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SUMMARY 

 

In recent years, because of the advantages of photodynamic therapy (PDT), we 

gradually observe the replacement of this medical treatment over conventional cancer 

treatment. However, current application of PDT is also met with a major disadvantage of 

limited light penetration which restricts its application to dermatological cancer treatment. 

Two-photon PDT is able to overcome this limitation.  

 

Two-photon absorption is a third-order nonlinear optical (NLO) phenomenon. The 

last two decades have witnessed a phenomenal growth of research in nonlinear optical 

(NLO) properties of various conjugated polymers, molecular solids, organic and 

organometallic compounds. A collective effort from chemists, physicists and material 

scientists is in progress to understand the basic processes responsible for optical 

nonlinearity. Among the various organic materials, porphyrins, metalloporphyrins and 

their derivatives are one of the most studied groups of molecules. The general strategies 

taken to amplify their optical nonlinearity were extension of π-conjugation through the 

formation of covalent and coordination bonds.  

  

However, covalent systems are often more difficult to achieve on a practical 

scale. Multiporphyrin architectures assembled through various associations and 

orientations can provide a large class of intriguing coordination complexes that are more 

synthetically viable. This is clearly demonstrated in our work.   

 

Our research work involves the investigation of the NLO properties of covalently-

linked and coordination complexes of Zn(II) metalloporphyrins using Z-scan and 
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degenerate four-wave mixing (DFWM) techniques. In particular, the third-order nonlinear 

phenomenon of two-photon absorption (TPA) is highlighted because of their potential 

application in two-photon photodynamic therapy (PDT). Zn(II) metalloporphyrin dimer 

formed via Zn-O coordination bonds displayed the largest merit factor (TPA cross 

section, σ2/formula weight) of 1.61 GM mol g-1 amongst the complexes formed. 

 

In our effort to discover novel compounds with potential application for two-

photon PDT, our study reports the first finding of two-photon absorptivity in a series of 

benzo[c]cinnoline-fluorene copolymer in which the value of σ2 increased with the 

composition of benzo[c]cinnoline.  

 

Prior to the discovery of photosensitizers (drugs) for PDT, the study of specific 

molecular recognition of biomolecules, aggregation in aqueous system and 

photobleaching properties, is of fundamental importance. Hence, we performed a 

detailed study on the effects of the conformation and configuration of porphyrin 

substituents on these properties. Our studies found that water-soluble Zn(II) 

metalloporphyrins with ortho and para substituents bind similarly to ATP and AMP. 

However, the former display greater photostability and higher quantum efficiency than 

their commonly studied para counterparts.  

 

Hence, our work investigates the third-order NLO properties of Zn(II) 

metalloporphyrin coordination complexes, covalently-linked porphyrin polymers as well 

as benzo[c]cinnoline-fluorene copolymers. This work provides an insight on the influence 

of molecular architecture on NLO properties. In another aspect of the work, a detailed 

study of the conformational and configurational effects of peripheral substituents on 
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molecular recognition and photobleaching activities shed light on the future design of 

materials with large σ2 as photosensitizers for two-photon PDT.  
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CHAPTER 1 

PORPHYRINS AND METALLOPORPHYRINS  

 

1.0  INTRODUCTION  

 

The basic tetrapyrrole skeleton of porphyrin1 found in many natural pigments 

such as hemin, chlorophyll and bacteriochlorophyll, is probably one of the oldest 

bioorganic structures known to man. These macrocycles play a number of critical 

biological roles such as molecular binding,2 reaction catalysis, 3 energy and electron 

transfers,4 and light harvesting.5 The importance of these functions provided the impetus 

for intensive research towards artificial porphyrin systems that may be able to model or 

mimic their natural counterparts.6  

 

As a consequence of this search for mimic compounds, porphyrins have also 

been found to have great potential in areas outside mimicking natural systems. These 

include molecular sensing, 7  molecular recognition,2 medicine (photodynamic therapy 

(PDT),8 boron nuclear capture therapy and DNA cleavage) and optical application (data 

storage,9  nonlinear optics, electrochromism and optical limiting10). The production of 

prototypical molecular-scale devices such as wires,11 logic devices,12  switches13 and 

gates 14  which are essential for the miniaturization of electronic componentry and 

technology using porphyrin-based materials further increased the stimulus for intensive 

research towards artificial porphyrin assemblies. 

 

For all the uses mentioned above, it is important that the individual molecules 

within an array can communicate with each other otherwise the whole will be no better 
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than the sum of the components and the array cannot behave with enhanced 

effectiveness. This led to the design and synthesis of multiporphyrin arrays that can be 

formed with covalent type linkages such as meso-meso (1-1, 1-215), meso-β (1-315) and 

as well as non-covalent type linkages such as hydrogen bonding (1-416), metal-metal 

bonds17 and the most common in porphyrin chemistry being coordination bond (1-517).  

The choice of linker usually complements the functionality of the porphyrin unit and also 

depends on the availability of materials, research group’s expertise and ease of 

implementation. 

1-1 

 

 

                              1-2 
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1.1.0 PORPHYRINS 

 

Porphyrins are atypical biological macrocycles. A macrocycle is a cyclic molecule 

that contains at least three potential donor atoms in a ring with nine or more atoms.18  

The general criterion for a macrocycle involves having donor atoms to coordinate ions 

plus having a ring cavity large enough to accommodate these ions. The donor atoms in 

porphyrins are thus the four N atoms.1  

 

The porphyrin nucleus consists of four ‘pyrrole-type’ rings joined by four methine 

bridges to give the macrocycle (1-6). This cyclic porphyrin structure was first suggested 

by Küster in 1912; at that time it was thought that such a large ring would be unstable 

and that this structure was not accepted by Fischer, the father of contemporary 

porphyrin chemistry until much later.19  

 

N N

NN
H

H

 

1-6 

 

1.1.1 GENERAL CHEMISTRY OF PORPHYRINS 

 

The porphyrin macrocycle is highly conjugated and a number of resonance forms 

can be written. There are nominally 22 π electrons but only 18 of these are included in 

any one delocalisation pathway. This conforms to the Hückel’s 4n+2 rule for aromaticity 
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which is characterized by a unique absorption spectrum of porphyrins. Generally, 

porphyrins show four absorption bands in the visible region and one very intense band, 

the Soret band, in the near-ultraviolet (~ 400 nm). A typical UV-vis absorption spectrum 

of a porphyrin is as shown in Fig. 1.1. The Q-bands are attributed to the lowest energy 

spin-allowed electronic transition, namely the S1←S0 transition and its vibronic satellites 

corresponding to the I-st and II-nd Q-bands. Second spin-allowed electronic transition 

from the ground state S2←S0 and its vibronic satellite correspond to the III-rd and IV-th 

Q-bands.1, 20 

 

If a metal is introduced into the center, then the symmetry of the macrocycle 

increases, changing the point group from D2h to D4h. This leads to degeneracy of the S1 

and S2 electronic levels, decreasing the number of Q-bands from 4 to 2. 

 

 

Fig. 1.1 A typical UV-vis absorption spectrum of a free base porphyrin 
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Formation of a metalloporphyrin complex results, in most cases, in the collapse 

of the four-banded spectrum to yield two absorption bands in the visible region, while the 

Soret band usually remains unaltered. The basic planarity of the nucleus that conforms 

with the basic requirement for aromatic character was confirmed by its X-Ray diagram, 

the very shielded NH protons (-2 to -4 ppm), as well as deshielded meso protons due to 

the anisotropic ring current effect. The startling abundance of doubly-charged ions and 

the stability of molecular ion towards fragmentation in the mass spectra of porphyrins 

and their derivatives also attest to the aromatic nature of the nucleus.1, 19 

 

1.1.2 SYNTHESIS OF PORPHYRINS 

 

Porphyrins can be synthesized by several routes which are generally from 

monopyrrole, dipyrrolic intermediates, 1,19-dideoxybiladienes and oxabilane 

intermediates.1 The strategy to the synthesis of porphyrins depends on the structure of 

porphyrins. Non-symmetric types require more laborious construction of an open chain 

intermediate while symmetrically substituted compounds are best synthesized by 

polymerisation of a suitable monopyrrole.  

 

The synthesis of monomeric porphyrins in this project involves the MacDonald-

type [2+2] condensation of dipyrromethane21 with an equivalent of aldehyde to yield the 

1,15-disubstituted porphyrins. The first example of such a porphyrin was reported by 

Triebs and Haberle who synthesized 5,15-diphenylporphyrins from benzaldehyde and 

dipyrromethane. The breakthrough in porphyrin synthesis from dipyrromethanes came 

with MacDonald’s method22 whose research group developed the first dipyrromethane-

based porphyrin syntheses as shown in Scheme 1.1.  
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Scheme 1.1 [2+2] Condensation of dipyrromethanes – the MacDonald method22 

 

Dipyrromethanes represent the partial structure of rubinoid bile pigments. 

Therefore, much attention has been focussed on the preparation of dipyrromethanes.23 

Synthetic methods for β-substituted-meso-substituted dipyrromethane and β-

unsubstituted-meso-substituted dipyrromethanes are well documented, but that of β, 

meso-unsubstituted dipyrromethane was less developed. Recently, a novel one-step 

synthetic route to the compound was established with a yield of 40 %, thus making the 

synthesis of the β,meso-unsubstituted dipyrromethane easier. Until today, several 

groups are continuing their search for better procedures that give higher yield of the 

compound.12a,24 In addition, a diverse range of reaction conditions for the MacDonald-

type [2+2] condensation of dipyrromethane and aldehyde had been studied by Lindsey 

et al.25 with the goal of eliminating acid-catalyzed polypyrrolic rearrangement reaction as 

a function of the acid catalyst, reagent concentration, reagent stoichiometry, solvent 

salts and temperature. 
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1.2 MULTIPORPHYRIN ARRAYS 

 

Multiporphyrin architectures reveal enormous versatility in photoactivity, electron 

transfer and redox properties.3, 26 In particular, functional assemblies of multiporphyrin 

arrays have been designed for the development of new molecular electronic devices,27 

molecular machines and catalysts.28 Although many elegant structures of such arrays 

have been constructed via direct covalent bonding, it is difficult to realize the materials 

into devices on a practical scale.22,29 Molecular self-assembly offers a good alternative to 

a wide variety of one-, two- and three-dimensional arrays.30 The most well-studied Zn(II) 

metallopoprhyrin self-assemblies are formed from Zn-N coordination bonds (1-7, 1-8, 1-

9).17d,31 For example, extension into a one-dimensional (1D) network was achieved in a 

series of tetra(4-pyridyl)-porphyrins. A five-coordinate Zn(II) with one intermolecular Zn-

N(pyridyl) coordination was preferred due to steric reasons. Three-dimensional (3D) 

coordination polymers involving six-coordinate Zn(II) with two axial N (pyridyl)-donors 

was only formed after more extensive crystallization experiments.32  

 

Coordination polymers of Zn(II) metalloporphyrins with O-donor are less studied. 

For example, axial O-donor from functional groups attached to peripheral phenyl rings 

has been reported.33 These examples are, however, limited to five-coordinate Zn(II), 

thus restricting the formation of only 1D polymer network. To the best of our knowledge, 

six-coordinate Zn(II) metalloporphyrin complexes with two axial O donors forming a 3D 

polymer network were not known before our work. The ability of the central metal ion to 

accommodate two axial ligands is important in obtaining extensive multi-layered arrays. 

Coordination complexes of Zn(II) metalloporphyrins formed by Zn-O bonds reported in 

our work will be described in detail in Chapter 5.  
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1-7 1-8 

 

 

1-9 
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A literature survey revealed that the Zn(II) metal atom in the porphyrin center has 

a marked preference for either four-coordinate square-planar or five-coordinate square-

pyramidal environments.34 It binds to the four inner pyrrole N atoms of the porphyrin 

macrocycle and quite often also to another ligand in the axial direction, revealing a 

particularly high affinity for N Lewis bases. Hence, ligands with N donor(s) are often 

used to bridge porphyrin macrocycles. The majority of the ligands are bidentate such as 

bipyridyl-type functional ligands and diaminoalkane types.35  It is considerably more 

difficult to construct extended coordination polymers with Zn(II) tetraphenylporphyrin 

building blocks due to the low affinity of the Zn(II) metal atom for an octahedral ligation 

environment. A survey of the Cambridge Crystallographic Database by Allen F.H and 

Kennard O34 indicates that only about 20 % out of 1500 crystal structures of Zn(II) 

complexes known to date contain a six-coordinate Zn(II) ion. Only scattered examples of 

monomeric six-coordinate complexes of various Zn(II) metalloporphyrin derivatives with 

amine axial ligands have been characterized36 and even less so when it comes to 

extended polymers.37 

 

1.3 PORPHYRINS AS NONLINEAR OPTICAL LIMITING  MATERIALS 

 

We witnessed the phenomenal growth of research in nonlinear optical (NLO) 

properties of conjugated polymers38 and organic/organometallic39 compounds over the 

last two decades. The current emphasis is placed on the synthesis of novel chemical 

structures, tailored to optimize the nonlinear response while preserving their chemical, 

mechanical, optical and thermal stability. 

 

Among the various organic materials, porphyrins and their derivatives are one of 

the most widely studied class of molecules for NLO applications.38a,40 Porphyrins are a 
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ubiquitous class of naturally occurring compounds found in biological systems. Their 

derivatives are biological representatives in heme, chlorophyll and vitamin B12.41 They 

are also involved in oxygen binding, catalysis, light harvesting and electron transfer 

processes in biological systems. The Fe(II) and Mg(II) metalloporphyrins are found in 

heme and chlorophyll respectively. The former is found in blood responsible for the 

transfer of molecular oxygen to tissues while the latter is required for the decomposition 

of water via photosynthesis in organisms. Zn(II) metalloporphyrins take part in metabolic 

processes.  

 

Although porphyrin is a macromolecule, its flexibility allows a large number of 

metal ions to be inserted into its internal cavity. The versatility of structural changes via 

the peripheral substituents allows these changes to be introduced without compromising 

its excellent chemical and thermal stability. In addition, the high electron density and 

extensive electron delocalization ability makes porphyrins useful for a variety of NLO 

effects. Their sharp absorption bands in the visible and near-IR can be used for 

resonance enhancement of the NLO susceptibility tensors of a given medium (refer to 

Chapter 2 for detailed explanation). Thus, they have enormous potential for applications 

in optical limiting, optical switching, optical data processing and electronic device 

fabrication.20,21 

 

Optical limiting was first reported in porphyrin dyes by Blau et al.42 in 1985. Laser 

pulses of 85 ps duration at 532 nm were used to show that the excited state absorption 

cross section σex is larger than the ground state absorption cross-section, σgr in Zn(II), 

Co(II) and metal-free tetraphenylporphyrins. Beddard et al.43 noted that porphyrins with 

closed-shell metal atoms have relatively long excited state lifetimes while those with 

open-shell metal atoms generally have short excited state lifetimes due to rapid charge 
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transfer from the excited porphyrin to the metal atom. The effect of halogenation on the 

excited state lifetime and optical limiting performance were also studied.44 It was found 

that Br atoms increase the triplet yield via heavy atom effect. In addition, Br atoms distort 

the porphyrin structure from planarity via steric hindrance. The distortion broadens the 

linear absorption features, shifts the position of the Soret and Q-bands to longer 

wavelengths and increases the triplet yield further by increasing the mixing between 

singlet and triplet states. However, increasing the triplet yield (rate) also decreases the 

triplet lifetime and a compromise must be achieved to ensure that the dye is still effective 

against relatively long microsecond-duration laser pulses. Modified porphyrins have 

since been extensively studied for their optical limiting properties.  

 

 

R = C6H13, Ar = 3,5-di-tert-butylphenyl 

 

1-10 

 

1-11   R = C7H5 
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Conjugated porphyrin polymers45 such as 1-10 and 1-11 exhibit exceptionally 

large third-order nonlinear susceptibility (χ(3)) making them relevant to a large variety of 

NLO applications. High values of χ(3) are associated with large, polarisable π-systems, 

long conjugation lengths and small HOMO-LUMO gaps of porphyrins. The impact of 

molecular design on the magnitude of third-order nonlinear responses of porphyrins has 

been widely explored. Peripheral substituents with donor/acceptor groups, 46 

dendrimers, 47  divalent ions with decreasing d-shell occupancy, electronegative axial 

ligands48 and extended conjugation through covalent and coordination bonds38a,49 have 

been found to be important factors in these designs. For instance, 1-12 exhibit very large 

electronic nonlinearity from the highly conjugated structure when measured by 

degenerate four-wave mixing (DFWM) technique at 1064 nm with 45 ps pulses.50 In 

addition, it possesses one of the largest nonlinearities of any conjugated organic 

polymers to date and the largest among those studied off-resonance by over a factor of 

10. Efforts have thus been extended to enhance the optical properties through 

substitution of ethyne with butadiyne linker. However, polydiacetylenes do not offer large 

enough nonlinearities together with fast response times. 

 

Very recently, double strand ladder complexes 1-13 based on polymers related 

to 1-12 have been widely studied by means of the DFWM technique.51 Anderson et al. 

sought to improve the optical properties through the extension of conjugation in two 

dimensions to increase electronic delocalization. The meso-ethynyl substituents were 

attached perpendicular to the main polymer chain. However, the extension of two-

dimensional (2D) conjugation did not increase the optical nonlinearity. Instead, it was 

later demonstrated that the optical nonlinearity of a conjugated metallopophyrin can be 
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amplified by supramolecular self-assembly using ligand coordination as well as change 

of coordinated metal. 

           

1-12 Ar = 3’,5’-di-tert-butylphenyl   

                                                        1-13 

 

 

 

1-14 

 

 Most recently, it was reported that fused diporphyrins such as 1-1452 have much 

larger two-photon absorption (TPA) cross-section (σ2) values (refer to Chapter 3 for 
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detailed explanation) in comparison to directly linked porphyrin oligomers, 53  self-

assembled porphyrin tetramers49,54 and porphyrin dimers.55 However, it is important to 

highlight that the syntheses of such covalently-linked conjugated systems are tedious 

and difficult to realize on a practical scale. In addition, such macromolecular structures 

are hydrophobic and suffer from aggregation problems due to π-π stacking of planar 

systems. This will most likely result in poor water-solubility, an important property for 

biological application, even if hydrophilic functional groups were attached.  

 

1.4 IMPORTANCE OF PORPHYRIN AS THIRD-ORDER NONLINEAR OPTICAL 

LIMITING MATERIALS 

 

Our group is particularly interested in the study of structure-property relationship 

of porphyrins on their third-order NLO properties. In particular TPA is of interest because 

of it shows potential practical utility in a variety of areas such as fluorescence 

microscopy, optical data storage, 56  laser chemistry, micro-fabrication 57  and 

photomedicine.55,58 Application of porphyrins is especially attractive in two-photon-based 

PDT,59 where reduced absorption and scattering at near-IR wavelengths allows deeper 

penetration of light through body tissues to be achieved. 

 

PDT is gaining acceptance worldwide as an alternative treatment of tumors as 

well as age-related macular degeneration because of its potential ability to treat 

subcutaneous tumors non-invasively, while at the same time eliminating the adverse 

physical discomfort associated with traditional chemotherapy and the debilitating effects 

of actinic radiation treatments. PDT has been used as a clinical treatment of cancer for 

more than 10 years in Canada, Europe and Asia, and recently in the United States. PDT 

is currently used for treatment of cancers such as lung, skin, head, neck, throat and 
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reproductive organs. New photodynamic drugs are currently being studied for treatment 

of brain cancer, breast cancer, and leukemia.60 

 

The accepted mechanism for PDT involves the interaction of an excited state of 

the drug or dye with the ground state of oxygen. A molecule of the drug absorbs a 

photon of red light and is excited to the first excited singlet state. If this singlet state is 

long lived, energy can be transferred from the singlet state to the triplet state through 

inter-system crossing. This triplet state can react with local oxygen molecules to create 

an excited state of oxygen called singlet oxygen. Singlet oxygen is cytotoxic and 

destroys nearby cells. Since the drugs used in PDT are localized on cancer cells, this 

increases the specificity of the treatment process.59  

 

Currently, the drugs that have been approved for PDT are mainly porphyrin 

derivatives. They are however far from ideal, for instance, the most commonly used 

Photofrin® suffers from low purity due to the mixture of products formed during synthesis. 

Serendipitously, porphyrin molecules possess the rare feature of selective accumulation 

in tumour cells which makes it the obvious choice as core building block for 

photosensitizers. However, tissue’s transmission depends critically on the illumination 

wavelength and is the largest in the so-called tissue transparency window at 750 - 1000 

nm. Porphyrins currently in use for PDT fall short of this transparency window: their 

absorption varies from 620 - 690 nm, where effective penetration in most tissues is no 

more than just a few millimeters in depth. Unfortunately, attempts to shift the one-photon 

absorption band toward longer wavelengths by chemical modification of the porphyrin 

structure come into conflict with the fundamental requirement that the excitation energy 

of singlet oxygen is lower than the energy of the state. In addition, long-wavelength shift 
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of porphyrin’s energy levels often aggravates the situation by reducing the compound’s 

stability.  

 

In the view of these challenging difficulties, a proposal to use TPA, a 

phenomenon of NLO properties, appears as the best alternative way to achieve PDT. It 

involves the simultaneous absorption of two photons so that the illumination wavelength 

is twice that of the actual transition wavelength. Thus, TPA allows the use of near-

infrared (IR) photons in the tissue transparency window and does not require the red 

shift of the lowest electronic transition of the porphyrin. Hence, in recent years, research 

on the two-photon properties of porphyrin-based compounds has been very vibrant. 

However, so far, in the reports of TPA-PDT, the σ2 of photosensitizers were very low61 or 

not described59b,62  until the most recent works of Okura et al.63 The group reports a 

water-soluble porphyrin self-assembly consisting of monoacetylene-linked conjugated 

bis(imidazoylporphyrin) possessing the largest σ2 of 7900 GM and photocytotoxicity for 

HeLa cancer cells. However, the multi-step synthetic route and difficulty of purification 

pose a major drawback if this compound is to be used as PDT agent. Thus, this 

demands the continuous investigation of strong two-photon absorbers for PDT 

applications.   

 

The ultimate success of any of the two-photon-based applications critically 

depends on the efficiency of TPA, that is, on the value of intrinsic nonlinear cross section, 

σ2. The factors that can lead to the enhancement of NLO properties include (1) the 

expansion of π-conjugation,38a,53, 64  (2) molecular polarization induced by push-pull 

effects65(a), 65  and (3) enhanced exciton interaction through complementary 

coordination.66 Thus, most research so far has been focused on designing extensive 
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conjugated systems using porphyrin as the core two-photon absorber. Very often, 

important factors such as water-solubility is neglected in the design of these materials. In 

addition, the synthetic routes taken to design the porphyrin derivatives such as fused 

porphyrin dimers67 are synthetically challenging and thus pose a problem when they are 

eventually synthesized on the practical scale.  

 

Thus, the direction of this research work lies in the design and synthesis of 

compounds with biological relevance, as strong two-photon absorbers. We take the 

approach of minimizing synthetic steps to obtain parent porphyrin compounds that can 

derive a wide variety of compounds for practical reasons. Next, we generate a series of 

compounds generated through further derivation of the parent porphyrin to allow the 

establishment of structure-property relationships.  

 

It is known that water-solubility is an important property for drugs. However, the 

planar structure of porphyrin compounds causes π-π stacking and hence aggregation68 

and in addition, they undergo photobleaching69 in aqueous systems which lowers their 

efficiency as photosensitizers for PDT. This problem is especially significant in most of 

the water-soluble porphyrin compounds studied. This is because, although the 

peripheral groups of macrocycle contain water-solubilizing groups, they are attached to 

the para positions and hence do not impose steric effects.   Hence, our work aims at 

designing porphyrin systems to minimize these problems through conformational and 

configurational modification of the porphyrin structures.  

 

In our in-depth research to study of the structural-NLO property relationship of 

porphyrin compounds, our results also uncovers the NLO properties of another class of 

compound, benzo[c]cinnoline, which possess biological applications. Therefore, this 
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thesis investigates two classes of biologically relevant compounds, namely, porphyrin 

and benzo[c]cinnoline as two-photon absorbers. 

 

Chapter 2 of the thesis introduces the origin, elements and principles of NLO, as 

well as the concepts of TPA via a single photon pumped process and excited state 

absorption. 

 

Chapter 3 introduces the theory and information on the measurement methods 

used for determining the NLO parameters in this work. These are the Z-scan and DFWM 

techniques. 

 

Chapter 4 presents the design, synthesis and characterization of a series of free 

base porphyrins and self-assembled Zn(II) metalloporphyrin coordination complexes. In 

addition, this chapter provides detailed description of the behaviour of Zn(II) 

metalloporphyrins coordination dimer and polymer in various solutions gathered from 

spectroscopic studies (1H NMR and UV-vis absorption). 

 

Chapter 5 describes the collection, interpretation and analyses of data obtained 

from Z-scan and excited state absorption (ESA) measurements. The chapter discusses 

the NLO properties and parameters of the free base porphyrins and Zn(II) 

metalloporphyrins coordination complexes described in Chapter 4. Different factors 

leading to TPA enhancement are identified and analyzed. As a result, practical 

guidelines for design of porphyrin molecules with strongly enhanced TPA are 

established. 
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Chapter 6 presents the design, synthesis and characterization of covalently-

bonded conjugated systems consisting of porphyrins. Silica plates coated with thin films 

of the materials were studied for NLO properties using DFWM technique. 

 

Chapter 7 describes two novel, high-yielding and large-scale methods for the 

synthesis of a class of benzo[c]cinnoline compounds. The synthesis, characterization 

and NLO studies of the copolymers of benzo[c]cinnoline and fluorene are described for 

the first time. 

 

Chapter 8 introduces the molecular recognition of water-soluble porphyrin with 

nucleotides and highlights the importance of configurational and conformational designs 

on aggregation and photobleaching properties.  

 

Chapter 9 concludes the thesis and presents future works that can be carried out 

based on the research findings from this work. 

 

Chapter 10 summarized the experimental procedures, yield, and characterization 

results of all the compounds synthesized in this work. 
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CHAPTER 2 

ELEMENTS OF THE THEORY OF NONLINEAR OPTICS 

 

2.0 INTRODUCTION  

 

The birth of the field of nonlinear optics (NLO) was marked by Kerr’s observation 

in 1875, of a change in the refractive index of CS2 proportional to the square of the 

amplitude of an applied field.1 This is now known as the Kerr effect. Shortly, in 1893, a 

similar but linear electric field effect in quartz was observed and this process is known as 

the Pockels effect.1 These two nonlinear effects flourished after the invention of laser in 

1960 and were followed by the observation of the second harmonic generation (SHG) by 

Franken and co-workers2 in quartz a year later. The Pockels (also known as the linear 

electrooptic) effect is the change in the linear susceptibility and thus refractive index of 

the material with changes in applied voltage. At the atomic level, the applied voltage is 

anisotropically distorting the electron density within the material. Thus, application of a 

voltage to a material causes the optical beam to “see” a different material with a different 

polarizability and a different anisotropy of the polarizability than in the absence of the 

voltage.3  

 

The first observation of SHG in an organic compound was made in benzopyrene 

and was done by Rentzepis and Pao in 1965. This developed explosively throughout the 

1960s whereupon the work of Bloembergen (Nobel prize 1981) and co-workers4 were 

highlighted for exploring the full range of NLO responses of materials systems.  
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Many of the interesting phenomena of NLO derive their behaviour from the 

nonlinear index of refraction. The phenomena include the optical Kerr effect, four-wave 

mixing, two-beam coupling, optical bistability and self-focussing.1 Thus, it has been 

utilized in a variety of applications such as nonlinear spectroscopy, high resolution 

photolithography, spatial information processing, temporal signal processing, optical 

computing and optical limiting.1  

 

On the other hand, changes in optical properties of a material upon absorption of 

intense radiation from a laser can lead to nonlinear absorption processes, including 

multiphoton, reduced (saturable) as well as increased (reverse saturable) absorption and 

are explained in detail in the following sections. 

 

2.1 PRINCIPLES AND ORIGIN OF NONLINEAR OPTICS  

 

NLO involves the interactions of electromagnetic fields in various media to 

produce new fields which may be altered in phase, frequency, amplitude or other 

propagation characteristics from the incident field. When a beam of light is impinged into 

a material, it causes the electrons in the atoms to oscillate. This occurs for any light but 

the oscillations are more pronounced for more intense light such as laser. Lasers are 

sources of coherent light, characterized by a high degree of monochromaticity, high 

directionality and high intensity or brightness. Today, with optical parametric oscillators 

and amplifiers, it is possible to cover a large range of wavelengths, including the entire 

visible spectrum, for instance from 403 nm to 2580 nm continuously, using a Nd:YAG 

pump laser which beams are focused into a LiB3O5 crystal.5  
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For low light intensities, that is, in linear optics domain, the amount of charge 

displacement is proportional to the instantaneous amplitude of the electric field hence, 

the charges are driven to oscillate at the same frequency as the frequency of the 

incident light. The oscillating charges can radiate light at the same frequency or in the 

presence of material resonances. Energy can be transferred via non-radiative modes 

that result in material heating or through other energy transfer mechanisms. The 

displacement of charges from the equilibrium positions gives rise to induced 

polarization P (t)i , which depends linearly upon the applied electric field in a manner 

depicted by the relationship  

(2.1) χP (t)= P  + E (t)(1)
i stat,i ij j  

where P (t)i is the polarization of the medium with respect to time, Pstat,i is the static 

polarization, χ (1)
ij is the linear susceptibility and E (t)j is the applied electric field with 

respect to time. Note that the second term in this equation is a sum over j and the sum 

symbol is skipped under Einstein’s summing convention. The presence of material 

resonances leads to phase shifts between P and E and to absorption. These are 

accounted for by allowing χ (1)  to be complex. 

 

When the intensity of light becomes large enough, linear optics is no longer 

enough to describe the situation observed experimentally. This is due to the interaction 

of light waves with the optical medium and through the medium with one another and the 

optical medium. Hence, the theory of linear optics has to be extended to explain the new 

phenomena. In NLO, P(t)  should be expressed as a power series of E(t) as  
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(2.2) χ χ χP(t) = P t) + (t) + (t) (t) + (t) (t) (t) + ...( E E E E E E(1) (2) (3)
ij j ijk j k ijkl j k l0

 

where χ (n)  are the nth order NLO susceptibility tensors of a given medium respectively 

and the Einstein’s summing convention is used.1  

 

The above two equations are under the assumption that the polarization at time 

(t) depends only on the instantaneous value of the electric field.  

 

At the molecular level, the time dependent dipole moment of a molecule p(̃t) is 

(2.3) μ α β γ0
~ ~ ~ ~ ~ ~ ~
p(t) = (t) + E (t) + E (t)E (t) + E (t)E (t)E (t) + ...1 IJ J IJK J K IJK J K L  

where μ (t)°
1 is the molecular dipole moment, αIJ is the linear polarizability, βIJK is the first 

hyperpolarizability and γ IJKL  is the second hyperpolarizability.  

 

The physical processes that occur as a result of the second-order nonlinear 

polarization6 and third-order nonlinear polarization7 are distinctly different. Second-order 

effects are dependent on the first hyperpolarizability tensor term χ (2)  and third-order 

effects may also be present (for example, three-photon absorption) under high light 

intensities. For second-order effects, 8  such interactions can only occur in non-

centrosymmetric media. Since liquids, gases, amorphous solids and even most crystals 

display inversion symmetry, χ (2)  vanishes for such media. On the other hand, third-order 

NLO interactions occur both for centrosymmetric and non-centrosymmetric media. 

Basically, all forms of matter exhibit NLO phenomena but to be useful as a NLO device, 

the material must exhibit a high degree of nonlinearity so it may be operated at a 

reasonable power level.1 
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2.2 NONLINEAR INDEX OF REFRACTION13 

 

The general dependence of the refractive index on intensity can be expressed as  

    (2.4) Δ +n(r,t) = n  n[I(r,t)] = n n [I(r,t)]+0 0 2     

This equation indicates that the change in the refractive index Δn over its value at low 

intensities n0 (that is, linear index of refraction), has a functional dependence on the time 

and spatial coordinate dependent intensity I(r,t) where ε ⏐ ⏐I(r,t)= n c A2
0 02  with 

expressions in S.I units and ε0  = 8.85 × 10-12 F/m i being the electric permittivity of free 

space and c = 3 × 108 m s-1 is the speed of light in vacuum. A is the electric field 

amplitude and n2 is the nonlinear refractive index. Large refractive nonlinearities in 

materials are commonly associated with a resonant transition which may be of single or 

multiphoton nature. In this case, χ (3) is now considered to be a complex quantity: 

(2.5)     χ χ χ= + i(3) (3) (3)
real imag  

and n2 is related to χ (3)  by 

(2.6) επ
χ2=

c
n (3)

2 imag
16

 

where ε is the dielectric constant.  

 

The imaginary part of χ (3)  is the origin of two-photon absorption (TPA) in which 

two photons (same or different frequencies) are simultaneously absorbed in a material. 

The TPA process will be described in detail shortly. For many applications, χ (3)  should 

be purely real in order to induce a maximum nonlinear phase-shift without optical loss. 

                                                 
i F/m is farad/meter (SI); 1 F/m = 1 C V-1m-1 (SI) 
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Although the imaginary part of χ (3)  is often considered an adverse effect, especially for 

all-optical signal processing, TPA is nevertheless important for many applications.  

 

Several diverse physical effects contribute to and arise from the nonlinear index 

of refraction. One area of interest is self-focusing and self-defocusing. These nonlinear 

phenomena have been applied in some devices, one of the most common being optical 

limiting. This is illustrated in Fig. 2.1 for both positive and negative n2. The nonlinear 

medium is situated between two lenses. Light of low-intensity is collected by the second 

lens and imaged through an aperture to a detector. When light of high-intensity is 

passed through a medium with n2 > 0, the beam will collapse and phase distortion will 

result such that the light is not focused by the second lens but defocused in the aperture 

plane. Thus, the power transmitted by the aperture to the detector is limited and the 

detector is protected from the high-intensity radiation. When n2 < 0, the beam diverges 

more rapidly from the intermediate focus rather than collapsing. A defocused beam 

reached the aperture plane also. However, the advantage of this type of limiter over the 

previous is that it is self-protecting (that is, the light is defocused inside the medium 

leading to lower intensity there that is less likely to cause laser damage). This is 

important when the medium is solid and the damage would be permanent.1  
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2.3.0 INTRODUCTION TO TWO-PHOTON ABSORPTION  

  

The effect of TPA immediately proved to be a particularly useful spectroscopic 

technique in providing information about atomic and molecular structures since its 

discovery in the early 1960s.9 In the years to follow, applications of TPA flourished and 

have extended to the fields of high resolution three-dimensional (3D) microscopy,10 3D 

ultrahigh density optical data storage,11 3D micro- and nanofabrication,12 optical power 

limiting, 13  ultrashort pulse characterization, 14  frequency upconversion lasing 15  and 

photodynamic therapy (PDT).16  

D
etector 

Nonlinear Medium 
(Self-Defocusing) 

n2<0 

D
etector 

Nonlinear Medium 
(Self-Focusing) 

n2>0 

Fig. 2.1 Optical limiters based on self-focusing. (a) n2 > 0 and (b) n2 < 0 
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Today, some 40 years later, the importance of two-photon spectroscopy of 

organic molecules grew because of two critical factors. First, there is an increasing 

demand for efficient two-photon absorbers that are compatible with new technologies for 

biological applications. Second, the development of mode-locked ultrafast lasers in the 

1990s provided a source of extremely high peak intensity light pulses that facilitate 

instantaneous two-photon processes. 

 

The advantage of TPA as a spectroscopic tool arises from the ability to provide 

additional information on the atomic and molecular structures of compounds especially 

in centrosymmetric molecules. One-photon absorption (OPA) parity selection rules in 

such molecules apply where only transitions between states of different parities, that is, 

ungerade↔gerade (u↔g) are allowed. On the contrary, TPA allows transitions between 

states of the same parities, that is, gerade↔gerade (g↔g) and ungerade↔ungerade 

(u↔u) transitions. Since the ground state is usually of g parity, TPA facilitates the 

investigation of excited g parity levels that are usually very difficult to access for linear 

absorption spectroscopy. Hence, TPA spectroscopy greatly enhances our understanding 

of molecular properties. 

 

The list of unique properties that make TPA attractive for several practical 

applications are many: 

1. instantaneous response; 

2. quadratic dependence of absorption rate on the excitation intensity (∼ I2); 

3. higher energy emission wavelength as compared to the excitation 

wavelength; 

4. possibility of exciting molecules selectively in a small volume (∼ λ3); 
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5. deeper penetration of near IR light, typically used for two-photon 

excitation into tissues. 

 

The instantaneous response of TPA allows efficient cutoff of high intensity light 

even on the femtosecond time scale. While the quadratic dependence on the excitation 

light intensity can be used for optical power limiting in which an ideal power limiter allows 

low intensity light to propagate practically without absorption while attenuating high 

intensity light. Furthermore, the quadratic dependence of TPA on the excitation intensity 

allows one to measure second order intensity autocorrelation or cross-correlation 

functions and is used short laser pulse characterization. 

 

Since in two-photon transitions, the energies of two photons are added up, the 

excitation wavelength is typically much longer and well separated from the fluorescence 

wavelength. This greatly simplifies the registration of two-photon excited fluorescence 

because the excitation and fluorescence photons can be easily separated by filters 

and/or monochromators. This makes two-photon fluorescence microscopy 

advantageous over its one-photon counterpart in laboratory experiments. Two-photon 

excited fluorescence is also employed for readout in high density 3D optical data 

storage. 

 

The ability to confine laser light through focusing allows one to generate light of 

high enough intensity to observe TPA phenomena. This is particularly important for 

applications such as 3D microfabrication, high-density 3D optical data storage and two-

photon fluorescence microscopy. 
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The final point mentioned is particularly important for PDT, which is expected to 

replace the current forms of cancer therapy as it is burdened with many shortcomings. In 

PDT, near-infrared (near-IR) light is used because this light is less absorbed and 

scattered by human tissues than visible light. This enables increased penetration of the 

light into human body which can be used for two-photon excitation of biologically 

relevant molecules deep inside the tissues. Hence, TPA-based fluorescence microscopy 

using near-IR light for excitation is able to provide imaging of tissues an order of 

magnitude deeper than one-photon confocal fluorescence microscopy using visible light. 

Similar advantage can be gained by two-photon-based PDT which uses excitation of a 

photosensitizer (the drug) inside the body to initiate photophysical and photochemical 

processes for tumor destruction. Current PDT uses OPA that can only treat tumors close 

to the surface of tissues or accessible by endoscope. The use of near-IR light for two-

photon excitation of photosensitizers can thus greatly increase the efficiency of PDT in 

future. 

 

In this respect, the study of TPA properties of organic molecules especially those 

compatible with biological and medical applications is of great importance. The ultimate 

success of any two-photon-based applications depends critically on the efficiency of TPA 

of the molecules, which includes the ability to perform specialized photophysical, 

photochemical and photobiological function and in particular, on the value of intrinsic 

nonlinear cross section (or TPA cross section), σ2. Hence, the biologically relevant 

tetrapyrrolic molecules, porphyrins, are particularly well suited for these applications. 

Porphyrins perform several crucial functions in nature, such as oxygen transportation 

and photosynthesis and are widely used in one-photon-based PDT.  
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The TPA properties of porphyrins were ignored until recently. Rebane et al. have 

investigated the intrinsic TPA spectra of many tetrapyrrolic compounds using 100 fs 

pulses.17 Typically, the TPA σ2 is generally low in the Q-band with a value of σ2 = 1 - 10 

GM while in the vicinity of the Soret band, it can be enhanced up to σ2 = 1 × 103 GM, by 

different mechanisms, including resonance enhancement, electron-donating or -

accepting substitutions and g parity excited states. 

 

2.3.1 TWO-PHOTON ABSORPTION: THE MAIN CONCEPTS AND THEORETICAL 

CONSIDERATIONS 

 

TPA is a NLO process in which two photons are absorbed simultaneously, such 

that the energy of the photons add up to the energy of the excited atom or molecule: 

(2.7) 1 2+ = Eν νћ ћ  

where ћ = 
2π
h

 and h is the Planck constant, ν i is the frequency of the i-th absorbed 

photon, E is the transition energy. It involves a transition from the ground state of a 

system to a higher-lying state. The absorption of all the photons is simultaneous in the 

sense that there are real intermediate energy levels that are populated in this process. 

The absorption takes place through so-called virtual levels, whose existence is allowed 

by quantum mechanics. This effect is completely different from stepwise absorption. In 

this case, no real intermediate levels are populated during absorption. The process also 

involves different selection rules from those of OPA hence TPA spectroscopy 

complements linear absorption spectroscopy in studying the excited states of systems.  
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Two possible situations are illustrated in Fig. 2.2. In the first, two photons from 

the same optical field oscillating at frequency ω are absorbed to make the transition 

which is approximately resonant at 2ω. This is known as single-beam TPA. In the 

second situation, two optical fields at frequencies ωe and ωp are present and one photon 

from each field is absorbed for the transition which is approximately resonant at ωe + ωp. 

The ωe can be thought of as the pump or excitation beam while ωp can be considered as 

the probe beam. In this case, the process occurs in two-beam TPA.  

 

 

 

 
Fig. 2.2 Illustration of TPA (a) Self-TPA, (b) Pump-probe TPA 

 

In the case where real intermediate energy levels are populated, single-photon 

excited state absorption (ESA, described in detail in Section 2.4) process is said to have 

taken place. As illustrated in Fig. 2.3, the excited state (3) is populated in TPA and the 

single-photon excited state processes, but in the latter, the symmetry of the intermediate 

state (2) must be opposite to both the upper and lower levels. While TPA is an 

instantaneous process, stepwise excitations may be separated by a period determined 

by the lifetime of level (2). The two photons involved in either process may have different 

frequencies (ω1, ω2). The cross sections σ2, σ(12) and σ(23) correspond to the two-photon, 

single-photon and excited state absorption processes respectively.9a 

eωћ

pωћωћ  

ωћ  

Excited State

Virtual State

Ground State

Excited State

Virtual State

Ground State
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Fig. 2.3 Illustration of TPA and single-photon excited state absorption processes 

 

TPA was predicted theoretically by M. Göppert-Mayer18 in 1931 for transitions 

between discrete energy states and was later applied for transitions between band 

states in dielectrics and semiconductors. The probability of multiphoton absorption on 

excitation light intensity follows the power law: 

(2.8) ...
' ' '
1 2 kn n n

1 2 k∝P I I I  

where P is the probability of multiphoton excitation, Ik is the intensity of k-th source of 

light and n’k is the number of photons from the k-th source of light participating in a 

single act of simultaneous multiphoton absorption so that the sum k
k
∑ 'n  is equal to the 

total number of absorbed photons. In the case of one excitation source (laser), equation 

2.8 simplifies to: 

(2.9) 
'

'
n

n

1
σ,P = I

n
 

where σn’ is the n’-photon absorption cross section and coefficient 1/n’ takes into account 

the fact that n’ photons are required for n’-photon excitation of one atom (molecule).  

 

The unit for σ2 is cm4 s photon-1 molecule-1 or GM (called Göppert-Mayer) where 

1 GM = 10-50 cm4 s photon-1 molecule-1, to honor the woman who theoretically predicted 

 

ω2 

           

            σ2

ω1 

 (1)

 (2)

 (3)

 σ(12)       ω1 

 σ(23)       ω2 
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TPA. As the units suggest, the cross section may be defined by the simple expression 

for the decay in an incident light flux, F, along a propagation direction, z, due solely to 

TPA: 

(2.10) 2
2σ− =

dF N F
dz

 

where N is the number density of molecules. 

 

2.3.2 SINGLE BEAM TWO-PHOTON ABSORPTION 

 

The nonlinear absorption in this case is proportional to the square of the 

instantaneous intensity I. The differential equation describing the optical loss is given by: 

    (2.11) α β 2dI
 = - I - Ι

dz
      

where α  is the linear absorption coefficient due to the presence of impurities andβ is 

the TPA coefficient.  

 

The TPA coefficient β  is a macroscopic parameter characterizing the material. 

Often there is interest in the individual molecular TPA property that is described by σ2. 

The relation between β and σ2 is given as: 

(2.12) 2
ωβ

  
ћ

σ = 
Ν

  

where ωћ is the energy of photons in the incident optical field. 

 

The β  is also related to the third order susceptibility: 



  43

(2.13) 

π
β χ

ε λ

π
β χ

λ

=
n c

=
n c

     

       

(3)
imag2

0
3

(3)
imag2

3
(S.I.)

48
(cgs)

 

 
 

where χ (3)
imag is the imaginary third-order nonlinear susceptibility, λ is wavelength. Note 

that it is the imaginary part of χ (3)  that determines the strength of the nonlinear 

absorption.  

 

The principal quantity of interest in a measurement is the net transmittance of the 

material to light atω . The physical quantity usually measured for a sample with length L 

is the optical energy thus the transmittance T19 is defined as the ratio of transmitted Itr  

and incident energies I0 .  

(2.14) β
I

+  I L
T I

= =0
0

tr

1
1  

This equation predicts a linear dependence between the inverse of T and I0 . Theβ  may 

be simply determined from the slope of the inverse T of the sample as a function of I0 . 

However, corrections are needed because of the fact that one deals with spatial and 

temporal dependencies of the light intensities. 

 

2.3.3 PARITY SELECTION RULES FOR TWO-PHOTON TRANSITIONS 

 

According to the electric dipole approximation, the efficiency of TPA between the 

ground state and upper final state is determined by the energy eigenstate that plays a 

role of intermediate level and the electric-dipole energy in the electric field. If the 

molecule is centrosymmetric, then the wavefunctions corresponding to different energy 
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levels also possess some degree of symmetry which limits the number of radiation 

transitions between the energy levels. In particular, wavefunctions ψ of 

centrosymmetrical molecules can have either even (g parity) or odd symmetry (u parity) 

in which case the following relations are obeyed: 

(2.15) 
ψ ψ

ψψ
⎧ ⎫
⎨ ⎬
⎩ ⎭

(r) (-r)
(r) (-r) 

 =      
 = -    

g g

u u

 gerade
ungerade

 

Two different cases are possible: 1) ground and final levels have different parity, 2) 

ground and final levels have the same parity. In the first case, no matter what the parity 

of the intermediate level m is, one of the multipliers will always be zero. In the second 

case, if the symmetry of the intermediate level is different from the symmetry of the 

ground and final excited levels then both multipliers are different from zero. 

Correspondingly, in centrosymmetric molecules, TPA can take place only when the initial 

and final levels have the same parity, that is g←g or u←u transitions. Two-photon 

transitions between levels with different parity are prohibited in the dipole approximation. 

 

As the ground level typically has g parity, the two-photon transitions from the 

ground levels are allowed only into other g parity levels. Since allowed transitions are 

always much stronger than the prohibited transitions (prohibited transition can always be 

slightly allowed for example through quadrupole approximation) g←g TPA bands have 

large σ2. 

 

Since selection rules for OPA are opposite, that is, only g←u or u←g transitions 

are allowed, TPA spectroscopy is complimentary to OPA spectroscopy as the former 

allows the investigation of otherwise inaccessible energy levels. For non-
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centrosymmetric molecules, the symmetry of the energy levels cannot be precisely 

defined and both types of transition are allowed between different levels.  

  

Higher order absorption spectroscopy is also very useful technique. For instance, 

three-photon absorption has the same parity selection rules as OPA but the former can 

reveal even more information about molecules than the latter. In centrosymmetric 

molecules, there are g←u transitions that are parity allowed for OPA but still forbidden 

due to other symmetry considerations. In that case, these transitions become allowed in 

higher order absorption, like simultaneous absorption of three photons. Three-photon 

spectroscopy also permits observation of a greater manifold of vibronic transitions than 

are accessible to one-photon spectroscopy.20 

 

2.4 EXCITED STATE ABSORPTION1  
 
 
 

As mentioned earlier, TPA mechanism involves the absorption of a second 

photon from a virtual state. On the other hand, excited state absorption (ESA) involves a 

real intermediate state. When the incident intensity of light is high and close to so-called 

saturation intensity, the excited state of the molecules can become significantly 

populated. The excited molecules rapidly make a transition to one of the excited states 

before it eventually transitions back to the ground state. However, there are also a 

number of highly-lying states that may be radiatively coupled to these intermediate 

states and for which the energy differences are in near-resonance with the incident 

photon energy. Therefore, before the molecule completely relaxes to the ground state, it 

may experience absorption that promotes it to a higher-lying state and this process is 

called the ESA. This is observable when the incident intensity is sufficient to deplete the 

ground state significantly.  
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When the σ2 of the excited state is smaller than that of the ground state, the 

transmission of the system will be increased when the system is highly excited. This 

process is called saturable absorption (SA). On the other hand, when the σ2 of the 

excited state is larger than that of the ground state, the system will be less transmissive 

when excited. This gives the opposite result as saturable absorption and is thus called 

reverse saturable absorption (RSA).  

 

Within each electronic state of a molecule, there exists a manifold of very dense 

vibrational-rotational states. When the molecule absorbs electromagnetic radiation, it will 

generally undergo transition to one of these vibrational-rotational states. After collision, it 

drops to the lowest vibrational-rotational level within the electronic manifold of states 

whereupon, it experiences absorption of another photon or relax to any of a number of 

lower-energy states. 

 

The ground electronic state (S0) is called a singlet state which has a pair of 

electrons with anti-parallel spins. Selection rules disallow parallel spins in the same state 

hence absorption from S0 only allows transition to another singlet electronic state. 

However, it is possible to produce a spin flip by external processes such as collisions 

with paramagnetic ions or internal processes such as spin-orbit coupling. Under such 

conditions, the first excited electronic state may make a radiationless transition to a 

lower-lying triplet state, that is, a state with a pair of electrons having parallel spins. A 

radiative transition from this state is allowed by selection rules if the transition is to 

another triplet state. Transitions between singlet-singlet and triplet-triplet states are spin-

allowed. 
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The process of absorption can be explained using an energy diagram as shown 

in Fig.  2.4. The absorption of an incident photon at low incident fluences causes most of 

the molecules within the illuminated volume occupy low absorbent ground state S0, while 

at higher incident fluences, significant number of molecules is pumped into the excited 

state with higher absorption coefficient. Thus, the overall absorption by the system 

increases. A necessary condition for this effect is thus the wavelength overlap between 

the absorption bands for both states. Depending on the type of molecular system and 

efficiency of the intramolecular transitions such as intersystem crossing (explained 

below), the participating excited state can be singlet state, triplet state or in some cases, 

both states can be involved.21 

 

 

 
Fig. 2.4 An energy diagram of a typical organic molecule 
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When a laser pulse is incident, the molecules are excited from the lowest levels 

of the ground state S0 to the higher vibrational states of S1 (S1v). The decay from S1v to 

S1 is non-radiative and occurs within few ps. From S1, the molecules can relax back to 

the ground state radiatively or non-radiatively or crossover to T1 via intersystem 

crossing. The radiative decay, which is spontaneous, from S1 to S0 is known as 

fluorescence and is governed by the lifetime of the S1 state. For organic molecules, the 

lifetime is typically of the order of a few ns. The energy difference between absorption 

and emission processes is taken by the non-radiative decay in the S1 and S0 states and 

the relaxation of the molecules from S1 to the lowest triplet state T1 is governed by the 

intersystem crossing rate. The intersystem crossing rate constant is typically 1011 to 107 

s-1 due to spin restriction factor. Another important process of deactivation of the S1 state 

is the internal conversion, which is the non-radiative decay of S1 to S0. The decay from 

T1 to S0 can be radiative or non-radiative and is termed as phosphorescence if it is the 

former type. Typical phosphorescence lifetimes are in the range of ms to μs. The lifetime 

of T1 is generally large since the triplet-singlet transition is dipole forbidden. Hence, a 

molecule can absorb another photon from the excited singlet or triplet states before it 

relaxes back to ground state. Thus, this explains the process of ESA which gives rise to 

effective third-order nonlinearity and holds implications on optical limiting. The parameter 

describing an optical limiter in this study is the value of nonlinear threshold.  It is defined 

as the linear transmission at 50 % of the initial one. 
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CHAPTER 3  

THE Z-SCAN AND DEGENERATE FOUR-WAVE  

MIXING TECHNIQUES 

 

3.0 TRANSMISSION MEASUREMENTS 

 

The most obvious effect of nonlinear absorption is a change in the transmission 

of a material with increasing intensity or fluence. Thus, transmission measurements can 

be used to obtain various nonlinear parameters including the two-photon absorption 

(TPA) coefficient (β) and excited state cross section σex. Other techniques used for 

investigations of nonlinear absorption include three-wave mixing 1 , two-photon 

fluorescence, 2  photothermal techniques, 3  degenerate four-wave mixing (DFWM), 4 

heterodyned Kerr effect5 measurements and chirped-pulse pump-probe technique.6 The 

advantage of the transmission method includes its straightforwardness and it is directly 

amenable to pump-probe methods7 for studying wavelength and time dependencies. 

However, its chief disadvantage is that it involves measuring a small change in a large 

background since the nonlinear transmittance change is generally a small fraction of the 

linear transmittance. In our work, transmittance measurements using mainly the Z-scan 

and the DFWM techniques are carried out and will be further elaborated8. 

 

3.1.0 THE Z-SCAN TECHNIQUE 

 

The Z-scan technique was first developed in 1989 by Sheik-bahae et al.9 to be a 

sensitive measurement technique for investigation of nonlinear absorption and 

refraction. The schematic setup for the Z-scan measurements with closed- and open-
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aperture is shown in Fig. 3.1.11 A sample is scanned along the path of a laser beam 

which is focused by a lens. The far-field on-axis light intensity is monitored with a 

detector with an aperture in front of it. The nonlinear behaviour of the sample is 

equivalent to the formation of an induced positive or negative lens. The positive lens 

results in self-focusing while the negative causes self-defocusing effects, changing the 

beam intensity at the aperture plane.9,10  

 

 

 
 

 

 
Fig. 3.1 Schematic setup for the Z-scan measurements with closed- and 

open-aperture11 
 

The sample acts like an intensity dependent lens. As it is scanned along the 

beam path, its effective focal length will change since the incident intensity is changing. 

This change will be reflected in the intensity distribution at the aperture in the far field. 

The amount of energy transmitted by the aperture will thus depend on the sample 

location along the z-axis and the sign of the nonlinear index of refraction n2.  

 

Detector

Detector

z 

Open-aperture signal 

Closed aperture 
signal 
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The principle of the measurement for the case of n2 > 0 (self-focusing) is shown 

in Fig. 3.2. Because light intensity varies due to the focusing action of the linear lens, the 

nonlinear lens strength induced in the sample varies with the position of the sample with 

respect to the focused beam waist. Starting the scan from a distance far away from the 

focus (negative z), the beam irradiance is low and negligible nonlinear refraction occurs. 

Hence the transmittance remains relatively constant. As the sample is brought closer to 

focus, the beam irradiance increases, leading to self-focusing in the sample. A positive 

self-focusing prior to focus tends to broaden the beam at the aperture and thus leads to 

decrease in transmittance. As the scan in z direction continues and the sample passes 

the focal plane to the right (positive z), the same self-focusing collimates the beam, 

causing a beam narrowing at the aperture which results in increase in the measured 

transmittance. This suggests that there is a null as the sample crosses the focal plane. 

The Z-scan is completed as the sample is moved away from focus (positive z) such that 

the transmittance becomes linear since irradiance is again low. A prefocal transmittance 

minimum (valley) followed by a postfocal transmittance maximum (peak) is the Z-scan 

signature of a positive refractive nonlinearity.  

 

On the other hand, the opposite applies to negative nonlinear refraction in which 

the peak-valley configuration is obtained instead. The S-shape resulting from scanning 

of the sample can then be analyzed using calculation techniques described by Sheik-

Bahae et al.9 and the nonlinear properties of the sample can be derived. 

