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Abstract

In this dissertation, the Libor Market Model is presented and its calibration

process is derived. We assume the Forward Libor Rates follow log-normal

stochastic processes with a d-dimensional Brownian motion and build an in-

terest rates model able to price interest rate derivatives. We emphasize how

di�erent it is from the usual short-term interest rates models (Hull-White).

Nevertheless, this pricing model only makes sense if vanilla products, namely

caps and European swaptions, can be well priced with respect to their market

value. To check this, we propose di�erent parametric forms of instantaneous

volatilities σi(t) and correlations ρij to obtain the best results. Then, we

show a method to reduce the dimensionality of the Libor Market model

compared to the number of Forward rates involved by using Rebonato An-

gles and Frobenius norm. Finally, we derive approximations formula for

European swaptions and show we can avoid Monte-Carlo simulations for the

calculations of the swaptions during the calibration. Some numerical results

are given on a 3 factors model.

We discuss then di�erent issues raised and current developments, more specif-

ically the SABR skew form and cross-asset products.
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Chapter 1

Interest Rates Models

At the end of the 70's, after Black and Scholes breakthrough with their

formula to value a European option, Black also proposed the alter ego of

this formula in the world of interest rates. This was the beginning of the

interest rates derivatives.

Since 1976 and Black's formula [2], a lot has been proposed on the interest

rates topic. First were presented models that tried to adapt the frameworks

coming from the equity world : those used a stochastic equation to describe

a short-term rate as it was done for a stock. From this basic idea di�erent

evolutions rose by changing the form of this stochastic di�erential equation

to �t the economic behavior of the interest rates generally observed - for

instance the mean reversion phenomenon. Finally in 1997, Brace, Gatarek

and Musiela proposed a new concept where observable rates were modeled

using the work of Heath, Jarrow and Morton in 1992. This completely

rede�ned the vision of pricing and everything needs to be done in this �eld.

The purpose of this model is undoubtedly to be able to �t the market.

Hence, we call calibration the choice of the di�erent assumptions and inputs

so that we obtain the best �t to the market.

Calibration is always a huge issue for market operators as they may face

severe misprices if the model they use is not well calibrated and I will be
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presenting how this can be handled in the second part; before explaining what

are the main issues and how some are managed (skew/smile, liquidity..) and

what are the next challenges faced by the Libor Market Model (Cross-asset

hybrid products).

In this �rst chapter the main de�nitions and the models currently used

in the world of interest rates are de�ned and explained.

1.1 Important concepts

1.1.1 Zero coupon bonds

The �rst concept we have to de�ne when discussing interest rates products

is the Zero coupon bond (Z.C.). In this thesis, the underlying assets are

not stocks like in Black-Scholes original framework in 1973 in [1] but bonds.

Several bonds can be de�ned, paying various coupons, depending on some

conditions. . .1Hence, it is necessary to de�ne a simplest underlying: this one

is the set of discount factors for di�erent maturities. We will denote them

by B(t, T ). This bond represents at time t the price of 1 paid at time T , the

maturity of the bond. See Figure 1.1 for a more visual explanation.

Figure 1.1: Zero-coupon bond mechanism

1For instance, a daily range accrual coupon: I pay X% n
N

where n is the number of
days 3-months LIBOR rate stays below 6.5% and N the number of days in the accrual
period.
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One can observe that at any date t, those prices are not all quoted on

the market but can be obtained from other zero coupons bonds. This bond

does not pay any coupon, that is why we generally call the discount factors

B(t, T ) the Zero coupon bonds (Z.C.).

We introduce very generally the log-normal dynamic for a Zero Coupon

bond as:

dB(t, T ) = m(t, T )tB(t, T )dt + σBB(t, T )dWt, B(T, T ) = 1 (1.1)

With m(t, T ), the drift, equal to the short term interest rate rt in a risk-

neutral world, σB, the volatility eventually stochastic or time-dependent and

Wt a Brownian motion.

1.1.2 Short-Term interest rate

We just mentioned the short term interest rate in the previous section. Tra-

ditional stochastic interest rates models are based on the exogenous speci�-

cation of a short-term interest rate and its dynamic. We will denote by rt

the instantaneous interest rate or short-term interest rate the rate one can

borrow in a risk free loan beginning at t over the in�nitesimal period dt.

In general, we assume that rt is an adapted process on a �ltered proba-

bility space. The important thing about short term interest rate is that by

consideration over the absence of arbitrage in the market we can create links

between rt and B(t, T ).

1.1.3 The Arbitrage free assumption

This classic assumption introduces constraints on the payo� of derivatives.

Here when we study rate issues, this assumption is made on the Zero coupon

bonds as we can link long maturities (more than 1 year) bonds with coupons

with Zero coupon bonds by considering the Arbitrage free assumption.
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The price of an asset delivering �xed cash-�ows in the future is

given by the sum of its cash-�ows weighted by the price of the

Zero coupon bonds of the settlement dates.

We make the usual mathematical assumption: all processes are de�ned on a

probability space (Ω, {Ft; t ≥ 0}, Q0). The probability measure Q0 is any risk

neutral probability measure whose existence is given by the no-arbitrage as-

sumption (See The Girsanov transformation in section 1.1.6). The �ltration

{Ft; t ≥ 0}2 is the �ltration generated in Q0 by a d-dimensional Brownian

motion W Q0 = {W Q0(t); t ≥ 0}.

Now, we infer that one can invest in a savings account continuously

compounded with the stochastic short rate rs prevailing at time s over the

time [s; s + ds]. The value of 1 invested at time t at time T is βT :

βT = exp
∫ T

t
rsds

Therefore, if we invest B(t, T ) in a Z.C. of maturity T and the same amount

in our saving account, the fundamental theorem of asset pricing (this will be

detailled in 1.1.6) ensures that they produce on average over all the paths

the same amount namely 1. This equality at time t can be written:

B(t, T ) = EQ0
t

[
exp

(∫ T

t
−rsds

)
|Ft

]

In the case of a deterministic rate rs, as B(T, T ) = 1:

B(t, T ) = exp
(∫ T

t
−rsds

)
2In a �nancial point of view, the �ltration{Ft; t ≥ 0} represents the structure of all the

information known by every market agent.
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And in the case of a constant deterministic rate r compound n-times per

year:

B(t, T ) =
1

(1 + r
n)(T−t)

(1.2)

1.1.4 Forward Interest rates

We can de�ne Forward Interest Rates for all the previous rates we saw:

� Bt(T, T + δ) is the forward value at t of a Z.C. invested at T which

will pay 1 at T + δ. By arbitrage we know it is worth:

Bt(T, T + δ) =
B(t, T + δ)

B(t, T )

� The equivalent rate simply compounded to this Zero Coupon Bond can

be computed writing:

Fδ(t, T ) =
1
δ

(
B(t, T )

B(t, T + δ)
− 1
)

(1.3)

This rate is named the Forward Rate and is the constant rate simply com-

pounded to be paid if you want to borrow money at time t for a future time

period between T and T + δ.

We can also de�ne f(t, T ) the instantaneous forward interest rate, the for-

ward version of rt. Formally, f(t, T ) is the forward rate at t one can borrow

in a risk free loan beginning at T over the in�nitesimal period dt. This con-

cept is rather a mathematical idealization as it can not be observed in the

market but is useful to describe bond price models. One can write:

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
, ∀t ∈ [0, T ] (1.4)
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1.1.5 LIBOR interest rate and swaps

Libor interest rate

During the 80's, Libor (which stands for London Inter Bank O�ered Rates)

interest rates have become more and more traded. This rate is declined for

di�erent short maturities (inferior to one year) and is a benchmark of the

main banks of their loan rate for those maturities. It is �xed everyday at

11h00 am, London Time. It is considered in general as the risk-free interest

rate by the investors: even credit default swaps values are given with respect

to the LIBOR curve. However, this is not true, those �nancial institutions

have a probability of default and hence this default risk is quanti�ed. In the

markets, the risk free does not really exist but it can be assumed that the

main central banks (More speci�cally: US Fed, ECB, CBE) have an almost

nil probability of default as they can literally print their money and hence

the bonds they issue called treasuries have almost no probability of default3.

The spread between the LIBOR and the treasury rate represents this risk

to default. For the USD Market, LIBOR rates trade around 50 basis points

above treasury rates.

We call Lδ(t, t), the LIBOR Interest rate at time t for a maturity of δ:

1
1 + δLδ(t, t)

= B(t, t + δ) (1.5)

with δ is three or six months usually.

Using the arbitrage free rule and applying the previous section about Forward

Interest rates to Libor Interest Rates and their Forwards Lδ(t, T ) the Libor

rate at time t at which one can borrow money at time T for a maturity of δ

we can write:

1
1 + δLδ(t, T )

=
B(t, T + δ)

B(t, T )
3It should be emphasized that the sovereign risk is real: in July 1998, Russia defaulted

on its bonds causing the fall of the famous hedge-fund LTCM.
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That is,

Lδ(t, T ) =
B(t, T )−B(t, T + δ)

δB(t, T + δ)
(1.6)

We will skip the index δ when there will be no ambiguities about the matu-

rity.

Swap rate

The �rst swap contracts were also negotiated in the early 1980s. Since, it

has shown an amazing growth becoming more and more important in the

exotic derivatives market.

A swap is a contract between two companies to exchange a prede�ned

cash �ow in the future. The schedule of the cash �ows and the way they

are calculated is speci�ed in this agreement. At the beginning, swaps were

tailored for companies who wanted to hedge their loans exposure and lock

in a good level of interest rate.

Hence one can decide to enter a swap where he will exchange his semi-annual

�xed rates cash-�ows at x% against a �oating rate, for instance the value of

the 6-months LIBOR rate with �xing date at the beginning of the 6-months

period (Fixing in advance 4) The following Figure 1.2 explains how is built

the exchange of cash-�ows from the customer point of view. This type of

Figure 1.2: Exchange of cash-�ows for a Payer Swap

4Several issues are not mentioned here about the �xing dates and the convexity ad-
justment that are necessary when pricing non perfectly scheduled structure or in arrears
�xing structures, for instance see [3]
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swap is called is called a payer swap. The symmetric version is called receiver

swap.

As a matter of fact, from this de�nition appears the swap rate Sp,n(t)de�ned

as the rate which gives a net present value of 0 at time t to the swap which

exchange this swap rate against a �oating one (δ-months Libor Lδ(t, Ti))

on a schedule Ti, i = p, . . . , n. We can compute this swap rate Sp,n(t) by

arbitrage considerations and, it is worth noticing it, independently of any

model assumption.

The �xed leg is:

Fixedp,n(t) =
n−p∑
i=0

Sp,n(t)δB(t, Tp+i)

And the �oating leg is:

Floatingp,n(t) =
n−p∑
i=1

B(t, Ti+p)δL(t, Ti−1+p)

=
n−p∑
i=1

B(t, Ti+p)
(

B(t, Ti−1+p)
B(t, Ti+p)

− 1
)

=
n−p∑
i=1

B(t, Ti−1+p)−B(t, Ti+p)

= B(t, Tp)−B(t, Tn)

The swap rate is by de�nition the one that equalize both legs:

Fixedp,n(t) = Floatingp,n(t)

Sp,n(t) =
B(t, Tp)−B(t, Tn)∑n−p

i=0 δB(t, Tp+i)

This swap was more precisely a forward start interest rate swap which �rst

settlement date is Tp. Once this product was well understood by every one

on the markets, it naturally gave rise to its �rst most natural derivative:
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the European swaption 5. A European swaption is a one-time option on a

swap rate. From now, we will always refer to European swaptions when we

describe swaptions. When one is long a swaption strike Sp,n, he owns the

right and not the obligation to enter a swap of tenor Tn at maturity Tp.

