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Summary 

 

SUMMARY 

This thesis presents the studies of bio-functionalization of electrospun nanofibers, 

which can serve as cell culture scaffolds that can promote cell-substrate interactions 

and are bioactive in soliciting favorable cellular responses like cell adhesion, cell 

morphological reorganization, cell differentiated functions or cell proliferation. 

The general strategy of scaffold development involves nanofiber scaffold 

fabrication via the electrospinning technique, followed by nanofiber bio-

functionalization. The bio-functionalization process involves the initial 

functionalization of the nanofiber surface with carboxylic acid groups using UV-

initiated poly(acrylic acid) grafting method. This is followed by conjugation of 

bioactive molecules onto the functionalized nanofiber surfaces. We then tested the 

efficacy of this nanofiber bio-functionalization strategy on hepatocyte scaffold 

cultures and hematopoietic stem cell expansion culture systems. 

Through galactose bio-functionalization, we have developed galactosylated 

nanofiber scaffolds that can support the hepatic functions (albumin secretion, 

ammonia removal and cytochrome P450 activity) of cultured primary hepatocytes. 

Interestingly, the nanofiber topography and the surface-immobilized galactose ligand 

synergistically enhance the hepatocyte-nanofiber interaction, and the galactosylated 

nanofiber scaffolds exhibit the unique property of promoting hepatocyte aggregates 

and cell infiltration within the mesh and around the fibers, forming an integrated 

spheroid-nanofiber construct. Subsequently, we have also demonstrated that 

hepatocyte cytochrome P450 activity enhancement can be brought about through 

further 3-Mc bio-functionalization of this galactosylated nanofiber scaffold. 
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Summary 

Through amine molecule bio-functionalization, we have developed aminated 

nanofiber scaffolds that can support ex vivo hematopoietic stem / progenitor cell 

(HSPC) expansion. We have shown that aminated nanofiber meshes supported a high 

degree of cell adhesion, percentage of CD34+CD45+ cells and expansion of CFU-

GEMM forming progenitor cells. SEM imaging also revealed discrete colonies of 

cells proliferating and interacting with the aminated nanofibers. In addition, we have 

shown that nanofiber scaffolds immobilized with amine functional groups of different 

carbon spacer chain lengths could further modulate HSPC proliferation and phenotype 

maintenance, resulting in different HSPC proliferation kinetics, cell population 

phenotypic expression, mouse engraftment potential and also colony-forming ability. 

The adherent hematopoietic cell populations on the aminated nanofiber scaffolds also 

showed enrichment of CD34+CD45+ cells compared with the non-adherent cell 

population, and indicated significant commitment towards the myeloblast / monoblast 

lineage, while the non-adherent population showed skewed commitment towards the 

erythroid lineage. These observations suggested the importance of nanofiber 

topography and amino functional group mediated cell-scaffold interactions in 

regulating HSPC proliferation and self-renewal. In addition, they also highlight the 

importance of cell-scaffold interactions as a new approach in modulating HSPC 

multipotency maintenance and lineage commitment. 

In conclusion, this thesis has: 

(1) Presented a nanofiber bio-functionalized strategy to develop polymeric 

nanofiber constructs that can serve as cell culture scaffolds. 

(2) Demonstrated through primary hepatocyte cultures and HSPC expansion 

cultures that these scaffolds can promote cell-substrate interactions and are 

 ix



Summary 

bioactive in regulating cellular responses like cell adhesion, cell 

morphological reorganization, cell differentiated functions, cell proliferation 

or cell phenotype maintenance. 

(3) Demonstrated the synergistic effects that both nanofiber topography and 

surface immobilized biochemical cues play in enhancing these cell-scaffold 

interactions and regulation of cellular functions. 
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Chapter 1 

 

CHAPTER ONE  

General Overview 

1.1 Background 

Biomaterials play central roles in modern strategies in cell culture as designable 

biophysical and biochemical milieus that direct cellular behavior and function [1,2]. 

In most approaches, the Biomaterial is engineered into a scaffold which provides a 

niche for cells to proliferate and differentiate. 

The intended uses for scaffold-based cell cultures are vast: In some applications, 

the cells develop into tissues that are suitable for implantation, or applied as part of a 

cell-based artificial organ [2-6] (e.g. bioartificial pancreas, bioartificial liver). In other 

applications, the cells are harvested after being expanded on proliferation-inductive 

scaffolds, for use in cell-based therapies [2-6] (e.g. stem cell therapy). In all cases, a 

scaffold that can interact and influence the cellular behavior is the crucial component. 

The success of scaffold-based cell cultures largely depends on the optimal events 

of attachment, proliferation, differentiation, and phenotypic maintenance, which in 

turn are governed by a host of signals provided by the cell-scaffold microenvironment. 

These signals include: (1) homotypic / heterotypic cell-cell interaction; (2) soluble 

signaling molecules; and (3) cell-substrate interaction signals which consists of 

substrate-bound signaling molecules, scaffold topographical cues and scaffold 

biomechanical properties (Fig. 1.1). Therefore, an ideal scaffold culture system should 

include all these interactive components [1,2,7,8]. 
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Chapter 1 

 
Figure 1.1: The cellular microenvironment. The behavior of individual cells and the 

dynamic state of multicellular tissues is regulated by intricate reciprocal molecular 

interactions between cells and their surroundings. 

 
In recent years, scaffolds based on electrospun nanofibers have been investigated 

intensively [9-27]. This is largely due to the unique nano-topographical cues that the 

nanofiber scaffold provides as compared to 2-dimensional substrates, micro-porous 

and micro-fiber scaffolds and hydrogels traditionally used in cell cultures. Indeed, 

morphological and cytoskeletal reorganization of cells induced by the nanofiber 

topographical cues has been clearly demonstrated in many literatures [14-27]. 

Though several nanofiber scaffolds of unique topographical textures (aligned 

fiber scaffold, multilayered fiber scaffold, etc.) have been designed through 

manipulation of the electrospinning process [9-13,28-29], the nanofiber scaffolds used 

in current literature are mainly pristine and lack of substrate-bound signaling 

molecules [14-27]. In contrast, abundant research on the traditional film, micro-fiber 

or gel scaffolds have shown that scaffold functionalization (surface immobilization or 

entrapment) with bioactive molecules (e.g. proteins, peptides, drugs, simple chemical 

groups, etc.) are necessary in soliciting favorable cellular responses like cell adhesion 
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and proliferation responses [30-36]; and electrospun nanofiber scaffolds should not be 

the exception. Therefore, the design of a nanofiber scaffold modified with at least one 

bioactive molecule would be important in enhancing cell-substrate interaction, with 

the eventual goal of mimicking the cell’s native microenvironment. 

Due to the similarities in the materials used, the common modification methods 

for bio-functionalizing the traditional scaffolds can also be directly imported to 

modify the nanofibers. In this thesis, we present a comprehensive approach to 

systematically incorporate various types of biochemical cues into nanofiber scaffolds 

that are critical for hepatocyte functional maintenance as well as for hematopoietic 

stem cell proliferation and primitive maintenance. 

1.2 Thesis Objectives 

The overall objective of this thesis is to develop polymeric nanofiber constructs 

that can serve as cell culture scaffolds, which can promote cell-substrate interactions 

and are bioactive in soliciting favorable cellular responses. We believe that although 

the topographical cues on a pristine nanofiber scaffolds are able to induce 

morphological and cytoskeletal reorganization in cells [14-27], they are insufficient in 

providing optimal regulation of cell behavior. 

We therefore hypothesize that the development of nanofiber scaffolds that 

present bioactive molecules is important in mimicking the native cellular 

microenvironment, as these bioactive scaffolds can actively engage with cells and 

consequently regulate their cellular activities. 

We also hypothesize that a combination of nanofiber topographical cues and 

surface biochemical cues will synergistically enhance the cell-substrate interactions 
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and consequently induce further favorable cellular responses like cell adhesion, cell 

morphological reorganization, cell differentiated functions and/or cell proliferation. 

Through the systematic testing of unmodified and bioactive molecule-conjugated 

films and nanofiber scaffolds in different primary cell culture models, we will be able 

to demonstrate these synergistic cell-substrate interactions. In addition, we hope to 

demonstrate the versatility of our nanofiber bio-functionalization strategy for cell 

culture applications through applying it in different cell culture models. 

1.3 Thesis Scope 

The general strategy of scaffold development involves nanofiber scaffold 

fabrication via the electrospinning technique, followed by nanofiber bio-

functionalization. The bio-functionalization process involves the initial 

functionalization of the nanofiber surface with carboxylic acid groups using UV-

initiated poly(acrylic acid) grafting method. This is followed by conjugation of 

bioactive molecules onto the functionalized nanofiber surfaces. 

In this thesis, we will test the efficacy of this nanofiber bio-functionalization 

strategy on two cell culture systems: (1) hepatocyte scaffold cultures and, (2) 

hematopoietic stem cell expansion cultures. The effect of immobilized bioactive 

molecules in promoting cell-substrate interactions will be investigated. In addition, we 

will also be focusing on the effect of nanofiber topography in synergistically 

enhancing these cell-substrate interactions, as outlined in the thesis objectives. 

We first describe the galactose bio-functionalization of electrospun 

poly(caprolactone-co-ethyl ethylene phosphate) nanofibers for liver cell culture. Prior 

to this study, nanofiber bio-functionalization strategies have never been demonstrated 

in literature before. Using the bio-functionalization strategy described above, we have 

 4



Chapter 1 

developed a nanofiber scaffold culture that can sustain primary hepatocyte viability as 

well as maintain the differentiated functions of the hepatocytes. The importance of 

scaffold topographical cues and immobilized galactose biochemical cues on 

hepatocyte morphological reorganization and function maintenance are investigated. 

In addition, efforts to further enhance the hepatocyte functions through additional 

nanofiber scaffold modification (3-methylcholanthrene incorporation) are presented. 

Subsequently, we describe the amine bio-functionalization of electrospun 

polyethersulfone nanofibers for ex vivo hematopoietic stem / progenitor cells (HSPCs) 

expansion. HSPC expansion is commonly performed in a suspension culture format 

where the importance of cell-substrate interactions has been undermined. Throughout 

the course of this thesis research, we have discovered the significant roles that surface 

immobilized amine molecules play in providing cell-substrate interactions to the 

HSPCs. Using the same bio-functionalization strategy as described above, we have 

developed an aminated nanofiber scaffold culture that can promote HSPC growth 

while preserving the primitive HSPC multipotency. The importance of scaffold 

topographical cues, immobilized amine biochemical cues and amine spacer lengths on 

regulating cellular responses like HSPC adhesion, proliferation and primitive 

maintenance are also systematically investigated and presented. 
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CHAPTER TWO  

Literature Review 

2.1 Electrospun Nanofibers 

Over the past decade, several techniques have been developed to fabricate 

polymeric nanofibers. These techniques include electrospinning, drawing, phase 

separation, self-assembly, and template synthesis [9-13,28-29]. Among them, 

electrospinning, a technique that can produce continuous fibers with diameters 

ranging from tens of nanometers to a few microns, is by far the most popular 

technique because of its relative simplicity and scalability for industrial level 

manufacturing and applications [9-13,28-29]. 

 

Figure 2.1: SEM images of fibers prepared by electrospinning of non-degradable (A-C) 

and degradable polymers (D-F): (A) polyethersulfone (PES); (B) polyvinyl alcohol; (C) 

poly(bisphenol A carbonate); (D) polyhydroxybutyrate; (E) polycaprolactone; and (F) 

poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP). 
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Electrospinning can be applied to spinning of a wide range of polymers (some 

examples shown in Fig. 2.1), and the list of synthetic and natural polymers (both 

biodegradable and non-degradable) that can be electrospun into nanofibers has been 

expanding rapidly [10-13]. Due to its simplicity and versatility in nanofiber 

fabrication, the electrospinning technique has generated great interest in many 

potential applications like nano-sensors, military protective clothing, media filtration 

and life science applications [9-11]. 

2.1.1 Principles and Mechanisms 

A typical laboratory electrospinning setup is schematically shown in Fig. 2.2. 

The major components include: (1) a polymer solution feed unit (e.g. syringe pump); 

(2) a spinneret unit (e.g. syringe needle); (3) a high voltage power generator; and (4) a 

grounded collector. 

 
Figure 2.2: Schematic illustration of an electrospinning setup. The inserts show a 

drawing of the electrified Taylor cone and a typical SEM image of nanofibers deposited 

onto the collector. 

 
The process of electrospinning is driven by electrical forces on free charges on 

the surface or inside a polymeric liquid. In a typical electrospinning process, when a 

large electric potential is applied between the collector and the spinneret, an electrical 
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field is simultaneously induced. The polymer solution ball-shape drop pendent on the 

nozzle exit is then deformed, as a consequence of the force interactions between the 

coulombic force (exerted by the external electric field) and the surface tension of the 

polymer solution, into a conical shaped Taylor Cone [28,29,37-39]. At sufficiently 

high electric potentials (typically 6 – 30 kV, depending on the surface tension of 

polymeric solutions), the electric field strength reaches a threshold value, and the 

electrostatic force overcomes the surface tension, resulting in an ejection of a polymer 

liquid jet. This jet is then subjected to an extremely high ratio of stretching through 

whipping1 [28,29,37-39] and rapid evaporation of solvent, leading to the formation of 

sub-micron sized nanofibers, which were then attracted and gathered into a mesh at 

the collector. 

 
 

2.1.2 Parameters that Control the Electrospinning Process 

Although electrospinning is said to be a relatively simple fiber fabrication 

technique, there are surprisingly many parameters that govern this process, and it is 

through control variations of these parameters that result in generation of many 

interesting nanofiber morphologies and structures as briefly discussed in the following 

subsections. 

                                                 
 
1 The formation of nanofibers by electrospinning was previously attributed to the splitting or splaying 
of the electrified jet as a result of repulsion between surface charges. It appears that the cone shaped, 
instability region is composed of multiple jets [29]. 
 
However, recent experimental observations demonstrated that the thinning of a jet during 
electrospinning is mainly caused by the bending instability associated with the electrified jet. It appears 
that the conical envelop contains only a single, rapidly bending or whipping thread. The frequency of 
whipping is so high that conventional photography cannot properly resolve it, giving the impression 
that the original liquid jet splits into multiple branches as it moves towards the collector [29]. 
 
In some cases, splaying of the electrified jet might also be observed, though it was never a dominant 
process during electrospinning. 
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Electrospinning parameters in general can be classified under 2 categories: 

(1) Parameters which control the resultant fiber morphology (e.g. shape, size, 

uniformity, defects, etc.); and 

(2) Parameters which control the resultant fiber mesh morphology (e.g. random, 

aligned, composite structures, etc.). 

Among them, the four parameters presented in the following subsections are 

found to be the more dominant control factors, as reported frequently in literature. 

2.1.2.1 Effect of Polymer Concentration in Electrospinning Solution 

The polymer solution concentration is an important parameter that affects the 

diameter, shape and the uniformity of the resultant fiber. The solution concentration 

decides the limiting boundaries for the formation of electrospun nanofibers due to 

variations in the viscosity and surface tension [12,40]. 

 
Figure 2.3: SEM images of electrospun PES with increasing concentrations in 

dimethylsulfoxide solvent (w/w). (A) 5%; (B) 10%; (C) 15%; (D) 18%; (E) 20%; and 

(F) 25%. The polymer solutions are fed at a rate of 0.3 mL/h, electrospun at 13 kV, and 

fibers or beads are collected onto a grounded surface 160 mm away from the spinneret. 
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In general, low concentration solution forms droplets due to the influence of 

surface tension, while higher concentration prohibits fiber formation due to higher 

viscosity [40]: When the solution concentration increases, the resultant polymer 

morphology shifts from polymer droplets, to beaded nanofibers, to uniform nanofibers 

of increasing diameters; until the solution becomes too viscous for fiber formation, as 

shown in Fig. 2.3. 

 
Figure 2.4: SEM images of PCLEEP fibers co-electrospun with increasing 

concentrations of R18 in PCLEEP (w/w). (A) 0%; (B) 0.02%; (C) 0.1%; (D) 0.5%; (E) 

1.0%; and (F) PCLEEP, R18 loading − PCLEEP fiber diameter relationship. PCLEEP 

and R18 are dissolved in 8:2 dichloromethane / methanol solvent mixture The polymer 

solutions are fed at a rate of 0.3 mL/h, electrospun at 12 kV, and the fibers or beads are 

collected onto a grounded surface 60 mm away from the spinneret. 

 

2.1.2.2 Effect of Ionic Additives in Electrospinning Solution 

Fiber diameter can also be controlled via the doping of ionic additives into the 

polymer solution. Charged ions in the polymer solution are highly influential in jet 

formation. The ions increase the charge carrying capacity (electro-conductivity) of the 

jet, thereby subjecting it to higher tension with the applied electric field [12,41]. Also, 
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the polymer solution jet radius has been demonstrated to vary inversely to the cube 

root of the electrical conductivity of the solution [12]. The resultant effect is reduction 

in bead formation or significant reduction in fiber diameters. To date, several reports 

have successfully employed ionic additives like sodium chloride [41,42], heparin [43], 

octadecyl rhodamine B chloride (R18, Fig 2.4), pyridine [44], ammonium acetate, etc., 

to control nanofiber diameter and morphology. 

2.1.2.3 Collector Design 

Electrospun nanofibers are usually deposited on the surface of the collector 

(often a flat piece of conductive substrate) as randomly oriented nonwoven mesh, 

because of the bending instability associated with the spinning jet (Fig. 2.2). However, 

in recent years, new collector designs have been developed that were able to collect 

electrospun nanofibers as uniaxially aligned arrays. The collector designs work 

mainly by modifying the polymer jet movement via controlling the distribution of 

electric field between the spinneret and the collector [45-49], aligning the fibers 

towards the sharp edges or corners of the collectors. Some of these designs include 

the use of a pair of split electrodes [45-47] or a rotating drum, frame or wheel [48,49] 

as the collector and they have all successfully demonstrated aligned nanofiber mesh 

collection. 

2.1.2.4 Spinneret Design 

The most recent addition to electrospinning process control that can significantly 

influence both the fiber and fiber mesh morphology is spinneret design. In particular, 

the fabrication of core-sheath nanofibers is a hallmark of the spinneret design 

parameter [50-52]. Core-sheath nanofibers are fabricated by co-electrospinning two 

different polymer solutions through a spinneret comprising of two coaxial capillaries. 

As the electrospinning process took place very quickly, there would not be enough 
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time for the polymer chains from the two different polymer solutions to be mixed 

before solidification. The resultant nanofiber core will have a material composition 

that is different from its outer shell. Though the coaxial electrospinning technique is 

still at its early development stages, recent papers have demonstrated that the 

nanofiber core can be used as a storage reservoir for proteins and drugs and that this 

fiber system has potential in drug / protein delivery applications [50-52]. 

Another unrelated spinneret design is electrospinning using multiple spinnerets 

[53,54]. In this design, different polymer solutions are fed into two or more separate 

spinnerets. Electrospinning using these spinnerets are then performed either 

sequentially or simultaneously over the same collector, and thus multilayering 

electrospinning or mixing electrospinning can be performed respectively. This design 

has demonstrated the fabrication of multilayered nanofiber mesh as well as nanofiber 

mesh with different polymer fibers that are intertwined or woven together. 

2.1.2.5 Other Parameters 

Other processing parameters include spinneret−collector gap distance, 

temperature, humidity, air-flow, applied electric field strength, solution feed rate, 

solvent characteristics and composition2, etc. These parameters generally function as 

“fine-tuning” factors, affecting the fiber uniformity and reproducibility of the 

electrospinning process. Although their roles have been discussed in literature [9-

13,28-29], their influence in determining the fiber and fiber mesh morphology is not 

as drastic as the four parameters previously discussed. However, we stress that future 

                                                 
 
2 The intrinsic conductivity of the solvent will also contribute to the charge carrying capacity of the 
polymer solution and will therefore determine the resultant fiber diameter range during electrospinning. 
However, since the range of solvents with different conductivities is very limited for any given 
polymer, the control of fiber diameters via different solvents compositions generally does not yield 
significant differences. 
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industrial electrospinning applications may still need to precisely control these 

parameters in order to achieve high quality standards and reliability. 

2.1.3 Electrospun Nanofibers in Cell Culture Applications 

As discussed earlier, the relative versatility and simplicity of electrospinning in 

fabricating nanofibers of various morphologies and structures has led to keen interest 

in various research fields [9-13,28-29]. In particular, the potential applications of 

nanofibers as viable cell culture scaffolds have been intensely investigated in recent 

years. 

The key interest has been mainly the unique fibrous, surface nano-topographical 

features that a typical nanofiber mesh presents, compared with the smooth, featureless 

surfaces of tissue-culture plastics commonly used as cell-substrates for ex vivo cell 

processing 3 , and several researchers have even compared the topographical 

morphology of nanofiber mesh to resemble those of extracellular matrix (ECM)4 in 

the native cell microenvironment. Indeed, abundant literature exists indicating that a 

variety of cell types, including fibroblasts, endothelial cells, muscle cells and stem 

cells responded differently to the nano-featured surface topography as compared to 

their smooth film counterparts, with or without the influence of additional physical or 

biochemical cues [55-59]. 

It has long been recognized that the in vivo extracellular matrix, which provides a 

rich context to the residing cells, includes topographical cue at the nanoscale [60-62]. 

                                                 
 
3  Examples of tissue-culture plastics include polystyrene for culture flasks and plates, and 

polytetrafluoroethylene for culture bags. These cultures surfaces are usually gas plasma treated, to 
provide an optimal growth surface for the matrix-dependent tissue cultures. 
 
4 Tissues are assemblies of one or more types of cells and their associated intercellular materials called 
the extracellular matrix. For vertebrate animals, the ECM is made of a complex mixture of proteins and 
carbohydrates, which are produced and maintained by the cells embedded in the network. 
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A typical example is the basal lamina (basement membrane) that can be found in 

many tissues. Inspired by the hypothesis that such a nanoscale feature may exert 

unique interaction with cells, several groups have been investigating the role of 

nanostructures on cell adhesion, proliferation, differentiation and migration [14-

27,55-59]. For example, the Curtis et al. has shown that nano-featured substrates 

mediate different responses in epithelial fibroblasts, endothelial cells, smooth muscle 

cells, and peripheral blood mononuclear cells compared to smooth film surfaces [57-

59]. The nano-featured substrates induce faster cytoskeleton organization, cell 

adhesion and spreading in cells, accompanied by clearer and smaller focal adhesion 

plaques, and a larger number of filopodia interactions with growth substrate. 

Several groups investigating on cellular responses to nanofiber substrates have 

also shown that these nanofiber substrates generally lead to differences in 

morphological organization, gene expression, proliferation and differentiation 

responses in fibroblasts, smooth muscle cells, endothelial cells, chondrocytes, 

cardiomyocytes, bone marrow stromal cells, keratinocytes, mesenchymal stem cell, 

etc. [14-27]. For example, Li et al. demonstrated that seeding mesenchymal stem cells 

on nanofiber scaffolds facilitated their differentiation into adipogenic, chondrogenic 

or osteogenic lineages, with corresponding increases in the expression of lineage-

specific genes [16,17]. Xu et al. showed that smooth muscle cells cultured on aligned 

nanofiber scaffolds attached and migrated along the axis of the aligned nanofibers, 

expressed spindle-like contractile phenotype, and exhibited actin and myosin 

cytoskeleton organization that are parallel to the direction of the nanofibers [24]. 

Yang et al. also demonstrated in aligned and nonwoven nanofiber scaffolds that 

nanometer diameter fibers enhances neurite growth in cerebellum stem cells better 

than micron-sized fibers [25]. 
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2.1.4 Nanofiber Modification for Cell Culture Applications 

At present, the majority of these electrospun nanofiber studies have only 

examined the effect of pristine nanofiber surface on cell behavior [14-27]. However, 

we believe that optimal regulation of cell behavior requires more than an “inert” 

scaffold that only provides topographical cues; and the electrospun nanofiber 

scaffolds should also present specific binding domains for cells and growth factors 

and serve many other functions (e.g. modulate growth factor responsiveness) that are 

critical to the regulation of cell activities. The systematic design and modification of a 

nanofiber scaffold containing these functional entities (bioactive molecules) would be 

important in mimicking the cellular microenvironment. 

A few groups have suggested electrospinning of pure ECM components or ECM 

/ synthetic polymer blends into nanofiber scaffolds as the alternative to synthetic 

polymeric nanofiber scaffolds [63-66]. However, this strategy is only limited to fibril-

forming proteins like fibrinogen, collagen, gelatin and elastin, and some 

glycosaminoglycans like hyaluronan. In addition, the fiber morphology is inherently 

unstable in aqueous medium (the fibers degrade immediately) and additional 

crosslinking steps (e.g. treatment with glutaraldehyde, 1,6-diisocyanatohexane, poly 

(ethylene glycol)-diacrylate, etc.) are usually taken to stabilize these scaffolds for cell 

culture. Therefore, this strategy is not feasible for the presentation and delivery of the 

majority of other bioactive molecules to cells. Nonetheless, several of these ECM 

components have been successfully electrospun and stabilized as nanofiber scaffolds, 

and cells (keratinocytes, fibroblasts, endothelial cells, etc.) cultured on these scaffolds 

have showed enhancement in cell adhesion and proliferation compared with synthetic 

polymer scaffolds [63-66]. 
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In general, nanofiber modification methods can be categorized into two different 

approaches: either modifying the interior or bulk of the fiber, and/or modifying the 

exterior or surface of the synthetic polymeric nanofiber with bioactive molecules to 

provide the desired cell responsive properties. 

2.1.4.1 Doping of Bioactive Molecules 

In this strategy, the nanofiber core is modified through the incorporation of 

bioactive molecules like drugs or proteins into the polymer fibers, as illustrated in Fig. 

2.5. The bioactive molecules are first added into the polymer solution. The doped 

polymer solution is then electrospun into a nanofiber mesh. The bioactive molecules 

in the nanofiber mesh are subsequently released and absorbed by cells during culture. 

Various bioactive molecules like heparin, nerve growth factor, DNA 

nanoparticles, drugs and bone morphogenetic protein have been incorporated into the 

nanofiber [43,67-69]. These doped nanofiber scaffolds were able to provide sustained 

release of bioactive molecules to the target cells for extended periods of 1 week to 2 

months, and the release kinetics of these molecules is dependent on both the bioactive 

molecule solubility characteristics, as well as the degradation characteristics of the 

nanofiber scaffold. In general, for non-degradable and slow-degrading scaffolds, the 

bioactive molecule release kinetics is a function of the molecule diffusibility and 

solubility [43,67,68], while for fast-degradable scaffolds the release kinetics is also 

coupled with the scaffold degradation [69]. 

Luong-Van et al. demonstrated that sustained release of heparin from doped 

polycaprolactone nanofiber scaffolds prevented the proliferation of vascular smooth 

muscle cells in culture [43]. Liang et al. showed that controlled release of DNA 

nanoparticles released from doped poly(D,L-lactic-co-glycolic acid) nanofiber 
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scaffolds are effective in transfecting 3T3 cells in vitro [69]. We also demonstrated in 

Chapter 4 that galactosylated nanofiber scaffolds doped with 3-methylcholanthrene is 

also able to induce and regulate cytochrome P450 activity of hepatocytes in vitro. 

 
Figure 2.5: Interior modification of electrospun nanofiber scaffolds. 

 

2.1.4.2 Nanofiber Surface Modification 

In this strategy, bioactive molecules are chemically immobilized onto the 

nanofiber surfaces, as illustrated in Fig. 2.6. These immobilized bioactive molecules 

then serve as ligands which will induce cell responses like adhesion, morphological 

organization, proliferation or differentiation upon interaction with cells. 

Numerous surface modification protocols are available in literature, which 

describe conjugation of bioactive molecules onto film surfaces [30-36]. Nanofiber 

surface modification strategies [70-73] have also imported these methods that have 

worked well with film modification. In general, plasma or UV-initiated grafting 

treatments, or chemical hydrolysis methods like aminolysis are first employed to 

functionalize the nanofiber surface with simple functional groups like carboxylic acid, 

amine, or aldehyde groups. Peptides, proteins, glycosaminoglycans and other ligands 

are subsequently conjugated onto the functionalized surfaces via chemical 

crosslinkers (e.g. glutaraldehyde, carbodiimide, etc.) [30-36,70-73]. 
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Figure 2.6: Exterior modification of electrospun nanofiber scaffolds. 

 
Kim et al has demonstrated that cell attachment, spreading, and proliferation of 

3T3 cells were greatly enhanced in RGD peptide immobilized electrospun poly(D,L-

lactic-co-glycolic acid) nanofibers, compared with unmodified nanofibers [73]. Ma et 

al showed endothelial cells cultured on gelatin immobilized polycaprolactone 

nanofibers exhibit enhanced spreading, proliferation, and expression of endothelial 

cell markers [71]. 

 
 

2.2 Biomaterials Design for Primary Hepatocyte Culture 

Liver failure has been the cause of death for thousands of people worldwide each 

year. When liver failure suddenly occurs in healthy individuals with normal livers, it 

is termed acute liver failure (ALF), while the loss of liver function that complicates 

chronic liver disease is termed acute-on-chronic liver failure. Both ALF and acute-on-

chronic liver failure are curative via immediate liver transplantation [74,75]. Though 

patient survival after transplantation has improved with advances in both patient 

management and surgical techniques in recent years, the procedure however, is not 

always available in a timely fashion due to the problems of organ availability [76]. 
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To alleviate this problem, alternatives to whole liver transplantation organ are 

currently under active investigation. Some of these methods include extracorporeal 

bioartificial liver devices (BALs), transgenic xeno-transplantation, isolated cell 

transplantation, and tissue engineering of implantable constructs (Fig. 2.7) [77-81]. In 

particular, research on BALs has been widespread as it is seen as a viable form of 

supportive treatment to liver transplantation. BALs are generally developed as 

temporary systems to attempt to expedite recovery from acute decompensation, 

facilitate regeneration in ALF, and serve as a bridge to liver transplantation [77-81]. 

 
Figure 2.7: Approaches to cellular therapies for the treatment of liver disease. 

Extracorporeal devices perfuse patient’s blood or plasma through bioreactors 

containing hepatocytes. Hepatocytes are transplanted directly or implanted on 

scaffolds. Transgenic animals are being raised to harvest a humanized liver. 

 
BALs typically incorporate isolated cells (primary hepatocytes) into bioreactors 

to simultaneously promote cell survival and function as well as provide for a level of 

transport seen in vivo. The optimal design of a BAL generally spans across several 

research disciplines. To cell biologists, the design and choice of the BAL cellular 

component has been a primary focus: Optimization of medium formulations that 

enhance primary hepatocyte functions and viability [82,83] as well as the design of 
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immortalized cell-lines (e.g. NKNT-3, HepLiu, etc.) that express hepatic functions 

have been their key research areas [79,80,84,85]. 

