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SUMMARY 

Pancreatic cancer is a deadly disease with very poor prognosis. The phorbol 

ester TPA has been found to have opposite effects on pancreatic cancer cell growth and 

proliferation. Hence we hypothesized that previously undescribed phorbol ester 

regulated genes are involved in the growth-dynamics of pancreatic cancer. Using 

oligonucleotide microarray, we generated a list of genes that are differentially expressed 

following treatment in pancreatic cancer cells with the phorbol ester TPA.  We focused 

our attention on hypothetical genes that hitherto have not been functionally 

characterized, in the hope of finding novel proteins that might be useful as a diagnostic 

or prognostic marker, or as a target for intervention. Using transient transfection as a 

screening tool, we observed differential growth dynamics of cells transfected with one of 

these hypothetical genes, and subsequently focused on the structural and functional 

characterization of this gene, which we have named TPA-induced Trans Membrane 

Protein (TTMP). 

 

Realtime-PCR analysis using the same samples sets was performed to confirm 

up-regulation of TTMP with TPA stimulation seen on microarray. Induction of the gene 

was also noted on realtime-PCR to be fairly rapid following TPA treatment and was 

concentration dependent. Full length transcript of the gene was cloned and the 

sequence has been deposited in NCBI Genebank (AY830714). Using computational 

analysis, the amino acid sequence conformed to a single-pass transmembrane topology, 

and comparison to its orthologues in mouse and chicken was made. We then 

investigated the mechanism of induction of this gene following exposure to TPA. 

Pretreatment with actinomycin D did not change degradation kinetics of the message 

upon induction with TPA. Using a reporter gene luciferase assay, the mode of induction 

was seen to be at the promoter level. 

 v



 

TTMP is widely expressed and has a high level of expression in normal pancreas 

but is minimally expressed in the cancer cell lines HeLa and CD18. Deglycosylation 

assays showed that the protein undergoes post-translational modification by N-

glycosylation and addition of sialic acid moieties. Confocal immunofluorescence 

microscopy demonstrated that TTMP is localized to the endoplasmic reticulum and that 

this localization process is dependent on the transmembrane domain. TTMP inhibited 

CD18 pancreatic cancer cell proliferation. siRNA duplexes knocked-down TTMP 

expression and this led to an increase in cell proliferation, as did clones stably 

expressing an in-frame N-terminal truncation of TTMP. Cell cycle analysis showed that 

forced expression of TTMP induced a G1 phase arrest in CD18 pancreatic cancer cells. 

Forced expression of TTMP was also noted to inhibit proliferation in HeLa cervical 

cancer cells. 

 

Lastly, basal activity of the promoter region of this gene was characterized. Using 

deletion constructs of the promoter cloned into the luciferase reporter vector, the core 

promoter region was identified. Further mutational analysis of the core promoter region 

showed that 2 putative Sp1 binding sites were responsible for basal activity of the gene. 

Physical interaction of Sp1 proteins to these sites was demonstrated using gel-shift 

assays. 

 

In conclusion, we have identified and characterized a novel gene that potentially 

plays a role in pancreatic tumourigenesis.  
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1. BACKGROUND 

 

1.1 INTRODUCTION TO PANCREATIC CANCER  

1.1.1 The Pancreas  

The human pancreas measures 15-25 cm in length and weighs 70-150 grams. It 

is connected to the duodenum by the ampulla of Vater, where the main pancreatic duct 

joins with the common bile duct. The pancreas has it embryological origin as two buds 

developing on the dorsal and the ventral side of the duodenum. The ventral and dorsal 

buds fuse together to form the single organ. The terms head, body and tail are used to 

designate regions of the organ from proximal to distal. The pancreas is an organ with 

two physiological functions. The acinar and ductal portions of the organ contribute to the 

exocrine function whereas the islets of Langerhans provide the endocrine function of the 

pancreas. The acinar and ductal cells secrete enzymes and sodium bicarbonate into the 

digestive tract respectively. Acinar cells are pyramidal in shape with basal nuclei, regular 

arrays of rough endoplasmic reticulum, a prominent Golgi complex and numerous 

zymogen granules containing the digestive enzymes. Proteases and phospholipase 

originating from the acinar cells are secreted as inactive precursors whereas amylases 

and nucleases are secreted as active enzymes. The inactive precursors become active 

only in the duodenum. The pancreatic ducts, which secrete a fluid rich in bicarbonate, 

are lined with columnar epithelial cells. Secretion of the pancreatic juice is regulated by 

hormonal stimulation, principally by secretin and CCK, although neural input is also 

involved. The islets of Langerhans are compact spheroidal clusters embedded in the 

exocrine tissue. These islets are responsible for secretion of insulin, glucagon, 

somatostatin and other peptide hormones. In addition to glandular components, the 

pancreas has a rich blood supply. The arterial blood passes through each lobule, first to 

the islets and then to the adjacent acini. Various growth factors expressed in the 
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developing pancreas and its surrounding mesenchyme-derived cells are considered to 

be involved in the development of the endocrine and exocrine cells (1-5). Members of 

the EGF family of growth factors such as EGF, TGFα and betacellulin can bind to EGF 

receptors expressed on pancreatic islet cells, acinar cells, and ductal cells and exert 

various effects on cell differentiation and proliferation. Other growth factors such IGF-I 

and PDGF play a role in pancreatic development (1-5). 

 

1.1.2 Cancer of the Pancreas

The vast majority of cases of pancreatic cancer are adenocarcinomas arising 

from the pancreatic ducts (6-8). The typical histomorphology of ductal adenocarcinoma 

is one of small neoplastic glands surrounded by an intense desmoplastic stromal 

reaction, together with inflammatory cells. Rare tumors arise from pancreatic acinar 

tissue or from neuroendocrine cells in the islets of Langerhans. These tumors tend to 

have a much different biologic behavior than usual ductal pancreatic adenocarcinoma 

and are not discussed further here. Cystic tumors of the pancreas (both mucinous and 

serous) also occur and in their pure form have a substantially better prognosis than 

ductal carcinomas. These cystic lesions are also excluded from this discussion.  

 

On the scale of public attention, pancreatic cancer ranks far below breast cancer 

or prostate cancer. One reason is that it affects far fewer people - tens rather than 

hundreds of thousands in the United States, but no other cancer is as aggressive (7-10). 

About two-thirds of all pancreatic cancers have already metastasized by the time they 

are diagnosed, making curative surgery an option for just 1 in 6 patients. The success of 

this procedure, however, is about 1 in 500 (6-10). The five year survival rate is less than 

1% and over 90 % of patients die within one year of diagnosis. In spite of considerable 

progress in understanding normal pancreatic physiology, the factors that regulate 
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pancreatic cancer cell proliferation and the reasons for the aggressiveness of this cancer 

are poorly understood. The only treatment shown to have any effect is surgical resection 

(7).Thus the impetus is to understand the molecular mechanisms of pancreatic cancer 

and for the search of novel molecular targets for cancer prevention, diagnosis and 

treatment.  

 

1.1.3 Epidemiology of Pancreatic Cancer  

Though not amongst the top 10 cancers in Singapore, the incidence of pancreatic 

cancer has nonetheless steadily risen in the last 35 years. In a 5 year period spanning 

1998 to 2002, there is an increase of 9% in males and 16% in females as compared to 

the preceding 5 years (11). The aetiology of pancreatic adenocarcinoma remains poorly 

defined, although important clues of disease pathogenesis have emerged from 

epidemiological and genetic studies. Pancreatic adenocarcinoma is a disease that is 

associated with advancing age (12).  It is rare before the age of 40, and culminates in a 

40 fold increased risk by the age of 80. Environmental factors, in particular smoking, 

might modulate pancreatic adenocarcinoma risk (12). On the genetic level, numerous 

studies have documented an increased risk in relatives of pancreatic adenocarcinoma 

patients (approximately threefold), and it is estimated that 10% of pancreatic cancers are 

due to an inherited predisposition (13). As with most cancer types, important insights 

have emerged from the study of rare kindreds that show an increased incidence of 

pancreatic adenocarcinoma. However, unlike familial cancer syndromes for breast, colon 

and melanoma, pancreatic adenocarcinoma that is linked to a familial setting has a lower 

penetrance (<10%) and maintains a comparable age of onset to sporadic cases in the 

general population. Among the genetic lesions that are linked to familial pancreatic 

adenocarcinoma are germline mutations in CDKN2A/p16 (which encodes the tumour 

suppressors INK4A and ARF), BRCA2, LKB1 and MLH1 (14). The low penetrance of 
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pancreatic adenocarcinoma that is associated with these germline mutations might point 

to a role in the malignant progression of precursor lesions rather than in the limiting 

events that control initiation of neoplastic growth from normal pancreatic cells. With 

respect to CDKN2A and BRCA2, this notion gains experimental support from the 

observation that inactivation of these genes is not detected in premalignant ductal 

lesions that are thought to represent early stages of pancreatic tumorigenesis. Beyond 

the classical tumour-suppressor mutations, additional genetic defects seem to be 

operative in rare families in which pancreatic cancer is inherited as an autosomal-

dominant trait with very high penetrance (13). A pancreatic cancer syndrome that has so 

far been identified in a single family has been linked to chromosome 4q32-34 and is 

associated with diabetes, pancreatic exocrine insufficiency and pancreatic 

adenocarcinoma, with a penetrance approaching 100% (15). Patients with hereditary 

pancreatitis, which is associated with germline mutation in the cationic trypsinogen gene 

PRSS1, experience a 53-fold increased incidence of pancreatic adenocarcinoma 

(16,17). Mutations in PRSS1 cause the encoded enzyme either to be more effectively 

autoactivated or to resist inactivation and, consequently, to display deregulated 

proteolytic activity. It is assumed that the resulting inflammation promotes tumorigenesis, 

in part by producing growth factors, cytokines and reactive oxygen species (ROS), 

thereby inducing cell proliferation, disrupted cell differentiation and selecting for 

oncogenic mutations.  

 

1.1.4 Molecular Genetics of Pancreatic Adenocarcinoma

Pancreatic carcinogenesis is a multistep process accompanied by accumulation 

of many genetic alterations (18). Irreversible genetic changes occur in the initiation and 

progression stages of carcinogenesis, while aberrant expression of other genes 

accompanies the promotional stage of tumor formation (18). Genetic alterations will be 
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selected in a carcinoma only if these mutations provide the tumor with a selective growth 

advantage over its neighboring cells, allows a particular cell to evolve into a separate 

clonal population of tumor cells (18,19). This growth advantage is the phenotypic 

reflection of changes in the biological pathways in which the protein products of the 

mutated genes normally participate (18,20). The activation of K-ras appears to be a 

virtual prerequisite for the development of pancreatic carcinoma and alterations in both 

K-ras and p16 is an extremely uncommon combination among other human tumor types 

(21). Severe chromosomal alterations such as deletions, translocations and gene 

amplification are found in pancreatic cancers (22). This has resulted in a large number of 

aberrant genes including mutated K-ras and p53 (20-22). A molecular and pathological 

analysis of evolving pancreatic adenocarcinoma has revealed a characteristic pattern of 

genetic lesions. The challenge now is to understand how these signature genetic lesions 

– mutations of KRAS, CDKN2A, TP53, BRCA2 and SMAD4/DPC4 – contribute to the 

biological characteristics and evolution of the disease. The progression model for 

colorectal cancer has served as a template for relating sequential, defined mutations to 

increasingly atypical growth states (23). Whether pancreatic adenocarcinoma behaves in 

such a progression series has become an active area of research and certainly answers 

will follow in time. 

 

The pancreatic-duct cell is generally believed to be the progenitor of pancreatic 

adenocarcinoma. As defined in the landmark study by Cubilla and Fitzgerald (24), the 

increased incidence of abnormal ductal structures (now designated pancreatic 

intraepithelial neoplasia, PanIN) (25) in patients with pancreatic adenocarcinoma, and 

the similar spatial distribution of such lesions to malignant tumours, are consistent with 

the hypothesis that such lesions might represent incipient pancreatic adenocarcinoma. 

Histologically, PanINs show a spectrum of divergent morphological alterations relative to 
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normal ducts that seem to represent graded stages of increasingly dysplastic growth 

(26). Cell proliferation rates increase with advancing PanIN stages, which is consistent 

with the idea that these are progressive lesions (25). A growing number of studies have 

identified common mutational profiles in simultaneous lesions, providing supportive 

evidence of the relationship between PanINs and the pathogenesis of pancreatic 

adenocarcinoma. Specifically, common mutation patterns in PanIN and associated 

adenocarcinomas have been reported for KRAS and for CDKN2A (27). In addition, 

similar patterns of loss of heterozygosity (LOH) at chromosomes 9q, 17p and 18q 

(harbouring CDKN2A, TP53 and SMAD4 respectively) have been detected in coincident 

lesions. Furthermore, studies have consistently shown an increasing number of gene 

alterations in higher-grade PanINs (28-31). 

 

KRAS. The earliest ductal lesions do not usually display genetic alterations. 

Activating KRAS mutations are the first genetic changes that are detected in the 

progression series, occurring occasionally in histologically normal pancreas and in about 

30% of lesions that show the earliest stages of histological disturbance (32). KRAS 

mutations increase in frequency with disease progression, and are found in nearly 100% 

of pancreatic adenocarcinomas; they seem to be a virtual rite of passage for this 

malignancy (33). WAF1 (p21/CIP1) seems to be coordinately induced with the onset of 

KRAS mutations, perhaps due to activation of the mitogen-activated protein kinase 

(MAPK) pathway (34).  

 

Activating mutations of RAS-family oncogenes produce a remarkable array of 

cellular effects, including the induction of proliferation, survival and invasion through the 

stimulation of several effector pathways (35). Although the roles of specific KRAS 

effector pathways in pancreatic cancer pathogenesis have not been resolved, there is 
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evidence for an important contribution of autocrine epidermal growth-factor (EGF) 

signaling (36-40). This autocrine loop and the resulting stimulation of the 

phosphatidylinositol 3-kinase (PI3K) pathway is required for transformation of several 

cell lineages by RAS-family oncogenes (41). Consistent with the existence of such an 

autocrine loop, pancreatic adenocarcinomas overexpress EGF-family ligands (such as 

transforming growth factor-α (TGF-α) and EGF) and receptors (EGFR, ERBB2 or 

Her2/neu, and ERBB3) (36,38,41). EGFR and ERBB2 induction occurs in low-grade 

PanINs, indicating that autocrine EGF-family signaling might be operative at the earliest 

stages of pancreatic neoplasia (42). The functional importance of this pathway is 

illustrated by the growth inhibition of pancreatic adenocarcinoma cell lines in vitro and in 

xenografts following attenuation of EGFR signaling by blocking antibodies or expression 

of dominant-negative EGFR alleles (39,40,43).  

 

CDKN2A/p16. Germline mutations in the CDKN2A tumour-suppressor gene are 

associated with the familial atypical mole-malignant melanoma syndrome. In addition to 

a very high incidence of melanoma, the inheritance of mutant CDKN2A alleles confers a 

13 fold increased risk of pancreatic cancer (44). Although pancreatic adenocarcinoma 

arises in some but not all kindreds with CDKN2A mutations, there are no clear genotype-

phenotype associations, indicating a modulating role for environmental factors in disease 

penetrance (45,46). FAMMM kindreds that harbour mutant loci other than CDKN2A such 

as cyclin dependent kinase 4 (CDK4) alleles that abrogate INK4A binding or other 

uncharacterized loci, do not have increased incidence of pancreatic adenocarcinoma 

(47,48).  

 

Loss of CDKN2A function brought about by mutation, deletion or promoter 

hypermethylation also occurs in 80-95% of sporadic pancreatic adenocarcinomas  (33). 
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CDKN2A loss is generally seen in moderately advanced lesions that show features of 

dysplasia (Fig 1). The dissection of the role of CDKN2A has been a fascinating story as 

this tumour-suppressor locus at 9q21 encodes two tumour suppressors – INK4A and 

ARF – via distinct first exons and alternative reading frames in shared downstream 

exons (49). Given this physical juxtaposition and frequent homozygous deletion of 9p21 

(in ~ 40% of tumours), many pancreatic cancers sustain loss of both the INK4A and ARF 

transcripts, thereby disrupting both the retinoblastoma (RB) and p53 tumour suppression 

pathways. INK4A inhibits CDK4/ CDK6-mediated phosphorylation of RB, thereby 

blocking entry into the S (DNA synthesis) phase of the cell cycle. ARF stabilizes p53 by 

inhibiting its MDM2-dependent proteolysis. INK4A seems to be the more important 

pancreatic cancer suppressor at this locus, as germline and sporadic mutations have 

been identified that target INK4A, but spare ARF (33,50,51). 

 
 

 
 
Figure 1. Progression model for pancreatic cancer. The progression from 
histologically normal epithelium to low-grade PanIN to high grade PanIN is 
associated with the accumulation of specific genetic alterations. (Adapted from 
Cancer Res 2000, 60:2002-2006) 
 
 
TP53. The TP53 tumour suppressor gene is mutated, generally by missense 

alterations of the DNA binding domain, in more than 50% of pancreatic 

adenocarcinomas (33). TP53 mutations arise in later stage PanINs that have acquired 
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significant features of dysplasia, reflecting the function of TP53 in preventing malignant 

progression. In contrast to many other cancer types, there does not seem to be a 

reciprocal relationship in the loss of CDKN2A and TP53 (34,52), which points to non-

overlapping functions of ARF and p53 in pancreatic cancer suppression. TP53 loss 

probably facilitates the rampant genetic instability that characterizes this malignancy. 

These tumours have profound aneuploidy and complex cytogenetic rearrangements, as 

well as intratumoural heterogeneity, which is consistent with the ongoing genomic 

rearrangements (53,54). 

 

Cytogenetic studies have provided evidence that telomere dynamics might 

contribute to this genomic instability. Although reactivation of telomerase is crucial to the 

emergence of immortal cancer cells, a preceding and transient period of telomere 

shortening and dysfunction might also contribute to carcinogenesis by leading to the 

formation of chromosomal rearrangements through breakage-fusion-bridge cycles 

(55,56). The survival of cells with critically short telomeres (crisis), which continue to go 

through breakage-fusion-bridge events, is enhanced by the inactivation of p53-

dependent DNA damage response (57), allowing the acquisition of oncogenic 

chromosomal alterations (58). Studies in the telomerase-knockout mouse support this 

model, as telomere dysfunction and p53 loss cooperate to promote the development of 

carcinomas in multiple tissues (56).  An analysis of a large series of human pancreatic 

cancer cell lines revealed that telomeres were frequently lost from chromosome ends 

and that anaphase bridging occurred, indicating that persistent genomic instability is 

associated with critically short telomeres (58). As these features were observed in both 

low and high grade tumours, the authors conclude that telomere dysfunction was an 

early step in the pathogenic process. Moreover, studies of pancreatic adenocarcinomas 

 9



revealed that tumours have shortened telomere length and that the activation of 

telomerase is a late event (58-60).  

