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SUMMARY 

 
The field of renal cell carcinoma (RCC) has evolved rapidly over the 

last five years, with the advent of novel therapies targeting specific molecular 

pathways dysregulated in RCC. The development of these drugs was via a 

classic bench-to-bedside fashion, where an understanding of the underlying 

biology in RCC permitted relevant drug development. The foundation of these 

biological insights was the careful pathologic subtyping of RCC, supported by 

advances in familial cancer genetics. These subtypes have tremendous 

clinical and biologic relevance, further illustrated by the clinical observation 

that survival outcomes in RCC may diverge more dramatically than almost 

any other cancer. 

The work presented here is divided into two areas – the first being the 

evaluation of existing clinical models for outcome predictions in RCC, and the 

second being the evaluation of molecular models in RCC, and corresponding 

molecular insights. For the first area, we focused on the clinical models 

where epidemiologists and clinicians are actively seeking an optimal 

combination of clinico-pathologic variables for subtyping patients with RCC 

and predicting survival outcomes. Indeed, the literature is replete with a 

variety of proposed pre-operative and post-operative models. However, much 

less work has been invested in comparing these multiple models to choose 

one that is performing optimally. The work presented here compares multiple 

algorithms and nomograms to select an optimal and practical predictor in 
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localized RCC that may be recommended for use internationally for individual 

prognostication and in clinical trials of adjuvant therapy. We compare several 

clinical post-operative models including the Leibovich model, the UCLA 

Integrated Staging System (UISS), the Karakiewicz nomogram, the Kattan 

nomogram and the Sorbellini nomogram, and conclude that the best 

performing model is the Karakiewicz nomogram. This finding is of relevance 

in individual patient counseling, biomarker research and pharmaceutical trial 

design for adjuvant therapy. 

For the second area on molecular models in RCC, I derive and 

evaluate useful molecular predictors in the various subtypes of RCC in terms 

of pathology and prognosis. Thus, various hitherto undescribed subtypes of 

RCC with distinct molecular and clinical profiles may be defined here. We 

have generated novel expression predictors of prognosis in clear cell RCC as 

well as papillary RCC, while concurrently generating insights into the 

molecular mechanisms underpinning these prognostic differences. For the 

rarer chromophobe RCC, we have reported a novel expression predictor 

discriminating chromophobe RCC from its close benign counterpart, renal 

oncocytoma, which was externally validated. We also found that somatic 

pairing of chromosome 19q, an unusual cytogenetic finding, was found in 

renal oncocytoma but not in chromophobe RCC, and was associated with 

deregulated oxygen-sensing response. Overall, our findings provide not only 

a comprehensive analysis of gene expression in the various molecular 
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subtypes of RCC, but has also provided multiple insights into the potential 

pathogenesis of each RCC subtype. 

Finally, I hope that this work embodied in this thesis allows the 

scientific community investigating RCC to prepare its labours with a firm 

foundation from a clear understanding of the molecular epidemiology and 

pathology of RCC.
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OVERALL BACKGROUND 

Renal cell carcinoma (RCC) is the 7th most common cancer in males 

with an estimated 131,010 new cases diagnosed with 28,100 deaths from the 

disease in the USA in 2009(Jemal et al. 2009). In the USA, it is currently the 

10th most common cancer overall. In Singapore, it is currently the 10th most 

common cancer in males. Over the last four decades, RCC is one of the few 

cancers to see a continued rise in incidence(Chow et al. 1999). This has been 

attributed to both a true increase, based on autopsy studies of individuals 

dying of unrelated causes, as well as ascertainment bias as a result of 

increased screening(Chow et al. 1999). Approximately 70% of the patients 

with RCC presents with localized disease, which is usually curative with 

nephrectomy. However, about a third of these patients eventually develop 

metastases during the course of follow-up(Mejean et al. 2003). The overall 

prognosis for metastatic RCC is poor, and even the development of novel 

agents used in systemic therapy has yielded only modest benefits(Rini et al. 

2009). However, there is substantial heterogeneity in survival within clinical 

staging groups, and individual outcome remains difficult to predict. Risk 

factors for renal cell carcinoma include male sex, obesity, smoking, dialysis, 

hypertension and underlying germline mutations of specific tumour 

suppressor genes that result in hereditary RCC syndromes(Chow et al. 2000).  
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PATHOLOGY 

Renal cell carcinoma is usually classified into several distinct histologic 

subtypes. Based on  morphologic features first proposed in 1986(Bostwick 

and Eble 1999; Thoenes et al. 1986), RCC can be divided into clear  cell 

(conventional), papillary (chromophil), chromophobe, collecting  duct, and 

unclassified subtypes. Clear cell RCC constitutes more than 80% of all kidney 

cancers(Cheville et al. 2003), with papillary RCC, the second most common 

subtype comprising 10% to 15% of kidney  cancers (Bostwick and Eble 1999). 

Rarer histologies include chromophobe RCC (approximately 5%) and 

collecting duct carcinoma (<1%). 

 While a variety of clinical models have been used for prognosticating 

RCC(Cindolo et al. 2005; Galfano et al. 2008), the understanding of genetic 

mechanisms underlying the variability in RCC behavior is more limited. 

Research in this area has been recognized as a key priority for oncology. The 

potential for identification of prognostic subgroups of patients for adjuvant 

treatment has been reinforced recently by the establishing of multi-targeted 

kinase inhibitors as a treatment modality in clear cell RCC (Hutson et al. 

2008; Motzer et al. 2007). These findings have resulted in considerable 

excitement in the oncology community.  
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CLEAR CELL RCC  

Clear cell RCC is the most common subtype of RCC (>70%), and also 

has the poorest overall prognosis(Bostwick and Eble 1999). Morphologically, 

clear cell RCC has a characteristic gross appearance, usually golden-brown 

as a result of lipid-rich cells. The tumour usually presents as a well defined 

mass, that can be heterogenous as a result of necrosis or haemorrhage. On 

microscopic appearance, it is typically characterized by malignant epithelial 

cells with clear cytoplasm and a compact-alveolar (nested) or acinar growth 

pattern interspersed with intricate, arborizing vasculature. The most common 

underlying mutation is the VHL gene mutation, which occurs as a somatic 

mutation in up to 90% of all patients with sporadic clear cell RCC(Nickerson 

et al. 2008), where there is evidence of somatic biallelic inactivation of the 

VHL gene (Chen et al. 1995) (Iliopoulos et al. 1995). It is recognized that 

clear cell RCC is also a common manifestation of the VHL syndrome(Kaelin 

2004), where germline mutations of the VHL gene predispose to the 

development of multiple tumours, including clear cell RCC, cranial and spinal 

haemangioblastoma, phaeochromocytoma and multiple visceral cysts. Most 

recently, somatic mutations of PBRM1, a component of the SWI/SNF 

chromatin remodeling complex, have been identified in approximately 41% of 

clear cell RCC samples examined(Varela et al. 2011). 
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PAPILLARY RCC 

For papillary RCC, it is similarly true that the majority of these tumours 

show  indolent behavior and have a limited risk of progression and  mortality, 

but a distinct subset displays highly aggressive  behavior. It is the second 

most common subtype comprising 10% to 15% of kidney cancers with an 

estimated annual incidence of between 3,500 and 5,000 cases in the United 

States (Jemal et al. 2009). Delahunt and Eble have proposed that papillary 

RCC can be morphologically  classified into two subtypes (Figure 1, preceding 

page) (Delahunt and Eble 1997). Type 1 is characterized by  the presence of 

small cuboidal cells covering thin papillae,  with a single line of small uniform 

nuclei and basophilic cytoplasm.  Type 2 is characterized by the presence of 

large tumour cells  with eosinophilic cytoplasm and pseudostratification. 

Generally,  type 2 tumours have a poorer prognosis than type 1 tumours 

(Waldert et al. 2008). However, the morphologic classification remains 

controversial,  and there is limited molecular and biochemical evidence to 

support  this morphologic classification. The relatively high incidence  of mixed 

type 1 and 2 tumours poses additional difficulties for  such a method of 

classification. As a result, some studies  of papillary RCC do not stratify 

papillary RCC into type 1 and 2 tumours (Cheville et al. 2003). Despite the 

moderate incidence of PRCC, comparable to that of chronic myeloid 

leukemia, there is a disproportionately limited knowledge about the underlying 

molecular basis for development and progression of papillary RCC.  
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CHROMOPHOBE RCC 

Chromophobe RCCs account for about 4-8% of all renal tumours, with 

a more favorable prognosis relative to clear cell renal cell carcinoma, which 

comprises the majority of all RCCs (Cheville et al. 2003).  On the other hand, 

oncocytoma is the most common benign renal tumour, comprising 5-8% of 

resected renal masses. The overlapping characteristics of these entities may 

be explained by a possible common origin from the intercalated cells of the 

distal tubule (Storkel et al. 1989).  Patients with Birt-Hogg-Dubé (BHD) 

syndrome, a familial multi-tumour syndrome linked to mutation of the BHD 

gene, exhibit bilateral oncocytomas, chRCC and hybrid tumours (Khoo et al. 

2001; Nickerson et al. 2002). 

 

DIAGNOSIS 

Patients present to clinicians either in the asymptomatic setting 

(screening) or with a variety of symptoms that may be suggestive of either the 

local extension of the tumour, or the systemic spread of the cancer to distant 

sites. Local symptoms may include haematuria, loin pain or abdominal mass. 

Systemic symptoms may include fever, loss of appetite or weight, organ 

compromise or paraneoplastic symptoms. Patient evaluation for primary RCC 

involves usually radiologic imaging of the abdomen, using modalities such as 

ultrasound, computed tomographic scanning or magnetic resonance imaging. 

The use of urine cytology for histological confirmation of RCC is usually of low 

yield. The demonstration of a renal mass is followed by a clinical decision as 
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to the appropriate intervention: while renal masses may be biopsied to 

determine its nature, it is most often that clinicians will decide based on 

radiologic characteristics to intervene directly with the use of surgical 

treatment. 

 

THERAPY 

The treatment of renal cell carcinoma depends on the final pathologic 

and radiologic staging of the patient. Essentially, in the localized setting, a 

complete resection of the tumour is regarded as the standard of care. The 

current approach involves a nephrectomy (or removal of the kidney), with or 

without radical lymph node dissection. It should be noted that in the elderly 

and asymptomatic, or in patients with multiple comorbidities, a decision for 

surveillance may be undertaken(Chen and Uzzo 2009), to evaluate if the 

disease is indolent. In the metastatic setting, the standard of care involves the 

consideration of nephrectomy, with the first-line use of targeted therapies. 