To BAL engineers, their research focus have been challenges in bioreactor scale-

up for effective clinical therapy, as well as challenges in bioreactor designs that 

provide optimal bi-directional mass transport of oxygen, nutrients, patient’s plasma, 

etc., that is needed to sustain cell viability and allow export of therapeutic cell 

products [78,79,86]. 

Lastly, to biomaterials scientists, their key interests have been the design and 

optimization of biomaterial scaffolds that promote hepatocyte phenotype stabilization 

in vitro. This is because although primary hepatocytes represent the most direct 

approach to replacing liver function in hepatic failure, they are anchorage-dependent 

cells and notoriously difficult to maintain in vitro: When enzymatically isolated from 

the liver and cultured in monolayer, scaffold or suspension cultures, the primary 

hepatocytes rapidly lose adult liver morphology and differentiated functions [77-81]. 

One approach of hepatocyte phenotype stabilization includes the use of 

extracellular matrix (ECM) components, which included both variations in 

composition and topology. For example, surfaces coated with various ECM proteins, 

such as laminin, fibronectin, and collagen [87-91], or conjugated with cell adhesion 

peptides, such as RGD and YIGSR [92], have been used for hepatocyte culture. 

Hepatocytes have been shown to attach well to these substrates [87-92]. An 

improvement on the ECM culture system is sandwich cultures [89-91] or 

microencapsulation cultures [93,94] which were designed to mimic the 

microenvironment of the adult hepatocyte where cells are sandwiched by extracellular 

matrix in the space of Disse [78-80]. These sandwich or microencapsulation cultures 
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typically packed hepatocytes closer together at higher densities, thereby promoting 

homotypic cell-cell interactions. Hepatocytes cultured in this configuration have been 

shown to stably express many liver-specific functions [89-91,93,94]. However, these 

“ECM scaffolds” face the same problems as electrospun ECM nanofibers in that they 

are inherently unstable and attempts to scale-up these culture methods have met with 

limited success so far. 

Nevertheless, the importance of high density cell-packing in promoting 

homotypic or heterotypic (in the case of hepatocyte cocultures with non-parenchymal 

cells [95-97]) cell-cell interactions, which in turn stabilizes and maintains hepatocyte 

liver-specific functions has been well documented [77-81,89-91,93-120], and this has 

been the basis of culture systems involving hepatocyte spheroid formation [98-120]. 

2.2.1 Hepatocyte Function Maintenance through Spheroid Formation 

Primary hepatocytes, when cultured on certain substrates conditions, will 

physiologically undergo a series of morphological and functional changes, and 

eventually self-assemble into spheroids [33,34,98-120]. 

 
Figure 2.8: Morphology of hepatocyte spheroids. (A) Light microscope image of 

spheroids after 4 days culture (bar represents 100 µm). (B) SEM imaging shows that the 

surface of a mature spheroid is relatively smooth and cell-cell contacts are tight. 
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Hepatocyte spheroids are three-dimensional, compacted multicellular spherical 

aggregates that exhibit high degrees of cell-cell contacts (Fig. 2.8) [90,98-101]. They 

show several structural similarities to native liver tissue such as gap junctional 

complexes and bile canaliculi-like channels [98-101]. Hepatocyte spheroids exhibit 

prolonged viability and express high levels of liver-specific functions including 

albumin production, urea synthesis, and cytochrome P450 activity, in contrast to cells 

cultured as monolayers [102-104]. At present, several different protocols have 

demonstrated successful in assembling spheroids in vitro, they include: 

(1) Encapsulating [93,94], sandwich [89-91], or other packing (e.g. polyurethane 

foam [105-107]) cultures where hepatocytes are physically packed close 

together to facilitate cell-cell interactions and spheroid assembly; 

(2) Positively-charged polystyrene surfaces (PrimariaTM, BD Biosciences) [108] 

or negatively-charged proteoglycan-coated surfaces [109], which induces the 

formation of non-surface-adherent spheroids; 

(3) Rotary suspension cultures, where the swirling motion facilitates cell 

clustering [110,111]; and, 

(4) Hepatocyte cultures on galactose-immobilized substrates, where the 

hepatocyte-specific galactose ligand attaches hepatocytes and induces 

spheroid formation along the substrate surface [33,34,112-120]. We shall be 

using the scaffold galactosylation strategy to bio-functionalize our scaffolds 

for hepatocyte culture. 
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2.2.2 Hepatocyte Cultures on Galactosylated Scaffolds 

Galactose-conjugated substrates have been proposed as alternatives for 

hepatocyte culture [33,34,112-120]. These substrates mediate hepatocyte adhesion 

through the galactose−asialoglycoprotein receptor (ASGPR) interaction, and 

minimize the involvement of the integrin-mediated signaling pathway, which has 

been shown to induce the loss of hepatocyte phenotypes [103]. The characteristic 

attribute of these galactosylated substrates is also the propensity of hepatocytes to 

form aggregates or spheroids on them, in concomitance with maintaining higher 

hepatocyte synthetic functions. 

At present, several studies have shown that polymeric biomaterial surfaces 

conjugated with galactose ligands can improve hepatocyte attachment and sustain 

most of the cellular functions. This has been demonstrated in poly-N-p-vinylbenzyl-

D-lactonamide-coated polystyrene surfaces or foam [113,114] and in galactosylated 

polyethylene oxide hydrogel or polyacrylamide gel [115,116]. In addition, 

galactosylated biodegradable polymeric scaffolds, such as alginate/galactosylated 

chitosan sponge, galactosylated microcapsules, and polylactide-co-glycolide foam 

[117-120], have also been designed for hepatocytes culture. 

Recently, galactosylated PET films have also been developed for hepatocyte 

spheroid culture [33,34]. A galactose ligand called 1-O-(6’-Aminohexyl)-D-

galactopyranoside (AHG) was designed for this culture system. This AHG ligand 

consist of: (1) the galactosyl group; (2) a 6-carbon spacer (~ 0.7 nm) between the 

galactosyl group and the surface conjugating point to facilitate the conjugation 

reaction and to increase the accessibility of the ligand to cell surface receptors 

(ASGPR); and (3) a terminal primary amine group that allowed AHG conjugation to 

other surfaces via cross-linking chemistry. Details of AHG ligand synthesis are 
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attached in Appendix I. The AHG ligand is conjugated onto poly(acrylic acid)-grafted 

PET surface through carbodiimide cross-linking chemistry [33,34]. We shall be using 

this AHG ligand to bio-functionalize our hepatocyte culture scaffolds. 

2.2.3 Bio-functional Nanofiber Scaffolds for Hepatocyte Cultures 

Besides the ligand–receptor interaction, the substrate topography in micro-and 

nanometer ranges has been shown to influence cellular behavior and functions 

including adhesion, migration, proliferation and gene expression [14-27,55-59]. 

Hepatocytes cultured on silicon scaffolds with micro-channels or in polyurethane 

foams [105-107] have also exhibit aggregation behavior and functional maintenance 

that are dependent upon the pore size of the scaffold. Electrospinning has been 

increasingly investigated as an interesting technique to produce polymeric fibrous 

scaffolds for cell culture applications. Several studies have shown that these nanofiber 

scaffolds effect favorable cellular responses [14-27,70-73]. In this thesis, we would 

like to extend the investigation to primary rat hepatocytes cultured on nanofiber mesh. 

We would investigate how nanofiber topography and fiber bio-functionalization can 

be employed to synergistically enhance cell-substrate interactions and hepatic 

functions for primary hepatocyte culture systems. 

 
 

2.3 Biomaterials Design for Ex Vivo HSPC Expansion 

Ex vivo hematopoietic stem/progenitor cells (HSPCs) expansion is one of the 

most challenging fields in cell culture. This is a rapidly growing area of tissue 

engineering with widespread potential applications like gene therapy, immunotherapy, 

bone marrow transplantation, and the production of mature blood cells for transfusion 

medicine [132-140]. 
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The importance for HSPC ex vivo expansion in medicine is clearly demonstrated 

in cell transplantation therapy treatments for cancer patients undergoing 

chemotherapy and radiation therapy. Both chemotherapy and radiation therapy 

treatment procedures target cells in mitosis, based on the fact that tumor cells are 

continuously proliferating. As a consequence, all other cells that undergo rapid 

proliferation are also damaged and this applies especially to the hematopoietic system. 

In most cases, this leads to total loss of all hematopoietic stem cells, making 

allogeneic or autologous stem cell transplantation obligatory. Therefore, ex vivo 

HSPC expansion can either increase the number of umbilical cord blood derived cells, 

making this source also available for adult patients, or reduce the number of 

leukapheresis procedures necessary for the collection of autologous cells [132-140]. 

Transplantation of ex vivo expanded lineage-restricted progenitor cells are also 

viable cell therapy treatments [132-140]. For example, expansion of neutrophil 

granulocytes and megakaryocytes can help to reduce the periods of neutropenia and 

thrombopenia respectively after chemotherapy. In addition, the expansion of natural 

killer cells or T-lymphocytes gives access to cell-mediated immunotherapy, while the 

generation and specific loading of dendritic cells offers possibilities for the in vivo 

induction of antigen-specific immunity. The generation of erythrocytes or 

thrombocytes can also lead to blood transfusions without a risk of viral contaminants. 

Finally, hematopoietic stem cells can also serve as a target for somatic gene therapy 

as they can offer a chance of a lifelong cure from genetic disorders due to their self-

renewing capacity. 

As hematopoiesis in vivo is a highly regulated and complex process, the 

challenge of ex vivo HSPC expansion has always been the optimization of cell 

cultivation techniques that can control and regulate every step of differentiation of and 
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maturation of the hematopoietic cell, mimicking that of the cell’s native 

microenvironment. Also, with much progress made in the understanding of the 

hematopoietic system over the past decades, the cultivation techniques and concepts 

have also been evolving continuously, in order to expand HSPCs efficiently and 

effectively. 

In the following subsections, we will present and discuss the various knowledge 

of the hematopoietic system, cell characterization techniques and cell cultivation 

strategies that have progressively shaped the ex vivo HSPC expansion field. 

2.3.1 The Hematopoietic System 

Hematopoiesis is the process of generating mature blood cells. In the human 

body, hematopoiesis mainly occurs in the bone marrow, predominantly in the femur, 

sternum and pelvic bones [137-139]. In the marrow, the hematopoietic cells are 

embedded in the stromal tissue, which consists of several different cells types 

(adipocytes, fibroblasts, marcophages, endothelial cells, etc.) responsible for the 

production of ECM (collagen, laminin, fibronectin, glycosaminoglycans, etc.) as well 

as providing membrane-bound and soluble growth factors [137-140]. The interactions 

between hematopoietic cells, stromal cells and ECM controls and regulates the entire 

hematopoiesis process (Fig. 2.9): Everyday, almost 400 billion hematopoietic cells of 

different subtypes are produced in an average human to replace the natural loss of 

cells [137]. Despite this tremendous proliferation, the balance between the different 

lineages is very efficiently controlled by the bone marrow microenvironment to 

guarantee the many functions of the blood [137]. 

Despite enormous research progress over the past decades, the hematopoietic 

system is still not completely understood. However, it is agreed that all hematopoietic 
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cells originate from a small population of multipotent hematopoietic stem cells that 

proliferate and differentiate into the whole spectrum of mature blood cells [132-140]. 

The hematopoietic stem cells are the only hematopoietic cells that have the capacity 

to self-renew, while for all other cells, proliferation is inevitably combined with a 

lineage-specific differentiation and loss of immaturity. 

 
Figure 2.9: Control of hematopoiesis in a bone marrow microenvironment. 

 

2.3.2 Hematopoietic Stem/Progenitor Cell Sources 

HSPCs can be harvested from the (1) bone marrow, (2) peripheral blood after 

stem cell mobilization, or from (3) umbilical cord blood. The bone marrow is a good 

source of HSPCs and supporting stromal cells as it is the natural site for 

hematopoiesis. However, the harvesting of cells from bone marrow is an invasive 

procedure that requires manual extraction under spinal or general anesthesia of the 

allogeneic donor, so alternative sources are preferred whenever possible [135-137]. 

HSPCs can also be harvested from peripheral blood after administration of G-CSF or 

GM-CSF, which mobilizes HSPCs from the bone marrow. Though this is the standard 

procedure to collect HSPCs from patients for autologous transplantation after high-
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dose chemotherapy, it is not applicable to allogeneic transplantation, due to the health 

risk involved in using HSPC mobilization cytokines [135-137]. 

Umbilical cord blood is a promising alternative source of HSPCs for both 

allogeneic and autologous hematopoietic stem cell transplantation, as it contains a 

significant amount of progenitor cells with high proliferative potential, and the HSPCs 

are harvested through procedures that are non-invasive for the mother or the neonate 

[135,139,141,144]. Cord blood sources also contains a lower burden of common viral 

contaminations like EBV and CMV compared with the other two sources, and as the 

lymphocytes are more naive, the risk of a graft-versus-host disease is also reduced 

[135]. However, the main disadvantage of cord blood is the low number of HSPCs 

obtainable due to the small volume of blood collected from the umbilical cords, so 

transplantation is limited to pediatric patients of body weight less than 40 kg [141-

145]. Nevertheless, it is hoped that through development of efficient ex vivo 

expansion strategies, sufficient quantities of HSPCs can be produced to engraft and 

sustain long-term hematopoiesis for adult patients. 

2.3.3 Hematopoietic Stem/Progenitor Cell Characterization Techniques 

HSPC characterization assays are important to ex vivo expansion cultures in that 

they evaluate and identify the primitive HSPC population in the cultures before or 

after cell expansion have been carried out. They also serve as a means of assessing the 

effectiveness of an expansion culture technique in producing HSPCs. There are at 

present a handful of assays used frequently in literature that have demonstrated merits 

in identifying and evaluating HSPCs, and we will be using most of these assays 

throughout this thesis to assess our scaffold expansion culture system. The detailed 

protocols to these characterization methods are described in Chapter 5.3.2 & 6.3.2. 
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HSPC characterization using flow cytometry techniques has been popular since 

the discovery of the CD34 cell surface marker [146-149]. The CD34 antigen is 

frequently used as a marker of stem cells as the CD34+ cell population contains a high 

amount of CFC, LTC-IC and mouse-repopulating capacity [135-138,143-156]. CD34+ 

is expressed most strongly on the most primitive cells and is progressively lost as cells 

differentiate [146-150]. Although recent studies have discovered other stem cell 

associated markers (e.g. CD133, CXCR-4) [138,157,158] and have also described 

stem cell subpopulations that are CD34− [158,159], the CD34 antigen remains a 

popular marker in identifying HSPCs clinically and in research. 

In addition to flow cytometry, a series of in vitro assays like colony-forming cell 

(CFC) assay, cobblestone area-forming cell (CAFC) assay or long term culture-

initiating cell (LTC-IC) assay are also used in progenitor cells characterization. In the 

CFC assay, a small number of cells are cultivated for 2 weeks in cytokine containing 

semi-solid medium. Colony-forming cells generate distinct colonies of more 

differentiated cells depending on their lineage specificity. For the detection of more 

primitive progenitor cells, CAFC or LTC-IC assays are used. Here a small number of 

cells are placed on a stromal cell layer for 5-8 weeks. During this period the early 

progenitor CAFC and LTC-IC differentiate and, in the case of CAFC, cobblestone-

area-like cells are formed that can be easily identified. In the case of LTC-IC the early 

progenitor cells differentiate into CFC, which are detected using a subsequent CFC 

assay [160,161]. 

Finally, to evaluate the engraftment ability of the expanded HSPCs, in vivo 

assays are used, which measures the potential of these cells in repopulating the 

hematopoietic system of sub-lethally irradiated immunodeficient mice (NOD/SCID), 

monkeys or sheep [162,163]. 
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2.3.4 Hematopoietic Stem/Progenitor Cell Expansion Cultures 

HSPC expansion culture systems have been evolving continuously (Fig. 2.10), 

progressing with current knowledge of the hematopoietic system and also with 

development of new technologies. The first HSPC expansion culture system was 

described by Dexter et al. in 1977 [164] using stromal cells to support HSPC growth 

[160,164-172]. The development of human recombinant cytokines in the 1990s has 

contributed to the widespread popularity of cytokine supplemented HSPC suspension 

cultures [173-177]. Finally, advancement in micro-fabrication technologies and the 

progressive understanding and appreciation cell-cell and cell-substrate interactions of 

the HSPC microenvironment has encouraged development of scaffolds that can 

support HSPC expansion [178-185]. We will briefly discuss each of these HSPC 

culture variants in the following subsections. 

 
Figure 2.10: Generic HSPC cultivation variants. (1) Stromal cultures; (2) Cytokine 

supplemented suspension cultures; and (3) HSPC-immobilized scaffold cultures that 

combine different aspects of the previous two culture variants. 

 

2.3.4.1 HSPC Cultures with Stromal Cells or Conditioned Medium 

Before the development of recombinant human cytokines, a feeder layer of 

stromal cells was essential for HSPC cultivation. Stromal culture of hematopoietic 

cells is a generic term that covers a variety of cultivation concepts, which includes (1) 
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direct HSPC − stromal cells co-culture, (2) HSPC culture in stromal-conditioned 

medium, and (3) partitioned non-contact co-culture. 

The first direct co-culture system was demonstrated by Dexter et al. [164]. Since 

then, several other stromal cells lines have been developed for the HSPC cultivation, 

though most stable lines are of murine origin. Some examples are HESS-5, M2-10B4, 

L88/5, hu-ST, etc. [160,164-168]. The main reason that stromal culture provides a 

superior HSPC cultivation environment is that they appear to mimic the in vivo bone 

marrow environment. The stromal cells provide direct cell-cell interactions as well as 

cell-matrix interactions through secreting ECM. The stromal cells also secrete 

numerous different growth factors necessary for the maintenance and expansion of 

stem and progenitor cells and many of these substances are still unknown [164-169]. 

However, harvesting and complete separation of expanded HSPCs from the stromal 

cells is very difficult in such systems. 

A variation of direct co-culture is the application of exogenous stromal-

conditioned medium [168,169]. This concept enables the application of all bioreactor 

systems developed for the cultivation of isolated HSPCs and allows the culture to be 

supplied with (unidentified) growth factors secreted from the stromal cells. The 

conditioned medium can be produced in large amounts exogenously and stored until 

application. An improvement of this approach is the in-situ generation of stromal-

conditioned medium in a partitioned non-contact co-culture, where HSPCs and 

stromal cells are physically separated in different compartments using micro-porous 

membranes [140,170]. This permits active interaction between HSPCs and stromal 

cells, mediated by secreted molecules, which has been demonstrated to support the 

expansion of the early progenitor cells more efficiently than the use of exogenous 
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conditioned medium [140,170]. However, this technique suffers from difficult 

technical requirements in set-up and process control. 

Although the main attraction of stromal cultures is their superior ability for 

HSPC expansion, clinical realization of these systems has been difficult, if not 

impossible. The major drawback has been the origin of the stromal support. While the 

use of autologous stromal cells would be a feasible possibility [171,172], in many 

cases this is not feasible. Furthermore, the use of cell lines is problematic as all 

stromal cells have to be removed completely prior to transplantation, a demand which 

is difficult to fulfill. In the case of murine cell lines a transfer of residue cells into a 

patient would be a xeno-transplantation, which is faced with extensive regulatory 

hurdles. 

2.3.4.2 HSPC Cultures with Human Recombinant Cytokines 

The development of human recombinant cytokines has allowed cultivation and 

significant expansion of isolated hematopoietic stem and progenitor cells without the 

use of supporting feeder-layer of stromal cells. The simplicity of these culture systems 

is their main attraction: The cells are cultivated in chemically defined culture medium 

containing defined combinations of cytokines [132-139,173-177]. 

Different kinds of culture set-ups have been devised for cytokine supplemented 

cultures, but they are generally classified as suspension cultures. The various set-ups 

include well plates, tissue-culture flasks, gas-permeable culture bags, spinner flasks 

and stirred vessel bioreactors [132-139]. All these systems have the advantage of 

being easy to handle, single-use devices, which enable an uncomplicated cell harvest. 

For the larger culture bag and spinner flask set-ups, cell cultivation on a clinical scale 

is possible, and these systems have been used clinically [132-139]. 
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The critical element of cytokine supplemented suspension cultures is the 

cytokine formulation. However, after almost two decades of intensive research of 

cytokine effects on HSPCs [173-177], the optimal choices and combinations of 

cytokines for the ex vivo expansion of HSPCs has not yet been determined [132-139]. 

This problem is mainly due to variations in culture conditions (e.g. use of serum or 

serum-free medium, cell source purity, HSPC sources, etc.) or assays (e.g. LTC-IC, 

CAFC, mouse-engraftment assay, etc.) employed by the different studies. 

Nevertheless, there is consensus among the various research studies, which 

shows a list of cytokines that can positively regulate HSPC kinetics [173-177]. These 

cytokines include stem cell factor (SCF), flt3/flt2 ligand (FL), interleukin (IL)-1, IL-3, 

IL-6, IL-11, IL-12, leukemia inhibitory factor (LIF), granulocyte-macrophage colony-

stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), 

thrombopoietin (TPO), and erythropoietin (EPO). In addition, supplementation of two 

or more cytokines has been repeatedly demonstrated to positively enhance regulation 

of HSPC kinetics, as compared to single cytokine supplementation [132-139,173-177]. 

For example, the addition of SCF to a combination of IL-3 and GM-CSF resulted in 

significant fold increase in cell colony formation [174]. In another study, FL in 

combination with TPO resulted in extensive expansion with little differentiation of 

CD34+ cord blood cells cultured under stromal-free conditions [175]. In this thesis, 

we will be using a cytokine formulation adapted from Miller et al. [173], which 

consist of SCF, FL, TPO and IL-3. Details of the cytokine formulation and culture 

conditions are described in Chapter 5.3.2, 6.3.2 & 7.3.2. 

Although cytokine supplemented suspension cultures enable better control of the 

culture conditions, cell processing, and significantly less regulatory hurdles as 

compared to stromal cultures, important elements in the in vivo regulation of 
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hematopoiesis are missing in this approach: the cell-cell interactions between 

hematopoietic and stromal cells, and biochemical and topographical cues provided by 

cell-matrix interactions between hematopoietic cells and the ECM substrate [137-140]. 

Therefore, it is likely that the cultivation of isolated hematopoietic cells in suspension 

results in suboptimal HSPC expansion [137,140]. 

2.3.4.3 HSPC Cultures on Scaffolds 

The immobilization of HSPCs into scaffolds is an attempt to imitate the complex 

topographical microenvironment of the bone marrow. Scaffold topography itself 

cannot support HSPC survival, so ex vivo expansion of HSPCs on scaffolds must 

always be adapted with addition of other factors like stromal cells, ECM components 

and/or cytokines [178-185]. The designs of HSPC scaffold culture systems are usually 

devised to improve the existing stromal culture and cytokine culture systems. 

For scaffold cultures with stromal cells, the scaffolds incorporate the 3-D 

perspective into the culture system, as conventional co-cultures are usually 2-D 

monolayer cultures. HSPCs and stromal cells have been co-cultured in nonwoven 

fabrics disks, large pore-size cubes and nylon screens [178-180]. For example, Li et al. 

have shown that culture in 3-D non-woven polyester matrices enhanced cell–cell and 

cell–matrix interactions and expansion of stromal and hematopoietic cells [179]. 

Although high local cell densities can be achieved in these systems, they nevertheless 

still retain the drawbacks related to the use of stromal cells. 

For scaffold cultures with cytokine supplementation, the scaffold topography 

provides cell anchorage and the possibility of HSPC growth modulation via cell-

substrate interactions to the otherwise substrate-less suspension cultures. A growing 

body of evidence suggests the importance of surface chemistry as well as 
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topographical features on the rate of HSPC proliferation and CD34+ cell expansion on 

cytokine supplemented cultures [181-185]. For example, LaIuppa et al. have shown 

that the type of substrate used in culture, ranging from polymers (polystyrene, 

polysulfone, polytetrafluoroethylene, cellulose acetate) to metals (titanium, stainless-

steel) and glasses, can significantly affect the outcome of ex vivo expansion of HSPCs 

[181]. Leong et al. have also demonstrated that covalent surface immobilization of 

extracellular matrix proteins (fibronectin) [185] and adhesion peptides (CS-1 and 

RGD) [184] mediate HSPC adhesion to the scaffold and HSPC expansion. 

These results suggest cytokine soluble cues as well as immobilized biochemical 

and topographical cues could be synergistically involved in dictating the proliferation 

and differentiation of cultured HSPCs. These observations also prompted us to 

investigate whether the nano-topographical cues and immobilized biochemical cues 

on electrospun nanofiber scaffolds could also synergistically influence HSPC 

adhesion, proliferation and multipotency phenotype maintenance, and we shall 

demonstrate these effects in this thesis. 

 
 

2.4 Concluding Remarks 

Over the past decade, the understanding of the electrospinning technique has 

been very progressive: It is possible to control this process and to electrospin almost 

any polymer material into nanofibers of virtually any size and mesh configuration. 

The simplicity and versatility of nanofiber fabrication has attracted interests in many 

research disciplines. In particular, biotechnologists and medical researchers have 

recently demonstrated the possibilities of electrospun nanofibers as viable cell culture 

scaffolds. Though the mechanisms in which cells interact with nanofibers remains 
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largely to be elucidated, we hoped that through nanofiber bio-functionalization, we 

would be able to understand and control this cell-nanofiber interaction better. Thus, in 

the following chapters, we will demonstrate how bio-functionalized nanofiber 

scaffolds can solicit various cellular responses through the synergistic effects of 

nanofiber topography and immobilized biochemical cues. 

We will demonstrate in Chapters 3 & 4 that galactosylated nanofibers can induce 

hepatocyte morphological reorganization, and enhance attachment, albumin, and 

cytochrome P450 activity functions. We will also demonstrate in Chapters 5, 6 & 7 

that hematopoietic stem / progenitor cell proliferation and phenotype maintenance is 

enhanced via ex vivo cultures on aminated nanofiber scaffolds. 
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CHAPTER THREE  

Stable Immobilization of Hepatocyte Spheroids on Galactosylated 

Nanofiber Scaffolds for Liver Cell Cultures 

3.1 Summary 

Primary rat hepatocytes self-assemble into multi-cellular spheroids and maintain 

differentiated functions when cultured on a two-dimensional (2-D) substrate 

conjugated with galactose ligand. The aim of this study is to investigate how a 

functional nanofiber scaffold with surface-galactose ligand influences the attachment, 

spheroid formation and functional maintenance of rat hepatocytes in culture, as 

compared with the functional 2-D substrate. 

Highly porous nanofiber scaffolds comprising of fibers with an average diameter 

of 760 nm were prepared by electrospinning of poly(ε-caprolactone-co-ethyl ethylene 

phosphate) (PCLEEP), a novel biodegradable copolymer. Galactose ligand with a 

density of 66 nmol/cm2 was achieved on the nanofiber scaffold via covalent 

conjugation to a poly(acrylic acid) spacer UV- grafted onto the fiber surface. 

Hepatocytes cultured on the galactosylated PCLEEP nanofiber scaffold exhibited 

similar functional profiles in terms of cell attachment, ammonia metabolism, albumin 

secretion and cytochrome P450 enzymatic activity as those on the functional 2-D 

substrate, although their morphologies are different. Hepatocytes cultured on 

galactosylated PCLEEP film formed 50-300 µm spheroids that easily detached from 

surface upon agitation, whereas hepatocytes cultured on galactosylated nanofiber 

scaffold formed smaller aggregates of 20-100 µm that engulfed the functional 

nanofibers, resulting in an integrated spheroid-nanofiber construct. 

 37



Chapter 3 

3.2 Introduction 

Primary rat hepatocytes, when cultured on certain culture configurations will 

self-assemble into spheroids [33,34,98-120]. Hepatocyte spheroids are three-

dimensional, compacted multi-cellular spherical aggregates that exhibit high degrees 

of cell-cell contacts [90,98-101]. In turn, these spheroids sustain viability for extended 

culture periods and maintain high levels of liver-specific functions including albumin 

production, urea synthesis, and cytochrome P450 activity, in contrast to cells cultured 

as monolayers [102-104]. Galactose-conjugated substrates have been proposed as 

alternatives for hepatocyte culture. These substrates mediate hepatocyte adhesion 

through the galactose-asialoglycoprotein receptor (ASGPR) interaction, and minimize 

the involvement of the integrin-mediated signaling pathway, which has been shown to 

induce the loss of hepatocyte phenotypes. In addition, hepatocytes cultured on 

galactosylated PET films exhibit spheroid-forming capabilities: hepatocytes attach, 

then migrate and aggregate on the galactosylated surface, eventually forming surface 

bound spheroids [33,34]. 

Besides the ligand-receptor interaction, the substrate topography in micro- and 

nanometer ranges has been shown to influence cellular behavior and functions 

including adhesion, migration, proliferation and gene expression [14-27,55-59,105-

107]. Electrospinning has been increasingly investigated as an interesting technique to 

produce polymeric fibrous scaffolds for cell culture applications. Nanofibers ranging 

from 100 nm to 5 µm can be electrospun into a non-woven or an aligned nanofiber 

mesh. Several studies have shown that these nanofiber scaffolds effect favorable 

cellular responses [14-27,70-73]. We would like to extend the investigation to 

primary rat hepatocytes cultured on nanofiber mesh composed of poly(ε-

caprolactone-co-ethyl ethylene phosphate) copolymer (PCLEEP). PCLEEP is a 
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recently developed biodegradable polymer [121]. With ester and phosphate linkages 

in the backbone, PCLEEP shows an intermediate degradation rate between poly(ε-

caprolactone) and poly(ethyl ethylene phosphate) with a relatively linear degradation 

profile. PCLEEP is soluble in several solvents and therefore confers good 

processibility for the electrospinning process. It has also shown good tissue 

compatibility and low cytotoxicity [67,121-123]. Initial studies also shows that 

unmodified PCLEEP confers better hepatocyte adhesion properties compared to other 

polymers such as poly(ε-caprolactone). 

Figure 3.1: Surface modification scheme for galactose conjugation to PCLEEP 

nanofiber mesh. Insert: PCLEEP copolymer chemical structure. 

 
In this study, we present the development of a biofunctional PCLEEP nanofiber 

construct for hepatocyte culture (Fig. 3.1). This was achieved by conjugating 

hepatocyte-specific galactose ligands onto the nanofiber surface. We investigated the 

effect of nanofiber mesh on hepatocyte attachment, migration, spheroid formation and 

maintenance of the differentiated functions, as compared with smooth 2-D substrates 
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with or without galactose ligand. It is hypothesized that such functional nanofiber 

scaffolds can be incorporated into a bioartificial liver assist device design, and 

together with their textured and porous nature, may promote hepatocyte-scaffold 

interaction that will improve the stability of the attached cells. 

3.3 Experimental Methods 

Acrylic acid was purchased from Merck. All other chemicals were purchased 

from Sigma-Aldrich unless otherwise stated. 