 

BRCA2. Inherited BRCA2 mutations are typically associated with familial breast 

and ovarian cancer syndrome, but also carry a significant risk for the development of 

pancreatic cancer. Approximately 17% of pancreatic cancers that occur in a familial 

setting harbour mutations in this gene (61). As is the case for those individuals with 

germline CDKN2A mutations, the penetrance of pancreatic adenocarcinoma in BRCA2 

mutation carriers is relatively low (~7%) and the age of onset is similar to that of patients 

with the sporadic form of the disease. Familial breast cancer alleles other than BRCA2 

do not seem to predispose to pancreatic adenocarcinoma. Loss of wild-type BRCA2 

seems to be a late event in those individuals who inherit germline hetetrozygous 

mutations of BRCA2, which is restricted to severely dysplastic PanINs and 

adenocarcinomas (61). Although the numbers are small, these patients do not show an 

elevated incidence of PanINs. These data are consistent with the possibility that BRCA2 

loss promotes the malignant progression of existing lesions in pancreatic neoplasia. 

BRCA2 is necessary for the maintenance of genomic stability by regulating the 

homologous recombination based DNA repair processes. Consequently, BRCA2 

deficiency in normal cells results in the accumulation of lethal chromosomal aberrations 

(62). The fact that BRCA2 is selectively mutated late in tumorigenesis probably reflects 

the need for DNA damage response pathways to be inactivated first, for example by 

TP53 mutation, so that the damage occurred can be tolerated. 

 

Chromosomal instability.  Defects in the mitotic spindle apparatus conferred by 

centrosome abnormalities might also contribute to the aneuploidy and genomic instability 

of pancreatic adenocarcinomas. Centro-some abnormalities are detected in 85% of 
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pancreatic adenocarcinomas, and there is a correlation between levels of such 

abnormalities and the degree of chromosomal aberrations (63). Overall, the loss of TP53 

and BRCA2, and the detection of abnormal mitosis and severe nuclear abnormalities in 

PanIN-3 lesions indicate that genomic instability is initiated at this stage of tumour 

progression. 

 

These observations have several implications. First, the detection of clonal 

genetic alterations in PanINs and the synchronous adenocarcinomas is consistent with 

the concept that PanINs are indeed neoplastic growths that are precursors to 

adenocarcinomas. Although KRAS mutations are early, and probably necessary event in 

the development of pancreatic adenocarcinoma, their absence in the earliest lesions 

indicates that KRAS activation is not responsible for neoplastic initiation. This notion is 

supported by the observation of different KRAS mutation between PanINs of the same 

individual. One possibility is that the earliest lesions might be non-clonal areas of 

aberrant proliferation and altered states of differentiation that are associated with the 

replacement of damaged cells and with inflammatory processes. These disruptions in 

tissue architecture and induction of cell proliferation could produce a field defect in which 

there is significant selection for cells that sustain activating KRAS mutations. Along these 

lines, inflammatory stimuli promote the expression of both TGF-α and EGFR in the 

pancreatic ducts, providing a pathway that could synergize with activated KRAS (37).  

 

In addition to the extreme aneuploidy of pancreatic adenocarcinomas, there is a 

high degree of genetic heterogeneity within these tumours. For instance, different KRAS 

mutations and 9q, 17p and 18q LOH patterns have been observed in adjacent PanINs, 

and several KRAS mutations have been detected in the same adenocarcinomas (27-29). 

Importantly, it seems that there is spatial distribution of genetic heterogeneity (28). 
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Neoplastic foci from adjacent regions tend to show similar mutation patterns, whereas 

increasing genetic divergence has been documented in more geographically distant foci. 

It seems likely that adenocarcinomas can develop from the clonal progression of one of 

several related but divergent lesions. These features might indicate that a key event 

beyond the initiation of PanINs is the acquisition of a mutated state that allows initiated 

cells to acquire progression associated genetic lesions. It is tempting to speculate that 

this tremendous degree of heterogeneity and ongoing instability lies at the heart of the 

resistance of pancreatic tumours to chemotherapy and radiotherapy. 

 

The marked chromosomal abnormalities and the disruptions in DNA-repair 

processes in pancreatic adenocarcinoma might reflect the existence of additional loci, 

the genomic alterations of which contribute to the malignant progression. This is 

supported by the detection of recurrent chromosomal amplifications and deletions by 

comparative genomic hybridization (CGH) and other cytogenetic methods (54,64). In 

addition to the signature losses of 17p, 9p and 18q, deletions of chromosomes 8p, 6q 

and 4q, and amplifications of chromosomes 8q, 3q, 20q and 7p have been consistently 

reported. 

 

Microsatellite instability. Microsatellite instability is a second mode of genomic 

instability that, in contrast to the large scale alterations that are associated with 

chromosomal instability, is characterized by very high mutation rates at small DNA 

repeat sequences. This phenotype is caused by mutations in DNA mismatch repair 

genes, including MLH1, MSH2 and MSH6 and is associated with hereditary non-

polyposis colon cancer (HNPCC) syndrome (65). There seems to be an elevated risk of 

pancreatic cancer in HNPCC families (66,67). The pancreatic adenocarcinomas in 

HNPCC patients show distinct molecular genetic profiles, such as a lower rate of KRAS 
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and TP53 mutation, frameshift mutations in BAX and TGFβII, characteristic 

histopathology and a less-aggressive clinical course compared with pancreatic 

adenocarcinomas that occur outside of this syndrome (68-70). 

 

SMAD4/DPC4. Another frequent alteration in pancreatic adenocarcinoma is the 

loss of SMAD4/DPC4 (71), which encodes a transcriptional regulator that is a keystone 

component in the transforming growth factor-β (TGF-β) family signaling cascade (72). 

This gene maps to 18q21, a region that sustains deletion in approximately 30% of 

pancreatic cancers (71). The pathogenic role of SMAD4 inactivation is strongly 

supported by the identification of inactivating intragenic lesions of SMAD4 in a subset of 

tumours. SMAD4 seems to be a progression allele for pancreatic adenocarcinoma, as its 

loss occurs only in later stage PanINs (29,30). Moreover, there does not seem to be a 

strong predisposition to pancreatic adenocarcinoma in patients that inherit a germline 

SMAD4 mutation (that is, in juvenile polyposis syndrome patients). Loss of SMAD4 is a 

predictor of decreased survival in pancreatic adenocarcinoma (31), which is consistent 

with a role for it in disease progression. The mechanism by which SMAD4 loss 

contributes to tumorigenesis is likely to involve its role in TGF-β mediated growth 

inhibition. TGF-β inhibits the growth of most normal epithelial cells by either blocking the 

G1-S cell cycle transition or by promoting apoptosis (72). The cellular responses to TGF-

β are partially, but not exclusively, SMAD4-dependent (73) and correspondingly, 

pancreatic adenocarcinomas show a degree of TGF-β resistance. The roles of TGFβ 

signaling in pancreatic adenocarcinoma pathogenesis are not well defined. Studies have 

shown inconsistent effects of this cytokine on cultured cell lines with respect to cell 

proliferation rates and dependency on SMAD4 status for TGFβ responsiveness (74-77). 
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These ambiguous results probably stem from the heterogeneity that is associated with 

cancer cell lines and the non-physiological conditions that are encountered in vitro. 

 

LKB1/STK11. The Peutz-Jeghers syndrome (PJS), which is caused by 

LKB1/STK11 mutations is another familial cancer syndrome that is associated with an 

increased incidence of pancreatic adenocarcinoma (78). PJS patients are primarily 

affected with benign intestinal polyposis at a young age, although advancing age carries 

an increased risk of developing gastrointestinal malignancies, including a more than 40 

fold increase in pancreatic adenocarcinoma (79). 

 

1.2  ANALYZING DIFFERENTIAL GENE EXPRESSION IN CANCER 

Genomics research has transformed molecular biology from a data-poor to a 

data-rich science. The draft sequences of the human genome were published in 2001 

(80,81), with further refinement addressing the shortcomings of these drafts and leading 

towards the goal of a complete human sequence reported just recently published (82). 

Current estimates from gene-prediction programs suggest that there are 24,500 or fewer 

protein-coding genes. Researchers at the International Human Genome Sequencing 

Consortium have confirmed the existence of 19,599 protein-coding genes in the human 

genome, and identified another 2,188 DNA segments that are predicted to be protein-

coding genes (Human Genome Project Information, 

http://www.ornl.gov/sci/techresources/human_genome/faq/genenumber.shtml). Of these, 

only about a third to half has been functionally characterized. Although classical genetics 

has been a powerful tool for dissecting molecular disease that are affected by gain or 

loss of function of a protein encoded by a single gene, such a strategy has proved to be 

less fruitful for understanding diseases such as cancer that are controlled by many 

genes. Adding to the complexity is the fact that many of the so-called oncogenes or 
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tumour suppressor genes are signaling molecules themselves, each of which functions 

to control the expression of a subset of downstream genes. So, the analysis of 

differential gene expression, known as expression genetics or functional genomics, has 

become one of the most widely used strategies for the discovery and understanding of 

the molecular circuitry underlying cancer. 

 

Over the past two decades, several methods have been developed to allow 

comparative studies of gene expression between normal and cancer cells. Starting with 

simple approaches that used gel electrophoresis to compare protein expression, 

methods that focused on mRNA analysis have evolved and become increasingly 

sophisticated, as a result of the inventions of recombinant DNA, DNA sequencing and 

PCR technologies. The principles behind some of the main methods can be grouped as 

follows. 

 

1.2.1 Protein Gel Electrophoresis and Modern Day Proteomics 

Perhaps the earliest and arguably the most successful example of studying 

differential gene expression in cancer was the discovery of the p53 tumour suppressor 

protein in the late 1970s. The protein was found to be overexpressed on a one-

dimensional protein gel when normal cells were compared with those that were infected 

with simian virus 40 (SV40) DNA tumour virus (83). The later development of two-

dimensional (2D) protein gel electrophoresis, which separates proteins by both size and 

charge, allowed a more complete visualization of cellular protein expression (84). The 

main shortcoming of these methods is the inability to recover sufficient amounts of the 

differentially expressed protein species for further molecular characterization leading to 

identification of just 2000 of the estimated 10000 or more different proteins expressed in 

a cell. Newer techniques for the analysis of protein expression, collectively known as 
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proteomics, have been developed in recent years. This involves mainly the use of mass 

spectrometry to greatly improve the sensitivity and allow characterization of small 

quantities of protein (85), as well as the use of protein biochips to analyze differential 

profiling of proteins in a fashion analogous to the array-based format of DNA microarrays 

(86).   

 

1.2.2 Differential Hybridization 

Due to the advent of recombinant DNA technology in the late 1970s, studies of 

comparative gene expression has shifted from looking at proteins to the analysis of 

mRNA expression using complementary DNA. The earliest approach was differential 

hybridization, in which the pair of mRNA samples to be compared were radioactively 

labeled as cDNA probes with 32P by reverse transcription with oligo-dT primers that 

anneal to the polyadenylic chains (polyA tails) present at the 3’ termini of all eukaryotic 

mRNAs. The resulting two cDNA probes were then differentially hybridized to duplicate 

filters, which had on them tens of thousands of plagues from a phage cDNA library (87). 

Comparison of the hybridization pattern to cDNA-containing phage plagues between two 

mRNA probes allowed the identification of genes that were uniquely expressed in one 

but not the other RNA sample. This strategy has implicated several differentially 

expressed genes that are involved in the hormone responsiveness of human breast 

cancer cells (88) and that are overexpressed during infection by human T-cell 

leukaemia/ lymphoma virus (89). However, it was soon realized that such a ‘reverse 

northern’ approach of using complex cDNA probes would not be able to detect most 

genes which are expressed at a low level (87). As a result, differential screening quickly 

gave way to hybridization methods that use cDNA probes with reduced complexity after 

a ‘subtraction process’. 
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1.2.3 Subtractive Hybridization 

In the early 1980s, an ingenious approach known as subtractive hybridization 

was devised to enrich for cDNA probes which represent mRNAs that are uniquely 

expressed in one cell but not the other (90). This method removes most of the cDNAs 

that represented the genes that are commonly expressed in both cells being compared, 

and left behind only single-stranded cDNAs that represented a few differentially 

expressed genes. Well known and important examples utilizing this technique includes 

the discovery of T-cell receptors (91) and the identification of cyclin dependent kinase 

inhibitor WAF1 (also known as p21) as a target gene of p53 by Bert Vogelstein and 

colleagues (92). Since then, several PCR-based subtractive hybridization strategies 

have been developed, including representational difference analysis (RDA) and 

suppression PCR, which allow a smaller amount of mRNA samples to be analyzed.    

 

1.2.4 Differential Display

A sensitive method was required so that it could be applied to systems in which 

scarce biological samples are available, and by which all mRNAs whether scarce or 

abundant, can be represented. Also the method needed to be systematic, so that a 

complete search of all the expressed genes in a cell was possible. Based on these 

crucial criteria, differential display was developed by integrating PCR and DNA 

sequencing by gel electrophoresis, two of the most simple, powerful and commonly used 

molecular biological methods (93). Differential display works by systematically amplifying 

the 3’ termini of eukaryotic mRNA by reverse transcription-PCR using one of the three 

anchored oligo-dT primers (that is the run of Ts ending with a C,G or A) in combination 

with a set of short primers of arbitrary sequences. Based on the finding that each 

arbitrary primer would recognize its corresponding mRNA targets with a minimum of 

seven matching bases, mathematical models have been proposed to predict the relation 
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between the number of arbitrary primers and the coverage of expressed genes in any 

given eukaryotic cell (94). Unlike microarray, DD does not require any previous 

knowledge of mRNA or gene sequences, making it an ‘open’ system that is applicable to 

any eukaryotic organism. Genes that have been identified by DD include regulated 

targets of oncogenes such as RAS, v-REL and ERBB (95-98). 

 

1.2.5 Microarrays

cDNA microarrays (99) and oligoarrays (100) are based on the differential 

hybridization strategy, in which cDNA plagues are replaced with spotted cDNAs or 

oligos, and radioactive labels are replaced with fluorescent ones. The immense potential 

of these methods are based on their ability to simultaneously analyze the expression of 

mRNAs from tens of thousands of genes, which can then be further analyzed using 

computers, in the hope that gene-expression patterns can be transformed into more 

easily interpretable biological pathways for the understanding and classification of 

cancer (101). DNA microarrays have been used to profile gene-expression patterns of 

almost all of the main cancers, including leukaemia (102), lymphoma (103), 

adenocarcinoma of the lung (104), breast (105), prostate (106), with the promise to 

change the way cancer is diagnosed, classified and treated. However, the realization of 

these potentials will be a considerable challenge, as the different tumour types can often 

be more striking than their similarities (107,108). One of the greatest advantages of 

microarrays over other methods is that each spot on a microarray represent a known 

sequence. So once a signal is detected, the nature of the gene is known. However, the 

down side of such a benefit is that it also makes array-based methods ‘closed’ systems 

that are only able to cover known gene sequences. The inherent complexity of the cDNA 

probes that are used in differential hybridization strategies remains the root cause of the 

lack of signal sensitivity and specificity for most low abundance mRNAs (109,110). 
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Without a doubt, all human genes can eventually be condensed on to a single array, but 

uncertainty remains as to whether each of these tens of thousands of cDNA probes will 

hybridize to only their corresponding target template and to nothing else on the chip. 

Researchers are thus cautious about the accuracy of microarray data, but most studies 

place the blame on inadequate bioinformatical and statistical tools for ‘data mining’ 

(111,112), rather than on the fundamental problem of the complexity of cDNA probes. As 

with any other method for the analysis of differential gene expression, data from 

microarray experiments should be considered with caution, unless each time point can 

be verified by an independent method such as northern-blot analysis. 

 

1.2.6 Expressed Sequence Tags (ESTs) and SAGE 

Expressed sequence tags (ESTs) is based on the strategy of a single run of 

sequencing of the 3’ ends of randomly picked cDNA clones from a cDNA library (113). 

EST sequencing not only resulted in the discovery of many novel genes, but also 

provided information on the number of times a corresponding cDNA sequence was 

represented in a cDNA library from either normal or tumour cells. This strategy has 

resulted in cataloging and banking of cDNA clones by the National Institutes of Health 

Cancer Genome Anatomy Program, which provides a convenient source of these clones 

for functional studies of genes that have been identified by methods for comparative 

analysis of gene expression. However, because of the high cost and labour intensive 

nature of comprehensive EST sequencing, the method itself is rarely used to directly 

identify differentially expressed genes. 

 

Unlike EST sequencing whereby cDNA clones were randomly picked from cDNA 

libraries, SAGE technology measures the level of gene expression based on the 

frequency of occurrence of the 3’ signature SAGE tags of 10-14 bases in length that 
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might be unique to each transcript (114). Like differential display, SAGE is an ‘open’ 

system based gene discovery tool. Due to the minimal sequence information that is 

required to define an expressed gene or mRNA, a dozen or more SAGE tags from 

different genes can be obtained and sequenced at one time, thus speeding up the EST 

counting process. However, because of the same limited sequence requirement, 

adequate gene assignment using SAGE methods requires an extensive bioinformatics 

support for meaningful analysis of the expression pattern for a gene of interest. A recent 

development is a beads based EST sequencing method known as massively parallel 

signature sequencing (MPSS) which combines signature sequencing with in vitro cloning 

of millions of templates on separate 5 micron diameter microbeads (115). Individual 

mRNAs are identified through the generation of a 17-20 base signature sequence which 

is immediately adjacent to the 3’ end of the 3’ most Sau3A restriction site in cDNA 

sequences. MPSS then captures, identifies and analyses expression levels of genes in a 

sample by counting the number of these individual mRNA molecules that represent each 

gene.  

 

1.3 BIOLOGY OF PKC AND TPA 

The discovery of Protein kinase C (PKC) in 1977 by Nishizuka and co-workers 

represented a major breakthrough in the signal transduction field (116). PKC has been 

identified as the cellular receptor for the lipid second messenger diacylglycerol (DAG), 

and is therefore a key enzyme in the signalling mechanisms by activation of receptors 

coupled to phospholipase C, which leads to a transient elevation in DAG levels. The 

phorbol esters and related diterpenes are natural products that have attracted great 

interest because of their high potency as tumour promoters in the mouse skin. The 

phorbol esters exert a variety of effects in cells, which include changes in proliferation, 

malignant transformation, differentiation and cell death. These natural compounds have 
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proved to be important tools to delineate the signal transduction pathways involved in 

growth factor actions and oncogene function. It is well established that the phorbol 

esters activate protein kinase C (PKC). The marked potency of phorbol esters and their 

stability compared with the second messenger diacrylglycerol (DAG) makes these 

agents the preferred activators of PKC in cell culture and in vivo models (117). 