 

The increase and decrease of the intensity of the beam shows the focusing and 

defocusing effects of the sample and is thus a measure of the refractive component of 

nonlinearity when no absorptive nonlinearities (such as multiphoton or saturation of 

absorption) are present. Qualitatively, multiphoton absorption (n2,imag > 0) suppresses the 
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peak and enhances the valley while saturation absorption (n2,imag < 0) produces the 

opposite effect. The sensitivity to nonlinear refraction is entirely due to the aperture and 

the removal of the aperture completely eliminates the effect. However, in this case, the 

Z-scan will still be sensitive to nonlinear absorption. Nonlinear absorption coefficients 

can be extracted from such open-aperture experiments. We will show in Chapter 5 how 

the data from the two Z-scans with and without the aperture can be used to separately 

determine both the nonlinear absorption and the nonlinear refraction. In the open-

aperture Z-scan, all the light transmitted through the sample is collected. 

 

 

 

Fig. 3.2 Diagram illustrating the theoretical shapes of open- and closed-aperture Z-scans 
for (A) no nonlinear absorption, (B) induced absorption and (C) absorption saturation 

 

 

Hence, the aperture transmittance as a function of sample position depends on 

the magnitude and the sign of nonlinear refractive index (n2). This is the basis of the Z-

+- 
Self-defocusing case (n2real < 0)

  Purely refractive effect (n2,imag = 0)

Absorption saturation (n2,imag < 0) 

  Induced absorption (n2,imag > 0) 
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scan technique. The nonlinear medium impresses a phase distortion on the electric field 

of the transmitted light and modifies its amplitude through nonlinear absorption. 

 

3.1.1 ADVANTAGES AND DISADVANTAGES OF THE Z-SCAN TECHNIQUE 

 

The Z-scan has several advantages. Among these is its simplicity. As a single-

beam technique, the alignment of beam is not difficult although it is to be kept centered 

on the aperture. It can be used to determine both the magnitude and the sign of n2. The 

sign is obvious from the shape of the transmittance curve. Generally, data analysis is 

quick and simple, making it a good method for screening new nonlinear materials. Under 

certain conditions, it is possible to isolate the nonlinear refractive and nonlinear 

absorptive contributions to the far-field transmittance. Thus, unlike most DFWM 

methods, the Z-scan can determine both the real and the imaginary parts of χ (3) . The 

technique is also highly sensitive, capable of resolving a phase distortion of ∼ 
λ

300
 in 

samples of high optical quality. Finally, the Z-scan can also be modified to study 

nonlinearities on different time scales as well as higher order contributions. 

 

Disadvantages of the technique include the fact that it requires a high quality 

Gaussian TEM00 beam for absolute measurements. The analysis must be different if the 

beam is non-Gaussian. It is possible to relax the requirements on beam shape when 

relative measurements against a standard material are performed. Sample distortions or 

wedges, or a tilting of the sample during translation, can cause the beam to walk off the 

far-field aperture. This produces unwanted fluctuations in the detected signal. Even if 

these are kept under control, beam jitter will produce the same effect. A second 

reference arm can be employed to subtract out the effects of beam jitter. The technique 
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cannot be used to measure off-diagonal elements of the susceptibility tensor except 

when a second non-degenerate frequency beam is employed. Such a technique is 

useful for measuring the time dependence of nonlinearities but this detracts from the 

simplicity and elegance of the method. The introduction of a second beam of a different 

frequency requires careful alignment of the two beams, taking into account difference in 

spot sizes and focal positions due to chromatic aberration, and physical separation and 

filtering of the beams prior to detection. 

 

3.1.2 THEORY OF Z-SCAN 

 

It is assumed that a Gaussian TEM00 beam is incident on a thin nonlinear 

medium (that is, L<<zR, where zR is the Rayleigh range of the beam in air). Hence, the 

amplitude of the beam is unchanged by linear or nonlinear absorption. However, the 

phase of the incident wave is distorted and the nonlinear phase Δϕ(r, z, t)  impressed on 

the wave follows the shape of the incident beam 

   (3.1)       Δϕ Δϕ
⎡ ⎤
⎢ ⎥
⎣ ⎦

2 2

2

r(r, z, t) = (z, t) exp -
w (z)

, 

where   (3.2)  1
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

2

0
R

zw(z) = w
z

          

   (3.3)  
ΔΦΔϕ 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

(t)(z, t) = 
z+ 
z

2

R

1

          

   (3.4)  
πΦ
λ0Δ I(t) = n I (t)L2 0 eff

2
        

   (3.5)  
α

α
=

1 - exp
eff

(- L)L           
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I (t)= I(0,0,t)0  is the on-axis intensity at focus, 0w  is the 2

1
e

 beam radius at the focus, 

α  is the linear absorption coefficient, In2  is the nonlinear index intensity coefficient 

(where = Δ2
In n /  I ;  Δn  is the change in refractive index) and Leff  is the effective 

sample thickness.8 

 

The quantity of interest is the optical power transmitted by the aperture. An 

expression for this can be obtained in terms of the peak on-axis phase shift Φ0〈Δ 〉 . 

Sheik-bahae et al.9 have shown that a useful experimental parameter that is proportional 

to Φ0〈Δ 〉 is the difference in the peak and valley transmittance values: 

Δ ζ  − ζT  = T( ) T( )p-v p v  where ζ p  and ζ v  give the z positions corresponding to the 

maximum and minimum ζT( )  values. Sheik-bahae et al. have determined through 

numerical analysis that for Φ π0| Δ | < , the following approximation is valid to within 3%: 

    (3.6)  Φ0Δ ≅ 〈Δ 〉T - S 0.25
p-v 0.405(1 )       

where S is the low-power aperture transmission. For a Gaussian-shaped pulse, 

ΦΦ 0
0

Δ
〈Δ 〉 = 

2
 where Φ0Δ  is now the peak on-axis phase shift. Then 2

In  is determined by  

    (3.7)  
tλω Φ0≅ 〈Δ 〉

2
In a

L Є
0 FWHM

2
eff i

,           

where tFWHM  is the measured pulse width (full width at half maximum), Єi  is the 

measured incident pulse energy corrected for Fresnel reflection at the front sample 

surface and a  = 0.38.12 
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As mentioned earlier, the presence of nonlinear absorption will distort the shape 

of the Z-scan transmittance curve. TPA will enhance the valley and reduce the peak 

while saturable absorption produces the opposite effect. 

 

When TPA is present, it reduces the intensity in the sample as a function of the 

z-position of the sample. It also distorts the amplitude which further affects the beam 

shape in the far field. To account for TPA, the previous theoretical expressions have to 

be slightly modified and β  has to be determined from another measurement. 

 

One technique for determining β  is to perform an open-aperture Z-scan. Open-

aperture implies that all the energy transmitted by the sample is collected and detected. 

Thus in this case, the nonlinear transmittance is due to absorption loss only. By 

performing both an open- and a closed-aperture Z-scan the results obtained were 

analyzed with expressions to yield the real part of the nonlinear phase shift 

ϕΔ real induced by the third-order nonlinearity and the T factor (defined here as 

π ϕ
ϕ
Δ

Δ
T = imag

real

4
, where ϕΔ imag  is the imaginary part of the nonlinear phase shift) for a 

given sample. Roughly, the amplitude of a closed-aperture Z-scan (peak-to-valley 

difference in transmission values) is proportional to ϕΔ real , where the asymmetry of a 

closed-aperture scan depends on the T factor (for T = 0, the scan is essentially S 

shaped and symmetric). The ϕΔ imag  can be obtained either from the asymmetry of the 

closed-aperture scan (with 
ϕϕ
π

Δ
Δ =

T real
imag 4

) or from the dip in the open-aperture scan 

that is directly related to the value of ϕΔ imag . Alternatively, in some cases, we used a 

procedure consisting of dividing the closed-aperture scan by the open-aperture scan to 
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resolve information on the real part of the phase shift. Such a procedure gives a scan 

that is essentially free from the influence of ϕΔ imag , that is, free from the TPA effect. 

 

The relationship between the ϕΔ  and the n2 can be written as 

    (3.8) 
πϕ  

λ
Δ =

n IL2 eff2
,         

Knowledge of the light intensity can be used for conversion from phase shift values to 

nonlinearity values. However, it is more convenient to perform measurements in a 

relative manner. Hence, we calibrated the values of the NLO parameters by performing 

measurements of the ϕΔ  for a silica plate for which 2n = 3 × 10-16 cm2 W-1 was 

assumed. For measurements of solutions, we assume that the complex 2n of a dilute 

solution can be approximated by the linear expression 

    (3.9) δ δ= +2 2, solute 2, solvent1n n ( - )n        

where δ  is the weight fraction of the solute, n2,solute is the compound’s (extrapolated) 

nonlinear refractive index, and n2,solvent is the nonlinear refractive index of the solvent.  

 

It should be noted that the value of 2, soluten determined from the slope of the 2n -

versus-δsolute  dependence, in principle, be substantially different from the value of 2n  for 

the pure polymer in the solid phase. Two main factors to consider are the difference in 

density between the solute and the solvent and the difference in the local field factors, 

which we can formally interpret by taking into account that  

(3.10) χ
=

Cn
n

(3)
1

2 2 , 
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where the constant C1  depends on the definition of χ (3)  and on the system of units 

adopted: in the cgs system, 
π

=C
c

2

1
12

 can be used. 

  

In mixed system, for the conversion from χ (3)  in esu units to 2n in square 

centimeters per watt, the numerical value of C1  is ∼ 0.039 and 

(3.11) χ γ= ∑'L N(3) 4
i i , 

where L’ is the local-field factor, often approximated by the Lorentz expression 

( )2
'

+ 2
3

=
n

L  and γ  is the hyperpolarizability which we assume to be concentration 

independent. Ni are concentrations of molecules of the solution 

components
δ ρ

=
NN

M
0 i solution

i
i

, where N0 is the Avogadro number, δi is the weight fraction 

of a solution component, Mi is the component’s molecular weight and ρsolution  is the 

solution density. For dilute solutions, one can assume that nsolution = nsolvent and 

ρ ρ=solution solvent .  We conclude that the  

(3.12) 
ρ
ρ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

4 2
2,extrapol solvent solute solvent

or
2 solute solvent solute 

n L n C
n L n

 

where Cor is the correction for the possible difference in the orientational order of 

molecules in solution and in the solid. 
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3.1.3 EXPERIMENTAL TECHNIQUE 

 

The Z-scan measurements9 were performed on solutions of the coordination 

complexes in CHCl3. The experimental setup (Fig. 3.3) comprised of a Ti:sapphire 

regenerative amplifier (CPA-2001, Clark, MXR) which typically produces 150 fs duration 

pulses of 250 Hz at wavelength of 775 nm. These pulses have energy of about 1 

mJ/pulse. The fundamental pulses from the regenerative amplifier were parametrically 

down-converted in an optical parametric amplifier (TOPAS, Quantronix) and where 

necessary, frequency-doubled, which yielded 100 - 150 fs long pulses (FWHM) with 

tunable wavelength at 520 - 1600 nm.  

 

 
 

Fig. 3.3 Picture of the Z-scan setup at the Laser Physics Centre,  
The Australian National University, Canberra 



 63

The measurements were conducted using a simple arrangement that allowed us 

to record the open-aperture Z-scan and the closed-aperture Z-scan simultaneously. The 

travel range of the table was generally chosen to be z = -35 to z = 35 mm. The focussed 

spot sizes were in the range of wo = 30 - 40 μm. 

 

For convenience, the measurements were performed in a relative manner hence, 

we calibrated the values of the NLO parameters by performing measurements of the ϕΔ  

of the solvent in 1 mm cell and adjusting the light intensity to obtain a change in 

nonlinear phase shift (Δφ0) value in the range of 0.7 - 1.0 rad for the cell with the solvent 

and of a 1 mm thick silica plate for which n2  = 3 x 10-16 cm2 W-1 was assumed.  
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3.2.0 THE DEGENERATE FOUR-WAVE MIXING (DFWM) TECHNIQUE 

 

 
 

Fig. 3.4 Picture of the DFWM setup at the Laser Physics Centre,  
Australian National University, Canberra 

 

 

Four-wave mixing refers to the interaction of four waves in a nonlinear medium 

via the third order polarization. When the waves have different frequencies, the process 

can be used to generate new frequencies. However, interesting effects are observed 

when all the waves have the same frequency. This is referred to as the degenerate 

case.13 
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In DFWM, one laser is used and the beam is split to provide the pump beams 

and the probe beam. The beam is initially collimated using two convex lenses and an 

aperture is used to cut the scattered background before splitting it into three beams. The 

three coherent waves are incident on a nonlinear medium and a fourth wave (the phase 

conjugate) is generated. The strength of this phase conjugate wave is dependent on a 

coupling coefficient κ that is proportional to the effective χ (3)  for the interaction. Hence 

measurements of the phase conjugate intensity can yield the χ (3)  tensor components of 

the medium. The DFWM technique is now much less popular than the experimentally 

simpler Z-scan technique.  

 

In DFWM (Fig. 3.4), two coherent “pump” beams interact within a material 

creating an interference pattern of light intensity.1a A refractive index grating results from 

the change in refractive index of a third-order material depends on the intensity of the 

applied field, and this can be described by the dependence Δn(r) = n2I(r). When a third 

beam is incident on this grating, a fourth beam is generated, the intensity of which is 

proportional to the product of all the input intensities and to the square of the absolute 

value the molecules third-order susceptibility, i.e I4 = ⏐χ(3)⏐2I1I2I3.  

 

DFWM has several advantages: one can measure all the independent χ (3)  

tensor components of an isotropic medium by using various combinations of 

polarizations for the four beams employed in the experiment, absolute and relative 

measurements of χ (3)  are possible and the time dependence of the nonlinear response 

can be studied. The last mentioned is significant because off-resonance electronic 
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nonlinearities show a practically instantaneous response and these can be separated 

from slower processes that also contribute to n2.  

 

Due to the difficulty of distinguishing the contributions from χ (3)
real and χ (3)

imag in 

DFWM,4 one must perform a series of measurements on solutions of a compound with 

varying concentrations in a non-absorbing solvent. The concentration dependence of the 

DFWM signal is  

(3.13) IDFWM α |χ(3)|2 α[Nsolute γreal,solute + Nsolvent γreal,solvent]2 + [Nsolute γimag,solute]2 

It is assumed here that the solvent contributes only to the real part of the solution 

susceptibility whereas the solute can contribute to both the real (refractive) and 

imaginary (absorptive) components.14 

 

Despite its experimental complexity, DFWM forms a useful technique to the 

technically less difficult Z-scan in that it can be used to verify that the origin of the 

observed nonlinearity is electronic in nature. 

 

3.2.1 PRINCIPLE OF DFWM MEASUREMENTS 

 

The geometry of the beams is as shown (Fig. 3.5). Three pump beams, 

coincident from one side of the sample, were obtained by splitting of the main beam of 

approximately equal intensity. Two of the beams (1 and 2) were timed to arrive at the 

sample at the same time while the delay of the beam 3 was scanned between the 

negative values (corresponding to beam 3 arriving at the sample before the pump 

beams 1 and 2) and positive values (corresponding to beam 3 arriving at the sample 

after the beams). They were then focused with a 75 cm focal length plane-convex lens. 
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The samples were placed at a distance of 72 cm from the lens being about one Rayleigh 

range shifted from the focal plane. The beam waist spot radius was approximately w0 = 

200 μm. The BOXCARS arrangement of the beams leads to the emergence of a phase-

matched DFWM signal in the fourth corner of the rectangle formed by the three 

intersecting beams.13b,13d,13e Most of the measurements were done with the pulse energy 

about 3 uJ/pulse, the total beam intensity being about 30 GW cm-2. The effective 

nonlinearity of the materials measured using DFWM was related to effective nonlinearity 

of neat CHCl3, which in turn referenced to the n2 of fused silica. 

 

The phase matched diffraction signal, generated in the sample through the 

nonlinear interaction was monitored with a photodiode whose output was fed into a 

boxcar (Fig. 3.5). Another photodiode monitored the amplitude of the input pulses and 

the data collection program was setup to accept only laser pulses with the amplitudes 

falling within a prescribed range. The delay of one of the beams with respect to the two 

remaining beams varied with a computer controlled delay line, providing the temporal 

resolution of the DFWM signal.1 

 

As mentioned earlier, the DFWM signal intensity is proportional to the square of 

the transient susceptibility change. In fact, as both the real (“refractive”) and imaginary 

(“absorptive”) parts of the susceptibility may be involved, the intensity of the 

instantaneous part of the DFWM signal can be written as  

(3.14) ( ) ( )χ χα +(3) 2 (3) 2
DFWM real imagI  
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Fig. 3.5 (a) BOXCARS geometry of the interaction of the beams in the DFWM 

experiment (top); (b) View on the screen behind the sample (bottom)1 
 

 

Phase matched 
DFWM signal 

Non-phase 
matched DFWM 
signal 
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This relation allows one to determine the modulus of the third-order susceptibility, |χ(3)| or 

rewriting the equations in terms of a complex nonlinear refractive index n2, the modulus 

of the nonlinear refractive index, |n2|. In our case, we determine the nonlinearity of our 

sample in CHCl3 solution contained in a 1 mm glass cell so a convenient way of 

determining its nonlinearity is by comparing the DFWM signal from the material from the 

pure solvent contained in the same cell. The nonlinearity can then be calculated as  

(3.15) 
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

L In C  C  n
L I

1

 sample 2sample silica silica  DFWM
2 refl abs 2  silica

sample  DFWM

 

where Crefl  and Cabs are correction factors taking into account the differences in the 

reflection and absorption for the sample and silica respectively.15 

 

3.2.2 THE DFWM TECHNIQUE 

 

 
 

Fig. 3.6 Scheme of the laser system used in nonlinear optical measurements at 800 nm 
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The laser system (Fig. 3.6) used in the experiments consisted of a Coherent 

Verdi pumped Coherent Mira 900D femtosecond Ti-sapphire oscillator providing a train 

of nominally 100 fs pulses which were then amplified in a Ti-sapphire regenerative 

amplifier with diffraction grating decompression and compression stages, pumped at 30 

Hz with the second harmonic of a Spectra Physics GCR Nd:YAG laser. After 

recompression, autocorrelation measurements showed the amplified pulses to be 

transform-limited with a FWHM of 125 fs and maximum pulse energy of 500 μJ pulses 

which were attenuated and directed into a folded BOXCARS (forward) DFWM system 

(Fig. 3.7). 1a,16 

 

 

 
Fig. 3.7 Scheme of DFWM setup in BOXCARS configuration 
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CHAPTER 4 

SYNTHESIS AND CHARACTERIZATION OF COORDINATION 

DRIVEN SELF-ASSEMBLIES OF Zn(II) METALLOPORPHYRIN  

COMPLEXES WITH SPATIAL GEOMETRY DIRECTED BY  

CONFORMATIONAL DIVERSITY 

 

4.0 INTRODUCTION 

 

Molecular self-assembly offers a good alternative pathway to a wide variety of 

one-, two- and three-dimensional arrays through various associations and orientations.2 

It not only allows the derivation of supramolecules with interesting and sometimes 

unexpected structures, it is also generally less tedious than the approach taken to form 

covalent compounds.  The practical aspect of this work when applied on a large scale 

synthesis basis was taken into consideration.  

 

Therefore, in our work, we designed and synthesized porphyrin with phenyl rings 

as peripheral side groups. The latter possess ortho methoxymethyl substituents which 

contain O donor atoms for the formation of coordination bonds. Also, the ortho 

substituents on the phenyl rings confer greater some rigidity to the structure. This is 

advantageous as it allows the separation of the atropisomers and more importantly, 

leads to the formation of a larger variety of coordination complexes described in this 

chapter.  
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The series of coordination complexes are characterized and studied for their 

spectroscopic behaviour in solutions prior to the analyses of their nonlinear optical (NLO) 

properties using Z-scan technique. We can then establish the structure-property 

relationship; in particular, the influence of their overall molecular geometries on their 

third-order nonlinear responses (described in Chapter 5).3 Through this approach, we 

discover new molecular designs that allow us to gain more insight into improving third-

order NLO properties of metalloporphyrin complexes.  

 

Therefore, in this chapter, we describe the syntheses and characterization of a 

variety of self-assembled Zn(II) metalloporphyrin complexes.  

 

4.1.0 SYNTHESIS OF PORPHYRIN LIGAND BUILDING BLOCKS 

 

The synthesis of the porphyrin building blocks 4-6 and 4-7 from 4-1 to 4-5 for the 

class of self-assembled coordination Zn(II) metalloporphyrin complexes described in this 

chapter is shown in Scheme 4.1 below. 
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+
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4-6                                                       4-7

4-1

Scheme 4.1 i, Na, CH3OH, reflux; ii, DIBAL, benzene; iii, MeOH, HCl, 
H2O, 0 °C; iv, CF3COOH/ CH2Cl2; v, chloranil, reflux 

 

 

CH2Br
CH2Br

CH2OCH3
CH2Br

CH2OCH3
CHOi ii

4-8                           4-9                                4-4

 

 

The porphyrin building blocks are compounds 4-6 and 4-7 and their syntheses 

involved a 5-steps reaction pathway. Free radical bromination of the methyl group in 2-

Scheme 4.2 i, Na, CH3OH, reflux; ii, Na2CO3, DMSO, reflux 
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methylbenzonitrile (4-1) gave 2-(bromomethyl)benzonitrile (4-2). The methoxymethyl 

group in 2-(methoxymethyl)benzonitrile (4-3) was then introduced by nucleophilic 

substitution reaction in 4-2. The latter was reduced by diisobutylaluminium hydride 

(DIBAL) to provide the aldehyde function in 2-(methoxymethyl)benzaldehyde (4-4) 

needed for the construction of the porphyrin template. The other building block, namely 

dipyrromethane (4-5), was formed by a condensation reaction between pyrrole and 

paraformaldehyde according to literature method.4 The porphyrins 4-6 and 4-7 were 

prepared from 4-4 and 4-5 via a MacDonald [2+2] condensation reaction 5  and 

subsequent oxidation of the intermediate porphyrinogens by chloranil.  

 

In a second route, we were able to obtain the porphyrins 4-6 and 4-7 in two steps. 

First, the nucleophilic substitution of one of the benzylic carbons of 1,2-

bis(bromomethyl)benzene (4-8) to form 1-(bromomethyl)-2-(methoxymethyl)benzene (4-

9). The latter then undergoes oxidation in NaHCO3 and DMSO to form 2-

(methoxymethyl)benzaldehyde (4-4).6 The formation of the porphyrin 4-6 and 4-7 via this 

route is preferable as it involves one reaction less and uses less expensive and less 

dangerous reagents (DIBAL is highly flammable) as compared to the previously reported 

route.7 

 

The novel 1,15-disubstituted porphyrin 4-6 and 4-7 were synthesized by acid-

catalyzed condensation of 4-4 and 4-5. The porphyrins are symmetrical but they cannot 

be synthesized by the simple pathway to the formation of symmetrical porphyrin such as 

tetraarylporphyrins by the acid-catalyzed condensation reaction of the aldehydes and 2 

equivalents of pyrrole. This was because of the reaction as shown in Fig. 4.1 below. The 

aldehyde will condense with pyrrole to form a linear intermediate that cyclizes to give the 

porphyrinogen first. Subsequent oxidation of the latter will yield four possible products. It 
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will be impossible to obtain the desired porphyrin building blocks which lack alternative 

meso substitution. Even with the condensation of 1:1:2 of 4-4/paraformaldehyde/pyrrole, 

the reaction will yield an even larger number of products due to random condensation. 

Low yield of the desired product will be obtainable only after extensive chromatography 

and characterization. However, with the development of dipyrromethane,4 the synthesis 

of 1,15-disubstituted porphyrins is made possible. 

 

 

H3COH2C

OH
+

H

H3COH2C

OHH

NH

H

CH2OCH3 N
H

H

CH2OCH3

H3COH2C

O:H

H+
N

NH
OH

H

CH2OCH3

-H2O

-H+ [O]

R1 R2

R1 R2

R1

N
H

N
H

N
H

N
H

R1 R2

R2

H

N

+

+ +
+

+

R1, R2 = -CH2OCH3 or H

Porphyrin Mixture

H

H

 

 
Fig. 4.1 Mechanism for the condensation of pyrrole and 4-4 
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Compounds 4-6 and 4-7 were synthesized using the reported procedures by 

Manka and Lawrence8 who prepared similar porphyrins in high yield (73 - 92 %) and 

under mild reaction conditions that thermodynamically favour the formation of the 

intermediate porphyrinogens. However, only modest yield of 12 % and 11 % 4-6 and 4-7 

were obtained respectively. The synthesis of the porphyrin using the procedure by 

Manka and Lawrence8 follows closely to the conditions which minimize scrambling as 

studied by Lindsey and co-workers.9 These conditions include the use of trifluroacetic 

acid as catalyst, CH2Cl2 as solvent, stringent control of stoichiometry (1:1), use of 

dipyrromethane and aldehyde concentration less than 10 mM. Scrambling, which means 

rearrangement catalyzed by the acid will lead to the formation of 5,10-disubstituted 

porphyrin when the intermediate D in Fig. 4.2 condenses with another aldehyde, thus 

giving rise to by-product, lowering yield of the desired 5,15-disubstituted porphyrin. 

 

It is noteworthy that the reaction gave comparable yields of the two atropisomers. 

The two methoxymethyl substituents in 4-7 are in cis conformation but they do not 

experience significant steric hindrance due to the ability to freely rotate in solution, as 

illustrated in Fig. 4.3 below. This is confirmed later in the X-Ray Crystallographic 

structure of the Zn(II) metalloporphyrins of 4-7 (refer to Section 4.5.2.1) where we 

observe the projection of the methoxy substituents away from the porphyrin core. Hence, 

the formation of 4-6 and 4-7 during condensation reaction is equally favourable. 
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Fig. 4.2 Scrambling reaction during condensation8 
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Fig. 4.3 Illustration of the possible bond rotations  
of the methoxymethyl substituents in 4-7 
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The 1H NMR (CDCl3) spectrum of the product mixture immediately isolated from 

the reaction between 4-4 and 4-5 clearly suggested the presence of trans 4-6 and cis 4-

7 porphyrin isomers. Two separate signals 0.07 ppm apart in a ratio of approximately 1:1 

were observed for the methylene protons of the two isomers, respectively. The 

corresponding pairs of other proton signals are identical. These isomers could be 

separated by column chromatography. The isomers elute as two very close red bands 

and they have similar 1H NMR, 13C NMR and EI-mass spectra.   A clean separation of 

the two isomers can be easily observed in their 1H NMR spectra wherein the benzylic 

protons have different chemical shifts as shown in Fig. 4.4. The benzylic protons of the 

trans isomer 4-6 are slightly more deshielded than that of the cis isomer 4-7. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.4 1H NMR peaks of a mixture of 4-6 and 4-7 (left), 1H NMR  
peak of 4-7 (middle), 1H NMR peak of 4-6 (right) 
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X-Ray Crystallography was used to differentiate the isomers. Only one of the 

isomers crystallizes out to give single crystals suitable for the analysis. In a solvent 

mixture of 1:1 cyclohexane/CHCl3, single crystals of the trans isomer 4-6 (refer to 

Section 4.1.1) were obtained and it corresponds to the band that eluted first during 

separation using column chromatography (CHCl3 as eluent).  

 

Since 4-6 was found to crystallize in 1:1 cyclohexane/CHCl3 mixture but not 4-7, 

the mixture of the two isomers was first separated by fractional crystallization to obtain 

the pure 4-6. The mother liquor was then concentrated and purified using column 

chromatography to separate 4-6 and 4-7. The isomers were obtained in similar yields. 

This shows that the substituents on the phenyl rings did not pose significant steric 

hindrance to disfavour the formation of the cis isomer, probably due to free rotation of 

the former. This is in contrast to the atropisomers reported by Uemori et al. 10 in which 

their obtained trans isomer is in excess of the cis isomer by 22 % because of steric 

hindrance from the long side chains of the peripheral group. 

 

A conformational study of 4-6 was carried out in order to investigate the 

temperature at which free rotation of the phenyl ring to yield 4-7 occurs. This is 

detrimental in temperature control of the following reaction. Variable temperature (VT)-

NMR of 4-6 at 30, 80, 90 and 100 ºC in toluene-d8 showed that the aryl rings did not 

rotate to give 4-7 up to 100 ºC because there was no appearance of additional singlet 

from the benzylic protons of 4-7.  

 

However, more rapid tautomerization of the NH protons at higher temperature 

was evident (Fig. 4.5). Tautomerism (illustrated in Fig. 4.6) is generally fast on the NMR 

scale which explains the broad and sometimes unobserved peaks of the N-H protons. 
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The most stable form of porphyrin is that in which the two inner H atoms are bonded to 

opposite N atoms. The less symmetrical form with H atoms bonded to adjacent N is 

considerably less stable because of the penetration of the atoms into the van der Waals 

sphere of each other. The appearance of the peak attributed to these protons differs. It 

may appear sharp, broad or may be completely absent. The appearance is subjected to 

temperature changes which in turn affects the dynamic N-H tautomerism process. This 

observed phenomenon is in fact very important since photoinduced tautomerization of 

free-base tetrapyrroles is useful for optical memory applications.11 

 

 

 
Fig. 4.5 Variable temperature 1H NMR spectrum of 4-6 (-3.20 to -2.00 ppm) 
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Fig. 4.6 Rapid tautomerization of porphyrin 

 

Earlier works8, 12  on the synthesis of 5,15-diarylporphyrins also indicated the 

presence of atropisomers in examples involving ortho substitutents in the aryl rings. 

More recently, discrete atropisomers of a series of meso tetraarylporphyrins having ortho 

aryl rings were successfully separated by chromatography.13 Due to the presence of 

ortho substituents, restricted rotation about the meso C-aryl C bond gives rise to the 

formation of two atropisomers. Hence, the conformational rigidity conferred by the ortho 

substituents of 4-6 and 4-7 (even up to 100 ºC) probably accounts for the difference in 

their polarity which aid in the separation of the isomers. This was further proven by the 

synthesis of the meta isomer described in Section 4.1.2. 
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4.1.1 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-6i 

 

Single crystals of 4-6 were grown by slow evaporation of a solution of 4-6 in a 

cyclohexane/CHCl3 mixture. The asymmetric unit consists of half of the molecule. The 

ORTEP diagram of the ligand is shown in Fig. 4.7. The porphyrin ring is perfectly planar 

(with respect to four pyrrolic C atoms and four N atoms) and the two substituted aromatic 

rings are in anti conformation. All H atoms were located directly, and the thermal 

ellipsoids indicate a relatively rigid core structure with somewhat dangling side chains. 

The flexible ether substituents are not rotated above or away from the porphyrin ring. A 

70.6 ° orientation of the phenyl rings was observed with respect to the perfect plane of 

the porphyrin ring and the pair on the porphyrin ring have slight deviation of 0.011 Å (in 

opposite directions, refer to Fig. 4.8). This orientation is comparable with the tetra-

substituted porphyrin systems. In the solid state packing, no π-π interactions was 

observed between the aromatic rings. One of the phenyl rings of one adjacent unit lie 

above the plane of the porphyrin ring as shown in Fig. 4.9. 

           

                                                 
i Refer to Appendix for crystal refinement data, selected bond lengths and angles for all X-Ray 
Crystal structures in this thesis 
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Fig. 4.7 Molecular structure 4-6; thermal ellipsoids are  

drawn at 30 % probability level 
 

 

 

 
Fig. 4.8 The distance of deviation of the phenyl C attached to the meso C of porphyrin 

with respect to the plane of the porphyrin formed by the four N atoms refers to x 
 

 

Zn
x
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Fig. 4.9 Diagram shows absence of π-π interactions between  

adjacent units of 4-6 in the solid state packing 
 

 

 

4.1.2 SYNTHESIS OF 5,15-BIS-3-METHOXYMETHYLPHENYLPORPHYRIN – 

‘META’ PORPHYRIN (4-13 and 4-14) 

  

Using the same synthetic route for the synthesis of the ortho ligands (4-6 and 4-

7), the meta porphyrins were prepared from the 3-methoxymethylbenzaldehyde 

precursor as shown in the scheme below. Several purification techniques were 
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performed on the crude porphyrin. However, we were unable to separate the cis and 

trans isomers on the column unlike in the ortho counterparts despite trying various 

solvent mixtures and crystallization techniques. The isomers displayed identical 

chemical shifts on 1H NMR and even resolution of the benzylic proton peaks using the 

500 MHz NMR spectrometer was unsuccessful. This can be attributed to the absence of 

a large group at the ortho position and hence lack of torsional strain to prevent free 

rotation of the phenyl rings at room temperature in solution. 
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Scheme 4.3 i, Na, CH3OH, reflux; ii, Na2CO3, DMSO, reflux; 

iii, CF3COOH, CH2Cl2; iv, chloranil, reflux 
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4.1.3 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-13 

 

Single crystals of a mixture of 4-13 and 4-14 were grown by slow evaporation of 

a solution of ethyl acetate/CHCl3 solvent mixture. The ORTEP diagram (Fig. 4.10) of the 

porphyrin that was elucidated turned out to be the trans isomer, which is not surprising 

since the trans isomer formed single crystals more easily in the case of their ortho 

counterparts 4-6 too.  

 

 

Fig. 4.10 Molecular structure 4-13; thermal ellipsoids are drawn at 50 % probability level 

 

The asymmetric unit consists half of the molecule. The porphyrin ring is planar 

with the four N atoms lying on a perfect plane and the two substituted aromatic rings are 

in anti conformation. The phenyl rings orientate by 63.0 ° with respect to the perfect 

plane of the porphyrin ring and deviation of 0.023 Å (in opposite directions).  
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Hence, from the above study on ‘meta’ porphyrin, we are able to highlight the 

importance of having two ortho methoxymethyl substituents in the structure of the parent 

porphyrin ligand. These substituents allow the separation of the individual atropisomers. 

This in turn allows the synthesis and further derivation of the parent porphyrin ligands to 

produce a series of coordination dimers and polymers with distinct coordination 

geometries and architectures that can be characterized by single crystal X-Ray 

Crystallographic techniques. The advantageous features of the designed parent 

porphyrin ligand will be illustrated in the remaining chapters of the thesis.  

 

4.2 SYNTHESIS OF COORDINATION DIMERS AND POLYMERS OF Zn(II) 

METALLOPORPHYRINS 

 

The trans ligand 4-6 obtained after purification from its cis counterpart was stirred 

in an ethanolic solution of Zn(OAc)2.xH2O (Scheme 4.4). The product 4-15 isolated was 

purified on a short chromatographic column using a mixture of hexane/CH2Cl2 as eluent. 

Structural elucidation of the complex using X-Ray Crystallography yielded a 3D 

coordination polymer in which each metalloporphyrins contain a hexa-coordinated Zn 

metal atom and formed Zn-O coordination bonds with four other identical units.7 The cis 

ligand 4-7 was stirred in a THF solution of Zn(OAc)2.xH2O and similarly purified to yield 

4-16 which was elucidated as a dimer with two Zn-O coordination bonds (Scheme 4.5). 

 

The porphyrins 4-6 and 4-7 were brominated using stoichiometric amounts of 

recrystallized NBS and a few drops of pyridine as catalyst in CHCl3 at 0 °C and the 

reactions were closely monitored by TLC (Scheme 4.6 - 4.8). For dibromination of the 

porphyrins 4-6 and 4-7, 2.1 equivalents of NBS was added in a single portion with slight 

excess further added when TLC showed the presence of starting material and 
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monobrominated species. Care was taken against adding excess NBS as more side 

product will form.  The monobromination reaction had to be carried out with slow addition 

of NBS and less pyridine to reduce further bromination of the monobrominated species. 

The reaction was quenched with the addition of acetone as soon as all the starting 

materials were consumed. When the reaction was allowed to stir for longer period of 

time (more than 1 hour), more side products formed. The products were purified by 

precipitation of a CHCl3 solution of the crude product using methanol then redissolved 

and reprecipitated using the same method to yield the pure brominated compounds. 
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Scheme 4.4 i, Zn(OAc)2.xH2O, EtOH 
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Scheme 4.5 i, Zn(OAc)2.xH2O, THF 

 

Complexes of the brominated porphyrins 4-17, 4-19 and 4-21 were stirred in THF 

solution of Zn(OAc)2.xH2O due to their insolubility in ethanol. The complexes were 

purified on a short chromatographic column using a mixture of hexane/CH2Cl2 as eluent.  
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Scheme 4.7 i, NBS, CHCl3, 0 °C, pyridine; ii, acetone; iii, Zn(OAc)2.xH2O, THF 
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Scheme 4.8 i, NBS, CHCl3, 0 °C, pyridine; ii, acetone; iii, Zn(OAc)2.xH2O, THF 

 

4.3.0 PROPERTIES OF COORDINATION COMPLEXES 

 

As described above, we have synthesized and characterized a variety of self-

assembled Zn(II) porphyrin coordination complexes. They are constructed out of the 

ligands as building block, obtained from a single step reaction that generates a pair of 
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atropisomers with cis and trans stereochemistry. Interestingly, each of these ligands 

gave coordination complexes of Zn(II) with completely different architectures upon 

insertion of the metal ion which are described in detail as follows. 

 

4.3.1.0 PROPERTIES OF THREE-DIMENSIONAL COORDINATION POLYMER 4-15 

 

This thesis reports the first 3D polymeric complex of six-coordinate Zn(II) 

metalloporphyrin with two axial O-donors.7 Each metalloporphyrin unit in the complex is 

linked to four other identical complexes through 1-point via Zn-O coordination chemistry. 

The metalloporphyrin core is the acceptor building block while the substituent appended 

on the peripheral phenyl ring is the donor block. The formation of 4-15 is entropically 

unfavourable but its formation suggests that there must be considerable cooperativity 

between the addition of the first and subsequent donor blocks.  

 

Coordination polymers of Zn(II) porphyrins with one axial O-donor from functional 

groups attached to peripheral phenyl rings have also been reported.14 Ortho substituted 

benzylic O donors (earlier examples involved phenolic O donors) have been reported but 

the ether function is preferred to a hydroxyl group as the latter may favor intermolecular 

hydrogen-bonding instead of metal-coordination.15 

 

4.3.1.1 THE ANAMOLOUS TIME-DEPENDENT 1H NMR of 4-15 

 

It was noted that the 3D network of 4-15 had a cavity with the shortest and 

longest non-hydrogen atomic distances across the channel of about 4.81 Å and 9.27 Å 

respectively. These cavities and channels should be involved in the phenomenon 

observed in time-dependent 1H NMR study as illustrated in Fig. 4.11. The initial 
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spectrum showed that the benzylic, methyl, one of the pyrrolic and phenyl protons 

appeared as significantly broadened signals. As time progressed, these signals shifted 

to higher fields and sharpened. There were essentially no further changes observed 

after the final spectrum was taken after 10 hours. In fact this spectrum was reproducible 

even after solvent removal and redissolving the residue in the same solvent. A similar 

phenomenon was observed in experiments using deuterated toluene as a solvent. The 

above could have involved a slow diffusion of solvent into the cavities of the polymeric 

network. This was associated with slow conformational changes of the molecular 

framework which propagated from the exterior of the 3D network into the interior as the 

solvent diffusion progressed. Upon attaining equilibrium, the optimum 3D molecular 

framework allowed rapid diffusion of solvents in and out of the network resulting in sharp 

averaged signals in the 1H NMR spectrum. Total removal of the solvent was possible 

(refer to the next section for discussion on X-Ray Crystallographic analysis) but the 

optimum molecular conformation was maintained. Thus, redissolving the dried sample in 

the same solvent gave an identical 1H NMR spectrum. 
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Fig. 4.11 Time-dependent 1H NMR spectra (in CDCl3) of a freshly  

isolated sample of 3D coordination polymer 4-15 
 

 

A comparison of the 1H NMR spectra of the free ligand 4-6 and 4-15 (optimized 

conformation) shows that the methylene and methyl protons, and the aryl proton on 

carbon next to that carrying the CH2OCH3 group are significantly shifted upfield (Table 

4.1). In addition to the fact that the O atom is coordinated to Zn(II) in 4-15, these protons 

are all located within the shielding zone of the adjacent aromatic porphyrin macrocycle 

accounting for the strong shielding effect observed. 

 

ppm
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Table 4.1 Selected proton chemical shifts (ppm) of 4-6 and 4-15 
 

 Chemical shifts (ppm) 

Proton PhH ii CH2O OCH3 
Solution 
Concentration iii 
× 10-3 (M) 

3.60 0.36 3.60 0.36 3.60 0.36 

4-6 7.80 7.80 4.11 4.11 2.80 2.80 

4-15 6.92 7.48 2.70 3.44 1.61 2.23 
 
 
 

The effect of concentration changes to the observed phenomenon was tested. 1H 

NMR analyses were carried out on d1-CDCl3 solutions of 4-6 and 4-15 with 

concentrations of 3.6 × 10-3 M and 3.6 × 10-4 M. It was observed that upon dilution by 10-

folds, the benzylic, methyl, one of the pyrrolic and phenyl protons do not exhibit changes 

in chemical shifts for 4-6 but that of 4-15 shifted upfield without broadening of the peaks. 

Hence, peak broadening can be attributed to the diffusion of solvent in the 3D network 

leading to conformational changes in the molecules while the shift in peaks is due to 

concentration changes. As more of the compounds dissolved, concentration increased. 

Hence, the molecules become compressed and moved closer into the anisotropic field of 

its neighbouring metalloporphyrin (shielded region). The interaction was predetermined 

by the Zn-O bonds formed in the complex.  

 

In d5-C6D5NO2 solution, there is no obvious shift of the peaks but only a change 

in shape from broad to sharp over time. Equilibrium was attained faster in d5-C6D5NO2 

than in d1-CDCl3. As concluded earlier, since concentration effects only cause changes 

                                                 
ii Proton on carbon adjacent to carbon carrying CH2OCH3. 
iii Concentration of 4-15 used for Z-scan measurement = 7.9 × 10-3 M (Refer to Chapter 5 for 
discussion on Z-scan measurement of 4-15). 
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in the chemical shifts, the observation made in d5-C6D5NO2 solution may be due to the 

opening up of the 3D network polymer 4-15 to form monomers. This is supported by the 

X-Ray Crystallographic results which show the existence of 4-15 as monomers in solid 

state when grown in C6H5NO2 solution.   

 

As the concentration of 4-15 in CHCl3 is lower than that used in Z-scan 

measurement, the significant downfield shift of 4-15 as compared to its ligand 4-6 

confirm that the three-dimensional network of 4-15 is maintained at the concentration of 

the NLO measurements. 

 

4.3.1.2 THE EFFECT OF SOLVENT AND SMALL MOLECULES ON THE SOLID 

STATE STRUCTURE OF 4-15 

 
 

According to calculations, the cavities within 4-15 were expected to be large 

enough to hold small molecular species. We tested this possibility by using small 

molecular weight solvents. Crystals of 4-15 were dissolved in sufficient amounts of a 

solvent mixture of CHCl3/cyclohexane (1:1) and solvents such as CHCl3, acetonitrile, 

ethyl acetate and THF separately before the solutions were allowed to slowly evaporate 

off to regenerate single crystals suitable for X-Ray Crystallographic analyses. The 

results show that identical single crystals of 4-15 were obtained whether it was grown in 

CHCl3/cyclohexane (1:1) solvent mixture, CHCl3, acetonitrile, or THF.  

 

Hence, it can be deduced that in solution, the cavity of the coordination polymer 

may have (i) contracted and hence the solvent molecules are unable to penetrate, or (ii) 

the sizes of the molecules is too large to fit into the cavity or (iii) the molecules are so 
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small that they are able to freely move in and out of the cavities and channels and thus 

be removed from the network when evaporated.  

 

Interestingly, when C6H5NO2 and ethyl acetate were separately diffused into the 

crystals of 4-15, the 3D architecture of the coordination polymer opened up to give 

monomeric units of the Zn(II) metalloporphyrin complex as elucidated from the single 

crystal  X-Ray Crystallographic analyses. In addition, no solvent residue was trapped in 

the single crystal. Hence, these solvent molecules caused the polymer to “break up” by 

diffusing through the cavities. The possibility of this occurrence caused by the 

coordination of the N atom of C6H5NO2 or O atom of ethyl acetate in substitution of the 

existing O atoms is expelled because the single crystal of the monomer did not contain 

any residual solvent molecules.  

 

In addition, similar downfield shift of the benzylic, methyl, one of the pyrrolic and 

phenyl protons in the 1H NMR spectrum of 4-15 in d5-C6D5NO2 (Fig. 4.12) show that 

despite the contraction of the cavities and channels, the solvent was able to pass 

through them. Since C6H5NO2 is larger in size relative to the other solvents mentioned 

and yet exhibit high accessibility into the cavities and channels, the first and second 

postulations suggested earlier cannot be valid. Thus, that leaves the possibility that the 

small molecules are able to move in and out of the cavity so easily that they cannot be 

trapped in the 3D network in solid state. 
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Fig. 4.12 Time-dependent 1H NMR spectra (in d5-C6D5NO2) of a  

freshly isolated sample of 3D coordination polymer 4-15 
 
 
 
 

We studied the association of highly electron-deficient molecules chloranil16 and 

1,4-benzoquinone with electron-rich 4-15. When the ligand was stirred in a CHCl3 

solution with excess Zn(OAc)2.xH2O and chloranil/1,4-benzoquinone separately, the 1H 

NMR spectrum of the purified compound reveals that a similar 3D coordination polymer 

had formed and the absorption spectrum does not show the presence of chloranil nor 

1,4-benzoquinone. Purification was carried out by solvent extraction to wash away the 

excess Zn(OAc)2.xH2O using deionized water followed by column chromatography. 

Clearly, in addition to the bands attributed to chloranil and 1,4-benzoquinone, there was 

only one relatively broad dark pink band which eluted at the same rate as 4-15.  
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In addition, after 4-15 was stirred in a CHCl3 solution of chloranil and 1,4-

benzoquinone separately for 2 days, the purified product obtained was the starting 

material. These observations lead to the conclusion that the 3D polymeric network of 4-

15 is very closely knitted. Hence, the stability of the coordination complex is not 

disturbed by the association of electronically deficient foreign species with the Zn(II) 

porphyrins at the surface of the array.  

 

4.3.1.3 OPTICAL PROPERTIES OF 4-15 

 

Typical Soret and Q-bands, characteristic of a free-base and the corresponding 

Zn(II) metalloporphyrin in various solvents were recorded. These bands shift depending 

on the type of solvent used as shown from its UV-vis spectra (Fig. 4.13). 

 

The emission spectra were taken in CH2Cl2 by exciting the sample at 407 nm. 

The emission spectra (Fig. 4.14) of the free ligand 4-6 and the 3D coordination polymer 

4-15 are dominated by two main features, namely the Q(0,0) and Q(0,1) bands. The 

Q(0,0) and Q(0,1) emission bands occur near 640 - 650 and 675 - 725 nm, respectively, 

for 4-6 and 560 - 595 and 595 - 660 nm, respectively for 4-15. The quantum efficiency of 

4-15 was determined to be 0.058 using Zn(II) tetraphenylporphyrin (Φeff = 0.033) as 

standard in the same solvent toluene. The higher quantum efficiency of 4-15 relative to 

its standard is probably due to less fluorescence quenching as a result of π-π stacking, 

because the monomeric units are coordinated in a tilted angle relative to each other. 
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Fig. 4.13 UV-vis absorption spectrum of 4-15 in various solvents.  
Dotted lines show Q-bands amplified for clarity 
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Fig. 4.14 Emission spectrum of 4-6 and 4-15 in toluene at concentration of 1 × 10-5 M 

 

4.3.2.0 PROPERTIES OF ONE-DIMENSIONAL COORDINATION POLYMER 4-18 AND 

4-20 

 

Calculation of the size of Br atom using AM1 shows that a Br atom which has a 

calculated van der Waals’ radius of 2.33 Å is small enough to occupy the cavity in the 3D 

coordination polymer 4-15. Hence, we attempted to construct architectures with 

incorporated Br atom by substituting the one and two meso H on the free base 4-6 to 

yield 4-17 and 4-19. We can thus determine the effect of the number of Br atoms on the 

NLO properties of the resulting coordination complexes. Surprisingly, structural 

elucidation of the single crystal of 4-18 and 4-20 after it was synthesized from a THF 
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solution of Zn(OAc)2.xH2O and the corresponding free base ligands gave a coordination 

polymer with totally different architecture from 4-15. One-dimensional linearly stacked 

coordination polymers were obtained. Each Zn(II) metalloporphyrins are coordinated to 

two adjacent units via two Zn-O coordination bonds, thus forming an infinite ‘wire’ of 

Zn(II) metalloporphyrins with apical donor blocks on the two opposite faces. Since the 

units stack on each other in a slipped cofacial manner, each row resembles a step-like 

infinite structure. In addition, all the ‘wires’ stack one after the other in a zig-zag fashion. 

 

The presence of an additional coordination bond in 4-18 and 4-20 compared to 4-

15 causes each unit in the former to be held to each other in a more rigid manner hence, 

free rotation of about a single Zn-O bond is more restricted. Also, the additional bond 

causes every unit to be in slipped cofacial geometry while in 4-15, each unit is tilted at 

an angle. The single Br atom on each building block is randomly orientated in the 

coordination polymer 4-20 and the single Br renders the monomer and overall polymer 

asymmetrical.  

 

4.3.2.1 OPTICAL PROPERTIES OF 4-18 AND 4-20 

 

Typical Soret and Q-bands, characteristic of Zn(II) metalloporphyrin of 4-18 and 

4-20 in various solvents were recorded. The chromophoric interactions between 

adjacent units were not exhibited in their UV-vis spectra (Fig. 4.15 and Fig. 4.16) even 

though the porphyrin chromophores are more cofacially oriented than in 4-15. The 

absorption spectrum of 4-20 in different solvents closely resembles that of 4-10 although 

the geometries of the polymers are completely different. However, the absorption 

spectrum of 4-18 is clearly different from the former polymers. The Soret band of 4-18 is 

more red-shifted in the same solvents. Since the relatively large Br atom causes steric 
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hindrance and is known to result in distortion of planarity of the porphyrin ring, the red-

shift in absorption spectrum is not likely to be attributed to increase in conjugation but 

rather due to electronic effects. Both polymers 4-18 and 4-20 do not exhibit fluorescence 

which is expected because of the heavy atom effect of Br. Heavy atoms promote mixing 

of singlet and triplet states due to spin-orbit coupling, thus enhancing intersystem 

crossing from S1→T1.17  
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Fig. 4.15 UV-vis absorption spectrum of 4-18 in various solvents.  
Dotted lines show Q-bands amplified for clarity 



   107
  
 

 

 

 

4.3.3.0 PROPERTIES OF ONE-DIMENSIONAL COORDINATION DIMER 4-16 

 

The cis ligand 4-7 gave a completely different coordination complex when stirred 

in a THF solution of Zn(OAc)2.xH2O. Interestingly, a dimer which resembles the bacteria 

photosynthetic reaction centres was obtained. The bacteria contains the ‘special pairs’ of 

bacteriochlorophyll 18  molecules in which the whole rings are laterally offset by 

approximately 6 Å. In the coordination dimer 4-16, the units are oriented such that their 
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Fig. 4.16 UV-vis absorption spectrum of 4-20 in various solvents.  
Dotted lines show Q-bands amplified for clarity 
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edge-over-edge overlap involves only one phenyl ring interacting with the Zn(II) metal 

atom at the porphyrin and possess a vertical separation ~ 5.6 Å.  

 

4.3.3.1 THE ANAMOLOUS TIME-DEPENDENT 1H NMR of 4-16 

 

A comparison of the 1H NMR spectra of 4-7 and 4-16 show that the methylene, 

methyl and the aryl proton on carbon next to that carrying the CH2OCH3 group of 4-16 

are significantly shifted upfield (Table 4.2). The 1H NMR shows the appearance of only 

one set of broad benzylic and methyl protons which sharpened after 507 minutes (Fig. 

4.17).  

 

Table 4.2 Selected proton chemical shifts (ppm) of 4-7 and 4-16 
 

Chemical shift (ppm) 
 

PhH ii CH2O OCH3 
Solution 
Concentration iv 
× 10-3 (M) 

3.60 0.36 3.60 0.36 3.60 0.36 

4-7 7.69 7.69 4.07 4.07 2.81 2.81 

4-16 6.74 6.91 2.47 3.23 1.44 2.11 
 

 

At higher concentration, we observed sharp shoulder peak adjacent to the broad 

peaks of benzylic and methyl protons in the lower field. These sharp shoulder peaks do 

not shift over time and are thus attributed to the methoxymethyl substituents with 

uncoordinated O atoms in the dimer. This shows that at lower concentration, the 

chromophores may have moved further from each other in the dimer. However, the 

                                                 
iv Concentration of 4-16 used for Z-scan measurement = 4.9 × 10-3 M. (Refer to Chapter 5 for 
discussion on Z-scan measurement of 4-16). 
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significant upfield shift as compared to the free ligands show that each unit is still in 

close proximity to be affected by the anisotropic field of each other.  

 

The relative geometry of the pair is almost coplanar also. Unlike the 3D 

coordination polymer 4-5, another monomeric unit of 4-16 did not coordinate to either of 

the two units in the dimer probably because the lack of another bond renders the 

association energetically unfavourable. This is illustrated in Fig. 4.18. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4.17 Time-dependent 1H NMR spectra (in CDCl3)  
of a freshly isolated sample of dimer 4-16 
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Fig. 4.18 An illustration showing the association of the dimeric unit in 4-15 and a 
relatively weakly coordinated unit which forms only one Zn-O coordination bond 

 

 

4.3.3.2 OPTICAL PROPERTIES OF 4-16 

 

Typical Soret and Q-bands, characteristic of a Zn(II) metalloporphyrin in various 

solvents were recorded. Similar to 3D coordination polymer 4-15, the dimer 4-16 does 

not show chromophoric interactions in its optical spectrum even though the 

chromophores are closer (Fig. 4.19). 

 

Forms only one Zn-O bond  

Forms two Zn-O bond  
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The emission spectra were taken in CHCl3 exciting the sample at 413 nm. The 

emission spectra of the free ligand 4-7 and the coordination dimer 4-16 are similar to 

those of 4-6 and 4-15 and are dominated by two main features, namely the Q(0,0) and 

Q(0,1) bands. The quantum efficiency of 4-16 in CHCl3 was determined to be 0.039 

using Zn(II) tetraphenylporphyrin (Φeff = 0.033) as standard in toluene. The lower 

quantum efficiency of 4-16 relative to 4-15 is probably due to larger extent of 

aggregation of the 4-15 because of the cofacial packing of 4-16 whereas those in the 

polymer 4-15 are coordinated in a tilted angle relative to each other. 
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Fig. 4.19 UV-vis absorption spectrum of 4-16 in various solvents.  
Dotted lines show Q-bands amplified for clarity 
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4.3.4.0 PROPERTIES OF ONE-DIMENSIONAL COORDINATION DIMER 4-22 

 

The monobrominated trans ligand 4-19 gave a coordination polymer 4-20 with 

random orientation of the Br substituent which allows the overall effect of the atom on 

the polarization of the large supramolecular architecture to be averaged out. However, 

this approximation cannot be made for a dimeric coordination complexes hence only the 

dibromo ligand 4-21 was synthesized from the cis ligand 4-7 for the formation of Zn(II) 

metalloporphyrin complex. Unlike the trans ligand series, the brominated cis ligand 4-21 

gave a similar dimeric complex 4-22 when stirred in an THF solution of Zn(OAc)2.xH2O.  

 

4.3.4.1 OPTICAL PROPERTIES OF 4-22 

 

Typical Soret and Q-bands, characteristic of a Zn(II) metalloporphyrin in various 

solvents were recorded. Similar to the coordination dimer 4-16, 4-22 does not show 

chromophoric interactions (Fig. 4.20). 
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4.3.5 COMPARISON OF UV-VIS ABSORPTION SPECTRUM OF THE FREE BASE 

PORPHYRINS, Zn(II) METALLOPORPHYRIN DIMERS AND POLYMERS  

 

Generally, the coordination complexes gave similar shifts in the various solvents 

chosen shown in the previous figures. The Fig. 4.21 clearly illustrates the effect of 

bromination and complexation on the optical properties of the porphyrin derivatives. The 

absorption peaks of brominated ligands 4-17, 4-19 and 4-21 are more red-shifted than 

the unbrominated ligands 4-6 and 4-7 due to electronic effects of the Br atom. The 
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Fig. 4.20 UV-vis absorption spectrum of 4-22 in various solvents.  