A swaption can be computed through di�erent methods but the market in

general quotes the implied volatility of the swaption with the generalization

of the Black formula (See section 1.3.2). On the mathematical side this arise

issues as one can show that swap rates and forward rates can not be log

normal at the same time. We will discuss later this point in section 2.4.

1.1.6 Stochastic tools

This subsection is going to present a few stochastic tools we need to describe

the basics of the Libor Market Model. This subsection does not seek to

be exhaustive and totally rigorous in stochastic calculus but just to give a

general idea about the tools we will be using in the construction of the models

in the next section. For further details about stochastic calculus please refer

to the excellent [5].

Numeraire

A Numeraire is a price process (A(t))T (a process is a sequence of random

variables), which is strictly positive for all t ∈ [O, T ].

Numeraires are used to express prices in order to have relative prices. The

application of this rather abstract concept can be seen in what follows.

Change of numeraire

Let P and Q be equivalent measures6 with respect to the numeraires A(T )

and B(t). The Radon-Nikodym derivative that changes the equivalent mea-

5American and Bermudean swaption also exist but are not as liquid and as vanilla than
European

6P and Q are equivalent if and only if : P(M) = 0 ↔ Q(M) = 0, ∀M ∈ F
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sure P in Q is given by:

R =
dP
dQ

=
A(T )B(t)
A(t)B(T )

(1.7)

This derivative is very useful: due to the no arbitrage rule the price of an

asset X should be independent from the choice of the measure and numeraire:

A(t)EP

[
X(T )
A(T )

|Ft

]
= B(t)EQ

[
X(T )
B(T )

|Ft

]

If one introduces: G(T ) = X(T )
A(T ) and doing some simple manipulation on the

previous equation:

EP (G(T )|Ft) = EQ

(
G(T )

A(T )B(t)
A(t)B(T )

|Ft

)
= EQ(G(T )R|Ft)

We can see that we can change the probability measure just by multiplying

the martingale by its Radon-Nikodym derivative.

Girsanov theorem

For any adapted stochastic process k(t) which satis�es the following con-

dition:

E
(
e

1
2

∫ t
0 k2(s)ds

)
< +∞,

Consider the Radon-Nikodym derivative R = dP
dQ given by:

R = exp
(∫ t

0
k(s)dW (s)− 1

2

∫ t

0
k2(s)ds

)
,

where W is a Brownian motion under the measure Q.

Under the measure P the process

W P(t) = W (t)−
∫ t

0
k(s)ds,
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is a Brownian motion.

The main consequence of the Girsanov theorem is that when one changes

measures the drift component is impacted but the volatility component re-

mains una�ected. One can say that switching from one measure to another

just changes the relative likelihood of a particular path being chosen. For

example the Brownian motion W (t) above might follow a path which drifts

downward at a rate of about −k but under the measure P it is more likely

to drift to 0. The general purpose of this theorem is to get rid of the drift.

For proof of the previous theorem, please consider [5], page 153-157.

Equivalent Martingale Measure An Equivalent Martingale Measure

(EMM) Q is a probability measure on the space (Ω,F) such that:

� Q and Q0 are equivalent

� The Radon-Nykodym derivative R = dQ0
dQ is positive

� The process W Q(t) = W Q0(t)−
∫ t
0 k(s)ds is a martingale with respect

to Q.

Fundamental Theorem of Asset Pricing

All these de�nitions led us to the fundamental theorem.7 :

A market has no-arbitrage opportunity if and only if there exists

an EMM.

A market is complete (All contingent claims can be replicated

using admissible portfolio) if and only if there exists a unique

EMM.

Forward measure

We name Forward measure, Pi, the probability measure with as numeraire

7This theorem is very well proved and described in [5]
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the Zero coupon bond maturing at Ti, namely B(t, Ti).

Under this measure,

X(t)
B(t, Ti)

is a martingale for all contingent claim X(t) and we can price it saying:

X(t) = B(t, Ti)Ei[X(Ti)|Ft]

Spot measure

Using the de�nition of Jamshidian in [13] we introduce the spot measure.

Consider a portfolio of Zero coupon bond created by the investment strategy

following:

� At t = 0, we invest 1 buying 1
B(0,T1)Zero coupon maturing at T1

� At t = T1, we receive 1
B(0,T1) and we buy 1

B(0,T1)
1

B(0,T2)Zero coupon

maturing at T2

� At t = T2, we receive 1
B(0,T1)

1
B(0,T2) and we buy 1

B(0,T1)
1

B(0,T2)
1

B(0,T3)

Zero coupon maturing at T3

� . . .

Hence, at every t, one hold a portfolio of 1∏dte)
j=1 B(Tj−1,Tj)

(where dte is the

next date in the tenor). This portfolio can be chosen as a numeraire for a

certain measure that we will call the spot measure noted P∗.

1.2 Interest Rates Models

Since they have been more and more used several models have been proposed

to describe interest rates using di�erent approaches. This part will describe

the two models, the most used including at the Royal Bank of Scotland. For

further details one can refer to [4] a very detailed review by Rebonato of how

these models were built and how did we get there.
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1.2.1 Short term interest rates

The �rst generation of models to price Interest Rates structured products

were developed in the early 80's. Since, numerous models have been created

and we will not describe all of them as the purpose of this part is to show

how is built the next generation of models.

For enrichment purpose one can consider other important short term struc-

ture models, including Cox, Ingersoll and Ross Model [6], Ho-Lee [7], Black-

Karasinski [8], Vasicek [9], Rendleman and Bartter[10].

The most used short-term interest rates model in the �nancial industry is

the one by Hull and White (with one or two factors). Actually, this model

is a generalization of the anterior Vasicek model (See [9]). Hull and White

are considering a Vasicek model which models the instantaneous short-term

interest rate as:

dr = a(b− r)dt + σdz, a, b, σ constant (1.8)

Mean Reversion

This model is describing the mean-reversion phenomenon: unlike a stock,

interest rates appear to be pulled back to some long-run average level over

time. Practically, it means that when rt is high, mean reversion tends to

cause it to have a negative drift; when rt is low, mean reversion tends to

cause it to have a positive drift.

This feature can be justi�ed economically; basically, when rates are high,

the economy tends to slow down and the demand for fund from borrower

decrease. Hence, rates tend to go down, so the demand for fund from bor-

rowers increase and rates tend to increase.

In Vasicek model, the short rate tends to go to b at a rate a. The idea of

Hull and White is to use the same rate a and the same constant volatility

but to add a time dependent feature to the mean value: θ(t)
a .
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Hull-White Model

Using these considerations, the Hull-White model consider the instantaneous

short term dynamics as:

dr = [θ(t)− ar]dt + σdt (1.9)

where the parameters are as explained in the previous section.

The θ(t) function can be expressed from the initial term structure by using

a change of numeraire. We get:

θ(t) =
∂f(0, t)

∂t
+ af(0, t) +

σ2

2a
(1− e−2at)

Assuming that the last term is very small (which is true in practice), this

equation implies that the short term interest rate rt follows the slope of the

initial instantaneous forward rate curve. When it deviates from this curve,

it reverts back to a, following the mean-reversion feature.

Bond prices can be derived using Vasicek [9] idea. First, one can write

the partial di�erential equation veri�ed by any contingent claim and then

apply the boundaries conditions to obtain the price of the zero coupon bond.

Hence, the price B(t, T ) at time t of a Z.C. bond maturing at T can be given

using (1.10) in terms of the short rate at time t and the prices of the Z.C.

bond today B(0, T ) and B(0, t).

B(t, T ) = C(t, T ) exp−D(t,T )r(t) (1.10)

where,

D(t, T ) =
1− e−a(T−t)

a

and,

lnC(t, T ) = ln
B(0, T )
B(0, t)

+ B(t, T )F (0, t)− 1
4a3

σ2(e−aT − eaT )2(e2at − 1))
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With these equations we have de�ned everything in our model to price

any contingent claim.

The issue about this model is that the underlying, namely the short-term

interest rate is not an observable of the market. On the contrary, some

zero coupon bonds are traded in a liquid way in the market and hence are

observable of the market. It would be easier to have a model that describes

observable products like Forward rates. This is the purpose of the Libor

Market Model.

1.2.2 Heath Jarrow and Morton Framework

The previous frameworks we just discussed are easy to implement and give,

when used with caution, good prices with respect to actively traded instru-

ments like caps and �oors.

However, there are limitations to this approach: the volatility structure is a

deterministic function of time and one can not adapt this structure in the

time as the volatility structure in the future will probably di�erent from the

one observed in the market at t.

In 1992, Heath, Jarrow and Morton published an important paper [11]

to describe the no-arbitrage condition that must be satis�ed by every model

of yield curve.

The main idea is to consider the dynamics of instantaneous, continuously

compounded forward rates f(t, T ) instead of the short-term rate r. At time

t, for a maturity T + dt:

df(t, T ) = a(t, T )dt + γ(t, T ) · dWt, (1.11)

where a(t, T ) and γ(t, T ) are adapted stochastic processes and Wt is a d-

dimensional standard Brownian motion with respect to the actual probability

P. This rate corresponds to the rate that one contract for at time t on a risk
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less loan that begins at date T and is returned an instant later.8

The assumption of no arbitrage in this market implies a unique relation

between the drift a and the volatility γ. The purpose of this section is to

�nd out what is this relation.

The no instantaneous forward rate in the continuously compound way

(same process that for determining (1.3)) is related to the Zero Coupon

bond; by arbitrage we have:

Ft(T, T + δ) =
1
δ

ln
(

B(t, T )
B(t, T + δ)

)

Hence when δ goes to 0, we can �nd f(t, T ):

f(t, T ) = −∂ln(B(t, T ))
∂T

(1.12)

Then by applying the Itô lemma to (1.12) with the dynamic given in (1.1)

one can get:

df(t, T ) = σB(t, T )
∂σB(t, T )

∂T
dt− ∂σB(t, T )

∂T
dWt (1.13)

This equation gives the link between the drift and the volatility of the in-

stantaneous forward rate f(t, T ). Therefore, integrating between t and T ,

one can obtain:

σB(t, T )− σB(t, t) =
∫ T

t

∂σB(t, τ)
∂τ

dτ

We set σB(t, t) = 0 as it seems obvious that the volatility of a Zero Coupon

bond at maturity is nil, and:

σB(t, T ) =
∫ T

t

∂σB(t, τ)
∂τ

dτ (1.14)

8One can notice that this is just the forward version of the instantaneous rate rt =
f(t, t)
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Using the notation of the preliminaries of this section we can write the fun-

damental HJM result:

a(t, T ) = γ(t, T )
∫ T

t
γ(t, τ)dτ (1.15)

Remark: This result was proved in a one factor case. It is quiet straight

forward to show it with several independent factors, see [11]. If we suppose

in a risk neutral world a dynamic for the instantaneous forward rate such

that:

df(t, T ) = a(t, T )dt +
d∑

k=1

γk(t, T )dWk (1.16)

with the γk(t, T ) are a family of volatility coe�cients for each factor Wk

(Independent Brownian motions) left unspeci�ed except on integrability and

measurability (quiet weak conditions) then one can get:

a(t, T ) =
d∑

k=1

γk(t, T )
∫ T

t

∂γk(t, τ)
∂τ

dτ (1.17)

This new condition is applicable to every interest rates models, including

short-term interest rates models like the Hull-White one we reviewed before.

But it still gives condition on an unobservable of the market, the instanta-

neous forward rate.

