the critical suction pressure (Pcr) is 

defined as when a static hemispherical projection of the cell body is formed inside 

the pipette. An excess pressure beyond this threshold will cause the cell to flow into 

the pipette continuously (provided there is enough excess membrane area to 

accommodate the incompressible cytoplasm (Evans and Yeung 1989)). The static 

cortical tension can thus be inferred from Pcr according to the law of Laplace 

 ( )0 2 1 1
cr

p c

PT
R R

=
−

 (2.2) 

where Rp is the radius of the pipette and Rc the radius of the cell body outside the 

pipette (Fig. 2.4(a)).  

Solution to the time-dependent inflow of this model after the formation of a 

static hemispherical cap was derived by Yeung and Evans (1989) using a variational 

approach. However, this solution is not in its explicit form. Needham and Hochmuth 

(1990) simplified it as 
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where ΔP is the total suction pressure, Lp is the deformed projection length of the 

cell inside the pipette (cf. Fig. 2.4(a)), pL  is the rate of change for Lp, Rc is the radius 

of the cell body outside the pipette corresponding to the point when pL  is measured. 

The above equation can be integrated to yield the theoretical deformation process, 

i.e. Lp versus time, given the value of µ and the initial and final values of Lp 

(Needham and Hochmuth 1990). The theoretical deformation process appeared to 

match the middle portion of the entry process reasonably well (Fig. 2.6). However, 

the Newtonian model is not able to account for the rapid initial entry into the pipette. 
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Fig. 2.6. Modeling the micropipette aspiration of neutrophils with CSLC models. Here, Rp = 
2 μm and ΔP = 490 Pa. The experimental data (Tsai et al. 1993) was fitted by (i) the finite 
element simulation using the Newtonian model with μ = 92.5 Pa·s, Τ0 = 0.035×10−3 N/m 
(Drury and Dembo 1999); (ii) the empirical solution for the Newtonian model (Eq. (2.3)) 
with an assumed arbitrary initial jump and μ = 280 Pa·s (Needham and Hochmuth 1990); 
and (iii) the numerical prediction using the shear thinning model with ηc = 55 Pa·s and b = 
0.73 (Tsai et al. 1993).  
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Insights can also be gained from the recovery analysis after deformation. The 

cells were first aspirated into a micropipette to form an elongated sausage shape, 

held for a period of time, and then expelled out of the pipette (see Fig. 2.4). Tran-

Son-Tay et al. (1991) found that the recovery process of neutrophils after 

undergoing large deformation could be fitted by using the Newtonian liquid drop 

model and derived the ratio between the cortical tension and the cytoplasmic 

viscosity (T0/μ) from the recovery experiments. For cells held within a micropipette 

for a period longer than 5s, the theory agreed well with experiments and the 

predicted ratio T0/μ was very close to those predicted by others (Evans and Yeung 

1989; Needham and Hochmuth 1990) using the aspiration method thus giving 

support to the Newtonian liquid drop model. However, if held for less than 5s, the 

cells would exhibit a fast elastic recoil, analogous to the initial rapid entry in the 

aspiration test (Evans and Yeung 1989; Needham and Hochmuth 1990), which could 

not be explained by the Newtonian model. 

The Newtonian model has been subjected to further tests for the case of 

granulocytes flowing down tapered pipettes under certain driving pressures (Bagge 

et al. 1977). The simulation results compare favorably with that of experiments, with 

the core viscosities very similar to those found by others using the same model 

(Tran-Son-Tay et al. 1994a). Some of the reported mechanical parameters of the 

Newtonian liquid drop model are listed in Table A.1.  

2.2.2.2 Shear thinning liquid drop model 

Tsai et al. (1993) studied the dependence of the apparent cytoplasmic 

viscosity on shear rate at large deformation. A large number of human neutrophils 

were aspirated into pipettes of diameters ranging from 4 to 5 μm and suction 
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pressures between 98 and 882 Pa. Subsequently, the apparent viscosities under 

different aspiration pressures were computed using the Newtonian liquid drop model 

(Yeung and Evans 1989). Tsai et al. (1993) found that the apparent viscosity of the 

cytoplasm decreased with increasing aspiration pressure, or the mean shear rate, by a 

power law relationship:  

 ( ) b
c m cη η γ γ −=  (2.4) 

where 1 11300 230Pa s;  0.14 ~ 7.3s ;  1s ;  0.52 0.09c m c bη γ γ− −= ± = = = ± . Here, ηc is 

the characteristic viscosity at characteristic shear rate cγ , b is the power, and mγ  is 

the mean shear rate averaged over the whole process and domain. The instantaneous 

shear rate pγ  at a certain point is defined as 

 1 :
2pγ = γ γ  (2.5) 

Substitution of Eq. (2.4) into Eq. (2.1) results in 

 ( ) b
c mη γ −=τ γ  (2.6) 

which further simplifies to ( )1 b
cτ η γ −=  in the case of simple shear with a constant 

shear rate. The creep and recovery response of shear thinning fluid is similar to that 

of Newtonian liquid, but the apparent viscosity τ γ  will decrease as the shear stress 

increases (Fig. 2.7(b)).  

Using the Newtonian liquid model, Tsai et al. (1993) predicted the speed of 

aspiration to be almost constant throughout the duration while under constant 

aspiration pressure. However, this was inconsistent with the observed acceleration at 

the end of aspiration, immediately before the whole cell was sucked in. In order to 

better fit this course of aspiration, the power-law constitutive relation was 

incorporated into the CSLC model (Tsai et al. 1993) (Fig. 2.7(a)). The instantaneous 
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apparent viscosity takes the form of a power-law function for the instantaneous 

mean shear rate. Thus, a positive feedback is established such that an increase in 

shear rate will lead to decrease in viscosity and this will in turn, lead to a further 

increase in shear rate, and so on. It was shown that this preliminary shear-thinning 

model can simulate the experiment better than the Newtonian liquid drop model (Fig. 

2.6).  

 

 

Fig. 2.7. The shear thinning liquid drop model: (a) The cortex of the cell is modeled as a 
layer with constant tension To and the cytoplasm is modeled as a shear thinning liquid 
droplet. (b) The plot shows the simple shear creep response of a power law fluid with a 
characteristic viscosity ηc and b = 0.52, subject to shear stress τ = 2ηc (cf. Eq. (2.6)).  
 
 

The shear thinning liquid drop model is also consistent with some of the in 

vitro rheological studies conducted on polymer solutions. The cytoplasm is rich in 

polymeric cytoskeletal structures, i.e. actin filaments, microtubules and intermediate 

filaments. Studies of the polymer solutions of these cytoskeletal components provide 

insights to the cytoplasm rheology. It is well known that many polymeric fluids 

show shear thinning behavior, where the viscosity η is related to the shear rate γ  by 

the power law (Buxbaum et al. 1987) 

 bAη γ −=  (2.7) 

(a) (b)
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where A is a constant and b the power of shear thinning. The power number for 

macromolecular fluids generally lies between 0.4 and 0.85 at high shear rates 

( 11sγ −> ) and approaches zero at low shear rates ( 2 110 sγ − −< ) (Bird et al. 1987) 

which is in contrast to the constant viscosity in Newtonian fluids. For cytoskeleton 

polymer solutions, Buxbaum et al. (1987) reported that F-actin (2 ~ 6 mg/ml) and 

microtubule suspensions (12 mg/ml) behaved as indeterminate fluids with the power 

b ≈ 1 at shear rate less than 1 s-1 (which means the shear stress is almost invariant 

with the shear rate: Aτ ηγ= ≡ ). Zaner and Stossel (1982) reported b = 0.69 ~ 0.79 

for F-actin (1 ~ 2 mg/ml) at shear rate less than 1 s-1.  

Because of the complex geometry, sliding boundary condition and the 

nonlinear constitutive relations, solving the large deformation problem without 

discretization of the computational domain can be very challenging. The finite 

element (FE) method provides a promising alternative solution. Drury and Dembo 

(1999; 2001) used this method to study the rheology of the micropipette aspiration 

and the comparison with the Newtonian model and experiment is shown in Fig. 2.6. 

They performed eight experiments using different pipette radii and suction pressures 

on neutrophils. Six types of models were compared. The parameters of each model 

were adjusted to achieve the most desirable match with all the eight experiments. 

This approach is worth mentioning because an ideal model should perform well 

under different experimental conditions. According to their study, a model with 

shear thinning, cortical dissipation and strong membrane-cytoplasmic coupling 

appears to be the optimal model to use, although there is still considerable 

discrepancy observed under different experimental conditions. However, the initial 

rapid entry phase still cannot be accounted for.  
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It is also of interest to note that small strain dynamic measurements of living 

cells (including neutrophils) using oscillatory magnetic twisting cytometry (Fabry et 

al. 2003) reveals no evidence of shear thinning. The complex moduli were found to 

depend only on frequency but not on the shear rate. Therefore, the shear thinning 

model is probably more suited for modeling large deformation rather than small 

deformation behavior in cells. 

2.2.2.3 Maxwell liquid drop model 

While the large deformation regime could be satisfactorily represented by the 

Newtonian or Newtonian-like models, the small deformation of cells exhibit strong 

viscoelastic behavior, such as the initial rapid elastic-like entry. Dong et al. (1988) 

applied the Maxwell liquid drop model to study the small deformation and recovery 

behavior of leukocytes in micropipette aspiration. Their model for a passive 

leukocyte consisted of a prestressed cortical shell containing a Maxwell fluid (Fig. 

2.8(a)).  

 

Fig. 2.8. The Maxwell liquid drop model: (a) The cell is modeled as a Maxwell liquid 
droplet bounded by a constant tension, To. (b) This plot shows the creep response (γ) of a 
Maxwell liquid (µ = 10k) when subjected to a stress τ (τ = k).  
 
 

The Maxwell constitutive equation used by Dong et al. (1988) is given by 

(a) (b)
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k
μ μ+ =τ τ γ  (2.8) 

where k is an elastic constant and μ a viscous constant, represented as a dashpot and 

a spring in series. The creep and recovery response of the Maxwell model is shown 

in Fig. 2.8(b). It is noted that the creep deformation involves an initial jump and can 

be broken down into a viscous and an elastic component. The elastic part allows for 

recovery upon unloading.  

Series solutions were derived for micropipette aspiration and recovery, 

assuming spherical initial shape and small deformation. The theoretical results could 

fit both the initial rapid entry (within several seconds) and the recovery after small 

deformation with a same set of mechanical parameters (µ = 30 Pa·s, k = 28.5 Pa and 

T0 = 0.031 · 10-3 N/m). A FE model was also developed to simulate aspiration and 

the solution was very close to the series solution  (Dong et al. 1988).  

The small deformation FE analysis was later extended to a large deformation 

FE analysis (Dong et al. 1991; Dong and Skalak 1992). It was shown that the 

Maxwell liquid model could not fit the experimental data unless the values for the 

viscosity and elasticity of the cytoplasm were allowed to increase continuously as 

the cell was sucked into the pipette. The elastic modulus was increased from 20 to 

260 Pa and the viscosity was increased from 5 to 60 Pa·s, as the sucked-in length 

increased from 0 to 3Rp.  

This suggests that the small deformation behavior may be fundamentally 

different from that of large deformation flow. As one may observe from Eq. (2.8), 

the Maxwell fluid will degenerate into the Newtonian fluid as k approaches infinity. 

Thus, the cytoplasm seems to undergo a transition from the Maxwell to the 
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Newtonian behavior while being aspirated into the micropipette with increasing 

viscosity and elastic modulus.  

The recovery study also provides some support to the Maxwell liquid drop 

model. The sausage-shape deformed cells were found to exhibit a rapid initial elastic 

recovery if the holding time was very short (less than 5-7 s). However, if the cell 

was held longer, the recovery was slower and behaved more like a Newtonian liquid 

(Tran-Son-Tay et al. 1991; Hochmuth et al. 1993). This phenomenon can be 

partially explained by the fading elastic memory of a Maxwell liquid.  

At this point, a brief summary can be made on the cortical shell liquid core 

models. First of all, the Newtonian or the shear thinning liquid drop model can 

account for the large deformation flow and recovery of white blood cells in a 

consistent manner but cannot explain the viscoelastic aspect of cell deformation. On 

the other hand, the Maxwell liquid drop model, while being able to model certain 

viscoelastic behaviors, encounters difficulties in explaining the large deformation 

behavior in a consistent manner. Indeed, studies of polymeric liquid rheology 

indicate that the cytoplasm is unlikely to be a simple Newtonian or Maxwell liquid. 

More complex viscoelastic models might be needed to explain the general 

viscoelastic behaviors of cells, as will be presented in the following section.  

2.2.3 Spring-dashpot smear models 

During cell deformation, the resistance arises from different sources, 

including at least 1) the viscoelasticity of the cortex, cytoplasm and the nucleus, and 

2) static surface tension and the active forces of the cytoskeleton. Determination of 

the relative contribution of these agents is very challenging and difficult to 
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accurately achieve with a single type of experiment at the whole cell level. 

Therefore, smeared models have been widely adopted to phenomenologically 

describe the viscoelasticity of cells and to evaluate the mechanical properties of cells, 

not only for anchorage-dependent cells but also for  neutrophils (e.g. Schmid-

Schonbein et al. 1981; Sato et al. 1990; Thoumine and Ott 1997b; Jones et al. 1999b; 

Fabry et al. 2001a; Desprat et al. 2005; Rosenbluth et al. 2006). The smeared 

models assume the cell to be homogeneous, which reduces the number of 

mechanical parameters and greatly simplifies the experimental data analysis. 

Despite the fact that large deformation is often encountered in mechanical 

tests, linear viscoelasticity has been widely applied for modeling cells. This is 

partially justifiable if the relation between force and deformation is approximately 

linear, which has been shown by experiments for a few cell types (Theret et al. 1988; 

Thoumine and Ott 1997b; Jones et al. 1999b; Miyazaki et al. 2000).  

As the basis of viscoelastic models, the linear elastic model and the relevant 

analyses will be introduced first. Then, the widely-used standard linear solid model 

will be discussed. This is followed by a more general model, which is a serial 

combination of a standard linear solid body with a dashpot.  

2.2.3.1 Linear elastic solid model 

The elastic model is a simplification of the viscoelastic model where the time 

factor has been neglected. A linear elastic material is described by  

 G=τ γ  (2.9) 

where G is the shear modulus and is related to the Young’s modulus E by E = 2(1 + 

ν)G with ν being the Poisson’s ratio. Unfortunately, the linear elastic model is 
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generally inadequate for describing the mechanics of cells, because the apparent 

elasticity of a viscoelastic material will depend on both the loading rate and loading 

history. However, the linear elastic solution serves as a basis for viscoelastic 

solution according to the elastic-viscoelastic correspondence principle (Fung 1965). 

Here, we will discuss elastic solid models that have been derived from experiments 

conducted on cells using the micropipette aspiration, AFM indentation, cytoindenter 

and MTC.  

In micropipette aspiration, when the pipette radius is very small compared to 

the local radius of the cell surface, the cell can be approximated as an 

incompressible elastic half-space (Theret et al. 1988). The projection length is 

predicted to be proportional to the aspiration pressure ΔP and inversely proportional 

to the elastic modulus as (Theret et al. 1988) 

 
2

p P

P

L P
R Gπ

Φ Δ
=  (2.10) 

where Lp is the projection length, RP the pipette radius, G the shear modulus, and ΦP 

is a function of the ratio of the pipette wall thickness to the pipette radius, ΦP = 2.0 ~ 

2.1 when the ratio is equal to 0.2 to 1.0.  

For AFM indentation of adherent cells, the force-indentation relationship for 

a regular square pyramid punch indenting an elastic half-space (Bilodeau 1992) is 

given as  

 
( )

21.4906
1 tan

GF δ
ν θ

=
−

 (2.11) 

with F being the force of indentation, δ the depth of indentation and θ the inclination 

angle of the triangular faces. 
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Indentation of adherent cells has also been performed using a cell poker or 

cytoindenter (Petersen et al. 1982; Shin and Athanasiou 1999), where the punch is a 

plane-ended cylinder. When the punch diameter is relatively small compared to the 

surface curvature and thickness of the cell, the cell can be idealized as a half-space. 

The linear elastic solution to this punch problem (Harding and Sneddon 1945) is 

 4
1

IR GF δ
ν

=
−

 (2.12) 

where RI is the radius of the indenter, all the other parameters being the same as 

defined earlier.  

Finally, for the MTC experiment, a three dimensional finite element model 

was constructed to solve the problem (Mijailovich et al. 2002). The cell was first 

modeled as a uniform height slab with a lateral extent of 50 times the bead diameter. 

The cell material is assumed to be homogeneous, linear elastic and incompressible. 

Also, the spherical magnetic bead is assumed to be fully adhered to the cell surface. 

Finally, both the bead and the substrate are assumed to be rigid. The following 

relationships were obtained (Mijailovich et al. 2002) 

 
MMTC

OMTC

T G

T G
d R

κα
φ

κα

=

=

 (2.13) 

for magnetic MTC (Maksym et al. 2000) and for optical MTC (Fabry et al. 2001a), 

respectively. T (Pa) is the applied specific mechanical torque per unit bead volume, 

κ is a shape factor (κ = 6 for spherical beads), φ  is the measured bead rotation, d is 

the measured lateral bead translation, R is the radius of the bead and αMMTC and 

αOMTC are geometric coefficients depending on the degree of bead embedding and 

cell height for magnetic and optical MTC, respectively (αMMTC ≈ 0.05 and αOMTC ≈ 

0.055 for 10% bead diameter embedding, when 2R = 4.5 μm and the cell height is 

larger than the bead diameter). 
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2.2.3.2 Standard linear solid model 

The experimental basis for the viscoelastic solid models is that equilibrium 

can usually be achieved after certain amount of loading. Unlike neutrophils, 

endothelial cells and chondrocytes were unable to flow into the pipette even when 

the suction pressure greatly exceeded the critical suction pressure, exhibiting a solid-

like behavior (Theret et al. 1988; Jones et al. 1999b). Furthermore, endothelial cells 

exposed to fluid shear stress are known to retain an elongated configuration even 

after detachment. Theret et al. (1988) attributed this nonspherical shape to the 

reassembly of the cytoskeleton elements in response to the shear stress and pointed 

out that the cytoplasm behaves more like a solid than fluid in this case.  

The standard linear solid (SLS) model (Fig. 2.9) was first proposed by 

Schmid-Schonbein et al. (1981), which takes the form 

 1
1

2 2

1 kk
k k
μ μ

⎛ ⎞
+ = + +⎜ ⎟

⎝ ⎠
τ τ γ γ  (2.14) 

where k1 and k2 are two elastic constants and µ is a viscous constant, represented by 

two springs and one dashpot as shown in (Fig. 2.9(a)). However it is noted that 

because γ is defined as engineering strain (cf. Eq. (2.1)), the parameters k1, k2 and µ 

used in this equation are only half of those in the original SLS model (Schmid-

Schonbein et al. 1981; Sato et al. 1990). Such a modification is beneficial because it 

will not only make the parameters for the SLS model comparable to those in the 

other models, but it will also render the elastic and viscous constants analogous to 

shear moduli and viscosity, respectively.  
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Fig. 2.9. The homogeneous standard linear solid model. (a) The whole cell is modeled as a 
homogeneous viscoelastic standard linear solid (SLS). (b) The plot shows the creep 
response (γ) of a standard linear viscoelastic solid (k1 = k2 and µ = 10k1) when subjected to a 
stress τ (τ = k1).  
 
 

The creep function of the SLS model is given by  

 ( ) ( )2

1 1 2

1 1 CtkJ t e H t
k k k

τ−⎡ ⎤
= −⎢ ⎥+⎣ ⎦

 (2.15) 

where ( ) ( )1 2 1 2C k k k kτ μ= +  is the characteristic creep time and H(t) is the 

Heaviside function. The creep and recovery behavior of this model is shown in Fig. 

2.9(b). The micropipette aspiration of the SLS viscoelastic half-space can be derived 

from the solution of the analogous elastic problem (Eq. (2.10)) according to the 

elastic-viscoelastic correspondence principle (see Appendix B.4) (Sato et al. 1990) 

 
( ) 2

1 1 2

1 1 ( )
2

Cp tP

P

L t P k e H t
R k k k

τ

π
−⎡ ⎤Φ Δ

= −⎢ ⎥+⎣ ⎦
 (2.16) 

where ΦP is defined as that in the elastic solution (see Eq. (2.10)). Similar to the 

micropipette aspiration problem, viscoelastic creep solutions can also be derived for 

other types of experiments, e.g. flat-punch indentation, AFM indentation and MTC, 

for which the corresponding elastic solutions exist.  

(a) (b)
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Although the SLS model was originally proposed for modeling leukocytes, 

the leukocytes had been more widely modeled with the liquid drop models (cf. 

Section 2.2.2). On the other hand, several types of anchorage-dependent cells 

including endothelial cells, osteoblasts, chondrocytes, and the cell nuclei have been 

suggested to exhibit the SLS material behavior (Theret et al. 1988; Jones et al. 

1999b; Guilak et al. 2000; Koay et al. 2003). Some of the mechanical parameters 

obtained by various researchers using the SLS model are presented in Table A.2. 

It is noted that interpretation of the cell deformation in micropipette 

aspiration has been based on the half-space model. In reality, a cell has a finite 

radius and thus is far from being a half-space. Therefore, the effect of pipette 

geometry on the cell deformation and the accuracy of the half-space model is worthy 

of being further evaluated.  

2.2.3.3 Standard linear solid-dashpot model 

In order to account for the displacement of magnetic beads bounded to cell 

surface or phagocytized into the cytoplasm in response to a step magnetic force, a 

more complex spring-dashpot model was used by Bausch et al. (1998; 1999). The 

model is a serial combination of an SLS body with a dashpot (SLS-D), which has a 

creep function of 

 ( ) ( ) ( )1

1 1 2 0

1 1 1 ctk tJ t e H t H t
k k k

τ

μ
−⎡ ⎤⎛ ⎞

= + − +⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦
 (2.17) 



Chapter 2   Literature review 34
 

where μ0 is the additional viscous constant. Both the creep and recovery processes 

could be fitted by the SLS-D model. Fig. 2.10(a) shows the mechanical analog and 

Fig. 2.10(b) shows the creep and relaxation behavior of this model.  

 

Fig. 2.10. The SLS-D model. (a) The spring-dashpot analog. (b) The normalized creep and 
relaxation response of this model when subjected to a constant stress τ0 between t = 0 ~ toff 
(adopted from (Bausch et al. 1998)). The creep process is composed of three phases: a fast 
elastic response (I), a relaxation regime (II) and a flow regime (III).  
 
 

A reduced form of this model, where k2 was taken as infinity, has been 

applied to simulate the rotation of chains of magnetic endosomes inside a HeLa cell 

in response to a rotating magnetic field (Wilhelm et al. 2003) and the creep 

deformation of suspended fibroblasts in optical stretcher experiment (Wottawah et al. 

2005). In the former case, the experimental rotating process could be well fitted by 

the theoretical model. In the later case, however, the model could only describe the 

short-term loading cases but became inaccurate for cases where the stretching lasted 

for more than 10 s.  

From the discussion above, it seems apparent that as the number of springs 

and dashpots increases, the power to fit viscoelastic deformation processes increases. 

However, more complex spring-dashpot models have several drawbacks. Firstly, it 

may bring uncertainty into the curve fitting if the parameters cannot be uniquely 

determined. Secondly, it is difficult to give meaningful physical interpretation to the 

(a) (b)
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numerous springs and dashpots. More importantly, the spring-dashpot models were 

generally developed in the context of creep experiment in the time domain. The 

ability of these models in fitting the dynamic moduli of cells in the frequency 

domain remains to be evaluated. 

2.2.4 Power-law rheology model 

Oscillatory MTC (Maksym et al. 2000; Fabry et al. 2001a) and AFM 

(Mahaffy et al. 2000; Alcaraz et al. 2003) are popular techniques used for 

conducting dynamic tests on adherent cells.  For both dynamic tests, low amplitude 

sinusoidal force signal resulted in a sinusoidal displacement at the same frequency 

but exhibited a phase lag in the steady-state. In the oscillatory AFM experiment, the 

oscillatory force is expressed as ( ) 0 Rl i t
FF t F A e ω⎡ ⎤− = ⎣ ⎦ where F0 is the operating 

force around which the indentation force F oscillates, AF is the amplitude of this 

oscillation, ω is the angular frequency (ω = 2πf, f being the frequency) and Rl[·] 

denotes the real part of a complex number. On the other hand, the oscillatory 

indentation is expressed as ( ) ( )
0 Rl i tt A e ω ψ

δδ δ −⎡ ⎤− = ⎣ ⎦  where δ0 is the operating 

indentation depth around which the indentation δ oscillates, Aδ is the amplitude of 

this oscillation, ψ is the phase lag and Rl[·] denotes the real part. The frequency 

domain solution can be obtained from the corresponding elastic solution according 

to the correspondence principle (Fung 1965). Applying Taylor expansion to Eq. 