 

1.3.1 Cell Growth and Tumour Promotion 

The complexity of phorbol ester actions is probably related to the presence of 

multiple phorbol ester/DAG receptors, which include not only PKC isozymes but also 

other classes of receptors. In most cases, at least five or more isozymes are present in a 

single cell and have overlapping or opposite functions. The overlap in function may 

result from a relatively poor selectivity of individual isozymes towards cellular substrates. 

An example of opposite roles for PKC isozymes in cell growth is illustrated in fibroblast 

cell lines, in which PKCδ inhibits cell growth and PKCε is growth stimulatory (118). 

Inoculation of nude mice with cells overexpressing PKCε results in the formation of 

tumours, suggesting that this nPKC may function as an oncogene (119). Altered patterns 

of growth signalling by overexpression of other PKC isozymes has also been reported 

(120).  

 

While it was initially established that phorbol esters are mitogenic through PKC 

activation, these compounds may also inhibit cell growth or induce apoptosis in several 

cell types (121-123). PKCδ mediates apoptosis in numerous cell systems in response to 

phorbol esters or external stimuli (124-126). PKC isozymes operate as regulators of the 

cell-cycle both during G1/S progression and G2/M transition (127). Activation of PKCs by 

phorbol esters may promote early phases of mitogenesis, as suggested by the 
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involvement of PKCs in growth factor actions, mitogen-activated protein kinase (MAPK) 

activation, and expression of early response genes (128). A bimodal regulation of G1 

progression has been observed in some cell lines (129). In fact, overexpression of active 

forms of PKCs (eg PKCη) blocks the normal phosphorylation of the Rb protein in 

quiescent cultures of NIH 3T3 cells restimulated to enter the cell cycle, and delay 

progression of cyclin-dependent inhibitiors p21WAF and p27KIP1 and/or a reduced 

expression of cyclin E or cyclin A (130-132). Several studies suggested that Cdc2, the 

kinase involved in G2/M transition, as well as Cdc25 phosphatase are also PKC targets. 

In fact, phorbol ester treatment of HeLa, melanoma, and U937 myeloid leukaemia cells 

results in cell cycle arrest in G2/M (133-135). The PKC-mediated signalling pathways 

regulating cell growth and cell death are under active investigation and appear to be cell-

type dependent.  

 

1.3.2 PKCs and Pancreatic Cancer 

  The effects of TPA and the role of PKC in pancreatic cancer are mixed and 

contrasting. Screening of expression pattern of PKC isoforms indicated that the 

expression of PKCμ correlates with the resistance to Fas-mediated apoptosis in different 

pancreatic cancer cell lines (136). Both classical PKC and novel PKC signalling 

pathways enhance anchorage independent growth in MiaPaCa-2 pancreatic cancer cells 

(137). In CCK-responsive pancreatic cancer cells, PKCs could also mediate 

invasiveness and the production of MMP-9 (138). Overexpression of PKCα in HPAC 

human pancreatic cancers results in enhanced tumorigenicity and increased proliferation 

(139,140). In contrast, another study demonstrated inhibition of pancreatic cancer cell 

growth through p21-mediated G1 arrest following activation by TPA/PKCα (141). This 

opposite effect compared to that in the other two studies could be due to the different 
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duration of stimulation of pancreatic cancer cells by TPA/PKCα. Our own observations 

concurred with inhibition of pancreatic cancer cell growth following stimulation with TPA 

and subsequent activation of PKC (142,143). While we have found p21 to be similarly 

upregulated, it had resulted in a phase G2/M arrest and not G1 arrest as noted in the 

earlier study (144).  Evidence also points to a role of members of the protein kinase C 

family as mediators of resistance towards apoptosis induced by CD95 and TRAIL-

receptors in ductal pancreatic adenocarcinoma cells (145). In a follow-up study, forced 

expression of PKCmu led to a strongly reduced CD95-meidated apoptosis, enhanced 

cell growth and to a significant increase of telomerase activity (146). The anti-apoptotic 

proteins c-FLIPL and Survivin were found to be upregulated in conjunction with PKCmu 

overexpression. Endogenous overexpression of PKCmu was also noted when 

comparing immunohistochemical data of pancreatic cancer tissue with normal tissue. 

Another study showed increased expression of the pro-apoptotic protein Bad and TRAIL 

receptors following activation of conventional PKC isoforms (147). PKCzeta appears to 

play a role in maintaining motility of pancreatic cancer cells (148). PKCzeta has also 

been shown to be involved in directing Sp1-dependent VPF (Vascular permeability 

factor)/ VEGF (Vascular endothelial growth factor) expression in pancreatic cancer cells 

(149).  

 

1.4 BIOLOGY OF TRANSMEMBRANE/ ER PROTEINS 

Although the basic structure of biological membranes is provided by the lipid 

bilayer, membrane proteins perform most of the specific functions of membranes. It is 

the proteins that give each type of membrane in the cell its characteristic functional 

properties. Different membrane proteins are associated with the membranes in different 

ways. Many extend through the lipid bilayer with part of their mass on either side. Like 

their lipid neighbours, these transmembrane proteins are amphipathic, having regions 
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that are hydrophobic and regions that are hydrophilic. Their hydrophobic regions pass 

through the membrane and interact with the hydrophobic tails of the lipid molecules in 

the interior of the bilayer, where they are sequestered away from water. Their hydrophilic 

regions are exposed to water on either side of the membrane. Other membrane proteins 

are associated with the cytosolic monolayer of the lipid bilayer either by an amphipathic 

α helix exposed on the surface of the protein, or by one or more covalently attached lipid 

chains, which can be fatty acid chains or prenyl groups. Yet other membrane proteins 

are entirely exposed at the external cell surface, being attached to the lipid bilayer only 

by a covalent linkage (via a specific oligosaccharide) to phosphatidylinositol in the outer 

lipid monolayer of the plasma membrane.   

 

1.4.1 Orientation and Conformation of the Transmembrane Protein

A transmembrane protein always has a unique orientation in the membrane. This 

reflects both the asymmetric manner in which it is synthesized and inserted into the lipid 

bilayer in the ER and the different functions of its cytosolic and noncytosolic domains. 

These domains are separated by the membrane-spanning segments of the polypeptide 

chain, which contact the hydrophobic environment of the lipid bilayer and are composed 

largely of amino acid residues with nonpolar side chains. Because the peptide bonds 

themselves are polar and because water is absent, all peptide bonds in the bilayer are 

driven to form hydrogen bonds with one another. The hydrogen bonding between 

peptide bonds is maximized if the polypeptide chains forms a regular α helix as it 

crosses the bilayer, and this is how the great majority of the membrane-spanning 

segments of polypeptide chains are thought to traverse the bilayer.  
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Because transmembrane proteins are notoriously difficult to crystallize, relatively 

few have been studied in their entirety by x-ray crystallography. The DNA cloning and 

sequencing techniques however, have revealed the amino acid sequence of large 

numbers of transmembrane proteins and it is often possible to predict from an analysis 

of the protein’s sequence which parts of the polypeptide chain extend across the lipid 

bilayer. Segments containing about 20-30 amino acids with the high degree of 

hydrophobicity are long enough to span a lipid bilayer as an α helix, and they can often 

be identified by means of a hydropathy plot. 

 

1.4.2 Protein Glycosylation

The great majority of transmembrane proteins in animal cells are glycosylated. 

As in glycolipids, the sugar residues are added in the lumen of the ER and edited in the 

Golgi apparatus. For this reason, the oligosaccharide chains are always present on the 

non-cytosolic side of the membrane. Another difference between proteins (or parts of 

proteins) on the two sides of the membrane results from the reducing environment of the 

cytosol. This environment decreases the likelihood that intrachain or interchain disulfide 

(S-S) bonds will form between cysteine residues on the cytosolic side of membranes. 

These intrachain and interchain bonds do form on the non-cytosolic side of membranes, 

where they can have an important role in stabilizing either the folded structure of the 

polypeptide chain or its association with other polypeptide chains respectively. 

 

1.5 TRANSCRIPTIONAL REGULATION 

1.5.1 Organisation of the Promoter 

The core promoter is the minimal stretch of contiguous DNA sequence that is 

sufficient to direct accurate initiation of transcription by the RNA polymerase machinery 

(150). The core promoter is the site of action of the RNA polymerase II transcriptional 
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machinery. Typically, the core promoter encompasses the site of transcription initiation 

and extends either upstream or down stream for an additional ~35 nt. There are several 

sequence motifs, including the TATA box, initiator (Inr), TFIIB recognition element 

(BRE), and downstream core promoter element (DPE), that are commonly found in core 

promoters (Fig 3). In addition to the core promoter, other cis-acting DNA sequences that 

regulate RNA polymerase II transcription include the proximal promoter, enhancers, 

silencers, and boundary/insulator elements (151-153). These elements contain 

recognition sites for a variety of sequence-specific DNA binding factors that are involved 

in transcriptional regulation. The proximal promoter is the region in the immediate vicinity 

of the transcription start site (roughly –250 to +250 nt). Enhancers and silencers can be 

located many kbp from the transcription start site and act either to activate or to repress 

transcription. Boundary/ insulator elements appear to prevent the spreading of the 

activating effects of enhancers or the repressive effects of silencers or heterochromatin. 

 

  
 

Figure 2. Core promoter elements. Some core promoter motifs 
that can participate in transcription by RNA polymerase II are 
depicted. Each of these elements is found in only a subset of 
core promoters. Any specific core promoter may contain some, 
all, or none of these motifs. The BRE is an upstream extension 
of a subset of TATA boxes. The DPE requires an Inr, and is 
located precisely at +28 to +32 relative to the A+1 nucleotide in 
the Inr. The Inr consensus sequence is shown for both 
Drosophilia (DM) and humans (Hs). (Adapted from Genes and 
Development 2002, 16:2583-2592) 
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1.5.2 RNA Polymerase II Core Promoter Elements

TATA box. The TATA box was the first eukaryotic core promoter motif to be 

identified (154). In metazoans, the TATA box is typically located about 25-30 nt 

upstream of the transcription start site, and the consensus sequence for the TATA box is 

TATAAA. It has been observed, however, that a wide range of sequences function as a 

TATA box in vivo (155). In humans, it was found that 32% of 1031 potential promoter 

regions contain a putative TATA box motif (156). TATA box-binding protein (TBP) is the 

predominant TATA box binding protein. In addition, there are TBP-related factors (TRFs) 

that are closely related to TBP which also binds the TATA box (157). Transcription factor 

IID (TFIID) is a multi subunit protein that consists of TBP and approximately 13 TBP-

associated factors (TAFs) (158). Accurate and efficient transcription from the core 

promoter requires the RNA polymerase II along with auxiliary factors that are commonly 

termed the “basal” or “general” transcription factors, which include transcription factor 

(TF) IIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH. With TATA box dependent core 

promoters, these factors then assemble into a transcription pre initiation complex (PIC), 

which guides RNA polymerase II onto the promoter DNA. TFIIH contains a DNA helicase 

which aids RNA polymerase II to gain access to the template strand at the transcription 

start point. RNA polymerase II remains at the promoter, synthesizing short lengths of 

RNA until it undergoes a conformational change and is released to begin transcribing 

another gene  

 

Initiator (Inr) element. The Inr element encompasses the transcription start site, 

and was identified in a variety of eukaryotes (159,160). Inr elements are found in both 

TATA-containing as well as TATA-less core promoters. The consensus for the Inr in 

mammalian cells is Py-Py(C)-A+1-N-T/A-Py-Py (161). The A+1 position is designated the 
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+1 start site because transcription commonly initiates at this nucleotide. More generally, 

however, transcription initiates at a single site or in a cluster of multiple sites in the 

vicinity of the Inr (and not necessarily at the A+1 position). A variety of factors have been 

found to interact with the Inr element. There is considerable evidence that TFIID binds to 

the Inr in a sequence specific manner (162,163). More specifically, it appears that TAF2 

and TAF1 are the key subunits of TFIID that interact with the Inr (164,165).  Aside from 

TFIID binding to the Inr, it has been observed that purified RNA polymerase II (or RNA 

polymerase II along with TBP, TFIIB, TFIIF) is able to recognize the Inr and to mediate 

transcription in an Inr-dependent manner in the absence of TAFs (166,167). These 

results suggest that TFIID and RNA polymerase II may recognize and interact with the 

Inr at different steps in the transcription process.  

 

Downstream core promoter element (DPE). The DPE was identified as a down 

stream core promoter binding site for purified Drosophila TFIID (163). TFIID binds 

cooperatively to the Inr and DPE motifs, as mutation of either the Inr or the DPE results 

in loss of TFIID binding to the core promoter. The DPE is found most commonly in 

TATA-less promoters. With naturally occurring TATA-less core promoters, mutation of 

the DPE motif results in a 10 to 50 fold reduction in basal transcription activity 

(163,168,169). Although the DPE has been studied mainly in Drosophila, it is also 

present in humans (168,170). The DPE is located precisely at +28 to +32 relative to the 

A+1 position in the Inr. All of the known DPE containing promoters possess identical 

spacing between the Inr and DPE motifs, and the alteration of the spacing between the 

Inr and DPE by a single nucleotide causes a several fold reduction in TFIID binding and 

basal transcriptional activity (168,169). The consensus sequence for the DPE is 

estimated to be A/G+28-G-A/T-C/T-G/A/C. There is also a minor preference for G at +24 

(169). Although the DPE consensus sequence is somewhat degenerate, it should be 
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considered that both DPE and Inr motifs are required in DPE dependent promoters and 

that the spacing between the DPE and Inr is invariant (which enables the cooperative 

binding of TFIID to the two motifs). Thus, the functional consensus for DPE-dependent 

core promoters consists of the Inr and DPE motifs with the DPE located at +28 to +32 

relative to A+1. 

 

TFIIB recognition element (BRE). The BRE is a TFIIB binding site that is 

located immediately upstream of some TATA boxes (171). TFIIB is able to bind directly 

to the BRE in a sequence specific manner. The BRE consensus is G/C-G/C-G/A-C-G-C-

C (where the 3’C of the BRE is followed by the 5’T of the TATA box), and at least a 5 out 

of 7 match with the BRE consensus was found in 12% of a collection of 315 TATA-

containing promoters. In vitro transcription experiments with purified basal transcription 

factors revealed that the BRE facilitates the incorporation of TFIIB into productive 

transcription initiation complexes. On the other hand, the BRE was observed to have a 

negative effect on basal transcription by in vitro transcription with a crude extract or by 

transient transfection analysis (172). 

 

CpG islands. CpG islands, which generally range in size from 0.5 to 2kpb, 

contain promoters for a wide variety of genes. CpG islands typically lack TATA or DPE 

core promoter elements, but contain multiple GC box motifs that are bound by Sp1 

related transcription factors (173,174). In addition, transcription from CpG islands 

initiates from multiple weak start sites that are often distributed over a region of about 

100nt, which is in contrast to transcription from TATA or DPE dependent core promoters 

that occurs from a single site or localized cluster (of less than 10nt) of sites. The analysis 

of 1031 human genes revealed that about half of the potential promoter regions are 

located in CpG islands (156). From the core promoter perspective, CpG island may 
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contain multiple weak core promoters rather than a single strong promoter. The 

presence of Sp1 binding sites in CpG islands is particularly notable. Not only does Sp1 

contribute to the maintenance of the hypomethylated state of CpG islands (173,174), but 

it may also function in concert with the basal transcription factors to mediate transcription 

initiation. It has been found, for example, that Sp1 binding sites in conjunction with an Inr 

motif can activate transcription in the absence of a TATA box (157,175). Hence it is 

possible that CpG island promoters consist of multiple Sp1+Inr pairs that collectively 

generate the array of start sites that are observed. 

  

1.5.3 Sp1/KLF Family of Transcriptional Factors 

Sp1 was the first mammalian transcription factor to be cloned (176). It binds to 

GC-rich sequences including GC boxes, CACCC boxes (also called GT-boxes) and 

basic transcription elements collectively termed Sp1 sites. Early studies indicated that 

Sp1 was responsible for recruiting TATA-binding protein (177,178) and fixing the 

transcriptional start site at TATA-less promoters(179). These findings together with the 

fact that ‘Sp1-sites’ are found in the promoters of many housekeeping genes, led to the 

widely held notion that Sp1 acts as a basal transcription factor and that Sp1 sites 

represent constitutive promoter elements that support basal transcription at these 

promoters. However, early studies also showed that Sp1 was subject to extensive post-

translational modification by both glycosylation and phosphorylation (180,181), indicating 

that its activity was likely to be regulated. The identification of several transcription 

factors with high homology to Sp1 (182,183) together with the recognition that Sp1 is a 

part of a large multigene family, further indicated that transcription from Sp1 sites may be 

more complex than first envisioned. In keeping with this idea, Sp1 sites have been found 

to be involved in tissue specific gene expression (184,185) and in control of transcription 

following a number of different stimuli, for example in response to oncogenes (186), 
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antimetabolites (187), growth stimulation (188,189) and differentiation (190). This 

demonstrates that Sp1 site dependent transcription can be highly regulated in cells. 

 

Sp1 belongs to a family of transcription factors containing at lest twenty identified 

members in mammals. The family includes the Sp proteins and the Kruppel like factors 

(KLFs). The diversity of this family is further increased by transcriptional and post-

transcriptional mechanisms, such as alternate splicing, promoter usage, or initiation 

codon usage (191,192). Members of this family are characterized by a highly conserved 

C-terminal DNA-binding domain containing three zinc fingers. Although conservation 

within their DNA binding domains means that Sp1 related proteins can interact with the 

same DNA sequences, different family members do have preferences for different 

sequences. For example, Sp1, Sp3 and Sp4 bind with higher affinity to GC boxes than to 

CACCC boxes (183,193,194), whereas many of the KLFs bind preferentially to CACCC 

boxes over GC boxes. The basic transcription element sequence on the other hand, may 

represent a promiscuous sequence which binds many family members with more similar 

affinities (195). Since all Sp/KLF factors appear to bind with varying affinities to GC 

boxes, CACCC boxes and basic transcription elements, all family members have the 

potential to affect Sp1 site dependent transcription in cells in which they are expressed. 

 

In contrast to the Sp proteins, which share homology with Sp1 throughout their 

sequence, the KLFs are only homologous to Sp1 in their C-terminal DNA binding 

domains. While subsets of the Sp1 related family can be grouped based on sequence 

conservation (196), their N-termini are not conserved throughout the family and can 

contain a variety of domain types. As might be expected from this diversity, the family 

members also differ in their transcriptional activity, with some being activating and some 

repressive. Additionally, many of these factors have been found to activate or repress 
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transcription dependent on cell line or promoter examined (194,197). Thus, the 

transcriptional properties of these proteins can be context-dependent. In keeping with 

this idea, both activating and repressive domains have been identified in Sp3 and GKLF 

(198,199).  

 

Although some members of the Sp/KLF family are highly restricted in their tissue 

distribution (eg EKLF), others are more widespread or ubiquitously expressed (eg Sp1, 

Sp3 and UKLF, see Table 1). As a result, individual cells appear to express multiple 

members of the family. This realization, together with data showing that Sp/KLF factors 

are able to modulate each other’s activity at multiple levels (i.e. a the level of expression, 

promoter interaction and protein-protein interaction), indicates that the Sp/KLF family is 

likely to make up a network through which transcription can be fine-tuned by changes in 

the expression profiles of its members (200).  