3.3.1 Fabrication of PCLEEP Nanofiber Scaffolds 

PCLEEP copolymer (Mw: 70,760) was synthesized according to a procedure 

described by Wen et al. [121]. The PCLEEP copolymer was dissolved in acetone 

(21.5 wt% concentration) and placed in a plastic syringe fitted with a 27G needle. A 

syringe pump (KD Scientific) was used to feed the polymer solution into the needle 

tip. The feed rate of the syringe pump was fixed at 0.3 mL/h. PCLEEP nanofiber 

meshes were fabricated by electrospinning at 17 kV using a high voltage power 

supply (Gamma High Voltage Research). The nanofibers were collected onto 

grounded 15 mm diameter coverslips located at a fixed distance of 80 mm from the 

needle tip. Fiber diameters and mesh thickness were determined from images obtained 

using a field emission scanning electron microscope (FESEM) (SL30 FEG, FEI 

Company). Representative nanofiber images were analyzed using NIH ImageJ 

software (http://rsb.info.nih.gov/ij/). At least 250 measurements were recorded for 

each analysis. 

As a control, PCLEEP film substrate was prepared by spin-coating 5 wt% 

PCLEEP solution in acetone at 2000 rpm onto 15 mm diameter coverslips using a 

spin-coater machine (Brewer Science Inc.). 
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3.3.1.1 Surface Grafting of Scaffolds with Poly(acrylic acid) 

Acrylic acid (AAc) was freshly distilled prior to use. The PCLEEP fibrous 

scaffolds were cleaned with 70% ethanol in an ultrasonic water bath for 10 min prior 

to surface grafting. Poly(acrylic acid) (PAAc) was grafted onto the scaffold surface by 

photo-polymerization, as described by Uchida et al. [32]. Briefly, samples were 

immersed in aqueous solution containing 2%-7% AAc solution and 0.5 mM NaIO4 in 

a flat-bottom glass container. The temperature of the solution was maintained at 10oC 

by cooling the container in an ice-water bath. The solution was then exposed to UV 

from a 400 W mercury lamp (5000-EC, Dymax) for 15 min. The distance between the 

samples and the lamp was 25 cm. The PAAc-grafted scaffolds were then thoroughly 

washed with deionized water at 37oC for more than 36 h to remove any ungrafted 

PAAc from the surface of the scaffold. Scaffolds modified using 6% AAc solution 

was used for cell culture. 

The amount of PAAc grafting on scaffolds was determined by Toluidine Blue O 

(TBO) colorimetric staining method [33,34]. Briefly, samples of known areas were 

immersed in 0.5 mM TBO solution at pH10 and 20oC for 4 h. The samples were then 

thoroughly washed with water at pH10 and 20oC to remove any non-complexed dye 

adhering to the surface. The dye was then desorbed from samples in a 50% acetic acid 

solution, and the concentration determined by spectroscopy at 633 nm (SpectraMax 

190, Molecular Devices). The surface carboxyl (COOH) group density (the amount of 

COOH groups per coverslip area) was calculated from a calibration plot of the OD 

versus TBO dye concentration and assuming 1:1 stoichiometry of the binding 

between TBO and surface carboxylic group. 
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3.3.1.2 Galactosylation of Poly(acrylic acid) Grafted Scaffolds 

1-O-(6’-Aminohexyl)-D-galactopyranoside (AHG) was synthesized according to 

procedures described by Yin et al. (Appendix I) [33]. AHG conjugation onto PAAc-

grafted scaffolds was achieved by immersing each scaffold into sodium phosphate 

buffer (0.1 M, pH 8.0, 1.0 mL) with 1 mg AHG, 1 mg N-hydroxysulfosuccinimide 

(sulfo-NHS) and 10 mg 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDC). Ten mg of EDC each was added to the reaction mixture at 12 h 

and 24 h later. After 36 h, the conjugation reaction was stopped. Scaffolds were then 

thoroughly washed with deionized water and subsequently sterilized and stored in 

70% ethanol until use in cell culture. 

3.3.2 Hepatocyte Culture and Assays 

3.3.2.1 Hepatocytes Isolation 

Hepatocytes were harvested from 250 − 300 g male Wister rats by a two-step in 

situ collagenase perfusion method. Rats were maintained on ad libitum rodent feed 

and water at room temperature and 40% humidity. All animal procedures were 

approved by the National University of Singapore’s Institutional Animal Care and 

Use Committee. Hepatocyte viability was determined to be >85% using Trypan Blue. 

3.3.2.2 Hepatocyte Attachment Assay 

Freshly isolated rat hepatocytes (3.5×105) were seeded onto each 15 mm 

diameter scaffold disks (2×105 cells/cm2), and cultured in William’s E medium 

supplemented with 0.5 mg/mL BSA, 10 ng/mL EGF, 500 ng/mL insulin, 5 nM 

dexamethasone, 50 ng/mL linoleic acid, 100 mg/mL penicillin, 100 U/mL 

streptomycin, 50 pM ZnSO4 and 100 nM CuSO4. Cells were maintained in a 

humidified incubator fed with 5% CO2. After 3 h of incubation, all unattached cells 
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were washed off by gentle washing using culture medium, and collected by 

centrifugation (2,000 rpm). The cell pellet was washed once with PBS and then lysed 

with cell lysis buffer (Promega). 

The protein concentration in the lysate was determined using a BCA protein 

assay kit (Pierce). The number of unattached cells was determined by comparing the 

protein concentration in lysate with a standard curve generated with known numbers 

of cells. Subsequently, the attachment efficiency of hepatocytes on different scaffolds 

can be calculated based on the cell number of the unattached cells for each scaffold. 

3.3.2.3 Hepatocyte Culture Maintenance 

The attached hepatocytes on different scaffolds were cultured in supplemented 

William’s E medium as described above. Triplicate samples were maintained for each 

hepatocyte function assay for each scaffold condition. Fresh medium was replenished 

daily, and old medium was collected for albumin determination. The collected 

medium was centrifuged at 4,000 rpm for 10 min and the supernatant was stored at 

−20oC. At various time points of the culture, morphology of hepatocytes on these 

scaffolds was viewed under an inverted phase contrast microscope (Carl Zeiss) and 

imaged on a digital camera (Nikon). 

3.3.2.4 Albumin Secretion Assay 

The albumin concentration in the culture medium collected at various time points 

was determined by competitive ELISA method [124]. Briefly, samples were serially 

diluted, and rabbit peroxidase-conjugated rat albumin antibody (ICN) was added to a 

final concentration of 0.6 µg/mL. After incubation at 37oC for 2 h, 100 µL aliquots of 

each sample were transferred to 96-well Maxisorp plates (Nunc), which were pre-

coated with 100 µL/well of rat albumin at 0.2 µg/mL in PBS overnight at 4oC, and 
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washed three times with 0.05% Tween-20 in PBS before use. The samples were 

incubated at 20oC for 2 h in a humidified chamber. After incubation, the plates were 

washed three times with 0.05% Tween-20 in PBS and subsequently filled with 100 

µL/well 1-Step Turbo TMB-substrate (Pierce). Plates were incubated at 20oC in a 

humidified chamber for another 30 min and reaction was immediately stopped by 

adding 100 µL of 1.3 N H2SO4. Optical density of the solution in each well was 

measured at 450 nm using a spectrophotometer (SpectraMax 190, Molecular Devices). 

3.3.2.5 Urea Synthesis Assay 

On Days 1, 3 and 5, hepatocyte cultures were refreshed with culture medium 

containing 1 mM NH4Cl, and incubated for 90 min. The NH4Cl-containing medium 

was then collected and the cultures were refreshed with normal culture medium. The 

medium samples collected were stored at −20oC and subsequently quantified for urea 

contents using a urea nitrogen assay kit (Sigma). 

3.3.2.6 Cytochrome P450 Activity Assay 

Cultures were tested for the P450 enzymatic activity (P450-dependent 7-

ethoxycoumarin O-deethylase activity) using protocols adapted from Jauregui et al. 

and others [97,125-127]. Briefly, on Days 1, 4 and 7, hepatocytes were pre-incubated 

in culture medium containing 50 µM 3-methylcholanthrene (3-Mc) for 24 h to induce 

cytochrome P450 production. The medium was then replaced with culture medium 

containing 0.26 mM 7-ethoxycoumarin substrate. After 5 h incubation, the 7-

ethoxycoumarin-containing medium was collected and the cultures were refreshed 

with normal culture medium. The medium samples collected were stored at −20oC 

and subsequently assayed for 7-hydroxycoumarin (HCOD) using HPLC. 
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For HPLC analysis, 200 µL aliquots of each sample were pre-incubated in 1.0 M 

acetate buffer (pH 5.0) with 4.744 units/mL β-glucuronidase, 0.524 units/mL sulfatase, 

and 4-methylumbelliferone internal standard at 37oC. After 48 h, samples were 

transferred to glass tubes (13×100mm, Iwaki). Half milliliter of saturated sodium 

borate buffer (pH 9.0) and 4 mL chloroform was then added. After shaking for 3 min, 

the aqueous layer in the tubes was aspirated off and discarded. The remaining 

chloroform layer was dried using a vacuum concentrator (Savant). The dried residue 

was reconstituted with 200 µL of HPLC mobile phase (1:1 methanol/water). The 

metabolites, HCOD, were analyzed by reverse-phase HPLC using a Symmetry C18 

stainless steel column (Waters) at 1.0 mL/min mobile phase flow rate and a PDA 996 

detector (Waters) at 326 nm. 

3.3.2.7 Preparation for Scanning Electron Microscopy 

Hepatocyte cultures were gently rinsed with PBS and fixed with 3% 

glutaraldehyde for 30 min at 20oC and postfixed with 1% osmium tetraoxide for 15 

min at 20oC. The hepatocytes were then dehydrated using a graded series of ethanol 

(25%, 50%, 70%, 80%, 90%, 95%, and 100%) followed by CO2 critical point drying 

(Samdri 780A). The samples were mounted onto aluminum stubs and gold sputter-

coated before viewing under FESEM. 

To prepare samples for freeze fracture, hepatocyte cultures were gently rinsed 

with water after 3% glutaraldehyde fixation. Excess water was removed and samples 

were cooled in liquid nitrogen for 10 min. Samples were then shattered using a razor 

blade and immediately placed into a freeze dryer (Labconco) for 24 h. The samples 

were mounted onto aluminum stubs and gold sputter-coated before viewing under 

FESEM. 
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3.3.3 Statistical Analysis 

All values were expressed as mean ± standard deviation (SD). Statistical 

differences were determined by two-tailed student’s t-test. 

3.4 Experimental Results 

3.4.1 Optimization of PCLEEP Electrospinning 

PCLEEP fibers were generated by the electrospinning process. The PCLEEP 

electrospinning process is optimized by gradually increasing the polymer solution 

concentration until a suitable concentration is found that will produce unbeaded, 

uniform fibers. We have found the optimal concentration to be 21.5 wt% PCLEEP in 

acetone. The other parameters for operating the electrospinning process were 

described in Chapter 3.3.1. 

 
Figure 3.2: SEM characterization of PCLEEP nanofiber mesh. (A) SEM image shows 

that the mesh is highly porous and the fibers are randomly orientated. (B) Fibers have a 

diameter distribution between 0.13 µm and 2.3 µm, and an average diameter of 0.76 µm. 

(C) Mesh thickness is approximately 15 µm. 
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SEM images showed that nanofibers arranged randomly in the mesh (Fig. 3.2) 

and their diameters ranged from 300 nm to 1.5 µm (with frequency higher than 5%, 

Fig. 3.2B). The average diameter was 760 nm. This highly porous mesh contained 

pores of mainly sub-cellular sizes (<10 µm, Fig. 3.2A). The thickness of the mesh 

varied with the deposition time. The meshes used for this study had a thickness of 

approximately 15 µm (Fig. 3.2C). 

3.4.2 Optimization of Scaffold Galactosylation Process 

Surface conjugation of galactose ligand onto PAAc grafted scaffolds was 

achieved using the same protocol as Yin et al. and the effectiveness of the conjugation 

scheme was successfully demonstrated through XPS analysis [33,34]. Since the 

galactose conjugation efficiency using this scheme was shown to be above 90%, the 

surface galactose density can therefore be controlled by varying the PAAc grafting 

density on the scaffold surface [33,34]. 

The PAAc grafting density of PCLEEP nanofiber mesh was lower than that of 

PCLEEP spin-coated film when 2-7% of AAc solution was used in the grafting 

reaction (Fig. 3.3). This result was expected because UV-initiated polymerization 

required direct exposure of the surface to UV light for surface grafting to occur. Due 

to its porous nature, the PCLEEP nanofiber mesh had a lower projected flat-area as 

compared to PCLEEP film. During UV-irradiation, the nanofiber mesh area exposed 

to UV was less than that of the film on the same 15 mm coverslip, which resulted in 

the lower grafting density. 

Scaffolds modified using 6% AAc were used for cell culture experiments. Under 

these conditions, nanofiber meshes had an average surface COOH density of 66 

nmol/cm2, whereas PCLEEP films yielded an average surface COOH density of 127 
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nmol/cm2. Previous studies had shown that both the attachment and spheroid forming 

ability of the primary rat hepatocytes cultured on galactosylated PET surfaces were 

almost independent of the surface graft density of COOH group within the range of 20 

to 560 nmol/cm2 [33,34]. Thus, the difference in COOH densities between 66 and 127 

nmol/cm2 was not expected to lead to significant differences in cell morphology and 

function, if comparison is made on the same type of substrate. 

 
Figure 3.3: Effect of acrylic acid monomer concentration used for UV-initiated graft 

polymerization on the surface concentration of the grafted carboxyl groups on the 

PCLEEP nanofiber mesh and spin-coated film surface. Data are means ± SD of 2 

independent experiments, each conducted in duplicates. 

 

3.4.3 Hepatocyte Functional Maintenance 

For convenience, galactosylated nanofiber mesh and film will be referred to as 

Gal-nanomesh and Gal-film respectively, while unmodified nanofiber mesh and film 

will be referred to as Un-nanomesh and Un-film respectively. Hepatocyte attachment 

efficiency measured at 3 h after cell seeding was shown in Fig. 3.4. Hepatocyte 

function normalized against the total number of attached cells was evaluated by 

albumin secretion level (Fig. 3.5), urea synthesis activity (Fig. 3.6) and 3-MC induced 
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P450 activity (Fig. 3.7) as a function of time. The results were determined from 

albumin, urea, or HCOD concentrations in the medium respectively. 

Hepatocyte attachment was enhanced when seeded on Gal-nanomesh and Gal-

film (83% and 90%, respectively) attachment after 3 h (Fig. 3.4), compared with 50-

54% attachment for the unmodified surfaces (p < 0.05). The cell attachments on Gal-

nanomesh and Gal-film conditions were similar, suggesting that the geometry of the 

substrata does not influence cell adhesion in this system. The improved attachment 

efficiency on the galactosylated substrates was attributed to cell-scaffold interactions 

between immobilized galactose ligand on substrates and ASGPR on the surface of 

hepatocytes. 

 
Figure 3.4: Hepatocyte attachment on galactosylated and unmodified nanofiber meshes 

and spin-coated films 3 h after seeding. *p < 0.05; **p < 0.05. Data are means ± SD of 2 

independent experiments, each conducted where n = 6. 

 
Hepatocytes cultured on galactosylated scaffolds showed higher albumin 

synthesis function than unmodified substrates, respectively (Fig. 3.5), leading to a 

bigger difference (> 2 fold) on days 3 − 5. Albumin synthesis function declined 

gradually for the two galactosylated-substrates during the first 2 − 3 days, and 
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maintained the same level thereafter. Comparing the two galactosylated-substrates, 

albumin secretion level of Gal-nanomesh group was about 22% higher than that of 

Gal-film group for the first two days, but was slightly lower (5% - 9%) than that of 

Gal-film group from day 3 onwards. 

 
Figure 3.5: Albumin secretion level of hepatocytes at various time points normalized 

against the total number of attached cells. Data are means ± SD of 2 independent 

experiments, each conducted in duplicates. 

 
However, the maintenance of urea synthesis function was less pronounced than 

that of albumin secretion function (Fig. 3.6). Urea synthesis (or ammonium removal) 

levels for the two galactosylated-substrates were similar throughout the assay period – 

they declined gradually over time. Interestingly, hepatocytes cultured on unmodified 

nanofiber substrate maintained urea synthesis function at the similar level as that 

cultured on galactosylated substrates. They showed about 1.6 and 2.5 fold higher urea 

synthesis activity than those on Un-film on days 3 and 5, respectively. 

Hepatocytes cultured on the two galactosylated substrates responded well to 3-

Mc induction and expressed higher levels of induced cytochrome P450 function than 

those cultured on unmodified substrates (Fig. 3.7), peaking on day 5 (> 4.4 fold). The 
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nanofiber mesh substrates resulted in higher HCOD synthesis activity than film 

substrates on day 1, but the difference became less apparent on days 3 and 5. 

 
Figure 3.6: Urea synthesis function of hepatocytes at various time points normalized 

against the total number of attached cells. Data are means ± SD of 2 independent 

experiments, each conducted in duplicates. 

 

 
Figure 3.7: 3-Mc induced P450 function of hepatocytes at various time points 

normalized against the total number of attached cells. Data are means ± SD of 2 

independent experiments, each conducted in duplicates. 
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In addition, a significant difference between the Gal-nanomesh and Gal-film 

groups was the long-term adherence of attached hepatocytes, as illustrated in Fig. 3.8. 

No significant cell detachment was observed for Gal-nanomesh throughout the assay 

period, whereas mature spheroids gradually detached from the Gal-film surface from 

day 3 onwards. Despite the special care taken during medium change for the Gal-film 

group, spheroid detachment is inevitable, though these detached spheroids remained 

viable and functional in the culture well. Only a small number of spheroids remained 

attached to the Gal-film surface by day 8. The Un-nanomesh and Un-film substrates 

did not show noticeable amount of cell detachment throughout the culture period. 

Figure 3.8: Hepatocyte spheroid adhesion on galactosylated scaffolds after 5 days of 

culture. (A) Hepatocytes cultured on Gal-nanomesh formed undetachable aggregates 

throughout the scaffold, whereas; (B) Hepatocytes cultured on Gal-film formed 

spheroids that can be easily detached from the surface, forming a spheroid suspension. 

Scale bar is applicable to both images as they are taken at the same magnification. 

 

3.4.4 Hepatocyte Morphological Changes 

Hepatocytes exhibited very different morphologies when cultured on different 

substrates. Optical microscope images at 3 h, 1 day and 3 days after cell seeding are 

presented in Fig. 3.9. Three hours after cell seeding, attached hepatocytes remained 
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rounded and singular, similar to the morphologies exhibited before cell seeding. Both 

Gal-nanomesh and Gal-film groups showed a closer packing of cells on the substrates 

as compared to Un-nanomesh and Un-film groups. This is indicative of the higher cell 

attachment efficiency on the galactosylated substrates over unmodified substrates. 

Hepatocytes cultured on both Gal-nanomesh and Gal-film began to cluster and 

form aggregates after day 1. Cell movement and aggregation appear to be slightly 

restricted by the uneven nanofiber surface topography as compared to film surface. 

By day 3, aggregate formation on Gal-nanomesh was complete, resulting in smaller, 

more uniform spheroid-like structures of sizes between 20 and 100 µm in diameter, in 

comparison with the larger spheroids with wider distribution of the spheroid diameter 

(50−300 µm) on Gal-film. Single cell was rarely seen on Gal-nanomesh, but present 

on Gal-film substrate (Fig. 3.8 − 3.10). Most single cells lost viability on day 3. 

For hepatocytes cultured on unmodified scaffolds, the morphologies displayed 

were irregular and not as uniform as those on galactosylated substrates. The absence 

of ligands on substrates to direct or initiate cell migration may be the primary cause of 

the morphological irregularities. For example, RGD groups on collagen-treated 

surfaces are known to induce hepatocyte spreading through RGD−integrin 

interactions [87-92], whereas galactose-modified surfaces direct hepatocytes to form 

multi-cellular spheroids through a combination of galactose-ASGPR and cell-cell 

interactions [33,34,112-120]. For unmodified substrates, non-specific hydrophobic 

interactions and some ionic interactions between the cell membrane and polymer 

surface probably allowed hepatocyte adhesion to take place. The morphology adopted 

by the hepatocytes may be due to the variations of these local non-specific 

interactions. Hepatocytes cultured on Un-nanomesh formed irregular spreading cell 
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clumps. Similarly, for hepatocytes cultured on Un-film, the cells exhibited both 

spreading and aggregating morphologies. 

 
Figure 3.9: Morphology of hepatocytes at 3-h, 1-day and 3-days after seeding when 

cultured on different substrates. Scale bar represents 100 µm, applicable to all images as 

they are taken at the same magnification. 

 
SEM images of remaining adherent spheroids on Gal-film showed typical 

spheroid morphology with a relatively smooth surface (Fig. 3.10A−C). Numerous 

microvilli also dotted around spheroid surface. These spheroids closely resembled the 

functional spheroids reported in literature, which exhibited tight cell−cell contact 

[90,98-101], in contrast with those rough and bumpy spheroids that are damaged by 

toxicants [128]. SEM images of the spheroid-like aggregates cultured on Gal-
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nanomesh also showed similar surface features as compared with the spheroids on 

Gal-film (Fig. 3.10D−F). However, these aggregates were distinctively flattened onto 

the nanofiber mesh. The aggregates appeared to engulf the nanofibers, forming an 

integrated spheroid−nanofiber construct with the nanofiber mesh. This explains the 

good cell immobilization efficiency of the Gal-mesh substrate observed throughout 

the culture period, as depicted in Fig. 3.8. 

 
Figure 3.10: SEM images of hepatocytes after 8 days of culture: (A−C) Hepatocytes 

cultured on Gal-film formed rounded spheroids that did not integrate with the scaffold. 

In contrast; (D−F) Hepatocytes cultured on Gal-nanomesh showed that the aggregates 

engulfed the functional nanofibers. 
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Figure 3.11: SEM images of freeze-fractured hepatocytes on Gal-nanomesh after 8 days 

of culture: (A & B) PCLEEP nanofibers (arrow) can be found within the hepatocyte 

aggregate; (C & D) Aggregates exhibit no fibers within, which maybe attributed to 

degradation of the biodegradable PCLEEP nanofibers. 

 
The freeze-fractured spheroid-like aggregates allow the direct observation of the 

interior structure of the spheroids (Fig. 3.11). SEM images of the freeze-fractured 

aggregates showed many voids reminiscent of bile canaliculi channels previously 

described in literature [90,98-101]. In addition, SEM images also clearly showed that 

nanofibers could be found within the aggregate (Fig. 3.11A & B). However, in many 

instances, there were fewer or no nanofibers present inside the aggregates while fibers 

were found along the immediate exterior of the spheroids (Fig. 3.11C & D). We 

speculate that the biodegradable PCLEEP nanofiber within the aggregates, in this 

instance, might have been degraded and absorbed by the hepatocytes. 
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3.5 Discussion 

Previous studies on polyurethane foam scaffolds or collagen-treated silicon 

scaffolds with micro-channels of super-cellular pore sizes and partition barriers have 

shown that hepatocyte aggregates would conform to the shape of the pore space 

[93,94,89-91,105-107]. The partition barriers and pores of the scaffold do influence 

the way hepatocytes move and organize themselves into multi-cellular aggregates. 

However, little information is available to suggest how hepatocytes would respond 

when they are cultured on a micro- or nanofiber substrate with sub-cellular-sized 

pores, where such a substrate would present itself as a ‘‘rough’’ or ‘‘textured’’ surface 

to a rounded hepatocyte. 

Scaffold micro-architecture and topography have been shown in literature to 

influence cell migration, adhesion, proliferation and various other cell behaviors, 

especially for smooth muscle cell, fibroblast or endothelial cell types [14-27,55-59]. 

However, scaffold topography alone does not promote favorable cell morphology and 

functional maintenance of primary rat hepatocytes, as shown in the results presented. 

This is echoed by a number of studies aiming to immobilize hepatocytes in porous 

scaffolds or on substrates through surface conjugation of functional ligands (e.g. 

galactosylation [33,34,112-120], collagen treatment [87-92]) or high-density cell 

entrapment [93,94,105-107]. 

In this study, our goal was to examine whether the introduction of a sub-cellular 

sized, highly textured topography, together with the surface-conjugated galactose 

ligand, would further influence spheroid formation and functional maintenance of 

hepatocytes. Electrospinning was used because it could lead to polymeric nanofiber 

mesh with sub-micron diameter fibers (average of ~760 nm), which randomly 

overlaid one another to form a highly textured, sub-cellular-sized micro-porous 
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scaffold. This study represents the first one where cell-adhesive molecules are 

covalently attached to an electrospun scaffold for cell-substrate interaction studies. 

Galactose ligands (AHG) were covalently conjugated onto the PAAc-grafted 

nanofiber mesh, because several studies have shown that biomaterial surfaces 

conjugated with galactose ligands can improve hepatocyte attachment and retain most 

of the cellular functions [33,34,112-120]. The characteristic attributes of these 

galactosylated substrates are that: 

(1) Hepatocytes specifically adhere to these surfaces through galactose-ASGPR 

interactions; and 

(2) The propensity of hepatocytes to form aggregates or spheroids on them, in 

concomitance with maintaining higher hepatocyte synthetic functions. 

Hepatocytes cultured on galactosylated scaffolds (Gal-nanomesh and Gal-film 

groups) clearly showed superior functions in terms of cell attachment, albumin 

synthesis and 3-Mc-induced cytochrome P450 function, and to a less extent, the urea 

synthesis activity, as compared to hepatocytes cultured on unmodified scaffolds (Un-

nanomesh and Un-film control groups). Consistent with previous reports on 

galactosylated membrane hepatocyte cultures [33,34], the albumin synthesis function 

and urea synthesis function decreased over time, whereas cytochrome P450 function 

peaked at day 5 followed by a decrease. This again suggested the complexity of 

hepatocyte functional maintenance: different set of synthetic functions could be 

influenced by biochemical cues or topological cues to a different extent. 

The initial albumin secretion level and cytochrome P450 activity of hepatocytes 

on Gal-nanomesh were higher than Gal-film on day 1–2, but the functional profiles at 

later time points for Gal-nanomesh group and Gal-film group were surprisingly 
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similar, even though the spheroid morphologies displayed by hepatocytes in these two 

groups were different: spheroids on the Gal-film appeared mostly spherical, with a 

small and flattened interface with PCLEEP film; on the other hand, spheroids on Gal-

nanomesh were flattened and integrated into the nanofiber mesh scaffold. It appears 

that so long as individual hepatocytes were able to aggregate and resume appropriate 

homotypic cell−cell contacts, hepatocyte viability and functions could be maintained 

at a higher level compared to unmodified substrates, regardless of the resulting shape 

of the spheroids. It suggests that the biochemical cue (galactose group on the substrate) 

in this case has a higher impact on cell functional maintenance compared with 

topological cue (nanofiber substrate vs. 2-D film). 

Hepatocytes cultured on galactosylated nanofiber mesh presented an interesting 

morphology: hepatocytes formed spheroids that engulfed the galactosylated 

nanofibers. As a consequence of this, spheroids were immobilized on the scaffold and 

would not detach from the substrate upon agitation, unlike those attached on 

galactosylated film. It appears that galactose-ASGPR ligand-receptor interaction 

allowed hepatocytes to aggregate around and within the galactosylated nanofiber 

mesh. This observation indicates that the nanofiber topography enhances the overall 

cell-substrate interaction, comparing with the galactosylated 2-D film. The increased 

cell-substrate interaction is significant enough to alter the spheroid morphology 

(somewhat flattened vs. spheroidal). 

This hepatocyte spheroid immobilization and stabilization strategy through the 

use of galactosylated nanofiber scaffolds would be advantageous in the design of a 

bioartificial liver device, where the hepatocytes could attach to a substrate/scaffold 

with high surface area immobilized with a cell-specific ligand, maintain their 
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differentiated functions, and remain stable against the perfusion and shear forces in 

the bioreactor. 

3.6 Concluding Remarks 

We have shown in this chapter that hepatocyte functions are maintained on 

galactosylated nanofiber scaffolds, similar to a galactosylated-film substrate 

configuration. Interestingly, galactosylated nanofiber scaffolds exhibit the unique 

property of promoting hepatocyte aggregates and cell infiltration within the mesh and 

around the fibers, forming an integrated spheroid-nanofiber construct. 

This mechanically stable hepatocyte–nanofiber construct suggests the potential 

application of galactosylated nanofiber scaffold in liver cell culture. For example, this 

system will have advantages in a bioartificial liver (BAL) setting, where high 

densities of stable, immobilized spheroids can be maintained on galactosylated 

nanofiber scaffolds within the BAL bioreactor. 

These results also demonstrated that the nanofiber topography together with 

surface-immobilized galactose ligand synergistically enhance cell-substrate 

interaction as indicated by hepatocyte adhesion and infiltration, even though this 

enhanced cell-substrate interaction did not translate into significantly higher 

functional enhancement as compared to galactosylated film condition. 

Therefore, we shall demonstrate in the following chapter how higher hepatocyte 

functional enhancement (cytochrome P450 activity) can be brought about through 

further bio-functionalization of the galactosylated nanofiber scaffold. 
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CHAPTER FOUR  

Hepatocyte Cytochrome P450 Inducing Dual-Functional Nanofiber 

Scaffolds for Hepatocyte Culture 

4.1 Summary 

In nature, cell survival, proliferation, differentiation and functions are regulated 

by a set of complex, spatially and temporally controlled milieu of biochemical and 

topographical cues emanated from the extracellular microenvironment. In order to 

create a cell culture scaffold that can deliver multiple microenvironmental cues that 

can influence cell fate and functions, we had designed a novel dual-functional 

electrospun nanofiber scaffold comprised of two nanofiber mesh layers that were 

modified differently to induce two separate biological responses from hepatocytes. 

The first nanofiber layer was galactosylated to mediate hepatocyte attachment and 

induce aggregation formation, while the second layer was loaded with 3-

methylcholanthrene (3-Mc) to enhance cytochrome P450 activity of hepatocytes. 

Primary rat hepatocytes cultured on the galactosylated nanofiber scaffolds loaded 

with different concentrations of 3-Mc were compared for their cell attachment 

efficiency, albumin secretion activity and their cytochrome P450-dependent 7-

ethoxycoumarin O-deethylase activity. This dual functional nanofiber scaffold 

mediated hepatocyte attachment with slightly lower efficiency as compared to single 

layer galactosylated nanofiber scaffold. More importantly, cytochrome P450 activity 

of the hepatocytes cultured on the multi-functional scaffold correlated well with 3-Mc 

loading level. Transwell experiments showed that transfer of 3-Mc to hepatocytes 

through cell-fiber direct contact was the dominant transport route. This study 
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demonstrated the feasibility of creating multi-functional nanofiber scaffolds that 

serves both as an adhesive substrate and as a delivery vehicle for bioactive molecules. 