Dotted lines show Q-bands amplified for clarity 
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coordination complexes also exhibit hypsochromic shifts relative to their ligands. This is 

attributed to the increase in conjugation of the metalloporphyrin upon insertion of the 

Zn(II) metal atom.  
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Fig. 4.21 UV-vis absorption spectrum of the Zn(II) metalloporphyrin  
dimers and polymers as well as their corresponding ligands in CHCl3.  

Dotted lines show Q-bands amplified for clarity 
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4.3.6 THERMAL ANALYSES OF THE ZN(II) METALLOPORPHYRIN DIMERS AND 

POLYMERS 

 

The thermal stability of the Zn(II) metalloporphyrin complexes were studied. Their 

thermally induced phase transition behaviours were investigated with differential 

scanning calorimetry (DSC) and reflected by the glass transition temperatures (Tg) (Fig. 

4.22). The onset of decomposition temperatures (Td) (Fig. 4.23) were investigated with 

thermogravimetric analyses (TGA). The values are summarized in Table 4.3 below. 

 

The Zn(II) metalloporphyrin complexes 4-20 and 4-22 do not exhibit distinct glass 

transition temperatures. The higher Br content could have reduced ring mobility due to 

the steric bulkiness of the two Br atoms,19 thus increasing the value of Tg. All the Zn(II) 

metalloporphyrin complexes Td values of above 196 °C, signifying high thermal stability. 

 

 
Table 4.3 Summary of the Tg (°C) and Td (°C) [% weight loss]  
of the Zn(II) metalloporphyrin complexes 
 

 Tg (°C) Td (°C) [% weight loss] 
4-15 148.7 346 [17.1] 

4-16 177.3 329 [18.1] 

4-18 133.4 196 [10.0], 242 [9.9], 289 [18.1] 

4-20 - 204 [10.6] 

4-22 - 239 [11.9], 297 [20.6] 
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Fig. 4.22 DSC plot of Zn(II) metalloporphyrin complexes 4-15, 4-16 and 4-18
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Fig. 4.23 TGA plot of Zn(II) metalloporphyrin complexes 4-15, 4-16, 4-18, 4-20 and 4-22 
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4.4 LIGHT HARVESTING PROPERTIES OF 4-15 AND 4-16  

 

The strategic use of non-covalent self-assembly of molecular units has been 

developed as highly promising means for the construction of multi-dimensional 

architectures that have specific structures, properties and functions.20 Initially inspired by 

the non-covalent nature of photosynthetic systems found in Nature, this approach has 

been increasingly attempted in the mimicry of light-harvesting and charge separation 

systems.21 This in turn led to the discovery of more application of such assemblies such 

as in molecular-scale electronics and optical applications. 

 

Among the many molecular modules used as construction elements of 

chromophore assemblies in light harvesting antenna functions of photosynthesis, 

porphyrins are one of the most attractive building blocks. They offer a variety of 

desirable features such as high chemical and thermal stability, ease of structural 

modification through chemical reactions, flexible tenability of optical and redox properties 

through metallation with wide variety of metal ions and small HOMO-LUMO energy gap.  

 

Interesting examples reported thus far include arrays formed by purely 

coordination bonds and combination of additional covalent bonds. For instance, the giant 

porphyrin arrays and wheels formed by hydrogen-bonding through the peripheral 

imidazoyl ligand reported by Kobuke et al19,22 and the windmill arrays developed by 

Osuka et al.23 serve as models of light-harvesting antennas. The oligomeric conjugated 

porphyrin ladders developed by Anderson et al. 24  exhibit very large two-photon 

absorption (TPA) cross-sections (σ2).  
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The design of efficient light harvesting materials remains an important goal, 

considering the need for effectively using renewable energy sources. 25  Nature has 

already evolved an effective pathway for harvesting sunlight in to useful chemical energy 

that is stored in the form of ATP. Nature’s light harvesting assembly, as exemplified in 

purple photosynthetic bacteria,18 consists of a multichromophore array that is capable of 

absorbing photons of a broad spectral range. These chromophores are well-ordered and 

arranged in slipped cofacial array. In contrast to these well-organized structures in 

bacteria antennae, antenna complexes from plants are disordered.  
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Fig. 4.24 Illustration of FRET from supramolecular porphyrin self-assembly  
(stores excitation energy) to energy/energy acceptor for example chloranil  

 
 
 
 



   120
  
 

The porphyrin-porphyrin interaction is sensitively reflected in their efficiency to 

transfer energy and electron to external acceptors which can be monitored by 

fluorescence quenching experiments. Hence, a fluorescence quenching26 study of 4-15 

and 4-16 with chloranil as energy/electron acceptor in CHCl3 solution was carried out 

(refer to Fig. 4.24 for illustration). The typical emission spectrum of 4-15, 4-16 and Zn(II) 

tetraphenylporphyrin is shown in Fig. 4.25. It was observed that fluorescence quenching 

increased with increase in the concentration of chloranil.  
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Fig. 4.25 Emission spectrum of 4-15, 4-16 in CHCl3 (5 × 10-6 M) and Zn(II) 

tetraphenylporphyrin in toluene at concentration of 1 × 10-5 M 
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The quenching of fluorescence can be described by the Stern-Volmer equation26, 

(4.1) [ ]0τ=
I

k Q
I
0

q1+ = 1+ KSV [Q] 

where I0 and I are the fluorescence intensities in the absence and presence of the 

quencher, respectively, kq is the bimolecular quenching constant, τ0 is the lifetime of the 

fluorophore in the absence of the quencher and [Q] is the concentration of the quencher. 

The Stern-Volmer quenching constant, KSV is represented by kqτ0. The bimolecular 

quenching constant kq reflects the efficiency of quenching or the accessibility of the 

fluorophores to the quencher.  

 

The Stern-Volmer plot (Fig. 4.26) clearly shows that 4-15 and 4-16 have the same 

rates of fluorescence quenching (KSV) from the slope of the graph. Their rates are 2.2 

times faster than that of Zn(II) tetraphenylporphyrin. This implies that the energy-electron 

process occurs more efficiently in the coordination complexes as compared to 

monomeric species. This difference in rate (considering the use of only approximately 10 

equivalents of the acceptor) is significant. In the reported works of Kobuke et al., a 

similar study was carried out on a 5,15-bis(imidazol-4-yl)-10,20-bis(4-

dodecyloxyphenyl)porphyrin supramolecular assembly and a higher energy-electron 

transfer rate of 2.9 was observed as compared to the reported monomer. However, this 

was achieved by using a large excess (1010 equivalents) of chloranil.16  

 

The small KSV value suggests that energy-electron transfer takes place mainly by 

diffusion and collision of the excited state molecules to the quencher via the mechanism 

called dynamic quenching.27 A possible explanation for the more efficient energy transfer 

and/or electron transfer observed in 4-15 and 4-16 may be due to the high migration of 
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photoinduced excitons (along the conjugated backbone) from one monomer to the other 

in the supramolecular assembly to the acceptors. Hence, the coordination complexes 4-

15 and 4-16 exhibit potential as light harvesting compounds. 

 

Fig. 4.26 Stern-Volmer plot for 4-15, 4-16 (note that both lines overlapped)  
and Zn(II) tetraphenylporphyrin (5 × 10-6 M) with chloranil in CHCl3 

 

 

Additionally, this study provides important information to prove that in CHCl3 

solution, the Zn-O coordination bonds continue to hold each unit closely in the 

coordination complexes (at concentration of 5 × 10-6 M, which is an order of magnitude 

lower than that used for NLO measurements in Chapter 5). This explains the faster rate 
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of energy-electron transfer when the individual chromophores are closer in the 

coordination complexes than in the monomers in solution.  

 

4.5.0 X-RAY CRYSTALLOGRAPHIC STUDIES OF A CLASS OF Zn(II) 

METALLOPORPHYRIN DIMERS AND POLYMERS FORMED BY Zn-O 

COORDINATION BONDS AND THEIR CORRESPONDING LIGANDS i 

 

4.5.1.1 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-15 GROWN 

IN CHCl3/CYCLOHEXANE SOLVENT MIXTURE 

 

Single crystals of 4-15 were grown by slow evaporation of a solution of 4-15 in a 

cyclohexane/CHCl3 solvent mixture. The asymmetric unit consists of half the molecule. 

There are four different porphyrin alignments. The complex 4-15 is a 3D coordination 

polymer and the ORTEP drawing of its fundamental building unit is shown in Fig. 4.27. 

Each Zn(II) metal atom forms a square plane (angles are perfect at 180.0 °) and sits on 

the perfect plane with the four pyrrolic N atoms. The former coordinates to two 

neighboring O atoms of the methoxymethyl functions and hence gives a hexa-

coordinated Zn(II) atom. The apical O atom coordinates to the metal atom with angle of 

87.6 - 92.4 ° to the plane of the four N atoms. Thus, the Zn(II) atom possess a distorted 

octahedral geometry. The axial methoxy groups of phenyl rings are in trans orientation 

with a Zn-O bond distance of 2.434 Å and the average equatorial Zn-N distance is 2.049 

Å. Both these values are very similar to those reported for related porphyrin systems 

thus indicating that there are little geometric strain/changes in the porphyrin units of the 

polymeric framework of 4-15. A segment of the coordination polymer is shown in Fig. 

4.28.  
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Fig. 4.27 An ORTEP view of the asymmetric unit of complex 4-15 

 

 

For Zn(II) metalloporphyrins, five-coordinate are common examples1b,13,18c, 28 

while the Zn(II) polymer 4-15 with six-coordinate Zn(II) atoms, is the first Zn(II) porphyrin 

3D framework successfully assembled through two axial Zn-O coordination.7 Examples 

reported earlier involved phenoxy functions with a Zn-O distance too short for building up 

a 3D framework. However, the oxygen function at the methoxymethyl group in the ortho 

position gave the [Zn(II)-O]-[Zn(II)-O]’ coordination from two adjacent units, adopting an 

ideal “square planar” arrangement with appropriate Zn-O distances. This is clearly 

confirmed in the crystallographic 3D framework of 4-15 (Fig. 4.29) along the c-axis. 

Compared to 4-6, the phenyl rings in 4-15 has a slightly larger dihedral angle of 76.7 ° 

with respect to the plane of the four N atoms. The pair of phenyl rings on the porphyrin 

ring are parallel but have a deviation of 0.086 Å (in opposite directions) with respect to 

the N atoms on the perfect plane of the porphyrin. 
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Fig. 4.28 A segment of the coordination polymer 4-15 

 

Along the c-axis, the packing creates the flower-like cavities as shown in Fig. 

4.29. The shortest and longest non-hydrogen atomic distances across the channel are 

about 4.81 Å and 9.27 Å respectively. These cavities and channels should be involved in 
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the solvent diffusion phenomenon observed in the time-dependent NMR study described 

earlier. Interestingly, the porphyrins along each column have the same tilt angle such 

that they overlap perfectly. The porphyrins in one column (for example ‘A’ marked in red 

on Fig. 4.29) have four identical and adjacent neighbours (for example ‘B’ marked in 

blue on Fig. 4.27). The chromophores in the corresponding columns ‘bow’ in different 

directions as they possess different tilt angles. This generates a regular alternating 

ABAB pattern and gives rise to the cavities observed.  

 

Along the a-axis of the polymeric structure of 4-15 (Fig. 4..30), two different 

alignments of the units are visible. One array is flat and another array is slanted and thus 

results in the formation of a 3D-coordination network polymer. There is no appreciable 

aromatic interaction in the chains based on the estimated inter-ring distances.  
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Fig. 4.29 View of 4-15 along c-axis. Columns A and B are  
marked in red and blue respectively (refer to text) 

 

 

 

A 

B 
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Fig. 4.30 View of 4-15 along a-axis 

 

 

4.5.1.2 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-15 GROWN 

IN CHCl3/ETHYL ACETATE SOLVENT MIXTURE AND C6H5NO2 

 

Single crystals of 4-15 were grown by slow evaporation of a solution of 4-15 in 

CHCl3/ethyl acetate solvent mixture and C6H5NO2 separately. The single crystal X-Ray 

Crystallographic studies show that the Zn(II) metalloporphyrins exist as monomers 

instead of 3D coordination polymers (Fig. 4.31). This could be attributed to the 

coordination of the solvent to the Zn metal, resulting in the cleavage of the original Zn-O 

coordination bond between the Zn(II) metalloporphyrins. Hence, this result provided us 
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with important information on the choice of solvent when we carry out the NLO 

measurements in solution (Refer to Chapter 5).  

 

Analysis of the single crystals grown in CHCl3/ethyl acetate and C6H5NO2 are 

similar and the asymmetric unit of both consists of half of the tilted molecule. The four 

pyrrolic C atoms and four N atoms of the porphyrin macrocycle lie on a perfect plane and 

the Zn(II) metal atom sits on the perfect plane of the porphyrin core. The Zn(II) metal 

atom also forms a square plane (angles are perfect 180.00 °) with the four pyrrole N 

atoms on a perfect plane. The average equatorial Zn–N distance of 2.029 Å is similar to 

that of 4-15 grown in CHCl3/cyclohexane. The phenyl rings have a slightly larger dihedral 

angle of 81.8 ° with respect to the plane of the four N atoms and are parallel to each 

other. The phenyl rings have a deviation of 0.046 Å (in opposite directions) with respect 

to the four N atoms on the perfect plane of the porphyrin. The monomeric units possess 

a larger dihedral angle between the phenyl and porphyrin rings as compared to that in 

the polymeric system (Refer to Table 4.4).  

 

Table 4.4 Summary of the dihedral angles of the phenyl rings with respect to 
the plane of the four N atoms for single crystals of 4-15 grown in various 
solvents 
 

Dihedral angle (°) for single crystals grown in 

CHCl3/Cyclohexane C6H5NO2 CHCl3/Ethyl acetate 

76.7 81.7 81.8 
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Fig. 4.31 Monomeric unit of 4-15 when grown in ethyl acetate (thermal 
ellipsoids are drawn at 50 % probability level) 

 

 

In contrast to its ligand 4-6, one of the phenyl rings of two adjacent units lie in a 

tilted cofacial angle above and below each porphyrin ring in the solid state packing with 

an approximate distance of 2.624 Å from the H (C12A) to the plane of the Zn(II) and four 

N atoms shown by the two monomers in Fig. 4.32. These indicate the presence of weak 

interaction due to the overlap of aryl C-H σ bonding orbital with the aromatic π ring of the 

porphyrin. This is similarly observed in the work of Suslick et al.15 The porphyrins are 

basically arranged in two dimensions with insignificant π-π interaction between the two 

macrocycles due to the relatively large tilt angle. 
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Fig. 4.32 A view showing weak interaction due to the overlap of aryl C-H 
σ bonding orbital with the aromatic π ring of the porphyrin 

 

 

4.5.2.1 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-16 GROWN 

IN CHCl3 

 

Single crystals of 4-16 were grown by slow evaporation of a solution of 4-16 in 

CHCl3 (Fig. 4.33). The asymmetric unit consists of half the molecule also. There are two 

different porphyrin alignments. The complex is a coordination dimer with two 
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coordination points per monomer and the ORTEP drawing of the dimer is shown in Fig. 

4.33. The four N atoms and the four outer pyrrolic C atoms in the porphyrin forms a 

distorted plane with deviation of 0.009 Å and 0.037 Å respectively.  The Zn(II) metal 

atom sits above the distorted plane of a four pyrrolic N atoms with a deviation of 0.180 Å 

(towards the coordinated O atom). The N-Zn-N angles are 170.36 ° and 169.42 ° and 

deviate significantly from the perfect 180.00 ° found in previous complexes. Thus, this 

indicates that there are geometric strain/changes in the porphyrin units of the dimeric 

framework. 

 

 

 

 

Fig. 4.33 Molecular structure 4-16; thermal ellipsoids are drawn at 50 % probability level 

 

The Zn(II) metal atom coordinates to one of the neighbouring O atoms of the 

methoxymethyl functions and hence gives a penta-coordinated Zn(II) atom. It bends 

towards the opposite porphyrin in the dimer. The apical O atom coordinates to the metal 

atom with angle of 93.17 - 96.47 ° to the four N atoms. Thus Zn(II) atom possess a 
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distorted square pyramidal geometry. The axial methoxy groups of phenyl rings are in 

cis orientation with a Zn-O bond distance of 2.209 Å and the average equatorial Zn-N 

distance is 2.046 Å. It is noteworthy that the methoxy substituents point in the same 

direction but away from the porphyrin core (Fig. 4.34). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.34 A monomeric unit of 4-16 showing the direction  
of the methoxy substituents in solid state 
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The dimers ‘connect’ via non-bonding interaction of 3.19 Å between the Zn(II) 

metal atom and a β pyrrolic proton. There is probably weak interaction due to the overlap 

of aryl C-H σ bonding orbital with the aromatic π ring of the porphyrin (Fig. 4.35).15  

 

 

 

 

Fig. 4.35 ORTEP view showing the two different porphyrin alignments  
and non-bonded Zn-H interactions (dotted lines) 

 

 

The two phenyl rings on a monomeric unit possess different dihedral angles and 

are tilted in opposite directions (Fig. 4.36). Their relative dihedral angle is 15.8 °. Due to 

the distortion of the plane of the porphyrin, it is difficult to determine accurately the 

dihedral angle and deviation of aryl C-meso C bond (in terms of distance and angle). 

From the ORTEP diagram above, it can be estimated that the inner phenyl ring (with O 

donor atom) has a smaller dihedral angle of 73.2 ° than that of the outer phenyl ring 
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which is 88.9 °. Also, the inner phenyl ring has aryl C-meso C bond bent towards the 

opposite porphyrin in the dimer due to the presence of some strain during coordination 

by 0.158 Å while the outer phenyl ring bent away by a comparatively smaller distance of 

0.036 Å (with respect to the plane of the four pyrrolic N atoms). 

 

 

 
Fig. 4.36 A side view of 4-16 showing the differences 

 in dihedral angle of the two phenyl rings 
 

 

This Zn-O bond (2.209 Å) is significantly shorter than the hexa-coordinated Zn(II) 

complexes of 4-15 (2.434 Å), 4-18 (2.428 Å) and 4-20 (2.417 Å), which probably 
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explains the porphyrin ring distortion and difference in the deviation of aryl C-meso C 

bond in 4-16. The two macrocyles in the dimer are arranged in a slipped cofacial pattern 

and are almost parallel with respect to each other. The distance between the two 

adjacent porphyrin planes is 5.595 Å (from Zn atom of adjacent unit to the plane of the 

four N atoms). 

 

4.5.2.2 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-16 GROWN 

IN THF 

 

When 4-16 was grown in THF solvent, analysis of the asymmetric unit of the 

single crystal shows that it contains one tilted Zn(II) metalloporphyrin molecule and one 

molecule of solvent THF.  The dimer separated into monomeric units as the O atom of 

the solvent molecule coordinated to the Zn(II) metal atom (Fig. 4.37). In contrast, the 

coordination polymer 4-15 did not possess any axial ligands after ethyl acetate and 

nitrobenzene evaporated off (Refer to Section 4.5.1.2). This could be attributed to the 

formation of stronger coordination bond between the more electron rich O atom of THF 

as compared to ethyl acetate and nitrobenzene. Hence, it is important to avoid the use of 

solvents with donor atoms that can form coordination bonds with Zn metal atom for 

subsequent NLO measurements. 
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Fig. 4.37 ORTEP view showing one tilted Zn(II) metalloporphyrin molecule  

with one coordinated THF molecule and one molecule of solvent THF;  
thermal ellipsoids are drawn at 50 % probability level 

 

 

From the ORTEP diagram (Fig. 4.37), we see that the two methoxy side chains 

of the metalloporphyrin are slightly disordered (O3 -C36 and O2) with occupancy factor 

of 0.60 for the major part. The four N atoms and the four outer pyrrolic C atoms in the 

porphyrin forms a less distorted plane with deviation of 0.003 Å and 0.016 Å respectively.  

The Zn(II) metal atom sits above the distorted plane of a four pyrrolic N atoms with a 

larger deviation of 0.238 Å and a similar Zn-O bond length of 2.212 Å. The N-Zn-N 

angles are 166.48 ° and 166.92 ° and deviate significantly from the perfect 180.00° 

found in previous complexes. The average equatorial Zn–N distance is 2.053 Å. Thus, 

the Zn(II) atom possess a distorted square pyramidal geometry. Thus, this indicates that 

there is geometric strain/changes in the porphyrin.  
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4.5.3 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-18   

 

Single crystals of 4-18 were grown by slow evaporation of its solution in CH2Cl2 

as shown in Fig. 4.38. There are two different porphyrin alignments (Fig. 4.39). The 

complex is a one dimensional coordination polymer and the ORTEP drawing of its 

fundamental building unit is shown Fig. 4.38. In the one-dimensional linearly stacked 

coordination polymer, each Zn(II) metalloporphyrins are coordinated to two adjacent 

units via two-points Zn-O coordination bonds, thus forming an infinite ‘wire’ of Zn(II) 

metalloporphyrins. The units stack on each other in a slipped cofacial manner and each 

row resembles a step-like infinite structure. In addition, all the ‘wires’ stack one after the 

other in a zig-zag fashion (Fig. 4.40). 

 

 

 

 

Fig. 4.38 Molecular structure of 4-18; thermal ellipsoids  
are drawn at 50 % probability level 
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Each Zn(II) metal atom forms angle of 180.00 ° with two diagonal N atoms and 

sits on the perfect plane of the four pyrrolic N atoms. The Zn(II) metal atom coordinates 

to two neighboring O atoms of the methoxymethyl functions at 180.00 ° (Fig. 4.38) and 

hence gives an overall distorted hexa-coordination geometry. The apical O atom 

coordinates to the metal atom with angle of 88.11 - 92.36 ° to the plane of the four N 

atoms which is identical to that in 4-15. The axial methoxy groups of phenyl rings are in 

trans-orientation with a Zn-O bond distance of 2.428 Å and the average equatorial Zn–N 

distance is 2.051 Å. Both these values are very similar to those reported for related 

porphyrin systems, thus indicating that there is little geometric strain/changes in the 

porphyrin units of the polymeric framework of 4-18.  
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Fig. 4.39 The ORTEP view of 4-18 showing two alignments  
of the Zn(II) metalloporphyrin units 

 

 

The phenyl rings have a dihedral angle of 81.8 ° and deviation of 0.238 Å (in 

opposite directions) with respect to the perfect plane of the four N atoms. The distance 
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between the two adjacent porphyrin planes is 5.972 Å (from the Zn atom of an adjacent 

unit to the plane of the four N atoms). 

 

 

 
Fig. 4.40 The zig-zag, step-like infinite structure of 4-18 

 
 
 

Each linear slipped-stacked chain of the polymer possesses a herringbone 

structure. The one-dimensional structure has changed to a multi-dimensional structure 

5.972 Å
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with the presence of non-bonding interaction between the Br atoms on the meso C with 

a phenyl H on the adjacent polymer chain. These non-bonding interaction range from 

3.116 - 3.421 Å. In addition, there is non-bonding Br-Br interaction of 3.981 Å. As seen in 

Fig. 4.41 and 4.42, four columns ‘bind’ to one another indirectly through the non-bonding 

H-Br and Br-Br interactions due to close proximity. 

 

 

 

 

Fig. 4.41 A view of the non-bonding H-Br interactions  
between columns along the b-axis 
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Fig. 4.42 A view of the non-bonding H-Br and Br-Br  
interactions between columns along the c-axis 

 

 

4.5.4 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-20 

 

Single crystals of 4-20 were grown by slow evaporation of its solution in THF. 

There are two different porphyrin alignments identical to that in 4-18. The complex 4-20 

Br-Br interactions 

H-Br interactions 
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resembles 4-18 and is a one dimensional coordination polymer with the ORTEP drawing 

shown Fig. 4.43.  

 

 

 

Fig. 4.43 ORTEP view of 4-20; thermal ellipsoids are drawn at 50 % probability level 

 

Each Zn(II) metal atom forms angle of 180.0 ° with two diagonal N atoms. The 

Zn(II) metal atom coordinates to two neighboring O atoms of the methoxymethyl 

functions at 180.00 °. The Zn(II) metal atom coordinates to two neighboring O atoms of 

the methoxymethyl functions at 180.00 °. The apical O atom coordinates to the metal 
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atom with angle of 88.02 - 91.98 ° to the plane of the four N atoms. The axial methoxy 

groups of phenyl rings are in trans orientation with a Zn-O bond distance of 2.417 Å and 

the average equatorial Zn-N distance is 2.053 Å. Both these values are very similar to 

those reported for related porphyrin systems thus indicating that there is little geometric 

strain/changes in the porphyrin units of the polymeric framework of 4-20. The single Br 

atom at the meso C is distorted at two equivalent positions of 50:50 random occupancy. 

 

The phenyl rings on the porphyrins are parallel to each other. They have a 

dihedral angle of 79.5 °, deviation of 0.194 Å (in opposite direction) with respect to the 

plane of the four N atoms. The distance between the two adjacent porphyrin planes is 

5.896 Å (from Zn atom of adjacent unit to the plane of the four N atoms). 

 

Each linear slipped-stacked chain of polymer also possesses a herringbone 

structure. The one-dimensional structure has changed to a multi-dimensional structure 

with the presence of non-bonding interaction between the Br atoms on the meso C with 

a phenyl H on the adjacent polymer chain. The non-bonding interaction in 4-20 is very 

similar to that in 4-18 except that the H-Br non-bonding interactions are generally shorter. 

These non-bonding interaction ranges from 2.899 - 3.264 Å. The Br-Br non-bonding 

interaction is 4.031 Å (Fig. 4.44).  
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Fig. 4.44 Non-bonding H-Br and Br-Br interactions between units in different columns 

 

 

 

 

 

 

 

H-Br interactions 

H-Br interactions 
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4.5.5.1 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-22 GROWN 

IN CHCl3/TOLUENE 

 

 

 
Fig. 4.45 Molecular structure of 4-22; thermal ellipsoids are drawn  

at 50 % probability level 
 

 

Single crystals of 4-22 were grown by slow evaporation of a solution in CHCl3 

and toluene (Fig. 4.45). The asymmetric unit consists of half the molecule also. The 

dimers pack in a single alignment (Fig. 4.46, unlike in one alignment in 4-16) one 

stacked above the other in a slipped cofacial alignment. The complex is a coordination 

dimer with two coordination points per monomer. The porphyrin rings show greater 

distortion from planarity than 4-16. The four pyrrolic N atoms in a porphyrin forms a 

distorted plane with deviation of 0.021 Å which is about twice that of 4-16 while the outer 

pyrrolic C atoms in the porphyrin form a distorted plane of 0.103 Å. The Zn(II) metal 

atom sits above the distorted plane of a four pyrrolic N atoms with deviation of 0.1561 Å. 

The average equatorial Zn-N distance is 2.047 Å. 
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The coordination chemistry of 4-22 is very similar to that of 4-16. The apical O 

atom coordinates to the metal atom with angle of 92.85 - 96.92 ° to the plane of the four 

N atoms. The N-Zn-N angles are 172.41 and 170.08 ° and deviate significantly from the 

perfect 180.00 ° found in previous complexes. Thus, this indicates that there is 

geometric strain/changes in the porphyrin units of the dimeric framework. The Zn(II) 

metal atom possess a distorted square pyramidal geometry. The axial methoxy groups 

of phenyl rings are in cis orientation with a Zn-O bond distance of 2.252 Å which is 

slightly longer than that in 4-16 which is probably due to the mesomeric effect of the two 

Br atoms.  

 

The two phenyl rings on a monomeric unit possess different dihedral angles tilted 

towards opposite directions. Their relative dihedral angle is 6.2 °. The inner (with O 

donor atom) and outer phenyl rings have dihedral angle of 99.5 ° and 94.2 ° from the 

plane of the porphyrin ring formed by the four N atoms, respectively. Also, the inner 

phenyl ring has aryl C-meso C bond bent towards the opposite porphyrin in the dimer 

due to the presence of some strain during coordination by 0.028 Å while the outer bent 

away by 0.199 Å with respect to the plane of the four N atoms.  
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Fig. 4.46 ORTEP view showing the one porphyrin alignment  
and non-bonded Zn-Br interactions between the dimers 

 

 

The distance between the two adjacent porphyrin planes in 4-22 is 5.499 Å (from 

Zn atom of adjacent unit to the plane of the four N atoms) and this is about 0.1 Å shorter 

than that in 4-16. The dimers ‘connect’ via non-bonding interaction of 3.439 Å between 

the Zn(II) metal atom and a Br atom from adjacent dimer (Fig. 4.46).  
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4.5.5.2 SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHIC STUDY OF 4-22 GROWN 

IN THF 

 

Similar to 4-16, when 4-22 was grown in THF solvent, the dimer separated into 

monomer units with a THF molecule coordinated to the Zn(II) metal atom (Fig. 4.47). 

The porphyrin plane is almost planar. The four N atoms and the four outer pyrrolic C 

atoms show minor deviation of 0.001 Å and 0.006 Å respectively. The Zn(II) metal atom 

is displaced from the plane of the four N atoms towards the THF molecule by 0.246 Å. 

The Zn-O bond length of 2.161 Å is slightly shorter than that in the dimer and the Zn(II) 

atom possess a distorted square pyramidal geometry. 

 

 

Fig. 4.47 ORTEP view showing one tilted Zn(II) metalloporphyrin molecule with one 
coordinated THF molecule; thermal ellipsoids are drawn at 50 % probability level 
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4.6 CONCLUSION 

 

The McDonald [2+2] condensation of dipyrromethane 4-5 and aromatic 

aldehydes successfully yielded corresponding 5,15-diarylporphyrins. A single step 

condensation of 4-5 and 2-methoxymethylbenzaldehyde 4-4 gave a pair of atropisomers 

4-6 and 4-7 (with ortho trans and cis methoxymethyl substituents respectively) in 

comparable yields. These compounds were purified and separated using fractional 

crystallization and column chromatography (CHCl3 as eluent). They were characterized 

and differentiated using X-Ray Crystallography where single crystals of the trans isomer 

4-6 was identified. The ability to separate the pair of atropisomers (4-6 and 4-7) has led 

to subsequent derivatization (through mono- and dibromination) as well as the 

generation of a series of five Zn(II) metalloporphyrin complexes derived from the pure 

isomer. The isolation of the atropisomers was made possible due to the steric bulkiness 

of the ortho methoxymethyl substituents which restricted free rotation about the C-C 

bond. This was proven by the inability to separate their meta counterparts (4-13 and 4-

14). 

 

The Zn(II) metalloporphyrin complexes with variable architectural structures were 

obtained by stirring their corresponding free base ligands in a solution of Zn(OAc)2.xH2O. 

Their solid state structures were revealed by X-Ray Crystallographic studies. The trans 

free base ligand 4-6 gave a 3D polymeric network 4-15 while the cis counterpart 4-7 

gave a slipped cofacial dimer 4-16. Both coordination complexes demonstrated time-

dependent 1H NMR spectrum due to their fluxionality in various solvents.  Spectroscopic 

studies in CHCl3 solution show that these arrays display more efficient electron-energy 

transfer than the monomeric Zn(II) tetraphenylporphyrin complex which signifies the 

retention of the supramolecular structure even at a low concentration of 1×10-6 M. 



   152
  
 

Further, bromination of the free base ligands 4-6 and 4-7 at the meso C gave three 

ligands. The insertion of Zn(II) metal atom yielded two infinite step-like polymeric 

complexes of Zn(II) metallopoprhyrin (4-18 and 4-20) and a dimer (4-22) with similar 

structure as 4-16. 

 

The overall solid state architecture of the complexes was found to be determined 

by (1) the conformation of the free base ligand which is in turn dependent on the spatial 

distribution of the side chains on the peripheral phenyl rings, (2) the presence of a large 

atom on the meso position of the free base ligand and (3) the solvent in which the single 

crystals were grown. 

 

 In conclusion, this Chapter summarizes the design, synthesis and 

characterization of ten free base porphyrin ligands and Zn-O metalloporphyrins 

coordination dimers and polymers obtained with practical ease from derivation of the 

parent porphyrins 4-6 and 4-7.  

 

The third-order NLO properties of the characterized free base porphyrin ligands 

and Zn(II) metalloporphyrins coordination complexes are studied and the results are 

summarized in Chapter 5.  
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CHAPTER 5 

NONLINEAR OPTICAL MEASUREMENTS OF Zn(II)  

METALLOPORPHYRIN COMPLEXES 

 

5.0 INTRODUCTION 

 

The Z-scan measurements were performed on solutions of the coordination 

complexes in CHCl3. The experimental setup used a Ti:sapphire regenerative amplifier 

(CPA-2001, Clark, MXR) which typically produces ~1 mJ, 150 fs duration pulses with the 

repetition rate of 250 Hz at the wavelength of 775 nm. The fundamental pulses from the 

regenerative amplifier are then parametrically down-converted in an optical parametric 

amplifier (TOPAS, Quantronix) to yield 100 - 150 fs long pulses (FWHM) with a 

wavelength of 650 nm.  

 

The measurements were conducted using a simple arrangement that allowed us 

to record the open-aperture Z-scan and the closed-aperture Z-scan simultaneously. The 

travel range of the table was generally chosen to be z = -35 to z = 35 mm. The focussed 

spot sizes were in the range of w o = 30 - 50 μm. 

 

For convenience, the measurements were performed in a relative manner, hence, 

the values of the nonlinear optical (NLO) parameters were calibrated by performing 

measurements of the nonlinear phase shift, Δφ0 of the solvent in a 1 mm glass cell and 

adjusting the light intensity to obtain Δφ0 value in the range of 0.5 - 1.0 rad for the cell 



 157

with the solvent and comparing that with a phase shift obtained on 1 mm thick silica 

plates for which n2 = 3 x 10-16 cm2 W-1 was assumed.  

 

The excited state absorption (ESA) measurements were performed on solutions 

of the coordination complexes in CH2Cl2 using a frequency-doubled Q-switched Nd:YAG 

laser operating at 532 nm with a temporal pulse of  7 ns (FWHM) and a repetition rate of 

10 Hz or single shot. The laser pulses were focused at the center of the sample cell 

(thickness = 1 mm) by a 25-cm-focal-length lens giving a spot radius of ~35 μm. The 

laser beam was divided into two beams, one was used to monitor the incident laser 

energy, and the other was focused into the sample cell. The nonlinear transmission 

curve was obtained by varying the input energy (Ei) with a half-wave plate and polarizer 

combination and by monitoring input energy (Ei) and output energy (Eo) with two RJP-

735 series energy detectors. 

 

The input energy was in the range of 0.2 to 50 μJ. According to the formula Fi/o = 

2Ei/o / (πw0
2), where Ei/o is the input/output energy, Fi/o is the input/output fluence and w 0 

~ 35 μm is the spot radius at the focus point, the input fluence was in the range of 0.01 

to 2.6 J cm-2. 

 

5.1.0 RESULTS AND DISCUSSIONS 

 

All the samples used in this study show linear absorption features typical of the 

free base porphyrins and metalloporphyrins namely, the high energy B- (Soret) and the 

low energy Q-bands. The reproducibility of the absorption spectra before and after 

exposure to laser confirmed the photostability of the compounds.  
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Note that maximum concentrations are needed because nonlinear transmittance-

based methods are not sensitive by their nature hence a large concentration of the 

studied molecules is required to obtain signal from the strong background. High solubility 

of the compounds ensured that there were no undissolved particles that can cause 

significant scattering of laser light.  

 

5.1.1 DATA ANALYSES 

 

The Z-scans obtained were analyzed with expressions derived by Sheikh-Bahae 

et al.1 to yield the real part of the nonlinear phase shift Δφreal induced by the third-order 

nonlinearity and the T factor defined here as  

(5.1)  =  π  φ /  φΔ Δimag real4T   

for a given sample. The analyses were performed by comparing the shapes of the 

closed-aperture and open-aperture scans with those computed theoretically. In the 

absence of nonlinear absorption, the amplitude of a closed-aperture Z-scan measured 

as the difference in transmission values from peak-to-valley is proportional to the real 

part of the nonlinear phase shift Δφreal. However, the presence of nonlinear absorption 

causes the asymmetry of a closed-aperture scan which depends on the T factor. 

 

The imaginary part of the nonlinear phase shift Δφimag can be obtained from the 

asymmetry of the closed-aperture scan by direct fitting or from the depth of a dip in the 

open-aperture scan that is directly related to Δφimag using the Z-scan fitting software as 

shown in Fig. 5.1. Alternatively, we also used a procedure consisting of dividing the 

closed-aperture scan by the open-aperture scan to resolve information on the real part of 
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the phase shift to give a scan that is essentially free from the influence of the imaginary 

part of the phase shift [that is, free from two-photon absorption (TPA) effect]. 

 

 

 
Fig. 5.1 Example of Z-scan curve fitting to obtain T factor and Δφ values 

 

The Fig. 5.2 shows examples of closed-aperture scans for a series of solutions of 

the soluble compounds in CHCl3. The amplitudes of the scans decrease with increasing 

concentration indicating that the real part of the nonlinearity of the solute is opposite in 

sign to that of the solvent. There is an increasing asymmetry of the scans indicating also 

the presence of the imaginary part of the nonlinearity. The dependence of Δφimag and 

Δφreal on concentration can be analyzed to extract information on the NLO properties of 
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the solute. The relation between the nonlinear phase shift and the nonlinear refractive 

index can be written as  

(5.2) Δφ = (2 π n2 I Leff) / λ  

where Leff is the thickness of the sample corrected for one-photon absorption (OPA) in 

cm, n2 is nonlinear refractive index, I is light intensity and λ is wavelength. Hence, 

knowledge of the light intensity can be used for the conversion of phase shift values to 

nonlinearity values. In practice, we derived the intensity values from Δφ measured for 

silica samples. The complex n2 of a dilute solution is approximated by the following linear 

expression 

(5.3) n2 = g’ n2,solute + (1-g’) n2,solvent  

where g’ is the weight fraction of the solute, n2,solute is the solute (extrapolated) nonlinear 

refractive index and n2,solvent is the nonlinear refractive index of the solvent.  
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Fig. 5.2 Typical of closed-aperture scans for (a) 0.398 wt%, (b) 0.220 wt%, (c) 0.110 wt% of 4-6 in CHCl3 and (d) pure CHCl3 
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Fig. 5.3 Concentration dependence of open-aperture Z-scans of 4-6 0.398 wt% (light red),  
0.220 wt% (green), 0.110 wt% (blue) and 0 wt% (black) in CHCl3 solution 
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From the open-aperture scan, the dip in the curve increases with increase in 

concentration of the solution of 4-6 (applies to other porphyrin-based compounds also) in 

CHCl3 as shown in Fig. 5.3 while the linear transmission of the solutions found from the 

UV-vis spectra of each of these solutions is approximately = 1. Hence, qualitatively, the 

TPA of 4-6 solution increases with increase in the concentration of the compound.  

 

Quantitatively, the variation of the TPA coefficient, β with concentration changes 

can be determined from the coupling factor T’ obtained from curve fitting. Since 

βλ /  ='T n2  where λ is the laser wavelength and n2 is the nonlinear index of refraction, 

the values of  β  for various concentrations can be obtained.  

 

The slopes of the linear relations of Δφreal and Δφimag on concentration of the 

solutions are used to calculate the real and the imaginary parts of n2,solute. Since g’ is 

small, 1-g’ ≅ 1, equation 5.3 becomes 

(5.4) n = g’ n2,solute + n2,solvent            

by substituting equation 5.2 into 5.4, we obtain 

(5.5) 
λ φ
π 

Δ
= +'g  n n

Ι L 2,solute 2,solvent
eff2 

 

which rearranges to give  

(5.6) 
π π φ  

λ λ
Δ = +'Ι L Ι Lg  n neff eff

2,solute 2,solvent
2 2 

  

Treating Δφ  as complex, one assumes that equation 5.6 holds for dependences of both 

Δφreal and Δφimag vs g’. Dividing the gradient of the plot of Δφreal against concentration by 

the y-intercept, one gets 
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 (5.7) /
π π 

λ λ
eff 2,solute eff 2,solvent2 2 Ι L  n Ι L  n

 

= 2,solute

2,solvent

n
n

  

Thus, multiplication of the value of slope/intercept by n2,solvent gives the extrapolated 

nonlinear refractive index of the solute. However, it should be noted that the value of 

n2,solute determined from this method may be substantially different from the value of n2 

for the neat substance in its solid phase because of the differences in densities between 

the solute and the solvent, local field factors and solvent influences on the nonlinear 

parameters of the solute molecules.  

 

An alternative way of presenting the cubic nonlinearity is by quoting the value of 

the cubic susceptibility (3)χ  which can be calculated from n2 using 

(5.8) ( )χ =
2

3
2

1

n n
C

  

where C1 is a constant which depends on the definition of χ(3) and on the system of units 

adopted. For the conversion of n2 in cm2 W-1 (SI units) to χ(3) in esu (cgs units), the value 

of C1 is approximately 0.039.2 To calculate molecular parameters from macroscopic 

ones, one uses   

(5.9) 4χ =  γ( ) ∑3
i iL Ν   

where L is the local-field factor, often approximated by the Lorentz expression 

2

0( + 2) / 3L = n and n0 is the linear index of refraction. In addition, γi are the 

hyperpolarizabilities of the components of the system (assumed to be independent of 

concentration). Ni = N0 g’i ρsolution / Mi, where N0 is the Avogadro’s number, g’i is the 

weight fraction of a solution component, Mi is the component’s molecular weight and 
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ρsolution is the density of solution. Finally, the TPA cross sections (σ2) in cm4 s photon-1 

molecule-1 are defined as 

(2.12) 2
ωβ

  σ
ћ

= 
Ν

  

which also leads to the following relation between σ2 and γimag,3  

(5.10) 4
4

2 imag2
0.039 ω γ

λ
= πσ

ћ  L
n

  

where N is the number density of molecules, ћ is Planck’s constant = h/2π, ω is 

frequency, λ is wavelength and γimag is the imaginary component of the second 

hyperpolarizability.  

 

Analyses of the nonlinear index of refraction of solutions of the porphyrin 

compounds at 650 nm showed that n2,real are negative in all of them except 4-6. Thus, 

the former show self-defocusing properties while the latter show self-focusing properties 

at this wavelength. As mentioned in Chapter 2, self-defocusing materials are usually 

more desirable in power limiting applications than those showing self-focusing because 

the latter often leads to laser damage. 4  The former possess self-protecting ability 

because the beam diverges rapidly from the intermediate focus. This property is 

particularly important for solid materials.  

 

5.1.2 TWO-PHOTON ABSORPTION CROSS SECTION PROPERTIES  

 

The σ2 of the porphyrin compounds synthesized in this work and determined at 

650 nm are summarized in Table 5.1. They possess relatively high σ2 as the excitation 

wavelength is in two photon resonance with the Soret band. It is interesting to note that 
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the free base porphyrins, 4-6 and 4-7 exhibit significant differences in σ2. This is likely to 

arise from the geometry and dipole moment of the molecules.  

 

The coordination polymer, 4-15 as well as the dimer 4-16 exhibit larger TPA merit 

factor (σ2 / formula weight (FW) of the monomeric unit) than their corresponding free 

bases. This could be attributed to the improved π-π conjugation in the metalloporphyrin 

with the insertion of the Zn(II) metal atom.  

 

However, it was observed that the TPA merit factors of 4-18 and 4-20 are lower 

than those of the other coordination complexes. In addition, there is no significant 

difference in the TPA merit factors when the free base ligand is mono- or dibrominated in 

4-20 and 4-18 respectively. A clearer comparison of the effect of Br atom on σ2 can be 

done using the geometrically similar dimers 4-16 and 4-22 formed by two-points 

coordination. It was found that the unbrominated dimer 4-16 gave a larger merit factor as 

compared to 4-22.  

  

In an attempt to study the effect of the coordination bonds formed in the self-

assemblies on their TPA properties, a comparison of this property with Zn(II) 5,15-

diphenylporphyrin was carried out. We observed a larger σ2 for this monomeric 

metalloporphyrin. However, the results obtained for this complex contain a large 

uncertainty. The Z-scans indicate a possibility of other mechanisms contributing to 

variations in the absorption and refraction in the solutions of this complex. Although 

femtosecond pulses were used, which usually minimizes the possibility of contributions 

from ESA, this mechanism can still occur in the presence of sufficiently strong laser light.



 167

 

Table 5.1 Summary of nonlinear optics parameters of free base and Zn(II) metalloporphyrin complexes 

 

Compound FW 
(g/mol) 

λmax (nm) 
[ε’(mM-1cm-1)]

n2,real 
(cm2 W-1) 

n2,imag 
(cm2 W-1) 

γreal (10-36 
esu) 

γimag (10-36 
esu) σ2 (GM) Merit Factor σ2/FW 

(GM mol g-1) 

4-6 550.65 404 [19.54] 7.9E-15 1.9E-13 0±500 1850±300 700±100 1.27 

4-7 550.65 406 [45.96] -8.7E-14 1.2E-13 -800±400 1200±200 450±70 0.82 

4-15 614.02 412 [30.19] -2.2E-13 2.3E-13 -2300±1500 2500±800 930±300 1.51 

4-16 614.02 412 [61.56] -3.5E-13 2.5E-13 -3600±1400 2600±600 990±230 1.61 

4-18 692.92 422 [16.37] -2.5E-13 9.1E-14 -1000±1000 1200±400 460±160 0.66 

4-20 767.97 424 [36.34] -8.5E-14 1.0E-13 -3200±1000 1200±350 460±130 0.59 

4-22 767.97 426 [59.26] -2.8E-13 2.1E-13 -800±2000 2700±800 1030±300 1.34 

Zn(II) 5,15-
diphenylpor

phyrin 
524.10 409 [61.68] -1.3E-13 3.1E-13 -1200±500 2800±2000 1060±600 2.02 
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 The measured σ2 may be strongly dependent on the duration of laser pulses 

used for two-photon excitation due to additional photon losses caused by the one-photon 

ESA process.5 Molecules excited by TPA by the front of the pulse can participate in OPA 

by the rest of the pulse from their excited states which is especially important if pulses 

are in nanoseconds range. Since the efficiency of one-photon excitation is usually much 

larger than the efficiency of two-photon excitation, an overestimation of the σ2 will result. 

In particular, ESA is critical for the nonlinear transmittance-based method adopted in our 

study because OPA from the excited state contributes to the decrease of the 

transmittance signal. Hence, we believe a reliable method of measuring TPA is through 

the use of sufficiently short laser pulses of few picoseconds or less. It is generally 

agreed among the experimental groups in this area that ESA will not pose significant 

problem if the two-photon excitation is performed by femtosecond laser pulses.  

 

5.1.3 EXCITED STATE ABSORPTION (ESA) – REVERSE SATURABLE 

ABSORPTION (RSA) 

 

The nonlinear absorption of the solutions of porphyrin derivatives is well known to 

contain contributions from ESA.6 Such contributions are very important for nonlinear 

absorption occurring in the range of OPA but may also be contributing when the initial 

absorption step is a two-photon process. We attempt to determine the contribution of this 

mechanism on the transmission results obtained earlier. For this study, our 

measurement is limited to the laser excitation wavelength of 532 nm.  

 

A comparison of the optical limiting measurements of 4-6 and 4-7 show that the 

two atropisomers display similar reverse saturable absorption (RSA) property although 
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they differ in conformation (Fig. 5.4). This may be due to the dominance of other 

mechanisms such as thermal effects. Hence, the difference in TPA merit factor may be 

mainly contributed by the difference in the transition dipole moment of the molecules. 

Comparison of 4-6 and 4-7 with 5,15-diphenylporphyrin (Fig. 5.4) shows that this optical 

limiting property is not affected by the presence of the two methoxymethyl substituents. 
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Fig. 5.4 Transmission of 4-6, 4-7 and 5,15-diphenylporphyrin  
with increase in input fluence 
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The substitution of Br atoms on the two meso positions of 4-6 to give 4-17 

resulted in an increase in the threshold of optical limiting (Fig. 5.5). The compound 4-17 

shows minimal saturable absorption while 4-6 exhibits relatively strong RSA. The UV-vis 

absorption spectrum of the porphyrin after bromination red-shifted by 15 nm implying 

that although the atoms distort the porphyrin structure from planarity via steric hindrance, 

the mesomeric effect of the atoms causes the position of the Soret and Q-bands to shift 

to longer wavelengths. This may increase the triplet yield further by increasing the 

mixing between singlet and triplet states, having influence on the efficiency of RSA 

occurring through triplet-triplet ESA. However, increasing the rate of intersystem 

crossing from S1→T1 also decreases the triplet lifetime due to faster rate of relaxation 

from T1→S1. On the other hand, the insertion of Zn(II) metal atom into the brominated 

ligand resulted in a stronger ESA of 4-18 as compared to 4-15 (Fig. 5.6). The insertion of 

Zn(II) metal atom into the cavity of porphyrin is known to increase the planarity of the 

porphyrin ring. Also, metalloporphyrins with closed shell atom generally have longer 

excited state lifetimes.7 Porphyrins with open shell metal atoms generally have short 

excited state lifetimes due to rapid charge transfer from the excited porphyrin to the 

metal atom. This is confirmed by the results showing a lower threshold for optical limiting 

of Zn(II) 5,15-diphenylporphyrin as compared to its free base. Hence, the overall 

geometry of the self-assembled coordination complex affects the nonlinear absorption of 

the supramolecule.  
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Fig. 5.5 Transmission of 4-6 and 4-17 with increase in input fluence 
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Fig. 5.6 Transmission of 4-15 and 4-18 with increase in input fluence 
 
 

 

As mentioned before, the large σ2 for Zn(II) 5,15-diphenylporphyrin may be partly 

attributed to some contribution of ESA or influence of photochemical instability. A 

comparison of Zn(II) 5,15-diphenylporphyrin without coordinating side arm with 4-15 

(which shows negligible RSA) clearly shows that the large contribution of the σ2 of the 
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former could be due to the combination of RSA and TPA mechanisms (Fig. 5.7). Also, it 

can be commented that the contribution of σ2 in 4-15 is largely due to the nonlinear 

absorption mechanism rather to ESA. Hence, uncertainties arise about the role of both 

processes in Zn(II) 5,15-diphenylporphyrin. The compound 4-15 exhibits negligible RSA 

probably because of the close proximity of the monomers linked by Zn-O coordination 

bond which allows the molecules to undergo relaxation at a faster rate, resulting in the 

decrease of ESA. Zn(II) 5,15-diphenylporphyrin exist as monomeric units in solution 

hence lowering the rate of relaxation.  

 

Therefore, for optical limiting applications, uncoordinated Zn(II) metalloporphyrins 

without heavy atoms may be favoured as they exhibit lower thresholds for optical limiting. 

However, for other applications of TPA, it is important to avoid the occurrence of RSA 

which can complicate the nonlinear properties of the former.  
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Fig. 5.7 Transmission of Zn(II) 5,15-diphenylporphyrin  
and 4-15 with increase in input fluence 
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5.1.4 THREE-LEVEL MODEL 

 

The values of σ2 determined in this work were all obtained at the wavelength of 

650 nm, which limits the possibility of a full analysis of their variations. In fact, our 

measurements of the full TPA spectrum of 4-16 indicate that σ2 has a broad maximum 

around 700 - 800 nm (Refer to section 5.1.6 for detailed discussion). However, some 

preliminary insight into the factors influencing the values of σ2 can be obtained by 

analyzing the trends obtained here without taking into account the individual shifts of the 

TPA spectra. It is known that, if the frequency detuning between the laser and a 

transition becomes small, a single resonance term may dominate over the contribution of 

all the other levels combined. In this case, a three-level model can be used to describe 

the TPA process.8 In this model, three energy levels of a molecule are considered, 

namely, the ground level (g), the two-photon excited level (f) and a single intermediate 

level (m).  

 

The free bases and Zn(II) metalloporphyrins coordination complexes studied in 

our project contain centre of symmetry. For such molecules, the σ2 reduces to just one 

term corresponding to the resonance intermediate level: 9  

(5.11) 
4( ) ] ( (

( (
μ μα π νσ ν ν

ν ν ν

4 2 ⏐ ⏐⏐ ⏐[ ′ + )
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− ) + Γ )
L g

h n c

2 22
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fg 2 2 2 2 2
mg m

2cos 1 22 2
15

  

where σ ν( )(2)
fg  is the two photon absorption cross section expressed as a function of 

laser excitation frequency ν , νmg  is the frequency of the m←g transition in s-1, α’ is the 

angle between transition dipole moments μfm and μmg of the transitions f←m and  m←g 

respectively, c refers to the speed of light in cm s-1, Γ 2
m is the full width at half maximum 
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of the absorption band m←g in cm represented as a function of  ν  and ν(2 )g is the line 

shape function in cm. 

 

 

 

Fig. 5.7 Three-level model system used for the description of TPA process 

 

The lowest energy transition in the OPA spectrum of porphyrins is the Q-band. If 

one supposes that the σ2 at 650 nm for all the porphyrins are mainly determined by a 

resonance enhancement mechanism, then equation 5.12 predicts that σ2 should be 

proportional to the linear transition dipole moment squared over the frequency detuning 

squared: 

(5.12) 
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μ
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One can assume that μ ν2
mg (2 )g does not vary much amongst the molecules. This 

assumption is rather reasonable considering that the absorption coefficient which is 

related to the transition dipole of the molecules is of the same order of magnitude for all 

Excited State (f) 

Real Intermediate Level (m) 

Virtual State  

Ground State (g) 
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the molecules investigated. The analyses can be carried out between free base 

porphyrins as well as Zn(II) metalloporphyrin dimers and polymers because it is evident 

that their values of the absorption coefficient do not vary significantly. 

 

The following relation holds between the product |μfm|2 g(2ν) and the extinction 

coefficient εfm of one-photon transition f ← m as a function of ⎯ν −⎯νmg2 : 

(5.13) 
( )ε ⎯ν −⎯ν

μ ν
⎯ν

⏐ ( ) =
×

g
c

fm mg2
fm TPA 38

fm

2
2

1.07 10
  

where ⎯ν is the laser wavenumber, ⎯νmg is the wavenumber of the m←g transition, ⎯νfm 

is the wavenumber of the f←m transition. Thus, the variation of |μfm|2 g(2ν) from one 

molecule to another can be expected to follow that of the product εfm(2⎯ν -⎯νmg).9  

 

To make a plot of σ2 as a function of |μfm|2 g(2ν), we note that  

(5.14) 
( )

( ) (

2

mg max mg mg
2 2 2

mg mg mg

μ ε ⎯ν ⎯ν
σ ∼

ν −ν ⎯ν ⎯ν ⎯ν
Δ

∼
− )

  

where ( )ε ⎯νmax mg and ⎯νΔ mg are the maximum absorption coefficient and halfwidth of the 

transition m←g, respectively. 

 

Fig. 5.8 shows the σ2 of the series of free base porphyrins and Zn(II) 

metalloporphyrins measured at 650 nm plotted as a function of linear absorption 

parameters ( ) / (ε ⎯ν ⎯ν ⎯ν ⎯ν ⎯νΔ − )2
max mg mg mg mg [cm mM-1]. For simplicity, it is assumed that 

⎯νΔ mg is constant since the systems are similar and the concentration of the solutions 

(influencing the broadening of the absorption profiles) are of the same order.  
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Considering the simplification of the equation, a rather linear dependence of the 

σ2 on the resonance factor comprising of a combination of linear absorption parameters 

(Refer to Fig. 5.8) was obtained for the series of free bases and Zn(II) metalloporphyrin 

complexes except for Zn(II) 5,15-diphenylporphyrin. The deviation of Zn(II) 5,15-

diphenylporphyrin from the dependence for other porphyrin compounds further confirms 

the presence of additional factors contributing to the nonlinear absorption like the ESA 

as explained earlier. This result substantiates the conclusion that there is indeed a 

quantitative relation between σ2 and the resonance enhancement factor, |μmg|2 / (νmg - ν)2.  

This also confirms the validity of the three-level model and supports our conclusion that 

there is small variation of |μfm|2 g(2ν) for the molecules studied.  

