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SUMMARY 
 

Ischemic coronary heart disease is one of the leading causes of morbidity and 

mortality in many countries worldwide. The main contributor to the development of this 

condition is myocardial infarction where the blood vessels are narrowed or blocked due 

to atherosclerosis. Over time, deficient oxygenation and nutrient supply to the heart 

muscle occurs leading to massive damage and death of the cardiomyocytes. This 

permanent deficit in the number of functioning cardiomyocytes results in an increase in 

loading conditions that induces a unique pattern of left ventricular remodeling, which is a 

major contributor to the progression of heart failure.   

This study has chosen to focus on preservation of cardiomyocytes and 

maintenance of ventricle integrity via the influence of a novel peptide on expression of 

pro-inflammatory cytokines, as well as on the transplantation of human embryonic stem 

cell-derived CD133+ cells for enhanced neovascularization in the ischemic myocardium. 

Both studies showed positive effects in controlling the size of the myocardial infarct and 

improving cardiac function.  

The first part of the study demonstrated that des-aspartate-angiotensin-I therapy 

downregulated critical pro-inflammatory cytokines and growth factors implicated in the 

pathophysiology of heart failure. The gene expression levels of IL-6, TNF-α, TGF-β and 

GM-CSF in des-aspartate-angiotensin-I-treated animals were significantly reduced after 3 

days of treatment as compared to saline-treated animals. Reduced infiltration of immune 

cells into the infarct area during the acute phase of infarction was also observed in des-

aspartate-angiotensin-I-treated animals. These results were significant since these 

immune cells together with pro-inflammatory cytokines initiate necrotic and apoptotic 
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death of the cardiomyocytes during the inflammatory process upon infarction. The 

cardioprotective effect exerted by des-aspartate-angiotensin-I during the acute phase of 

myocardial infarction is crucial since it reduces the extent of cardiac muscle damage 

leading to better morphology and enhanced function of the infarcted myocardium.  

 The second part of this study assessed the efficacy of transplanting human 

embryonic stem cell derived CD133+ endothelial progenitor cells in treating ischemic 

heart disease. CD133+ endothelial progenitor cells were differentiated from human 

embryonic stem cells by transduction with adenoviral expressing human vascular 

endothelial growth factor-165. The results demonstrated that ad-hVEGF165 was capable 

of efficient delivery and stable expression of VEGF into differentiating human embryonic 

stem cells. This was accompanied by enhanced endothelial-lineage differentiation as 

confirmed by increased numbers of both progenitor and mature endothelial-positive cells 

detected through immunofluorescent staining and real time PCR. Gene expression of 

mature endothelial markers such as CD31, Ve-cadherin and von-Willebrand factor 

together with endothelial progenitor markers such as Flk-1 and CD133 were also 

significantly upregulated as observed in RT-PCR studies.  

Transplantation of purified human embryonic stem cell derived CD133+ cells into 

the infarcted myocardium led to significant increase in the number of functional blood 

vessels. This stable collateral enhancement improved the microvascular network which 

led to enhanced myocardial perfusion and hence provision of oxygen and nutrients to the 

starved cardiomyocytes. The results demonstrated that CD133+ endothelial progenitor 

cells derived from ad-VEGF165 transduced differentiating human embryonic stem cells 

were effective and safe for heart regeneration in a rat model of myocardial infarction. 
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1.1 Ischemic coronary heart disease  

1.1.1 Prevalence 

Cardiovascular disease is the leading cause of morbidity and mortality in many 

countries world wide. It is estimated that this will constitute the largest healthcare burden 

globally by the year 2015 (www.who.int/whr/en, WHO report). Cardiovascular diseases 

accounted for 30% of global deaths and 10% of the total number of main causes of global 

burden of disease in 2005 (www.who.int/whr/en,WHO report). Ischemic coronary heart 

disease is one of the most frequent cardiovascular diseases that cause death globally. It is 

caused by narrowing of the blood vessels in the heart (atherosclerosis) which over time 

results in gradual loss of heart muscle leading to ineffective pumping of the heart. 

Although it was known for centuries to be very common in high income countries, the 

epidemics have now spread worldwide.  

In the United States of America, it was reported that coronary heart disease is the 

single largest killer of American males and females, accounting for 53% of deaths from 

cardiovascular diseases in 2003 (www.americanheart.org). It caused one out of every five 

deaths in United States and myocardial infarction (MI) as an underlying or contributing 

cause of death constitutes 46.1% of the total deaths related to coronary heart disease. In 

Singapore, ischemic heart disease is the second major cause of death, accounting for 

18.8% of the total number of deaths and was the third highest cause of hospitalization 

(3.8%) in 2004 (www.moh.gov.sg). 

1.1.2 Development and progression of heart failure upon coronary ischemic insult 

Ischemic coronary heart disease is a condition that affects the supply of blood to 

the heart. The main contributor to the development of this condition is MI where the 

http://www.who.int/whr/en
http://www.who.int/whr/en
http://www.moh.gov.sg/
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blood vessels are narrowed or blocked due to the deposition of cholesterol plaques on 

their wall; a process known as atherosclerosis. Over time, deficient oxygenation and 

nutrient supply to the heart muscle occurs and this will then lead to massive damage and 

death of the cardiomyocytes. This permanent deficit in the number of functioning 

cardiomyocytes is a key factor in the development and progression of heart failure.  

The resultant loss of cardiomyocytes results in an abrupt increase in loading 

conditions of the heart that induces a unique change in structure and function of the left 

ventricular myocardium that involves the infarcted border zone and the remote non-

infarcted zone of the myocardium. This process is known as left ventricular remodeling 

(Cohn 1995; Pfeffer et al, 1990).  

Left ventricular remodeling is a normal feature during maturation and may be a 

useful adaptation to increased demand such as during athletic training in the adult. 

However when it occurs in response to pathologic stimuli, it is usually adaptive in the 

short term but maladaptive in the long term and often results in further myocardial 

dysfunction.  

Post infarction left ventricular remodeling is divided into an early and late phase. 

The early phase of remodeling involves the expansion of the infarct while the late phase 

of remodeling involves the left ventricle globally and is associated with dilatation and 

distortion of ventricle shape.  

The death of cardiomyocytes and resultant increase in load following an ischemic 

insult usually triggers a cascade of biochemical intracellular signaling processes that 

initiates and subsequently modulates reparative genetic, molecular and cellular changes 

leading to ventricular remodeling. Important mediators that are involved in remodeling 
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include wall stress, neurohormonal activation, renin-angiotensin system, inflammatory 

cytokines and oxidative stress. These mediators often act in concert and are linked to one 

another. The effects of these mediators result in to pathological consequences such as 

cardiomyocyte hypertrophy, apoptosis and necrosis, ventricular dilatation, fibrosis 

formation and collagen degradation. These changes over time lead to abnormalities in 

myocardial contractility and relaxation, to declined heart pumping capacity, and to 

dilatation and increased sphericity of the heart; progressive alterations which finally 

result in systolic and diastolic heart dysfunction: the basis of heart failure and death. 

 

1.2 Overview on the pathophysiology of left ventricular remodeling 

Left ventricular remodeling is a central feature in the progression of heart failure. 

This process involves a variety of cellular and molecular events that eventually lead to 

significant changes in heart structure and function (Figure 1). 

1.2.1 Cellular events involved in left ventricular remodeling 

1.2.1.1 Cardiomyocyte hypertrophy 

Increased wall stress is a powerful stimulus for cardiomyocyte hypertrophy, an 

adaptive response to offset increased load, attenuate progressive dilatation and stabilize 

contractile function. Cardiomyocyte hypertrophy is initiated by neurohormonal activation, 

activation of myocardial renin-angiotensin system (RAS) and myocardial stretch. 

1.2.1.2 Cardiomyocyte necrosis and apoptosis  

Progressive left ventricular dysfunction occurs in part as a result of continuing 

loss of viable cardiomyocytes via two death mechanisms; necrosis and apoptosis. 

Following abrupt coronary occlusion, ischemic necrosis takes place which is  



 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Pathophysiology of heart failure. Myocardial infarction triggers a cascade of cellular and molecular events, including 
neurohormanal system which lead to ventricular remodeling. The vicious cycle of all these events are believed to cause progressive 
worsening of the heart failure syndrome over time. 
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characterized by rapid loss of cellular homeostasis, rapid swelling as a result of 

accumulation of water and electrolytes that result in early plasma membrane rupture and 

disruption of cellular organelles (Krijnen et al, 2002; Majno et al, 1995). These in turn 

induce an inflammatory response involving inflammatory cells such as neutrophils, 

macrophages that infiltrate into the ischemic site (Fishbein et al, 1978). While necrosis is 

associated with abrupt onset, apoptosis which is also known as programmed cell death 

cause silent but persistent death of the cardiomyocytes.  

Apoptosis is an active, precisely regulated series of energy dependent molecular 

and biochemical events that appears to be orchestrated by a genetic program. 

Cardiomyocytes undergoing apoptosis is characterized by shrinkage of the cell and the 

nucleus. The nuclear chromatin then condenses and eventually breaks up and the cell 

dissociates itself from the tissue and forms apoptotic bodies containing condensed 

cellular organelles and nuclear fragments. These apoptotic bodies are either phagocytosed 

by neighbouring cells or undergo degradation (Krijnen et al, 2002; Saraste et al, 2000; 

Majno et al, 1995). Apoptosis however does not provoke inflammatory response unlike 

necrosis. 

Ongoing loss of cardiomyocytes leads to thinning of the left ventricular wall and 

over time results in alteration in left ventricular chamber geometry through increased 

sphericity and dilatation of the left ventricular wall and progressive loss of contractile 

function- all of which leads to left ventricular dysfunction which is the hallmark of a 

failing heart.  
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1.2.2 Molecular events involved in left ventricular remodeling 

1.2.2.1 Myocardial stretch 

Small mechanical strains induced by elevated wall stresses lead to small 

mechanical stretches in cardiomyocytes. These mechanical stretches results in the 

secretion of angiotensin II from cytoplasmic granules and the stretch-induced 

hypertrophic response is mediated by G-protein-coupled receptor known as the AT1 

receptors (Yamazaki et al, 1995; Sadoshima et al, 1993). Activation of AT1 receptors in 

turn activates multiple downstream signaling pathways such as the calcium dependent 

activation of tyrosine kinase and activation of protein kinase C (PKC) via inositide 

signaling (phospholipase Cβ), mitogen-activated protein (MAP) kinase and S6 kinase (Ju 

et al, 1998) as well as induction of early gene response such as jun, fos and myc and fetal 

gene program such as β-MyHC and ANP. Activation of phospholipase Cβ via Gαq 

protein leads to production of 1,2 diacylglycerol and activation of PKC (Ju et al, 1998). 

PKC further induces secretion of angiotensin II and by paracrine and autocrine action, 

secreted angiotensin II amplifies the signals evoked by mechanical stress. Growth factors 

such as epidermal growth factor, insulin-like growth factor and fibroblast growth factor 

activate receptor tyrosine kinase, p21 ras and MAP kinase. It has been reported that 

activation of MAP kinase is a prerequisite for transcriptional and morphological changes 

of cardiomyocyte hypertrophy (Glennon et al, 1996)  

1.2.2.2 Neurohormonal activation 

The sympathetic nervous system activation in the heart increases tremendously 

upon infarction (Esler et al, 1988). Enhanced expression of the primary sympathetic 

neurotransmitter, norepinephrine contributes directly and indirectly to the hypertrophic 
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response of the cardiomyocytes via α-1 and β-1 receptors respectively. Direct stimulation 

of α-1 adrenergic receptors by norepinephrine leads to hypertrophy via the Gαq-

dependent signaling pathway (Ju et al, 1998). Gαq expression has been shown to increase 

in viable, border and scar area of the myocardium after a myocardial infarct (Ju et al, 

1998). Gαq-dependent signaling pathway is known to be a main contributor to 

pathological conditions following myocardial infarction. β-1 adrenergic receptors are 

activated in the juxtaglomerular apparatus and they induce release of renin which 

enhances production of angiotensin II. Increased production of angiotensin II promotes 

presynaptic release of norepinephrine and blocks its reuptake, increasing catecholamine 

synthesis and potentiating the postsynaptic action of norepinephrine (Ball 1989).   

1.2.2.3 Renin-angiotensin system 

The renin-angiotensin system contributes to cardiomyoycte hypertrophy by 

upregulation of angiotensin-converting enzyme activity which leads to increased 

production of angiotensin II and subsequent stimulation of the angiotensin II type I 

receptor which follows a similar pathway as α-1 adrenergic activation in cardiomyocytes 

via Gαq stimulation (Hirsch et al, 1991; Meggs et al, 1993). Angiotensin II also increases 

DNA and protein synthesis in both cardiomyocytes and fibroblast and hence is a major 

player in hypertrophy and fibrosis (Sadoshima et al, 1993). 

Norepinephrine and angiotensin II may also augment release of endothelins. 

Endothelins are potent vasoconstrictor peptides acting through coupling to their receptors. 

Activation of endothelin A leads to cardiomyocytes hypertrophy which is also mediated 

by Gαq stimulation.  
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1.2.2.4 Inflammatory cytokines  

Over the last decade, there is growing evidence that cytokine-mediated 

immunologic responses play an important role in the pathophysiology of heart failure 

(Frangogiannis et al 2002; Parissis et al, 2002; Blum et al, 2001; Blum et al, 1998; 

Frangogiannis et al, 1998; Pulkki et al, 1997). Cytokines mediate cell-to-cell interactions 

via specific cell-surface receptors and regulate activation, differentiation, growth, death 

and acquisition of effector function of various cell types. 

Cytokines affect the cardiovascular system in many ways including 

cardiomyocyte and endothelial apoptosis, promotion of inflammation, intravascular 

coagulation, cardiac structural and functional abnormalities, endothelial injury and 

oxidative stress (Parissis et al, 2002). Cytokines are not only secreted by immune cells 

but also by structural cells of the cardiovascular system. The activation of inflammatory 

cytokine cascade is triggered by initial myocardial injury, mechanical overloading or 

abnormal left ventricular end-diastolic wall stress which will then result in abnormal 

cardiac contractile performance and promotes maladaptive left ventricular remodeling. 

Two of the most well studied inflammatory cytokines in heart failure are interleukin-6 

(IL-6) and tumour necrosis factor-α (TNF-α). 

IL-6  

IL-6 is a multifunctional cytokine produced by activated T-cells, mononuclear 

phagocytes, fibroblasts and vascular endothelial cells. IL-6 is a member of a larger family 

of structurally-related cytokines which have overlapping biological effects. The other IL-

6 related cytokines include cardiotrophin-1 (CT-1), leukemia inhibitory factor (LIF) and 

IL-11. These IL-6 related cytokines signal through multisubunit receptor complexes that 
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share the transmembrane glycoprotein 130 (gp130), which explains the redundancy of 

these cytokines (Taga et al, 1997). Intracellular signaling takes place either via 

homodimerization of gp130 in the case of IL-6 and IL-11 systems or a structurally related 

protein in the case of other systems like LIF and CT-1. 

Several experiments and clinical studies have shown the elevation of IL-6 

expression in the myocardium and circulation in the event of a heart failure (Deten et al, 

2002; Plenz et al, 2001; Wollert et al, 2001; MacGowan et al, 1997; Torre-Amione et al, 

1996a). Circulating levels of gp130 also increased in patients with left ventricular 

dysfunction (Aukrust et al, 1999). Observation has been made that there is close relation 

between the expression level of IL-6 and gp130 and cardiac performance. Ventricular 

expression of IL-6 and gp130 correlated positively with reduced left ventricular ejection 

fraction and cardiac index, elevated pulmonary capillary wedge pressure, right atrial 

pressure and heart rate. The mechanism of elevated levels of IL-6 in heart failure is still 

unknown but the ability of TNF-α to induce IL-6 expression in various cell types 

suggested the possibility of cytokine cascade in heart failure (Gwechenberger et al, 1999).  

IL-6 mRNA expression levels are also elevated in the non-infarcted myocardium 

and CT-1 expression has been shown to be increased in dogs pacing-induced chronic 

heart failure. These studies showed that the failing heart itself is also a source of IL-6 and 

CT-1. In vitro studies have shown that cardiac myocytes and fibroblasts also release IL-6 

related cytokines.  

IL-6 related cytokines are potent inducers of cardiomyocytes hypertrophy and 

inhibitors of cardiomyocyte apoptosis (Wollert et al, 2001).  Similarly, CT-1 and LIF 

induce overlapping set of immediate early genes, induce and increase in cell size and 
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display sarcomeric organization as well as activate gene transcription and secretion of 

atrial natriuretic peptide (Pennica et al, 1995). In the case of IL-6, hypertrophic response 

in cardiomyocytes requires substantially elevated IL-6R (Wollert et al, 1996, Hirota et al, 

1995). The hypertrophic response triggered by IL-6 and related cytokines takes place via 

the activation of Janus kinase (JAK)- signal transducer and activator of transcription 

(STAT) and mitogen (MAP) kinase pathways (Kodoma et al, 1997; Kunisada et al, 

1996,). The significant role of IL-6 related cytokines is the protection of cardiomyocytes 

from apoptosis and enhancement of their survival (Sheng et al, 1997). In another study, it 

was shown that CT-1 protected cultured myocytes from ischemia-induced apoptosis 

(Stephanou et al, 1998).  

Tumour necrosis factor-α 

TNF-α is a proinflammatory cytokine identified primarily for its potent anti-

tumor activity have highlighted its role in the pathogenesis of many cardiovascular 

diseases such as acute myocardial infarction, chronic heart failure, artherosclerosis, viral 

myocarditis, cardiac allograft rejection and sepsis associated cardiac dysfunction (Irwin 

et al, 1999; Meldrum et al, 1998; Oral et al, 1997; Neumann et al, 1995;). TNF is a 157-

amino acid polypeptide which exists as either a secreted molecule (type I) or a membrane 

bound form (type II). The propensity of activities and effects of TNF-α have been 

attributed to the widespread distribution of TNF-α receptors TNF-R1 and TNF-R2 on 

almost all the nucleated cells in the body (Bolger et al, 2000). Binding affinity of TNF-α 

to both receptors is the same but the inotropic effects of TNF-α are mediated by its 

interaction with TNF-R1 alone. The dynamic interaction between TNF-α and its 

receptors is responsible for the pathophysiological effects of TNF-α to the heart. The 
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soluble forms of TNF-R1 and TNF-R2 have been documented to increase in heart failure 

patients. They are capable of binding to TNF-α, thus neutralizing the biological effects of 

circulating TNF-α on cell-bound receptors (Ferrari et al, 1995; Kapadia et al, 1995).  

Besides other cell types that produced TNF-α, cardiomyocytes are also capable of 

producing TNF-α in response to LPS induction (Comstock et al, 1998; Kapadia et al, 

1995a; Vassali 1992;)  or ischemia (Meldrum et al, 1998; Gurevitch et al, 1996;). The 

role of TNF-α is mediated through activation of multiple transduction pathways and 

suppression or induction of a wide variety of genes encoding the production of other 

inflammatory cytokines, adhesion molecules and inducible nitric oxide synthase (iNOS) 

(Kelly et al, 1997).  

The role of TNF-α in cardiovascular diseases was first reported by Levine in 

patients with cardiac cachexia (Levine et al, 1990). Subsequent studies confirmed a 

correlation between the circulating levels of TNF-α and the severity of the disease 

(Torre-Amione et al, 1996b; Katz et al. 1994). TNF-α has a dual biological effect on the 

heart, being either a killer or a protector to the heart depending on the amount and 

duration of its expression. A short-term expression is an adaptive response to any stress 

that takes place while long-term expression is maladaptive and results in cardiomyopathy, 

left ventricular dysfunction and progression of heart failure. These effects are 

multifactorial and involve cardiomyocyte hyperthrophy through generation of reactive 

oxygen intermediates in the cardiomyocytes (Bozkurt et al, 1998; Bryant et al, 1998; 

Ferrari 1998; Kubota et al, 1997; Yokoyama et al, 1997), ventricular remodeling by 

extracellular matrix protein formation, cardiomyocyte death by apoptosis and necrosis 

(Comstock et al, 1998; Krown et al, 1996,) and production of negative inotropic leading 
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to suppressed cardiac function through sphingomyelinase and nitric-oxide dependent 

pathways (Oral et al, 1997; Habib et al, 1996; Haywood et al, 1996; Kelly et al, 1996; 

Yokoyama et al, 1993). 

1.2.2.5 Oxidative stress 

Oxidative stress, a situation where there is an imbalance between the production 

of oxygen free radicals and the endogenous anti-oxidant defense mechanisms occur in the 

progression of heart failure (Grieve et al, 2004; Byrne et al, 2003). Mechanical stress and 

exposure to inflammatory cytokines such as TNF-α are important stimulus for increased 

oxidative stress (Aikawa et al, 2001). Both stimuli induce free radical production which 

can cause cardiomyocyte apoptosis by activating the expression of immediate early genes 

associated with cardiomyocytes growth and apoptosis (Webster et al, 1994). Free radicals 

can also stimulate fibroblast proliferation, collagen synthesis, matrix metalloproteinases 

(MMP) expression and activation (Spinale 2002; Murrell et al, 1990). 

1.2.2.6 Extracellular matrix degradation and fibrosis formation 

Cardiomyocytes and other cell types found in the heart such as endothelial cells 

are interconnected by a complex of connective tissue and extracellular matrix. The 

extracellular matrix is important for the structural characteristics of the heart. It consists 

of collagen, proteoglycans, glycoproteins and peptide growth factors. Upon infarction, 

collagen breakdown occurs which is induced by activated myocardial MMPs, serine 

proteases, MMP8 released by neutrophils (Thomas et al, 1998; Cleutjens et al, 1995). 

Digestion of the collagen will lead to mural alignment (slippage) of myocyte bundles or 

individual cardiomyocytes that is responsible for infarct expansion and thinning of the 

left ventricular wall (Olivettiet al, 1990).  Excessive deposition of fibrillar collagen will 
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also occur following the death of cardiomyocytes resulting in a stiffer and less compliant 

ventricle.  

 

1.3 Overview of current surgical and pharmacological treatments for heart failure 

Currently there are various pharmacological and surgical interventional treatment 

options for patients with coronary ischemic heart disease. These include pharmacological 

modulation using angiotensin-converting enzyme (ACE) inhibitors (SOLVD 

Investigators, 1991), beta-blocking agents (Packer et al, 2002) and cytokine antagonists; 

device implantation such as the left ventricular assist devices (LVADs) (Rose et al, 2001), 

implantable cardioverter-defibrillators (ICDs) and cardiac resynchronization therapy 

(Bristow et al, 2004; St John Sutton et al, 2003)  and surgical treatments such as coronary 

revascularization, angioplasty, coronary artery bypass graft (CABG) and heart 

transplantation.    

However, despite the various effective treatments available, coronary ischemic 

heart disease remains the predominant cause of death. Even when heart transplantation is 

the best solution out of all the options available for end-stage heart failure, the donor 

supply never matches the demand for heart replacement therapy. Patients continue to 

experience progressively worsening symptoms, frequent admission to hospitals and 

premature death. The prevalence of the disease imposes enormous financial strain on the 

health care system, calling for new approaches in the treatment of coronary heart disease.  
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1.4 Molecular and cellular approaches for heart failure 

Recent advances in understanding the molecular and cellular mechanisms of 

cardiovascular diseases have led to much interest in genetic and cellular therapy for 

treatment of ischemic heart disease (Melo et al, 2004; Mayer et al, 1997). Gene and cell-

based cardiac repair offers a revolutionary approach for treating heart diseases. Gene 

therapy is a strategy to replace or augment the function of either defective or under-

compensating genes that are involved in progression of the disease while cell therapy is a 

strategy focusing on repair and regeneration of cardiac muscles and vascular tissues in 

the heart. 

 

1.5 Therapeutic angiogenesis 

1.5.1 Vascular endothelial growth factor  

 Vascular endothelial growth factor (VEGF) is an extensively studied growth 

factor and considered as one of the more critical factors involved in angiogenesis during 

embryonic development and during adult life. 

1.5.1.1 Functions of VEGF 

For over a decade, there have been intense investigations on functions of VEGF in 

vitro and in vivo. As an angiogenic growth factor, VEGF is known for its ability to induce 

mobilization and proliferation of endothelial progenitor cells (EPCs) (Asahara et al, 

1999). It promotes growth of vascular endothelial cells (EC) derived from arteries, veins 

and lymphatics (Ferrara et al, 1997) and also acts as a survival factor for ECs both in 

vitro and in vivo. It prevents apoptosis via phosphatidylinositol (PI) - kinase-Akt pathway 

and also upregulate expression of anti-apoptotic proteins Bcl-2 and A1 in ECs (Gerber et 



 18

al, 1998a and b). VEGF also known as a vascular permeability exerts it effects by 

promoting vasculature leakage and permeability (Dvorak et al, 1995; Keck et al, 1989). It 

also induces vasodilation in vitro in a dose-dependent manner as a result of EC derived 

nitric oxide actions (Selke et al, 1996; Ku et al, 1993). Finally, VEGF is capable of 

inducing integrin expression and MMPs secretion (Wang et al, 1998; Senger et al, 1997) 

1.5.1.2 VEGF ligands and receptors 

VEGF is a 40-45 kDa heparin-binding homodimeric glycoprotein released by a 

variety of cell types including endothelial and smooth muscle cells. The human VEGF-A 

(the prototype VEGF species) gene is organized as eight exons separated by seven introns 

(Tischer et al, 1991). Alternative splicing of the mRNA results in five different VEGF 

isoforms; VEGF121, VEGF145, VEGF165, VEGF189, VEGF206. VEGF165 is the most 

predominant isoform, lacking exon 6. It displays intermediate diffusion characteristics 

with a significant portion remaining bound to the cell surface and extracellular matrix 

(Park et al, 1993). These VEGF isoforms play a pivotal role in vascular development and 

it has been reported that the loss of a single VEGF-A allele disrupted the development of 

normal embryonic vasculature system leading to fatal outcomes (Carmeliet et al, 1996; 

Ferrara et al, 1996). 

The biological activity of VEGF-A is mediated by interaction with two types of 

high affinity receptor tyrosine kinases (RTKs) expressed mostly on ECs. They are 

identified as VEGF receptor 1 (VEGFR-1/Flt-1) and VEGF receptor 2 (VEGFR-

2/KDR/Flk-1). Another receptor known as VEGFR-3 (Flt-4) also belongs to the same 

family of RTKs but it binds to VEGF-C and VEGF-D (Karkkainen et al, 2002). It is 

restricted predominantly to ECs lining the lymphatic channels. These receptors have 
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seven immunoglobulin-like domains in the extracellular domain of a single 

transmembrane region and a consensus tyrosine kinase sequence that is interrupted by a 

kinase-insert domain (Terman et al, 1991; Shibuya et al, 1990). 

Flt-1 though expressed primarily on ECs is also present on smooth muscle cells 

and monocytes (Neufeld et al, 1999). Activation of Flt-1 results in cell migration and 

contributes directly to migration of primitive vascular buds through extracellular matrix 

by enhancing production of MMPs by ECs and associated smooth muscle cells (Sato et al, 

2000; Esser et al, 1998). Binding of VEGF to Flt-1 also results in monocyte recruitment 

and expression of tissue factor by both monocytes and ECs (Barleon et al, 1996; Clauss et 

al, 1996). 

Flk-1 is essential for embryonic vasculogenesis and definitive hematopoiesis. This 

is evidenced by the failure of Flk1-null mice to develop blood islands and form organized 

blood vessels resulting in death in utero between days 8.5 and 9.5 (Shalaby et al, 1995). 

Flk-1 is exclusively expressed in both EPCs and primitive hematopoietic stem cells and 

plays a critical role in EC differentiation, proliferation, vasculogenesis and angiogenesis 

(Millauer et al, 1993; Terman et al, 1992). 

VEGF has also been reported to bind to neuropilins, a family of co-receptors. 