However, this new implied condition gave a new angle of study and Brace,

Gatarek and Musiela in [12] have applied it to Forward Libor rate, which

are directly observable on the market, developing the so-called Libor Market

Model

1.2.3 The Libor Market Model

This model is very important nowadays in the �nancial industry and is sub-

ject to a lot of research in the banks including the Royal Bank of Scotland as

it is harder to implement than the short rate model in term of calibration.
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General Principle

As told previously this model is using as inputs the forward rates and from

them build the Zero Coupons curve. The fundamental assumption is that

forward rates follow a log-normal dynamic. One can notice that this practice

is directly taken from equity markets: operators are looking for a model so

that Libor rates and swaps rates follow a log-normal process.

One should highlight the fact that this assumption is not related to the

central limit theorem as it is for equity prices but because historically the

market quotes Libor rates and swaps rates using Black volatility model in

[2]. Hence, the log normal assumption for those rates arises naturally.

Assumption on the dynamics of the Forward Libor Rates

In 1997, Brace et al. proposes a model where the Libor rates follow a log

normal process in the forward measure associated. Namely, for a given ma-

turity δ, (the typical maturity are 3, 6, 9 and 12 months), the associated

forward Libor rate process {L(t, T ); t ≥ 0} which is de�ned by

1 + δL(t, T ) = exp
∫ T+δ

T
f(t, ν)dν (1.18)

follows a log normal process in the spot martingale measure P∗(and a mar-

tingale process in its Forward measure Pi):

dL(t, T ) = (. . .)dt + L(t, T )γ(t, T )dW ∗
t (1.19)

with γ(t, T ) a deterministic function bounded and piecewise continuous fol-

lowing the conditions to apply the Girsanov theorem.
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Main results

i. Setup of a unique yield curve form the Forward LIBOR Rate

We will use Jamshidian approach [13] to explain how this model is built

and how it is related to the Zero coupon bond. We apply the Ito Lemma to

the equality shown before and using 1.1:

1 + δL(t, T ) =
B(t, T )

B(t, T + δ)

δdL(t, T ) =
B(t, T )B(t, T + δ)(m(t, T )−m(t, T + δ))

B2(t, T + δ)
� dt

+
B(t, T )B(t, T + δ)(σB(t, T )− σB(t, T + δ))

B2(t, T + δ)
� dWt

+
B(t, T )B(t, T + δ)(σB(t, T + δ))2 −B(t, T )B(t, T + δ)σB(t, T + δ)σB(t, T )

B2(t, T + δ)
� dW 2

t

dL(t, T ) =
B(t, T )

(
(m(t, T )−m(t, T + δ))− σB(t, T + δ)(σB(t, T )− σB(t, T + δ))

)
δB(t, T + δ)

� dt

+
B(t, T )(σB(t, T )− σB(t, T + δ))

δB(t, T + δ)
� dWt

Re-organizing this equation, we can �nd that:

dL(t, T ) = µ(t, T )dt + γ(t, T )L(t, T )dWt (1.20)

where:

µ(t, T ) =
B(t, T )

δB(t, T + δ)
(
m(t, T )−m(t, T + δ)

)
− γ(t, T )L(t, T )σB(t, T + δ)

and

γ(t, T )L(t, T ) =
B(t, T )

σB(t, T + δ)
(σB(t, T )− σB(t, T + δ))

which gives the fundamental relation

(σB(t, T )− σB(t, T + δ)) =
δL(t, T )γ(t, T )
1 + δL(t, T )

(1.21)
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Brace, et al. (1997) have noticed that the identi�cation equation (1.21) is

actually a recurrence relation on σB(t, T ):

σB(t, dte))−σB(t, T +(j+1)δ) =
j∑

k=dδ−1te

(δL(t, t + kδ))
1 + δL(t, t + kδ)

γ(t, t+kδ) (1.22)

where dδ−1te is the the next integer.

If we assume the Spot Libor Measure P∗ is equivalent to the market measure

P, we can assume the existence of ht, some adapted process, the Radon

Nykodym derivative of the two measures such that:

dWt = dW ∗
t + htdt

Using the change of numeraire techniques and the Ito Lemma, we can show

that:

m(t, T )−m(t, dte)
(σB(t, T )− σB(t, dte))

= σB(t, dte)− ht

Combining the previous equation with 1.21 we obtain:

B(t, T )
δB(t, T + δ)

(
m(t, T )−m(t, T + δ)

)
= γ(t, T )L(t, T ) ·

(
σB(t, dte)− ht

)
So we �nally get to:

dL(t, T ) = γ(t, T )L(t, T )
((

σB(t, dte)− σB(t, T + δ)− ht

)
dt + dWt

)

More exhaustively:

dL(t, T ) =
(
γ(t, T )L(t, T )

j∑
k=dδ−1te

(δL(t, t + kδ))
1 + δL(t, t + kδ)

γ(t, t+kδ)
)
dt+L(t, T )γ(t, T )dW ∗

t

(1.23)

This process �nishes the setup of the yield curve dynamics as we are given the

δ−Libor rate process, the zero coupon volatility in (1.22) and the value of the

forward curve today. What should be emphasize is that we have worked the
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other way that the other short term interest rates model: from the Forward

rates known at time 0 (the observables) we have de�ned a unique yield curve

dynamic using the arbitrage-free assumption and HJM result described in

1.2.2. Furthermore, the volatility of the zero-coupon is a priori stochastic.

Remark 1: Brace et al. (1997) have shown with details that the solution

to this problem exists and is unique.

Remark 2: This model respects the principle of the mean reversion behav-

ior of interest rates in the market as it can be well observed on empirical

studies for instance in [12].

Remark 3: This expression is very convenient and was proposed by Jamshid-

ian in [13] as it permits to implement numerically the Libor Market Model

with only one expression on the opposite of the Forward measure ones. This

is the purpose of the Libor Market Model.

ii. Expression of the LIBOR Forward Rates under di�erent nu-

meraires (Forward measures) Even if they are less convenient for com-

putation these expressions give sense to what is behind the idea of the Libor

Market Model.

Without loss of generality and for simpli�cation purpose, we are going to

consider from now a family of δ Libor forward rates {L(t, Tk), t ≤ 0}n which

matures at {Tk}n. Hence, we will denote by Lk(t) the Libor rate such that:

Lk(t) = L(t, Tk − δ) (1.24)

With the new notations for the Forward rates Li(t) the previous expression

in the spot martingale measure becomes:

Lk(t)
Tk∑
j=1

δLj(t)(γk(t) � γj(t))
1 + δLj(t)

dt + Lk(t)γk(t)dW ∗
t (1.25)
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Consider the probability measure Pk, the forward measure with maturity Tk,

associated with numeraire B(�, Tk), the Zero coupon bond maturing at Tk.

We have seen previously that:

Lk(t)B(t, Tk) =
B(t, Tk−1)−B(t, Tk)

δ
(1.26)

One can observe that we can replicate Lk(t)B(t, Tk) by buying and sell-

ing the bonds B(t, Tk−1) and B(t, Tk). Furthermore, the price of the asset

Lk(t)B(t, Tk) divided by the numeraire B(�, Tk) is a martingale under Pk and

is as a matter of fact Lk(t). So one can write:

dLk(t) = Lk(t)γk(t)dW k
t , t ≤ Tk−1 (1.27)

For the other cases in order to express Lk(t) in the forward measure Pi, we

are going to use Girsanov transformation for Pk to Pi. We can show that

case i < k as the case i > k is analogous.

We proceed by recurrence. The Radon Nikodym derivative associated to the

change of numeraire from Pk to Pk−1is:

R =
∂Pk−1

∂Pk
=

B(t, Tk−1)
B(t, Tk)

B(Tk−1, Tk)
B(Tk−1, Tk−1)

(1.28)

According to Girsanov theorem we know that R is an exponential martingale

under Pk such that it exists φ a regular process9 so:

dR

R
= φ dW k

t

where dW k
t = dW k−1

t + φ dt

9Regular here means several conditions including integrable in L2
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We are going to determine this process φ

dR

R
=

d(B(t,Tk−1)
B(t,Tk) )

B(t,Tk−1)
B(t,Tk)

=
d(1 + δLk(t))
1 + δLk(t)

=
δdLk(t)

1 + δLk(t)
=

γk(t)Lk(t)
1 + δLk(t)

dW k
t

Therefore when assembling the two sides,

dW k
t = dW k−1

t +
γk(t)Lk(t)
1 + δLk(t)

dt (1.29)

An important thing to remind is that in a model with d factors, dWt is a

d-dimension Brownian motion and γk(t) is a d-dimension vector.

By recurrence, we can exogenously give the dynamic of the k-th forward

rate under measure i. Finally, summing up the di�erent expressions of Lk(t)

under the Forward measure Pi:

dLk(t) =


Lk(t)

∑k
j=i+1

δLj(t)(γk(t)�γj(t))
1+δLj(t)

dt + Lk(t)γk(t)dW k
t , i < k, t ≤ Ti;

Lk(t)γk(t)dW i
t , i = k, t ≤ Tk−1;

−Lk(t)
∑k

j=i+1
δLj(t)(γk(t)�γj(t))

1+δLj(t)
dt + Lk(t)γk(t)dW k

t , i < k, t ≤ Tk−1;
(1.30)

with W i the standard d-dimensional Wiener process under Pi.

All the point with this description of the Libor Forward Rates is that we can

see arise the correlation between those Forward rates:

γi(t) � γj(t) =
d∑

k=1

(γi)k(γj)k

γi(t) � γj(t) = ρij‖γi‖‖γj‖

what we note = ρijσiσj
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With ρij the instantaneous correlation between i-th and j-th Forward rate.

We will study in chapter 2 those two components σi and ρi.

1.2.4 Libor Market model summary

The Libor market model is an interest rates model whose input are:

� A set of bond maturities {Ti}n

� The Libor Forward rates at time zero L1(0), . . . , Ln(0)

� The instantaneous volatilities of the forward rates γi(�) for i− 1, . . . , n

The γi(�) are the parameters of the BGM model and those need to be cali-

brated so that our model re�ects correctly the prices of assets traded actively

in the markets. This calibration procedure will be described in Chapter 2.

1.3 Pricing Vanilla Derivatives

Vanilla derivatives are the most liquid which makes them very e�cient to

track volatility information in interest rate markets. On the contrary of the

Swaps and the Forward Rates in 1.1.5 we need in order to price them to use

the previous models and assumptions we described before.

1.3.1 Interest rate options: cap and �oor

Let consider a �oating rate note where the interest rate is reset equal to

LIBOR periodically (usually using a tenor of 3 months). To protect himself

against the rise of LIBOR, the investor can buy an interest rate cap so that

the �oating-rate will not raise above a certain level: the cap rate.

In a forward cap, settled in arrears at time Tj , j = 1 . . . n, the cash-�ows

are (Lj(Tj) − κ)+δ paid at time Tj+1 with a notional 1. The rule of no
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arbitrage and the discount factors B(t, Tj+1) gives the price of the cap:

capt =
n−1∑
j=0

B(t, Tj+1)Ej+1[(Lj(Tj)− κ)+δ] (1.31)

where here Ej+1 is the expectation under the forward measure Pj+1 as we

de�ned it in section 1.1.6. The formula (1.31) permits to consider a cap as

a portfolio of n interest rate options also known as caplets: the elementary

cash-�ow (Lj(Tj) − κ)+δ is the pay o� of a call option on the LIBOR rate

observed in arrears at time Tj and settled at time Tj+1.