 

1.6  FUTURE DIRECTIONS 

Novel genomic and proteomic technologies for global expression analysis have 

shown promise in providing a molecular taxonomy. Signature profiles have allowed the 

improved classification of tumour types and the elucidation of prognostic markers. These 

methods have recently been used to study pancreatic adenocarcinoma and have 

revealed potential new diagnostic markers and therapeutic targets (201-203). The 

identification of recurrent chromosomal amplifications and deletions in pancreatic 

adenocarcinomas indicates that there are numerous loci involved in the pathogenesis of 

this malignancy. High resolution gene discovery technologies, coupled with the 

validation potential of inducible mouse models, should expand the list of essential 

targets for more productive drug development initiatives. Another important avenue for 

pancreatic adenocarcinoma gene discovery might be from genetic mapping studies of 
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pancreatic adenocarcinoma prone kindreds. The genetic lesions in most of these 

families have yet to be identified. Segregation analysis of a large number of kindreds has 

indicated that susceptibility might be due to autosomal dominant inheritance of a rare 

allele(s) (14). The identification of such an allele would be of great potential use for the 

early identification of patients at risk and in understanding the biology of disease.  
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2. HYPOTHESIS AND AIMS 

 

 The overall hypothesis tested is that previously undescribed PKC or phorbol 

ester regulated genes are involved in the growth-dynamics and multi-step pathogenesis 

of pancreatic cancer. The following aims were proposed to test this hypothesis: 

1) Identify and sequence a previously uncharacterized gene that is differentially 

expressed in TPA treated pancreatic cancer cells.  

2) Characterize the expression pattern, sub-cellular localization and function of 

this gene.  

3) Clone the promoter of this gene and understand the basal transcriptional 

regulation of its expression. 
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3. MATERIALS AND METHODS 
 

3.1 MICROARRAY AND IDENTIFICATION OF NOVEL GENE  

3.1.1 Cell Culture 

The human pancreatic adenocarcinoma cell line, CD18, human cervical 

carcinoma cell line, HeLa, and human embryonic kidney cell subclone, TSA201 were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma Chemicals) that was 

supplemented with 10% fetal bovine serum (Gibco), penicillin (100U/ml), streptomycin 

(100μg/ml) and amphotericin B (0.25μg/ml) (Cellgro). Cells were grown as monolayers at 

37oC in a humidified environment with 95%O2/5%CO2. TPA (Sigma) was reconstituted 

in dimethyl sulfoxide (DMSO) to a final concentration of 1mM stock solution. For 

preparation of samples for microarray, CD18 cells were cultured in T75 flasks to 70% 

confluence and washed twice with phosphate buffered saline (PBS) before being grown 

in serum free media for 16 hours. The cells were then stimulated with 0.1μM TPA in 

serum-free media for 8 hours. For time-course and concentration-response experiments, 

both CD18 and HeLa cells were grown in T25 flasks to 70% confluence and subjected to 

the same media changes as above. Cells were then treated with TPA in various 

concentrations and for various lengths of time before being harvested for RNA 

extraction. Paired non-stimulated controls for the microarray as well as the time-course 

and concentration-response experiments were prepared in parallel and were exposed to 

equivalent volumes of DMSO as the stimulated samples. For mRNA degradation assays, 

CD18 cells were pre-treated with 0.1μM TPA for 4 hours before actinomycin D 

(Calbiochem) was added to a final concentration of 5μg/ml. Subsequently, cells were 

harvested at various time points for RNA extraction.  
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3.1.2 RNA Extraction 

The cells were washed twice with PBS and RNA was extracted using TRIzol 

regent (Invitrogen). To further purify the samples, the lysates were processed with the 

total RNA miniprep kit (Sigma). The eluted purified RNA samples were then subjected to 

DNAase I treatment (Ambion), according to the manufacturer’s protocol. RNA was 

quantified by absorption spectroscopy and the quality of the samples was monitored by 

gel electrophoresis before subsequent use. 

 

3.1.3 Oligonucleotide Array Gene Expression Analysis

Human oligonucleotide probes (60mers) were designed for each target gene 

(Compugen, manufactured by Sigma-Genosys, Inc). Oligonucleotides (9,861) were 

resuspended (30µM) in 3X saline sodium citrate (SSC) buffer and spotted onto poly-L-

lysine coated slides using a MagnaSpotter robot (BioAutomation) with a 12-pin print 

head (Telechem) configuration in a humidified, HEPA-filtered hood. After spotting, the 

DNA was cross-linked to the slides by UV irradiation (350mJ/cm2) with a Stratalinker UV 

Crosslinker (Stratagene), blocked by succinic anhydride treatment, and rinsed in ethanol. 

The printed arrays were boxed and stored desiccated at room temperature. 

  

Total RNA was isolated as described above. To generate fluorescently-labeled 

single-stranded cDNA target, 40µg of total RNA was incubated with 2µg of anchored 

oligodeoxythymidylate primer in a total volume of 30µl at 70ºC for 10 min and chilled on 

ice.  To each sample was added 10X first strand buffer (6µl), 0.1M DTT (6µl), 20X 

aminoallyl-dNTP mix (3µl; 10mM dATP, 10mM dCTP, 10mM dGTP, 6mM dTTP, and 

4mM aminoallyl-dUTP), RNase inhibitor (0.5µl) (RNasin, Promega), and StrataScript 

reverse transcriptase (3µl; 50U/µl).  After incubation at 48ºC for 60 min, an additional 50 

units (1µl) of StrataScript was added to the samples and incubated for an additional 60 

 36



min. The reaction was stopped by adding 12 µl of 0.5M EDTA (pH 8).  Residual RNA 

was hydrolyzed by adding 12 µl of 1M NaOH to the mixture followed by incubation at 

65ºC for 15 min and cooled to room temperature.  The reaction was neutralized with 

16.8µl of 1N HCl.  First-strand cDNA was purified from unicorporated amino allyl-dUTPs 

on QIAquick PCR purification columns (Qiagen) according to manufacuter’s protocols, 

except that QIAquick wash buffer was replaced with 5 mM potassium phosphate buffer 

(pH 8.5) containing 80% ethanol, and cDNA was eluted with 4 mM potassium phosphate 

buffer (pH 8.5) and vacuum-dried.  cDNA was resuspended in 10 µl 0.05 M Na2CO3 

buffer (pH 9), mixed with either Cy3 or Cy5 monofunctional NHS-ester (Amersham 

Pharmacia), and incubated for 90 min in the dark at room temperature.  Cy3- and Cy5-

conjugated cDNA targets were then purified by QIAquick PCR purification columns, 

combined, vacuum-concentrated, and diluted to 55 µl with hybridization solution 

containing final concentrations of 50% formamide, 4.1x Denhardts, and 4.4x SSC.  To 

reduce nonspecific hybridization, the hybridization solution also contained final 

concentrations of 15 µg human Cot1 DNA (Invitrogen), 12µg poly-deoxyadenylate, and 5 

µg of yeast tRNA (Sigma).  After clarification by centrifugation, the cDNA/hybridization 

solution was applied to DNA microarrays and incubated at 42ºC for 16-20 h. After 

hybridization, microarray slides were washed by immersion in 2X SSC, 0.1%SDS for 5 

min at room temperature, 1X SSC, 0.01% SDS for 5 min at room temperature, and 0.2X 

SSC for 2 min at room temperature.  The microarrays were dried by centrifugation for 5 

min at 1000 rpm and scanned immediately with a ScanArray 4000 confocal laser system 

(Perkin-Elmer). Fluorescent intensities were background subtracted, and normalization 

and filtering of the data were performed using the QuantArray software package (Perkin-

Elmer).  After normalization, expression ratios were calculated for each feature.  
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3.1.4 Reverse Transcription and Real-Time Quantitative PCR   

Real-time PCR was performed to validate the microarray results, as well as to 

quantify transcript levels for the mRNA degradation studies. Reverse transcription was 

first carried out to generate cDNA using 1μg of RNA with 0.5μg/μl oligoDT primers 

(Invitrogen), 1mM of each dNTP and 1.25U AMV reverse transcriptase (Promega) in a 

20μl reaction volume. Following which, real-time PCR was performed using the cDNA 

generated and quantitative assessment of DNA amplification was detected via the dye 

SYBR Green I using the ABI PRISM 7700 Sequence Detector (Applied Biosystems). The 

following primers were used: TTMP forward: 5’ GTCGCTTAGCTGGAGTGCG 3’, 

reverse: 5’ CTGCCTCTCCGTGCTCTACC 3’; GAPDH forward: 5’ 

TGGGCTACACTGAGCACCAG 3’, reverse: 5’ TGGGCTACACTGAGCACCAG 3’. 1μl of 

the reverse transcription reaction was used to provide cDNA template for the PCR 

reaction. This was mixed together with SYBR Green PCR Mastermix (Applied 

Biosystems) and primers at a concentration of 500nM in a total volume of 20μl. The 

following cycling parameters were used for the PCR reaction: 50oC for 2 minutes, 95oC 

for 10 minutes, followed by 40 cycles of 95oC for 15 seconds and 60oC for 1 minute. A 

final heating step up to 950C was performed to obtain melting curves of the final PCR 

products. The fluorescence threshold cycle value (Ct) is obtained for each curve and 

normalized to that obtained for the GAPDH housekeeping gene in the same sample to 

normalize for discrepancies in sample loading. The difference in Ct values between 

treated and control samples were then computed and exponentially multiplied to the 

base of 2 to obtain relative differences in expression levels. All experiments were carried 

out in duplicates and independently performed at least twice. 
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3.1.5 Rapid Amplification of cDNA Ends (RACE) 

   5’ and 3’ RACE was performed to identify full length transcripts containing the 

transcription start site, using colonic RACE ready cDNA (Ambion). 5’ RACE nested PCR 

was performed with upstream RACE primers supplied with the kit and the following gene 

specific downstream primers: outside: 5’ CGACTCAGAGAGGGCGATGT 3’, inside: 5’ 

CCTTTCGGTGAGCAGGTGAG 3’. Similarly, 3’ RACE was performed using downstream 

RACE primers and the following set of nested PCR upstream primers: outside: 5’ 

CCTCACAGCCAGTAGACGAGC 3’, inside: 5’ GCAGCCAGAAGAGAACACGC 3’. PCR 

conditions consisted of one cycle of 5 minutes at 95oC, followed by 35 cycles of 

denaturing at 95oC for 30 seconds, annealing at 60oC for 30 seconds and extension at 

72oC for 3 minutes. A final extension cycle of 72oC for 6 minutes was performed to 

ensure complete synthesis of double stranded DNA. PCR products obtained after the 

second round of PCR was cloned into pGEM T-Easy vector (Promega) and isolates 

were screened and selected for sequencing analysis 

 

3.1.6 Construction of Plasmid for Promoter Analysis 

Human genomic DNA was isolated using a Wizard DNA Purification Kit 

(Promega). A 2kb fragment of the TTMP 5’ flanking region was engineered by 

unidirectional cloning of PCR product using the following primers into the KpnI and SmaI 

sites of the promoterless and enhancerless firefly luciferase reporter vector pGL3-Basic 

(Promega) (-1909/+95pGL3). Forward primer (-1909, with KpnI restriction site in bold): 5’ 

GGGGTACCCCTTCAGAAC TTATATTCCTTCCACTG 3’, reverse primer (+95): 5’ 

TGTTCTCTTCTGGCTGCC G 3’ 
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3.1.7 Transient Transfection

For study of promoter activity of the luciferase constructs, 1.5 x104 cells were 

seeded into 48 well plates 16 hours before transfection. Transfection was carried out 

using Metafectane (Biontex Laboratories GmbH, Munich, Germany) with modifications to 

the manufacturer’s protocol. 250ng of luciferase reporter plasmid with 1μl of metafectane 

was transfected in serum-containing media. The cells were washed with phosphate 

buffered saline and fresh serum-containing media was changed 6 hours after the start of 

transfection. 30 hours after the start of transfection, the media was again changed, and 

cells were grown in serum-free conditions overnight. For basal promoter activity, the 

cells were then lysed 48 hours from the start of transfection. For the TPA induction 

studies, TPA was added to the media to a final concentration of 0.1μM, and cells were 

lysed 6 hours after TPA stimulation. 

 

3.1.8 Reporter Gene Assay 

Cells were lysed by one freeze and thaw cycle in reporter lysis buffer (Promega). 

Luciferase activity was measured using the Victor light luminescence counter 

(Wallac/Perkin-Elmer). All experiments were carried out in triplicates and independently 

performed at least three times. Data of luciferase activity are normalized to protein 

concentration, and are shown as mean ± SEM of three independent experiments. 

 

3.2 EXPRESSION, STRUCTURAL AND FUNCTIONAL CHARACTERIZATION 

3.2.1 Cell Culture and Transfection Protocol 

The human pancreatic adenocarcinoma cell line, CD18, human cervical 

carcinoma cell line, HeLa, and human embryonic kidney cell subclone, TSA201, were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma Chemicals) 

 40



supplemented with 10% fetal bovine serum (Gibco), penicillin (100U/ml), streptomycin 

(100µg/ml), and amphotericin B (0.25µg/ml) (Cellgro). Cells were grown as monolayers 

at 37oC in a humidified environment with 95% O2/5% CO2. For transient transfection 

assays, cells were seeded into 6 well plates for 16 hours before transfection. 

Transfections were carried out using Metafectane (Biontex Laboratories GmbH, Munich, 

Germany) with modifications to the manufacturer’s protocol. The cells were washed with 

phosphate-buffered saline and fresh serum containing media was changed 6 hours 

following transfection. Stable expression clones were selected by growing the transiently 

transfected cells in G418 selection media for 3 weeks. 

 

3.2.2 Real-Time RT-PCR Analysis of mRNA Expression in Human Tissues and 

Cancer Cells

Multiple human tissue cDNA panels were purchased from BD Clontech (cat# 

K1420-1 and K-1424-1, Mountain View, CA). The cDNA content from different tissues 

has been normalized to expression levels of several different housekeeping genes 

including GAPDH and beta-actin. This normalization ensures an accurate assessment of 

tissue specificity and relative abundance of the target mRNA. To examine TTMP 

expression in different human tissues, 1 µl cDNA from each tissue was used for real-

time PCR analysis. Quantification of DNA amplification was carried out using the SYBR 

Green I dye on the ABI PRISM 7700 Sequence Detector (Applied Biosystems, Foster 

City, CA). The following primers were used: TTMP forward: 5’-

GTGCTTAGCTGGAGTGCG-3’, reverse: 5’-CTGCCTCTCCGTGCTCTACC-3’; GAPDH 

forward: 5’-GGGCTACACTGAGCACCAG-3’, reverse: 5’-

TGGGCTACACTGAGCACCAG-3’. Similarly, TTMP mRNA expression in normal 

pancreas, HeLa and CD18 cells was compared using real-time PCR with GAPDH as an 

internal control. In brief, RNA was extracted from both HeLa and CD18 cells using Sigma 
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mRNA extraction kit. 1 µl of RNA was reverse-transcribed into cDNA using MLV reverse 

transcriptase (Promega, Madison, WI).  Normal pancreas cDNA was purchased from BD 

Clontech as above. Expression of both GAPDH and TTMP was estimated by SYBR 

Green real-time PCR as described above.  TTMP expression was normalized to that of 

the house keeping gene, GAPDH. The data was analyzed according to our previous 

publication (204). 

 

3.2.3 Plasmid Construction

The TTMP expression vector (TTMPpcDNA3.1) was constructed based on the 

open reading frame of TTMP (GenBank Accession No. AY830714). To identify the 

protein sequences that determine the localization of TTMP, two constructs that express 

truncated TTMP proteins were also established, one containing the cDNA sequence 

coding for the C-terminal part (amino acid residues from 68 to 217) of TTMP with 

transmembrane domain (CT-TTMPpcDNA3.1) and another containing the cDNA 

sequence coding C-terminal part (amino acid residues from 80 to 217) of TTMP without 

transmembrane domain (CTTMminus-TTMPpcDNA3.1) (Fig 12C). PCR amplifications of 

these sequences were performed using the following primers; TTMP forward primer: 5’-

CACCATGGACCTGGCCCAACC-3’, CT-TTMP forward primer: 5’-

CACCATGATCATCACCTCCATTTTCC-3’, CTTMminus-TTMP forward primer: 5’-

CACCATGGTAACTTATGTTGATGAAGATG-3’, reverse primer for all 3 sequences: 5’-

TTCATAGAGCAAGAGGGATG-3’. The forward primers contained the Kozak sequence 

(CACC) preceding the ATG start codon to facilitate directional cloning into the 

pcDNA3.1D/V5-His-TOPO expression vector (Invitrogen, Carlsbad, CA). The reverse 

primer did not contain the stop codon to enable read-through and transcription of the 

V5/His sequence on the pcDNA3.1 expression vector, thus generating fusion proteins of 

TTMP, CT-TTMP or CTTMminus-TTMP with the V5/His-tag. In addition, a 
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5’UTR/TTMPpcDNA3.1 construct was also generated using the following primers: 

forward primer: 5’-ATAAGCTTAGACTTTCCCTGCCGGCAC-3’ (with HindIII restriction 

site highlighted in bold), reverse primer: 5’-

ATGGGCCCTCTTCATAGAGCAAGAGGGATG-3’ (with ApaI restriction site highlighted 

in bold and two extra nucleotides highlighted in bold and italics to preserve reading 

frame with V5/His-tag). These PCR products with the incorporated restriction sites were 

cloned into pcDNA3.1D/V5-His-TOPO vector by standard restriction cloning techniques. 

For all PCR reactions, Platinum Pfx DNA polymerase (Invitrogen, Carlsbad, CA) was 

used for its high-fidelity proof-reading function, and conditions were as follow: 95˚C for 5 

minutes, followed by 35 cycles of 95˚C for 15 seconds, 59˚C for 15 seconds and 72˚C for 

1 minute, and a final extension step of 72˚C for 2 minutes.  

 

3.2.4 Western Blotting 

Identification of protein expression as well as selection of stable cell lines was 

performed using standard western blotting techniques. Briefly, cells were lysed in lysis 

buffer and then clarified by microcentrifugation. The supernatants were recovered and 

protein concentrations measured using the Bio-Rad protein assay reagent. Equivalent 

amounts of cell lysate protein were resolved by SDS-PAGE 15% electrophoresis and 

transferred to nitrocellulose membranes by electroblotting. The membranes were then 

blocked (with 5% non-fat milk) before incubation with anti-V5 antibody (Invitrogen, 

1:5000) and subsequently HRP conjugated secondary antibody. The membranes were 

then detected by chemilluminescence and light emission was captured on X-ray film. 