Unusually, removal of the primary tumour has been demonstrated to confer a 

low, but definite survival benefit in patients with metastatic disease(Flanigan 

et al. 2001; Flanigan 2004). In the selection of targeted therapy for patients, 

tumour histology and risk stratification of patients are regarded as the primary 

factors of importance. The most widely used model for risk stratification 

currently is the MSKCC model(Motzer et al. 1999; Motzer et al. 2004), which 

classifies patients according to the presence of several adverse prognostic 

factors: Karnofsky performance scale of 70 or less, the presence of anaemia, 
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corrected serum calcium above the upper limit of normal, time from 

diagnosis/nephrectomy to therapy of less than one year, serum lactate 

dehydrogenase levels greater than 1.5 times the upper limit of normal. 

Patients with none of these factors are regarded as good prognosis; those 

with 1 or 2 factors considered as intermediate risk; patients with 3 or more 

factors considered as poor-risk. Currently, in patients who are categorized as 

good- or intermediate- prognosis by the Memorial Sloan-Kettering Cancer 

Centre (MSKCC) criteria, the standard of care for first-line treatment is a 

targeted therapy utilizing tyrosine kinase inhibitors, most commonly sunitinib, 

but which include agents such as sorafenib and bevacizumab in combination 

with interferon(Rini 2009). For patients with poor-prognosis MSKCC, the 

current standard of care is an mTOR inhibitor administered intravenously 

(temsirolimus) (Hudes et al. 2007). The current second-line standard of care 

following failure of first-line VEGF-targeted therapy is everolimus(Motzer et al. 

2008). Adjuvant therapy using antiangiogenic therapy is currently under active 

research with several ongoing clinical trials recruiting patients. Based on the 

success of sunitinib and sorafenib, the UK Medical Research Council (MRC) 

SORCE and the Sunitinib Treatment of Renal Adjuvant Cancer (STAR) multi-

centre Phase III trials are ongoing. Respectively, these trials are testing 

placebo versus sorafenib versus sunitinib, as well as sunitinib versus placebo 

in the adjuvant setting for high-risk patients following surgery.  
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AIMS 

OVERALL AIMS 

We aim to evaluate both clinical and molecular parameters of RCC, a 

heterogenous disease, with a view to determining underlying mechanisms of 

disease and developing useful models for predicting survival outcomes. We 

aimed to evaluate how molecular profiling may improve or complement these 

survival predictions, and how these studies may provide biologic insight on 

the clinical heterogeneity observed.  

SPECIFIC AIMS (CLINICAL MODELS) 

To evaluate clinical models in predicting survival outcomes in patients with 

renal cell carcinoma; 

SPECIFIC AIMS (MOLECULAR MODELS) 

To evaluate the molecular profiles of three primary subtypes of RCC clear cell 

RCC, papillary RCC and chromophobe RCC using high-throughput gene 

expression profiling technology. This would be in the context of clinical 

outcomes, specifically survival, regional gene expression biases, high 

throughput single-nucleotide polymorphism profiling and protein expression, 

using immunohistochemistry. 
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CLINICAL MODELS IN RENAL CELL CARCINOMA 

BACKGROUND 

CLINICAL PROGNOSTIC MODELS 

From a clinical viewpoint, there are several prognostic models and 

nomograms developed to estimate survival outcomes of patients with 

localized RCC(Cindolo et al. 2005). These models are used in clinical practice 

to aid in counseling, follow-up planning and most recently, patient 

classification into groups for trials of adjuvant therapy(Haas and Uzzo 2008). 

However, there is substantial heterogeneity in survival within clinical staging 

groups, and individual outcomes remain difficult to predict. These prognostic 

models and nomograms incorporate multiple clinical and pathologic variables 

in their scoring. There are several prognostic risk groups and nomograms 

developed to estimate outcomes of patients with localized renal cell 

carcinoma (RCC), for whom there is an overall relapse risk of between 20-

30%(Cindolo et al. 2005). We present a summary table describing the key 

similarities and differences between risk grouping models and nomograms 

(Table 1, following page). It should be noted in particular that risk grouping 

models are far more widespread in clinical acceptance than nomograms, 

primarily due to their simplicity. 
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Table 1: Comparison of algorithms and nomograms in predicting survival outcomes 
 
  Algorithms Nomograms 

Objective and 
Approach 

To predict outcomes for the 
individual patient by classifying 
similar, but not identical, 
patients into risk groups, where 
all patients in the risk group 
have the same predicted 
outcome 

To predict outcomes for patients 
using formulae that computes 
predictions for the individualized 
patient, rather than for risk groups. 
Points on a semicontinuous scale 
are assigned to individual 
variables. 

Scales of 
Measurement 

 
Relatively fewer groups on a 
semiquantitative, or ordinal 
scale (e.g. classification into 
groups of low-, medium- and 
high- risk patients) 
 

A directly calculated quantitative 
outcome on a numerical scale (e.g. 
predicted overall survival of 69% at 
5 years for a patient) 

Clinical use 
Widespread e.g. International 
Prognostic Index in lymphoma 

 
Limited, most commonly used in 
prostate cancer 
 

Examples in 
RCC 

UCLA Integrated Staging 
System, Leibovich score 

 
Karakiewicz nomogram, Kattan 
nomogram, Sorbellini nomogram 
 

 

A recent systematic review(Galfano et al. 2008) found 11 different 

mathematical models proposed for this purpose, including both models 

describing risk groups and nomograms. Unlike risk groupings (the most 

common approach), nomograms use continuous scales and thus are able to 

calculate the continuous probability of a particular outcome. This maximizes 

the predictive power of the nomogram as it eliminates the spectrum bias that 

occurs when predictors are stratified(Karakiewicz and Hutterer 2007). 

However, these nomograms have not been used within trial design simply 

because nomograms do not have established cut-offs for decision-making in 
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and the SSIGN scores have been validated in Western populations of 

patients with clear cell RCC (Cindolo et al. 2005; Ficarra et al. 2006; Han et 

al. 2003; Patard et al. 2004), and the SSIGN score has been validated in Asia 

(Fujii et al. 2008), the Leibovich score has not been previously externally 

validated in any population. The first direct comparison of the UISS and the 

SSIGN performed in Italy (Ficarra et al. 2009) reported that the SSIGN score 

is more accurate than the UISS for predicting cancer specific survival in 

patients with clear cell RCC, using a comparison of the respective areas 

under the ROC curve (AUC).  

With the introduction of the UISS and the Leibovich scores (Table 3, 

following page) into inclusion criteria of separate Phase III adjuvant trials, it is 

urgently required that the utility of these scores be directly compared to 

ensure uniformity of future trial designs and minimize confusion. In particular, 

the absence of external validation of the Leibovich score was noted. The UK 

MRC SORCE trial is currently recruiting patients with intermediate and high-

risk Leibovich scores for randomization between placebo and sorafenib. Both 

the ASSURE (ECOG 2805) trial (comparing placebo versus sorafenib versus 

sunitinib) and the S-TRAC trial (comparing sunitinib versus placebo) are 

selecting patients for adjuvant therapy based on UISS scores. To our 

knowledge, the SSIGN score is not used currently for selection of patients in 

adjuvant Phase III trials in RCC. 
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Table 3 : Leibovich Algorithm to predict metastasis after nephrectomy 
Feature  Score 
Primary tumour status (pathologic T stage) 
pT1a 0 
pT1b 2 
pT2 3 
pT3a 4 
pT3b 4 
pT3c 4 
pT4 4 
Regional lymph node status (N stage) 
pNx 0 
pN0 0 
pN1 2 
pN2 2 
Tumour size (cm) 
<10 0 
>=10 1 
Nuclear grade 
1 0 
2 0 
3 1 
4 3 
Histologic tumour necrosis 
No 0 
Yes 1 

 

In contrast, nomograms have received far less attention as compared 

to models involving risk groups. The Kattan nomogram (Kattan et al. 2001) 

and Karakiewicz nomogram (Karakiewicz and Hutterer 2007) are two such 

nomogram-based models. The Kattan nomogram (Figure 2, following page) 

was developed in 2001 to predict 5-year disease-free survival (DFS) in 

patients undergoing radical nephrectomy for non-metastatic RCC. The 

variables used in this post-operative nomogram were symptoms, histological 

subtype, pathological tumour size and T-stage. More recently, the 
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Karakiewicz nomogram (Figure 3, following page) was developed to predict 1-

, 2-, 5-, and 10- year cancer-specific survival (CSS) of patients undergoing 

nephrectomy for RCC of all stages. The Karakiewicz nomogram was 

designed as a post-operative nomogram with the variables T, N and M 

stages, tumour size, Furhman grade, histological type, age and symptom 

classification.  

Overall, there have been more new models than comparative studies 

for selecting an optimal model. We therefore chose to perform a comparative 

effectiveness study to clarify the field by externally validating the various 

models, rather than develop another model from a relatively smaller dataset. 

The two algorithm-based models, the UISS and the Leibovich models have 

been incorporated for patient selection in large trials of adjuvant therapy in 

RCC. The UK Medical Research Council SORCE trial is currently recruiting 

patients with intermediate and high-risk Leibovich scores for randomization 

between placebo and sorafenib. Both the adjuvant sorafenib or sunitinib for 

unfavorable renal carcinoma (Eastern Cooperative Oncology Group [ECOG] 

2805) trial (comparing placebo vs sorafenib vs sunitinib) and the Sunitinib 

Treatment of Renal Adjuvant Cancer trial (comparing sunitinib vs placebo) are 

selecting patients for adjuvant therapy based on UISS scores. 
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While both the above-discussed UISS and the Leibovich models are  

risk grouping methods to predict outcomes for patients(Kattan 2008), 

nomograms differ from risk groups in several relevant ways, as described 

earlier. These models are used in clinical practice to aid in counseling, follow-

up planning and most recently, patient classification into groups for trials of 

adjuvant therapy(Borowiak et al. 2004). To illustrate the current use of risk 

grouping, the UK Medical Research Council SORCE trial is recruiting patients 

with intermediate and high-risk Leibovich scores for randomization between 

sorafenib and placebo(Eisen 2007), whereas the ASSURE and the Sunitinib 

Treatment of Renal Adjuvant Cancer (S-TRAC) trials are selecting patients 

based on modified UCLA Integrated Staging System (UISS) criteria. Although 

it is recognized that nomograms often outperform risk grouping(Di Blasio et 

al. 2003), nomograms have not been integrated into RCC clinical trials, and 

no study has comprehensively examined nomogram performance relative to 

that of risk grouping in predicting survival in RCC. Several studies evaluating 

nomogram performance have imposed multiple thresholds on the nomogram 

outcomes(Cindolo et al. 2005; Liu et al. 2009), with no disclaimer of 

exploratory analysis or expanded justification presented for the selection of 

these thresholds.  

While discretization of a continuous variable inevitably results in a loss 

of statistical information(Morgan and Elashoff 1987), this is practically difficult 

to avoid in a trial setting, where thresholds for patient recruitment are used. 
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For implementation of a trial design using nomograms, a single threshold for 

discretizing risk, so as to divide patients into two risk-groups, is usually most 

useful for establishing clear inclusion criteria and for decision making by 

clinicians and patients.  