 
 

5.1.5 DISCUSSIONS 

 

All the porphyrin compounds (summarized in Table 5.1) except 4-5 analyzed at 

650 nm in CHCl3 solutions exhibit self-defocusing (n2 is negative). Such materials are 

usually more desirable in power limiting applications than self-focusing types because 

the latter often leads to laser damage.4  

 

The Zn(II) metalloporphyrin coordination complexes assembled from 

unbrominated ligands show larger merit factor than those derived from the brominated 

ligands. The overall conformation of the molecules also plays a role in affecting the TPA 

properties of the molecules which was clearly shown by the significant differences in the 

σ2 of the free base porphyrins, 4-6 and 4-7. The optical nonlinearity of the coordination 

complexes is affected by the overall architecture even though there is no direct 

conjugation between the monomeric units. This can be attributed to the presence of 
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some π-π interactions between the monomers in solution especially in the cofacial dimer 

4-16 which exhibits the largest merit factor in the series studied. This was clearly 

illustrated by comparison of the NLO studies of Zn(II) 5,15-diphenylporphyrin as 

reference compound which nonlinear absorption property was determined to be partly 

complicated by the presence of RSA mechanism. This study reveals the stability of the 

architecture of the coordination complexes in CHCl3 solution which was supported by 

time-variable 1H NMR studies. Therefore, the Zn(II) metalloporphyrin coordination 

complexes formed by Zn-O bonds show great potential as TPA core for photosensitizing 

applications. 10  The TPA properties of these complexes are expected to be further 

enhanced through the incorporation of photoactive moieties (refer to Chapter 9 for 

illustration) which serve to excite the porphyrin core through fluorescence resonance 

energy transfer (FRET). 11  This can be carried out by chemical modification of the 

porphyrin core at the unsubstituted meso C, since facile bromination can be carried out 

at these atoms. 
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Fig. 5.8 Correlation between the σ2 and a combination of linear absorption parameters for  

a series of free base porphyrins and Zn(II) metalloporphyrin dimers and polymers 
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5.1.6 WAVELENGTH DISPERSION OF THE THIRD-ORDER NONLINEAR OPTICAL 

PROPERTIES OF 4-16 

 

Although the third-order NLO properties of porphyrins have been widely 

investigated, many reports provide information on the σ2 at a fixed wavelength only. 

Studies of the spectral dependences of σ2 provide additional information on the atomic 

and molecular structures of compounds especially in centrosymmetric molecules since 

TPA allows transitions between states of the same parity.  

 

Information on the nonlinear absorption can be extracted in an indirect way, by 

monitoring action spectra of upconverted fluorescence, or, by direct measurements, e.g. 

from open-aperture Z-scan experiments in solutions of investigated compounds.2 The 

wavelength-dependent Z-scan experiments, while laborious help to achieve deeper 

understanding of the structure-property relationships because the dispersion study of the 

γimag and γreal of the compound can be carried out concurrently.8c Therefore, we 

conducted the study using the Zn(II) metalloporphyrins dimer with the largest σ2. 

 

A saturated solution of 4-16 with a concentration of 4.86 mM (0.20 wt%) was 

prepared for Z-scan measurements.  It was confirmed that the complex exist in dimeric 

form at this concentration by 1H NMR analysis at different concentrations (Chapter 4, 

Section 4.3.3.1). At lower concentrations of 3.6 and 0.36 mM, the benzylic, methyl, one 

of the pyrrolic and phenyl protons are significantly shifted to higher fields as compared to 

its ligand. 
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Our spectral range was limited from 650 nm to 1180 nm (corresponding to the 

longest wavelength of the signal that the optical parametric amplifier can generate). The 

presence of OPA even by the tail of the first absorption band (first Q-band) can cause 

significant reduction of the transmittance of laser.  

 

The Fig. 5.9 shows the experimental results obtained in the NLO studies. The γreal 

and γimag values are plotted against wavelength. The sign of the β (and therefore γimag) is 

positive throughout the whole range, thus corresponding to nonlinear absorption. The 

values of γreal are negative in most of the wavelength range. It needs to be stressed that 

the error margins are generally higher for γreal than for γimag because the nonlinear 

absorption of the solvent is negligible in the wavelength and intensity ranges used in this 

work and thus, the nonlinear absorption of the dimer can be determined against null 

background. In contrast, the refractive nonlinearity of 4-16 is always measured as an 

increment to the sum of refractive nonlinearity of the solvent and of glass walls of the 

cuvette. In addition, the nonlinear refraction may contain contributions from slower 

(cumulative) effects due to the presence of two-photon excited states and their 

relaxation while the nonlinear absorption may contain higher order contributions in 

addition to the TPA. Nevertheless, it can be commented that the data points in Fig. 5.9 

follow the Kramers-Kronig integral-type relation between the real and imaginary parts of 

susceptibilities to a certain extent.  

 

To illustrate the resonance enhancement effect, a plot of σ2 data points as a 

function of the transition frequency (rather than the laser frequency) is overlapped with 

the corresponding OPA in the Soret band region and in the Q-band regions shown in Fig. 

5.10 The data shows that σ2 in the Soret band region is considerably larger than that in 
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the Q-band region. However, the TPA spectrum of 4-16 does not reproduce the linear 

Soret band. The maximum σ2 value of 1400 GM occurs at a higher frequency than the 

OPA Soret Bx(0-0) transition. This may be explained by the fact that the dimer is 

centrosymmetric (or nearly centrosymmetric) in CHCl3 solution, that is, the two 

porphyrins rings in the dimer are almost coplanar unlike in solid state. For 

centrosymmetric molecules, the selection rules for one- and two-photon dipole 

transitions are mutually exclusive.   

 

At 800 nm, the dimer shows a large σ2 = 1400±350 GM which gives σ2/FW value 

of 2.3 GM mol g-1. This value is likely to be resonantly enhanced. Also, it is the largest 

value obtained for a self-assembled cofacial Zn(II) metalloporphyrin coordination dimer 

bound by two Zn-O coordination bonds. As highlighted in Chapter 1, such self-

assembled arrays have an advantage over structures constructed via direct covalent 

bonding as the latter are relatively difficult to realize on a practical scale and pose a 

problem if eventually used for real applications. 
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Fig. 5.9 The experimental values of γreal (blue line) and γimag (red line) for 4-16.  
The absorption spectrum of a dilute solution of 4-16 in CHCl3 is also shown 
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Fig. 5.10 One photon (black line) and two photon (blue line) absorption spectra in the a) Soret and b) Q-band regions 
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Since the ground level has g parity and the two-photon transitions from the 

ground levels are allowed only into other g parity levels, the described observation can 

be qualitatively explained by the presence of two-photon allowed g states lying higher in 

energy than the Soret transition (Fig. 5.10). The σ2 values at a frequencies close to (but 

higher than) the OPA Q(0-0) transition are significantly lower than those near the Soret 

band and this pattern has been similarly observed in other tetrapyrrolic compounds. The 

strong TPA in the dimer excited at 800 nm is thus strongly resonance enhanced and 

largely contributed by the Bx(0-0) transition rather than the Q(0-0) transition.  

 

In order to explain the large σ2 in Soret region, one has to take into account that if 

the laser excitation frequency ω is close to the frequency of some real intermediate 

transition ωmg, then strong resonance enhancement of two-photon absorption takes 

place. From observation of Fig. 5.9, the large σ2 and broad two-photon absorption band 

of the dimer at around 800 nm suggests that there are one-photon forbidden but two-

photon allowed transitions in the Soret band region which are not observable in the 

linear absorption spectrum. Hence, the large σ2 is probably due to strong g←g 

transitions. 

 

In comparison to a self-assembled Zn(II) metalloporphyrin comprising of 

bis(imidazolylporphyrin), which reportedly possess the highest σ2 for a measured with 

femtosecond pulses),12  the dimer 4-16 shows a poorer two photon absorptivity. The 

σ2/FW value of 2.3 GM mol g-1 is 2.4 times lower than that value of 5.64 GM mol g-1 

(calculated based on the reported value of σ2). However, it should be highlighted that the 

reported compound requires purification by GPC, which possess a great difficulty in the 

large scale preparation of the compound. Whereas, all the compounds synthesized in 
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our thesis can be purified using column chromatography. Hence, further exploration can 

be carried out to optimize the TPA properties of the Zn(II) metalloporphyrins (elaborated 

in Chapter 9) based on the structure-property relationships established in this work.  

 

5.2 CONCLUSION 

 

A variety of unique architectural structures of Zn(II) metalloporphyrin coordination 

complexes formed by self-assembly were obtained through the formation of Zn-O 

coordination bonds from their respective free bases. Structural modifications to the 

porphyrin rings yielded coordination complexes with different architectures that affected 

their overall optical nonlinearity. The architectures of all the coordination complexes 

have been established prior to the determination of their NLO properties, unlike studies 

involving cooperative enhancement through random aggregates formation in solutions. 

Some groups have attempted to increase the σ2 through cooperative effects by forming 

molecular aggregates in solutions and ligation. 13  In addition, the retention of the 

supramolecular architecture in CHCl3 solution was confirmed from their 1H NMR studies.  

 

These Zn(II) metalloporphyrin complexes and unbrominated free bases exhibit 

negative γreal when at 650 nm in CHCl3 solution. The factors that affect the σ2 include the 

polarity of the molecules, presence of Zn(II) metal atom and the heavy Br atom, as well 

as the overall geometry of the coordination complexes. The relatively higher σ2 of 

monomeric Zn((II) 5,15-diphenylporphyrin as compared to the Zn(II) metalloporphyrin 

coordination complexes is found to be influenced by the strong ESA process, which 

complicated the nonlinear absorption processes of the former. This is evident from the 

deviation of the theoretical three-level model that relates σ2 to OPA parameters and the 
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experimental errors that accompanied the open aperture measurements. The well-fitted 

dependence of these parameters for the whole series of centrosymmetric compounds 

studied in this work shows the validity of the simple model which can be adopted for 

future studies of a similar class of compounds.  

 

The wavelength dispersion study of 4-16 demonstrates the TPA spectrum of the 

dimer. The largest σ2 of 1400±350 GM corresponding to the laser excitation wavelength 

of 800 nm, is close to the one-photon absorption Q(0-0) transition and was attributed to  

strong g←g transitions. This study also revealed the centrosymmetricity of the dimer in 

solution. 
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CHAPTER 6 

CONJUGATED COVALENT PORPHYRIN SYSTEMS AS 

NONLINEAR OPTICS MATERIALS 

 

6.0 INTRODUCTION 

 

Conjugated systems comprising of porphyrin as building block are of interest 

because such π-systems are highly polarizable and possess the advantages of the 

molecule of porphyrin as nonlinear optical (NLO) materials. Thus, large values of third-

order susceptibility χ(3) can be achievable. In our work, we have designed and 

synthesized a series of conjugated systems consisting of porphyrins as building blocks. 

The porphyrins are configurational and conformational isomers of one another. A 

comparison study between the conjugated systems comprising of the conformational 

isomers is of interest because of the differences in the polarities of the isomers that in 

turn affect their overall NLO properties. 

 

Till date, linear porphyrin arrays linked by butadiyne are shown to exhibit high χ(3) 

values which are among one of the largest for organic materials.1 Several modifications 

have since been carried out, such the extension of the two-dimensional conjugation to 

improve the NLO properties.1b However, one of the important characteristics of a 

molecule that influence the χ(3) is its polarity which is characterized by the dipole 

moment. Hence, the geometry of the monomers in the conjugated system with respect 

to each other can in fact be varied and studied for their difference in NLO properties. For 

instance, in the recent works of Osuka et al. 2  where they demonstrated a strong 
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correlation between the dihedral angle of porphyrin units in a conjugated system with 

their two-photon absorption (TPA) properties. However, most research has been 

focused on the studies of linear porphyrins arrays linked via single3 or triple bonds1 from 

opposite meso C atoms or via their peripheral phenyl rings at the para positions of the 

latter. This is partly because of the ease of purifying the synthesized porphyrins since 

isomers do not form.  

 

Although acetylene-linked porphyrin polymers remain as one of intensively 

studied compounds for NLO applications because of their high χ(3), most research works 

are still concentrated on linear conjugated systems. Hence, it is of interest to study 

acetylene-linked systems with conjugation that projects in greater through space 

dimensions.  

 

In our work, the broad absorption bands of porphyrin-based conjugated 

compounds render them unsuitable for Z-scan measurements, as the latter is a 

transmission technique. The degenerate four-wave mixing (DFWM) technique was thus 

adopted to study the third-order NLO property of these polymers in the form of thin films. 

The disadvantage of using such a technique is the necessity to use relatively larger 

amounts of sample to obtain thin films of the sample. Also, obtaining homogeneous thin 

films of the material pose a challenge, especially when the processability of the polymers 

is low and the evaporation of solvent often leads to formation of solid particles on the 

glass support. In addition, the glass support itself exhibits optical nonlinearity. Hence, 

this property of the material has to be sufficiently stronger in order for the measurements 

to be taken. This can be overcome by spin-coating a thick sample of the material but it 

also increases the possibility of light scattering through the sample as the laser light 

passes through it.  
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6.1.0 SYNTHESIS OF COVALENT PORPHYRIN SYSTEMS CONSISTING OF CIS 

AND TRANS PORPHYRIN MONOMERS 

 

Two conjugated porphyrin systems are synthesized via Wittig coupling reaction 

of the phosphonium salt of porphyrin (6-6, 6-8) and aromatic dialdehyde 2,5-bisdecyloxy-

1,4-diformylbenzene (6-4) consisting of solublizing long alkyl chains.  The compound 6-4 

was synthesized according to Scheme 6.1. The attachment of long alkyl chain to the 

phenyl rings was to aid their solubility in organic solvents for characterization and spin-

coating of the materials. The porphyrin phosphonium salts, were first synthesized from 

4-6 and 4-7 by nucleophilic substitution of the methoxy group to form 6-5 and 6-7 

respectively. This was carried out by using excess gaseous HBr. Several attempts had 

been carried out. In aqueous HBr (48 %), the reaction did not occur even after the 

mixture was refluxed overnight and this was attributed to the insolubility of the 

macrocycle in aqueous medium. However, by dissolving in toluene and through vigorous 

stirring at room temperature for 24 hours, the reaction yielded only 61 % and 26 % of the 

mono and disubstituted compounds respectively.  

 

The reaction of 6-5 and 6-7 with triphenylphosphine yielded the corresponding 6-

6 and 6-8 phosphonium salts. Excess triphenylphosphine (4 equivalents) had to be 

added for the complete substitution of two Br atoms, otherwise a mixture of mono and 

disubstituted phosphonium salt will be obtained. Also, the reaction reached completion 

only after 3 days of stirring at a high temperature of 120 °C (Scheme 6.2, 6.3).   

 

We attempted to prepare the conjugated system by switching the functionalities 

between the monomers. However, the conversion of the bromomethyl functionality on 

the phenyl ring of the porphyrin to aldehyde functional group was not successful. The 
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products were obtained in 45 % and 48 % yields for the trans and cis conjugated 

systems respectively (Scheme 6.4, 6.5 respectively). They are very soluble in organic 

solvents such as CH2Cl2, CHCl3 and THF, which facilitate characterization.  
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Scheme 6.1 i, KOH, EtOH, C10H21Br, reflux; ii, Br2, MeOH, CHCl3, 0 °C; 
iii, BuLi, dry THF, -78 °C; iv, DMF, -78 °C 
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Scheme 6.2 i, HBr, CHCl3; ii, PPh3, DMF, 120 °C 
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Scheme 6.3 i, HBr, CHCl3; ii, PPh3, DMF, 120 °C 
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6.1.1.0 CHARACTERIZATION OF CONJUGATED PORPHYRIN OLIGOMERS 6-9 

AND 6-10 

 

6.1.1.1 1H AND 13C NMR ANALYSES 

 

1H NMR and 13C NMR spectroscopy were used for the characterization of the 

molecular structures of the monomers and the conjugated trans (6-9) and cis (6-10) 

conjugated systems. From the 1H NMR spectrum of 6-9, we observe the presence of –

PPh3 end group. The –CH2PPh3 (δ 5.14) benzylic protons of the terminal group are 

shifted upfield compared to its monomer (δ 5.41). The broad multiplets (δ -0.20 − 3.74) in 

the high field region confirmed the presence of the aromatic phenyl monomer with 

solubilizing alkyl side chains. The –OCH2– (δ 3.49, 3.72) side chain on the aromatic 

aldehyde is more shielded than in the monomer (δ 4.07) most probably because the 

protons lie above the anisotropic ring of the porphyrin. The singlets in the most shielded 

region of δ -3.22, -3.08 confirmed the presence of porphyrin due to the –NH protons in 

the inner core of the ring. The 13C NMR spectrum of 6-9 revealed the presence of 

terminal –CHO (δ 189.8) group. 

 

The 1H NMR study of 6-10 displayed a similar spectrum with its trans counterpart. 

We observe the presence of –PPh3 end group and the –CH2PPh3 (δ 5.11) benzylic 

protons of the terminal group are also shifted upfield compared to its monomer (δ 5.36). 

The broad multiplets (δ -0.20 – 3.46) in the high field region confirmed the presence of 

the aromatic phenyl monomer with solubilizing alkyl side chains. In addition, the –OCH2– 

(δ 3.46) side chain is more shielded in the conjugated system than in the monomer (δ 

4.07). The singlets in the most shielded region of δ -3.24, -3.19 confirmed the presence 
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of porphyrin due to the –NH protons in the inner core of the ring. The 13C NMR spectrum 

of 6-10 confirmed the presence of terminal –CHO (δ 189) group. 

 

6.1.1.2 ELEMENTAL ANALYSES 

 

Elemental analyses were employed as the most accurate method to determine 

the purities of the obtained products. The experimental results showed that the 

conjugated systems agree well with the expected values of H and N contents as 

summarized in Table 6.1. The elements P and Br were too little to be traced. 

 

Table 6.1 Calculated and experimental elemental analyses of 6-9 and 6-10 

Elements [Calculated (%) / Found (%)]  
C H N 

6-9 82.63 / 80.16 7.61 / 7.25 6.22 / 6.11 

6-10 82.63 / 82.64 7.61 / 7.67 6.22 / 6.29 

 

 

6.1.1.3 FT-IR SPECTROSCOPY 

 

The IR spectra of the trans conjugated system clearly shows the presence of cis 

alkene bond because of the relatively strong C=C stretching at around 1672 cm-1 (Fig. 

6.1). The cis conjugated system shows the presence of cis alkene bond at C=C 

stretching of around 1680 cm-1 (Fig. 6.2). 
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Fig. 6.1 IR spectrum of trans oligomer 6-9. Arrow indicates cis C=C bond 

 

 

Fig. 6.2 IR spectrum of cis oligomer 6-10. Arrow indicates cis C=C bond 
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6.1.1.4 MOLECULAR WEIGHT DETERMINATION 

 

The molecular weights of the trans and cis systems were measured by means of 

gel-permeation chromatography (GPC) using THF as eluent and polystyrene as 

standard. A summary of their molecular weights and polydispersity indices (PDI) are 

listed in Table 6.2.   

 
 

Table 6.2 Average molecular weights of oligomers 6-9 and 6-10 
determined from GPC, using polystyrene as standard 
 

 Mw Mn PDI 
6-9 5800 5500 1.05 

6-10 6000 5200 1.15 

 

 

From the above results, both compounds have similar chain length and hence 

are suitable for comparison in further studies. Calculations show that the results 

corresponds to an average of around 5-6 repeating units in both compounds and can be 

considered as oligomers.  

 

6.1.1.5 THERMAL ANALYSES 

 

The thermal stability of the oligomers was studied. The oligomers 6-9 and 6-10 

showed an onset decomposition temperature (Td) of 291 °C and 213 °C respectively (Fig. 

6.3). The thermally induced phase transition behaviour of the oligomers was also 

investigated with DSC but there was no detection of a distinct glass transition 

temperature (Tg) for both oligomers. The oligomer 6-10 starts to show weight loss before 

the temperature rises above 380 °C in nitrogen, indicating that thermal decomposition 
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occurred. However, there was no significant weight loss displayed by the oligomer 6-9 

until the temperature was raised above 290 °C. In addition, the residual weight retention 

at 600 °C for both oligomers are approximately 55 %, implying that the oligomers 

possess relatively high thermal stability.4 

 

 

 

 

Fig. 6.3 TGA plots of 6-9 (bold lines) and 6-10 (dotted lines) 

 

6.1.1.6 LINEAR OPTICAL PROPERTIES 

 

The optical properties of the materials were investigated by UV-vis absorption 

and photoluminescence (PL) spectroscopy. The UV-vis spectrum of the oligomers (Fig. 

6.4) in CHCl3 displays a slight red-shift and intensification of the Q-band and a 
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broadening of the Soret band as compared to the porphyrin monomers at similar 

concentrations. This is associated with the strong electronic communication between the 

porphyrins. The oligomers do not exhibit significant fluorescence in solution. 

 

Error! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The oligomers 6-9 and 6-10 have similar conjugation pattern but may vary 

slightly because of the difference in the dihedral angles of the peripheral phenyl rings. 

This is in turn affected by steric factors arising from the spatial arrangement of the 

phenyl rings. Steric hindrance is expected to be more predominant in the oligomer 6-10 
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Fig. 6.4 UV-vis absorption spectrum of 6-6, 6-8, 6-9 and 6-10.  
Dotted lines show Q-bands amplified for clarity 
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which comprise of the porphyrins in cis conformation. Hence, it is interesting to study the 

effect of porphyrin conformation on the overall NLO properties of a conjugated system. 

 

An attempt was made to carry out the NLO measurement of these two 

conjugated systems. The Z-scan technique involves transmission measurement and 

requires a highly concentrated solution of the compound with low absorption in the laser 

excitation wavelength. The CHCl3 solutions of these two compounds show large 

absorption even up to 1000 nm and hence were unsuitable for transmission 

measurements. Due to the small molecular weight of the oligomers, these compounds 

are not easily processable and do not form a homogeneous film with thickness suitable 

for DFWM measurements. Measurements of the sample at different thickness and 

higher laser light intensity did not yield results that is significantly different from the glass 

support. Hence, the technique was found to be unsuitable for the third-order NLO 

measurements of the materials. Therefore, nonlinear excited state measurements of the 

oligomers in diluted solutions were carried out and at an excitation wavelength of 532 

nm where the absorption of the solution is low. 

 

6.1.1.7 NONLINEAR OPTICAL PROPERTIES 

The nonlinear transmission results obtained for the oligomers 6-9 and 6-10 using 

C60 as reference are presented in Fig 6.5. The compound C60 and its derivatives are 

often chosen as reference material because they are known to exhibit strong excited 

state absorption (ESA) and have been extensively studied.5 The transmission of the 

oligomers 6-9 and 6-10 decreases with input fluence, which is similar to that of C60. 

Hence, the oligomers exhibit reverse saturable absorption (RSA).  
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Through extrapolation of the results shown in Fig. 6.5, we can see that with 

increase in input fluences, 6-10 exhibits significantly lower threshold for optical limiting 

(the input fluence where the linear transmission is 50 % of the initial one) as compared 

to 6-9. Hence, the conformation of the porphyrin in the oligomer indeed affects the 

overall NLO properties. The more polar cis porphyrin moiety in 6-10 probably has a 

longer excited state lifetime than the trans counterpart in 6-9. It is noteworthy to 

comment that the threshold of optical limiting of 6-10 is lower than that of C60 and the 

latter is one of the best optical limiting materials known to this date.5 
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Fig. 6.5 Nonlinear transmission response of 6-9, 6-10 and C60 in CH2Cl2. Note that the 

line are drawn for extrapolation of input fluence at a transmission value of 0.375 
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6.2.0 CONJUGATED PORPHYRIN SYSTEMS WITH ARYL ACETYLENE LINKS 

 

As mentioned earlier, acetylene-linked conjugated polymers of porphyrins are 

widely studied because of their exceptionally high value of χ(3). Some examples of which 

has been cited in Chapter 1.1b,6 It will be interesting to investigate if the propagation of 

conjugation in space via covalent links will affect the overall NLO properties of the 

conjugated system. The direction of conjugation is varied by changing the attachment of 

acetylene bonds on the benzenoid monomer. The para, ortho and meta acetylene-

directed benzenoid monomers are synthesized according to Schemes 6.6, 6.7 and 6.8 

respectively. The Zn(II) metal atom was inserted into the porphyrin cavity before the 

polymerization step to avoid the possible insertion of Pd(II) metal atom from the catalyst 

into the cavity. 
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Scheme 6.6 i, KOH, EtOH, C10H21Br, reflux; ii, KIO3, I2, H2SO4, CH3COOH, 80 °C;  
iii, Et3N, PdCl2(PPh3)2, CuI, trimethylsilyl acetylene; iv, THF, MeOH, aq. NaOH 
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Scheme 6.8 i, KOH, EtOH, C10H21Br, reflux; ii, KIO3, I2, H2SO4, CH3COOH, 80 °C; iii, 

Et3N, PdCl2(PPh3)2, CuI, trimethylsilyl acetylene; iv, THF, MeOH, aq. NaOH 

Scheme 6.7 i, KOH, EtOH, C10H21Br, reflux; ii, KIO3, I2, H2SO4, CH3COOH, 80 °C; iii, 
Et3N, PdCl2(PPh3)2, CuI, trimethylsilyl acetylene; iv, THF, MeOH, aq. NaOH 
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Scheme 6.9 i, CF3COOH/ CH2Cl2; ii, chloranil; iii,  
NBS, CHCl3, 0 °C; iv, Zn(OAc)2.xH2O, THF 

 
 

N

N N

N
Br BrZn +

NN
NZn

Ar

Ar

C10H21O

OC10H21

i
OC10H21

OC10H21H

H

n

6-16

6-30

6-31

 

Scheme 6.10 i, i-Pr2NH, PdCl2(PPh3)2, CuI, toluene, 100 °C 



   207

 

N

N N

N
Br BrZn +

NN
NZn

Ar

Ar

i

n

OC10H21C10H21O

H H

6-21

6-30

6-32

OC10H21

OC10H21

 
Scheme 6.11 i, i-Pr2NH, PdCl2(PPh3)2, CuI, toluene, 100 °C 
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Scheme 6.12 i, i-Pr2NH, PdCl2(PPh3)2, CuI, toluene, 100 °C 
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6.2.1.0 CHARACTERIZATION OF CONJUGATED PORPHYRIN SYSTEMS 6-31, 6-32 

AND 6-33 WITH ARYL ACETYLENE LINKS 

 

6.2.1.1 1H AND 13C NMR ANALYSES 

 

The 1H NMR of the conjugated systems 6-31, 6-32 and 6-33 are obtained by 

dissolving the compounds in CS2 and d5-pyridine. Pyridine was added to ligate the Zn 

metalloporphyrin to prevent aggregation and aid in solubilizing the compounds. The 

spectra are consistent with the proposed structure. The 1H NMR of 6-31 CS2 and d5-

pyridine clearly shows the presence of porphyrin and phenyl constituents. The proton 

peaks in the conjugated system are broadened as compared to the monomers (note that 

the 1H NMR spectrum of the monomers are measured in CDCl3). The pyrrolic protons of 

the porphyrin in the conjugated system have shifted upfield because of the substitution 

of electron-withdrawing Br atom by acetylene. There are two singlets at δ 3.77 and 3.66 

which can be attributed to the H of terminal acetylene group. There are no peaks in the 

shielded region below δ 1.00 hence the porphyrin did not undergo demetallation during 

the coupling reaction.  

 

The 1H NMR of 6-32 in CS2 and d5-pyridine also shows the presence of porphyrin 

and phenyl constituents. The proton peaks in the conjugated system are less defined as 

compared to 6-31 probably because of the less rigid backbone of this system due to 

larger steric hindrance. The pyrrolic protons of the porphyrin in the conjugated system 

are broad but nevertheless, the phenyl proton peaks can be identified. There is one 

singlet at δ 3.58 which may be attributed to the H of terminal acetylene group. There are 
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no peaks in the shielded region below δ 1.00 hence the porphyrin also did not undergo 

demetallation during the coupling reaction.  

 

The 1H NMR of 6-33 in CS2 and d5-pyridine clearly resembles that of 6-31 except 

in the protons of the phenyl ring. The proton peaks in the conjugated system are 

broadened as compared to the monomers. The pyrrolic protons of the porphyrin in the 

conjugated system have shifted upfield because of the substitution of electron-

withdrawing Br atom by acetylene. There are two singlets at δ 3.76 and 3.67 which may 

be attributed to the H of terminal acetylene group. Similarly, the absence of 1H peaks 

below δ 1.00 implies that the porphyrin did not undergo demetallation during the coupling 

reaction.  

 

6.2.1.2 ELEMENTAL ANALYSES 

 

The experimental formula showed that the conjugated systems agree within 3.2 

% from the expected values of C, H, N and Zn contents. Trace amount of Br atom was 

detected for 6-33. 

 

Table 6.3 Calculated and experimental elemental analyses of 6-31, 6-32 and 6-33 

Elements [Expected (%) / Found (%)]  
C H N Zn Br 

6-31 77.52/74.35 6.51/6.74 5.83/5.41 6.81/4.86 Not detected

6-32 77.52/75.37 6.51/6.90 5.83/5.97 6.81/4.42 Not detected

6-33 77.52/77.06 6.51/6.29 5.83/5.85 6.81/4.42 2.59 
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6.2.1.3 FT-IR SPECTROSCOPY 

 

The IR spectra of the conjugated system (Fig. 6.6) clearly show the presence of 

the alkyne bond. The relatively strong absorption of the C≡C stretching clearly shows 

that the disubstituted triple bond is not symmetrical and the conjugated system is 

alternating. The C≡C stretchings appear at 2184 and 2189 cm-1 for 6-31 and 6-33 

respectively but that of 6-32 is too weak to be observed. However, terminal sp C-H 

stretch at above 3300 cm-1 is observed for all three compounds although the peaks are 

slightly obscured by O-H stretching from H2O.  
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Fig. 6.6 IR spectrum of 6-31, 6-32 and 6-33 
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6.2.1.4 MOLECULAR WEIGHT DETERMINATION 

 

The main advantage of 6-32 compared to 6-31 is the higher solubility. The 

conjugated system 6-31 is known to aggregate through π-π stacking hence resulting in 

insolubility. The insolubility of the compounds in common solvents prevented the 

determination of chain length by GPC. Hence, MALDI-TOF was used to determine the 

molecular weight of the compounds instead. The conjugated compounds were prepared 

in CS2 and pyridine and added with dithranol matrix. A preliminary study on 6-32 shows 

that there is no significant change with or without pyridine hence, it may be assumed that 

evaporation of solvents involve the evaporation of pyridine and hence does not 

coordinate permanently to the Zn(II) metal atom in the compounds. Qualitatively, the 

compounds have similar molecular weight Mn of 4900 - 5300 g mol-1 (Table 6.4) which 

comprise of about five repeating units and hence are oligomers. From the above results, 

the oligomers have similar chain lengths. 

 

Table 6.4 Molecular weights of 6-31, 6-32 and 6-33 based on the 
highest peak measured on MALDI-TOF 
 

Compound Molecular weight Mn (g mol-1) 
6-31 5300 

6-32 4900 

6-33 5000 
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6.2.1.5 THERMAL ANALYSES 

 

The thermal stability of the oligomers was studied and the TGA plots are shown 

in Fig. 6.7 below. The oligomer 6-32 started to show decomposition first with increase in 

temperature. The oligomers showed similar weight loss of 1 - 6 % before showing an 

onset decomposition of 281, 288 and 301 °C for 6-31, 6-32 and 6-33 respectively. The 

residual weight retention at 600 °C for all three oligomers was above 60 %, which is an 

indication of good thermal stability.4 The thermally induced phase transition behaviour of 

the oligomers was investigated with DSC but they do not exhibit clear glass transition 

probably due to the low molecular weight of the compounds. 

 

 

 

 

Fig. 6.7 TGA plots of 6-31 (red), 6-32 (blue) and 6-33 (black) 
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6.2.1.6 LINEAR OPTICAL PROPERTIES 

 

The UV-vis spectrum of the oligomers (Fig. 6.8) was obtained in CS2 and pyridine 

solutions. They display a slight red-shift of the Soret and Q-bands in comparison to their 

porphyrins monomers. The broad absorption band exhibited by 6-31 and 6-32 reveal the 

significant aggregation of the oligomers even in the presence of pyridine. The λmax of the 

oligomer 6-32 showed the least red-shift, which implies poorer conjugation in the 

conjugated system. This is expected to be due to steric factors. The oligomers do not 

fluorescence and is most probably due to aggregation. 

 

 
 

Fig. 6.8 UV-vis absorption spectrum of 6-31, 6-32 and 6-33 
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6.2.1.7 NONLINEAR OPTICAL MEASUREMENTS 
 
 

 

As the oligomers 6-31, 6-32 and 6-33 show strong absorption in the UV-vis 

region similar to that of 6-9 and 6-10, the former are not suitable for Z-scan 

measurements using the available instruments also. However, thin films could be 

prepared could be prepared by drip-dry method where a concentrated CS2/pyridine 

solution was introduced onto 1 mm thick silica plates and the solvents was allowed to 

evaporate off under nitrogen atmosphere.  

 

The nonlinear measurements reveal the nonlinear responses of the oligomers 

which contain a delayed part. This is most probably attributed to nonlinear absorption or 

relatively long excitations that decay on a ps time scale. With the increase of the input 

power, the tail becomes more prominent. However, as the intensity increases further, the 

material showed signs of material burning (Fig. 6.9). Therefore, the nonlinear absorption 

properties and the photochemical instability of such acetylene-linked covalent oligomers 

of porphyrin and benzene are exhibited in all three systems under the measurement 

conditions.  As the oligomers are only soluble in CS2/pyridine solutions and CS2 is 

known to show large nonlinear properties,7 the latter is likely to mask the signal from the 

oligomers, thus, nonlinear measurements of the solutions using Z-scan8 and DFWM 

techniques cannot be carried out. 
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Fig. 6.9 DFWM signal at 800 nm for a film of 6-32 scanned from positive  

to negative delay times. The increase of the background signal at  
negative delays is due to formation of permanent grating 
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6.3 CONCLUSION 

 

Section 1 

 

Two conjugated oligomers consisting of porphyrin and aromatic ring with long 

alkoxy side chains linked by alkene double bonds have been synthesized and 

characterized using 1H NMR, 13C NMR, GPC, elemental analyses, FT-IR and UV-vis 

absorption spectroscopy. These two conjugated systems have similar conjugation 

pattern but differ in the spatial projection of the π-electron cloud due to the difference in 

the conformation of the porphyrin monomer. The excited state measurements of the 

oligomers in CH2Cl2 reveal that the conformation of the peripheral group on the 

porphyrin moiety in the conjugated system affects the nonlinear properties of the overall 

conjugated system. The oligomer 6-10 was found to exhibit lower threshold of limiting 

than 6-9 and C60 in CH2Cl2 solution. 

 

Section 2 

 

Three conjugated oligomers consisting of porphyrin and aromatic ring with long 

alkoxy side chains are linked by acetylene triple bonds that differ in the position at which 

the acetylene bonds are attached on the aromatic ring. These oligomers are not stable 

under laser light and show signs of burning and formation of permanent grating.  

 

In conclusion, the oligomers presented in this chapter are not suitable for 

transmission measurements using Z-scan technique because the concentrated solutions 

of these oligomers absorb strongly in the excitation wavelength range of the laser, which 

limited the use of this technique. The poor processability of 6-9 and 6-10 made the 
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formation of thin film thick enough or DFWM measurements impossible. Although the 

oligomers 6-31, 6-32 and 6-33 can form thin films on silica plates using drip-dry method, 

the materials exhibit poor photostability. Hence, the porphyrin-consisting oligomers 

presented in this Chapter are found to be less favourable for NLO measurements than 

the coordination complexes presented earlier in Chapter 4 and 5.  
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CHAPTER 7 

THIRD-ORDER NONLINEAR PROPERTIES OF THE BROMO 

BENZO[C]CINNOLINE MONOMER AND NOVEL FLUORENE-

BENZO[C]CINNOLINE COPOLYMERS 

 

7.0 INTRODUCTION 

 

Recently, there has been renewed interest in benzo[c]cinnolines as they provide 

an interesting class of compound due to their variety of biological activities, for example, 

as topoisomerase I inhibitors1 and compounds with fungicidal effects.2 Several groups 

are thus interested in investigating novel processes to build the framework of this class 

of N-heteroarenes and functionalize them in various ways. 

 

The most widely used method of preparing benzo[c]cinnolines is through the 

reduction of 2,2’-dinitrobiphenyls. 2,2’-Disubstituted biphenyls undergo intramolecular 

cyclization reactions with particular feasibility because of the close spatial proximity of 

the interacting substituents. Cyclization concomitant with the reduction of 2,2’-

disubstituted biphenyls is very common and in cases involving nitro groups, is almost 

impossible to avoid. For instance, the conversion of 2,2’-dinitrobiphenyl (7-1) to 

benzo[c]cinnoline (7-2) can be accomplished by zinc 3 , lithium aluminium hydride 4 , 

reduced iron 5 , ferrous oxalate 6 , triethyl phosphite 7  and iron carbonyl 8  and 

electrolytically.9 Catalytic hydrogenation with Raney nickel10 and palladium on carbon is 

reported to give 7-2 but reduction to 2,2’-diaminobiphenyl also has been reported.11 The 

compound 7-2 is formed in the reduction of 7-1 with tin or stannous chloride in 
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hydrochloric acid.10 N,N’-Dioxides or N-oxides may be formed as intermediates in these 

reactions, depending on the stage at which N-N bond formation takes place (Scheme 

7.1) and on the vigor of the subsequent reduction. By suitable choice of reaction 

conditions these may be isolated.12  

 

In the most recent attempt, Bjørsvik et al.13 developed a novel synthetic process 

to synthesize benzo[c]cinnoline 7-2 (Scheme 7.2) and its derivatives. The process is a 

one-step reaction conducted with an alcohol as solvent and alkoxide as base in a sealed 

tube purged with nitrogen. A high temperature of 160 °C and reaction time of 5 hours 

were maintained. Although high reaction yields of 96 % were attainable for unsubstituted 

benzo[c]cinnoline using NaOH as base as well as acetophenone and ethanol as 

solvents, the drastic reaction condition in a sealed tube renders the procedure 

undesirable, limits the scale of reaction and increases the danger of the reaction. 
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Scheme 7.1 Possible routes to the formation of benzo[c]cinnoline12 
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Solvent (15 ml),
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sealed tube, N2
           96.0 % 7-27-1

 

Scheme 7.2 Synthesis of 7-213 

 

In addition, the high yield was no longer achievable for all substituted 

benzo[c]cinnolines. For instance, chloro functionalized benzo[c]cinnoline 7-4 (Scheme 

7.3) could only be attained in 50 % yield.  

 

N NNO2

O2N
O

CH3

(1.8 mmol)

(2 mmol)

Base (10 mmol), 
Solvent (15 ml),
T = 160 oC, t = 5 h,
sealed tube, N2
     ~ 50 %

Cl Cl Cl Cl

7-47-3

 

 
Scheme 7.3 Synthesis of 7-413 

 

7.1 OUR WORK 

 

In our endeavour to improve the synthetic process, we discovered two 

approaches that can derive benzo[c]cinnoline and their derivatives by a simpler 
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approach (Scheme 7.3). For comparison, we chose to synthesize 7-2 and 7-4 via these 

two approaches to determine the advantage of this synthetic method over the literature 

method.13  

 

For our work, the bromo substituted benzo[c]cinnoline derivative is preferred over 

the chloro counterpart because the Br atom on the aromatic ring of the former is 

generally more feasibly removed in subsequent coupling reactions via substitution 

reactions. Therefore, 7-7 was also synthesized according to Scheme 7.4.  

 

Br

NO2

Br

NO2

Br Br

O2N

Br Br

N N

i                                                                 ii

    7-5                                                 7-6                                                      7-7

 
Scheme 7.4 i, Cu, DMF, 120 °C; ii, Sn, conc. HCl,  

EtOH, reflux or Zn, aq CaCl2, EtOH, reflux 
 

 

Although the reported procedure by Bjørsvik et al.13 possesses the advantages of 

using relatively non-hazardous and cheap reagents and does not require heavy or 

transition metals for reaction, it suffers from some obvious drawbacks. For instance, the 

operation has to take place at high temperature of 160 °C. Below 140 °C, the redox 

process will not operate while at 170 °C, decomposition takes place readily. The high 

reaction temperature requires the use of high boiling solvent acetophenone (b.p 201.7 

°C) which can be difficult to remove after the reaction. Stringent conditions on the choice 

of base and solvent used are required as the redox processes involve a “cage re-
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bonding” step. Such reaction mechanism is very dependent on the solvent properties, 

especially solvent viscosity and thereby reaction temperature. 

 

7.2  BENZO[C]CINNOLINE-BASED CONJUGATED POLYMERS AS NONLINEAR 

OPTICS MATERIALS  

 

The third-order nonlinear optical (NLO) properties of benzo[c]cinnoline based 

conjugated polymeric systems has not been reported to the best of our knowledge. 

Heterocyclic rings such as thiazole14 or thiophene15 have been introduced to replace 

benzene in NLO materials but such five-membered heterocyclic rings have poor bond 

alternation. The aromatic benzo[c]cinnoline possess two six-membered rings with better 

bond alternation and additional conjugation through the N=N double bond and aryl C-C 

bond.  

 

N
N

NN

           7-8                                                       7-9

 
Fig. 7.1 Isomerization of azobenzene from trans 7-8  

(left) to cis 7-9 (right) conformations 
 

Benzo[c]cinnolines structurally resemble azobenzenes. The latter can exist in two 

isomeric forms namely the E (trans) 7-6 and Z (cis) 7-7, and possess the advantages of 

high optical nonlinearities due to photoinduced trans-cis isomerization (Fig. 7.1), 

molecular reorientation and nonlinear absorption and thus, are interesting because they 

combine the properties of anisotropy with photoresponsive behaviour that give rise to 
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applications in areas such as LC displays, NLO materials and information storage 

devices.16  

 

Benzo[c]cinnolines resemble the cis isomer of azobenzene 7-9 but in a ‘locked’ 

conformation. Hence, we are interested in designing materials which incorporate the 

benzo[c]cinnoline moiety and investigate their potential for third-order NLO applications, 

in conjunction with our search for materials with large two-photon absorption (TPA). In 

order to enhance their third-order NLO properties, conjugated polymeric systems with 

extensive conjugation are designed. 

 

During our search for highly efficient third-order NLO materials that can enhance 

the properties of benzo[c]cinnoline, we are particularly attracted by the structural 

features of the well conjugated, planar and rigid ring of fluorene. Fluorene π-systems 

have proven to be an efficient building block for chromophores with high two-photon 

absorptivities, as well as excellent thermal and photochemical stabilities.17 Also, fluorene 

chemistry is one of the fortes of our group, hence, we designed the synthesis of soluble 

conjugated co-polymers of fluorene and the key organic compound, benzo[c]cinnoline 

via Suzuki coupling reaction as shown in Scheme 7-5.18  

 

In order to investigate the effect of benzo[c]cinnoline composition in a fluorene-

benzo[c]cinnoline copolymers on the optoelectronic properties, the relative compositions 

of benzo[c]cinnoline and fluorene derivative monomers are varied (Table 7.1). The 

composition of the polymer is designed to comprise 10, 20, 30, 40 and 50 % of 

benzo[c]cinnoline. In the first 4 compositions (10 - 40 %), the monomers are randomly 

arranged while in the 50 % polymer, the monomers are arranged in alternating pattern in 

the polymer. The synthetic scheme is shown below (Scheme 7.5). 
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Table 7.1 Ratio of 7-7, 7-10 and 7-11 in synthesis of polymers 7-12a-e of various percentages of benzo[c]cinnoline 

Ratio 
Fluorene Benzo[c]cinnolinePolymer Percentage of 7-7 

(%) 
7-10 (x) 7-11 (y) 7-7 (z) 

7-12a 10 5 4 1 

7-12b 20 5 3 2 

7-12c 30 5 2 3 

7-12d 40 5 1 4 

7-12e 50 1 0 1 

Scheme 7.5 i, Pd(PPh3)4, aq K2CO3, (n-C4H9)4NBr, toluene, 100 °C 
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7.3.0 RESULTS AND DISCUSSIONS 

 
7.3.1 SYNTHESIS AND CHARACTERIZATION OF 7-7 MONOMER 

 
In our work, we attempted two methods to synthesize 7-7. The precursor, 7-6 

was synthesized from 7-5 by Ullmann coupling reaction using Cu in DMF at 120 °C 

coupling followed by reduction of the former. In the first attempt, 7-6 was reduced using 

Sn and concentrated HCl in refluxing ethanol for 30 minutes. The cooled reaction 

mixture was quenched in ice cold water then basified before usual work-up. This 

reaction does not require inert condition, completes in a shorter time at lower 

temperature of less than 100 °C and gave high yield of 79.2 %. In addition, the scale of 

our reaction is 20 times higher as compared to the reported works of Bjørsvik et al.13 

However, the usage of toxic Sn and the generation of hazardous by-product made the 

disposal and treatment of the reaction products difficult. The reduction of 7-6 was carried 

out with 4 equivalents of Sn and the reaction was quenched in 30 minutes. The addition 

of excess Sn (10 equivalents) and longer reaction time of 3 hours will result in further 

reduction of the intermediate to 2,2’diamino-4,4’-dibromoniphenyl. This will yield only 17 

% of the 7-7 and 63 % of the by-product.19 It is also interesting to note that Olah et al.20 

carried out the reaction using the same reagent but with gradual addition of Sn. This 

yielded 2,2’-diamino-4,4’-dibromoniphenyl as the major product with a yield of 95.5 % 

instead.  

 

Due to the toxicity of Sn, the reduction of 7-6 was carried out using Zn powder 

and CaCl2 as base in ethanolic solution under reflux conditions for 2 hours instead. The 

advantage of this method over the previous two is the usage of less toxic Zn metal as 

reducing agent and eliminated the usage of concentrated acid which in turn simplified 
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the purification process. The Zn power and CaCl2 reducing agents are also much easier 

to handle and are less expensive than the tin reduction method. The yield of this reaction 

(78.5 %) is only marginally lower than the Sn reduction method. 

 

Therefore, we have accomplished two synthetic processes that (i) have shorter 

reaction time (ii) lower reaction temperature, (iii) does not require sealed tube and so 

lowers experimental risk that may be due to shattering of glass and thus, (iv), can be 

carried out in larger scale and not limited by size of vessel, (v) uses only ethanol as 

solvent, which is easy to remove after reaction unlike acetophenone, (vi) does not 

require inert condition and most importantly, (vii) gives high yield in the synthesis of 7-7. 

 

The structure of 7-7 was indirectly determined from the single crystal X-Ray 

structure of its salt (Fig. 7.2). A saturated CHCl3 solution of the compound was added 

with some drops of iodomethane (excess) and left aside for slow evaporation. Dark 

crystals of the salt formed and were sent for X-ray analysis. The structure of the targeted 

halogenated benzo[c]cinnoline was thus confirmed.  

 

The benzo[c]cinnoline skeleton is slightly distorted from planarity. The torsional 

angles C(12)-N(2)-N(1)-C(1) and C(8)-C(7)-C(6)-C(5) are 1.4 °. The dihedral angles 

N(2)-N(1)-C(1) and N(1)-N(2)-C(12) are 124.9 ° and 118.1 ° respectively. All the bond 

distances are very similar to those of the parent compound.21  

 

The crystal lattice consists of infinite chain of benzo[c]cinnoline units. Each unit 

on one layer interacts through non-bonded I-Br and I-H interactions. The non-bonded I-

Br interactions are 3.621 and 3.756 Å and the I-H interactions range from 2.919 - 3.197 
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Å. The H is attached to the C atom at C(1). The units which form a layer are not 

completely planar because of the non-bonded interactions. The adjacent layers 

comprise of antiparallel units and are off-centered. There are no interactions between 

the layers.  

 

 

Fig. 7.2 ORTEP diagram of 7-7, thermal ellipsoids are drawn at 50 % probability level 

 

The syntheses of 7-2 and 7-4 were carried out using the second method of 

reduction from their respective precursors 2-bromonitrobenzene and 2-bromo-5-

chloronitrobenzene. The compounds 7-2 and 7-4 were obtained in yields of 16.5 % and 

45.1 % while literature values13 are 94 % and 50 % (this value was estimated from GC-

MS analysis) respectively. Although the parent compound was obtained in much lower 

yield than the literature method, the more useful halogenated derivative 7-4 was isolated 

in comparable yield to the literature method. In addition, the pure isolated product of 7-4 

was obtained in our work 



 

  232

 

7.3.2.0 SYNTHESIS AND CHARACTERIZATION OF FLUORENE-BENZO[C]-

CINNOLINE COPOLYMERS 

 

7.3.2.1 1H AND 13C NMR ANALYSES 

 

 

 
The 1H NMR spectrum (Fig. 7.3) of the random polymers containing 20 - 50 % 

benzo[c]cinnoline gave proton peaks of the benzo[c]cinnoline units and fluorene units 

that are well resolved from one another hence, the ratio of the units in the polymer was 

precisely determined. However, the 1H NMR spectrum of the polymer containing 10 % 

10 9 8 3 2 1 0

10 9 8 3 2 1 0

10 9 8 3 2 1 0

10 9 8 3 2 1 0

10 9 8 3 2 1 0

Chemical shift (ppm)

 

7-12a

7-12b

7-12c

7-12d

7-12e

Fig. 7.3 1H NMR spectrum of 7-12a-e in CDCl3 
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benzo[c]cinnoline do not clearly show the benzo[c]cinnoline peaks because of the low 

content in the polymer. The 13C NMR spectrum (Fig. 7.4) of polymers containing 20 - 50 

% benzo[c]cinnoline were also well resolved.  
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7.3.2.2 ELEMENTAL ANALYSES 

 

The elemental analyses of the polymers confirmed the C, H and N contents in 

the polymers and the experimental results agree relatively well with the calculated 

Fig. 7.4 13C NMR spectrum of 7-12a-e in CDCl3 



 

  234

values. The experimental results for C, H and N contents are summarized in Table 7.2. 

The Pd catalyst was not trapped in any of the polymers. Terminal Br and boronic ester 

were not detected which could be due to the low content with respect to the long 

polymer backbone or the cleavage of these groups during the polymerization reactions. 

The percentage of benzo[c]cinnoline in the polymers can be calculated from the N 

content and is found to agree within 3.7 % of the expected value. The polymers were 

obtained in high yields summarized in Table 7.2 below. The yields range from 47.0 - 

63.6 % (Table 7.3). 

 

Table 7.2 Summary of the elemental analysis results of 7-12a-e 

Elements [Expected (%) / Found (%)] 

Percentage of 
7-7 added (%) C H N 

Percentage of 
benzo[c]cinnoline 

in polymer 
product from 

elemental 
analyses studies 

(calculated from N 
content, %) 

10 89.77 / 89.86 9.35 / 8.51 0.88 / 0.55 6.3 

20 89.19 / 90.36 8.95 / 8.08 1.86 / 1.88 20.2 

30 88.54 / 90.59 8.52 / 8.65 2.94 / 2.70 27.6 

40 87.82 / 87.36 8.04 / 7.64 4.14 / 4.49 43.4 

50 87.02 / 87.39 7.50 / 7.42 5.49 / 5.55 50.5 

 

Table 7.3 Summary of the yield of the polymers 7-12a-e 

Percentage of 
7-7 added (%) 

Percentage of benzo[c]cinnoline in polymer product 
from elemental analyses studies (calculated from N 

content, %) 
Yield (%) 

10 6.3 63.6 

20 20.2 53.5 

30 27.6 60.0 

40 43.4 47.0 

50 50.5 51.1 
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7.3.2.3 MOLECULAR WEIGHT DETERMINATION 

 

The molecular weights of the polymers were measured by means of gel-

permeation chromatography (GPC) using THF as eluent and polystyrene as standard. 

The molecular weights (Mn) and polydispersity indices (PDI) range from 6765 - 39728 g 

mol-1 and <2.0 respectively Table 7.4.  From the results, polymers 7-12a and 7-12e have 

similar chain length and hence are suitable for comparison in further studies.  

 

Table 7.4 Average molecular weights of polymers determined from 
GPC, using polystyrene as standard 
 

Polymer Mw Mn PDI 

7-12a 20100 10600 1.90 

7-12b 34300 20100 1.71 

7-12c 54800 39700 1.38 

7-12d 18300 14600 1.25 

7-12e 7100 6770 1.05 

 

 
7.3.2.4 THERMAL ANALYSES 

 

The thermal stability of the polymers was studied. The TGA plots are shown in 

Fig. 7.5 below. The polymers showed similar weight loss starting from above 

temperature range of 325 - 358 °C which is an indication of good thermal stability. 

Thermally induced phase transition behaviour of the polymers was also investigated with 

DSC but they do not exhibit clear glass transition, probably due to the rigidity of the 

polymer backbone. 
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Table 7.5 Summary of the Td (°C) values of 7-12a-e 

Polymer Td (°C) 

7-12a 356 

7-12b 329 

7-12c 358 

7-12d 347 

7-12e 325 

 

 

Fig. 7.5 TGA plot of the polymers 7-12a-e 
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7.3.2.5 OPTICAL STUDIES 

 

The UV-vis absorption spectra for the 7-7 and polymers 7-12a-e in with various 

compositions of benzo[c]cinnoline are shown in Fig. 7.6. The UV-vis absorption maxima 

(λmax) values lie between 264 nm and 388 nm. The spectra of the polymers are 

significantly red-shifted as compared to those of the monomers and this is attributed to 

the extensive conjugation of the polymer. With higher composition of benzo[c]cinnoline, 

the spectrum becomes more blue-shifted (Δλ = λmax,7-12a - λmax,7-12e = 11 nm).  

 

 

 
Fig. 7.6 UV-vis absorption spectra of 7-7, 7-11 and polymers 7-12a-e 
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The emission spectra of the polymers are shown in Fig. 7.7. The measurements 

were carried out in CHCl3 solution using quinine sulphate in 0.1N sulphuric acid 

(fluorescence quantum efficiency, Φeff = 55 %) as standard. With increasing 

compositions of benzo[c]cinnoline, the Φeff of the polymer decreases (summarized in 

Table 7.6). Since the concentration of the solutions are low, fluorescence quenching 

could have resulted from more efficient intrachain rather than interchain energy trapping. 

 

Fig. 7.7 Emission spectra of monomers 7-7 (suppressed) and 7-11 as  
well as polymers 7-12a-e in CHCl3 at concentrations of 1 × 10-5 M. 

Inset shows emission of 7-12c-e at 420 - 590 nm for clarity 
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    Table 7.6 Summary of Φeff (%) of polymers 7-12a-e 

Polymer Φeff (%) 
7-12a 1.05 

7-12b 0.57 

7-12c 0.45 

7-12d 0.26 

7-12e 0.19 

 

We observe a relatively linear decrease in the Φeff of the polymers with 

increasing amounts of benzo[c]cinnoline which can be clearly illustrated in Fig. 7.8. 
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Fig. 7.8 Plot of quantum efficiency Φeff (%) against  
benzo[c]cinnoline content in polymers 7-12a-e 
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7.4 NONLINEAR OPTICAL PROPERTIES  

 

All the NLO measurements were performed by the Z-scan technique at 650 nm 

in CHCl3 solutions. The closed aperture scans of the solutions exhibit the typical prefocal 

transmittance minimum (valley) followed by a postfocal transmittance maximum (peak) 

with changes in the position (Z) of the sample, indicating a positive nonlinear refraction.22 

The enhanced valley as compared to the peak of the closed aperture scan also shows 

the presence of multiphoton absorption. Fig. 7.9 shows the typical closed aperture Z-

scan curve (nonlinear refraction measurement) for 7-12a. The open aperture curves (see 

Fig. 7.10) show minima attributed to nonlinear absorption. The lines are fitted curves 

with the parameters: ω0 = 45 mm, Δφ = 1.3 rd, T = 1.5. 