Binding of VEGF165 to neuropilin-1 receptor enhances VEGF165 binding to Flk-1 and 

VEGF165-mediated chemotaxis (Soker et al, 1998). 

1.5.1.3 Regulation of VEGF gene expression 

VEGF mRNA expression has been shown to be induced by exposure to low 

oxygen concentration under a variety of pathophysiological conditions, therefore 

enhancing angiogenesis in such conditions (Dor et al, 2001; Shweiki et al, 1992). 
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Hypoxia-inducible factor-1 (HIF-1) plays a key role in embryonic and tumour 

vascularization (Ryan et al, 1998). HIF-1α and HIF-2α are required for VEGF release 

during hypoxic conditions and inhibition of these two factors during hypoxia suppresses 

VEGF induction (Mie Lee et al, 2003). Both transcription factors bind to the hypoxia-

response element (HRE) in the VEGF promoter in order to upregulate VEGF expression 

(Semenza et al, 2000). Hypoxia not only increases the transcriptional rate of VEGF but 

also enhances the half-life of VEGF mRNA (Levy 1998). In vivo hypoxic conditions also 

showed an upregulation in VEGF expression with enhanced neovascularization observed 

(Banai et al, 1994).  

Several major growth factors and inflammatory cytokines such as TGF-β, PDGF, 

TNF-α, IL-1α and IL-6 serve as indirect angiogenic factors (Cohen et al, 1996; Brogi et 

al, 1994). They stimulate VEGF expression in several cell types. This suggests that 

paracrine or autocrine release of such molecules cooperates with the local hypoxia 

condition in regulating VEGF release (Ferrara et al, 1997; Neufeld et al, 1999). 

 

1.6 Therapeutic angiogenesis: molecular and cellular approach 

1.6.1 Therapeutic angiogenesis: molecular approach  

Angiogenic cytokines used for therapeutic angiogenesis can be administered in 

the form of recombinant human protein or by gene therapy (Khan et al, 2003). Protein 

and gene-based approaches using selected isoforms of VEGF-A (VEGF121, VEGF165) and 

FGF (FGF-1, FGF-2 and FGF-4) have been extensively studied. Recombinant protein 

therapy usually shows a precise dose-response relationship than gene transfer therapy. 

One limitation of using recombinant protein is its very short half-life which ranges from 
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minutes to few hours. Hence, it has to be administered in a repeated fashion to maintain 

the plasma serum level within the therapeutic window. As it is usually administered 

systematically, it tends to result in potential adverse effects of high plasma concentrations 

required to achieve sufficient myocardial uptake. Such adverse effects include 

hypotension and edema when VEGF is used (Baumgartner et al, 2000; Hariawala et al, 

1996) and anemia, thrombocytopenia and renal toxicity when FGF is used (Mazue et al, 

1991). 

Gene-based approaches use vectors to incorporate the angiogenic gene into a 

target host cell and induce production of the encoded angiogenic protein. The expression 

of these genes can be maintained from days to weeks when using adenoviral vectors or 

for months when using retroviral or lentiviral vectors. This helps to overcome the 

problem of short half-life of recombinant proteins. However, one of the major limitations 

in using such vectors is the stimulation of immune and inflammatory response in humans 

via circulating antibodies to the viruses (Gilgenkrantz et al, 1995). Naked plasmid DNA 

can also be used but its efficiency is limited by the amount of plasmid DNA that actually 

enters the target cell nucleus. The advantages and disadvantages of using various viral 

vectors and non-viral vectors are listed in Table 1. 

1.6.1.1 Protein-based angiogenesis 

Pre-clinical studies 

Protein-based therapy was one of the earliest forms of therapy used. The effect of 

recombinant human VEGF165 protein has been studied in dog and porcine models of 

myocardial ischemia which were created by gradual occlusion of the circumflex coronary 

artery. Pre clinical experience with VEGF has mainly involved its VEGF121 and VEGF165  



 22

 
Table 1: Gene Therapy Vectors 

 
Viral vector Gene Advantages Disadvantages 

Adenovirus  DNA High transfection efficiency Limited duration of transgene 
expression 
Strong inflammatory reaction 

Adeno-associated virus DNA High transfection efficiency 
Sustained transgene expression 

Limited transgene size 
Random nuclear incorporation 
Complex technology for 
production 

Lentivirus RNA High transfection efficiency even 
for non-dividing cells 

Limited transgene size  
Danger of reversion to replication 
competitive virus 

Retrovirus RNA Sustained transgene expression Low rate of transfection 
Effective only in replicating cells 
Random nuclear incorporation 

Non-viral vector    

Cell Vectors carrying DNA or RNA Sustained and localized transgene 
expression  
Multiple transgene expression 
possible 

Difficulty in production and scale 
up 

Liposome DNA Unlimited transgene size 
Safe to use 

Low transduction efficiency 

Plasmid DNA DNA, RNA, oligonucleotide Unlimited transgene size 
Safe to use 
Episomal location 

Low transduction efficiency 
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isoforms, derived from splicing of the VEGF-A gene. The studies demonstrated a dose-

response relationship and evidence of enhanced angiogenesis after treatment. Lower 

dosage of administered protein over an extended period of time shows better prognosis 

with fewer side effects as compared to higher dosage for a shorter period of time. Banai 

and colleagues (Banai et al, 2004) showed marked augmentation of collateral blood flow 

to the ischemic myocardium in a dog heart model of MI using 45µg of VEGF daily for 4 

weeks. Another study done by Lopez and colleagues (Lopez et al, 1998) also showed that 

treatment of recombinant VEGF protein at 20μg daily for 3 weeks in porcine model of 

MI was still able to induce significant angiogenesis with improved regional perfusion. 

Administration of 2μg recombinant VEGF for 4 weeks has also been shown to be 

effective in improving regional coronary flow as well as fractional left ventricular 

shortening of porcine ischemic myocardial model (Harada et al, 1996). On the other hand, 

administration of 0.72mg to 2mg recombinant VEGF protein for 7 days did not increase 

collateral formation but instead, it significantly exacerbated neointimal proliferation and 

also resulted to severe hypotension in 50% of the animals (Hariawala et al, 1996; 

Lazarous et al, 1996).  

The effectiveness of angiogenic protein based therapy is also influenced by the 

route of administration. Single intracoronary doses were effective in the porcine model 

(Hariawala et al, 1996) as were a series of two local injections via balloon catheter, 3 to 4 

week periadventitial infusions via minipump (Hariawala et al, 1996; Harada et al, 1996), 

intramyocardial injection (Biswas et al, 2004) and 28-day intracoronary injections in the 

dog model (Banai et al, 1994). Intravenous administration however was ineffective (Sato 

et al, 2001).  
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  Clinical studies 

Given the positive results from animal studies in inducing collateral formation to 

improve blood flow, protein-based therapy was then brought into the realm of clinical 

trials to test its feasibility in a wide range of patients. Clinical trials using angiogenic 

proteins until today is still in its infancy and no Phase III trials have been initiated. 

However, limited efficacy data were obtained from ongoing and completed Phase I/II 

trials.  

Two small Phase I trials using intracoronary (n=16) and intravenous (n=14) 

administration of VEGF165 demonstrated significant improvement in exercise capacity, 

perfusion and symptoms; defined as angina class (Hendel et al, 2000; Henry et al, 2001). 

These promising results became the basis for Phase II trial. The VIVA trial is a 

randomized, double-blinded, placebo-controlled Phase II trial (Henry et al, 2003). The 

VIVA trial assessed the safety and efficacy of intracoronary and intravenous infusions of 

VEGF165 in 178 patients with two different doses (low dose: 17ng/kg/min; high dose: 

50ng/kg/min) administered. Results were discouraging since an improvement in angina 

class and exercise time were observed only in the high dose receiving group at only 120 

days after treatment. The summary of clinical studies using VEGF protein therapy for 

cardiac repair is listed in Table 2.  

1.6.1.2 Gene-based angiogenesis 

Plasmid: Pre-clinical 

Studies investigating the efficacy and safety of VEGF gene therapy for treatment 

of ischemic heart disease using animal models have been conducted with increasing 

frequency.  
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Table 2: Clinical studies using VEGF recombinant protein 
 

Reference Dose Patient 
Selection 

Number of 
patients 

Study 
phase 

Study design Route of 
administration

End point of 
measurement

Results 

Hendel et al, 

2000 

Low dose: 
0.005 and 

0.017µg/kg 
High dose: 
0.05 and 

0.167µg/kg 

Coronary 
artery 

disease 

14 I Safety and 
Tolerability, 

Blinded 

Intra-coronary 
injection 

ETT, 
Rest/Stress 

SPECT at 30 
and 60 days 

after 
procedure 

10 out of 14 patients 
showed SPECT 
improvement especially 
in high dose group. 
Improved collateral 
count in 7 patients who 
had angiography 

Henry et al, 

2001 

Low dose: 
0.005 and 

0.017µg/kg 
High dose: 
0.05 and 

0.167µg/kg 

Coronary 
artery 

disease 

15 I Safety and 
Tolerability, 

Blinded 

Intra-coronary 
injection 

Rest/Stress 
SPECT at 30 
and 60 days 

after 
procedure 

Myocardial perfusion 
imaging was improved in 
7 of 15 patients at 60 
days. All 7 patients with 
follow-up angiograms 
had improvements in the 
collateral density score. 

Henry et al, 

2003 

Low dose: 
17ng/kg 

High dose: 
50ng/kg 

Coronary 
artery 

disease 

178 
 
 
 
 
 
 
 
 
 
 
 
 
  

II Safety and 
Efficacy, 
Double 
blinded, 
placebo-

controlled 

Intra-coronary 
injection and 
intra-venous 

injection 

ETT and 
Angiography 

Improved angina and 
quality of life within all 
groups at day 60, 
however with no 
significant intra-group 
difference. Placebo 
group showed no 
difference with low dose 
group by day 120, but 
high dose group showed 
significant improvement 
in angina class   
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Genes encoding VEGF165, VEGF121 and VEGF-2 have been transfected in a 

number of animal studies using either naked plasmid DNA or adenoviral vectors. Studies 

that involved intra-myocardial injections of naked DNA have shown the safety of using 

these approaches.  

Tio and colleagues demonstrated increased left circumflex blood flow when 

performing four injections delivering a total of 200μg of plasmid vector encoding 

VEGF165 in porcine ameroid model of stress-induced regional myocardial ischemia (Tio 

et al, 1999). Another group used intramyocardial injection of a total of 300μg plasmid 

VEGF165 in conjunction with transmyocardial laser revascularization in a porcine model 

of myocardial ischemia. Their results showed improved wall motion compared to the 

ischemic controls (Sayeed-Shah et al, 1998). However, one study which injected one 

single dose of plasmid VEGF165 at a single site in a rodent model of MI induced both 

angiogenesis and angioma formation, without enhanced regional blood flow (Schwartz et 

al, 2000). Subsequent study indicated that this was a dose-related event since a 50% 

reduction in the dose of plasmid DNA did not induce angioma formation (Kloner et al, 

2000). 

Recently, a study injected 3.8mg of plasmid-VEGF165 intramyocardially in 

porcine model of infarction and demonstrated significant increase in mature blood vessels 

and improved myocardial perfusion (Crottogini et al, 2003). The same group did a similar 

study with adult sheep (Vera et al, 2006). A reduction in infarct size was reported and 

was accompanied by an increase in early angiogenesis and arteriogenesis, decrease in 

peri-infarct fibrosis and myofibroblast proliferation and enhanced cardiomyoblast 

proliferation.  
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Plasmid: Clinical 

Losordo and colleagues were the first to study the feasibility and safety of intra-

myocardial injection of plasmid human VEGF in patients (Losordo et al, 1998). Five 

patients with inoperable coronary artery disease and symptomatic myocardial ischemia 

received 125μg of plasmid VEGF165. The treatment caused no changes in heart rate, 

systolic or diastolic pressure. Perfusion scans showed fewer abnormally perfused 

segments and decreased segments with fixed defects while coronary angiography showed 

improved blood flow. The same group did a follow-up study on a larger sample size with 

the same clinical symptoms (Symes et al, 1999). Either 125μg or 250μg of plasmid 

VEGF165 was administered directly into the myocardium of the patients. A reduction in 

the ischemic defects was observed in 13 of the 16 patients that were followed for 90 days. 

This improvement was observed to be more consistent with the high dose rather than the 

low dose.  

The feasibility of intra-myocardial administration of plasmid VEGF was assessed 

using an electromechanical left ventricular mapping system (NOGA) in 13 patients (Vale 

et al, 2000). Results were encouraging showing improved left ventricular ejection 

fraction after treatment and a marked reduction in the area of ischemic myocardium after 

60 days. A study using percutaneous, catheter-based myocardial plasmid VEGF transfer 

in 6 patients showed improvement in angina frequency, perfusion defect and 

electromechanical function (Vale et al, 2001). This study then led to a multicentre 

randomized, double-blinded, placebo-controlled trial of catheter-based plasmid VEGF-2 

gene transfer in 19 patients (Losordo et al, 2002). End-point analysis at 12 weeks 

disclosed significantly improved angina class and myocardial perfusion and decreased 
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focal ischemia on electromechanical mapping compared to the placebo group. A recent 

phase II randomized, double-blinded, placebo-controlled trial also reported that transient 

VEGF overexpression seems safe and showed improvement in regional wall motion in 

patients (Kastrup et al, 2005). 

Despite the positive results, poor transduction efficiency is a problem when using 

the plasmid approach (Laitinen et al, 1997; Schmidt-Wolf et al, 2003; Yla-Herttuala et al, 

2003). To overcome this problem, viral vectors carrying angiogenic gene were designed 

and tested for their safety and efficacy in animal models and human studies.  

Viral vector: Pre-clinical 

One of the earlier studies reporting the usefulness of using viral vectors encoding 

vascular growth factor gene was demonstrated by Mack and colleague (Mack et al, 1998). 

Using porcine myocardial ischemia model, they injected intramyocardially adenoviral 

vector carrying VEGF121 (ad-VEGF121). Ten injections in the left circumflex perfusion 

bed were performed with 108 plaque-forming units (pfu) per site. SPECT nuclear imaging 

revealed improvement in both myocardial perfusion and functional collateral vessel 

formation in ad-VEGF121 treated animals at 4 weeks after treatment. 

The same group then tested the toxic effects which might result from the 

intramyocardial injection of ad-VEGF121 (Patel et al, 1999). The same experiment was 

repeated with animals receiving viral doses of either 108 or 109 pfu per injection site. 

Echocardiographic assessment, survival, blood analysis and myocardial and liver 

histology were examined 3 and 28 days after vector administration. Minimal 

inflammation and necrosis was observed in the myocardium of the ad-VEGF121 treated 

animals but livers were normal. Even though inflammation and necrosis was minimal, it 
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was statistically significant and dose-related with increased degree in animals receiving 

109 pfu per injection site. Viral vector administration had no deleterious effect on the 

basal regional function of the animals.  

Lazarous and colleagues showed that injection of adenoviral vector carrying 

VEGF165 (ad-VEGF165) into canine pericardial cavity resulted in efficient gene expression 

of VEGF (Lazarous et al, 1999). Unfortunately, the level of expression was insufficient to 

promote collateral development and hence, improvement in myocardial blood flow in the 

canine model but the vascular permeability of over-expressed VEGF resulted in large 

pericardial effusion. Favourable results were obtained when using ad-VEGF165 in rabbit 

model of myocardial ischemia which reported increased vascular density, improved heart 

ejection fraction and low myocardial ischemia (Tanaka et al, 2000). 

One group did a comparitive study using adenoviral vector and plasmid carrying 

VEGF165 and VEGF-D in porcine model using the NOGA system. Histological studies 

showed that administration of ad-VEGF165 and ad-VEGF-D resulted in transmural 

angiogenesis with maximal effects in the epicardium. VEGF-D showed higher degree of 

angiogenesis as compared to VEGF165 but surprisingly plasmid-VEGF165 and plasmid-

VEGF-D did not induce angiogenesis. The summary of pre-clinical studies using VEGF 

gene therapy for cardiac failure is listed in Table 3. 

Viral vector: Clinical 

The encouraging data from pre-clinical studies using ad-VEGF gene approach has 

prompted research groups to investigate the safety, efficacy and feasibility of using this 

approach in clinical patients. A phase I clinical trial using ad-VEGF121 was performed in 

patients undergoing CABG surgery and also in patients as sole therapy (Rosengart et al,  
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Table 3:  Pre-clinical studies using VEGF therapy for cardiac failure 
 

Type of VEGF therapy Animal model Route of administration References 
Protein    

 Dog Intra-coronary Banai et al, 1994 
 Dog Intra-atrial Lazarous et al, 1996 
 Porcine  Harada et al, 1996 
  Intra-coronary Hariawala et al, 1996 
  Intra-coronary Lopez et al, 1998 
   Hughes et al, 1999 
  Intra-coronary and Intra-venous Sato et al, 2001 
   Hughes et al, 2004 

Plasmid    
 Rat Intra-myocardial Kloner RA et al, 2000 
  Intra-myocardial Schwartz et al, 2000 
 Porcine Intra-myocardial Sayeed-Shah et al, 1998 
  Intra-myocardial Tio et al, 1999 
  Intra-myocardial Crottogini et al, 2003 
 Sheep  Vera et al, 2006 

Adenoviral vector    
 Porcine Intra-myocardial Mack et al. 1998 
  Intra-myocardial Patel et al, 1999 
  Intra-myocardial Rutanen J et al, 2004 
 Dog Intra-coronary Lazarous et al, 1999 
 Rabbit Intra-coronary Tanaka et al, 2000 
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1999a). At day 30, all patients reported improvement in angina class and post-operative 

nuclear imaging suggested increased contractility in area where viral vector was injected 

but no significant improvement in myocardial perfusion. This data showed direct 

myocardial injection of ad-VEGF121 appeared to be well-tolerated. A six-month follow-up 

on the study reported persistence of the therapy in patients and also confirmed the safety 

of using the vector (Rosengart et al, 1999b).    

Hedman and colleagues carried out a randomized placebo-controlled double-blind 

phase II study using ad-VEGF for treatment of chronic myocardial ischemia in 103 

patients (Hedman et al, 2003). No serious events were reported and myocardial perfusion 

was significantly improved after 5 months. This study also showed that gene transfer for 

coronary artery disease using adenoviral vector was feasible and well-tolerated. The 

summary of all clinical trials using VEGF gene therapy for cardiac failure is listed in 

Table 4. 

1.6.2 Therapeutic angiogenesis and vasculogenesis: Cellular approach 

Therapeutic angiogenesis and vasculogenesis aiming at restoring perfusion to 

chronically ischemic myocardial zones can also be achieved by transplantation of 

exogenous stem cells and differentiated cells and also by enhancing the mobilization of 

endogenous stem cells. These cells have natural capacity of participating in therapeutic 

angiogenesis and vasculogenesis by delivering angiogenic cytokines and growth factors 

in appropriate sequence and concentration and/or by incorporating into the newly 

generated blood vessels. Various cell types have been studied and major advances within 

the last several years have allowed the understanding of fundamental biology of these 

cells, their behavior properties in vitro and in vivo and their therapeutic potential. The  
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Table 4: Clinical studies using VEGF gene therapy 
 

Type of 
VEGF 

therapy 

Reference Dose No of 
patients 

Study 
phase 

Study design Route of 
administration

End point of 
measurement 

Results 

Plasmid Losordo et 
al, 1998 

125µg 5 I Feasibility 
and safety 

Intra-
myocardial 

SPECT, 
Angiography 

Perfusion scans showed fewer 
abnormally perfused 
segments and decreased 
segments with fixed defects. 
Coronary angiography 
showed improved blood flow. 
Significant reduction in 
angina. 

 Symes et 
al, 1999 

Low 
dose= 
125µg 
High 
dose= 
250µg 

20 I Safety and 
tolerability 

Intra-
myocardial 

SPECT, 
Angiography 

No peri-operative myocardial 
infarction or hemodynamic 
instability, one death 4 
months after procedure. 16 
patients reported reduction in 
angina after 90 days. 7 out of 
10 patients reported reduction 
were free of angina after 6 
months and 13 out of 17 
showed reduction in ischemic 
defect. 

 Sarkar et 
al, 2001 

250µg 7 I Safety and 
bioactivity, 

Open-labeled 
study 

Intra-
myocardial 

SPECT, 
Angiography 

Improved myocardial 
function was documented in 
all patients at 12 months. 
Improved collateralization 
was detected in four patients 
with coronary angiography. 

 Vale et al, 
2001 

200µg 6 I Randomized 
control 

NOGA 
catheter-based 

NOGA 
mapping, 
SPECT 

Reduced ischemia and 
improved myocardial 
perfusion at 90 days 
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Type of 
VEGF 

therapy 

Reference Dose No of 
patients 

Study 
phase 

Study design Route of 
administration

End point of 
measurement 

Results 

Plasmid  Losordo et 
al, 2002 

N=9, 
200µg; 
N= 9, 
800µG; 
N=1, 
2000µG  

19 I/II Randomized, 
double-
blinded, 
placebo-

controlled 

NOGA 
catheter-based 

ETT, NOGA 
mapping, 
SPECT 

Significant improvement in 
angina class, myocardial 
perfusion and ETT at 12 
weeks 

 Gyongyosi 
et al, 2005; 
Kastrup J 
et al 2005 

N=40, 
0.5mg of 
phVEGF
-A165; 
N=40, 

placebo-
plasmid 

80 II Randomized, 
double-
blinded, 
placebo-

controlled 

NOGA 
catheter-based 

NOGA 
mapping, 
SPECT 

phVEGF-A165 plasmid 
injection improve, but do not 
normalize, the stress-induced 
perfusion abnormalities in 21 
out of 40 VEGF-treated 
patients. 
 

Adenoviral 
vector 

Rosengart 
et al, 1999a 
and 1999b 

Group 
A= 15, 
4×108-10 

pfu; 
Group 
B= 6, 
4×108 

21 I Safety and 
Tolerability 

Intra-
myocardial 

ETT, 
Echocardiogra

phy, 
Angiography, 

rest/stress 
SPECT 

Group A had 2 deaths in 40 
days and Group B had no 
death. 
Surviving patients reported 
improvement in angina class 
and post-operative nuclear 
imaging suggested increased 
contractility in area where 
viral vector was injected but 
no significant improvement in 
myocardial perfusion. 

 Hedman et 
al, 2003 

N=37,2×
1010pfu; 
N= 28, 
200µg 

103 II Feasibility, 
tolerability,  
Randomised 

placebo-
controlled 

double blind 

Intro-coronary ETT, 
Angiography, 

SPECT  

Myocardial perfusion 
significantly improved at 5 
months 
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summary of both pre-clinical and clinical studies using various cell sources for induction 

of neovascularization in infarcted myocardium is listed in Table 5. 

Adult mesenchymal stem cells 

Mesenchymal stem cells constitute one of the stem cell populations in adult bone 

marrow. They are self-renewing clonal precursors of non hematopoietic tissue that 

provide the microenvironment for hematopoiesis. They can be induced to differentiate 

into cells of mesenchymal lineage such as fibroblasts, cartilage, bone, skeletal and 

cardiac muscle (Conget et al, 1999; Pittenger et al, 1999; Prockop 1997). Human 

mesenchymal stem cells do not express specific markers for EPCs and have never been 

reported to transdifferentiate into endothelial phenotype. However, it was reported 

recently that immortalized murine mesenchymal stem cells when treated in vitro with 5-

azacytidine were able to differentiate to ECs, pericytes and smooth muscle cells (Gojo et 

al, 2003). Verfaille’s group showed presence of multipotent adult progenitor cells, co-

purified with mesenchymal stem cells that express VEGF receptor, Flk-1 and other 

endothelial lineage markers upon stimulation with VEGF (Verfaillie et al, 2003; Jiang et 

al, 2002). Paracrine action of transplanted mesenchymal stem cells on angiogenesis and 

cytoprotection in rodent model of MI was demonstrated in a study by Tang and collagues 

(Tang et al, 2005). The transplanted group showed an increase in angiogenic factors such 

as bFGF, VEGF and stem cell homing factor and a decrease in proapoptotic protein, Bax. 

Several other studies also showed bone marrow stromal cells which contain the 

mesenchymal stem cells are capable of participating in angiogenesis (Tomita et al, 2002; 

Wang et al, 2001; Tomita et al, 1999). Capillary density was enhanced and presence of 

donor cells incorporating into the capillary endothelium was observed. However, most of  
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Table 5: Preclinical and clinical studies using cell therapy for myocardial revascularization 
 

Cell source Animal model Route of administration Results Reference 
PRE-CLINICAL     
Bone marrow derived Rat Ligation model Intra-myocardial injection 

after ligation 
Angiogenesis was significant at 7 days 
after transplantation and 14 days later, 
specific markers for vascular 
endothelial cells were detected in the 
transplanted group.Transplanted group 
had upregulated expression of heat 
shock proteins indicating that bone 
marrow cells also conferred enhanced 
cytoprotection to the myocardium. 

Zhang et al, 2003 

Bone marrow derived 
mononuclear cells 

Rat ligation model Intra-myocardial injection 
after ligation 

Increased capillary density, blood flow, 
angiopoietin-1 and VEGF expression at 
2 months. Improvement of myocardial 
function. 

Nishida M et al, 
2003 

Bone marrow derived 
mononuclear cells 

Porcine ligation 
model 

Intra-myocardial 4 weeks 
after ligation 

Increased endothelial cell number, 
myocardial perfusion and myocardial 
function at 4 weeks 

Fuchs S et al, 2001 

Bone marrow derived 
mononuclear cells 

Porcine ligation 
model 

Trans coronary sinus 
injection 2 weeks after 
injury 

Increased angiogenesis at 2 weeks Vicario J et al, 2002 

Bone marrow derived 
mononuclear cells 

Porcine ligation 
model 

Intra-myocardial injection 
60 minutes after ligation 

Increased capillary density, blood flow, 
angiographic collateral vessels and 
myocardial function at 3 weeks 

Kamihata H et al, 
2001 

Endothelial cells Rat cryoinjury model Intra-myocardial Increased vascular density and 
improved myocardial function and 
regional blood flow at 6 weeks 

Kim E-JK et al, 
2001 

Peripheral-derived 
endothelial progenitor 
cells  

Athymic nude rats 
ligation model 

Intra-venous injection 3 
hours after ligation 

Increased capillary density with 
incorporation of human specific 
endothelial cells and improved 
myocardial function at 4 weeks 

Kawamoto A et al, 
2001 
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Peripheral-derived 
endothelial progenitor 
cells, CD34+ cells 

Athymic nude rats 
ligation model 

Intra-venous injection 48 
hours after ligation 

Increased number of capillary of human 
and rat origin and improved myocardial 
function at 2 weeks 

Kocher AA et al, 
2001 

Peripheral-derived 
endothelial progenitor 
cells 

Porcine ligation 
model 

Intra-myocardial injection 
4 weeks after ligation  

Increased angiographic collateral 
development and capillary density at 4 
weeks 

Kawamoto A et al, 
2003 

Umbilical cord blood 
derived endothelial 
progenitor cells, CD133+ 
cells 

Athymic nude rats 
ligation model 

Intra-venous infusion 7 
days after ligation 

Improved myocardial function at 4 
weeks. Donor-derived endothelial cells 
found in blood vessels 

Leor J et al, 2005 

Embryonic stem cells Mouse ligation model Intra-myocardial injection Increased blood vessel density and 
improved myocardial function at 32 
weeks. 

