

CELL-CELL COMMUNICATION IN XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS

HE YA-WEN

INSTITUTE OF MOLECULAR AND CELL BIOLOGY

NATIONAL UNIVERSITY OF SINGAPORE

2006

CELL-CELL COMMUNICATION IN XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS

HE YA-WEN (MSc., NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTORATE OF PHILOSOPHY

INSTITUTE OF MOLECULAR AND CELL BIOLOGY

NATIONAL UNIVERSITY OF SINGAPORE

2006

ACKNOWLEDGEMENTS

I wish to express my gratitude and appreciation to my supervisor, Associate Professor Zhang Lian-Hui, for his guidance and advice. Special thanks to my supervisory committee members, Associate Professor Wang Yue and Associate Professor Peng Jin Rong for their valuable advice and suggestions throughout the course of my study.

I would like to take this opportunity to thank Mr. Xu Min, Dr. Lin Kui, Mr. Ng Yu-Jin Alvin, Mr. Wen Chao-Ming, Mr. Wang Jiren for their kind assistance in oligonucleotide design, microchip preparation, microarray data normalization and statistical analysis, and other bioinformatics analysis.

I am very grateful to Assistant Professor Dong Yi-Hu, Assistant Professor Wang Lian-Hui, Dr. Zhang Hai-Bao, and Dr. Wu Ji'en for their unreserved help, valuable advice and suggestions throughout the course of my study.

My great appreciation also to my fellow lab-mates, Dr. Liu Ziduo, Dr. Jiang Zide, Dr. Weng Li-Xing, Dr. Wang Jing, Dr. Boon Calvin, Ms. Xu Jin Ling, Ms. Zhang Xifen, Mr. Yang Fan, Ms. Zhou Lian, Mr. Wang Chao, Ms. Mumtaz Begum Binte Mohamed Hussain, Ms. Tan Ai Tee, Mr. Teng Meng Huat Raymond, Mr. Tao Fei, Ms. An Shuwen, Mr. Deng Yinyue, Mr. Lim Li Kai, Ms. Seet Qihui, and Ms. Lee Zhe Xin Jasmine for their help one-way or another during my project.

Last, but not least, I would like to thank my wife Lian for her utmost support and love during my study. Special thanks to my daughter Jeslyn for the happiness she brings to me.

TABLE OF CONTENTS	PAGE
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	х
LIST OF TABLES	xiii
SUMMARY	xiv

Chapter 1. General introduction

1.1 Xanthomonas campestris pv. campestris (Xcc) and black rot of	
crucifers	1
1.1. <i>Xcc</i> and black rot of crucifers	1
1.1.1 Pathogenesis of <i>Xcc</i>	2
1.1.2 Virulence factors of <i>Xcc</i>	4
1.1.3.1 Extracellular enzymes	5
1.1.3.2 Extracellular polysaccharides	7
1.1.3.3 Xanthomonadin pigments	9
1.1.3.4 Hypersensitive response and pathogenicity genes (hrp) and avirule-	
nce genes (avr).	10
1.2 Regulation of virulence factor production in <i>Xcc</i>	11
1.2.1 RpfC/RpfG two-component system	12
1.2.2 The global regulator Clp	13
1.3 Microbial quorum sensing	14
1.3.1 AHL-mediated QS in Gram-negative bacteria	15
1.3.2 Oligopeptide-mediated QS in Gram-positive bacteria	16

1.3.3 Hybrid QS in Vibrio	18
1.3.4 Other QS signals to regulate population density-dependent behaviors	19
1.3.5 Quorum quenching	20
1.4 Quorum sensing in Xcc	24
1.5 Aims and scope of this study	27
Chapter 2. DSF purification and structural characterization	29
2.1 Introduction	30
2.2 Material and Methods	31
2.2.1 Bacterial strains, growth conditions and Tn5 mutagenesis	31
2.2.2 Construction of DSF biosensor	31
2.2.3 Bioassay of DSF	32
2.2.4 Purification of DSF	33
2.2.5 Quantitative analysis of the enzyme activities after DSF induction	33
2.3 Results	33
2.3.1 Identification of DSF overproduction mutants	33
2.3.2 DSF production time course of the mutant Xc1853	34
2.3.3 DSF purification and structural characterization	36
2.3.4 In vivo confirmation of DSF functions	36
2.3.5 DSF might be a widely conserved signal	36
2.4 Summary	39

Chapter 3. DSF regulon analysis: identification of novel	
cell-cell communication-dependent genes and functions	41
3.1 Introduction	42