Several post-operative clinical nomograms have been recently 

developed for RCC(Galfano et al. 2008). The Kattan nomogram was 

developed to predict 5-year freedom-from-recurrence (FFR) in patients 

undergoing radical nephrectomy for non-metastatic RCC(Kattan et al. 2001). 

The variables used in this post-operative nomogram were symptoms, 

histological subtype, tumour size and T-classification. More recently, the 

Karakiewicz nomogram was developed to predict 1-, 2-, 5-, and 10- year 

cancer-specific survival (CSS) of patients undergoing nephrectomy for RCC 

of all stages. The Karakiewicz nomogram was designed as a post-operative 

nomogram with the variables T, N and M classifications, size, Fuhrman grade, 

histologic subtype, age and symptom classification(Karakiewicz et al. 2007). 

The Sorbellini nomogram was developed to predict 5-year FFR for patients 

undergoing surgical treatment for localized clear cell RCC, using tumour size, 

T classification, Fuhrman grade, tumour necrosis, vascular invasion, and 

symptom presentation(Sorbellini et al. 2005). 

Despite the multiple RCC nomograms published in the literature, none 

are currently in widespread clinical use. Instead, ongoing clinical trials employ 

risk grouping for risk estimation and patient selection. The UK Medical 

Research Council SORCE trial is recruiting patients with intermediate and 
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high-risk Leibovich scores for randomization between sorafenib and 

placebo(Eisen 2007), whereas the ASSURE and the Sunitinib Treatment of 

Renal Adjuvant Cancer (S-TRAC) trials are selecting patients based on 

modified UCLA Integrated Staging System (UISS) criteria. In evaluating risk 

group performance, we have shown that the SORCE trial criteria (a 

discretized Leibovich model) performs better in discrimination than the 

ASSURE trial criteria (a discretized modified-UISS model). The purpose of 

the present study was to clarify which clinical model is most useful for survival 

prediction in localized RCC, so as to establish a standard for guiding trial 

design and biomarker research.  
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AIMS (CLINICAL MODELS) 

To evaluate clinical models in predicting survival outcomes in patients 

with renal cell carcinoma, and determining which clinical and pathologic 

parameters are most useful in determining prognosis. 

 

METHODS 

SUBJECTS 

We conducted two distinct analyses of the data, in order to account for 

differences in the selection criteria of each model. Analysis I was conducted 

for comparing the UISS and the Leibovich score, two risk models in existing 

use by pharmaceutical companies in recruiting high-risk post-nephrectomy 

patients for adjuvant trials. Analysis II was conducted for comparing 

nomograms against the best performing risk model from Analysis I. Due to 

minor differences in inclusion criteria for each model, the datasets for each 

analysis differed slightly, details of which are provided below.  

For the comparison of the UISS and the Leibovich score, we identified 

364 patients with unilateral non-metastatic clear cell RCC and who underwent 

nephrectomy at the Singapore General Hospital between 1990 and 2006 

through a comprehensive search of the Singapore General Hospital 

Pathology database and the National Cancer Centre Department of Cancer 

Informatics. ECOG (Eastern Cooperative Oncology Group) (Oken et al. 1982) 

scores exceeding 1 were excluded (n=9), as our study focused on patients 
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who were candidates for adjuvant trials. Eventually, 355 patients were 

selected for evaluation of the UISS and Leibovich scores. For the Leibovich 

model, we categorized the patients into low (0-2), intermediate (3-5) and high 

risk (≥6) groups (Leibovich et al. 2003). In terms of terminology, we refer to 

this categorization of UISS and Leibovich scores into these three risk groups 

as the UISS and the Leibovich models respectively. We refer to the 

modification of these systems into two categories (low risk versus 

intermediate and high risk groups) as either UISS or Leibovich trial criteria. 

For Analysis II, where we compared nomograms and risk models, a 

different approach to selection was adopted in view of the fact that several of 

the risk models were constructed with patient sets with different features. 413 

patients with unilateral non-metastatic RCC of all subtypes who underwent 

nephrectomy at the Singapore General Hospital between 1990 and 2006 

were identified through a database search (as contrasted to the earlier 

comparison, where only patients with clear cell histology were selected). 

Survival status and cause of death, if any, were obtained from a national 

registry. To ensure the most accurate comparisons between nomograms, we 

used an approach to select common selection criteria. Broadly, the 

Karakiewicz nomogram had the least restrictive selection criteria and similar 

to the Kattan nomogram, was applicable to all RCC subtypes. The Sorbellini 

nomogram and the Leibovich score were restricted to clear cell RCC. 

Therefore, in comparing the Karakiewicz nomogram with the Kattan 

nomogram, we excluded patients with large tumours (pT4), ECOG>1, and 
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patients with subtypes other than clear cell RCC, papillary RCC or 

chromophobe RCC (n=33), with a remaining data-set of 390 subjects. The 

ECOG limitation was imposed to ensure that this comparison would be useful 

in the appropriate patient set for trial design, and is consistent with our 

previous approach. All comparisons with the Sorbellini nomogram (n = 329) 

and the Leibovich score (n = 322) similarly were restricted to clear cell 

subtype only, and selection mirrored the more restrictive criteria of each score 

to ensure a fair comparison.  

In our studies, all specimens were reviewed by a pathologist for 

histological subtype, tumour grade, lymphovascular invasion and necrosis. 

The tumour size of pathological specimens was determined as the greatest 

dimension in centimeters and the Fuhrman grading scheme was used to 

determine the nuclear grade of tumours. Pathologic staging was determined 

in accordance with the AJCC 2002 primary tumour TNM classification,(Hudes 

et al. 2007) except when scoring the Kattan nomogram, where AJCC 1997 

stage grouping was used. The symptoms were classified as incidental, local 

(hematuria, flank pain, palpable mass), or systemic (weight loss, anorexia, 

asthenia, fever)(Bugert and Kovacs 1996). 

STATISTICAL ANALYSES 

We compared the clinico-pathologic profile of patients in our data-set 

to that of the Mayo data-set using Fisher’s exact test for categorical variables 

to assess for baseline differences. 5-year cancer specific survival (CSS), 

overall survival (OS) and disease-free survival outcomes were estimated by 
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the Kaplan-Meier method. Cox regression was also performed to evaluate the 

effect of UISS and Leibovich scores on CSS, OS and DFS separately. 

Proportional hazards assumptions were verified systematically for each score 

graphically (data not shown). To test for a difference in the predictive value of 

the UISS and Leibovich models and trial criteria for a variety of survival 

outcomes, we used the LR 2 test for nested models to assess whether the 

UISS model adds predictive value to a model including the Leibovich model, 

and vice versa, as well as whether the UISS trial criteria adds predictive value 

to a model including the Leibovich trial criteria, and vice versa. An adequacy 

index using likelihood ratio methods was used to quantify the percentage 

variation explained by a subset of the predictors (UISS or Leibovich scores 

separately) compared with the information contained in the full set of 

predictors (both UISS and Leibovich scores) by means of log-likelihood. 

Harrell’s c-index was calculated to evaluate the concordance between 

predicted and observed responses of individual subjects in terms of UISS and 

Leibovich scores separately. 

We chose three study endpoints to evaluate in common across the 

different models, these being cancer-specific survival (CSS), freedom-from-

recurrence (FFR), and overall survival (OS). CSS was defined as the interval 

between diagnosis date and cancer-related death date, or last-follow up date 

for censored patients. FFR was defined as the interval between surgery date 

and relapse date, or the date of last follow up for censored patients. OS was 

defined as the interval between diagnosis date and death date or last-follow 
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up date for censored patients. The Leibovich score was developed on 

metastasis-free survival (MFS). As there is considerable overlap between the 

definition of FFR, MFS and disease-free-survival, and hence replicated 

analyses did not show material differences between these three outcomes, 

we selected to present FFR here.  Outcomes were estimated by the Kaplan-

Meier approach, and Cox regression was used to evaluate the effects of 

covariates. Proportional hazards assumptions were verified graphically (data 

not shown). We used LR 2 of nested models to perform pairwise 

comparisons of the models involved. An adequacy index using likelihood ratio 

(LR) methods was used to quantify the percentage of the variation explained 

by a subset of the individual predictors compared with the information 

contained in the full set of predictors by means of log-likelihood(Al-Radi et al. 

2007; Harrell 2001). Harrell’s c-index was calculated to evaluate the 

concordance between predicted and observed responses of individual 

subjects separately. Calibration is useful for evaluating whether actual 

outcomes approximate predicted outcomes for each model in our dataset. For 

calibration comparisons, we evaluated each model by its defined 5-year 

survival outcome (Karakiewicz: CSS; Kattan, Sorbellini: FFR; Leibovich: 

MFS), collapsing each nomogram to approximate the risk grouping of the 

Leibovich score for greater comparability (risk thresholds 0.9 and 0.6), with 

expected outcome in each risk-group determined by the median scorer. The 

Leibovich score was calibrated by prespecified low, intermediate and high-risk 

groups(Leibovich et al. 2003). Decision curve analyses were performed to 
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determine the clinical net benefit derived by examining the theoretical 

relationship between the threshold probability of developing an event and the 

relative value of false-positive and false-negative results as described by 

Vickers et al(Vickers et al. 2009). To evaluate whether the nomogram has 

potential to outperform current standards of risk evaluation, we further tested 

several pre-specified Karakiewicz nomogram thresholds (estimated 5-year 

CSS of 0.90, 0.85 and 0.80) against the SORCE trial criteria (a discretized 

Leibovich score) using similar methodology on an exploratory basis. The 

SORCE trial criteria divided patients into low-risk (0-2) and intermediate-/high-

risk (3) individuals by Leibovich score. A separate decision analytic 

approach was also performed to determine estimated cut-off(Vickers et al. 

2009), based on a threshold benefit of 0.05, similar to considerations of 

adjuvant therapy in gastric(Paoletti et al. 2010), colorectal(Baddi and Benson 

2005), and breast cancer(Seruga et al. 2010), with a 0.5 risk reduction 

(Motzer et al. 2007). STATA 11 and R 2.11.1 were used for analysis, and all 

tests were two-sided with a significance level of 0.05.  

 

RESULTS  

The clinico-pathologic characteristics of the Singapore cohort is 

reported in Table 4 (following page). A comparison is provided against the 

Leibovich data-set; no equivalent data is available for the UCLA data-set. 

Over a median follow-up of 56 months, 78 patients had relapsed, 46 had died 
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of disease and 26 had died of causes other than cancer. The survival 

outcomes are presented as Kaplan Meier survival curves (Figure 4, following 

page).