Min JY et al, 2003 

Embryonic stem cells Mouse ligation model Intra-myocardial injection Donor-derived endothelial cells and 
smooth muscle cells and 
cardiomyocytes found in infarcted 
myocardium at 2 weeks. Improved 
myocardial function 

Singla DK et al, 
2006 

Embryonic stem cells  Intra-venous injection on 
every other day for 6 days 
after infarction  

Increased arteriole density, improved 
myocardial function and regional blood 
flow at 6 weeks 

Min JY et al, 2006 

Mesenchymal stem cells Rat ligation model Intra-myocardial injection Increased capillary density and 
improved myocardial function at 8 
weeks 

Tang YL et al, 2005 

Mesenchymal stem cells Rat cryoinjury model Intra-myocardial injection 
3 weeks after cryoinjury 

Increased capillary density and 
improved myocardial function at 8 
weeks 

Tomita S et al, 1999 

Mesenchymal stem cells Rat ligation model  Intra-aortic infusion 2 
weeks after ligation 

Presence of donor-derived endothelial 
cells, cardiomyocytes and fibroblasts in 
the myocardium at 4 weeks 

Wang JS et al, 2001 

Mesenchymal stem cells Porcine ligation 
model 

Intra-myocardial injection 
4 weeks after ligation 

Increased capillary density and 
improved myocardial function at 4 
weeks 

Tomita S et al, 2002 
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Mesenchymal stem cells Uninjured Mouse  Intra-ventricular and 
Intra-myocardial injection

Increased capillary density with donor-
derived endothelial cells at 1, 4,8 and 12 
weeks 

Gojo S et al, 2003 

Hematopoietic stem cells Mouse ligation model Intra-myocardial injection 
5 hours after ligation 

Donor derived endothelial cells and 
smooth muscle cells present in de novo 
capillaries and arterioles at 9 days 

Orlic D et al, 2001 

CD34+ cells from 
hematopoietic stem cells 

Mouse ligation model Bone marrow 
transplantation followed 
by 1 hour of artery 
occlusion after 10 weeks 
of transplantation 

Donor derived endothelial cells and 
cardiomyocytes present at 2 and 4 
weeks 

Jackson KA et al, 
2001 

Smooth muscle cells Rat cryoinjury model Intra-myocardial injection 
4 weeks after cryoinjury 

Increased capillary density and 
improved myocardial function at 8 
weeks 

Li RK et al, 1999 

Smooth muscle cells Hamsters cryoinjury 
model 

Intra-myocardial injection Improved myocardial function at 4 
weeks 

Yoo KJ et al, 2000, 
2002 

CLINICAL     
Bone marrow derived 
mononuclear cells 

Humans with acute 
myocardial infarction 

Intra-coronary infusion 
after 5 to 9 days after 
acute myocardial 
infarction 

Improved myocardial perfusion and 
function at 3 months 

Strauer BD et al, 
2002 

Bone marrow derived 
mononuclear cells 

Humans with severe 
ischemic heart 
disease 

Intra-myocardial injection Improved myocardial perfusion and 
function at 3 months 

Tse HF et al, 2003 

Bone marrow derived 
mononuclear cells 

Humans with severe 
ischemic heart 
disease 

Intra-myocardial injection Improved myocardial perfusion and 
function at 2 months 

Perin EC at al, 2003 

Bone marrow derived 
mononuclear cells 

Humans with severe 
ischemic heart 
disease 

Intra-coronary injection Improved myocardial perfusion and 
function at 6 months 

Wollert KC et al, 
2004 

Bone marrow derived 
mononuclear cells 

Humans with chronic 
artery disease 

Intra-coronary injection Reduced infarct size, improved 
myocardial function at 3 months 

Strauer BE et al, 
2005 

Bone marrow derived Humans with chronic Intra-myocardial injection 4 out of 6 CABG patients showed Stamm C et al, 2003 
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AC133+ cells  myocardial infarction improved myocardial perfusion after 9 
months post transplantation 

Highly enriched AC133+ 
cells 

Humans with acute 
myocardial infarction 

Intra-coronary injection Improved myocardial perfusion and 
function at 4 months 

Bartunek J et al, 
2005 

Bone marrow derived 
mononuclear cells and 
peripheral blood-derived 
endothelial progenitor 
cells 

Humans with acute 
myocardial infarction 

Intra-coronary infusion 5 
days after acute 
myocardial infarction 

Improved myocardial function, 
myocardial viability and coronary flow 
reserve at 4 months 

Assmus B et al, 
2002 
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the reported studies obtained mesenchymal stem cells from a non-purified plastic 

adherent cell fraction of bone marrow-derived mononuclear cells that also include 

hematopoietic stem cell population which are likely to participate in the 

neovascularization process. Furthermore, the success of mesenchymal stem cells 

transplantation in cardiac failure leading to reduced infarct scar and dilatation of the 

infarct region and improvements in contractile function are also due to the myogenic 

effect of these cells.  

Smooth muscle cells 

Smooth muscle cells are the major cell population of the arterial media and play a 

crucial role in the vascular tone. Under pathologic conditions, they can dedifferentiate, 

migrate, proliferate and secrete extracellular matrix to heal vascular injuries. They can 

also secrete bFGF and VEGF which are involved in angiogenic process (Ali et al, 1994; 

Stavri et al, 1995). A study by Li and colleagues successfully transplanted smooth muscle 

cells into cryoinjured myocardium of adult rats (Li et al, 1999). Results showed four to 

five fold increase in blood vessel formation and significant improvement in contractile 

function of the transplanted group. However, further investigation is required to assess if 

enhancement of angiogenesis by smooth muscle cell transplantation is due to their 

proliferation or by secretion of angiogenic growth factors. Similar results were shown by 

another group using hamster model of cryoinjured myocardium (Yoo et al, 2000). 

Smooth muscle transplantation prevented cardiac dilatation and improved ventricular 

function. It was even shown that smooth muscle cell was a better candidate for cardiac 

repair than cardiomyocytes (Yoo et al, 2002).  
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Hematopoietic stem cells and progenitor cells 

Hematopoietic stem cell is another stem cell population found in adult bone 

marrow. These cells are known to participate in neovascularization as they are able to be 

mobilized by angiogenic growth factors such as VEGF and Ang-1 (Moore et al, 2001) 

and have a common precursor as the EPCs known as the hemangioblasts (Choi et al, 

1998). A study by Jackson and colleagues transplanted highly enriched hematopoietic 

stem cells known as the side population (SP) into coronary artery occluded lethally 

irradiated mice (Jackson et al, 2001). This side population is characterized by CD34-/low, 

c-Kit+, Sca-1+ differentiated to ECs expressing Flt-1. Engraftment of these SP-derived 

ECs was predominantly found in newly formed capillaries in the “at-risk” myocardial 

tissue adjacent to the infarct zone. Transplantation of GFP-positive lin- c-Kit+ bone 

marrow-derived mononuclear cells into the infarcted myocardium of mouse models 

showed the presence of GFP-positive endothelial and smooth muscle cells in developing 

capillaries and small arterioles in the infarct area (Orlic et al, 2001). 

Endothelial progenitor and endothelial cells  

EPCs are a group of cells that are known to differentiate and mature into ECs, 

play an important role in endothelium maintenance and participate in reendothelialization 

and neovascularization (Luttun et al, 2002; Szmitko et al, 2003). EPCs share a common 

precursor with hematopoietic stem cells known as the hemangioblasts (Choi et al, 1998b) 

and they can be isolated from bone marrow, peripheral blood and umbilical cord blood 

mononuclear cells. Their therapeutic potential in restoring tissue vascularization after 

ischemic events in limbs and myocardium has been shown in many studies. 
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Bone marrow-derived EPCs 

Several animal studies have shown that transplantation of bone marrow cells 

contributes to neovascularization. Bone marrow cells contain many cell types including 

mesenchymal stem cells, hematopoietic stem cells and EPC stem cells. These cells have 

the capacity to home into different tissue, proliferate and acquire the phenotypes of the 

host organ. Many studies have evaluated the potential of unselected whole bone marrow 

cells for revascularization of ischemic organs in various animal models (Nishida et al, 

2003; Yoshida et al; 2003; Vicario et al, 2002; Fuch et al, 2001). All these studies 

showed a significant increase in the capillary density together with improvement in 

myocardial function and higher limb salvage in the infarcted myocardium and ischemic 

hindlimb respectively when receiving bone marrow cells.  

A study by Kamihata reported that 16% of the bone marrow-derived mononuclear 

cells were of endothelial lineage-cells and expressed bFGF, VEGF and Ang-1 (Kamihata 

et al, 2001). These bone marrow-derived mononuclear cells actively differentiated into 

ECs in vitro and formed network structure with human umbilical vein ECs. These cells 

incorporated into 31% of the neocapillaries and corresponded to approximately 8.7% of 

macrophages in the infarcted myocardium of the swine model. Autologous bone marrow 

mononuclear cells were also injected into the ischemic limb immediately following 

induction of ischemia and the cells were highly located in the capillary network of the 

myocardium. Similar work was perfomed in rat MI model and bone marrow mononuclear 

cells showed sustained improvement in cardiac function as assessed by left ventricle 

ejection fraction and fractional shortening (Zhang et al, 2003). Angiogenesis was induced 

to a significant degree at 7 days after transplantation and 14 days later, specific markers 
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for vascular ECs were detected in the transplanted bone marrow mononuclear cells. It 

was also shown that the transplanted group had upregulated expression of heat shock 

proteins in the infarcted myocardium indicating that bone marrow cells may also confer 

enhanced cytoprotection to the myocardium. Results from studies using bone marrow 

transplantation revealed that this may constitute a novel strategy for achieving optimal 

therapeutic angiogenesis by the natural ability of the bone marrow cells to secrete potent 

angiogenic ligands and cytokines as well as to be incorporated into the foci of 

neovascularization. ECs have also been used in cell therapy. One study reported 

increased vascular density when ECs were transplanted in cryoinjured rodent models 

(Kim et al, 2001).  

The efficacy of clinical bone marrow stem cell therapy for cardiac 

revascularization has been assessed by various groups using various methods of delivery. 

Strauer and colleagues transplanted autologous bone marrow mononuclear cells into the 

infarcted and ischemic myocardial tissue via the intracoronary route using a balloon 

catheter in 10 acute MI patients (Strauer et al, 2002). Results were positive with 

significant decrease in the infarct region, improvement in stroke volume index, left 

ventricular end systolic volume and contractility and myocardial perfusion after 3 months 

post transplantation. In a randomized controlled clinical trial, Wollert and colleagues also 

reported enhanced left ventricular systolic function primarily in the myocardial segments 

adjacent to the infarcted area upon intracoronary transplantation of bone marrow cells 

(Wollert et al, 2004). 

In another study, 8 patients with severe ischemic heart disease received 

autologous bone marrow mononuclear cells via intramyocardial injection using a NOGA 
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guiding system and at 3 months follow-up, they demonstrated significant increase in 

neovascularization and accompanied improvement in regional wall thickening (Tse et al, 

2003). Autologous bone marrow mononuclear cells were also transplanted in 14 end-

stage ischemic heart disease patients by transendocardial injection also using the NOGA 

guiding system in a non randomized, open-labeled study (Perin et al, 2003). At 2 and 4 

months follow-up, there was a significant improvement in global left ventricular function. 

Electromechanical mapping revealed significant mechanical improvement of the injected 

segments of the myocardium after 4 months. A similar clinical trial done by  Strauer and 

colleagues in 18 chronic heart patients further showed that metabolic regeneration of the 

infarcted and chronically avital myocardial tissue was realized upon cell transplantation 

(Strauer et al, 2005). 

Significant improvement in myocardial perfusion was also observed in 4 out of 6 

CABG patients who underwent autologous bone marrow-derived AC133+ cell 

transplantation after 9 months post-transplantation. (Stamm et al, 2003). Another study 

performing intracoronary administration of highly enriched CD133+ cells into 19 acute 

myocardial infarction patients showed favourable results with significant improvement in 

left ventricular performance but was associated with increased incidence of coronary 

events (Bartunek et al, 2005). Assmus and colleagues did a comparative study between 

bone marrow-derived and peripheral blood-derived progenitor cells in restoring 

revascularization after acute MI and found no significant difference between them 

(Assmus et al, 2002). 

Even though clinical data revealed feasibility, safety and some benefits towards 

the use of bone marrow cell transplantation in post-myocardial and bypass surgery 
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patients, further studies involving large patient numbers, randomized, double-blinded, 

placebo-controlled are necessary before any definite conclusions of using such therapy is 

made. It is also necessary to note that in most of the studies, the effect of cell therapy 

alone is not analyzed since the patient population usually has undergone other types of 

treatment such as stenting, CABG and perfusion prior to cell transplantation.  

Peripheral blood-derived EPCs 

Circulating EPCs in peripheral blood is usually low during normal circumstances 

but can be increased by bone marrow stem cell mobilization with granulocyte colony 

stimulating factor (G-CSF), VEGF and HMG-CoA reductase inhibitors (Iwaguro et al, 

2002; Vasa et al, 2001; Kalka et al, 2000; Peichev et al, 2000; Takahashi et al, 1999). 

These circulating EPCs are also upregulated in numbers in the circulation either after 

vascular injury or during tumor growth. Transplantation of EPCs into animal hindlimb 

ischemia models significantly improved blood flow recovery and capillary density. Kalka 

and colleagues demonstrated that ex vivo expanded human EPCs successfully promoted 

neovascularization of ischemic limb and the rate of limb loss was significantly reduced 

(Kalka et al, 2000).  

Similar success was also obtained with EPC transplantation into MI models. 

Human EPCs derived from peripheral blood mononuclear cells injected in athymic nude 

rats showed increased number of capillaries of both human and rat origin at 2 weeks after 

transplantation (Kawamoto et al, 2001; Kocher et al, 2001). These cells were cultured and 

expanded ex vivo for 7 days in EC basal medium and then labeled as the ex-vivo 

expanded EPC-enriched fraction (Kawamoto et al, 2001). Reduction in cardiomyocyte 

apoptosis resulting in a lesser extent of scarring was also observed. Echocardiography 
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revealed ventricular dimensions that were significantly smaller and fractional shortening 

that was significantly greater in the transplanted group. Similar results were obtained by 

Kocher and colleagues who transplanted G-CSF mobilized CD34+ human cells that 

contain both hematopoietic stem cells and EPCs (Kocher et al, 2001). Their results 

showed that while human-derived ECs were mainly located exclusively within the central 

infarct area, the rat-derived ECs were found in abundance in the peri-infarct area. These 

studies suggested that the transplanted EPCs are capable of differentiating in vivo into 

ECs to participate in vasculogenesis and angiogenesis in the rat myocardium and also 

secrete angiogenic factors that may be responsible for the mobilization, homing and 

differentiation of rat endogeneous stem cells. Transplantation of autologous EPCs from 

swine peripheral blood was also recently reported (Kawamoto et al, 2003). After 4 weeks 

post transplantation, increased angiographic collateral development, capillary density and 

myocardial function were observed. 

Umbilical cord-derived EPCs 

EPCs can usually be obtained in greater amounts from umbilical cord blood and 

they are of higher mitotic rate and have longer telomere as compared to bone marrow-

derived cells (Forraz et al, 2002). Furthermore, the capability of bone marrow to produce 

effective EPCs usually decrease with aging, therefore making the use of umbilical cord 

blood to be more attractive (Rao et al, 2001). Human CD133+ progenitor cells from cord 

blood had been shown to be effective in producing functional recovery in myocardial 

infarction models of athymic nude rats by preventing scar thinning and left ventricular 

systolic dilatation (Leor et al, 2005). These cells were found to be located in the newly 

formed vessel walls as ECs. Another study reported that CD34+/CD133+ cord blood cells 
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overexpressed Ang-1, Ang-2, VEGF and their receptor mRNA suggesting a role in 

regulating angiogenesis (Pomyje et al, 2003). In comparison, CD34+/CD133+ cells from 

bone marrow had lower Ang-1 and Tie-2 mRNA expression levels. Cord blood 

mononuclear cells upon culturing showed numerous cell clusters, spindle shaped 

adherent cells and cord-like structures. These cells and the cord-like structures were 

derived mainly from CD34+ mononuclear cells. The adherent cells incorporated 

acetylated-LDL, released nitric oxide and expressed Flk-1, Ve-cadherin, CD31 and von 

Willebrand factor (Murohara et al, 2000). Upon transplantation of these cells into 

ischemic hind limb tissue of immunodeficient nude rats, these cells survived and 

participated in newly formed capillary networks. Similar studies were done with similar 

results showing that CD34+ cells from the cord blood expressed endothelial markers and 

while these markers increased over time upon culturing, stem cells markers such as 

CD133+ on these same cells disappeared (Fan et al, 2003; Yoo et al, 2003; Wada et al, 

2003).  

Embryonic stem cell-derived EPCs 

EPCs have also been shown to be derived from embryonic stem cells (ESC). This 

will be discussed in greater lengths in the following segment of the Thesis. 

 

1.7 Embryonic stem cells- a new era in therapeutic angiogenesis 

The term ESC originated from the isolation of pluripotent stem cell cultures from 

mouse blastocysts in 1981 by Evans and Kaufman (Evans et al, 1981) and independently 

by Martin (Martin 1981). The ESCs were discovered to be capable of self-renewal and 

prolonged primitive undifferentiated proliferation in culture. They have also been shown 
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differentiate spontaneously into various cell lineages representative of all three 

embryonic germ layers which are the ectoderm, mesoderm and endoderm and also the 

germ cell line when incorporated into chimeras with intact mouse embryos (Bradley et al, 

1984; Nagy et al, 1993). This initial isolation of murine ES cells in 1981 heralded a major 

breakthrough for developmental biology since it provided a simple model system to study 

the basic processes of early embryonic development and cellular differentiation. The 

large impact that these murine ES cell lines had on several research fields in the last 20 

years had led to intensive efforts being invested into the derivation of human pluripotent 

stem cell lines.  

Three pluripotent cell types have been established from human tissue. They are 

the human embryonic carcinoma cells (Finch et al, 1967; Andrews et al, 1980; Pera et al, 

1989), human embryonic germ (EG) cells (Shamblott et al, 1998) and human embryonic 

stem cells (HESC) (Thomson et al, 1998; Reubinoff et al, 1998).  

Human and murine embryonic carcinoma cell lines were the first pluripotent cell 

lines to be established. They were derived from the undifferentiated compartment of 

human and murine germ cell tumours. They can be expanded continuously in culture and 

can also differentiate into derivatives of all three embryonic germ layers either in vitro or 

through teratocarcinoma formation. However, these cells seem to have less differentiating 

capacity as compared to ESC and they are usually aneuploid, making them unsuitable for 

clinical applications. Pluripotent human and murine EG cell lines were derived from 

primordial germ cells in the genital ridges of the developing embryos, around 5 to 9 

weeks after fertilization in humans. 
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HESCs are derived from the inner cell mass of human blastocysts which are 

produced via in vitro fertilization. The derivation procedure begins with the selective 

removal of the outer trophoblast layer of the blastocysts via immunosurgery. These outer 

trophoblast cells of the blastocysts usually give rise to extra-embryonic tissues. The inner 

cell mass cells were next isolated and cultured on a mitotically inactivated mouse 

embryonic fibroblasts (MEF) feeder layer. In order to obtain homogeneous colonies of 

ES cells, cells from the periphery of the colonies were mechanically isolated and 

recultured in similar fashion. These colonies were then selected, passaged and expanded 

for the creation of the ES cell lines. The HESCs can proliferate in culture under special 

conditions in its undifferentiated state for a prolonged period of time and have the 

capacity to form derivatives of all three germ layers. They also maintain a stable diploid 

karyotype and continuously express high level of telomerase activity during long term 

propagation in culture (Thomas et al, 1998; Amit et al, 2000).  

HESCs show several important differences from murine ES cells in culture. They 

tend to proliferate slower and form flat colonies with distinct borders. Murine ES cell 

grow in spherical colonies with indistinct cell borders. HESCs are also more easily 

dissociated into single cells (Laslett et al, 2003). They require basic fibroblast growth 

factor in their culture medium to maintain their pluripotency instead of leukemia 

inhibitory factor (Thomas et al, 1998; Amit et al, 2000; Reubinoff et al, 2000). Murine 

and HESCs also differ in some of their antigenic phenotypes. While murine ES cells 

express embryonic self surface antigen SSEA-1 but not SSEA-3 and SSEA-4, HESCs 

express the opposite phenotype. Other antigens being expressed by HESCs include TRA-

1-60 and TRA-1-81 and they also contain alkaline phosphatase activity.       
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Pluripotency of HESCs has been shown using two different approaches. The first 

approach is the demonstration that HESCs can differentiate into cells from the three germ 

layers in vivo. HESCs upon injecting into immunodeficient mice, develop into benign 

teratomas containing advanced differentiated tissue types representing all three germ 

layers (Thomas et al, 1998; Amit et al, 2000). The second approach involves 

demonstration of ES pluripotency during in vitro differentiation. When HESCs are 

removed from the MEF feeder layer and allowed to differentiate in suspension, they form 

3-dimensional cell aggregates known as embryoid bodies (EBs). These EBs contain cell 

derivatives from ectodermal, endodermal and mesodermal origins (Itskovitz-Eldor et al, 

2000). 

1.7.1 In vitro differentiation of HESCs into endothelial progenitor cells and 

endothelial cells 

 HESC culture systems have shown that the formation of EBs and induction of cell 

differentiation results in 3-dimensional vessel-like structures within EBs in a pattern that 

resembles embryonic revascularization. The capillary areas in the EBs increased during 

subsequent maturation steps, starting from cell clusters that later sprout into capillary-like 

structure and eventually organize into a network-like arrangement (Gerecht-Nir et al, 

2005; Levernberg et al, 2002). These vasculogenic CD31+ cells when isolated from EBs 

and grown in culture, express endothelial markers and form vascular structures in vitro 

and in vivo (Levenberg et al, 2002). The time course of cell differentiation and 

development of extensive vascular structures within the EBs correlated with the RT-PCR 

analysis that demonstrated subsequent increase in RNA levels of endothelial genes such 

as CD31, CD34, Ve-cadherin and GATA-2, peaking at day 13-15. Large scale gene 
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expression analysis during EBs differentiation from 0 to 4 weeks using gene arrays and 

real time PCR further revealed that there were additional upregulated expression of 

vasculogenic growth factors; VEGF, Ang-1 and Ang-2 and PDGF-B, endothelial markers; 

VCAM-1, Flt-1 and -2 and transcription factors; GATA-1 and -3 (Gerecht-Nir et al, 

2005). When direct HESC differentiation was performed by culturing HESCs directly on 

collagen IV, this resulted to two types of cell population which differ by size. When the 

small cells were filtered out, there was an upregulation of specific endothelial markers 

such as CD31, CD34, Tie-2 and GATA-2. When the filtrated cells on collagen IV were 

replated with VEGF supplementation, cord-like organization of the cells was observed. 

Addition of PDGF-B induced smooth muscle cells differentiation (Gerecht-Nir et al, 

2003). Seeding of HESCs on stromal feeder cells consisting of bone marrow and yolk sac 

have been shown to induce differentiation into CD34+ cells. About 50% of the CD34+ 

cells also express endothelial marker, CD31 (Kaufman et al, 2001). However despite the 

enrichment step, these cells were present only at very low frequency and work is ongoing 

to increase the yield of the target cell type by modulating the composition of the culture 

medium. 

1.7.2 Mechanisms by which EPCs and ECs induce neovascularization 

1.7.2.1 Vasculogenesis 

Vasculogenesis is the main process of blood vessel development during 

embryonic development (Conway et al, 2001; Yancopoulos et al, 2000; Risau et al, 1995). 

Vasculogenesis originates from primitive EPCs from angioblasts derived from 

pluripotent ESCs to form primitive vessel network. Blood vessel development first 

appears outside of the embryo proper, on the yolk sac known as blood islands which form 
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within the mesoderm adjacent to the extraembryonic endoderm. Here is where the 

mesodermal precursor known as the hemangioblasts reside and undergo their first critical 

steps of differentiation. Hemangioblast is the common precursor of both hematopoietic 

and ECs (Choi et al, 1998). Cells at the perimeter of blood islands give rise to EPCs and 

those cells at the centre constitute hematopoietic progenitor cells. Vasculogenesis occurs 

via migration of EPCs to the paraxial mesoderm, proliferation, subsequent differentiation 

into endothelial cells to form plexus with endothelial tubes and recruitment of other cell 

types such as pericytes and smooth muscle cells to complete the whole process of 

vascular formation. 

Vasculogenesis was originally believed to be restricted to embryonic development. 

However, only in recent years, the discovery of circulating EPCs showed that a modified 

type of vasculogenesis does contribute to neovascularization in adults. In adults, EPCs 

originate from bone marrow, peripheral blood and umbilical cord (Szmitko et al; 2003; 

Walter et al, 2002; Asahara et al, 1999b; Isner et al, 1999). Circulating EPCs usually have 

high proliferation rate and home into sites of neovascularization postnatally via 

orchestrated signals of various growth factors and receptors (Lin et al, 2000).  

1.7.2.2 Angiogenesis 

Angiogenesis involves the extension of pre-existing primitive vasculature by the 

sprouting of new capillaries into the surrounding tissues through migration and 

proliferation of mature ECs (Madeddu 2005; Conway et al, 2001; Folkman et al, 1992). 

This process occurs spontaneously under a variety of stresses such as inflammation, 

wound healing, peripheral vascular disease, acute and chronic myocardial ischemia. The 

process begins with vasodilation, extravasation of plasma proteins so as to create a 
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temporary support structure for the migrating ECs and degradation of extracellular matrix 

by metalloproteinases. With the physical barriers no longer intact, ECs are free to migrate 

and assemble into solid cords. Finally, stabilization and remodeling of the newly formed 

vessels into 3-dimensional networks take place to complete the whole process (Risau 

1997).  

1.7.2.3 Arteriogenesis 

Arteriogenesis refers to the maturation of capillary blood vessels into mature 

arteriolar blood vessels with recruitment of monocytes and macrophages which produce 

the cytokines and growth factors required for collateral growth and subsequent 

stimulation and recruitment of smooth muscle cells in the tunica media (Madeddu et al, 

2005; Carmeliet 2003; Conway et al, 2001). These arterioles are normally enlarged in 

size and able to support high transportation capacity. These blood vessels are known to 

form true collateral blood vessels during ischemia.  

 

1.8 Overall aim of the study 

The overall aim of this study is to assess the efficacy of peptide therapy and cell-

based therapy using HESC-derived EPCs in regulating inflammatory cytokines 

expression and forming therapeutic blood vessels via angiogenesis respectively for the 

treatment of heart failure. The following chapters will cover the two studies in greater 

detail.  
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2.1 Abstract 
 

We investigate the influence of des-Aspartate-angiotensin-I (DAA-I) on the 

cytokine expression profile in a rodent model of myocardial infarction. Myocardial 

infarction was created in female Wistar rats by coronary artery ligation. Animals were 

randomized to receive intravenously either a daily dose of 1.2μg DAA-1 /kg body weight 

(group-1; n=60) or saline (group-2; n=60) for 14-days after infarction. Heart function was 

assessed by echocardiography. Animals were euthanized at 1, 3, 7, 14 and 31-days. 

Morphometric analysis using tetrazolium chloride staining revealed that infarct size was 

reduced by 32.2% (p<0.05) in group-1 after 14 days of DAA-I treatment. Left ventricular 

ejection fraction in group-1 improved significantly (73.4%) as compared to group-2 

(47.7%; p<0.001). Immunostaining for immune cells at the infarct size showed that CD8+ 

lymphocytes infiltration at the infarct site declined in group-1 (15 ± 5 cells) as compared 

to group-2 (50 ± 6 cells; p<0.001). Infiltration of monocytes and macrophages remained 

significantly high at day 14 in group-2 (126 ± 40 cells) as compared to group-1 (49 ± 11 

cells; p=0.006). Multiplex PCR was done for differential gene expression of various pro-

inflammatory cytokines. IL-6, TNF-α, TGF-β and GM-CSF expression were 

significantly down-regulated in the infarct, peri-infarct and contra-lateral zones of the left 

ventricle in group-1 as compared to group-2. IL-6, TGF-β and GM-CSF expression 

started to decline from day 1 of DAA-I treatment whilst TNF-α expression was only 

reduced after 7-days of DAA-I treatment. It can be concluded that DAA-I prevented 

infarct expansion through suppression of inflammatory cytokines and immune cell 

infiltration in the infarct region. 