3.2 Materials and Methods	43
3.2.1 Bacterial strains and growth conditions	43
3.2.2 Generation of in-frame deletion mutants	43
3.2.3 Quantitative determination of enzyme activities and EPS production	44
3.2.4 Diffusible signal factor bioassay and virulence test	44
3.2.5 Design and synthesis of <i>Xcc</i> ORF-specific oligonucleotides	45
3.2.6 Preparation of <i>Xcc</i> oligonucleotide microarray chips	46
3.2.7 RNA purification	46
3.2.8 Acriflavin and H_2O_2 resistance assay and determination of survival	
time	48
3.3 Results	48
3.3.1 Xcc strains of different origins produced variable levels of virulence	
factors, but appear to be subjected to the same regulation by DSF	
cell-cell communication signals.	48
3.3.2 Design of oligonucleotide-based microarray for analysis of <i>Xcc</i>	51
3.3.3 Diffusible signal factor modulated the expression of a wide range of	
genes encoding various functions	51
3.3.4 Genome organization of DSF-regulated genes	53
3.3.5 Phenotype analysis of new functions regulated by DSF signals	59
3.3.6 Xcc strains of different origins produced cell aggregates of different	
scales, whose dispersal was DSF-dependent but not solely relied on	
ManA	65
3.4 Summary	67

Chapter 4. RpfC senses DSF and differentially controls Virulence and DSF biosynthesis through two separate mechanisms

v

4.1 Introduction	72
4.2 Materials and Methods	74
4.2.1 Bacterial strains and growth conditions	74
4.2.2 Chromosomal deletion in <i>rpfC</i> and preparation of constructs for <i>in</i>	
tran expression	74
4.2.3 Quantification of DSF and virulence factor production.	78
4.2.4 RNA extraction and RT-PCR analysis.	78
4.2.5 cDNA probe generation, and oligonucleotide microarray analysis	78
4.2.6 In situ site-directed and alanine scanning mutagenesis.	78
4.2.7 Anti-FLAG co-immunoprecipitation.	79
4.2.8 Protein purification and anti-serum preparation.	80
4.2.9 Western blot and far western protein-protein interaction assay.	81
4.3 Results	81
4.3.1 RpfC is essential for DSF induction of virulence factor production	
and biofilm dispersal.	81
4.3.2 Conserved phosphorelay mechanism of RpfC is essential for inducti-	
on of virulence gene expression, but not for down-regulation of	
DSF biosynthesis.	83
4.3.3 The RpfC but not the HPT domain is required for repression of DSF	
biosynthesis.	91
4.3.4 The isolated REC domain can repress DSF biosynthesis.	95
4.3.5 Identification of key amino acid residues implicated in REC down-	
Regulation of DSF biosynthesis	98
4.3.6 Identification of RpfF as a REC-interacting protein by co-immunop-	
recipitation and far western blot analysis.	101
4.4 Summary	107

Chapter 5 RpfG is essential for RpfC-mediated DSF signal	
regulation of virulence factor production	111
5.1 Introduction	112
5.2 Materials and Methods	112
5.2.1 Bacterial strains and growth conditions.	112
5.2.2 Generation of $rpfG$ deletion mutant and preparation of constructs for	
in trans expression.	113
5.2.3 Quantification of DSF and virulence factor production.	113
5.3 Results	113
5.3.1 RpfG is essential for DSF-dependent virulence factors production and	
biofilm dispersal in Xcc strain Xc1.	113
5.3.2 Expression of $rpfG$ under the control of a strong and constitutive	
promoter in <i>rpfC</i> or <i>rpfG/rpfC</i> double deletion mutant restored	
virulence factors production and dispersed biofilm formation.	115
5.3.3 The receiver domain of RpfG contains a conserved aspartate residue	
implicated in phosphorelay.	117
5.3.4 HD-GYP domain of RpfG is sufficient for promoting virulence factor	
production and biofilm dispersal.	117
5.4 Summary	121
Chapter 6 DSF signaling involves a nucleotide receptor	
protein Clp and a hierarchical network	123
6.1 Introduction	124
6.2 Materials and Methods	125
6.2.1 Bacterial strains and growth conditions.	125

vii

6.2.2 Generation of <i>in-frame</i> deletion mutants and complementation.	125
6.2.3 Quantitative determination of enzyme activity and EPS.	125
6.2.4 Oligonucleotide microarray analysis.	125
6.2.5 Genome scale searching of Clp binding sites.	125
6.2.6 Motility assay.	127
6.2.7 Acriflavin and H2O2 resistance assay.	127
6.3 Results	127
6.3.1 Expression of global regulation factor <i>clp</i> is mediated by cell-cell	
communication signal DSF.	127
6.3.2 Clp is essential for DSF signaling regulation of EPS and extracellular	
enzyme production.	130
6.3.3 Clp is not involved in the regulation of DSF-dependent biofilm dispersal.	133
6.3.4 Clp regulates the expression of a large set of genes in DSF regulon.	133
6.3.5 Clp appears to be capable of direct regulating the transcriptional	
expression of many genes.	136
6.3.6 Clp regulates the genes encoding flagellar, hrp and ribosomal proteins	
through a novel transcription factor FhrR.	140
6.3.7 The Clp-dependent regulation of iron uptake, multidrug resistance and	
detoxification is mediated by a Fur family transcription factor Zur.	143
6.4 Summary	145