Similarly, one can de�ne a �oor which provides an insurance that the

�oating rate will not fall under the �oor rate to be de�ned. The �oorlet is a

put option on the LIBOR rate observed at time Tj and settled at time Tj+1.

Pricing caplets with Black Formula

Using Black in [2] a closed formula for the price of a caplet can be derived.

We assume that the forward rates are log-normally distributed under some

probability measure Q 10and have a constant volatility σ > 0.

dLi(t) = Li(t)σdWt (1.32)

This stochastic di�erential equation can easily be solved:

Li(t) = Li(0) exp(σWt− 1
2
σ2t2), ∀t ∈ [0, Ti], (1.33)

and we know the initial condition by:

Li(0) =
1
δ

(
B(0, T )
B(t, T )

− 1
)

10No formal de�nition is available for this probability, we will refer to Q as the market

probability
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The payo� of the caplet with strike κ at time Ti over the LIBOR rate Li(Ti)

on a notional amount 1 is:

1δ max (Li(Ti)− κ, 0),

Then, the price of this caplet at time t is:

CapletBl(t) = δB(t, Ti+1)EQ((Li(Ti)− κ)+|Ft

)
Using Black-Scholes formula we get, ∀t ∈ [0, Ti],

CapletBl(t) = 1δB(t, Ti+1)[Li(t)N(d1(t, Ti))− κN(d2(t, Ti))], (1.34)

with, d1 =
ln(Li(t)/κ) + σ2 (Ti−t)

2

σ
√

Ti − t
(1.35)

d2 = d1 − σ
√

Ti − t (1.36)

where N : R → [0, 1] is the standard normal distribution: N(x) = 1√
2

∫ x
−∞ e−

z2

2 dz.

For a cap, one can get:

CapBl(t) =
n−1∑
j=0

δB(t, Tj+1)
(
Lj(t)N(d1(t, Tj))− κN(d2(t, Tj))

)
(1.37)

The parameter σ is usually referred to as the Forward volatility of Li. Caps

are quoted for indicative prices by the volatility for a strike equal to the

forward rate, they are the famous at the Money Black implied volatility.

In order to get the �oor price one can use the cap-�oor parity which can

be shown straightforward writing the cap and �oor de�nitions and using the
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no-arbitrage property:

Cap(t)− Floor(t) =
n∑

i=0

(B(t, Ti)[Li(t)− κ]) (1.38)

Pricing caplets in the Libor Market Model

We follow the general idea of Miltersen et al. in [15]. As seen before we

place ourselves in the forward measure Pi. Under this measure the i-th

Libor Forward rate is a martingale:

dLi(t) = Li(t)γi(t) � dW i
t , t ≤ Ti (1.39)

We recognize an exponential martingale in this stochastic di�erential equa-

tion and we can check by the Ito Lemma that the following is solution of

this equation:

Li(t) = Li(0)e
∫ Ti

t γi(s)�dW i
s− 1

2

∫ Ti
t ‖γi(s)‖2ds, t ≤ Ti, (1.40)

Hence Li(Ti) is a martingale under its measure and we can use the no arbi-

trage rule:

CapletLMM (t) = δB(t, Ti+1)Ei+1
[
(Li(Ti)− κ)+|Ft

]
= δB(t, Ti+1)Ei+1

(
Li(Ti)1D|Ft

)
− κδB(t, Ti+1)Prob(D|Ft)

= δB(t, Ti+1)(I1 − I2),

where D = {Li(Ti) > κ} is the exercise set.

Furthermore, γi is a deterministic function, hence the probability law under

Ei of its Ito integral is Gaussian with mean 0 and a variance ζi(t):

ζi(t) =
∫ Ti

t
‖γi(s)‖2ds
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So we get:

I2 = κN

(
ln(Li(t))− lnκ− 1

2ζ2
i (t)

ζi(t)

)
(1.41)

The derivation is similar for I2 and we will not reproduce it:

I1 = Li(t)N

(
ln(Li(t))− lnκ + 1

2ζ2
i (t)

ζi(t)

)
(1.42)

Finally summing everything for the caplets and every caplets to get the

cap price:

CapLMM (t) =
n−1∑
i=0

δB(t, Ti+1)
(
Li(t)N(d1(t)− κN(d2(t))

)
with d1,2(t) =

ln(Li(t))− lnκ± 1
2ζ2

i (t)
ζi(t)

and

ζ2
i (t) =

∫ Ti

t
‖γi(s)‖2ds

Reminding (1.34) we can de�ne σBlack,LMM
n the Black implied volatility of

caplet priced by LMM.

σBlack,LMM
i =

√
1
Tn

∫ Ti

0
‖γi(s)‖2ds (1.43)

Hence, the BGM caplet can also be quoted in terms of its Black implied

volatility. That is the way caplets are generally quoted using at the money

rate. Using this formula we see well why the Libor Market Model is auto

calibrated on the caplets volatilities as we have not done any approximation

in this derivation.

Floor prices can be obtained by using the cap-�oor parity equation shown

previously in 1.38.
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1.3.2 Swaptions

As previously described, we are now going to derive analytical formula to

price a swaption, i.e. a contract where you pay a premium to get the option

to enter a swap of a certain tenor at maturity where you pay a pre-negotiated

�xed rate (the strike) against a �oating one.

Black Formula

We have seen previously how to express the swap rate Sp,q. Thus, we are go-

ing to deduce the swaption price the same way as for caplets: that means we

assume log-normality of the forward swap rate and constant positive volatil-

ity σ. Comparing the future cash-�ows on a swap rate starting at Tp with

�xed rate Sp,q(Tp) to those of a swap starting at Tp with �xed rate κ, we

can show the payo� of a payer swaption on a unitary notional as a series of

caplet payo�s paid later :

q∑
i=p+1

[max(Sp,q(Tp)− κ) (1.44)

Hence using the no-arbitrage assumption and in the market probability mea-

sure already mentioned Q we have:

SwaptionBl
p,q(t) =

q∑
i=p+1

B(0, Ti)EQ((Sp,q(Tp)− κ)+|Ft

)
(1.45)

Hence we can use Black Formula 1.37 adapted to a delayed payo� (from Tp

to T − i) and one can get:

SwaptionBl
p,q(t) =

q∑
i=p+1

B(0, Ti)[(Sp,q(t)N(d1)− κN(d2)] (1.46)



30 Interest Rates Models

with

d1 =
ln((Sp,q(t)/κ) + σ2 (Ti−t)

2

σ
√

(Tp − t)

d2 = d1 − σ
√

Tp − t

Finally we also obtain here a Black implied volatility which will be used later

to give a price to those swaptions. I would like to emphasize the assumption

of the log-normality of the forward swap rate which is not the case in the

Libor Market Model.

Pricing in the Libor Market Model - Swap Market Model

In the Libor Market Model the pricing cannot be done using an exact closed

formula and this is the purpose of chapter 2. However, one can develop

the same model as the Libor Market Model but using the assumption that

Forward swap rates are log-normal: this model is called the Swap Market

Model. See [13] for further details about this model.

Hence, an exact price can be derived as for the caplets in LMM. With

straightforward notations:

SwaptionSMM
p,q (t) =

q∑
i=p+1

B(t, Ti)[Sp,q(t)N(d1)− κN(d2)] (1.47)

with

d1,2(t, Ti) =
ln((Sp,q(t)/κ)± 1

2ζ2(t, Ti)
ζ(t, Ti)

and the Black volatility ζ computed as:

ζ2(t, Ti) =
∫ Ti

t
‖νi(s)‖2ds
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where νi is the deterministic volatility (well adapted) of the forward swap

rate in the corresponding forward swap measure.



Chapter 2

Calibration of the Libor

Market Model

2.1 The settings: Main purpose of the Calibration

Before starting a calibration, a list of calibration objects should be given. A

calibration object can be either a caplet price, a forward rate correlation or a

swaption price. Each of the entries in this list requires a precise description

of the object itself - for instance, for a swaption: which tenor period the

swaption is associated with and what the expiry date is - and of course

market value of the liquid traded securities we consider.

Note that caplet and swaption prices are quoted here in implied volatili-

ties. Say a calibration has M calibration objects, with market values xTraded
k , k =

1, . . . ,M . Given a set of parameters, it is possible to compute the model val-

ues of the M calibration objects with the formulas derived in the �rst part.

This will yield M model values xModel
k , k = 1, . . . ,M . This will lead us to

highlights M di�erent errors between the k-th model value xModel
k and the

market value xTraded
k .

As a bottom line, we add every errors to obtain how far our parameters

for the models are from the market value. The calibration process consists
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in the minimization of this error over the parameters so as to get the model

to resemble the market as close as possible. What we could sum up by:

min
param

M∑
k=1

Errork(xModel
k (param);xTraded

k ) (2.1)

In this part, we discuss the main methods of calibration of the Libor Market

Model. By calibration we mean the computation of the parameters (the

instantaneous volatilities and correlations) of the Libor Market Model so

as to match as closely as possible derivative prices computed and observed

prices of actively traded securities: caplets and swaptions.

It is very easy to calibrate the BGM model to caplet volatilities as it is

almost straight forward because we assumed the log normality of the under-

lying (The forward rates). But in order to price products involving swap

prices, we need to calibrate it also on the swaption market and the swap

rates are not log-normal if the forward rates are.

First we have to take care of the volatility of the Forward rates that

we de�ned previously: assuming their log-normality created this volatility.

Di�erent parameterizations are possible for this.

To price correctly we have to work using a sole numeraire (The spot

measure) which implies a correlation between the di�erent forward rates

and changes the drift (which does not impact our study) This will lead us

to the debate between historical and implied data. We will show di�erent

solutions for the parameterization of the correlation structure and in last

section if we should choose historical data or implied data as inputs.

In this chapter we consider a Libor Market Model with d-factors described

by:

dLi(t) = µi(t)dt +
d∑

k=1

γik(t)dW k
t (2.2)
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where all the W k
t are orthogonal and the γik are the loadings of each factors.

We know that we have the relation:

γi � dWt = σi

d∑
k=1

bikdW k
t (2.3)

So we can see the relation with the correlation arises:

γi � γj = σiσjρij

= σiσj

d∑
k=1

bikbkj

where bi are correlation vectors in (R+)d and γk : [0, Tk−1] → (R+)d.

On top of this, we have in order to ensure a good pricing of the caplets

d∑
k=1

b2
ik = 1 (2.4)

This description has the huge advantage to distinguish the volatility and

the correlation information. Then a separate calibration is possible where

σi will in�uence price of the caplets (See [12]) and the choice of (bik will

in�uence the correlation structure.

2.2 Structure of the instantaneous volatility

As previously explained we have to give a shape to the instantaneous volatil-

ity of the forward rates. To clarify, we have to �ll in the matrix given in 2.1.

We are given the choice between several parameterizations for the structure

with di�erent advantages.

2.2.1 Total parameterized volatility structure

A �rst simple idea would be to choose a total parameterization considering

that each σij is independent and �t the matrix to both caplets and swap-
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Instant. Vol t ∈ (T0, T1] (T1, T2] (T2, T3] · · · (TM−1, TM ]
L1(t) σ1,1 dead · · · · · · dead

L2(t) σ2,1 σ2,2 dead · · ·
...

L3(t) σ3,1 σ3,2 σ3,3 · · ·
...

...
...

...
... · · ·

...

Li(t) σi,1 σi,2 σi,3 · · ·
...

...
...

...
... · · · dead

LM (t) σM,1 σM,2 σM,3 · · · σM,M

Table 2.1: General volatility structure

tions. However as it is described in [17] this process involves numerous issues

including over-parameterization. Though, the system only have a �nite num-

ber of degree of freedom and cannot be constrained everywhere. That is why

we need to consider a semi parameterized structure.