 



 78

2.2 Introduction 

Des-aspartate angiotensin I (DAA-I) is a nona-peptide produced from cleavage of a 

deca-peptide through the action of an aminopeptidase (Blair-West et al, 1971), that has 

been demonstrated to significantly attenuate the experimentally induced cardiac 

hypertrophy in rats (Sim et al, 1998). Being an endogenous angiotensin peptide of the 

renin angiotensin cascade, it is capable of exerting cardioprotective actions in 

cardiovascular pathologies where angiotensin II is involved. These include attenuation of 

cardiac hypertrophy in rats with abdominal aortic coarctation, attenuation of neointima 

formation in balloon catheter-injured rat carotid artery and age-related vascular 

hypertrophy (Sim et al, 2004). DAA-I is also capable of counteracting the actions of 

angiotensin II (Sim et al, 1994). One example is the attenuation of angiotensin II-induced 

hypertrophy and hyperplasia in cardiomyocytes and vascular smooth muscle cells, 

respectively (Min et al, 2000). Anti-cardiac hypertrophic actions of DAA-I is mediated 

via the AT1 receptors. However very high dosage of DAA-I diminished this anti-

hypertrophic effects due to gradual loss of AT1 receptors via the endocytic internalization 

process (Chen et al, 2004). 

During myocardial ischemia, the renin-angiotensin cascade is activated and 

angiotensin II is implicated in ischemic damages of the heart (Santos et al, 1990; Dzau 

2001). Angiotensin II elicits several responses that are either responsible for or 

exacerbate ischemia-reperfusion injury such as vasoconstriction, inflammation, 

remodeling and thrombosis. AT1 receptor antagonists and ACE inhibitors have been 

shown to be able to reduce infarct size in animal models of myocardial ischemic injury 

suggesting that deleterious actions of angiotensin II are mediated by AT1 receptors. 
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DAA-1 has also been shown to act via AT1 receptors to reduce the infarct size of 

ischemia-reperfusion injury rodent models (Wen et al, 2004). 

The aim of this present study is to investigate the influence of DAA-I on the 

cytokine expression profile and its efficiency in reducing infarct size in a rodent model of 

MI. We hypothesized that DAA-1 may indirectly exert its cardioprotective effect via 

suppression of inflammatory cytokines that are implicated in the pathophysiology of 

heart failure.  
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2.3 Materials and Methods 

2.3.1. Materials 

2.3.1.1 Des-aspartate-angiotensin-I  

DAA-I was kindly provided by our collaborator Associate Professor Sim Meng 

Kwoon, Department of Pharmacology, National University of Singapore. 

2.3.1.2 Wistar rats   

 A total of 132 female Wistar rats (± 250g) were used for the creation of the rat 

myocardial infarction model. Wistar rats were purchased from Centre for Animal 

Resources, Lim Chu Kang, Singapore. 

The materials used for this study is listed in Appendix 6.1. 

2.3.2 Methods  

2.3.2.1 Rat model of myocardial infarction 

Rat ligation model of myocardial infarction was used for the in vivo studies. All 

animals received human care in compliance with the “Guide for the Care and Use of 

Laboratory Animals”, published by the National Institute of Health, USA. Ethical 

approval was also obtained from International Animal Care And Use Committee 

(IACUC), National University of Singapore. All animals were monitored and maintained 

daily by the staff from Animal Holding Unit of National University of Singapore.  

Creation of rat ligation model  

Female Wistar rats weighing about 200 to 250g were anaesthetized with 

ketamine-xylazine mixure (ketamine 75mg/kg, xylazine 10mg/kg) by intraperitoneal 

injection. They were next intubated and mechanically maintained with room air. To 

ensure that the rats were properly anesthetized, their reaction to skin incision and toe 
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pinch were noted. The chests were then shaved and cleaned with 70% ethanol and iodine 

prior to exposing their hearts through a 2-cm left lateral thoracotomy. To ensure aseptic 

techniques, all surgical instruments were autoclaved before use and the area where the 

surgery was performed was cleaned with 70% ethanol. Sterile gloves, face mask and 

clean surgery lab coat were worn by the surgeon.  

In order to locate the left anterior descending (LAD) coronary artery, the 

pericardium surrounding the left ventricle was carefully removed. Once the LAD artery 

was located, it was ligated proximally with a 6-0 prolene non-absorbable suture. Upon 

ligation, the area of infarction that was created would turn slightly pale. The muscle layer 

and skin incision were closed with 3-0 silk absorbable suture and rats were returned to 

their cages for recovery.   

Animal groupings for DAA-I administration therapy  

The animal groupings for DAA-I study were listed as follows: 

1. Group-1a: DAA-I-treated day 1 ligation (n=12) 

2. Group-1b: DAA-I-treated day 3 ligation (n=12) 

3. Group-1c: DAA-I-treated day 7 ligation (n=12) 

4. Group-1d: DAA-I-treated day 14 ligation (n=12) 

5. Group-1e: DAA-I-treated day 31 ligation (n=12) 

6. Group-2a: Saline-treated day 1 ligation (n=12) 

7. Group-2b: Saline-treated day 3 ligation (n=12) 

8. Group-2c: Saline-treated day 7 ligation (n=12) 

9. Group-2d: Saline-treated day 14 ligation (n=12) 

10. Group-2e: Saline-treated day 31 ligation (n=12) 



 82

11. Group-3: Sham-operated (n=12) 

DAA-I administration 

 The rats were administered intravenously with 200µl of saline containing a daily 

dose of 1.2µg/kg of body weight of DAA-I. Optimal  dose selection of DAA-I was based 

on previous studies. The rats were injected with DAA-I immediately after infarction was 

induced and this treatment regimen was continued daily till the time of animal sacrifice.   

Post surgery care for the rat MI models 

Analgesia (Buprenorphine; 0.1mg/kg) and antibiotics (Cefazolin; 40mg/kg) were 

injected subcutaneously into the rats for 5 days. Opsite spray and topical antibiotic 

powder were applied to the wound to prevent infection.  

Euthanasia of the rats 

The rats were euthanized by an overdose of sodium pentobarbital. Their chests 

were opened up and hearts harvested. 

2.3.2.2 Functional studies 

Rat heart function assessment using echocardiography 

The assessment of the cardiac function were done 1, 3, 7, 14 and 31 days of 

DAA-I treatment. Left ventricular (LV) function assessment and dimension 

measurements were carried out by 2-dimensional (2D) echocardiography using a GE 

Vivid 5 ultrasound machine (GE Medical Systems) with a 10MHz phased array 

transducer. The transducer was covered with a surgical latex glove finger filled with 

ultrasound transmission gel to provide a standoff of 0.5-0.7cm to achieve optimum 

resolution. The rats were given very light anesthesia with low dosage of 

ketamine/xylazine mixture (ketamine 75mg/kg, xylazine 10mg/kg). Their chests were 
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shaved and they were placed in a left lateral position. A standard lead II 

electrocardiogram was recorded for heart rate measurement. After a 2-dimensional (2D) 

image was obtained in a para-sternal short axis view at the level close to the papillary 

muscles, a 2D guided M-mode trace crossing the anterior and posterior wall of the LV 

was recorded at a sweep speed of 100mm/s. Caution was taken not to apply excessive 

pressure over the chest which could cause bradycardia and deformation of the heart. 

Heart function parameters including LV internal end-diastolic (LVEDd) and end-systolic 

(LVESd) diameter were measured using M-mode tracings. The measurements were made 

using the leading edge method recommended by the American Society of 

Echocardiography. LV fractional shortening was calculated as FS%= [LVEDd-

LVESd)/LVEDd]×100. Ejection fraction was calculated as LVEF= 1-[LVESd/LVEDd]2 . 

All measurements were done by investigators blinded to the treatment groups. The 

measurements were averaged between three to five consecutive cardiac cycles. 

2.3.2.3 Assessment of the effect of DAA-I on the infarction model 

Morphometric analysis using tetrazolium chloride staining 

After excision, the hearts were washed thoroughly with distilled water to remove 

any remaining blood. The heart were cut into 5 to 7 transverse slices and incubated in 1% 

triphenyltetrazolium prepared in 0.1M of sodium phosphate (NA2PO4) buffer; pH 7.4 for 

20 minutes at 37°C. Tetrazolium chloride stained the viable tissue dark red leaving the 

necrotic tissue pink.  The slices were fixed in 10% neutral buffered formalin solution for 

20 minutes. Each slice was then carefully traced along the borders of the infarction area 

and the non-infarction area on a piece of paper and the corresponding areas were weighed 

out. The infarction area was calculated as the weight of the traced infarcted slice divided 
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by the total weight of both traced infarcted and non-infarcted slices multiplied by 100 

percent. 

                  Infarcted area 

 Infarcted and non infarcted areas 

 

Multiplex PCR for inflammatory cytokines 

MPCR was carried out for semi-quantitative analysis of rat inflammatory 

cytokines mRNA expression in DAA-I and saline-treated rat hearts using glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) as the internal control. The specific rat primer 

sequences and their sizes are summarized in Table 6. MPCR mixture (total volume of 

50μl) contained 25μl of 2× MPCR buffer, 5μl of 10× MPCR primers, 0.5μl of 5U/μl Taq 

DNA Polymerase, 1.0μl of 10mM dNTPs, 5μl single stranded cDNA and sterile water. 

The mixture was transferred from ice to the thermal cycler using the following reaction 

conditions: Initial activation step: 96°C, 1 minute, 59°C, 4 minutes for 4 cycles, 

Denaturation step: 94°C, 1 minute and Annealing step: 59°C, 2 minutes for 30 cycles and 

Extension step: 70°C, 10 minutes. The PCR products were run on a 2% agarose gel and 

the relative density of GAPDH and the various inflammatory cytokines and growth 

factors bands were determined using a computerized densitometry system. 

Immunohistochemical staining of cytokines 

 Immunohistochemistry was performed either on formalin-fixed paraffin-

embedded tissue or snap-frozen tissue fixing medium-embedded cryosections. Both 

tissue preparations are mentioned in Appendix 6.2.3 and 6.2.4. The tissue sections were 

washed twice in 1× PBS for 5 minutes, fixed with -20°C methanol for 10 minutes and  

×     100% 



 85

 
 
 
 
 
 
 
 

Table 6: List of specific rat cytokines and growth factors primer sequences and their sizes 
 

Cytokine Primer Sequence Product Size 
(bp) 

GM-CSF Forward= 5’- CTGAGCCTCCTAAATGACATG -3’ 
Reverse= 5’- AAGGGTTGGAGGGCAGTTCG-3’ 

210 

TGF-β Forward= 5’- TATAGCAACAATTCCTGGCG -3’ 
Reverse= 5’- AAGGTCGGTTCATGTCATGGA-3’ 

250 

IL-1β Forward= 5’-GATGTTCCCATTAGACAGCTG-3’ 
Reverse= 5’-CTTTTCCATCTTCTTCTTTGGGTA-3’ 

294 

TNF-α Forward= 5’-CTACTGAACTTCGGGGTGATC-3’ 
Reverse= 5’-CTGGTATGAAGTGGCAAATCG-3’ 

351 

IL-6 Forward= 5’-CCAGTATATACCACTTCACAAG-3’ 
Reverse= 5’-CAAGATGAGTTGGATGGTCTTGG-3’ 

453 

GAPDH Forward= 5’-GGGTGGTGCCAAAAG G- 3’ 
Reverse= 5’-GGAGTTGCTGTTGAAGTC-3’ 

532 
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treated with 3% methanolic hydrogen peroxide solution (H2O2) for 15 minutes. After 

washing with 1× PBS, the tissue sections were blocked with Ultra V Block for 8 minutes 

followed by incubation with the respective primary antibodies at optimal dilution at room 

temperature (Table 7). After thorough washing with 1× PBS, they were incubated with 

the corresponding secondary antibody and washed using 1× PBS prior to the detection 

step. Depending on the secondary antibody used, the detection method used was either by 

fluorescent method or diaminobenzidine solution. 

2.3.3 Statistical analysis 

Statistical analysis was performed using SPSS (version 11.0). All data were 

presented as mean ± standard error mean (SEM) and compared by analysis of variance 

(ANOVA) between groups. Intra-group comparison was carried out using paired student t 

test. P< 0.05 was considered statistically significant.  
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Table 7: List of primary and secondary antibodies used for cytokine immunostaining 
 
Primary Antibody Dilution used Secondary Antibody Dilution used Incubation time 
Rabbit anti rat TNF-α 1:250 Goat anti-rabbit rhodamine 

conjugated 
1:500 1 ½  hour 

Goat anti-rat IL-6 1:100 Rabbit anti-goat FITC 
conjugated 

1:700 1 ½  hour 

Mouse anti-rat IL-1β 1:250 Rabbit anti-mouse 
rhodamine comjugated 

1:500 1 ½  hour 

Rabbit anti-rat TGF-β 1:200 Goat anti-rabbit rhodamine 
conjugated 

1:500 1 ½  hour 

Mouse anti-rat CD8a 1:20 Anti-mouse IgG-HRP 
conjugated 

Ultravision kit 8 min 

Mouse anti-rat ED1, 
monocytes and 
macrophages 

1:20 Anti-mouse IgG-HRP 
conjugated 

Ultravision kit 8 min 
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2.4 Results 

There was no mortality in the treatment groups after DAA-I treatment thus 

reflecting the safety of DAA-I administration. All animals completed their respective 

designated time duration.  

2.4.1 Effects of DAA-I on infarct size and heart function 

Morphometric analysis revealed that infarct size was significantly reduced by 

32.2% in DAA-1-treated group-1 animals (12% ±0.58%), as compared to the saline-

treated group-2 animals (17.7%± 0.97; p<0.05) after 14 days of DAA-I treatment (Figure 

2a). Echocardiographic assessment showed an associated improvement in left ventricular 

ejection fraction (LVEF) in group-1 as compared to group-2 (Figure 1b). However, a 

progressive deterioration in left ventricular performance was shown by the deterioration 

of ejection fraction in group-2. LVEF was maintained at an average of 73.4% after 14 

days of DAA-I treatment in group-1 (range 69.2% to 75.9± 3.13%) which persisted until 

31 days of observation as compared to group-2 which deteriorated (47.7%; p<0.001) 

from day 3 to day 31 of observation (range 38 to 51± 3.38%) (Figure 2b).  

2.4.2 Immune cell filtration 

Immunohistochemistry for monocytes, macrophages and CD8+ cytotoxic T-

lymphocytes surface markers showed that there was little infiltration of CD8+ cytotoxic 

T-lymphocytes in both group-1 and group-2 as compared to monocytes and macrophages 

(Figures 3a & b and 4a & b). CD8+ cells remained high in group-2 (50± 6 cells, at 300× 

magnification) until day 7 after infarction but dropped significantly by day 14 (10± 3 

cells; p<0.001). DAA-I treatment was observed to suppress the number of these cytotoxic 

cells from day 3 after infarction. The mean number of CD8+ cells in group-1 was 15± 5  
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Figure 2: (a) Effect of DAA-I treatment on infarct size. Rats were treated intravenously 
with either saline (n=12 at each time point) or DAA-I (n=12 at each time point) daily for 
14 days. Significant difference in the infarct size occurred at day 14 after treatment. The 
mean infarct sizes were 17.7% ± 0.97 for saline-treated rats and 12% ± 0.33 for DAA-I 
treated rats, (b) Effect of DAA-I treatment on the ejection fraction of the heart. Rats 
were subjected to echocardiographic studies before their hearts were explanted (n=12 at 
each time point). Significant improvement in ejection fraction was observed after 3 days 
of DAA-I treatment. 
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Figure 3: (a) Immunostaining of CD8+ T-lymphocytes on tissue sections from saline 
and DAA-treated rat hearts. Positive cells staining brown as shown below, infiltrated in 
significantly higher numbers (48± 7 cells) in saline-treated animals at day 3 as compared 
to DAA-treated animals (15± 5 cells; p=0.02). However, the number of positive cells 
dropped to the same level in both groups of animals by day 14 (Magnification 300×) 
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Figure 3: (b) Graphical representation of the number of CD8+ T-lymphocytes in the 
infarcted heart at various time points. 
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cells until day 14. During the first 3 days after infarction, CD8+ cells were widely and 

evenly distributed in the infarct area however, by day 14, the cells were only in certain 

regions of the infarct area. 

Immunostaining for ED1 surface marker showed that the monocytes and 

macrophages continued to decline from day 3 post-infarction until day 14 of observation, 

in both group-1 and group-2 animals (Figure 4a & b). Both monocytes and macrophages 

were found widely distributed in the infarct area. Upon quantification, mean number of 

monocytes and macrophages was initially high (220± 38 cells at 300× magnification) 

during the first 3 days after infarction in group-2.  However a significant drop was 

observed (126± 40 cells; p=0.002) by day 14. On the other hand, mean number of 

monocytes and macrophages showed more significant reduction in group-1 (49± 11 cells; 

p=0.006) by day 14 as compared to group-2.  

2.4.3 Effect of DAA-I on cytokine gene expression   

Expression of inflammatory cytokines was analyzed in the infarcted myocardium 

with and without intravenous DAA-I treatment. Changes in expression of the cytokine 

genes in the infarct, per-infarct and contra-lateral regions of the rat heart tissue as a 

function of time are illustrated in Figures 5-9.  

2.4.3.1 IL-6   

 In the infarct area, IL-6 expression in group-2 remained high from day 1 to day 7 

while its expression slowly increased until day 7 in group-1, however remaining at lower 

level as compared to group-2 (0.75-fold vs 1.0-fold) and dropping significantly in both 

groups at day 14 (0.28-fold). In the peri-infarct area, IL-6 expression was low at day 1 

but peaked at days 3 and 7 in group-1. In contrast, IL-6 expression in group-1 was  
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Figure 4: (a) Immunostaining of monocytes and macrophages on tissue sections from 
saline and DAA-treated rat hearts. Positive cells staining brown as shown below. The 
number of monocytes and macrophages infiltrating into the infarct area was very high in 
both groups of animals at day 3. No significant difference was seen until day 7. However 
by day 14, their number was much lower in DAA-treated animals (50± 9 cells) as 
compared to the saline-treated animals (130± 24 cells) (Magnification 300×) 
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Figure 4: (b) Graphical representation of the number of monocytes and 
macrophages in the infarcted heart at various time points. 
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Figure 5: (i-iii) Densitometric quantification of RT-PCR products of IL-6 in (i) infarct, (ii) peri-infarct, (iii) contra-lateral areas of 
saline and DAA-I treated rat heart tissue samples, (iv) RT-PCR products of IL-6, fractionated by electrophoresis through a 2% 
agarose gel and visualized by ethidium bromide staining. 

IL-6 expression in infarct area

0

0.2

0.4

0.6

0.8

1

1.2

Day 1 Day 3 Day 7 Day 14

Rat Group

R
el

at
iv

e 
ra

tio
 o

f I
L-

6/
G

A
PD

H

Saline-treated

DAA-I treated

i

IL-6 expression in infarct area

0

0.2

0.4

0.6

0.8

1

1.2

Day 1 Day 3 Day 7 Day 14

Rat Group

R
el

at
iv

e 
ra

tio
 o

f I
L-

6/
G

A
PD

H

Saline-treated

DAA-I treated

ii

IL-6 expression in contralateral area

0

0.2

0.4

0.6

0.8

1

1.2

Day 1 Day 3 Day 7 Day 14

Rat Group

R
el

at
iv

e 
ra

tio
 o

f I
L-

6/
G

A
PD

H

Saline-treated

DAA-I treated

iii

  I           PI         CL           I           PI        CL     

Saline-treated DAA-I-treated 

Day 1 

Day 7 

Day 3 

Day 14 

iv



 96

significantly lower than group-2 from day 1 to day 3 (0.05-fold vs 0.35-fold and 0.25-

fold vs 1-fold, respectively). IL-6 expression in both groups dropped significantly by day 

14 (0.32-fold for group-1 and 0.76-fold for group-2). The same kind of trend was 

observed in the contra-lateral area (Figures. 5a-d). 

2.4.3.2 IL-1β 

 IL-1β expression in the infarct area remained high in both groups from day 1 to 

day 14 (0.8- to 1-fold). In the peri-infarct area, IL-1β expression still remained quite high 

but in group-1, the expression at day 14 dropped by half. IL-1β expression in contra-

lateral areas only peaked at days 3 and 7 for group-2 (1-fold) as compared to group-1 

where the expression peaked at day 3 (1-fold) and reduced significantly after that (0.47-

fold) (Figures. 6a-d). 

2.4.3.3 GM-CSF 

 GM-CSF expression in the infarct area in group-2 showed gradual but constant 

decline, starting from 0.52-fold at day 1 to 0.2-fold at day 14. Compared to group-1, GM-

CSF expression was low at day 1 (0.2-fold) and remained fairly low throughout until day 

14 (0.1-fold). In the peri-infarct area of group-2, the expression was lower as compared to 

the infarct area. The expression also remained the same throughout the different time-

points (average of 0.17-fold). Similar trend was observed in group-1 but the expression 

level was very low (average of 0.04-fold). The expression however, was slightly higher in 

the contra-lateral area. It peaked at days 3 and 7 for both groups (0.23-fold and 0.14-fold 

for group-2 and group-1, respectively) (Figures. 7a-d). 
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Figure 6: (i-iii) Densitometric quantification of RT-PCR products of IL-1β in (i) infarct, (ii) peri-infarct, (iii) contra-lateral areas of 
saline and DAA-I treated rat heart tissue samples, (iv) RT-PCR products of IL-1β, fractionated by electrophoresis through a 2% 
agarose gel and visualized by ethidium bromide staining. 
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Figure 7: (i-iii) Densitometric quantification of RT-PCR products of GM-CSF in (i) infarct, (ii) peri-infarct, (iii) contra-lateral 
areas of saline and DAA-I treated rat heart tissue samples, (iv) RT-PCR products of GM-CSF, fractionated by electrophoresis 
through a 2% agarose gel and visualized by ethidium bromide staining. 
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2.4.3.4 TNF-α 

TNF-α expression in the infarct and contra-lateral areas in group-1 peaked at day 

3 (0.76-fold and 0.61-fold respectively) but reduced significantly by day 14 (0.2-fold and 

0.13-fold respectively). In group-2, TNF-α expression in the infarct area remained high 

throughout the 14 days (average of 0.7-fold) as compared to the peri-infarct and contra-

lateral areas (average of 0.4-fold and 0.3-fold respectively). DAA-I treatment globally 

suppressed the expression of TNF-α at most time points (Figure 8a-d). 

2.4.3.5 TGF-β 

TGF-β expression in the infarct area of group-2 was the highest at day 1 (1.0-fold) 

and the lowest at day 7 (0.35-fold) after infarction. Moderate expression was seen at day 

3 and day 14 (0.6-fold). Upon treatment with DAA-I, the expression remained lower 

throughout, ranging from 0.25- to 0.42-fold. In the peri-infarct area, expression was 

highest at day 3, with 0.68-fold. DAA-I treatment also resulted in significant reduction of 

TGF-β throughout the 14 days, with the highest also being at day 7 with 0.48-fold. 

Approximately the same level and trend of expression was observed in the contra-lateral 

area for both group-1 and group-2 (Figures 9a-d). 

2.4.4 Immunohistochemical staining of cytokines 

To determine whether the change in cytokine mRNA transcript levels resulted in 

change in cytokine protein production, immunohistochemical staining of cytokine was 

done using respective antibodies (Figures 10-13). The results were consistent with the 

results obtained from multiplex PCR.   
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Figure 8: (i-iii) Densitometric quantification of RT-PCR products of TNF-α in (i) infarct, (ii) peri-infarct, (iii) contra-lateral areas 
of saline and DAA-I treated rat heart tissue samples, (iv) RT-PCR products of TNF-α, fractionated by electrophoresis through a 2% 
agarose gel and visualized by ethidium bromide staining. 
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Figure 9: (i-iii) Densitometric quantification of RT-PCR products of TGF-β in (i) infarct, (ii) peri-infarct, (iii) contra-lateral areas 
of saline and DAA-I treated rat heart tissue samples, (iv) RT-PCR products of TGF-β, fractionated by electrophoresis through a 2% 
agarose gel and visualized by ethidium bromide staining. 
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Figure 10: Immunofluorescent staining of IL-6 using FITC (green fluorescence) in 
saline and DAA-I treated rat hearts showing its expression in the infarct region. (a) 
heart section from 3-day saline-treated rat, (ii) heart section from 3-day DAA-I-treated rat, 
(iii) heart section from 2-week saline-treated rat, (iv) heart section from 2-week DAA-I-
treated rat. Expression of IL-6 was much higher during the first 3 days after infarction but 
reduced significantly at 2 weeks after infarction. IL-6 expression was lower in DAA-
treated animals compared to saline-treated animals. (Magnification 200×) 
 
 
 
 
 
 
 
 

i ii

iii iv



 103

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Immunofluorescent staining of IL-1β using TRITC (red fluorescence) in 
saline and DAA-I treated rat hearts showing its expression in the infarct region. (i) 
heart section from 3-day saline-treated rat, (ii) heart section from 3-day DAA-I-treated rat, 
(iii) heart section from 2-week saline-treated rat, (iv) heart section from 2-week DAA-I-
treated rat. Expression of IL-1β was approximately about the same throughout from day 3 
to day 14 in both DAA-treated animals and saline-treated animals. (Magnification 200×) 
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Figure 12: Immunofluorescent staining of TNF-α using TRITC (red fluorescence) in 
saline and DAA-I treated rat hearts showing its expression in the infarct region. (i) 
heart section from 3-day saline-treated rat, (ii) heart section from 3-day DAA-I-treated rat, 
(iii) heart section from 2-week saline-treated rat, (iv) heart section from 2-week DAA-I-
treated rat. Expression of TNF-α was much higher during the first 3 days after infarction 
but reduced significantly at 2 weeks after infarction. Its expression was much lower in the 
DAA-I treated than saline-treated animals. (Magnification 200×) 
 
 
 
 
 
 
 

i ii

iii iv



 105

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Immunofluorescent staining of TGF-β using TRITC (red fluorescence) in 
saline and DAA-I treated rat hearts showing its expression in the infarct region. (i) 
heart section from 3-day saline-treated rat, (ii) heart section from 3-day DAA-I-treated rat, 
(iii) heart section from 2-week saline-treated rat, (iv) heart section from 2-week DAA-I-
treated rat. TGF-β expression was much stronger in saline-treated animals than the DAA-
I treated animals, being highly expressed at day 3 and reduced significantly at day 14. 
(Magnification 200×) 
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2.5 Discussion 

In the present study, we showed that 14-day DAA-I treatment of rats subjected to 

permanent ligation of the LAD artery significantly reduced infarct size. This reduction in 

infarct size correlated with improved heart function. The infarct size measured at 14 days 

of DAA-I treatment was 32.2% smaller as compared to saline-treated group-2. LVEF in 

saline-treated group-2 was significantly higher improved in DAA-I treated group-1, from 

48% to 69%. The cardioprotective effect of DAA-I was maintained over 31 days of 

observation, while LVEF of group-1 remaining significantly higher than that of group-2 

and the infarct size was significantly reduced even though the significance was lower as 

compared to the 14-day time point. 

During the acute MI phase, a very high number of mononuclear immune cells 

infiltrated into the infarcted area. These cells released various cytotoxic compounds such 

as the complement, reactive oxygen species, inflammatory cytokines and chemokines that 

led to damage of the ischemic myocardium. The acute immune response plays a strong 

role in myocardial damage. Hence, various pharmacological approaches have been 

designed to protect the myocardium during this crucial phase. Most experimental studies 

showing reduction of infarct size after myocardial infarction by pharmacological drugs 

are concluded within 24 hours after injury. In our study, we extended the experiments 

until 31 days to see if the cardioprotective effect exerted by DAA-I during acute phase 

will be translated to a better morphology and/or function of the injured myocardium after 

a longer period of time. 