 

3.2.5 Deglycosylation Assay

Deglycosylation was carried out on protein lysates extracted from TSA201 cells 

transiently transfected with TTMP expression vectors using the Glyko enzymatic 
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deglycosylation kit (ProZyme, San Leandro, CA). The manufacturer’s denaturing 

protocol was followed. Following deglycosylation, cell lysates were analyzed using 

standard western blotting techniques as described above. 

 

3.2.6 Immunofluorescence

HeLa cells were plated on coverslips at a density of 2.5x105 cells in 6 well plates. 

After overnight culture, cells were transiently transfected with the full-length TTMP 

expression plasmid (TTMPpcDNA3.1), the plasmid expressing the C-terminal end of 

TTMP with the transmembrane domain (CT-TTMPpcDNA3.1) or the plasmid expressing 

the C-terminal end of TTMP without the transmembrane domain (CTTMminus-

TTMPpcDNA3.1). The transfected cells were grown for 24 hours and subsequently 

washed once with PBS, and fixed with 4% formaldehyde for 20 minutes. They were then 

washed twice with PBS, permeabilized with 0.2% Triton in PBS for 10 minutes and 

washed once before blocking with 1% BSA/PBS for 1 hour. These cells were incubated 

overnight at 4˚C with V5 antibody at 1:800 dilution as well as the endoplasmic reticulum-

specific protein disulphide isomerase (PDI) antibody at 1:100 dilution (Santa-Cruz, CA). 

Immunofluorescent secondary antibodies Alexfluor 488-labelled goat anti-mouse IgG1 

and Alexfluor 546-labelled goat anti-rabbit IgG (Molecular Probes, Carlsbad, CA) were 

used at 1:2000 dilution at room temperature for 1 hour to identify V5 antibody and PDI 

antibody respectively. The coverslips were then mounted with antifade reagent and 

visualized using Laser Scanning Confocal Microscopy (Carl Zeiss LSM510, Tingen, 

Germany). 

 

3.2.7 Cell Proliferation Assay by Cell Counting 

Stably transfected CD18 cells and HeLa cells were seeded into 12-well 

microplates at a density of 2.5x104 cells per well. The cells were then grown in serum-
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free conditions for a further 24, 48, 72 or 96 hours. At the end of each time period, the 

cells were trypsinized to produce single cell suspensions and the cells from each well 

were counted using an automated cell counter (Guava Technologies, Hayward, CA). 

 

3.2.8 siRNA Gene Silencing Assay 

A mixture of siRNA duplexes specific to TTMP mRNA was provided by 

Dharmacon (Lafayette, CO). A control scrambled siRNA duplex was also obtained. To 

transfect the siRNA duplex, CD18 cells were plated into a 6-well plate and grown in 

DMEM media containing 10% FBS overnight.  The final concentration of siRNA used for 

transfection was 100 nM.  The siRNA duplex was first mixed with Metafectene (Biontex, 

Munich, Germany) in 1:4 ratio in Opti-MEM media, then the siRNA-Metafectene complex 

was incubated with CD18 cells for 6 hours before changing to serum containing media. 

48 hours following transfection, the cell number in each well was counted and TTMP 

mRNA expression was measured by real time RT-PCR.  

 

3.2.9 Cell Proliferation in Collagen I Gel  

Collagen I gel was purchased from BD Biosciences (rat tail collagen I gel) and 

stored at 4˚C. To grow cells in 3-D collagen gel, 1M NaOH was mixed with collagen I 

stock solution on ice.  Single cell suspensions were mixed with collagen I gel and 

transferred to 24 well plates.  Following incubation for 30 minutes at 37oC, 200 µl of 

DMEM was added on top of the polymerized collagen I gel.  Media was replaced with 

fresh media every 3 days and colonies were photographed at the end of a 2 week 

growth period.  
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3.2.10 Flow Cytometry 

CD18 cells with stable expression of TTMPpcDNA3.1 or empty vector were 

cultured overnight in serum free condition. The cells were then digested with trypsin-

EDTA solution to produce a single cell suspension and then fixed with ice-cold ethanol 

for at least 12 hours at 4oC.  The cells were then centrifuged and the cell pellets washed 

with PBS. The final cell pellets were reconstituted with Telford reagent and shaken 

horizontally for an hour in the dark at room temperature. The red fluorescence of 

propidium iodide was recorded by flow cytometry at 488nm excitation κ and 610nm 

emission κ. 

 

3.3 TRANSCRIPTIONAL REGULATION 

3.3.1 Cell Culture and Transient Transfection 

The human cervical carcinoma cell line, HeLa were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM) (Sigma Chemicals) that was supplemented with 10% 

fetal bovine serum (Gibco), penicillin (100U/ml), streptomycin (100μg/ml) and 

amphotericin B (0.25μg/ml) (Cellgro). For study of promoter activity of the luciferase 

constructs, 1.5 x104 cells were seeded into 48 well plates 16 hours before transfection. 

Transfection was carried out using Metafectane (Biontex) with modifications to the 

manufacturer’s protocol. 250ng of luciferase reporter plasmid with 1μl of metafectane 

was transfected in serum-containing media. The cells were washed with phosphate 

buffered saline and fresh serum-containing media was changed 6 hours after the start of 

transfection. 30 hours after the start of transfection, the media was again changed, and 

cells were grown in serum-free conditions overnight. For basal promoter activity, the 

cells were then lysed 48 hours from the start of transfection.  
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3.3.2 Construction of Plasmids for Promoter Analysis 

Human genomic DNA was isolated using a Wizard DNA Purification Kit 

(Promega). Progressive deletion constructs of the TTMP 5’ flanking region was 

engineered by unidirectional cloning of PCR product using the following primers into the 

KpnI and SmaI sites, or MluI and BglII sites of the promoterless and enhancerless firefly 

luciferase reporter vector pGL3-basic (Promega). The TTMP specific sequences for 

these primers were taken from the human genomic sequence contig NT_005612.14. 

 

Sense primers (with KpnI restriction site in bold). 

(-1909)  5’ GGG GTA CCC CTT CAG AAC TTA TAT TCC TTC CAC TG 3’ 

(-766)  5’ GGG GTA CCT GCT TGC TGT GTC AAT CAC TGT T 3’ 

(-299)   5’ GGG GTA CCA CTG TGG CAA ACC CCA ACA A 3’ 

(-284)   5’ GGG GTA CCC CTA AAC GGA GAT GGT CTG CA 3’ 

(-219)   5’ GGG GTA CCA TCA GAA AAA CAG CCT TCG 3’ 

 

Anti-sense primer for PCR amplification with the above primers.  

(+95) 5’ TGT TCT CTT CTG GCT GCC G 3’ 

 

Sense primers (with MluI restriction site in bold). 

(-135) 5’ ATT ACG CGT ACT CAC AGT TGC CCC TCC T 3’ 

(-69)   5’ ATT ACG CGT CAG TGG GTG GAG TGT GAG G 3’ 

(+18)  5’ ATT ACG CGT ACA TGG ACC TGG CCC AAC 3’ 

 

Anti-sense primer for PCR amplification with the above 3 primers (with BglII restriction 

site in bold). 

(+95) 5’ CAA GAT CTT GTT CTC TTC TGG CTG CCG 3’ 
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Plasmid DNAs were purifed with FastPlasmid Mini (Eppendorf) for screening 

purposes, and restriction digest analyzed. Screened plasmid DNAs were purified using 

the GenElute Midiprep Kit (Sigma) and sequenced. 

 

3.3.3  Site-Directed Mutagenesis for Mutation of Transcription Factor Binding 

Sites 

Site directed mutagenesis was performed using the Quikchange site-directed 

mutagenesis kit (Stratagene) with the following primers (mutated bases underlined): 

 

Sp1 (nucleotides -77 to -68) mutant forward: 

5’ GGT CCG CGA CCA TAC CAG TGG GTG GAG TG 3’ 

Sp1 mutant reverse:  

5’ CAC TCC ACC CAC TGG TAT GGT CGC GGA CC 3’ 

 

Mzf1/Sp1 (nucleotides -54 to -45) mutant forward: 

5’ GGG TGG AGT GTG AGG AAA GGA GGT CGC TCG ACT C 3’ 

Mzf1/Sp1 mutant reverse: 

5’ GAG TCG AGC GAC CTC CTT TCC TCA CAC TCC ACC C 3’ 

 

Following PCR generation of mutant constructs, the native wild type plasmids 

were digested with DpnI and the remaining reaction mixture was transformed into JM109 

chemically competent cells (Promega). Colonies following transformation were isolated 

and screened by sequencing.  
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3.3.4  Reporter Gene Assay 

Cells were lysed by one freeze and thaw cycle in reporter lysis buffer (Promega). 

Luciferase activity was measured using the Victor light luminescence counter 

(Wallac/Perkin-Elmer). All experiments were carried out in triplicates and independently 

performed at least three times. Data of luciferase activity are normalized to protein 

concentration, and are shown as mean ± SEM of three independent experiments. 

 

3.3.5  Electrophoretic Mobility Shift Assay (EMSA) 

Nuclear extracts from HeLa cells were purchased from Upstate technologies. For 

gel retardation experiments, 87.5fmol of 32P-labelled double stranded oligonucleotides 

containing the putative Sp1 or Mzf1/Sp1 binding site was incubated for 20 minutes at 

room temperature with 2ug of the HeLa nuclear extract, and 1ug of poly(dI-dC) in binding 

buffer (Pierce). For competition assays, cold unlabelled 25x or 100x molar excess of the 

double-stranded oligonucleotide containing the wild type putative binding sites, the 

oligonucleotide with the mutated binding sites that was used for site-directed 

mutagenesis, an oligonucleotide containing an Sp1 consensus site, or a nonspecific 

oligonucleotide were preincubated for 10 minutes with the nuclear extracts before 

addition of the labeled wild type oligonucleotide for a further 20 minutes. For supershift 

assay, 2ug of Sp1(1C6) antibody (sc-420) (Santa-Cruz) or normal mouse IgG (Santa-

Cruz) was preincubated with nuclear extract for 10 minutes before addition of labeled 

WT oligonucleotide for a further 20 minutes. Reactions were mixed with loading buffer 

(Pierce) and loaded on a 0.5X TBE, 5% nondenaturing polyacrylamide gel and run for 1 

hour at 10V/cm. Gels were dried and exposed to radiographic film for 12-24 hours. 

 

 

 

 49



Oligonucleotides used for EMSA: 

 

Sp1 (nucleotides -77 to -68) 

WT: 5’ ACGCCCCGCCCAGTG 3’ 

Mutant: 5’ ACGCCCATACCAGTG 3’ 

Sp1 Consensus: 5’ TCGACGGGGCGGGGCTTA 3’ 

 

Sp1/Mzf1 (nucleotides -54 to -45) 

WT: 5’ ACGCCCCGCCCAGTG 3’ 

Mutant: 5’ ACGCCCATACCAGTG 3’ 

Sp1 Consensus: 5’ TCGACGGGGCGGGGCTTA 3’ 

Mzf1 Consensus: 5’ AGTGGGGACGGGGAGGGGGAA 3’ 

3.4    MISCELLANEOUS 

3.4.1 Sequencing 

All cDNA sequences, expression vector as well as reporter vector constructs 

were confirmed by sequencing using the dye termination method with the ABI 3100 

Genetic Analyzer (Applied Biosystems), in the Northwestern University Biotechnology 

Laboratory.  

 

3.4.2 Statistical Analysis 

Data were analyzed by ANOVA with Dunnett’s or Bonferoni’s corrections for 

multiple comparisons, as appropriate.  This analysis was performed with the Prism 

software package (GraphPad, San Diego, CA).  Data were expressed as mean ± SEM. 
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4. RESULTS 

 

4.1 IDENTIFICATION AND SEQUENCING OF A NOVEL GENE, TTMP 

The aim of the first part of this study was to identify and sequence a previously 

uncharacterized gene that is differentially expressed in TPA treated pancreatic cancer 

cells.  The strategy chosen was to perform oligonucleotide microarray expression 

profiling of CD18 pancreatic cancer cells treated with TPA as compared to untreated 

control cells in order to identify differentially expressed transcripts. The rationale for 

using TPA as a trigger for differential gene expression is due to its mixed and contrasting 

effect on cell proliferation and the cell cycle in pancreatic cancer cells (see background). 

Our own observations concurred with inhibition of pancreatic cancer cell growth following 

stimulation with TPA and subsequent activation of PKC (142,143) (Fig 3).  

 

Figure 3. Time course of H3-Thymidine incorporation assay in CD18 cells 
following treatment with TPA at 10-7M concentration. Results shown are 
expressed as means of absolute counts per minute ± SEM from three separate 
experiments. 
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4.1.1 TPA Induction of TTMP 

Microarray expression profiling was performed using RNA extracted from TPA-

treated (0.1μM TPA for 8 hours) as well as untreated CD18 pancreatic cancer cells to 

identify differentially expressed transcripts. Genes identified as such, include several that 

are involved in pancreatic carcinogenesis, as well as other known genes that have yet to 

be studied for their role in pancreatic cancer. Genes that were differentially expressed in 

our study are shown in Table 1. In addition, there are a number of novel uncharacterized 

genes that are found to be differentially expressed following TPA treatment. The 

functions of these genes are unknown and myriad, and we have elected to use 

differential growth dynamics as an easily observed change in order to single out genes 

for further characterization. These hypothetical genes were transiently transfected into 

CD18 pancreatic cancer cells and observed for differences in cell proliferation over the 

subsequent days. Only hypothetical genes that contain full coding sequences with 

putative start and stop codons were chosen for transient transfection. One of the 

differentially expressed transcripts identified from the microarray study was found to be 

homologous to cDNA sequence AK026839 that represents a novel uncharacterized 

gene FLJ23186. This transcript was increased following TPA treatment in CD18 

pancreatic cancer cells by a mean of 3.3-fold over untreated control cells in 3 separate 

experiments. Validation of the microarray data for FLJ23186 was obtained using real-

time quantitative PCR on the original RNA isolates that were used for the microarray 

experiments. This showed a mean induction of 7.6-fold from the 3 samples.  We have 

chosen to proceed with further structural and functional characterization of this gene 

based on the differential cell proliferation observed when the coding sequence was 

transiently transfected into CD18 cells (Fig 4). We have named this gene TPA induced 

Trans-Membrane Protein (TTMP) from its predicted membrane topology (see below). 
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Control CD18 cellsControl CD18 cells pcDNA3.1 empty vectorpcDNA3.1 empty vector AK026839-ORFpcDNA3.1

 

Figure 4. Differential growth dynamics at 72 hours following transient transfection of 
CD18 pancreatic cancer cells with AK026839-ORFpcDNA3.1 expression vector.  

 

Concentration-response and time-course studies were performed to further 

characterize the pattern of induction of TTMP by TPA. The pancreatic cancer cell line, 

CD18 and the cervical carcinoma cancer cell line HeLa were used. The concentration-

response experiments in CD18 cells showed a maximal induction of 8.2-fold with 1μM 

TPA for 24 hours. (Fig 5A) The time-course showed that induction of TTMP had an early 

onset, with a 3.4-fold increase at 2 hours and maximal induction of 10.5-fold at 6 hours 

with 0.1μM TPA. (Fig 5B and C) Similarly, in HeLa cells, induction of TTMP expression 

showed a concentration-dependent response with a maximal increase 6-fold with 

0.01μM TPA for 24 hours. (Fig 5D) In time-course experiments with HeLa cells, maximal 

induction of 11-fold was seen at 6 hours after treatment with 0.1μM TPA. (Fig 5E and F) 

We have thus confirmed the induction of TTMP expression by TPA in two different cell 

lines.    
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Accession No. Gene name and description Relative mRNA

  levels ±  S.D. 

NM_002421 Matrix metalloproteinase 1 (interstitial collagenase) (MMP1) mRNA 6.96 ± 1.50

M34671 Lymphocytic antigen CD59/MEM43 mRNA, complete cds 5.27 ± 0.55

U03106 Wild-type p53 activated fragment-1 (WAF1) mRNA, complete cds 5.23 ± 1.92

M17017 Beta-thromboglobulin-like protein mRNA, complete cds 5.18 ± 2.79

NM_005771 Retinol dehydrogenase homolog (RDHL]) mRNA 5.13 ± 2.28

NM_002203 Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) (ITGA2) mRNA 4.69 ± 1.27

NM_002539 Ornithine decarboxylase 1 (ODC1) mRNA 4.50 ± 0.63

NM_001109 A disintegrin and metalloprotease domain 8  (ADAM8) mRNA 4.01 ± 1.05

NM_001218 Carbonic anhydrase XII (CA12), mRNA 4.01 ± 1.65

NM_005114 Heparan sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1) mRNA 3.88 ± 0.64

NM_004419 Dual specificity phosphatase 5 (DUSP5) mRNA 3.83 ± 1.12

NM_005438 FOS-like antigen-1 (FOSL1), mRNA 3.80 ± 0.42

NM_001432 Epiregulin (EREG) mRNA 3.34 ± 1.35

AK026839 cDNA: FLJ23186 fis, clone LNG11945 3.30 ± 0.44
NM_007231 Solute carrier family 6 (neurotransmitter transporter), member 14 (SLC6A14), mRNA 3.26 ± 0.23

NM_001300 Core promoter element binding protein (COPEB), mRNA 3.12 ± 0.89

NM_002639 Protease inhibitor 5 (maspin) (PI5) mRNA 3.08 ± 0.23

NM_004995 Matrix metalloproteinase 14 (membrane-inserted) (MMP14) mRNA 2.87 ± 0.85

NM_014302 Sec61 gamma (SEC61G), mRNA 2.82 ± 0.06

NM_012425 Ras suppressor protein 1 (RSU1), mRNA 2.66 ± 0.40

NM_016038 CGI-97 protein (LOC51119), mRNA 2.63 ± 0.12

NM_001197 BCL2-interacting killer (apoptosis-inducing) (BIK), mRNA 2.59 ± 0.44

AF320070 Hepatocellular carcinoma-associated protein HCA10 mRNA, complete cds 2.58 ± 0.42

NM_006529 Glycine receptor, alpha 3 (GLRA3), mRNA 2.57 ± 0.42

NM_001102 Actinin, alpha 1 (ACTN1) mRNA 2.52 ± 0.20

NM_003560 Phospholipase A2, group VI (PLA2G6), mRNA 2.50 ± 0.40

NM_003648 Diacylglycerol kinase, delta (130kD) (DGKD) mRNA 2.48 ± 0.43

M59040 Cell adhesion molecule (CD44) mRNA, complete cds 2.37 ± 0.43

NM_002149 Hippocalcin-like 1 (HPCAL1) mRNA 2.32 ± 0.18

NM_004354 Cyclin G2 (CCNG2), mRNA 2.32 ± 0.24

M30142 Decay-accelerating factor mRNA, complete cds 2.31 ± 0.20

NM_001665 Ras homolog gene family, member G (rho G) (ARHG) mRNA 2.31 ± 0.07

AF303888 Microtubule-associated proteins 1A/1B light chain 3 mRNA, complete cds 2.27 ± 0.23

NM_004156 Protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform (PPP2CB) mRNA 2.25 ± 0.26

AF118124 Myeloid cell leukemia sequence 1 (MCL1) mRNA, complete cds 2.24 ± 0.11

NM_004616 Transmembrane 4 superfamily member 3 (TM4SF3) mRNA 0.49 ± 0.02

NM_000387 Carnitine/acylcarnitine translocase (CACT) mRNA 0.45 ± 0.07

NM_002083 Glutathione peroxidase 2 (gastrointestinal) (GPX2) mRNA 0.45 ± 0.06

NM_006149 Lectin, galactoside-binding, soluble, 4 (galectin 4) (LGALS4) mRNA 0.44 ± 0.03

AF190122 Putative superoxide-generating NADPH oxidase Mox2 mRNA, complete cds 0.42 ± 0.02

NM_007127 Villin 1 (VIL1), mRNA 0.42 ± 0.09

NM_016253 3-alpha hydroxysteroid dehydrogenase type IIb (LOC51708), mRNA 0.35 ± 0.05

NM_002165 Inhibitor of DNA binding 1, dominant negative helix-loop-helix protein (ID1) mRNA 0.25 ± 0.07
Table 1. Genes differentially expressed after 8 hours of TPA treatment. The cDNA sequence with homology 
to TTMP is in bold. Other novel uncharacterized hypothetical proteins have been omitted from the list.
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Figure 5. Concentration-response (A and D) and time-course following TPA treatment for 
CD18 (B and C) and HeLa (E and F) cells, respectively. Results are shown as means of 
fold increase ± SEM over control cells on real-time quantitative PCR after normalization 
with GAPDH expression from two separate experiments. 
 