 

4.2 Introduction 

Electrospun polymeric nanofibers have demonstrated its potential in many 

biomedical applications, including the production of scaffolds for tissue engineering 

[14-27] and bioactive molecules delivery [43,67-69]. In the tissue engineering context, 

the high porosity and surface area to volume ratio achievable in a typical electrospun 

nanofiber scaffold provided large areas and spaces for cell attachment and the 

topographical features provided by electrospun fibers play a significant role in 

regulating cell responses [14-27]. The versatility of the electrospinning process also 

produced many different fibrous scaffolds with distinct geometry. For example, on 

axially aligned nanofiber scaffolds, neuronal cells and cardiomyocytes have been 

shown to grow axially along the fiber’s orientation [20,25]. Neuronal cells have also 

been shown to elongate at different rates on aligned nanofiber scaffolds with different 

fiber diameters [25]. 

Recently, nanofiber modification techniques were also explored in order to 

control specific cell responses through the use of ligands or drugs incorporated into 

the scaffold. Nanofiber modification techniques can be broadly categorized under 2 

methods: The first method involves the doping of bioactive molecules or protein 

factors into the polymer solution prior to electrospinning (Chapter 2.5.1). This method 

results in a nanofiber scaffold that can steadily release these molecules or proteins to 

the cells in culture [43,67-69]. The second method involves chemical modification of 

the polymer itself that results in covalently attached ligands on the surface of the 

nanofiber (Chapter 2.5.2) [70-73]. This method resulted in a bioactive nanofiber 
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surface that can interact with specific ligand receptors on cell membranes and thus 

inducing specific responses from the cells. 

In the previous chapter, we had developed a surface bio-functionalized nanofiber 

scaffold for primary hepatocyte culture. Poly(acrylic acid) was first grafted onto the 

fiber surface by photo-polymerization to introduce surface carboxylic acid groups. 

Subsequently, amine-functionalized galactose ligands were conjugated onto the 

nanofiber surface using carbodiimide cross-linking chemistry. The galactosylated 

nanofiber scaffold was able to mediate primary hepatocyte adhesion through the 

galactose – asialoglycoprotein receptor (ASGPR) interaction. The galactosylated 

nanofiber scaffold induced the formation of spheroids that enveloped the functional 

nanofibers, resulting in an integrated spheroid-nanofiber construct. 

This unique cell-fiber interaction could maintain hepatocyte viability and certain 

functions like albumin production and urea synthesis. However, one of the crucial 

functions, cytochrome P450 enzymatic activity was low, even though it can be 

induced through stimulation by 3-methylcholanthrene (3-Mc) in the culture media. 3-

Mc, a polycyclic aromatic hydrocarbon, is a potent inducer for the induction of 

CYP1-dependent xenobiotic oxidation, and is used extensively in various hepatocyte 

studies [97,125-127,129]. However, hepatocyte cytochrome P450 induction required 

repeated 3-Mc doping in culture medium, as 3-Mc solubility in aqueous solution is 

low [130,131]. Therefore, we had fabricated a 3-Mc loaded nanofiber scaffold with 

the assumption that hepatocyte cultured on this scaffold will have enhanced 

cytochrome P450 activity through the absorption of 3-Mc released by the scaffold. 

In this present study, we have designed a dual biofunctional electrospun 

nanofiber scaffold through the layering of two nanofiber meshes that are modified 
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differently to induce two separate biological responses from hepatocytes (Fig. 4.1). 

The first nanofiber layer is galactosylated to mediate hepatocyte attachment and 

aggregation formation, while the second layer is 3-Mc loaded to enhance cytochrome 

P450 activity in hepatocytes. Primary hepatocytes cultured on galactosylated 

nanofiber scaffolds loaded with different concentrations of 3-Mc will be compared for 

their P450-dependent 7-ethoxycoumarin O-deethylase activity. In addition, the mode 

of release of 3-Mc to the hepatocytes will also be investigated using transwell cultures. 

Figure 4.1: (A) Electrospun galactosylated, 3-Mc loaded PCLEEP nanofiber scaffold 

fabrication scheme. (B) Chemical structures of 3-methylcholanthrene (3-Mc) and 1-O-

(6’-aminohexyl)-D-galactopyranoside (AHG), used in the functionalization of the 

PCLEEP nanofiber scaffold. 
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4.3 Experimental Methods 

All chemicals were purchased from Sigma-Aldrich unless otherwise stated. 

4.3.1 Fabrication of Dual-Functional Nanofiber Scaffolds 

As illustrated in Fig. 4.1, the dual biofunctional electrospun nanofiber scaffold 

was systematically assembled through the layering of two nanofiber meshes that are 

modified differently with different bioactive molecules. The following subsections 

describe in detail the nanofiber scaffold modification and assembly process.  

4.3.1.1 Electrospinning of Undoped Nanofiber Mesh 

Detailed protocols for undoped PCLEEP nanofiber layer fabrication can be 

found in Chapter 3.3.1. The collection time for each mesh was 3 min. 

4.3.1.2 Poly(acrylic acid) Grafting of Undoped Nanofiber Mesh 

The undoped PCLEEP nanofiber layer was subsequently grafted with 

Poly(acrylic acid) (PAAc). Detailed protocols for PCLEEP nanofiber PAAc grafting 

can be found in Chapter 3.3.1.1. 5% AAc solution was used for the grafting reaction. 

The carboxylic acid group density on the meshes was tested to be between 50-65 

nmol/cm2, using Toluidine Blue O staining method [33]. 

4.3.1.3 Electrospinning of 3-Mc Loaded Nanofiber Mesh 

PCLEEP copolymer was dissolved in 7:3 dichloromethane / methanol solvent 

mixture at 8.0 wt% concentrations in 2-mL centrifuge tubes. 3-Mc was then added to 

the polymer solution at 0, 0.1, 1.0, 5.0 and 8.0 wt% of the amount of PCLEEP 

copolymer in each tube. After 3-Mc had dissolved and thoroughly mixed, the 3-Mc 

loaded polymer solutions were then electrospun into nanofiber meshes using the same 

electrospinning parameters as the fabrication of undoped PCLEEP nanofibers (Fig. 

4.1). However, the collection time was reduced to 1.5 min to produce a thinner mesh 
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compared to the undoped PCLEEP nanofiber mesh. The 3-Mc loaded nanofiber mesh 

were subsequently cut and immobilized over each PAAc-grafted undoped PCLEEP 

nanofiber mesh. Thus, a carboxylic acid functionalized, 3-Mc loaded 2-layer 

composite nanofiber scaffold was formed. 

4.3.1.4 Galactosylation of Composite Nanofiber Scaffold 

To make the composite nanofiber scaffold specific for hepatocyte attachment and 

aggregation, we further galactosylate the scaffold by conjugating 1-O-(6’-

Aminohexyl)-D-galactopyranoside (AHG) onto the carboxylic acid functionalized 

layer using carbodiimide cross-linking chemistry. Detailed protocols for AHG bio-

conjugation onto PAAc-grafted PCLEEP nanofiber mesh can be found in Chapter 

3.3.1.2. The morphologies of 3-Mc loaded fibers and galactosylated fibers were 

imaged using a field emission scanning electron microscope (FESEM, FEI Company) 

after gold sputter-coating. Representative images were analyzed using ImageJ image 

processing software (http://rsb.info.nih.gov/ij/) to extract fiber diameter, pore size 

(area), mesh thickness and Feret’s diameter5 information. At least 250 measurements 

were recorded for each analysis. 

4.3.2 Hepatocyte Culture and Assays 

4.3.2.1 Hepatocytes Isolation 

Detailed hepatocyte isolation protocol can be found in Chapter 3.3.2.1. 

4.3.2.2 Hepatocyte Attachment Assay 

Freshly isolated rat hepatocytes (3.5×105) were seeded onto each 15 mm 

diameter composite scaffold disks (2×105 cells/cm2), and cultured in William’s E 

                                                 
 
5 Feret's Diameter is defined as the longest distance between any two points along the selection 
boundary, also known as the caliper length. 
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medium supplemented with 0.5 mg/mL BSA, 10 ng/mL EGF, 500 ng/mL insulin, 15 

nM dexamethasone, 50 ng/mL linoleic acid, 2 mM L-glutamine, 100 units/mL 

penicillin, 0.1 mg/mL streptomycin, 50 pM ZnSO4 and 100 nM CuSO4. For controls, 

hepatocytes were also cultured on single layer galactosylated nanofiber scaffolds 

without 3-Mc loaded, as well as on tissue culture polystyrene surface (TCPS). Cells 

were cultured in a 37oC incubator fed with 5% CO2. After 3 h of incubation, all 

unattached cells were washed off by gentle washing using culture medium, and 

collected by centrifugation (2,000 rpm). The cell pellet was washed once with PBS 

and then lysed with cell lysis buffer (Promega). 

The protein concentration in the lysate was determined using a BCA protein 

assay kit (Pierce). The number of unattached cells was determined by comparing the 

protein concentration in lysate with a standard curve generated with known numbers 

of cells. Subsequently, the attachment efficiency of hepatocytes on different scaffolds 

was calculated based on the cell number of the unattached cells for each scaffold. 

4.3.2.3 Hepatocyte Culture Maintenance 

The attached hepatocytes on different scaffolds were cultured in supplemented 

William’s E medium as described above. Fresh medium was replenished daily, and 

old medium was collected for albumin determination. Collected medium was 

centrifuged at 4,000 rpm for 10 min and the supernatant was stored at −20oC. 

4.3.2.4 Cytochrome P450 Activity Assay 

Cultures were tested for the P450 enzymatic activity (P450-dependent 7-

ethoxycoumarin O-deethylase activity) as described previously [97,125-127], with 

modifications. 3-Mc and 7-ethoxycoumarin first were dissolved in dimethylsulfoxide 

(DMSO) and then diluted to their working concentrations with culture medium. The 
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final concentration of DMSO was below 0.3%. On Days 1, 3, and 5, the control 

conditions (hepatocytes cultured on single layer galactosylated nanofiber scaffolds 

without 3-Mc loaded, and on TCPS control) were pre-incubated in culture medium 

containing 0.05 mM 3-Mc for 24 h to induce cytochrome P450 production. Then on 

Days 2, 4, and 6, all culture conditions were refreshed with culture medium 

containing 0.26 mM 7-ethoxycoumarin substrate. After 5 h incubation, the 7-

ethoxycoumarin-containing medium was collected and the cultures were refreshed 

with normal culture medium. The medium samples collected were stored at −20oC 

and subsequently assayed for 7-hydroxycoumarin (HCOD) using HPLC. 

Subsequently, the samples are processed for HPLC analysis as described in Chapter 

3.3.2.6. 

4.3.2.5 Albumin Secretion Assay 

Detailed protocols for the albumin secretion assay can be found in Chapter 

3.3.2.4. 

4.3.2.6 Transwell Cultures 

 

 
Figure 4.2: Scaffold condition illustration for transwell experiment. (1) Galactosylated 

nanofiber scaffold, (2) 8.0wt% 3-Mc loaded galactosylated nanofiber scaffold, and (3) 

Transwell scaffold configuration. 

 
Three different scaffold conditions were tested as illustrated in Fig. 4.2: (1) 

Undoped galactosylated nanofiber scaffold, (2) 8.0 wt% 3-Mc loaded galactosylated 
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nanofiber scaffold, and (3) a transwell configuration where the bottom partition 

(containing an undoped galactosylated nanofiber scaffold) is separated from the top 

partition (containing a 8.0 wt% 3-Mc loaded nanofiber mesh) through a 400 nm pore 

size polyester membrane transwell insert (Corning). For the third condition, 

hepatocytes were seeded onto the bottom partition only, so the cells have no physical 

contact with the 3-Mc loaded nanofiber mesh in the upper partition. The hepatocytes 

were cultured in supplemented William’s E medium and cultures on days 2, 4, and 6 

were tested for the P450 enzymatic activity as described above. 

4.3.3 Statistical Analysis 

All values were expressed as mean ± standard deviation (SD). Statistical 

differences were determined by two-tailed student’s t-test. 

 

4.4 Experimental Results and Discussion 

4.4.1 Dual-Functional Nanofiber Scaffold Characterization 

A schematic of scaffold fabrication process was illustrated in Fig. 4.1. Briefly, a 

thicker undoped PCLEEP nanofiber mesh and a thinner 3-Mc loaded PCLEEP 

nanofiber mesh were separately fabricated through electrospinning. After the undoped 

mesh was grafted with poly(acrylic acid), the 2 meshes were then stacked together, 

with the 3-Mc loaded mesh forming the top layer. Subsequently, a galactose ligand 

was conjugated onto the poly(acrylic acid) grafted layer, thus creating a 

galactosylated, 3-Mc loaded composite nanofiber scaffold. 

Image analysis of the thicker undoped mesh showed a fiber diameter distribution 

of 730 ± 270 nm (Fig. 4.3A), while similar analysis of the thinner 3-Mc loaded mesh 

showed comparable fiber diameter distribution of 760 ± 280 nm (Fig. 4.3B). 3-Mc 
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loading at all concentrations did not affect the resultant fiber diameter (p > 0.05 

compared with undoped fibers). This result was expected as 3-Mc is an uncharged 

molecule, and it was established extensively in literature that only charged molecules 

can significantly affect the electrospun fiber diameters [12,41-44]. Image analysis of 

the thinner 3-Mc loaded mesh also showed a mesh thickness of 1−3 fiber diameters 

thick, with a wide through-pore size distribution of 7.4 ± 7.2 µm2 and through-pore 

Feret’s diameter of 2.7 ± 1.3 µm (Fig. 4.3B). 

Figure 4.3: SEM images of electrospun PCLEEP nanofiber mesh layers: (A) Denser 

bottom layer that was functionalized with AHG ligand; (B) 3-Mc loaded (5 wt% of 

PCLEEP) nanofiber top layer that will be stacked over the denser bottom layer. Fibers in 

the top layer were less dense and numerous through-pores were present to facilitate 

hepatocyte interaction with the galactosylated bottom layer. 

 
It is worth noting that our initial attempt was to create a single galactosylated 3-

Mc loaded electrospun nanofiber mesh layer instead of a dual layer. However, we 

were unable to achieve this because the UV-initiated poly(acrylic acid) grafting post-

electrospinning step will also modify the 3-Mc loaded in the fiber, rendering it non-

bioactive. Thus a two layer stacking fabrication approach was necessary in this case. 

An obvious advantage of the two-layered nanofiber scaffold was that it allowed the 

titration of two different types of cues independently. 
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4.4.2 Hepatocyte Attachment Efficiency 

Hepatocytes cultured on various galactosylated 3-Mc loaded composite 

nanofiber scaffolds (gnPCLEEP with 0 to 8% 3-Mc) exhibited similarly high 

hepatocyte attachment efficiency (76% ± 2.3%) 3 h after cell seeding (Fig. 4.4). The 

3-Mc concentration in nanofiber scaffold did not significantly influence cell 

attachment efficiency (p > 0.05 comparing the cell attachment efficiencies of all 

composite scaffolds conditions). Without surface galactosylation (TCPS control), the 

attachment efficiency was poor (30%). Cell attachment was highest (84%) for single 

layer galactosylated scaffolds (gnPCLEEP control), suggesting that for the composite 

scaffolds, the upper non-galactosylated layer could slightly hinder cell attachment (p 

< 0.05 compared to cell attachment efficiencies of composite scaffold conditions). 

Obviously, this effect will depend on the thickness and pore size of the upper layer. In 

this study, the upper layer was thin and highly porous (Fig. 4.3B) and the hepatocytes 

could still interact with the lower galactosylated nanofiber layer. 

 
Figure 4.4: Hepatocyte attachment on various galactosylated 3-Mc loaded composite 

nanofiber scaffolds (gnPCLEEP (0.0-8.0)% 3-Mc), single layer galactosylated scaffolds 

(gnPCLEEP control) and TCPS control 3 h after cell seeding. Dotted line represents 

combined mean of gnPCLEEP (0.0-8.0)% 3-Mc conditions. Data are means ± SD, n = 6. 

* indicates p < 0.05. 
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4.4.3 Cytochrome P450 Function 

 
Figure 4.5: Cytochrome P450 function of hepatocytes at various time points normalized 

against the total number of attached cells. Hepatocytes were cultured on galactosylated 

3-Mc loaded composite nanofiber scaffolds, on single layer galactosylated scaffolds in 

3-Mc containing medium (gnPCLEEP 3-Mc med. control) and on TCPS controls. Data 

are means ± SD, n = 3. * indicates p < 0.05. 

 
On galactosylated 3-Mc loaded composite scaffolds, the hepatocyte cytochrome 

P450-dependent 7-ethoxycoumarin O-deethylase activity was strongly correlated with 

the 3-Mc concentration loaded into the scaffolds (Fig. 4.5). The hepatocyte 

cytochrome P450 activity increased with 3-Mc concentration, with the highest HCOD 

production rate recorded at 7.0 pg/cell/h for gnPCLEEP 8.0% 3-Mc scaffold condition 

on day 2. This rate is significantly higher (p < 0.05) than the gnPCLEEP 3-Mc 

medium control condition on day 2 (4.2 pg/cell/h), where the 3-Mc concentration used 

(0.05 mM) was the highest concentration reported in literature that will not interfere 

with other hepatocyte functions [97,126,127]. This result showed that drug-loaded 
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nanofiber was a more efficient lipophilic drug delivery vehicle as compared to 

supplementation into the medium, especially at early culture time points. 

Hepatocytes cultured on the galactosylated 3-Mc loaded composite scaffolds 

showed decreased cytochrome P450 activity with time. This can be attributed to the 

gradual loss of 3-Mc from the nanofiber, which was depleted through gradual 

diffusion and metabolization [129] by the attached hepatocytes. In contrast, P450 

function of hepatocytes cultured on single layer galactosylated scaffold controls with 

daily supplementation of 3-Mc in the medium peaked at day 4 (7.9 pg/cell/h). We 

have attributed this observation to hepatocyte reorganization on the galactosylated 

scaffold, which may have changed the cytochrome P450 inducing susceptibility 

(Chapter 3.4 & 3.5). 

4.4.4 Albumin Synthesis Function 

 
Figure 4.6: Albumin synthesis function of hepatocytes at various time points 

normalized against the total number of attached cells. Dotted line represents combined 

mean of gnPCLEEP (0.0-8.0)% 3-Mc and gnPCLEEP 3-Mc med. control conditions. 

Data are means ± SD, n = 3. * indicates p > 0.05. 
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Hepatocytes cultured on non-galactosylated (TCPS) surfaces showed poorer 

albumin synthesis function as compared to hepatocytes cultured on galactosylated 

scaffolds (Fig. 4.6). In addition, hepatocytes cultured on galactosylated composite 

scaffolds with no 3-Mc loaded (gnPCLEEP 0% 3-Mc), galactosylated 3-Mc loaded 

composite scaffolds (gnPCLEEP (0.1-8.0%) 3-Mc), and gnPCLEEP 3-Mc medium 

control all showed comparable albumin secretion profiles (p > 0.05) throughout the 

culture (Fig. 4.6). This highlights that the hepatocyte albumin synthesis function was 

not affected by the various 3-Mc concentrations loaded in composite scaffolds. 

4.4.5 Mechanism of 3-Mc Transport from Nanofiber to Cell 

Two 3-Mc transport mechanisms were possible: (1) 3-Mc could be transported 

by first through diffusion from fiber into the medium, and then transported from the 

medium into the hepatocytes; and/or (2) 3-Mc could be directly transported through 

diffusion from the 3-Mc fibers to the hepatocyte through fiber − hepatocyte 

membrane contact. A transwell culture was then set up to investigate the mode of 3-

Mc transfer to hepatocytes (Fig. 4.7). 

Results show that for hepatocytes cultured in the transwell condition 

(gnPCLEEP 8.0% 3-Mc transwell), the cytochrome P450 function remained low (1.3-

1.6 pg/cell/h) but consistently higher than the non 3-Mc scaffold culture (gnPCLEEP 

control, 0.4-0.8 pg/cell/h) throughout the entire culture period, indicating that the 

former 3-Mc transport mechanism may only play a minor role in 3-Mc delivery. This 

observation maybe due to 3-Mc low solubility (1.07×10-8 M) under aqueous condition 

[130,131], which made dissolution into the medium limited. On the other hand, 

hepatocytes cultured on the dual functional gnPCLEEP 8.0% 3-Mc scaffold expressed 

cytochrome P450 function (3.2-6.3 pg/cell/h) that was significantly higher (p < 0.05) 
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than that of gnPCLEEP 8.0% 3-Mc transwell condition throughout the entire culture 

period, indicating that the latter 3-Mc transport mechanism as the more dominant 3-

Mc delivery route. This result suggests that due to the adhesion of hepatocytes on the 

galactosylated nanofibers, the hepatocytes had direct contact with the 3-Mc loaded 

fibers; this cell − 3-Mc fiber contact might have played an important role in 

facilitating the diffusion of 3-Mc from the fibers to the hepatocytes. 

 
Figure 4.7: Cytochrome P450 function of hepatocytes at various time points normalized 

against the total number of attached cells. For gnPCLEEP 8% 3-Mc transwell condition, 

hepatocytes were cultured without physical contact with the 8.0% 3-Mc mesh. Data are 

means ± SD, n = 3. * indicates p < 0.05. 

 

4.5 Concluding Remarks 

By taking advantage of the porous and layer-forming properties of electrospun 

nanofibers, we had designed a dual functional scaffold that induces two different 

biological responses from hepatocytes. Galactose bio-functionalization on nanofibers 

resulted in a scaffold that can induce hepatocyte adhesion and re-organization, while 

3-Mc loading into the fiber, working together with fiber galactosylation, resulted in a 

hepatocyte bioactive scaffold that can also regulate the hepatocyte cytochrome P450 

function. In essence, this hepatocyte-drug delivery model can be modified to deliver 
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many other lipophilic bioactive molecules [130,131] that may have therapeutic effects 

for liver cell cultures. By careful understanding of cell-substrate interactions and 

bioactive molecules effects of other cell models, we could extend this multi-functional 

scaffold strategy to induce synergistic cellular responses for other cell culture 

applications. 

In the following chapter, we will further investigate the efficacy of this nanofiber 

bio-functionalization strategy with another cell culture system: hematopoietic stem / 

progenitor cell expansion. This time, using amine molecule bio-functionalization, we 

will explore the synergistic effects that nanofiber topography and surface immobilized 

biochemical cues play in enhancing cell-scaffold interactions and regulating cellular 

functions like cell proliferation and multipotency phenotype maintenance. 
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CHAPTER FIVE  

Aminated Nanofiber Scaffolds Enhance Adhesion and Expansion of 

Human Umbilical Cord Blood Hematopoietic Stem/Progenitor Cells 

 
 

5.1 Summary 

Interaction between hematopoietic stem/progenitor cells (HSPCs) and their extra 

cellular matrix components is an integral part of the signaling control for HSPC 

survival, proliferation and differentiation. We hypothesized that both substrate 

topographical cues and biochemical cues could act synergistically with cytokine 

supplementation to improve ex vivo expansion of HSPCs. 

In this study, we compared the ex vivo expansion of human umbilical cord blood 

CD34+ cells on unmodified, hydroxylated, carboxylated and aminated nanofibers and 

films. Results from 10-day expansion cultures showed that aminated nanofiber mesh 

and film were most efficient in supporting the expansion of the CD34+CD45+ cells 

(195-fold and 178-fold respectively), as compared to tissue culture polystyrene (50-

fold, p < 0.05). In particular, aminated nanofiber meshes supported a higher degree of 

cell adhesion and percentage of HSPCs, as compared to aminated films. SEM imaging 

revealed the discrete colonies of cells proliferating and interacting with the aminated 

nanofibers. 

This study highlights the potential of a biomaterials approach to influence the 

proliferation and differentiation of HSPCs ex vivo. 
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5.2 Introduction 

Umbilical cord blood is a promising alternative source of hematopoietic 

stem/progenitor cells (HSPCs) for allogeneic and autologous hematopoietic stem cell 

transplantation for the treatment of a variety of hematological disorders and as a 

supportive therapy for malignant diseases [132-140]. However, the low number of 

HSPCs obtainable from a single donor restricts its widespread application as a viable 

source of transplantable hematopoietic cells in adults [141-145]. As the success of 

HSPC transplantation is dependent on both the cell dose and the pluripotency of the 

cells that are transplanted, an efficient and practical ex vivo expansion strategy is 

necessary to produce sufficient quantity of HSPCs that can engraft and sustain long-

term hematopoiesis for adult patients. 

In conventional expansion culture, HSPCs are generally regarded as suspension 

cells and numerous protocols implement HSPC suspension culture in the presence of 

various combinations of early acting cytokines [132-139,173-177]. They are often 

performed in flasks or bags that provide no micro-architecture for cellular interaction 

with the substrate. However, it is generally accepted that the native bone marrow 

microenvironment provides a complex 3-D meshwork of extracellular matrix (ECM) 

that serves as a stem cell niche to regulate HSPC functions [137-140]. A growing 

body of evidence suggests the importance of surface chemistry as well as 

topographical features on the rate of HSPC proliferation and CD34+ cell expansion 

[178-185]. These results suggest that biochemical as well as topographical cues could 

be actively involved in dictating the proliferation and differentiation of cultured 

HSPCs. 

Electrospinning has recently been employed as a versatile technique to produce 

polymeric fibrous substrates for cell culture and tissue engineering applications [14-
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27,63-66]. Several studies have shown that these fibrous scaffolds can enhance 

cellular responses like cell adhesion and cell phenotype maintenance [14-27,63-66]. 

In the previous chapters, we have demonstrated that polymeric nanofiber mesh with 

surface-conjugated galactose ligands stimulate the formation of hepatocyte spheroids 

that engulf the modified nanofibers, resulting in an integrated spheroid-nanofiber 

construct. This suggests that the functionalized nanofiber mesh enhanced hepatocyte-

substrate interaction. 

This observation prompted us to investigate whether the nano-topographical cues 

and various chemical cues on the nanofiber surface can synergistically influence 

HSPC adhesion, proliferation and multipotency phenotype maintenance. As the first 

of a series of studies, we examined HSPC expansion on surface-functionalized 

polyethersulfone (PES) nanofiber meshes and PES films. PES has been widely used 

as a non-degradable hollow fiber material in bioreactors for culturing mammalian 

cells [186,187]. It has been chosen as the substrate material because of its ease of 

processibility: (1) it can be dissolved and electrospun into nanofibers using mild 

solvents such as DMSO (Fig. 2.3); (2) PES membranes are commonly surface-

modified through UV or plasma treatments [188]; and (3) the polymer is stable in 

solvents like acetonitrile, in which amination reactions can be carried out efficiently. 

In this study, PES nanofibers and films were surface-conjugated with the 

simplest set of functional groups: carboxylic, hydroxyl and amino groups (Fig. 5.1). 

These set of surface functional groups have been shown to mediate different patterns 

of focal adhesion by immature osteoblast-like cells and different degrees of 

differentiation [189]. In this chapter, we have demonstrated that these surface-bound 

functional groups effected different levels of HSPC adhesion, proliferation, and 
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multipotency phenotype maintenance. In addition, the aminated nanofiber mesh 

induced the formation of unique cell colonies. 

 

 
Figure 5.1: PES scaffold surface modification scheme. 

 

5.3 Experimental Methods 

All chemicals were purchased from Sigma-Aldrich unless otherwise stated. 

5.3.1 Fabrication of PES Nanofiber Scaffolds 

Polyethersulfone (PES) granules (Mw: 55,000) was purchased from Goodfellow 

Cambridge Limited. PES pellets were dissolved in dimethylsulfoxide (DMSO) at 20 

wt% concentration and placed in a plastic syringe fitted with a 27G needle. A syringe 

pump (KD Scientific) was used to feed the polymer solution into the needle tip. The 

feed rate of the syringe pump was fixed at 0.3 mL/h. The PES nanofiber meshes were 

fabricated by electrospinning at 13 kV using a high voltage power supply (Gamma 

High Voltage Research). Nanofibers were collected directly onto grounded 15 mm 

diameter glass coverslips (Paul Marienfeld) located at a fixed distance of 160 mm 

from the needle tip, over a collection time of 25 min. PES films were fabricated by 

dip-coating glass in 10 wt% PES in DMSO. The deposited nanofiber and film samples 

were washed thoroughly in distilled water and then in ethanol to remove any residual 

DMSO, and subsequently dried and stored in a desiccator. 
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5.3.1.1 Surface Grafting of Scaffolds with Poly(acrylic acid) 

Acrylic acid (AAc) (Merck) was distilled and stored at -20°C prior to use. 

Poly(acrylic acid) (PAAc) was grafted onto the PES nanofiber mesh surface by photo-

polymerization, as described previously in Chapter 3.3 with slight modification on the 

grafting conditions. Briefly, samples were immersed in aqueous solution containing 

3% AAc solution and 0.5 mM NaIO4 in a flat-bottom glass container. The 

temperature of the solution was maintained at 8°C by cooling the container in a cold-

water bath. The samples were then exposed to UV from a 400 W mercury lamp 

(5000-EC, Dymax) for 2 min at a distance of 25 cm. The PAAc-grafted meshes were 

then thoroughly washed with deionized water at 37°C for over 36 h to remove any 

ungrafted PAAc from the surface of the scaffold and dried in a storage desiccator. 

5.3.1.2 Amination of Poly(acrylic acid) Grafted Scaffolds 

The PAAc-grafted PES nanofiber mesh and films were further conjugated with 

ethylenediamine (EtDA) using a 2-step carbodiimide cross-linking method (Fig 5.4). 

Briefly, each scaffold was first gently shaken in 2 mL acetonitrile containing 50 mM 

N-hydroxysuccinimide (NHS) and 50 mM dicyclohexylcarbodiimide (DCC). After 6 

h, the reaction solution was carefully aspirated and each scaffold was immediately 

immersed into 2 mL acetonitrile containing 0.03 mmol EtDA. After 12 h, the reaction 

solution was carefully aspirated and each scaffold was thoroughly washed in absolute 

ethanol to remove any dicyclohexyl urea (DCU), which is a by-product of the 

conjugation reaction. 

As for control, several PAAc-grafted PES nanofiber meshes were hydroxylated 

instead, by conjugation with ethanolamine using the same modification protocol as 

described above. All substrates were subsequently sterilized in 70% ethanol, then 

loaded into 24-well tissue culture plates (Nunc) and stored in sterile PBS until use. 
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5.3.1.3 Surface Analysis of PES Scaffolds 

Surface amine density was quantified according to the method described by 

Kakabakos et al. [190]. Briefly, primary amino groups on the substrates were first 

converted to sulfhydryl groups through reaction with excess 2-iminothiolane (Pierce). 

The surface sulfhydryl groups were then determined using a BCA assay kit (Pierce) 

using L-cysteine to generate a standard curve. 

Surface wettability of the various substrates was characterized by measuring the 

water contact angle at room temperature using a video contact angle goniometer 

(Advanced Surface Technology). 

Samples of unmodified and aminated PES nanofiber meshes were also imaged 

using a field emission scanning electron microscope (FESEM, FEI Company) for 

detection of any morphology changes caused by the entire amination process. Fiber 

diameters were measured by analyzing representative SEM mages of nanofibers using 

NIH ImageJ software (http://rsb.info.nih.gov/ij/). At least 250 measurements were 

recorded for each analysis. 