The reduction in infarct size after 14 days of DAA-I treatment is multifactorial 

and may be a combined effect of several processes. Reduced infiltration of immune cells 
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into the infarcted area might have led to reduced cardiac tissue damage. DAA-I treatment 

significantly reduced infiltration of CD8+ cytotoxic T-lymphocytes into the infarcted area 

during 3 to 7 days after infarction (Figures 3a & b).  Even though the number of CD8+ 

cells in both groups was the same at the end of 14 days of treatment (8± 2 cells), the 

initial number of infiltrating cells salvaging the cardiac muscle during the acute phase is 

crucial in determining the extent of damaged cardiac muscle. Monocytes and 

macrophages, the main source of various inflammatory cytokines, were only significantly 

reduced at day 7 after DAA-I treatment (220 to 115 cells in group-2 and 225 to 91 cells in 

group-1) (Figures 4a & b).   

Inflammatory cytokines have attracted considerable attention as important players 

in the pathological cascade implicated in the developmental and progression of heart 

failure; therefore it would be prudent to evaluate the effects of DAA-I on the myocardium 

at the molecular level. The present study profiles the LV gene expression of several 

inflammatory cytokines including IL-6, IL-1β, TNF-α, TGF-β and GM-CSF starting 

from day 1 to day 14, with and without DAA-I treatment. The results showed up-

regulated expression of the proinflammatory cytokines and growth factors in rats with MI 

in the absence of DAA-I treatment (Figures 5-9). These findings were consistent with the 

already documented studies in literature which showed elevated cardiac expression of 

mRNA transcripts encoding for these cytokines in both acute as well as chronic phase of 

MI (Ono et al, 1998; Irwin et al, 1999; Deten et al, 2002). Moreover, clinical and 

experimental studies have shown that the inflammatory response to MI is associated with 

the induction of cytokines such as TNF-α, IL-1β and IL-6, which acts in a cascade 

fashion (Cesari et al, 2003; Chin et al 2003; Torre-Amione et a1, 1996). 
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DAA-I treatment significantly reduced the expression of IL-6, TNF-α, TGF-β and 

GM-CSF in the infarct, peri-infarct and contra-lateral areas of the left ventricle (Figures 

5, 8-9). Reduction in expression was observed after 3 days of DAA-I treatment. For IL-

1β expression, differences were seen after 7 days of DAA-I treatment and only in the 

peri-infarct and contra-lateral areas (Figures 6b & c). Activation of the inflammatory 

cytokine cascade has been shown to exert a direct negative inotropic effect mediated 

through myocardial nitric oxide synthase. This phenomenon results in abnormal cardiac 

contractile performance and promotes maladaptive left ventricular remodeling (Finkel et 

al, 1992). The inhibitory effect of DAA-I on expression of the proinflammatory cytokines 

and growth factors seen in this study thus may have contributed, in part to improvement 

of cardiac function in group-1 (Figure 2b). This inhibitory action of DAA-I on 

inflammatory cytokine expression is probably due to its antagonizing action on 

angiotensin II (Sim et al, 1994). Angiotensin II is known for stimulating and activating 

cytokine production which in turn leads to inducible nitric oxide synthase and oxy-radical 

formation (Han et al, 1999; Nakamura et al, 1999; Sadoshima 2000: Ruiz-Ortega et al, 

2001). Furthermore, angiotensin II has also been reported to play a role in modulating 

mononuclear cell chemo-attractant protein-1 (MCP-1) activity. MCP-1 functions by 

establishing a chemical gradient to attract adherent monocytes and T-lymphocytes to the 

injury site (Ruiz-Ortega et al, 1998). 

In conclusion, we showed that administration of DAA-I for 14 days following 

acute MI resulted in significant reduction in infarct size and preservation of left 

ventricular function. The beneficial effect of DAA-I was accompanied by reduced 
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immune cell infiltration into the infarcted area and suppressed proinflammatory cytokines 

and growth factors gene expression.  
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3.1 Abstract 

The ability of HESCs to differentiate into specific somatic lineages is expected to 

have far reaching therapeutic applications in cell and gene therapy.  Realization of this 

potential depends on the development of efficient and reliable protocols for directed 

differentiation in vitro which will significantly increase the number of specific 

differentiated cell type of interest and ultimately generate pure cultures of that particular 

lineage. 

In this study, we demonstrated that the transduction of adenoviral vector 

expressing human VEGF165 (ad-hVEGF165) gene into differentiating HESCs can enhance 

the efficiency of endothelial lineage differentiation. EPCs and ECs play an important role 

in blood vessel formation via vasculogenesis and angiogenesis. 

HESC line, H1 was induced to form EBs by culturing them in low attachment 

plates for 7 days, trypsinized into single cells and transduced with ad-hVEGF165 under 

optimized transduction condition. Assessment of mature ECs and putative EPCs was 

achieved through immunostaining of markers such as CD31, Ve-cadherin, von-

Willebrand factor; semi-quantitative and quantitative PCR of various vascular-related 

transcription factors, growth factors and their receptors gene markers and flow cytometric 

analysis. ELISA was performed to measure the hVEGF165 protein expression and the 

biological activity of the secreted hVEGF165 was assessed using a HUVEC proliferation 

assay.  

Optimal transduction efficiency with high cell viability was achieved by 4-hour 

exposure of the cells to viral particles at a ratio of 1:500 for 3 consecutive days. ELISA 

results showed that ad-hVEGF165 transduced cells secreted hVEGF for more than 30 days 
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post-transduction, peaking at day 8 (27.5 ± 7ng/ml). The conditioned medium from the 

ad-hVEGF165 transduced cells resulted in extensive proliferation of HUVEC as compared 

to other conditioned media (≈2-fold). Upregulation of VEGF, Ang-1, Flt-1, Tie-2, CD34, 

CD3, CD133 and Flk-1 gene expressions were observed in ad-hVEGF165 transduced cells. 

Real time PCR also showed the gradual increase of CD133 and Flk-1 gene transcripts 

over a regular time period after transduction. Further flow cytometric analysis of CD133 

cell surface marker revealed an approximately 5-fold increase of CD133 marker 

expression in ad-hVEGF165 transduced cells.  

 These findings suggest that ad-hVEGF165 transduction of differentiating HESCs 

facilitates expression of the VEGF transgene which is able to significantly enhance 

endothelial-lineage differentiation in HESCs. 
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3.2 Introduction 

HESCs isolated from the inner cell mass of blastocyst stage embryos are 

pluripotent cells that can be propagated indefinitely in the undifferentiated state in vitro 

(Reubinoff et al, 2000; Thomson et al, 1998). The successful establishment of several 

HESC lines in recent years, together with increasing knowledge of their unique properties 

has led to many attempts at exploiting their therapeutic potential. Differentiation of 

HESCs into various differentiated somatic lineages such as neurons (Reubinoff et al, 

2001; Carpenter et al, 2001; Schuldiner et al, 2000), hematopoietic cells (Kaufman et al, 

2001; Schuldiner et al, 2000), cardiomyocytes (Mummery et al, 2002; Kehat et al, 2001) 

and ECs (Gerecht-Nir et al, 2003; Levenberg et al 2002) have been reported, and 

subsequent accompanying studies in animal models have demonstrated much potential in 

cellular transplantation therapy for the treatment of various human diseases. This 

pluripotential ability of HESCs to differentiate into various cell types holds immense 

potential for therapeutic use in cell and gene therapy and realization of this potential 

depends very much on efficient and optimized protocols for genetic manipulation of these 

cells. 

 While most of the reported studies use growth factor cocktails to direct 

differentiation of HESCs, an alternative genetic approach is currently under development 

based on the hypothesis that HESCs differentiation can be controlled or triggered after 

gene transfer with specific regulatory genes in order to stimulate or inhibit differentiation 

of specific lineages. In this context, several research groups have focused on optimization 

of efficient gene transfer technologies for HESCs and its derivatives.  
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 Several methods are available to achieve introduction of foreign DNA that carries 

a gene of interest for ectopic expression in HESCs. Electroporation has been shown to 

generate transient yet stable transfected HESCs (Zwaka et al, 2003). However, it was not 

a feasible tool because of poor cell survival due to the voltage shock. Modification by 

performing electroporation of HESCs in clumps suspended in isotonic, protein-rice 

solution significantly improved cell survival but transfection efficiency was still very low; 

around 6%. The transfection efficiency was increased to about 66% using nucleofection 

method (Siemen et al, 2005; Lakshmipathy et al, 2004). Chemical transfection using 

various lipofection-based reagents including Lipofectamine (Invitrogen), Fugene 

(Boehringer Mannheim) and ExGen 500 (Fermentas) have also been used in HESCs. A 

more efficient strategy to stably introduce exogenous DNA into cells is based on the use 

of viral vectors. Various studies have successfully reported the use of adenovirus, adeno-

associated virus and lentivirus to overexpress genes in HESCs (Smith-Africa et al, 2003; 

Gropp et al, 2003; Ma et al, 2003) and showed encouraging results with either transient 

or sustained and stable expression of the transgenes depending on the viral vector used.  

 In this study the focus is on derivation of human EPCs from HESCs. Human 

EPCs are important for the development of blood vessels which takes place in situ via 

vasculogenesis and angiogenesis (Carmeliet 2000; Risau 1997; Risau et al, 1995). Both 

vasculogenesis and angiogenesis take place in functional vascular development both 

within the developing embryo, as well as in postnatal neovascularization (Asahara T et al, 

1999; Flamme I et al, 1997). In vasculogenesis, EPCs or angioblasts differentiate into 

ECs and assemble into tube-like vascular structures that form a primitive vascular 
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network. On the other hand, angiogenesis involves the sprouting of new capillaries from 

pre-existing blood vessels.  

Cell-based therapy using EPCs or ECs is one of the more recent advances in the 

field of regenerative medicine. These cells can either be utilized for the tissue engineering 

of new blood vessels in vitro with implantable scaffolds, or can be transplanted directly 

into ischemic tissues to augment blood vessel growth, so as to prevent further cellular 

necrosis within the ischemic microenvironment.  

Previous studies have reported endothelial differentiation of HESCs either 

spontaneously or under the influence of various supplemented exogenous growth factors 

within the culture milieu i.e. VEGF (Gerecht-Nir et al, 2003; Levenberg et al 2002). 

VEGF, a heparin-binding glycoprotein is a potent vascular EC-specific mitogen that 

stimulates EC proliferation, function and survival, microvascular permeability, 

vasodilation and angiogenesis (Ferrara et al, 1997). VEGF has not only been proven to be 

a specific and critical growth factor for blood vessel formation, but has also been shown 

to improve EC function and survival in vitro, as well as vascular reactivity in vivo 

(Ferrara et al, 2003; Gerber et al, 1998a & 1998b). It is one of the best studied vascular 

related growth factor with positively demonstrated therapeutic ability in both animal 

models and human clinical trials (Haider et al, 2004; Makinen et al, 2002; Street et al, 

2002; Henry et al, 2001; Vale et al, 2000; Ferrara et al, 1999).  

In this study, we described the use of ad-hVEGF165, for enhancing EPC 

differentiation in HESCs characterized by CD133 marker expression. Adenoviral vectors 

can be produced at high titers and do not integrate into the host cell genome therefore 

providing a transient expression of the transgene (Tatsis et al, 2004). Here, we report that 
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adenoviral type 5 (Ad5) is capable of infecting differentiated HESCs and the transient 

expression of VEGF165 enhances endothelial differentiation. Extensive formation of 

vascular tube-like structures within transduced cells was observed and the secreted VEGF 

protein from the differentiating cells was biologically functional. Real-time PCR and 

immunohistochemical analysis also showed upregulated expression of various vascular 

genes and markers upon transduction.   
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3.3 Materials and Methods 

3.3.1 Materials 

3.3.1.1 Cell lines 

Human embryonic stem cells, H1 cell line   

Cells were purchased with license agreement from Wicell Research Institute, Inc. 

Mouse embryonic fibroblasts 

 Cells were obtained from mice of CF-1 strain at 13 to 14 days of gestation.  

3.3.1.2 Animals 

CF-1 mice  

 A total of 10 female CF-1 mice (13 to 14 days of gestation) were used for 

obtaining mouse embryonic fibroblasts (MEF) used as feeder layers during human 

embryonic stem cell culture. CF-1 mice were purchased from Charles Rivers 

Laboratories. 

 The materials used for this study is listed in Appendix 6.1. 

3.3.2 Methods 

3.3.2.1 Cell culture 

Human embryonic stem cell culture 

HESCs (H1 cell line, Wicell Research Institute Inc, Madison, WI, USA, passage 

35 to 70) were grown on a feeder layer of mitotically-inactivated MEF, plated on 0.1% 

gelatin-coated wells of a 6-well cell culture plate. Each well contained 2×105 MEF cells. 

The H1 cell line used in the present study is one of the National Institutes of Health- 

approved human ES cell clones.  
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The culture medium used for HESC culture consisted of 80% DMEM:F-12 media 

(GIBCO/BRL) supplemented with 20% knockout serum replacement (GIBCO/BRL), 

2mM L-glutamine (GIBCO/BRL), 0.1mM β-mercaptoethanol (Sigma), 1% non-essential 

amino acid stock (GIBCO/BRL) and 4ng/ml bFGF (Invitrogen). All HESC cultures were 

carried out in a humidified 37oC incubator with a 5% CO2 atmosphere and were routinely 

passaged every 5 to 7 days after disaggregation with 1mg/ml collagenase type IV 

(GIBCO/BRL). HESCs were incubated with collagenase for 5 to 10 minutes at 37°C and 

scraped off using a cell scraper, washed by centrifugation at 200g/min and replated onto 

inactivated MEF. 

Human umbilical vein endothelial cell culture 

HUVEC were cultured in F-12K medium supplemented with 10% (v/v) FBS, 1% 

penicillin/streptomycin, 20 IU/ml of heparin and 20ng/ml α-FGF. The cells are grown at 

37°C in humidified, 5% CO2 incubator. 

Human embryonic kidney 293 cell culture 

HEK293 cells were cultured in DMEM supplemented with 10% (v/v) FBS at 

37°C in humidified, 5% CO2 incubator.  

3.3.2.2 Derivation, culture, propagation and inactivation of MEF 

Derivation of MEF 

Fetuses were obtained from CF-1 mouse strain at 13 to 14 days of gestation. CF-1 

mouse strain was purchased from Charles River Laboratories. The mice were 

intraperitoneally injected with 0.01ml/g of mice anesthesia working solution consisting of 

ketamine:medetomidine mixture in the ratio 1:4. Once the mice were anesthetized, 

cervical dislocation was performed. The mice were placed belly up in a sterile tissue 
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culture hood and the abdomen was sterilized with 70% alcohol. Using sterilized 

instruments, the skin was cut and the peritoneum was exposed. The peritoneal wall was 

cut to expose the uterine horns. The uterine horns were removed and washed three times 

with 1× PBS. The embryonic sacs were cut open and embryos were released. The visceral 

tissue was separated from the embryos. The embryos were then washed three times with 

1× PBS and counted. The tissue was minced for 5 to 10 minutes with trypsin dissecting 

scissors into grain sized pieces and then incubated for 20 to 30 minutes in a 37°C 

incubator. The minced tissue mixture was vigorously pipetted up and down until it had a 

sludgy consistency. MEF derivation culture media was added and the mixture was 

equally divided into the T75 flasks, each containing 3 embryos. MEF derivation culture 

medium was made up of DMEM supplemented with 10% FBS, 2mM L-glutamine, 1% 

non-essential amino acids solution and 1× penicillin-streptomycin solution. The flasks 

were incubated overnight in 37°C incubator.  Once 90% of the flask surface was covered 

with a cell layer, the cells were trypsinized for 5 minutes and scraped with a cell scraper. 

MEF culture medium was then added to neutralize the trypsin and the mixture was 

pipetted vigorously up and down to break up the cell chunks.  MEF culture medium 

consisted of DMEM supplemented with 10% FBS, 2mM L-glutamine and 1% non-

essential amino acids solution. The mixture was allowed to settle, supernatant was then 

removed, leaving the large cell chunks behind. The mixtures were centrifuged at 200g for 

5 minutes. The cell pellet was resuspended in equal volume of fresh MEF culture 

medium and cryopreservation medium. Cryopreservation medium consisted of DMEM 

supplemented with 0.2% FBS and 0.2% dimethyl sulphoxide (DMSO) (Sigma). The cell 

suspension was dispensed into 1.5ml cryovials and stored in isopropanol freezing 
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container overnight at -80°C freezer. The cryovials were then transferred to liquid 

nitrogen racks for permanent storage.  

MEF culture, propagation and inactivation 

MEF was cultured in MEF culture medium in a 37°C incubator. When 80 to 90% 

confluency was reached, the cells were passaged using 1× trypsin for 5 minutes at 37°C. 

Mitotic inactivation of the MEF was achieved through pre-treatment with 10μg/ml 

mitomycin-C for 2 hours at 37°C. For preparation of human embryonic stem cells, 2×105 

inactivated MEF cells were seeded per well of a 6-well plate.  

3.3.2.3 In vitro characterization of human embryonic stem cells 

Immunofluorescent staining of pluripotency markers of human embryonic stem cells 

The HESC was grown in a 24-well cell culture plate. They were washed with 1× 

PBS and fixed with 4% paraformaldehyde for 20 minutes at room temperature. After 

washing, the cells, they were permeabilized with 0.1% Triton X-100 and blocked with 

1% bovine serum albumin (BSA), 10% normal donkey serum in 1×PBS for 45 minutes. 

For staining of SSEA-4, permeabilization with Triton X-100 was omitted. The cells were 

then incubated with one of the following antibodies (Table 8) at a concentration of 

10ug/ml overnight at 2 to 8°C. The cells were washed three times with 1× PBS 

containing 1% BSA for 5 minutes and then incubated with the respective diluted 

secondary antibodies for 60 minutes at room temperature in the dark. After washing three 

times with 1× PBS containing 1% BSA, the cells were covered with a Vectashield 

mounting medium with DAPI and visualized with a fluorescent microscope. 
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Table 8: Primary and secondary antibodies used for immunostaining of pluripotency 
markers 

 
Name of primary antibody Name of secondary antibody 

Goat anti-Nanog  Donkey anti goat IgG-FITC 
Goat anti-Oct3/4 Donkey anti goat IgG-FITC 
Mouse anti-SSEA-4 Donkey anti mouse IgG-TRITC 
Mouse anti human Tra-1-60 Donkey anti mouse IgG-TRITC 
Mouse anti human Tra-1-81 Donkey anti mouse IgG-TRITC 

 
Table 9: PCR cycling programme  

 
Initial activation step 15 min 95°C 
3-step cycling: 
Denaturation 

 
1 min 

 
94°C 

Annealing 1 min *refer to table 10 and 12 for 
respective primers 

Extension 1 min 72°C 
Number of cycles *refer to table 10 and 12 for 

respective primers 
 

Final extension 10 min 72°C 
 

 
Table 10: List of primer sequences for pluripotency markers 

 
Gene Sequence Number of 

Cycle 
Oct-4 
(247bp)(55°C) 

Forward= 5’-CGTGAAGCTGGAGAAGGAGAAGCTG-3’ 
Reverse= 5’-AAGGGCCGCAGCTTACACATGTTC-3’ 

30 

Sox-2 
(370bp)(55°C) 

Forward= 5’-CCGCATGTACAACATGATGG-3’ 
Reverse= 5’- CTTCTTCATGAGCGTCTTGG-3’   

30 

 
 

Table 11: List of primary and secondary antibodies used for immunostaining of various 
vascular markers 

 
Primary antibody Dilution used Secondary antibody Dilution used 
Mouse anti human VEGF 1:100 Goat anti mouse IgG-FITC 1:500 
Mouse anti human CD31 1:100 Rabbit anti mouse IgG-

TRITC 
1:500 

Rabbit anti human Ve-cad 1:200 Goat anti rabbit IgG-
TRITC 

1:500 

Rabbit anti human vWF 1:500 Mouse anti rabbit IgG-
FITC 

1:500 
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RT-PCR analysis for pluripotency gene markers expression for human embryonic stem 

cells 

HESCs, ad-hVEGF165 and ad-null transduced differentiating cells were analyzed 

by RT-PCR for expression of pluripotency markers. Total RNA was isolated using Total 

RNA extraction kit (Qiagen) according to manufacture’s instruction that is outlined in 

6.2.1.  

Total RNA was reverse transcribed into cDNA using oligo(dT)20 and resuspended 

in ddH2O. Briefly, 10μg of RNA was added to a mixture containing 1μg of oligo(dT)20 

and incubated for 5 minutes at 70°C. The RNA and oligo(dT)20  mixture was mixed with 

1× RT buffer-reaction buffer, 1mM of dNTPs, 65U of RNase inhibitor, 250U of Moloney 

murine leukemia virus reverse transcriptase. Distilled water was added to a final volume 

50μl. The sample mixture was incubated at 37°C for 1 hour and then at 95°C for 10 

minutes before quickly chilling it on ice. 

Reverse transcription polymerase chain reaction (RT-PCR) was performed using 

a HotStarTaq PCR kit. One PCR reaction mixture consisted of 1× PCR buffer containing 

1.5mM Mg2+, 200μm of dNTPs, 2.5U of HotStarTaq DNA polymerase and 0.5μm of 

forward and reverse primers, 500ng of template cDNA. Distilled water was added to give 

a final volume of 25μl. The PCR cycling program used is outlined below in Table 9. The 

annealing temperature and the cycling times were optimized for each gene target. The 

details of each primer sets that were used are listed in Table 10. GAPDH was used as the 

internal control for the PCR reactions. The amplified PCR products were run on a 2% 

agarose gel with ethidium bromide. The mean pixel intensities of each gene band was 

measured and normalized to mean pixel intensities of the GAPDH band. The intensities 
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were determined using a computerized densitometry system (Olympus Micro Image, 

Maryland, USA). 

3.3.2.4 Embryoid body-derived cells transduction with ad-hVEGF165 

EB formation 

To induce differentiation through EB formation, a confluent six-well plate of 

undifferentiated HESC colonies was used. The HESC colonies were removed from the 

feeder layers by digestion with 1mg/ml collagenase type IV for 5 minutes at 37°C. They 

were then dissociated into small clumps by using 1,000ul pipette tips and transferred to 

low attachment plates. EBs were grown in medium consisting 80% DMEM:F-12 media 

supplemented with 20% knockout serum replacement, 2mM L-glutamine, 0.1mM β-

mercaptoethanol and 1% non-essential amino acids solution. EBs were cultured in 

suspension for 5 to 21 days.  

Dissociation of EBs into single cells 

The EBs were incubated in 2mg/ml collagenase IV for 15 minutes at 37°C. They 

were centrifuged at 200rpm/min for 5 minutes and were next incubated in a mixture 

containing cell dissociation buffer and 0.1% trypsin at a ratio of 2:1 for 20 minutes at 

37°C. They were washed by centrifugation at 200rpm/min for 5 minutes and filtered 

using a 40μ cell strainer before being used in further designated experiments. 

Monocistronic ad-hVEGF165 

The monocistronic adenoviral vector carrying human VEGF165 gene was kindly 

provided by Associate Professor Ge Ruowen from Department of Biological Sciences, 

National University of Singapore. The replication deficient adenoviral vector carrying 

human VEGF165 gene was driven by immediate early human cytomegalovirus promoter 
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which was rescued into the E1 region of the pJMK17 Ad5 genomic plasmid by 

cotransfection into HEK-293 cells. The virus was plaqued purified thrice before 

propagation. 

Adenoviral vector propagation 

Ad-hVEGF165 was propagated in HEK-293 cells. These cells were cultured in 

75mm2 tissue culture flask at a density of 1 × 106 cells using DMEM supplemented with 

10% FBS. When 80 to 90% confluence was reached, the cells were transfected with ad-

hVEGF165. Following full cytopathic effect (CPE) development, the supernatant from the 

HEK-293 cells were removed. The cells were lysed and centrifuged to remove the debris. 

The virus was purified by cesium chloride gradient ultra centrifugation and used for 

transduction of the differentiating embryonic stem cells from EBs. 

Adenoviral vector titer 

Adenoviral vector titration was performed using an endpoint assay as described 

by Quantum Biotechnology, USA. About 1×104 HEK 293 cells were plated in each well 

of a 96-well tissue culture plate in 100µl of 2% DMEM on the day of the experiment. 

This was followed by adding 100μl of 2% DMEM containing purified viral stock with 

dilution ranging from 10-3 to 10-15 per ml. Each dilution was applied to 10 wells and 

another 16 wells were added with 2% DMEM as negative controls. Cells were incubated 

for 10 days at 37°C and observed daily for CPE development. At the end of the 

incubation, the tissue culture dose-50 (TCID50) was calculated using the following 

formula: TCID50/ml=10[1+d (S-0.5)], where d = Log 10 of the dilution (=1 for a 10 fold 

dilution) and S = the sum of the ratios (always starting from the first 10-1 dilution). PFU 
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per ml was also calculated by subtracting the TCID50 /ml from 0.7 log. Assays were 

repeated three times to get the average viral titer.  

Optimization of EBs transduction with adenoviral vector 

1×105 cells/cm2 were cultured in each well of a 12-well plate (3.8cm2). The cells 

were exposed to either ad-hVEGF165 or null adenoviral vector (ad-Null) at various titers 

ranging from 50pfu/cell to 2000pfu/cell. The supernatant containing the adenoviral vector 

was filtered through 0.22μm filter into each well and incubated at 37°C in 5%CO2 

incubator for 4 hours. The viral transduction medium was replaced after 4 hours with 

normal 10% DMEM:F12 for 24 hours. The transduction procedure was repeated on three 

consecutive days to achieve optimum transduction efficiency. 

3.3.2.5 In vitro characterization of differentiating cells from embryoid bodies 

transduced with ad-hVEGF165 

Immunofluorescent staining for vascular markers; VEGF, CD31, Ve-cadherin and von-

Willebrand factor 

1× 105 ad-hVEGF165 transduced cells were seeded and grown on each glass 

chamber slides. Ad-null transduced cells were used as the negative control. Cells were 

fixed with 4% paraformaldehyde for 20 minutes at room temperature. After washing with 

1× PBS twice for 5 minutes each, the cells were incubated with 3% methanolic hydrogen 

peroxide for 15 minutes to reduce the non specific background staining from endogenous 

peroxidase. The non specific binding sites were blocked by Ultra V block (Ultravision 

detection system) for 8 minutes at room temperature followed by incubation with the 

respective primary antibodies at optimal dilution at room temperature overnight (Table 

11). The cells were washed thrice with 1× PBS on the following and then incubated with 
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the respective diluted secondary antibodies for 90 minutes at room temperature in the 

dark. After further washing, the cells were air dried in the dark. They were then covered 

with a Vectashield mounting medium with DAPI and visualized with a fluorescent 

microscope. The FITC or TRITC positive cells were calculated by counting 6 

microscopic fields on stained and unstained cells on 6 slides. 

RT-PCR analysis for vascular growth factors and their receptors, transcription factors, 

surface markers  

Ad-hVEGF165 and ad-Null transduced differentiating cells were analyzed by RT-

PCR for expression of various vascular growth factors and their receptors, transcription 

factors and EPC cell markers. The PCR cycling program used is outlined in Table 9. The 

details of each primer sets that were used are listed in Table 12. 