 

Table 4 : Characteristics of patients for the comparisons between the Leibovich 
score and the UCLA Integrated Staging System (Analysis I) and between the 
nomograms and the Leibovich score (Analysis II) 
 

  Analysis I Analysis II 
Total Number of Patients 355 390 

Patients relapsing (n) 78 95 
Patients dying of RCC 46 63 

Patients dying of other causes 26 23 
Median Followup (months) 56 65 

Gender Male (%) 228 (64.2) 256 (66) 
Female (%) 127 (35.8) 134 (34) 

Age Median ± SD 57.0 ± 12.4 56.7 ± 12.4 
Race Chinese (%) 289 (81) 318 (82) 

 Non-Chinese (%) 66 (19) 72 (18) 
ECOG 0  (%) 242 (68.2) 269 (70) 

1  (%) 104 (29.3) 121 (30) 
2  (%) 6 (1.7) 0 (0) 
3  (%) 3 (0.9) 0 (0) 

Tumour Size Mean ± SD 5.9 ± 3.2 6.2 ± 3.5 
≥ 10 cm  (%) 44 (12.4) 61 (15.6) 

Pathological Stage pT1  (%) 178 (50.1) 214 (55) 
pT2  (%) 76 (21.4) 65 (17) 

pT3a  (%) 57 (16.1) 69 (18) 
pT3b/c  (%) 40 (11.3) 42 (11) 

pT4  (%) 4 (1.1) 0 (0 ) 
Fuhrman Grade 1  (%) 61 (17.2) 57 (15) 

2 (%) 186 (52.4) 206 (53) 
3  (%) 83 (23.4) 99 (25) 
4  (%) 25 (7.0) 28 (7) 

Coagulative 
necrosis 

Yes  (%) 130 (36.6) 152 (39) 
No  (%) 225 (63.4) 236  (61) 

Histology Clear cell  (%) 355 (100) 334 (86) 
Papillary  (%)   44 (11) 

Chromophobe  (%)   12 (3) 
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Cox regression showed that patients with a higher score (either UISS 

or Leibovich scores) have a higher chance of dying than those with a lower 

score (Table 5, following page). The concordance indices are reported in 

Table 5 as well. We show that the addition of the Leibovich model to one 

containing the UISS model significantly improves the predictive value of the 

final model, but there is no significant difference in adding the UISS model to 

the Leibovich model. A similar conclusion for the UISS and Leibovich trial 

criteria is seen for both cancer specific survival and disease-free survival, but 

there is no significant difference in terms of overall survival. The higher 

adequacy and concordance indices of the Leibovich score supports a similar 

conclusion that the Leibovich score is a superior predictor to the UISS score, 

both models used in patient recruitment for pharmaceutical trials. 

Similarly, we show that the Karakiewicz nomogram is overall the best 

performing nomogram when individually compared against the other major 

nomograms (Table 6, 7(Leibovich et al. 2003)). The Karakiewicz nomogram 

had consistently higher adequacy and concordance indices for all tested 

outcomes. Its inclusion in a full model resulted in highly statistically significant 

accuracy improvements for all outcomes when tested with LR analysis 

against the Kattan nomogram (p<0.001), the Sorbellini nomogram (p<0.001), 

with marginal improvements over the Leibovich score (p=0.04 for CSS, 

p=0.03 for DFS, with equivalent performance for OS). This supports our 

conclusion that the Karakiewicz nomogram is a superior predictor to the 

Kattan or Sorbellini nomograms. 
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Table 5 : Comparison of the various models by survival outcomes and concordance indices 

    OS CSS DFS 

 
 

HR  
(95% C.I.) 

C-index 
HR  

(95% C.I.) 
C-index 

HR (95% C.I.) 
C-index 

A
na

ly
si

s 
I (

n=
35

5)
 

UISS model   0.64   0.65   0.66 
IR vs. LR 2.63 (1.28, 5.38)   3.94 (1.39, 11.19)   2.72 (1.50, 4.95)   
HR vs. LR 4.28 (1.92, 9.55)   6.54 (2.10, 20.34)   5.17 (2.64, 

10.12) 
  

Leibovich model   0.67   0.74   0.7 
IR vs. LR 2.05 (1.09, 3.86)   3.41 (1.30, 8.97)   2.32 (1.34, 4.02)   

HR vs. LR 5.17 (2.59, 10.32)   10.84 (4.00, 
29.41) 

  7.74 (4.32, 
13.87) 

  

UISS trial criteria   0.63   0.65   0.63 

HR/IR vs LR 3.02 (1.54, 5.93)   5.63 (2.01, 15.74)   3.27 (1.88, 5.68)   

Leibovich criteria   0.63   0.66   0.64 
HR/IR vs LR 3.02 (1.58, 5.77)   4.91 (1.93, 12.45)   3.66 (2.11, 6.36)   

A
na

ly
si

s 
II 

(n
 =

 3
90

) 

Kattan 
nomogram 

  0.64   0.7   0.66 

Kattan LR Reference   Reference   Reference   
Kattan HR 2.95 (1.84, 4.73   5.37 (2.80, 10.28)   3.54 (2.33, 5.37)   

Karakiewicz 
nomogram 

  0.71   0.75   0.71 

Karakiewicz LR     Reference   Reference   
Karakiewicz HR 5.89 (3.42, 10.14)   12.69 (5.47, 

29.45) 
  5.64 (3.59, 8.84)   
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Table 6 : Likelihood ratio testing comparisons of the Kattan and the Karakiewicz nomograms 
 Likelihood P-value Adequacy index 
 Kattan+Karakiewicz Kattan Karakiewicz Kattana Karakiewiczb Kattanc Karakiewiczd 
Kattan nomogram classification (DFS cutoff of 0.9 at 5 years) and Karakiewicz nomogram classification (CSS cutoff 

of 0.9 at 5 years) 
CSS 63.79 34.38 63.68 0.9052 <0.0001 53.9% 99.8% 
DFS 72.88 41.18 72.66 0.7340 <0.0001 56.5% 99.7% 
OS 54.87 22.83 54.36 0.4784 <0.0001 41.6% 99.1% 

Kattan nomogram and Karakiewicz nomogram as semi continuous scores 
 Kattan+Karakiewicz Kattan Karakiewicz Kattana Karakiewiczb Kattanc Karakiewiczd 
CSS 83.59 42.11 83.16 0.5113 <0.0001 50.4% 99.5% 
DFS 97.73 52.69 97.72 0.9106 <0.0001 53.9% 100.0% 
OS 65.38 31.81 64.95 0.5128 <0.0001 48.7% 99.3% 

 
a: The comparison of the model with the predictor of the Karakiewicz nomogram only with the one with predicators of both 
the Kattan nomogram and the Karakiewicz nomogram 
b: The comparison of the model with the predictor of the Kattan nomogram only with the one with predicators of both the 
Kattan nomogram and the Karakiewicz nomogram 
c: The proportion of the variation explained by the Kattan nomogram compared to that explained by both the Kattan 
nomogram and the Karakiewicz nomogram 
d: The proportion of the variation explained by the Karakiewicz nomogram compared to that explained by both the Kattan 
nomogram and the Karakiewicz nomogram 
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Table 7 : Comparison of the Karakiewicz nomogram and the Leibovich score in outcome prediction 

 Likelihood P-value Adequacy index 
 Karakiewicz+Leibovich Leibovich Karakiewicz Leibovicha Karakiewiczb Leibovichc Karakiewiczd 

Karakiewicz nomogram classification (CSS cutoff of 0.9 at 5 years) and Leibovich prognostic score 
CSS 56.94 33.54 56.90 0.8456 <0.0001 58.9% 99.9% 
DFS 72.77 53.72 69.86 0.0884 <0.0001 73.8% 96.0% 
OS 49.75 32.56 49.55 0.6535 <0.0001 65.4% 99.6% 

Karakiewicz nomogram and Leibovich scores as semi-continuous scores  
 Karakiewicz+Leibovich Leibovich Karakiewicz Leibovicha Karakiewiczb Leibovichc Karakiewiczd 
CSS 68.87 61.66 67.97 0.3426 0.0072 89.5% 98.7% 
DFS 88.40 82.31 85.73 0.1087 0.0136 93.1% 97.0% 
OS 57.71 54.65 55.10 0.1205 0.0912 94.7% 95.5% 

 

a: The comparison of the model with the predictor of the Karakiewicz nomogram only with the one with predicators of both 
the Leibovich prognostic score and the Karakiewicz nomogram 
b: The comparison of the model with the predictor of the Leibovich prognostic score only with the one with predicators 
predicators of both the Leibovich prognostic score and the Karakiewicz nomogram 
c: The proportion of the variation explained by the Leibovich prognostic score compared to that explained by both the 
Leibovich prognostic score and the Karakiewicz nomogram 
d: The proportion of the variation explained by the Karakiewicz nomogram compared to that explained by both the 
Leibovich prognostic score and the Karakiewicz nomogram
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In exploratory pairwise comparisons, we noted that several discretized 

Karakiewicz nomograms generally performed better than the ongoing SORCE 

trial criteria (a discretized Leibovich score) in terms of LR analysis, 

concordance indices and clinical net benefit in multiple survival outcomes 

(Table 6 and 7, preceding pages), particularly at the probability threshold of 

0.90. Superiority of the Karakiewicz threshold remained, but reduced as the 

threshold was reduced. Similarly, LR analysis showed consistently higher 

adequacies for the Karakiewicz nomograms at the 0.85 and 0.80 

discretizations for multiple survival outcomes, supporting superiority of the 

discretized Karakiewicz nomogram. A decision analytic method for threshold 

derivation yielded a similar approximate threshold (corresponding to predicted 

5-year CSS of 0.89, or 99 points). While for all outcomes, the 0.85 and 0.80 

discretization thresholds yielded improved net benefit relative to the SORCE 

criteria over a higher range of threshold probabilities, the SORCE criteria 

showed benefit over the 0.85 and 0.80 Karakiewicz thresholds in a more 

limited range of lower threshold probabilities. 

 The conducted likelihood ratio analyses between the UISS and the 

Leibovich score may be presented graphically for a clearer depiction of the 

relative adequacies and the analyses used to derive significance when testing 

nested models against full models (Figure 6, following page). 
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UISS criteria that the Leibovich score has superior outcomes relative to the 

UISS score. It is currently used by the UK MRC SORCE trial for recruiting 

intermediate and high-risk patients for randomization between placebo and 

sorafenib. Log likelihood tests showed that the addition of Karakiewicz 

nomogram classification to the model including Leibovich trial criteria 

improved the model significantly in terms of all outcomes, while addition of the 

Leibovich trial criteria to the Karakiewicz nomogram classification did not yield 

any benefits. This is true for both the semi-continuous scoring as well as the 

nomogram classification. 