(2.11) around the operating indentation depth δ0 and using the Fourier transform, 

Alcaraz et al. (2003) derived the equation for interpreting the complex shear 

modulus as 

 ( ) ( ) ( )*

0

1 tan
0

3
iFAG G iG e i b

A
ψ

δ

ν θ
ω ω

δ
− ⎡ ⎤

′ ′′= + = −⎢ ⎥
⎣ ⎦

 (2.18) 
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where the term iωb(0) is a correction term that accounts for the hydrodynamic drag 

force due to the viscous friction imposed on the cantilever by the surrounding fluid, 

and G′ and G′′ are the dynamic storage modulus and loss modulus, respectively.  

Similarly, in the oscillatory MTC experiment, the formula for interpreting 

complex modulus stems from the corresponding elastic solution, Eq. (2.13). Both 

αOMTC and αMMTC are independent of frequency, thus the equations can be extended 

to account for the complex shear modulus as long as the linear viscoelasticity is 

obeyed (Mijailovich et al. 2002). Assuming ( ) Rl i t
TT t A e ω⎡ ⎤= ⎣ ⎦  and 

( ) ( )Rl i tt A e ω ψ
φφ −⎡ ⎤= ⎣ ⎦  (for magnetic MTC) or ( ) ( )Rl i t

dd t A e ω ψ−⎡ ⎤= ⎣ ⎦  (for optical 

MTC), we have 
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 (2.19) 

for magnetic MTC and optical MTC, respectively.  

Importantly, in both the oscillatory MTC and AFM experiments, the storage 

modulus G′ of the cells (including human bronchial and alveolar epithelial cell lines 

(Alcaraz et al. 2003), human airway smooth muscle cells, human lung epithelial 

cells, mouse embryonic carcinoma cells, mouse pulmonary macrophages and human 

neutrophils (Fabry et al. 2003)) was found to depend on the frequency (ranging from 

10-2 to 103 Hz) according to a weak power law with a constant exponent between 0.1 

and 0.4. The loss modulus G″ exhibited similar power-law frequency dependence at 

low frequency (< ~ 10 Hz) but a Newtonian viscous component became significant 

at high frequency (Fig. 2.11) (Fabry et al. 2001a; Alcaraz et al. 2003; Fabry et al. 

2003). Such a weak power-law behavior has been suggested to be characteristic of 



Chapter 2   Literature review 37
 

soft glassy materials existing close to a glass transition (Sollich 1998; Fabry et al. 

2001a), which indicates that the cytoskeleton might be a scale-free network in that it 

possess no internal scale that can typify the number of interactions per protein 

(Jeong et al. 2000; Fabry et al. 2003). Therefore it will exhibit a continuous 

spectrum of relaxation time, instead of the discrete spectrum shown by the spring-

dashpot models. To model the observed rheological behavior of the adherent cells, 

the power-law rheology (PLR) model (also called power-law structural damping 

model or soft glassy rheology model) was proposed (Fabry et al. 2001a) 

 ( ) ( )*
0

0

1iG G iG G i
α

ωω α ωμ
ω

⎛ ⎞
′ ′′= + = Γ − +⎜ ⎟

⎝ ⎠
 (2.20) 

where α is the exponent of the power law (0 < α  < 1) (tan(α π/2) represents the 

structural damping coefficient), μ is the Newtonian viscous term, ω is the angular 

frequency, Γ(·) denotes the gamma function and G0 and ω0 are scaling factors for 

stiffness and frequency, respectively (note that ( )0 0cos / 2G G Gπα′ = ≈  when ω = 

ω0 and α → 0). This model fitted the experimental data very well, whereas the SLS-

D spring-dashpot model could not (Fig. 2.11). This illustrates the inherent limitation 

of spring-dashpot models in describing frequency domain tests of real materials 

(Pritz 1996). In the experiment for a single cell type, the plot of G′ against angular 

frequency curves for different drug treatments have been found to pass a common 

point, (G0, ω0), which indicates that G0 and ω0 are approximately invariant with drug 

treatments (Fabry et al. 2003). More recently, oscillatory experiments done with 

optical tweezer also provided support to the PLR model (Yanai et al. 2004; Balland 

et al. 2005).  
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Fig. 2.11. Modeling the oscillatory twisting cytometry of human airway smooth muscle 
cells. (a) Storage modulus; (b) loss modulus. The experimental data (Fabry et al. 2001a) was 
fitted by (i) the PLR model (Eq. (2.20)) with 0 0G αω−  = 1733 Pa·sα, α = 0.185 and μ = 1.76 

Pa·s (Djordjevic et al. 2003), (ii) the PLR model without the Newtonian term iωμ ( 0 0G αω−  
= 1733 Pa·sα, α = 0.185), and (iii) the SLS-D model (Eq. (B.6)) (k1 = 3812 Pa, k2 = 33627 
Pa, μ = 2.6 Pa·s, and μ0 = 1900 Pa·s). Note that the curves for PLR models with and without 
iωμ are completely overlapped in (a).  
 
 

The Newtonian term iωμ in Eq. (2.20) is only significant at high frequency 

(or short time). Neglecting this term will only slightly affect the accuracy of curve 

fitting and the prediction of other PLR parameters ( 0 0G αω−  and α) (Fig. 2.11). In 

addition, the factor Γ(1 − α) in Eq. (2.20) should be omitted as it will lead to a 

prediction of infinite loss modulus at the limit of α approaching 1 (see Appendix B.3 

and B.4). Thus the simplified PLR model has been widely used (Lenormand et al. 

2004; Yanai et al. 2004; Dahl et al. 2005; Desprat et al. 2005) 

 ( )*
0
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ωω
ω
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For convenience, ω0 can be taken as 1 rad/s such that  

 ( ) ( )
0

*
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ωω ω=
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(a) (b)
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where 
00 0 0 1 rad/sGA G Gα

ωω−
== = is the stiffness constant corresponding to ω0 = 1 

rad/s and the unit of ω is taken as rad/s. AG equals the magnitude of complex 

modulus at ω = 1 rad/s, |G*(1 rad/s)|.  

For this model, it can be shown that both the relaxation modulus and the 

creep function will follow power-law function of time (see Appendix B.3 and B.4). 

Three different experiments using magnetic twisting cytometry (via magnetic beads 

coupled to cell surface) (Lenormand et al. 2004; Bursac et al. 2005), microplates 

stretching of whole cells (Desprat et al. 2005), and pulling of intracellular organelles 

by optical trap (Yanai et al. 2004) measured the creep functions of several types of 

cells. The creep function of the isolated nuclei had also been measured with 

micropipette aspiration (Dahl et al. 2005). It was found that the creep functions 

could be faithfully fitted by a simple power law 

 ( ) 0
0

tJ t J
t

α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2.23) 

where J0 and t0 are constants for creep compliance and time, respectively. For 

convenience, t0 can be taken as 1 s such that 

 ( )
00 1 s 1 st J

tJ t J A t
α

α
=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (2.24) 

where 
00 1 sJ tA J ==  is the creep compliance corresponding to t0 = 1 s and the unit of 

t is in seconds. From the creep function, the corresponding complex modulus can be 

derived as ( ) ( ) ( )* 1JG i Aαω ω α= Γ +⎡ ⎤⎣ ⎦  (Desprat et al. 2005), a comparison of 

which with Eq. (2.22) indicates that ( )1 1G JA A α= Γ +⎡ ⎤⎣ ⎦ .  
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This PLR model was later shown to be explained by the fractional derivative 

viscoelasticity (Appendix B.3) (Djordjevic et al. 2003). More interestingly, the 

dynamic rheological properties of adherent cells were found to be related to the 

contractile stress – the larger the contractile stress, the higher the dynamic moduli 

(Stamenovic et al. 2004). Some of the reported mechanical parameters for the PLR 

model are presented in Table A.3.  

2.2.5 Summary  

With the advancement in experimental techniques, especially the capability 

to perform oscillatory experiments, the complex moduli and the creep function of 

cells can be measured with greater accuracy than before. A series of latest 

experimental results revealed that the cells have a continuous relaxation spectrum 

which cannot be explained by the classical spring-dashpot models. The PLR model, 

despite having fewer parameters than the spring-dashpot models (e.g. SLS-D), was 

found to more accurately describe the viscoelastic behavior of cells in both the time 

and frequency domains, matching results from different experimental techniques 

(e.g. microplate manipulation, optical tweezers, AFM and MTC).  

Although evidence in support of the PLR model is becoming substantial, this 

model has not been confirmed with micropipette aspiration for cells, which was the 

basis for other competing models, such as the SLS model. The published data 

appears inconsistent with the PLR model (Evans and Kukan 1984; Needham and 

Hochmuth 1990; Jones et al. 1999b; Thoumine et al. 1999). Therefore, it would be 

necessary to re-examine the creep function of cells in response to micropipette 

aspiration.  
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Furthermore, all the experiments that supported the power-law model were 

on cells adherent to the substrate. The applicability of the PLR model to suspended 

cells has not been established. The optical stretching of suspended NIH 3T3 

fibroblasts suggested that the PLR model is not applicable (Wottawah et al. 2005). 

However, one major concern remains for this technique. The effect of laser heating 

(Peterman et al. 2003), which may cause denaturation of proteins and alteration in 

rheological properties, has not been quantified for cells.  

In view of the above, the micropipette aspiration technique was used in this 

work to examine the rheology of suspended NIH 3T3 fibroblasts (Chapter 3 ~ 5). It 

may not only serve to evaluate the applicability of different viscoelastic models but 

may also provide fresh insights into the relation between contractile stress and cell 

rheology (Stamenovic et al. 2004).  

 



 

Chapter 3 Experimental Setup and Procedures 

This chapter describes the methods for the micropipette aspiration 

experiments as well as cell culture and drug treatments performed in this thesis.  

3.1 Micropipette aspiration technique 

3.1.1 Fabrication of glass micropipettes and chambers 

In order to perform the micropipette aspiration experiments, glass 

micropipettes were needed. Here, borosilicate glass capillaries with outer and inner 

diameters of 1.0 and 0.75 mm, respectively (World Precision Instruments, USA) 

were used to produce micropipettes with inner diameters of 2 ~ 11 μm using a 

micropipette puller and a microforge (ALA Scientific Instruments, Inc., USA). The 

pipette wall thickness ranges from 1.3 μm for a 2.2 μm pipette to 3.3 μm for a 10 

μm pipette. The tips of the glass pipettes were coated with Sigmacote (Sigma 

Chemical, St. Louis, MO), which forms a hydrophobic thin film that prevents 

adhesion. Upon release of pressure after aspiration, cells were observed to detach 

from the pipette readily.  

Glass chambers with side opening were made by sandwiching 6 layers of 

parafilm between two glass coverslips. Two layers of aluminum foil were then 

wrapped around the chambers to improve heat conductivity (Fig. 3.1).  

Aluminum foil

Parafilm spacer

 
Fig. 3.1. Glass chamber for containing cell sample. The length and width of the chamber are 
60 and ~ 10 mm, respectively.  
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3.1.2 Temperature control 

The glass chamber was loaded with cell suspension and placed on a heating 

stage. The temperature was set at 37.5°C by a temperature controller (Leica, 

Germany). Due to heat loss, the temperature of the cell suspension was measured 

using a thermocouple to be about 30°C. It was noticed that if the temperature was set 

higher by about 2 ~ 3°C, the cells started to adhere and spread on the glass slide and 

this was undesirable. Hence, the temperature was maintained at 30°C.  

3.1.3 Setup of the hydrostatic loading system 

The micropipette aspiration system is in principle similar to those used by 

others  (see review by Hochmuth 2000). The schematic design of the setup is shown 

in Fig. 3.2(a) and the photograph of the actual setup is shown in Fig. 3.2(b). Briefly, 

micropipettes were filled with the same medium for suspending cells and connected 

to a hydrostatic system which was composed of two reservoirs, a reference one and a 

variable one (Fig. 3.2). The water level of the reference reservoir was usually 

adjusted to equate that in the cell chamber and then kept constant. The water level of 

the variable reservoir can be adjusted either manually by a syringe or automatically 

by a precision pump (Cole-Parmer, USA) (Fig. 3.2(b)). The suction pressure, which 

is equal to the pressure difference between the variable and reference reservoirs, was 

inferred from the voltage output of a pressure transducer (Validyne Engineering, 

USA) with a resolution of 2.5 Pa (Fig. 3.2). The pressure transducer was calibrated 

based on the law of hydrostatic pressure. Within the working range of the transducer 

(pressure difference less than 14 mmH2O), the pressure difference is proportional to 

the voltage output with a slope of 28 mmH2O/V. Fine movement of the micropipette 

was controlled by a micromanipulator (Eppendorf AG, Germany) (Fig. 3.2(b)).  
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Fig. 3.2. Experimental setup for micropipette aspiration. (a) Schematic of the setup. (b) 
Photograph of the setup.  
 
 
 

(a) 

(b) 
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The cells were viewed with a Leica microscope (Leica, Germany), using a 

63x objective (numerical aperture = 0.7). Microscopic images were taken with a 

digital camera (Leica, Germany). Image dimensions were analyzed with the image 

analysis software, Image-Pro Plus (Media Cybernetics, USA). Fig. 3.3 shows the 

measurement of the typical image dimensions, the pipette diameter 2Rp and the total 

aspirated or projection length Lp
T.  

Lp
T

2R
p

micropipette cell  
Fig. 3.3. Measurement of pipette diameter (2Rp) and total protrusion length (Lp

T) of a cell 
undergoing micropipette aspiration.  
 
 

3.1.4 Testing procedures 

During the ramp tests, the suction pressure on the cell was linearly increased 

from zero to 2 cmH2O by constantly decreasing the water level in the variable 

reservoir with the precision pump. Image acquisition was started simultaneously 

with the aspiration of the cell. Two loading rates were employed (1/30 and 1/120 

cmH2O/s) to examine the rate effect. Different pipettes with radii ranging from 2 to 

10 μm were used to systematically examine the effects of pipette size.  
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During the creep tests, a specific volume of water was withdrawn from the 

variable reservoir to achieve a constant suction pressure of 1 cmH2O. Subsequently, 

image acquisition was initiated once the cell sealed the pipette. The frequency of 

image acquisition was 1 frame/s for the first 10 seconds and 1 frame per 4 s 

thereafter. The total creep time for each test was 100 s.  

To avoid possible cell lysis during the experiment, all cells were tested 

within one hour after being harvested. Usually 8 ~ 12 cells could be tested within 

one hour using the present setup.  

3.1.5 Accuracy in the measurement of pressure and time 

During the creep experiments, the pressure was manually adjusted by a 

syringe and measured by the pressure transducer as 10.2 ± 0.8 mmH2O (or 100 ± 7.9 

Pa, 153 measurements). The creep time was measured from the start of deformation. 

Although efforts were made to start the suction of the cell and image acquisition at 

the same time, errors in determining the actual starting time occurred inevitably. The 

time between the start of deformation and the acquisition of the first image is always 

between 0 and 1 s. The starting time is assumed to be at 0.5 s on the average and has 

a nominal standard deviation of 0.17 s, which was derived by assuming a normal 

distribution with most (99.7%) of the starting time points falling between 0 and 1 s 

(NIST/SEMATECH 2005).  

For the ramp tests, the loading rate was controlled by the precision pump 

with an accuracy of ± 1%, according to the manufacturer’s specifications. The time 

lag between the starting of image capturing and pressure application is always less 

than 1 s. Thus, the error in the absolute pressure value will be less than 1/30 and 

1/120 mm, for the loading rates of 1/30 and 1/120 cmH2O/s, respectively. 
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3.2 Cell culture 

NIH 3T3 fibroblast cell line was obtained from the American Type Culture 

Collection (Manassas, VA). The cells were grown in Dulbecco’s minimum essential 

medium (DMEM), supplemented with 10% fetal bovine serum (FBS), 100 units/ml 

penicillin and 100μg/ml streptomycin. The cells were maintained at 37°C and 5% 

CO2 in an incubator and subcultured every 3 - 4 days. Cells were tested between 

passage 20 and 30, during which the change in growth rate, morphology and 

mechanical properties was unnoticeable. Prior to the micropipette aspiration 

experiments, cells at subconfluent stage were gently detached with a cell scraper and 

suspended in DMEM with 10% FBS. 25 mM HEPES was supplemented to maintain 

the pH value, which was measured to be 7.8 ~ 7.9 at room temperature.  

3.3 Drug treatments 

For disrupting the actin cytoskeleton of the cells, stock solution of 

cytochalasin D (cytoD) was first made by dissolving cytoD powder in DMSO to 2 

mM (1 mg/ml). Immediately prior to drug treatments, the stock solution was diluted 

in fresh culture medium to a final concentration of 2 μM. The drug-containing 

medium was used to replace that in the cell culture chambers, which were then 

placed back into the incubator for 30 minutes. The treated cells were subsequently 

detached with a cell scraper, suspended in the drug-containing medium, and tested 

with the same procedure as that for untreated ones (cf. Section 3.1.4). As a control 

experiment for cytoD treatment, the effect of 0.1% DMSO was also tested using the 

same procedure. 
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For disrupting the microtubules, stock solution of colchicine was first made 

by dissolving colchicine powder in deionized water to 100 mM (40 mg/ml). The 

final concentrations for cell treatments included 100 μM and 1 mM. The testing 

procedure is the same as that described for cytoD.  

3.4 Staining of actin filaments 

For cells grown on glass coverslips, the following steps were adopted.  

(1) Fix cells in 4% paraformaldehyde in phosphate buffered saline solution (PBS) 

for 20 minutes.  

(2) Wash cells in PBS.  

(3) Permeabilize cells with 0.5% Triton-X-100 in PBS for 10 minutes.  

(4) Wash cells in PBS.  

(5) Incubate cells in 1 μg/ml TRITC-labeled phalloidin in PBS for 15 minutes.  

(6) Wash cells with PBS three times.  

(7) Drain the coverslip, mount it in FluorSave (Calbiochem, San Diego, CA) on 

a glass slide, and seal the edge with nail polish.  

(8) Fluorescence images of the cells were taken with a confocal microscope 

(Leica, Germany).  

For suspended cells, the same procedure was followed except that each of the 

steps from (1) to (6) was followed by a brief centrifugation. 

All the chemicals were purchased from Sigma Chemical, St. Louis, MO, 

unless otherwise specified.  



 

Chapter 4 Micropipette Aspiration of Fibroblasts – 

Ramp Tests and Effects of Pipette Size 

4.1 Introduction 

As reviewed earlier, the micropipette aspiration experiment had been widely 

used for evaluating the passive mechanical properties of cells, which led to the 

development of mechanical models based on the spring-dashpot concept (Lim et al. 

2006). Literature review also reveals the power-law rheology as a promising 

candidate for modeling the general rheological behavior of cells and in particular, 

the cytoskeleton (Fabry et al. 2001a; Alcaraz et al. 2003; Lenormand et al. 2004; 

Yanai et al. 2004; Balland et al. 2005; Dahl et al. 2005; Desprat et al. 2005). 

However, this has not been used to model cells undergoing micropipette aspiration. 

Thus, it will be necessary to re-examine the creep function of cells with micropipette 

aspiration and evaluate the applicability of the power-law rheology model.  

In order to accurately measure the creep function of cells using micropipette 

aspiration, three major concerns must be addressed. The first concern regards the 

consistency and reproducibility of the measurement of cell rheology. Arising from 

the existence of cytosol (Cunningham 1995), cytoskeleton structures and various 

organelles, the cell is considerably heterogeneous. It is possible that the cell 

responds differently to varying pipette sizes. Furthermore, it is possible that when 

the pipette size gets sufficiently large, the smeared property of the cell can be 

measured in a more consistent and reproducible way. However, previous 
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micropipette aspiration experiments were usually performed with a relatively fixed 

pipette size, e.g. ~ 5 μm (Jones et al. 1999b; Thoumine et al. 1999; Richelme et al. 

2000), without paying much attention to the effect of pipette size. Thus, the effect of 

pipette size on cell deformation needs to be studied.  

Secondly, the linearity of force-deformation relationship needs to be 

considered for measuring the creep function. Current calculation of the creep 

function implied that the elastic-viscoelastic correspondence principle applies for the 

deformation of the cells during aspiration (Schmid-Schonbein et al. 1981; Sato et al. 

1990; Jones et al. 1999b; Dahl et al. 2005). However, the applicability of this 

principle was based on a linear force-deformation relationship (Fung 1965; Flugge 

1967). Thus, it would be desirable to examine the linearity of the force-deformation 

relationship.  

Thirdly, the actual deformation of a cell in micropipette aspiration needs to 

be measured accurately. It is noted that the position of the micropipette entrance is 

often difficult to locate due to edge effect, which is a result of diffraction, refraction, 

and reflection of light. Systematic error may result if the pipette edge, as located 

with edge-detection algorithms, is significantly different from the real location. Thus, 

the accuracy of deformation measurement needs to be carefully addressed in 

micropipette aspiration.  

NIH 3T3 fibroblasts have been widely used as a model system for studying 

cell mechanics (Mahaffy et al. 2000; Munevar et al. 2001; Mahaffy et al. 2004; 

Mizutani et al. 2004; Wottawah et al. 2005; Fernandez et al. 2006). As an adherent 

cell type, the stiffness of the cell will depend on the degree of prestress (Wang et al. 
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2002; Stamenovic et al. 2004; Trepat et al. 2004; Fernandez et al. 2006). For the 

purpose of measuring the passive rheological behavior of the cell, detaching and 

suspending the cells will result in less internal active prestress. Subsequently, the 

deformability of the cells can be measured in a more consistent manner (Guck et al. 

2005; Wottawah et al. 2005). Therefore, in the current study, the NIH 3T3 

fibroblasts were tested in a suspended state.  

In this chapter, ramp tests were carried out by increasing the suction pressure 

on the suspended fibroblasts linearly. The effect of pipette size on cell deformation 

was investigated by deforming cells with pipettes ranging from 2 to 10 μm in 

diameter. Through the ramp tests, a suitable range of pipette size was identified for 

obtaining linear, consistent and reproducible results. The pipette edge effect was 

indirectly inferred from the ramp tests by estimating the stress-free projection length 

through extrapolation. Two loading rates, 1/30 and 1/120 cmH2O/s, was chosen, 

which provided preliminary information on the viscoelastic properties of the cells. 

The ramp-test results provided the basis for accurate measurement of the creep 

function using creep tests and this will be presented in the next chapter. 

4.2 Experimental results 

Although two loading rates were tested, more consistent results were 

obtained with the higher loading rate, i.e. 1/30 cmH2O/s. Thus, the results will be 

presented based on this loading rate. The effect of slower loading rate will be 

discussed at the end of this section.  
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4.2.1 Effect of pipette size on cell deformation 

In the ramp tests, at a loading rate of 1/30 cmH2O/s, the suction pressure on 

cells was linearly ramped up from 0 to 2 cmH2O (196 Pa) within 1 min and one 

image was captured at every 1s interval. Different pipettes, ranging from 2 to 10 μm 

in diameter, were used. The cells were tested at a temperature of ~ 30°C (it was 

observed that a temperature that is ~ 2°C higher will cause the cells to spread on the 

glass substrate, which is undesirable, see Chapter 3 for details). Most fibroblasts 

assumed approximately rounded shape within a few minutes after detachment. The 

radius of suspended fibroblasts was 8.8 ± 1.3 μm (mean ± SD, n = 139).  

The deformation of the cells were magnified with a microscope and recorded 

with a digital camera. The deformation of cells in response to aspiration using four 

different pipette sizes is shown in Fig. 4.1.  

For the smallest pipette, the deformation of the cell was usually unnoticeable 

at small pressure but increased rapidly after a threshold pressure was reached (Fig. 