Real time PCR quantitative analysis for endothelial progenitor cell markers; CD133 and 

Flk-1 

TaqMan Universal PCR Master Mix and Assays-on-Demand Gene Expression 

Probes (Applied Biosystems) for CD133, Flk-1 and GAPDH were used according to the 

manufacturer’s instructions. The TaqMan PCR step was performed using an Applied 

Biosystems Fast 7500 Fast Real Time PCR System. The relative expression of CD133 

and Flk-1 was normalized to the amount of GAPDH in the same cDNA by using the 

standard curve method described by the manufacturer. The relative standard curve 

method was used to calculate amplification differences between HESCs and the ad-

hVEGF165 transduced differentiating cells.  The average values of the experiments were 

obtained and graphed with standard deviations.  
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Table 12: List of primer sequences for endothelial-related gene markers 
 

Gene Sequence Number of 
cycles 

Flt-1 
(554bp)(60°C) 

F= 5’-GTCATTCCCTGCCGGGTTAC-3’ 
R= 5’-CGATGTTTCACAAGTGATGAAT-3’  

30 

VEGF 
(576bp) (64°C) 

Forward= 5’-ATGAACTTTCTGCTGTCTTGGGTG-3’  
Reverse= 5’-TCACCGCCTCGGCTTGTCACA-3’ 

35 

CD34 
(420bp)(60°C) 

Forward= 5’-TGACTCAGGGCATCTGCCTG-3’ 
Reverse= 5’-CTTTCTCCTGTGGGGCTCCA-3’ 

35 

CD31 
(700bp)(60°C) 

Forward= 5’-GCTGTTGGTGGAAGGAGTGC-3 
Reverse= 5’-GAAGTTGGCTGGAGGTGCTC-3’ 

35 

Tie-2 
(250bp)(55°C) 

Forward= 5’-CCTTAGTGACATTCTTCC-3’ 
Reverse= 5’-GCAAAAATGTCCACCTGG-3’ 

31 

Ang-1 
(378bp)(64°C) 

Forward= 5’-CGGTGAATATTGGCTGGGGAATGAG-3’ 
Reverse= 5’-GTAGTGCCACTTTATCCCATTCAG-3’ 

35 

GATA-2 
(480bp)(60°C) 

Forward= 5’-CCCTAAGCAGCGCAGCAAGAC-3’ 
Reverse= 5’-TGACTTCTCCTGCATGCACT-3’ 

31 

GATA-3 
(790bp)(60°C) 

Forward= 5’-ACCCCACTGTGGCGGCGAGAT-3’ 
Reverse= 5’-CACAGCACTAGAGACC-3’ 

31 

Flk-1 
(450bp)(55°C) 

Forward=ACCACAGTCCATGCCATCAC-3’ 
Reverse= 5’-TTCACCACCCTGTTGCTGTA-3’ 

30 

CD133 
(200bp)(58°C) 

Forward= 5’-CAGTCTGACCAGCGTGAAAA-3’ 
Reverse= 5’-GCCATCCAAATCTGTCCTA-3’ 

27 

GAPDH 
(800bp)(60°C) 

Forward= 5’-CGGATTTGGTCGTATTGGGCG-3’ 
Reverse= 5’-GTGGAGGAGTGGGTGTCGCTG-3’ 

35 
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Enzyme Linked Immunoabsorbent Sandwich Assay for hVEGF165 

hVEGF165 protein secreted by ad-hVEGF165 and ad-Null transduced 

differentiating cells were detected using human VEGF Quantikine Sandwich enzyme-

linked immunoabsorbent assay (ELISA) kit. The cells were grown in 6-well plates at a 

density of 2×105 cells per well.  

The supernatant from each well was collected at regular time intervals from day 1 

to day 30 at 2-day intervals. The samples were kept frozen at -80°C until they were used 

for the assay. The assay was performed according to the supplier’s instructions. Briefly 

200µl of sample or hVEGF165 standards were coated into each designated well in 

triplicate, incubated for 2 hours at room temperature. After washing three times with 

washing buffer, 200µl horseradish peroxidase conjugated polyclonal antibody against 

hVEGF was then dispensed into each well. The plate was incubated at room temperature 

for 2 hours, washed with a wash buffer and incubated at room temperature for 20 minutes 

with colour substrate solution containing hydrogen peroxide and chromogen 

(tetramethylbenzidine) for detection of the presence of primary antibody. Absorbance 

was determined at 540nm by using an ELISA plate reader. 

Flow cytometry for CD133 positive cells 

To determine the percentage of CD133+ cells from ad-hVEGF165 and ad-null 

transduced differentiating cells, the cells were incubated with 10µl of phycoerythrin-

labeled anti-CD133 monoclonal antibody for 30 minutes in the dark at 4°C. For isotype 

control, the cells are incubated with phycoerythrin-labeled mouse IgG1. Flow cytometric 

analysis was perfomed using Beckman Coulter Epics Altra Hypersort system and 

WinMDI software. Each analysis included ≥10 000 events.  
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3.3.2.6 Biological activity assessment of hVEGF165 secreted by the transduced EB-

derived cells 

HUVEC proliferation assay  

HUVEC cells were cultured in F-12K medium supplemented with 10% (v/v) FBS, 

1% penicillin/streptomycin, 20 IU/ml heparin and 20ng/ml α-FGF. For cell proliferation 

assay, 2× 104 cells/well was cultured in a 6-well cell culture plate in triplicate for each 

sample. After culturing for 24 hours with DMEM supplemented with 2% (v/v) FBS, the 

cells were washed once with PBS and conditioned medium from ad-hVEGF165 

transduced cells, untransduced cells and ad-Null transduced cells were applied to the 

designated wells. The cells are grown at 37°C in humidified, 5% CO2 incubator for 96 

hours. 

3.3.3 Statistical analysis 

Statistical analysis was performed using SPSS (version 11.0). All data were 

presented as mean ± standard error mean (SEM) and analyzed by analysis of variance 

(ANOVA) between groups. Intra-group comparison was carried out using paired student t 

test. P< 0.05 was considered statistically significant.  
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3.4 Results 

3.4.1 Characterization of HESCs grown on mouse feeder layer 

HESCs were grown on mouse feeder layer to maintain its undifferentiated state. 

The morphology of human embryonic stem cells grown on mouse feeder layer is as 

shown in Figure 14. They grew in very compact, round-shaped colonies with defined 

borders. They were highly proliferative and confluency was reached by 5 days post-

passage.  

HESCs expressed cell surface markers that characterized their undifferentiated 

state and pluripotential capability (Figure 15). They expressed stage-specific embryonic 

antigen-4 (SSEA-4), glycoprotein; tumour rejection antigen-1-60 (TRA-1-60) and TRA-

1-81. They were also positive for immunostaining of transcription factors controlling 

pluripotency such as Oct-4 and Nanog.  

3.4.2 Morphology of EBs formed in suspension and on gelatin coated plate 

In order to induce differentiation in human embryonic stem cells, they had to be 

grown in suspension as aggregates. They were cultured in human embryonic stem cell 

medium without bFGF in low attachment plates. Under these conditions, human 

embryonic stem cells consistently aggregated and formed simple embryoid bodies (EBs) 

(Figure 16). Simple EBs generally consisted of densely packed human embryonic stem 

cells. Over time, differentiation of a columnar epithelium with a basal lamina and 

formation of central cavity occurred creating cystic EBs (Figure 16). 

When the EBs were seeded on gelatin coated plates, random differentiation 

occurred, resulting in the appearance of a heterogenous population of mesodermal, 

endodermal and ectodermal cell types (Figure 17). 
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Figure 14: Human embryonic stem cells cultured on mouse fibroblast feeder layer. (i) 
day 3, (ii) day 5. (Magnification 200×) 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Immunofluorescent staining of human embryonic stem cell pluripotent 
markers. (i) Oct-4- green FITC fluorescence,  (ii) SSEA-4 and Nanog- red TRITC 
fluorescence and gree FITC fluorescence respectively, (iii) TRA-1-60- red TRITC 
fluorescence, (iv) TRA-1-81-red TRITC fluorescence. Nuclei were stained with blue 
DAPI fluorescence. (Magnification 200×)  
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Figure 16: Embryoid body formation. EBs cultured in suspension in low attachment 
wells. (i) day 0, (ii) day 5. Magnification 100×. EBs differentiating once plated in gelatin 
coated wells. a) day 2 after plating, b) day 8 after plating. (Magnification 200×) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: Random differentiation of EBs plated on gelatin-coated plate wells.          
(i) day 2 after plating, (ii) day 8 after plating. (Magnification 200×)  
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3.4.3 Expression of pluripotency genes in HESCs, EBs and transduced EB-derived 

cells 

 Expression of pluripotency gene markers, Oct-4 and Sox-2 were significantly 

expressed in HESCs. These pluripotent gene markers were significantly downregulated 

when embryonic stem cells started to differentiate. These were observed in the EBs and 

the transduced EB-derived cells (Figure 18). 

3.4.4 Adenoviral vector titer 

 The adenoviral vector titer determined by end point assay revealed that the viral 

titer was ∼8× 108 pfu/ml for ad-null and ∼7× 106 pfu/ml for ad-hVEGF165. Both viral 

vectors were found to be replication deficient when tested for replication competence.  

3.4.5 Optimization of transduction condition and extent of apoptotic cell death upon 

transduction in EB-derived cells  

 The transduction efficiency as assessed by hVEGF165  ELISA revealed a dose-

dependent relationship between the number of viral particles and the number of 7 day 

EB-derived cells. Transduction efficiency increased with higher viral titer with highest 

VEGF expression level achieved at 1:500 cell/viral particles ratio (Figure 19). While 

transduction efficiency increased with increasing viral titer, this was accompanied with 

increased extent of cell death (Figure 20). Approximately 23% of the cells died upon 

transduction at 1:500 cell/viral particles ratio and as the ratio reached to 1:2000, almost 

80% of the cells died. The optimal condition used in this study was transduction at 1:500 

cell/viral particles ratio for 4 hours three times at an interval of 24 hours after every 

transduction. The cell viability was about 80% as shown by dye exclusion method using 

Trypan Blue staining after transduction.   
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Figure 18: Gene expression of pluripotency markers Oct-4 and Sox-2 in                         
(i) undifferentiated human embryonic stem cells, (ii) 7-day EBs, (iii) ad-null transduced 
7-day EB-derived cells and (iv) ad-hVEGF165 transduced 7-day EB-derived cells. 
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Figure 19: Optimization of transduction conditions for EB-derived cells. 
Transduction efficiency as a function of the ratio between ad-hVEGF165 particles and 7 
day EB-derived cells. The transduction efficiency was maximum at 1 cell: 500 pfu ratio.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Apoptotic cell death upon transduction of ad-hVEGF165 to the EB-derived 
cells. Trypan blue exclusion dye was performed to count the number of dead cells at 
various cell to viral particle ratios. 
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3.4.6 VEGF expression from transduced EB-derived cells 

ELISA results showed that ad-hVEGF165 transduced cells secreted hVEGF for 

more than 30 days post-transduction, peaking at day 8 (27.5 ± 7ng/ml) (Figure 21). This 

level of expression was significantly higher (p<0.01) than the untransduced and ad-Null 

transduced cells. Untransduced and ad-Null viral transduced cells showed very low levels 

of hVEGF expression, with an average value of 0.15± 3 ng/ml throughout the 30 days 

with no increase in expression levels.  

Fluorescent immunostaining also showed high transduction efficiency of about 

90% for HVEGF in ad-hVEGF165 transduced cells (Figure 22).  

3.4.7 Biological activity of the secreted VEGF165  

The biological activity of the VEGF165 secreted by ad-hVEGF165 transduced cells 

was assessed by its capability to induce HUVEC proliferation. VEGF is known to 

promote endothelial proliferation and triggers DNA synthesis in ECs. Beginning at 2 

×104 cells, HUVEC showed significantly higher proliferation rate after culturing with 

conditioned medium from ad-hVEGF165 transduced cells after 5 days of observation (4.1 

± 0.3 ×103, p<0.01) as compared with conditioned medium from untransduced and null-

ad transduced cells (2.2 ± 0.04 × 105 and 2.1 ± 0.04 × 105 respectively). Incubation of the 

conditioned medium from ad-hVEGF165 transduced cells with anti-hVEGF165 antibody 

inhibited this effect (Figure 23). 

3.4.8 Characterization of endothelial cells upon ad-hVEGF165 transduction 

 The efficiency of endothelial cell differentiation in ad-hVEGF165 transduced cells 

was assessed by fluorescent immunostaining and standard PCR. 
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Figure 21: Time course of hVEGF protein secretion from ad-hVEGF165 transduced 
cells (transduced at 1:500 cell to viral particle ratio). The secretion of hVEGF protein 
from the cells in cell culture supernatant was measured at a regular time interval of 2 days 
for up to 30 days after transduction.  
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Figure 22: Immunofluorescent staining for VEGF expression. VEGF expression seen 
as green fluorescent (FITC) in (i) ad-Null transduced cells and (ii) ad-hVEGF165 
transduced cells, (iii) negative control incubated without VEGF primary antibody. Cell 
nuclei were stained with DAPI (blue fluorescence). (Magnification= 200×) 
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Figure 23: (a & b) HUVEC proliferation assay to assess the biological activity of 
hVEGF165 secreted from the transduced differentiating embryonic stem cells.           
(i) Conditioned medium (CM) from non-transduced cells, (ii) CM from ad-Null 
transduced cells, (iii) CM from ad-hVEGF165 transduced cells, (iv) CM from ad-
hVEGF165 transduced cells pretreated with anti-VEGF165 antibody. 
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Fluorescent immunostaining 

 Flurorescent immunostaining of several endothelial markers such as CD31, Ve-

cadherin, and von Willebrand Factor (vWF) was carried out. The percentages and the 

staining patterns of cells expressing the markers are shown in Table 13 and Figures 24-26. 

CD31 and Ve-cadherin are cell surface antigens while vWF is a cytosolic protein. The 

data revealed that transduction of EB-derived cells successfully enhanced endothelial 

differentiation as determined by the increased number of positively immunostained cells 

for the various endothelial markers.  However, this efficiency decreased with increasing 

age of the EBs (Table 13). 

 Standard PCR for gene expression analysis 

 Standard semi-quantitative PCR was performed to study the various endothelial-

related transcription factors, surface markers, growth factors and their related receptors 

(Figure 27). The genes analyzed in this study were transcription factors, GATA-2 and 

GATA-3, surface markers, CD31 and CD34, VEGF with its receptor, Flt-1 and Ang-1 

and its receptor, Tie-2. VEGF, Ang-1 and CD34 gene expressions showed significant 

upregulation of more than 5-fold with reference to the spontaneously differentiated cells 

from 7-day EBs.  Flt-1, Tie-2 and CD31 gene expressions showed moderate upregulation 

of one to 3-fold with reference to the spontaneously differentiated cells from 7-day EBs. 

No significant change was observed for GATA-2 and GATA-3 gene expression in ad-

hVEGF165 transduced cells. 
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Figure 24: Immunofluorescent staining for CD31 expression. CD31 expression seen as 
red fluorescent (TRITC) in (i) ad-Null transduced cells and (ii) ad-hVEGF165 transduced 
cells, (iii) negative control incubated without CD31 primary antibody. Cell nuclei were 
stained with DAPI (blue fluorescence). (Magnification= 200×) 
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Figure 25: Immunofluorescent staining for Ve-cadherin expression. Ve-cadherin 
expression seen as red fluorescent (TRITC) in (i) ad-Null transduced cells and (ii) ad-
hVEGF165 transduced cells, (iii) Negative control incubated without Ve-cadherin primary 
antibody . Cell nuclei were stained with DAPI (blue fluorescence). (Magnification= 300×) 
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Figure 26: Immunofluorescent staining for von-Willebrand factor expression. Von-
Willebrand factor expression seen as green fluorescent (FITC) in (i) ad-Null transduced 
cells and (ii) ad-hVEGF165 transduced cells, (iii) Negative control incubated without von-
Willebrand factor primary antibody. Cell nuclei were stained with DAPI (blue 
fluorescence). (Magnification= 300×) 
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Table 13: Phenotype of ad-hVEGF165 transduced and ad-null transduced EB-derived cells 
grown in culture for 15 days. 

 
 Phenotype/% 
  CD31 Ve-cad vWF 
ad-null 
transduced 

    

 7d EB 5.4 7.1 8.1 
 14d EB 9.3 13.4 15.2 
 21d EB 18.7 15.2 23.8 
     
ad-hVEGF165 
transduced 

    

 7d EB 52.1 42.6 56.3 
 14d EB 46.1 39.5 34.7 
 21d EB 34.7 30.4 27.2 
     

 
 
Percentage of positive cells in the ad-hVEGF165 transduced and ad-null transduced cells after 15 
days in culture. The percentage of positive cells was obtained by calculating the number of 
positive cells per number of total cells counted multiply by 100.  
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Figure 27: Gene expression studies of endothelial markers. (a) The expression of 
several vasculogenic surface markers, growth factors, receptors and transcription markers 
was assessed by RT-PCR on (i) 7-day EB-derived cells, (ii) ad-Null transduced cells, (iii) 
ad-hVEGF165 transduced cells, (iv) MEF (negative control) and (v) HUVEC (positive 
control). 
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3.4.9 Characterization of putative EPCs upon ad-hVEGF165 transduction 

 The efficiency of putative EPC differentiation in ad-hVEGF165 transduced cells 

was assessed by standard and real time PCR and flow cytometry. 

 Standard and Real Time quantitative PCR for gene expression analysis 

 Standard RT-PCR and real time quantitative RT-PCR were performed for two 

markers, CD133+ and Flk-1+ used to characterize the population of EPCs in this study. 

Both CD133 and Flk-1 gene expressions were upregulated in ad-hVEGF165 transduced 

cells (Figures 28a & b). They showed constant upregulation in expression from day 0 to 

day 12 post-transduction. By day 12 post-transduction, CD133 and Flk-1 expressions had 

increased significantly by approximately 20-fold and 27-fold respectively (Figure 28b).  

  Flow cytometric analysis of cell surface marker expression CD133 

 Phenotypic flow cytometry analysis revealed that 40.23 ± 5.6% of the ad-

hVEGF165 transduced cells was CD133+ as compared to 8.48 ± 1.7% (p<0.01) in ad-Null 

transduced cells (Figure 29).   
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Figure 28: Gene expression studies of EPCs. (a) Gene expression of EPCs as assessed 
by CD133 and Flk-1 markers using RT-PCR on (i) 7-day EB-derived cells, (ii) ad-Null 
transduced cells, (iii) ad-hVEGF165 transduced cells, (b) Real-time PCR studies for 
expression of CD133 and Flk-1 in ad-hVEGF165 transduced cells as a function of time 
after transduction.  
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Figure 29: Flow cytometric analysis of cell surface marker expression of CD133 on    
(i) ad-Null transduced cells and (ii) ad-hVEGF165 transduced cells. Positively stained 
cells outlined in red were determined based on isotype controls which were outlined in 
blue. 
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3.5 Discussion 

Previous approaches in directing endothelial lineage differentiation in HESCs had 

always focused on the use of angiogenic growth factors in the culture medium. However, 

the procedures were tedious with limited numbers of endothelial cells obtained, ranging 

from 2 to 20% (Gerecht-Nir et al, 2003; Levenberg et al, 2002). This low efficiency of 

endothelial differentiation using angiogenic growth factors in the culture medium may be 

due to the weak stimulatory effect exerted by the diluted growth factors within the culture 

medium. The non-specific pleiotropic effects exerted by various cytokines and growth 

factors in culture medium also make this a relatively inefficient approach in directing 

endothelial differentiation. Another possible reason could be the relatively short active 

half-life of the supplemented proteins within the culture medium.  

In this study, we examined the ability of transient expression of VEGF in 

differentiating HESCs via transduction of ad-hVEGF165 gene in enhancing the efficiency 

of endothelial-lineage differentiation of human embryonic stem cells. Adenoviral vectors 

are among the most utilized vectors in gene therapy studies. They possess the advantage 

of excellent gene expression, high viral titers and infection efficiency (Wang et al, 2000; 

Benihoud et al, 1999). They are able to infect a wide range of both dividing and non-

dividing cells. Furthermore, adenoviral vectors do not integrate into the target cell 

genome and therefore, survive only transiently within the target cell (Schwarz et al, 2000; 

Springer et al, 1998). This unique property ensures that only transient expression of the 

introduced gene takes place, therefore, alleviating the danger of an unnecessarily 

prolonged expression with possible deleterious effects. 
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To date, this is the first study reporting the use of an adenoviral vector expressing 

VEGF165 in the differentiating HESC system. We assessed the efficacy of adenoviral 

vector in transducing differentiating HESC and the efficiency of delivering the human 

VEGF gene into differentiating HESCs, with the aim of enhancing endothelial-lineage 

differentiation. 

Our results demonstrated that adenoviral vector is an efficient tool in genetic 

modification of differentiating HESCs. Transduction efficiency was near to 90% as seen 

from VEGF immunofluorescent staining of the transduced cells (Figure 22). Expression 

of VEGF was stable and sustained over a period of 30 days in the transduced cells with a 

peak level at about day 8. The ad-hVEGF165 transduced cells secreted significantly higher 

amounts of VEGF as compared to ad-Null and untransduced cells (27.5 ± 7ng/ml versus 

0.15 ± 3ng/ml). The optimal transduction efficiency was obtained at a ratio of 1:500 

cell/viral particles for 4 hours in three consecutive days. This resulted in highest VEGF 

expression and highest percentage of cell viability of 80% upon transduction (Figures 19 

and 20). Very high viral titers were accompanied with an increased extent of cell death 

due to the toxicity effect of the virus on the cells. The secreted VEGF by ad-hVEGF165 

transduced differentiating cells was biologically active since it was capable of supporting 

HUVEC proliferation (Figure 23). VEGF triggers DNA synthesis and proliferation of 

ECs.  

Immunostaining of endothelial markers showed significant increase in the number 

of CD31, Ve-cadherin and von-Willebrand factor positive cells in ad-hVEGF165 

transduced cells (52.1% ± 12.5%, 42.6% ± 9.8% and 56.3% ± 14.2% respectively) 

(Figures 24 to 26 and Table 13). The number of endothelial-positive cells decreased as 
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the age of the EBs that the cells were derived from increased. This showed that 

transduction of cells derived from younger EBs was more efficient since most of the cells 

had not yet committed to any particular lineage which makes them more amendable to 

manipulation.  

Gene expression studies revealed upregulation of VEGF, Ang-1, Flt-1, Tie-2, 

CD31 and CD34 in ad-hVEGF165 transduced cells. Upregulation of Ang-1 was 

noteworthy as this indicated a possible role of VEGF in regulating Ang-1 expression, 

which is known to play a prominent role in the maturation and stabilization of new blood 

vessel formation. This is especially useful in cell transplantation studies in vivo where 

balanced expression of both angiogenic growth factors is necessary for formation of 

functional blood vessels.  

Upregulation of endothelial progenitor markers such as CD133 and Flk-1 were 

also observed in ad-hVEGF165 transduced cells. Real time PCR data showed the gradual 

increase of these markers over regular time points after ad-hVEGF165 transduction 

(Figure 28). CD133 and Flk-1 are surface markers that are used to characterize 

functionally early putative endothelial progenitor cells (Hristov et al, 2003, Gehling et al, 

2000, Peichev et al, 2000, Yamashita et al, 2000). CD133 marker expression has been 

reported to be lost upon terminal differentiation of EPCs into mature ECs. (Hristov et al, 

2003; Peichev et al, 2000). This is then followed by the expression of endothelial markers 

such CD31 and von-Willebrand factor. However, the CD133+ cell population is believed 

also to include some hematopoietic stem cells to a minimal extent. As endothelial and 

hematopoietic cells are derived from a common bipotent mesodermal precursor; 

putatively known as hemangioblasts (Wang et al, 2004), analysis of defined antigenic 
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determinants of endothelial and hematopoietic progenitor cells can be complicated since 

they tend to overlap. The number of CD133+ cells increased significantly by 5-fold in the 

ad-hVEGF165 transduced cells as revealed in flow cytometric analysis.  

Gene transfer is a better approach in obtaining a higher degree of homogeneous 

differentiation than using growth factors in culture medium and our results demonstrated 

that introducing angiogenic VEGF gene into the differentiating HESCs was successful 

and effective in increasing the efficiency of endothelial-lineage differentiation. This is 

due to the ability of ad-hVEGF165 transduced cells to continually produce VEGF on their 

own and endothelial-lineage differentiation is no longer hindered by the relatively short 

active half-life of exogenous VEGF supplemented into the culture medium. The gene 

transfer approach is also considered to be more economical, because there is no longer 

any need to supplement highly-expensive cytokines/growth factors within the culture 

milieu. 

Despite the ethical and immunological concerns revolving around the use of 

HESCs, it still represents one of the best source of donor cells for regenerative therapy 

due to its unique characteristics; in particular its high proliferative capacity and multi-

lineage differentiation potential. However, clinical application of these HESC-derived 

EPCs or mature ECs can only be established if they can be purified from the 

heterogeneous population and if they can be immunologically tolerated upon transplanted 

in vivo. These cells have numerous potential applications including their use in various 

tissue regenerative therapeutic approaches such as transplantation into infarcted hearts for 

myocardial regeneration, engineering of new blood vessels or induction of angiogenesis 

for treatment of regional ischemia.  
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We conclude that adenoviral vector carrying the human VEGF165 gene is capable 

of efficient delivery and stable expression of VEGF into differentiating HESCs which in 

turn is effective in directing endothelial-lineage differentiation. Genetic modification by 

the adenoviral vector may offer new avenues for this study and for the use of HESCs in 

basic and applied scientific research. 
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4.1 Abstract 

The present study investigated the functionality of CD133+ EPCs differentiated 

from HESCs by ad-hVEGF165 transduction. Their ability to survive, differentiate and 

integrate in an ischemic environment was assessed by transplanting them into a rat MI 

model. Two weeks after MI was created by ligation of the LAD artery, Wistar rats were 

randomly allotted to receive either an injection of CD133+ EPCs derived from 

differentiating HESCs transduced with ad-hVEGF165, ad-Null transduced differentiating 

HESCs or just culture medium. 6 weeks after treatment, the degree of neovascularization 

and apoptotic activity in the infarct and peri-infarct areas was evaluated by histology and 

immunohistochemical staining. Echocardiography was performed for cardiac function 

assessment and fluorescent microsphere analysis was carried out to assess the regional 

blood flow.   

Transplanted CD133+ EPCs survived and participated actively and passively in 

the regeneration of the infarcted myocardium by differentiating into endothelial and 

smooth muscle cells that incorporate into the newly formed blood vessels; as well as by 

secretion of angiogenic growth factors such as VEGF and Ang-1 into the infarcted 

myocardium that are responsible for the process of vasculogenesis and angiogenesis. 

Mature blood vessel density was 23.62 ± 2.36 in the CD133+ EPC transplanted group as 

compared to 2.41 ± 1.17 in medium-injected group, which was a significant 10-fold 

increase. 

CD133+ EPC transplantation significantly reduced infarct size to (28% ± 6.2%) as 

compared to the medium-injected group (76% ± 4.3%, p<0.001). Regional blood flow 

analysis showed improvement in the CD133+ EPC transplantation group (2.86 ± 0.278 
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ml/min/g) as compared to the medium-injected group (0.8 ± 0.156 ml/min/g, p=0.05). 

Echocardiography assessments at 6 weeks post-transplantation revealed that the left 

ventricle ejection fraction was significantly higher in the CD133+ EPC transplanted group 

than in the medium-injected group (72.85% ± 9.7% vs 38.22 ± 5.4%, p=0.023) and 

similar observation was seen for fractional shortening (54.8% ± 7.4% vs 27.2% ± 1.85%, 

p=0.028).  

In conclusion, HESC derived CD133+ EPC transplantation holds promise to be a 

novel and effective means of heart regeneration therapy with much potential for clinical 

applications in the future.    
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4.2 Introduction 

Animal studies and preliminary results in human clinical trials have suggested 

that the lower extremity of myocardial ischemia can be reduced effectively by treatment 

with angiogenic cytokines. The resident population of ECs which respond to the level of 

various angiogenic growth factors after infarction is usually a limiting factor in the extent 

of tissue neovascularization upon cytokine supplementation. More recently, EPCs have 

been investigated as therapeutic agents, which have the ability to participate actively in 

therapeutic angiogenesis, supplementing the contribution of resident ECs in the 

vasculature that migrate, proliferate and remodel in response to angiogenic cues. 