Chapter 7 General discussion and conclusion

7.1 DSF is	a novel	cell-cell	communication signal and may be widely	
conserve	ed.			146
7.2 DSF reg	ulates div	verse range	es of biological activities.	150

7.3 ManA is not responsible for DSF-dependent biofilm dispersal.	
7.4 RpfC/RpfG two-component system is essential for sensing and transducing	
DSF signals.	155
7.5 RpfC controls DSF biosynthesis using a novel mechanism.	157
7.6 DSF signaling involves a nucleotide receptor protein Clp and a hierarchical	
regulatory network.	160
7.6 Conclusion	167

Chapter 8 References

169

LIST OF FIGURES

Fig. No.	Title	Page
1.1	Disease cycle of black rot of crucifers by <i>Xcc</i> .	3
1.2	Quorum sensing systems in bacteria.	17
2.1	DSF production in <i>Xcc</i> strain Xc1 and its derivatives.	35
2.2	The predicted chemical structure of DSF.	37
2.3	DSF induction of endoglucanase and protease expression	
	in <i>Xcc</i> strains	38
3.1	The role of DSF in regulation of virulence factor production	
	in different <i>Xcc</i> strains.	50
3.2	The map of DSF-dependent genes on the chromosome of	
	<i>Xcc</i> strain ATCC33913.	60
3.3	Prediction of DSF-dependent operons based on microarray	
	data and genome sequence analysis.	61
3.4	DSF cell-cell communication signal modulates resistance	
	to toxin and oxidative stress.	63
3.5	DSF cell-cell communication signal was important for Xcc	
	long-term survival.	66
3.6	DSF signal was essential for biofilm dispersal.	68
4.1	Multiple sequence alignment analysis of RpfC and its	
	homologues.	93
4.2	Conserved phosphorelay mechanism of RpfC is essential	
	for induction of virulence gene expression but not for	
	down-regulation of DSF biosynthesis.	94

4.3	RT-PCR analysis of <i>rpfC</i> transcript in <i>Xcc</i> wild-type and	
	mutants.	96
4.4	HPT domain is not required for repression of DSF	
	biosynthesis.	97
4.5	The REC domain of RpfC inhibits DSF biosynthesis.	99
4.6	Deletion analysis of REC domain.	100
4.7	Key amino acid residues implicated in REC-mediated	
	repression of DSF biosynthesis.	102
4.8	REC-RpfF interaction to form a stable complex.	108
5.1	Multiple sequence alignment analysis of RpfG identified	
	a phosphorelable aspartate in the REC domain and a HD-	
	GYP motif.	119
5.2	Schematic diagram depicting the phosphorelay mechanism	
	between RpfC and RpfG.	120
5.3	HD-GYP domain alone is sufficient for virulence factors	
	production and biofilm dispersal.	122
6.1	Comparison of the peptide sequence of Clp with that of	
	E. coli Crp and P. aeruginosa Vfr.	128
6.2	Deletion of Clp significantly affected the production of	
	extracellular enzymes and EPS.	131
6.3	Clp is essential for DSF signal regulation of EPS and	
	extracellular enzyme production.	133
6.4	Deletion of clp had not effect on DSF-mediated biofilm	
	dispersal.	135
6.5	Characterization of two transcription factors that function	

xi

	at the downstream of Clp.	139
6.6	FhrR and Zur regulate different subsets of genes within	
	the Clp regulon.	144
7.1	Structures of representative microbial cell-cell communication	
	and QS signals.	148
7.2	Schematic representation of a model of RpfC in DSF	
	signal perception and signal transduction.	159
7.3	Scehmatic representation of the DSF signaling pathway	
	in Xcc.	166