4.1(a1) and (a2)). The protrusion of the cell was often found granule free and 

detached membrane blebs were sometimes observed (Fig. 4.1(a2)). This may 

indicate the separation of the membrane from the cytoskeleton, similar to that 

occurred in blebbing (Cunningham 1995; Hagmann et al. 1999; Charras et al. 2005). 

With the increase in pipette size, the threshold pressure decreased, the growth of the 

projection length became steadier and the protrusion was found to be more 

homogeneous with respect to the outside body in appearance (Fig. 4.1(b), (c) and 
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(d)). It is further noted that for pipettes larger than ~ 6.8 μm, the threshold pressure 

became relatively insensitive to pipette diameter (Fig. 4.1(c) and (d)).  

                              (a1)                (a2)                           (b)                            (c)                           (d) 
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Fig. 4.1. Deformation of cells during ramp tests with micropipette aspiration. Results are 
shown for four pipette sizes: (a1) and (a2) 2.2, (b) 5.6, (c) 6.9 and (d) 9.4 μm. For each 
pipette size, the deformation was shown for 0, 3, 6, 9 and 20 mmH2O, from top to bottom (1 
mmH2O = 9.8 Pa). The positions of the pipette entrance and the aperture of the cell 
protrusion were indicated by the white vertical lines and the black arrows, respectively. 
(Scale bar in white: 5 μm.)  
 
 

Deformation of the cell was measured as the total projection length (Lp
T), the 

distance between the protrusion tip and the pipette entrance (Fig. 4.1). Measured 

projection length (Lp
T) was plotted against pressure (ΔP) for a small pipette 

(diameter 3.5 μm) and a large one (diameter 9.4 μm) in Fig. 4.2(a) and (b), 

respectively. Small protrusions of the cells could not be determined because they 

were masked by the fussy edge of the micropipette opening (Fig. 4.1, top row), 

which accounts for the missing data points at very low pressure (Fig. 4.2(a) and (b)). 
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The linearity and consistency of the ΔP-Lp
T relationship can be evaluated with the 

square of the Pearson product moment correlation coefficient (R2), which was 

plotted against pipette diameter in Fig. 4.2(c). 
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Fig. 4.2. Effect of pipette size on ramp-test results. (a) and (b) Plots showing ΔP-Lp

T 
relations measured using a small pipette ((a) 2Rp = 3.5 μm) and a large pipette ((b) 2Rp = 9.4 
μm). The straight line and the equation in (b) represents the average linear fit to the 
experimental data for ΔP = 0 ~ 1 cmH2O. (c) The dependence of the R2 on the pipette size. 
The numbers denote the number of cells tested for the corresponding pipette diameter and 
the error bars represent standard deviation.  
 
 

For the small pipette, deformation of the cells was often unnoticeable until a 

threshold pressure was reached. The deformation was usually irregular and highly 

variable, and frequently involved blebbing (very fast protrusion) and retraction (Fig. 

4.2(a)). Similar observations were made for other pipettes less than ~ 5 μm in 
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diameter (the smallest pipette used was 2.2 μm). The nonlinearity of the measured 

force-deformation relationship with these small pipettes is also evident from the 

lower correlation between ΔP and Lp
T (Fig. 4.2(c)).  

For the large pipette, the protrusion length increased with pressure in a fairly 

linear and reproducible manner (Fig. 4.2(b)). Blebbing and retraction were largely 

absent from cell protrusions into large pipettes. Similar results were obtained for 

pipettes larger than ~ 5 μm (the largest pipette used was 10.1 μm). The high 

correlation coefficient further confirms the linearity associated with the large 

pipettes (Fig. 4.2(c)). Thus, linear curve fitting can be applied to describe the ΔP-Lp
T 

relation for large pipettes (Fig. 4.2(b)). It is noted that the linear curve fitting was 

applied to the pressure range of 0 ~ 1 cmH2O, because the ramp test data within this 

range showed better linearity. The slope (S) is useful for interpreting the 

deformability of the cell. The y-intercept can be used to estimate the projection 

length at the stress free state (ΔP = 0) and is thus referred to as stress-free (SF) 

projection length (Lp
SF).  

Nonetheless, it is worth noting that for 2Rp = 5.6 μm, although the linearity 

of the measured ΔP-Lp
T relation was high, the deformation was often unnoticeable 

until the pressure reached ~ 4 mmH2O (Fig. 4.1(b)), qualitatively similar to the 

observation with pipettes smaller than 5 μm. Therefore, the 5.6 μm pipette might fall 

into the transition region between small and large pipettes.  

Sato et al. (1987a) and Theret et al. (1988) performed micropipette aspiration 

of suspended endothelial cells using small pipettes (2Rp = 2.0 ~ 3.4 μm). For 

suspended endothelial cells, the authors did not report any inconsistency and 
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irregularity of cell deformation, given the small pipette size used. This could reflect 

the difference in the cytoskeleton between the two different cell types. Thoumine 

and Ott (1997a) performed micropipette aspiration on human dermal fibroblasts with 

small pipettes (2Rp = 2.8 ± 0.4 μm). The cells exhibited irregular deformation when 

subjected to a constant pressure. This is qualitatively consistent with the observation 

made here.  

4.2.2 Apparent deformability measured with large pipettes 

In order to quantify the mechanical properties of cells, the ramp-test data 

with large pipettes (2Rp = 5 ~ 10.1 μm) were used. The slope, S, of the ΔP-Lp
T 

relation was quantified as shown in Fig. 4.2(b).  

The dependence of S on pipette diameter is presented in Fig. 4.3(a), each 

data point representing the average of 7 ~ 19 cells. It was found that S approximately 

increased linearly with pipette diameter larger than 6.8 μm. The slope S was further 

scaled by pipette radius Rp, which gave a normalized measure of deformability of 

the cells (Fig. 4.3(b)). It was found that S/Rp = 0.11 ± 0.04 (1/mmH2O) for 2Rp = 5.6 

μm. However, S/Rp remained relatively constant for 2Rp = 6.8 ~ 10.1 μm, S/Rp = 

0.076 ± 0.02 (1/mmH2O). Student’s t-test revealed significant difference between 

the deformability measured by the 5.6 μm pipette and that measured by the larger 

pipettes (p < 0.01); no significant difference was found among the deformability 

measured by the larger pipettes (2Rp = 6.8 ~ 10.1 μm) (p > 0.3). This further 

confirms that the 5.6 μm pipette can be considered as within the transition region for 

pipette size. For consistency, only the data with 2Rp = 6.8 ~ 10.1 μm will be used for 

quantifying the mechanical properties of the cells.  
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Fig. 4.3. Dependence of measured deformability on pipette size. (a) S versus pipette 
diameter. (b) S/Rp versus pipette diameter. Each point represents the average of 7-19 cells. 
The symbol (*) in (b) represents significant statistical difference.  
 
 

The boundary-value problem of micropipette aspiration had been solved 

analytically using the half-space model (Theret et al. 1988) or numerically using the 

finite element (FE) model (Baaijens et al. 2005; Zhou et al. 2005a). The elastic half-

space model can be written as (Theret et al. 1988) 

 0.334
2

p P

p

L P P
R G Gπ

Φ Δ Δ
= ≈  (4.1) 

where G is the apparent elastic shear modulus and ΦP is a function of the ratio of the 

pipette wall thickness to the pipette radius (ΦP ≈ 2.1 for the wide pipettes employed 

in this study). Note that the deformed projection length Lp can be calculated by 

subtracting the whole protrusion length with the SF projection length as (cf. Fig. 

4.2(b)) 

 T SF
p p pL L L≡ −  (4.2) 

whereby S = Lp/ΔP for ΔP = 0 ~ 1 cmH2O. The elastic FE model predicted that 
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which was derived by applying linear curve fitting to the initial part (ΔP/G = 0 ~ 1) 

of the FE-simulated force-deformation curves (Zhou et al. 2005a) (cf. Section 6.4.1). 

It is noted that the FE model predicted that C (i.e. the ratio between Lp/Rp and Rp/Rc) 

will increase mainly because of the slippage between the cell and the pipette, 

whereas the half-space model did not take the slippage into account. In order to 

compare the applicability of these two models, the measured relation between S/Rp 

(i.e. Lp/(ΔP Rp)) and Rp is plotted in Fig. 4.4 together with predictions from the half-

space model and the FE model.  
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Fig. 4.4. Fitting ramp-test data with half-space model and elastic FE model. The error bars 
indicate standard deviation. 
 
 

From Fig. 4.4, it was difficult to compare the applicability of the half-space 

model with that of the FE model. Using the half-space model, G could be calculated 

as 47.5 ± 17.3 Pa (mean ± SD, n = 65). In contrast, the FE model predicted G as 73.4 
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± 26.2 Pa. The ratios of the standard deviation with respect to the mean were the 

same for the FE model and the half-space model (~ 36%). No dependence was found 

of the measured elastic modulus on cell radius (the correlation coefficient between 

the cell radius and the measured G was less than 0.05).  

However, the FE model was more accurate in modeling the boundary-value 

problem of micropipette aspiration because it was not limited by the simplifying 

assumptions made by the half-space model (such as the half-space and linear-elastic 

assumptions). Therefore, the FE solution will be preferred for interpreting the 

micropipette aspiration results.  

Few works reported the apparent shear modulus of suspended NIH 3T3 

fibroblasts. A recent optical stretcher experiment found the instantaneous shear 

modulus for this cell type to be 100 ± 10 Pa (Wottawah et al. 2005), which is closer 

to the FE prediction than the half-space prediction. 

4.2.3 Stress-free projection length measured with large pipettes 

The total projection length of the cell LT is composed of the SF projection 

length Lp
SF and the deformed projection length Lp (Eq. (4.2)). To identify Lp

SF, the 

most straightforward way is to measure from undeformed cells. Unfortunately, due 

to the fuzziness of the digital images, the tongue of undeformed cells was difficult to 

locate (Fig. 4.1). In the ramp tests, however, the linearity of the ΔP-Lp relations 

indicate that the SF projection length can be estimated from the extrapolation of the 

ΔP-Lp relations to zero pressure, which corresponds to the undeformed, stress-free 

state (Fig. 4.2(b)).  
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Lp
SF was found to depend weakly on cell diameter but strongly on pipette 

diameter for 2Rp = 6.8 ~ 10.1 μm. The estimated Lp
SF is plotted against pipette 

diameter in Fig. 4.5.  
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Fig. 4.5. Dependence of the measured stress free projection length on pipette diameter. The 
measured SF protrusion was found significantly larger than that predicted from geometric 
calculation (the dash line). ε represents the difference between Lp

SF and Lp
G.  

 
 

The average SF projection length can be written as 

 0.84 1.1SF
p pL R= −  (4.4) 

which provides an important reference for calculating the deformed projection 

length, especially for the ensuing creep experiments. It is noted that because it only 

depends on the cell diameter and the position of the most distinct edge with respect 

to the real pipette edge, the SF projection length should not change with the type of 

measurements or drug treatments. 

On the other hand, the SF protrusion length could have been estimated based 

on geometry as 2 2G
p c c pL R R R= − −  (Fig. 4.5), if the most distinct edge, which was 

used for measuring the total projection length Lp
T (Fig. 4.6), corresponds to the real 
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pipette entrance. However, the linear fits of the measured ΔP-Lp relations usually did 

not pass through this point (Fig. 4.2(b)) and the experimentally measured Lp
SF was 

significantly larger than Lp
G (Fig. 4.5). Furthermore, it is unlikely that the cell 

undergoes such large deformation (more than 1 μm), given the short time and small 

pressure. This indicates that the most distinct edge does not correspond to the real 

pipette entrance, which is illustrated in Fig. 4.6. The distance between the most 

distinct edge and the real pipette entrance can thus be computed as ε = Lp
SF − Lp

G, 

which increases slightly with pipette size but has an average of 1.3 ± 0.4 μm for 2Rp 

= 6.8 ~ 10.1 μm.  

DetectedReal

 
Fig. 4.6. Determination of the pipette entrance location. The detected edge using edge-
detection algorithms may not correspond to the real entrance location. (Scale bar in white is 
5 μm.)  
 
 

4.2.4 Ramp-test results for 1/120 cmH2O/s 

Similar results were obtained for the effect of pipette size at a slower loading 

rate, 1/120 cmH2O/s (Fig. 4.7). Therefore, the discussion in Section 4.2.1 also 

applies to this loading rate.  
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Fig. 4.7. Effect of pipette size on ramp-test results at the loading rate of 1/120 cmH2O/s. 
Four representative ΔP-Lp

T plots were shown for (a) a small pipette (2Rp = 2.2 μm) and (b) a 
large pipette (2Rp = 9.4 μm), respectively. (c) The dependence of the R2 on the pipette size. 
The numbers denote the number of cells tested for the corresponding pipette diameter.  
 
 

When linear curve fitting was applied to the ramp-test data (ΔP = 0 ~ 1 

cmH2O) for relatively large pipettes (2Rp = 5 ~ 9.6 μm), the measured deformability 

was found to become relatively constant for pipettes larger than ~ 7 μm (Fig. 4.8). 

For 2Rp = 7.3 ~ 9.56 μm, S/Rp was measured as 0.105 ± 0.04 (1/mmH2O). G was 

calculated as 36.5 ± 15.2 Pa (mean ± SD, n = 36) with the half-space model, 

whereas the elastic FE model predicted G = 55.4 ± 24.6 Pa. The deformability 

measured with 1/120 cmH2O/s was significantly higher than that measured with 1/30 
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cmH2O/s (p < 0.01); the elastic shear modulus measured with 1/120 cmH2O/s was 

significantly lower than that measured with 1/30 cmH2O/s (p < 0.01). This is due to 

the viscoelastic properties of the cell, which will be more accurately quantified with 

creep tests (cf. Chapter 5).  

The ratios of the standard deviation with respect to the mean were 44% if the 

FE model is used or 42% if the half-space model is used, both of which were larger 

than those obtained with the higher loading rate (36%). This indicates that the lower 

loading rate induces less consistent deformation of the cells. In addition, the 

efficiency of testing was lower with 1/120 cmH2O/s, because the testing of each 

single cell will take longer time than with 1/30 cmH2O/s. Therefore, the higher 

loading rate is preferred for improved efficiency and consistency of testing.  
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Fig. 4.8. Dependence of measured deformability on pipette size at the loading rate of 1/120 
cmH2O/s. The symbols (*) represent significant statistical difference against the 
deformability measured with 2Rp = 7.3 ~ 9.56 μm. 
 
 

For 2Rp = 7.3 ~ 9.56 μm, the SF projection length at 1/120 cmH2O/s was 

found slightly lower than that measured with the higher loading rate. This is 

expected because of the viscoelastic properties of the cells. Although the loading 
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rates we have tested included only 1/120 and 1/30 cmH2O/s, theoretical analysis 

shows that the SF projection length will only slightly increase with loading rate and 

soon reach a plateau when the loading rate gets sufficiently fast (cf. Section 5.3.2).  

4.3 Discussion 

4.3.1 Blebbing and nonlinear deformation preferentially occur 

with smaller pipettes 

The effect of pipette size on the pressure-deformation relationship of 

suspended fibroblasts has been examined. It was found that pipettes with diameter 

smaller than ~ 5 μm generated nonlinear results which are not reproducible (Fig. 

4.2(a) and Fig. 4.7(a)). More interestingly, given the same suction pressure, cell 

blebbing was found to occur more frequently with smaller pipettes but seldom with 

larger ones (Fig. 4.1). It is known that cell blebbing is a result of rupture between 

plasma membrane and underlying cytoskeleton and subsequent intracellular solvent 

flow (Cunningham 1995; Hagmann et al. 1999; Charras et al. 2005) and that 

blebbing can be induced by micropipette aspiration using hydrostatic suction 

pressure (Rentsch and Keller 2000). The results reported here therefore suggest that, 

at the same suction pressure, smaller pipettes are more likely to cause detachment 

between plasma membrane and cytoskeleton. The molecular mechanism that 

underlies the pipette-size effect on blebbing remains to be explored. 

The observed nonlinearity and inconsistency in the pressure-deformation 

relationship with small pipettes may be attributed to four reasons. It may firstly be 

attributed to cell blebbing as mentioned above. Secondly, the large difference among 

individual measurements might reflect the heterogeneity of the cell cortex. A smaller 
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pipette will measure the average property over a smaller area and therefore, will 

show larger scattering than that measured by larger pipettes. Thirdly, the 

nonlinearity in a single experiment may be due to the heterogeneity of the cytoplasm, 

especially the coexistence of cytosol and the relatively rigid organelles and 

cytoskeleton (CSK) structures with different sizes and shapes (Bausch et al. 1999). 

These CSK structures and organelles may only be “felt” by pipettes that are smaller 

than or comparable to them in size. The intermittent entrance of cytosol and CSK 

structures/organelles might be responsible for the observed nonlinearity in Fig. 4.2(a) 

and Fig. 4.7(a). Lastly, it is possible that the active force generation of the cells is 

comparatively more evident in smaller pipettes than in larger ones. If we assume that 

the active force generation (for example through actin-myosin interaction) is only in 

the cortex of the cell (Albrecht-Buehler 1987; Schmid-Schonbein et al. 1995), then 

the total amount of active force is proportional to the circumference of the cell 

projection, which is proportional to Rp, whereas the suction force is proportional to 

Rp
2. Therefore, with the reduction in pipette diameter, the suction force will decrease 

faster than the active force. When the active force becomes comparable to the 

suction force, active motion of the cell may become prominent enough to lead to 

retraction, which was sometimes observed to occur with small pipettes but seldom in 

larger ones (Fig. 4.2 and Fig. 4.7).  

4.3.2 Larger pipettes are more suitable for probing smeared 

mechanical properties of cells 

The ramp tests with different pipette sizes also revealed that coherent 

deformation of cells could generally be induced with large pipettes, judging by the 
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homogeneous appearance of cell protrusion with respect to the outside cell body 

(Fig. 4.1(c) and (d)). The pressure-deformation relationships were linear and 

reproducible when the cells were probed with pipettes larger than ~ 5 μm (Fig. 4.2(b) 

and Fig. 4.7(b)). We attribute the linearity and reproducibility to the following 

reasons. First of all, blebbing is less likely to occur with large pipettes. Secondly, the 

large pipettes are probing the smeared property of a large portion of the cell. Finally, 

the active force of the cell might be relatively negligible in comparison to the total 

suction force.  

However, the measured deformability S/Rp was found to be not constant for 

pipettes larger than 5 μm. The deformability measured was higher with the smaller 

pipettes and reached a plateau for pipettes larger than ~ 7 μm (Fig. 4.3(b) and Fig. 

4.8). On the other hand, the apparent deformability of the cell (S/Rp) was predicted 

not to decrease with increasing pipette size when the cell was modeled as a 

homogeneous solid (Theret et al. 1988; Haider and Guilak 2002; Baaijens et al. 

2005; Zhou et al. 2005a). The discrepancy between theoretical prediction and 

experimental results might be because that partial detachment between cell 

membrane and cytoskeleton, which is accompanied by inflation of intracellular 

cytosol (Charras et al. 2005), can still considerably occur for pipettes with diameter 

between 5 and 7 μm.  

In view of the above, it is recommended that larger pipettes be adopted for 

the purpose of measuring the bulk rheology of the cells in a consistent and 

reproducible manner with micropipette aspiration.  
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4.3.3 Rate dependence of measured deformability 

The deformability of suspended NIH 3T3 fibroblasts was measured to be 

relatively constant for pipettes larger than ~ 7 μm in the ramp tests (Fig. 4.3(b) and 

Fig. 4.8). The measured properties of the cells are shown in Table 4.1. It was found 

that the measured mechanical properties depended on the loading rate, which is a 

manifestation of the viscoelasticity of the cell. Nonetheless, a complete description 

of the viscoelastic properties cannot be derived from the ramp tests with limited 

number of loading rates, although the ramp-test results will serve to validate 

proposed viscoelastic models (cf. Chapters 5 and 6). More accurate characterization 

of the viscoelasticity will be achieved using creep tests, which will be presented in 

Chapter 5.  

Table 4.1. Measured mechanical properties of cells with ramp tests using large pipettes 
Apparent elastic shear modulus G (Pa) Loading rate 

(cmH2O/s) 
S/Rp 

(1/mmH2O) Half-space model FE model 
Number of 
cells tested 

1/30 0.076 ± 0.02 47.5 ± 17.3 73.4 ± 26.2 65 

1/120 0.105 ± 0.04 36.5 ± 15.2 55.4 ± 24.6 36 

 

4.3.4 Calculation of deformed projection length 

Due to the edge effect of the glass pipette, the location of the pipette entrance 

may not correspond to the most distinct edge derived through image analysis using 

edge-detection algorithms. In ramp tests, the SF projection length was derived 

through extrapolation of the ΔP-Lp relations to zero pressure (Eq. (4.4)) and found 

significantly larger than the prediction based on geometrical calculation assuming 

the most distinct edge as the real pipette entrance. This suggested that real pipette 

edge might be away from the detected edge by 1.3 ± 0.4 μm for the large pipettes 
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(2Rp = 6.8 ~ 10.1 μm) in the current study (Fig. 4.5). It is noted that the edge effect 

might differ with the pipette wall thickness and the imaging system (including the 

microscope and digital camera). It is possible that the edge effect will be less 

significant with thinner pipette wall, higher magnification and/or higher numerical 

aperture.  

The edge effect must be taken into consideration for accurate measurement 

of the deformed projection length. Although the absolute value of the deformed 

projection length appears to be not so important for ramp tests (the apparent 

deformability is only sensitive to the slope of the ΔP-Lp relation), it has significant 

influence on the creep function measured with micropipette aspiration (cf. Chapter 

5).  

In principle, the SF projection length should only depend on the cell diameter 

and the position of the most distinct edge with respect to the real pipette edge. Thus 

it should not change with the type of measurements or drug treatments. As such, Eq. 

(4.2) and Eq. (4.4) will be used to calculate the deformed projection length of cells 

in the creep tests in Chapter 5.  

4.3.5 On approximate applicability of linear viscoelasticity to 

cells 

The measurement of creep function from creep experiments depends on the 

extent to which linear viscoelasticity applies to deformation of cells, especially when 

large deformation is involved. The approximate applicability of linear viscoelasticity 

is firstly supported by the linear force-deformation relationship while performing 

ramp experiments (or other pseudo-elastic ones). Approximately linear force-
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deformation relationship have been observed with the tensile tester for fibroblasts 

(Miyazaki et al. 2000), microplate manipulation for fibroblasts (Thoumine and Ott 

1997b), micropipette aspiration for chondrocytes (Jones et al. 1999b) and 

endothelial cells (Theret et al. 1988). Similarly, the current ramp tests with 

micropipette aspiration revealed significant linearity of the force-deformation 

relationship for fibroblasts for pressure up to 200 Pa, when large pipettes were 

employed.  

The second evidence for the approximate applicability of linear 

viscoelasticity lies in the independence on magnitude of stress of the measured 

mechanical moduli. In OMTC experiment, the measured dynamic moduli of human 

airway smooth muscle cells (HASM) were found to be independent of load when the 

specific torque varied from 1.8 Pa to 130 Pa (Fabry et al. 2003). In microplate 

manipulation experiment, the dynamic moduli of fibroblasts were found to be 

constant when stress is below ~ 1 kPa (Fernandez et al. 2006). It is worth noting that 

power-law stress stiffening, with exponent ~ 1, was observed for higher stress with 

fibroblasts (Fernandez et al. 2006), which indicate that linear viscoelasticity 

becomes inapplicable for stress above ~ 1 kPa.  

The third support is provided by creep experiments. The creep experiment 

using microplate manipulation (Desprat et al. 2005), which measured large-strain 

creep function of cells, predicted power-law behavior with viscoelastic parameters 

comparable to those measured by small-strain experiments such as the OMTC 

(Fabry et al. 2001a). Desprat et al. (2005) also showed that the measured creep 

function were not affected by the magnitude of stress (3 ~ 180 Pa) and proposed that 

the cells remained in the linear viscoelastic regime for engineering strain up to 1. 
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Lenormand et al. (2004) performed both creep experiments and dynamic 

experiments on HASM cells using OMTC. Consistent results were obtained between 

the two measurements, which is consistent with linear viscoelasticity.  

The experimental results presented above suggest that linear viscoelasticity 

can approximately describe the mechanical properties of cells at moderately large 

stress and strain. In the context of linear viscoelasticity, the elastic-viscoelastic 

correspondence principle (Flugge 1967) and the half-space model (Theret et al. 1988) 

can be used to estimate the creep function of cells in creep tests using micropipette 

aspiration, which will be presented in the Chapter 5.  