2.2.2 General Piecewise-Constant Parameterization

A very used structure is the one that makes the volatility depends only on

the distance to maturity. For practical purposes, if we force the volatility to

be constant on each time bucket, we can write:

σi(t) = σ(Ti − t) = ηi−k, t = [Tk;Tk+1]

Finally we can organize instantaneous volatilities in a matrix as follows: We

can notice that due to the number of parameters, the main issue with this

structure is that it does not allow a simultaneous calibration of both caplets

and swaptions volatilities but only for one of them (in LMM, it is on caplets).

See [19] for further details about it.
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Instant. Vol t ∈ (T0, T1] (T1, T2] (T2, T3] · · · (TM−1, TM ]
L1(t) η1 dead · · · · · · dead

L2(t) η2 η1 dead · · ·
...

L3(t) η3 η2 η1 · · ·
...

...
...

...
... · · ·

...

Li(t) ηi ηi−1 ηi−2 · · ·
...

...
...

...
... · · · dead

LM (t) ηM ηM−1 ηM−2 · · · η1

Table 2.2: Piecewise-constant volatility structure

2.2.3 Laguerre function linear combination type volatility

Rebonato has proposed a more accurate structure adding one more parame-

ter to the forward rates and keeping the assumption that volatility depends

on the distance to maturity. As a matter of fact doing this we enrich the

structure and permits a better �t with market prices (on both caplets and

swaptions) than the previous one by adding a stationary part ηi−k:

σi(t) = ciηi−k, t = [Tk;Tk+1]

Once again we can sum up this structure in a new matrix:

Instant. Vol t ∈ (T0, T1] (T1, T2] (T2, T3] · · · (TM−1, TM ]
L1(t) c1η1 dead · · · · · · dead

L2(t) c2η2 c2η1 dead · · ·
...

L3(t) c3η3 c3η2 c3η1 · · ·
...

...
...

...
... · · ·

...

Li(t) ciηi ciηi−1 ciηi−2 · · ·
...

...
...

...
... · · · dead

LM (t) cMηM cMηM−1 cMηM−2 · · · cMη1

Table 2.3: Laguerre type volatility structure

Of course, one can observe that we have introduced 2N parameters in-

stead of N in the previous one. To ease the computation, we are going to
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use Rebonato idea about the stationary part of the volatility ηi.

Most of the time this part is a decreasing exponential with a small hump at

the beginning of the curve. Financial justi�cation for this hump can be found

in [16]. The idea is to represent it using a linear combination of Laguerre

functions, especially the two �rst.

ζ1 : τ → e−
τ
2

ζ2 : τ → τe−
τ
2

So we obtain for η:

η(τ) = ae−βτ + bτe−βτ + c

η(τ) = e−βτ (a + bτ) + c

Without loss of generality we force:

η(0) = 1 = a + c

and we get with a slight change of notation to re�ect what these constants

represent :

η(τ) = η∞ + (1− η∞ + bτ)e−βτ

And �nally we get :

||γi(t)|| = σi(t) = ciη(τ) (2.5)

This structure for volatility is a good choice between number of parameters

and quality of the �t: compare to the previous structure, we have to pro-

pose values for η∞, β, b on the top of the ci (they are here as normalization

factors after the �rst coe�cients have well reproduced the shape of the term-

structure volatility) and this gives the best �t to the market as we can use

also data from the swaption market (The piece-wise structure only permits
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to �t the caplet volatilities in each bucket). We can for instance set the ci

using the Black volatility de�nition for a caplet and �t perfectly the caplet

market and optimize the parameters of η(τ) on the swaption volatilities :

ci =
σBS

i

√
Ti√∫ Ti

0 η(Ti − s)ds
(2.6)

Hence, we will continue to use this instantaneous volatility term structure

for the next parts. An example of such structure is given in 2.1
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Figure 2.1: Example of a humped Laguerre-type instantaneous volatility for
b = 5.60, β = 1.75, and η∞ = 0.96 before normalization by the ci factor
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2.3 Structure of the correlation among the Forward

Rates

To price an interest rate derivative, it seems pretty clear that we are going to

face correlation issues among the state variables. Hence, we have to consider

that the forward rates are correlated and to estimate this.

Let consider the family of the forward rates {Li(t)} we can write:

dLi(t)
Li(t)

= µi({Li(t)}, t)dt + γi(t) · dWt

where we can recognize the volatility term we de�ned in the previous chapter

and where Wt is the usual d-dimensionnal orthogonal Brownian motion.

The correlation very simply appears when taking the inner product of the

volatility terms:

De�nition: The instantaneous correlation between two forward rates

Li(t) and Lj(t) is de�ned by:

ρij =
cov(Li(t), Lj(t))√

V ar(Li(t))V ar(Lj(t))
(2.7)

In the BGM case, this de�nition becomes:

ρij =
γi(t) · γj(t)
|γi(t)||γj(t)|

= bi � bj

Finally, the calibration consists in �nding a matrix B ∈ M(M,d) with M

the number of forward rates necessary to build the price of our derivative

and d the number of factors of our model which permits the best to approach

the correlation matrix using a norm we have to de�ne.

One such distance could be the Frobenius norm as we will see in section

2.3.2.
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2.3.1 Historic correlation vs parametric correlation

The choice of this structure is one of the key of a good BGM calibration.

We will see what are the di�erent possibilities and what is the best way to

calibrate the correlation.

Historical correlation

A rather natural choice would be to consider the historic correlation be-

tween forward rates as a good estimation for the present one. In practice,

you need to collect during the largest period of time the daily changes in the

di�erent forward rates and compute the correlation (Here we assume that

the correlation matrix is constant over time as we consider a large period

of time (1994-2006) but some operators of the market have observed that

duo to market jumps this information is not accurate and propose to use a

sliding window of N days that exclude special days like FED meetings, CPI

announcements....

We remind the formula to estimate the historical correlation ρij between

the Forward Rates L(Ti) and L(Tj) is given by (2.7)

The results obtained show a clearly visible de-correlation along the columns

when moving away from the diagonal. Finally, we can see that those data

are very often disturbed as shown in 2.2.
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Figure 2.2: Historical correlation among Forward 1Y-Libor rates between
1994 and 2006 with daily observations
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For these reasons, several models have been proposed in order to give a

more regular shape to historical data and simplify the computation. Fur-

thermore, This is better in terms of consistent pricing and risk management

as the greeks will get smoother with a smoother correlation surface.

Parameterized correlation models

Simple exponential correlation function

The simplest functional form for a correlation function is possibly the

following:

ρij = exp[−β|Ti − Tj |], t ≤ min(Ti, Tj) (2.8)

with Ti and Tj , the expiring dates of the i-th and j-th forward rates, and β

a positive constant.

This form respects several �nancial requirements:

1. The farther apart two forward rates are, the more de-correlated they

are.

2. The condition β ≥ 0 assure that the correlation matrix [ρij ] is admis-

sible (A real symmetric matrix with positive eigenvalues).

3. However, one may notice that this form is not precise enough as it does

not give the possibility to indicate how fast with respect to the time

between the expiring dates the forward rates de-correlate. In other

words, the 30Y Forward rate and the 10Y Forward rate have the same

correlation that the 20Y Forward rate and the 3m Forward Rate. One

can refer to the correlation surface given in 2.3.

This can be explained by the fact that this form does not depend on time t

explicitly as one can see in equation 2.8. One understands that this feature

is also an advantage on a computational point of view (for the integration of

the covariance
∫

ρijσi(t)σi(t)dt) but is this simpli�cation worth it?



44 Calibration of the Libor Market Model

Finally, we can generalize this functional form 2.8 by adding a term of asymp-

totic de-correlation which means that when the distance between the expiring

dates goes to +∞ the correlation cannot go to zero but to a �nite level ρ∞.

The equation 2.8 is changed into the following one:

ρij = ρ∞ + (1− ρ∞) exp[−β|Ti − Tj |] (2.9)

One can check that this structure gives a matrix of course real, symmetric

and has positive eigenvalues: it is an admissible correlation matrix.
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Figure 2.3: Simple Exponential Parameterized correlation among Forward
rates with β = 9%
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Modi�ed exponential correlation function

Rebonato in [16] has proposed a slight modi�cation which gives better

results:

ρij = exp[−βmin(Ti,Tj)|Ti − Tj |] (2.10)

Here βmin(Ti,Tj) is not a constant anymore but a function of the earliest ex-

piring forward date.

Nevertheless, Schoenmakers and Co�ey in [18] have shown that this type of

function does not assure anymore that the eigenvectors of the correlation

matrix will remain positive, a necessary condition for a matrix to be corre-

lation admissible.

But, if we choose:

βmin(Ti,Tj) = β0 exp(−γ min(Ti, Tj)) (2.11)

then the eigenvalues of ρij are all positive. This form �ts the rate of de-

correlation feature discussed before while still not depending of t preserving

the computational feature.
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Figure 2.4: Modi�ed Exponential Parameterized correlation among Forward
rates with β0 = 12% and γ = 33%
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Schoenmakers-Co�ey approach Schoenmakers-Co�ey have proposed in

[18] a semi-parametric full rank structure for the correlation matrix. This

semi-parametric structure provides a correlation matrix by subjecting a ra-

tio correlation structure which obeys to simple economical principles. They

describe the correlation matrix ρi,i+p with an increasing function of i when

p is �xed. This structure is more involved but it has the more robustness

and generates admissible correlation matrices.

ρij = exp
(
− |i− j|

m− 1
(
ln ρ∞

+ η1
i2 + j2 + ij − 3mi− 3mj + 3i + 3j + 2m2 −m− 4

(m− 2)(m− 3)
+

− η2
i2 + j2 + ij −mi−mj − 3i− 3j + 3m + 2

(m− 2)(m− 3)
))

,

(i, j) ∈ [1,m]2, 3η1 ≤ η2 ≤ 0, 0 ≤ η1 + η2 ≤ −lnρ∞

This structure enjoys some very interesting properties:

Firstly : the matrices produced are automatically positive semi-de�nite, as

every correlation matrix has to be.

Secondly: the structure produces correlation decreasing as the distance

between rates increases.

Finally: the sub-diagonals of the resulting matrix are increasing while mov-

ing to longer tenors (South East of the matrix). This property is also

visible in the modi�ed exponential form and means that changes in

long tenor Forward Rates are more correlated.

Thereafter in 2.5 is given the correlation surface with parameters that

RBS is using to book trades.
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Figure 2.5: Schoenmakers Co�ey correlation among Forward Libor rates
with η1 = 19.99%, η2 = 59.99% and ρ∞ = 45%
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2.3.2 Rank Reduction methods

Now that we have obtained a smoother correlation matrix for our Libor

Market model giving the inputs, we are going to calibrate our model with a

smaller number of factors than the number of Forward rates that is inputted

originally as a BGM model with Monte Carlo simulation with 15 factors is

not possible.