5.3.2 Hematopoietic Stem Cell Culture and Assays 

Frozen human umbilical cord blood CD34+ HSPCs were purchased from 

AllCells, which were obtained from normal volunteers participating in an Institute 

Reviewing Board (IRB) approved donor program (AllCells). The CD34+ purity in the 

HSPC was determined to be 98% by flow cytometry and the viability was determined 

to be more than 97% by Trypan blue. Purified recombinant human stem cell factor 

(SCF), Flt-3 ligand (Flt3), thrombopoietin (TPO) and IL-3 was purchased from 

Peprotech Inc. The StemSpanTM serum-free expansion medium and MethoCult GF+ 

H4435 medium were all from StemCell Technologies. 
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5.3.2.1 Ex Vivo Hematopoietic Expansion Culture 

For ex vivo HSPC expansion cultures, different substrates were secured at the 

bottoms of wells of a 24-well tissue culture plate. Six hundred HSPCs were seeded 

onto each scaffold in 0.6 mL StemSpan™ serum-free expansion medium, which 

consists of 1% BSA, 0.01 mg/mL recombinant human insulin, 0.2 mg/mL human 

transferrin, 0.1 mM 2-mercaptoethanol and 2 mM L-glutamine in Iscove’s MDM, 

supplemented with 0.04 mg/mL low density lipoprotein (Athens Research and 

Technology Inc.), 100 ng/mL SCF, 100 ng/mL Flt3, 50 ng/mL TPO and 20 ng/mL IL-

3. Cells were cultured at 37°C in an atmosphere containing 5% CO2 for 10 days 

without medium change. Similar cultures were also performed on tissue culture 

polystyrene surface (TCPS), which serve as a positive control in this study. In total, 8 

surface conditions were tested: TCPS, PES-(unmodified, carboxylated, aminated) 

films and PES-(unmodified, carboxylated, hydroxylated, aminated) nanofiber meshes. 

Cells were harvested after 10 days of expansion. All substrates were washed 

once with non-trypsin cell dissociation solution and twice with 2% FBS Hanks' buffer 

at 5-10 min intervals between each wash. The cell suspensions collected were then 

concentrated through centrifugation at 500×g for 10 min. Aliquots of the concentrated 

cells were then used for cell counting by a hematocytometer, flow cytometry analysis, 

as well as for colony-forming cell assays. 

5.3.2.2 Flow Cytometry 

Fluorescently labeled antibodies for CD34 and other cell surface markers (CD13, 

CD15, CD19, CD38, CD45 and GlyA) were purchased from BD Biosciences. 

Fluorescently labeled antibodies for CD41 were purchased from Dako. Cell aliquots 

were incubated at 4°C for more than 30 min in 2% FBS Hanks’ buffer in the presence 
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of various antibody combinations. After antibody staining, the cells were washed 

twice using Hanks’ buffer and fixed in 1% paraformaldehyde. 

Cells were analyzed by triple-color flow cytometry on a FACSCalibur analyzer 

(BD Biosciences). Relevant isotype controls were also included to confirm specificity 

and for compensation setting. At least 20,000 events were acquired. The Milan-

Mulhouse gating method was used for cell enumeration [151], where a double gating 

(CD34+CD45+) strategy was used to identify the primitive hematopoietic progenitor 

cell population in the ex vivo expansion cultures. The CD34 marker is generally 

expressed by primitive hematopoietic progenitor cells, while CD45 marker is 

expressed on all cells of hematopoietic origin with the exception of red blood cells 

and their immediate precursors. 

5.3.2.3 Colony-Forming Cell Assay 

Aliquots of expanded cells from each scaffold condition in the expansion 

cultures were suspended into 3.3 mL of MethoCult GF+ H4435 medium (StemCell 

Technologies) and the cell suspension was plated onto two 35mm culture dish (1.1 

mL each) as instructed in the procedure manual by StemCell Technologies. Duplicate 

assays are performed for each condition. The culture dishes were then incubated at 

37°C, 5% CO2 for 14 days, after which the number of erythropoietic colonies 

[erythroid burst-forming units (BFU-E)], granulopoietic colonies [granulocyte-

macrophage CFU (CFU-GM)], and multilineage colonies (CFU-GEMM) were 

determined by manual counting under an inverted microscope. Positive colonies are 

scored on the basis of an accumulation of 20 or more cells. As a control, freshly 

thawed HSPCs were also evaluated for colony-forming potential. 
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5.3.2.4 Preparation for Scanning Electron Microscopy 

Selected cultures samples were gently rinsed with PBS, fixed with 3% 

glutaraldehyde for 30 min at 20°C, and post-fixed with 1% osmium tetraoxide for 

another 15 min at 20°C. Samples were then dehydrated using a graded series of 

ethanol (25%, 50%, 70%, 90%, 95%, 100%, 100%) followed by 

hexamethyldisilazane drying. The samples were mounted onto aluminum stubs and 

gold sputter-coated before viewing under FESEM. 

5.3.2.5 Preparation for Laser Scanning Confocal Microscopy 

Selected culture samples were gently rinsed with Hanks’ buffer and fixed with 

1% formaldehyde for 10 min at 20°C and immediately washed with 2% FBS Hanks’ 

buffer. Samples were then incubated with PE-labeled CD34 antibodies in 2% FBS 

Hanks’ buffer for >30 min at 4°C. For nuclear staining, Syto16 (Invitrogen) was used.  

Fluorescent images were taken using a laser confocal microscope (Leica). 

5.3.3 Statistical Analysis 

All data were presented as mean ± standard deviation (SD). The statistical 

significance of the data obtained was analyzed by the Student’s t-test. Probability 

values of p < 0.05 were interpreted as denoting statistical significance. 

5.4 Experimental Results 

5.4.1 Modification of PES Substrates and Surface Characterization 

Nonwoven PES nanofiber meshes were prepared by electrospinning. Parameters 

that significantly influence the diameter, consistency and uniformity of the 

electrospun PES fibers included PES concentration in DMSO, applied voltage and 

needle-collector distance. These parameters were adjusted until unbeaded and uniform 

fibers could be obtained. The optimal conditions for obtaining such PES nanofiber 
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meshes were described in the Methods section. Under the optimized condition, fibers 

with an average diameter of 529 ± 114 nm were obtained (Fig. 5.2A & 5.2C). PES 

films were prepared as a 2-D control by dip-coating glass coverslips with a diameter 

of 15 mm. The film surface exhibited submicron bumps and the average film 

thickness was 22.5 ± 3.9 µm as analyzed from SEM images of freeze-fractured PES 

films. 

The PES fiber meshes and films were first carboxylated by UV-initiated 

poly(acrylic acid) grafting. Amino or hydroxyl groups were subsequently introduced 

to the fiber or film surfaces by reacting ethylenediamine or ethanolamine with the 

surface carboxylic acid groups using carbodiimide chemistry. SEM images comparing 

unmodified and aminated PES nanofiber mesh (Fig. 5.2B) did not show any 

significant morphological difference, indicating that the modification steps did not 

cause significant degradation/ablation of PES. 

 
Figure 5.2: SEM images of electrospun PES nanofiber mesh: (A) unmodified; (B) after 

surface conjugation with ethylenediamine. (C) Fiber diameter distribution profile of PES 

fibers, electrospun from a 20 wt% PES in DMSO solution (at least 250 measurements 

taken). 

 
Table 5.2 show that after PAAc grafting, the contact angle of PES film dropped 

from 76º to 53º, suggesting an increased surface wettability. The wettability further 

increased after amination (contact angle was 7º for aminated PES film). The contact 
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angle of the unmodified nanofiber mesh (133º) was higher than PES film (76º). 

However, the contact angle of PES nanofiber meshes decreased from 133º to 0º after 

PAAc grafting. Similar observations on the wettability of modified nanofiber surfaces 

were also reported by Fujihara et al. [191]. After carboxylation, the micropores in the 

relatively more hydrophilic nanofiber mesh exerted a capillary effect that imbibed the 

water droplet into the scaffold [192,193]. The aminated and hydroxylated PES fiber 

meshes also exhibited an un-measurable contact angle (~ 0º). The density of 

conjugated primary amino groups on aminated PES nanofiber and film was between 

40−60 nmol/cm2, as quantified by the Kakabakos’ method [190]. All other surfaces 

showed a background amine density of < 5 nmol/cm2. 

Table 5.1: Characterization of surfaces modified with various functional groups. 

 

Surface Water contact angle 

(deg.) 

Primary amine group density 

(nmol/cm2) 

TCPS 56.0 ± 1.4 0.4 ± 0.3 

PES film 76.2 ± 5.1 0.9 ± 0.5 

PES carboxylated film 52.9 ± 7.3 3.4 ± 0.8 

PES aminated film 7.2 ± 2.7 50.1 ± 12.5 

PES fiber 133.1 ± 1.8 1.3 ± 1.2 

PES carboxylated fiber N.D.* 4.0 ± 0.0 

PES hydroxylated fiber N.D.* 1.8 ± 0.8 

PES aminated fiber N.D.* 56.2 ± 12.6 

 

Data shown are means ± SD of triplicate surfaces. 

* N.D. The contact angle was too low (~0º) to be measured accurately. 

 

5.4.2 Ex Vivo HSPC Expansion on Various PES Substrates 

Efficiency of various substrates (unmodified and modified films and nanofiber 

meshes) in supporting HSPC expansion was evaluated in a 10-day expansion culture. 
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Fig. 5.3 shows the total nucleated cell fold expansion and CD34+CD45+ cell fold 

expansion after a 10-day expansion culture on different substrates. 

 
Figure 5.3: Fold expansion of total nucleated cells and CD34+CD45+ cells following a 

10-day culture of 600 human cord blood HSPCs on different substrates. Total cell 

numbers were determined by hematocytometer cell counting, while CD34+CD45+ cells 

were determined by FACS analysis at the end of culture. Data shown are means ± SD of 

3–8 independent experiments, each conducted in triplicates. Unmodified, carboxylated, 

hydroxylated and aminated conditions were designated as “unmod.”, “COOH”, “OH” 

and “NH2” respectively. 

 
Cells harvested from the expansion cultures showed greater than 95% viability in 

all culture conditions. Noticeable differences were observed in the cell proliferation 

response of HSPCs to the different substrates. HSPCs cultured on unmodified, 

carboxylated and hydroxylated PES nanofiber meshes and films yielded low 

proliferation (85- to 293-fold expansion) of total nucleated cells compared to that 

cultured on TCPS (850-fold). The CD34+CD45+ cell fraction was between 11.3% − 

26.1% of total cells as analyzed by flow cytometry, which corresponded to a low (11- 
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to 58-fold) CD34+CD45+ cell expansion. Although HSPCs cultured on TCPS surface 

proliferated extensively (850-fold), the fraction of CD34+CD45+ cells was only 5.8% 

of total expanded cells, thus resulting in only about 50-fold expansion of 

CD34+CD45+ cells. 

In contrast, the expansion of CD34+CD45+ cells on aminated film and nanofiber 

mesh was significantly better than other test groups (p < 0.05): aminated PES 

nanofiber mesh yielded 751-fold expansion of total cells and 195-fold expansion of 

CD34+CD45+ cells (25.9% of total cells), whereas aminated PES film yielded 859-

fold expansion of total cells and 178-fold expansion of CD34+CD45+ cells (20.8% of 

total cells). There was no statistically significant difference in fold expansion of 

CD34+CD45+ cells cultured on aminated PES nanofiber mesh, compared with that on 

PES film (p > 0.05). 

5.4.3 Colony-Forming Cell Assay 

CFU assays (Fig. 5.4) were conducted to evaluate the fraction of primitive 

progenitor cells in the expanded cultures. Consistent with total and CD34+CD45+ cell 

expansion results, cells expanded on unmodified, carboxylated and hydroxylated PES 

nanofiber meshes and films yielded lower total CFU counts (1071 ± 560 to 1996 ± 

213) as compared to TCPS (2890 ± 450), aminated PES film (3471 ± 371), and 

aminated PES nanofiber mesh (3996 ± 358). 

Interestingly, for aminated PES substrates, a significant difference was observed 

in the number of more primitive CFU-GEMM units generated by cells expanded on 

film versus nanofiber mesh with 20% (704/3471) and 28% (1124/3996) of total 

colony counts, respectively (p < 0.05). TCPS on the other hand, generated only 15% 
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(433/2890) CFU-GEMM units (p < 0.05 compared with aminated film or nanofiber 

mesh groups). 

 
Figure 5.4: CFU counts generated after 14 days of culture, using the cells from the 10-

day expansion cultures on various substrates and from the unexpanded HSPCs. Data are 

normalized to CFU number per 100 initial unexpanded HSPCs. Data shown are the 

mean ± SD of 3–8 experiments, each conducted in triplicates. * p < 0.05; # p < 0.05. 

Unmodified, carboxylated, hydroxylated and aminated conditions were designated as 

“unmod.”, “COOH”, “OH” and “NH2” respectively. 

 
In contrast, TCPS generated relatively higher percentages of CFU-GM units 

(63%), indicating significant differentiation commitment of the TCPS-expanded cells 

towards the myeloblast / monoblast lineage, as compared to both aminated PES film 

and nanofiber scaffold (55% and 49%, respectively, p < 0.05 for TCPS vs. PES film, 

p < 0.01 for TCPS vs. PES nanofiber, p > 0.05 for PES film vs. PES nanofiber). 
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5.4.4 Expanded HSPC Surface Marker Expression 

 

 
Figure 5.5: Surface antigen expression on cells after 10-day ex vivo expansion on 

different substrates. (A) Percentage of total cells that are CDX+. (B) Percentage of total 

cells that are CD34+CD45+CDX+. (C) Percentage of the CD34+CD45+ cell population 

that are CD34+CD45+CDX−. “CDX” represents CD34, CD45, CD13, CD15, CD41, 

GlyA, CD19 or CD38. Data shown are mean ± SD of 3–6 experiments, each conducted 

in duplicates. # denotes statistical significance of p < 0.05. 
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The lineage marker expression of the expanded cells was analyzed by flow 

cytometry (Fig. 5.5). Only cells expanded on TCPS, aminated PES film and nanofiber 

mesh, and hydroxylated nanofiber mesh were analyzed because they generated 

sufficiently high numbers of cells for complete lineage marker expression analysis. 

Lineage marker expression of freshly thawed, unexpanded cord blood HSPCs was 

also analyzed as a control. In addition to the definitive human blood progenitor 

markers which include CD34, CD45 and CD38, the cells were also evaluated for 

markers for myeloblast / monoblast (CD13, CD15), megakaryoblast (CD41), 

erythroid (GlyA) and pro-B cell (CD19) lineages. The following observations can be 

made: 

(1) Unexpanded HSPC stocks showed high expression of CD34 (98%), CD45 

(99%), CD13 (92%) and CD38 (98%) (Fig. 5.5A); 

(2) Cells expanded on all substrates expressed negligible levels of CD19 (<1%), 

whereas cell populations expressing CD15, CD41 or GlyA increased (Fig. 

5.5A); 

(3) Cells expanded on aminated PES nanofiber showed the highest percentage 

(25.9% ± 8.5%) of CD34+CD45+ cells (Fig. 5.5B); 

(4) The CD34+CD45+ cell population of expanded cells were primarily negative 

for CD41, GlyA and CD19 but co-expression of CD13 and CD15 was 

significant (Fig. 5.5C); 

(5) The CD34+CD45+ fraction of expanded cells displayed lower CD38  

co-expression compared to unexpanded cells (Fig. 5.5C), an effect that had 

been attributed to serum-free culture condition [184,194]; 
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(6) The CD34+CD45+ cell population expanded on aminated and hydroxylated 

PES nanofiber meshes showed lower CD13 expression compared to cells 

expanded on TCPS and aminated PES film (Fig. 5.5C). 

 

5.4.5 Imaging of Adherent Cells on Aminated Substrates 

After 10 days of expansion culture, some samples were processed for SEM and 

confocal laser microscopy to detect the presence of any adherent cells on these 

substrates. It was noted that expanded cells adhered weakly to TCPS, unmodified, 

carboxylated film and nanofiber, and hydroxylated PES nanofiber substrates; and 

most of these cells could easily be detached with very gentle rinsing. As such, only 

sparsely scattered cells could be seen under SEM. This observation confirmed the 

weak adhesion of HSPCs on these substrates. In contrast, on aminated PES nanofiber 

mesh and film, cell adhesion was evident, although the arrangement of adherent cells 

on these two substrates appeared to differ greatly (Fig. 5.6). 

On aminated PES nanofiber mesh, approximately 40% cells were adherent 

following 3 gentle washes; distinct and circular cell colonies were abundant on the 

mesh (Fig. 5.6A). Cell colonies ranged from 100 µm to 1.3 mm in diameter, with cells 

numbering between 50 to a few thousand. In some of the larger colonies, cells could 

be seen densely packed at the center but thinned out towards the periphery of the 

colony. At high magnification, the adherent cells could be seen to be anchored via 

numerous processes in intimate contact with the aminated nanofibers as well as 

processes from other cells, indicative of cell-fiber and cell-cell interactions (Fig. 5.6B 

& 5.6C). 
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Figure 5.6: SEM images of human cord blood HSPCs after a 10-day expansion culture 

on aminated PES nanofiber mesh (A-C) and on aminated PES film (D-F) at various 

magnifications. Abundant distinct, circular cell colonies are evident on the aminated 

nanofiber scaffold (black arrows). Filopodia extend from the cells and interact with the 

aminated nanofibers (white arrows). On aminated film, fewer cells are adherent without 

colony formation; cells appear to attach along cracks. 
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On aminated film substrates, however, about 25% total cells were adherent, but 

only sparsely on the surface, compared to adherent cells on aminated nanofiber mesh 

(Fig. 5.6D). No discrete cell colony was evident but instead, the adherent cells 

appeared to align along crevasses (defects generated during film processing) on the 

surface of the film (Fig 5.6E). We also observed that most of the adherent cells along 

the edges of the crevasses sent filopodia into the fissures (Fig. 5.6F). Cells on the 

smooth surface were washed off by gentle rinsing with PBS. 

 
Figure 5.7: Confocal laser microscopy images of human cord blood HSPCs after a 10-

day expansion culture on aminated PES nanofiber mesh. Green indicates Syto16 nuclear 

staining and red indicates CD34-PE staining. (A) Fluorescent image of two 

representative cell colonies stained with Syto16. (B, C) CD34+ cells can be found on 

these cell colonies and they appear to concentrate around the periphery of the colonies. 

“x” denotes the approximate center of the cell colony. 

 
Prompted by the observation of the unique cell colonies on the surface of 

aminated nanofiber mesh, we proceeded to investigate the CD34 antigen expression 

among the adherent cell population. Indeed, confocal laser microscope imaging 

confirmed that a fraction of the cells in the cell colonies showed positive staining with 

CD34-PE antibody (Fig. 5.7). Interestingly, the CD34+ cells were located mostly 

around the peripheries of the cell colonies. Cells at the center of the colonies appeared 

to be predominantly CD34−. This suggests that HSPCs and the expanded cells were 
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proliferating in an outward, radial manner along the surface of aminated nanofiber 

mesh, resulting in the formation of circular cell colonies. 

 

5.5 Discussion 

This report focuses on examining the effects of surface functional groups, 

together with surface topography, on the proliferation and differentiation of HSPCs 

under a typical expansion condition − using commercially available serum-free stem 

cell media. The results show that under typical culture condition (StemSpan™ serum-

free expansion medium and a cytokine cocktail), both substrate chemistry (amino vs. 

hydroxyl vs. carboxyl groups) and topographical features affect the expansion 

outcome. 

HSPCs cultured on unmodified, hydroxylated or carboxylated PES substrates 

exhibited low proliferation. In contrast, HSPCs cultured on aminated PES substrates 

were able to proliferate as rapidly as those cultured on TCPS, with the advantage that 

the fold expansion of CD34+ cells on aminated substrates was more than 3.5 times 

higher than that on commercial TCPS surface (Fig. 5.3); the expanded cells also 

generated higher numbers of CFU-total and CFU-GEMM counts (Fig. 5.4). These 

observations indicate that aminated substrate may play a role in facilitating HSPC 

proliferation and/or maintenance of the HSPC phenotype. 

One possible mechanism to account for the observed effects is that the aminated 

substrate, being positively charged, could selectively enrich certain protein 

components from the medium, which then contribute to the expansion outcome 

[189,195]. Keselowsky et al. [189] have shown that the functional presentation of 

adsorbed fibronectin was different on hydroxylated, methylated, aminated and 
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carboxylated surfaces, which consequently led to variations in cell adhesion and 

differentiation. It is possible that aminated PES surface mediated HSPC proliferation 

by a similar mechanism − by binding critical cytokines and growth factors from the 

medium, and presenting them in a more effective immobilized form, thereby 

mimicking a salient feature of the bone marrow hematopoietic stem cell niche [137-

140,196,197]. 

Another possible mechanism by which aminated surface enhanced HSPC 

expansion and CD34+ phenotype maintenance is by its direct interaction with the 

HSPCs through their surface CD34 antigen. CD34 antigen is a highly sialylated and 

negatively charged glycophosphoprotein, and its expression decreases as HSPCs 

become differentiated [146-156]. We therefore postulate that a positively charged 

“ligand” − in this case the surface-bound amine groups − could bind and engage the 

negatively charged CD34 antigen, and the engagement of CD34 antigens on HSPCs 

might activate downstream signaling pathways that subsequently influence fate 

choices upon proliferation [150]. Tada J. et al. have shown that stimulation of 

undifferentiated hematopoietic (myeloblastic leukemia cell line) KG1a cells with anti-

CD34 antibody induces homotypic cytoadhesion [150]. Binding of aggregating 

antibody to CD34 antigens induced tyrosine phosphorylation, cell polarization and 

adhesion, and perhaps cell motility. Interestingly, being co-localized with F-actin, the 

crosslinked CD34 “cap” is quite stable and persists on the cell surface for at least 2 

days after stimulation, whereas many other cell-surface molecules are rapidly 

internalized for degradation or recycling, upon stimulation. It is possible that the 

aminated PES surface serves the same role by engaging cell surface CD34 antigen. 

The most interesting finding of this study is that surface topography also plays a 

role in HSPC adhesion and expansion. Aminated nanofiber mesh mediated the highest 
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degree of cell adhesion on substrate; and the expanded CD34+CD45+ cells on 

aminated PES nanofiber mesh exhibited a lower monoblastic (CD13+) phenotype (Fig. 

5.5C) and higher CFU potential (Fig. 5.4) compared to the same population of cells 

expanded on aminated PES film. Moreover, the adherent hematopoietic cells on the 

aminated nanofiber displayed numerous filopodia and attachment sites on the fibers 

(Fig. 5.6A-5.6C), which might mediate cell migration that allows rearrangement of 

the proliferated cells on the substrate surface. A consequence of this stronger adhesion 

was that the cells proliferated on the nanofiber mesh surface in a radial and outward 

planar fashion, resulting in distinct, circular colonies. 

We do however observe that HSPCs did not survive on aminated surfaces in the 

absence of cytokine supplementation, suggesting that aminated nanofiber substrate 

itself is not sufficient to induce the proliferation of HSPCs. The surface-bound amino 

groups and topographical cue are therefore likely to play a supporting/synergistic role 

for cytokines and growth factors (supplemented in the medium) to influence HSPC 

proliferation and differentiation. 

Although the precise mechanisms by which amine group and nanofiber 

topography mediate more efficient adhesion and expansion of CD34+CD45+ cells 

remains to be elucidated, our data suggest a positive correlation between substrate-

adhesion of HSPCs with higher expansion efficiency of CD34+CD45+ cells. A recent 

study suggests that HSPC-substrate adhesion is required for cell migration and 

homing [157]; this HSPC-substrate adhesion might be part of the natural process 

occurring in the hematopoietic stem cell niche that governs the proliferation and 

differentiation of HSPCs [198]. 
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5.6 Concluding Remarks 

The ex vivo expansion of hematopoietic stem cells is one of the most challenging 

fields in cell culture. This is a rapidly growing area of tissue engineering with many 

potential applications in transfusion medicine, bone marrow transplantation or gene 

therapy. Over the last decade much progress has been made in understanding 

hematopoietic differentiation, identification and isolation of HSPC subtypes, 

discovery of cytokines and in the development of a variety of culture scaffold and 

bioreactor techniques. All this has led to a number of preliminary clinical trials that 

highlighted the benefits that can be obtained from the use of expanded hematopoietic 

cells in therapy. Moreover, as we understand the complexity and the regulation of 

hematopoiesis, it becomes obvious that cultivation techniques and concepts must 

constantly evolve and improve in order to expand HSPCs efficiently and effectively. 

In this chapter, we demonstrated the effectiveness of surface modified 

electrospun PES nanofiber mesh as potential scaffolds for ex vivo HSPC expansion 

under serum-free conditions. The expansion profiles of human umbilical cord HSPCs 

are evidently different following a 10-day culture on modified and unmodified 

polymeric substrates with different functional groups and nanofiber topographical cue. 

Among the carboxylated, hydroxylated, and aminated PES substrates and TCPS, 

aminated PES substrates mediated the highest expansion efficiency of CD34+CD45+ 

cells and CFU potential. Aminated nanofiber mesh could further enhance the HSPC-

substrate adhesion and expansion of CFU-GEMM forming progenitor cells. Although 

the underlying mechanisms remain to be elucidated, this study clearly underscores the 

importance of culture substrate in influencing the proliferation and differentiation of 

HSPCs. 
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In the following chapter, we will seek to better understand the mechanism by 

which aminated nanofibers mediate these cellular responses by investigating the 

effects of spacer chain lengths of the grafted amine groups. In addition, the 

multipotency maintenance potential, differentiation characteristics and engraftment 

potential of the cells expanded from aminated nanofiber scaffolds will be further 

investigated through short-term and long-term clonogenic assays and NOD/SCID 

mouse engraftment assays. 
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CHAPTER SIX 

Nanofiber Scaffolds Modified with Different Spacer-Length Amines 

Modulate Hematopoietic Stem/Progenitor Cell Maintenance and 

Proliferation Kinetics 

6.1 Summary 

We have shown in the previous chapter that aminated nanofiber scaffold can 

effectively enhanced HSPC proliferation, while supporting the multipotency 

phenotype (CFU-GEMM) of the cells expanded in HSPC ex vivo expansion cultures. 

In this present study, the effects of the nanofiber scaffolds immobilized with amine 

functional groups of increasing 2-, 4- and 6-carbon spacer chain lengths (EtDA, 

BuDA and HeDA conditions, respectively) on ex vivo expansion and maintenance of 

HSPCs is investigated. 

Results show that EtDA and BuDA nanofiber scaffold showed similar expansion 

profiles (773- and 805-fold expansion, respectively) and the expanded cells 

maintained 25.9% and 29.2% of the CD34+CD45+ phenotype, respectively. 

Interestingly, HSPC proliferation on HeDA nanofiber scaffold was significantly lower 

(210-fold), although the CD34+CD45+ cell fraction was the highest at 41.1% of total 

cells. This increased CD34+CD45+ percentage offsets the low cell proliferation and 

cells expanded from HeDA nanofiber scaffold exhibited similar CFU-GEMM and 

LTC-IC maintenance as compared to cells expanded from EtDA and BuDA nanofiber 

scaffolds, although the NOD/SCID mice engraftment potential was not as efficient. 
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This study further suggests the importance of immobilized amino functional 

groups in influencing cell-scaffold interactions and modulating HSPC proliferation 

kinetics and multipotency maintenance in aminated nanofiber scaffolds. 

 

6.2 Introduction 

In Chapter 5, we have demonstrated that surface covalent immobilization of 

functional groups could mediate HSPC-substrate adhesion and proliferation. In 

particular, we discovered in ethylenediamine-modified nanofiber scaffolds that 

surface biochemical cues and topographical cues both played synergistic roles in 

enhancing HSPC-substrate adhesion and maintenance of HSPC proliferation and 

multipotency. HSPCs proliferated well on aminated nanofiber scaffolds and the 

expanded cells generated the highest maintenance of primitive CFU-GEMM forming 

cells. Scanning electron microscopy imaging also revealed that the HSPCs extended 

numerous uropodia that associated intimately with the aminated nanofibers and 

anchored the cells to the fibrous scaffold. In addition, the unique HSPC proliferation 

pattern on these aminated nanofibers resulted in the formation of abundant distinct, 

densely packed circular cell colonies on the scaffold surface. This observation was in 

sharp contrast to HSPC interaction with aminated film, where there were only sparse 

adherent cells on the film surface, and most of the adherent cells were found anchored 

along crevasses on the film surface. 

The finding that surface amino groups and nanofiber topography could 

synergistically act to promote the adherence of HSPCs and regulate their proliferation 

is novel and unexpected. In this study, we further investigate the effect of amine-

conjugation on HSPC expansion, with a long term goal to better understand the 

mechanism by which aminated nanofibers mediate these cellular responses (Fig. 6.1). 
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Several studies had shown that spacer properties can affect the interaction between 

cells and immobilized biofunctional molecules such as ligands [199,200], providing 

motivation to investigate the effect of chain length of the grafted amines on the 

proliferation rate and phenotype of cultured cord blood HSPCs. The differentiation 

and engraftment potential of the cells was assessed by clonogenic assays and 

NOD/SCID mouse engraftment assays, respectively. 

Figure 6.1: PES scaffold amination scheme with different spacer chain length amines. 

 

6.3 Experimental Methods 

All chemicals were purchased from Sigma-Aldrich unless otherwise stated. 

6.3.1 Fabrication of PES Nanofiber Scaffolds 

Detailed protocols for PES nanofiber scaffold fabrication can be found in 

Chapter 5.3.1. 

6.3.1.1 Surface Grafting of Scaffolds with Poly(acrylic acid) 

The PES nanofibers were subsequently grafted with Poly(acrylic acid) (PAAc). 

Detailed protocols for PES nanofiber PAAc grafting can be found in Chapter 5.3.1.1. 
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6.3.1.2 Amination of Poly(acrylic acid) Grafted Scaffolds 

The PAAc-grafted PES nanofiber meshes were further conjugated with 1,2-

ethanediamine (EtDA), 1,4-butanediamine (BuDA) or 1,6-hexanediamine (HeDA) 

using carbodiimide cross-linking method (Fig. 6.1). Briefly, each scaffold was first 

gently shaken in 2 mL acetonitrile containing 50 mM N-hydroxysuccinimide and 50 

mM dicyclohexylcarbodiimide. After 6 h, the reaction solution was carefully aspirated 

and each scaffold was immediately immersed into 2 mL acetonitrile containing 0.03 

mmol EtDA, BuDA or HeDA. After 12 h, the reaction solution was carefully 

aspirated and each scaffold was thoroughly washed in absolute ethanol to remove any 

dicyclohexyl urea, which is a by-product of the conjugation reaction. All substrates 

were subsequently sterilized in 70% ethanol, then loaded into 24-well tissue culture 

plates (Nunc) and stored in sterile PBS until use. 