To evaluate the question of whether ethnicity may have an impact on 

performance of the models, we conducted similar analyses within Chinese 

subjects (comprising approximately 82% of each cohort). The number of 

Malay and Indian subjects was too small for a meaningful validation. We 

performed comparisons of the UISS and Leibovich score, as well as 

comparisons of the Karakiewicz nomogram against the Kattan model and the 

Leibovich model, and report that the results are consistent with our findings 

above, where the Leibovich score showed superiority to the UISS model (OS: 

concordance index 0.66 vs 0.62; CSS: 0.72 vs 0.64; DFS 0.68 vs 0.63) and 

the Karakiewicz nomogram was superior to the Kattan nomogram (OS: 

concordance index 0.75 vs 0.66; CSS: 0.82 vs 0.72; FFR: 0.79 vs 0.71). A 

narrow advantage of the Karakiewicz nomogram over the Leibovich score 

based on this analysis is also reported (OS: concordance index 0.77 vs 0.76; 

CSS: 0.82 vs 0.81 and FFR: 0.79 vs 0.79) 
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DISCUSSION 

 

LEIBOVICH AND UISS MODELS 

A number of prognostic models have been developed to improve 

survival prediction in patients with RCC. A recent systematic review found 11 

different models proposed for this purpose(Galfano et al. 2008), and the UISS 

and the Leibovich models are two such risk model based models. Over the 

last decade, several prognostic models have been developed to predict 

survival outcomes in RCC patients. Many investigators have generally 

preferred to develop new models on their own data-sets, rather than compare 

pre-existing models. There are additional models such as nomograms (the 

Kattan and the Karakiewicz nomogram), but these are less established in trial 

design. Both of the risk models, the UISS and Leibovich models, have been 

incorporated for patient selection in large trials of adjuvant therapy in RCC.  

Our results show that both the UISS and the Leibovich scores provide 

excellent estimates of various survival outcomes in our single institution 

series of patients with non-metastatic clear cell RCC, and that the Leibovich 

score is superior to the UISS score in its predictions. Ours represents the first 

such comparison of these two competing scoring systems, which is of 

particular relevance to trial design.  

A previous European study in 342 patients with non-metastatic clear 

cell RCC suggested that the SSIGN model was superior to the UISS model 
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by a comparison of an AUC of 0.830 (SSIGN) against an AUC 0.760 (UISS) 

in patients with non-metastatic RCC (Cindolo et al. 2005). In this study, no 

direct statistical testing for superiority was conducted, and it was limited to the 

prediction of cancer-specific survival. While both the SSIGN and the 

Leibovich models use the same pathologic features for scoring, the scoring 

system is distinct (SSIGN: 0 – 16, Leibovich score: 0 – 11, tiered into 3 risk 

strata). The SSIGN is designed for estimation of cancer-specific survival, but 

the Leibovich model is designed for estimation of disease-free survival. The 

urgency in direct comparison of these models has arisen from the use of the 

UISS and the Leibovich scores in the Phase III adjuvant trials. 

We have reported here that the Leibovich model is superior to the 

UISS model in estimation of all tested survival outcomes in our series, a 

finding of consequence for pharmaceutical trial design. As mentioned, the 

UISS model was developed to predict overall survival and the Leibovich 

model was developed to predict cancer-specific survival. This conclusion was 

derived using a likelihood ratio approach. While rank concordance 

methods(Harrell et al. 1996) have been used to compare the various RCC 

prognostic models, a direct comparison can be accomplished using a 

likelihood ratio-based approach, which more powerful than rank-concordance 

methods (Harrell 2001).  This approach has not been previously used, and we 

present it here together with analysis based on rank concordance methods to 

facilitate comparisons. 
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The reasons why the Leibovich model may be superior to the UISS 

model in predicting outcomes in non-metastatic patients are not immediately 

clear. However, the UISS model was developed using an automated stepwise 

modeling risk model comprising RCC tumours of all subtypes. It is recognized 

that certain pathologic variables such as tumour necrosis(Sengupta et al. 

2005) and lymph node involvement may vary in prognostic importance 

depending on tumour subtype. Thus, additional variables of prognostic 

importance may not have been eventually selected in the UISS model 

through this stepwise approach.  

 There is ongoing research in the integration of biomarkers into these 

clinico-pathologic models to enhance prediction of outcomes(Parker et al. 

2002; Parker et al. 2009). However, in the absence of definitive data 

supporting adjuvant therapy in RCC, these promising results have not entered 

routine practice in estimating survival outcomes for non-metastatic RCC.  

 

NOMOGRAMS AND RISK MODELS 

Although the Leibovich model demonstrated superiority over the UISS 

model in predicting outcomes, it is reasonable to evaluate whether other 

clinical models may yield superior outcomes. For example, multiple studies 

have documented the superior performance of nomograms when compared 

to risk groups using rank-concordance methods(Atkin and Jackson 1996; 

Belizaire et al. 2004; Brown et al. 1994; Yasui et al. 1999; Zhao et al. 2007). 

Following the establishment of the Leibovich model as the superior risk model 
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above, we proceeded to compare several nomograms against the Leibovich 

model, showing that the Karakiewicz nomogram is the most useful clinical 

predictor of survival outcomes in our data-set relative to other nomograms 

and the Leibovich model, with superior accuracy in terms of LR analyses and 

concordance indices. While the Karakiewicz nomogram was designed to test 

for CSS and the Sorbellini and Kattan nomograms for FFR, the Karakiewicz 

nomogram discriminated better in predicting CSS, FFR and OS than the other 

nomograms and the Leibovich model. Thus, in terms of individual counseling, 

the Karakiewicz nomogram is likely to be more useful that the other models.  

For nomogram comparisons, it should be noted that the Kattan 

nomogram and Karakiewicz nomogram include similar variables like T stage, 

tumour size and symptoms but they assign different weights to each variable. 

We report that the Karakiewicz nomogram is superior to the Kattan 

nomogram in estimation of all test survival outcomes in our series. We would 

like to point out that while the Karakiewicz nomogram was designed to test for 

CSS and the Kattan nomogram for RFS, the Karakiewicz nomogram 

performed better in predicting CSS, RFS and OS.  

We have used a wide array of tools for comparing the various models, 

including comparisons of discrimination (likelihood, adequacy, concordance 

indices) as well as calibration analyses. In addition to these comparisons, we 

have used decision curve analysis to show that the Karakiewicz nomogram is 

consistently superior to the other nomograms across a range of clinical 

threshold probabilities, with equivalent clinical benefit as the Leibovich score. 
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Our work provides a framework for considering the choice of model in an 

adjuvant therapy setting in RCC, best highlighted by the clinical net benefit 

analysis. It is critical to note that evaluation of clinical net benefit will evolve 

with information on benefits and toxicities of adjuvant therapy.  Practically, the 

selection of a cut-off in a clinical trial is additionally driven by trade-offs 

between event rate and accrual rate(Kattan 2010). We considered it 

interesting that the best performing cutoff for our discretization (estimated 5-

year CSS 0.90) coincided with one derived by decision analysis. Nonetheless, 

we caution here that although the Karakiewicz nomogram at all tested 

discretizations compares favorably to the SORCE trial criteria, prespecified or 

data-derived thresholds should be considered exploratory, and external 

validation of such thresholds are required for definitive conclusions on 

discretization. 

Other than improved individualized prediction, the immediate real-

world implications of our findings would be a more efficient accrual of patients 

for the ongoing adjuvant therapy RCC trials. For example, of practical real-

world interest is the finding that if the discretized Karakiewicz nomogram, 

rather than the standard trial criteria using the Leibovich score, had been 

used to select patients in our centre for the SORCE trial, 151 patients instead 

of 187 would have been recruited for 47 events in terms of cancer-specific 

survival. Other than clinical trials, the use of the Karakiewicz nomogram as a 

standard in biomarker research will allow for the development of more 
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rigorous biomarkers when the strongest available clinical model is 

incorporated into multivariable analysis. 

Overall, it is important to note that we have focused on post-operative 

nomograms rather than pre-operative nomograms, as post-operative models 

have yielded better predictions than pre-operative models(Cindolo et al. 

2005). 

As relatively unusual methods have been used to compare the models, 

we wish to discuss aspects of the model comparisons here. Although rank 

concordance methods(Harrell et al. 1996) have been used to compare the 

various RCC prognostic models, a direct comparison can be accomplished 

using a likelihood ratio-based approach, which is more powerful than rank-

concordance methods (Harrell 2001). This approach is also useful to address 

the issue of multicollinearity. In developing models with two highly correlated 

variables, as clearly occurring in our approach, multicollinearity does affect 

individual predictors, but does not reduce the predictive power or reliability of 

the full model, allowing for reliable calculations of likelihood ratios in 

comparing full versus nested models. 

THRESHOLD DETERMINATION 

There have been several studies suggesting the superior performance 

of nomograms (with multiple thresholds) compared to risk models using rank-

concordance methods (Galfano et al. 2008; Haas and Uzzo 2008; 

Karakiewicz and Hutterer 2007; Liu et al. 2009; Shariat et al. 2008). 

Nomograms are stronger predictors of survival than risk models because 



 56

nomograms assign points to continuous variables on a continuous scale, 

maximizing their predictive power by reducing spectrum bias. Risk models 

group patients with similar (though not identical) characteristics into risk 

groups, resulting in heterogeneity within the risk groups that reduces the 

predictive power of the risk model (spectrum bias). However, for purposes of 

a trial, categorization using a threshold is inevitable. A good analogy is that 

while a speedometer is informative, a limit is still needed whereupon 

exceeded, a policeman will issue a ticket. For example, the CALGB 90203 

trial (Eastham et al. 2003) recruited prostate cancer patients with a 

nomogram-predicted probability of 60% of remaining free from disease 

recurrence.  

The choice of an optimal cut off value for the Karakiewicz nomogram is 

selected at 0.9 at 5 years (corresponding to a nomogram score of 94) in our 

data set, which is particularly useful for stratifying patients into 2 groups. 

While a binary classification is susceptible to the usual concerns about 

categorization of semi-continuous data, it has the advantage of being simple 

and direct for trial recruitment criteria. The use of nomograms for trial 

recruitment criteria has not been done before in RCC trials, possibly because 

there are no established cut offs for practical use, and the degree of handicap 

in reducing nomograms from a continuous to a binary prediction is uncertain. 

Our study indicates that with careful selection of a threshold, a nomogram 

classification can be superior to the conventional risk models in predicting 

survival outcomes in RCC. We address the issue of loss of information by 
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categorization by providing a full analysis of Karakiewicz nomogram versus 

the other semi-continuous scores, showing that it also performs better in the 

absence of categorization. 

Hence, not only have we demonstrated superiority of the Karakiewicz 

nomogram as a continuous predictor, our results also establish that the 

Karakiewicz nomogram is able to predict survival better than the usual risk 

modelic approach even as a binary predictor, outperforming the Leibovich trial 

criteria that is currently used in clinical trials of adjuvant therapy. 