Rebonato parameterization

Rebonato in [16] gives an interesting way to tackle the generation of correla-

tion matrix for the LMM with d factors. Generalizing the BGM model and

more speci�cally 1.30 to d factors we can write in any Forward measure:

dLi(t) = µi(t)dt +
d∑

k=1

γik(t)dW k
t (2.12)

Where all the W k
t are orthogonal and the γik are the loadings of each factors

as described in the introduction of this chapter. We know that we have the

relation:

γi � dWt = σi

d∑
k=1

bikdW k
t (2.13)

So we can see the relation with the correlation arises:

γi � γj = σiσjρij

= σiσj

d∑
k=1

bikbkj

And we have in order to ensure a good pricing of the caplets:

d∑
k=1

b2
ik = 1 (2.14)

We are going to show that this very general formulation of the BGM

model permits us to parameterize the γi.
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Two-factor Case Let assume that d = 2, then in their forward measure

(drifts are irrelevant in this discussion):

dLi(t)
Li(t)

= σi(t)[b1i(t)dW 1
t + b2i(t)dW 2

t ]

then the condition 2.4 becomes:

b2
1i(t) + b2

2i(t) = 1 (2.15)

There we can introduce any coe�cient θ and it is always correct that

cos2(θ) + sin2(θ) = 1,

which speci�es a set of coe�cients b1i, b2i and hence a possible distribution

of the loadings onto the two Brownian motions compatible with our BGM

model. How can we choose among all the possible solutions? We are going

to impose the correlation condition to this choice of θ. Using (2.7):

ρik =
E
[

dLk(t)
Lk(t)

dLi(t)
Li(t)

]
√

E
[

dLk(t)
Lk(t)

dLk(t)
Lk(t)

]
E
[

dLi(t)
Li(t)

dLi(t)
Li(t)

] (2.16)

First, the denominator:

E
[
dLk(t)
Lk(t)

dLk(t)
Lk(t)

]
= σ2

k(t)E
[
[b1k(t)dW 1

t + b2k(t)dW 2
t ][b1k(t)dW 1

t + b2k(t)dW 2
t ]
]

= σ2
k(t)(b1k(t)2 + b2k(t)2)dt = σ2

k(t)dt

As we have chosen a 2-dimensional Brownian motion with orthogonal Brow-

nian increments. Hence, the denominator simpli�es to:

√
E
[
dLk(t)
Lk(t)

dLk(t)
Lk(t)

]
E
[
dLi(t)
Li(t)

dLi(t)
Li(t)

]
= σk(t)σi(t)dt (2.17)
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For the numerator we derive the same calculus using the orthogonality be-

tween the two Brownian motions:

E
[
dLk(t)
Lk(t)

dLi(t)
Li(t)

]
= E

[
σk(t)[b1k(t)dW 1

t + b2k(t)dW 2
t ]σi(t)[b1i(t)dW 1

t + b2i(t)dW 2
t ]
]

= E
[
σk[sin θkdW 1

t + cos θkdW 2
t ]σi(t)[sin θidW 1

t + cos θidW 2
t ]
]

= σkσj [sin θk sin θi + cos θk cos θi]dt

= σkσj [cos(θk − θi)]dt

Finally,

ρik = [cos(θk − θi)] (2.18)

Hence, this application to a 2-factor case show that the correlation between

2 Forward rates is purely a function of the di�erence between the "angles"

we associated to the loadings bik.

Generalization to a d factor case

This case is generalizable to a d factors case. Reminding the condition∑d
k=1 b2

ik = 1, we recognize the co-ordinates of a point on the surface of

hyper-sphere of radius 1. The expression for the polar co-ordinates of a

point on the surface of a unit-radius hyper-sphere gives:

bik =cos θik

k−1∏
j=1

sin θjk, k = 1, 2, . . . , d− 1

bik =
k−1∏
j=1

sin θjk, k = d

This parameterization {θ} is very useful on a computational side as we will

see it later.
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The Frobenius norm

We explained before we were trying to �nd B ∈M(M,d) so that BBT was

near A = [ρij ]Traded ∈ M(M,M). This subsection will give a sense to what

near mean.

In optimization several views can be taken about distance using subordinated

norms, penalty function, obstacle function. We will stick to the simplest case

of the Frobenius norm.

Formally, we consider a weighted Frobenius inner product 〈�, �〉W on a Hilbert

space of real symmetric matrix M ×M de�ned by:

〈X, Y 〉W = trace(XWY W ), X, Y ∈M(M,M) (2.19)

We use the equally weighted Frobenius norm, hence W = I and we get the

norm induced by 〈�, �〉W :

‖X‖2 = 〈X, X〉W = trace(X2), X ∈M(M,M) (2.20)

Applying this norm to our optimization problem: we are trying to reduce

the distance [ρij ]model − [ρij ]traded which can be traduced in:

χ2 = ‖[ρij ]model − [ρij ]traded‖2 =
∑(

|[ρij ]model − [ρij ]traded|2
)

=
∑

|
d∑

r=1

(bjrbrk)− [ρij ]traded|2

This norm de�nes how near is our modeled correlation matrix from the

market.

Principal component analysis - PCA

Back to the Rebonato angle parametrization, we can object that this has

only made us go from calibrating M × d factors to M × (d− 1) factors that

integrate the constraints of 2.4.
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However, if we use a 3 factors model to simulate the 10Y USD Libor rate

(quoted in annually compound) we still have a problem of 10× (3− 1) = 20

variables. Hence, we need to �nd a good start to �nd out the solution. We

will use the principle component analysis.

This technique is the optimal linear transform that transforms the cor-

relation matrix to a new vector basis. This vector system (depending on the

correlation matrix) is such that the greatest variance by any projection of

the data comes to lie on the �rst coordinate, the second greatest variance on

the second coordinate, and so on.

Practically, we are given a correlation matrix [ρij ] that we can always

diagonalize to �nd a diagonal matrix Λ = [λi] and an orthonormal diagonal

matrix V such that [ρ] = V ΛV −1. These matrices are easily found using a

QR algorithm with Gram-Schmidt method.

Then, you can form a matrix B ∈M(M,d) de�ned with:

B =
√

ΛP =
(√

λ1V1, . . . ,
√

λiVi, . . . ,
√

λdVd

)

One keeps the d most important eigenvalues {λi} and their eigenvectors

{Vi}. With this choice we have BBT ∈ M(M,M) close in norm to the

market input [ρij ]. On top of this, we will use this B to describe the factors

bik as de�ned in the de�nition of our Libor Market Model in 2.13.

We also have an indication of the number of factors important to create

a good approximation of the original rank M matrix. In our example, we

�nd that the �rst three eigenvalues account for 93.6% of the sum of the

eigenvalues as shown in 2.4. This means that we can explain 93.6% of the

variance with the �rst three factors.

A PCA Interpretation

We can easily draw a parallel between those eigenvalues and the moves of

the curve. The �rst factor, the most important, explains the parallel shifts
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Eigenvalues Value Proportion

1st 7.86 78.6%
2nd 1.07 10.7%
3rd 0.427 4.27%

Sum of the others 0.64 6.40%

Table 2.4: Main eigenvalues of the correlation matrix: the PCA arises nat-
urally to explain the moves of the curve

movements of the yield curve. The second one explains the inversion moves

of the curve: when the short dated increase while the long dated decrease

or the opposite. Finally, the third factor explains the torsion moves of the

curve: when long and short rates dated increase and middle dated decreases

or the opposite.

Hence, thanks to the PCA, we have a good approximation of the exoge-

neously given full rank correlation matrix at a relatively low computation

cost. Moreover, we know how much of the variance of the correlation matrix

we account for when using a 3 factors model.

Rebonato angles optimized method

Going to a full optimization of the problem χ2 under a 3 factors model, we

obtain very close results to the PCA. Thereafter is given a �gure comparing

the two methods. The optimization can be done using Broyden-Fletcher-

Goldfarb-Shanno algorithm (as detailed in [14]) using parameters for the

Schoenmakers-Co�ey structure used by RBS for the booking for Interest

rate derivatives and based on a sliding window of the last 12 years1 on USD

12m Libor. The Royal Bank of Scotland is using a slightly modi�ed version

of this algorithm that gives better results. Obviously, the norm optimization

looks better and the Forward rates are close to the input matrix.

We can see in the next �gure that the eigenvectors for both methods are

quiet similar although there is no orthogonalization process in the Rebonato

1This window can change as one can argue that a shorter window gives a better trend;
however this choice is very conditional to trader and risk management opinion
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angles optimized method (Fully optimized method). What we have done

in these process is just a linear transformation of the original Libor Market

Model correlation matrix.
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Figure 2.6: Eigenvectors comparison between PCA and Rebonato angles
optimized method
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Comparison between rank reduced correlations

The next �gures 2.7, 2.8 and 2.9 plot a column (Second, Fifth and Tenth

column) of each correlation matrix formed (Market, PCA and Fully opti-

mized) and compare them. What is plotted is the correlation between a

Forward Libor rate (2nd : ρ2, j, 5th : ρ5, j, 10th : ρ10, j) with the other For-

ward Libor rates for each matrix formed.

Looking at these �gures several remarks can be done. In general, we

observe that these rank reduction methods tend to overestimate the correla-

tion between the adjacent Forward rates (thus the terms ρi,i−1 . . .) and lower

the correlation between the distant one (the terms ρi,ε . . .). Hence, this lead

to systematical misprice on the swaptions: short maturities swaption will

always be too expensive because model correlation will be too high and long

maturities swaption will be too cheap because model correlation will be too

low. With those reserves in mind results remain acceptable for at-the-money

swaptions. Nevertheless, we can see that in our case the low correlation ef-

fect is not very well observed, this is due to the rather small size (10 Years)

of our matrix.

Increasing the number of factors to 4 does not improve as much as from

2 to 3 as the 4-th eigenvalue is smaller than the �rst 3 (in our case we would

have taken account of 95.7% (vs 93.6% with 3 factors) of the variance with

4 factors); hence depending on the complexity and the accuracy needed we

can increase the number of factors but never let it go below 3.



59 Calibration of the Libor Market Model

Figure 2.7: Comparison of the 2Y Forward Libor Rates correlation simulated
by PCA and complete optimization
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Figure 2.8: Comparison of the 5Y Forward Libor Rates correlation simulated
by PCA and complete optimization
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Figure 2.9: Comparison of the 10Y Forward Libor Rates correlation simu-
lated by PCA and complete optimization
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2.4 Swaption Approximation formulas

We have seen that a �nancial model is usable by operators only if it re�ects

prices of the market. This calibration is usually a very time consuming

operation.

Theoretically, in order to �nd the parameters of our problem, we should

propose a set of parameters for the instantaneous volatility and correlation,

run Monte Carlo simulation on the Forward Rates and from those, derive

the volatility of the swaptions. This process needs Monte Carlo simulations

at each step which is too much time consuming. Hence, we need to �nd an

approximate closed formula for this price\volatility.

In the market, swaptions at the money are quoted using their implied

volatility: the market uses Black Formula to create the relation between the

prices of the swaptions and the implied volatility used for the quotation.

The use of this Black formula request that one assume the log normality

of the Forward rates in their Forward Measure and as a matter of fact no

log-normality for the swap rates.

2.4.1 Rebonato Formula

Rebonato in [16] proposed an approximation in order to compute the swap-

tion prices. A swap rate Sp,q(t) as we saw it before can be written as a linear

combination of Forward rates:

Sp,q(t) =
q−1∑
k=p

wk
p,qLk(t) (2.21)

where the weights {w} are given by:

wk
p,q =

δB(t, Tk + δ)∑q−p
i=1 δB(t, Ti + iδ)

Here, we assume that in the dynamic of the swap rate dSp,q the weighings

{w} in the linear combination are constant and equal to their value in 0,
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wp,q(0). Hence,

dSp,q ≈
q−1∑
k=p

wp,q(0)kdLk(t) (2.22)

Then we can write the implied volatility σBlack
p,q using the relation showed

in the chapter 1.