 

0.5

0.6

0.7

0.8

0.9

1

1.1

-30 -20 -10 0 10 20 30

z (mm)

Tr
an

sm
is

si
on

 

Fig. 7.9 An open-aperture scan in 0.0377 wt% solution of 7-12a in CHCl3 

 



 

  241

The NLO data which included the real and imaginary part of the complex 

nonlinear refractive index (n2,real and  n2,imag), real and imaginary components of the third-

order susceptibility ( ,χ χ(3) (3)
real imag ), real and imaginary components of hyperpolarizability 

(γreal, γimag) and the TPA cross section (σ2) are summarized in Table 7.7. The 

concentration dependencies of Δφreal and Δφimag of 7-7, 7-12a and 7-12e were analyzed 

and a typical plot is shown in Fig. 7.11 for 7-7. The results for the three compounds 

reveal the real (refractive) part of the nonlinearity to be positive (self-focusing) and the 

imaginary part of the nonlinearity to be positive, corresponding to nonlinear (two-photon) 

absorption.  
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Fig. 7.10 A closed-aperture scan in 0.0377 wt% solution of 7-12a in CHCl3 
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The extrapolated n2,real values for 7-7, 7-12a and 7-12e are 3.9×10-14, 5.5×10-14 

and 4.3×10-13 cm2 W-1 respectively. Hence, these compounds exhibit self-focusing 

properties at 650 nm. It is interesting to note that the polymer 7-12a does not show 

significant difference in the n2,real value as compared to its monomer while the polymer 7-

12e which consists of a 40 % increment of benzo[c]cinnoline content exhibit n2,real value 

which is an order of magnitude larger. 
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Fig. 7.11 Concentration dependences of the real and imaginary  
components of the nonlinear phase shift Δφ 
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Table 7.7 Summary of the third-order nonlinear parameters of 7-7, 7-12a,e 

Compound n2,real 
(cm2 W-1) 

n2,imag 
(cm2 W-1) 

(3)
realχ  (esu) (3)

imagχ  (esu) γreal (esu) γimag (esu) σ2 (GM) 

7-7 3.9×10-14 5.5×10-15 2.1×10-12 3.0×10-13 2.3×10-34 ± 
2.8×10-35 

3.2×10-35 ± 
4.1×10-35 12±16 

7-12a 5.5×10-14 1.2×10-13 3.0×10-12 6.2×10-12 6.0×10-34 ± 
1.5×10-33 

1.3×10-33 ± 
5.0×10-34 480±180 

7-12e 4.3×10-13 3.1×10-13 2.3×10-11 1.6×10-11 3.8×10-33 ± 
5.3×10-33 

2.7×10-33 ± 
1.1×10-33 1020±400 
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From the open aperture scans of the separate CHCl3 solution of 7-7, 7-12a and 

7-12e, and comparison with the signal from the same cell containing the solvent CHCl3, 

the values of γimag = 3.2×10-35 ± (4.1×10-35), 1.3×10-33 ± (5.0×10-34) and 2.7×10-33 ± 

(1.1×10-33) esu measured at 650 nm were respectively determined. This corresponds to 

(3)
imagχ values of 3.0 × 10-13, 6.2 × 10-12 and 1.6 × 10-11 esu respectively. The (3)

imagχ of 7-12e 

calculated according to our experimental data and calculation method is found to be of 

the same order of magnitude to polyacetylenes bearing poly[4-ethynyl-4’-(N,N-

diethylamino)azobenzene-co-phenylacetylene] as chromophoric pendants (7-13). The 

latter was in turn cited to possess (3)
imagχ with two orders of magnitude larger than those of 

polyacetylenes and larger than those of poly(N-carbazoylacetylene) and poly(1-

naphthylacetylene). 23 
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The TPA property is evident from the transmission signal which is reflected by 

the deep valley (ΔT ∝ β).22 The compounds show increasing order of TPA property from 

7-7, 7-12a to 7-12e as the depth increased. The compound 7-7 shows a low σ2 value on 

the order of 10 GM which is typical for a low molecular weight molecule. The polymers 7-
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12a and 7-12e gave σ2 values of 480 ± 190 and 1020 ± 400 GM respectively. These 

correspond to approximately 40- and 80-folds increase in the TPA property from a 

benzo[c]cinnoline monomer to a conjugated polymer. This increase is understandable in 

terms of large change in the one-photon absorption spectrum. A low σ2 value of 7-7 is 

obtained because this chromophore has a one-photon absorption maximum at 268 nm 

and absorption cut-off at approximately 500 nm, thus the operating laser wavelength of 

650 nm does not lead to a strong two-photon resonance at 325 nm. On the other hand, 

325 nm is well above the main one-photon resonances for 7-12a and 7-12e, thus the 

presence of strong TPA is most probably due to resonance enhancement. 

 

It can be concluded from the results above that the conjugated system containing 

fluorene and benzo[c]cinnoline show larger σ2 with an increase in the benzo[c]cinnoline 

content. The large increase in the σ2 of the polymers 7-12a and 7-12e from its monomer 

7-7 can be explained by two-photon resonance enhancement effect. As the one-photon 

absorption maxima of these polymers 7-12e and 7-12a are red-shifted by 120 and 109 

nm respectively, from the monomer 7-7, the λmax lies closer to 2λex. As λmax of 7-12e is 

closer to 2λex, the TPA enhancement effect on 7-12e is larger which accounts for the 

higher σ2.  

 

7.5 CONCLUSION 

 

In our work, benzo[c]cinnoline and its halogenated derivatives were synthesized 

using two methods with obvious advantages over the reported works of Bjørsvik et al.13 

Some of the highlighted advantages include shorter reaction time, lower reaction 

temperature, larger scale and high yields of the halogenated derivatives.  
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The NLO properties of 7-7 were measured at 650 nm and a solution of this 

chromophore in CHCl3 was found to exhibit minor TPA properties and self-focusing 

phenomenon. This chromophore was then linked to fluorene monomers via Suzuki 

coupling reaction to generate a series of random polymers 7-12a-d and alternating 

polymer 7-12e.  

 

The polymers were characterized using 1H NMR, 13C NMR, elemental analysis, 

TGA, GPC, FT-IR, UV-vis and emission spectroscopic techniques. The exact content of 

benzo[c]cinnoline in the random polymers 7-12a-d was determined using elemental 

analyses of the N content. The compound 7-7 fluoresces weakly hence, an increase in 

the composition of benzo[c]cinnoline in the polymers 7-12a-e decrease the fluorescence 

of the polymers. The parent compound was thus determined to be unfavourable for light-

emitting applications. 

 

The polymers 7-12a and 7-12e containing 10 and 20 % of benzo[c]cinnoline were 

investigated for their nonlinear properties. Both polymers were found to exhibit self-

focusing properties and the latter with higher benzo[c]cinnoline content possess an order 

of magnitude higher n2. The latter also exhibits the largest σ2 and hence strongest TPA 

property among the three compounds studied. Therefore, this work, to the best of our 

knowledge, is the first in its discovery of a benzo[c]cinnoline chromophores and a 

polymer with a significant TPA property. 
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CHAPTER 8 

THE EFFECT OF CONFORMATIONAL AND 

CONFIGURATIONAL DIVERSITY ON THE INTERACTION OF 

WATER-SOLUBLE PORPHYRIN WITH NUCLEOTIDES AND 

THEIR PHOTOBLEACHING PROPERTIES 

 

8.0  INTRODUCTION  

 

 Positively charged porphyrins have attracted considerable attention since 

they were first reported almost three decades ago1 because of their remarkable 

ability to form complexes with and cleave nucleic acids as described in the pioneering 

works of Fiel et al.2 Molecular recognition of DNA is of fundamental importance to life 

hence the analysis of the interaction of small molecules with DNA is of considerable 

interest. Potential applications of these systems include photodynamic therapy of 

cancer (PDT), design of telomerase inhibitors,3 antiviral agent development4 and 

molecular biology applications such as DNA footprinting.5 Water-soluble porphyrin 

derivatives have been shown to possess great potential as therapeutic agents for 

PDT because of their antiviral activity6 and the ability to cleave DNA7 and RNA8 

selectively. Hence, porphyrins with charged peripheral groups have attracted 

considerable attention, in particular, the positively charged species, because of their 

additional ability to form complexes with and cleave nucleic acids described in pioneer 

works by Fiel et al.2 Several positively charged porphyrins that show strong ability to 
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bind to DNA included those bearing pyridinium, ammonium,1 trialkylammonium,9 

trialkyl- and triarylphosphonium moieties. 10  In particular, a variety of 

alkyl/arylphosponium tetratolylporphyrins have been extensively studied to investigate 

the effect of the size of the substituents on the degree of aggregation and DNA 

binding affinity. However, no study was carried out to probe the effect of substituents 

proximity on these factors that affect PDT.  

 

8.1    TARGET AND APPROACH OF OUR RESEARCH WORK  

 

Prior to the study of how porphyrins interact with DNA,11 it is important to 

perform a fundamental study of their interaction with nucleotides. The complexes can 

be formed by coordination bonds between the metal ions in the porphyrin and 

nucleophilic N atoms on the nucleotides, as well as electrostatic interactions between 

the positively charged substituents on the porphyrin periphery and the negatively 

charged phosphate oxygen atoms of nucleotides.  

 

The binding of porphyrins containing hydrophobic substituents is often 

complicated by aggregation in aqueous solution which lowers their fluorescence 

quantum efficiency (Φeff), posing a detrimental effect on photosensitization and 

reduces their ability to cleave nucleic acids. However, through proper design of the 

steric bulk and polar properties of these substituents, the porphyrins can be fine-tuned 

to suit medical applications. Lipophilic substituents like phenyl enhance the ability of 
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porphyrins to pass through or accumulate biomembranes while charged sites improve 

their water-solubilities.12  

 

Photoexcitation of a nucleotide-bound porphyrin can lead to photosensitized 

cleavage of the nucleotide initiated by electron and/or energy transfer between the 

excited porphyrin and the adjacent base pair. The photoactivity of these 

photosensitizers depends on their quantum yields and stability towards oxidative 

degradation known as photobleaching. Photobleaching of the chromophore which 

refers to the loss of absorption or emission intensity caused by light occurs during 

PDT.13 It is considered as a disadvantageous property in a tumor photosensitizer 

because the source of the active species is being destroyed. 

 

Porphyrins with para substituted phenyl rings on the meso carbon are 

commonly studied but such compounds usually suffer from aggregation due to π-π 

stacking of porphyrins.11b Hence, ortho substituted isomers are designed and 

synthesized. These compounds are expected to exhibit less aggregation due to 

greater steric hindrance but are less well investigated.  

 

Hence, the objective of this work is to design novel water-soluble porphyrins 

with triphenylphosphonium substituents at different positions and spatial arrangement 

to investigate the importance of these variables on (1) their interaction with 

nucleobases, (2) aggregation properties and (3) photobleaching activities. Since it is 



 255

well known that a drastic decrease in adenosine triphosphate (ATP) occurs in tumors 

shortly after PDT treatment with Photofrin II,14 our study will make use of nucleotides 

such as ATP and adenosine monophosphate (AMP).  

 

The three isomers designed for this study are 8-1a-c and they are novel. The 

Zn(II) metallopoprhyrin complexes possess methylene bridges linking the 

phosphonium substituents to the phenyl ring. The electronic effect of the cationic 

centre on the π-system of the phenyl and porphyrin chromophores is thus eliminated, 

which leaves steric and proximity as factors that affect the binding properties with 

nucleotides. We have chosen to study metalloporphyrins as they undergoes 

photooxidation more easily due to their lower redox potential and Zn(II) metal atom 

provides an additional point of binding for the ATP and AMP through the N donor 

atom (most nucleophilic) of the purine. This is illustrated in Fig. 8.1. The insertion of 

Zn(II) metal atom into the porphyrin cavity is important in increasing an additional site 

for the binding of ligand and also increases the Φeff of the porphyrin. In addition, Zn(II) 

is an important cofactor. Hence, its biological existence in our body makes it a suitable 

choice for metallation of porphyrin. Compounds 8-1a,b are marked by an increase of 

Φeff by 50-60 fold while that of 8-1c is about 20 fold only relative to their free ligands. 

 



 256

N

N

N

N

-BrPh3
+P

P+Ph3Br-

Zn

N

N
N

N

H2N

OP
O

O-
OP

O

O-
OP

O

O-
HO

RIBOSE

N
N

N N

H2N

RIBOSE
O P

O

O-

O P
O

O-

O P
O

O-

OH

        

N

N

NH2

N

N

1

2

3
4

5 67

8

9

 
 
 

Fig. 8.1 Illustration of two possible binding modes of two molecules of ATP  
with 8-1b through ligand coordination and electrostatic interactions.  

The α, β and γ P atoms are labeled in red 

 

8.2.0  RESULTS AND DISCUSSIONS 
 
 
8.2.1 SYNTHESIS OF WATER SOLUBLE PORPHYRIN PHOTOSENSITIZERS 
 
 

Ethers 4-7 and 4-6 were hydrolyzed and then substituted using hydrobromic 

acid to afford 6-7 and 6-5 respectively. Treated with triphenylphosphine, compounds 

6-7 and 6-5 were converted to phosphonium salts 6-8 and 6-6. Zn(II) metal atoms 

  α    β    γ 
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were inserted into the porphyrin rings of 6-6 and 6-8 to form metalloporphyrins 8-1a 

and 8-1b that were used for further analysis after purification (Scheme 8.1). For the 

purpose of comparison, the para isomer 8-1c was prepared via the similar procedure 

to compound 8-1a and 8-1b except that the starting material in the synthesis of 8-1c is 

1,4-bis-bromomethylbenzene 8-2 (Scheme 8.2). 
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Scheme 8.1 i, HBr, CHCl3; ii, PPh3, DMF; iii, Zn(OAc)2.xH2O, THF 

 

Porphyrinoid sensitizers form a number of complexes with nucleic acids, 

proteins, and other biomolecules as a result of electronic and hydrophobic nature. The 

investigation of the interaction between porphyrinoid photosensitizers and 

biomolecules allows people to have a better understanding of the mechanism of PDT 

and open a new way to increase the efficiency of the photosensitization. Here, we first 
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use 1H NMR to study the interaction of AMP and ATP with positively-charged 

porphyrins. 
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Scheme 8.2 i, Na, CH3OH, reflux; ii, Na2CO3, DMSO, reflux;  
iii, CF3COOH, CH2Cl2; iv, chloranil, reflux 
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8.2.2 1H AND 31P NUCLEAR MAGNETIC RESONANCE STUDIES 
 
 

In the 1H NMR spectrum, for all compounds 8-1a-c, addition of 1 equivalent of 

AMP in D2O (2.7 mM) to the respective Zn(II) metalloporphyrin complexes in CD3OD 

(2.7 mM), resulted in upfield shifts of the protons on the purine ring. This comparison 

is made relative to the uncomplexed AMP in the same concentration and solvents. In 

all cases, the proton at C2 of the purine ring shifted the most, indicating that the 

nucleotide binds to the porphyrin through the nucleophilic N at the 6-membered ring 

and N1 is the most likely N atom to bind to the central metal because of its highest 

nucleophilicity on the purine ring. This is similar to a study which results suggested the 

coordination of N1 atom also.15 Compared to the uncomplexed AMP, protons at C2 

on the purine ring shifted upfield for the 1:1 AMP:8-1a-c complexes. This was similarly 

observed in the 1:1 ATP:8-1a-c complexes (Refer to Table 8.1). 
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Table 8.1 Chemical shifts of H of AMP and ATP at C2 and C8 (ppm) 

Compound Chemical Shift of H at C2, C8 (ppm) 

Pure nucleotide 8.33, 8.63 8.39, 8.68 

 1 equiv AMP 2.5 equiv AMP 1 equiv ATP 2.5 equiv ATP

8-1a 8.25, 8.56 8.27, 8.59 7.97, 8.51 mergedi, 8.56 

8-1b 8.17, 8.58 8.27, 8.60 8.01, 8.53 8.20, 8.60 

8-1c 8.26, 8.58 8.29, 8.60 8.11, 8.57 8.21, 8.60 

 

The upfield shifts of the proton at C2 was most significantly observed in the 

AMP:8-1b and ATP:8-1a,b complexes which may imply that the nucleotide is more 

strongly coordinated to the metal centre of these ortho porphyrins. This was confirmed 

by the fact that when 2.5 equivalents of AMP or ATP were added in their respective 

solutions, protons at C2 shifted downfield more in these complexesii. This can be 

attributed to the synergic effect in which extra coordination of the purine N atom to the 

central metal centre caused the bases to be pushed further from the porphyrin ring as 

illustrated in Fig. 8.2. An example of the observed spectrum change of 8-1c with 

variable ATP ratio and time is shown in Fig. 8.3. 

 

                                                 
i Peak overlapped 
ii Observation does not apply to 2.5:1 ATP:7a complex 
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Interestingly, the ATP and AMP complexes of 8-1a-c (both 1:1 and 2.5:1 

ratios) exhibit significant differences in their 1H NMR spectrum. Generally, the upfield 

shifts for protons at C2 were greater in the ATP:8-1a-c than AMP:8-1a-c complexes 

(1:1). The upfield shifts for protons at C2 are 0.42, 0.38 and 0.28 ppm in the 1:1 ATP 

complexes of 8-1a, 8-1b and 8-1c, respectively, when compared to the uncomplexed 

ATP. Whereas, the upfield shifts for protons at C2 are 0.08, 0.16 and 0.07 ppm in the 

1:1 AMP complexes of 8-1a, 8-1b and 8-1c, respectively, when compared to the 

uncomplexed AMP. 

 

 

 

 

 

 

Fig. 8.2 Illustration of synergic effect observed in the Zn(II) 
metalloporphyrin complex with an increase in axial ligand 
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Fig. 8.3 1H NMR spectrum of ATP, 8-1c and their  

complexes with variable ATP ratio and time 

 

These results may imply that two additional phosphate groups of ATP cause 

the purine base to bind more tightly to porphyrin. This was also confirmed by the 

observation that the meso and pyrrolic protons of the ATP complexes shifted more 

upfield than the AMP complexes. The stronger interaction in ATP:8-1a-c complexes 

was attributed to electrostatic interaction(s) between the charged phosphorus at the 

substituents extended from the phenyl ring of porphyrin and the oxygen of phosphate. 

Hence, 31P NMR was used to probe for the presence of such interactions.  
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The 31P-NMR spectrum of the AMP complexes do not show any obvious 

changes in the phosphorus peaks even upon addition of 2.5 equivalents of the 

nucleotide and after long hours. However, the ATP:8-1c (2.5:1) complex exhibit 

additional splitting of the β-ATP and 8-1c phosphorus peaks after 40 hours (Fig. 8.4) 

while the β-ATP and γ-ATP peaks broadened only in the ATP:8-1b (2.5:1) complex 

which sharpened after 40 hours (Fig. 8.5). These observations reveal that the 

positively-charged P atoms of para phosphonium substituents on 8-1c have 

electrostatic interaction with the O atom of phosphate at the β-position. On the other 

hand, the P atoms of trans phosphonium at the ortho position in 8-1b are in close 

proximity to interact with two O atoms of ATP. The interaction of 8-1b and 8-1c with 

nucleotides is therefore determined by steric and proximity factors. 
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Fig. 8.4 31P NMR of ATP, 8-1c and their complexes with variable ATP ratio and time. 

Broad β-31P peaks observed in the 2.5:1 complex at 0 hours sharpened over time. 
The α, β and γ 31P peaks are labeled 
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Fig. 8.5 31P NMR of ATP, 8-1b and their complexes with variable ATP ratio and time. 
Broad β- and γ-31P peaks observed in the 2.5:1 complex at 0 hours sharpened  

over time. The α, β and γ 31P peaks are labeled 
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UV-vis absorption spectroscopy is one of the more powerful techniques to 

study the interaction of ATP with porphyrins. Thus, time course measurement of the 

UV-vis absorption of 8-1a-c with and without the nucleotides using UV-vis absorption 

spectroscopy was carried out. For comparison, the spectroscopic changes of the 

blank solutions of 8-1a-c over time were also measured. 
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We use a simple and effective approach to determine the stoichiometry of the 

porphyrins to AMP and ATP by plotting the absorbance of the solutions with varying 

ratios of the two compounds while keeping the total number of moles constant. This is 

known as a Job’s plot.16 The results show that 1 mole of porphyrin binds to 2 

equivalents of nucleotide because the absorbance do not change much with further 

increase in the proportion of the latter based on their UV-vis spectrum.  

 

Water soluble porphyrins have a tendency to form intermolecular aggregates 

in aqueous solution. Aggregation complicates the binding of porphyrins to nucleotides 

and decreases their Φeff. The latter lowers photosensitizing activities. UV-vis 

spectroscopy is a simple tool to gain information on the aggregates. Porphyrin 

aggregates have large W1/2 (bandwidth at half-height peak) of the Soret band. The 

UV-vis spectra of 8-1a in H2O, methanol and DMF were obtained (Refer to Table 8.2). 

Each porphyrin has a Soret band with large W1/2 in H2O while in DMF each has a 

Soret band with small W1/2. The Soret band of 8-1c has the largest W1/2 in the same 

solvent and is more red-shifted than that of 8-1a and 8-1b which do not differ much in 

conjugation pattern. This shows that 8-1c, the most commonly studied porphyrin as a 

photosensitizer, exists mostly as aggregates in the same concentration and solvent. 

This highlights the advantage of ortho derivatized water-soluble porphyrins 8-1a and 

8-1b over the para types.  
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Table 8.2 The λmax (nm) and W1/2 (nm) of 8-1a-c obtained from UV-vis spectrum in 
H2O, CH3OH and DMF 
 

Solvent {λmax (nm) [W1/2 (nm)] Compound 

H2O CH3OH DMF 

8-1a 416.5 [14] 416 [11] 416 [9.5] 

8-1b 416 [15] 416 [11] 416 [12] 

8-1c 411 [26] 411 [16] 415.5 [16] 

 

In a lightly degassed solution of the porphyrin and their complexes (2.5 

equivalents) in H2O and 10 % methanol, measured at room temperature and normal 

room lighting, the absorption changes of these complexes over 7 hours were similar 

to the blank solutions except for the ATP:8-1c complex. The latter complex showed a 

broadened and red-shifted UV-vis absorption. A blank solution of 8-1c decreased in 

absorbance more rapidly over time than the blank solutions of 8-1a and 8-1b. Since 

the change in absorbance of the AMP:8-1a-c and ATP:8-1a,b is similar to that of the 

blank, the observation cannot be attributed to the slow coordination of the nucleotide 

over time but possibly due to the photobleaching of the porphyrins and its complexes.  

 

A detailed investigation of the photobleaching properties of the porphyrins and 

their complexes was carried out. Solutions of 8-1a-c in H2O and 10 % methanol were 

irradiated with a Xe lamp and purged with a constant flow of oxygen. A rapid 

photobleaching of the porphyrins was noticed which revealed the chemical 

degradation of the chromophore and hence lower potential for photosensitization. The 
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rate of decrease was faster than in the absence of the oxygen, which shows that the 

oxygen species are responsible for the photobleaching of porphyrins.  

 

 

Fig. 8.6 UV-vis absorption spectrum of 8-1a-c (1×10-5 M) in 2.5 equivalents ATP in 
H2O and 10 % methanol before oxygenation and irradiation.* Refers to the same 

solution after oxygenation and irradiation with Xe lamp for 2 hours 

 

The photosensitivity of 8-1c is shown by the rapid photodegradation even 

under normal room lighting and sunlight. At the same concentration, 8-1c shows the 

lowest molar absorptivity and largest W1/2 in H2O and 10 % methanol solution before 

irradiation. After oxygenation and irradiation for 2 hours, the optical spectra of the ATP 

complexes of 8-1a-c show a loss in absorbance. It can be highlighted that 8-1c exhibit 

an almost total loss of absorbance of the Soret band signifying the photodegradation 
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after 2 hours of the original Zn(II) phosphonium salt. The spectra of 8-1a,b show the 

appearance of a band at higher wavelength upon oxygenation and irradiation, 

indicating both complexes underwent photomodification. While the spectroscopic 

changes underwent by 8-1c is less obvious due to the broad Soret band. 

 

The Φeff of pure 8-1a,b are about twice that of 8-1c while that of the ATP 

complexes of 8-1a,b is about 4.5 - 5 times that of 8-1c as summarized in Table 8.3. 

That is, the Φeff of 8-1a and 8-1b increased upon addition of 2.5 equivalents of ATP 

while that of 8-1c quenched by a significant 0.9 % (which is a 50 % decrease of Φeff). 

The latter may be attributed to a charge transfer process. The higher Φeff of the ATP 

complexes of 8-1a and 8-1b reflect the higher potential of these complexes in 

photosensitizing activities over that of 8-1c because under the same concentration, 

ATP:8-1a,b are likely to get excited and transfer their energies to 3O2 more readily. 

Upon addition of 5 equivalents of ATP, their Φeff changed only marginally.  

 

Table 8.3 Fluorescence quantum efficiencies (Φeff) of 8-1a-c with and without ATP 

 

 

 

 

 

                                                 
iii Zn(II) tetraphenylporphyrin as reference (Φeff = 3.3 % in toluene) 

 

Φeff
iii  Compound 

Without ATP Addition of 2.5 

8-1a 4.2 4.5 

8-1b 3.6 4.1 

8-1c 1.8 0.9 
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To investigate the species responsible for the photobleaching mechanism, 

sodium azide (singlet oxygen scavenger) was added to the solutions of the 

ATP:8-1a-c complexes separately. The photobleaching rates decreased in the 

presence of sodium azide for ATP complexes of 8-1a,b but occurred for the complex 

of ATP:8-1c only after 53 minutes as shown in Fig. 8.7. This demonstrates the 

involvement of singlet oxygen in photoproduct formation of the ortho isomers whereas 

the ATP:8-1c complex probably underwent another mechanism of photobleaching at 

the initial stage. The formation of photoproducts of ATP:8-1a,b were also revealed 

clearly in their UV-vis absorption spectrum at higher wavelength (454 nm). 
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 Fig. 8.7 A study of the effect of sodium azide on rate of photobleaching.  
Negative change in absorbance over time upon oxygenation and  

irradiation with Xe lamp of solution containing 8-1a-c with  
2.5 equivalents ATP in H2O and 10% methanol separately 
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8.3 CONCLUSION 

 

The Zn(II) metallporphyrin complexes 8-1a,b with triphenylphosphine 

substituents at the ortho positions are found to overcome the consequence of 

aggregation posed by their para counterparts 8-1c due to greater steric hindrance of 

the former. The 1H and 31P NMR, UV-vis absorption and fluorescence studies show 

that AMP and ATP complexed with 8-1a-c. Compounds 8-1a,b were determined to 

possess greater potential as photosensitizers because these compounds and their 

ATP complexes exhibit higher Φeff due to lower aggregation in aqueous solution and 

they exhibit relatively higher stability towards photobleaching compared to 8-1c and 

its ATP complex. Through structural modification, two Zn(II) metalloporphyrin 

complexes with ortho substituents are found to possess greater potential as 

photosensitizers than their more commonly studied para counterparts. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

9.1 CONCLUSIONS AND FUTURE WORK 

 

This thesis presents conclusions for four main areas of our research. It includes 

the design, syntheses, characterization and nonlinear optics (NLO) studies of (1) free 

base porphyrins and Zn(II) metalloporphyrins coordination complexes, (2) covalently-

linked conjugated systems consisting of porphyrins, (3) benzo[c]cinnoline-fluorene 

copolymers and (4) investigation of the molecular recognition, aggregation and 

photobleaching properties of water-soluble Zn(II) metalloporphyrins which differ in 

conformation and configuration. 

 

For the first time, two-photon absorption (TPA) properties of a series of Zn(II) 

metalloporphyrin coordination complexes formed by Zn-O coordination bonds are 

investigated using the Z-scan technique. Our studies have established that the overall 

architecture of the coordination complex affects the TPA cross section (σ2). Higher σ2 is 

achieved for Zn(II) metalloporphyrins complexes as compared to their free base ligands, 

as well as in the absence of heavy Br atoms in the porphyrin ligand. The conformation of 

the peripheral substituents and hence overall polarity of the macrocycle also plays a role 

in influencing the TPA property. A wavelength dispersion study of the Zn(II) 

metalloporphyrins coordination complex 4-16 reveals its centrosymmetricity and hence 

retention of the dimeric structure in CHCl3 solution. 
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The excited state measurements of two ethene-linked oligomers 6-9 and 6-10 in 

CH2Cl2 solution reveal that the conformation of the peripheral group on the porphyrin 

moiety in the polymer affects the nonlinear properties of the overall conjugated system. 

The oligomer 6-10 was found to exhibit lower threshold of limiting comparable to that of 

C60.  

 

Water-solubility is an important feature for most drugs. However, it is known that 

porphyrins tend to aggregate and undergo photobleaching in aqueous systems and 

these features lower their efficiency as photosensitizers. Hence, we have undertaken the 

design and study of novel water-soluble porphyrins and found solutions to minimize 

these problems through structural modification of the para substituted compound 8-1c. 

Steric hindrance provided by large groups in the ortho positions of the peripheral phenyl 

rings of 8-1a,b were found to prevent aggregation. These water-soluble Zn(II) 

metalloporphyrin complexes also show binding to AMP and ATP and compounds 8-1a,b 

exhibit greater photostability in aqueous solutions upon oxygenation and irradiation. 

 

Our work reports TPA property exhibited by benzo[c]cinnoline monomer as well 

as copolymer of benzo[c]cinnonline and fluorene for the first time. Our first discovery of 

the TPA property in benzo[c]cinnoline as well as the structure-property relationship 

established in the works of porphyrin-based compounds form the basis of rational 

designs and jump start to the new materials for two-photon absorption application, in 

particular, photosensitizers for photodynamic therapy (PDT). 

 

The approach requires modification of the porphyrin core while preserving the 

desirable properties of the molecule (explained in Chapter 1, Section 1.4). This can be 

achieved via the indirect excitation of a chromophore with two-photon absorbing property 
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and strong electron donating properties (donor). Through fluorescence resonance 

energy transfer (FRET)1 from the donor to the porphyrin core, the TPA σ2 of the latter 

can be significantly enhanced. The energy is effectively concentrated on the first excited 

singlet level of the porphyrin core. Recently, this approach has successfully shown the 

enhancement of TPA efficiency in a water-soluble dendrimer.2 

 

However, the design of this modular system can be further improved to 

incorporate intersystem crossing helper so that most of the photosensitizer molecules 

will end up in the triplet state and transfer the energy to 3O2 more effectively (Refer to 

Chapter 2, Section 2.4). Since triplet lifetimes are longer than singlet lifetimes, the 

excitation of singlet oxygen from triplet (ground) to singlet (excited) state occurs more 

efficiently.3 

 

Therefore, the proposed modular system shall comprise of four main parts: the 

porphyrin core, two-photon absorber, intersystem crossing helper and water-solubilizing 

moieties. A possible design of such a modular system is proposed as shown in Fig. 9.1 

below. The core consist of a Zn(II) metalloporphyrin dimer which structurally resemble 

that of the coordination dimer (4-16) with the largest σ2 measured at 650 nm. The 

peripheral phenyl ring carries ortho phosphonium group for water-solubility and prevent 

aggregation. The dichlorinated phenyl ring appended to the meso carbon acts as an 

intersystem crossing helper while the benzo[c]cinnoline and fluorene moieties serve to 

enhance the two-photon absorptivity of the porphyrin core through energy transfer after 

two-photon excitation. Hence, this newly designed chromophore may exhibit enhanced 

two-photon absorptivity and possess properties with potential application for PDT. 
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Fig. 9.1 Modular system (top) and proposed molecular structure (bottom) using  

known compounds studied in this work for the design of water-soluble porphyrin as 
photosensitizer for PDT. The functions of each moiety in the proposed structure  

(bottom) correspond to the colour scheme shown in the diagram above 
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CHAPTER 10 

EXPERIMENTAL RESULTS 

 

10.1 MATERIALS 

 

Solvents, reagents and chemicals were obtained from various chemical 

companies including Sigma-Aldrich, Merck, TCI, Acros Organics and Fluka and were 

used without further purification. Argon and nitrogen used in the experiments were 

obtained directly from gas cylinders. 

 

Anhydrous tetrahydrofuran (THF) was collected by distillation over sodium and 

benzophenone under nitrogen atmosphere. Anhydrous toluene was also obtained by 

distillation over sodium. Triethylamine and diisopropylamines were dried over CaH2 and 

distilled before used. 

 

10.2.0 CHARACTERIZATION TECHNIQUES 

 

The compounds were characterized by several instrumental techniques namely 

proton (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectroscopy, mass 

spectrometry (MS), elemental analysis (EA) and Fourier-transform infrared (FTIR) 

spectroscopy. The techniques are used to characterize the structures of the synthesized 

compounds as well as to give an indication of their purities. 

 

The above mentioned techniques can be broadly classified as methods for the 

measurement of the molecular structure, attributes which are characteristic of the 
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compounds. In addition to the above techniques, the properties of the polymer were also 

determined by gel permeation chromatography (GPC), thermogravimetric analysis 

(TGA), differential scanning calorimetry (DSC), ultraviolet-visible spectroscopy (UV-vis) 

and photoluminescence spectroscopy (PL). All the characterization techniques used in 

this work are as follows. 

 

10.2.1 FOURIER-TRANSFORM INFRARED (FTIR) SPECTROSCOPY1 

 

FTIR is a used where information on chemical, structural and conformational 

aspects of the compound is required. The FTIR spectra of compounds in KBr disks were 

determined by scanning from 400 cm-1 to 4200 cm-1 on a Bio-Rad FTS 165 spectrometer. 

The spectra were measured at room temperature of 25°C. Peaks in the IR spectrum 

correlate to specific vibrational modes of the various functional groups or bonds in the 

molecule. The region between 1300 cm-1 and 900 cm-1, known as the “fingerprint” region 

of an IR spectrum. It is unique for every molecular species and hence aids in the 

identification of the unknown compounds. 

 

10.2.2 NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY2 

 

1H NMR, 13C NMR and 31P NMR spectra are collected on the Bruker DPX300 

(300 MHz), Bruker ACF300 (300 MHz) and Bruker AMX500 (500 MHz) spectrometers 

with chloroform-d, tetrahydrofuran-d, dimethylsulfoxide-d, N,N-dimethylformamide-d, 

nitrobenzene-d or toluene-d as solvent and tetramethylsilane (TMS) as internal standard 

depending on the solubility of compound being tested. Most of the compounds in this 

thesis are measured with the 300 MHz spectrometers unless otherwise stated. 
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10.2.3 ELEMENTAL ANALYSIS (EA)3 

 

Perkin-Elmer PE 2400 CHN and CHNS Elemental Analyzers were used for rapid 

simultaneous determination of the C, H, N and S contents in organic and other types of 

materials. 

A high sensitivity instrument, Thermal Jarrell Ash Duo Iris Inductively Coupled 

Plasma-Optical Emission Spectrometer was used for analyzing metallic analytes in 

solutions. A microcomputer-controlled atomic absorption/emission spectrometer, Perkin-

Elmer 1100B Atomic Absorption Spectrophotometer, was dedicated to ppm level 

analysis by the flame technique (absorption and emission). A graphite furnace 

spectrophotometer, Perkin-Elmer Zeeman Atomic Absorption Spectrophotometer 

4100ZL, provides the means to determine some metals at ppb levels. A Flow Injection 

Device enables the instrument to determine elements that form gaseous hydrides.  

For halogen determination which includes the analysis of F, Cl, Br and I, the 

SchÃ¶niger combustion method/oxygen flask method which involves the decomposition 

of the sample and the conversion of the halogen into a form which can be determined by 

manual titration were used.  

 

10.2.4 MASS SPECTROMETRY (MS)4 

The mass spectra of the compounds were analyzed using a high resolution 

(60,000), 5KV Double Focusing Reversed Nier-Johnson Geometry Mass Spectrometer 

(Finnigan/MAT 95XL-T) with an effective mass range of 1 - 3,500 m/z. It is coupled with 

a HP6890 GC system for performing GC/MS analysis with library search. The 
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MAT95XL-T is also equipped with an Ion Trap for performing MS/MS analysis as well as 

MS. The available ionization techniques are EI, CI, FAB and ESI and including positive 

and negative modes. Target compound analysis can be performed by HRGC/HRMS 

measurement at a resolution of 10,000. MALDI-TOF mass spectra were recorded on 

Bruker Autoflex TOF/TOF. 

 

10.2.5 ULTRAVIOLET-VISIBLE ABSORPTION (UV-vis) SPECTROSCOPY 

 

The UV-vis spectra of the compounds were measured on a Shimadzu UV-

3101PC UV-vis scanning spectrophotometer. The solvents used for the solutions include 

CHCl3, CH2Cl2, THF, nitrobenzene, chlorobenzene, DMF, DMSO, acetone, ethyl acetate, 

toluene, CS2 and pyridine. 

 

10.2.6 PHOTOLUMINESCENCE SPECTROSCOPY  

 

The PL spectra of our compounds were measured on a Perkin-Elmer LS55 

luminescence spectrometer with a Xe lamp as the light source. The fluorescence 

quantum efficiency (Φeff) of the compounds in solutions was estimated using quinine 

sulphate (1 × 10-5 M in 0.1 M H2SO4) as standard, which has a Φeff of 55 %. The other 

standard used was Zn(II) tetraphenylporphyrin (1 × 10-5 M in toluene), which has a Φeff of 

3.3 %. The Φeff is calculated according to the following equation 10.1: 

 

(10.1) Φunk = Φstd (Iunk / Aunk) (Astd / Istd) (ηunk / ηstd)2 
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where Φunk and Φstd are the fluorescence quantum efficiencies, Iunk and Istd are the 

integrated emission intensities, ηunk and ηstd are the refractive indices of the solutions 

while Aunk and Astd are the absorbance at the excitation wavelength of the sample and 

the standard respectively. 

 

10.2.7 DIFFERENTIAL SCANNING CALORIMETRY (DSC)5 

 

The DSC curves of the oligomers and polymers were run on the DuPont thermal 

analyst system. A heating rate of 20 °C/min was employed in nitrogen. 

 

10.2.8 THERMOGRAVIMETRIC ANALYSIS (TGA) 

 

TGA data were collected on a Du Pont Thermal analyst 2100 system with a 

TGA 2950 thermogravimetric analyzer in air or nitrogen. A heating rate of 20 oC/min 

with airflow of 75 cm3/min was used with the runs being conducted from room 

temperature to 800 oC. 

 

10.2.9 GEL PERMEATION CHROMATOGRAPHY (GPC) ANALYSES6 

 

Molecular weights were determined on a Waters 600E HPLC System with 

PhenogelTM M × L and M × M columns (300 mm × 4.6 mm i.d) using polystyrene as 

standards and THF as eluent. 
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10.2.10 X-RAY CRYSTALLOGRAPHY 

 

The diffraction experiments were carried out on a Bruker SMART CCD 

diffractometer with Mo Kα sealed tube at 223(2) K. SMART software was used for 

collecting frames of data, indexing reflection and determining lattice parameters: SANIT 

was used for integrating intensity of reflections and scaling; SADABS was used for 

correcting absorption, SHELXTL was used for determining space group and structure, 

least-square-refining of F2 and reporting graphics and structure. All the C-H atoms were 

placed in their calculated positions and included in the structure factor calculations. 

 

10.2.11 MELTING POINT 

 

The melting points for all the synthesized compounds were measured on a Buchi 

melting apparatus. 
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10.3 PROCEDURES 

 

2-BROMOMETHYLBENZONITRILE (4-2) 

 

o-Tolunitrile 4-1 (15.5 mmol, 2.0 ml) and recrystallized NBS (17.1 mmol, 3.04 g) were 

added into CCl4 (50 ml). The reaction mixture was irradiated and refluxed gently under 

Ar gas. After the reaction mixture had started to reflux, a spatula of benzoyl peroxide 

was added. The reaction was completed in about 3 hours. The mixture was then 

extracted with CH2Cl2, washed with deionised water, dried over anhydrous calcium 

sulphate, filtered then evaporated. The residue was chromatographed over silica gel 

(250 - 400 mesh) and 3:1 distilled hexane/CH2Cl2 as eluent to give the white crystalline 

product 4-2.  

 

Yield: 1.76 g (58 %). Melting point: 71.0 - 71.5°C {lit. 72 - 74°C}.7 1H NMR (CDCl3): δ 

7.68 (d, 1H, Ph-H proton, 3J = 8.0 Hz), 7.57 (m, 2H, Ph-H protons), 7.42 (td, 1H, Ph-H 

proton, 3J = 7.2 Hz, 4J = 7.9 Hz),  4.64 (s, 2H, Ph-CH2Br protons). 13C {1H} NMR (CDCl3): 

δ 141.0 (1C, -CN), 133.2, 133.1, 130.4, 128.9 (4C, aromatic CH); 116.7, 112.3 (2C, 

aromatic C); 29.3 (1C, Ph-CH2Br). EI-mass spectrum: 195 (70 %), 197 (70 %). 

 

2-METHOXYMETHYLBENZONITRILE (4-3) 

 

Sodium (326.7 mmol, 7.51 g) was dissolved in dry methanol (1 L) under Ar gas. The 

reaction mixture was cooled in an ice-bath before a solution of 4-2 (81.6 mmol, 16.00 g) 

in methanol was added using a dropping funnel. The mixture was refluxed gently for 

another 2 - 3 hours. After which, the mixture was cooled and methanol was removed in 
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vacuuo. The mixture was extracted with CH2Cl2, washed with deionised water, dried 

over anhydrous sodium sulphate, filtered then evaporated. The residue was 

chromatographed over silica gel (60 - 250 mesh) using 1:1 distilled hexane/CH2Cl2 as 

eluent to yield 4-3 as yellow oil.  

 

Yield: 11.84 g (99 %). 1H NMR (CDCl3): δ 7.65 (d, 1H, Ph-H proton, 3J = 7.7 Hz), 7.56 (m, 

2H, Ph-H protons), 7.38 (m, 1H, Ph-H proton), 4.64 (s, 2H, Ph-CH2O- protons), 3.47 (s, 

3H, -OCH3 protons). 13C {1H} NMR (CDCl3): δ 141.8 (1C, -CN); 132.8, 132.6, 128.4, 

128.0 (4C, aromatic CH); 117.1, 111.3 (2C, aromatic C); 72.0 (1C, Ph-CH2O-); 58.7 (1C, 

-OCH3). EI-mass spectrum: 147.0 (40 %). m/z calcd: 147.0684, HRMS: 147.0680 (30 

%). 

 

2-METHOXYMETHYLBENZALDEHYDE (4-4) 

 

Method 1 

 

Diisobutylaluminium hydride (DIBAL, 50.0 mol, 50 ml) was added under nitrogen over 30 

minutes to a solution of 4-3 (26.5 mmol, 3.90 g) in dried benzene (1 L). The mixture was 

stirred overnight at room temperature. The viscous pale yellow solution was 

decomposed slowly (using ice bath cooling) by firstly adding methanol (10 ml), methanol 

and water (1:1, 15 ml) and finally with conc. HCl (16 ml) and H2O (30ml) mixture 

successively and the mixture was stirred for another 2 hours. The benzene layer was 

separated, washed with deionised water, dried over anhydrous sodium sulphate, filtered 

then evaporated. The residue was chromatographed over silica gel (60 - 250 mesh) 
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using 2:1 distilled hexane/CH2Cl2 as eluent to yield 4-4 as yellow oil. Yield: 1.42 g (39 

%).  

 

Method 2 8 

 

Bromomethyl-2-methoxymethylbenzene 4-9 (93.0 mmol, 19.90 g) and sodium 

bicarbonate (930.0 mmol, 78.10 g) were added into DMSO (100 mL) and refluxed under 

inert condition for 24 hours. Water was added to the cooled mixture to dissolve the 

sodium bicarbonate suspension. The crude product was extracted with ethyl acetate and 

washed several times with deionized water until neutral. The organic layer was then 

dried over anhydrous sodium sulphate, filtered then evaporated. The residue was 

chromatographed over silica (60 - 250 mesh) using 1:8 ethyl acetate/hexane as eluent to 

yield 4-4 as yellow oil. Yield: 9.00 g (66 %). 

 

  1H NMR (CDCl3): δ 10.22 (s, 1H, -CHO proton), 7.86 (d, 1H, Ph-H proton, 3J = 7.2 Hz), 

7.60 (m, 2H, Ph-H protons), 7.48 (m, 1H, Ph-H proton), 4.87 (s, 2H, Ph-CH2- protons), 

3.48 (s, 3H, -OCH3 protons). 13C {1H} NMR (CDCl3): δ 192.5 (1C, -CHO); 133.6, 132.1, 

127.9, 127.6 (4C, aromatic CH); 140.7, 133.3 (2C, aromatic C); 71.6 (1C, Ph-CH2O-); 

58.4 (1C, -OCH3). EI-mass spectrum: 150.0 (90 %). m/z calcd: 150.1775, HRMS: 

150.0682 (14 %). 

 

DIPYRROMETHANE (4-5) 

 

A solution of pyrrole (144.9 mmol, 10.0 ml) and paraformaldehyde (3.6 mmol, 108 mg) 

was treated with glacial acetic acid (15 ml) and methanol (5 ml) at room temperature 
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under Ar gas. The mixture was stirred for 20 hours then diluted with 50 ml of CH2Cl2, 

washed with deionised water (2 x 30 ml), aqueous KOH (0.1 M, 2 x 30 ml) and then 

deionised water (2 x 250 ml) again. It was dried over anhydrous sodium sulphate, filtered 

and evaporated to yield a dark solution. The mixture was chromatographed over silica 

gel (250 - 400 mesh) under N2, using distilled CH2Cl2 and 1 % triethylamine as eluent. 

Colourless oil crystallized under vacuum to give white solid product 4-5.  

 

Yield: 80 mg (37 %) {lit. yield 41 %}.9 Melting point: 72.0 - 73.0 ºC {lit. 73.0 ºC}.9 1H NMR 

(CDCl3): δ 7.93 (br s, 2H, NH protons), 6.68 (m, 2H, pyrrolic protons), 6.15 (m, 2H, 

pyrrolic protons), 6.04 (m, 2H, pyrrolic protons), 3.99 (s, 2H, CH2 protons). 13C {1H} NMR 

(CDCl3): δ 129.0, 117.3, 108.3, 106.4 (8C, pyrrolic C); 26.3 (1C, CH2). EI-mass spectrum: 

146. Elemental Analysis (Calc.) for C9H10N2: C, 73.94; H, 6.89; N, 19.16 % (Found): C, 

73.74; H, 6.83; N, 18.86 %.  

 

TRANS- AND CIS-5,15-DI(2-METHOXYMETHYLPHENYL)PORPHYRIN (4-6 AND 4-7) 

 

Compound 4-4 (3.3 mmol, 500 mg) and 4-5 (3.3 mmol, 487 mg) were dissolved in dried 

CH2Cl2 (500 ml) and 2 drops of trifluoroacetic acid was added. The mixture was stirred 

under Ar at room temperature for 15 hours. After which, chloroanil (13.2 mmol, 3.25 g) 

was added and the solution was heated to reflux for 1 hour. The mixture was allowed to 

cool and the solvent was removed in vacuuo. The dark solid was chromatographed 

using CHCl3 to separate to isolate the isomers. Purple crystals of 4-6 were partially 

isolated the mixture using fractional crystallization in 2:1 cyclohexane/CHCl3. The mother 

liquor was further evaporated to remove the solvent and chromatographed over silica gel 

(250 - 400 mesh) using CH2Cl2 as eluent to obtain 4-6 which eluted first followed by 4-7. 
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Yield of 4-6: 12 mg (13 %). 1H NMR (CDCl3) of 4-6: δ 10.32 (s, 2H, meso protons), 9.39 

(d, 4H, pyrrolic protons, 3J = 4.4 Hz), 8.93 (d, 4H, pyrrolic protons, 3J = 4.4 Hz), 8.09 (d, 

2H, Ph-H protons, 3J = 7.2 Hz), 8.00 (d, 2H, Ph-H protons, 3J = 7.7 Hz), 7.89 (t, 2H, Ph-

H protons, 3J = 7.6 Hz), 7.70 (t, 2H, Ph-H protons, 3J = 7.2 Hz), 4.14 (s, 4H, Ph-CH2O- 

protons), 2.83 (s, 6H, -OCH3 protons), unobserved (2H, NH protons). 13C {1H} NMR 

(CDCl3) of 4-6: δ 146.9, 145.4, 140.1, 139.4, 134.0, 131.6, 130.6, 128.7, 126.7, 125.6, 

116.5, 105.2 (32C, meso C, pyrrolic C and phenyl C); 72.7 (2C, Ph-CH2O-); 58.0 (2C, -

OCH3). EI-mass spectrum: 550.0 (90 %). m/z calcd: 550.2369, MALDI-TOF m/z: 

550.3020 (100 %). Elemental Analysis (Calc.) for C36H30N4O2: C, 78.52; H, 5.49; N, 

10.17 % (Found): C, 78.07; H, 5.43; N, 9.92 %.  

 

Crystal data for 4-6 grown in CHCl3 and cyclohexane: C36H30N4O2. M = 550.64. 

Monoclinic. P2(1)/n, a = 8.3509(6) Å, b = 15.5894(12 )Å, c = 11.0918(8) Å, α = 90°, β = 

98.646(2)°, γ = 90°, V = 1427.58(18 )Å3, Z = 2, dcalc = 1.281 mg/m3, μ = 0.081 mm-1, θmax 

= 30.04 °, 11517 reflections collected, 4081 independent reflections, Rint = 0.0374, 4081 

reflections with I > 2σ(I), 250 parameters, R1 (all data) = 0.0838, wR2 (all data) = 0.1304. 

 

Yield of 4-7: 11 mg (12 %). 1H NMR (CDCl3) of 4-7: δ 10.30 (s, 2H, meso protons), 9.36 

(d, 4H, pyrrolic protons, 3J = 4.8 Hz), 8.90 (d, 4H, pyrrolic protons, 3J = 4.4 Hz), 8.12 (d, 

2H, Ph-H protons, 3J = 7.2 Hz), 7.97 (d, 2H, Ph-H protons, 3J = 7.7 Hz), 7.87 (t, 2H, Ph-

H protons, 3J = 7.6 Hz), 7.69 (t, 2H, Ph-H protons, 3J = 7.4 Hz), 4.07 (s, 4H, Ph-CH2O- 

protons), 2.81 (s, 6H, -OCH3 protons), -3.13 (br s, 2H, NH protons). 13C {1H} NMR 

(CDCl3) of 4-7: δ 146.9, 145.5, 140.2, 139.3, 134.0, 131.7, 130.6, 128.7, 126.6, 125.6, 

116.5, 105.2 (32C, meso C, pyrrolic C and phenyl C); 72.7 (2C, Ph-CH2O-); 58.0 (2C, -

OCH3). EI-mass spectrum of 4-7: 550.0 (100 %). m/z calcd: 550.2369, MALDI-TOF m/z: 
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550.3110 (100 %). Elemental Analysis (Calc.) for C36H30N4O2: C, 78.52; H, 5.49; N, 

10.17 % (Found): C, 78.24; H, 5.65; N, 9.92 %. 

 

1-BROMOMETHYL-2-METHOXYMETHYLBENZENE (4-9) 

 

1,2-Bis-bromomethylbenzene 4-8 (189.0 mmol, 49.50 g) was dissolved in methanol (500 

mL). Sodium (189.0 mmol, 4.35 g) was added to dry methanol (300 mL) to form sodium 

methoxide then cooled. The solution of 4-8 was added dropwise from a dropping funnel 

into sodium methoxide over 4 hours under reflux. The mixture was stirred under the 

same condition for an additional hour. After it has cooled, methanol was removed in 

vacuuo and the crude product was extracted with ethyl acetate, washed twice with 

deionized water then dried over anhydrous calcium sulphate, filtered then evaporated. 

The residue was chromatographed over silica gel using 1:50 ethyl acetate/hexane as 

eluent to yield 4-9 as pale yellow oil.  

 

Yield: 11.00 g (27 %). 1H NMR (CDCl3): 7.24 - 7.36 (m, 4H, Ph-H protons), 4.61 (s, 2H, 

Ph-CH2O- protons), 4.59 (s, 2H, Ph-CH2Br protons), 3.42 (s, 3H, -OCH3 protons). 13C {1H} 

NMR (CDCl3): 136.7 (1C, aromatic C-CH2O), 136.2 (1C, aromatic C-CH2Br), 130.7, 

129.6, 128.8, 128.5 (4C, aromatic CH), 72.2 (1C, Ph-CH2O-), 58.4 (1C, -OCH3), 31.0 

(1C, Ph-CH2Br). EI-mass spectrum: 214 (40 %), 216 (40 %). m/z calcd: 213.9993, 

215.9973; HRMS: 213.9996 (100 %), 215.9977 (100 %). 
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1-BROMOMETHYL-3-METHOXYMETHYLBENZENE (4-11) 

 

Refer to procedure on synthesis of 4-9 from 4-8. Compound 1,3-dibromomethylbenzene 

(4-10) was used as starting material for the synthesis of 4-11. The product is pale yellow 

oil. 

 

Yield: 34.7 %.  1H NMR (CDCl3): δ 7.26 - 7.37 (m, 4H, Ph-H protons), 4.49 (s, 2H, Ph-

CH2O- protons), 4.44 (s, 2H, Ph-CH2Br protons), 3.39 (s, 3H, -OCH3 protons). 13C {1H} 

NMR (CDCl3): δ 138.9 (1C, aromatic C-CH2O), 137.9 (1C, aromatic C-CH2Br), 128.9, 

128.3, 128.2, 127.6 (4C, aromatic CH), 74.3 (1C, Ph-CH2O-), 58.2 (1C, -OCH3), 33.4 

(1C, Ph-CH2Br). EI-mass spectrum: 214.0 (40 %), 215.0 (30 %). m/z calcd: 213.9993, 

HRMS: 213.9987 (100 %), 215.9964 (100 %). 

 

3-METHOXYMETHYLBENZALDEHYDE (4-12) 

 

Refer to procedure on synthesis of 4-4 from 4-9 (Method 2). Compound 4-11 was used 

as starting material for the synthesis of 4-12. The product is pale yellow oil. 

 

Yield: 40.8 %. 1H NMR (CDCl3): δ 10.02 (s, 1H, -CHO proton), 7.82 (m, 2H, Ph-H 

protons), 7.61 (d, 1H, Ph-H proton, 3J = 7.3 Hz), 7.51 (t, 1H, Ph-H proton, 3J = 7.7 Hz), 

4.53 (s, 2H, Ph-CH2O- protons), 3.42 (s, 3H, -OCH3 protons). 13C {1H} NMR (CDCl3): δ 

192.2 (1C, -CHO); 133.4, 129.1, 128.9, 128.6 (4C, aromatic CH); 139.5, 136.5 (2C, 

aromatic C); 73.8 (Ph-CH2O-); 58.3 (-OCH3). EI-mass spectrum: 150.0 (90 %). m/z calcd: 

150.1775, HRMS: 150.0676 (4 %). 
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TRANS- AND CIS-5,15-DI(3-METHOXYMETHYLPHENYL)PORPHYRIN (4-13 AND 4-

14 RESPECTIVELY) 

 

Refer to procedure on synthesis of 4-6 and 4-7 from 4-4 and 4-5. Compounds 4-12 and 

4-5 were used as starting materials for the synthesis of 4-13 and 4-14. 

 

Yield: 15 %. 1H NMR (CDCl3, 500MHz): δ 10.31 (s, 2H, meso protons), 9.39 (d, 4H, 

pyrrolic protons, 3J = 4.6 Hz), 9.07 (d, 4H, pyrrolic protons, 3J = 4.7 Hz), 8.25 (s, 2H, Ph-

H protons), 8.21 (m, 2H, Ph-H protons), 7.81 (m, 4H, Ph-H protons), 4.80 (s, 4H, Ph-

CH2O- protons), 3.59 (s, 6H,- OCH3 protons), unobserved (2H, NH protons). 13C {1H} 

NMR (CDCl3): δ 147.1, 145.2, 141.4, 137.0, 134.2, 134.1, 131.6, 131.0, 127.0, 118.9, 

105.2 (32C, meso C, pyrrolic C and phenyl C) i , 74.9 (2C, -CH2OCH3); 58.4(2C, -

CH2OCH3). EI-mass spectrum: 551. m/z calcd: 550.2369, MALDI-TOF m/z: 550.2870 

(100 %).  