Finite element analysis of the experiments will be reported in Chapter 6, 

which provides better understanding of large deformation of cells in micropipette 

aspiration.  



 

Chapter 5 Micropipette Aspiration of Fibroblasts – 

Creep Tests and Power-law Behavior 

5.1 Introduction 

As reviewed in Chapter 2, the viscoelasticity of a cell is intimately involved 

in its structural integrity, locomotion and deformability. The wide application of 

micropipette aspiration has generally led to the development of continuum models 

based on the spring-dashpot concept, such as the cortical shell-liquid core models 

(Dong et al. 1988; Yeung and Evans 1989; Needham and Hochmuth 1990; Tsai et al. 

1993) and the standard linear solid model (Schmid-Schonbein et al. 1981; Sato et al. 

1990; Jones et al. 1999b; Guilak et al. 2000; Koay et al. 2003). With the 

advancement in experimental techniques, the complex moduli and the creep function 

of cells can be measured with greater accuracy than before. Using oscillatory 

magnetic twisting cytometry (OMTC), Fabry et al. (2001a; 2003) found that the 

dependence of complex mechanical moduli on frequency could be fitted by the 

power-law rheology model for a wide range of adherent cell types (cf. Table A.3). 

Subsequently, this model has been confirmed for more adherent cell types using at 

least five experimental techniques, in both frequency domain and time domain 

(Fabry et al. 2001a; Alcaraz et al. 2003; Lenormand et al. 2004; Yanai et al. 2004; 

Balland et al. 2005; Dahl et al. 2005; Desprat et al. 2005).  

As evidence in support of the power-law model accumulates, this model has 

not been confirmed with micropipette aspiration experiment for cells (Evans and 

Kukan 1984; Needham and Hochmuth 1990; Jones et al. 1999b; Thoumine et al. 
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1999), although it has been shown valid for nuclei using this technique (Dahl et al. 

2005). Therefore, it would be necessary to re-examine the creep function of cells in 

response to micropipette aspiration. Furthermore, all the experiments that supported 

the power-law model for whole cells were on cells adherent to the substrate (even in 

the microplate manipulation, the cells were allowed to adhere to the glass 

microplates firmly before testing). The applicability of the power-law rheology 

model to suspended cells has not been established. The optical stretching of 

suspended NIH 3T3 fibroblasts suggested that the power-law rheology model is not 

applicable (Wottawah et al. 2005). However, there is still one major concern on this 

conclusion. The effect of laser heating (Peterman et al. 2003), which may cause 

denaturation of proteins and alteration in rheological properties, has not been 

quantified for optical stretcher. Thus, performing micropipette aspiration of 

suspended cells will further clarify the rheology of suspended cells.  

The previous chapter established that linear and coherent deformation of 

cells can be more reproducibly obtained with larger pipettes. The stress-free 

projection length has also been quantified as a function of pipette size. In this 

chapter, creep tests will be performed with large pipettes on suspended cells. Based 

on measured creep function, the applicability of different rheological models, 

including the spring-dashpot models and the power-law rheology model, are 

evaluated. In addition, the effect of drug treatments on the mechanical properties of 

cells is investigated to understand the relative contribution of actin filaments and 

microtubules. In particular, the hypothesis that high concentration of microtubule-

disrupting drugs can lead to activation and stiffening of cells will be tested.  
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5.2 Experimental results 

Ramp tests revealed that larger pipettes are needed to produce more 

consistent deformation of cells and that the pressure-deformation relationship is 

fairly linear for pressure up to 2 cmH2O. Thus, creep tests were done on suspended 

fibroblasts using large pipettes (2Rp = 7.4 ~ 10.1 μm) at a step pressure of 1 cmH2O 

(98 Pa). The creep behavior of untreated cells was presented first, followed by the 

creep behavior of cells treated by two cytoskeleton disrupting drugs, cytochalasin D 

(cytoD) and colchicine.  

5.2.1 Creep behavior of untreated fibroblasts 

In Fig. 5.1(a), the creep deformation of several fibroblasts in response to a 

step pressure was shown. Upon application of the suction pressure, the deformation 

of the cells was usually fast at the beginning and gradually decelerated with time. 

The deformation of the fibroblasts usually would not stabilize within typical time 

scale of creep experiments. Similarly, Thoumine et al. (1999) found that the 

deformation of fibroblasts would not stop even after ten minutes of loading, unlike 

what was reported for chondrocytes (Jones et al. 1999b) or endothelial cells (Sato et 

al. 1996) undergoing micropipette aspiration. This difference might be attributable 

to different cells types, with chondrocytes and endothelial cells being more elastic 

than fibroblasts in suspension.  

The stress-free projection length is needed for quantifying the actual 

deformation of cells. Due to the pipette edge effect, the stress-free projection length, 

Lp
SF, is larger than that predicted with geometric calculation, Lp

G (Fig. 5.1(a)) (cf. 

Section 4.2.3). Thus, the deformed projection length of the cell was computed as Lp 
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= Lp
T − Lp

SF (cf. Fig. 5.1(a)). Lp
SF was taken as that measured with ramp tests (Eq. 

4.4). Deformed projection length for the four cells in Fig. 5.1(a) was plotted against 

time in log-log scale in Fig. 5.1(b), where linearity can be observed over two 

decades of time for individual cells. 
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Fig. 5.1. The creep deformation of several fibroblasts measured by micropipette aspiration. 
(a) The total projection length was plotted against time in linear scale. Lp

G and Lp
SF are 

explained in the text. (b) The actual deformation was plotted against time in log-log scale. 
The pipette diameter was 9.1 microns and the step pressure was 1 cmH2O.  
 
 

Note that the time for the first deformation measurement was assumed to be 

at 0.5 s and the error bars correspond to a nominal standard deviation of 0.17 s in 

time (Fig. 5.1(b)) (cf. Section 3.1.5). Improvement of time resolution can be 

achieved using a camera with higher speed in the future. 

5.2.1.1 Interpretation and modeling of creep function 

Based on the discussion in Section 4.3.5, the creep function of cells can be 

estimated based on the half-space model (Theret et al. 1988) and the elastic-

viscoelastic correspondence principle (Flugge 1967). The shear creep function J(t) 

can be derived as (see Appendix B.5)  
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 (5.1) 

which is more general than the SLS half-space solution (Sato et al. 1990) and same 

as that employed by Dahl et al. (2005). A total of 81 untreated fibroblasts were 

tested using pipettes with diameters ranging from 7.4 to 10.1 μm. Average creep 

function was computed for all the cells and presented in Fig. 5.2.  
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Fig. 5.2. Average creep function of 81 suspended fibroblasts plotted in log-log scale. (Error 
bars are standard deviation.)  
 
 

In order to model the creep function, three viscoelastic models were 

considered: the power-law rheology model (Eq. (2.21)), the standard linear solid 

(SLS) model (Eq. (2.15)) and the standard linear solid-dashpot (SLS-D) model (Eq. 

(2.17)). Least-squares method was used to achieve the curve fitting and the 

coefficient of determination (R2) was used to assess the goodness of fit (Fig. 5.3). It 

was found that the power-law rheology model could best fit the creep function, as 

shown by the highest R2 value, despite the fact that it has the fewest free parameters. 

The SLS model and the SLS-D model performed reasonably well within 1 ~ 2 time 

decades but will deviate for shorter or longer time scales. This observation is 
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qualitatively similar to the creep experiments done using other techniques, including 

micropipette aspiration of nuclei, magnetic bead twisting, optical trap pulling of 

intracellular organelles and microplates pulling (Lenormand et al. 2004; Yanai et al. 

2004; Dahl et al. 2005; Desprat et al. 2005).  
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Fig. 5.3. Fitting the average creep function of suspended fibroblasts by the power-law 
rheology (PLR) model, SLS model and SLS-D model.  
 
 
 

Therefore, the mechanical properties of the cells can be interpreted based on 

the power-law rheology model (Eq. (2.24)), which is rewritten here for convenience 

 ( ) JJ t A tα=  (5.2) 

where AJ (Pa−1) is the shear compliance constant reflecting the deformability of the 

cell (note that AJ = J(1 s)) and α is the power-law exponent (0 < α  < 1). Smaller α 

will indicate a more elastic behavior whereas a larger α indicates a more fluidic 

behavior (Fabry et al. 2001a). From the creep function, the corresponding complex 

modulus and relaxation modulus can respectively be derived as (Desprat et al. 2005) 

(cf. Appendix B.4) 
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and  
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1
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α
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AG (Pa) is the shear stiffness constant (AG = 1/[AJ Γ(1+α)]) and ω = 2πf, f being the 

frequency (in Hz). AG corresponds to the magnitude of complex modulus at ω = 1 

rad/s, |G*(1 rad/s)|; ( ) ( )1 1GG A α= Γ −  equals the relaxation modulus at t = 1 s. 

Based on the relations above, α, AJ and AG can then be interpreted from the 

measured creep function of suspended fibroblasts.  

5.2.1.2 Statistical distribution of the power-law parameters 

The distribution of α, AJ and AG are plotted in Fig. 5.4. The distribution of 

the exponent α is best fitted with the normal distribution with α = 0.30 ± 0.05 (mean 

± SD, 81 cells) (Fig. 5.4(a)). The power-law exponent reported here for suspended 

NIH 3T3 fibroblasts is comparable to that measured for nuclei using micropipette 

aspiration (Dahl et al. 2005) but generally higher than those measured with cells 

attached to substrate using other techniques (Table A.3). It is noted that the standard 

deviation is generally smaller than those found for attached cells. For example, 

Fabry et al. (2003) reported SD ≈ 0.06 using OMTC and Desprat et al. (2005) 

reported SD = 0.08 using microplate manipulation.  
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Fig. 5.4. Statistical distribution of the power-law rheology parameters. (a)−(c) Probability 
density for the distribution of (a) power-law exponent, (b) shear compliance and (c) shear 
stiffness measured for untreated fibroblasts (n = 81). The best fits of normal and log-normal 
distribution functions were also shown. (d) Correlation between AG and α.  
 
 

The distribution of AJ is slightly better fitted by a normal distribution than by 

a log-normal distribution (Fig. 5.4(b)). The normal distribution will predict AJ = 1.0 

± 0.3 (10−2 Pa−1) (mean ± SD) whereas the log-normal one will predict a geometric 

mean of <AJ> = 0.95 (10−2 Pa−1) and a geometric standard deviation of 1.41. Finally, 

the distribution of AG is more faithfully fitted by a log-normal distribution, with 

geometric mean of <AG> = 116.6 Pa and a geometric standard deviation of 1.36 (Fig. 

5.4(c)). The average stiffness as well as the variation of the data reported here are 
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generally less than those reported for attached cells using other techniques (Table 

A.3).  

Interestingly, AG and α seem to be positively correlated with each other (Fig. 

5.4(d)). The correlation coefficient between log10(AG) and α is 0.50 and the data 

could be approximately fitted with AG = 26 × 0.007α Pa (the straight line in Fig. 

5.4(d)). This suggests that individual cells which are stiffer (larger AG) tend to be 

more fluidic (higher α) and vice versa. This is similar to the observations made with 

OMTC (Fabry et al. 2003).  

5.2.1.3 Effect of pipette size on creep function 

In order to examine the dependence of the measured creep function on 

pipette size, the compliance constant (AJ) and the power-law exponent (α) are 

plotted against pipette diameter in Fig. 5.5. The t-test performed revealed no 

significant difference among AJ or α measured by different pipette sizes, which is 

consistent with the results from ramp tests, where the deformability was found 

constant over the range of 2Rp = 7 ~ 10.1 μm (cf. Fig. 4.4 and Fig. 4.8). Similar 

conclusion can also be made for the stiffness constant AG (AG is approximately the 

reciprocal of AJ). This further substantiates the consistency and reproducibility of 

cell deformation associated with large pipettes.  
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Fig. 5.5. Effect of pipette size on the measured creep function. Neither AJ (a) nor α (b) is 
affected by the pipette size. The numbers above the experimental data points in (a) denote 
the sample size measured for each pipette size.  
 
 

5.2.2 Effect of drug treatments 

In order to understand the roles of actin filaments and microtubules in cell 

rheology, the effect of cytoD and colchicine on the mechanical properties of cells 

were investigated using the methods described in Chapter 3. After 30 minutes of 

treatment in the culture dish, DMSO (solvent for delivering cytoD) caused no 

observable change to the cell morphology. CytoD (2 μM) usually caused the cells to 

appear relaxed and to detach from the substrate. Colchicine at 1 mM caused cells to 

loss their elongated shape and polarity. Active small swelling could be seen on the 

surface of some cells, similar to that observed for IAR-2 liver epithelial cells treated 

with nocodazole, which also depolymerizes microtubules (Omelchenko et al. 2002). 

The effect of 100 μM colchicine is similar to but less pronounced than that of 1 mM 

colchicine.  

The creep deformation of drug-treated cells in comparison with untreated 

cells during micropipette aspiration is shown in Fig. 5.6. It is noted that while 

disruption of actin filaments by cytoD consistently led to significantly larger 



Chapter 5   Experimental results for creep tests 81
 

deformation (cf. Fig. 5.6(a) and (c)), the effect of microtubule disruption by high 

dosage of colchicine is less consistent. Some colchicine-treated cells exhibited 

passive deformation similar to that of untreated cells (Fig. 5.6(d1)), but some 

showed active protrusions and retractions and deformed very little into the 

micropipette (Fig. 5.6(d2)).  

                         (a)                             (b)                            (c)                            (d1)                  (d2) 

untreated DMSO cytoD (2μM) colchicine (1mM)
Tim

e (s)
10

−
0.3 

10 0.4
10 1.1        

10 1.8

untreated DMSO cytoD (2μM) colchicine (1mM)
Tim

e (s)
10

−
0.3 

10 0.4
10 1.1        

10 1.8

Fig. 5.6. Effect of drug treatments on cell deformation during creep experiments. (a) An 
untreated cell, (b) a cell treated by DMSO (0.1%), (c) a cell treated by 2 μM cytoD, and (d1) 
and (d2) two cells treated with 1 mM colchicine. For each cell, deformation was shown for t 
= 0.5 (~ 10 −0.3), 2.5 (~ 10 0.4), 12.5 (~ 10 1.1) and 62.5 (~ 10 1.8) s. The pipette size was 9 μm 
and pressure was 98 Pa. (Scale bar: 5 μm.) 
 
 

The average creep functions measured for drug-treated cells are plotted 

together with those for untreated cells and DMSO-treated cells in Fig. 5.7. It was 

found that the power-law rheology model could be applied to the average creep 

functions of both treated and untreated cells.  
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Fig. 5.7. Power-law behavior of average creep functions after drug treatments.  
 
 

The average compliance constant and power-law exponent were computed 

for each treatment and plotted in Fig. 5.8, together with superimposed standard error. 

DMSO (0.1%) treatment did not cause any change in mechanical properties (Fig. 

5.8(a) and (b)), which is consistent with the finding by others (Tsai et al. 1998). The 

treatment with cytoD (2 μM) caused a 2-fold increase in AJ (Fig. 5.8(a)), which is 

qualitatively consistent with previous findings for single cells tested using OMTC 

(Fabry et al. 2003) or for fibroblast populated matrices probed with dynamic stretch 

(Wakatsuki et al. 2001). However, the exponent of untreated cells was significantly 

decreased by the cytoD treatment, from 0.3 to 0.26 (Fig. 5.8(b)). This is different 

from the findings of OMTC and AFM experiments, where significant increase was 

revealed (Fabry et al. 2003; Smith et al. 2005). It is noted that OMTC and AFM 

probes the cytoskeleton from the cell surface and with small deformation whereas 

micropipette aspiration measures the global smeared properties of cells with large 

deformation. This might explain the above discrepancy.  
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Fig. 5.8. Effect of drug treatments on power-law coefficients: (a) compliance constant AJ 
and (b) power-law exponent α. Error bars are standard errors. The significance level of the 
change caused by drug treatments is denoted as NS (not significant, p > 0.3), * (significant, 
p < 0.05) or ** (highly significant, p < 0.01). The numbers in (a) denote the sample size 
measured for each drug treatment. 
 
 

Colchicine treatment at 100 μM caused negligible change in AJ but a 

significant decrease in α, suggesting a more elastic behavior (Fig. 5.8(a) and (b)). A 

higher concentration of colchicine (1 mM) caused significant decrease in both AJ 

and α., suggesting that the treated cells became stiffer and less dissipative (Fig. 5.8(a) 

and (b)). At both concentrations, some of the treated cells were found to exhibit 

strong active motion both in free suspension and during aspiration (Fig. 5.6(d)). The 

intensity and frequency of the active motion was higher with the higher dosage. The 
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percentages of activated cells in all mechanically tested were approximately 30% for 

100 μM and 60% for 1 mM. The active motion might be due to the enhanced 

contractile activity (Keller et al. 1984; Danowski 1989) as well as actin 

polymerization and stress fiber formation (Enomoto 1996; Tsai et al. 1998) 

stimulated by microtubule depolymerization. Therefore, the passive contribution of 

microtubules to the overall mechanical properties of NIH 3T3 fibroblasts may not be 

readily quantified by microtubule depolymerization.  

5.3 Discussion 

5.3.1 Power-law behavior of creep function and its dependence 

on pipette edge effect 

In this chapter, creep experiments were performed on suspended fibroblasts 

using large pipettes. Coherent deformation of cells was generally induced (Fig. 5.6), 

which is consistent with the observations of ramp tests.  

The creep function measured for suspended fibroblasts with and without 

drug treatments was found to depend on time with weak power law (Fig. 5.3 and Fig. 

5.7). This power-law behavior is qualitatively similar to that of the creep functions 

measured with other techniques for a variety of cell types as well as cell nuclei 

(Lenormand et al. 2004; Yanai et al. 2004; Dahl et al. 2005; Desprat et al. 2005) and 

is consistent with the power-law structural damping model for the complex modulus 

(Fabry et al. 2001a; Lenormand et al. 2004; Desprat et al. 2005; Lenormand and 

Fredberg 2006). This work thus further substantiates the generality of the power-law 

rheology model, in the time domain and for suspended cells. The physical 
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explanation for the power-law structural damping model lies in the soft glassy 

rheology hypothesis, which regards the cytoskeleton as a soft glassy material 

existing close to glass transition (Sollich 1998; Fabry et al. 2001a; Fabry et al. 2003).  

It is noted that the stress-free projection length (Lp
SF) was quantified from 

ramp experiments (Fig. 4.5) and the deformed projection length was estimated as Lp 

= Lp
T − Lp

SF (Lp
SF-based estimation). Previous micropipette aspiration studies which 

reported the creep deformation of cells generally did not quantify the stress-free 

projection length (e.g. Evans and Kukan 1984; Evans and Yeung 1989; Tsai et al. 

1993). Following these, if the detected edge is taken as the real pipette edge (cf. Fig. 

4.6), Lp will be calculated as Lp = Lp
T − Lp

G (Lp
G-based estimation). The Lp

G-based 

creep function can then be derived according to Eq. (5.1). This creep function, which 

is shown in Fig. 5.9, is qualitatively similar to that observed for leukocytes in 

micropipette aspiration (Figures (4) to (6) in (Evans and Kukan 1984)). It curves up 

slightly and is better fitted by the SLS-D model than by the power-law model, 

judging from the R2 values (Fig. 5.9).  

In addition, the power-law exponent for the Lp
G-based creep function is α = 

0.21 ± 0.03, which is significantly lower than that for Lp
SF-based creep function 

(0.30 ± 0.05), while the compliance constant for the Lp
G-based creep function is AJ = 

1.7 ± 0.3 (10−2 Pa−1), which is much higher than that for the Lp
SF-based creep 

function (1.0 ± 0.3 (10−2 Pa−1)). It is noted that the effect of drug treatments will not 

be qualitatively affected by the pipette edge effect, as long as the cell deformation 

for both treated and untreated cells is computed based on the same edge location.  
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Fig. 5.9. Fitting the Lp

G-based creep function (CF) with the power-law rheology (PLR) 
model and SLS-D model. The Lp

SF-based creep function is also shown for comparison.  
 
 

In view of the above, the power-law relationship is very sensitive to the 

addition of a constant, such as that caused by the pipette edge effect. In this work, 

the pipette edge effect was estimated indirectly from ramp experiments. 

Alternatively, direct approach can be employed to enhance the imaging resolution 

such that the deformed projection length can be directly and accurately quantified.  

5.3.2 Compatibility between creep tests and ramp tests 

In the ramp tests, the apparent deformability S/Rp was measured at two 

loading rates by applying linear curve fitting to the pressure-deformation 

relationship (cf. Chapter 4). On the other hand, the apparent deformability can also 

be predicted based on the measured power-law creep function (Appendix B.6). Thus, 

the compatibility between creep tests and ramp tests can be examined by comparing 

S/Rp measured by the latter versus that predicted from the creep function measured 

by the former.  
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Based on the power-law creep function (Eq. (5.2)), the deformation of a cell 

in a ramp test carried out with micropipette aspiration can be derived as (see 

Appendix B.6) 
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where ( ) PP t v tΔΔ = , PvΔ  being the loading rate. 

Given the average power-law parameters (α = 0.3 and AJ = 1.0 (10−2 Pa−1)) 

measured with the creep tests and the loading rates used in the ramp tests, the 

relation between pressure and deformation can be calculated for the typical pressure 

range between 1 and 10 mmH2O (Fig. 5.10). From the average slope of Lp(t)/Rp 

versus ΔP(t), the apparent deformability was calculated as 0.0725 (1/mmH2O) for 

the loading rate of 1/30 cmH2O/s, and 0.110 (1/mmH2O) for 1/120 cmH2O/s (Fig. 

5.10), which compares favorably (within 5% error) with those found with the ramp 

tests (cf. Table 4.1). This further substantiates the applicability of the power-law 

rheology model.  
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Fig. 5.10. Predicting the ramp-test deformation based on the creep-test results. The pressure-
deformation relationship for ramp tests was computed based on Eq. (5.5) for two loading 
rates, 1/30 and 1/120 cmH2O/s. The apparent deformability was taken as the average slope 
of the curves.  
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It is noted that the curves in Fig. 5.10 slightly curve up. In contrast, in ramp 

experiments, the ΔP-Lp
T curves were generally observed to be fairly linear for ΔP = 

0 ~ 1 cmH2O and slightly curving down for higher pressure (Fig. 4.2(b)). The 

discrepancy might arise from the friction between the cell and the pipette wall, 

active force of the cell and/or from the nonlinearity in the viscoelasticity of the cell, 

which remain to be further explored.  

The linear regression lines in Fig. 5.10 do not pass through the original point 

and have a negative y-intercept, which implies that linear regression may lead to 

underestimation of the SF projection length in ramp tests (cf. Fig. 4.2(b)). For the 

loading rate of 1/120 cmH2O/s, the y-intercept is Lp/Rp = −0.1 (Fig. 5.10), which will 

lead to ~ 0.45 μm underestimation of Lp
SF for a typical pipette size of 9 μm. 

Similarly, the amount of underestimation of Lp
SF for 1/30 cmH2O/s is about ~ 0.3 

μm, which is small compared with the measured Lp
SF (~ 2.7 μm for 2Rp = 9 μm 

according to Eq. (4.4)). In addition, the nonlinearity of ΔP-Lp
T relation is not 

apparent in the ramp experiments. Therefore, the nonlinearity observed in Fig. 5.10 

was not taken into account for estimating Lp
SF.  

5.3.3 Mechanical properties of fibroblasts – a comparison with 

others’ work 

In this work, the shear stiffness constant AG of suspended NIH 3T3 

fibroblasts, was measured as 116.6 Pa on average (ranging from 60 to 350 Pa), 

which corresponds to |G*(1 rad/s)| = 116.6 Pa in dynamic tests. Similar stiffness 

(100 ± 10 Pa at 1 rad/s) had also been reported for suspended NIH 3T3 fibroblasts 

using optical stretcher (Wottawah et al. 2005). Thoumine et al. (1997b) measured 
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the viscoelastic properties of chick embryo fibroblasts with micropipette 

manipulation. The SLS model was used to interpret the creep deformation of cells, 

which results in k1 = 320 Pa, k2 = 170 Pa and μ = 1700 Pa·s (cf. Table A.2). This 

roughly corresponds to AG = 489 Pa (this estimation is based on the complex 

modulus for SLS model at ω = 1 rad/s (Eq. (B.8))). AFM indentation on attached 

NIH 3T3 fibroblasts reported shear storage modulus of 350 to 715 Pa for frequency 

between 80 and 300 Hz, which translates into AG = 101 ~ 166 Pa (assuming α = 0.2 

for adherent fibroblasts (Lenormand et al. 2004)). More recently, Fernandez et al. 