 

LIMITATIONS 

We discuss the epidemiologic issues surrounding our clinical modeling 

work here. Given that the work is essentially comprised of retrospective, 

single institution studies drawn from a hospital-based case series, this can 

raise the usual and valid concerns about selection bias and generalization of 

results to other populations. Given that the patients in our dataset were 

selected over a more recent period than either the UISS or the Leibovich 

score, stage migration may account for some of the improved outcomes in 

our series relative to the Western centres (Chow et al. 1999). However, the 

excellent calibration demonstrated generally suggests that any issue of 

generalization is likely of relatively minor concern.  

Nevertheless, it is important to note that the settings where these 

scores were derived varied as well, and with the exception of the Karakiewicz 

nomogram, were derived from data from single centres of excellence in the 
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United States. The Karakiewicz nomogram was derived from 2,530 patients in 

a range of ten academic medical centres in Europe. We agree that our 

findings need to be replicated in other populations. While population-based 

data, such as the Surveillance, Epidemiology and End-Results (SEER) 

registries, would be most appropriate for evaluation and comparison of 

nomograms, the absence of systematic collection of all evaluated variables 

precludes this possibility. 

The issue of ethnic differences and whether results based on our Asian 

population can be applicable for the Western population is a valid 

consideration. This may be partially addressed by my subsequent work in 

high throughput gene expression profiling (see Molecular Models, pg 62 

onwards) indicating that a prognostic genetic signature in clear cell RCC 

yielded excellent and similar predictions in both Japanese as well as 

American populations, suggesting that clinical models derived in the West are 

generally applicable to Asian populations. This is supported by the 

observation of excellent calibration of the Western models in our Asian 

dataset. It should be noted that our analyses of the predictions within the 

Chinese ethnic group alone (comprising approximately 80%) of the dataset 

demonstrated results similar to that derived from analyzing the full dataset. A 

future expanded number of members of the other ethnic groups will permit 

analysis of each racial group, to evaluate whether these models perform in a 

similar fashion in each racial group. It is not possible to perform similar 



 59

analyses in the current dataset due to the relatively small numbers of Malay 

and Indian patients.  

We describe the limitations of our comparative effectiveness study 

here. The nature of our study as a retrospective, single institution study raises 

the usual concern about generalization of results to other populations. There 

are significant baseline differences between our data-set and the Mayo and 

UCLA data-sets. It is unclear if these differences may have asymmetrically 

affected predictor generalizability and resulting performance, but individually 

assessed, both predictors performed well in our data-set. Generally our data-

set has the highest proportion of better-risk patients. In particular, the UISS 

data-set had a remarkably high proportion of high-risk patients (32%) even 

after having excluded patients with regional lymph node metastasis. The 

Mayo dataset of 1,671 patients included 66 patients with lymph node-positive 

disease; this group was excluded in our data-set to allow for direct 

comparison. Multiple explanations are possible for these baseline differences. 

Selection bias may account in part for this : the Mayo Clinic and UCLA are 

major US referral centers, which would be expected to care for a higher 

proportion of patients with advanced disease. Given that the patients in our 

data-set being selected over the most recent period, stage-migration may 

account in part for this difference (Chow et al. 1999). However, we do note 

that the SSIGN, which shares variables with the Leibovich score albeit with a 

different weighting method, has been shown to predict outcomes better than 

the UISS score in a European population.  We did not study nomogram-
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based models, since such models are not currently integrated into trial 

designs, although they do provide useful predictions for individual patients. 

VALIDITY 

The validity of studies is usually distinguished in two components – the 

inferences as they pertain to the members of the source population (internal 

validity) and people outside the source population (external validity). Our 

studies provide an overview of the critical nature of validity, with a wide range 

of techniques being applied to multiple different data-sets and tissue samples 

from a broad range of centres (Larkin et al. 2005; Quackenbush 2006b). In 

terms of validity, the Singapore dataset represents an external test set to 

evaluate the value of the multiple risk models and nomograms that have been 

generated to predict a range of outcomes.  

It should be noted that the use of adequacy indices may be misleading 

in the situation when both scores are poor predictors of survival; its use would 

lead to the potential conclusion that one model is not poorly performing 

relative to the model to both scores. However, this may not apply in our 

dataset, as each model individually has been demonstrated to yield excellent 

predictions of outcomes. 

COLINEARITY 

Given that we are comparing scores that have a degree of correlation, 

colinearity is a potential issue. Hence, a full model that incorporates both 

scores (as we do here) will definitely result in colinearity when estimating the 



 61

standard errors of individual beta weights. However, calculation of deviance 

(which likelihood ratio testing is based on) is less affected by colinearity, and 

hence permits us to compare full relative to nested models. It should be noted 

that the error of individual beta weights of individual prognostic scores in the 

full models will be high, but that we are not utilizing the coefficients. 
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MOLECULAR MODELS IN RENAL CELL CARCINOMA 

BACKGROUND 

We have described extensively the use of clinical modeling to estimate 

outcomes for RCC in our initial analysis. These methods, while useful, may 

benefit from additional evaluation of additional biological variables, and the 

same studies have provide additional biological insights. These inevitable 

limitations result in heterogeneity within risk groups, as well as the provision 

of probabilistic estimates for individuals by nomograms. Even while accurate, 

a probabilistic estimate is not completely satisfactory to clinicians and 

patients, since each individual has a specific individual outcome. Hence, 

additional biomarkers are of high interest in improving these estimates. These 

biomarkers may include genetic, epigenetic and molecular variables of 

interest. Recent advances in materials science, bioengineering and 

information technology have permitted the development of high throughput 

methods for determination of these profiles, and we focus here on the use of 

high throughput expression profiling in selecting candidate signatures and 

biomarkers for RCC. Generally, the use of these signatures and markers are 

important for determining cancer classes, using unsupervised methods such 

as class discovery, and correlating these outcomes with clinically relevant 

endpoints such as survival, relapse, genetic alterations as well as drug 

resistance.  
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HIGH THROUGHPUT EXPRESSION PROFILING 

We used high throughput methods, primarily gene expression profiling, 

a promising adjunct for cancer diagnosis and prognosis(Tan et al. 2004b), to 

identify prognostic predictors and genetic programs in tumour tissue 

(Quackenbush 2006b). These techniques, usually known as microarrays, 

allow for the concurrent collection of expression data of multiple transcripts 

from a single sample. These techniques allow for the measurement of 

expression data in a wide range of biological processes. With the widespread 

use of this technique in recent years, the explosion of data has resulted in the 

creation of large data repositories for archival and open access of this data, 

such as the Gene Expression Omnibus (GEO)(Sayers et al. 2010). 

Microarray experiments are associated with their own challenges, and 

these primarily centre on variation (Abdullah-Sayani et al. 2006). Data 

variation may occur as a result of technical (extraction, labelling, 

hybridization), measurement (fluorescent signal) or biological variation. 

Biological replication is the most important, but is not always possible due to 

the high costs of microarrays. Broadly, the general techniques of preparation 

for microarray analysis involve extraction of RNA (total or mRNA), purification, 

reverse transcription, labeling and hybridization. There are two major types of 

expression microarray platforms in use : oligonucleotide based and 

complementary DNA (cDNA)-based.  

The oligonucleotide array class consists of usually smaller probes, 

ranging from 25 to 80 bp in length. These may be presynthesized and spotted 
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directly onto the substrate, or synthesized directly on the substrate. This 

platform is most commonly used in the commercial Affymetrix chips, which 

depend on the spot intensity measures of oligonucleotide probes hybridized 

to the array chip. Following hybridization, the array is scanned, producing an 

image, and the relative fluorescence of each spot is ascertained. Pixel 

intensity is measured using software, and the intensity of each spot is 

normalized, allowing for comparison within and between arrays.  

cDNA arrays comprise PCR products spotted onto the array, enabling 

clone banks and DNA from limited templates to be spotted. The size of a PCR 

amplified fragment is in the order of 400 – 1000 bp. The spotted microarray is 

hybridised with probes derived from the mRNA of the biological samples 

being assessed. In the technique known as dye swapping, in which multiple 

extracts are hybridised to arrays, the mRNA is typically reverse transcribed 

into cDNA and labelled with a spectrally distinguishable red (Cy5) or green 

(Cy3) fluorescent dye. Samples are then hybridized on the microarray, 

allowing labelled cDNA strands complementary to sequences on the 

microarray to bind. Generally two dyes are used; if only one dye is used there 

is little measure of the amount of DNA targeted to any particular spot. 

However, the relative fluorescence of two dyes to each other can be 

measured, with the sample containing higher levels of transcript producing a 

greater signal.  
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After transformation of the raw data into a gene expression matrix, 

data is analysed using various packages of R and Bioconductor (Gentleman 

et al. 2004). These software packages permit the analysis of microarray 

experiments using a variety of tools for high dimensional data(Quackenbush 

2006a). 

RCC EXPRESSION PROFILING 

Studies have demonstrated that the various subtypes of RCC are 

readily distinguishable with gene expression profiling (Higgins et al. 2003; 

Takahashi et al. 2003; Yamazaki et al. 2003; Young et al. 2001). These 

results support the intuitive hypothesis that each subtype has its own 

individual biological features, clinical behavior, and, by extension, unique 

sensitivity to therapy. Although the discriminatory ability of gene expression 

profiling makes it potentially an excellent diagnostic tool, from a practical 

perspective the technology is currently not readily accessible to many 

pathologists in clinical practice. In RCC pathology, microarrays have already 

been instrumental in discovering new immunohistochemical markers for 

distinguishing the different subtypes. For example, Yamazaki et al. (Yamazaki 

et al. 2003) profiled several histologic subtypes of RCC and identified c-kit as 

being up-regulated in chromophobe RCC, and our group identified the 

following potential markers for the different histologic subtypes: glutathione S-

transferase α for clear cell RCC, α-methylacyl racemase for papillary RCC, 

carbonic anhydrase II for chromophobe RCC, and K19 for transitional cell 
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carcinoma (Takahashi et al. 2003). These studies represent a direct effort to 

enhance the practice of pathology through the use of microarray technology.  

Gene expression profiling is not limited to tumour tissue. Interestingly, 

Twine et al. (Twine et al. 2003) profiled peripheral blood mononuclear cells 

(PBMCs), instead of tumour tissue, from RCC patients and healthy volunteers 

and demonstrated that these expression profiles could distinguish the PBMCs 

of RCC patients from those of healthy volunteers. Although the biological 

significance of the identified discriminatory genes is uncertain, these 

preliminary findings are of considerable interest, because the authors indicate 

that their ongoing studies suggest that expression profiling of PBMCs can 

distinguish RCC patients from patients with other types of solid tumours. It is 

possible that additional work may establish the presence of disease-specific 

gene sets in PBMCs.  

Refining prognostic systems to more accurately predict patient 

outcomes and thereby guide more effective treatment decisions is an ongoing 

process. To date, key prognostic factors identified include TNM staging, 

tumour grade, functional status, and various biochemical assessments. 