 

Crystal data of 4-13 grown in ethyl acetate and CHCl3: M = 550.64.  C36H30N4O2. 

Monoclinic. P2(1)/n, a = 8.7154(19) Å, b = 13.750(3) Å, c = 12.896(3) Å, α = 90 °, β = 

108.057(5) °, γ = 90 °, V = 1469.3(5) Å3, Z = 2, dcalc = 1.245 mg/m3, μ = 0.078 mm-1, θmax 

= 25.00 °, 8200 reflections collected, 2587 independent reflections, Rint = 0.0692, 2587 

reflections with I > 2σ(I), 195 parameters, R1 (all data) = 0.1500, wR2 (all data) = 0.2113. 

 

 

 

 

                                                 
i One missing carbon peak probably due to overlapping 
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COMPOUND 4-15 

 

Compound 4-6 (0.2 mmol, 110 mg) and Zn(OAc)2.xH2O (4.0 mmol, 880 mg) were stirred 

in absolute ethanol (5 ml) contained in a 5 ml single-neck round-bottom flask for 5 days. 

The solvent was removed under vaccum. The residue was dissolved in CH2Cl2 and 

washed with deionized water (2 x 10 ml), dried over anhydrous sodium sulphate, filtered 

then evaporated. The residue was chromatographed over silica gel (60 - 250 mesh) 

using 1:5 distilled hexane/CH2Cl2 as eluent to yield 4-15 as purple solid.  

 

Yield: 60 mg (54 %). 1H NMR (CDCl3): δ 10.17 (s, 2H, meso protons), 9.28 (d, 4H, 

pyrrolic protons, 3J = 4.5 Hz), 8.65 (d, 4H, pyrrolic protons, 3J = 4.5 Hz), 7.99 (d, 2H, Ph-

H protons, 3J = 7.3 Hz), 7.62 (t, 4H, Ph-H protons, 3J = 7.5 Hz), 7.54 (t, 4H, Ph-H protons, 

3J = 7.3 Hz), 6.89 (br, 2H, Ph-H protons), 2.61 (s, 4H, Ph-CH2 protons), 1.50 (s, 6H, -

OCH3 protons). 13C {1H} NMR (CDCl3): δ 149.44, 149.36, 140.6, 138.9, 116.6 (14C, 

unprotonated meso C, pyrolic C and phenyl C); 133.5 (2C, phenyl C), 131.8, 131.5 (8C, 

pyrolic C); 128.1 (2C, phenyl C); 125.6, 125.2 (4C, phenyl C), 105.9 (2C, meso C); 70.8 

(2C, Ph-CH2O-); 56.0 (2C, -OCH3). Elemental Analysis (Calc.) for (C36H28N4O2Zn)n: C, 

70.42; H,4.60; N, 9.12; Zn, 10.65 % (Found): C, 68.99; H, 4.83; N, 8.84; Zn, 8.60 %. m/z 

calcd (monomer): 612.1504, MALDI-TOF m/z: 612.2687 (100 %). Tg: 148.7 °C. Td: 346 

°C. 

 

Crystal data of 4-15 grown in CHCl3 and cyclohexane: (C36H28N4O2Zn)n. M = (613.99)n. 

Tetrahedral. I4(1)/a, a = 22.812(3) Å, b = 22.812(3) Å, c = 11.423(3) Å, α = 90 °, β = 90 °, 

γ = 90 °, V = 5944.3(18) Å3, Z = 8, dcalc = 1.372 mg/m3, μ = 0.86 6mm-1, θmax = 25.00 °, 
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16293 reflections collected, 2613 independent reflections, Rint = 0.1324, 2613 reflections 

with I > 2σ(I), 196 parameters, R1 (all data) = 0.1022, wR2 (all data) = 0.1338. 

 

Crystal data of 4-15 grown in ethyl acetate: C36H28N4O2Zn. M = 613.99 Monoclinic. 

P2(1)/c, a = 9.2323(8 )Å, b = 10.3641(10) Å, c = 15.0985(14 )Å, α = 90 °, β = 101.860(2) 

°, γ = 90 °, V = 1413.9(2) Å3, Z = 2, dcalc = 1.442 mg/m3, μ = 0.910 mm-1, θmax = 27.50 °, 

9655 reflections collected, 3228 independent reflections, Rint = 0.0508, 3228 reflections 

with I > 2σ(I), 197 parameters, R1 (all data) = 0.0799, wR2 (all data) = 0.1327. 

 

Crystal data of 4-15 grown in nitrobenzene: C36H28N4O2Zn. M = 613.99 Monoclinic. 

P2(1)/c, a = 9.236(6) Å, b = 10.424(6 )Å, c = 15.167(10) Å, α = 90 °, β = 102.302(13) °, γ 

= 90°, V = 1426.6(15) Å3, Z = 2, dcalc = 1.429 mg/m3, μ = 0.902 mm-1, θmax = 27.50 °, 

9531 reflections collected, 3264 independent reflections, Rint = 0.0593, 3264 reflections 

with I > 2σ(I), 196 parameters, R1 (all data) = 0.0864, wR2 (all data) = 0.1465. 

 

COMPOUND 4-16 

 

Compound 4-7 (0.2 mmol, 100 mg) and Zn(OAc)2.xH2O (4.0 mmol, 880 mg) were stirred 

in THF at room temperature for 5 days. The solvent was removed in vacuuo then 

extracted with CHCl3 and washed with water. The organic layer was then dried with 

anhydrous sodium sulphate, filtered then evaporated. Purification via column 

chromatography over silica gel (60 - 250 mesh) using CH2Cl2/hexane (5:1) as eluent 

yielded purple crystals of 4-16.  
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Yield: 81 mg (73 %). 1H NMR (CDCl3): δ 10.18 (s, 2H, meso protons), 9.29 (d, 4H, 

pyrrolic protons, 3J = 4.5 Hz), 8.63 (d, 4H, pyrrolic protons, 3J = 4.2 Hz), 8.01 (d, 2H, Ph-

H protons, 3J = 6.6 Hz), 7.55 (m, 4H, Ph-H protons), 6.73 (br s, 2H, Ph-H protons), 2.46 

(br s (sh), 4H, Ph-CH2O- protons), 1.55 (br s (sh), 6H, -OCH3 protons). 13C {1H} NMR 

(CDCl3): δ 149.4, 140.6, 138.9, 133.4, 131.8, 131.5, 128.1, 125.4, 125.2, 116.5, 105.9 

(32C, meso C, pyrrolic C and phenyl C)ii , 70.9 (2C, Ph-CH2O-), 56.0 (2C, -OCH3). 

Elemental Analysis (Calc.) for (C36H28N4O2Zn)n: C, 70.42; H, 4.60; N, 9.12; Zn, 10.65  % 

(Found): C, 70.06; H, 4.59; N, 8.97; Zn, 9.49  %. m/z calcd: 550.2369, MALDI-TOF m/z: 

550.2870 (100 %). m/z calcd (monomer): 612.1504, MALDI-TOF m/z: 612.2678 (100 %). 

Tg: 177.3 °C. Td: 329°C. 

 

Crystal data of 4-16 grown in CHCl3: (C36H28N4O2Zn)2. M = 2(613.99). Monoclinic. 

P2(1)/n, a = 14.3395(11) Å, b = 10.2698(8) Å, c =19.7425(14) Å, α = 90 °, β = 99.468(2) 

°, γ = 90°, V = 2867.8(4) Å3, Z = 4, dcalc = 1.422 mg/m3, μ = 0.898 mm-1, θmax = 25.00 °, 

16389 reflections collected, 5043 independent reflections, Rint = 0.1086, 5043 reflections 

with I > 2σ(I), 390 parameters, R1 (all data) = 0.1187, wR2 (all data) = 0.1222. 

 

Crystal data of 4-16 grown in THF: M = 758.20. C44H44N4O4Zn. Monoclinic. P2(1)/c, a 

=17.8424(17) Å, b = 18.7939(18) Å, c = 11.8706(11) Å, α = 90°, β = 101.134(2)°, γ = 90 °, 

V = 3905.6(6) Å3, Z = 4, dcalc = 1.289 mg/m3, μ = 0.676 mm-1, θmax = 1.59 - 27.50 °, 

29735 reflections collected, 8969 independent reflections, Rint = 0.0493, 8969 reflections 

with I > 2σ(I), 493 parameters, R1 (all data) = 0.1012, wR2 (all data) = 0.1672. 

 

 

                                                 
ii One missing peak due to poor resolution 
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TRANS-5,15-BISBROMO-10,20-DI(2-METHOXYMETHYLPHENYL)PORPHYRIN (4-17) 

 

Compound 4-6 (1.0 mmol, 550 mg) was dissolved in dry CHCl3 (20 ml) and cooled to 0 

°C. NBS (2.1 mmol, 372 mg) and pyridine (0.3 ml) were added into the solution and the 

reaction progress was monitored using TLC. When all the starting material has reacted, 

the reaction was quenched with acetone. All the solvents were removed in vacuuo and 

recrystallization using CHCl3 and methanol yielded purple crystals.  

 

Yield: 608 mg (86 %).1H NMR (CDCl3): δ  9.58 (d, 4H, pyrrolic protons, 3J = 4.9 Hz), 8.70 

(d, 4H, pyrrolic protons, 3J = 4.9 Hz), 7.98 (d, 2H, Ph-H protons, 3J = 7.7 Hz), 7.94 (d, 2H, 

Ph-H protons, 3J = 7.3 Hz), 7.86 (t, 2H, Ph-H protons, 3J = 7.7 Hz), 7.67 (t, 2H, Ph-H 

protons, 3J = 7.3 Hz), 4.07 (s, 4H, Ph-CH2O- protons), 2.83 (s, 6H, -OCH3 protons), -2.64 

(s, 2H, NH protons). 13C {1H} NMR (CDCl3): δ 140.0, 139.4, 133.9, 132.4, 129.4, 129.3, 

129.0, 126.8, 125.7, 118.9 (32C, aromatic C),iii 72.7 (2C, Ph-CH2O-), 58.2 (2C, -OCH3). 

EI-mass spectrum: 706.1 (15 %), 708.1 (45 %), 710.1 (20 %). m/z calcd: 708.4411, 

MALDI-TOF m/z: 706.1680 (40 %), 708.1680 (100 %), 710.1680 (40 %). Elemental 

Analysis (Calc.) for C36H28Br2N4O2: C, 61.03; H, 3.98; N, 7.91 % (Found): C, 57.28; H, 

3.24; N, 7.02 %. 

 

COMPOUND 4-18 

 

Compound 4-17 (0.1 mmol, 100 mg) and Zn(OAc)2.xH2O (2 mmol, 440 mg) were stirred 

in THF at room temperature for 5 days (refluxing for 3 hours yielded same product). The 

solvent was removed in vacuuo then extracted with CHCl3 and washed with water. The 

                                                 
iii Two peaks missing due to poor resolution 
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organic layer was then dried with anhydrous sodium sulphate, filtered then evaporated. 

Purification via column chromatography over silica gel (60 - 250 mesh) using 

CH2Cl2/hexane (5:1) as eluent yielded purple powdery solid 4-18.  

 

Yield: 74 mg (68  %). 1H NMR (CDCl3): δ 9.59 (d, 4H, pyrrolic protons, 3J = 4.9 Hz), 8.44 

(d, 4H, pyrrolic protons, 3J = 4.9 Hz), 7.90 (d, 2H, Ph-H protons, 3J = 6.6 Hz), 7.56 (m, 

4H, Ph-H protons), 6.62 (br, 2H, Ph-H protons), 2.31 (br s, 4H, Ph-CH2O- protons), 1.31 

(br s, 6H, -OCH3 protons). 13C {1H} NMR (CDCl3): δ 150.2, 139.9, 139.7, 138.6, 138.4, 

133.4, 133.3, 132.8, 132.5, 128.6, 128.4, 125.3 (32C, meso C, pyrrolic C and phenyl C), 

70.9 (2C, Ph-CH2O-), 56.1 (2C, -OCH3). Elemental Analysis (Calc.) for 

(C36H26Br2N4O2Zn)n: C, 56.02; H, 3.40; N, 7.26; Zn, 8.47 % (Found): C, 54.69; H, 3.12; N, 

7.23; Zn, 7.80 %. m/z calcd (monomer): 769.9694, MALDI-TOF m/z: 770.1916 (100 %). 

Tg: 133.4 °C. Td: 196, 242, 289  °C. 

 

Crystal data of 4-18 grown in CH2Cl2: (C36H26Br2N4O2Zn)n. M = (771.80)n. Monoclinic. 

P2(1)/n, a = 10.5664(15) Å, b = 18.505(3)Å, c = 7.9175(11 Å, α = 90 °, β = 103.580(3) °, 

γ = 90°, V = 1504.8(4) Å3, Z = 2, dcalc = 1.703 mg/m3, μ = 3.513 mm-1, θmax = 27.50 °, 

19462 reflections collected, 3455 independent reflections, Rint = 0.0241, 3455 reflections 

with I > 2σ(I), 206 parameters, R1 (all data) = 0.0309, wR2 (all data) = 0.0689. 

 

TRANS-5-BROMO-10,20-DI(2-METHOXYMETHYLPHENYL)PORPHYRIN (4-19) 

 

Compound 4-6 (1 mmol, 550 mg) was dissolved in dry CHCl3 (20 ml) and cooled to 0 °C. 

NBS (1.1 mmol, 186 mg) and pyridine (0.3ml) were added into the solution and the 

reaction progress was monitored using TLC. When all the starting material has reacted, 
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the reaction was quenched with acetone. All the solvent is removed in vacuuo and 

purification via column chromatography over silica gel (60 - 250 mesh) using 

CH2Cl2/hexane (3:2) as eluent yielded purple crystals of 4-19 after drying.  

 

Yield: 440 mg (70 %). 1H NMR (CDCl3): δ 10.17 (s, 1H, meso protons), 9.70 (d, 2H, 

pyrrolic protons, 3J = 4.9 Hz), 9.27 (d, 2H, pyrrolic protons, 3J = 4.9 Hz), 8.80 (d, 4H, 

pyrrolic protons, 3J = 4.9 Hz), 8.02 (dd, 2H, Ph-H protons, 3J = 7.3 Hz, 4J = 0.7 Hz), 7.96 

(d, 2H, Ph-H protons, 3J = 7.3 Hz), 7.88 (td, 2H, Ph-H protons, 3J = 7.7 Hz, 4J = 1.1 Hz), 

7.67 (td, 2H, Ph-H protons, 3J = 7.7 Hz, 3J = 1.0 Hz), 4.09 (s, 4H, Ph-CH2O- protons), 

2.82 (s, 6H, -OCH3 protons), -2.96 (s, 2H, NH protons).13C {1H} NMR (CDCl3): δ 146.8 

(br) 140.1, 139.4, 134.0, 132.7, 131.6 (br), 128.9, 126.8, 125.7, 117.7, 105.6, 103.6 (32C, 

meso C, pyrrolic C and phenyl C),iv 72.8 (2C, Ph-CH2O-), 58.2 (2C, -OCH3). EI-mass 

spectrum: 628.1 (100 %), 630.1 (100 %). m/z calcd: 628.1474, MALDI-TOF m/z: 

628.3301 (100 %), 630.3829 (80 %). Elemental Analysis (Calc.) for C36H29BrN4O2: C, 

68.68; H, 4.64; N, 8.90; Br, 12.69 % (Found): C, 70.07; H, 4.60; 8.87; Br, 13.38 %. 

 

COMPOUND 4-20 

 

Refer to the procedure on synthesis of 4-18. Compound 4-19 (0.2 mmol, 100 mg) was 

used as starting materials for the synthesis of 4-20. 

 

Yield: 77 mg (70 %). 1H NMR (CDCl3): δ 9.96 (s, 1H, meso protons), 9.61 (d, 2H, pyrrolic 

protons, 3J = 4.9 Hz), 9.12 (d, 2H, pyrrolic protons, 3J = 4.5 Hz), 8.37 (overlapping d, 4H, 

pyrrolic protons), 7.87 (m, 2H, Ph-H), 7.47 (m, 4H, Ph-H), 6.14 (br s, 2H, Ph-H) , 1.71 (br 

                                                 
iv One peak missing due to poor resolution 
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s, 4H, Ph-CH2), 0.75 (br s, 6H, OCH3). 13C {1H} NMR (CDCl3): δ 150.2, 139.9, 138.6, 

133.8, 133.6, 133.4, 133.3, 132.8, 132.5, 128.6, 128.4, 125.3, 105.0 (32C, meso C, 

pyrrolic C and phenyl C), 70.9 (2C, -CH2OCH3), 56.1 (2C, -CH2OCH3). Elemental 

Analysis (Calc.) for (C36H27BrN4O2Zn)n: C, 62.40; H, 3.93; N, 8.09; N, 9.44 % (Found): C, 

62.69; H, 3.70; N, 8.05; Zn, 6.43 %. m/z calcd (monomer): 692.0588, MALDI-TOF 

m/z:692.2155 (100 %). Tg: 121.2 °C. Td: 204 °C. 

 

Crystal data of 4-20 grown in THF: (C36H27BrN4O2Zn)n. M = (693.90)n. Monoclinic. 

P2(1)/n, a = 10.2123(8) Å, b = 18.4943(15) Å, c = 8.0320(6) Å, α = 90 °, β = 104.387(2) °, 

γ = 90°, V = 1469.4(2) Å3, Z = 2, dcalc = 1.568 mg/m3, μ = 2.237 mm-1, θmax = 25.00 °, 

8454 reflections collected, 2586 independent reflections, Rint = 0.0500, 2586 reflections 

with I > 2σ(I), 206 parameters, R1 (all data) = 0.0762, wR2 (all data) = 0.1268. 

 

CIS-5,15-BISBROMO-10,20-DI(2-METHOXYMETHYLPHENYL)PORPHYRIN (4-21) 

 

Refer to the procedure on synthesis of 4-17. Compound 4-7 (1 mmol, 550 mg) was used 

as starting materials for the synthesis of 4-21. 

 

Yield: 532 mg (89 %). 1H NMR (CDCl3): δ 9.58 (d, 4H, pyrrolic protons, 3J = 4.9 Hz), 8.71 

(d, 4H, pyrrolic protons, 3J = 4.9 Hz), 8.03 (d, 2H, Ph-H protons, 3J = 7.3 Hz), 7.94 (d, 2H, 

Ph-H protons, 3J = 7.7 Hz), 7.87 (m, 2H, Ph-H protons), 7.68 (t, 2H, Ph-H protons, 3J = 

7.3 Hz), 4.03 (s, 4H, Ph-CH2O- protons), 2.83 (s, 6H, -OCH3 protons), -2.65 (s, 2H, NH 

protons). 13C {1H} NMR (CDCl3): δ 140.1, 139.4, 133.9, 132.4, 132.2, 131.9, 129.0, 126.8, 

125.7, 120.5, 118.9, 103.7, 132.4  (32C, aromatic C), 72.7 (2C, Ph-CH2O-), 58.1 (2C, -
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OCH3). EI-mass spectrum: 706.0 (40 %), 708.0 (80 %), 710.0 (45 %). m/z calcd: 

708.4411, MALDI-TOF m/z: 706.2396 (50 %), 708.2381 (100 %), 710.2381 (50 %). 

 

COMPOUND 4-22 

 

Refer to the procedure on synthesis of 4-20. Compound 4-16 (1 mmol, 100 mg) was 

used as starting materials for the synthesis of 4-22. Purification via column 

chromatography over silica gel (60 - 250 mesh) using CH2Cl2/hexane (6:1) as eluent 

yielded purple crystals.  

 

Yield: 77mg (71 %). 1H NMR (CDCl3): δ  9.60 (d, 4H, pyrrolic protons, 3J = 4.5 Hz), 8.43 

(d, 4H, pyrrolic protons, 3J = 4.9 Hz), 7.91 (d, 2H, Ph-H protons, 3J = 7.0 Hz), 7.53 (m, 

4H, Ph-H protons), 6.52 (br s, 2H, Ph-H protons), 2.30 (br s, 4H, Ph-CH2O- protons), 

1.37 (br s, 6H, -OCH3 protons). 13C {1H} NMR (CDCl3): δ 150.19, 150.15, 140.0, 138.7, 

133.5, 133.4, 132.5, 128.3, 125.43, 125.36, 104.9 (32C, meso C, pyrrolic C and phenyl 

C) v , 71.1 (2C, Ph-CH2O-), 56.2 (2C, -OCH3). Elemental Analysis (Calc.) for 

(C36H26Br2N4O2Zn)n: C, 56.02; H, 3.40; N, 7.26; Br, 20.71; Zn, 8.47 % (Found): C, 56.48; 

H, 3.13; N, 7.33; Br, 20.41; Zn, 6.65 %. m/z calcd (monomer): 769.9694, MALDI-TOF 

m/z: 770.1808 (100 %). Tg: 122.7 °C. Td: 239, 297 °C. 

 

Crystal data of 4-22 grown in CHCl3 and toluene: (C36H26Br2N4O2Zn)2. M = (771.80)n. 

Triclinic. P-1, a = 11.636(3) Å, b = 12.421(3 )Å, c =12.520(3) Å, α = 61.526(4) °, β = 

83.202(4) °, γ = 88.852(4) °, V = 1578.1(6) Å3, Z = 2, dcalc = 1.624 mg/m3, μ = 3.350 mm-1, 

θmax = 27.50 °, 20559 reflections collected, 7251 independent reflections, Rint = 0.1031, 

                                                 
v One peak missing due to poor resolution 
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7251 reflections with I > 2σ(I), 408 parameters, R1 (all data) = 0.1723, wR2 (all data) = 

0.1583. 

 

Crystal data of 4-22 grown in THF: C40H34Br2N4O3Zn. M = 843.90. Monoclinic. P2(1)/c, a 

= 17.9019(8) Å, b = 13.9986(6) Å, c =14.8998(6) Å, α = 90 °, β = 111.3870(10) °, γ = 90°, 

V = 3476.8(3) Å3, Z = 4, dcalc = 1.612 mg/m3, μ = 3.051 mm-1, θmax = 27.50 °, 24329 

reflections collected, 7982 independent reflections, Rint = 0.0306, 7982 reflections with I 

> 2σ(I), 453 parameters, R1 (all data) = 0.0545, wR2 (all data) = 0.1025. 

 

1,4-BISDECYLOXYBENZENE (6-2) 

 

Potassium hydroxide (220 mmol, 12.31 g) was stirred in absolute ethanol (1 L) and the 

solution was degassed for 30 minutes. Hydroquinone (6-1) (100 mmol, 11.00 g) in 

degassed absolute ethanol (250 ml) was added dropwise into the solution and stirred for 

1 hour. 1-Bromodecane (250 mmol, 55.02 g) was then added dropwise over 30 minutes 

and the solution was refluxed for 24 hours. After the mixture has cooled to room 

temperature, ethanol was removed in vacuuo. The solid was dissolved in ethyl acetate 

and the organic extract was washed with deionized water until the aqueous layer turned 

neutral. The organic extract was dried using anhydrous sodium sulphate, filtered then 

dried. The crude product was recrystallized using ethanol to yield white flaky solids of 6-

2.  

 

Yield: 28.88 g (74 %). Melting point: 66.5 - 67.0 °C {lit. 67-68 °C}10. 1H NMR (CDCl3): δ 

6.81 (s, 4H, Ph-H protons), 3.89 (t, 4H, Ph-OCH2 protons, 3J = 5.9 Hz), 1.27 - 1.75 (m, 

32H, -CH2- protons), 0.88 (s, 6H, -CH3 protons). 13C {1H} NMR (CDCl3): δ 153.2 (2C, 
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aromatic C-O), 115.4 (4C, aromatic CH), 68.6 (2C, Ph-OCH2-), 14.1, 22.6, 26.0, 29.1, 

29.2, 29.3, 29.4, 29.5, 31.9 [18C, -(CH2)8CH3]. EI-mass spectrum: 390.2 (40 %). m/z 

calcd: 390.3498, HRMS: 390.3495 (100 %). 

 

1,4-DIBROMO-2,5-BISDECYLOXYBENZENE (6-3) 

 

Compound 6-2 (50 mmol, 19.52 g) was dissolved in methanol and CHCl3 (600 ml) and 

cooled to 0°C. Bromine (110 mmol, 17.36 g) in glacial acetic acid (150 ml) was added 

dropwise into the solution then stirred for additional 24 hours at room temperature. After 

removing most of the solvent in vacuuo, the pale yellow solid was filtered and washed 

several times with water until the filtrate turned neutral and the solid becomes white. The 

solid was finally washed once with cold ethanol then vacuum dried.  

 

Yield: 24.66 g (90 %). Melting point: 76.0 - 77.5 °C {72 - 76 °C}11. 1H NMR (CDCl3): δ 

7.08 (s, 2H, Ph-H protons), 3.94 (t, 4H, Ph-OCH2- protons), 1.79, (quintet, 4H, -CH2- 

protons, 3J = 7.1 Hz), 1.27 - 1.49 (m, 28H, -CH2- protons), 0.88 (t, 6H, -CH3  protons, 3J = 

6.6 Hz). 13C {1H} NMR (CDCl3): δ  150.0 (2C, aromatic C-O), 118.4 (2C, aromatic C-H), 

111.1 (2C, aromatic C-Br), 70.3 (2C, Ph-OCH2-), 14.1, 22.7, 25.9, 29.1, 29.28, 29.29, 

29.5, 31.9 [18C, -(CH2)8CH3]vi. EI-mass spectrum: 546.0 (10 %), 548.0 (20 %), 550.0 (10 

%). m/z calcd: 548.1688, HRMS: 546.1706 (50 %), 548.1691 (100 %), 550.1679 (50 %). 

 

 

 

 

                                                 
vi One missing 13C peak due to poor resolution 
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2,5-BISDECYLOXY-1,4-DIFORMYLBENZENE (6-4) 

 

Compound 6-3 (10 mmol, 5.46 g) was added into a single-neck RBF which was 

degassed then sealed and purged with N2 gas. Dry THF (20 ml) was added and the flask 

was cooled to -78°C. n-BuLi (40 mmol, 1.6 M, 25 ml) was added dropwise and the 

temperature was raised to room temperature slowly. The mixture was allowed to stir for 

another 2 hours at room temperature before it was cooled to – 78 °C again. Dry DMF (50 

mmol) was purged into the reaction mixture. The flask was allowed to reach room 

temperature slowly and stirred overnight. The reaction mixture was added to water, 

extracted with ether, washed with deionized water, dried with anhydrous sodium 

sulphate, filtered then dried. The crude product was purified by column chromatography 

over silica gel (60 - 250 mesh) using hexane/ethyl acetate (50:1) as eluent to yield bright 

yellow solid. 

 

Yield: 4.05 g (91 %). Melting point: 87.0 - 88.0°C {88 - 90°C}12. 1H NMR (CDCl3): δ 10.52 

(s, 2H, -CHO protons), 7.43 (s, 2H, Ph-H protons), 4.08 (t, 4H, Ph-OCH2- protons, 3J = 

6.5 Hz), 1.82 (q, 4H, -CH2- protons, 3J = 7.1 Hz), 0.90 - 1.49 (br s & m, 28H, -CH2- 

protons), 0.88 (t, 6H, -CH3 protons, 3J = 6.5 Hz). 13C {1H} NMR (CDCl3): δ 189.4 (2C, -

CHO), 111.7, 129.2, 155.2 (6C, aromatic C), 69.2 (2C, Ph-OCH2-), 14.1, 22.6, 26.0, 

29.0, 29.3, 29.5, 31.8 [18C, -(CH2)8CH3]vii. EI-mass spectrum: 446.3 (15 %). m/z calcd: 

446.6624, HRMS: 446.3398 (100 %). 

 

 

 

                                                 
vii Two missing 13C peak due to poor resolution 
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TRANS-5,15-DI(2-BROMOMETHYLPHENYL)PORPHYRIN (6-5) 

 

Aqueous HBr (48 %, 25 ml) was added dropwise into a two-neck round-bottom flask 

half-filled with phosphorous pentoxide. The HBr gas generated was bubbled into a 100 

ml one-neck round-bottom flask solution of 4-6 (500 mg, 0.9 mmol) dissolved in CHCl3 

(50 ml). After which, the mixture was stoppered tightly and stirred for an additional 24 

hours. The mixture was washed with sodium bicarbonate, deionized water, dried over 

anhydrous sodium sulphate, filtered and evaporated. The compound was recrystallized 

using CHCl3/hexane mixture to obtain 6-5 as purple solid.  

 

Yield: 490 mg (83 %). 1H NMR (CDCl3): δ 10.31 (s, 2H, meso protons), 9.37 (d, 2H, 

pyrrolic protons, 3J = 4.5 Hz), 8.89 (d, 2H, pyrrolic protons, 3J = 4.5 Hz), 8.07 (dd, 2H, 

Ph-H protons, 3J  7.7 Hz, 4J = 1.1 Hz), 7.96 (dd, 2H, Ph-H protons, 3J = 7.7 Hz, 4J = 1.1 

Hz), 7.88 (td, 2H, Ph-H protons, 3J = 7.7 Hz, 4J = 1.4 Hz), 7.69 (td, 2H, Ph-H protons, 3J 

= 7.7 Hz, 4J = 1.4 Hz), 4.28 (s, 4H, Ph-CH2Br protons), -3.13 (s, 2H, NH protons). 13C {1H} 

NMR (CDCl3): δ 146.9, 145.6, 139.3, 134.7, 131.7, 130.9, 129.9, 129.3, 126.7, 119.8, 

115.5, 105.5 (32C, meso C, pyrrolic C and phenyl C); 31.8 (2C, Ph-CH2Br). EI-mass 

spectrum: 648 (5 %). Elemental Analysis (Calc.) for C34H24N4Br2: C, 62.98; H, 3.73; N, 

8.64; Br, 24.65 % (Found): C, 62.85; H, 3.62; N, 8.29; Br, 24.50 %. 

 

COMPOUND 6-6  

 

Compound 6-5 (500 mg, 0.8 mmol), triphenylphosphine (759 mg, 3 mmol) were 

dissolved in DMF (20 mL) then heated to 120 °C under inert condition and stirred for 3 

days. The solution was cooled then ether was added to precipitate the phosphonium salt. 



 305

The residue was filtered, washed several times with ether then dried to yield purple solid 

of 6-6.  

 

Yield: 456 mg (50 %). 1H NMR (CDCl3): δ 10.32 (s, 2H, meso protons),  9.35 (br, 4H, 

pyrrolic protons),  8.86 (br, 4H, pyrrolic protons), 8.19 (d, 2H, Ph-H protons, 3J = 6.6 Hz), 

7.93 (m, 2H, Ph-H protons), 7.72 (m, 4H, Ph-H protons), 6.62 - 7.05 (m, 30H, Ph-H 

protons), 5.36 (d, 4H, Ph-CH2P- protons), unobserved (2H, NH protons). 13C {1H} NMR 

(DMF): δ 147.8, 146.6, 137.3, 135.2, 134.5, 134.4, 134.1, 132.9, 131.4, 131.1, 130.2, 

130.1, 129.7, 128.1, 119.2, 118.0, 116.6 (62C, meso C, pyrrolic C and phenyl C); 107.2 

(2C, Ph-CH2P-). ESI-mass spectrum: 1011.1 [(M-2Br)+, 10 %]. m/z calcd: 1012.3824, 

HRMS: 1011.3750 [(M-2Br)+, 100 %].  

 

CIS-5,15-DI(2-BROMOMETHYLPHENYL)PORPHYRIN (6-7) 

 

Refer to the procedure on synthesis of 6-5. Compound 4-7 was used as starting 

materials for the synthesis of 6-7. 

 

Yield: 472 mg (80 %). 1H NMR (CDCl3): δ 10.31 (s, 2H, meso protons), 9.37 (d, 4H, 

pyrrolic protons, 3J = 4.8 Hz), 8.89 (d, 4H, pyrrolic protons, 3J = 4.4 Hz), 8.13 (d, 2H, Ph-

H protons, 3J = 7.2 Hz), 7.95 (d, 2H, Ph-H protons, 3J = 7.6 Hz), 7.85 (m, 2H, Ph-H 

protons), 7.68 (m, 2H, Ph-H protons), 4.21 (s, 4H, Ph-CH2Br protons), -3.12 (s, 2H, NH 

protons). 13C {1H} NMR (CDCl3): δ 146.9, 145.6, 140.6, 139.3, 134.6, 131.8, 130.9, 129.9, 

129.3, 126.7, 115.5, 105.5 (32C, meso C, pyrrolic C and phenyl C); 31.7 (2C, Ph-CH2Br). 

EI-mass spectrum: 648.0 (50 %). m/z calcd: 648.3892, MALDI-TOF m/z: 647.1605 (30 
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%), 649.1616 (100 %), 651.1744 (25 %). Elemental Analysis (Calc.): C, 62.98; H, 3.73; 

N, 8.64; Br, 24.65 % (Found): C, 62.83; H, 3.60; N, 8.24; Br, 23.64 %. 

 

COMPOUND 6-8 

 

Refer to the procedure on synthesis of 6-6. Compound 6-7 was used as starting 

materials for the synthesis of 6-8. 

 

Yield: 456 mg (50 %). 1H NMR (CDCl3):  δ 10.33, 10.35 (2s, 2H, meso protons); 9.31, 

9.36 (2d, 4H, pyrrolic protons); 8.84, 8.70 (2d, 4H, pyrrolic protons); 7.32 - 8.13 (m, 8H, 

Ph-H protons), 6.62 - 7.08 (m, 30H, Ph-H protons), 5.36 (2s, 4H, Ph-CH2P- protons); -

3.29, -3.19 (2s, 2H, NH protons). 13C {1H} NMR (CD3OD): δ 142.5, 141.3,  137.3 , 137.2, 

132.0, 129.9, 129.2, 129.1, 128.9, 127.7, 126.1, 125.8, 125.0, 124.9, 124.84, 124.77, 

124.3, 122.8, 113.9, 113.7, 112.7, 112.6, 111.3, 111.2 (62C, meso C, pyrrolic C and 

phenyl C); 101.9 (2C, Ph-CH2P-). ESI-mass spectrum: 1011.2 [(M-2Br)+, 60 %]. m/z 

calcd: 1012.382, HRMS: 1011.3762 [(M-2Br)+, 100 %]. Elemental Analysis (Calc.) for 

C70H54N4P2Br2: C, 71.68; H, 4.64; N, 4.78; Br, 13.62; P, 5.28 %. (Found): C, 71.64; H, 

4.31; N, 4.43; Br, 15.40; P, 5.22 % 

 

OLIGOMER 6-9 

 

In a 5ml one-neck RBF, compounds 6-6 (1 mmol, 1.17 g) and 6-4 (1 mmol, 0.45 g) was 

added and degassed then purged with Ar gas trice. Degassed CHCl3 (2.5 ml) and 

sodium ethoxide (5 mmol) in ethanol (1.5 ml) were added and the reaction mixture was 

allowed to stir at room temperature for 5 days. It was then washed with water, dried and 
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solvent removed in vacuuo. The crude product was reprecipitated in methanol. The 

residue was filtered and washed with acetone using Soxhlet extraction. 

 

Yield: 0.78 g (48 %). 1H NMR (CDCl3): δ 10.11, 9.96, 9.90, 9.25, 9.16, 9.07, 8.93, 8.74, 

8.23, 7.95, 7.68, 7.54, 7.02, 6.84, 6.68, 6.28 (aromatic and -CHO protons); 5.51, 5.16, 

5.12 (alkene protons); 3.72, 3.51, 3.48, -0.20 – 2.21(alkyl protons); -3.08, -3.22 (NH 

protons). 13C {1H} NMR (CDCl3): δ 188.8 (-CHO), 155.4, 151.6, 150.1, 149.7, 147.3, 

145.1, 140.5, 139.9, 139.7, 139.6, 135.8, 135.2, 134.3, 132.0, 131.6, 131.4, 131.1, 130.5, 

130.3, 128.5, 128.3, 128.1, 126.3, 126.1, 125.6, 125.4, 124.6, 124.2, 123.8, 123.4, 117.4, 

117.1, 116.7, 110.6, 109.9, 109.4, 105.1, 104.9, 68.6, 67.5, 34.3, 31.9, 30.4, 29.5, 29.2, 

28.9, 29.7, 28.3, 28.0, 27.5, 25.4, 25.2, 24.7, 22.7, 21.2, 14.2. Mw / PDI: 5775 / 1.05. Tg: 

110 °C. Td: 291 °C. Elemental Analysis (Calc.) for (C62H68N4O2)n: C, 82.63; H, 7.61; N, 

6.22% (Found): C, 80.16; H, 7.25; N, 6.11%.  

 

OLIGOMER 6-10 

 

Refer to the procedure on the synthesis of 6-9. Compounds 6-8 and 6-4 were used as 

starting materials for the synthesis of 6-10. 

 

Yield: 0.73 g (45 %). 1H NMR (CDCl3): δ 10.11, 9.96, 9.88, 9.24, 9.16, 9.06, 8.92, 8.87, 

8.76, 7.92, 7.67, 7.53,  6.96, 6.82, 6.66, 6.27 (aromatic and -CHO protons); 5.50, 5.11, 

(alkene protons); 3.46, 2.88, 0 - 2.20 (alkyl protons); -3.10, -3.19, -3.24 (NH protons). 13C 

{1H} NMR (CDCl3): δ 189.0, 149.7, 147.3, 145.2, 139.9, 135.2, 131.5, 128.5, 128.0, 

125.3, 124.1, 117.1, 109.8, 105.0, 67.5, 31.8, 29.2, 28.3, 27.5, 24.6, 14.1, 22.6. Mw / PDI: 
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6035 / 1.17. Tg: 89 °C. TGA: 213 °C. Elemental Analysis (Calc.) for (C62H68N4O2)n: C, 

82.63; H, 7.61; N, 6.22 % (Found): C, 82.64; H, 7.67; N, 6.29 %.  

 

1,4-BISDECYLOXY-2,5-DIIODOBENZENE (6-14) 

 

To a solution of 6-2 (31.25 g 80 mmol), acetic acid (180 ml), water (14 ml) and 

concentrated sulfuric acid (6 ml) were added potassium periodate (20.53 g, 96 mmol) 

and iodine (26.20 g, 96 mmol). The reaction mixture was stirred at 80 °C for 24 hours, 

cooled to room temperature then acetic acid was removed in vacuuo. Aqueous sodium 

thiosulphate (20 %) was added to the solution until the brown colour of iodine 

disappeared. The mixture was poured into ice water with sodium carbonate (500 ml) and 

extracted with hexane. The organic layer was washed with sodium chloride solution, 

dried with anhydrous sodium sulphate, filtered then dried to give white crystals of 6-14 

that were recrystallized with ethanol.  

 

Yield: 24.67 g (48 %). Melting point: 58.0 - 59.0 °C {62 - 63 °C}10. 1H NMR (CDCl3): δ 

7.17 (s, 2H, Ph-H protons), 3.92 (t, 4H, Ph-OCH2- protons, 3J = 6.5 Hz), 1.80, (quintet, 

4H, -CH2- protons, 3J = 6.6 Hz), 1.28 - 1.51 (br s & m, 28H, -CH2- protons), 0.88 (t, 6H, -

CH3 protons, 3J = 6.6 Hz). 13C {1H} NMR (CDCl3): δ 152.9 (2C, aromatic C-O), 122.9 (2C, 

aromatic CH), 86.3 (2C, aromatic C-I), 70.4 (2C, Ph-OCH2-), 14.0, 22.6, 26.0, 29.0, 29.1, 

29.2, 29.5, 29.5, 31.9 [18C, -(CH2)8CH3],. EI-mass spectrum: 642.0 (55 %). m/z calcd: 

642.1431, HRMS: 642.1420 (100 %). 
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1,4-BISDECYLOXY-2,5-TRIMETHYLSILYLETHYNYLBENZENE (6-15) 

 

Compound 6-14 (15 mmol, 9.63 g) was added to freshly distilled triethylamine (100 ml) 

contained in a two-neck RBF and fitted with a condenser. The mixture was degassed for 

30 minutes then dichlorobis(triphenylphosphine) palladium (II) (0.8 mmol, 0.56 g) and 

copper (I) iodide (0.8 mmol, 0.15 g) were added to the flask which was stoppered and 

kept under inert atmosphere. Trimethylsilylacetylene (38 mmol, 3.68g) was injected into 

the flask and the reaction mixture was refluxed for 1 hour. After the mixture had cooled, 

triethylamine was removed in vacuuo. The crude product was passed through a short 

column of silica gel (60 - 250 mesh) using CH2Cl2/hexane (2:3) as eluent. After removing 

the solvent, the solid was recrystallized with ethanol to yield yellow solid of 6-15.  

 

Yield: 5.94 g (68 %). Melting point: 69.0 - 71.5 °C {72 - 73 °C}10. 1H NMR (CDCl3): δ  

6.90 (s, 2H, Ph-H protons), 3.92 (t, 4H, Ph-OCH2- protons, 3J = 6.4 Hz), 1.78 (quintet, 

4H, -CH2- protons, 3J = 6.3 Hz), 1.27 - 1.54 (m, 28H, -CH2- protons), 0.88 (t, 6H, -CH3 

protons, 3J = 6.6 Hz), 0.25 (s, 18H, -Si(CH3)3 protons). 13C {1H} NMR (CDCl3): δ 154.0 

(2C, aromatic C-O); 113.9, 117.2, (4C, aromatic C & CH); 101.0 (2C, Ph-C≡C-H), 100.0 

(2C, Ph-C≡C-H), 69.4 (2C, Ph-OCH2), 14.1, 22.6, 26.0, 29.3, 29.4, 29.56, 29.60, 31.9 

[18C, -(CH2)8CH3]viii, 0 [6C, -Si(CH3)3]. EI-mass spectrum: 582.3 (100 %). m/z calcd: 

582.4288, HRMS: 582.4285 (100 %). 

 

 

 

 

                                                 
viii One missing peak due to poor resolution 
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1,4-BISDECYLOXY-2,5-DIETHYNYLBENZENE (6-16) 

 

Compound 6-15 (5 mmol, 2.91 g) was dissolved in THF (15 ml) and methanol (15 ml). 

Aqueous sodium hydroxide (1.7 ml, 5 N) was then added to the solution which was 

stirred for 2 hours. The solvent was removed in vacuuo and the product was extracted 

with hexane, washed with brine then water. After drying, the dark orange solid product 

was found to be pure enough for subsequent reaction.  

 

Yield: 2.17 g (99 %). Melting point: 75.0 - 76.5 °C {70 - 72 °C}.10 1H NMR (CDCl3): δ 6.95 

(s, 2H, Ph-H protons), 3.97 (t, 4H, Ph-OCH2- protons, 3J = 6.5 Hz), 3.33 (s, 2H, -C≡C-H 

protons), 1.80 (br, 4H, -CH2- protons), 1.27 - 1.46 (m, 28H, -CH2- protons), 0.86 (br, 6, -

CH3 protons). 13C {1H} NMR (CDCl3): δ 154.0 (2C, aromatic C-O); 113.3, 117.8 (4C, 

aromatic C & CH); 82.3 (2C, Ph-C≡C-H), 79.8 (2C, Ph-C≡C-H), 69.7 (2C, Ph-OCH2-), 

14.0, 22.6, 25.9, 29.1, 29.3, 29.5, 31.9 [18C, -(CH2)8CH3]ix. EI-mass spectrum: 438.2 (90 

%). m/z calcd: 438.3498, HRMS: 438.3493 (100 %). 

 

1,2-BISDECYLOXYBENZENE (6-18) 

 

Refer to the procedure on synthesis of 6-2. Catechol 6-17 was used as starting material 

for the synthesis of 6-18. The product obtained is white solid. 

 

Yield: 8.20 g (21 %). Melting point: 40.0 - 41.0 °C {40 - 41 °C}13. 1H NMR (CDCl3): δ 6.88 

(s, 4H, Ph-H protons), 3.99 (t, 4H, Ph-OCH2- protons, 3J = 6.6 Hz), 1.79 (m, 4H, -CH2- 

protons), 1.27-1.49 (br s & m, 28H, -CH2- protons), 0.88 (t, 6H, -CH3 protons, 3J = 6.6 

                                                 
ix Two missing peak due to poor resolution 
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Hz). 13C {1H} NMR (CDCl3): δ 114.1, 121.0, 149.2 (6C, aromatic C & CH), 69.3 (2C, Ph-

OCH2-), 14.1, 22.7, 26.0, 29.3, 29.4, 29.57, 29.62, 31.9, [18C, -(CH2)8CH3]x. EI-mass 

spectrum: 390.3. m/z calcd: 390.3498, HRMS: 390.3498. 

 

1,2-BISDECYLOXY-4,5-DIIODOBENZENE (6-19) 

  

Refer to the procedure on synthesis of 6-14. Compound 6-18 was used as starting 

material for the synthesis of 6-19. The product obtained is white solid. 

 

Yield: 28.78 g (56 %). Melting point: 40.0 - 42.0 °C {45.6 - 47.2 °C }14.  1H NMR (CDCl3): 

δ 7.25 (s, 2H, Ph-H protons), 3.92 (t, 4H, Ph-OCH2- protons, 3J = 6.6 Hz), 1.79, (quintet, 

4H, -CH2- protons, 3J = 7.0 Hz), 1.27 - 1.44 (br s & m, 28H, -CH2- protons), 0.88 (t, 6H, -

CH3 protons, 3J = 6.6 Hz). 13C {1H} NMR (CDCl3): δ 95.9, 123.8, 149.8 (6C, aromatic C & 

CH), 69.5 (2C, Ph-OCH2-), 14.1, 22.7, 25.9, 29.0, 29.1, 29.3, 29.45, 29.53, 31.9 [18C, -

(CH2)8CH3]. EI-mass spectrum: 641.9 (80 %). m/z calcd: 642.1431, HRMS: 642.1413 

(100 %).  

 

1,2-BISDECYLOXY-4,5-BISTRIMETHYLSILYLETHYNYLBENZENE (6-20) 

 

Refer to the procedure on synthesis of 6-15. Compound 6-19 was used as starting 

material for the synthesis of 6-20. The product is orange oil. 

 

Yield: 4.72 g (54 %). 1H NMR (CDCl3): δ 6.91 (s, 2H, Ph-H protons), 3.97 (t, 4H, Ph-

OCH2- proton, 3J = 6.6 Hz), 1.81 (quintet, 4H, -CH2- protons, 3J = 7.0 Hz), 1.27-1.47 (m, 

                                                 
x One peak missing due to poor resolution 



 312

28H, -CH2- protons), 0.88 (t, 6, -CH3 protons, 3J = 6.5 Hz), 0.25 (s, 18H, -Si(CH3)3 

protons). 13C {1H} NMR (CDCl3): δ 149.0 (2C, aromatic C-O); 116.1, 118.7 (4C, aromatic 

C & CH); 103.6 (2C, Ph-C≡C-H), 96.3 (2C, Ph-C≡C-H), 69.0 (2C, Ph-OCH2-), 14.1, 22.7, 

25.9, 29.0, 29.3, 29.5, 29.6, 31.9 [18C, (CH2)8CH3] xi , 0.1 [6C, -Si(CH3)3]. EI-mass 

spectrum: 582.3 (100 %). m/z calcd: 582.2488, HRMS: 582.4284 (100 %). 

 

1,2-BISDECYLOXY-4,5-DIETHYNYLBENZENE (6-21) 

 

Refer to the procedure on synthesis of 6-16. Compound 6-20 was used as starting 

material for the synthesis of 6-21. The product is dull orange solid.   

 

Yield: 2.13 g (97 %). Melting point: 55.5 - 56.0 °C {52.0 - 53.8 °C}.14 1H NMR (CDCl3): δ 

6.95 (s, 2H, Ph-H protons), 3.98 (t, 4H, Ph-OCH2- protons, 3J = 6.6 Hz), 3.25, (s, 2H, -

C≡C-H protons), 1.82 (quintet, 4H, -CH2- protons, 3J = 7.0 Hz), 1.27 - 1.47 (m, 28H, -

CH2- protons), 0.88 (t, 6, -CH3 protons, 3J = 6.8 Hz). 13C {1H} NMR (CDCl3): δ 149.5 (2C, 

aromatic C-O); 116.7, 117.8 (4C, aromatic C & CH); 82.2 (2C, Ph-C≡C-H), 79.3 (2C, Ph-

C≡C-H), 69.2 (2C, Ph-OCH2-), 14.0, 22.6, 25.9, 29.0, 29.3, 29.49, 29.53, 31.8 [18C, -

(CH2)8CH3]xii.   EI-mass spectrum: 438.3 (70 %). m/z calcd: 438.3498, HRMS: 438.3495 

(100 %). 

 

 

 

 

 
                                                 
xi Two missing peaks due to poor resolution 
xii One missing peak due to poor resolution 
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1,3-BISDECYLOXYBENZENE (6-23) 

 

Refer to the procedure on synthesis of 6-2. Resorcinol 6-22 was used as starting 

material for the synthesis of 6-23. The product obtained after recrystallization is white 

flaky solid. 

Yield: 14.83 g (38 %). Melting point: 50.5 - 51.0 °C. 1H NMR (CDCl3): δ 7.14 (t, 1H, Ph-H 

protons, 3J = 8.0 Hz), 6.46 - 6.49 (m, 3H, Ph-H proton), 3.92 (t, 4H, Ph-OCH2- protons, 3J 

= 6.6 Hz), 1.76 (quintet, 4H, -CH2- protons, 3J = 7.0 Hz), 1.27 - 1.46 (br s & m, 28H, -

CH2- protons), 0.88 (t, 6H, -CH3 protons, 3J = 6.6 Hz). 13C {1H} NMR (CDCl3): δ 160.4 (2C, 

aromatic C-O), 101.4, 106.6, 129.7 (4C, aromatic C & CH); 67.9 (2C, Ph-OCH2-), 14.1, 

22.7, 26.0, 29.25, 29.29, 29.4, 29.5, 31.9, 40.0 [18C, -(CH2)8CH3]. EI-mass spectrum: 

390.3 (55 %). m/z calcd: 390.3498, HRMS: 390.3495 (100 %). 

 

1,5-BISDECYLOXY-2,4-DIIODOBENZENE (6-24) 

 

Refer to the procedure on synthesis of 6-14. Compound 6-23 was used as starting 

material for the synthesis of 6-24. The product obtained is cream-coloured solid. 

 

 Yield: 27.24 g (53 %). Melting point: 61.0 - 63.0°C. 1H NMR (CDCl3): δ 8.02 (s, 1H, Ph-H 

proton), 6.32 (s, 1H, Ph-H proton), 3.98 (t, 4H, Ph-OCH2- protons, 3J = 6.4 Hz), 1.83, 

(quintet, 4H, -CH2- protons, 3J = 7.0 Hz), 1.27 - 1.51 (br s & m, 28H, -CH2- protons), 0.88 

(t, 6H, -CH3 protons, 3J = 6.8 Hz). 13C {1H} NMR (CDCl3): δ 159.0 (2C, aromatic C-O); 

76.0, 97.9, 146.6 (4C, aromatic C & CH); 69.5 (2C, Ph-OCH2-), 14.1, 22.7, 26.0, 29.0, 
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29.3, 29.5, 31.9 [18C, -(CH2)8CH3] xiii . EI-mass spectrum: 641.9 (65 %). m/z calcd: 

642.1431, HRMS: 642.1423 (100 %).  

 

1,5-BISDECYLOXY-2,4- BISTRIMETHYLSILYLETHYNYLBENZENE (6-25) 

 

Refer to the procedure on synthesis of 6-15. Compound 6-24 was used as starting 

material for the synthesis of 6-25. The product obtained is cream-coloured solid. 

 

Yield: 4.19 g (48 %). Melting point: 59.0 - 60.0°C. 1H NMR (CDCl3): δ 7.49 (s, 1H, Ph-H 

proton), 6.29 (s, 1H, Ph-H proton), 3.99 (t, 4H, Ph-OCH2- protons, 3J = 6.3 Hz), 1.80 

(quintet, 4H, -CH2- protons, 3J = 6.6 Hz), 1.27 - 1.54 (m, 28H, -CH2- protons), 0.88 (t, 6, -

CH3 protons, 3J = 6.8 Hz), 0.22 (s, 18H, -Si(CH3)3 protons). 13C {1H} NMR (CDCl3): δ 

161.7 (2C, aromatic C-O); 96.7, 96.77, 96.84, 100.5, 138.3 (2C, Ph-C≡C-H; 2C, Ph-

C≡C-H; 4C, aromatic C & CH); 68.8 (2C, Ph-OCH2-), 14.1, 22.6, 26.0, 29.1, 29.3, 29.4, 

29.5, 29.6, 31.9 [18C, -(CH2)8CH3], 0.1 [6C, -Si(CH3)3]. EI-mass spectrum: 582.4 (100 

%). m/z calcd: 582.4288, HRMS: 582.4284 (100 %). 

 

1,5-BISDECYLOXY-2,4- BIS-ETHYNYLBENZENE (6-26) 

 

Refer to the procedure on synthesis of 6-16. Compound 6-25 was used as starting 

material for the synthesis of 6-26. The product obtained is cream-coloured solid. 

 

Yield: 2.17 g (99 %). Melting point: 64.0 - 66.5°C. 1H NMR (CDCl3): δ 7.52 (s, 1H, Ph-H 

proton), 6.36 (s, 1H, Ph-H proton), 4.05 (t, 4H, Ph-OCH2- protons, 3J = 6.6 Hz), 3.16, (s, 

                                                 
xiii Two missing peak due to poor resolution 
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2H, -C≡C-H protons), 1.84 (quintet, 4H, -CH2- protons, 3J = 6.6 Hz), 1.27 - 1.55 (m, 28H, 

-CH2- protons), 0.88 (t, 6, -CH3 protons, 3J = 6.6 Hz). 13C {1H} NMR (CDCl3): δ 96.9, 

139.0, 161.9 (6C, aromatic C & CH), 79.8 (2C, Ph-C≡C-H), 79.1 (2C, Ph-C≡C-H), 69.0 

(2C, Ph-OCH2-), 14.1, 22.6, 25.8, 28.9, 29.3, 29.5, 31.9 [18C, -(CH2)8CH3]xiv. EI-mass 

spectrum: 438.3 (80 %). m/z calcd: 438.3498, HRMS: 438.3490 (100 %). 

 

5,15-DIPHENYLPORPHYRIN (6-28) 

 

Benzaldehyde 6-27 (10 mmol, 1.06 g) and 4-5 (10 mmol, 1.46g) were dissolved in dried, 

degassed CH2Cl2 (1 L) and 2 drops of trifluoroacetic acid was added. The mixture was 

stirred under Ar at room temperature for 15 hours. After which, chloroanil (40 mmol, 9.31 

g) was added and the solution was heated to reflux for 2 hours. The mixture was allowed 

to cool and the solvent was removed in vacuuo. The dark solid was chromatographed 

over silica gel (60 - 250 mesh) using CHCl3 as eluent to separate the porphyrins from the 

byproducts of chloranil first followed by hexane/toluene (2:1) to isolate the pure product 

which forms purple crystals after drying.  

 

Yield: 1.23 g (26.5 %). 1H NMR (CDCl3): δ 10.32 (s, 1H, meso protons), 9.39 (d, 4H, 

pyrrolic protons, 3J = 4.5 Hz), 9.09 (d, 4H, pyrrolic protons, 3J = 4.5 Hz), 8.29 (m, 4H, Ph-

H protons), 7.81 (m, 6H, Ph-H protons), -3.10 (br s, 2H, NH protons). 13C {1H} NMR 

(CDCl3): δ 147.2, 145.2, 141.4, 134.8, 131.6, 131.0, 127.7, 126.9, 119.1, 105.2 (32C, 

meso C, pyrrolic C and phenyl C). EI-mass spectrum: 462.3 (25 %). m/z calcd: 462.185, 

MALDI-TOF m/z: 462.214 (100 %).  