(2006) measured the shear stiffness of 3T3 fibroblasts with microplate manipulation 

to be 0.3 ~ 30 kPa at ω = 0.628 rad/s. In view of the above, the stiffness constant 

measured for suspended fibroblasts using micropipette aspiration is comparable to 

the measurements made on the same type of cells in suspended state but generally 

lower than those determined for attached cells.  

For suspended NIH 3T3 fibroblasts, the power-law exponent α was found as 

0.30 ± 0.05 (mean ± SD, 81 cells). Lenormand et al. (2004) characterized the 

rheology of attached human fetal lung fibroblasts with OMTC and found that the 

power-law rheology model applies with α ≈ 0.2, which is significantly smaller than 

that found for suspended NIH 3T3 fibroblasts in this work (unfortunately the 

magnitude of stiffness was not reported for attached fibroblasts). It is known that 

decreased prestress will lead to lower stiffness and higher exponent (Wang et al. 

2002; Stamenovic et al. 2004). Therefore, the lower stiffness and higher power-law 

exponent measured for suspended NIH 3T3 fibroblasts might be attributable to the 

decrease in prestress for suspended cells. To further confirm the effect of suspension 

on the cytoskeleton, the actin filaments of NIH 3T3 fibroblasts were stain at both 
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adherent and suspended states (Fig. 5.11). It can be seen that the attached cells are 

taut with actin stress fibers (Fig. 5.11(a)). One the other hand, the actin fibers are 

relaxed and curved in the suspended fibroblasts (Fig. 5.11(b)).  

20 μm20 μm

 
(a) 

8 μm

 
(b) 

Fig. 5.11. The difference in actin cytoskeleton for (a) attached and (b) suspended fibroblasts. 
The upper panels show the fluorescence images of actin cytoskeleton stained with 
phalloidin-FITC taken with a confocal microscope and the lower ones show the phase 
contrast images.  
 
 

5.3.4 A general trend for power-law rheology of cells 

The reported parameters for power-law rheology model measured on various 

cell types, using different techniques and with different drug interventions are 

compiled in Table A.3 and graphically presented in Fig. 5.12. A general trend is 

apparent from Fig. 5.12 that lower stiffness is generally associated with higher 

exponent (negative correlation). This relationship can be approximately described by 
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0 0GA G αω−=  where G0 = 104 ~ 106 Pa and ω0 = 107 ~ 1013 rad/s, similar to that 

reported with OMTC (Puig-De-Morales et al. 2004) and AFM (Smith et al. 2005).  
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Fig. 5.12. Comparison of the power-law rheology parameters reported with different 
techniques. For the data acquired with the current work (MA), the drug treatments are 
indicated by a label with an arrow. Error bars indicate standard deviation. The data sources 
are as follow: OMTC (Fabry et al. 2003; Lenormand et al. 2004; Puig-De-Morales et al. 
2004; Stamenovic et al. 2004; Trepat et al. 2004; Laudadio et al. 2005), MMTC (Puig-De-
Morales et al. 2001), AFM (Alcaraz et al. 2003), OT (IC) (Yanai et al. 2004), OT (Balland 
et al. 2005), MPM (Desprat et al. 2005), MA (this work). (Abbreviations: OMTC − optical 
MTC, MMTC − magnetic MTC, OT − optical tweezers, MPM − microplate manipulation, 
(IC) − intracellular measurements, Col − colchicine. CD − cytochalasin D. For more details 
including cell types and drug treatments, see Table A.3.)  
 
 

It is worth noting that negative covariance between log10(AG) and α with 

different drug interventions on the cytoskeleton had also been reported for single 

types of cells using OMTC and AFM. The α-AG relation could thus be scaled into 

master curves which are similar (with comparable G0 and ω0) to the one in Fig. 5.12 

(Fabry et al. 2001a; Fabry et al. 2003; Lenormand et al. 2004; Puig-De-Morales et 

al. 2004; Laudadio et al. 2005; Smith et al. 2005). Nonetheless, it is noted that the 

trend line in Fig. 5.12 does not necessarily describe the covariance of α and AG with 
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drug treatments (drug treatments may also cause simultaneous drop/rise in both α 

and AG measured with other techniques, which will be discussed in Section 5.3.6). 

Instead, it emphasizes the effect of measurement method on the power-law rheology 

parameters. From Fig. 5.12, the following trend can be observed. OMTC (Fabry et 

al. 2003; Lenormand et al. 2004; Puig-De-Morales et al. 2004; Stamenovic et al. 

2004; Trepat et al. 2004; Laudadio et al. 2005) and AFM (Alcaraz et al. 2003), 

which probe on the cortical cytoskeleton of firmly attached cells, tend to exhibit 

higher stiffness and lower exponent (thus more elastic). Microplate manipulation 

(Desprat et al. 2005), which involves global cell deformation and less cell spreading, 

measured slightly lower stiffness and higher exponent. In contrast, micropipette 

aspiration (this work), which deforms cells globally and in suspension, showed even 

lower stiffness and higher exponent. Finally, optical tweezer (Yanai et al. 2004), 

which probed the intracellular rheology through trapped organelles, resulted in the 

lowest stiffness and highest exponent. The reasons for the different rheological 

properties probed by different techniques remain to be better understood but may 

involve heterogeneity of the cell and the different level of prestress within the 

cytoskeleton (Stamenovic et al. 2004).  

5.3.5 High reproducibility and low variability of the current 

measurement 

Previous experiments on adherent cells routinely found large scattering of 

mechanical moduli (or compliance), which typically spanned nearly two orders of 

magnitude for a single cell type tested with the same technique. For example, 

Bausch et al. (1999) found the shear modulus varied between 20 ~ 735 Pa in the 
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cytoplasm of macrophages (magnetic tweezers). The OMTC experiments revealed 

that the stiffness of cells varied across two orders of magnitude following a log-

normal distribution with geometric standard deviation of 2.1 to 2.8 (Fabry et al. 

2001b; Fabry et al. 2003). Interestingly, four papers using the same OMTC 

technique reported four different sets of mechanical parameters for untreated human 

airway smooth muscle cells, with α ranging from 0.158 to 0.209 and AG ranging 

from 1308 to 3822 Pa (cf. Table A.3) (Fabry et al. 2003; Lenormand et al. 2004; 

Puig-De-Morales et al. 2004; Stamenovic et al. 2004). Similar scattering had also 

been observed at the whole cell level using microplate manipulation where the cells 

adheres to the microplates (Desprat et al. 2005; Fernandez et al. 2006). Desprat et al. 

(2005) reported a geometric standard deviation of 2.27 (= e0.82) for measured 

compliance of myoblasts and Fernandez et al. (2006) found the stiffness of 

fibroblasts to vary from 0.3 to 30 kPa at a single loading frequency.  

In contrast, relatively narrower distribution of mechanical moduli (100 ± 55 

Pa) was found while performing experiments on suspended fibroblasts with optical 

stretcher (Guck et al. 2005; Wottawah et al. 2005). In the current work, the 

variability for untreated fibroblasts is even less (Fig. 5.12). The geometric standard 

deviation for AG is 1.36 based on 81 cells (or 40% of standard deviation with respect 

to mean if a normal distribution is assumed) (cf. Section 5.2.1.2). Similarly, with the 

ramp tests, the ratio of the standard deviation to mean of stiffness (assuming normal 

distribution) was only 36% and 42%, for the loading rates of 1/30 and 1/120 

(cmH2O/s), respectively.  

More importantly, the suspended fibroblasts (81 cells) were tested on 

different days using different pipettes (ranging 7.4 to 10.1 in diameter). The fact that 
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consistent results were obtained with each batch (cf. Fig. 5.5) substantiates the high 

reproducibility of the current experiment.  

The reduced scattering of mechanical properties for suspended fibroblasts 

might be attributable to three main reasons. Firstly, it may be attributed to the 

relatively large diameter of the probing pipettes. Larger pipettes tend to deform the 

cells globally, such that the smeared properties of the whole cell can be measured. 

On the other hand, AFM, magnetic tweezers and OMTC tend to probe the local 

properties of smaller area and thus are likely to encounter higher heterogeneity 

(Bausch et al. 1999; Rotsch and Radmacher 2000; Fabry et al. 2003). However this 

may not be the sole reason because microplate manipulation, which revealed large 

scattering, also probed cells at a global scale (Desprat et al. 2005; Fernandez et al. 

2006). It is noted that the microplates, coated with fibronectin or glutaraldehyde to 

promote cell adhesion, may stimulate active stress in the cell and increase variability 

for the measurement (Fernandez et al. 2006). In addition, the stiffness measured 

with microplate manipulation may depend not only on the density of actin stress 

fibers but also on the orientation of the fibers with respect to the direction of pulling, 

which is another source of variability. In contrast, cells are less likely to develop 

active stress in micropipette aspiration because cell adhesion to the glass pipettes 

was prevented by Sigmacote (cf. Chapter 3). This accounts for the second reason for 

the reduced variability. Further, the orientation of stress fibers for suspended cells is 

largely random (Fig. 5.11(b)) and thus may appear more homogeneous and isotropic 

in response to aspiration by large pipettes, which accounts for the third reason for 

the reduced scattering.  
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It is noted that larger heterogeneity of data limits the reproducibility, 

accuracy and efficiency of mechanical measurements and will necessitate more cells 

to be tested in order to achieve statistical significance for comparing different groups 

of cells. In view of the above, micropipette aspiration, when optimized for pipette 

diameter, is a reliable and sensitive tool for probing the rheological properties of 

cells.  

5.3.6 Effect of actin cytoskeleton disruption 

In the current work, 2 μM cytoD was used to disrupt actin cytoskeleton. 

Staining of actin cytoskeleton for cytoD-treated cells is shown in Fig. 5.13(b). It is 

found that the stress fibers became largely absent (cf. Fig. 5.11(a)) and actin 

aggregation is observable, similar to the observation by others (Rotsch and 

Radmacher 2000; Wakatsuki et al. 2001). The treated cells appeared both softer 

(lower AG) and more elastic (lower α) (Fig. 5.8 and Fig. 5.13(a)). Similar effect of 

cytoD on cell stiffness had been widely obtained for other types of cells using other 

techniques including micropipette aspiration (Sato et al. 1990; Trickey et al. 2000; 

Wu et al. 2000; Trickey et al. 2004). However the change in the power-law 

exponent is difficult to assess from these studies because the mechanical properties 

were generally reported in terms of the SLS or other spring-dashpot models. 

Wakatsuki et al. (2000; 2001) studied the mechanics of fibroblasts with fibroblast 

populated matrices (FPM). It was found that treatment with cytoD caused the FPM 

to become both softer and more elastic, as reflected by the reduced phase angle δ in 

dynamic tests (note that tan G Gδ ′′ ′= ), which is qualitatively consistent with the 

results of the current study.  
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Fig. 5.13. Effect of cytoD treatment on the rheological properties and actin cytoskeleton of 
NIH 3T3 fibroblasts. (a) Distributions of power-law parameters for untreated and cytoD-
treated cells measured with micropipette aspiration. (b) The fluorescence image of actin 
cytoskeleton (left) and the phase contrast image (right) of cytoD-treated cells. 
 
 

On the other hand, covariance of α and AG with negative correlation had 

been widely observed with OMTC and AFM experiments when the cells were 

treated with different drug which interfere with the cytoskeleton. In particular, cytoD 

treatment, while rendering the cells less stiff, was also observed to make the cells 

more dissipative (higher α) (Fabry et al. 2001a; Fabry et al. 2003; Lenormand et al. 

2004; Puig-De-Morales et al. 2004; Laudadio et al. 2005; Smith et al. 2005), which 

is in contrast to the finding in this study (lower α). It is noted that both OMTC 

(a) 

(b) 
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(Fabry et al. 2001a) and AFM (Smith et al. 2005) probes from the cell surface at 

small strain. Thus actin cytoskeleton may be preferentially probed. The fact that 

higher α were measured with OMTC and AFM after cytoD treatment indicates that 

disruption of actin filaments caused the actin cytoskeleton to fluidize. In contrast, 

micropipette aspiration causes large deformation to the whole cell. Thus it is not 

specific to actin cytoskeleton but measures the integrative behavior of the cell as a 

whole. When cytoD fluidize the actin network, contribution of other cytoskeletal 

elements, such as intermediate filaments, microtubules and possibly spectrin-like 

membrane cytoskeleton (Burridge et al. 1982), becomes more prominent when 

probed with micropipette aspiration. It is possible that these networks are less 

dissipative than actin cytoskeleton, which explains the lower α value for cytoD 

treated cells measured with micropipette aspiration. Similar explanation may also 

apply to the cytoD effect on FPM mentioned above (Wakatsuki et al. 2000).  

5.3.7 Effect of microtubule cytoskeleton disruption 

Although colchicine is well known to depolymerize microtubules (Anderson 

et al. 1982; Andreu and Timasheff 1982), the published results on the effect of 

colchicine on the rheological properties of cells were inconsistent with each other. 

Sato et al. (1990) found 2 ~ 3 fold decrease in stiffness of endothelial cells after 

colchicine treatment (2 μM). In contrast, the micropipette aspiration of neutrophils 

revealed negligible effect at 0.1 and 1 μM and significant increase in viscosity with 

higher dosages (10 and 100 μM) (Tsai et al. 1998). Rotsch and Radmacher (2000) 

found little effect on the stiffness of NRK fibroblasts for colchicine at concentration 

up to 500 μM using AFM indentation. The current work focused on the effect of 
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high dosages of colchicine treatment (100 μM and 1 mM). Activation and 

rigidification in some of the NIH 3T3 fibroblasts were observed (Fig. 5.6). The 

colchicine-treated cells exhibited larger scattering in measured mechanical 

properties, but on average the cells became stiffer and more elastic (Fig. 5.8 and Fig. 

5.12).  

Interestingly, more than half of the cells tested exhibited active motions after 

depolymerization of microtubules with 1 mM colchicine (Fig. 5.6(d)). This is 

consistent with previous findings with microtubule-depolymerizing drugs, such as 

vinblastine, colcemide, nocodazole and colchicine. Keller et al. (1984) found that 

vinblastine (10 μM), nocodazole (1 μM) and colchicine (10 μM) can stimulate 

motility and random locomotion in polymorphonuclear leukocytes. Danowski (1989) 

observed rapidly increased fibroblast contractility following the exposure to 

vinblastine (10 μM), colcemide (2.7 μM) or nocodazole (16.7 μM). Formation of 

actin stress fibers after treatment by vinblastine or colcemide has also been observed 

in Balb/c 3T3 cells (Enomoto 1996). The mechanisms that underlie the elevated 

acto-myosin contractility and stress fiber formation after microtubule 

depolymerization may involve Rho GTPases signaling (Enomoto 1996; Kjoller and 

Hall 1999; Wittmann and Waterman-Storer 2001; Omelchenko et al. 2002).  

In view of the above, the inconsistency in mechanical properties measured 

for cells treated with high dosage of microtubule-depolymerizing drugs may be 

largely due to the increased acto-myosin contractility and reorganization of the actin 

cytoskeleton, which may be cell type-specific (Omelchenko et al. 2002). As such, 

the mechanical contribution of microtubules probably cannot be directly understood 

by just disrupting them with depolymerizing drugs unless the actin cytoskeleton and 
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acto-myosin contractility can be controlled during the microtubule depolymerization. 

This might be achievable through inhibition of the Rho kinase, for example using Y-

27632 (Uehata et al. 1997).  

5.4 Conclusions 

The rheological properties of fibroblasts were investigated using 

micropipette aspiration in this and the previous chapters. The ramp tests revealed 

that large pipettes were needed for producing linear and reproducible deformation of 

cells and the apparent stiffness was measured at two loading rates. Creep tests were 

performed on suspended fibroblasts in this chapter. The measured creep functions 

were found to vary with time following a weak power law for both drug-treated and 

untreated cells. Despite having only two parameters, the power-law rheology model 

could fit the creep function better than spring-dashpot models with more parameters. 

In addition, the parameters for the power-law rheology model have clear physical 

explanations in the context of a soft glassy rheology hypothesis. Therefore, the 

power-law rheology model provides a better framework for interpreting the 

rheological properties of suspended fibroblasts in micropipette aspiration.  

This work, together with the work by others, provides widespread support 

towards the generality of the power-law rheology model, which hints on the 

possibility that the physical organization of cells is similar to that of soft glassy 

materials, such as foams, pastes, colloids, emulsions and slurries (Sollich 1998; 

Fabry et al. 2001a). The common features that governs the physical behavior of this 

class of materials are structural disorder and metastability (Sollich et al. 1997). As a 

result, the cell modulates its mechanical properties mainly by changing the effective 
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temperature (related to α) of its glassy matrix, which in turn determines its ability to 

deform, flow and reorganize. The soft glassy hypothesis thus stands in contrast to 

the traditional notion that cells are like gels whose physical properties are governed 

by sol-gel transition (Pollack 2001). If true, this hypothesis will represent a 

paradigm shift with broad implications in biology and physics (Fabry and Fredberg 

2003).  



 

Chapter 6 Finite Element Simulation of Micropipette 

Aspiration Based on Power-law Rheology 

6.1 Introduction 

In the last chapter, the half-space model (Theret et al. 1988) was used in 

combination with the elastic-viscoelastic correspondence principle to calculate the 

viscoelastic properties of cells. Similar approach has also been widely employed by 

others to interpret the viscoelastic properties of cells undergoing micropipette 

aspiration (Sato et al. 1990; Ward et al. 1991; Sato et al. 1996; Trickey et al. 2000; 

Trickey et al. 2004; Dahl et al. 2005). However, the accuracy of this analytical 

solution is questionable because it cannot account for the nonlinearity caused by 

large deformation and contact slippage between the cell and pipette (Baaijens et al. 

2005; Zhou et al. 2005a).  

Various numerical studies have been carried out to evaluate the accuracy of 

the half-space solution using elastic models or SLS models. Haider and Guilak 

(2000; 2002) developed a boundary element model to simulate the large, viscoelastic 

deformation of cells in micropipette aspiration, where the cells were modeled with 

the SLS model. Their work suggested that the creep deformation process (Lp(t)) was 

not proportional to the creep function (cf. Fig. 6 in (Haider and Guilak 2000)). 

Baaijens et al. (2005) applied the finite element (FE) method to simulate 

micropipette aspiration of chondrocytes, which were modeled as a two-mode 

viscoelastic model (essentially equivalent to the SLS model). The authors 

qualitatively showed that the experimental creep data could be fitted with the 

simulation, without assessing the accuracy of the viscoelastic half-space solution. 
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Zhou et al. (2005a) also performed FE analysis of micropipette aspiration, the cells 

being modeled as a standard neo-Hookean solid model (a large-strain version of the 

SLS model). The viscoelastic deformation of the cells was found to be significantly 

affected by pipette size and the half-space solution was found reasonably accurate 

only when pipette diameter is less than one fourth of cell diameter. All the studies 

above treated the cell as elastic solid or SLS solid.  

The extensive experimental evidence, including that presented in the last 

chapter, supported the general applicability of the power-law rheology model to cell 

viscoelasticity (Fabry et al. 2001a; Alcaraz et al. 2003; Lenormand et al. 2004; 

Yanai et al. 2004; Balland et al. 2005; Dahl et al. 2005; Desprat et al. 2005). 

However, a FE model for modeling power-law rheology of cells is not available. 

Further, no numerical simulation has been done to assess the accuracy of the half-

space model when the cell is modeled with power-law rheology.  

In this chapter, a finite-strain, viscoelastic FE model will be developed based 

on the power-law rheology to simulate micropipette aspiration experiments, 

including both ramp tests and creep tests. One of the major goals was to study the 

effect of the power-law exponent on the deformation of cells. The effect of pipette 

geometry on cell deformation will also be systematically assessed. Validation of the 

proposed model is carried out by comparing the simulation results with those of 

experiments. It is hoped that a large-strain viscoelastic FE model with experimental 

verification may contribute towards the study of mechanotransduction by predicting 

the distribution of stress and strain within cells (Guilak et al. 1999; Humphrey 2001; 

Charras and Horton 2002a; Charras and Horton 2002b; Charras et al. 2004; Lim et al. 

2006).  
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6.2 Material constitutive relations 

6.2.1 Neo-Hookean elasticity 

The hyperelastic material model utilizes a general strain energy potential to 

describe the material behavior at finite strain for incompressible rubber-like 

materials (ABAQUS 2003b). The incompressible neo-Hookean constitutive law is 

the simplest hyperelastic model and is characterized by only one parameter, the 

shear modulus G. The strain energy density function of an incompressible neo-

Hookean material is  

 ( )1 3
2
GU I= −  (6.1) 

where I1 is the deviatoric strain invariant, defined as 

 2 2 2
1 1 2 3I λ λ λ= + +  (6.2) 

with λ1, λ2 and λ3 being the principal stretches. From the virtual work principle, it 

can be deduced that (ABAQUS 2003b) 
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∂
= ⋅ =

∂

τ B I

xB F F F
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 (6.3) 

where τ is the deviatoric part of the Cauchy stress tensor, G is the elastic shear 

modulus, F is the deformation gradient of the current configuration x relative to the 

initial configuration X, B is the left Cauchy-Green strain tensor, and I is the unit 

tensor. The neo-Hookean hyperelastic model reduces to the linear model for small 

deformation and does not deviate far from the linear elastic model at large 
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deformation. In fact, for simple shear, the engineering shear stress is proportional to 

engineering shear strain by  

 Gτ γ=  (6.4) 

Therefore, the shear moduli of linear elasticity and neo-Hookean elasticity are 

directly comparable.  

6.2.2 Power-law rheology approximated by Prony series 

expansion 

As a time domain generalization of the neo-Hookean hyperelastic model, the 

elastic shear modulus need to be replaced by the relaxation shear modulus. The 

relaxation shear modulus corresponding to the power-law rheology is 

 ( ) ( ) ( )1
1

GAG t t G tα α

α
− −= =

Γ −
 (6.5) 

which is the same as Eq. (5.4) (also see Appendix B.4); G(1) being the relaxation 

modulus at 1 s. In Chapter 5, the average rheological properties of suspended NIH 

3T3 fibroblasts were measured as AG = 116.6 Pa and α = 0.3 using micropipette 

aspiration, which corresponds to G(1) = 90 Pa. For the FE simulation, the stiffness 

constant was chosen to be slightly higher than that measured experimentally but 

equal to the suction pressure for convenience, such that  

 ( ) ( )1 100   PaG t G t tα α− −= =  (6.6) 

where α is variable, as one of the major goals was to study the effect of α on the 

deformation of cells. Subsequently, the creep compliance of the cell is (cf. Eqs. (5.2) 

~ (5.4) and Appendix B.4) 

 ( ) ( ) ( ) ( )
1 1

1 1 1JJ t A t t
G

α α

α α
= =

Γ − Γ +
. (6.7) 
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For the convenience of numerical implementation (ABAQUS 2003a), the 

relaxation modulus is expressed with the Prony series expansion as 

 ( ) ( ) ( )/

1
0 1 1 i

N
t

i
i

G t G g e λ−

=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑  (6.8) 

where G(0) is the instantaneous shear modulus, and gi and λi (i = 1, 2, …, N) are 

material constants characterizing the relaxation spectrum. Typical experimental time 

scale spans less than 5 decades, which can be adequately described by 5-term Prony 

series expansion. Given a set of AG and α, one can use nonlinear least-squares 

regression to determine the parameters for the Prony series expansion.  

Based on the relaxation modulus (Eq. (6.8)), the deviatoric part of the 

Cauchy stress tensor can be expressed as (ABAQUS 2003b) 
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where τ0(t) represents the instantaneous stress caused by the current deformation, 

which can be computed using Eq. (6.3), ( )t t s−F  is the deformation gradient of the 

configuration x(t − s) at time t − s,  relative to the configuration x(t) at time t, and 

SYM[⋅] denotes the symmetric part of a matrix. It is noted that this equation is 

essentially equivalent to its linear viscoelastic counterpart  

 ( ) ( ) ( )
0

t

t G t s s ds= −∫τ γ  (6.10) 

except for the calculation of the instantaneous stress and the large-deformation 

formulation  (ABAQUS 2003b).  
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6.3 Finite element model based on power-law rheology 

6.3.1 Basic assumptions 

The basic assumptions made for the FE model are as follows: 

(a) The material properties are constant, homogeneous and adequately described 

by the incompressible power-law rheology model.  