 
4.1.2 Full Length Transcript(s) of TTMP 

We used 5’-RACE to identify full length transcript(s) containing the transcription 

start site(s) of TTMP. 5’-RACE was performed using RACE-ready cDNA from human 

colon and a pair of TTMP-specific nested primers. A single strong band of about 400 to 

500 bp and several weaker bands were seen on agarose gel electrophoresis after PCR 

amplification. These PCR products were cloned and sequenced. Isolates with inserts of 
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sizes other than the dominant band of around 400 to 500 bp did not contain sequences 

with homology to TTMP. Of the isolates with sequence homology to TTMP, the majority 

contains an adenine residue at the 5’ end which is just 3 nucleotides upstream from the 

start of the deposited cDNA sequence (GenBank accession no. AK026839). The 

sequence around this predominant transcription start site completely matches the 

consensus initiator element sequence (Inr) commonly found in TATA-less promoters 

(161). Furthermore, the nucleotides at position +28 to +32 bear striking resemblance to 

the distal promoter element (DPE) which acts in concert with the Inr to initiate the start of 

transcription (205) in promoters lacking a TATA box. (Figure 6A and B) 

  

 
Figure 6. The transcription start sites of TTMP. (A) Agarose gel electrophoresis of 5’-
RACE products showing a dominant band between the 400 and 500bp mark of the DNA 
ladder. (B) Sequence of the 5’ end of TTMP cDNA obtained by 5’-RACE. Arrows denote 
the transcription start sites identified. The major transcription start site is denoted as +1. 
The first nucleotide on the previously deposited sequence AK026839 is underlined. The 
consensus sequence for Inr and DPE are shown below their corresponding positions on 
the cDNA sequence. (C) Comparison between the previously deposited sequence 
AK026839 and the 5’-RACE/Genomic sequence that showing omission of a guanine 
residue. The resulting ATG is the putative start codon of the open reading frame from the 
full-length sequence AY830714.  
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We also performed 3’-RACE using primers which gave products that overlapped 

those obtained from 5’-RACE in order to completely sequence TTMP. The overlapping 

sequences have been assembled and deposited into GenBank under the accession no. 

AY830714. We compared this sequence with the deposited GenBank cDNA sequence 

AK026839. This revealed an extra guanine nucleotide at position 18 of the deposited 

sequence AK026839. However, bioinformatics analysis of our sequencing data showed 

complete homology at the 5’ end with human genomic sequences (NT_005612 and 

NT_86640) as well as with most of the homologous human ESTs deposited in GenBank. 

The absence of this guanine residue in our deposited sequence brings into tandem the 

preceding adenine residue with the downstream thymine-guanine residues, thus forming 

a putative start codon. In-silico analysis (ORF Finder, NCBI: 

http://www.ncbi.nlm.noh.gov/gorf/gorf.html) predicts an open reading frame beginning at 

this start codon, which is an in-frame N-terminal extension of the putative coding 

sequence described in the deposited sequence AK026839. The deletion of the extra 

guanine residue from our sequencing data is shown in Figure 6C. This is significant, 

since the previously predicted amino acid sequence starts from an ATG site further 

downstream at nucleotide position 219 of AK026839. This encodes a product with a 

short hydrophilic N-terminal followed by the central hydrophobic domain. Although 

structurally this putative protein would have conformed to a membrane topology, as seen 

with the longer sequence, it could be lacking certain residues on the N-terminal end that 

may confer important and specific functions of this protein.   

  

The full-length TTMP cDNA sequence AY830714 as well as the predicted amino 

acid sequence is shown in Fig 7. In addition to the previously mentioned discrepancy in 

the 5’ untranslated region surrounding the putative start codon, there are two other 

single nucleotide differences in the open reading frame of this sequence when compared 
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to the cDNA sequence AK026839 or the genomic sequences NT_005612 and 

NT_086640. The nucleotide in position 386 of AY830714 as well as its equivalent 

position in the genomic sequences is a guanine, whereas an adenine is found in its 

equivalent position in the cDNA sequence AK026839. The resulting codon on AK026839 

yields a lysine residue as compared to a glutamic acid residue at position 123 of the 

amino acid sequence predicted from the full-length cDNA AY830714. In position 449 as 

well as that in its homologous position on AK026839, an adenine is found. Whereas the 

same nucleotide is found in the alternate genomic assembly NT_086640, a guanine is 

noted in place on the equivalent position on human genomic sequence NT_005612. In 

addition, several other single nucleotide differences are also noted in the 3’ untranslated 

region (Fig 7). The disparity in the nucleotide sequences may have arisen from errors in 

sequencing, or may represent single nucleotide polymorphisms in the gene.  However, if 

this did represent polymorphism, the difference between a basic and an acidic amino 

acid residue at position 123 in the protein sequence could have marked functional 

consequences.  
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Figure 7. Nucleotide sequence and deduced amino acid sequence of human TPA 
induced Trans-Membrane Protein (TTMP) (AY830714). Uppercase letters represent the 
coding region, lowercase letters represent the 5’ and 3’ untranslated regions (UTR). 
Differences in the nucleotide sequence between TTMP and cDNA sequence AK026839 
and/or genomic sequence are in italics and underlined. * represents the stop codon. The 
underlined sequence aataa in the 3’UTR is a consensus polyadenylation sequence.  
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4.1.3 In-Silico Analysis of TTMP 

Using the full-length cDNA sequence, we performed a blast comparison with the 

human genomic sequence database at the NCBI. This revealed that the TTMP gene is 

located on the long arm of chromosome 3 (3q13.2) and lies between nucleotide 

positions 18300382 to 18332203 of genomic sequence NT_005612. There is also an 

alternate assembly found on chromosome 3 genomic sequence NT_086640 at positions 

18338313 to 18370147. Both alignments are in the sense direction. Exon-intron 

boundaries were determined based on alignment of the cDNA sequence with the 

genomic sequence NT_005612, as well as on the ‘“gt….ag’ rule of intron-exon splicing. 

The TTMP gene is about 33kb in length and is organized into 6 exons, with the coding 

region spanning from exon 2 to exon 6. (Table 2) 

 
 
 

Exon  No of 
bases 

Nucleotide sequence around exon-intron 
boundaries 

Nucleotide position in 
NT_005612.14 

1 
2 
3 
4 
5 
6 

156 
130 
128 
71 

182 
1569 

 
ttctag 
ctttag 
gtttag 
tttcag 
ttttag 

AGACTT….GCCGAG 
GCTAAC….CTGCAG 
TAACTT…..GAAAGG 
CTCACA… .CTTCAG 
TGGTGA… .TCTATG 
AATGAA…. .ATCTGT 

gtaagg 
gtaaga 
gtaagtt 
gtaaga 
gtaagt 
 

18300382 – 18300537 
18307353 – 18307482 
18316831 – 18316958 
18323536 – 18323606 
18326957 – 18327138 
18330635 – 18332203 

 
Table 2. Exon-intron structure of TTMP. Nucleotide sequences of exons and introns are 
shown in upper and lower case respectively.  

 
  
 

The predicted open reading frame is from nucleotides 20 to 673 and codes for a 

217 amino acid product with a calculated molecular mass of 24.30kDa and a pI of 4.02. 

Protein topology analysis using PSORTII (http://psort.nibb.ac.jp) predicted a type II 

trans-membrane protein sited across the endoplasmic reticulum (ER) membrane with a 

single transmembrane domain from residues 73 – 89. Protein sequence analysis using a 

separate online software program, TMHMM (http://www.cbs.dtu.dk/services/TMHMM) 

also predicted a similar transmembrane protein with a single transmembrane helix from 
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residues 66-88. Both programs predicted a membrane topology with the C-terminal sited 

in the cytoplasm (Fig 8). Motif scanning analysis using Scansite (http://scansite.mit.edu) 

did not find sequence homology with any conserved functional domain. Therefore, 

human TTMP may represent the founding member of a hitherto uncharacterized protein 

family with novel functional domains.  However, the possibility exists that the software 

analysis was unable to recognize degeneracy in the amino acid sequence that may 

contain similar functional domains to known protein motifs. 

 
Figure 8. The deduced membrane topology of TTMP, ER=endoplasmic reticulum. 
 
 
4.1.4 Conservation of Orthologus Gene Sequence in Mouse and Chicken  

Comparison of the predicted protein sequence from murine orthologous cDNA 

sequence AK078878 with human TTMP revealed a 68% sequence homology. Notably, 

the central hydrophobic domain together with the C-terminal end of the predicted protein 
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from residues 61 to 128 shows greater conservation with the human sequence. 

However, the chicken orthologous cDNA XM_416636 displayed only 29% identity to 

human TTMP (Fig 9). Unlike murine TTMP, the chicken orthologue is equally divergent 

at both the N- and the C-terminal end. This probably represents divergence of the gene 

early on in evolution. The conservation of the C-terminal end of both human and mouse 

genes may underlie a common structure or function. While the function of this protein is 

not yet known, it is possible that the differences in the N-terminal sequences give rise to 

species specific activity of the translated protein. 

 
Figure 9. Alignment of the amino acid sequences of human TTMP with (A) mouse and 
(B) chicken orthologues. The mouse and chicken sequences are 68% and 29% identical 
to the human sequence, respectively. 
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4.1.5 Mechanism of TTMP mRNA Induction by TPA 

We investigated whether the up-regulation of TTMP mRNA by TPA was 

mediated by a decrease in the rate of mRNA degradation or by an increase in TTMP 

transcript levels by activation of its promoter. CD18 cells were pre-treated with or without 

0.1μM TPA for 4 hours before both treated and control cells were exposed to 5μg/ml 

actinomycin D to inhibit further transcriptional activity. A time-course was then performed 

and real-time PCR was used to determine TTMP mRNA transcript levels following 

inhibition of transcription. The results show that TPA did not change TTMP mRNA 

degradation kinetics, suggesting that the up-regulation of TTMP by TPA is not through a 

change in mRNA stability. (Fig 10A and B) 

  

We then investigated whether TPA increases TTMP promoter activity. PCR 

techniques was used to clone a 2kb fragment (-1909 to +95 relative to transcription start 

site) of the human genomic TTMP 5’ flanking region into the promoterless luciferase 

reporter vector pGL3-basic. Basal activity of the cloned fragment (-1909/+95pGL3) was 

determined at 48 hours after transient transfection into HeLa cells and this was found to 

be increased by 20-fold over the empty pGL3-basic vector. (Fig 10C) The construct was 

then used to test for promoter activity following treatment with 0.1μM TPA for 6 hours. 

This showed a 2-fold increase over non-treated controls. This suggests that TPA up-

regulates TTMP gene expression at the promoter level (Fig 10D).  The 2-fold increase in 

promoter activity following TPA induction is modest compared to the 11-fold increase 

seen in the mRNA levels at the same time point. This may be due to the synergistic 

requirement of other cis-acting transcriptional elements, which are not present in our 5’ 

flanking construct of 2kb, to further enhance transcriptional activation.  
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Figure 10. Induction of TTMP mRNA expression in CD18 cells after 4 hours of 
stimulation with 0.1μM TPA (A) and subsequent expression levels at various time points 
after addition of actinomycin D (5μg/ml) to both TPA stimulated and control cells (B). 
Results shown are means of two separate experiments ± SEM on real-time quantitative 
PCR after normalization with GAPDH expression levels. Luciferase activity of 2kb TTMP 
promoter construct (-1909/+95pGL3) compared to promoterless pGL3-basic control 
vector (C). Induction of promoter activity of TTMP promoter construct after 6 hours of 
stimulation with 0.1μM TPA (D). Results for (C) and (D) are means ± SEM from three 
separate experiments after normalization with protein concentration. Each experiment 
was carried out in triplicates. 
 
 
4.1.6 Conclusions 

Using oligonucleotide microarray analysis, we have identified a novel gene that is 

upregulated following treatment with TPA in the pancreatic cancer cell line CD18. Real-

time PCR validated the microarray results in CD18 and HeLa cells, and showed that 

upregulation of the gene is time- and concentration dependent. In-silico analysis shows 

that this is a single-pass transmembrane protein of 217 residues that is localized to the 
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endoplasmic reticulum, thus the name TPA induced Trans-Membrane Protein (TTMP). A 

luciferase reporter assay demonstrates that upregulation of TTMP by TPA is triggered at 

the promoter level. 

 

4.2 EXPRESSION, STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF 

TTMP 

The aim of the second part of this study was to study the expression pattern, as 

well as perform structural and functional characterization of the novel gene product, 

TTMP, which we had previously described (204). 

 

4.2.1 Expression of TTMP in Normal Pancreas and Cancer Cell Lines 

We first examined the level of expression of the TTMP mRNA in both normal 

human tissues and cancer cell lines. Commercially available, multiple human tissue 

cDNA panels were used to quantify expression of TTMP by real-time PCR. Expression 

of TTMP was higher in human pancreas than in all of the other 18 tissues, and about 

twice as high as in the second highest expressing tissue (the rectum).  Indeed, 

expression of TTMP in normal pancreas was more than 5-fold higher than the mean 

expression level of the 19 different tissues analyzed (Fig 11A). Expression levels in the 

human cervical carcinoma cell line HeLa and the human pancreatic cancer cell line 

CD18 were more than 10-fold lower than that of normal pancreatic tissue (Fig 11B). The 

low expression levels of TTMP observed in these cancer cell lines made them suitable 

for the subsequent forced expression studies. 
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Figure 11. (A) Expression profile of TTMP in different normal tissues. TTMP mRNA 
expression was measured by real-time RT-PCR, using cDNA from different normal 
human tissues, and normalized by GAPDH and beta-actin. TTMP expression in the 
pancreas was the highest among the 18 different tissues examined. (B) Comparison of 
TTMP expression in normal human pancreas, CD18 pancreatic cancer cells and HeLa 
cells. TTMP mRNA expression was measured by real-time RT-PCR and normalized to 
GAPDH.  Expression of TTMP mRNA in cancer cell lines is substantially lower than that 
in the normal pancreas. 
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4.2.2 Identification of Translation Start Site and Molecular Size of TTMP 

The predicted open reading frame from the TTMP cDNA sequence (AY830714) 

is from nucleotides 20 to 673, and codes for a 217 amino acid product with an estimated 

molecular mass of 24.30 kDa and a pI of 4.02 (Fig 12A & B).  Interestingly, a possible 

alternative translation start site was identified at nucleotide position 221, giving a 

putative in-frame N-terminal truncated protein that is 67 residues shorter than the full 

length protein with a predicted molecular mass of 16.88 kDa (Fig 12B). Thus, either of 

these putative translation start sites could be recognized by the ribosomal translational 

machinery to initiate the start of translation. To confirm which site was responsible, we 

cloned the 5’ UTR of the TTMP cDNA together with the coding sequence into pcDNA3.1 

(5’UTR/TTMPpcDNA3.1). This cloning strategy abolished the exogenous Kozak 

sequence on the pcDNA3.1 expression vector, making the start of translation dependent 

on the native Kozak sequence found in the 5’ UTR (Fig 12C). The full-length TTMP 

(TTMPpcDNA3.1) as well as the truncated sequence (CT-TTMPpcDNA3.1) were both 

directionally cloned into pcDNA3.1 as described under experimental procedures. Cell 

lysates were obtained following transient transfection in TSA201 cells and expression of 

the protein products from the various constructs were identified by immunoblotting 

against the surrogate marker V5. A ~17 kDa product was obtained from the CT-

TTMPpcDNA3.1 construct, and this was in agreement with its predicted molecular 

weight (Fig 13). However, the protein product obtained from the full-length TTMP 

construct (TTMPpcDNA3.1) was ~48 kDa in size, approximately twice the size of its 

predicted molecular mass of 24.3 kDa (Fig 13). The protein product obtained from 

5’UTR/TTMPpcDNA3.1 is of identical size to that expressed by the full-length coding 

sequence that is cloned in tandem with the exogenous Kozak sequence (CACC) on 

pcDNA3.1 (Fig 13). This shows that the 5’ UTR directs translation from the same start 

site as that predicted from bioinformatics (204). The lower band seen in the lane 
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representing TTMP could represent an incomplete post-translational modification 

(glycosylation) of the native TTMP protein (see next section). 
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Figure 12. (A) Genomic organization of TTMP. The full length cDNA of TTMP was 
identified by 5’-rapid amplification of cDNA end (5’-RACE) and 3’-RACE. The full length 
cDNA sequence (gene bank accession #: AY830714) was used to blast human genomic 
sequence in Genebank. TTMP gene spans 21.8 kb and comprises 6 exons and 5 
introns. The assembled human TTMP comprises a putative TATA-less promoter region, 
start/stop codons and a poly-A signal. (B) The open reading frame (ORF) of TTMP 
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encodes a protein with 217 amino acid residues. It contains one single transmembrane 
domain. No putative conserved functional domains were detected. (C)  Diagram showing 
different pcDNA3.1 expression constructs. The cDNA sequence of TTMP ORF was 
fused with the V5 epitope tag at the 3’-end to enable the immunodetection of TTMP. 
 