 

                                                 
xiv Two missing peak due to poor resolution 
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5,15-BISBROMO-10,20-DIPHENYLPORPHYRIN (6-29) 

 

Compound 6-28 (1 mmol, 551 mg) was dissolved in dry CHCl3 (20 ml) and cooled to 0°C. 

NBS (2.1 mmol, 372 mg) and pyridine (0.3 ml) were added into the solution and the 

reaction progress was monitored using TLC. When all the starting material has reacted, 

the reaction was quenched with acetone. All the solvent is removed in vacuuo and 

recrystallization using CHCl3 and methanol yielded purple crystals.  

 

Yield: 58 mg (79 %). 1H NMR (CDCl3): δ  9.62 (d, 4H, pyrrolic protons, 3J = 4.9 Hz), 8.84 

(d, 4H, pyrrolic protons, 3J = 4.9 Hz), 8.16 (m, 4H, Ph-H protons), 7.78 (m, 6H, Ph-H 

protons), -2.70 (br s, 2H, NH protons). 13C {1H} NMR (CDCl3): δ 147.0, 144.9, 138.9, 

134.5, 130.4, 129.3, 129.1, 128.5, 128.0, 126.8 (32C, meso C, pyrrolic C and phenyl C). 

EI-mass spectrum: 619.9 (80 %). m/z calcd: 618.0054, MALDI-TOF m/z: 618.1330 (30 

%). Elemental Analysis (Calc.) for C32H20N4Br2: C, 61.96; H, 3.25; N, 9.03; Br, 25.76 % 

(Found): C, 63.27; H, 3.10; N, 8.76; Br, 25.31 %. 

 

Zn(II) 5,15-BISBROMO-10,20-DIPHENYLPORPHYRIN (6-30) 

 

Compound 6-29 (500 mg, 0.8 mmol) was stirred in large excess of Zn(OAc)2.xH2O in 

THF at room temperature for 5 days. The solvent was removed in vacuuo then the solid 

was transferred into a buchner funnel. The residue was washed with large amount of 

water then finally rinsed with cold ethanol then dried in vacuum. Purple crystals were 

obtained.  
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Yield: 513 mg (93 %). 1H NMR (d6-DMSO): δ 10.26 (d, 4H, pyrrolic protons, 3J = 4.9Hz), 

9.41 (d, 4H, pyrrolic protons, 3J = 4.9 Hz), 8.77 (m, 4H, Ph-H protons), 8.43 (m, 6H, Ph-

H protons). 13C {1H} NMR (d6-DMSO): δ 151.2, 150.4, 142.9, 135.3, 134.4, 134.0, 128.9, 

127.8, 122.9, 105.1 (32C, meso C, pyrrolic C and phenyl C). EI-mass spectrum: 681.9 

(20 %). m/z calcd: 681.9169, MALDI-TOF m/z: 682.0840 (95 %). Analysis (Calc.) for 

C32H18N4Br2Zn: C, 56.21; H, 2.65; N, 8.19; Zn, 9.56 % (Found): C, 56.68; H, 2.65; N, 

8.10; Zn, 7.23 %. 

 

OLIGOMER 6-31 

 

Compounds 6-30 (0.3 mmol, 0.21 g), 6-16 (0.3 mmol, 0.13g), 

dichlorobis(triphenylphosphine) palladium(II) (0.03 mmol, 21 mg) and copper(I) iodide 

(0.03 mmol, 6 mg) were added into a 20 ml one-neck RBF and fitted with a condenser. 

The setup was degassed and purged with Ar gas trice then kept under inert condition. 

Degassed toluene (2 ml) and diisopropylamine (1.2 ml) were added to the mixture and 

then heated to 100 °C for 24 hours. After the mixture had cooled, all the solvent was 

removed in vacuuo. The residue were transferred into a Buchner funnel and rinsed with 

water. The residue was then transferred into a Soxhlet thimble, washed with methanol 

for 3 days, with acetone for another 3 days then THF to remove the porphyrins monomer 

in the thimble. The insoluble portions can dissolve in CS2 and pyridine.  

 

Yield: 0.24 g (71 %). 1H NMR (CS2 + d5-C6H5N): 10.24, 9.10 (pyrrolic protons); 8.51, 8.39, 

7.92, 7.52, 7.14 (phenyl protons); 3.66, 3.77 (-OCH2 protons); 0 - 2.50 (m, alkyl protons). 

Elemental Analysis (Calc.): C, 77.52; H, 6.51; N, 5.83; Zn, 6.81 % (Found): C, 74.35; H, 

6.74; N, 5.41; Zn, 4.61 %. MALDI-TOF m/z (most abundant): 5337 (100 %). Td: 281 °C. 
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OLIGOMER 6-32 

 

Refer to the procedure for the synthesis of 6-31. Compounds 6-30 and 6-21 were used 

as starting materials. The residue was then transferred into a Soxhlet thimble, washed 

with methanol for 3 days then with acetone for another 3 days. The soluble portions of 

the oligomer were extracted using THF.  

 

Yield: 0.17 g (51 %).  1H NMR (CS2 + d5-C6H5N): 10.22, 8.96, 8.37, 7.86, 7.48, 7.27, 6.94 

(pyrrolic and phenyl protons); 3.58, 0.94 - 2.03 (m, alkyl protons). Elemental Analysis 

(Calc.): C, 77.52; H, 6.51; N, 5.83; Zn, 6.81 % (Found): C, 75.37; H, 6.90; N, 5.97; Zn, 

4.42 %. MALDI-TOF m/z (most abundant): 4931 (100 %). Td: 288 °C. 

 

OLIGOMER 6-33 

 

Refer to the procedure for the synthesis of 6-31. Compounds 6-30 and 6-26 were used 

as starting materials. The residue was then transferred into a Soxhlet thimble, washed 

with methanol for 3 days, with acetone for another 3 days then THF to remove the 

porphyrins monomer in the thimble. The soluble portions of the polymer were extracted 

using THF.  

 

Yield: 0.18 g (53 %). 1H NMR (CS2 + d5-C6H5N): 10.26, 9.13 (pyrrolic protons); 8.41, 7.92, 

(phenyl protons); 3.67, 3.76 (-OCH2 protons); 0.80 - 2.50 (m, alkyl protons). Elemental 

Analysis (Calc.): C, 77.52; H, 6.51; N, 5.83; Zn, 6.81 % (Found): C, 77.06; H, 6.29; N, 

5.85; Zn, 4.42; Br, 2.59 %. MALDI-TOF m/z (most abundant): 5008 (100 %). Td: 301 °C. 
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4,4’-DIBROMO-2,2’-DINITROBIPHENYL (7-6) 

 

2,5-Dibromonitrobenzene 7-5 (30 mmol, 12.00 g) and copper powder (90 mmol, 5.72 g) 

and DMF (80 ml) were added into a one-neck RBF and heated to 120 °C for 2 hours. 

The reaction mixture was then cooled to room temperature and filtered to remove the 

residue. Toluene was used to rinse any crude product trapped in the residue. The filtrate 

was washed with water, dried and solvent evaporated in vacuuo. Recrystallization in 

ethanol yield bright yellow crystals of the pure product.  

 

Yield: 7.73 g (45 %). Melting point: 153.4 - 154.5 °C {lit. 150 °C}15. 1H NMR (CDCl3): δ 

8.38 (d, 2H, 3 and 3’ aromatic protons, 4J = 1.7 Hz), 7.83 (dd, 2H, 5 and 5’ aromatic 

protons, 3J = 8.4 Hz, 4J = 1.7 Hz), 7.16 (d, 2H, 6 and 6’ aromatic protons, 3J = 8.4 Hz). 

13C {1H} NMR (CDCl3): δ 147.3 (2C, aromatic C-NO2); 136.6, 132.0, 128.0 (6C, aromatic 

C-H); 131.9, 122.9 (4C, aromatic C). EI-mass spectrum: 401.9 (5 %). m/z calcd: 

401.8674, HRMS: 399.8688 (0.6 %), 401.8677 (1.3 %), 403.8664 (0.6 %). 

 

3,8-DIBROMOBENZO[C]CINNOLINE (7-7) 

 

Method 1 

 

Compound 7-6 (14 mmol, 5.63 g), concentrated hydrochloric acid (28 ml) and tin powder 

(57 mmol, 6.77g) were added in ethanol (180 ml) and refluxed for 30 minutes. The 

reaction mixture was poured into ice-water after it had cooled then basified with sodium 

hydroxide. The crude product was extracted with ether, washed with water, dried over 
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anhydrous sodium sulphate filtered then evaporated. The product was recrystallized 

using ethanol to yield paper-like yellow solid. Yield: 3.75 g (79.2 %). 

 

Method 2 

 

Compound 7-6 (40 mmol, 16.08 g), zinc powder (400 mmol, 26.16 g) and anhydrous 

calcium chloride (200 mmol, 22.20 g) were added in ethanol (180 ml) and refluxed for 2 

hours. The reaction mixture was cooled then filtered. The filtrate was extracted with 

ether, washed with water, dried over anhydrous sodium sulphate filtered then 

evaporated. The product was recrystallized using ethanol to yield paper-like yellow solid. 

Yield: 10.61 g (78.5 %).  

 

Melting point: 244.2 - 245.5 °C {lit. 242 - 243 °C}.16 1H NMR (CDCl3): δ  8.90 (d, 2H, 3 

and 3’ aromatic protons, 4J = 2.1 Hz), 8.40 (d, 2H, 5 and 5’ aromatic protons, 3J = 8.7 

Hz), 8.00 (dd, 2H, 6 and 6’ aromatic protons, 3J = 8.7 Hz, 4J = 2.1 Hz). 13C {1H} NMR 

(CDCl3): δ 145.7 (2C, aromatic C-NO2); 135.4, 133.8, 122.9 (6C, aromatic C-H); 123.4, 

119.1 (4C, aromatic C). EI-mass spectrum: 335.7 (50 %), 337.7 (90 %), 339.7 (50 %). 

m/z calcd: 337.8877, HRMS: 335.8896 (30 %), 337.8872 (60 %), 339.8859 (40 %). 

Elemental Analysis (Calc.) for C12H6N2Br2: C, 42.64; H, 1.79; N, 8.29; Br, 47.23 % 

(Found): C, 42.85; H, 1.67; N, 8.30; Br, 46.93 %. 

 

Crystal data of 7-7 grown in iodomethane: Crystal data: (C13H9Br2IN2)n. M = 479.94 

Triclinic. P-1, a = 7.2912(7) Å, b = 10.0409(10) Å, c = 10.8935(11)Å, α = 103.731(2)°, β 

= 103.127(2)°, γ = 107.400(2)°, V = 700.00(12) Å3, Z = 2, dcalc = 2.277 mg/m3, μ = 7.978 

mm-1, θmax = 27.50 °, 9116 reflections collected, 3219 independent reflections, Rint = 
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0.0233, 3219 reflections with I > 2σ(I), 164 parameters, R1 (all data) = 0.0243, wR2 (all 

data) = 0.0551. 

 

2,2’-DINITROBIPHENYL (7-1) 

 

Refer to the procedure on synthesis of 7-6. 2-Bromonitrobenzene (7-13) (10 mmol, 2.02 

g) was used as starting material for the synthesis of 7-2. Recrystallization in ethanol 

yield pink needle-like crystals of the pure product.  

 

Yield: 3.50 g (87 %). Melting point: 128.8 - 129.4 °C {lit. 127 - 128 °C}.17 1H NMR 

(CDCl3): δ 8.22 (dd, 2H, 3 and 3’ aromatic protons, 3J  =8.0 Hz, 4J  = 1.4 Hz), 7.69 (td, 

2H, 5 and 5’ aromatic protons, 3J = 7.3 Hz, 4J = 1.4 Hz), 7.59 (td, 2H, 4 and 4’ aromatic 

protons, 3J = 8.0 Hz, 4J = 1.4 Hz), 7.30 (dd, 2H, 6 and 6’ aromatic protons, 3J = 7.7 Hz, 

4J = 1.7 Hz) . 13C {1H} NMR (CDCl3): δ 147.2 (2C, aromatic C-NO2);  133.4, 130.9, 129.1, 

124.8 (8C, aromatic C-H); 134.2 (2C, aromatic C). FAB-mass spectrum: 244.0 (100 %). 

m/z calcd: 244.0484, HRMS: 244.0495 (20 %). 

 

BENZO[C]CINNOLINE (7-2) 

 

Refer to the procedure for the synthesis of 7-7. Compound 7-1 (8 mmol, 2.05 g) was 

used as starting material for the synthesis of 7-2.The product was recrystallized using 

ethanol then flushed down a short column of silica gel (60 - 250 mesh) using CH2Cl2 as 

eluent to yield bright yellow solid products.  

Yield: 0.25 g (17 %). Melting point: 159.2 - 159.9 °C {lit. 157 - 158 °C}18. 1H NMR 

(CDCl3): δ 8.76 (m, 2H, aromatic protons), 8.60 (m, 2H, aromatic protons), 7.93 (m, 4H, 
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aromatic protons). 13C {1H} NMR (CDCl3): δ 145.3 (2C, aromatic C-NO2); 131.5, 131.3, 

129.2, 121.4 (8C, aromatic C-H); 120.9 (2C, aromatic C). EI-mass spectrum: 180.0 (85 

%). m/z calcd: 180.0678, HRMS: 180.0690 (80 %). 

 

4,4’-DICHLORO-2,2’-DINITROBIPHENYL (7-3) 

 

Refer to the procedure on synthesis of 7-6. 2-Bromo-5-chloronitrobenzene 7-14 (9 mmol, 

2.13 g) was used as starting material for the synthesis of 7-3. Recrystallization in ethanol 

yield dull yellow crystals of the pure product.  

 

Yield: 0.76 g (27 %). Melting point: 140.5 - 142.0 °C {lit. 138 - 139 °C}.19 1H NMR 

(CDCl3): δ 8.24 (d, 2H, 3 and 3’ aromatic protons, 4J = 2.1 Hz), 7.68 (dd, 2H, 5 and 5’ 

aromatic protons, 3J = 8.4 Hz, 4J = 2.1 Hz), 7.24 (d, 2H, 6 and 6’ aromatic protons, 3J = 

8.4 Hz). 13C {1H} NMR (CDCl3): δ 147.4 (2C, aromatic C-NO2); 133.7, 131.9, 125.2 (6C, 

aromatic C-H); 135.5, 131.5 (4C, aromatic C). EI-mass spectrum: 311.9 (5 %). m/z calcd: 

313.9675, HRMS: 311.9715 (20 %), 313.9688 (12 %). 

 

4,4’-DICHLOROBENZO[C]CINNOLINE (7-4) 

 

Refer to the procedure for the synthesis of 7-7. 4,4’-Dichloro-2,2’-dinitrobiphenyl (1 mmol, 

0.31 g) was used as starting material for the synthesis of 7-4. The product was 

recrystallized using ethanol to yield bright yellow paper-like solid. Yield: 0.11 g (45 %).  

 

Melting point: 263.0 - 265.0 °C. 1H NMR (CDCl3): δ 8.73 (d, 2H, 3 and 3’ aromatic 

protons, 4J = 1.4 Hz), 8.47 (d, 2H, 5 and 5’ aromatic protons, 3J = 8.7 Hz), 7.93 (dd, 2H, 



 323

6 and 6’ aromatic protons, 3J = 8.7 Hz, 4J = 1.4 Hz). 13C {1H} NMR (CDCl3): δ 145.3 (2C, 

aromatic C-NO2), 135.4 (2C, aromatic C-Cl); 132.8, 130.4, 123.0 (6C, aromatic C); 118.8 

(2C, aromatic C). EI-mass spectrum: 247.9 (100 %), 249.9 (75 %), 251.9 (15 %). m/z 

calcd: 247.9908, HRMS: 247.9902 (100 %), 249.9879 (63 %), 251.9821 (11 %). 

 

2,7-DIBROMO-9,9’-DIHEXYLFLUORENE (7-11) 

 

2,7-Dibromofluorene (2.00 g, 6 mmol) and 1-bromohexane (12.2 mmol, 1.8 ml) were 

dissolved in 50 ml dry DMSO and potassium tert-butoxide (12.2 ml, 1M in THF) was 

added dropwise to the solution under inert condition. The reaction mixture was allowed 

to stir for additional 24 hours then poured into ice water. The crude product was 

extracted with hexane, washed with water then dried using anhydrous sodium sulphate. 

The solvent was evaporated in vacuuo. After purification via column chromatography 

over silica gel (60 - 250 mesh) using hexane as eluent, the solvent was removed and 

white crystals of the pure product were obtained. 

 

Yield: 1.89 g (62 %). Melting point: 68.0 - 69.0 °C {65 - 66 °C}.20 1H NMR (CDCl3):  δ 

7.45 - 7.54 (m, 6H, aromatic protons), 1.93 (t, 4H, benzylic protons, 3J = 7.7 Hz), 0.60-

1.15 (m, 22H,-(CH2)4CH3 protons). 13C {1H} NMR (CDCl3): δ 152.5, 139.0, 121.5 (6C, 

aromatic C); 130.1, 126.2, 121.1 (6C, aromatic CH); 55.7(1C, benzylic C), 40.2 (2C, -

CCH2), 31.4, 29.5, 23.6, 22.5, 14.0 (10C, -(CH2)4CH3). EI-mass spectrum: 490.1 (40 %), 

492.1 (80 %), 494.1 (40 %). 
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POLYMERS 7-12a-e 

 

Compounds 7-7 (z mmol), 7-10 (x mmol), 7-11 (y mmol), catalytic amount of 

tetrabutylammonium bromide, aqueous potassium carbonate (2 M), degassed toluene 

(2.5 ml) and 1.0 - 1.5 mol % (with respect to brominated monomers) of Pd(PPh3)4 were 

stirred for 48 hours under Ar at 100 °C. The mixture was then poured into a stirred 

methanol/water (1:1) mixture to generate yellow precipitates. The precipitates were 

filtered, redissolved in CHCl3 and precipitated into methanol for washing. These residues 

were then filtered, redissolved in CHCl3 and precipitated into acetone. The yellow solids 

were then vacuum-dried. 

 

 



Table 10.1 Summary of the quantities of the monomers 7-7, 7-10 and 7-11 used to synthesize the polymers 7-12a-e, reaction yields, 
Mn, PDI, Td (°C), Φeff (%), elemental analyses as well as 1H and 13C{1H} results 
 

Ratio 
Fluorene Benzo[c]cinnoline 

Polymer 

Percentage of 
benzo[c]cinnoline in 

polymer product from 
elemental analyses 
studies (calculated 

from N content) 

7-10  
(x mmol) 

7-11 
(y mmol) 

7-7 (z mmol) 
Yield (%) Mn PDI Td 

(°C) 
Φeff 

(%) 

7-12a 6.3 5 4 1 64 10556 1.91 356 1.05 

7-12b 20.2 5 3 2 54 20123 1.71 329 0.57 

7-12c 27.6 5 2 3 60 39728 1.38 358 0.45 

7-12d 43.4 5 1 4 47 14565 1.26 347 0.26 

7-12e 50.5 1 0 1 51 6765 1.05 325 0.19 
 

Elements [Expected (%) / Found (%)] 
Polymer 

C H N 
1H NMR (CDCl3,  δ) 13C NMR (CDCl3,  δ) 

7-12a 89.77 / 89.86 9.35 / 8.51 0.88 / 0.55 

9.05, 8.65, 8.26 (br, C12H6N2 
aromatic protons); 7.40 - 7.90 (m, 

C25H32 aromatic protons); 0.72, 
1.07, 1.52, 2.06 (br, C25H32 alkyl 

protons) 

 
152.2, 151.8, 145.9, 142.6, 141.0, 140.5, 
140.0, 139.6, 138.1, 131.2, 128.8, 127.2, 
126.1, 122.0, 121.8, 121.5, 120.4, 120.3, 

120.0 (aromatic C); 55.3 (benzylic C); 40.4, 
31.4, 29.7, 23.8, 22.5, 14.0 (alkyl C) 

 

7-12b 89.19 / 90.36 8.95 / 8.08 1.86 / 1.88 

9.13, 8.73, 8.34 (br s, C12H6N2 
aromatic protons); 7.50 - 7.93 (m, 

C25H32 aromatic protons); 0.80, 
1.15, 1.26, 1.68, 2.14 (br, C25H32 

alkyl protons) 

 
152.4, 151.8, 145.9, 142.5, 141.2, 141.0, 
140.5, 140.0, 139.6, 138.1, 132.2, 132.1, 
128.8, 128.5, 128.4, 127.2, 126.1, 122.1, 

121.9, 121.5, 120.7, 120.4, 120.0 (aromatic 
C); 55.5, 55.3 (benzylic C);  40.4, 31.4, 

29.7, 23.8, 22.5, 14.0  (alkyl C) 
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7-12c 88.54 / 90.59 8.52 / 8.65 2.94 / 2.70 

9.13, 8.73, 8.33 (br s, C12H6N2 
aromatic protons); 7.69 - 7.92 (m, 

C25H32 aromatic protons); 0.80, 
1.14, 1.25, 1.57, 2.14 (br, C25H32 

alkyl protons) 

152.4, 152.2, 151.9, 151.8, 145.9, 142.6, 
142.5, 141.2, 140.8, 140.6, 140.1, 140.0, 
138.6, 131.1, 128.9, 127.2, 126.5, 126.4, 
126.2, 122.0, 121.9, 121.5, 120.7, 120.4, 
120.2, 119.9, 119.8 (aromatic C); 55.7, 

55.5, 55.3 (benzylic C); 40.4, 31.4, 29.6, 
23.8, 22.4, 13.9 (alkyl C) 

7-12d 87.82 / 87.36 8.04 / 7.64 4.14 / 4.49 

 
9.14 (s), 8.74 (d), 8.33 (d) (C12H6N2 
aromatic protons); 7.50 - 7.80 (m, 

C25H32 aromatic protons); 0.79, 
1.14, 1.25, 1.60, 2.18 (br, C25H32 

alkyl protons) 
 

152.4, 145.9, 142.5, 140.8, 138.6, 131.1, 
128.8, 126.5, 122.1, 121.9, 120.7, 119.8 

(aromatic C); 55.7 (benzylic C); 40.5, 31.5, 
29.7, 24.0, 22.6, 13.9 (alkyl C)  

7-12exv 87.02 / 87.39 7.50 / 7.42 5.49 / 5.55 

 
9.31 (s), 8.85 (d), 8.51 (d) (C12H6N2 
aromatic protons); 7.90 - 7.99 (m, 

C25H32 aromatic protons); 0.78, 
1.14, 1.88, 2.17 (br, C25H32 alkyl 

protons) 
 

152.4, 145.9, 142.6, 140.9, 138.6, 131.2, 
128.8, 126.6, 122.1, 121.9, 120.8, 119.9 

(aromatic C); 55.7 (benzylic C); 40.6, 31.6, 
29.8, 29.7, 24.0, 22.6, 14.0 (alkyl C) 

 

 

                                                 
xv 13C NMR was carried out on the Bruker AMX500 (500MHz) 
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COMPOUND 8-1a 

 

Compound 6-8 (100 mg, 0.1 mmol) and excess Zn(OAc)2.xH2O were dissolved in THF 

and stirred for 5 days. Excess CHCl3 was added to the mixture which was washed twice 

with brine and lastly with minimal deionized water. The salt was recrystallized using 

CHCl3/hexane mixture then dried.  

 

Yield: 105 mg (70 %). 1H NMR (CDCl3): δ 10.03, 10.05 (2s, 2H, meso protons); 9.05, 

9.01, 8.47, 8.31, 8.09 (5d, 8H, pyrrolic protons); 6.62 - 7.67 (m, 38H, Ph-H protons), 4.65 

- 4.76 (m, 4H, Ph-CH2P- protons).  13C {1H} NMR (CDCl3): δ 149.6, 136.2, 134.9, 134.5, 

134.0, 133.9, 133.5, 133.3, 132.5, 132.1, 130.3, 130.2, 130.0, 129.7, 129.6, 129.1, 129.0, 

128.0, 128.0, 126.8, 126.7, 117.3, 117.1, 116.2, 115.9, 114.8, 114.6 (62C, meso C, 

pyrrolic C and phenyl C); 106.6 (2C, aromatic PhCH2P-). ESI-mass spectrum: 539.3 [(M-

2Br)2+, 100 %]. m/z calcd: 1074.2959, HRMS: 1077.287 [(M-2Br+, 48 %]. Elemental 

Analysis (Calc.): C, 68.00; H, 4.24; N, 4.53; Zn, 5.29 % (Found): C, 67.99; H, 4.08; N, 

4.70; Zn, 4.71  %. 

 

COMPOUND 8-1b 

 

Refer to procedure on 8-1a. Compound 6-6 was used as starting material for the 

synthesis of 8-1b to yield purple crystals. 

 

Yield: 105 mg (70 %). 1H NMR (CDCl3): δ 10.08 (s, 2H, meso protons); 9.08, 8.45, 8.35 

(3d, 8H, pyrrolic protons), 6.63 - 7.72 (m, 38H, Ph-H protons), 4.62 (d, 4H, Ph-CH2P- 

protons). 13C {1H} NMR (CDCl3): δ 149.7, 149.6, 136.2, 134.4, 133.9, 133.8, 133.4, 133.3, 
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132.6, 131.1, 130.6, 130.1, 129.9, 129.6, 129.4, 128.1, 126.8, 117.4, 116.3, 115.2 (62C, 

meso C, pyrrolic C and phenyl C); 106.6 (2C, PhCH2P-). ESI-mass spectrum: 539.2 [(M-

2Br)2+, 60 %]. m/z calcd: 1074.2959, HRMS: 1077.287 [(M-2Br)+, 18 %]. Elemental 

Analysis (Calc.): C, 68.00; H, 4.24; N, 4.53; Br, 12.93; P, 5.01; Zn, 5.29 % (Found): C, 

66.93; H, 4.53; N, 4.47; Br, 14.66; P, 3.65; Zn, 5.40  %. 

 

1-BROMOMETHYL-4-METHOXYMETHYLBENZENE (8-3)21 

 

Refer to procedure for 1-bromomethyl-2-methoxymethylbenzene 4-9. Compound 8-3 

was synthesized from 1,4-bisbromomethylbenzene 8-2 (22.12 g, 84 mmol) to yield pale 

yellow oil as product. 

 

Yield: 8.13 g (45 %). 1H NMR (CDCl3): δ 7.37, 7.30 (2 overlapping d, 4H, Ph-H protons), 

4.48 (s, 2H, Ph-CH2O- protons), 4.44 (s, 2H, PhCH2Br protons), 3.38 (s, 3H, -OCH3 

protons). 13C {1H} NMR (CDCl3): δ 138.6 (1C, aromatic C-CH2O), 137.1 (1C, aromatic C-

CH2Br); 129.1, 128.0 (4C, aromatic CH), 74.2(1C, Ph-CH2O-), 58.2 (1C, -OCH3), 33.3 

(1C, Ph-CH2Br). EI-mass spectrum: 213.9 (50 %), 215.9 (50 %). m/z calcd: 213.9993, 

HRMS: 213.9986 (100 %), 215.9970 (100 %). 

 

4-METHOXYMETHYLBENZALDEHYDE (8-4)8 

 

Refer to procedure for 2-methoxymethylbenzaldehyde 4-4. Compound 8-4 was 

synthesized from 8-3 (33 mmol, 7.10 g) to yield yellow oil as product. 
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Yield: 2.50 g (38 %). 1H NMR (CDCl3): δ 10.01 (s, 1H, -CHO proton), 7.87 (d, 2H, Ph-H 

protons, 3J = 6.6 Hz), 7.50 (d, 2H, Ph-H protons, 3J = 7.0 Hz), 4.54 (s, 2H, Ph-CH2- 

protons), 3.43 (s, 3H, -OCH3 protons). 13C {1H} NMR (CDCl3): δ 192.0 (1C, -CHO);  

129.8, 127.6 (4C, aromatic CH); 145.3, 135.7 (2C, aromatic C); 73.9 (Ph-CH2O-); 58.4 (-

OCH3). EI-mass spectrum: 150.1 (90 %). m/z calcd: 150.1775, HRMS: 150.0677 (12 %). 

 

5,15-DI(4-METHOXYMETHYLPHENYL)PORPHYRIN (8-5).  

 

Refer to procedure for 4-6 and 4-7. Compound 8-5 was synthesized from compounds 8-

4 and 4-5 to yield purple crystals after purification over silica gel (60 - 250 mesh) using 

CH2Cl2 as eluent. 

 

Yield: 12 mg (13 %). 1H NMR (CDCl3): δ 10.34 (s, 2H, meso protons), 9.45 (d, 4H, 

pyrrolic protons, 3J = 4.5 Hz), 9.15 (d, 4H, pyrrolic protons, 3J = 4.5 Hz), 8.26 (d, 4H, Ph-

H protons, 3J = 8.0 Hz), 7.76 (d, 4H, Ph-H protons, 3J = 8.0 Hz), 4.82 (s, 4H, Ph-CH2O- 

protons), 3.65 (s, 6H, -OCH3 protons), unobserved (br s, NH protons). 13C {1H} NMR 

(CDCl3): δ 147.2, 145.2, 140.8, 137.7, 134.9, 131.6, 131.0, 126.3, 118.8, 105.2 (32C, 

meso C, pyrrolic C and phenyl C); 74.8 (2C, PhCH2O-); 58.6 (2C, -OCH3). EI-mass 

spectrum: 550.2 (100 %). MALDI-TOF m/z: 550.3492 (100 %). 

 

5,15-DI(4-BROMOMETHYLPHENYL)PORPHYRIN (8-6).  

 

Refer to procedure on 6-5. Compound 8-6 was synthesized from 8-5 to yield purple 

crystals. 
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Yield: 400 mg (68 %). 1H NMR (CDCl3): δ 10.33 (s, 2H, meso protons), 9.42 (d, 2H, 

pyrrolic protons, 3J = 4.8 Hz), 9.09 (d, 2H, pyrrolic protons, 3J = 4.5 Hz), 8.26 (d, 4H, Ph-

H protons, 3J = 7.7 Hz), 7.86 (d, 4H, Ph-H protons, 3J = 8.0 Hz), 4.89 (s, 4H, Ph-CH2Br 

protons), -3.12 (s, 2H, NH protons). 13C {1H} NMR (d7-DMF): δ 147.8, 146.2, 141.9, 

139.1, 136.0, 135.8, 133.4, 131.5, 129.1, 127.9, 120.5, 106.6 (32C, meso C, pyrrolic C 

and phenyl C); overlapped by deuterated solvent peak (2C, PhCH2Br). EI-mass 

spectrum: 648. m/z calcd: 648.3892, MALDI-TOF m/z: 647.1842 (55 %), 649.1978 (100 

%), 651.2018 (65 %). Elemental Analysis (Calc.) for C34H24N4Br2: C, 62.98; H, 3.73; N, 

8.64 % (Found): C, 62.67; H, 3.45; N, 8.40  %. 

 

COMPOUND 8-7 

 

Refer to procedure for 6-6. Compound 8-7 was synthesized from 8-6 to yield purple 

crystals. 

 

Yield: 452 mg (50 %). 1H NMR (CD3OD): δ 10.43 (s, 2H, meso protons),  9.50 (d, 4H, 

pyrrolic protons, 3J = 4.9 Hz),  8.90 (d, 4H, pyrrolic protons, 3J = 4.9 Hz), 7.80 - 8.00 (m, 

38H, Ph-H protons), 7.38 (2d, 4H, Ph-CH2P- protons), unobserved (2H, NH protons). 13C 

{1H} NMR (DMF and CD3OD): δ 147.8, 146.2, 141.7, 136.8, 136.0, 135.8, 134.7, 133.4, 

131.7, 131.6, 130.9, 130.7, 129.1, 127.9, 127.9 (62C, meso C, pyrrolic C and phenyl C); 

119.4 (2C, PhCH2P-). ESI-mass spectrum: 1011.1 [(M-2Br)+, 30 %]. m/z calcd: 

1012.3824, HRMS: 1011.3736 [(M-2Br)+, 100 %]. Elemental Analysis (Calc.) for 

C70H54N4P2Br2: C, 71.68; H, 4.64; N, 4.78; Br, 13.62 %. (Found): C, 67.94; H, 4.78; N, 

4.88; Br, 13.93 % 
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COMPOUND 8-1c 

 

Refer to procedure on 8-1a. Compound 8-1c was synthesized from 8-7 to yield purple 

crystals. 

 

Yield: 102mg (68 %). 1H NMR (CD3OD): δ 10.26, 10.44 (2s, 2H, meso protons); 9.50, 

9.41, 8.89, 8.83 (4d, 8H, pyrrolic protons; 3J = 4.9, 4.5, 4.5, 4.2 Hz respectively), 7.24 - 

7.97 (m, 38H, Ph-H protons); 7.25, 7.35 (2d, 4H, Ph-CH2P- protons). 13C {1H} NMR 

(CD3OD): δ  150.3, 150.1, 135.9, 135.3, 134.8, 134.7, 132.2, 131.6, 130.8, 130.7, 130.0, 

129.4, 119.1, 118.4, 118.0 (62C, meso C, pyrrolic C and phenyl C); 106.3 (2C, PhCH2P-). 

ESI-mass spectrum: 537.3 [(M-2Br)2+, 100 %]. m/z calcd: 1074.2959, HRMS: 1077.286 

[M-2Br]+. Elemental Analysis (Calc.): C, 68.00; H, 4.24; N, 4.53; Br, 12.93; P, 5.01; Zn, 

5.29  % (Found): C, 63.09; H, 3.58; N, 5.13; Br, 16.18; P, 4.20; Zn, 4.12  %. 
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Crystal data and structure refinement for 4-6 
 
Empirical formula  C36H30N4O2 
Formula weight  550.64 
Temperature  223(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/n 
Unit cell dimensions a = 8.3509(6) Å α = 90° 
 b = 15.5894(12) Å β = 98.646(2)° 
 c = 11.0918(8) Å γ = 90° 
Volume 1427.58(18) Å

3
 

Z 2 
Density (calculated) 1.281 Mg/m

3
 

Absorption coefficient 0.081 mm
-1

 
F(000) 580 
Crystal size 0.34 x 0.10 x 0.10 mm

3
 

Theta range for data collection 2.27 to 30.04 ° 
Index ranges -11<=h<=11, -21<=k<=19, -15<=l<=14 
Reflections collected 11517 
Independent reflections 4081 [R(int) = 0.0374] 
Completeness to theta = 30.04 ° 97.7 %  
Absorption correction Sadabs, (Sheldrick, 1996) 
Max. and min. transmission 0.9920 and 0.9731 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 4081 / 0 / 250 
Goodness-of-fit on F

2
 0.913 

Final R indices [I>2sigma(I)] R1 = 0.0535, wR2 = 0.1184 
R indices (all data) R1 = 0.0838, wR2 = 0.1304 
Largest diff. peak and hole 0.306 and -0.210 e.Å

-3
 

 
Selected bond lengths [Å] and angles [°] for 4-6 
 
O(1)-C(17)  1.4058(19) 
O(1)-C(18)  1.411(2) 
N(1)-C(11)  1.3666(17) 
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N(1)-C(8)  1.3770(17) 
N(2)-C(15)  1.3691(18) 
N(2)-C(12)  1.3754(17) 
C(1)-C(2)  1.401(2) 
C(1)-C(6)  1.404(2) 
C(1)-C(17)  1.501(2) 
C(2)-C(3)  1.376(3) 
C(3)-C(4)  1.378(3) 
C(4)-C(5)  1.391(2) 
C(5)-C(6)  1.391(2) 
C(6)-C(7)  1.5047(19) 
C(7)-C(12)  1.398(2) 
C(7)-C(8)  1.400(2) 
C(8)-C(9)  1.450(2) 
C(9)-C(10)  1.343(2) 
C(10)-C(11)  1.453(2) 
C(11)-C(16)#1  1.393(2) 
C(12)-C(13)  1.426(2) 
C(13)-C(14)  1.360(2) 
C(14)-C(15)  1.4294(19) 
C(15)-C(16)  1.386(2) 
C(16)-C(11)#1  1.393(2) 
 
C(17)-O(1)-C(18) 113.53(15) 
C(11)-N(1)-C(8) 105.03(11) 
C(15)-N(2)-C(12) 110.20(12) 
C(2)-C(1)-C(6) 118.71(15) 
C(2)-C(1)-C(17) 119.83(14) 
C(6)-C(1)-C(17) 121.45(13) 
C(3)-C(2)-C(1) 121.26(16) 
C(2)-C(3)-C(4) 120.13(16) 
C(3)-C(4)-C(5) 119.57(18) 
C(6)-C(5)-C(4) 121.10(16) 
C(5)-C(6)-C(1) 119.21(13) 
C(5)-C(6)-C(7) 119.12(13) 
C(1)-C(6)-C(7) 121.66(14) 
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C(12)-C(7)-C(8) 124.32(12) 
C(12)-C(7)-C(6) 116.72(12) 
C(8)-C(7)-C(6) 118.93(13) 
N(1)-C(8)-C(7) 125.16(12) 
N(1)-C(8)-C(9) 110.45(13) 
C(7)-C(8)-C(9) 124.39(13) 
C(10)-C(9)-C(8) 107.09(14) 
C(9)-C(10)-C(11) 106.29(14) 
N(1)-C(11)-C(16)#1 126.29(13) 
N(1)-C(11)-C(10) 111.13(12) 
C(16)#1-C(11)-C(10) 122.58(14) 
N(2)-C(12)-C(7) 124.64(13) 
N(2)-C(12)-C(13) 106.57(12) 
C(7)-C(12)-C(13) 128.79(13) 
C(14)-C(13)-C(12) 108.41(13) 
C(13)-C(14)-C(15) 107.93(13) 
N(2)-C(15)-C(16) 126.43(13) 
N(2)-C(15)-C(14) 106.88(12) 
C(16)-C(15)-C(14) 126.61(13) 
C(15)-C(16)-C(11)#1 128.16(14) 
O(1)-C(17)-C(1) 109.73(14) 
 
Crystal data and structure refinement for 4-13 
 
Empirical formula  C36H30N4O2 
Formula weight  550.64 
Temperature  223(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/n 
Unit cell dimensions a = 8.7154(19) Å α = 90° 
 b = 13.750(3) Å β = 108.057(5)° 
 c = 12.896(3) Å γ = 90° 
Volume 1469.3(5) Å

3
 

Z 2 
Density (calculated) 1.245 Mg/m

3
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Absorption coefficient 0.078 mm
-1

 
F(000) 580 
Crystal size 0.16 x 0.14 x 0.10 mm

3
 

Theta range for data collection 2.23 to 25.00 ° 
Index ranges -10<=h<=9, -10<=k<=16, -14<=l<=15 
Reflections collected 8200 
Independent reflections 2587 [R(int) = 0.0692] 
Completeness to theta = 25.00 ° 99.8 %  
Absorption correction Sadabs, (Sheldirck 2001) 
Max. and min. transmission 0.9922 and 0.9876 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 2587 / 0 / 195 
Goodness-of-fit on F

2
 1.020 

Final R indices [I>2sigma(I)] R1 = 0.0811, wR2 = 0.1824 
R indices (all data) R1 = 0.1500, wR2 = 0.2113 
Largest diff. peak and hole 0.318 and -0.184 e.Å

-3
 

 
Selected bond lengths [Å] and angles [°] for 4-13 
 
O(1)-C(17)  1.378(7) 
O(1)-C(18)  1.439(6) 
N(1)-C(6)  1.362(4) 
N(1)-C(9)  1.384(4) 
N(2)-C(4)  1.366(4) 
N(2)-C(1)  1.372(4) 
C(1)-C(10)#1  1.406(5) 
C(1)-C(2)  1.444(5) 
C(2)-C(3)  1.330(5) 
C(3)-C(4)  1.439(5) 
C(4)-C(5)  1.376(5) 
C(5)-C(6)  1.396(5) 
C(6)-C(7)  1.423(5) 
C(7)-C(8)  1.358(5) 
C(8)-C(9)  1.425(5) 
C(9)-C(10)  1.395(5) 
C(10)-C(1)#1  1.406(5) 
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C(10)-C(11)  1.501(5) 
C(11)-C(12)  1.387(6) 
C(11)-C(16)  1.391(6) 
C(12)-C(13)  1.409(7) 
C(13)-C(14)  1.356(8) 
C(14)-C(15)  1.364(8) 
C(15)-C(16)  1.398(6) 
C(15)-C(17)  1.493(8) 
 
C(17)-O(1)-C(18) 113.9(5) 
C(6)-N(1)-C(9) 109.7(3) 
C(4)-N(2)-C(1) 105.9(3) 
N(2)-C(1)-C(10)#1 125.1(3) 
N(2)-C(1)-C(2) 109.7(3) 
C(10)#1-C(1)-C(2) 125.1(3) 
C(3)-C(2)-C(1) 106.9(4) 
C(2)-C(3)-C(4) 107.6(3) 
N(2)-C(4)-C(5) 126.9(3) 
N(2)-C(4)-C(3) 109.8(3) 
C(5)-C(4)-C(3) 123.3(3) 
C(4)-C(5)-C(6) 128.9(3) 
N(1)-C(6)-C(5) 126.0(3) 
N(1)-C(6)-C(7) 107.3(3) 
C(5)-C(6)-C(7) 126.7(3) 
C(8)-C(7)-C(6) 108.1(3) 
C(7)-C(8)-C(9) 108.2(3) 
N(1)-C(9)-C(10) 124.7(3) 
N(1)-C(9)-C(8) 106.6(3) 
C(10)-C(9)-C(8) 128.7(3) 
C(9)-C(10)-C(1)#1 124.2(3) 
C(9)-C(10)-C(11) 117.4(3) 
C(1)#1-C(10)-C(11) 118.5(3) 
C(12)-C(11)-C(16) 119.3(4) 
C(12)-C(11)-C(10) 120.4(4) 
C(16)-C(11)-C(10) 120.3(4) 
C(11)-C(12)-C(13) 119.1(5) 
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C(14)-C(13)-C(12) 120.0(6) 
C(13)-C(14)-C(15) 122.2(6) 
C(14)-C(15)-C(16) 118.4(6) 
C(14)-C(15)-C(17) 121.7(6) 
C(16)-C(15)-C(17) 119.9(7) 
C(11)-C(16)-C(15) 121.0(5) 
O(1)-C(17)-C(15) 112.0(5) 
 
Crystal data and structure refinement for 4-15 grown in CHCl3/cyclohexane 
 
Empirical formula  C36H28N4O2Zn 
Formula weight  613.99 
Temperature  223(2) K 
Wavelength  0.71073 Å 
Crystal system  Tetragonal 
Space group  I4(1)/a 
Unit cell dimensions a = 22.812(3) Å α = 90° 
 b = 22.812(3) Å β = 90° 
 c = 11.423(3) Å γ = 90° 
Volume 5944.3(18) Å

3
 

Z 8 
Density (calculated) 1.372 Mg/m

3
 

Absorption coefficient 0.866 mm
-1

 
F(000) 2544 
Crystal size 0.10 x 0.10 x 0.04 mm

3
 

Theta range for data collection 1.79 to 25.00 ° 
Index ranges -27<=h<=20, -27<=k<=26, -13<=l<=13 
Reflections collected 16293 
Independent reflections 2613 [R(int) = 0.1324] 
Completeness to theta = 25.00 ° 100.0 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Max. and min. transmission 0.9662 and 0.9184 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 2613 / 0 / 196 
Goodness-of-fit on F

2
 1.020 

Final R indices [I>2sigma(I)] R1 = 0.0593, wR2 = 0.1184 
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R indices (all data) R1 = 0.1022, wR2 = 0.1338 
Largest diff. peak and hole            0.513 and -0.303 e.Å

-3 

 
Selected bond lengths [Å] and angles [°] for 4-15 grown in CHCl3/cyclohexane 
 
Zn(1)-N(2)#1  2.037(3) 
Zn(1)-N(2)  2.037(3) 
Zn(1)-N(1)#1  2.062(3) 
Zn(1)-N(1)  2.062(3) 
Zn(1)-O(1)#2  2.434(3) 
Zn(1)-O(1)#3  2.434(3) 
O(1)-C(18)  1.423(5) 
O(1)-C(17)  1.423(5) 
O(1)-Zn(1)#4  2.434(3) 
N(1)-C(4)  1.366(5) 
N(1)-C(1)  1.369(5) 
N(2)-C(6)  1.369(5) 
N(2)-C(9)  1.379(5) 
C(1)-C(10)#1  1.406(6) 
C(1)-C(2)  1.439(6) 
C(2)-C(3)  1.337(6) 
C(3)-C(4)  1.433(6) 
C(4)-C(5)  1.399(6) 
C(5)-C(6)  1.386(6) 
C(6)-C(7)  1.437(6) 
C(7)-C(8)  1.346(6) 
C(8)-C(9)  1.443(6) 
C(9)-C(10)  1.401(6) 
C(10)-C(1)#1  1.406(6) 
C(10)-C(11)  1.493(6) 
C(11)-C(12)  1.390(6) 
C(11)-C(16)  1.398(6) 
C(12)-C(13)  1.380(6) 
C(13)-C(14)  1.369(6) 
C(14)-C(15)  1.392(6) 
C(15)-C(16)  1.393(6) 
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C(16)-C(17)  1.523(6) 
 
N(2)#1-Zn(1)-N(2) 180.00(3) 
N(2)#1-Zn(1)-N(1)#1 90.99(13) 
N(2)-Zn(1)-N(1)#1 89.01(13) 
N(2)#1-Zn(1)-N(1) 89.01(13) 
N(2)-Zn(1)-N(1) 90.99(13) 
N(1)#1-Zn(1)-N(1) 180.0(3) 
N(2)#1-Zn(1)-O(1)#2 87.58(12) 
N(2)-Zn(1)-O(1)#2 92.42(12) 
N(1)#1-Zn(1)-O(1)#2 90.89(12) 
N(1)-Zn(1)-O(1)#2 89.11(12) 
N(2)#1-Zn(1)-O(1)#3 92.42(12) 
N(2)-Zn(1)-O(1)#3 87.58(12) 
N(1)#1-Zn(1)-O(1)#3 89.11(12) 
N(1)-Zn(1)-O(1)#3 90.89(12) 
O(1)#2-Zn(1)-O(1)#3 180.00(15) 
C(18)-O(1)-C(17) 112.6(4) 
C(18)-O(1)-Zn(1)#4 126.7(3) 
C(17)-O(1)-Zn(1)#4 120.1(3) 
C(4)-N(1)-C(1) 106.7(3) 
C(4)-N(1)-Zn(1) 125.7(3) 
C(1)-N(1)-Zn(1) 127.6(3) 
C(6)-N(2)-C(9) 106.9(3) 
C(6)-N(2)-Zn(1) 125.6(3) 
C(9)-N(2)-Zn(1) 127.4(3) 
N(1)-C(1)-C(10)#1 124.9(4) 
N(1)-C(1)-C(2) 109.2(4) 
C(10)#1-C(1)-C(2) 125.8(4) 
C(3)-C(2)-C(1) 107.2(4) 
C(2)-C(3)-C(4) 107.6(4) 
N(1)-C(4)-C(5) 124.3(4) 
N(1)-C(4)-C(3) 109.3(4) 
C(5)-C(4)-C(3) 126.3(4) 
C(6)-C(5)-C(4) 128.0(4) 
N(2)-C(6)-C(5) 125.3(4) 
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N(2)-C(6)-C(7) 109.6(4) 
C(5)-C(6)-C(7) 125.2(4) 
C(8)-C(7)-C(6) 107.2(4) 
C(7)-C(8)-C(9) 107.7(4) 
N(2)-C(9)-C(10) 125.7(4) 
N(2)-C(9)-C(8) 108.7(4) 
C(10)-C(9)-C(8) 125.7(4) 
C(9)-C(10)-C(1)#1 125.2(4) 
C(9)-C(10)-C(11) 117.1(4) 
C(1)#1-C(10)-C(11) 117.7(4) 
C(12)-C(11)-C(16) 118.7(4) 
C(12)-C(11)-C(10) 120.1(4) 
C(16)-C(11)-C(10) 121.2(4) 
C(13)-C(12)-C(11) 121.5(4) 
C(14)-C(13)-C(12) 119.6(4) 
C(13)-C(14)-C(15) 120.5(4) 
C(14)-C(15)-C(16) 120.0(4) 
C(15)-C(16)-C(11) 119.7(4) 
C(15)-C(16)-C(17) 120.2(4) 
C(11)-C(16)-C(17) 120.1(4) 
O(1)-C(17)-C(16) 112.4(4) 
 
Crystal data and structure refinement for 4-15 grown in ethyl acetate 
 
Empirical formula  C36H28N4O2Zn 
Formula weight  613.99 
Temperature  223(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 9.2323(8) Å α = 90° 
 b = 10.3641(10) Å β = 101.860(2)° 
 c = 15.0985(14) Å γ = 90° 
Volume 1413.9(2) Å

3
 

Z 2 
Density (calculated) 1.442 Mg/m

3
 



   343

Absorption coefficient 0.910 mm
-1

 
F(000) 636 
Crystal size 0.20 x 0.10 x 0.06 mm

3
 

Theta range for data collection 2.25 to 27.50 ° 
Index ranges -11<=h<=9, -11<=k<=13, -18<=l<=19 
Reflections collected 9655 
Independent reflections 3228 [R(int) = 0.0508] 
Completeness to theta = 27.50 ° 99.8 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Max. and min. transmission 0.9474 and 0.8389 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 3228 / 0 / 197 
Goodness-of-fit on F

2
 1.108 

Final R indices [I>2sigma(I)] R1 = 0.0598, wR2 = 0.1243 
R indices (all data) R1 = 0.0799, wR2 = 0.1327 
Largest diff. peak and hole 0.589 and -0.313 e.Å

-3
 

 
Selected bond lengths [Å] and angles [°] for 4-15 grown in ethyl acetate 
 
Zn(1)-N(1)#1  2.028(2) 
Zn(1)-N(1)  2.028(2) 
Zn(1)-N(2)#1  2.030(2) 
Zn(1)-N(2)  2.030(2) 
N(1)-C(1)  1.369(4) 
N(1)-C(4)  1.382(4) 
N(2)-C(9)  1.369(4) 
N(2)-C(6)  1.389(4) 
O(1)-C(17)  1.372(4) 
O(1)-C(18)  1.400(5) 
C(1)-C(10)  1.386(4) 
C(1)-C(2)  1.437(4) 
C(2)-C(3)  1.346(4) 
C(3)-C(4)  1.437(4) 
C(4)-C(5)  1.397(4) 
C(5)-C(6)  1.391(4) 
C(5)-C(16)  1.512(4) 
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C(6)-C(7)  1.443(4) 
C(7)-C(8)  1.335(5) 
C(8)-C(9)  1.444(4) 
C(9)-C(10)#1  1.386(4) 
C(10)-C(9)#1  1.386(4) 
C(11)-C(16)  1.392(4) 
C(11)-C(12)  1.395(4) 
C(11)-C(17)  1.495(4) 
C(12)-C(13)  1.382(5) 
C(13)-C(14)  1.378(5) 
C(14)-C(15)  1.383(4) 
C(15)-C(16)  1.393(4) 
 
N(1)#1-Zn(1)-N(1) 180.00(15) 
N(1)#1-Zn(1)-N(2)#1 88.92(10) 
N(1)-Zn(1)-N(2)#1 91.08(10) 
N(1)#1-Zn(1)-N(2) 91.08(10) 
N(1)-Zn(1)-N(2) 88.92(10) 
N(2)#1-Zn(1)-N(2) 180.0 
C(1)-N(1)-C(4) 106.1(3) 
C(1)-N(1)-Zn(1) 125.62(19) 
C(4)-N(1)-Zn(1) 128.1(2) 
C(9)-N(2)-C(6) 106.4(2) 
C(9)-N(2)-Zn(1) 125.71(19) 
C(6)-N(2)-Zn(1) 127.8(2) 
C(17)-O(1)-C(18) 113.9(3) 
N(1)-C(1)-C(10) 125.4(3) 
N(1)-C(1)-C(2) 110.0(3) 
C(10)-C(1)-C(2) 124.6(3) 
C(3)-C(2)-C(1) 107.1(3) 
C(2)-C(3)-C(4) 107.5(3) 
N(1)-C(4)-C(5) 124.7(3) 
N(1)-C(4)-C(3) 109.3(3) 
C(5)-C(4)-C(3) 125.9(3) 
C(6)-C(5)-C(4) 125.4(3) 
C(6)-C(5)-C(16) 117.6(3) 
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C(4)-C(5)-C(16) 116.9(3) 
N(2)-C(6)-C(5) 124.9(3) 
N(2)-C(6)-C(7) 109.1(3) 
C(5)-C(6)-C(7) 126.1(3) 
C(8)-C(7)-C(6) 107.3(3) 
C(7)-C(8)-C(9) 107.9(3) 
N(2)-C(9)-C(10)#1 125.3(3) 
N(2)-C(9)-C(8) 109.3(3) 
C(10)#1-C(9)-C(8) 125.4(3) 
C(9)#1-C(10)-C(1) 126.9(3) 
C(16)-C(11)-C(12) 119.0(3) 
C(16)-C(11)-C(17) 122.7(3) 
C(12)-C(11)-C(17) 118.4(3) 
C(13)-C(12)-C(11) 121.1(3) 
C(14)-C(13)-C(12) 119.9(3) 
C(13)-C(14)-C(15) 119.7(3) 
C(14)-C(15)-C(16) 121.0(3) 
C(11)-C(16)-C(15) 119.4(3) 
C(11)-C(16)-C(5) 121.9(3) 
C(15)-C(16)-C(5) 118.7(3) 
O(1)-C(17)-C(11) 110.6(3) 
 
Crystal data and structure refinement for 4-15 grown in nitrobenzene 
 
Empirical formula  C36H28N4O2Zn 
Formula weight  613.99 
Temperature  223(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 9.236(6) Å α = 90° 
 b = 10.424(6) Å β = 102.302(13)° 
 c = 15.167(10) Å γ = 90° 
Volume 1426.6(15) Å

3
 

Z 2 
Density (calculated) 1.429 Mg/m

3
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Absorption coefficient 0.902 mm
-1

 
F(000) 636 
Crystal size 0.14 x 0.12 x 0.08 mm

3
 

Theta range for data collection 2.26 to 27.50 ° 
Index ranges -9<=h<=11, -12<=k<=13, -19<=l<=19 
Reflections collected 9531 
Independent reflections 3264 [R(int) = 0.0593] 
Completeness to theta = 27.50 ° 99.8 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Max. and min. transmission 0.9313 and 0.8841 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 3264 / 0 / 196 
Goodness-of-fit on F

2
 1.031 

Final R indices [I>2sigma(I)] R1 = 0.0569, wR2 = 0.1336 
R indices (all data) R1 = 0.0864, wR2 = 0.1465 
Largest diff. peak and hole 0.861 and -0.554 e.Å

-3
 

 
Selected bond lengths [Å] and angles [°] for 4-15 grown in nitrobenzene 

 
Zn(1)-N(1)#1  2.023(3) 
Zn(1)-N(1)  2.023(3) 
Zn(1)-N(2)  2.039(3) 
Zn(1)-N(2)#1  2.039(3) 
N(1)-C(2)  1.369(4) 
N(1)-C(5)  1.392(4) 
N(2)-C(10)  1.368(4) 
N(2)-C(7)  1.388(4) 
O(1)-C(17)  1.361(5) 
O(1)-C(18)  1.398(5) 
C(1)-C(10)#1  1.389(4) 
C(1)-C(2)  1.396(4) 
C(2)-C(3)  1.445(4) 
C(3)-C(4)  1.345(5) 
C(4)-C(5)  1.437(5) 
C(5)-C(6)  1.393(5) 
C(6)-C(7)  1.394(5) 
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C(6)-C(11)  1.516(4) 
C(7)-C(8)  1.438(5) 
C(8)-C(9)  1.343(5) 
C(9)-C(10)  1.437(4) 
C(10)-C(1)#1  1.389(4) 
C(11)-C(12)  1.386(5) 
C(11)-C(16)  1.398(5) 
C(12)-C(13)  1.391(4) 
C(13)-C(14)  1.378(5) 
C(14)-C(15)  1.373(5) 
C(15)-C(16)  1.399(4) 
C(16)-C(17)  1.493(5) 
 