Surface characterization and atomic compositions of various PES nanofiber 

surfaces were determined using XPS (PHI-1800, Physical Electronics). Binding 

energies were referenced to the CC/CH2 C(1s) peak at 284.6 eV. 

6.3.2 Hematopoietic Stem Cell Culture and Assays 

Frozen human umbilical cord blood CD34+ HSPCs were purchased from 

AllCells. The CD34+ purity in the HSPC was determined to be 98% by flow 

cytometry and the viability was determined to be more than 97% by Trypan blue. 

Purified recombinant human stem cell factor (SCF), Flt-3 ligand (Flt3), 

thrombopoietin (TPO) and IL-3 was purchased from Peprotech Inc. Low density 

lipoprotein (LDL) was purchased from Athens Research & Technology Inc. The 

StemSpanTM serum-free expansion medium, MethoCult GF+ H4435 and MyeloCult 

H5100 were all from StemCell Technologies. 
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6.3.2.1 Ex Vivo Hematopoietic Expansion Culture 

Six hundred HSPCs were seeded onto each scaffold. HSPCs were cultured in 0.6 

mL StemSpan™ serum-free expansion medium supplemented with 0.04 mg/mL LDL, 

100 ng/mL SCF, 100 ng/mL Flt3, 50 ng/mL TPO and 20 ng/mL IL-3 at 37oC, 5% 

CO2 for 10 days. Similar cultures were also performed on tissue culture polystyrene 

surface (TCPS), which served as a positive control in this study. In total 6 surface 

conditions were tested: TCPS, unmodified PES nanofiber mesh (Unmod.), 

carboxylated nanofiber mesh (AAc), and nanofiber mesh aminated with EtDA, BuDA 

or HeDA. 

On day 10, the expanded cells were harvested and aliquoted. Briefly, all 

substrates were washed once with non-trypsin cell dissociation solution and twice 

with 2% FBS Hanks' buffer at 5-10 min intervals between each wash. The cell 

suspensions collected were then concentrated through centrifugation at 500 ×g for 10 

min. Aliquots of the concentrated cells were then used for cell counting by a 

hematocytometer, flow cytometry analysis, colony-forming cell assays, long-term 

culture-initiating cell assay and mouse engraftment assay. 

6.3.2.2 Flow Cytometry 

Fluorescently labeled antibodies for CD13, CD34 and CD45 were purchased 

from BD Biosciences (USA). The cell samples were incubated with antibodies at 4oC 

for more than 30 min in 2% FBS Hanks' buffer. After antibody staining, the cells were 

washed twice with Hanks’ buffer and fixed in 1% paraformaldehyde. Cells were 

analyzed by flow cytometry on a FACSCalibur analyzer (BD Biosciences). Relevant 

isotype controls were also included to confirm specificity and for compensation 

setting. At least 20,000 gated events were acquired. The Milan-Mulhouse gating 

method was used for cell enumeration [151]. 
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6.3.2.3 Preparation for Scanning Electron Microscopy 

Selected cultures samples were gently rinsed with PBS, fixed with 3% 

glutaraldehyde for 30 min at 20°C, and post-fixed with 1% osmium tetraoxide for 

another 15 min at 20°C. Samples were then dehydrated using a graded series of 

ethanol (25%, 50%, 70%, 90%, 95%, 100%, 100%) followed by 

hexamethyldisilazane drying. The samples were mounted onto aluminum stubs and 

gold sputter-coated before viewing under field emission scanning electron microscope 

(SEM, FEI Company). 

6.3.2.4 Colony-Forming Cell Assay 

Detailed protocols for CFC assay can be found in Chapter 5.3.2.3. 

6.3.2.5 Long-Term Culture-Initiating Cell Assay 

For LTC-IC, expanded cells from each scaffold condition in the ex vivo 

hematopoietic expansion cultures and freshly thawed HSPCs, which serve as controls, 

were plated onto irradiated M2-10B4 murine fibroblast feeder cells in 35mm culture 

dishes and cultured in MyeloCult H5100 medium as instructed in the procedure 

manual by StemCell Technologies. After 5 weeks, all the cells from each dish were 

harvested, and cultured according to the CFC assay as described above. LTC-IC 

numbers were then calculated and normalized according to instructions in the 

procedure manual. 

6.3.2.6 Mouse Engraftment Assay 

Non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice 

(Animal Resource Center, Perth, Australia) were maintained at the Biological 

Resource Center (BRC), Biopolis, Singapore. All animals were handled according to 

BRC regulations. 6-8 weeks old mice were irradiated at 350 cGy. Cells harvested 
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from 10-day ex vivo expansion cultures were mixed with 4 × 105 irradiated (1,500 

cGy) CD34-depleted human bone marrow cells (carrier cells) and injected into the 

mice via the tail vein. For positive controls, 2 mice groups of 600 or 20,000 injected 

unexpanded HSPCs / 4 × 105 irradiated carrier cells mix were also examined. Finally, 

un-irradiated mice, irradiated mice and irradiated mice with 4 × 105 injected irradiated 

carrier cells groups were also included to serve as negative controls in this study. 

Mice were sacrificed 6 weeks after cell transplantation. After euthanasia, 

bilateral femora and tibia were harvested from each animal and bone marrow cells 

were flushed out with 2% FBS, 5% human serum Hanks' buffer. The cells were 

subsequently stained with fluorescently labeled human CD45 antibody and the red 

blood cells lysed using FACS lysing solution (BD Biosciences). The percentage of 

human hematopoietic cells in the mouse bone marrow was quantified by flow 

cytometry. At least 40,000 gated events were acquired. Successful human 

hematopoietic stem cell engraftment was defined by the presence of at least 0.1% of 

human CD45+ cells in the NOD/SCID mouse bone marrow cell population. 

6.3.3 Statistical Analysis 

All data were presented as mean ± standard deviation (SD). The statistical 

significance of the data obtained was analyzed by non-parametric Mann-Whitney test 

for mouse engraftment results and Student’s t-test for all other results. Probability 

values of p < 0.05 were interpreted as denoting statistical significance. 

6.4 Experimental Results 

6.4.1 Surface Characterization of Aminated Nanofiber Scaffolds 

Nonwoven PES nanofiber meshes with an average diameter of 529 ± 114 nm 

were prepared by electrospinning process. The PES nanofiber meshes were first 
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carboxylated by UV-initiated PAAc grafting and subsequently conjugated with 

diamines with 2, 4, or 6 alkane spacers (EtDA, BuDA or HeDA respectively) using 

carbodiimide cross-linking method (Fig. 6.1). XPS analysis showed the surface 

elemental concentration of nitrogen on the aminated fibers to be between 11.6% − 

13.4% (Table 6.1), which indicated the similar conjugation efficiencies of the 

different diamines on the nanofiber surface. The unmodified and PAAc-grafted fibers 

on the other hand showed background nitrogen concentrations of <0.2%. 

Table 6.1: XPS elemental analysis of PES nanofiber surfaces modified with 

different functional groups. 

 

PES nanofiber surface C atomic 

ratio (%) 

O atomic 

ratio (%) 

N atomic 

ratio (%) 

S atomic 

ratio (%) 

Unmodified 74.2 20.2 0.2 5.4 

AAc 68.6 27.7 0.1 3.6 

EtDA 65.2 19.8 13.4 1.6 

BuDA 67.9 17.5 13.2 1.4 

HeDA 71.8 14.9 11.6 1.7 

 
In addition, the carbon XPS spectra (C1s) showed that after PAAc grafting, the 

π→π* shake-up satellite region at 291.7 eV (caused by aromatic carbon species in 

PES) was absent in PES AAc fiber surface, and replaced with the PAAc characteristic 

O−C=O region (Fig. 6.2). Subsequently, the XPS C1s spectra also showed absence of 

O−C=O species for all amine conjugated fibers, indicating the complete conversion of 

the surface PAAc carboxylic acid groups to amide groups during the amine 

conjugation reaction. 
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Figure 6.2: The XPS spectra of various modified PES nanofiber surfaces. Left panel: 

Survey spectra showing the relative abundance of O, N and C elements. Right panel: 

C1s spectra showing the relative abundance of the different carbon bonds. 
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6.4.2 Ex Vivo HSPC Expansion on Aminated Nanofiber Scaffolds 

The efficiency of the various nanofiber scaffolds for supporting HSPC expansion 

was evaluated through 10-day expansion cultures. Fig. 6.3 showed the total nucleated 

cell fold expansion and CD34+CD45+ cell fold expansion after a 10-day expansion 

culture on different spacer amine nanofiber and control surfaces. Cells harvested from 

the expansion cultures showed >95% viability in all culture conditions. In general, 

HSPCs culture on Unmod and AAc surfaces yielded the lowest proliferation of total 

nucleated cells (85- and 152-fold, respectively); the CD34+CD45+ cell fraction was 

13.3% and 26.1% of total cells, respectively, as analyzed by flow cytometry, which 

corresponded to a low 11- and 40-fold CD34+CD45+ cell expansion respectively. 

Although HSPCs cultured on TCPS surface proliferated extensively (895-fold), the 

CD34+CD45+ cell fraction was only 5.9% of total cells, corresponding to a 53-fold 

CD34+CD45+ cell expansion. 

In contrast, the expansion of CD34+CD45+ cells on EtDA, BuDA and HeDA 

nanofiber mesh was significantly better than other test groups: EtDA and BuDA 

nanofiber mesh showed similar expansion profiles (p > 0.05) and yielded 773- and 

805-fold expansion of total cells respectively (Fig. 6.3), with 25.9% (200-fold) and 

29.2% (235-fold) of total cells expressing the CD34+CD45+ phenotype, respectively 

(Fig. 6.4). Interestingly, although HSPCs proliferation on HeDA surface was 

significantly lower as compared with EtDA and BuDA surfaces (210-fold, p < 0.05), 

the CD34+CD45+ cell fraction was the highest at 41.1% of total cells (86-fold 

CD34+CD45+ cell expansion). 
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Figure 6.3: Fold expansion of total nucleated cells and CD34+ cells following a 10-day 

culture of 600 human cord blood HSPCs on different substrates. Total cell and CD34+ 

cell numbers were determined by hematocytometer cell counting and FACS analysis 

respectively at the end of culture. Data are means ± SD of 3-8 independent experiments, 

each conducted in triplicates. 

 
 
 

In addition, we also observed that the CD34+CD45+ cell population expanded 

from HeDA nanofiber scaffolds co-expressed significantly lower levels of the 

myeloid CD13 marker (60.3 ± 7.3 % of expanded CD34+CD45+ cell population) 

compared to EtDA and BuDA nanofiber scaffolds (94.2 ± 3.5 %, p < 0.05 and 92.8 ± 

3.8 %, p < 0.05 of expanded CD34+CD45+ cell population respectively (Fig. 6.4D). 
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Figure 6.4: Representative FACS profiles (A, B) and surface marker expression 

summary (C, D) of cells after 10-day ex vivo expansion on TCPS and EtDA, BuDA and 

HeDA nanofiber scaffolds. (A) CD45 vs. CD34. (B) CD13 vs. CD34. (C) Percentage of 

total cells expressing one or multiple CD markers. (D) Percentage of the CD34+CD45+ 

cell population that are CD34+CD45+CD13+. Data shown are mean ± SD of 5-8 

experiments, each conducted in duplicates. 

 
 

6.4.3 Morphology of Adherent Cells on Aminated Scaffolds 

SEM imaging was used to monitor the proliferation kinetics of the adherent 

HSPC population on the nanofiber scaffolds. At selected time points during the 10-

day expansion culture, samples were processed for SEM to image the presence of any 

adherent cells on the nanofiber scaffolds. We noted that expanded cells adhered 

weakly to TCPS, Unmod, and AAc surfaces, and most of these cells could easily be 
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washed off with very gentle rinsing. As such, only sparsely scattered cells remained 

adherent for SEM imaging. 

In contrast, on both EtDA and BuDA modified PES nanofiber mesh, HSPC 

interaction and adhesion on the nanofiber surfaces were clearly evident. When SEM 

imaging was performed on day 3 cultures, small pockets of adherent HSPCs could 

already be observed interacting and proliferating on the aminated nanofiber mesh (Fig. 

6.5A & 6.5B). The adherent HSPCs were anchored to the aminated nanofibers via 

numerous uropodia radiating from the cell surface (Fig. 6.5C). Cells undergoing 

division were also evident on the nanofiber surface (Fig. 6.5D). By day 8 of 

expansion culture, the adherent HSPCs proliferated to form distinct, densely 

populated circular cell colonies on the aminated nanofiber mesh (Fig. 6.5E & 6.5F). 

The distinct circular cell colonies most likely arose from single or small clusters of 

HSPCs proliferating outwards in a radial manner along the nanofiber surface. The cell 

colonies ranged from 0.1 to 1.3 mm in diameter, with cells numbering between 50 to a 

few thousand. 

Adherent HSPCs proliferated well on EtDA (Fig. 6.6A & 6.6B) and BuDA (Fig. 

6.6C & 6.6D) nanofiber surfaces to form densely populated cell colonies after 10 days 

of culture, and this was mirrored by the high mononucleated cell counts (Fig. 6.3). 

Conversely, the considerably lower proliferation rate on HeDA modified nanofiber 

surface (210-fold; Fig. 6.3) was reflected by smaller colony size, each containing less 

than 50 cells (Fig. 6.6E & 6.6F). Besides differences in adherent cell density and 

colony size, no obvious morphological differences could be discerned among the 

adherent cells expanded on the EtDA, BuDA, or HeDA nanofiber surfaces. 
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Figure 6.5: SEM images of HSPCs after (A-D) 3-day and (E, F) 8-day cultures on PES 

BuDA nanofiber mesh at various magnifications. (A, B) Pockets of adherent HSPCs 

were observed (white circles) proliferating on the aminated nanofiber surface. (C) Cells 

exhibited numerous filopodia which were interacting with the aminated nanofibers. (D) 

Cell division was also observed occurring on the nanofiber surface. (E, F) Towards day 

8, HSPCs proliferated to form circular colonies (black arrows) on the nanofiber surface. 
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Figure 6.6: SEM images of adherent cell colonies after 10 days of expansion on PES 

(A, B) EtDA, (C, D) BuDA and (E, F) HeDA nanofiber mesh at various magnifications. 

Colonies of densely packed adherent cells were observed on EtDA and BuDA nanofiber 

surfaces. On HeDA nanofiber surfaces, adherent cells were sparsely located. 
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6.4.4 HSPC Clonogenic Potential from Various Scaffolds 

CFC and LTC-IC assays were conducted to evaluate the fraction of primitive 

progenitor cells in the expanded cultures. The CFC results (Fig. 6.7) showed that cells 

expanded from Unmod and AAc nanofiber meshes yielded lower total CFU counts 

(1199 and 1609 respectively) as compared to TCPS control (2890, p < 0.05). 

Conversely, cells expanded from EtDA, BuDA and HeDA nanofiber meshes yielded 

significantly higher total CFU counts (3996, 4208 and 3742 respectively) compared to 

TCPS control (p < 0.05). In addition, significant differences were also observed in the 

number of primitive CFU-GEMM units generated by cells expanded on EtDA, BuDA 

and HeDA nanofiber mesh with 28.1% (1124/3995), 27.6% (1163/4207) and 28.4% 

(1064/3742) of total colony counts respectively, compared to cells expanded on TCPS 

(15.0%, 433/2890, p < 0.05). TCPS, on the other hand, generated higher percentages 

of CFU-GM units (63%), indicating differentiation commitment of the TCPS-

expanded cells towards the myeloblast / monoblast lineage. 

Results from LTC-IC assays (Fig. 6.8) suggested that HSPCs expanded from 

EtDA-, BuDA- and HeDA-scaffolds may be more primitive than those cultured on 

control surfaces. More importantly, the LTC-IC numbers generated from these 

conditions were significantly higher than that from unexpanded cells control (p < 

0.05), suggesting higher degree of HSPC self-renewal on the aminated nanofiber 

scaffolds. 

Interestingly, cells expanded from HeDA nanofiber scaffolds generated 

comparatively high numbers of colony units similar to EtDA and BuDA conditions 

(Fig. 6.7 & 6.8), even though the total cell expansion (Fig. 6.3) was shown to be low. 

We propose that the relatively high CD34+ phenotype expression of cells expanded 

from HeDA nanofiber scaffolds may have contributed to this result. 
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Figure 6.7: CFU counts after 14 days of culture, using the cells from the 10-day 

expansion cultures on various substrates and unexpanded HSPCs, normalized to CFU 

per 100 initial unexpanded HSPCs. Data are means ± SD of 3-8 experiments, each 

conducted in triplicates. 

 

 
Figure 6.8: LTC-IC counts after 7 weeks of culture, using the cells from the 10-day 

expansion cultures on various substrates and unexpanded HSPCs, normalized to LTC-IC 

per 100 initial unexpanded HSPCs. Data are means ± SD of 2 experiments, each 

conducted in triplicates. * indicates p < 0.05. 
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6.4.5 HSPC NOD/SCID Repopulation Potential from Various Scaffolds 

To access the effect of surface modified nanofiber scaffolds on the maintenance 

of HSPCs and their engraftment potential, cells harvested from 10-day expansion 

cultures were injected intravenously into sub-lethally irradiated NOD/SCID mice 

together with 4 × 105 irradiated carrier cells. As positive controls, 600 and 20,000 

(“20k” group in Fig. 6.9) unexpanded CD34+ cells were also injected into 2 groups of 

mice. The presence of > 0.1% human CD45+ cells among the murine bone marrow 

cells after 6 weeks was used as a criterion for successful primary engraftment in the 

bone marrow of NOD/SCID mice. 

 
Figure 6.9: Engraftment efficiency of human CD45+ cells in bone marrow of sub-

lethally irradiated NOD/SCID mice transplanted with unexpanded HSPCs, cells from the 

10-day expansion cultures on various substrates, and irradiated carrier cells alone. 

Numbers in parentheses indicate mice survival in the different experimental groups. * 

indicates p < 0.05. 

 
Based on this criterion, only cells expanded on EtDA and BuDA scaffolds, along 

with 20,000 freshly thawed uncultured cells showed positive engraftment (Fig. 6.9). 

Moreover, there was statistical significance between EtDA vs. 600 cells and BuDA vs. 
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600 cells groups (p < 0.05), indicating improvement of HSPC engraftment potential 

following ex vivo expansion on EtDA and BuDA nanofiber scaffolds (600 cells was 

the initial cell seeding number for the expansion cultures). However, the HeDA group 

failed to show positive engraftment, even though its corresponding CFC and LTC-IC 

results were comparable to that of EtDA and BuDA groups. 

 

6.5 Discussion 

The present study investigates the effects of covalently grafted primary amine 

functional groups in conjunction with spacer chain length and surface nanofiber 

topography on ex vivo expansion and multipotency maintenance of human umbilical 

cord HSPC in serum-free culture. 

We have shown in the previous chapter that both chemical and topographical 

cues can modulate HSPC-substrate interaction. On top of supporting total nucleated 

cell proliferation of the cultured HSPCs at rates highly comparable to that of 

commercial TCPS surface, aminated (EtDA) nanofiber scaffolds and films also 

demonstrated additional benefit of enriching CD34+CD45+ cell proportion to several 

fold higher than that on TCPS. Specifically, enhanced HSPC-scaffold interaction and 

adhesion was observed on aminated (EtDA) nanofiber scaffolds, compared with 

aminated film conditions. In addition, cells expanded from aminated nanofiber 

scaffolds exhibited better multipotency maintenance by supporting higher percentages 

of CFU-GEMM cells as compared to aminated film conditions. 

Results in this chapter further confirmed the findings from Chapter 5. We 

showed that cells expanded on aminated nanofiber scaffolds generated significantly 

higher numbers of total CFU, CFU-GEMM units and LTC-IC counts, in contrast to 

the carboxylated nanofiber scaffold, unmodified nanofiber scaffold and TCPS 
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substrate conditions, which yielded various degree of reduction of these progenitor 

cells (Fig. 6.7 & 6.8). 

More importantly, our results indicated that the spacer (ethylene, butylene and 

hexylene) linkages between amino groups and nanofiber surface influenced the 

expansion of HSPCs (Fig. 6.3). HSPCs cultured on BuDA-nanofiber scaffold showed 

similar expansion efficiency to that on EtDA-nanofibers. However, increasing the 

amine spacer length to 6-carbon alkyl chain (HeDA-nanofibers) reduced total cell 

expansion by 3.8 times but increased CD34+CD45+ cell percentage by 1.5 times 

(41.1% of total cells). Therefore, it appears that HeDA nanofiber scaffold was most 

efficient at preserving the CD34+ phenotype, but at the expense of overall cell 

proliferation. The outcomes of ex vivo expansion experiments are largely determined 

by the balance between self-renewal and differentiation of HSPCs in culture 

[138,142]: Differentiation and hence, depletion of stem and progenitor cell 

populations, are often accompanied by rapid proliferation of differentiated cells. 

Because of this reduced total cell expansion (4-times lower than that on BuDA-

nanofibers, Fig. 6.3), and hence lower total cell transplantation dose, the engraftment 

efficiency of cells expanded on HeDA-nanofibers in NOD/SCID mice was lower than 

that expanded on BuDA- and EtDA-nanofiber scaffolds. This result confirmed that 

HSPC transplantation dose is one of the critical parameters for successful engraftment 

[132-136,141-145]. In addition, we also observed that the CD34+CD45+ cell 

population expanded from HeDA nanofiber scaffolds expressed significantly lower 

levels of the myeloid CD13 antigen compared to EtDA and BuDA nanofiber scaffolds 

(Fig. 6.4D). We believe that this lower CD34+CD45+CD13+ / CD34+CD45+ 

expression was also a possible cause of low engraftment frequency for cells expanded 

on HeDA-nanofiber scaffold, given that a recently report suggests a highly positive 
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correlation between myeloid marker expression and the engraftment potential of 

human CD34+ HSPCs [155]. 

SEM imaging analysis provided the direct evidence of HSPC adhesion on 

aminated nanofiber substrates (Fig. 6.5 & 6.6). Despite the varying degrees of 

proliferation, intimate binding of cells with nanofibers was evident for all three types 

of aminated nanofibers. The strikingly distinct circular colonies most likely arose 

from single or small clusters of HSPCs proliferating outwards in a radial manner 

along the nanofiber surface, suggesting that the sub-micron scale feature created by 

electrospun fibers provided traction and contact guidance for the dividing cells as they 

migrated away from the center of the colony. Numerous threadlike processes and 

uropodia emanating from the cell surface [201] apparently anchored the cells to the 

nanofibers and likely mediated the migration of the cells. 

The distinct circular colony features that remained following several sample 

preparation steps prior to SEM imaging also clearly indicates the strong cell adhesion 

strength of the expanded cells on the aminated nanofiber mesh. In addition, the colony 

sizes and cell densities within the colonies correlated well with the total nucleated cell 

expansion data: HeDA-nanofiber scaffold yielded fewer and smaller colonies 

compared with EtDA- and BuDA-nanofiber scaffolds. Together with the results 

presented in the previous chapter, these SEM data suggested the importance of HSPC 

adhesion in regulating proliferation and self-renewal. 

We again hypothesize that the adhesion of HSPCs on aminated nanofiber 

scaffolds may likely be mediated by CD34 antigen, the highly sialylated and 

negatively charged glycophosphoprotein, due to electrostatic charge-charge 

interaction. Recent evidences begin to unfold the important role of CD34 antigen in 
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regulating cell adhesion [147-150,152-154,156]. Under normal conditions, due to its 

halo of negatively charged sialic acid, CD34 antigen functions as antiadhesin, 

preventing cell-cell adhesion of HSPCs [147,148,150,156]. However, when CD34 is 

bound to antibodies [147,148,150,156] or to an extracellular ligand that is yet to be 

identified [148], cell-cell adhesion is enhanced, either through recruitment and 

“concentration” of CD34 to a cap region [150], and/or through antibody-CD34 (or 

ligand-CD34) mediated intracellular signaling [147,148,150,156], which may result in 

an up-regulation of cell adhesive molecules in HSPCs [148]. This latter suggests that 

it is likely that HSPCs interact with surface amino groups, either directly mediate or 

indirectly facilitate HSPC adhesion to the substrate. Nevertheless, the exact 

mechanism by which CD34 mediated HSPC adhesion and signaling plays on HSPC 

expansion and maintenance of pluripotency remains to be elucidated. 

 

6.6 Concluding Remarks 

In this chapter, we discussed the spacer effect of the surface-grafted amino 

groups. Nanofiber scaffolds amine-functionalized with different spacer-lengths 

modulate HSPC proliferation and phenotype maintenance differently, resulting in 

different HSPC proliferation kinetics, cell population phenotypic (CD34 and CD13 

markers) expression, and also colony-forming and mouse engraftment ability. These 

observations further suggested the importance of nanofiber topography and amino 

functional group mediated cell-scaffold interactions in regulating HSPC proliferation 

and self-renewal. 
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CHAPTER SEVEN 

Adhesive Cell-Scaffold Interaction through Aminated Nanofiber 

Scaffold Promotes Hematopoietic Stem/Progenitor Cell Maintenance 

and Lineage Commitment 

7.1 Summary 

We have shown in previous chapters that a combination of nanofiber topography 

and immobilized amine mediated cell-substrate interactions has enhanced HSPC 

adhesion on aminated nanofiber scaffolds, and generated a sub-population of highly 

adhesive HSPCs proliferating along nanofiber scaffold surface. In this present study, 

we compare the surface marker phenotypic and clonogenic differences of these 

adherent and non-adherent hematopoietic cell populations that arise after ex vivo 

expansion culture of CD34+ human umbilical cord hematopoietic stem/progenitor 

cells (HSPCs) on aminated electrospun nanofiber scaffolds. 

Detailed flow cytometry analysis and in vitro assay showed that the adherent cell 

population expressed significantly higher percentage of CD34+CD45+ cells (43.8%), 

compared with the non-adherent cell population (21.9%, p < 0.05). In addition, the 

adherent cell population also expressed higher percentage of CD13 myeloid marker 

(68.3% vs. 49.4%, p < 0.05) and lower percentage of erythroid marker (CD71high, 

14.1% vs. 46.2%, p < 0.05), compared with the non-adherent cell population. CFU 

assay also indicated significant commitment of the adherent population towards the 

myeloblast / monoblast lineage, while the non-adherent population showed skewed 

commitment towards the erythroid lineage. 
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This study highlights the importance of cell-scaffold interactions as a new 

approach in modulating HSPC multipotency maintenance and lineage commitment, 

other than cytokine modulation frequently described in literature. 

7.2 Introduction 

We have shown in Chapters 5 that both chemical cues and topographical cues 

synergistically regulate HSPC proliferation through cell-substrate interaction. 

Specifically, aminated nanofiber scaffolds are efficient in supporting total nucleated 

cell proliferation of cultured HSPCs at rates highly comparable to that of commercial 

TCPS surface, while concurrently enriching the CD34+CD45+ cell proportion to 

several times higher than that on TCPS. 

Chapter 6 highlighted the spacer effect of the surface-grafted amino groups. 

Nanofiber scaffolds amine-functionalized with different spacer-lengths modulate 

HSPC proliferation and phenotype maintenance differently, resulting in different 

HSPC proliferation kinetics, cell population phenotypic (CD34 and CD13 markers) 

expression, and also colony-forming and mouse engraftment ability. 

A direct consequence of these active cell-substrate interactions is the enhanced 

HSPC adhesion to aminated nanofiber scaffolds, compared with aminated films or 

other non-aminated surfaces (e.g. TCPS). The enhanced HSPC adhesion also resulted 

in sub-populations of highly adhesive HSPCs proliferating along nanofiber scaffold 

surface, forming unique circular cell colonies (Fig. 7.1). This is a unique growth 

pattern that is observed for the first time. 

In this chapter, we will further investigate the phenotypic differences of these 

non-adherent and adherent hematopoietic cell populations expanded on aminated 

 124



Chapter 7 

(BuDA) nanofiber scaffolds, in an effort to further understand this HSPC-aminated 

nanofiber interaction. 

 
Figure 7.1: Image of a representative adherent cell colony formed on aminated (BuDA) 

nanofiber scaffold 10 days after ex vivo HSPC expansion. 

 
 

7.3 Experimental Methods 

All chemicals were purchased from Sigma-Aldrich unless otherwise stated. 

7.3.1 Fabrication of PES Nanofiber Scaffolds 

Detailed protocols for PES nanofiber scaffold fabrication can be found in 

Chapter 5.3.1. 

7.3.1.1 Surface Amination of PES Nanofiber Scaffolds 

The PES nanofibers were subsequently grafted with Poly(acrylic acid) (PAAc). 

Detailed protocols for PES nanofiber PAAc grafting can be found in Chapter 5.3.1.1. 

The PAAc-grafted PES nanofiber meshes were further conjugated with 1,4-

butanediamine (BuDA) using carbodiimide cross-linking method. Briefly, each 
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scaffold was first gently shaken in 2 mL acetonitrile containing 50 mM 

dicyclohexylcarbodiimide and 50 mM N-hydroxysuccinimide. After 6 h, the reaction 

solution was carefully aspirated and each scaffold was immediately immersed into 2 

mL acetonitrile containing 0.03 mmol BuDA. After 12 h, the reaction solution was 

carefully aspirated and each scaffold was thoroughly washed in absolute ethanol to 

remove any dicyclohexyl urea, which is a by-product of the conjugation reaction. All 

substrates were subsequently sterilized in 70% ethanol, then loaded into 24-well tissue 

culture plates (Nunc) and stored in sterile PBS until use. 

7.3.2 Hematopoietic Stem Cell Culture and Assays 

Frozen human umbilical cord blood CD34+ HSPCs were purchased from 

AllCells. The CD34+ purity in the HSPC was determined to be 98% by flow 

cytometry and the viability was determined to be more than 97% by Trypan blue. 

Purified recombinant human stem cell factor (SCF), Flt-3 ligand (Flt3), 

thrombopoietin (TPO) and IL-3 was purchased from Peprotech Inc. Low density 

lipoprotein (LDL) was purchased from Athens Research & Technology Inc. The 

StemSpanTM serum-free expansion medium and MethoCult GF+ H4435 medium were 

all purchased from StemCell Technologies. 

7.3.2.1 Ex Vivo Hematopoietic Expansion Culture 

Six hundred HSPCs were seeded onto each BuDA-conjugated nanofiber scaffold. 

HSPCs were cultured in 0.6 mL StemSpanTM serum-free expansion medium 

supplemented with 0.04 mg/mL LDL, 100 ng/mL SCF, 100 ng/mL Flt3, 50 ng/mL 

TPO and 20 ng/mL IL-3 at 37oC, 5% CO2 for 10 days. Similar cultures were also 

performed on tissue culture polystyrene surface (TCPS), which serve as a HSPC non-

adhesive surface control in this study. 
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7.3.2.2 Cell Harvest 

Cells were harvested after 10 days of expansion culture. Briefly, TCPS substrates 

and a portion of the BuDA-conjugated nanofiber scaffolds were washed once with 

non-trypsin cell dissociation solution and twice with 2% FBS Hanks' buffer at 5 min 

intervals between each wash; and the cell suspensions collected were designated as 

“TCPS’ and “PES-BuDA” conditions respectively. 