 

 
 

igure 13. The molecular size of TTMP. The TTMP pcDNA3.1 expression plasmid was 

4.2.3 TTMP is N-Glycosylated and also Contains Sialic Acid

48kDa

  CT-
TTMP TTMP 5’UTR

/TTMP 

17kDa 

GAPDH

F
transfected into TSA201 cells for 24 hours. Proteins in the cell lysate were separated on 
SDS-PAGE gels transferred onto nitrocellulose membranes and the TTMP-V5 epitope 
was detected using a V5 antibody. The predicted molecular size of full-length TTMP 
without post-translational modification is 24 kDa. The observed molecular weight was 
~48 kDa as shown here. In contrast, the molecular size of the C-terminal fragment of 
TTMP (CT-TTMP) was 17 kDa, which was identical to the predicted molecular size of 
this 150 amino acid peptide. 
 
 

 

Western blot analysis of exogenously expressed TTMP showed a band 

corresponding to ~48 kDa. This is approximately twice the predicted molecular weight of 

24 kDa. The TTMP open-reading frame contains several putative N-glycosylation sites 

(http://www.cbs.dtu.dk/services/NetNGlyc/), suggesting that the native protein undergoes 

post-translational glycosylation (Fig 14). Of the various forms of protein glycosylation 

found in eukaryotic systems, the most important types are in the form of asparagine-

linked (N-linked) or serine/threonine-linked (O-linked) oligosaccharides (206-208). N-

linked glycosylation is a co-translational process involving the transfer of the precursor 
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oligosaccharide GlcNAc2Man9Glc3 to asparagine residues in the protein chain (206-208). 

The asparagine usually occurs in a Asn-Xaa-Ser/Thr, where Xaa is not a Proline. O-

linked glycosylation involves the post-translational transfer of an oligosaccharide to a 

serine or threonine residue (206-208). To deglycosylate oligosaccharides from a core 

protein, N-glycanase (PNGase F) is the most effective method of removing virtually all N-

linked oligosaccharides from glycoproteins. Complete removal of the O-linked structure 

or its derivatives would require, in addition to sialidase A, a beta(1-4)-specific 

galactosidase and a beta-N-acetylglucosaminidase (206-208). To confirm the 

computational suggestion that TTMP is N-glycosylated, protein extracts from transiently 

transfected TSA201 cells were subjected to deglycosylation treatment with N-glycanase 

(PNGase F), sialidase, O-glycanase, and a mixture of these enzymes prior to western 

blot analysis. N-glycanase treatment caused a pronounced shift in molecular size to 

approximately 24 kDa, which is identical to the predicated molecular size of TTMP in the 

absence of any post-translational modification (Fig 15A). Sialidase treatment caused a 

smaller shift in molecular weight, while the combined treatment with all three enzymes 

had a similar effect on molecular weight to N-glycanase treatment alone (Fig 15A). 

These findings suggest that the N-linked carbohydrate chains contained some sialic acid 

residues in the region not immediately adjacent to the protein core and thus the 

glycosylation is comprised of complex oligosaccharide. No change in molecular size is 

seen following treatment with O-glycanase, either alone, or with combined sialidase 

treatment. Finally, there was no change in molecular size of the truncated protein CT-

TTMP following treatment with any of the glycanases, indicating that asparagine 

residues in the N-terminal end but not the C-terminal end of TTMP are glycosylated (Fig 

15A). Besides sialylation, O-linked modification containing β(1-4) galactose and β(1-6)-

linked N-actylglucosamine can block the action of O-glycanase. However, treatment with 

β(1-4) galactosidase and/or β-N-actylglucosaminidase, as well as together with O-
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glycanase treatment did not lead to a shift in the molecular size of the native protein (Fig 

15B). Thus we conclude that TTMP is not O-glycosylated, and the sialic acid residues 

are most likely N-linked.  

 

 
 

Figure 14.  Oligosaccharides attached to Asn residues of secreted or membrane bound 
proteins are described as N-linked. The sequence motif Asn-Xaa-Ser/Thr (Xaa is any 
amino acid except Pro) has been defined as a prerequisite for N-glycosylation. Using 
online software for predicting the post-translational modifications of proteins, NetNGlyc 
1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc), multiple asparagine residues in 
the TTMP protein that were likely to be N-glycosylated were identified. Of note, Asn25, 
Asn29, Asn48 and Asn57 have the highest score for N-glycosylation. 
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N-glycanase                      -      +    -     -     -      -      -     -     -     -    
Sialidase                            -      -    +     -     -     -      +     -     -     +   
ß1,4 glucosidase               -      -    -      +    -     -      -     +     -     + 
Acetylglucosaminidase    -      -     -     -     +     -      -     -     +     + 
O-glycanase                       -      -     -     -     -     +     +    +     +    + 

A 
N-glycanase        -        +      -        -        -       +
Sialidase             -         -      +       -        +       + 
O-glycanase       -         -      -        +       +       +

TTMP 

CT-TTMP 

48 kDa 

24 

B 

 
 
Figure 15.  Glycosylation pattern of the TTMP protein: (A) Effect of digestion with N-
glycanase, sialidase and O-glycanase or their combination on TTMP migration in a 12% 
SDS-PAGE gel. N-glycanase treatment reduced the size of full-length TTMP from 48 
kDa to 24 kDa. O-glycanase treatment had no effect on migration of TTMP, while 
sialidase alone slightly reduced the size of TTMP. Combined digestion with the three 
enzymes reduced the size of TTMP to 24 kDa, the same as N-glycanase alone. None of 
the three enzymes individually or in combination altered the migration of the C-terminal 
fragment of the TTMP protein, indicating that TTMP is N-glycosylated in the N-terminal 
region. (B) The effect of digestion N-glycanase, sialidase, beta 1,4-glucosidase, 
acetylglucosaminidase or O-glycanase on TTMP migration in 12% SDS-PAGE gel.  N-
glycanase reduces molecular size of TTMP from 48 kDa to 24 kDa.  None of the other 
enzymes changes the shift of TTMP except that sialidase slightly increases the migration 
of TTMP.  Taken together, it was concluded that TTMP was N-glycosylated at its N-
terminal end. 
 
 
4.2.4 TTMP Localizes to the Endoplasmic Reticulum 

Topological analysis of TTMP using two different web-based programs 

(http://psort.nibb.ac.jp and http://www.cbs.dtu.dk/services/TMHMM) predicted that TTMP 

is a single pass transmembrane protein localized to the endoplasmic reticulum (ER) (Fig 
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16A) (204). We initially used immunocytochemistry to study the subcellular localization of 

TTMP in vitro. HeLa cells transiently transfected with TTMPpcDNA3.1 were fixed and 

probed with V5-antibody. HRP staining of secondary antibody to V5-antibody showed 

that TTMP was localized to the perinuclear region in an eccentric fashion. This is in 

concordance with the in-silico prediction of TTMP’s subcellular location. The ER 

localization of TTMP was further investigated by immunofluorescence co-localization 

experiments using laser scanning confocal microscopy. Co-immunofluorescence staining 

with the ER-specific protein disulphide isomerase (PDI) confirmed that TTMP is co-

localized with the specific ER marker (Fig 16B). Furthermore, the ER localization was 

preserved when the truncated TTMP expression vector (CT-TTMPpcDNA3.1) which 

expresses the C-terminal end of TTMP with the transmembrane domain was transfected 

(Fig 16C). However, the C-terminal end of TTMP without transmembrane domain does 

not co-localize with the specific ER marker as seen by transfecting CTTMminus-

TTMPpcDNA3.1 expression plasmid into cells (Fig 16D). 

 

4.2.5 TTMP Inhibits Proliferation of Pancreatic Cancer Cells 

namics of TTMP, we 

have o

In screening studies for possible effects on cell growth dy

bserved that HeLa cells transiently transfected with TTMPpcDNA3.1 grow slower 

as compared to control cells transfected with the empty vector. Hence we investigated 

the growth effects of TTMP transfection in human pancreatic cancer cells. As pancreatic 

cancer cells have low transient transfection efficiencies, we first established CD18 

pancreatic cancer cell clones with stable expression of TTMP, and identified multiple 

positive clones (Fig 17A). When observed under light microscopy, TTMP stable 

expression CD18 cell clones proliferate slower and do not have the same propensity to 

form large multi-cell adherent colonies as do native CD18 and empty vector-transfected 

cells (Fig 17B). This observation was also evident when the different colonies growing on 
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6-well plates were stained with crystal violet and photographed (Fig 17C). Furthermore, 

CD18 cells with stable expression of TTMP grow much slower as compared to control 

native and empty vector transfected cells when grown in collagen I gels (Fig 18). 

 

The growth effects were then investigated in a quantitative manner. Cell 

prolifer

It could be argued that forced expression via the constitutionally active CMV 

promot

ation assays was conducted using an automated cell counter. Equal numbers of 

TTMP stable expression cells, empty vector transfected cells, or native CD18 cells were 

seeded into 12-well plates and grown in serum-free conditions. Forced expression of 

TTMP resulted in a dramatic growth inhibition over the four days of study compared to 

empty vector-transfected cells or parental CD18 control cells (Fig 19A). By the end of 4 

days, the decrease in the number of cells was more than 4-fold (clone 208 or clone 210 

vs control CD18 cells or pcDNA3.1 empty vector-transfected cells at day 2:  P<0.05; 

clone 208 or clone 210 vs control CD18 cells or pcDNA3.1 empty vector-transfected 

cells at day 3 and 4:  P<0.001). 

 

er found on pcDNA3.1 could lead to supra-physiological levels of TTMP which 

may not truly reflect the nature of TTMP’s action on the cell. Hence another strategy 

which we employed to quantify the growth inhibitory effect of TTMP was to use siRNA to 

silence the expression of endogenous TTMP and then investigate the effect on cell 

growth. A mixture of siRNA duplexes targeting to TTMP was able to effectively suppress 

the expression of TTMP by more than 50% compared with expression in control cells 

transfected with scrambled siRNA (Fig 19B, scrambled siRNA vs TTMP siRNA: P<0.05). 

Cell counting assays, performed in parallel revealed a 2-fold increase in the number of 

TTMP siRNA transfected cells as compared to control (Fig 19B), scrambled siRNA vs 
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TTMP siRNA: P<0.05). This finding further strengthens the evidence that TTMP inhibits 

growth of pancreatic cancer cells. 

 
 

 

Full-length TTMP          ER marker                   overlap 

CT-TTMP                    ER marker                   overlap 

CTTMminus-TTMP         ER marker                   overlap 

A 

B
 
 
 
 
 
 
C
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Figure 16. Immunofluorescence localization of TTMP in HeLa cells. HeLa cells were 
transfected with either pcDNA3.1 control plasmid, TTMPpcDNA3.1 plasmid, CT-
TTMPpcDNA3.1 plasmid, or CTTMminus-TTMPpcDNA3.1 plasmid for 24 hours. The cells 
were fixed with paraformadehyde, with 0.2% Triton X-100, and co-stained with a V5 
antibody (green) and an endoplasmic reticulum-specific marker, protein disulphide 
isomerase (PDI) antibody (red). Localization of TTMP and protein disulphide isomerase 
was visualized by confocal fluorescence microscopy. (A) Diagram depicting TTMP as an 
ER transmembrane protein with its N-terminal end in ER lumen and C-terminal end at 
cytoplasma.  Immunofluorescence staining shows that TTMP is co-localized with protein 
disulphide isomerase (B), the C-terminal truncated TTMP with transmembrane domain 
(CT-TTMP) is co-localized with protein disulphide isomerase (C), and the C-terminal 
truncated TTMP without transmembrane domain (CTTMminus-TTMP) is not co-localized 
with protein disulphide isomerase (D).  
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igure 17.  Effect of forced expression of TTMP on cell proliferation in CD18 pancreatic 

igure 18. Effect of forced expression of TTMP on cell proliferation of CD18 cells in 

F
cancer cells. (A) CD18 cells were plated in T25 flask and transfected with either the 
TTMP pcDNA3.1 expression plasmid or the control pcDNA3.1 plasmid. The transfected 
cells were selected with G418 for 3 weeks. The G418 resistant clones were picked and 
TTMP-V5 expression in the stable clones was measured by western blotting. (B) Forced 
expression of TTMP inhibited CD18 cell proliferation and induced a marked 
morphological change with a lack of colony formation. (C) Equal amount of cells were 
plated into 12-well plates. The cells were grown for 4 days and stained with crystal violet. 
Compared with control CD18 cells or a TTMP negative clone, forced expression of 
TTMP significantly decreases cell proliferation as evidenced by cell density. 
 

 
 
F
three-dimensional collagen 1 gels. 1500 CD18 cells were mixed into 0.5 ml of collagen 1 
gel. The gels were plated into 24-well plates and fed with DMEM media containing 10% 
FBS. Pictures were taken 2 weeks following culture. Compared to control CD18 cells, 
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forced expression of TTMP significantly slowed down cell proliferation in the three-
dimensional collagen 1 gels. 
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Figure 19.  (A)  Forced expression of TTMP inhibits cell proliferation in CD18 cells.  
CD18 control cells and TTMP stable expression clones were plated into 12-well plates. 
The cells were grown in DMEM and cell number was counted every 24 hours. Compared 
with control cells, forced expression of TTMP dramatically inhibited cell proliferation as 
measured by cell number. (B) siRNA duplexes targeted to TTMP enhance CD18 cell 
proliferation. TTMP siRNA duplexes decreased copy number of TTMP compared with 
scrambled siRNA transfection. Transfection with TTMP siRNA duplexes increased CD18 
cell number compared with the control transfected cells. 
 
 
4.2.6 CT-TTMP, an In-Frame N-Terminal Truncation of TTMP Enhances 

Pancreatic Cancer Cell Growth  

As mentioned above, we examined the localization characteristics of CT-TTMP, 

an in-frame N-terminal truncation of TTMP, in parallel with the experiments conducted 

with the full-length protein. We next examined the functional differences between full-

length TTMP and C-terminal end of TTMP with the transmembrane domain, following 
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establishment of CD18 cell clones that stably express the C-terminal end of TTMP by 

transfecting the CT-TTMPpcDNA3.1 plasmid and G418 selection (Fig 20A). The two 

clones (clone 6 and 18) with the highest expression of CT-TTMP were used for 

subsequent cell proliferation studies. Interestingly, forced expression of CT-TTMP 

stimulated pancreatic cancer cell growth, in contrast to the growth inhibition seen in 

response to transfection with full-length TTMP (Fig 20B). At the end of 4 days, the 

fastest growing clone exhibited a more than 2-fold increase in the number of cells 

compared with all 3 controls (Fig 20B, control CD18, pcDNA empty vector transfected 

CD18 cells, or the negative expression clone vs clone 6 or clone 18 at 4 days:  P<0.01; 

control CD18, pcDNA empty vector transfected CD18 cells, or the negative expression 

clone vs clone 6 or clone 18 at 3 days:  P<0.05).  

 
 

A    B

1 2 3 4
0

100000

200000

300000

400000

500000

600000
CD18
pcDNA3.1
clone 8 (negative)
clone 6 (positive)
clone 18 (positive)

Days

C
el

l n
um

be
r

 CT-TTMP-

 
Figure 20. Effect of forced expression of the C-terminal fragment of TTMP on cell 
proliferation in CD18 pancreatic cancer cells. (A) CD18 cells were plated in T25 flasks 
and transfected with either the CT-TTMP pcDNA3.1 expression plasmid or the control 
pcDNA3.1 plasmid. The transfected cells were selected with G418 for 3 weeks. The 
G418 resistant clones were picked and CT-TTMP-V5 expression in the stable clones 
was measured by western blotting. Multiple clones stably expressing CT-TTMP were 
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identified by western blot. (B) CD18 control cells and CT-TTMP stable expression clones 
were plated into 12-well plates. The cells were grown in DMEM and cell number was 
counted every 24 hours. Compared to control cells, forced expression of CT-TTMP 
markedly increased cell proliferation, measured by cell number. 
 
 
4.2.7 Forced Expression of TTMP Induces G1 Phase Growth Arrest in CD18 

Pancreatic Cancer Cells 

We next investigated the effect of TTMP on cell cycle changes in pancreatic 

cancer cells.  Cell cycle analysis was compared in CD18 cells with stable expression of 

TTMP and empty vector-transfected cells. Compared to control, a larger proportion of 

TTMP-expressing cells were in the G0/G1 phase, indicating G1 phase growth arrest in 

these cells (Fig 21).  

 

4.2.8 Forced Expression of TTMP Inhibits HeLa Cell Proliferation 

To further confirm that forced expression of TTMP inhibits cell proliferation, we 

also looked at effect of TTMP on proliferation of another cancer cell line, HeLa cells.  

Stable TTMP expression clones of HeLa cells were established following transfection of 

TTMP expression vector and G418 selection.  Forced expression of TTMP also 

significantly inhibited proliferation of HeLa cells, assessed by cell number in regular cell 

culture, further suggesting that TTMP negatively regulates cell proliferation (Fig 22). 
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Figure 21.  Forced expression of TTMP causes G0/G1 phase cell cycle arrest in CD18 
pancreatic cancer cells. Both pcDNA3.1 empty vector-transfected cells and TTMP stable 
expression cells were trypsinized and fixed in 70% alcohol for 15 minutes. The cells 
were stained with propidium iodide in PBS for 2 hours. The DNA content of the cells was 
assessed by flow cytometry. Forced expression of TTMP significantly increased the 
G0/G1 cell population compared to that of control. 
 
 

 

  
Figure 22  Effect of TTMP on HeLa cell proliferation. (A) HeLa cells were plated in T25 
flask and transfected with either the TTMP pcDNA3.1 expression plasmid or the control 
pcDNA3.1 plasmid. The transfected cells were selected with G418 for 3 weeks. The 
G418 resistant clones were picked and TTMP-V5 expression in the stable clones was 
measured by western blotting. (B) HeLa control cells and TTMP stable expression 
clones were plated into 12-well plates. The cells were grown in DMEM and cell number 
was counted every 24 hours. Compared to control cells, forced expression of TTMP 
dramatically inhibited cell proliferation, measured by cell number.  
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4.2.9 Conclusion 

In conclusion, we have shown that TTMP is highly expressed in human 

pancreatic tissue, but has a low expression in both pancreatic cancer cell line CD18 and 

the cervical carcinoma cell line, HeLa. TTMP undergoes post-translational modification 

via N-glycosylation and addition of sialic acid moieties, and is localized to the 

endoplasmic reticulum within the cell. We have also demonstrated that TTMP has 

growth inhibitory effects in pancreatic cancer cells by inducing G1 phase growth arrest.   

 

4.3 TRANSCRIPTIONAL REGULATION OF TTMP PROMOTER 

The final aim of the study was to investigate the basal transcriptional activity of 

TTMP. 