(σBlack
p,q )2Tp =

∫ Tp

0
‖γp,q‖2dt =

∫ Tp

0

(
dSp,q

Sp,q

)2

(2.23)

Therefore,

(
dSp,q

Sp,q

)2

=
q−1∑

j,k=p

wk
p,q(0)wj

p,q(0)dLk(t)dLj(t)
S2

p,q

=
q−1∑

j,k=p

wk
p,q(0)wj

p,q(0)(γk � γj)Lk(t)Lj(t)
S2

p,q

dt

=
q−1∑

j,k=p

wk
p,q(0)wj

p,q(0)ρkjσkσjLk(t)Lj(t)
S2

p,q

dt

And �nally,

(σBlack
p,q )2Tp ≈

∫ Tp

0

q−1∑
j,k=p

wk
p,q(0)wj

p,q(0)ρkjσkσjLk(t)Lj(t)
S2

p,q

dt

≈
q−1∑

j,k=p

wk
p,q(0)wj

p,q(0)Lk(t)Lj(t)
S2

p,q

∫ Tp

0
ρkjσkσjdt

Here we assume Lk(t) = Lk(0)

≈
q−1∑

j,k=p

wk
p,q(0)wj

p,q(0)Lk(t)Lj(t)
S2

p,q

ρkj(0)
∫ Tp

0
σkσjdt

Here we also assume ρjk(t) ≈ ρjk(0)

So putting things together Rebonato approximation formula is:

σBlack
p,q =

√√√√ 1
Tp

q−1∑
j,k=p

wk
p,q(0)wj

p,q(0)Lk(t)Lj(t)
S2

p,q

ρkj(0)
∫ Tp

0
σk(t)σj(t)dt

(2.24)
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This approximation works quiet well but it can be �ne tuned using Hull and

White idea in [19].

2.4.2 Hull and White Formula

In [19], Hull and White have proposed an improvement of the previous for-

mula using the �rst order for the coe�cient {w}. We will omit the subscripts

p and q to light the notation.

The derivation is for this one:

dSp,q =
q−1∑
k=p

d(wk(t)Lk(t))

=
q−1∑
k=p

wk(t)dLk(t) + Lk(t)dwk(t) as the weightings are deterministic functions ofLk :

=
q−1∑
k=p

wk(t)dLk(t) +
q−1∑
k=p

Lk(t)
q−1∑
i=p

∂wk(t)
∂Li

dLi(t)

=
q−1∑
k=p

(
wk(t)dLk(t) + Lk(t)

q−1∑
i=p

∂wk(t)
∂Li

dLi(t)
)

The �rst order derivative can be computed by writing:

wk
p,q =

B(t, Tk + δ)∑d
i=1 δB(t, Ti + δ)

=

∏k
i=0

1
1+δLi(t)∑q−p

i=1

(
δ
∏p+k−1

i=0
1

1+δLi(t)

)
The derivation is straightforward and we will not reproduce it. The reader

can refer to [19] for further details. Finally, we obtain:

∂wk

∂Li
=

wkδ

1 + δLi

(
1i>k −

∑i−p+1
k=1 B(t, p + k)∑q−p
k=1 B(t, p + k)

)
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Finally we can use the convenient expression of Rebonato given in 2.24 where

we switch wk by w̄k de�ned by:

w̄k = wk +
q−1∑
k=p

Lk(t)
∂wk

∂Li

2.4.3 Andersen and Andereasen Formula

A third approximation possible is the one given by Andersen et Andreasen

in [20]. The idea is to di�erentiate the swap rate Sp,q with respect to the

Forward Rates Li.(Basically, using the partial derivatives
∂Sp,q

∂Li
relevant with

the maturity we consider that is from Tp to Tq)

dSp,q =
q−1∑
k=p

∂Sp,q

∂Lk
dLk

dSp,q

Sp,q
=

1
Sp,q

q−1∑
k=p

(
∂Sp,q

∂Lk
LkγkdW k

t + Xkdt

)

Once again we do not compute the drift Xk as we are interested only in the

quadratic variation:

(dSp,q

Sp,q

)2
=

1
S2

p,q

q−1∑
j,k=p

∂Sp,q

∂Lk

∂Sp,q

∂Lj
LkLjγk � γjdt

∫ Tp

0

(dSp,q

Sp,q

)2
dt ≈ 1

S2
p,q

q−1∑
j,k=p

∂Sp,q(0)
∂Lk

∂Sp,q(0)
∂Lj

Lk(0)Lj(0)
∫ Tp

0
γk � γjdt

Where we use the same approximation as previously taking for constant the

partial derivatives, the forward rates and the instantaneous correlation at 0.

So �nally we get for the swaption price:

σBlack
p,q =

√√√√ 1
TpS2

p,q(0)

q−1∑
j,k=p

∂Sp,q(0)
∂Lk

∂Sp,q(0)
∂Lj

Lk(0)Lj(0)ρjk(0)
∫ Tp

0
σk � σjdt

(2.25)
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where we have derived the term for each k:

1
Sp,q

∂Sp,q

∂Lk
=

δ

1 + δLk

(
B(t, Tq)

B(t, Tp)−B(t, Tq)
+

∑q−p
j=k−p+1 δB(t, Tp+j)∑q−p

j=1 δB(t, Tp+j)

)

In this approximation, we �nally only have changed the wj
p,q by

∂Sp,q

∂Lj
.

2.5 Monte Carlo Simulation and Results on 3 Fac-

tors BGM

This section is going to compare the di�erent formulas in term of their ability

to �t the swaption market simulated by Monte Carlo methods and given the

same set of parameters.

2.5.1 Monte Carlo Method

The idea of the Monte Carlo method is to compute values of any kind of

derivatives instruments from simulated trajectories and evaluate the result

as the average of this values.

In general, Monte Carlo computation are used for simulation and optimiza-

tion problems. In Libor Market model, we have to compute expectations

and therefore we can use this process.

In a mathematical point of view, consider a square-integrable function f ∈

L2(0, 1) and a uniform distributed random variable x ∈ U [0, 1]. MC permits

us to compute expectations as we know that:

E[f(x)] =
∫ 1

0
f(x)dx,

Consider a sequence xin sampled from U [0, 1]. An empirical approximation

of the expectation is then:

E[f(x)] ≈ 1
n

n∑
i=1

f(xi)
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The justi�cation of this approximation is given by the Strong Law of Large

Numbers. This law implies that this approximation is convergent with prob-

ability one, i.e.

lim
n→∞

1
n

n∑
i=1

f(xi) =
∫ 1

0
f(x)dx (2.26)

The error we make using this approximation hence is:

εn =
∫ 1

0
f(x)dx− 1

n

n∑
i=1

f(xi) (2.27)

This error can be described in a statistical point of view using the Central

Limit Theorem.

As n → ∞,
√

nεn(f) converges in distribution to σν where ν is a standard

normal random variable (with mean nil and variance of 1) and σ is the

square-root of the variance of f :

σ(f) =
[ ∫ 1

0
(f(t)−

∫ 1

0
f(x)dx)dt

]1/2

2.5.2 Numerical Results

In order to simulate the Forward Libor using Monte Carlo, we need a unique

measure. As previously explained in 1.1.6 we will use the spot martingale

measure P∗ and its numeraire Bspot(t). We have discretised the {Li} under

their exponential form using 1.25 on a tenor that coincide with the reset

dates Ti for practical reasons:

d(lnLi(t)) =

 k∑
bδ−1T c

δLj(t)(γk(t) � γj(t))
1 + δLj(t)

− ‖γ2
i (t)‖2

2

 dt+Lk(t)γk(t) �dW ∗
t
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Therefore, ∀k ∈ [0, n− 1]:

Li(Tk+1) = Li(Tk) exp
[( k∑

bj=δ−1Tkc

δLj(Tk)(γj(Tk) � γi(Tk))
1 + δLj(Tk)

− ‖γ2
i (Tk)‖2

2
)
∆Tk

+ ‖γi(Tk)‖
d∑

j=1

bijεjk

√
∆Tk

]

where εjk  Nd(0, 1). To compare �gures comparable, the same change of

numeraire must be done for the swaption payo�:

Swaptionp,q(0) = Bspot(0)E∗
(

Swaptionp,q(Tp)
Bspot(Tp)

|F0

)

= E∗
 q∑

j=p

δB(t, Tp+j)
(Sp,q(Tp)− κ)+

Bspot(Tp)
)


As Bspot(0) = 1

Back to the swaptions, we express the integral of the instantaneous volatility

according to section 2.2 (the last term of the generic swaption formula):

∫ Tp

0
σi(s)σj(s)ds =

∫ Tp

0
cicjη(Ti − s)η(Tj − s)ds

and as γ2
i =

1
Ti

∫ Ti

0
σ2

i (s)ds

γ2
i =

c2
i

Ti

∫ Ti

0
η(Ti − s)2ds∫ Tp

0
σi(s)σj(s)ds = γiγj

√
Ti

√
Tj

∫ Tp

0 η(Ti − s)η(Tj − s)ds√∫ Ti

0 η(Ti − s)2ds
√∫ Tj

0 η(Tj − s)2ds

This permits us to give an explicit generic formula for the swaptions:

(γp,q)2 ≈
1
Tp

q−1∑
j,i=1

wi
p,qw

j
p,qLiLj

S2
p,q

γiγjρijς
β,b,η∞
i,j,p (2.28)
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with ςβ,b,η∞
i,j,p the integral term of the previous derivation:

ςβ,b,η∞
i,j,p =

√
Ti

√
Tj

∫ Tp

0 η(Ti − s)η(Tj − s)ds√∫ Ti

0 η(Ti − s)2ds
√∫ Tj

0 η(Tj − s)2ds

Thanks to the Royal Bank of Scotland, I could run tests on a swaption

matrix 10× 10 with these formulas on the Libor Market Model with market

parameters in date of October 30th 2006 and compare them to a Monte

Carlo simulation. By swaption matrix, we mean the Black volatilities of the

swaptions put in an array with on the x-axis the tenor of the underlying swap

and on the y-axis the maturity of the swaption. Hence a N × M swaption

is a swaption of maturity N Years on a M Years swap.

We ran Monte Carlo simulations over 1 million paths on a 10Y tenor swap

at maximum (which is a very common tenor for structured products in Asia)

with a maximum option maturity of 10Y. (Hence, we had to use the North-

West part of a correlation surface 20 × 20). We could estimate the average

error between the previous formula applied to Hull-White, Rebonato and

Andersen and Andreasen and the results obtained by Monte-Carlo simulation

by using the expression : 1
10×10

∑
|γMonte−Carlo

p,q −γFormula
p,q |. We can conclude

it is non relevant.

Approximation Accuracy Maximum Discrepancy Average Discrepancy

Rebonato 0.34% (1× 2) 0.18%
Hull and White 0.17% (5× 2) 0.10%

Andersen and Andreasen 0.22% (3× 2) 0.08%

Table 2.5: Swaption approximation accuracy for di�erent formulas

Some comments about the general behaviour of each formula. Rebonato

and Hull White formula seem to be quiet o� on the short maturity and short

tenor (First line and �rst column) and otherwise with a constant discrep-

ancy along the matrix. Andersen and Andreasen formula is behaving the
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opposite as the approximation quality decrease when the maturity and the

tenor increase (Going South East in the matrix).

Hence a good strategy for a calibration would be to use Hull White for the

short dated swaption (inferior to 5 years) and then Andersen and Andreasen

formula, this is still work in progress as it is very involved to get consistent

results with this method all along the swaption matrix.

From a risk management point of view, some products do not depend

on some tenors or maturities, we can decide to eliminate these irrelevant

swaptions or reduce their in�uence in the calibration process (For instance

by changing the weight matrix in the Frobenius norm). This is very useful for

pricing accurately Bermudan swaptions where the co-terminal swaptions2 are

very important. Several procedures have been proposed, see [16] for further

details.