For the remainder of the BuDA-conjugated nanofiber scaffolds, the cells were 

harvested into 2 fractions. Briefly, the scaffolds were first gently washed twice with 

2% FBS Hanks' buffer at 5 min intervals between each wash to harvest the non-

adherent cells; and the cell suspensions collected were designated as “PES-BuDA 

‘sus’ fraction”. Subsequently, the scaffolds were washed once with non-trypsin cell 

dissociation solution and twice with 2% FBS Hanks' buffer at 5 min intervals between 

each wash to harvest the adherent cells; and the cell suspensions collected were 

designated as “PES-BuDA ‘adh’ fraction”. 

The cell suspensions collected were then concentrated through centrifugation at 

500 ×g for 10 min. Aliquots of the concentrated cells were then used for cell counting 

by a hematocytometer, flow cytometry analysis and colony-forming cell assays. 

7.3.2.3 Flow Cytometry 

Fluorescently labeled antibodies for CD13, CD15, CD34, CD38, CD45, CD71 

and GlyA cell surface markers were purchased from BD Biosciences. The cell 

samples were incubated with various antibody combinations at 4oC for more than 30 

min in 2% FBS Hanks' buffer. After antibody staining, the cells were washed twice 

using Hanks’ buffer and fixed in 1% paraformaldehyde. Cells were analyzed by 

triple-color flow cytometry on a FACSCalibur analyzer (BD Biosciences). Relevant 
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isotype controls were also included to confirm specificity and for compensation 

setting. At least 20,000 gated events were acquired. The Milan-Mulhouse gating 

method was used for cell enumeration [151]. 

7.3.2.4 Colony-Forming Cell Assay 

Detailed protocols for CFC assay can be found in Chapter 5.3.2.3. 

7.3.3 Statistical Analysis 

All data were presented as mean ± standard deviation (SD). The statistical 

significance of the data obtained was analyzed by the Student’s t-test. Probability 

values of p < 0.05 were interpreted as denoting statistical significance. 

 

7.4 Experimental Results 

7.4.1 Lineage Analysis of Adherent and Non-Adherent HSPCs 

After 10-day expansion culture using 600 initial CD34+ HSPCs, cell proliferation 

on HSPC non-adhesive TCPS surface was 835 ± 196 folds, while cell proliferation on 

BuDA nanofiber scaffolds was comparatively similar at 702 ± 152 folds (p > 0.05). 

For BuDA nanofiber scaffold, the non-adherent cell population made up 54 ± 10 % of 

the total cell population, while the adherent cell population accounted for the 

remaining 46 ± 10 %. 

Fig. 7.2 & 7.3 show the representative flow cytometry plots and surface marker 

expression summary of the ex vivo expanded cells. Consistent with previous 

observations in Chapters 5 & 6, expanded cells on BuDA condition expressed 

significantly higher percentages of CD34+CD45+ cells (33.1 ± 9.1 %) as compared to 

TCPS condition (7.1 ± 3.4 %, p < 0.05, Fig. 7.2A & 7.3A). Cells from BuDA 
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condition also expressed closer percentages of myeloid / erythroid (CD71 [61.2 ± 3.9 

%]), erythroid (GlyA [21.1 ± 4.3 %]) and myeloid (CD13 [64.7 ± 8.9 %], CD15 [40.2 

± 5.7 %]) markers, as compared with TCPS condition (CD71 [52.6 ± 3.3 %], GlyA 

[10.7 ± 2.5 %], CD13 [90.2 ± 4.1 %], CD15 [51.8 ± 8.3 %]), suggesting balanced 

differentiation of HSPCs into both the erythroid and myeloid lineages on aminated 

nanofiber scaffolds (Fig. 7.2B, 7.2C & 7.3A). As discussed previously, cells from 

TCPS condition were more committed towards the myeloblast / monoblast lineage 

(Chapters 5 & 6). However, comparing between the adherent and non-adherent cell 

populations of BuDA scaffold condition, distinct differences were observed in surface 

marker distributions: 

(1) The adherent cell population expressed higher percentage of the 

CD34+CD45+ primitive phenotype (43.8 ± 11.1 %), as compared to the non-

adherent cell population (21.9 ± 6.5 %, p < 0.05, Fig. 7.2A & 7.3A). 

(2) The adherent cell population expressed higher percentage of CD13 myeloid 

marker (68.3 ± 4.6 %), as compared to the non-adherent cell population  

(49.4 ± 5.7 %, p < 0.05, Fig. 7.2B & 7.3A). 

(3) The non-adherent cell population expressed higher percentage of CD71 

antigen (81.0 ± 3.1 %), as compared to adherent cell population  

(39.2 ± 8.2 %, p < 0.05, Fig. 7.2C & 7.3A). In particular, CD71high 

expression was significant in the non-adherent population (46.2 ± 3.2 %, p < 

0.05), as compared to adherent population (14.1 ± 4.7 %, Fig. 7.2C). This 

indicated that cells in the non-adherent cell population were skewed towards 

erythroid lineage. 
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(4) The non-adherent cell population expressed higher percentage of late CD15 

myeloid marker (44.4 ± 1.2 %, p < 0.05) and late GlyA erythroid marker 

(35.7 ± 7.4 % p < 0.05) as compared to adherent cell population (CD15  

[33.5 ± 1.2 %], GlyA [12.4 ± 2.5 %], Fig. 7.3A). This indicates that cells in 

the non-adherent cell population were more differentiated. 

(5) The CD34+CD45+ fraction of the non-adherent cell population expressed 

higher co-expression of CD71 (57.0 ± 9.4 % of CD34+CD45+ cells, p < 0.05) 

and CD71high (8.9 ± 2.3 % of CD34+CD45+ cells, p < 0.05) as compared to 

the corresponding adherent cell population (26.9 ± 6.5 % and 3.6 ± 2.1 % of 

CD34+CD45+ cells, respectively, Fig. 7.3B). 

 
Figure 7.2: Representative FACS profiles of cells after 10-day ex vivo expansion on 

TCPS, PES-BuDA, and non-adherent (‘sus’) and adherent (‘adh’) fractions from PES-

BuDA conditions. (A) CD45 vs. CD34. (B) CD13 vs. CD34. (C) CD45 vs. CD71. 
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Figure 7.3: Surface marker expression summary of cells after 10-day ex vivo expansion 

on TCPS, PES-BuDA, and non-adherent (‘sus’) and adherent (‘adh’) fractions from 

PES-BuDA conditions. (A) Percentage of total cells expressing one or multiple CD 

markers. (B) Percentage of the CD34+CD45+ cell population that are also CDX+, where 

CDX represents CD13, CD15, CD38, CD71 or GlyA. Data shown are mean ± SD of 3 

experiments, each conducted in duplicates. 

 

7.4.2 Clonogenic Differences of Adherent and Non-Adherent HSPCs 

CFC assays were conducted to evaluate the fraction of primitive progenitor cells 

in the expanded cultures (Fig. 7.4). Cells expanded from BuDA-conjugated nanofiber 

scaffolds generated significantly higher percentages of the more primitive CFU-
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GEMM units (23.8 ± 2.2 %, p < 0.05), as compared to cells expanded from TCPS 

condition (13.0 ± 3.6 %). TCPS condition, on the other hand, generated higher 

percentages of CFU-GM units (66.5 ± 9.1 %, p < 0.05), compared with BuDA 

condition (52.3 ± 6.8 %), indicating differentiation commitment of the TCPS-

expanded cells towards the myeloblast / monoblast lineage. 

 
Figure 7.4: Specific CFU fractions after 14 days of culture, using the cells from 10-day 

expansion cultures on TCPS, PES-BuDA, and non-adherent (‘sus’) and adherent (‘adh’) 

fractions from PES-BuDA conditions, normalized to CFU type per total CFU generated. 

Data are means ± SD of 2 experiments, each conducted in triplicates. * indicates p < 

0.05. 

 
Comparing between the adherent and non-adherent cell populations of BuDA 

scaffold condition, we see that the adherent cell population yielded significantly 

higher percentages of CFU-GM units (57.4 ± 4.4 %, p < 0.05) and lower percentages 

of BFU-E units (19.6 ± 9.2 %, p < 0.05), as compared to the non-adherent cell 

population (CFU-GM [39.8 ± 3.2 %] and BFU-E [35.3 ± 4.6 %]). This result indicates 

differentiation commitment of the adherent population towards the myeloblast / 
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monoblast lineage, while for the non-adherent population differentiation commitment 

towards the erythroid lineage is significant. 

7.5 Discussion 

The phenomenon that aminated nanofibers can actively interact and modulate 

HSPC proliferation and phenotype maintenance underscores the importance of culture 

substrate properties in current stromal-free, cytokine-supplemented ex vivo HSPC 

expansion systems. A consequence of these interactions is the identification of a 

proliferative HSPC population subset that is highly adhesive to the aminated 

nanofiber surface. This study represents the first to identify such an adhesive 

population among HSPCs. Using BuDA-conjugated nanofiber scaffolds, we sought to 

investigate the phenotypic properties of this adherent hematopoietic cell population, 

as compared to the non-adherent hematopoietic cell population in the ex vivo HSPC 

expansion cultures. 

The flow cytometry surface marker analysis results show that cells expressing 

CD34+ were significantly enriched in the adherent cell population, compared with the 

non-adherent cell population, on aminated nanofiber scaffold cultures. The adherent 

cell population also exhibits a lesser degree of late differentiation markers (CD15 and 

GlyA), compared with the non-adherent cell population. This evidence suggests the 

important roles that cell-scaffold interactions play in maintaining HSPC proliferative 

capacity, as well as primitive phenotype maintenance, in cytokine-supplemented 

expansion cultures. 

We have shown here and in Chapters 5 & 6 that in pure suspension cultures lack 

of any cell-substrate interaction signals (e.g. TCPS condition), the CD34 primitive 

phenotype maintenance of the cultured HSPCs is inefficient. In addition, we have also 
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shown that for scaffold cultures without the correct substrate signals (e.g. non-

aminated scaffolds), the HSPC proliferative capacity in these scaffold cultures is poor. 

These observations suggest that the surface-immobilized amine molecules may be 

acting as a kind of “HSPC ligand” that mediates HSPC-scaffold interaction, and the 

nanofiber textured topography further enhances this cell-scaffold interaction [57-59]. 

As proposed earlier in Chapters 5 & 6, the results presented here further suggest 

that the CD34 surface marker likely serves as a receptor for the “amine-ligand”. In the 

normal state, the highly sialylated and negatively-charged hematopoietic CD34 

antigen acts as anti-adhesive molecule, preventing cellular adhesion in hematopoietic 

cells strongly expressing this marker (i.e. HSPCs) [147-150,152-154,156]. 

Furthermore, our observations have shown that cell-scaffold adhesion correlates well 

with CD34+ expression, substantiating the hypothesis that the negatively-charged 

CD34 antigen could interact with the positively-charged immobilized amino groups. 

An interesting finding that arises from comparing the surface marker phenotypes 

(Fig. 7.2 & 7.3) and clonogenic differences (Fig. 7.4) of the adherent and non-

adherent hematopoietic cell populations is that the predominant lineage commitments 

of HSPCs within the 2 cell populations are different: The adherent HSPC population 

is prevalently committed towards the myeloblast / monoblast lineage, while the non-

adherent HSPC population is significantly committed towards the erythroid lineage. 

Currently, HSPC lineage commitment and differentiation is frequently 

modulated using soluble signals from recombinant cytokines in stromal-free ex vivo 

hematopoietic expansion cultures. Recombinant cytokines like IL, TPO, SCF, FL, etc. 

are used alone or in combination to regulate hematopoiesis in these suspension 

cultures [173-177,202,203]. For example, TPO, in combination with IL-1, IL-6, IL-11 
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and SCF has been shown to promote proliferation and differentiation of 

megakaryocytes from CD34+ cells in vitro [202]; while FL, in combination with IL-7 

and IL-12 has been shown to promote expansion of T- and B-lymphocyte progenitors 

[203]. FL and SCF are also important in regulating early hematopoiesis and it is 

frequently used in combination with GM-CSF, TPO or other cytokines to stimulate 

the proliferation of early hematopoietic progenitor cells [173-177]. 

However, the role of cell-substrate interaction signals has rarely been 

investigated in HSPC expansion cultures, maybe because of the lack of a suitable 

HSPC-adhesive substrate to investigate its effects. In this study, through the use of 

HSPC-adhesive aminated nanofiber scaffolds, we demonstrated the cell-scaffold 

interaction, as a new and convenient approach to regulate HSPC (CD34+) 

multipotency maintenance as well as lineage commitment. Although the specific 

control of hematopoiesis is currently limited in our present scaffold system, we 

envision that by combining with potential factors like recombinant cytokines and 

other cell adhesion molecules [173-177,202-205], modulating HSPC-substrate 

interaction through nanofiber scaffold will become a highly useful method to regulate 

HSPC expansion. 

7.6 Concluding Remarks 

Aminated nanofibers enhance the interaction with HSPCs in ex vivo expansion 

culture; and the adherent hematopoietic cell population is enriched with CD34+CD45+ 

cells. In addition, different lineage commitment patterns are observed between the 

adherent and non-adherent cell populations. This study highlights the importance of 

cell-scaffold interactions in modulating HSPC maintenance and lineage commitment. 
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CHAPTER EIGHT 

Conclusions 

The success of scaffold-based cell cultures largely depends on the optimal events 

of attachment, proliferation, differentiation, and phenotypic maintenance, which in 

turn are governed by a host of signals provided by the cell-scaffold microenvironment. 

These signals include: (1) homotypic / heterotypic cell-cell interaction; (2) soluble 

signaling molecules; and (3) cell-substrate interaction signals. An ideal scaffold 

culture system should include all these interactive components. In this thesis, we have 

focused on cell-substrate interaction signals mediated by both substrate-bound 

signaling molecules and nanofiber scaffold topographical cues. 

The general strategy of developing a scaffold that can provide both topographical 

and immobilized biochemical cues involves first nanofiber scaffold fabrication via the 

electrospinning technique, followed by nanofiber bio-functionalization. The bio-

functionalization process involves the initial functionalization of the nanofiber surface 

with carboxylic acid groups using UV-initiated poly(acrylic acid) grafting method. 

This is followed by conjugation of bioactive molecules onto the functionalized 

nanofiber surfaces. In this thesis, we have presented the efficacy of this nanofiber bio-

functionalization strategy on various cell culture systems like hepatocyte scaffold 

cultures and hematopoietic stem cell expansion cultures. 

In Chapter 3, we have described the galactose bio-functionalization of 

electrospun PCLEEP nanofibers for liver cell cultures. Both galactosylated nanofiber 

scaffolds and galactosylated films supported the hepatic functions (albumin secretion, 

ammonia removal and cytochrome P450 activity) of the cultured primary hepatocytes 
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better than unmodified nanofiber scaffolds and films. Interestingly, galactosylated 

nanofiber scaffolds exhibit the unique property of promoting hepatocyte aggregates 

and cell infiltration within the mesh and around the fibers, forming an integrated 

spheroid-nanofiber construct. These results demonstrated that the nanofiber 

topography together with surface-immobilized galactose ligand synergistically 

enhance cell-substrate interaction as indicated by hepatocyte adhesion and infiltration, 

even though this enhanced cell-substrate interaction did not translate into significantly 

higher functional enhancement as compared to galactosylated film condition. 

We subsequently demonstrated in Chapter 4 that hepatocyte cytochrome P450 

activity enhancement can be brought about through further 3-Mc bio-functionalization 

of the galactosylated nanofiber scaffold. By taking advantage of the porous and layer-

forming properties of electrospun nanofibers, we had designed a dual functional 

scaffold that induces two different biological responses from hepatocytes. Galactose 

bio-functionalization on nanofibers resulted in a scaffold that can induce hepatocyte 

adhesion and re-organization, while 3-Mc loading into the fiber, working together 

with fiber galactosylation, resulted in a hepatocyte bioactive scaffold that can also 

regulate the hepatocyte cytochrome P450 function. 

In Chapter 5, we further presented the efficacy of this nanofiber bio-

functionalization strategy on hematopoietic stem / progenitor cell expansion. Using 

amine molecule bio-functionalization, we have demonstrated the effectiveness of 

aminated electrospun PES nanofiber mesh as potential scaffolds for ex vivo HSPC 

expansion under serum-free conditions. Among the carboxylated, hydroxylated, and 

aminated PES substrates and TCPS, aminated PES substrates mediated the highest 

expansion efficiency of CD34+CD45+ cells and CFU potential. Aminated nanofiber 

mesh could further enhance the HSPC-substrate adhesion. In particular, aminated 
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nanofiber meshes supported a higher degree of cell adhesion, percentage of 

CD34+CD45+ cells and expansion of CFU-GEMM forming progenitor cells, as 

compared to aminated films. SEM imaging also revealed the discrete colonies of cells 

proliferating and interacting with the aminated nanofibers. 

In Chapter 6, we showed that nanofiber scaffolds immobilized with amine 

functional groups of increasing 2-, 4-, 6-carbon spacer chain lengths could further 

modulate HSPC proliferation and phenotype maintenance, resulting in different HSPC 

proliferation kinetics, cell population phenotypic (CD34 and CD13 markers) 

expression, mouse engraftment potential and also short-term and long-term colony-

forming ability. These observations further suggested the importance of nanofiber 

topography and amino functional group mediated cell-scaffold interactions in 

regulating HSPC proliferation and self-renewal. 

Finally, in Chapter 7, we compared the surface marker phenotypic and 

clonogenic differences of the adherent and non-adherent hematopoietic cell 

populations that arise after ex vivo expansion culture of CD34+ HSPCs on aminated 

electrospun nanofiber scaffolds. Detailed flow cytometry analysis showed that the 

adherent cell population expressed significantly higher percentage of CD34+CD45+ 

cells, compared with the non-adherent cell population. In addition, flow cytometry 

analysis and CFU assay also indicated significant commitment of the adherent 

population towards the myeloblast / monoblast lineage, while the non-adherent 

population showed skewed commitment towards the erythroid lineage. This study 

also highlights the importance of cell-scaffold interactions as a new approach in 

modulating HSPC multipotency maintenance and lineage commitment, other than 

cytokine modulation frequently described in literature. 
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In summary, this research has: 

(1) Presented a nanofiber bio-functionalization strategy to develop polymeric 

nanofiber constructs that can serve as cell culture scaffolds. 

(2) Demonstrated through primary hepatocyte cultures and hematopoietic stem / 

progenitor cell expansion cultures that these scaffolds can promote cell-

substrate interactions and are bioactive in regulating cellular responses like 

cell adhesion, cell morphological reorganization, cell differentiated functions, 

cell proliferation, and cell phenotype maintenance. 

(3) Demonstrated the synergistic effects that nanofiber topography and surface 

immobilized biochemical cues play in enhancing these cell-scaffold 

interactions and regulation of cellular functions. 
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APPENDIX 

[1] Synthesis of 1-O-(6’-Aminohexyl)-D-galactopyranoside (AHG) 

The galactose ligand AHG was synthesized according to procedures reported by 

Yin et al. [33]. The scheme is shown in Fig. 8.1. 

 

 
Figure 8.1: Synthesis scheme for AHG. 

 

Benzyl N-(6-hydroxyhexyl) carbamate 

Carbobenzoxy chloride solution (50% in toluene, 40 mL) and K2CO3 solution 

(8.3 g in 30 mL of H2O) were added dropwise to an ice-cooled solution of 6-amino-1-

hexanol (11.7 g, 0.1 mol) in 400 mL of ethyl acetate from two addition funnels 

simultaneously. After the addition, the mixture was further stirred at room 

temperature for 3 h, followed by washing with 1 N HCl (3×200 mL) and water 

(3×200 mL). The solution was dried over anhydrous MgSO4 and evaporated to 

dryness. The residue was recrystallized from ethylacetate to yield a white powder 

(13.4 g, 53.4%), m.p. 80-82°C. 
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1,2,3,4,6-Penta-O-acetyl-D-galactopyranose (2) 

β-D-galactose (1) (18.0 g, 0.10 mol) was dissolved in a mixture of dry pyridine 

(150 mL, 1.86 mol) and acetic anhydride (150 mL, 1.60 mol) and stirred at room 

temperature for 3 days. The mixture was concentrated by vacuum rotary evaporation 

to yield a yellow syrupy residue. The residue was dissolved in 200 mL of CHCl3, 

extracted with 200 mL of cold 2 N H2SO4, and washed with saturated NaHCO3 

solution (200 mL) and water (2×200 mL). The organic phase was dried over 

anhydrous MgSO4. The solution was filtered, concentrated, and vacuum dried. The 

residue was recrystallized from ethanol to yield a white powder (22.5 g, 57.7%). 

Thin-layer chromatography (TLC): ethylacetate-hexane (3:2), Rf = 0.54. 1H-NMR 

(CDCl3) δ: 1.99 (s, 3H, Me), 2.01 (s, 3H, Me), 2.03 (s, 3H, Me), 2.15 (d, 6H, 2Me), 

4.10 (m, 2H, 2H6), 4.34 (m, 1H, H4), 5.33 (m, 2H, H5 and H3), 5.49 (t, 1H, H2), 6.37 (s, 

1H, H1). 

2,3,4,6-Tetra-O-acetyl-1-bromo-1-deoxy-D-galactopyranose (3) 

Ten grams of (2) was dissolved in 50 mL of HBr solution (in glacial acetic acid, 

11.5%, w/v) and diluted with 200 mL of CHCl3. The resulted mixture was poured into 

1.8 L of ice-water and thoroughly mixed. The organic layer was collected, washed 

with saturated NaHCO3 solution (2×100 mL) and water (2×100 mL), dried over 

MgSO4, and filtered. The filtrate was vacuum dried to syrup (3). Yield: 9.8 g (93.0%). 

TLC: ethylacetate-hexane (3:2), Rf = 0.65. 1H-NMR (CDCl3) δ: 1.89 (s, 3H, Me), 1.95 

(s, 6H, 2Me), 2.05 (s, 3H, Me), 4.07 (m, 2H, 2H6), 4.37 (m, 1H, H4), 5.01 (m, 2H, H5 

and H3), 5.11 (t, 1H, H2), 5.30 (s, 1H, H1). 
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1-O-[6’-(N-Benzyloxycarbonyl)aminohexyl]-2,3,4,6-tetra-O-acetyl-D-

galactopyranoside (4) 

(3) (9.6 g, 23.5 mmol) was mixed with benzyl N-(6-hydroxyhexyl) carbamate 

(6.52 g, 26 mmol), Hg(CN)2 (6.55g, 26 mmol), Drierite (2.6 g) in a toluene-

nitromethane mixture (1:1, v/v, 250 mL) and stirred for 24 h. The mixture was filtered 

and the filtrate was concentrated under reduced pressure. The residue was dissolved in 

CHCl3 (200 mL), washed with 1M NaCl solution (2×200 mL) and 0.5M KBr solution 

(200 mL), dried over MgSO4, and filtered. The filtrate was concentrated to syrup. The 

crude product was subjected to silica chromatography using ethylacetate-hexane (3:2, 

v/v, Rf = 0.39) as the eluent. (4) was obtained as white powder after evaporation of 

the solvent from the corresponding fractions (5.2 g, 38.2%). 1H-NMR (CDCl3) δ: 

1.21-1.52 (m, 8H, 4CH2), 1.95-2.18 (m, 12H, 4Me), 2.96 (t, 2H, CH2-N), 3.54 (m, 2H, 

O-CH2), 4.03 (m, 2H, 2H6), 4.35 (m, 1H, H4), 4.65 (m, 1H, H5), 4.72 (d, 1H, H2), 4.85 

(d, 1H, H2), 5.03 (d, 1H, H1). 

1-O-[6’-(N-Benzyloxycarbonyl)aminohexyl]-D-galactopyranoside (5) 

One milliliter of sodium methoxide solution in methanol (5%, w/v) was added to 

a solution of (4) (5.0 g, 8.6 mmol) in methanol (100 mL). The mixture was stirred for 

3 h, followed by adding Dowex 50WX8-200 ion-exchange resin (pretreated with 1N 

HCl and washed with methanol) until the pH value of the solution reached 5-6. The 

mixture was gently stirred for 0.5 h and filtered. The filtrate was evaporated to yield 

yellowish syrup (3.2 g, 90.0%). TLC: ethylacetate-acetic acid (9:1), Rf = 0.78. 1H-

NMR (D2O) δ: 1.19 (m, 4H, 2CH2), 1.34 (m, 2H, CH2), 1.49 (m, 2H, CH2), 2.98 (t, 

2H, CH2-N), 3.44 (m, 2H, O-CH2), 3.55 (m, 2H, H3 and H4), 3.70 (d, 2H, H6), 3.79 (m, 

1H, H5), 3.85 (d, 1H, H2), 4.24 (d, 1H, H1), 4.93 (s, 2H, CH2-Ph), 7.20 (m, 5H, C6H5). 
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1-O-(6’-Aminohexyl)-D-galactopyranoside (6) 

The deacetylated product (5) (3.2 g, 7.7 mmol) was dissolved in methanol (150 

mL) with Pd-C catalyst (1.6 g). Hydrogen gas was bubbled into the stirred mixture 

until benzyloxycarbonyl group was completely removed as determined by TLC. Pd-C 

was filtered off and the filtrate was concentrated and vacuum dried to syrup. It was 

then dissolved in distilled water and lyophilized to obtain white powder (6) (1.8 g, 

83.3%). TLC: ethanol-acetic acid (9:1), Rf = 0.23. 1H-NMR (D2O) δ: 1.32 (m, 4H, 

2CH2), 1.43 (m, 2H, CH2), 1.59 (m, 2H, CH2), 2.61 (t, 2H, N-CH2), 3.43 (m, 2H, O-

CH2), 3.62 (m, 2H, H3 and H4), 3.73 (m, 2H, H6), 3.88 (m, 2H, H5 and H2), 4.33 (d, 

1H, H1). 

 

 143



References 

 

REFERENCES 

 [1]  Hubbell JA. Biomaterials in tissue engineering. Biotechnology (NY) 1995;13(6):565-576. 

 [2]  Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue 
engineering. Ann N Y Acad Sci 2002;961:83-95. 

 [3]  Peter SJ et al. Polymer concepts in tissue engineering. J Biomed Mater Res 
1998;43(4):422-427. 

 [4]  Chaikof EL et al. Biomaterials and scaffolds in reparative medicine. Ann N Y Acad Sci 
2002;961:96-105. 

 [5]  Yarlagadda PK et al. Recent advances and current developments in tissue scaffolding. 
Biomed Mater Eng 2005;15(3):159-177. 

 [6]  Hammond JS et al. Scaffolds for liver tissue engineering. Expert Rev Med Devices 
2006;3(1):21-27. 

 [7]  Bottaro DP et al. Molecular signaling in bioengineered tissue microenvironments. Ann N 
Y Acad Sci 2002;961:143-153. 

 [8]  Lutolf MP et al. Synthetic biomaterials as instructive extracellular microenvironments for 
morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47-55. 

 [9]  Dersch R et al. Nanoprocessing of polymers: applications in medicine, sensors, catalysis, 
photonics. Polymers for Advanced Technologies 2005;16(2-3):276-282. 

 [10]  Huang ZM et al. A review on polymer nanofibers by electrospinning and their 
applications in nanocomposites. Composites Science and Technology 2003;63(15):2223-
2253. 

 [11]  Jayaraman K et al. Recent advances in polymer nanofibers. Journal of Nanoscience and 
Nanotechnology 2004;4(1-2):52-65. 

 [12]  Subbiah T et al. Electrospinning of nanofibers. Journal of Applied Polymer Science 
2005;96(2):557-569. 

 [13]  Wang YK et al. Nanofibres and their influence on cells for tissue regeneration. Australian 
Journal of Chemistry 2005;58(10):704-712. 

 [14]  Li WJ et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. 
Journal of Biomedical Materials Research 2002;60(4):613-621. 

 [15]  Li WJ et al. Biological response of chondrocytes cultured in three-dimensional 
nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res 
2003;67A(4):1105-1114. 

 [16]  Li WJ et al. Multilineage differentiation of human mesenchymal stem cells in a three-
dimensional nanofibrous scaffold. Biomaterials 2005;26(25):5158-5166. 

 [17]  Li WJ et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering 
using human mesenchymal stem cells. Biomaterials 2005;26(6):599-609. 

 [18]  Badami AS et al. Effect of fiber diameter on spreading, proliferation, and differentiation 
of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 
2006;27(4):596-606. 

 [19]  Shin M et al. Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 
2004;25(17):3717-3723. 

 144



References 

 [20]  Zong X et al. Electrospun fine-textured scaffolds for heart tissue construct. Biomaterials 
2005;26(26):5330-5338. 

 [21]  Mo XM et al. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for 
smooth muscle cell and endothelial cell proliferation. Biomaterials 2004;25(10):1883-
1890. 

 [22]  Xu C et al. Electrospun nanofiber fabrication as synthetic extracellular matrix and its 
potential for vascular tissue engineering. Tissue Eng 2004;10(7):1160-1168. 

 [23]  Xu CY et al. In vitro study of human vascular endothelial cell function on materials with 
various surface roughness. Journal of Biomedical Materials Research Part A 
2004;71A(1):154-161. 

 [24]  Xu CY et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood 
vessel engineering. Biomaterials 2004;25(5):877-886. 

 [25]  Yang F et al. Characterization of neural stem cells on electrospun poly(L-lactic acid) 
nanofibrous scaffold. J Biomater Sci Polym Ed 2004;15(12):1483-1497. 

 [26]  Williamson MR et al. PCL-PU composite vascular scaffold production for vascular tissue 
engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. 
Biomaterials 2006;27(19):3608-3616. 

 [27]  Sun T et al. Self-organization of skin cells in three-dimensional electrospun polystyrene 
scaffolds. Tissue Eng 2005;11(7-8):1023-1033. 

 [28]  Reneker DH et al. Nanometre diameter fibres of polymer, produced by electrospinning. 
Nanotechnology 1996;7(3):216-223. 

 [29]  Li D et al. Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials 
2004;16(14):1151-1170. 

 [30]  Zhu Y et al. Surface modification of polycaprolactone membrane via aminolysis and 
biomacromolecule immobilization for promoting cytocompatibility of human endothelial 
cells. Biomacromolecules 2002;3(6):1312-1319. 

 [31]  Oehr C et al. Plasma grafting - a method to obtain monofunctional surfaces. Surface & 
Coatings Technology 1999;119:25-35. 

 [32]  Uchida E et al. A Novel Method for Graft-Polymerization Onto Poly(Ethylene-
Terephthalate) Film Surface by Uv Irradiation Without Degassing. Journal of Applied 
Polymer Science 1990;41(3-4):677-687. 