 

4.3.1 Sequence Analysis of the 5’-Flanking Region of TTMP 

We have previously performed 5’-RACE to identify the transcription start site of 

TTMP. In order to assess the promoter activity of the 5’-flanking region of the TTMP 

gene, we analyzed up to 2-kb genomic NT_005612.14 sequence upstream of the 

determined transcription start site. Computer analysis was performed using online 

software TFSearch (http://www.cbrc.jp/research/db/TFSEARCH.html). Putative binding 

sites for transcription factors deltaE (core similarity 0.88), p300 at nucleotide position -

150 to -138 (core similarity 0.91), Sp1 at nucleotide position -77 to -68 (core similarity 

0.89), a second p300 site at nucleotide position -65 to -52 (core similarity 0.88), an 

overlapping Sp1/Mzf1 at nucleotide position -54 to -45 (core similarity 0.92/ 0.93), and an 

USF site (core similarity 0.87) were identified in the proximal sequence, as shown in Fig 

23. There were neither TATA box nor CAAT box found in this region, and the proximal 

sequence had a high GC content. This analysis suggests that a TATA-less promoter is 
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used for TTMP expression, which is likely to be regulated by multiple transcription 

factors. 

 

4.3.2 Functional Characterization of the TTMP Promoter  

To localize the DNA elements that are important for promoter activity, a series of 

unidirectional deletion analysis of the 2-kb 5’-flanking region of the TTMP gene was 

carried out. Deletion fragments having 5’ ends ranging from -1909 to -219 and 3’ ends at 

+95 were generated by PCR and cloned into the promoterless pGL3-basic, a luciferase 

reporter vector. Each resulting recombinant construct was then transiently transfected 

into human cervical carcinoma cell line HeLa. After 48 hours, cell extracts were prepared 

and luciferase activity was measured. The resulting luciferase reporter gene activities 

were then normalized to protein concentration of the individual lysates. As shown in Fig 

24A, deletion from -1909 to -766 led to a reduction in luciferase activity from 20.2 fold to 

13.7 fold. This would indicate the presence of enhancer elements in the region -766 to -

1909. Similarly, the increase in luciferase activity seen when the constructs were deleted 

from -284 to -219 would indicate the presence of suppressor elements in that region. Of 

note, the construct -219/+95 exhibited a luciferase activity of 18.5 fold over that of the 

promoterless pGL3-basic vector. This would be consistent with the definition of a 

proximal promoter being within 200 nucleotides flanking the transcription start site in 

both directions i.e. upstream and downstream.  

 

To determine the functional importance of each potential transcription factor 

binding site that was located between -219 and +95 for promoter activity, further 

progressive deletion constructs were generated. Deletion from nucleotides -219 to +18 

caused a reduction of luciferase activity from 23.5 fold of basal activity of the pGL3 basic 

vector, to almost that of the basal activity of pGL3 basic vector alone (Fig 24B). 
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Remarkably, deletion from nucleotides -135 to – 69, which removed a putative Sp1 

binding site, and deletion from nucleotides -69 to +18, which removed a putative p300 

site and a putative Mzf1/Sp1 binding site, reduced the promoter activity by 46% and 85% 

respectively (Fig 24B). This would suggest that the putative transcription factor binding 

sites for Sp1, p300 and the overlapping Mzf1/Sp1 located between nucleotides -135 to 

+18 may contribute to the basal promoter activity.  
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Figure 23. Sequence of the 5’ flanking region of the hTTMP gene. Potential binding sites 
for transcription factors are underlined. The nucleotide position +1 indicate the major 
transcription start site. 
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Figure 24. Deletion analysis of the 5’ flanking region of the hTTMP gene. Progressive 
deletions of the hTTMP 5’ region was amplified by PCR and then ligated to the luciferase 
reporter gene. The 3’ terminus of each construct is nucleotide +95 relative to the 
transcription start site (TSS). The arrow marks the transcription start site (position +1). 
0.25µg of each luciferase reporter construct with 1µl of Metafectane was transfected into 
HeLa cells. Cells were lysed after 48 hours post-transfection. The luciferase activity was 
measured and normalized to protein concentration. The normalized activity was 
expressed as fold change relative to the activity of the empty vector pGL3 basic which is  
set at 1 and is presented as the mean ± S.E. of three independent experiments. (A) 
Deletion analysis of the 5’ flanking region spanning nucleotide -1909 to -219 relative to 
the TSS. (B) Deletion analysis of the proximal promoter region spanning nucleotide -219 
to +18 relative to the TSS. The locations of putative transcription factor binding sites 
on the proximal promoter region are indicated. 
 
 
4.3.3 Site-Directed Mutagenic Analysis of the Putative Transcription Factor 

Binding Sites Responsible for Basal Promoter Activity of TTMP 

To additionally confirm the involvement of the putative Sp1 and overlapping 

Mzf1/Sp1 transcription factor binding sites in the basal promoter activity of TTMP, we 

introduced mutations into these sites using site-directed mutagenesis as described 
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above. The mutated constructs were then transfected into HeLa cells and the luciferase 

activities determined. As shown in Fig 25, individual mutations in the Sp1 site as well as 

the Mzf1/Sp1 site led to a dramatic reduction in luciferase activities as compared to the 

wild-type -135/95 construct. This reduction was even more pronounced when mutations 

were introduced into both sites on the same construct. The shorter -69/+95 construct did 

not contain the first Sp1 site. When the overlapping Mzf1/Sp1 site was mutated on this 

construct, again this led to a reduction in luciferase activity when compared to control. 

Putting these data together, we can conclude that both the Sp1 site as well as the 

Mzf1/Sp1 site plays a role in the high basal activity of the region spanning nucleotides -

135 to +95.  

 
Figure 25. Mutational analysis of the proximal promoter region of the hTTMP gene. Site 
directed mutagenesis of the putative transcriptional factor binding sites was performed 
using PCR based technology. Transfection protocol and measurement of luciferase 
activity were as described in Fig 2. The wild type transcription factor binding sites are 
represented by the blackened symbols and the mutated transcription factor binding sites 
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are represented by the white symbols. Mut1represents mutation of the Sp1 site, mut2 
represents mutation of the overlapping Mzf1/Sp1 site. 
 
 
4.3.4  Electrophoretic Mobility Shift Analyses of Physical Binding of Transcription 

Factor Sp1 to Putative Cis-Elements on TTMP Promoter 

We next sought to determine the physical interaction between trans-acting 

transcriptional factor Sp1 and the putative transcriptional factor binding sites identified 

above that conferred high basal promoter activity on functional studies. The wild-type 

sequences -77 to -68 and -54 to -45 which contained the putative Sp1 binding site (site 

1) and overlapping Mzf1/Sp1 binding site (site 2) were used as probes, and together with 

nuclear extracts from HeLa cells, was analyzed for DNA-protein complexes formation. At 

least 4 complexes were formed with oligonucleotide sequence -77 to -68 (Fig 26A, lane 

ii). The specificity of these complexes was shown by competition assay, in which the 

highest band was dramatically reduced by the addition of unlabelled wild type 

oligonucleotides (lane iii and iv), as well as unlabelled Sp1 consensus sequence (lane 

vi). This competition is not seen with the addition of mutant native sequence (lane v) as 

well as a non-specific sequence (lane vii). To characterize these complexes further, 

supershift EMSA was conducted using Sp1 antibody. The result clearly identified a 

supershifted band upon addition of the Sp1 antibody (lane viii), but not with a non-

specific antibody (lane ix). This experiment was next conducted with the nucleotide 

sequence -54 to -45 encompassing the overlapping Mzf1/Sp1 binding site. We see in fig 

4B that the band indicated was similarly competed out by the addition of unlabelled wild 

type oligonucleotide, as well as both consensus Sp1 and Mzf1 sequences, but not the 

mutant native sequence and non-specific sequence (Fig 26B, lane ii to viii). Thus we 

conclude that the putative Sp1 and Mzf/Sp1 binding sites on TTMP promoter behave 

similarly to the consensus Sp1 and Mzf1 binding sequences. 
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Figure 26. Electrophoretic mobility shift analysis of nuclear protein interactions with DNA 
fragments derived from the hTTMP proximal promoter. Oligonucleotides containing the 
putative transcription factor binding sites (A) Sp1 (nucleotide -77 to -68) and (B) 
Mzf1/Sp1 (nucleotide -54 to -45) were radiolabelled and used as probes to incubate with 
nuclear protein extracts obtained from HeLa cells in EMSA. Lane (i) of both experiments 
represents the control lane without addition of radioactive probe. Lane (ii) of both 
experiments represents the radiolabelled probes without competition. Unlabelled 
competitor wild type oligonucleotides were present in 25-fold and 100-fold excess (lane 
iii and iv), and unlabelled mutant, consensus and non-specific oligonucleotides (lane v, vi 
and vii for fig 26A; lane v, vi, vii and viii for fig 26B) were present in 100-fold excess in 
competition reactions. Anti-Sp1 antibody was used for supershifting (fig 26A lane viii), 
and non-specific antibody was used in lane ix. The arrows point to specific complexes 
that could be competitively blocked in the presence of unlabelled specific probes or 
unlabelled oligonucleotides containing consensus sequences for binding of transcription 
factors. Figures shown are representative of 3 separate experiments respectively. 
 
 
4.3.5 Conclusion 

 In conclusion, we have cloned the 5’ flanking region of TTMP, as well as 

identified the core promoter responsible for basal activity of the gene. Using mutational 
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analysis and EMSA, we have demonstrated that Sp1 binds to its counterpart cis-

elements on the core promoter and activates transcription. 
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5. DISCUSSION, CONCLUSIONS AND FUTURE WORK 

 The effects of TPA and the role of PKC in pancreatic cancer are mixed and 

contrasting. Our own observations concurred with inhibition of pancreatic cancer cell 

growth following stimulation with TPA and subsequent activation of PKC (142,143). From 

the central and often diametric roles that PKC plays in cancer cell growth dynamics, we 

hypothesized that novel genes that play a causal role in this process would be identified 

by differential expression analysis of cancer cells following phorbol ester treatment.  

 

 TTMP is a novel TPA inducible gene. Using oligonucleotide microarray 

technology, we have identified a novel TPA-inducible gene which codes for a putative 

transmembrane protein which we called TPA-induced Trans-Membrane Protein (TTMP) 

(204). The full length cDNA of TTMP is comprised of 2252 base pairs of nucleotides. The 

gene was mapped to human chromosome 3q13.2 with 6 exons and 5 introns. A 

GeneBank search revealed several homologous expressed sequence tags (ESTs) from 

many different human tissues and organisms for this novel gene, suggesting that the 

gene is ubiquitously expressed in higher eukaryotes.  

 

TTMP is highly expressed in normal pancreas tissue but is under-

expressed in pancreatic and cervical cancer cells. TTMP was originally identified by 

oligonucleotide microarray analysis of pancreatic cancer cells treated with TPA. We 

examined the distribution of TTMP in normal human tissue and interestingly, normal 

pancreatic tissue had the highest expression of TTMP compared to the other tissues 

studied. This suggests that TTMP may play a role in maintaining normal pancreatic 

cellular homeostasis and function. More importantly, we see that the expression of 

TTMP is substantially reduced in pancreatic cancer cells and cervical carcinoma cells, 

compared to normal pancreatic tissue. This suggests that expression of TTMP may be 
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lost during the development of pancreatic cancer, underlying the potential anti-mitogenic 

nature of TTMP. 

 

TTMP is a transmembrane protein that undergoes post-translational 

glycosylation. Computational analysis predicted that TTMP contains a single 

transmembrane domain and is localized on the ER membrane. This is confirmed by co-

immunofluorescence staining with an antibody targeting to a specific ER membrane 

protein, protein disulfide isomerase. Interestingly, we found that ER localization of TTMP 

is dependent on the single transmembrane domain of TTMP, since the TTMP protein 

with deletion of this domain is not co-localized with the ER marker. Immunoblotting of 

TTMP shows that the molecular size of TTMP from cell extracts is 48 kDa, which is twice 

the size of the predicted protein product, suggesting that the protein undergoes post-

translational modification. From our deglycosylation assays, we have demonstrated that 

the protein is N- but not O-glycosylated with complex oligosaccharides, including some 

sialic acid residues. Post-translational modifications are critical for the regulating 

functions of both intracellular and extracellular proteins. It has been known that 

glycosylation could alter proteolytic resistance, protein solubility, stability, local structure 

and lifespan of proteins (206-208). In the current study, we found that TTMP is heavily 

N-glycosylated at its N-terminal end but not the C-terminal end.  Even though the 

functional effect of N-glycosylation on TTMP needs to be evaluated in future studies, we 

speculate that N-glycosylation might play an important role in TTMP-regulated cell 

proliferation because the truncated TTMP with deletion of its heavily N-glycosylated N-

terminal end generates an opposite biological effect to that of the full-length TTMP in 

pancreatic cancer cells. 
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TTMP inhibits pancreatic cancer cell proliferation and induces a G1 phase 

cell-cycle arrest. Possible role of TTMP in the UPR pathway. Even though it is not 

common that proteins localized on ER membrane are involved in cell division, multiple 

studies have shown that ER proteins can be involved in cell proliferation or apoptosis.  

For example, it has been shown that Ca++ homeostasis endoplasmic reticulum protein 

(CHERP) regulates cellular DNA synthesis through Ca++ homeostasis (209,210). 

Mediation of cellular apoptosis by ER proteins has also been well documented 

(211,212). The link between the unfolded protein response (UPR) and cancer has been 

a subject of much interest recently (213). UPR is a reaction to stress in the endoplasmic 

reticulum. An accumulation of unfolded or misfolded proteins within the ER, as well as 

outside stresses like nutrient and oxygen deprivation, trigger the UPR, leading to 

transcription of proteins in the nucleus that help cells cope with the stress. The UPR has 

both cytotoxic functions as well as cytoprotective ones. UPR activation can result in one 

of two outcomes: either regulated cell death triggered by apoptotic effectors or survival of 

the stress facilitated by beneficial UPR target genes. Prolonged activation of UPR results 

in decreased cellular proliferation from a cell cycle arrest in G1 phase secondary to a 

decrease in translation of cyclin D1, and preventing cells from progressing through the 

cell cycle before ER homeostasis is re-established (214,215). This delay may allow a cell 

to pause in the cell cycle to determine whether adaptation to stressful conditions will be 

possible, and if not, to continue on toward apoptosis (216). Hypoxia is a common feature 

of solid tumours, notably pancreatic cancer, that display increased malignancy, 

resistance to therapy, and poor prognosis. Tumour cells need to adapt to the increasing 

hypoxic environment that surrounds them as they grow, and induction of the UPR is key 

to this response (217). The focus of this thesis is on structural and functional 

characterization of the novel gene TTMP, and little work has been done to dissect the 

molecular pathways acting upstream and downstream of TTMP. Motif scanning analysis 
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of TTMP did not find sequence homology with any conserved functional domain. Hence 

at this juncture, the role of TTMP in growth regulation and its mechanism of action can 

only be speculative at best. Effector genes of the UPR pathway has been found to be 

highly expressed in tissues that specialize in secretion such as the pancreas, salivary 

gland, and chondrocytes (218,219). A viable hypothesis is that the high expression of 

TTMP seen in normal pancreatic tissue represents a role for TTMP as a novel player in 

the UPR pathway in maintaining normal homeostasis of the pancreas as a secretory 

organ. Similar to known mediators of the UPR, namely IRE1, PERK and ATF6, TTMP is 

localized to the endoplasmic reticulum, has a single transmembrane domain and is N-

glycosylated (220,221). In addition, full length TTMP inhibited pancreatic cancer cell 

growth and induces a G1 phase growth arrest in pancreatic cancer cells, a phenomenon 

similar to the cellular effects of the known mediators of the UPR in other cell-types. 

Interestingly, the N-terminal truncated protein (CT-TTMP) induced cell proliferation, in 

contrast to the inhibition of cell proliferation seen with the full-length protein. This could 

be due to the absence of functional domains residing on the N-terminal of the protein, or 

due to lost of glycosylation of TTMP, or that the truncated protein behaves as a dominant 

negative mutant to oppose the effect of the full-length protein. 

 

The TTMP promoter is a TATA-less promoter and is dependent on Sp1 for 

basal activity. In the last part of the study, we characterized the 5’ flanking region of the 

TTMP gene, which is responsible for its transcriptional regulation in cell culture. We have 

focused mainly on the identification of the promoter elements involved in constitutive 

gene expression. Using luciferase reporter gene assays from transiently transfected 

cells, we have mapped a highly active proximal promoter region. The 5’ region of the 

TTMP gene lacks a TATA box or a CAAT box, and has a high GC content, as well as the 

presence of potential binding sites for several well-characterized transcription factors. 
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The sequence around the transcription start site identified on TTMP is consistent with 

the consensus sequence of the initiator element (PyPy A N T/A PyPy), where A is the 

start site (161). Furthermore, the promoter of TTMP contains a GC rich region around 

the transcription start site, with putative binding motifs for transcription factor Sp1. This is 

consistent with previous report that the transcription of TATA-less promoters frequently 

involves the action of a proximal Sp1 site (223). We have determined that basal activity 

of the proximal promoter region is largely influenced by the putative Sp1 binding sites 

found on the TTMP promoter, as well as demonstrated physical association of Sp1 with 

these putative binding motifs. Studies have identified Sp1 sites in the promoters of 

multiple growth-regulated genes. Direct evidence for the ability of Sp1 sites to modulate 

transcription during changes in cell growth came with the demonstration that they are 

involved in the effects of serum stimulation of quiescent cells at the rep3a promoter (188) 

as well as at the hamster dihydrofolate reductase (DHFR) (224,225) and the ornithine 

decarboxylase promoters (205). Interestingly, studies have indicated that depending on 

the promoter, upregulation of Sp1 site dependent transcription can be related to positive 

and negative changes in cell growth. For example, whereas Sp1 sites in the rep3a and 

DHFR promoters support the upregulation of transcription following growth stimulation of 

quiescent cells, Sp1 sites in the p21WAF1/CIP1 promoter are involved in transcriptional 

upregulation related to growth inhibition (226).  

 

Conclusions and future work. In summary, we have identified a novel gene, 

TTMP, which is up-regulated in pancreatic cancer cells following exposure to the phorbol 

ester, TPA. Functional studies have shown that TTMP inhibits pancreatic cancer cell 

proliferation, and that it is a transmembrane protein that localizes to the endoplasmic 

reticulum. Promoter studies have also identified a TATA-less 5’-flanking region that is 

dependent on Sp1 for basal activity. Correlation of our data with tissue expression of 
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TTMP in human cancer specimens is important. However, as this is a novel gene, 

antibodies to the protein product is not available. The first task henceforth is to raise 

antibodies, to both the full-length as well as the N-term truncated protein, to study its 

expression in pancreatic and other cancers. Furthermore, animal experiments should be 

conducted to investigate the effects of down-regulation or over-expression of this gene 

in-vivo. Certainly, further studies are necessary to elucidate the molecular mechanisms 

and signal molecules that mediate TTMP-induced inhibition of cell proliferation. 

Prelimary work on the TTMP promoter will provide the basis for future studies wherein 

the objectives are to elucidate the mechanisms underlying the upregulation of TTMP by 

TPA, the tissue specific expression of the gene, as well as the possible downregulation 

of promoter activity during carcinogenesis of pancreatic as well as other cancers. 
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