Integrated prognostic systems have been developed by several groups 

combining clinical and pathological data to better stratify patients and improve 

prognostic power(Gettman et al. 2001; Motzer et al. 1999; Zisman et al. 

2002). Further integration of molecular markers defined by expression and 

proteomic profiling into these prognostic systems is likely to further increase 

prediction accuracy.  
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Our group initially reported a pilot study in which 29 specimens of clear 

cell RCC with patient-matched normal tissue were profiled with cDNA 

microarrays(Takahashi et al. 2001). In this study, unsupervised clustering 

demonstrated two subsets of tumours, with clear segregation by cause-

specific survival at 5 years. Approximately 40 genes were identified that 

discriminated between these two groups. These results suggest that there are 

two distinct groups of clear cell RCC that vary in aggressiveness. A major 

limitation of this study was the relatively small number of cases, resulting in 

the inability to externally validate the results. However, the prediction 

accuracy of 5-year survival by using microarrays exceeded that of staging, 

and accurate cross-validated predictions were obtained for patients with 

clinically indolent metastatic RCCs and clinically aggressive localized RCCs, 

which suggested that the prognostic signature was not confounded by 

metastasis. In view of the relatively small numbers of this study, we believe 

that this study should be considered preliminary, and we have sought to 

expand this study here. In particular, there is a goal of identifying high-risk 

patients with localized RCC for early systemic therapy. It is plausible that 

expression profiling will actually result in individually tailored therapeutic 

regimens in the near future. 

 

MICROARRAY PLATFORM 

The Affymetrix GeneChip platform which is used primarily here is an 

high-density oligonucleotide expression array platform. A unique gene is 
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represented by multiple such probe sets on the Affymetrix chip, with probe 

pairs comprising perfect match (PM) and mismatch (MM) probes. The PM 

probes are designed to specifically complement a 25 bp sequence in the 

target gene; the MM probes are identical to the PM probes save for a single 

base pair change in the centre position. Mismatches are supposed to 

represent non-specific hybridization. As is evident, to analyze GeneChip data, 

the probe-level preprocessing needs to be considered carefully. The four 

steps include background correction (subtraction of nonspecific background), 

normalization (reduction of non-biological signal and equalization of 

intensities across chips), PM correction (subtraction of non-specific 

hybridization) and summarization. Multiple methods exist for summarization, 

including the Affymetrix Microarray Suite (MAS 5.0) (Hubbell et al. 2002). 

Several approaches have been proposed to improve this conventional 

method, including  Model Based Expression Index (MBEI) (Li and Wong 

2001) and the Robust Multi-array Average (RMA) (Irizarry et al. 2003). 

Although RMA is used most commonly in this thesis, there are other methods 

developed such as Factor Analysis for Robust Microarray Summarization 

(FARMS) (Hochreiter et al. 2006). Each method takes a different approach 

towards summarization, but the goals are similar – to generate improved 

methods of gene expression evaluation while accounting mathematically for 

non-biological flaws and bias in data acquisition. 
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SIGNIFICANCE ANALYSIS OF MICROARRAYS 

 Advanced statistical methods are commonly used in this thesis. The 

method best known as SAM, or Significance Analysis of Microarrays (Tusher 

et al. 2001), was developed at Stanford for the identification of genes with 

statistically significant changes in expression, by evaluating a set of gene-

specific t tests. It is crucial to note that while cluster, or unsupervised analysis 

may identify specific classes of gene expression, identification of 

corresponding discriminating genes may be challenged by the large number 

of transcripts evaluated, resulting in a distinct false-discovery rate (FDR). 

SAM estimates FDR by first assigning each gene a score based on its 

change in gene expression relative to the standard deviation of repeated 

measurements for that gene. The FDR is estimated by analyzing 

permutations of the measurements, and the threshold for this can be adjusted 

to calculate varying FDRs for each set. This has a distinct advantage over the 

Bonferroni method, which assumes independence of the different tests, which 

is clearly an invalid assumption resulting in an overly conservative estimate. 

Other methods outside those discussed here include the step-down 

correction method, which permits dependent tests (Westfall et al. 2002). For 

this thesis, SAM was selected for supervised analysis primarily because of 

availability and ease; alternatives such as LIMMA(Smyth 2004) (Linear 

Models for Microarray Data) are certainly possible alternatives. LIMMA is also 

implemented in R, and is used to create and test linear models for microarray 

data. A moderated t-statistic is used to evaluate the average difference in log 
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expression levels for each gene; the t-statistic is generated by the average 

log ratio divided by a derived standard error. Several multiple comparison 

procedures may be used to control for the resulting FDR. 

 

SPECIFIC AIMS (MOLECULAR MODELS) 

To evaluate the molecular profiles of three primary subtypes of RCC – 

clear cell RCC, papillary RCC and chromophobe RCC in an unbiased fashion 

using high-throughput gene expression profiling technology to obtain 

validated clinical and mechanistic insights into diagnosis, prognosis and 

pathogenesis. The techniques used here to supplement the high throughput 

expression profiling include regional gene expression bias determination, high 

throughput single-nucleotide polymorphism profiling and protein expression, 

using immunohistochemistry. This would be in the context of correlating a 

molecular phenotype with clinical outcomes. These outcomes include 

histological discrimination / recognition, relapse and most importantly survival 

and prognosis.  

 

 

 



 71

CLEAR CELL RENAL CELL CARCINOMA 

Considering the pathological and clinical issues for clear cell RCC discussed 

in Overall Background and Background (Molecular Models), our goal was to 

use gene expression profiling as a promising adjunct for cancer diagnosis and 

prognosis to identify prognostic predictors and gene expression programs 

during both primary and relapsed stages of RCC.  

METHODS 

SUBJECTS AND STUDY DESIGN 

A total of 92 primary tumour and 25 metastatic clear cell RCC tissue 

specimens from independent patients operated on in 8 centers (6 in USA, 2 in 

Japan) between 1989 and 2002 were obtained.  Japanese centres were 

University of Tokushima and University of Kitasato. US Centres included 

University of California Los Angeles,  Spectrum Health Grand Rapids, Detroit 

Wayne State University, Johns Hopkins University, University of Chicago, and 

Baylor College. Primary tumour tissue samples were acquired from patients 

diagnosed with sporadic clear cell RCC with at least two years’ follow-up 

following nephrectomy as available. Metastatic tumour tissue samples were 

acquired from patients with a history of localized clear cell RCC, who had 

relapsed with metastases after primary nephrectomy as available. These 

samples represented contributions from institutional tissue banks to the Van 

Andel Research Institute. 12 non-neoplastic kidney samples from unrelated 

patients were also obtained as controls for regional expression bias analysis; 
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these are the same 12 controls for regional expression bias used for the other 

microarray studies in other subtypes in this thesis. 

Written informed consent for analysis of clinical samples was obtained 

from all patients, and all IRB boards of participating institutions approved the 

study. Tumour tissue was flash frozen in liquid nitrogen immediately after 

nephrectomy and stored at –80°C. Portions of the tumours were fixed in 

buffered formalin. Each sample was confirmed by pathologic analysis and 

anonymized prior to the study. A portion of the tumour sample was frozen in 

liquid nitrogen immediately after surgery and stored at –80˚C. Total RNA was 

isolated from the frozen tissues using Trizol reagent (Invitrogen, Carlsbad, 

CA). This was subsequently purified with a RNeasy kit (Qiagen, CA), and 

quality was assessed on denaturing gel electrophoresis. Representative 

tissue sections of RCC were cut and stained with hematoxylin-eosin for 

confirmation of histological diagnosis and confirmation of tumour tissue 

content (>70%). All samples were examined by a central expert 

uropathologist. Clinicopathologic information was derived by review of 

pathologic, radiologic, and case notes by individual clinicians. Tumours with 

sarcomatoid change were classified as grade 4 tumours. Tumour size was 

defined as the maximum tumour dimension on direct pathological 

measurement. Patient follow-up status was assessed by directly contacting 

patients where possible, or at routine clinical follow-up. 

An a priori external validation approach was used (Figure 4), where samples 

from Japan were designated as the training set (n=33) and those from the 
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USA as the test set (n=59). The predictor was derived by 2-means clustering 

followed by application of nearest shrunken centroids(Tibshirani et al. 2002) 

for optimal derivation. The choice of a 2-means clustering approach was 

determined by previous work reporting there to be two molecular classes for 

clear cell RCC (Takahashi et al. 2001). For supervised analysis and 

hypothesis generation, the 92 oligonucleotide profiles were divided into 2 

predicted classes based on the prognostic gene predictor. 2260 

discriminating transcripts, corresponding to a delta of 3.0 with a FDR of 

approximately 0.001%, was selected for pathway analysis. In order to test this 

predictor across array platforms, we employed the following strategy to 

assess coexpression across different microarray platforms and hybridization 

designs, since differing data structures preclude direct application of the 

oligonucleotide predictor to two-channel spotted cDNA data. Accordingly, we 

tested our predictor in the complete microarray dataset of a Stanford dataset 

of Swedish patients with clear cell RCC (GEO GSE3538) (n=177) (hereafter 

referred to as the Stanford dataset). (Zhao et al. 2006) We identified well-

measured (<50% missing data) expression values of matching cDNA clones. 

K-nearest neighbour imputation (10 neighbours, largest block of 1,500 

transcripts) was used to impute remaining missing values and hierarchical 

clustering was applied on the data. Imputation was required to avoid omission 

of samples. Of genes overlapping the oligonucleotide predictor and the 

Stanford dataset, only 2 of 20 genes in the 177 sample dataset had 
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micrograms of total RNA was used to prepare antisense biotinylated RNA. A 

subset of cases were spiked with external poly(A) RNA controls. Synthesis of 

single-stranged and double-stranded cDNA was done with the use of T7-

oligo(dT) primer (Affymetrix). In vitro transcription was done using Enzo 

Bioarray Transcript Labeling kit (Enzo, Farmingdale, NY). The biotinylated 

cRNA was subsequently fragmented and 10 micrograms were hybridized to 

each array at 45°C ovr 16 hours. We used the HGU133 Plus 2.0 GeneChip, 

containing 54,675 probe sets, representing approximately 47,000 transcripts 

and variants. Scanning was done in a GeneChip 3000 scanner. Quality 

indices reviewed for all samples included mean percentage present, mean 

background, mean scaling factor and a mean GADPH 3’/5’ ratio. All clinical 

and microarray data for published data has been uploaded to the Gene 

Expression Omnibus.  

STATISTICAL ANALYSES 

Statistical analyses were performed with R, utilizing packages from the 

Bioconductor project(Gautier et al. 2004; Gentleman et al. 2004) Packages 

used include affy (Gautier et al. 2004), survival, and impute. The default 

significance threshold was 0.05. For pre-processing of the Affymetrix data, 

the robust multichip average (RMA) algorithm was the default method used to 

perform background adjustment, quantile normalization and summarization.  