 [33]  Yin C et al. High density of immobilized galactose ligand enhances hepatocyte 
attachment and function. J Biomed Mater Res 2003;67A(4):1093-1104. 

 [34]  Ying L et al. Immobilization of galactose ligands on acrylic acid graft-copolymerized 
poly(ethylene terephthalate) film and its application to hepatocyte culture. 
Biomacromolecules 2003;4(1):157-165. 

 [35]  Tan WJ et al. Adhesion contact dynamics of primary hepatocytes on poly(ethylene 
terephthalate) surface. Biomaterials 2005;26(8):891-898. 

 [36]  Nakajima N et al. Mechanism of amide formation by carbodiimide for bioconjugation in 
aqueous media. Bioconjug Chem 1995;6(1):123-130. 

 [37]  Reneker DH et al. Bending instability of electrically charged liquid jets of polymer 
solutions in electrospinning. Journal of Applied Physics 2000;87(9):4531-4547. 

 [38]  Yarin AL et al. Taylor cone and jetting from liquid droplets in electrospinning of 
nanofibers. Journal of Applied Physics 2001;90(9):4836-4846. 

 145



References 

 [39]  Yarin AL et al. Bending instability in electrospinning of nanofibers. Journal of Applied 
Physics 2001;89(5):3018-3026. 

 [40]  Deitzel JM et al. The effect of processing variables on the morphology of electrospun 
nanofibers and textiles. Polymer 2001;42(1):261-272. 

 [41]  Fong H et al. Beaded nanofibers formed during electrospinning. Polymer 
1999;40(16):4585-4592. 

 [42]  Zong XH et al. Structure and process relationship of electrospun bioabsorbable nanofiber 
membranes. Polymer 2002;43(16):4403-4412. 

 [43]  Luong-Van E et al. Controlled release of heparin from poly(epsilon-caprolactone) 
electrospun fibers. Biomaterials 2006;27(9):2042-2050. 

 [44]  Huang CB et al. Electrospun polymer nanofibres with small diameters. Nanotechnology 
2006;17(6):1558-1563. 

 [45]  Li D et al. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned 
arrays. Nano Letters 2003;3(8):1167-1171. 

 [46]  Dersch R et al. Electrospun nanofibers: Internal structure and intrinsic orientation. Journal 
of Polymer Science Part A-Polymer Chemistry 2003;41(4):545-553. 

 [47]  Teo WE et al. Electrospun fibre bundle made of aligned nanofibres over two fixed points. 
Nanotechnology 2005;16(9):1878-1884. 

 [48]  Theron A et al. Electrostatic field-assisted alignment of electrospun nanofibres. 
Nanotechnology 2001;12(3):384-390. 

 [49]  Katta P et al. Continuous electrospinning of aligned polymer nanofibers onto a wire drum 
collector. Nano Letters 2004;4(11):2215-2218. 

 [50]  Sun ZC et al. Compound core-shell polymer nanofibers by co-electrospinning. Advanced 
Materials 2003;15(22):1929-+. 

 [51]  Li D et al. Nanofibers of conjugated polymers prepared by electrospinning with a two-
capillary spinneret. Advanced Materials 2004;16(22):2062-+. 

 [52]  Zhang YZ et al. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine 
serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. 
Biomacromolecules 2006;7(4):1049-1057. 

 [53]  Kidoaki S et al. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-
engineering matrix and scaffold based on newly devised multilayering and mixing 
electrospinning techniques. Biomaterials 2005;26(1):37-46. 

 [54]  Ding B et al. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-
jet electrospinning. Polymer 2004;45(6):1895-1902. 

 [55]  Curtis AS et al. Reactions of cells to topography. J Biomater Sci Polym Ed 
1998;9(12):1313-1329. 

 [56]  Flemming RG et al. Effects of synthetic micro- and nano-structured surfaces on cell 
behavior. Biomaterials 1999;20(6):573-588. 

 [57]  Dalby MJ et al. In vitro reaction of endothelial cells to polymer demixed nanotopography. 
Biomaterials 2002;23(14):2945-2954. 

 [58]  Barbucci R et al. Micro and nano-structured surfaces. J Mater Sci Mater Med 
2003;14(8):721-725. 

 [59]  Dalby MJ et al. Use of nanotopography to study mechanotransduction in fibroblasts--
methods and perspectives. Eur J Cell Biol 2004;83(4):159-169. 

 146



References 

 [60]  Nishimura S et al. Three-dimensional architecture and distribution of collagen 
components in the goat hypophysis. Anat Rec A Discov Mol Cell Evol Biol 
2004;277(2):275-286. 

 [61]  Ojeda JL et al. Evidence of a new transitory extracellular structure within the developing 
rhombencephalic cavity. An ultrastructural and immunoelectron-microscopic study in the 
chick. Anat Embryol (Berl) 2000;202(3):257-264. 

 [62]  Nishida T et al. The network structure of corneal fibroblasts in the rat as revealed by 
scanning electron microscopy. Invest Ophthalmol Vis Sci 1988;29(12):1887-1890. 

 [63]  He W et al. Fabrication and endothelialization of collagen-blended biodegradable 
polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue 
Eng 2005;11(9-10):1574-1588. 

 [64]  Li M et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 
2005;26(30):5999-6008. 

 [65]  Ji Y et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. 
Biomaterials 2006;27(20):3782-3792. 

 [66]  Rho KS et al. Electrospinning of collagen nanofibers: effects on the behavior of normal 
human keratinocytes and early-stage wound healing. Biomaterials 2006;27(8):1452-1461. 

 [67]  Chew SY et al. Sustained release of proteins from electrospun biodegradable fibers. 
Biomacromolecules 2005;6(4):2017-2024. 

 [68]  Li C et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 
2006;27(16):3115-3124. 

 [69]  Liang DH et al. In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids 
Research 2005;33(19):170. 

 [70]  Ma ZW et al. Surface engineering of electrospun polyethylene terephthalate (PET) 
nanofibers towards development of a new material for blood vessel engineering. 
Biomaterials 2005;26(15):2527-2536. 

 [71]  Ma ZW et al. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve 
endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 
2005;11(7-8):1149-1158. 

 [72]  Robinette EJ et al. Synthesis of polymer-polymer nanocomposites using radiation grafting 
techniques. Nuclear Instruments & Methods in Physics Research Section B-Beam 
Interactions with Materials and Atoms 2005;236:216-222. 

 [73]  Kim TG et al. Biomimicking extracellular matrix: cell adhesive RGD peptide modified 
electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng 
2006;12(2):221-233. 

 [74]  Bismuth H et al. Orthotopic liver transplantation in fulminant and subfulminant hepatitis. 
The Paul Brousse experience. Ann Surg 1995;222(2):109-119. 

 [75]  McCashland TM et al. The American experience with transplantation for acute liver 
failure. Semin Liver Dis 1996;16(4):427-433. 

 [76]  Gridelli B et al. Strategies for making more organs available for transplantation. N Engl J 
Med 2000;343(6):404-410. 

 [77]  Kaihara S et al. Tissue engineering: toward new solutions for transplantation and 
reconstructive surgery. Arch Surg 1999;134(11):1184-1188. 

 [78]  Tzanakakis ES et al. Extracorporeal tissue engineered liver-assist devices. Annu Rev 
Biomed Eng 2000;2:607-632. 

 147



References 

 [79]  Allen JW et al. Advances in bioartificial liver devices. Hepatology 2001;34(3):447-455. 

 [80]  Allen JW et al. Engineering liver therapies for the future. Tissue Eng 2002;8(5):725-737. 

 [81]  Chan C et al. Hepatic tissue engineering for adjunct and temporary liver support: critical 
technologies. Liver Transpl 2004;10(11):1331-1342. 

 [82]  Dich J et al. Long-term culture of hepatocytes: effect of hormones on enzyme activities 
and metabolic capacity. Hepatology 1988;8(1):39-45. 

 [83]  Waxman DJ. P450 gene induction by structurally diverse xenochemicals: central role of 
nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 1999;369(1):11-23. 

 [84]  Liu J et al. Characterization and evaluation of detoxification functions of a 
nontumorigenic immortalized porcine hepatocyte cell line (HepLiu). Cell Transplant 
1999;8(3):219-232. 

 [85]  Kobayashi N et al. Establishment of a reversibly immortalized human hepatocyte cell line 
by using Cre/loxP site-specific recombination. Transplant Proc 2000;32(5):1121-1122. 

 [86]  Roy P et al. Analysis of oxygen transport to hepatocytes in a flat-plate microchannel 
bioreactor. Ann Biomed Eng 2001;29(11):947-955. 

 [87]  Bissell DM et al. Interactions of rat hepatocytes with type IV collagen, fibronectin and 
laminin matrices. Distinct matrix-controlled modes of attachment and spreading. Eur J 
Cell Biol 1986;40(1):72-78. 

 [88]  Ben Ze'ev A et al. Cell-cell and cell-matrix interactions differentially regulate the 
expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc 
Natl Acad Sci U S A 1988;85(7):2161-2165. 

 [89]  Dunn JC et al. Long-term in vitro function of adult hepatocytes in a collagen sandwich 
configuration. Biotechnol Prog 1991;7(3):237-245. 

 [90]  Hamilton GA et al. Regulation of cell morphology and cytochrome P450 expression in 
human hepatocytes by extracellular matrix and cell-cell interactions. Cell Tissue Res 
2001;306(1):85-99. 

 [91]  Vinken M et al. Rat hepatocyte cultures: collagen gel sandwich and immobilization 
cultures. Methods Mol Biol 2006;320:247-254. 

 [92]  Carlisle ES et al. Enhancing hepatocyte adhesion by pulsed plasma deposition and 
polyethylene glycol coupling. Tissue Eng 2000;6(1):45-52. 

 [93]  Chia SM et al. Hepatocyte encapsulation for enhanced cellular functions. Tissue Eng 
2000;6(5):481-495. 

 [94]  Yin C et al. Microcapsules with improved mechanical stability for hepatocyte culture. 
Biomaterials 2003;24(10):1771-1780. 

 [95]  Bhatia SN et al. Effect of cell-cell interactions in preservation of cellular phenotype: 
cocultivation of hepatocytes and nonparenchymal cells. FASEB J 1999;13(14):1883-1900. 

 [96]  Bhandari RN et al. Liver tissue engineering: a role for co-culture systems in modifying 
hepatocyte function and viability. Tissue Eng 2001;7(3):345-357. 

 [97]  Lu HF et al. Three-dimensional co-culture of rat hepatocyte spheroids and NIH/3T3 
fibroblasts enhances hepatocyte functional maintenance. Acta Biomater 2005;1(4):399-
410. 

 [98]  Peshwa MV et al. Mechanistics of formation and ultrastructural evaluation of hepatocyte 
spheroids. In Vitro Cell Dev Biol Anim 1996;32(4):197-203. 

 148



References 

 [99]  Tzanakakis ES et al. The role of actin filaments and microtubules in hepatocyte spheroid 
self-assembly. Cell Motil Cytoskeleton 2001;48(3):175-189. 

 [100]  Abu-Absi SF et al. Structural polarity and functional bile canaliculi in rat hepatocyte 
spheroids. Exp Cell Res 2002;274(1):56-67. 

 [101]  Ma M et al. Biochemical and functional changes of rat liver spheroids during spheroid 
formation and maintenance in culture: I. morphological maturation and kinetic changes of 
energy metabolism, albumin synthesis, and activities of some enzymes. J Cell Biochem 
2003;90(6):1166-1175. 

 [102]  Landry J et al. Spheroidal aggregate culture of rat liver cells: histotypic reorganization, 
biomatrix deposition, and maintenance of functional activities. J Cell Biol 
1985;101(3):914-923. 

 [103]  Hodgkinson CP et al. Fibronectin-mediated hepatocyte shape change reprograms 
cytochrome P450 2C11 gene expression via an integrin-signaled induction of 
ribonuclease activity. Mol Pharmacol 2000;58(5):976-981. 

 [104]  Lin KH et al. Long-term maintenance of liver-specific functions in three-dimensional 
culture of adult rat hepatocytes with a porous gelatin sponge support. Biotechnol Appl 
Biochem 1995;21 ( Pt 1):19-27. 

 [105]  Ijima H et al. Formation of a spherical multicellular aggregate (spheroid) of animal cells 
in the pores of polyurethane foam as a cell culture substratum and its application to a 
hybrid artificial liver. J Biomater Sci Polym Ed 1998;9(7):765-778. 

 [106]  Powers MJ et al. A microfabricated array bioreactor for perfused 3D liver culture. 
Biotechnol Bioeng 2002;78(3):257-269. 

 [107]  Mizumoto H et al. Liver regeneration using a hybrid artificial liver support system. Artif 
Organs 2004;28(1):53-57. 

 [108]  Koide N et al. Formation of multicellular spheroids composed of adult rat hepatocytes in 
dishes with positively charged surfaces and under other nonadherent environments. Exp 
Cell Res 1990;186(2):227-235. 

 [109]  Koide N et al. Continued high albumin production by multicellular spheroids of adult rat 
hepatocytes formed in the presence of liver-derived proteoglycans. Biochem Biophys Res 
Commun 1989;161(1):385-391. 

 [110]  Yagi K et al. Rapid formation of multicellular spheroids of adult rat hepatocytes by 
rotation culture and their immobilization within calcium alginate. Artif Organs 
1993;17(11):929-934. 

 [111]  Sakai Y et al. Large-scale preparation and function of porcine hepatocyte spheroids. Int J 
Artif Organs 1996;19(5):294-301. 

 [112]  Cho CS et al. Galactose-carrying polymers as extracellular matrices for liver tissue 
engineering. Biomaterials 2006;27(4):576-585. 

 [113]  Cho CS et al. Effect of ligand orientation on hepatocyte attachment onto the poly(N-p-
vinylbenzyl-o-beta-D-galactopyranosyl-D-gluconamide) as a model ligand of 
asialoglycoprotein. J Biomater Sci Polym Ed 1996;7(12):1097-1104. 

 [114]  Gutsche AT et al. Engineering of a sugar-derivatized porous network for hepatocyte 
culture. Biomaterials 1996;17(3):387-393. 

 [115]  Weigel PH et al. Specific adhesion of rat hepatocytes to beta-galactosides linked to 
polyacrylamide gels. J Biol Chem 1978;253(2):330-333. 

 [116]  Griffith LG et al. Microdistribution of substratum-bound ligands affects cell function: 
hepatocyte spreading on PEO-tethered galactose. Biomaterials 1998;19(11-12):979-986. 

 149



References 

 [117]  Chung TW et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte 
attachment. Biomaterials 2002;23(14):2827-2834. 

 [118]  Park TG. Perfusion culture of hepatocytes within galactose-derivatized biodegradable 
poly(lactide-co-glycolide) scaffolds prepared by gas foaming of effervescent salts. J 
Biomed Mater Res 2002;59(1):127-135. 

 [119]  Yang J et al. Galactosylated alginate as a scaffold for hepatocytes entrapment. 
Biomaterials 2002;23(2):471-479. 

 [120]  Yoon JJ et al. Surface immobilization of galactose onto aliphatic biodegradable polymers 
for hepatocyte culture. Biotechnol Bioeng 2002;78(1):1-10. 

 [121]  Wen J et al. Preparation and characterization of poly(D,L-lactide-co-ethylene methyl 
phosphate). Polym Int 1998;47(4):503-509. 

 [122]  Mao HQ. Biodegradable polyphosphoesters. In: Mathiowitz E, editor. Encyclopedia of 
Controlled Drug Delivery. New York, NY: Johns Wiley & Sons, Inc., 1999. 

 [123]  Wen J et al. Poly(D,L-lactide-co-ethyl ethylene phosphate)s as new drug carriers. J 
Control Release 2003;92(1-2):39-48. 

 [124]  Friend JR et al. Formation and characterization of hepatocyte spheroids. In: Morgan JR, 
Yarmush ML, editors. Tissue engineering methods and protocols. Totowa, NJ: Humana 
Press Inc., 1999: 245-252. 

 [125]  Jauregui HO et al. Xenobiotic induction of P-450 PB-4 (IIB1) and P-450c (IA1) and 
associated monooxygenase activities in primary cultures of adult rat hepatocytes. 
Xenobiotica 1991;21(9):1091-1106. 

 [126]  Hansen T et al. Cytochrome P450 enzyme activity and protein expression in primary 
porcine enterocyte and hepatocyte cultures. Xenobiotica 2000;30(1):27-46. 

 [127]  Behnia K et al. Xenobiotic metabolism by cultured primary porcine hepatocytes. Tissue 
Eng 2000;6(5):467-479. 

 [128]  Xu J et al. Characterisation of some cytotoxic endpoints using rat liver and HepG2 
spheroids as in vitro models and their application in hepatotoxicity studies. II. Spheroid 
cell spreading inhibition as a new cytotoxic marker. Toxicol Appl Pharmacol 
2003;189(2):112-119. 

 [129]  Shimada T et al. Dose-response studies on the induction of liver cytochromes P4501A1 
and 1B1 by polycyclic aromatic hydrocarbons in arylhydrocarbon-responsive C57BL/6J 
mice. Xenobiotica 2003;33(9):957-971. 

 [130]  Chen XQ et al. Prediction of aqueous solubility of organic compounds using a 
quantitative structure-property relationship. J Pharm Sci 2002;91(8):1838-1852. 

 [131]  Rytting E et al. Aqueous and cosolvent solubility data for drug-like organic compounds. 
AAPS J 2005;7(1):E78-E105. 

 [132]  Emerson SG et al. In vitro expansion of hematopoietic cells for clinical application. 
Cancer Treat Res 1995;76:215-223. 

 [133]  Alcorn MJ et al. Ex vivo expansion of haemopoietic progenitor cells. Blood Rev 
1996;10(3):167-176. 

 [134]  Collins PC et al. Ex vivo culture systems for hematopoietic cells. Curr Opin Biotechnol 
1996;7(2):223-230. 

 [135]  McAdams TA et al. Hematopoietic cell culture therapies (Part II): Clinical aspects and 
applications. Trends Biotechnol 1996;14(10):388-396. 

 150



References 

 [136]  Bremers AJ et al. Immunology and immunotherapy of human cancer: present concepts 
and clinical developments. Crit Rev Oncol Hematol 2000;34(1):1-25. 

 [137]  Noll T et al. Cultivation of hematopoietic stem and progenitor cells: biochemical 
engineering aspects. Adv Biochem Eng Biotechnol 2002;74:111-128. 

 [138]  Bonnet D. Biology of human bone marrow stem cells. Clin Exp Med 2003;3(3):140-149. 

 [139]  Robinson S et al. Ex vivo expansion of umbilical cord blood. Cytotherapy 2005;7(3):243-
250. 

 [140]  Takagi M. Cell processing engineering for ex-vivo expansion of hematopoietic cells. J 
Biosci Bioeng 2005;99(3):189-196. 

 [141]  Migliaccio AR et al. Cell dose and speed of engraftment in placental/umbilical cord blood 
transplantation: graft progenitor cell content is a better predictor than nucleated cell 
quantity. Blood 2000;96(8):2717-2722. 

 [142]  Eridani S et al. Cytokine effect on ex vivo expansion of haemopoietic stem cells from 
different human sources. Biotherapy 1998;11(4):291-296. 

 [143]  Stewart DA et al. Factors predicting engraftment of autologous blood stem cells: CD34+ 
subsets inferior to the total CD34+ cell dose. Bone Marrow Transplant 1999;23(12):1237-
1243. 

 [144]  Wagner JE et al. Ex vivo expansion of umbilical cord blood hemopoietic stem and 
progenitor cells. Experimental Hematology 2004;32(5):412-413. 

 [145]  Sorrentino BP. Clinical strategies for expansion of haematopoietic stem cells. Nature 
Reviews Immunology 2004;4(11):878-888. 

 [146]  Holyoake TL et al. CD34+ positive haemopoietic cells: biology and clinical applications. 
Blood Rev 1994;8(2):113-124. 

 [147]  Majdic O et al. Signaling and induction of enhanced cytoadhesiveness via the 
hematopoietic progenitor cell surface molecule CD34. Blood 1994;83(5):1226-1234. 

 [148]  Healy L et al. The stem cell antigen CD34 functions as a regulator of hemopoietic cell 
adhesion. Proc Natl Acad Sci U S A 1995;92(26):12240-12244. 

 [149]  Krause DS et al. CD34: structure, biology, and clinical utility. Blood 1996;87(1):1-13. 

 [150]  Tada J et al. A common signaling pathway via Syk and Lyn tyrosine kinases generated 
from capping of the sialomucins CD34 and CD43 in immature hematopoietic cells. Blood 
1999;93(11):3723-3735. 

 [151]  Gratama JW et al. Flow cytometric enumeration and immunophenotyping of 
hematopoietic stem and progenitor cells. J Biol Regul Homeost Agents 2001;15(1):14-22. 

 [152]  Lanza F et al. Structural and functional features of the CD34 antigen: an update. J Biol 
Regul Homeost Agents 2001;15(1):1-13. 

 [153]  Prosper F et al. Regulation of hematopoiesis through adhesion receptors. J Leukoc Biol 
2001;69(3):307-316. 

 [154]  Drew E et al. CD34 and CD43 inhibit mast cell adhesion and are required for optimal 
mast cell reconstitution. Immunity 2005;22(1):43-57. 

 [155]  Taussig DC et al. Hematopoietic stem cells express multiple myeloid markers: 
implications for the origin and targeted therapy of acute myeloid leukemia. Blood 
2005;106(13):4086-4092. 

 151



References 

 [156]  Tan PC et al. Na+/H+ Exchanger Regulatory Factor-1 Is a Hematopoietic Ligand for a 
Subset of the CD34 Family of Stem Cell Surface Proteins. Stem Cells 2006;24(5):1150-
1161. 

 [157]  Giebel B et al. Segregation of lipid raft markers including CD133 in polarized human 
hematopoietic stem and progenitor cells. Blood 2004;104(8):2332-2338. 

 [158]  Goussetis E et al. In vitro identification of a cord blood CD133+CD34-Lin+ cell subset 
that gives rise to myeloid dendritic precursors. Stem Cells 2006;24(4):1137-1140. 

 [159]  Bhatia M et al. A newly discovered class of human hematopoietic cells with SCID-
repopulating activity. Nat Med 1998;4(9):1038-1045. 

 [160]  Hogge DE et al. Enhanced detection, maintenance, and differentiation of primitive human 
hematopoietic cells in cultures containing murine fibroblasts engineered to produce 
human steel factor, interleukin-3, and granulocyte colony-stimulating factor. Blood 
1996;88(10):3765-3773. 

 [161]  Denning-Kendall P et al. Cobblestone area-forming cells in human cord blood are 
heterogeneous and differ from long-term culture-initiating cells. Stem Cells 
2003;21(6):694-701. 

 [162]  Fibbe WE et al. Ex vivo expansion and engraftment potential of cord blood-derived 
CD34+ cells in NOD/SCID mice. Ann N Y Acad Sci 2001;938:9-17. 

 [163]  Lewis ID et al. Umbilical cord blood cells capable of engrafting in primary, secondary, 
and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. 
Blood 2001;97(11):3441-3449. 

 [164]  Dexter TM et al. Regulation of haemopoietic stem cell proliferation in long term bone 
marrow cultures. Biomedicine 1977;27(9-10):344-349. 

 [165]  Thalmeier K et al. Establishment of two permanent human bone marrow stromal cell lines 
with long-term post irradiation feeder capacity. Blood 1994;83(7):1799-1807. 

 [166]  Tsuji T et al. A murine stromal cell line promotes the expansion of CD34high+-primitive 
progenitor cells isolated from human umbilical cord blood in combination with human 
cytokines. Growth Factors 1999;16(3):225-240. 

 [167]  da Silva CL et al. A human stromal-based serum-free culture system supports the ex vivo 
expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor 
cells. Exp Hematol 2005;33(7):828-835. 

 [168]  Breems DA et al. Stroma-conditioned media improve expansion of human primitive 
hematopoietic stem cells and progenitor cells. Leukemia 1997;11(1):142-150. 

 [169]  Bhatia R et al. A clinically suitable ex vivo expansion culture system for LTC-IC and 
CFC using stroma-conditioned medium. Exp Hematol 1997;25(9):980-991. 

 [170]  Verfaillie CM et al. Macrophage inflammatory protein 1 alpha, interleukin 3 and 
diffusible marrow stromal factors maintain human hematopoietic stem cells for at least 
eight weeks in vitro. J Exp Med 1994;179(2):643-649. 

 [171]  Kadereit S et al. Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in 
cord blood CD34(+)/CD38(-) early progenitors cultured over human MSCs as a feeder 
layer. Stem Cells 2002;20(6):573-582. 

 [172]  Baksh D et al. Adult human bone marrow-derived mesenchymal progenitor cells are 
capable of adhesion-independent survival and expansion. Exp Hematol 2003;31(8):723-
732. 

 152



References 

 [173]  Miller CL et al. Ex Vivo Expansion of Human and Murine Hematopoietic Stem Cells. In: 
Klug CA, Jordan CT, editors. Hematopoietic Stem Cell Protocols. Totowa, New Jersey: 
Humana Press Inc., 2002: 189-208. 

 [174]  Brandt J et al. Role of c-kit ligand in the expansion of human hematopoietic progenitor 
cells. Blood 1992;79(3):634-641. 

 [175]  Piacibello W et al. Extensive amplification and self-renewal of human primitive 
hematopoietic stem cells from cord blood. Blood 1997;89(8):2644-2653. 

 [176]  Ohmizono Y et al. Thrombopoietin augments ex vivo expansion of human cord blood-
derived hematopoietic progenitors in combination with stem cell factor and flt3 ligand. 
Leukemia 1997;11(4):524-530. 

 [177]  Keil F et al. Effect of interleukin-3, stem cell factor and granulocyte-macrophage colony-
stimulating factor on committed stem cells, long-term culture initiating cells and bone 
marrow stroma in a one-step long-term bone marrow culture. Ann Hematol 
2000;79(5):243-248. 

 [178]  Kawada H et al. Rapid ex vivo expansion of human umbilical cord hematopoietic 
progenitors using a novel culture system. Exp Hematol 1999;27(5):904-915. 

 [179]  Li Y et al. Human cord cell hematopoiesis in three-dimensional nonwoven fibrous 
matrices: in vitro simulation of the marrow microenvironment. J Hematother Stem Cell 
Res 2001;10(3):355-368. 

 [180]  Okamoto T et al. Effect of heparin addition on expansion of cord blood hematopoietic 
progenitor cells in three-dimensional coculture with stromal cells in nonwoven fabrics. J 
Artif Organs 2004;7(4):194-202. 

 [181]  LaIuppa JA et al. Culture materials affect ex vivo expansion of hematopoietic progenitor 
cells. J Biomed Mater Res 1997;36(3):347-359. 

 [182]  Rosenzweig M et al. Enhanced maintenance and retroviral transduction of primitive 
hematopoietic progenitor cells using a novel three-dimensional culture system. Gene Ther 
1997;4(9):928-936. 

 [183]  Astori G et al. Evaluation of ex vivo expansion and engraftment in NOD-SCID mice of 
umbilical cord blood CD34+ cells using the DIDECO 'Pluricell System'. Bone Marrow 
Transplant 2005;35(11):1101-1106. 

 [184]  Jiang XS et al. Surface-immobilization of adhesion peptides on substrate for ex vivo 
expansion of cryopreserved umbilical cord blood CD34(+) cells. Biomaterials 
2006;27(13):2723-2732. 

 [185]  Feng Q et al. Expansion of engrafting human hematopoietic stem/progenitor cells in 
three-dimensional scaffolds with surface-immobilized fibronectin. J Biomed Mater Res A 
2006. In press. 

 [186]  Hann E et al. Development of a delivery system for the continuous endogenous release of 
an anti-idiotypic antibody against ovarian carcinoma. Hybridoma (Larchmt ) 
2005;24(3):133-140. 

 [187]  Unger RE et al. Growth of human cells on polyethersulfone (PES) hollow fiber 
membranes. Biomaterials 2005;26(14):1877-1884. 

 [188]  Yamagishi H et al. Development of A Novel Photochemical Technique for Modifying 
Poly(Arylsulfone) Ultrafiltration Membranes. Journal of Membrane Science 
1995;105(3):237-247. 

 [189]  Keselowsky BG et al. Surface chemistry modulates focal adhesion composition and 
signaling through changes in integrin binding. Biomaterials 2004;25(28):5947-5954. 

 153



References 

 [190]  Kakabakos SE et al. Colorimetric determination of reactive solid-supported primary and 
secondary amino groups. Biomaterials 1994;15(4):289-297. 

 [191]  Fujihara K et al. Guided bone regeneration membrane made of polycaprolactone / 
calcium carbonate composite nano-fibers. Biomaterials 2005;26(19):4139-4147. 

 [192]  Bico J et al. Rough wetting. Europhysics Letters 2001;55(2):214-220. 

 [193]  Wang R et al. Light-induced amphiphilic surfaces. Nature 1997;388(6641):431-432. 

 [194]  Donaldson C et al. The CD34(+)CD38(neg) population is significantly increased in 
haemopoietic cell expansion cultures in serum-free compared to serum-replete conditions: 
dissociation of phenotype and function. Bone Marrow Transplant 2001;27(4):365-371. 

 [195]  Wilson CJ et al. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. 
Tissue Eng 2005;11(1-2):1-18. 

 [196]  Calvi LM et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 
2003;425(6960):841-846. 

 [197]  Zhang J et al. Identification of the haematopoietic stem cell niche and control of the niche 
size. Nature 2003;425(6960):836-841. 

 [198]  Wright DE et al. Physiological migration of hematopoietic stem and progenitor cells. 
Science 2001;294(5548):1933-1936. 

 [199]  Bakowsky U et al. Cooperation between lateral ligand mobility and accessibility for 
receptor recognition in selectin-induced cell rolling. Biochemistry 2002;41(14):4704-
4712. 

 [200]  Houseman BT et al. The microenvironment of immobilized Arg-Gly-Asp peptides is an 
important determinant of cell adhesion. Biomaterials 2001;22(9):943-955. 

 [201]  Francis K et al. Murine Sca-1(+)/Lin(-) cells and human KG1a cells exhibit multiple 
pseudopod morphologies during migration. Exp Hematol 2002;30(5):460-463. 

 [202]  Williams JL et al. Thrombopoietin requires additional megakaryocyte-active cytokines 
for optimal ex vivo expansion of megakaryocyte precursor cells. Blood 
1998;91(11):4118-4126. 

 [203]  Piacibello W et al. Extensive amplification and self-renewal of human primitive 
hematopoietic stem cells from cord blood. Blood 1997;89(8):2644-2653. 

 [204]  Gupta P et al. Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo 
maintenance of human long-term culture-initiating cells. Blood 1996;87(8):3229-3236. 

 [205]  Dao MA et al. Adhesion to fibronectin maintains regenerative capacity during ex vivo 
culture and transduction of human hematopoietic stem and progenitor cells. Blood 
1998;92(12):4612-4621. 

 

 154