LIST OF TABLES

Table No.	Title	Page
2.1	Bacterial strains and production of DSF-like activity	40
3.1	DSF-regulated genes.	54
4.1	Oligonucleotide primers used in Chapter 4.	77
4.2	RpfC is essential for DSF-dependent virulence factor	
	production.	84
4.3	RpfC regulon analysis .	85
4.4	REC domain alanine scanning analysis.	103
4.5	MS-Fit analysis of proteins identified by Co-immunopr-	
	ecipitation.	109
5.1	Primers used in Chapter 5.	114
5.2	RpfG is essential for DSF-dependent virulence factor	
	production.	116
5.3	Expression of rpfG under the control of a strong and con-	
	stitutive promoter in rpfC or rpfC/rpfG double deletion	
	mutant restored virulence factors production and dispersed	
	biofilm formation.	118
6.1	Primers used in Chapter 6.	126
6.2	Expression of <i>clp</i> is dependent on RpfC/RpfG two	
	component regulatory system and promoted by DSF signal.	129
6.3	Clp is essential for DSF-dependent virulence factor production.	134
6.4	Fucntional groups of Clp-, FhrR- and Zur-regulated genes.	137
6.5	The putative Clp binding motif found in Clp-influenced	
	promoters.	141

SUMMARY

Xanthomonas campestris pv. *campestris* (*Xcc*) is a major bacterial pathogen of cruciferous plants worldwide. The pathogen produces polysaccharide and extracellular enzymes (including proteases, pectinases and endoglucanase), which are key virulence factors. The production of these factors is regulated by a diffusible signal factor (DSF). However, little is known about the structure and regulatory mechanism of DSF. In this study, genetic, chemical and biochemical, genomic and bioinformatic approaches were used to address these intriguing questions.

DSF bioassay system was established and two DSF overproduction mutants, Xc1853 and Xc4199, were identified from about 7000 *Xcc* strain Xc1 mutants generated by Tn5 random insertion. DSF was purified and chemically characterized as *cis*-11- methyl-2-dodecenoic acid, which is a novel α , β unsaturated fatty acid. The DSF-like activity was detected in at least 25 strains of 11 bacterial species, suggesting that DSF might be a widely conserved signal.

For investigation of the genomic profiles of DSF regulation, *Xcc* oligomicroarray was designed and analysis was conducted by comparison of the gene expression patterns of wild-type strain Xc1 and its DSF-deficient mutant Δ rpfF, as well as those of the mutant Δ rpfF in the presence or absence of DSF signals. The analyses led to identification of 165 genes, whose expression was significantly influenced by DSF signals. These genes encode proteins and enzymes belonging to at least 12 functional groups. In addition to those previously known DSF-dependent activities such as production of extracellular enzymes and extracellular polysaccharides, microarray

analyses also revealed new functions mediated by DSF, such as flagellum synthesis, resistance to toxins and oxidative stress, and aerobic respiration. Phenotype analyses confirmed that DSF signaling contributed to resistance to toxin acriflavin and hydrogen peroxide, and to the survival of bacterial cells at different temperatures.

The hybrid sensor kinase RpfC positively regulates the expression of a range of virulence genes and negatively modulates the synthesis of quorum sensing signal DSF in Xcc. Site-directed mutagenesis showed that the three conserved amino acid residues of RpfC implicated in phosphorelay (H198 in the histidine kinase domain, D512 in the receiver domain and H657 in the histidine phosphotransfer domain) were essential for activation of the production of extracellular enzymes and extracellular polysaccharide (EPS) virulence factors, but not for repression of DSF biosynthesis. Domain deletion and subsequent in trans expression analysis revealed that the receiver domain of RpfC alone was sufficient to repress DSF overproduction in an *rpfC* deletion mutant. Further deletion and alanine scanning mutagenesis analyses identified a peptide of 107-aa and three amino acid residues (Q496, E504 and I552) involved in modulating DSF production. Co-immunoprecipitation and far western blot analyses suggest an interaction between the receiver domain and RpfF, the enzyme involved in DSF biosynthesis. These data support a model in which RpfC modulates two different functions (virulence factor synthesis and DSF synthesis) by utilization of a conserved phosphorelay system and a novel domain-specific protein-protein interaction mechanism, respectively.

RpfG is essential for DSF-dependent virulence factor production. Domain deletion analysis also showed that the HD-GYP domain of RpfG, which is the cognate response regulator of RpfC, is sufficient for virulence factors production and biofilm dispersion. The finding has facilitated the subsequent demonstration that the HD-GYP domain is a novel cyclic di-GMP phosphodiesterase, which degrades the nucleotide second messenger cyclic di-GMP to generate GMP.

Clp, a conserved global regulator showing a strong homology to the cAMP nucleotide receptor protein Crp of *E. coli*, is essential for DSF regulation of virulence factor production but not for biofilm dispersal. Deletion of *clp* in *Xcc* changed the transcriptional expression of 299 genes including a few encoding transcription factors. Further genetic and microarray analysis led to identification of a homologue of the transcriptional regulator Zur, and a novel TetR-type transcription factor FhrR. These two regulatory factors regulated different sets of genes within Clp-regulon. These results outline a hierarchical signaling network by which DSF modulates different biological functions, and may also provide a clue on how the novel nucleotide signal coupled to its downstream regulatory system.