N(1)#1-Zn(1)-N(1) 180.00(11) 
N(1)#1-Zn(1)-N(2) 91.56(11) 
N(1)-Zn(1)-N(2) 88.44(11) 
N(1)#1-Zn(1)-N(2)#1 88.44(11) 
N(1)-Zn(1)-N(2)#1 91.56(11) 
N(2)-Zn(1)-N(2)#1 180.0 
C(2)-N(1)-C(5) 105.9(3) 
C(2)-N(1)-Zn(1) 125.5(2) 
C(5)-N(1)-Zn(1) 128.4(2) 
C(10)-N(2)-C(7) 106.3(3) 
C(10)-N(2)-Zn(1) 125.4(2) 
C(7)-N(2)-Zn(1) 128.1(2) 
C(17)-O(1)-C(18) 114.0(4) 
C(10)#1-C(1)-C(2) 127.4(3) 
N(1)-C(2)-C(1) 125.1(3) 
N(1)-C(2)-C(3) 110.0(3) 
C(1)-C(2)-C(3) 125.0(3) 
C(4)-C(3)-C(2) 107.2(3) 
C(3)-C(4)-C(5) 107.5(3) 
N(1)-C(5)-C(6) 124.9(3) 
N(1)-C(5)-C(4) 109.5(3) 
C(6)-C(5)-C(4) 125.6(3) 
C(5)-C(6)-C(7) 125.0(3) 
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C(5)-C(6)-C(11) 117.5(3) 
C(7)-C(6)-C(11) 117.5(3) 
N(2)-C(7)-C(6) 124.9(3) 
N(2)-C(7)-C(8) 109.3(3) 
C(6)-C(7)-C(8) 125.8(3) 
C(9)-C(8)-C(7) 107.0(3) 
C(8)-C(9)-C(10) 107.9(3) 
N(2)-C(10)-C(1)#1 124.9(3) 
N(2)-C(10)-C(9) 109.4(3) 
C(1)#1-C(10)-C(9) 125.7(3) 
C(12)-C(11)-C(16) 119.4(3) 
C(12)-C(11)-C(6) 118.8(3) 
C(16)-C(11)-C(6) 121.8(3) 
C(11)-C(12)-C(13) 121.1(3) 
C(14)-C(13)-C(12) 119.8(4) 
C(15)-C(14)-C(13) 119.3(3) 
C(14)-C(15)-C(16) 122.1(3) 
C(11)-C(16)-C(15) 118.2(3) 
C(11)-C(16)-C(17) 122.6(3) 
C(15)-C(16)-C(17) 119.1(3) 
O(1)-C(17)-C(16) 110.5(3) 
 
Crystal data and structure refinement for 4-16 grown in CHCl3 
 
Empirical formula  C36H28N4O2Zn 
Formula weight  613.99 
Temperature  223(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/n 
Unit cell dimensions a = 14.3395(11) Å α = 90° 
 b = 10.2698(8) Å β = 99.468(2)° 
 c = 19.7425(14) Å γ = 90° 
Volume 2867.8(4) Å

3
 

Z 4 
Density (calculated) 1.422 Mg/m

3
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Absorption coefficient 0.898 mm
-1

 
F(000) 1272 
Crystal size 0.08 x 0.06 x 0.04 mm

3
 

Theta range for data collection 1.91 to 25.00 ° 
Index ranges -12<=h<=17, -12<=k<=12, -23<=l<=23 
Reflections collected 16389 
Independent reflections 5043 [R(int) = 0.1086] 
Completeness to theta = 25.00 ° 99.9 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Max. and min. transmission 0.9650 and 0.9317 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 5043 / 0 / 390 
Goodness-of-fit on F

2
 0.982 

Final R indices [I>2sigma(I)] R1 = 0.0606, wR2 = 0.1053 
R indices (all data) R1 = 0.1187, wR2 = 0.1222 
Largest diff. peak and hole 0.416 and -0.398 e.Å

-3
 

 
Selected bond lengths [Å] and angles [°] for 4-16 grown in CHCl3 

 
Zn(1)-N(2)  2.028(4) 
Zn(1)-N(4)  2.041(4) 
Zn(1)-N(1)  2.055(4) 
Zn(1)-N(3)  2.058(4) 
Zn(1)-O(1)#1  2.209(3) 
N(1)-C(4)  1.374(5) 
N(1)-C(1)  1.376(6) 
N(2)-C(6)  1.364(5) 
N(2)-C(9)  1.378(6) 
N(3)-C(11)  1.364(6) 
N(3)-C(14)  1.367(5) 
N(4)-C(16)  1.371(5) 
N(4)-C(19)  1.374(6) 
O(1)-C(28)  1.427(5) 
O(1)-C(27)  1.435(5) 
O(1)-Zn(1)#1  2.209(3) 
O(2)-C(36)  1.416(7) 
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O(2)-C(35)  1.421(6) 
C(1)-C(20)  1.403(6) 
C(1)-C(2)  1.444(6) 
C(2)-C(3)  1.336(6) 
C(3)-C(4)  1.430(6) 
C(4)-C(5)  1.390(6) 
C(5)-C(6)  1.400(6) 
C(6)-C(7)  1.423(6) 
C(7)-C(8)  1.345(6) 
C(8)-C(9)  1.451(6) 
C(9)-C(10)  1.409(6) 
C(10)-C(11)  1.393(6) 
C(10)-C(29)  1.505(6) 
C(11)-C(12)  1.445(6) 
C(12)-C(13)  1.343(6) 
C(13)-C(14)  1.441(6) 
C(14)-C(15)  1.382(6) 
C(15)-C(16)  1.397(6) 
C(16)-C(17)  1.441(6) 
C(17)-C(18)  1.352(6) 
C(18)-C(19)  1.438(6) 
C(19)-C(20)  1.408(6) 
C(20)-C(21)  1.500(6) 
C(21)-C(26)  1.393(6) 
C(21)-C(22)  1.397(6) 
C(22)-C(23)  1.367(7) 
C(23)-C(24)  1.376(7) 
C(24)-C(25)  1.383(7) 
C(25)-C(26)  1.403(6) 
C(26)-C(27)  1.506(6) 
C(29)-C(34)  1.386(6) 
C(29)-C(30)  1.401(6) 
C(30)-C(31)  1.382(7) 
C(31)-C(32)  1.359(8) 
C(32)-C(33)  1.377(7) 
C(33)-C(34)  1.398(7) 
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C(34)-C(35)  1.517(7) 
 
N(2)-Zn(1)-N(4) 170.36(15) 
N(2)-Zn(1)-N(1) 90.41(14) 
N(4)-Zn(1)-N(1) 88.79(15) 
N(2)-Zn(1)-N(3) 88.52(15) 
N(4)-Zn(1)-N(3) 90.50(14) 
N(1)-Zn(1)-N(3) 169.42(15) 
N(2)-Zn(1)-O(1)#1 93.17(14) 
N(4)-Zn(1)-O(1)#1 96.47(13) 
N(1)-Zn(1)-O(1)#1 95.84(14) 
N(3)-Zn(1)-O(1)#1 94.72(14) 
C(4)-N(1)-C(1) 106.4(4) 
C(4)-N(1)-Zn(1) 125.9(3) 
C(1)-N(1)-Zn(1) 126.8(3) 
C(6)-N(2)-C(9) 105.6(4) 
C(6)-N(2)-Zn(1) 126.2(3) 
C(9)-N(2)-Zn(1) 127.5(3) 
C(11)-N(3)-C(14) 107.1(4) 
C(11)-N(3)-Zn(1) 127.5(3) 
C(14)-N(3)-Zn(1) 125.4(3) 
C(16)-N(4)-C(19) 106.2(4) 
C(16)-N(4)-Zn(1) 126.2(3) 
C(19)-N(4)-Zn(1) 127.5(3) 
C(28)-O(1)-C(27) 111.8(4) 
C(28)-O(1)-Zn(1)#1 117.3(3) 
C(27)-O(1)-Zn(1)#1 121.3(3) 
C(36)-O(2)-C(35) 112.9(5) 
N(1)-C(1)-C(20) 125.4(4) 
N(1)-C(1)-C(2) 109.0(4) 
C(20)-C(1)-C(2) 125.7(4) 
C(3)-C(2)-C(1) 107.4(4) 
C(2)-C(3)-C(4) 107.6(4) 
N(1)-C(4)-C(5) 124.2(4) 
N(1)-C(4)-C(3) 109.6(4) 
C(5)-C(4)-C(3) 126.2(4) 
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C(4)-C(5)-C(6) 127.4(4) 
N(2)-C(6)-C(5) 125.0(4) 
N(2)-C(6)-C(7) 110.8(4) 
C(5)-C(6)-C(7) 124.2(4) 
C(8)-C(7)-C(6) 107.5(4) 
C(7)-C(8)-C(9) 106.4(4) 
N(2)-C(9)-C(10) 124.8(4) 
N(2)-C(9)-C(8) 109.7(4) 
C(10)-C(9)-C(8) 125.5(4) 
C(11)-C(10)-C(9) 124.9(4) 
C(11)-C(10)-C(29) 117.4(4) 
C(9)-C(10)-C(29) 117.5(4) 
N(3)-C(11)-C(10) 125.5(4) 
N(3)-C(11)-C(12) 109.2(4) 
C(10)-C(11)-C(12) 125.3(5) 
C(13)-C(12)-C(11) 107.2(4) 
C(12)-C(13)-C(14) 107.2(4) 
N(3)-C(14)-C(15) 125.4(4) 
N(3)-C(14)-C(13) 109.3(4) 
C(15)-C(14)-C(13) 125.3(4) 
C(14)-C(15)-C(16) 127.6(4) 
N(4)-C(16)-C(15) 124.5(4) 
N(4)-C(16)-C(17) 109.9(4) 
C(15)-C(16)-C(17) 125.6(4) 
C(18)-C(17)-C(16) 107.0(4) 
C(17)-C(18)-C(19) 107.1(4) 
N(4)-C(19)-C(20) 125.4(4) 
N(4)-C(19)-C(18) 109.9(4) 
C(20)-C(19)-C(18) 124.7(4) 
C(1)-C(20)-C(19) 124.8(4) 
C(1)-C(20)-C(21) 118.0(4) 
C(19)-C(20)-C(21) 117.3(4) 
C(26)-C(21)-C(22) 118.1(5) 
C(26)-C(21)-C(20) 121.8(4) 
C(22)-C(21)-C(20) 120.1(4) 
C(23)-C(22)-C(21) 121.7(5) 
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C(22)-C(23)-C(24) 120.3(5) 
C(23)-C(24)-C(25) 119.6(5) 
C(24)-C(25)-C(26) 120.3(5) 
C(21)-C(26)-C(25) 119.9(5) 
C(21)-C(26)-C(27) 122.5(4) 
C(25)-C(26)-C(27) 117.4(4) 
O(1)-C(27)-C(26) 112.6(4) 
C(34)-C(29)-C(30) 119.9(5) 
C(34)-C(29)-C(10) 122.6(4) 
C(30)-C(29)-C(10) 117.5(4) 
C(31)-C(30)-C(29) 119.9(5) 
C(32)-C(31)-C(30) 120.6(6) 
C(31)-C(32)-C(33) 119.8(6) 
C(32)-C(33)-C(34) 121.4(6) 
C(29)-C(34)-C(33) 118.3(5) 
C(29)-C(34)-C(35) 121.6(5) 
C(33)-C(34)-C(35) 120.1(5) 
O(2)-C(35)-C(34) 112.9(5) 
 
Crystal data and structure refinement for 4-16 grown in THF 
 
Empirical formula  C44H44N4O4Zn 
Formula weight  758.20 
Temperature  295(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 17.8424(17) Å α = 90° 
 b = 18.7939(18) Å β = 101.134(2)° 
 c = 11.8706(11) Å γ = 90° 
Volume 3905.6(6) Å

3
 

Z 4 
Density (calculated) 1.289 Mg/m

3
 

Absorption coefficient 0.676 mm
-1

 
F(000) 1592 
Crystal size 0.60 x 0.44 x 0.08 mm

3
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Theta range for data collection 1.59 to 27.50 ° 
Index ranges -20<=h<=23, -24<=k<=24, -15<=l<=15 
Reflections collected 29735 
Independent reflections 8969 [R(int) = 0.0493] 
Completeness to theta = 27.50 ° 99.9 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Max. and min. transmission 0.9479 and 0.6871 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 8969 / 13 / 493 
Goodness-of-fit on F

2
 1.030 

Final R indices [I>2sigma(I)] R1 = 0.0544, wR2 = 0.1449 
R indices (all data) R1 = 0.1012, wR2 = 0.1672 
Largest diff. peak and hole 1.037 and -0.445 e.Å

-3
 

 
Selected bond lengths [Å] and angles [°] for 4-16 grown in THF 
 
Zn(1)-N(3)  2.046(3) 
Zn(1)-N(1)  2.047(2) 
Zn(1)-N(4)  2.058(2) 
Zn(1)-N(2)  2.059(3) 
Zn(1)-O(1)  2.212(2) 
N(1)-C(4)  1.362(4) 
N(1)-C(1)  1.369(3) 
N(2)-C(9)  1.373(4) 
N(2)-C(6)  1.376(4) 
N(3)-C(14)  1.358(4) 
N(3)-C(11)  1.384(4) 
N(4)-C(16)  1.354(4) 
N(4)-C(19)  1.374(3) 
O(1)-C(40)  1.422(4) 
O(1)-C(37)  1.422(4) 
C(1)-C(20)  1.406(4) 
C(1)-C(2)  1.423(4) 
C(2)-C(3)  1.347(4) 
C(3)-C(4)  1.442(4) 
C(4)-C(5)  1.398(4) 
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C(5)-C(6)  1.394(5) 
C(5)-C(21)  1.494(5) 
C(6)-C(7)  1.443(4) 
C(7)-C(8)  1.328(5) 
C(8)-C(9)  1.436(5) 
C(9)-C(10)  1.374(5) 
C(10)-C(11)  1.393(5) 
C(11)-C(12)  1.418(5) 
C(12)-C(13)  1.332(5) 
C(13)-C(14)  1.458(4) 
C(14)-C(15)  1.406(5) 
C(15)-C(16)  1.407(4) 
C(15)-C(27)  1.477(5) 
C(16)-C(17)  1.452(4) 
C(17)-C(18)  1.337(5) 
C(18)-C(19)  1.427(4) 
C(19)-C(20)  1.380(5) 
C(21)-C(22)  1.374(6) 
C(21)-C(26)  1.388(6) 
C(22)-C(23)  1.389(7) 
C(23)-C(24)  1.365(9) 
C(24)-C(25)  1.377(9) 
C(25)-C(26)  1.342(8) 
C(26)-C(33)  1.499(7) 
C(27)-C(28)  1.379(5) 
C(27)-C(32)  1.400(6) 
C(28)-C(29)  1.374(6) 
C(29)-C(30)  1.359(7) 
C(30)-C(31)  1.356(7) 
C(31)-C(32)  1.383(7) 
C(32)-C(35)  1.486(6) 
C(37)-C(38)  1.507(6) 
C(38)-C(39)  1.502(9) 
C(39)-C(40)  1.495(6) 
C(35)-O(3A)  1.300(8) 
C(35)-O(3)  1.341(7) 
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O(3)-C(36)  1.386(10) 
O(3A)-C(36A)  1.419(9) 
C(33)-O(2)  1.307(8) 
C(33)-O(2A)  1.307(9) 
O(2)-C(34)  1.463(10) 
O(1S)-C(1S)  1.364(9) 
O(1S)-C(4S)  1.399(9) 
C(1S)-C(2S)  1.464(9) 
C(2S)-C(3S)  1.484(9) 
C(3S)-C(4S)  1.494(9) 
N(3)-Zn(1)-N(1) 166.48(9) 
N(3)-Zn(1)-N(4) 88.40(10) 
N(1)-Zn(1)-N(4) 90.50(9) 
N(3)-Zn(1)-N(2) 90.02(11) 
N(1)-Zn(1)-N(2) 88.01(10) 
N(4)-Zn(1)-N(2) 166.92(9) 
N(3)-Zn(1)-O(1) 97.44(9) 
N(1)-Zn(1)-O(1) 96.09(8) 
N(4)-Zn(1)-O(1) 95.03(9) 
N(2)-Zn(1)-O(1) 98.06(9) 
C(4)-N(1)-C(1) 106.5(2) 
C(4)-N(1)-Zn(1) 127.61(18) 
C(1)-N(1)-Zn(1) 125.6(2) 
C(9)-N(2)-C(6) 106.7(3) 
C(9)-N(2)-Zn(1) 125.1(2) 
C(6)-N(2)-Zn(1) 127.9(2) 
C(14)-N(3)-C(11) 106.8(3) 
C(14)-N(3)-Zn(1) 127.5(2) 
C(11)-N(3)-Zn(1) 125.4(2) 
C(16)-N(4)-C(19) 107.1(2) 
C(16)-N(4)-Zn(1) 127.43(19) 
C(19)-N(4)-Zn(1) 125.2(2) 
C(40)-O(1)-C(37) 103.6(3) 
C(40)-O(1)-Zn(1) 120.3(2) 
C(37)-O(1)-Zn(1) 120.4(2) 
N(1)-C(1)-C(20) 124.3(3) 
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N(1)-C(1)-C(2) 109.9(3) 
C(20)-C(1)-C(2) 125.7(3) 
C(3)-C(2)-C(1) 107.3(3) 
C(2)-C(3)-C(4) 106.9(3) 
N(1)-C(4)-C(5) 126.1(3) 
N(1)-C(4)-C(3) 109.4(3) 
C(5)-C(4)-C(3) 124.5(3) 
C(6)-C(5)-C(4) 124.8(3) 
C(6)-C(5)-C(21) 117.4(3) 
C(4)-C(5)-C(21) 117.9(3) 
N(2)-C(6)-C(5) 125.0(3) 
N(2)-C(6)-C(7) 108.8(3) 
C(5)-C(6)-C(7) 126.2(4) 
C(8)-C(7)-C(6) 107.6(3) 
C(7)-C(8)-C(9) 107.8(3) 
N(2)-C(9)-C(10) 125.3(3) 
N(2)-C(9)-C(8) 109.1(3) 
C(10)-C(9)-C(8) 125.5(3) 
C(9)-C(10)-C(11) 127.6(3) 
N(3)-C(11)-C(10) 124.5(3) 
N(3)-C(11)-C(12) 109.0(3) 
C(10)-C(11)-C(12) 126.4(3) 
C(13)-C(12)-C(11) 108.5(3) 
C(12)-C(13)-C(14) 106.7(3) 
N(3)-C(14)-C(15) 126.4(3) 
N(3)-C(14)-C(13) 108.9(3) 
C(15)-C(14)-C(13) 124.6(3) 
C(14)-C(15)-C(16) 123.6(3) 
C(14)-C(15)-C(27) 118.0(3) 
C(16)-C(15)-C(27) 118.4(3) 
N(4)-C(16)-C(15) 126.1(3) 
N(4)-C(16)-C(17) 108.9(3) 
C(15)-C(16)-C(17) 125.0(3) 
C(18)-C(17)-C(16) 107.2(3) 
C(17)-C(18)-C(19) 107.4(3) 
N(4)-C(19)-C(20) 124.7(3) 
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N(4)-C(19)-C(18) 109.4(3) 
C(20)-C(19)-C(18) 125.9(3) 
C(19)-C(20)-C(1) 128.2(3) 
C(22)-C(21)-C(26) 119.4(4) 
C(22)-C(21)-C(5) 118.6(4) 
C(26)-C(21)-C(5) 122.0(4) 
C(21)-C(22)-C(23) 120.4(5) 
C(24)-C(23)-C(22) 119.7(6) 
C(23)-C(24)-C(25) 118.7(6) 
C(26)-C(25)-C(24) 122.7(6) 
C(25)-C(26)-C(21) 119.1(5) 
C(25)-C(26)-C(33) 120.7(5) 
C(21)-C(26)-C(33) 120.2(4) 
C(28)-C(27)-C(32) 118.0(4) 
C(28)-C(27)-C(15) 119.1(3) 
C(32)-C(27)-C(15) 122.9(3) 
C(29)-C(28)-C(27) 121.8(4) 
C(30)-C(29)-C(28) 119.5(5) 
C(31)-C(30)-C(29) 120.2(5) 
C(30)-C(31)-C(32) 121.4(5) 
C(31)-C(32)-C(27) 119.1(4) 
C(31)-C(32)-C(35) 120.1(4) 
C(27)-C(32)-C(35) 120.9(4) 
O(1)-C(37)-C(38) 105.2(4) 
C(39)-C(38)-C(37) 104.3(4) 
C(40)-C(39)-C(38) 103.9(4) 
O(1)-C(40)-C(39) 106.0(4) 
O(3A)-C(35)-O(3) 55.3(6) 
O(3A)-C(35)-C(32) 115.8(7) 
O(3)-C(35)-C(32) 111.0(5) 
C(35)-O(3)-C(36) 115.7(8) 
C(35)-O(3A)-C(36A) 115.1(12) 
O(2)-C(33)-O(2A) 39.2(7) 
O(2)-C(33)-C(26) 115.5(6) 
O(2A)-C(33)-C(26) 117.3(7) 
C(33)-O(2)-C(34) 110.7(7) 
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C(1S)-O(1S)-C(4S) 104.5(10) 
O(1S)-C(1S)-C(2S) 103.9(10) 
C(1S)-C(2S)-C(3S) 92.9(9) 
C(2S)-C(3S)-C(4S) 88.1(9) 
O(1S)-C(4S)-C(3S) 97.0(9) 
 
Crystal data and structure refinement for 4-18 
 
Empirical formula  C36H26Br2N4O2Zn 
Formula weight  771.80 
Temperature  295(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 10.5664(15) Å α = 90° 
 b = 18.505(3) Å β = 103.580(3)° 
 c = 7.9175(11) Å γ = 90° 
Volume 1504.8(4) Å

3
 

Z 2 
Density (calculated) 1.703 Mg/m

3
 

Absorption coefficient 3.513 mm
-1

 
F(000) 772 
Crystal size 0.20 x 0.20 x 0.16 mm

3
 

Theta range for data collection 1.98 to 27.50 ° 
Index ranges -13<=h<=13, -24<=k<=24, -10<=l<=10 
Reflections collected 19462 
Independent reflections 3455 [R(int) = 0.0241] 
Completeness to theta = 27.50 ° 100.0 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 3455 / 0 / 206 
Goodness-of-fit on F

2
 1.048 

Final R indices [I>2sigma(I)] R1 = 0.0261, wR2 = 0.0666 
R indices (all data) R1 = 0.0309, wR2 = 0.0689 
Largest diff. peak and hole 0.478 and -0.239 e.Å

-3
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Selected bond lengths [Å] and angles [°] for 4-18 
 
Zn(1)-N(2)#1  2.0463(15) 
Zn(1)-N(2)  2.0463(15) 
Zn(1)-N(1)  2.0559(14) 
Zn(1)-N(1)#1  2.0559(14) 
Zn(1)-O(1)#2  2.4281(14) 
Zn(1)-O(1)#3  2.4281(14) 
Br(1)-C(10)  1.9054(17) 
O(1)-C(18)  1.417(3) 
O(1)-C(17)  1.426(2) 
O(1)-Zn(1)#4  2.4281(14) 
N(1)-C(4)  1.370(2) 
N(1)-C(1)  1.371(2) 
N(2)-C(6)  1.367(2) 
N(2)-C(9)  1.372(2) 
C(1)-C(10)  1.397(3) 
C(1)-C(2)  1.443(3) 
C(2)-C(3)  1.348(3) 
C(3)-C(4)  1.442(3) 
C(4)-C(5)  1.402(3) 
C(5)-C(6)  1.403(3) 
C(5)-C(11)  1.501(2) 
C(6)-C(7)  1.445(3) 
C(7)-C(8)  1.338(3) 
C(8)-C(9)  1.441(3) 
C(9)-C(10)#1  1.394(3) 
C(10)-C(9)#1  1.394(3) 
C(11)-C(16)  1.390(3) 
C(11)-C(12)  1.395(3) 
C(12)-C(13)  1.379(3) 
C(13)-C(14)  1.376(4) 
C(14)-C(15)  1.371(3) 
C(15)-C(16)  1.398(3) 
C(16)-C(17)  1.513(3) 
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N(2)#1-Zn(1)-N(2) 180.0 
N(2)#1-Zn(1)-N(1) 89.50(6) 
N(2)-Zn(1)-N(1) 90.50(6) 
N(2)#1-Zn(1)-N(1)#1 90.50(6) 
N(2)-Zn(1)-N(1)#1 89.50(6) 
N(1)-Zn(1)-N(1)#1 180.00(8) 
N(2)#1-Zn(1)-O(1)#2 88.11(6) 
N(2)-Zn(1)-O(1)#2 91.89(6) 
N(1)-Zn(1)-O(1)#2 92.36(6) 
N(1)#1-Zn(1)-O(1)#2 87.64(6) 
N(2)#1-Zn(1)-O(1)#3 91.89(6) 
N(2)-Zn(1)-O(1)#3 88.11(6) 
N(1)-Zn(1)-O(1)#3 87.64(6) 
N(1)#1-Zn(1)-O(1)#3 92.36(6) 
O(1)#2-Zn(1)-O(1)#3 180.0 
C(18)-O(1)-C(17) 112.65(18) 
C(18)-O(1)-Zn(1)#4 117.12(14) 
C(17)-O(1)-Zn(1)#4 122.71(13) 
C(4)-N(1)-C(1) 106.60(14) 
C(4)-N(1)-Zn(1) 125.83(12) 
C(1)-N(1)-Zn(1) 127.17(12) 
C(6)-N(2)-C(9) 106.44(14) 
C(6)-N(2)-Zn(1) 126.13(12) 
C(9)-N(2)-Zn(1) 127.44(12) 
N(1)-C(1)-C(10) 123.24(16) 
N(1)-C(1)-C(2) 109.49(16) 
C(10)-C(1)-C(2) 127.26(17) 
C(3)-C(2)-C(1) 107.17(16) 
C(2)-C(3)-C(4) 107.10(17) 
N(1)-C(4)-C(5) 125.45(16) 
N(1)-C(4)-C(3) 109.62(16) 
C(5)-C(4)-C(3) 124.93(17) 
C(4)-C(5)-C(6) 125.85(17) 
C(4)-C(5)-C(11) 117.56(16) 
C(6)-C(5)-C(11) 116.56(16) 
N(2)-C(6)-C(5) 125.71(16) 
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N(2)-C(6)-C(7) 109.49(16) 
C(5)-C(6)-C(7) 124.80(17) 
C(8)-C(7)-C(6) 107.25(17) 
C(7)-C(8)-C(9) 107.24(17) 
N(2)-C(9)-C(10)#1 123.43(16) 
N(2)-C(9)-C(8) 109.54(16) 
C(10)#1-C(9)-C(8) 126.95(17) 
C(9)#1-C(10)-C(1) 128.68(16) 
C(9)#1-C(10)-Br(1) 115.41(13) 
C(1)-C(10)-Br(1) 115.84(13) 
C(16)-C(11)-C(12) 118.98(18) 
C(16)-C(11)-C(5) 120.95(17) 
C(12)-C(11)-C(5) 120.03(17) 
C(13)-C(12)-C(11) 121.2(2) 
C(14)-C(13)-C(12) 119.5(2) 
C(15)-C(14)-C(13) 120.2(2) 
C(14)-C(15)-C(16) 121.1(2) 
C(11)-C(16)-C(15) 119.01(19) 
C(11)-C(16)-C(17) 122.69(17) 
C(15)-C(16)-C(17) 118.30(19) 
O(1)-C(17)-C(16) 112.60(17) 
 
Crystal data and structure refinement for 4-20 
 
Empirical formula  C36H28BrN4O2Zn 
Formula weight  693.90 
Temperature  295(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 10.2123(8) Å α = 90° 
 b = 18.4943(15) Å β = 104.387(2)° 
 c = 8.0320(6) Å γ = 90° 
Volume 1469.4(2) Å

3
 

Z 2 
Density (calculated) 1.568 Mg/m

3
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Absorption coefficient 2.237 mm
-1

 
F(000) 706 
Crystal size 0.20 x 0.10 x 0.10 mm

3
 

Theta range for data collection 2.06 to 25.00 ° 
Index ranges -12<=h<=7, -21<=k<=21, -9<=l<=9 
Reflections collected 8454 
Independent reflections 2586 [R(int) = 0.0500] 
Completeness to theta = 25.00 ° 100.0 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Max. and min. transmission 0.8073 and 0.6632 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 2586 / 0 / 206 
Goodness-of-fit on F

2
 1.215 

Final R indices [I>2sigma(I)] R1 = 0.0588, wR2 = 0.1219 
R indices (all data) R1 = 0.0762, wR2 = 0.1268 
Largest diff. peak and hole 0.358 and -0.530 e.Å

-3
 

 
Selected bond lengths [Å] and angles [°] for 4-20 
 
Zn(1)-N(2)  2.047(4) 
Zn(1)-N(2)#1  2.047(4) 
Zn(1)-N(1)#1  2.058(4) 
Zn(1)-N(1)  2.058(4) 
Zn(1)-O(1)#2  2.417(3) 
Zn(1)-O(1)#3  2.417(3) 
Br(1)-C(5)  1.860(5) 
N(1)-C(4)  1.365(6) 
N(1)-C(1)  1.382(6) 
N(2)-C(6)  1.358(6) 
N(2)-C(9)  1.366(6) 
O(1)-C(18)  1.415(6) 
O(1)-C(17)  1.417(6) 
O(1)-Zn(1)#4  2.417(3) 
C(1)-C(10)#1  1.389(7) 
C(1)-C(2)  1.450(7) 
C(2)-C(3)  1.353(7) 
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C(3)-C(4)  1.427(7) 
C(4)-C(5)  1.397(7) 
C(5)-C(6)  1.397(7) 
C(6)-C(7)  1.431(7) 
C(7)-C(8)  1.339(8) 
C(8)-C(9)  1.451(7) 
C(9)-C(10)  1.412(7) 
C(10)-C(1)#1  1.389(7) 
C(10)-C(11)  1.495(7) 
C(11)-C(12)  1.400(7) 
C(11)-C(16)  1.406(7) 
C(12)-C(13)  1.371(8) 
C(13)-C(14)  1.369(8) 
C(14)-C(15)  1.376(8) 
C(15)-C(16)  1.386(7) 
C(16)-C(17)  1.510(7) 
 
N(2)-Zn(1)-N(2)#1   180.0(3) 
N(2)-Zn(1)-N(1)#1 90.04(16) 
N(2)#1-Zn(1)-N(1)#1 89.96(16) 
N(2)-Zn(1)-N(1) 89.96(16) 
N(2)#1-Zn(1)-N(1) 90.04(16) 
N(1)#1-Zn(1)-N(1) 180.0(3) 
N(2)-Zn(1)-O(1)#2 88.02(14) 
N(2)#1-Zn(1)-O(1)#2 91.98(14) 
N(1)#1-Zn(1)-O(1)#2 88.58(14) 
N(1)-Zn(1)-O(1)#2 91.42(14) 
N(2)-Zn(1)-O(1)#3 91.98(14) 
N(2)#1-Zn(1)-O(1)#3 88.02(14) 
N(1)#1-Zn(1)-O(1)#3 91.42(14) 
N(1)-Zn(1)-O(1)#3 88.58(14) 
O(1)#2-Zn(1)-O(1)#3 180.00(19) 
C(4)-N(1)-C(1) 106.8(4) 
C(4)-N(1)-Zn(1) 127.0(3) 
C(1)-N(1)-Zn(1) 125.9(3) 
C(6)-N(2)-C(9) 106.3(4) 
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C(6)-N(2)-Zn(1) 127.0(3) 
C(9)-N(2)-Zn(1) 126.6(3) 
C(18)-O(1)-C(17) 112.9(4) 
C(18)-O(1)-Zn(1)#4 116.0(3) 
C(17)-O(1)-Zn(1)#4 122.5(3) 
N(1)-C(1)-C(10)#1 125.9(5) 
N(1)-C(1)-C(2) 109.0(4) 
C(10)#1-C(1)-C(2) 125.1(5) 
C(3)-C(2)-C(1) 106.4(5) 
C(2)-C(3)-C(4) 108.1(5) 
N(1)-C(4)-C(5) 122.8(5) 
N(1)-C(4)-C(3) 109.6(4) 
C(5)-C(4)-C(3) 127.6(5) 
C(6)-C(5)-C(4) 129.4(5) 
C(6)-C(5)-Br(1) 112.9(4) 
C(4)-C(5)-Br(1) 117.6(4) 
N(2)-C(6)-C(5) 123.6(4) 
N(2)-C(6)-C(7) 110.5(5) 
C(5)-C(6)-C(7) 125.9(5) 
C(8)-C(7)-C(6) 106.9(5) 
C(7)-C(8)-C(9) 107.1(5) 
N(2)-C(9)-C(10) 125.7(5) 
N(2)-C(9)-C(8) 109.2(5) 
C(10)-C(9)-C(8) 125.1(5) 
C(1)#1-C(10)-C(9) 125.5(5) 
C(1)#1-C(10)-C(11) 118.5(5) 
C(9)-C(10)-C(11) 116.0(4) 
C(12)-C(11)-C(16) 118.3(5) 
C(12)-C(11)-C(10) 120.2(5) 
C(16)-C(11)-C(10) 121.5(5) 
C(13)-C(12)-C(11) 121.5(5) 
C(14)-C(13)-C(12) 119.5(6) 
C(13)-C(14)-C(15) 120.7(5) 
C(14)-C(15)-C(16) 120.8(5) 
C(15)-C(16)-C(11) 119.2(5) 
C(15)-C(16)-C(17) 118.2(5) 
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C(11)-C(16)-C(17) 122.6(5) 
O(1)-C(17)-C(16) 112.4(5) 
 
Crystal data and structure refinement for 4-22 grown in CHCl3/toluene 
 
Empirical formula  C36H26Br2N4O2Zn 
Formula weight  771.80 
Temperature  295(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 11.636(3) Å α = 61.526(4)° 
 b = 12.421(3) Å β = 83.202(4)° 
 c = 12.520(3) Å γ = 88.852(4)° 
Volume 1578.1(6) Å

3
 

Z 2 
Density (calculated) 1.624 Mg/m

3
 

Absorption coefficient 3.350 mm
-1

 
F(000) 772 
Crystal size 0.26 x 0.06 x 0.06 mm

3
 

Theta range for data collection 1.86 to 27.50 ° 
Index ranges -15<=h<=15, -16<=k<=16, -16<=l<=16 
Reflections collected 20559 
Independent reflections 7251 [R(int) = 0.1031] 
Completeness to theta = 27.50 ° 99.9 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Max. and min. transmission 0.8243 and 0.4763 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 7251 / 0 / 408 
Goodness-of-fit on F

2
 0.896 

Final R indices [I>2sigma(I)] R1 = 0.0612, wR2 = 0.1291 
R indices (all data) R1 = 0.1723, wR2 = 0.1583 
Largest diff. peak and hole 0.682 and -0.586 e.Å

-3
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Selected bond lengths [Å] and angles [°] for 4-22 grown in CHCl3/toluene 
 
Zn(1)-N(2)  2.039(5) 
Zn(1)-N(1)  2.045(4) 
Zn(1)-N(4)  2.048(5) 
Zn(1)-N(3)  2.056(5) 
Zn(1)-O(2)  2.252(4) 
Br(1)-C(1)  1.911(5) 
Br(2)-C(11)  1.908(6) 
N(1)-C(5)  1.372(7) 
N(1)-C(2)  1.380(7) 
N(2)-C(7)  1.382(7) 
N(2)-C(10)  1.385(7) 
N(3)-C(15)  1.356(7) 
N(3)-C(12)  1.377(7) 
N(4)-C(20)  1.374(7) 
N(4)-C(17)  1.375(7) 
O(1)-C(28)  1.348(9) 
O(1)-C(27)  1.399(9) 
O(2)-C(29)  1.422(8) 
O(2)-C(30)  1.426(7) 
C(1)-C(2)  1.369(8) 
C(1)-C(20)  1.402(8) 
C(2)-C(3)  1.438(8) 
C(3)-C(4)  1.342(9) 
C(4)-C(5)  1.438(8) 
C(5)-C(6)  1.388(8) 
C(6)-C(7)  1.396(8) 
C(6)-C(21)  1.501(8) 
C(7)-C(8)  1.436(9) 
C(8)-C(9)  1.344(9) 
C(9)-C(10)  1.412(9) 
C(10)-C(11)  1.403(8) 
C(11)-C(12)  1.371(9) 
C(12)-C(13)  1.440(8) 
C(13)-C(14)  1.352(9) 
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C(14)-C(15)  1.443(8) 
C(15)-C(16)  1.403(8) 
C(16)-C(17)  1.404(8) 
C(16)-C(32)#1  1.487(8) 
C(17)-C(18)  1.422(8) 
C(18)-C(19)  1.348(8) 
C(19)-C(20)  1.425(8) 
C(21)-C(22)  1.371(9) 
C(21)-C(26)  1.388(9) 
C(22)-C(23)  1.395(10) 
C(23)-C(24)  1.360(10) 
C(24)-C(25)  1.374(10) 
C(25)-C(26)  1.379(9) 
C(26)-C(27)  1.499(10) 
C(30)-C(31)  1.504(8) 
C(31)-C(36)  1.391(8) 
C(31)-C(32)  1.396(8) 
C(32)-C(33)  1.387(8) 
C(32)-C(16)#1  1.487(8) 
C(33)-C(34)  1.370(9) 
C(34)-C(35)  1.386(9) 
C(35)-C(36)  1.361(9) 
 
N(2)-Zn(1)-N(1) 90.79(19) 
N(2)-Zn(1)-N(4) 172.41(19) 
N(1)-Zn(1)-N(4) 88.92(18) 
N(2)-Zn(1)-N(3) 89.16(19) 
N(1)-Zn(1)-N(3) 170.08(19) 
N(4)-Zn(1)-N(3) 89.83(19) 
N(2)-Zn(1)-O(2) 92.85(18) 
N(1)-Zn(1)-O(2) 92.99(17) 
N(4)-Zn(1)-O(2) 94.74(18) 
N(3)-Zn(1)-O(2) 96.92(18) 
C(5)-N(1)-C(2) 106.7(5) 
C(5)-N(1)-Zn(1) 125.2(4) 
C(2)-N(1)-Zn(1) 127.8(4) 
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C(7)-N(2)-C(10) 106.0(5) 
C(7)-N(2)-Zn(1) 125.5(4) 
C(10)-N(2)-Zn(1) 128.2(4) 
C(15)-N(3)-C(12) 107.3(5) 
C(15)-N(3)-Zn(1) 126.4(4) 
C(12)-N(3)-Zn(1) 126.3(4) 
C(20)-N(4)-C(17) 106.5(5) 
C(20)-N(4)-Zn(1) 127.3(4) 
C(17)-N(4)-Zn(1) 126.1(4) 
C(28)-O(1)-C(27) 114.8(7) 
C(29)-O(2)-C(30) 112.3(5) 
C(29)-O(2)-Zn(1) 116.5(4) 
C(30)-O(2)-Zn(1) 120.3(4) 
C(2)-C(1)-C(20) 128.4(5) 
C(2)-C(1)-Br(1) 116.5(4) 
C(20)-C(1)-Br(1) 115.1(4) 
C(1)-C(2)-N(1) 123.4(5) 
C(1)-C(2)-C(3) 127.7(6) 
N(1)-C(2)-C(3) 108.9(5) 
C(4)-C(3)-C(2) 107.7(6) 
C(3)-C(4)-C(5) 107.4(6) 
N(1)-C(5)-C(6) 126.6(5) 
N(1)-C(5)-C(4) 109.3(5) 
C(6)-C(5)-C(4) 124.1(6) 
C(5)-C(6)-C(7) 125.5(6) 
C(5)-C(6)-C(21) 117.6(5) 
C(7)-C(6)-C(21) 116.8(5) 
N(2)-C(7)-C(6) 125.9(6) 
N(2)-C(7)-C(8) 108.9(5) 
C(6)-C(7)-C(8) 125.2(6) 
C(9)-C(8)-C(7) 107.5(6) 
C(8)-C(9)-C(10) 107.9(6) 
N(2)-C(10)-C(11) 121.7(6) 
N(2)-C(10)-C(9) 109.7(6) 
C(11)-C(10)-C(9) 128.4(6) 
C(12)-C(11)-C(10) 128.8(6) 
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C(12)-C(11)-Br(2) 116.6(5) 
C(10)-C(11)-Br(2) 114.5(5) 
C(11)-C(12)-N(3) 124.7(6) 
C(11)-C(12)-C(13) 126.9(6) 
N(3)-C(12)-C(13) 108.4(6) 
C(14)-C(13)-C(12) 108.1(6) 
C(13)-C(14)-C(15) 106.1(6) 
N(3)-C(15)-C(16) 126.2(5) 
N(3)-C(15)-C(14) 110.1(6) 
C(16)-C(15)-C(14) 123.5(6) 
C(15)-C(16)-C(17) 124.7(6) 
C(15)-C(16)-C(32)#1 118.6(5) 
C(17)-C(16)-C(32)#1 116.6(6) 
N(4)-C(17)-C(16) 125.9(5) 
N(4)-C(17)-C(18) 109.3(5) 
C(16)-C(17)-C(18) 124.9(6) 
C(19)-C(18)-C(17) 107.4(6) 
C(18)-C(19)-C(20) 107.6(6) 
N(4)-C(20)-C(1) 123.7(5) 
N(4)-C(20)-C(19) 109.1(5) 
C(1)-C(20)-C(19) 127.2(5) 
C(22)-C(21)-C(26) 118.9(6) 
C(22)-C(21)-C(6) 119.5(6) 
C(26)-C(21)-C(6) 121.6(6) 
C(21)-C(22)-C(23) 121.5(7) 
C(24)-C(23)-C(22) 118.8(7) 
C(23)-C(24)-C(25) 120.6(7) 
C(24)-C(25)-C(26) 120.6(7) 
C(25)-C(26)-C(21) 119.6(7) 
C(25)-C(26)-C(27) 120.6(7) 
C(21)-C(26)-C(27) 119.8(6) 
O(1)-C(27)-C(26) 108.9(7) 
O(2)-C(30)-C(31) 112.9(5) 
C(36)-C(31)-C(32) 118.7(6) 
C(36)-C(31)-C(30) 118.0(6) 
C(32)-C(31)-C(30) 123.3(6) 
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C(33)-C(32)-C(31) 119.0(6) 
C(33)-C(32)-C(16)#1 120.5(5) 
C(31)-C(32)-C(16)#1 120.5(5) 
C(34)-C(33)-C(32) 121.7(6) 
C(33)-C(34)-C(35) 118.7(7) 
C(36)-C(35)-C(34) 120.6(6) 
C(35)-C(36)-C(31) 121.1(6) 
 
Crystal data and structure refinement for 4-22 grown in THF 
 
Empirical formula  C40H34Br2N4O3Zn 
Formula weight  843.90 
Temperature  223(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 17.9019(8) Å α = 90° 
 b = 13.9986(6) Å β = 111.3870(10)° 
 c = 14.8998(6) Å γ = 90° 
Volume 3476.8(3) Å

3
 

Z 4 
Density (calculated) 1.612 Mg/m

3
 

Absorption coefficient 3.051 mm
-1

 
F(000) 1704 
Crystal size 0.50 x 0.50 x 0.10 mm

3
 

Theta range for data collection 1.90 to 27.50 ° 
Index ranges -22<=h<=23, -10<=k<=18, -18<=l<=19 
Reflections collected 24329 
Independent reflections 7982 [R(int) = 0.0306] 
Completeness to theta = 27.50 ° 99.9 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Max. and min. transmission 0.7501 and 0.3107 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 7982 / 0 / 453 
Goodness-of-fit on F

2
 1.053 

Final R indices [I>2sigma(I)] R1 = 0.0391, wR2 = 0.0966 
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R indices (all data) R1 = 0.0545, wR2 = 0.1025 
Largest diff. peak and hole 1.060 and -0.565 e.Å

-3
 

 
Selected bond lengths [Å] and angles [°] for 4-22 grown in THF 
 
Zn(1)-N(1)  2.052(2) 
Zn(1)-N(3)  2.058(2) 
Zn(1)-N(4)  2.060(2) 
Zn(1)-N(2)  2.061(2) 
Zn(1)-O(3)  2.1611(19) 
Br(1)-C(1)  1.903(2) 
Br(2)-C(11)  1.903(2) 
O(1)-C(27)  1.412(4) 
O(1)-C(28)  1.413(5) 
O(2)-C(36)  1.401(4) 
O(2)-C(35)  1.422(3) 
O(3)-C(40)  1.383(4) 
O(3)-C(37)  1.398(4) 
N(1)-C(2)  1.375(3) 
N(1)-C(5)  1.377(3) 
N(2)-C(10)  1.369(3) 
N(2)-C(7)  1.369(3) 
N(3)-C(15)  1.368(3) 
N(3)-C(12)  1.377(3) 
N(4)-C(17)  1.368(3) 
N(4)-C(20)  1.373(3) 
C(1)-C(20)  1.394(4) 
C(1)-C(2)  1.395(4) 
C(2)-C(3)  1.443(4) 
C(3)-C(4)  1.342(4) 
C(4)-C(5)  1.439(4) 
C(5)-C(6)  1.398(4) 
C(6)-C(7)  1.405(4) 
C(6)-C(21)  1.494(4) 
C(7)-C(8)  1.435(4) 
C(8)-C(9)  1.350(4) 
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C(9)-C(10)  1.439(4) 
C(10)-C(11)  1.395(4) 
C(11)-C(12)  1.390(4) 
C(12)-C(13)  1.439(4) 
C(13)-C(14)  1.345(4) 
C(14)-C(15)  1.439(4) 
C(15)-C(16)  1.406(4) 
C(16)-C(17)  1.398(4) 
C(16)-C(29)  1.500(4) 
C(17)-C(18)  1.442(4) 
C(18)-C(19)  1.343(4) 
C(19)-C(20)  1.441(4) 
C(21)-C(22)  1.388(4) 
C(21)-C(26)  1.400(4) 
C(22)-C(23)  1.392(5) 
C(23)-C(24)  1.364(5) 
C(24)-C(25)  1.367(5) 
C(25)-C(26)  1.387(4) 
C(26)-C(27)  1.514(4) 
C(29)-C(30)  1.384(4) 
C(29)-C(34)  1.395(4) 
C(30)-C(31)  1.380(4) 
C(31)-C(32)  1.377(5) 
C(32)-C(33)  1.359(5) 
C(33)-C(34)  1.398(4) 
C(34)-C(35)  1.506(4) 
C(37)-C(38)  1.482(5) 
C(38)-C(39)  1.481(6) 
C(39)-C(40)  1.456(6) 
 
N(1)-Zn(1)-N(3) 166.22(8) 
N(1)-Zn(1)-N(4) 89.16(8) 
N(3)-Zn(1)-N(4) 88.78(8) 
N(1)-Zn(1)-N(2) 89.32(8) 
N(3)-Zn(1)-N(2) 89.47(8) 
N(4)-Zn(1)-N(2) 166.36(8) 
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N(1)-Zn(1)-O(3) 96.14(8) 
N(3)-Zn(1)-O(3) 97.64(8) 
N(4)-Zn(1)-O(3) 98.99(8) 
N(2)-Zn(1)-O(3) 94.65(8) 
C(27)-O(1)-C(28) 111.9(3) 
C(36)-O(2)-C(35) 111.3(2) 
C(40)-O(3)-C(37) 109.8(3) 
C(40)-O(3)-Zn(1) 123.8(2) 
C(37)-O(3)-Zn(1) 124.5(2) 
C(2)-N(1)-C(5) 105.9(2) 
C(2)-N(1)-Zn(1) 127.45(18) 
C(5)-N(1)-Zn(1) 126.62(16) 
C(10)-N(2)-C(7) 106.4(2) 
C(10)-N(2)-Zn(1) 126.52(17) 
C(7)-N(2)-Zn(1) 126.71(17) 
C(15)-N(3)-C(12) 106.2(2) 
C(15)-N(3)-Zn(1) 127.44(17) 
C(12)-N(3)-Zn(1) 126.21(18) 
C(17)-N(4)-C(20) 106.4(2) 
C(17)-N(4)-Zn(1) 126.75(17) 
C(20)-N(4)-Zn(1) 126.86(17) 
C(20)-C(1)-C(2) 128.6(2) 
C(20)-C(1)-Br(1) 115.62(19) 
C(2)-C(1)-Br(1) 115.64(19) 
N(1)-C(2)-C(1) 123.2(2) 
N(1)-C(2)-C(3) 110.0(2) 
C(1)-C(2)-C(3) 126.7(2) 
C(4)-C(3)-C(2) 106.9(2) 
C(3)-C(4)-C(5) 107.6(2) 
N(1)-C(5)-C(6) 125.7(2) 
N(1)-C(5)-C(4) 109.7(2) 
C(6)-C(5)-C(4) 124.6(2) 
C(5)-C(6)-C(7) 125.6(2) 
C(5)-C(6)-C(21) 116.7(2) 
C(7)-C(6)-C(21) 117.7(2) 
N(2)-C(7)-C(6) 125.3(2) 
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N(2)-C(7)-C(8) 109.8(2) 
C(6)-C(7)-C(8) 124.9(2) 
C(9)-C(8)-C(7) 107.2(2) 
C(8)-C(9)-C(10) 106.9(2) 
N(2)-C(10)-C(11) 123.6(2) 
N(2)-C(10)-C(9) 109.8(2) 
C(11)-C(10)-C(9) 126.7(2) 
C(12)-C(11)-C(10) 128.7(2) 
C(12)-C(11)-Br(2) 115.26(19) 
C(10)-C(11)-Br(2) 115.97(19) 
N(3)-C(12)-C(11) 123.9(2) 
N(3)-C(12)-C(13) 109.6(2) 
C(11)-C(12)-C(13) 126.5(2) 
C(14)-C(13)-C(12) 107.2(2) 
C(13)-C(14)-C(15) 107.1(2) 
N(3)-C(15)-C(16) 125.4(2) 
N(3)-C(15)-C(14) 109.9(2) 
C(16)-C(15)-C(14) 124.7(2) 
C(17)-C(16)-C(15) 124.9(2) 
C(17)-C(16)-C(29) 117.5(2) 
C(15)-C(16)-C(29) 117.7(2) 
N(4)-C(17)-C(16) 126.3(2) 
N(4)-C(17)-C(18) 109.5(2) 
C(16)-C(17)-C(18) 124.1(2) 
C(19)-C(18)-C(17) 107.5(2) 
C(18)-C(19)-C(20) 106.9(2) 
N(4)-C(20)-C(1) 123.8(2) 
N(4)-C(20)-C(19) 109.7(2) 
C(1)-C(20)-C(19) 126.4(2) 
C(22)-C(21)-C(26) 119.3(3) 
C(22)-C(21)-C(6) 119.9(3) 
C(26)-C(21)-C(6) 120.9(2) 
C(21)-C(22)-C(23) 120.2(3) 
C(24)-C(23)-C(22) 120.1(3) 
C(23)-C(24)-C(25) 120.2(3) 
C(24)-C(25)-C(26) 121.2(3) 
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C(25)-C(26)-C(21) 119.0(3) 
C(25)-C(26)-C(27) 118.8(3) 
C(21)-C(26)-C(27) 122.2(3) 
O(1)-C(27)-C(26) 113.8(3) 
C(30)-C(29)-C(34) 118.6(3) 
C(30)-C(29)-C(16) 119.6(3) 
C(34)-C(29)-C(16) 121.8(2) 
C(31)-C(30)-C(29) 121.7(3) 
C(32)-C(31)-C(30) 119.4(3) 
C(33)-C(32)-C(31) 119.8(3) 
C(32)-C(33)-C(34) 121.7(3) 
C(29)-C(34)-C(33) 118.7(3) 
C(29)-C(34)-C(35) 123.3(3) 
C(33)-C(34)-C(35) 118.0(3) 
O(2)-C(35)-C(34) 113.0(2) 
O(3)-C(37)-C(38) 107.9(3) 
C(39)-C(38)-C(37) 105.7(3) 
C(40)-C(39)-C(38) 105.7(3) 
O(3)-C(40)-C(39) 109.5(4) 
 
Crystal data and structure refinement for 7-7 grown in CH3I 
 
Empirical formula  C13H9Br2IN2 
Formula weight  479.94 
Temperature  223(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 7.2912(7) Å α = 103.731(2)° 
 b = 10.0409(10) Å β = 103.127(2)° 
 c = 10.8935(11) Å γ = 107.400(2)° 
Volume 700.00(12) Å

3
 

Z 2 
Density (calculated) 2.277 Mg/m

3
 

Absorption coefficient 7.978 mm
-1

 
F(000) 448 
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Crystal size 0.64 x 0.08 x 0.07 mm
3
 

Theta range for data collection 2.03 to 27.50 ° 
Index ranges -9<=h<=9, -13<=k<=13, -14<=l<=14 
Reflections collected 9116 
Independent reflections 3219 [R(int) = 0.0233] 
Completeness to theta = 27.50 ° 99.9 %  
Absorption correction Sadabs, (Sheldrick 2001) 
Max. and min. transmission 0.6051 and 0.0800 
Refinement method Full-matrix least-squares on F

2
 

Data / restraints / parameters 3219 / 0 / 164 
Goodness-of-fit on F

2
 1.078 

Final R indices [I>2sigma(I)] R1 = 0.0217, wR2 = 0.0540 
R indices (all data) R1 = 0.0243, wR2 = 0.0551 
Largest diff. peak and hole 0.927 and -0.458 e.Å

-3
 

 
Selected bond lengths [Å] and angles [°] for 7-7 grown in CH3I 
 
Br(1)-C(3)  1.898(2) 
Br(2)-C(10)  1.903(2) 
N(1)-N(2)  1.294(3) 
N(1)-C(1)  1.379(3) 
N(1)-C(13)  1.476(3) 
N(2)-C(12)  1.359(3) 
C(1)-C(6)  1.410(3) 
C(1)-C(2)  1.416(3) 
C(2)-C(3)  1.353(4) 
C(3)-C(4)  1.398(4) 
C(4)-C(5)  1.363(4) 
C(5)-C(6)  1.415(3) 
C(6)-C(7)  1.427(3) 
C(7)-C(8)  1.410(3) 
C(7)-C(12)  1.416(3) 
C(8)-C(9)  1.368(3) 
C(9)-C(10)  1.408(4) 
C(10)-C(11)  1.359(3) 
C(11)-C(12)  1.422(3) 
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N(2)-N(1)-C(1) 124.90(19) 
N(2)-N(1)-C(13) 114.32(19) 
C(1)-N(1)-C(13) 120.78(19) 
N(1)-N(2)-C(12) 118.08(19) 
N(1)-C(1)-C(6) 118.9(2) 
N(1)-C(1)-C(2) 120.2(2) 
C(6)-C(1)-C(2) 120.9(2) 
C(3)-C(2)-C(1) 118.0(2) 
C(2)-C(3)-C(4) 122.5(2) 
C(2)-C(3)-Br(1) 117.74(19) 
C(4)-C(3)-Br(1) 119.72(19) 
C(5)-C(4)-C(3) 120.0(2) 
C(4)-C(5)-C(6) 120.4(2) 
C(1)-C(6)-C(5) 118.2(2) 
C(1)-C(6)-C(7) 118.0(2) 
C(5)-C(6)-C(7) 123.8(2) 
C(8)-C(7)-C(12) 118.2(2) 
C(8)-C(7)-C(6) 125.2(2) 
C(12)-C(7)-C(6) 116.6(2) 
C(9)-C(8)-C(7) 120.3(2) 
C(8)-C(9)-C(10) 120.5(2) 
C(11)-C(10)-C(9) 121.9(2) 
C(11)-C(10)-Br(2) 119.9(2) 
C(9)-C(10)-Br(2) 118.22(18) 
C(10)-C(11)-C(12) 118.0(2) 
N(2)-C(12)-C(7) 123.4(2) 
N(2)-C(12)-C(11) 115.4(2) 
C(7)-C(12)-C(11) 121.2(2) 
 
 
 