(b) The micropipette is rigid and the contact between the cell and the pipette is 

free from adhesion and friction.  

(c) The pipette is a round cylinder and the mouth is smooth-edged with a round 

fillet. 

(d) The shape of the cell is spherical and the deformation of the cell is 

axisymmetric.  

(e) Any possible active force generated by the cytoskeleton is not taken into 

consideration.  

6.3.2 Geometric description of micropipette aspiration 

Geometric parameters of interest include the cell radius, Rc, pipette radius, Rp, 

fillet radius, e, and deformed projection length, Lp, as illustrated in Fig. 6.1. ΔP is 

the hydrostatic pressure difference.  

 
Fig. 6.1. Schematic of micropipette aspiration of a cell.  
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The geometry is normalized by the initial cell radius Rc. Hence, the 

dimensionless cell radius, pipette radius and fillet radius are defined by 

 * * *1                p
c p

c c

R eR R e
R R

= = =  (6.11) 

As a consequence of this scaling, the computed displacement is also Rc-scaled. The 

strain and deformation gradients are dimensionless and not affected by the scaling.  

For the convenience of comparing with the experimental data, the projection 

length was usually reported as Lp/Rp, which is dimensionless and not affected by the 

scaling.  

6.3.3 Boundary and loading conditions 

The force boundary condition was modeled as a suction pressure exerted on 

the free surface of the cell tongue inside the pipette (cf. Fig. 6.1), which is the same 

as that adopted by others (Sato et al. 1990; Haider and Guilak 2000; Zhou et al. 

2005a).  

The creep response of a cell to a step pressure of 100 Pa was studied. In the 

simulation, the pressure was linearly increased from 0 to 100 Pa in 10−4 s and then 

kept constant for 100 s. The effect of α on the creep deformation will be investigated 

firstly, followed by the effect of pipette geometry.  

In the simulation of the ramp tests, the pressure was linearly increased from 

0 to 100 Pa within a period ranging from 1 s to 240 s, such that the effect of loading 

rate can be studied. The effect of α and pipette geometry on the pressure-

deformation relationship is examined.  

The pipette radii surveyed include Rp
* = 0.25, 0.40, 0.50 and 0.60, the fillet 

radii include e* = 0.02, 0.06 and 0.10, and the power-law exponents include α = 0, 
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0.1, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45. Note that α = 0 corresponds to the elastic 

model.  

6.3.4 Finite element mesh 

The displacement and pressure-based mixed-formulation finite elements 

were chosen for the analysis (Bathe 1996; ABAQUS 2003b). Eight-node second-

order axisymmetric elements were used to discretize the cell model. A dense mesh 

was adopted near the pipette fillet because of the concentration of deformation 

gradient occurring in that region (Fig. 6.2). Convergence study on mesh density and 

time increment was carried out to ascertain the accuracy of the FE solution before 

meaningful deductions can be made.  

 
Fig. 6.2. An axisymmetric FE model for a spherical cell, which contains 8061 nodes and 
2612 elements. Note that different meshes were used for different pipette sizes to account 
for the different stress profiles.  
 
 

6.4 Results 

Limitations of the half-space model (Fig. 6.3(b)) had been discussed in 

Section 4.1. In contrast to the analytical half-space model, the FE simulation can 

model the large deformation of the cell in micropipette aspiration more accurately 

by taking into account the realistic cell geometry and the nonlinear effects caused by 
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large deformation and slip (Fig. 6.3(a)). In addition, the FE simulation calculates the 

viscoelastic deformation through numerical integration, the accuracy of which is 

ensured by an incremental time-stepping algorithm. Therefore, the FE method is 

more accurate than the half-space analytical method in solving the initial-boundary-

value problem of micropipette aspiration, where large deformation is involved.  

 
 

Fig. 6.3. Geometric comparison of the FE model with the half-space model. (a) The 
deformed FE mesh (Rp

* = 0.5 and e* = 0.06) of a cell aspirated into a micropipette. (b) The 
half-space model.  
 
 

Through the FE analysis, the effect of the power-law exponent and pipette 

geometry on the cell deformation will be systematically assessed, in the context of 

both creep and ramp experiments. As a pilot study, a model with a set of mechanical 

properties will be proposed for untreated NIH 3T3 fibroblasts. Verification of this 

model will be carried out by simulating both creep and ramp tests, with different 

pipette sizes. 

6.4.1 Elastic deformation 

When α = 0, the power-law rheology model reduces to an elastic one, with 

constant shear modulus: G = G(1). The time-independent force-deformation 

relationship was derived for pressure up to ΔP = 2.5 G(1) = 250 Pa. The effect of 

pipette radius and fillet radius was systematically examined (Zhou et al. 2005a).  

(a) (b) 
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The FE-simulated force-deformation relationship is shown in Fig. 6.4 for the 

cases where e* = 0.02 and Rp
* = 0.25, 0.40, 0.50 and 0.60.  

 
 

Fig. 6.4. Effect of pipette radius on elastic force-deformation relationship predicted with α = 
0 and e* = 0.02. The prediction of the half-space model (Eq. (4.1)) is also plotted for 
comparison.  
 
 

A comparison of the current neo-Hookean elastic FE solution with that 

reported by Baaijens et al. (2005) revealed favorable agreement. It was found that 

for the same pressure, the normalized projection length will increase significantly 

with increasing pipette radius. This happens because when the pipette radius 

becomes larger with respect to the cell radius, larger slippage will occur between the 

cell and the pipette wall.  

On the other hand, the effect of the fillet radius was found insignificant for 

moderately large micropipettes (Rp
* ≥ 0.25) (Zhou et al. 2005a). Therefore, it is 

reasonable to formulate the elastic solution for 0.6 ≥ Rp
* ≥ 0.25 by only considering 

ΔP/G(1) and Rp
*. For simplicity, linear curve fitting was applied to the initial part 

(ΔP/G(1) = 0 ~ 1) of the force-deformation curves, which resulted in 
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where 0
FECα =  is the average slope of Lp/Rp against ΔP/G(1) for ΔP/G(1) = 0 ~ 1 (cf. 

Fig. 6.4). The dependence of 0
FECα =  on Rp

* is approximated by a second-order 

polynomial, which shows good fit to the original data (Fig. 6.5).  
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Fig. 6.5. Dependence of 0

FECα =  on Rp
* for elastic FE analysis (α = 0). The equation describes 

the curve fitted to the elastic FE results. The half-space solution (Eq. (4.1)) is also shown for 
comparison. 
 
 

It was found that, for α = 0, the slope 0
FECα =  increased with increasing pipette 

size and was significantly larger than predicted from the half-space model (Fig. 6.5). 

This is not entirely consistent with the experimental results (cf. Fig. 4.4 and Fig. 4.8), 

where the apparent deformability was found only slightly increasing or constant for 

the pipette sizes between 7 to 10 μm (Rp
* ranging from ~ 0.3 to ~ 0.6). However, as 

will be shown later, effect of pipette size will decrease when α increases.  
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6.4.2 Creep deformation 

The creep deformation of the cell with ( ) 100G t t α−= Pa in response to a step 

pressure of ΔP = 100 Pa was studied. Using the half-space solution (Sato et al. 

1990), the creep deformation can be derived as (cf. Eqs. (5.1) and (6.7)) 

 
( ) ( ) ( ) ( )

0.334
2 1 1

H Sp P
H S

p

L t P J t t B t
R

βα

π α α
−

−

Φ Δ
= = =

Γ − Γ +
 (6.13) 

where BH-S and βH-S denote the power-law scaling factor and exponent for ( )p pL t R . 

The half-space solution does not account for the effect of pipette geometry and large 

deformation of the cell, which can be investigated through the following FE 

simulation.  

6.4.2.1 Prony-series approximation of power-law rheology and simple shear 

test 

The coefficients for the Prony-series expansion were determined by applying 

nonlinear curve fitting to discrete data points which represent the power-law 

relaxation modulus ( ) 100G t t α−=  (α = 0 ~ 0.5) on the time scale t = 10−3 ~ 103 s. 

The Prony-series coefficients are listed in Table C.1 for representative α values. The 

data points representing the power-law relaxation modulus are plotted together with 

the Prony-series approximation in Fig. 6.6, which showed good curve fitting. It is 

noted that the 5-term Prony-series approximation can only fit the relaxation modulus 

for t = 10−3 ~ 103 s, which covers the time scales used in most cell mechanics 

experiments including the ones in the current work.  
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Fig. 6.6. Fitting power-law relaxation modulus with 5-term Prony series expansion. 
Symbols are data points based on the power-law relaxation modulus and solid lines are 
Prony-series curve fittings.  
 
 

In the context of linear viscoelasticity, it is known that ( ) ( )
0

t
G t J t d tτ τ− =∫  

(Ferry 1980), from which J(t) was estimated as Eq. (6.7). At large deformation, the 

applicability of this formula is unknown. It has been shown that, at simple shear 

deformation, engineering shear stress τ is proportional to engineering shear strain γ 

for neo-Hookean elasticity even for large deformation (Eq. (6.4)). Here, simple-

shear creep tests are simulated for a single element, the relaxation modulus of which 

was described by the Prony-series approximation for ( ) 0.3100G t t−=  (cf. Eq. (6.8)). 

The creep function was defined as ( ) ( )FEJ t tγ τ= , τ being the step stress applied at 

t = 0 (cf. inset of Fig. 6.7). The creep functions for the FE model are shown in Fig. 

6.7 for different levels of stress together with the analytical prediction 

( ) 0.30.0086J t t=  (cf. Eq. (6.7)). It was found that JFE(t) is very close to J(t) at low 
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stress but deviates away from J(t) as τ increases. This is indicative of the departure 

from the theory of linear viscoelasticity at large deformation.  
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Fig. 6.7. Comparison of FE-computed creep functions at different stress levels with 
analytical prediction for α = 0.3.  
 
 

6.4.2.2 Power-law behavior of simulated creep deformation 

The simulated creep process was represented by the evolution of projection 

length with time. The simulated creep deformation for different power-law 

exponents (ranging from 0 to 0.4) is shown in Fig. 6.8. Significant linearity (R2 ≥ 

0.99) could be seen in the log-log scale. Similar observations were also made for 

other pipette sizes and power-law exponents (the goodness of fit (R2) was larger than 

0.99 for all cases). It is noted that creep curves, when plotted in linear-linear scale 

(inset of Fig. 6.8), resemble those predicted with the SLS model (Baaijens et al. 

2005; Zhou et al. 2005a), which has only one relaxation time constant. Thus, the 

log-log scale is more suitable for examining the relaxation spectrum for cells. 
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Fig. 6.8. Evolution of Lp/Rp with time for different power-law exponents (α). The inset 
shows the same data in linear scales. Data is shown for Rp

* = 0.5, e* = 0.06.  
 
 

The creep process can be faithfully fitted with power-law function as 

 
( )

FEp
FE

p

L t
B t

R
β=  (6.14) 

where ( )1 sFE p pB L R=  is the scaling constant for scaled projection length and βFE 

is the average slope of ( )( )10log p pL t R  versus 10log t  (Fig. 6.9). Both BFE and βFE 

are functions of α and pipette geometry, that is, BFE = BFE(α, Rp
* and e*) and βFE = 

βFE(α, Rp
* and e*).  
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Fig. 6.9. Fitting simulated creep deformation with power-law function (Eq. (6.14)). The FE-
simulated data is shown for Rp

* = 0.5, e* = 0.06 and α = 0.3.  
 
 

In Chapter 5, the creep deformation of cells in creep experiments was found 

to follow power-law function, which can be expressed as 

 
( )p

p

L t
Bt

R
β=  (6.15) 

where B and β denote the power-law constants for experimentally measured 

( )p pL t R . The average creep function for suspended NIH 3T3 fibroblasts was 

interpreted as J(t) = 0.01 t 0.3 (Pa−1) (cf. Section 5.2.1), which is proportional to 

( )p pL t R  because the half-space solution (Eq. (5.1)) was used. Thus, the average 

projection length ( )p pL t R  in response to a suction pressure of 100 Pa can be 

estimated as ( ) ( ) ( ) 0.32 0.334p p PL t R PJ t tπ= Φ Δ = . In order for FE-simulated 

deformation to match that of an average NIH 3T3 fibroblast in micropipette 

aspiration, the rheological parameters should be chosen such that BFE = 0.334 and 

βFE = 0.3 for Rp
* = 0.4 ~ 0.6.  
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6.4.2.3 Effect of α on BFE and βFE 

Although the simulated creep deformation can be fitted with power-law 

functions (Fig. 6.9), its exponent βFE is generally smaller than that of the 

corresponding relaxation modulus (α). For example, when α = 0.3, Rp
* = 0.5 and e* 

= 0.06, the exponent for ( )p pL t R  is βFE = 0.24 (Fig. 6.9).  

BFE and βFE were calculated for two geometric cases (Rp
* = 0.25 and 0.5, and 

e* = 0.06), for which α was varied between 0 and 0.45. The empirical relation 

between α and βFE is not sensitive to pipette geometry and can be well described by 

a power-law equation (cf. Fig. 6.10(a)) 

 0.890.70FEβ α= . (6.16) 

On the other hand, the half-space solution will predict βH-S = α (cf. Eq. (6.13)). It is 

noted that when α = 0.387, βFE approximately equals 0.3 for FE simulation, which 

matches that measured experimentally.  

The effect of α on BFE is shown in Fig. 6.10(b) for the same two cases of 

pipette geometry, together with the prediction of the half-space solution (Eq. (6.13)). 

The half-space solution predicted that BH-S decrease with increasing α according to 

( ) ( )0.334 1 1H SB α α− = Γ − Γ +⎡ ⎤⎣ ⎦  (cf. Eq. (6.13)). The FE simulation predicted 

similar trend. However, BFE is larger with larger pipette size in FE simulation, given 

the same α and e*.  
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Fig. 6.10. Effect of α on (a) βFE and (b) BFE. The equations in (a) describe the relationship 
between α and β predicted by the half-space (H-S) solution and the FE simulation.   
 
 

In addition, as α increases, faster decrease in BFE was observed for the larger 

pipette than for the smaller one (Fig. 6.10(b)). As a consequence, the relative 

difference in BFE between the two pipette sizes will decrease as α increases. For 

example, BFE(α = 0, Rp
* = 0.25, e* = 0.06) is smaller than BFE(α = 0, Rp

* = 0.5, e* = 

0.06) by 23%, but BFE(α = 0.45, Rp
* = 0.25, e* = 0.06) is smaller than BFE(α = 0.45, 

Rp
* = 0.5, e* = 0.06) by only 10%. This indicates that the effect of pipette geometry 

is modulated by α, which will be discussed in more details in the next section. When 
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α = 0.387, BFE falls within the range 0.3 ~ 0.34, which matches the experimental 

measurement (0.334) favorably (Fig. 6.10(b)).  

If the elastic-viscoelastic correspondence principle (Flugge 1967; Schmid-

Schonbein et al. 1981; Sato et al. 1990) is accurate, then βFE = α. Thus, the 

simulation results indicate that this principle is not accurate for the current initial-

boundary-value problem. The reason why it is inaccurate may be due to the 

nonlinearity involved in large deformation and the slippage of the cell across pipette 

edge, which changes boundary condition and causes stress redistribution.   

6.4.2.4 Effect of pipette geometry on BFE and βFE 

The geometry of the pipette is governed by its radius and the fillet radius 

(Fig. 6.2). Different pipette size with respect to that of the cell will lead to different 

stress/strain distribution in the cell and thus may affect the Rp-scaled deformation 

(Baaijens et al. 2005; Zhou et al. 2005a).  

The effect of Rp
* on BFE and βFE, which characterize the creep deformation, 

is shown in Fig. 6.11 for different values of α. Firstly, larger pipette radius generally 

leads to larger scaled deformation, as reflected by higher value of BFE. This is 

consistent with previous findings from numerical simulations (Baaijens et al. 2005; 

Zhou et al. 2005a), which showed that larger slippage will occur with larger pipette 

radius. In contrast, the half-space model cannot take the slippage into account and 

will predict a constant value for BH-S. Interestingly, the effect of Rp
* on BFE was 

found more significant at small α, but weaker at higher α (Fig. 6.11(a)). At α = 

0.387, the difference between BFE(α = 0.387, Rp
* = 0.4, e* = 0.06) and BFE(α = 0.387, 

Rp
* = 0.6, e* = 0.06) is only 14%, which is relatively consistent with the 
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experimental observation that the creep compliance constant is insensitive to pipette 

size (Fig. 5.5(a)). Secondly, βFE is not significantly affected by the pipette radius 

(Fig. 6.11(b)), consistent with previous observation (cf. Fig. 6.10(a)).  
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Fig. 6.11. Effect of pipette radius on (a) BFE and (b) βFE for α = 0 (○), α = 0.1 (∆), α = 0.3 
(+) and α = 0.387 (□).  
 
 

BFE is tabulated in Table 6.1 for α = 0 ~ 0.4, e* = 0.06 and Rp
* = 0.25 ~ 0.6, 

together with BH-S predicted from the half-space solution.  

Table 6.1. BFE for α = 0 ~ 0.4, e* = 0.06 and Rp
* = 0.25 ~ 0.6 and BH-S for α = 0 ~ 0.4.  

BFE 
α BH-S 

0.25 0.4 0.5 0.6 

0 0.334 0.389 0.438 0.504 0.627 

0.1 0.328 0.382 0.424 0.478 0.575 

0.2 0.312 0.362 0.394 0.434 0.499 

0.3 0.287 0.332 0.354 0.382 0.428 

0.387 0.258 0.300 0.316 0.336 0.368 

0.4 0.253 0.293 0.309 0.327 0.358 

 

The effect of fillet radius is shown in Fig. 6.12. Generally, the sharpness of 

pipette edge (e*) will affect the local stress concentration near the corner but will not 

significantly affect the overall stress/strain distribution. The effect of e* on BFE is 
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shown in Fig. 6.12(a). For α = 0, BFE decreases slightly with increase in e*, but for α 

= 0.387, BFE increases slightly with increasing e*. The effect of e* on βFE is shown in 

Fig. 6.12(b). Generally, βFE increases slightly with increasing e*, except for α = 0. 

As α increases, the effect of e* becomes slightly more significant. For α = 0.387, 

βFE(Rp
* = 0.5, e* = 0.02) is smaller than βFE(Rp

* = 0.5, e* = 0.01) by 8%. Overall, the 

effect of fillet radius on cell deformation is not significant. In addition, the fillet 

radius has generally not been quantified in the micropipette aspiration experiments 

and its effect on cell deformation has not been assessed experimentally. Therefore, 

e* = 0.06 will be used for comparing the experimental data with simulation results.  
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Fig. 6.12. Effect of fillet radius on (a) BFE and (b) βFE for α = 0 (○), α = 0.1 (∆), α = 0.3 (+) 
and α = 0.387 (□).  
 
 

6.4.2.5 Comparison between experiments and simulation 

In view of the above, the simulated creep deformation best matches that 

measured experimentally at α = 0.387. Thus, the relaxation modulus of the model 

cell was chosen to be G(t) = 100 t−0.387 (Pa).  
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The deformed shapes of the model cell in response to a step pressure of ΔP = 

100 Pa were computed by FE-simulation and compared to the observed deformed 

shapes of a fibroblast in Fig. 6.13. The simulated deformed shapes of the model cell 

qualitatively matches those observed experimentally.  

 
                 10−0.3                                  10 0.4                                   10 1.1                              10 1.8 

Time (s) 
 

Fig. 6.13. Comparison of deformed cell shapes between simulation and experiments for a 
creep test at ΔP = 100 Pa. Top row: FE-simulated deformation with α = 0.387, Rp

* = 0.5, e* 
= 0.06 at four time points; bottom row: experimentally measured deformation of a fibroblast 
at the same time points with the pipette diameter being 9 μm (Rp

* ≈ 0.45).  
 
 

The simulated creep deformation, as quantified with ( )p pL t R , is compared 

with that measured experimentally in Fig. 6.14. The experimental data is from creep 

tests with 2Rp = 7.4 ~ 10.1 μm (cf. Section 5.2.1), which corresponds to Rp
* = 0.4 ~ 

0.6 when scaled with average cell diameter 2Rc = 17.6 μm. Note that the 

experimental data (Lp/Rp) in Fig. 6.14(a) was derived from the measured creep 

function (cf. Fig. 5.2) by multiplying J(t) with ( )2P P πΦ Δ  (cf. Eq. (6.15)). The 

experimental data in Fig. 6.14(b) was similarly derived by multiplying the measured 

AJ (cf. Fig. 5.5(a)) with ( )2P P πΦ Δ . The experimental data in Fig. 6.14(c) is the 

same as that presented in Fig. 5.5(b).  
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Fig. 6.14. Comparison of (a) creep deformation, (b) the power-law scaling constant, B, and 
(c) the power-law exponent, β, between experiments and simulation for creep tests.  
 

Fig. 6.14(a) shows the experimentally-measured creep deformation together 

with the simulation results with similar pipette sizes. The comparison of B and β 

between experiments and simulation is shown in Fig. 6.14(b) and (c). Favorable 

agreement between experiments and simulation can be observed. Although the 

magnitude of simulated deformation for Rp
* = 0.6 is slightly higher than the average 

deformation obtained experimentally (Fig. 6.14(a)), the difference is within the error 

range of the experiment. In view of the above, the average relaxation modulus of 

suspended NIH 3T3 fibroblasts at moderately large deformation can be described by 

G(t) = 100 t−0.387 (Pa), while the instantaneous elastic behavior is described by neo-

Hookean hyperelasticity.  
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6.4.3 Ramp deformation 

The ramp experiments were simulated by increasing the suction pressure 

from 0 to 100 Pa within a period ranging from 1 s to 240 s. The loading rate PvΔ  

thus varied between 5/12 Pa/s and 100 Pa/s. A typical pressure-deformation 

relationship is shown in Fig. 6.15 for PvΔ  = 10/3 Pa/s (i.e. 1/30 cmH2O/s), α = 0.3, 

Rp
* = 0.5 and e* = 0.06. Significant linearity (R2 ≥ 0.99) can be observed for the 

relationship. Similar observations were also made for other values of α and for other 

pipette geometry. Therefore, the pressure-deformation relationship in FE-simulated 

ramp tests can be fitted as  

 
( )1

p
FE

p

L PC
R G

Δ
=  (6.17) 

where G(1) = 100 Pa as defined in Eq. (6.6) and CFE is the average slope, as 

illustrated in Fig. 6.15.  
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Fig. 6.15. Typical pressure-deformation relationship in a ramp test. The relationship could 
be fitted with a straight line with the slope CFE = 0.698. The inset shows the increase of 
deformation with time, which follows a power law with an exponent of 1.126. Data is 
shown for PvΔ  = 10/3 Pa/s, α = 0.3, Rp

* = 0.5 and e* = 0.06.  
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It is noted that the deformation increases with time (or pressure) following a 

power law (inset of Fig. 6.14). The power-law exponent, 1.126, is much lower than 

1.3 (= 1 + α), which is expected theoretically (Eq. (5.5)) (Desprat et al. 2005). This 

underestimation is qualitatively similar to that observed in the simulation of creep 

tests and may be attributed to similar reasons (cf. Section 6.4.2.3). The pressure-

deformation relationship can be fitted closely by a linear equation (Eq. (6.17)) 

because the power-law exponent (1.126) is close to 1.  

CFE is a function of loading rate, α and pipette geometry, that is, CFE = 

CFE( PvΔ , α, Rp
* and e*). The effect of PvΔ , α, Rp

* and e* on CFE will be examined 

next.  