Additionally, the transplanted cells can also exert a passive effect by supplying various 

angiogenic growth factors to the tissue environment.  

Therapeutic angiogenesis is one of the key factors for myocardial regeneration 

since it helps to create a favourable environment by ensuring the availability of sufficient 

amount of oxygen and nutrients to promote survival of either the hibernating or ischemic 

cardiomyocytes or the transplanted cells used in cellular cardiomyoplasty. In a normal 

heart, there is a capillary next to almost every cardiomyocyte and endothelial cells 

outnumber cardiomyocytes by ≈3: 1 (Brutsaert 2003). Mediating this endothelial-

myocardial interaction is therefore a key strategy for myocardial regeneration.  

Accordingly, EPCs differentiated from ad-hVEGF165 transduced differentiating 

HESCs were investigated for their ability to survive, differentiate and integrate within an 

ischemic environment by transplanting them in a rat model of myocardial infarction. We 

hypothesized that these progenitor cells characterized by the expression of CD133 are 

able to differentiate in vivo and augment blood vessel growth via vasculogenesis and 
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angiogenesis, hence improving blood perfusion and reducing infarct expansion by 

preventing further death of cardiomyocytes. This would be followed by reduction in left 

ventricular remodeling and improved cardiac performance. 
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4.3 Materials and Methods 

4.3.1 Materials 

4.3.1.1 Cell line 

Human embryonic stem cells, H1 cell line  

 Cells were purchased with license agreement from Wicell Research Institute, Inc.  

4.3.1.2 Animal 

Wistar rats   

 A total of 100 female Wistar rats (± 250g) were used for the creation of the rat MI 

model. Wistar rats were purchased from Centre for Animal Resources, Lim Chu Kang, 

Singapore. 

The materials used for this study is listed in Appendix 6.1. 

4.3.2 Methods 

4.3.2.1 Preparation of transplanted cells 

Magnetic cell sorting for CD133 positive cells 

 Enrichment of CD133+ cells from ad-hVEGF165 transduced differentiating cells 

was performed using immunomagnetic separation using magnetic activated cell sorting 

(MACS) with the use of anti-CD133-conjugated superparamagnetic microbeads 

following the manufacturer’s recommendations. Briefly, the transduced cells were 

incubated with for 30min at 4°C with FcR blocking reagent and CD133 microbeads. 

After washing with 0.5% bovine serum albumin in PBS, the labeled cells were loaded 

onto a column installed in a strong magnetic field. The trapped cells were eluted after the 

column was removed from the magnet.  
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Labeling of cells with DAPI 

The transplanted cells were labelled with DAPI. The cells were incubated in 1× 

DAPI solution diluted in DMEM:F12 medium for 30 minutes at 37°C. The cells were 

washed three times in Hanks Balanced Salt solution to remove the excess DAPI. The 

cells were then resuspended in 150μl DMEM:F12 medium and stored in ice until 

transplantation into the myocardium. 

4.3.2.2 Rat model of myocardial infarction 

Creation of rat ligation model  

Please refer to 2.3.2.1 for the procedure to create a rat model of MI by ligation of 

the LAD artery. 

Animal groupings for cell transplantation 

The animal groupings for cell transplantation study were as the following: 

1. Group-1: Sham-operated (n=25) 

2. Group-2: DMEM/F12 medium injection (n=25) 

3. Group-3: Ad-Null transduced cells transplantation (n=25) 

4. Group-4: CD133+ purified from ad-hVEGF165 transduced cells tranplantation 

(n=25) 

Transplantation of the EPCs into the rat heart 

For the cell transplantation procedure, the rats were subjected to a second 

surgerical operation similar to that mentioned earlier. Cell suspension of about 150μl 

containing of approximately 5 ×106 cells was directly injected into the infarcted and 

around infarcted region by using an insulin syringe 2 weeks post-infarction. After 
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transplantation, the muscle layer and skin incision will be closed with 3-0 silk absorbable 

suture.  

Post surgery care for the rat MI models 

 Please refer to 2.3.2.1 for the post surgery care for the animal models. 

Once the rats were transplanted with the cells, they were also given daily 

intraperitoneal injection of an immunosuppresive agent, cyclosporin daily for the next 6 

weeks. 

Euthanasia of the rats 

Please refer to 2.3.2.1 for the euthanasia procedure of the animal models. 

4.3.2.3 Functional studies 

Rat heart function assessment using echocardiography 

Please refer to 2.3.2.2 for the echocardiography procedure for heart function 

assessment.  

 Regional blood flow study using fluorescent microspheres 

For assessment of the regional blood flow, the rats were subjected to fluorescent 

microsphere study 2 weeks after ligation and 6 weeks after treatment. After anaesthesia 

and intubation, the rats were placed in a dorsal decubitus position. After the chest was cut 

opened, the right or left carotid artery was isolated and a catheter were inserted until it 

reached the left ventricle. At the same time, the right or left superficial femoral artery was 

isolated and a needle attached to a 5ml-syringe were inserted into it so as to collect the 

blood sample. Microsphere solution (1.4 × 104 microspheres/kg body weight) was 

injected through the catheter into the left ventricle during the second ten seconds of a 
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minute while 2ml blood samples were drawn within the same minute. The left ventricle 

of the rat hearts were weighed out.  

The micropsheres in the tissue and blood samples were recovered by digestion 

and negative filtration procedure. The blood samples were incubated in a digestion 

solution containing 89.2% potassium hydroxide (KOH) and 2% of Tween-80 while the 

heart samples were incubated in a digestion solution containing 22.4% KOH and 2% 

Tween-80. Digestion was allowed to take place overnight at 37°C.  

The fluorescent dye was extracted by ethoxyethyl acetate from the microspheres 

and measured by a Luminescence Spectrophotometer at 505/515nm for yellow-green 

flourescence. Regional blood flow was calculated using the following equation: 

 

Q (ml/min/g) =   

 

FItissue is the fluorescent reading for the tissue sample; FIblood is the fluorescent reading for 

the blood sample and R is the withdrawal rate of the reference blood flow. 

4.3.2.4 Assessment of the effect of EPC transplantation on the infarction model 

Morphometric analysis using tetrazolium chloride staining 

Please refer to 2.3.2.3 for tetrazolium chloride staining for infarct size 

measurement.  

Survival of the cells in the rat heart 

Tissue sections were viewed under fluorescent microscope to evaluate 

transplanted DAPI-labeled cell survival and incorporation into the ischemic myocardium. 

PCR analysis for human Y chromosome was also performed. Total DNA was isolated 

FItissue 
FIblood 

R (ml/minute)/g ×
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using DNeasy Tissue kit following the manufacturer’s instruction. Primer sequence for 

human Y chromosome is listed in Table 14. The PCR condition is as shown in Table 15. 

Quantitative assessment of capillary density  

The tissue sections were washed twice in 1× PBS for 5 minutes, fixed with -20°C 

methanol for 10 minutes and treated with 3% methanolic hydrogen peroxide solution 

(H2O2) for 15 minutes. After washing with 1× PBS, the tissue sections were blocked with 

Ultra V Block for 8 minutes followed by overnight incubation with primary antibodies; 

rabbit anti human von-Willebrand factor and mouse anti human smooth muscle actin at 

dilution factor 1:500 and 1:400 respectively. The tissue sections were washed thoroughly 

on the following day and then incubated for 90 minutes with secondary antibodies; goat 

anti-rabbit FITC (for von-Willebrand factor) and goat anti-mouse TRITC (for smooth 

muscle actin) at dilution factor of 1:500 each. The slides were observed under a 

fluorescent microscope after thorough washing and air drying.  

 A total of 20 slides from each group were used to assess the capillary density 

based on von-Willebrand factor and smooth muscle actin fluorescent immunostaining. 

Five random images of the peri-infarct region were captured from each slide. The 

capillary density was calculated based on the number of FITC-positive (for von-

Willebrand factor) and TRITC-positive (for smooth muscle actin) cells.  

TUNEL assay for assessment of cardiomyocyte death 

Parafinized tissue sections were deparafinized, digested with Proteinase K and 

incubated with TdT and fluorescein-labeled dUTP in a humidified atmosphere at 37°C 

for 60 minutes. After thorough washing, the tissue sections were incubated with an 

antibody specific for fluorescein-conjugated alkaline phosphatase for 30 minutes. The  
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Table 14: Primer sequence for human Y chromosome 
 

Primer Sequence 
Human Y chromosome Forward= 5’-CATGAACGCATTCATCGTGTG GTC-3’ 

Reverse= 5’-CTGCGGGAAGCAAACTGCAATTCTT-3’ 
 
 

Table 15: PCR condition for Y chromosome gene 
 

Initial activation step 15 min 95°C 
3-step cycling: 
Denaturation 

 
1 min 

 
94°C 

Annealing 1 min 63°C 
Extension 1 min 72°C 
Number of cycles 30  
Final extension 10 min 72°C 
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TUNEL stain was visualized with a substrate system in which nuclei with DNA 

fragmentation were stained green (BCIP/NBT substrate system). In order to determine 

the proportion of apoptotic cardiomyocytes, the tissue sections were counterstained with 

Nuclear Fast Red and viewed under fluorescent microscope. A total of 15 slides from 

each group were used to assess the percentage of apoptotic cardiomyocytes. Five random 

images were captured from each slide.  

RT-PCR and ELISA for analysis of human VEGF and Ang-1 RNA and protein expression 

The details of each primer sets that were used are listed in Table 12 (page 128) 

and the PCR cycling program used is outlined in Table 9 (page 123). ELISA procedure 

for both proteins is similar to the protocol mentioned under section 3.3.2.5. 

4.3.3 Statistical analysis 

Statistical analysis was performed using SPSS (version 11.0). All data were 

presented as mean ± standard error mean (SEM) and analyzed by analysis of variance 

(ANOVA) between groups. Intra-group comparison was carried out using paired student t 

test. P< 0.05 was considered statistically significant.  
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4.4 Results 

4.4.1 Improvement of left ventricular function after human CD133+ EPCs 

transplantation 

Echocardiographic assessments revealed that the LVEF was higher in the cell-

injected rats than in the medium-injected rats. However, rats receiving the enriched 

population of CD133+ cells showed a significantly higher LVEF when compared to rats 

receiving ad-null transduced cells (72.85% ± 9.7% vs 51.16% ± 6.5%, p=0.036) (Figure 

30a). 

The left ventricular fractional shortening at baseline was not significantly 

different among the four groups. 6 weeks after cell transplantation, significant 

improvement in the left ventricular fractional shortening was observed in the CD133+ 

cells transplanted myocardium whereas there was decrease with left ventricular fractional 

shortening in the control group (54.8% ± 7.4% vs 27.2% ± 5.8%, p=0.028) (Figure 30b). 

Improved mobility of the anterior wall in the CD133+ cells transplanted rats versus the 

medium-injected rats at 6 weeks after transplantation was also observed. Moreover, less 

left ventricular dilatation was found in the CD133+ cells transplanted group rats 

compared with the medium-injected rats.  

4.4.2 Survival of human CD133+ transplanted cells in the infarcted rat myocardium 

Frozen sections prepared from infarct and peri-infarct sites of cell-transplanted 

groups at 6 weeks after cell transplantation showed DAPI-positive cells under fluorescent 

microscope (Figure 31). In contrast, sections from the sham-operated or medium-injected 

group had no such DAPI-positive cells. RT-PCR showed the presence of human Y 

chromosome in the rat hearts from week 1 to week 6 after cell transplantation. The  
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Figure 30: Assessment of cardiac function using echocardiography. (a) Left 
ventricular ejection fraction measured for the 4 animal groups. (b) Fractional shortening 
measured for the 4 animal groups. 
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Figure 31: (a) Survival of transplanted CD133+ derived cells in the rat heart. 
(Magnification: i & iii= 100×, ii & iv= 200×), (b) PCR for human Y chromosome in 
rat heart tissue after CD133+ cell transplantation at various weeks after cell 
transplantation 
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presence of human Y chromosome DNA demonstrated the survival of human CD133+ 

cells in the rat heart at 6 months post-transplantation. 

4.4.3 Extent of injury upon MI 

 Gradual loss of cardiomyocytes by necrosis was observed within the first 7 days 

post-infarction. Accompanying this was the significant increase in the number of 

inflammatory immune cells infiltrating into the myocardium within the first 7 days post-

infarction. By day 14 post-infarction, the number of infiltrating immune cells has 

significantly decreased. The degree of infarct expansion was rapid and by day 31 post-

infarction, there was significant loss of viable myocardium (Figure 32). Accelerated 

fibrosis and collagen deposition also occurred resulting in significant formation of 

collagen scar in the myocardium by day 31 post-infarction (Figure 33). 

4.4.4 Endogenous blood vessel density analysis in the infarcted rat myocardium  

 Endogenous blood vessels formed after myocardial infarction was analyzed over a 

period of two weeks. The number of blood vessels increased till week 2 after infarction 

(Figure 34). Non-stabilized or non-perfused nascent blood vessels consisting of only ECs 

slowly regressed over time by the end of week 4, leaving only the mature blood vessels. 

4.4.5 Blood vessel density upon human CD133+ EPCs transplantation     

 Blood vessel density was quantified using fluorescent immunostaining of von-

Willebrand factor expression in capillaries found in the infarct and peri-infarct area at 

high power field magnification (200×). Results were compared among groups. CD133+  

EPCs transplantation resulted in high blood vessel density at 6 weeks post-transplantation 

(29.35 ± 1.02). This was significantly higher when compared to medium-injected controls 

(5.25 ±0.73, p<0.001), the ad-Null transduced cells transplanted group (15.36 ± 1.42,  
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Figure 32: Hematoxylin and eosin staining of the rat heart upon infarction.               
(i) normal, (ii) 1 day, (iii) 3 days, (iv) 7 days, (v) 14 days, (vi) 31 days after infarction. 
(Magnification= 200×) 
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Figure 33:  Masson Trichrome staining of the rat heart upon infarction. (i) normal,   
(ii) 3 days, (iii) 7 days, (iv) 14 days and (v) 31 days after infarction.(Magnification= 200×) 
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Figure 34: von-Willebrand factor staining for endogenous blood vessels in the rat 
heart. (i) normal, (ii) 3 days, (iii) 7days, (iv) 14 days, (v) 31 days after infarction 
(Magnification= 200×) 
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p<0.001) and the sham-operated group (4.34 ± 2.35, p<0.001) (Figure 35). DAPI-

labelled CD133+ derived cells were dispersed around the ischemic myocardium, 

indicating that some of the cells were engrafted within newly-formed blood vessels.  

4.4.6 Mature blood vessel density upon human CD133+ EPCs transplantation     

 Using smooth muscle cells as an indicator of the maturity of the blood vessels, 

mature blood vessels were quantified by counting blood vessels that were positive for 

both von-Willebrand factor and smooth muscle actin. They were counted at high power 

field magnification (200×). The number of mature blood vessels was highest in the 

CD133+ EPC transplanted group (23.62 ± 2.36), followed by ad-Null transduced cells 

transplanted group (8.82 ± 0.89, p<0.001), medium-injected group (2.41 ± 1.17, p<0.001) 

and sham-operated group (2.73 ± 1.47, p<0.001) (Figure 35). 

4.4.7 Improvement in regional myocardial perfusion after human CD133+ EPC 

transplantation  

The perfusion defect was reduced in both cell transplanted groups. However, 

significant increase in regional blood perfusion was observed in CD133+ EPC 

transplantation group (2.86 ± 0.278 ml/min/g) as compared to ad-Null transduced cells 

transplanted group (1.48 ± 0.227 ml/min/g, p=0.026), medium-injected group (0.8 ± 

0.156 ml/min/g, p=0.05) and sham-operated group (1.13 ± 0.234 ml/min/g) at 6 weeks 

post-transplantation (Figure 36).  

4.4.8 Reduction of infarct size after human CD133+ EPC transplantation     

Tetrazolium chloride staining showed a marked reduction of infarct size in the 

cell transplanted groups compared to the medium-injected group in the infarcted 

myocardium (Figure 37). The extent of reduction of the infarct size was higher in the  
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Figure 35: (a) Blood vessel density in the ischemic myocardium at high 200× 
magnification at 6 weeks after cell transplantation. Double fluorescent 
immunostaining for von-Willebrand factor (green fluorescence- FITC) and smooth 
muscle actin (red-fluorescence-TRITC) was performed to visualize the blood vessels,    
(b) Graphical representation of the blood vessel density in the 4 animal groupings.  
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Figure 36: Regional myocardial flow assessment in between CD133+ cell 
transplanted group and medium-injected group 
 

 

 

 

 

 

 

 

 

 

 
Figure 37: Infarct size assessment a between CD133+ cell transplanted group and 
medium-injected group 
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CD133+ EPC transplanted group (28% ± 6.2%) when compared to the ad-Null transduced 

cells transplanted group (51% ± 4.5%, p=0.008) and medium-injected group (76% ± 

4.3%, p<0.001) at 6 weeks post-transplantation. Interestingly, most of the myocardial 

structure in the border zone was intact and accompanied by many new blood vessels in 

the cell transplanted rats whereas the myocardial structure was chaotic in the medium-

injected group, indicating that cell engraftment attenuated left ventricular remodeling 

after infarction.  

4.4.9 Reduction in number of apoptotic cells in the infarcted hearts transplanted 

with human CD133+ EPCs 

 The number of apoptotic cells in the infarct and peri-infarct areas of the 

myocardium was assessed by TUNEL assay. The number of TUNEL-positive cells in 

CD133+ EPC transplanted group was significantly lower than in the ad-Null transduced 

cell transplanted group and medium-injected group (Figure 38).  

4.4.10 Incorporation of human CD133+ derived cells into foci of myocardial 

neovascularization 

Co-localization of von-Willebrand factor with smooth muscle actin with DAPI 

fluorescence documented that the transplanted population of DAPI-labeled cells 

incorporated into the neovascular foci (Figure 39). Review of 15 sections retrieved from 

the infarcted myocardium of CD133+ EPC transplanted group identified labeled CD133+ 

derived cells in up to 72% (± 4.2%) of the total blood vessels under high power 

magnification field (200×).  
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Figure 38: TUNEL assay for assessment of the apoptotic cells in the infarct and peri-
infarct areas of the ischemic myocardium. TUNEL positive cells are visualized as 
green fluorescence and cell nuclei are visualized as red fluorescence using propidium 
iodide. Tissue sections from (i) DMEM/F12 medium injected animals, (ii) ad-Null 
transduced cells transplanted animals, (iii) CD133+ cells from ad-hVEGF165 transduced 
cells transplanted animals (Magnification= 200×) 
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Figure 39: Effects of CD133+ cell transplantation on neovascularization in the rat 
ischemic myocardium. (i) Presence of newly formed blood vessels in the infarcted and 
peri-infarct areas, (ii) Incorporation of CD133+ derived cells into newly formed blood 
capillaries, iii) Endogenous blood capillaries formed by the rat vascular-related cells.       
(i: Magnification= 200×, ii & iii: Magnification= 400×) 
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The cells were found mainly in the infarct and peri-infarct areas of the myocardium. 

Other than the ischemic areas of the myocardium, CD133+-derived cells were detected 

neither in contra-lateral non-ischemic myocardium nor the other organs. 

Enhanced neovascularization in CD133+ EPC transplanted group led to important 

biological preservation of myocardium as observed from the infarct size assessment of 

the infarcted myocardium.  

4.4.11 Angiogenic cytokines supply by transplanted CD133+ EPCs to the infarcted 

rat myocardium  

Cardiac mRNA and protein expression of VEGF and Ang-1 were higher in the 

CD133+ EPCs transplanted group than the medium-injected group (Figure 40a & b). 

VEGF mRNA and protein expression in medium-injected group remained at a low level 

from day 1 up till 6 weeks after medium injection. In CD133+ EPC transplanted group, 

VEGF mRNA and protein expression significantly increased 5 to 8 days post-

transplantation and slowly decreased till 6 weeks post-transplantation. Ang-1 mRNA and 

protein expression in medium-injected group were high from day 1 to day 8 after medium 

injection but started to decline from day 14 onwards. In CD133+ EPC transplanted group, 

Ang-1 mRNA and protein expression increased gradually and peaked at day 8 and day 14 

post-transplantation. At 6 weeks, both VEGF and Ang-1 mRNA and protein expressions 

were higher in the CD133+ EPC transplanted group than the medium-injected group. 
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Figure 40: VEGF and Ang-1 expression in rat myocardium at various time points 
after treatment. (a) RT-PCR showing VEGF and Ang-1 mRNA expression in rat 
myocardium at day 1, day 5, day 8 and week 6 after treatment, (b) VEGF and Ang-1 
protein expression in rat myocardium at day 1, day 5, day 8 and week 6 after treatment as 
measured by ELISA. 
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4.5 Discussion 

Following an infarction, the viable myocardial tissue bordering the infarct area is 

significantly hypertrophied (Braunwald et al, 1991; Olivetti et al, 1991). Although 

endogenous angiogenesis within the infarcted area appears to be a crucial component of 

the left ventricle remodeling process, under normal circumstances, the capillary network 

is unable to keep pace with tissue growth and support the greater demands of the 

hypertrophied but viable myocardium which subsequently undergoes apoptosis due to 

inadequate oxygenation and nutrition (Cheng et al, 1996; Narula et al, 1996). Findings 

that indicated circulating EPCs from the bone marrow may home to sites of 

neovascularization and differentiate into ECs in situ is consistent with the vasculogenesis, 

the establishment of vascular network in the embryo (Shi et al, 1998). This suggested that 

growth and development of blood vessels in the adult is not restricted only to 

angiogenesis but also to embryonic vasculogenesis. Therefore, a novel strategy of EPC 

transplantation to supplement resident fully differentiated ECs in promoting 

neovascularization of the infarct and peri-infarct areas is potentially beneficial. 

The main findings of this study demonstrated that (i) HESC derived CD133+ 

EPCs using VEGF adenoviral transduction is safe upon transplantation, (ii) CD133+ 

EPCs can successfully survive in the infarcted myocardium for 6 weeks post-

transplantation, (iii) CD133+ EPCs are able to differentiate into endothelial and smooth 

muscle cells in vivo within the ischemic environment, (iv) CD133+ derived cells 

incorporate into the blood vessel walls, (v) CD133+ EPC transplantation resulted in 

improvement of regional blood flow and cardiac function, (vi) CD133+ EPC 
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transplantation limits the extent of infarct expansion and (vii) CD133+ derived cells 

supplied angiogenic cytokines such as VEGF and Ang-1.  

This pre-clinical study demonstrated that CD133+ EPC transplantation can 

effectively and safely induces neovascularization in ischemic myocardium by 

differentiating into vascular-related cells and supplying angiogenic factors. This has 

important biological consequences as the transplantation augmented the naturally 

impaired neovascularization and improved blood flow recovery. Additionally, LVEF and 

fractional shortening also improved by 2-fold in comparison between rats receiving 

CD133+ EPCs and rats receiving medium injection, reaching values as good as sham-

operated rats (Figure 30). The same strategy but using different markers for identifying 

population of EPCs have also been used successfully to enhance myocardial function 

after infarction and limb ischemia in experimental animal models (Kawamoto et al, 2003; 

Kawamoto et al, 2001; Kocher et al, 2001; Kalka et al, 2000).  

Despite the promising potential of EPCs for regenerative applications, the 

fundamental scarcity of their population in the bone marrow and peripheral blood 

combined with their possible functional impairment due to age-related factors and other 

human phenotypes such as diabetes and hypercholesterolemia constitute a potential 

liability of therapeutic vasculogenesis and angiogenesis via primary EPC transplantation 

(Cosentino et al, 1998; Drexler et al, 1991). HESCs on the other hand, represent one of 

the best source of donor cells for regenerative therapy as compared to bone marrow and 

peripheral blood since they are highly proliferative, hence providing a potentially 

unlimited reservoir of cells for induction of EPC differentiation.  
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In this study, cell transplantation was delayed until 2 weeks post-infarction to 

reduce the extent of transplanted cell loss during the post-necrosis inflammatory process. 

The significant decrease in the number of infiltrating immune cells into the myocardium 

and the moderate amount of collagen scar in the myocardium at 2 weeks post-infarction 

made the microenvironment conducive for the survival of the transplanted CD133+ cells 

(Figure 32 & 33). CD133+ EPCs in the infarcted myocardium could survive for 6 weeks 

post-transplantation in an immunosuppressed animal. RT-PCR of human Y chromosome 

was used to assess the extent of the presence of the transplanted cells in the rat 

myocardium (Figure 31a & b). The Y-chromosome expression level decreased up till 

week 3 post-transplantation before increasing slowly by week 6. This data supported the 

fact that the surviving transplanted cells proliferated in the rat infarcted myocardium. 

Besides cell loss due to physical strain during and after injection, direct cell injection into 

the infarcted rats may also helped to reduce the degree of cell loss. This is because the 

injected cells have more difficulty in escaping beyond the fibrous capsule through 

vascular or lymphatic channels.  

Even though myocardial infarction was a stimulus to induce endogenous 

neovascularization in the rat heart, this was insufficient to provide beneficial 

revascularization in order to salvage the damaged heart tissue (Figure 34). CD133+ EPC 

transplantation resulted in significantly higher degree of neovascularization, identified by 

fluorescent immunohistochemical staining for von-Willebrand factor and smooth muscle 

actin, evaluated by blood capillary density and regional blood flow by microspehere 

injection as compared to controls receiving medium injection and null-ad transduced cells 

that have significantly lower amount of EPCs (Figure 35 and 36). Blood vessel and 
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mature blood vessel density were approximately 6- and 8-fold respectively greater in 

CD133+ EPC transplanted rats than in medium-injected rats, while regional blood flow 

increased by 3-fold. The enhanced neovascularization also resulted in a lower degree of 

left ventricle infarct expansion, possibly due to the lower degree of apoptotic death of the 

cardiomyocytes shown in the TUNEL assay (Figure 37 and 38). The salvage of the 

cardiomyocyte death especially at the peri-infarct area is critical as it prevents the 

decrease in ventricular wall thickness which according to Laplace’s law, will reduce left 

ventricular stress and prevent infarct expansion, left ventricular dilatation and 

deterioration of function (Mann, 1999). Furthermore, it has been reported that cell 

apoptosis from the activation of pro-apoptotic signal transduction pathways accounts for 

at least half of the total cell destruction during myocardial infarction (Takashi et al, 2000; 

Kajstura et al, 1996).   

Most of the surviving cells were found to be incorporated into the foci of 

myocardial neovascularization. Potential mechanisms by which neovascularization may 

be induced after CD133+ EPC transplantation include (i) formation of blood vessels by 

the transplanted CD133+ cells and (ii) stimulation of angiogenic growth factors expressed 

or stimulated by the transplanted CD133+ cells. This study showed that CD133+ cells 

played a structural role in induction of neovascularization as many DAPI-labeled CD133+ 

derived cells were found to be incorporated into the newly formed blood vessels, 

differentiated into both endothelial and smooth muscle cells, hence enhancing the mature 

vascularization in both infarct and peri-infarct areas 6 weeks post-transplantation (Figure 

35 & 39). This result was consistent with the finding of a study by Gehling which showed 
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the ability of CD133+ EPCs purified from peripheral blood differentiate into ECs both in 

vitro and in vivo (Gehling et al, 2000). 