Finally to put this in perspective a typical bid-o�er spread in USD would be

0.50% highlighting how good are those approximations.

2Co-terminal swaptions are the swaption on the diagonal SW-NE of the matrix



Chapter 3

Perspectives and issues

3.1 Stochastic volatility models applied to Libor

Market Model

The work we have produced until now was assuming a deterministic volatility.

Like for the equities, volatility mappings su�er from a smile (here a skew)

that makes the implied volatility when moving away from at the money

point. Several propositions have been worked out to �t the very out or in

the money implied volatility and this is still work in progress. Here is the

general framework the most used nowadays in the world of rates.

3.1.1 Stochastic α β ρ model - SABR

Operators have �gured out since a long time that interest rates products were

not well quoted using deterministic volatility (even the previous piecewise

or Laguerre type volatility). Hagan in [21] has introduced a local volatil-

ity model self-consistent, arbitrage-free and which match observed market

skews. We will present its main features and how it is handled in the Libor

Market Model.
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Main assumption is that the volatility follows a stochastic process corre-

lated to the forward price Li(t) in its forward measure:

dLi(t) = ΣBLβ
i (t)dW1

dΣB = νΣBdW2, ΣB(0) = σB

where ν is named the volatility of the volatility, namely volvol.

The two processes W1 and W2 are correlated by:

dW1dW2 = ρdt

Many other forms have been proposed for the stochastic process for the

volatility, with a drift, with a mean reversion etc but this original form gives

the means to manage the skew risk in markets with only exercise date which

is our case with the caplets and the swaptions markets.

In the operator point of view, managing the vega risk becomes like delta-

hedging as the trader will have to buy and sell options to become vega

neutral.

Using singular perturbation techniques we can derive a price for Euro-

peans options, we will let the reader refer to [21] for a complete proof. Euro-

pean prices are given using the Black formula with an other Black volatility

ΣB(Li(t), κ). Using the same notations as in 1.3.1:

CapletSABR(t) = 1δB(t, Ti+1)[Li(t)N(d1(t, Ti))− κN(d2(t, Ti))],

with, d1 =
ln(Li(t)/κ) + Σ2

B
(Ti−t)

2

ΣB

√
(Ti − t)

d2 = d1 − ΣB

√
(Ti − t)
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and where the implied volatility is given exogenously:

ΣB(Li(t), κ) =
σB

(Li(0)κ)
1−β

2

(
1 + (1−β)2

24 ln2 Li(0)
κ + (1−β)4

1920 ln4 Li(0)
κ + . . .

) � ( z

x(z)
)
�

(
1 +

[(1− β)2

24
σ2

B

(Li(0)κ)1−β
+

1
4

ρβνσB

(Li(0)κ)
1−β

2

+
2− 3ρ2

24
ν2
]
(Ti − t) + . . .

)

where we refer to z as:

z =
ν

σB
(Li(0)κ)

1−β
2 ln(Li(t)/κ),

and to x(z) as:

x(z) = ln

{√
1− 2ρz + z2 + z − ρ

1− ρ

}

These formulas give an explicit1 form for the volatility in the European case

and this can be highlighted as it becomes easily implementable in this model,

which is generally not the case in the stochastic volatility model.

In order to �t the market, we can play on the parameters of the model.

The β controls the backbone of the skew that means the ATM volatility

ΣB(Li(t), Li(t)) estimated with a historical log-log plot of the ATM

volatilities. In general we use β = 0.5 for the USD Interest rate market

(like in the CIR Model).

The α parameter is conveniently replaced by the ATM volatility (One can

numerically invert the formula) and is changed almost every hours.

ρ and ν control the skew. ν is very high for short-dated options, and de-

crease as the time-to exercise increases, while the correlation ρ starts

near 0 and becomes substantially negative along time-to exercise. It

should be noticed that there is a weak dependence of the market skew

1The omitted terms in . . . are much smaller
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on the tenor of the underlying swap hence those parameters are fairly

constant along market moves for each tenor. In general, they are up-

dated on a monthly basis.

One should notice that the calibration of theses volatility models is made

hard by the absence of liquidity of some parts of the skew in the market : very

out of the money or deeply in the money swaptions are less likely to be traded

and consistency between prices is quiet hard to be found. Extensions can be

made with a volatility model that handle market jumps or uses instantaneous

stochastic correlation. This is obviously very work-in-progress.

3.2 Hybrids Products

This section is much more qualitative as this topic is a very new and con�-

dential one and a very few academic paper are available. After discussions

and attendance to meetings with market operators, I am going to present

some general views over these new derivatives.

A derivative is an hybrid when the whole or part of the trade has risk

across two or more asset classes that cannot be decomposed into speci�c asset

classes2. It can be both considered as a product or an asset class since due to

cross convexity one asset class cannot be risk managed without considering

other asset classes in a given trade.

In a pricing perspective the main di�erence with single asset structured

products is the important combination of joint distributions, correlation and

cross convexity.

Joint distribution Two di�erent ways to calculate the expectation of the

payo� (in other words the integral and the joint distribution of the two assets)

have been proposed using the work done on single asset exotics: Implied

distributions (Interest Rates) and Copulas (Credit Derivatives).

2Main asset classes are: Equity, Rates, FX, Credit, Commodities, In�ation.
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Using the implied distribution means that from the caplet/�oorlet prices we

build an empirical distribution for each asset class involved in the trade.

A Copula is a real function C such that in a 2 dimensions case is de�ned on

I2 = [0, 1]2 and:

C(x, 0) = C(0, x) = 0 and C(x, 1) = x, C(1, z) = z (3.1)

Very basically, using the Sklar theorem that sets that for each Joint distri-

bution F (X1, X2) there exist a function C depends on C(F1(X1), F2(X2))

where the Fi are the marginal distribution of our assets, we can determine

the Joint distribution of the 2 assets.

Correlation This is an issue for risk management and for pricing. We

saw in this thesis that pricing was all about correlation and market data are

a crucial point for a good calibration. One can understand that when two

classes of assets are involved the issue is even bigger than when talking about

just two Forward Libor rates. This is still an open problem for many houses:

operators are talking about stochastic correlation but most of all refer to the

common sense before giving a price.

Cross-convexity Convexity problems are not new to anyone who already

dealt with Constant Maturity Swap and in general interest rates. Basically,

in hybrids, managing the risk in terms of delta and gamma is much more

involved due to this term of convexity across the asset classes.

Summary Hybrids are a hot topic and we have seen a growing demand

for those kinds of products all around Asia. Pricing is very involved and

risk management can be a nightmare: for instance, volatility jumps in one

asset class very often brings a jump in other asset classes; then, the market

might probably get upset and all assumptions previously made will have to

be reconsidered.
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3.3 Issues raised

3.3.1 Choice between Historical and Implied volatility

They are two approaches to the calibration of the swaption. Whether we

decide to smooth the historical correlation matrix with a parametric form.

Then by using this form in the approximation formula we �t the swaption

prices with the parameter ς. Or we ignore the historical correlation and we

only adapt the parameters of the correlation structure to calibrate the model

on the swaption prices.

Indeed, one would say that those two methods should produce similar

results. It is not the case as the derivation of the correlation matrix even after

smoothing by a parametric form gives di�erent results from the swaption

prices quoted in the market. This explains also why the implicit correlation

surface obtained in the second approach is di�erent from the one obtained

using historical data.

Nevertheless, operators have tried to integrate both historical and implied

information. This does not seem to work properly. Hence, as the historical

approach does not permit to �nd the swaption prices and has less value that

the implied value (which basically price what is going to be the market) we

prefer to choose to use the implied correlation.

3.3.2 Interest-rates skew

Except in this section 3.1, we have supposed the volatility to be deterministic

and at most time dependent. Great improvements to the calibration of the

LMM can be done by using stochastic volatility to model interest rate skew.

As described before, SABR Model developed by Hagan in [21] is the most

used (and the one used at the Royal Bank of Scotland).
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3.3.3 Approximation formula

By nature using approximations brings you issues. In our case we have found

good approximations to swaption prices. Those are the state-of-the-art of

this topic but still they do not permit to price accurately swaptions all along

the matrix but still, gives an almost log-normal behaviour to swap rates.

3.3.4 Market liquidity

In order to price long trades, we need to calibrate a rather big swaption

matrix. After several discussions with traders, I happened to realize that

some are very illiquid (Quotes are even worst in non USD or EUR market

like emerging currencies: KRW, THB, TWD, SGD, HKD) and therefore the

quotes given by brokers can be strange leading to a bad calibration.



Chapter 4

General Methodology proposed

for calibration

This is a short summary of what we have proposed in this thesis as method-

ology to calibrate the Libor Market model to the swaption prices.

4.1 Assumptions

� Libor Market Model: Lognormality of forward rates

� Volatility: Deterministic

� Correlation: Deterministic

4.2 Modeling choices

� Volatility structure: Laguerre type

‖γi(t)‖ = σi(t) = ciη(Ti − t)

η(s) = ηa,β,η∞(s) = η∞ + (1− η∞ + bs)e−βs

b, β,η∞ ≥ 0
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� Correlation structure: Schoenmakers and Co�ey

ρij = exp
[
− |i− j|

m− 1
(
ln ρ∞

+ η1
i2 + j2 + ij − 3mi− 3mj + 3i + 3j + 2m2 −m− 4

(m− 2)(m− 3)
+

− η2
i2 + j2 + ij −mi−mj − 3i− 3j + 3m + 2

(m− 2)(m− 3)
)]

,

(i, j) ∈ [1,m]2, 3η1 ≤ η2 ≤ 0, 0 ≤ η1 + η2 ≤ −lnρ∞

� Approximation formula: Rebonato, Hull White or Andersen & An-

dreasen

4.3 Market data

� The yield curve (Current price B(0, t) of the bonds maturing at time

t)

� Caplet volatilities:

(
σBlack,LMM

i

)2
=

c2
i

Ti

∫ Ti

0
η2(Ti − s)ds

� At-The-Money Swaptions quotations in volatilities

4.4 Calibration process

� Fit roughly the swaption matrix γp,q with the approximation formula

and the market data,

� Run a Principal Component Analysis on the correlation matrix previ-

ously used and keep the most important factors,

� Use the rank reduction method with Rebonato angles to obtain a closer

correlation matrix ρModel
ij ,
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� Re-run the �rst 3 steps with the parameters already found and using

only as reference the swaptions useful for the pricing of the derivative,

� Finally, the model is well calibrated on caplets and on the swaptions

we need.

� Therefore we can price Interest rates derivatives with this calibrated

model: from this correlation matrix, the volatility mapping and the

Forward rates at time 0, run a Monte Carlo simulation on the dis-

cretized version of the Forward rates in the Libor Market Model to

obtain their di�usion through the time.

4.5 Conclusion

This thesis has described extensively the Libor Market Model and how it is

an important step in Interest Rates model. After this theoretical description,

we have proposed di�erent parametric forms for the instantaneous volatility

and correlation and chosen a set of parameters: Laguerre type volatility and

Schoenmakers-Co�ey semi-parametric correlation.

Then, a 3-factor case calibration process of this model was selected according

to the results of a Principal component analysis done on the correlation

matrix chosen before. From several market inputs and di�erent justi�ed

assumptions, we could calibrate the model to caplets and swaptions in a

reasonable computation time and with acceptable approximations thanks

to closed formula for swaption prices. This formula permitted us to avoid

running several Monte-Carlo simulations.

As highlighted, this process is still an open problem especially for skew issues

and pricing of cross-asset products.
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