6.4.3.1 Effect of loading rate and α on CFE  

The effect of loading rate on CFE is shown in Fig. 6.16 for different values of 

α. When α = 0 (purely elastic), CFE is independent of loading rate. For a given α > 0, 

the apparent deformability decreases with increasing loading rate according to a 

power-law function with the exponent −β′FE, which is the average slope of 10log FEC  

versus 10log PvΔ  (cf. Fig. 6.16). The rate of decrease, as reflected by β′FE, is faster for 

higher α. If true for cells, this model suggests that cells are less likely to deform 

excessively when subjected to a sudden mechanical impact (i.e. high loading rate), 

but at slow loading rate, e.g. during locomotion or division, the cells will appear 

very soft, which minimizes energy consumption to remodel their shapes.  
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Based on the half-space model and elastic-viscoelastic correspondence 

principle, it can be derived that FE PC v α−
Δ∝  (see Appendix B.7). Thus, β′FE is also a 

predictor for α. For fixed pipette geometry, the relation between CFE, loading rate, 

and β′FE can be approximately described by (cf. Fig. 6.16) 

 0
*

FE

P
FE FE

P

vC C
v

β
α

′−

= Δ

Δ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (6.18) 

where *
PvΔ  is the loading rate for which CFE is independent of β′FE, and 0

FECα =  is as 

defined in Section 6.4.1. Similar to the observation for βFE (cf. Fig. 6.11(b) and Fig. 

6.12(b)), the dependence of β′FE on pipette geometry is negligible and can be 

empirically described by 0.880.64FEβ α′ = , which is slightly smaller than βFE (Eq. 

(6.16)) given the same value of α. *
PvΔ , which is mainly influenced by pipette 

geometry, equals 10 ~ 14 Pa/s for Rp
* = 0.5 and e* = 0.06.  
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The effect of α on CFE is shown in Fig. 6.17 for fixed pipette geometry (note 

that the data here is the same as that presented in Fig. 6.16). At low loading rate, e.g. 

5/6 Pa/s, higher α led to larger CFE. However, as the loading rate increases beyond a 

certain threshold, the trend is reversed (cf. the series “ PvΔ  = 100 (Pa/s)” in Fig. 6.17). 

The threshold loading rate for which CFE is not sensitive to α is *
PvΔ  = 10 ~ 14 Pa/s 

for this pipette geometry (cf. Fig. 6.16).  
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Fig. 6.17. Effect of α on CFE, as modulated by the loading rate.  
 

6.4.3.2 Effect of pipette geometry on CFE  

The effect of pipette radius is shown in Fig. 6.18(a), for different α values. 

The fillet radius was fixed at e* = 0.06 and the loading rate was PvΔ  = 10/3 Pa/s. 

Generally, the apparent deformability increases with increasing Rp
* for a fixed α 

value. But the effect of Rp
* was found less significant with larger α, similar to the 

observation with simulated creep deformation (cf. Section 6.4.2.4). The difference 

between CFE(α = 0.387, Rp
* = 0.4, e* = 0.06) and CFE(α = 0.387, Rp

* = 0.6, e* = 0.06) 

is only 8%, which is relatively consistent with experimental observation that the 

apparent deformability is insensitive to pipette size for moderately large pipettes (cf. 

Fig. 4.3(b)).  
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The effect of fillet radius on the apparent deformability is shown in Fig. 

6.18(b), for different α values. The pipette radius was fixed at Rp
* = 0.5 and the 

loading rate was PvΔ  = 10/3 Pa/s. For α = 0, larger e* (thus smoother fillet) leads to 

slightly lower deformation. However, as α increases, the trend is reversed. For α = 

0.387, sharper fillet led to smaller deformation. The difference between CFE(α = 

0.387, Rp
* = 0.5, e* = 0.02) and CFE(α = 0.387, Rp

* = 0.5, e* = 0.1) is 16%.  

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6

Rp
*

C F
E

e* = 0.06
(a)

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

e*

C F
E

(b)
Rp

* = 0.5

Fig. 6.18. Effect of (a) pipette radius and (b) fillet radius on CFE for α = 0 (○), α = 0.1 (∆), α 
= 0.3 (+) and α = 0.387 (□) at the loading rate: PvΔ  = 10/3 Pa/s.  
 
 

Although the effect of pipette geometry on CFE is reported only for PvΔ  = 

10/3 Pa/s, qualitatively similar observations were also made for other loading rates.  

6.4.3.3 Comparison between experiments and simulation 

In Section 6.4.2.5, the model cell with G(t) = 100 t−0.387 (Pa) was found to 

satisfactorily represent the average creep behavior of suspended NIH 3T3 fibroblasts. 

Here, the same model is used to predict the ramp deformation. The simulated 

deformed shapes of the model cell are compared to those observed experimentally at 

the same loading rate ( PvΔ  = 10/3 Pa/s) (Fig. 6.19). The simulated deformed shapes 

qualitatively resemble those measured experimentally.  
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Fig. 6.19. Comparison of deformed cell shapes between simulation and experiments for a 
ramp test with PvΔ  = 10/3 Pa/s. Top row: FE-simulated deformation with α = 0.387, Rp

* = 
0.5 and e* = 0.06 at four pressure values; bottom row: experimentally measured deformation 
of a fibroblast at the same pressure values, the pipette diameter being 9.4 μm (Rp

* ≈ 0.45). 
 

In ramp experiments, the apparent deformability was quantified as S/Rp, S 

being the average slope of Lp versus ΔP (cf. Fig. 4.2(b)), at two loading rates. 

Consistent results were obtained using pipettes larger than ~ 7 μm in diameter (cf. 

Fig. 4.3(b) and Fig. 4.8(b)). On the other hand, the FE-simulated apparent 

deformability can be computed according to S/Rp = CFE/G(1) (cf. Fig. 6.15). 

Comparison between experiments and simulation in terms of apparent deformability 

is shown in Fig. 6.20 for (a) PvΔ  = 10/3 Pa/s and (b) PvΔ  = 5/6 Pa/s. The model 

prediction is in favorable agreement with experimental results at both loading rates. 
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Fig. 6.20. Comparison of apparent deformability between experiments and simulation for 
ramp tests at two loading rates: (a) 10/3 Pa/s and (b) 5/6 Pa/s.  
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6.5 Discussion 

Here, FE simulation of micropipette aspiration was performed. 

Implementation of the power-law rheology model in large-deformation FE analysis 

was achieved by (a) approximating the power-law relaxation modulus with Prony-

series expansion and (b) describing the instantaneous elastic behavior with neo-

Hookean hyperelasticity. The relaxation modulus of the cells was assumed as G(t) = 

100 t−α Pa. The effects of pipette geometry and the power-law exponent (α) on the 

deformation of cells in micropipette aspiration were systematically assessed. The 

simulation results are summarized Table 6.2.  

Table 6.2. Summary of FE simulation results, in comparison with half-space (H-S) solution. 
The cell model was ( ) 100  PaG t t α−= . 

Creep deformation at ΔP = 100 Pa 

FE-simulation Half-space solution 

( )p

p

FE
FE

L t
B t

R
β=  

( )
H Sp

H S

p

L t
B t

R
β −

−
=  

( )* * 0.89, , 0.70FE pR eβ α α≈  

Effect of Rp
* and e* on βFE is small. 

( )H Sβ α α
−

=  

( )* *, , 0.27 ~ 0.63pFEB R eα =  

Increase in Rp
* → increase in BFE. 

Effect of e* on BFE is α-dependent and small. 
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6.5.1 Interpretation of G(1) and α using FE simulation results 

When the viscoelasticity of the cell is described by power-law rheology, the 

analytical half-space solution to creep deformation is given by Eq. (6.13). At large 

deformation, analytical solution is not available for micropipette aspiration. In the 

FE simulation, it was shown that the simulated creep deformation, as represented by 

( )p pL t R , also follows a power-law function, albeit with different scaling factor 

and exponent than those predicted by the half-space solution. Thus, following the 

half-space solution (Eq. (6.13)), a similar empirical formula can be proposed 

corresponding to the FE simulation results as 

 
( ) ( ) ( )

( )* * *, , ,* * *, , ,
1

pf R e Pp
p

p

L t PF R e P t
R G

αα ΔΔ
= Δ  (6.19) 

where F is the scaling factor for force-deformation relationship, and f is the power-

law exponent exhibited by the creep process. Both are functions of α, Rp
*, e*, and 

ΔP* (ΔP* = ΔP/G(1)). It is noted that the current study has focused on the effect of α, 

Rp
* and e*, whereas the effect of ΔP*, which may cause slight nonlinearity in force-

deformation relationship (cf. Fig. 6.4), remains to be quantified. In the FE simulation, 

ΔP = G(1) = 100 Pa. Therefore, a comparison between Eq. (6.19) and Eq. (6.14) 

reveals that FEF B=  and FEf β= . Eq. (6.19) then becomes 

 
( ) ( ) ( )

( )* *, ,* *, ,
1

FE pR ep
FE p

p

L t PB R e t
R G

β α
α Δ

=  (6.20) 

where βFE(α, Rp
*, e*) and BFE(α, Rp

*, e*) are quantified in Sections 6.4.2.3 and 

6.4.2.4, respectively.  
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In Chapter 5, the creep deformation of cells in micropipette aspiration was 

found to follow power-law function when large pipettes were used. Thus, the 

experimental results obtained with appropriate pipette sizes can generally be 

expressed in the form of Eq. (6.15). Comparing Eqs. (6.15) and (6.20), and taking 

Eq. (6.16) into consideration, one reaches at 

 
( )

( ) ( )

1.12

* *

0.70

, ,
1 FE pB R e

G P
B

α β

α

=

= Δ
 (6.21) 

where ΔP, β and B are measured experimentally and BFE(α, Rp
*, e* = 0.06) is 

tabulated in Table 6.1. This equation can be used to interpret the rheological 

properties of cells in creep tests performed using micropipette aspiration. It is noted 

that the above formula is most accurate when the suction pressure is comparable to 

the stiffness constant of the cell, as the FE simulation was performed for ΔP = G(1). 

6.5.2 Departure from linear viscoelasticity and correspondence 

principle 

During large deformation of cells in micropipette aspiration, the theory of 

linear viscoelasticity and the elastic-viscoelastic correspondence principle are no 

longer accurately applicable, which is manifested as the disparity between the FE 

simulation and the half-space solution (Table 6.2).  

There are two reasons why βFE differs from α. Firstly, at large deformation, 

the relation between G(t) and J(t) does not accurately obey ( ) ( )
0

t
G t J t d tτ τ− =∫  

and the power-law exponent for J(t) will be smaller than α, as shown in Section 

6.4.2.1. This partially accounts for the difference between βFE and α because large 
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deformation was involved in the simulation of micropipette aspiration. Secondly, the 

slippage of the cell across the pipette edge leads to stress redistribution, which 

causes deviation from the elastic-viscoelastic correspondence principle (Flugge 

1967). As slippage occurs, a small portion of the cell, which is initially outside of 

the pipette and subjected to low stress, is moved closer to the pipette edge, where its 

stress becomes higher. Thus, significant addition of stress will occur at the pipette 

edge accompanying the slippage. Corresponding to this stress increment, the 

stiffness of the edge region will approach the instantaneous shear modulus (G(0)) 

and is always higher than the remaining part of the cell. As a consequence of partial 

stiffening, the creep deformation will be retarded, which leads to lower value of BFE 

than α. This further explains why βFE is generally smaller than α.  

The local stiffening at the pipette edge has another implication. It has been 

observed that both BFE and CFE will be larger with larger Rp
*. This is mainly due to 

slippage of the cell across the pipette edge (Zhou et al. 2005a). However, as α 

increases, the effect of pipette size was found to be less significant (cf. Fig. 6.11(a) 

and Fig. 6.18(a)). This can be explained as follows. The higher α is, the larger the 

instantaneous stiffness G(0) will be (cf. Table C.1). If G(0) is higher, the stiffening 

effect associated with slippage will be more significant, which will help to reduce 

the slippage. Therefore, higher α will lead to smaller slippage, thus attenuating the 

effect of pipette size on BFE and CFE. This helps to account for the weak dependence 

of experimentally measured stiffness constant of fibroblasts on pipette size (cf. Fig. 

6.14 and Fig. 6.20).  
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6.5.3 Comparison with others’ work on FE simulation of 

micropipette aspiration using other rheological models 

Finite element method has been previously applied to simulate the 

deformation of cells in micropipette aspiration using other rheological models. 

Maxwell liquid drop model has been applied within the FE analysis to simulate the 

micropipette aspiration of leukocytes (Dong et al. 1988; Dong et al. 1991; Dong and 

Skalak 1992). It was found that the model could fit the initial small deformation but 

in order to match the large deformation of the cells, the rheological parameters 

needed to be adjusted, which suggests that the Maxwell model is not suitable for 

modeling large deformation of cells (cf. Section 2.2.2.3). Drury and Dembo (1999; 

2001) performed FE analysis of micropipette aspiration of leukocytes based on 

Newtonian liquid drop model. Although being able to qualitatively fit the large 

deformation of the cells, the model could not account for the initial rapid entry. It 

has also been found that a single model with a unique set of parameters could not fit 

all the creep behavior of cells under varying pipette diameter and suction pressure 

(Drury and Dembo 2001) (cf. Fig. 2.6 and Section 2.2.2.2).  

Baaijens et al. (2005) performed finite element analysis of micropipette 

aspiration of chondrocytes based on the standard linear solid (SLS) model. It was 

shown that the creep deformation of a chondrocyte could be fitted by the model. 

However, the experimental data was taken every 7.5 s for a total time of 75 s. Note 

that starting time cannot be accurately 0 s but depends on the time resolution for 

pressure application and image acquisition. Thus, the time is only accurate from 7.5 

to 75 s, which only spans 1 decade on log scale. On the other hand, it has been 

shown that the SLS model can fit power-law creep function for 1 ~ 2 decades of 
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time on the log-log scale (Desprat et al. 2005) (also see Fig. 5.3). Therefore, the 

observation that the SLS model can fit the creep deformation of cells within a 

limited time span does not rule out the applicability of the power-law rheology 

model, which was found to fit the creep deformation of cells for more than 3 

decades (Lenormand et al. 2004; Desprat et al. 2005).  

In the current work, a finite element model was proposed based on the 

power-law rheology. This model, which approximates the power-law relaxation 

function with Prony-series expansion, is capable of representing the power-law 

rheology over 6 decades of time. Favorable agreement was achieved between 

simulation and experiments. A single set of rheological parameters (G(t) = 100t−0.387 

Pa) was needed for matching three types of micropipette aspiration experiments on 

NIH 3T3 fibroblasts, namely creep tests at 100 Pa, ramp tests at 10/3 Pa/s and ramp 

tests at 5/6 Pa/s, all of which were performed using pipettes ranging from 7 to 10 μm 

in diameter (cf. Sections 6.4.2.5 and 6.4.3.3). This work thus provides further 

support to the applicability of the power-law rheology model to cells in the context 

of micropipette aspiration. 

6.5.4 Potential application in studying mechanotransduction 

Mechanotransduction is concerned with the transmission and distribution of 

mechanical signals and the conversion of these signals into biological and chemical 

responses in the cell (Wang et al. 1993; Ingber 1997; Ingber 2003; Orr et al. 2006; 

Vogel and Sheetz 2006). As pointed out by Humphrey (2001), Zhu et al. (2000) and 

others, the effect of the stress and/or strain may be reflected at the molecular level in 

the form of changes in macromolecular conformation and/or inter-atomic forces, 

which may elicit biochemical pathways.  
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In order to simulate mechanotransduction of a cell, it would be desirable to 

model all its molecules and their interactions realistically. However, such a 

molecular model is both beyond the computing capacity available today and 

probably unnecessary. One proposed strategy towards investigating 

mechanotransduction is to utilize a multi-scale approach to develop mechanical 

models that can predict the transduction of forces from cell level, through 

subcellular level, eventually down to protein scale (Guilak and Mow 2000; Tadmor 

et al. 2000; Phillips et al. 2002; Dupuy et al. 2005). This three-level hierarchical 

approach is illustrated in Fig. 6.21 (Lim et al. 2006; Vogel and Sheetz 2006). At 

level 1, a single cell is modeled with a continuum model. In response to a 

mechanical signal at the cell level, local stresses and strains in subcellular regions 

can then be calculated using FE simulation (Charras and Horton 2002a; Charras and 

Horton 2002b; Humphrey 2003; Charras et al. 2004). At level 2, the subcellular 

stress and strain is used to predict, through microstructural models (Onck et al. 

2005), the local reorganization of cytoskeleton, which plays an important role in 

mechanotransduction (Wang et al. 1993; Maniotis et al. 1997; Janmey 1998; 

Forgacs et al. 2004; Geiger et al. 2006). At the third level, molecular dynamics 

simulation (Isralewitz et al. 2001; Gullingsrud and Schulten 2003) can be used to 

predict changes in protein conformation, such as protein unfolding (Khan and Sheetz 

1997) and gating of mechanosensitive ion channels (Sukharev et al. 2001; Perozo et 

al. 2002; Martinac 2004; Wiggins and Phillips 2004), which may be directly related 

to biochemical pathways (Fig. 6.21). This way, prediction of causal relationships 

between mechanical signal and biological response can be achieved. Comparison 

between model prediction and experimental observations may lead to better 

understanding of the mechanisms of mechanotransduction.  
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Fig. 6.21. Three-level hierarchical approach to investigating mechanotransduction of single 
cells (Lim et al. 2006; Vogel and Sheetz 2006).  
 
 

The widespread experimental evidence ranging from the whole cell, through 

cytoskeleton and organelles, to the nucleus supported the general applicability of the 

power-law rheology model in cell mechanics (Fabry et al. 2001a; Alcaraz et al. 2003; 

Lenormand et al. 2004; Yanai et al. 2004; Balland et al. 2005; Dahl et al. 2005; 

Desprat et al. 2005). The current work not only provided additional support to this 

model but also proposed an approach for implementing it in finite element analysis. 

A finite element model for cells based on power-law rheology, which needs to 

further account for structural heterogeneity and active forces of cells, may be useful 

in predicting the subcellular distribution of stress and strain (level 1 in Fig. 6.21) and 

thus contribute to the study of mechanotransduction of single cells (Lim et al. 2006; 

Vogel and Sheetz 2006).  



 

Chapter 7 Conclusions and Future Work 

This thesis focused on the rheological properties of cells. One of the main 

objectives was to test the power-law rheology hypothesis for suspended NIH 3T3 

fibroblasts using micropipette aspiration. The other was to build a finite element 

model of cells based on the power-law rheology and to simulate the micropipette 

aspiration experiments.  

7.1 Conclusions 

The major contributions and findings of this thesis can be summarized as 

follows:  

1. Pipette size was found to have a profound effect on cell deformation. The 

pressure-deformation relationship was measured with ramp tests. Pipettes 

smaller than ~ 5 μm in diameter exhibited nonlinear and inconsistent 

pressure-deformation relationship and thus are not suited for probing the 

bulk rheology of cells. On the other hand, large pipettes (7 ~ 10 μm in 

diameter) generally produced linear and consistent relationship and are more 

applicable for measuring the smeared rheology of cells.  

2. The power-law rheology model was found to accurately fit the creep 

functions of suspended fibroblasts, which were measured with creep tests 

using large pipettes. This provided new support to this model for suspended 

cells.  
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3. Effect of cytoskeleton disruption on rheological properties was investigated. 

Disruption of actin filaments with cytochalasin D (2 μM) caused cells to 

appear softer but more elastic. In contrast, disruption of microtubules with 

high dosage of colchicine (1 mM) caused activation and stiffening of cells. 

The effect of 100 μM colchicine was similar but less pronounced.  

4. A finite element model was proposed to simulate the power-law rheology of 

cells. The initial-boundary-value problem of micropipette aspiration was 

numerically simulated in the context of power-low rheology. Using 

consistent rheological properties, this model could predict the experimental 

observations obtained using both creep and ramp tests for suspended NIH 

3T3 fibroblasts.  

5. The finite element simulation revealed departure from the prediction of the 

half-space solution as a result of (i) finite cell radius with respect to pipette 

radius, (ii) large deformation and (iii) slippage. Pipette geometry and the 

power-law exponent of relaxation modulus of cells were found to influence 

the viscoelastic deformation of cells significantly. Approximate formulae 

were proposed based on simulation results, which allow direct interpretation 

of rheological properties of cells in micropipette aspiration.  

6. In particular, the simulation indicated that the power-law exponent of 

relaxation modulus of cells is likely to be underestimated by using the 

elastic-viscoelastic correspondence principle, especially at large deformation. 

In addition, this exponent influences stress redistribution of cells during 
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micropipette aspiration and thus, can modulate the effect of pipette size on 

cell deformation.  

7.2 Future work 

The work in this thesis points to interesting new directions of cell mechanics 

which await deeper exploration. Thus, the future work can include the following: 

1. The molecular and structural mechanism that underlies the pipette-size effect 

on cell deformation needs to be understood. In particular, why is blebbing 

more likely to occur with smaller pipettes than with larger ones under the 

same suction pressure? Does the mechanical force imposed by the 

micropipettes locally stimulate the contractile activity of the acto-myosin 

network (Hagmann et al. 1999; Charras et al. 2005)?  Answering these may 

help to understand the biological response of cells to mechanical forces.  

2. The experimental methodology proposed in the current work may be 

extended to study the pipette-size effect and to quantify the rheological 

properties for other cell types. This may not only identify common features 

but also reveal cell-type specific characteristics associated with the different 

phenotypes or genotypes.  

3. The fundamental physical law that governs cell rheology needs to be further 

explored. The widespread experimental results on a wide range of cell types 

supported the power-law rheology model. This suggests that a common 

mechanism may underlie the physical organization of the protein scaffold of 

eukaryotic animal cells. An emerging hypothesis is that of a soft glassy 
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material (Sollich et al. 1997; Fabry et al. 2001a). Deeper insights into the 

molecular events involved in cytoskeletal deformation will be needed for 

further exploration of this hypothesis.  

4. Simulation of mechanotransduction of cells is worthy of being pursued. An 

accurate continuum model for single cells may contribute to the study of 

mechanotransduction by predicting the subcellular distribution of stress and 

strain in response to mechanical stimuli. To this end, the heterogeneity of 

cells in terms of subcellular regions and organelles needs to be further 

characterized and active force within cells needs to be measured.  

5. The experimental methodology and finite element model proposed in this 

thesis may be used to evaluate the effect of drug treatments or diseases on 

the rheological properties of cells. This might contribute to better 

understanding, diagnosis, and treatment of relevant diseases such as cancer, 

malaria, arthritis and some skin diseases  (Nash et al. 1989; Ward et al. 1991; 

Fuchs and Cleveland 1998; Trickey et al. 2000; Guck et al. 2005; Suresh et 

al. 2005). 
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Appendix A Reported Mechanical Properties of Cells 

Based on Three Models 

 
Table A.1. Reported mechanical properties for Newtonian liquid drop model. Values are 
mean ± standard deviation (SD). 

Source Experiment T0 (10-3 
N/m) µ (Pa·s) T0/µ (10-6 

m/s) Cell type 

Evans & Young 
(1989) 

micropipette 
aspiration 0.035 210±100 N.R. Granulocytes 

Needham & 
Hochmuth (1990) 

micropipette 
aspiration N.R. 135±54 N.R. Neutrophils 

Needham & 
Hochmuth (1992) 

tapered pipette 
aspiration 0.024±0.003 N.R. N.R. Neutrophils 

Tran-Son-Tay et 
al. (1991) 

recovery/relaxation 
experiment (after 

large deformation) 
(0.024)* 151.7±39.8 0.17 Neutrophils 

Hochmuth et al. 
(1993) 

recovery/relaxation 
experiment (after 

small deformation) 
(0.024)* ~60 0.33 Neutrophils 

Tsai et al. (1993) micropipette 
aspiration 0.027 

~55 at high 
shear rate 
to ~500 at 
low shear 

rate 

N.R. Neutrophils 

Tran-Son-Tay & 
Ting-Beall 

(1994b) 

recovery/relaxation 
experiment (after 

large deformation) 
0.035 N.R. 0.13~0.26 Lymphocytes 

Tran-Son-Tay et 
al. (1994a), 
Bagge et al. 

(1977) 

tapered pipette 
aspiration (0.024)* 140~240 N.R. Granulocytes 

Thoumine et al. 
(1999) 

micropipette 
aspiration ~0.3 2~4 ⋅ 104 N.R. 

Chick 
embryo 

fibroblasts 
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Table A.2. Reported mechanical properties for homogeneous standard linear solid model. 
Values are mean ± SD. + 

Source Experiment k1 (Pa) k2 (Pa) µ (Pa·s) Cell types 

Schmid-
Schonbein et al. 