The results showed that there were differences in the VEGF and Ang-1 cardiac 

mRNA and protein expression levels between the CD133+ EPC transplanted and 

medium-injected rats (Figure 40a & b).  RT-PCR and ELISA showed that cardiac mRNA 

and protein expression of VEGF in CD133+ EPC transplanted rats were highly expressed 

after day 1 post-transplantation, peaked by day 5 and day 8. Following that, VEGF 

expression slowly decreased but was still detectable at 6 weeks post-transplantation 

whereas VEGF expression in medium-injected rats remained low throughout the various 

time points after medium injection. RT-PCR and ELISA showed that cardiac mRNA and 

protein expression of Ang-1 which plays a role in the maturation and stability of the 

blood vessels were seen to be upregulated later than VEGF. In the CD133+ EPC 

transplanted group, Ang-1 was only highly expressed at day 8 to day 14 post-

transplantation. Ang-1 expression slowly declined and reached a low level at 6 weeks 

post-transplantation. Endogenous expression of angiogenic cytokines and their increased 

expression upon cell transplantation have also been reported in other studies using other 

cell types such as mesenchymal stem cells and bone marrow cells (Tang et al, 2005; 

Zhang et al, 2004; Heba et al, 2001; Kamihata et al, 2001). 

Overall, the present study adds to the number of investigations pointing to the 

potential utility of embryonic stem cells in the heart regeneration therapy.  The difference 

of this present study from the other previous work is that this study focused on the use of 

differentiated derivative from embryonic stem cells which in this case is EPCs unlike 

other studies that focused on undifferentiated embryonic stem cells that may differentiate 
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into various cell types in the myocardium. CD133+ EPCs derived from ad-VEGF165 

transduced differentiating HESCs were effective and safe for heart regeneration in a rat 

model of myocardial infarction. However, important barriers such as adequate source of 

pathogen-free HESC lines, immune rejection and tumorigenesis must be overcome before 

HESCs can finally reach clinical applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 199

4.6 Bibliography  
 
Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, 
contractile performance and rhythmicity. Physiol Rev 2003; 83: 59-115 
 
Cheng W,Kajstura J,Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, 
Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium 
after infarction in rats. Exp Cell Res 1996; 226: 316-327 
 
Cosentino F, Luscher TF. Endothelial dysfunction in diabetes mellitus. J Cardiovasc 
Pharmacol 1998; 32: S54-S61 
 
Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial dysfunction in 
coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet 1991; 
338: 1546-1550 
 
Gehling UM, Ergun Suleyman, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, 
Schafhausen P, Mende T, Kilic N, Kluge K, Schafer B, Hossfeld DK, Fiedler W. In vitro 
differentiation of endothelail cells from AC133-positive progenitor cells. Blood 2000; 95: 
3106-3112 
 
Heba G, Krzeminski T, Pore M, Grzyb J, Ratajska A, Dembinska-Kiec A. The time 
course of tumour necrosis factor-alpha, inducible nitric oxide synthase and vascular 
endothelial growth factor expression in an experimental model of chronic myocardial 
infarction in rats. J Vasc Res 2001; 38: 288-300  
 
Kajstura J, Cheng W, Reiss K, Clark WA,Sonnenblick EH, Krajewski S, Reed JC, 
Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent 
contributing variables of infarct size in rats. Lab Invest 1996; 74: 86-107 
 
Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, 
Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for 
therapeutic neovascularization. Proc Natl Acad Sci USA 2000; 28: 3422-3427 
 
Kamihata H, Matsubara H, Nishiue T, Fujiyama s, Tsutsumi Y, Ozono R, Masaki H, 
Mori Y, Iba O, Tateishi E. Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T. 
Implantation of bone marrow mononuclear cells into ischemic myocardium enhances 
collateral perfusion and regional function via side supply of angioblasts, angiogenic 
ligands and cytokines. Circulation 2001; 104: 1046-1052  
 
Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida 
S, Masuo o, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, 
Asahara T. Intramyocardial transplantation of autologous endothelial  progenitor cells for 
therapeutic neovascularization of myocardial ischemia. Circulation 2003; 107: 461-468 
 
 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Cheng+W%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kajstura+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Nitahara+JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Li+B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Reiss+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Liu+Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Clark+WA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Krajewski+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Reed+JC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Olivetti+G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Anversa+P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10725398&query_hl=9&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10725398&query_hl=9&itool=pubmed_docsum


 200

Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma 
H, Kearney M, Isner JM, Asahara T. Therapeutic potential of ex vivo expanded 
endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634-637 
 
Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, 
Edwrads NM, Itescu S. Neovascularization of ischemic myocardium by human bone 
marrow-derived angioblasts prevents cardiomyocytes apoptosis, reduces remodeling and 
improves cardiac function. Nature Med 2001; 7: 430-436 
 
Mann DL. Mechanisms and models in heart failure: a combinatorial approach. 
Circulation 1999; 100: 999–1008 
 
Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, 
Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N 
Eng J Med 1996; 335: 1182-1189 
 
Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, 
Sauvage LR, Moore MA, Storb RF, Hammond WP. Evidence for circulating bone 
marrow-derived endothelial cells. Blood 1998; 92: 362-367 
 
Takashi E, Ashraf M. Pathologic assessment of myocardial necrosis and apoptosis after 
ischemia and reperfusion with molecular and morphological markers. J Mol Cell Cardiol 
2000: 32: 209-224 
 
Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Phillips MI. Paracrine action enhances the 
effects of autologous mesenchymal stem cell transplantation on vascular regeneration in 
rat model of myocardial infarction. Ann Thorac Surg 2005; 80: 229-237 
 
Zhang S, Zhang P, Guo J, Jia Z, Ma K, Liu Y, Zhou C, Li L. Enhanced cytoprotection 
and angiogenesis by bone marrow cell transplantation may contribute to improved 
ischemic myocardial function. Eur J Cardio-thorac Surg 2004; 25: 188-195 
 
 
 

  
 
 
 
 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8815940&query_hl=1&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8815940&query_hl=1&itool=pubmed_DocSum


 201

 
 
 
 
 
 

CHAPTER 5 
 

GENERAL CONCLUSION 
AND 

FUTURE DIRECTIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 202

Left ventricular remodeling can be considered as a critical therapeutic target for 

heart failure as it is not only a consequence of heart failure but also contribute to its 

progression. This raises the interesting possibility that therapeutic strategies specifically 

designed to prevent and/or antagonizing left ventricular remodeling may be beneficial to 

the prognosis of heart failure. However, the complexity of the disease makes it uncertain 

as to which myriad of cellular and molecular mechanisms that contribute to left 

ventricular remodeling should be therapeutic targets. It is not possible to antagonize all of 

the biologically active systems that become activated in the setting of heart failure.  

This study has chosen to focus on preservation of cardiomyocytes and 

maintenance of ventricle integrity via studying the influence of a novel peptide on 

expression of pro-inflammatory cytokines and HESC-derived CD133+ cell 

transplantation for enhanced neovascularization in the ischemic myocardium. Both 

studies showed their positive effect in controlling the size of the myocardial infarct and 

improving cardiac function.  

DAA-I therapy revealed downregulation of critical pro-inflammatory cytokines 

that are known to play important role in the pathophysiology of heart failure. It also 

resulted in significant downregulation of the number of infiltrating immune cells into the 

infarct area. These immune cells and pro-inflammatory cytokines are responsible for 

initiating necrotic and apoptotic death of the cardiomyocytes through the inflammation 

process upon infarction.  

 Transplantation of HESC-derived CD133+ cells into the infarcted myocardium led 

to significant increase in the number of functional blood vessels which either consisted of 

donor or host-origin vascular cells. This stable collateral enhancement improved the 
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microvascular network which led to improved perfusion and hence provision of oxygen 

and nutrients to the starved cardiomyocytes. This is critical in the salvaging of the 

cardiomyocytes especially in the peri-infarct area. With this mechanism, CD133+ EPC 

transplantation therapy is successful in reducing infarct area leading to improved cardiac 

function. 

 Despite the encouraging results obtained from the two studies, additional work is 

still required to further elucidate the mechanisms, safety and beneficial effects exerted by 

both therapies. DAA-I is a functional angiotensin peptide of the renin-angiotensin system 

implicated in the pathophysiology of the cardiovascular system. It has been reported to 

exert its protective actions on cardiovascular pathologies, in which angiotensin II is 

implicated, by counteracting the actions of angiotensin II via the AT1 receptor. With this 

knowledge, it would be helpful to clarify the mechanism on how regulation of 

inflammatory cytokine expression by des-asparate-angiotensin-I upon MI occurs via the 

angiotensin II receptor pathway.  

 Therapeutic angiogenesis represents an exciting new avenue in the treatment of 

ischemic heart disease. Various angiogenic proteins and gene therapies in pre-clinical and 

clinical trials have been reported for the past decade and now cell-based therapy is the 

latest strategy being intensively studied. An array of donor cell types including the bone 

marrow cells, mesenchymal stem cells and EPCs have been studied for their effectiveness 

in regenerating the infarcted myocardium. The recent derivation of several pluripotent 

HESC lines has led to their application in pre-clinical myocardial regeneration therapy. 

However, despite the exciting advances in HESC research, much basic work is still 
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required and several obstacles remain to be overcome before this technology can enter 

any serious clinical trials.  

 It is of utmost importance to develop efficient, controlled and stable strategies and 

selection protocols that are able to yield 100% pure population of a specific lineage such 

as cardiomyocytes or vascular cells from HESC differentiation. It is crucial to avoid 

transplanting undifferentiated cells or inappropriate cell lineages due to the risk of 

teratoma formation or unwanted disturbance of the diseased tissue function. Currently, 

modulating composition of cell culture medium to significantly increase the yield of a 

target cell type has not been very successful. An alternative approach is the gene transfer 

method, introducing relevant gene constructs into the HESCs with either viral or non-

viral vectors such as immunoliposomes. While our study using ad-hVEGF165 

demonstrated significant increase of CD133+ EPCs from 8% to 40% within the 

heterogenous population of EB-derived cells, it would be more attractive to obtain 

purified population of CD133+ EPCs directly from HESCs without EB formation. Future 

work can be focused on genetic modification of HESCs by designing and introducing 

gene construct containing a marker gene under the control of a vascular tissue-specific 

promoter or enhancer which can direct vascular differentiation within HESCs themselves. 

The vascular cells can then be selected by the marker to allow for their preferential 

selection. Another approach would be designing vectors with forced expression of 

transcriptional factors that can direct differentiation of HESCs into vascular cells. 

 Our study showed that HESC derived CD133+ cells had good survival rate in the 

infarcted rat myocardium due to cyclosporine, an immunosuppressive agent that was 

administered to the rats. Even the study showed that the immunogenicity of the 
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transplanted cells can be contained through the use of immunosuppressive drug, 

unpleasant side effects may occur as the host receiving the cells may become extremely 

susceptible to infection. Long-term maintenance immunosuppresive therapy would thus 

limit successful clinical application. Immediate future work on this can focus on 

generating genetically engineered immunologically-priviledged HESC lines that can be 

used as a universal transplant. This can be achieved via either inserting 

immunosuppressive molecules or deleting immunoreactive molecules by 

immunoliposomes or RNA interference methodology. More ambitiously, another 

approach to increase the immunocompatibility of the cells is to replace the foreign major 

histocompatibilty complex (MHC) genes could be replaced with the recipient’s MHC 

genes. 

 Genetic modification using adenoviral vector may have far-reaching applications 

but it is also noteworthy to consider the potential of immunologic complications that are 

attached to the use of adenoviral vectors. In this study, ex vivo transduction strategy was 

used and this precludes the exposure of the adenovirus to the recipient’s immune system. 

Nevertheless, it is always good to be cautious and further studies are essential to examine 

the safety and clinical efficacy of using these HESC-derived CD133+ cells that are 

generated from adenoviral-mediated delivery of the VEGF165 gene.  

In the recent years, there has been rapid development of novel myocardial 

imaging techniques in small animals such as mice and rats. This is necessary for 

improving the accuracy for myocardial infarct measurement based on the gold standard 

staining procedure such as Evans Blue dye or triphenyltetrazolium chloride (TTC) 

staining. A variety of techniques have been recently reported for assessment of the 
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myocardial infarct size. These include nuclear imaging with positron emission 

tomography (PET) or single photon emission tomography (SPECT) and contrast-

enhanced magnetic resonance imaging (MRI). The advantage of using these non-invasive 

techniques is the ability to visualize the scar tissue directly in vivo and quantitate the 

infarct size in real time.  

Interest in the use of SPECT to determine rat myocardial infarct size has been 

growing. Measurement of the myocardial perfusion defect by injection of perfusion 

agents such as 99mTc-sestamibi during coronary occlusion indicates the amount of 

myocardium at risk while injection of 99mTc-sestamibi after coronary occlusion measures 

the infarct size.  When these measurements are obtained through high resolution imaging 

of small animals, they can be used to investigate metabolism, revascularization therapy, 

gene and cell therapy and new radiopharmaceuticals for diagnosing  

 High resolution 99mTc-sestamibi pinhole SPECT has been reported to be used for 

quantitative analysis of myocardial infarct in rats (Acton PD et al, 2006; Maskali F et al, 

2006; Liu Z et al, 2002). This imaging technique is capable of accurate quantification of 

the size of perfusion deficit which in return correlate to the myocardial infarct size. While 

TTC staining indicates non-viable myocardium; the infarcted region, 99mTc-sestamibi 

signal indicates the viable (maybe stunned) and perfused region. However, the calculated 

size of the perfusion deficit measured using 99mTc-sestamibi SPECT compared very 

favourably with the TTC staining especially in within the threshold value range of 50 to 

70%. This strong correlation demonstrates that the non-invasive 99mTc-sestamibi SPECT 

can serve as a surrogate for quantification of the infarct size.    

 The most accurate non-invasive technique up to date that has been reported is the  
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contrast-enhanced MRI. MRI allows precise detection of scar tissue and currently the 

only technique discriminating between subendocardial and transmural infarction (Wagner 

A et al, 2003). This method has been used to measure the LV volumes and mass, 

myocardial infarct size and cardiac output of rat and mouse infarction models (Yang Z et 

al, 2004; Nahrendorf M et al, 2003; Watzinger N et al, 2002; Nahrendorf M et al, 2000).  

 Both SPECT and MRI have an edge over Evans dye and TTC staining. They 

allow serial measurements to be made and use computed 3-dimensional display which 

allows absolute infarct volume to be measured more reliably. These up to date techniques 

are to be considered to be used in future studies so as to obtain new insights into the 

remodeling process before and after treatment of the infarction.  

The idea of using drug and cell-based therapies as an adjunctive to and/or possible 

synergist with existing heart failure strategies can potentially be useful but whether this 

combinatorial approach will really ever encompass the whole truth about heart failure 

remains unknown for the present, but represents a potentially important area of 

theoretical and therapeutic discovery in the coming millennium. 
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6.1 Materials  
 
6.1.1 Cell lines 
 
Human embryonic kidney 293 cells 
 

Cells were kindly given by Associate Professor Ge Ruowen, Department of 
Biological Sciences, Faculty of Science, National University of Singapore 

 
Human umbilical vein endothelial cells 
 

Cells were kindly given by Associate Professor Ge Ruowen, Department of 
Biological Sciences, Faculty of Science, National University of Singapore 

 
6.1.2 Cell culture products 
 
 Dulbecco’s Modified Eagle’s Medium (DMEM) Sigma, USA 
 Fetal Bovine Serum     Hyclone, USA  
 DEM: F12 Medium     GIBCO-Invitrogen, USA 
 Knockout Serum     GIBCO-Invitrogen, USA 
 Matrigel Basement Membrane Matrix  Becton Dickinson, USA 
 
6.1.3 Chemicals 
 
 Agarose (molecular biology grade)   Bio-Rad, USA 

Dimethyl sulphoxide (DMSO)   Sigma, USA  
 Bouin’s Solution     Sigma, USA 

L-glutamine solution     GIBCO-Invitrogen, USA 
 Non-essential amino acids    GIBCO-Invitrogen, USA 
 Penicillin/Streptomycin    Sigma, USA 
 Phosphate buffered saline (PBS)   NUMI, Singapore 
 Trypsin EDTA solution    Invitrogen, USA 
 Collagenase IV     GIBCO-Invitrogen, USA 
 2-Mercaptoethanol     Sigma, USA 
 Bovine serum albumin    ICN Biomedicals Inc, USA 
 Gelatin       Sigma, USA 
 Absolute alcohol     Hayman, England 
 Cyclosporin A      Novartis, Germany 
 Cesium chloride     Sigma, USA 
 4, 6-diamidino-2-phenylindole   Sigma, USA 
 Ethidium Bromide     BioRad, USA 

Eosin Y      Sigma, USA 
 Ethanol       Sino Chemical. Singapore 
 Fluospheres yellow-green polystyrene  

Microspheres (505/515), 15μm   Molecular Probes, USA 
Formalin (37%)     Sigma, USA 
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Paraformaldehyde     Sigma, USA 
Tissue freezing medium    Leica, Germany 

 Gluteraldehyde (25%)     Sigma, USA 
 Hematoxylin      Sigma, USA 
 Heparin      Leo Pharma, Denmark 
 Histowax      Leica, Switzerland 
 Hydrogen Peroxide     Analar, UK   
 Isopentane      Acros Organic, USA 
 Methanol        Fischer Scientific, UK   
 Ketamine/Xylazine     APEX Laboratories, Italy 
 Mounting medium     Shandon, USA 
 Paraffin wax      Leica, Switzerland 
 Polyoxyethylenesorbitan mono oleate (Tween 80) Sigma, USA 
 Potassium hydroxide     Merck, Germany 
 RNAlater RNA stabilizing reagent   Qiagen, Germany 
 Sodium chloride (0.9%)    NUMI, Singapore 
 Xylene       Merck, Germany 
 Trypan blue      Sigma, USA 
 Triton-X 100      BioRad, USA 
 2,3,5-Triphenyltetrazolium chloride   Sigma, USA 
 Permount/Poly-mount xylene     Polysciences Inc, PA, USA 
 Propidium Iodide     Sigma, USA 
 Hank’s Balanced Solution    Sigma, USA   
  
6.1.4 Proteins, antibodies and kits 
 

Recombinant alpha fibroblast growth factor (αFGF) Invitrogen, USA 
Recombinant basic fibroblast growth factor (bFGF) Invitrogen, USA 

 Recombinant human VEGF165   Chemicon, USA 
 
 Primary antibodies 
 
 Mouse anti human VEGF    RnD systems, USA 
 Mouse anti human CD31    RnD systems, USA 
 Rabbit anti ve-cadherin    Sigma, USA 

Mouse anti α-smooth muscle actin    Sigma, USA 
 Mouse anti human CD133-PE   Militenyl Biotech, USA 
 Rabbit anti vWF-VIII      Dako, Germany 
 Mouse anti human Tra-1-60    Chemicon, USA 
 Mouse anti human Tra-1-81    Chemicon, USA 
 Goat anti-Nanog     RnD systems, USA 
 Goat anti-Oct4      RnD systems, USA 
 Mouse anti-SSEA-4     RnD systems, USA 
 Mouse anti-alkaline phosphatase   RnD systems, USA 
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Secondary antibodies 
 
 Goat anti mouse IgG-FITC    Sigma, USA  

Goat anti rabbit IgG-TRITC    Sigma, USA 
Mouse anti rabbit IgG-FITC    Sigma, USA 
Rabbit anti goat IgG-FITC    US Biological, USA 
Rabbit anti mouse IgG-TRITC   Chemicon, USA 
Anti mouse IgG-HRP     Lab Vision, USA 
Donkey anti goat IgG-FITC    Chemicon, USA 
Donkey anti mouse IgG-TRITC   Chemicon, USA 
     

 Kits 
  
 Human VEGF ELISA kit    RnD systems, USA 
 Human Ang-1 ELISA kit    RnD systems, USA 
 Qiagen Hot Start PCR kit    Qiagen, Germany 
 Qiagen RNeasy Midi kit    Qiagen, Germany 
 Ultravision Detection system    Lab Vision, USA 
 Taqman PCR Universal Master Mix   Applied Biosystems, USA 
 Human embryonic stem cell marker antibody panel RnD systems, USA 
 Taqman Reverse Transcription Reagentst  Applied Biosystems, USA 
 TaqMan Gene Expression Assays- CD133 and Flk-1 Applied Biosystems, USA 
 CD133 Cell isolation kit    Militenyl Biotech, USA 
 In situ cell death detection kit, Fluorescein  Roche Applied Science, USA 
 DNeasy isolation kit     Qiagen, Germany 
 Accustain Trichrome Stain kit   Sigma, USA 
 
6.1.5 Apparatus 
 
 Normal culture flasks (25 and 75cm2)  NUNC, Denmark 
 Microfilter (0.22μm)     Millex, USA 
 Chamber slides      BD Pharmingen, USA 
 Sterile pipette      Costar, USA 
 Power supply (200V, 500mA)   Bio-Rad, USA 
 Polylysine coated glass slides    Esco, USA 
 Tissue culture plates (6-, 12- and 24- well plates) NUNC, Denmark 
 Pipettor      Finnpipette, USA 
  
6.1.6 Surgical Instruments 
 

Prolene Suture    Johnson & Johnson, Belgium 
 Scissors       Aesclulap, USA 
 Scalpel blade       Aesclulap, USA 
 Forceps       Aesclulap, USA 
 Retractor       Aesclulap, USA 
 Rodent ventilator      Harvard Apparatus, USA 
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 Gauze       Lozon (S) Pte Ltd, Singapore 
 Catheter      Terumo Corporation, USA 
 
6.1.7 Equipments  
 

12mHZ echocardiographic probe    Agilent Technologies, USA 
 Aquasonic 100 Ultrasound transmission gel    Agilent Technologies, USA 
 Regulatable CO2 cell culture incubator   Heraeus Hera Cell, Germany 
 Gel electrophoresis system      Bio-Rad, USA 
 Electronic pipettor       Drummond, USA 
 ELISA plate reader      Bio-Tek Instruments, USA 
 Fluorescent microscope     Olympus, Japan 

Inverted phase contrast microscope    Olympus, Japan 
Flow Cytometry  Beckman Coulter Epics    

Altra, USA   
 -20°C freezer      Sanyo, Japan 
 -80°C freezer      Forma Scientific Inc, USA 
 Hematocytometer     Sigma, USA 
 Tissue homogenizer      Polytron, USA    
 Cell culture work station (BS II)   Nuaire, USA 
 Cryostat      Leica, Switzerland 
 Microtome      Leica, Switzerland 
 Liquid nitrogen facility    CBS, France 
 Spectrophotometer     Beckman, USA  
 Microcentrifuge     Hettich, UK 
 Centrifuge      Sorvall, Germany   
 Microwave Oven     Sanyo, Japan 
 Minigel apparatus     BioRad, USA 
 Paraffin Tissue Processor    Leica, Switzerland 

Peltier Thermal Cycler    MJ Research, USA 
pH meter IQ Scientific Instruments, 

USA 
Vingmed Vivid 5 ultrasound machine  General Electric, USA 
Vacuum Pump      Goldbell, China/Japan 

 Waterbath       Memmert, Germany 
 Weighing balance     Goldbell, China/ Japan 
 
6.1.8 Computer software 
 
 Microsoft Office 2000     Microsoft, USA 
 Olympic Micro Image     Olympus, Germany 
 Quantity One (version 4.2.1)    BioRad, USA 
 SPSS statistics software (version 11)   SPSS, USA 
 WinMDI (version 2.8)    Scripps Res Institute, USA 
 
 



 215

6.2 General Protocols 

6.2.1 RNA extraction 

Total RNA from cell samples were extracted using Qiagen RNeasy mini column 

kit (Qiagen, California, USA). The extraction was performed according to the supplier’s 

instructions. The RNA was finally eluted in in diethylpyrocarbonate-treated distilled 

water (ddH2O). RNA quality and quantity is assessed by relative absorbance at 260nm 

versus 280nm.  

Total RNA from heart tissue samples were also extracted using Qiagen RNeasy 

mini column kit (Qiagen, California, USA) according to the supplier’s instructions. 

However the tissue samples were subjected to proteinase K (20mg/ml) digest treatment 

for 10 minutes at 55°C before RNA extraction. This was to remove the highly abundant 

contractile proteins, connective tissue and collagen in the heart tissues that makes RNA 

isolation difficult. 

6.2.2 Complementary DNA (cDNA) synthesis 

Total RNA was reverse transcribed into cDNA using oligo(dT)20 and resuspended 

in ddH2O. Briefly 10ug of RNA was added to a mixture containing 1μg of oligo(dT)20 

and incubated for 5 minutes at 70°C. The RNA and oligo(dT)20  mixture was mixed with 

1× RT buffer-reaction buffer, 1mM of dNTPs, 65U of RNase inhibitor, 250U of Moloney 

murine leukemia virus reverse transcriptase (MMLVRT). Distilled water was added to a 

final volume 50μl. The sample mixture was incubated at 37°C for 1 hour and then at 

95°C for 10 minutes before quickly chilling it on ice. 
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6.2.3 Preparation of frozen tissues for cryosectioning procedure 

Fresh left ventricle samples from the heart tissues were first rinsed in 1× PBS and 

then dried before being carefully placed in a self-made embedding mold made of 

aluminum foil containing a small amount of the tissue freezing medium. The mold was 

then filled with tissue freezing medium until the whole tissue samples were fully 

immersed in the matrix. The mold was then rapidly submerged into isopentane which was 

earlier been cooled with liquid nitrogen. Once the tissue samples had frozen up, they 

were wrapped with aluminum foil and store in -20°C freezer. Tissue sections of 4 to 7μm 

were cut using a cryostat. The sections were mounted on poly-L-lysine coated slides and 

stored in -20°C. Immediately prior to processing for immunohistochemistry, the slides 

were removed from the freezer and allowed to warm to room temperature and air-dried. 

They were then rinsed in 1× PBS twice for 5 minutes each and fixed in 100% cold 

methanol in -20°C for 10 minutes. 
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6.2.4 Fixation and processing of tissue for paraffin sections 

Fresh left ventricle samples from heart tissues were cut into small pieces of about 

3 to 5 mm in thickness and placed into 10% neutral buffered formalin for 24 hours at 

room temperature. The tissues were then subjected to a 9-hour processing schedule 

outlined below: 

Station Number Time taken Tissue treatment 

1 45 min 50% alcohol 

2 45 min 70% alcohol 

3 45 min 95% alcohol 

4 45 min 100% alcohol 

5 45 min 100% alcohol 

6 45 min 100% alcohol 

7 45 min Clearing reagent 

8 45 min Clearing reagent 

9 45 min Clearing reagent 

10 1 hour Paraffin 

11 1 hour Paraffin 

 

Following infiltration of the tissue samples with paraffin, the heart tissue samples 

were then embedded into paraffin blocks for storage until microtome sectioning. The 

whole procedure was performed using specialized automated tissue processing system. 5 

to 8μm thick paraffin-embedded sections were cut using a rotary microtome. The sections 

were floated in a 56°C water bath until they were straightened out. They were then 
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mounted onto histological poly-L-lysine coated slides. The slides were dried overnight at 

room temperature.  

To prepare the sections for immunohistochemistry, they had to be deparaffinized 

and rehydrated using the following standard procedure outlined below: 

Xylene 3 changes, 5 minutes each 

100% alcohol 2 changes, 3 minutes each 

95% alcohol 2 changes, 3 minutes each 

70% alcohol 2 change, 3 minutes each 

1× PBS 2 changes, 3 minutes each 
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6.2.5 Hematoxylin and eosin staining 

The tissue sections were stained with hematoxyin solution for 5 minutes followed 

by rinsing under running tap water. The sections were then stained with Eosin Y for 1 

minute and rinsed under running water.  

6.2.6 Masson Trichrome staining 

The tissue sections were rinsed with water and mordant in Bouin’s solution for 15 

minutes. The sections were then washed in running tap water to remove the picric acid or 

until the yellow colour disappear. The sections were next stained with Weigert's Iron 

Hematoxylin Solution for 5 minutes, washed under running tap water and rinsed with 

distilled water. The sections were then stained with Biebrich Scarlet-Acid Fuchsin for 5 

minutes and rinsed with distilled water. This was followed by staining with 

Phosphomolybdic/Phosphotungstic Acid Solution for 5-10 minutes and rinsing in 2% 

acetic acid for 10 dips and distilled water. The sections were transferred into 2% light 

green for 10 dips and rinsed in 2% acetic acid for 10 dips followed by distilled water.  
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