(1981) 

micropipette 
aspiration 13.75±5.95 36.85±17.3 6.5±2.7 Neutrophils 

38±11.5 105±70 4.15±2 ⋅ 103 Endothelial cells 
(T#) 

46±10 95±75 3.6±1.35 ⋅ 103 Endothelial cells 
(M#) 

5.5±1.5 22±20 0.65±0.55 ⋅ 
102 

Endothelial cells 
(CB#) 

Sato et al. (1990) micropipette 
aspiration 

14±2.5 32.5±22 1.15±0.3 ⋅ 103 Endothelial cells 
(Colchicine) 

Sato et al. (1996) micropipette 
aspiration ~22.5 ~37.5 ~1.7 ⋅ 103 Endothelial cells 

Thoumine and 
Ott  (1997b) 

microplate 
traction 320±130 * 170±126.6* ~4.335 ⋅ 103 * Fibroblasts 

125±55 85±45 1.45±0.85 ⋅ 
103 

Normal 
chondrocytes Jones et al. 

(1999a) 
micropipette 

aspiration 
175±130 165±195 3.95±6.85 ⋅ 

103 
OA# 
chondrocytes 

Guilak et al. 
(2000) 

micropipette 
aspiration ~375 ~375 ~2.5 ⋅ 103 Chondrocyte 

nuclei 

Lo and Ferrier 
(1999) 

ECIS# with 
magnetic bead 73.3±33.3 * 336.7± 243 * 3.3±1.3 ⋅ 103 * 

Rat 
osteosarcoma 
cells 

Koay et al. 
(2003) cytoindentation 360±180 2300±1480 1.12±0.69 ⋅ 

103 
Bovine 
Chondrocytes 

 
+  All the parameters reported here are half the values reported in the original works 

unless otherwise specified (see Eq. (2.14) and the discussion that follows for 

explanation).  

*  The parameters reported in the original work are extensional moduli and have 

been scaled by a factor of 1/3 in order for them to be comparable to those from 

other works.  

# ECIS: Electrical cell-substrate impedance sensing; T: trypsin-detached cells; M: 

mechanically detached cells; CB: cytochalasin B treated cells; OA: chondrocytes 

isolated from osteoarthritic cartilage.  
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Table A.3. Reported mechanical properties for power-law rheology (PLR) model. Values 
are reported as mean ± SD or geometric mean together with geometric SD. 

Source Experiment α 
0 0GA G αω−=

 
(Pa) 

μ 
 (Pa·s) Cell types 

0.195 190 † 0.32 † F9# 

0.302 38 † 0.44 F9 (2μM CD#) 

0.204 ± 0.06 1308 
SDg = 2.1 ‡ 0.68 HASM# 

0.166 2485 † 0.91 HASM (100μM Hist#) 

0.277 382 † 0.74 HASM (1mM 
DBcAMP#) 

0.329 159 † 0.40 HASM (2μM CD) 

0.173 1756 † 0.44 † HBE# 

0.319 231 † 0.37 HBE (2μM CD) 

0.200 1914 † 1.32 † Macrophages 

0.338 412 † 2.05 Macrophages (2μM CD) 

0.186 753 † 0.43 † Neutrophils 

0.157 1224 † 0.56 Neutrophils (10nM 
FMLP) 

Fabry et al. 
(2003) 

Optical MTC 
(oscillatory) 

0.252 249 † 0.58 Neutrophils (2μM CD) 

Puig-De-Morales et 
al. (2001) 

Magnetic MTC 
(oscillatory) 0.27 160 † N.R. BEAS-2B HBE# 

0.22 458 1.68 A549# Alcaraz et al. 
(2003) 

AFM 
(oscillatory) 0.20 496 2.69 BEAS-2B HBE# 

0.5 7 N.R. Neutrophils+ 

~0.5 ~4.3 N.R. Neutrophils+ (2μM CD) Yanai et al.  
(2004) 

Optical tweezer
(creep) 

~0.5 ~2.5 N.R. Neutrophils+ (10 μM 
noco#) 

0.158 3822 † 1.76 HASM 

0.121 7309 † 2.55 HASM (10μM Hist) 

0.194 2034 † 1.46 HASM (0.1μM iso#) 
Stamenovic et 

al. (2004) 
Optical MTC 
(oscillatory) 

0.208 1592 † 1.55 HASM (10μM iso) 

0.198 5454 † 19 A549 Trepat et al. 
(2004) 

Optical MTC 
(oscillatory) 0.173 8845 † 19 A549 (12.5% stretch) 

0.181 2788 † 0.5984 HASM 

0.158 5440 † 0.646 HASM (100μM Hist) 
Puig-De-

Morales et al. 
(2004) 

Optical MTC 
(oscillatory) 

0.238 748 † 0.442 HASM (2μM CD) 
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0.209 2738 † N.R. HASM (control) 

0.180 3697 † N.R. HASM (100μM Hist) 

0.219 1479 † N.R. HASM (1mM DBcAMP) 
Lenormand et 

al.  (2004) 
Optical MTC 

(creep) 

0.223 1101 † N.R. HASM (2μM CD) 

0.2 309 † 0.26 RASM# 

0.2 341 † 0.30 RASM (control) 

0.27 74 † 0.24 RASM (LA#) 

0.21 176 † 0.26 RASM (CD) 

0.19 366 † 0.28 RASM (Phallacidin) 

0.21 275 † 0.25 RASM (PO#) 

0.2 519 † 0.51 RASM (Jas#) 

0.22 288 † 0.42 RASM (Gen#) 

0.18 595 † 0.48 RASM (5-HT#) 

0.26 114 † 0.34 RASM (DBcAMP) 

Laudadio et al. 
(2005) 

Optical MTC 
(oscillatory) 

0.22 195 † 0.32 RASM (ML-7#) 

0.12±0.02× 743 †±496× 5.1±1.6× RASM 

0.055±0.017× 2158†±1325× 21±6.6× RASM (5H-T) 

0.16±0.02× 266 †±119× 7.2±1.3× RASM (CD) 

0.12±0.01× 805 †±416× 5.1±0.9× RASM (Wort#) 

0.069±0.004× 1814 †±338× 5.1±0.9× RASM (Wort + 5-HT) 

0.158±0.02× 322 †±283× 4.1±1.3× RASM (ML-7) 

Smith et al.  
(2005) 

AFM 
(oscillatory) 

0.101±0.01× 733 †±529× 4.4±1.6× RASM (ML-7 + 5-HT) 

0.20 ± 0.09× 63.1 $ N.R. Myoblasts Balland et al. 
(2005) 

Optical tweezer
(oscillatory) 0.07 ± 0.08× 16.8 $ N.R. Myoblasts (75μM blebb#) 

Desprat et al. 
(2005) 

Microplates 
(creep) 0.24 ± 0.08 152.2 $ 

SDg = 2.27 ‡ N.R. Myoblasts 

0.32 ± 0.07 1907 ± 717& N.R. Nuclei of TC7 cells Micropipette 
aspiration 

(creep) 0.21 ± 0.05 300 ± 87 & N.R. TC7 Nuclei (swollen) Dahl et al. 
(2005) 

AFM (ramp) 0.20 ± 0.02 933 ± 33 & N.R. TC7 Nuclei 

0.30 ± 0.05 116.6 
SDg = 1.36 ‡ N.R. NIH 3T3# 

0.296 ± 0.03 114.8 
SDg = 1.50 ‡ N.R. NIH 3T3 (0.1% DMSO) 

0.26 ± 0.05 55.9 
SDg = 1.27 ‡ N.R. NIH 3T3 (2μM CD) 

0.23 ± 0.10 144.3 
SDg = 2.01 ‡ N.R. NIH 3T3 (100μM col#) 

This study 
Micropipette 

aspiration 
(creep) 

0.175 ± 0.13 186.2 
SDg = 2.18 ‡ N.R. NIH 3T3 (1mM col) 
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†    These parameters were originally reported as apparent moduli, namely specific torque 

divided by bead rotation or bead translation. Assuming that the elastic finite element 
solution (Mijailovich et al. 2002) is also valid for other adherent cells besides human 
airway smooth muscle cells and using embedding that is equivalent to 10% of bead 
diameter, the complex moduli can be derived using Eq. (2.19). 

#   Abbreviations: F9 − mouse embryonic carcinoma cells (F9); HASM − human airway 
smooth muscle cells; RASM − rat airway smooth muscle cells; HBE − human bronchial 
epithelial cells;  BEAS-2B HBE − Human bronchial (BEAS-2B) epithelial cells;  A549 −  
Human alveolar (A549) epithelial cells; NIH 3T3 − NIH 3T3 fibroblasts. Hist − 
histamine; FMLP − N-formyl-methionyl-leucylphenylalanine; DBcAMP − N6,2′-O-
dibutyryladenosine 3′,5′-cyclic monophosphate; CD − cytochalasin D; col − colchicine; 
noco − nocodazole; iso − isoproterenol; blebb − blebbistatin; PO − phalloidin oleate; jas 
− jasplakinolide; gen − genistein; ML7 − 1-(5-iodonaphthalene-1-sulfonyl)-1H-
hexahydro-1,4-diazepine; 5-HT − serotonin.  

‡   SDg is the geometric standard deviation.  
$   These parameters were originally reported as extensional storage moduli at 1Hz. They are 

first scaled by a factor of 1/3 to convert to shear moduli, G′(1 Hz). Then AG is computed 

as ( ) ( ) ( )1 Hz 2 cos 2GA G απ πα⎡ ⎤′= ⎣ ⎦  (note ( ) ( )cos 2GG A αω ω πα′ = , cf. Eq. 

(B.12)).  
& These parameters were originally reported as extensional storage moduli. They are scaled 

by a factor of 1/3 to convert to shear moduli. 
×   The standard deviation was calculated by multiplying the standard error with the square 

root of cell number.  
+  Probed by trapping and moving intracellular organelles.  
 



 

Appendix B Linear Viscoelasticity  

B.1 Linear viscoelasticity based on fractional derivatives 

The differential equation for classical linear viscoelasticity usually contains 

time derivatives of integer order (Flugge 1967)  

 ( ) ( ) ( ) ( )
0

1 1

k kn m
ij ij

ij k ij kk k
k k

d t d t
t b a t a

dt dt
τ γ

τ γ
= =

+ = +∑ ∑  (B.1) 

where a0, ak and bk  (k = 1, 2, …, n) are material parameters, and τij(t) and γij(t) are 

time dependent stress and strain components. However, the classical model was 

often found inadequate for describing the mechanical behavior of real materials 

(Pritz 1996). A more general model was then proposed based on fractional 

derivative, which can be expressed as (Pritz 1996) 

 ( ) ( ) ( ) ( )0
1 1

k k

n m

ij k ij ij k ij
k k

t b D t a t a D tβ ατ τ γ γ
= =

⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦∑ ∑  (B.2) 

where a0, ak, bk, αk and βk are material parameters (αk and βk must be nonnegative 

real numbers), m and n are nonnegative integers (m = n or m = n + 1, due to 

thermodynamic constraints) and Dα[·] is the αth order fractional differentiation 

operator defined as follows 

 ( ) ( )
( )

( )0

1
1

t f sdD f t ds
dt t s

α
αα

=⎡ ⎤⎣ ⎦ Γ − −∫ . (B.3) 

When αk and βk assume positive fractions (0 ≤ αk ≤ 1 and 0 ≤ βk ≤ 1), Eq. (B.2) 

represents the fractional derivative models (Pritz 1996). On the other hand, when αk 

and βk are non-negative integers, Dα[·] reduces to the conventional integer derivative 

and Eq. (B.2) reduces to the linear differential equation for spring-dashpot models. It 
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is noted that all the viscoelastic models presented in Chapter 2, with the exception of 

the shear thinning liquid drop model, can be derived from Eq. (B.2) through certain 

simplifying assumptions. 

B.2 Derivation of the complex modulus 

Through Fourier transform, Eq. (B.2) can be transformed into the frequency 

domain (Findley et al. 1976), which leads to 

 ( ) ( )*
ij ijF t G F tτ γ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (B.4) 

where G* is the complex modulus given by (Pritz 1996) 

 ( )
( )

( )

0
* 1

1

1

k

k

m

k
k
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k
k

a a i
G G iG

b i

α

β

ω
ω

ω

=

=

+
′ ′′= + =

+

∑

∑
 (B.5) 

with G′ being the storage modulus and G″ the loss modulus.  

In order to examine the applicability of the spring-dashpot models in the 

frequency domain, the complex modulus of the SLS-D model can be derived. The 

differential equation for SLS-D model is 

 ( ) ( )1 2 0 1 20 0
0

1 1 2 1 2 1 2

k k k k
k k k k k k k

μ μ μμ μ μ μ
⎡ ⎤+ +

+ + + = +⎢ ⎥
⎣ ⎦

τ τ τ γ γ . (B.6) 

Thus the complex modulus for SLS-D model can be derived from Eqs. (B.5) and 

(B.6) as 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

2 2 2 2 2
0 1 2 1 2*

2 2 2 2 2 2 2 2 2 2 2 2
0 2 1 2 1 2 2 0 2 1

22 2 2 2 2 2
0 1 2 1 2 0 2

2 2 2 2 2 2 2 2 2 2 2 2
0 2 1 2 1 2 2 0 2 1

2

2

k k k k
G

k k k k k k k k

k k k k k
i

k k k k k k k k

μ ω μ ω

μ ω μ ω μ ω μ ω μ μ

μ ω μ ω μ μ ω

μ ω μ ω μ ω μ ω μ μ

⎡ ⎤+ +⎣ ⎦=
+ + + + + +

⎡ ⎤+ + +⎣ ⎦+
+ + + + + +

 (B.7) 
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which was plotted in Fig. 2.11 in an attempt to fit the oscillatory MTC data. 

Similarly, the complex modulus for SLS model can be derived from Eqs. (B.5) and 

(2.14) as 

 ( )2 2 2 2
1 2 1 2* 2

2 2 2 2 2 2
2 2

k k k k kG i
k k

μ ω μ ω
μ ω μ ω

+ +
= +

+ +
 (B.8) 

 

B.3 Derivation of power-law rheology model from the 

fractional derivative viscoelasticity 

For deriving the PLR model, Djordjevic et al. (2003) introduces the 

assumptions that n = 1, m = 2, b1 = 0, β1 = 0, α2 = 1, leaving open four material 

parameters a0, a1, a2and α1.  

 1 1
0 1 2ij ij ij ija a D a Dατ γ γ γ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦  (B.9) 

Fitting this model to the experimental data reported by Fabry et al. (2001a), it was 

found that a0 = 0. Further, if one denotes α1 as α, a2 as μ and a1 as 0 0/G αω , 

substituting into Eq. (B.5) results in the following complex modulus 

 ( )*
0

0

iG G iG G i
α

ωω ωμ
ω

⎛ ⎞
′ ′′= + = +⎜ ⎟

⎝ ⎠
 (B.10) 

where α is the exponent of the power law (0 ≤ α ≤ 1) (note that 

cos sin
2 2

i iα πα πα
= + ), μ is the Newtonian viscous term, ω is the angular frequency 

and G0 and ω0 are scaling factors for stiffness and frequency, respectively (note that 

( )0 0cos / 2G G Gπα′ = ≈  when ω = ω0 and α → 0). This formula is slightly different 

from that originally proposed by Fabry et al. (2001a). 
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 ( ) ( )*
0

0

1iG G i
α

ωω α ωμ
ω

⎛ ⎞
= Γ − +⎜ ⎟

⎝ ⎠
 (B.11) 

by a factor of Γ(1 − α). In the limit of α approaching 0, the structural damping 

coefficient η will approach 0 and the loss tangent G″/G′ will reach the minimum (for 

the same ω) for both formulae, corresponding to a predominantly elastic solid 

behavior. Because Γ(1 − α) is approximately unity when α is small (e.g. less than 

0.3), the two formulae are essentially the same for small α. On the other extreme 

where α approaches 1, both η and the loss tangent will approaches infinity, 

indicating that the material will behave like Newtonian viscous fluid. In this case, Eq. 

(B.10) will predict a finite loss modulus of G″ = G0/ω0 + ωμ. In contrast Eq. (B.11) 

will predict an infinite loss modulus, which is unlikely to happen in real situation. 

Therefore, although both formulae can capture the essential feature of the dynamic 

material behavior of cells and fit the experimental data, Eq. (B.10) is preferred.  

B.4 Power-law rheology model and the correlation between 

complex modulus, creep function and relaxation modulus 

Unless at extremely short time or high frequency, the Newtonian term iωμ in 

the PLR model can often be neglected without affecting the accuracy of other 

parameters (Lenormand et al. 2004). In addition, this term usually could hardly be 

quantified with creep experiments (Lenormand et al. 2004; Yanai et al. 2004; Dahl 

et al. 2005; Desprat et al. 2005). Therefore, a simplified PLR model has been widely 

used as 

 ( ) ( )*
0

0

cos sin
2 2G G

iG G A i A i
α

α αω πα παω ω ω
ω

⎛ ⎞ ⎛ ⎞= = = +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (B.12) 
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where ω is in rad/s (cf. Eq. (2.22)).  

In the time domain, the relaxation modulus of the power-law rheology model 

(Eq. (B.10)) can be obtained by substituting the unit step strain function γ(t) = H(t) 

into Eq. (B.9) as follows 

 ( ) ( ) ( ) ( ) ( )0
01

GG t t H t tαω μδ
α

−= +
Γ −

 (B.13) 

where δ(·) is the Dirac delta function. Neglecting the Newtonian term μδ(t) and 

introducing t0 = 1/ω0 results in  

 ( ) ( ) ( ) ( ) ( )0

01 1
GG AtG t H t t H t

t

α
α

α α

−

−⎛ ⎞
= =⎜ ⎟Γ − Γ −⎝ ⎠

. (B.14) 

where t is in seconds (cf. Eq. (2.24)). 

The creep compliance J(t) is related to the relaxation modulus through (Ferry 

1980) 

 ( ) ( )
0

t
G t J t d tτ τ− =∫  (B.15) 

from which it can be derived that 

 ( )
( )

1
2

1L
L

J t
s G t

−
⎡ ⎤

= ⎢ ⎥
⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

 (B.16) 

where L[·] and L-1[·] represent the Laplace transform and inverse Laplace transform 

respectively. Thus, the creep compliance of the power-law rheology model can be 

reached as 

 ( ) ( )
1
1J

G

J t A t t
A

α α

α
= =

Γ +
 (B.17) 

where AJ is the compliance constant, related to AG through  

 
( )
1
1G

J

A
A α

=
Γ +

. (B.18) 
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The theoretical framework of the power-law rheology is summarized in Fig. B.1.  

ij G ijA Dατ γ⎡ ⎤= ⎣ ⎦
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GG A i αω ω=

( ) ( )1
GAG t t α

α
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Γ −
( ) ( )

1
1G

J t t
A

α

α
=

Γ +  
 

Fig. B.1. The correlation between complex modulus, creep function and relaxation modulus 
for the power-law rheology model. Knowing one of the three will allow prediction of the 
other two. 
 
 

B.5 Elastic-viscoelastic correspondence principle 

For the solution of an initial-boundary-value problem which involves linear 

viscoelastic deformation, the governing equations (including stress-strain relations, 

strain-deformation relations, conservation of momentum, and boundary conditions) 

can be transformed into the Laplace domain (Flugge 1967). The resulting equations 

will have the same form as the corresponding elastic problem. Therefore, if the 

elastic solution is known, the corresponding viscoelastic solution in the Laplace 

domain can be derived by replacing the elastic constants and the load with their 

Laplace-transform counterparts, i.e. G by ( )sG s  and P by ( )P s , respectively. The 

time domain solution can be derived by inverse Laplace transform. 

For example, the elastic half-space solution to micropipette aspiration 

(Theret et al. 1988) is 

 
2

p P

P

L P
R Gπ

Φ Δ
=  (B.19) 
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Now one wants to solve the creep deformation of a viscoelastic half-space model. 

The relaxation modulus is G(t) and the suction pressure is P(t) = ΔP H(t). The 

corresponding solution in the Laplace domain will be 

 
( ) ( )

( )2
p P

P

L s P s
R sG sπ

Φ
=  (B.20) 

where the superposed bars indicate Laplace transform. However, because 

( )P s P s= Δ  and ( ) ( ) 2J s G s s−=  (Flugge 1967), it can be derived that  

 
( ) ( )

2
p P

P

L s P J s
R π

Φ Δ
=  (B.21) 

Thus, the viscoelastic solution in time domain can be reached by inverse Laplace 

transform as  

 
( ) ( )

2
p P

P

L t P J t
R π

Φ Δ
= . (B.22) 

B.6 Derivation of ramp-test response in micropipette 

aspiration from power-law creep function 

In the ramp tests, the apparent deformability S/Rp was measured at two 

loading rates by applying linear curve fitting to the pressure-deformation 

relationship (cf. Chapter 4). In the creep tests, the power-law creep function (Eq. 

(5.2)) was found to accurately account for the creep deformation of cells (cf. Chapter 

5). In order to evaluate the consistency between the creep-test results and the ramp-

test results, the rate-dependent apparent deformability can be derived from the creep 

function measured with creep tests and compared with the experimental results of 

ramp tests.  
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Based on the half-space model, the representative stress and strain in 

micropipette aspiration can be defined as 

 
( )2

p p

P

L R

P

ε

σ π

=

= Φ Δ
. (B.23) 

Thus, the creep deformation in micropipette aspiration (Eq. (5.1)) can be expressed 

by ( ) ( )t J tε σ= . Using the Boltzmann superposition principle, the evolution of the 

representative strain in response to certain loading history can be written as 

 ( ) ( ) ( )
t

t J t t t dtε σ
−∞

′ ′ ′= −∫  (B.24) 

In a ramp test, the loading history is  

 ( ) ,  0PP t v t tΔΔ = ≥  (B.25) 

where PvΔ  is the increasing rate of the pressure. Substitution of Eqs. (5.2), (B.23) 

and (B.25) into Eq. (B.24) results in 
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 (B.26) 

which will be used to predict the apparent deformability from the measured creep 

function of cells (Section 5.3.2).  

B.7 Power-law dependence of apparent deformability on 

loading rate in ramp tests 

In both ramp experiments and the corresponding finite element simulation, 

the pressure increases from ΔP(0) = 0 to ΔP(t) = ΔP0 at a certain loading rate PvΔ . 

The apparent deformability (C) in a ramp test is defined as the average slope of 
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Lp(t)/Rp versus ΔP(t)/G (cf. Eq. (6.17)). In practice, C is generally computed from 

discrete data points as 
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where xi = ΔP(ti)/G and yi = Lp(ti)/Rp (i = 1, 2, …, n); x  and y  are the means of xi 

and yi, respectively. ΔPi = ΔP(ti) is the pressure value of the ith data point which 

corresponds to time, i i Pt P vΔ= Δ  (cf. Eq. (B.25)). In order to study the effect of 

loading rate on apparent deformability, ΔP0 and ΔPi are usually kept constant, and 

material properties (AJ, G and α) and pipette geometry are also fixed. Thus, xi and x  

will be constant. On the other hand, yi can be derived from Eq. (B.26) as 
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 (B.28) 

which is proportional to Pv α−
Δ . Subsequently, y  is also proportional to Pv α−

Δ . 

Therefore, in view of Eq. (B.27), we have 

 PC v α−
Δ∝ . (B.29) 

which implies that the power-law exponent α can also be measured with ramp tests 

using different loading rates, as shown by Dahl et al. (2005).  



 

Appendix C Prony Series Approximation of Power-

law Rheology 

Table C.1. Prony-series coefficients for fitting power-law rheology model: 
( ) 100   PaG t t α−= .  

α 0 0.1 0.2 0.3 0.4 0.5 0.387 

G(0) (Pa) 100 213 450 944 1970 4100 1790 

λ1 (10−3 s) − 3.34 3.13 2.93 2.74 2.56 2.77 

λ2 (10−2 s) − 5.61 5.25 4.91 4.60 4.31 4.64 

λ3 (10−1 s) − 9.09 8.43 7.84 7.29 6.78 7.36 

λ4 (10 s) − 1.54 1.43 1.34 1.25 1.18 1.26 

λ5 (10 2 s) − 2.87 2.58 2.34 2.14 1.97 2.17 

g1 − 0.245 0.429 0.567 0.671 0.750 0.659 

g2 − 0.185 0.245 0.246 0.222 0.188 0.226 

g3 − 0.139 0.140 0.106 0.0722 0.0463 0.0762 

g4 − 0.106 0.0801 0.0459 0.0235 0.0114 0.0258 

g5 − 0.0926 0.0513 0.0216 0.00825 0.00297 0.00938 
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