All survival analyses were performed by fitting the data to a Cox proportional-

hazards model, and the end point of interest was disease-specific mortality. 

Overall survival time in all patient groups was defined as the time from initial 
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nephrectomy to the date of death or the last known date of contact with 

provider. Nagelkerke’s R2 values have been used to report goodness-of-fit, 

where a value of 1 represents a perfect fit. Where appropriate, bivariate 

survival analysis was performed, the utility of the predictor being assessed 

after adjusting for clinicopathologic parameters singly; this approach was 

selected rather than multivariate analysis based on available event numbers. 

Case deletion was used for missing data. Adjusted variables included age, 

gender, tumour stage, metastatic status, tumour size, tumour grade, Eastern 

Clinical Oncology Group (ECOG) performance status and UCLA Integrated 

Staging System (UISS) status. Significance levels in all cases were calculated 

with the likelihood ratio test. 

Regional expression biases are genetic intervals where gene 

expression is coordinately changed, corresponding well with cytogenetic 

aberrations detected by comparative genomic hybridization. We inferred 

cytogenetic profiles for the tumours through the use of a refinement of the 

comparative genomic microarray analysis (CGMA) risk model, which predicts 

chromosomal alterations based on regional changes in expression. Briefly, for 

each measured gene, the gene expression value was normalized such that 

the average gene expression value in the nondiseased samples was 

subtracted from the tumour-derived gene expression value. Relative 

expression profiles (R) were generated from the single-channel tumour 

expression profiles (T) and the mean expression values of the 12 single-

channel kidney cortical expression profiles (N), such that R = log2(T) – log2(N). 
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The improved resolution-comparative genomic microarray analysis (IR-

CGMA) risk model that we had previously reported was applied to achieve 

this.  Chromosomal abnormalities was predicted as implemented in the reb 

package (Furge et al. 2005).  

 

PATHWAY ANALYSIS 

For pathway analysis, the Ingenuity Pathways database version 3.0 

(Ingenuity Systems, Mountain View, CA) was used. A list of transcripts was 

generated using significance analysis of microarrays (SAM) based on a 2-

class unpaired analysis with 1000 permutations.  

 

IMMUNOHISTOCHEMISTRY 

Immunohistochemistry (IHC) was performed using CD31. CD31 is a 

transmembrane protein expressed in vascular endothelium, and CD31 

immunostaining is commonly used for assessment of microvessel density 

(MVD). 45 formalin-fixed paraffin-embedded tissue specimens from patients 

operated between 1993 and 2002 were obtained from 3 centers. Automated 

immunostaining was performed with the murine anti-human monoclonal 

antibody, clone JC/70A (M0823) (30 min incubation at room temperature). 1 

slide was stained per specimen. We employed a modified strategy to 

maximize correlation between mRNA expression in bulk tissue and CD31 

immunostaining. 9 fields (each 0.2596 mm2 in size) at 200X magnification 

were captured (Spot Insight Camera, Nikon Eclipse E600) in a 3 x 3 
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arrangement with the widest possible distribution across each slide, avoiding 

areas of necrosis. MVD was calculated as the mean count over the 9 images. 

Interactive image analysis was performed using Cytometrix, an in-house 

program developed for quantitative analysis of histologic images. 

Immunostaining, image capture and analysis were performed independently 

by blinded individuals. A countable microvessel was defined as a stained 

endothelial cell cluster with or without a lumen distinct from other cell clusters. 

Contiguous or anastomosing structures were considered as one microvessel. 
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RESULTS AND DISCUSSION 

Baseline characteristics of the patients of the Japanese and the US 

cohort are presented in Table 8 (following page) 

 

Prognostic predictors were identified, externally validated and 

demonstrated to be independent of standard clinicopathologic 

parameters. We defined a prognostic oligonucleotide predictor (Table 9, pg 

81) using unsupervised (2-means clustering) methods in Japanese patients 

(R2 = 0.276, p=0.003) (Figure 10, pg 83), which successfully predicted 

survival in a separate test set comprising tumours from patients from 6 US 

centers (R2 = 0.236, p=0.0001) (Figure 10, pg 83). Respective expression 

data is shown (Figure 11A-B, pg 85). Bivariate analysis in the test set 

demonstrated that the predictor remained significant after adjusting for 

standard clinicopathologic parameters, including the UCLA Integrated Staging 

System (UISS), an aggregate variable of stage, grade and functional status 

(Table 10, page 82). 

 

The prognostic predictor demonstrated utility in patients with 

metastasis at relapse. We demonstrated utility for the predictor from the 

primary tumour data set in metastatic clear cell RCC samples resected from a 

variety of distant sites after relapse (R2 = 0.228, p=0.03) (Figure 10, pg 83).  
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Table 8 : Individual patient demographic data for the clear cell RCC dataset 
Country   Japan USA 
Number of samples   33 59 
Age Range 39 – 80 34 - 82 
  Median 62 62 
Gender – n (%) Male 24 (73) 36 (61) 
  Female 9 (27) 23 (39) 
TNM stage – n (%) 1 15 (45) 20 (34) 
  2 4 (12) 5 (8) 
  3 7 (21) 19 (32) 
  4 7 (21) 15 (25) 
Tumour T stage – n (%) 1 17 (52) 22 (37) 
  2 8 (24) 8 (14) 
  3 8 (24) 28 (4) 
  4 0 (0) 1 (2) 
Tumour M stage – n (%) 0 26 (79) 44 (75) 
  1 7 (21) 15 (25) 
Tumour Grade – n (%) 1 13 (39) 2 (3) 
  2 13 (39) 24 (41) 
  3 7 (21) 24 (41) 
  4 0 (0) 9 (15) 
Tumour size – cm (%) Range  2.5 – 17 1.4 - 19.5 
  Median 5.2 6 
  Unknown 2 3 
ECOG PS – n (%) 0 20 (71) 28 (47) 
  1 7 (25) 28 (47) 
  2 1 (4) 3 (5) 
  Unknown 5 0 
UISS staging – n (%) 1 11 (39) 9 (15) 
  2 11 (39) 26 (44) 
  3 2 (7) 7 (12) 
  4 4 (14) 16 (27) 
  5 0 (0) 1 (2) 
  Unknown 5 0 
Post-nephrectomy 
treatment  – n (%) 

Palliative 
immunotherapy 5 (15) 12 (20) 

Immunotherapy response  Complete response  0  0  
  Partial response 0  2  
  Stable disease 1  1  
  Progressive disease 4  9 

Patient status – n (%) 
Deaths (cancer 
related) 9 (27) 22 (37) 

 Deaths (other causes) 4 (12) 2 (3) 
 Alive with disease 3 (9) 7 (12) 
 No evidence disease 17 (51) 28 (47) 
Follow-up duration(yr) Mean 5.5  2.9 
 Range 0.25 – 11.7 0.05 – 9.3 
ECOG PS: Eastern Cooperative Oncology Group Performance Status  
The total percentage count for each category may not total to 100 due to rounding.  
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Table 9 : Prognostic predictor of transcripts in clear cell RCC 
Affymetrix Probe 
ID Gene symbol Gene title 

Good prognosis 
score * 

Poor prognosis 
score * 

238178_at EST Transcribed locus 0.4703 -0.4997
238066_at RBP7 retinol binding protein 7, cellular 0.2399 -0.2549
228434_at BTNL9 butyrophilin-like 9 0.2397 -0.2547
217177_s_at EST CDNA FLJ13658 fis, clone PLACE1011567 0.1511 -0.1606

204368_at SLCO2A1 
solute carrier organic anion transporter family, member 
2A1 0.147 -0.1561

227874_at EST MRNA; cDNA DKFZp586N0121 0.131 -0.1392
219436_s_at EMCN endomucin 0.1264 -0.1343
205478_at PPP1R1A protein phosphatase 1, regulatory (inhibitor) subunit 1A -0.124 0.1317
219304_s_at PDGFD platelet derived growth factor D 0.1238 -0.1316
228575_at FNDC6 fibronectin type III domain containing 6 -0.1133 0.1204
230250_at PTPRB Protein tyrosine phosphatase, receptor type, B 0.1086 -0.1153
204273_at EDNRB endothelin receptor type B 0.1035 -0.1099
238649_at PITPNC1 phosphatidylinositol transfer protein, cytoplasmic 1 0.0899 -0.0956
205651_x_at RAPGEF4 Rap guanine nucleotide exchange factor (GEF) 4 0.0896 -0.0952
204271_s_at EDNRB endothelin receptor type B 0.0894 -0.095
205357_s_at AGTR1 angiotensin II receptor, type 1 0.0858 -0.0911
202242_at TSPAN7 tetraspanin 7 0.0796 -0.0846
209047_at AQP1 aquaporin 1 (Colton blood group) 0.0724 -0.0769
201150_s_at TIMP3 TIMP metallopeptidase inhibitor 3  0.0718 -0.0763
203934_at KDR kinase insert domain receptor  0.06 -0.0638
221031_s_at APOLD1 apolipoprotein L domain containing 1 0.0507 -0.0538
219315_s_at C16orf30 chromosome 16 open reading frame 30 0.0502 -0.0534
230645_at FRMD3 FERM domain containing 3 0.0449 -0.0477
224215_s_at DLL1 delta-like 1 (Drosophila) 0.0428 -0.0455
209147_s_at PPAP2A phosphatidic acid phosphatase type 2A 0.0389 -0.0413
208096_s_at COL21A1 collagen, type XXI, alpha 1 0.036 -0.0383
205846_at PTPRB protein tyrosine phosphatase, receptor type, B 0.0341 -0.0363
218723_s_at RGC32 response gene to complement 32 0.0311 -0.0331
207542_s_at AQP1 aquaporin 1 (Colton blood group) 0.0191 -0.0203
206701_x_at EDNRB endothelin receptor type B 0.0187 -0.0199
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238169_at EST Transcribed locus 0.0141 -0.015
1560359_at PELO Pelota homolog (Drosophila) 0.0072 -0.0077
1555725_a_at RGS5 regulator of G-protein signalling 5 0.0065 -0.0069
222717_at SDPR serum deprivation response  0.0053 -0.0056
205150_s_at KIAA0644 KIAA0644 gene product 0.0045 -0.0048
212230_at PPAP2B phosphatidic acid phosphatase type 2B 0.0035 -0.0037
227372_s_at BAIAP2L1 BAI1-associated protein 2-like 1 -9.00E-04 9.00E-04

 
 
* Class discriminant scores for each prognostic group 
 
 
 
 
 
Table 10 : Univariate adjustment of survival predictor 

Adjusted 
variable 

Adjusted hazard 
ratio of predictor 

95% 
confidence 
intervals p-value  

Unadjusted 6.25 2.10-18.6
Age 6.44 2.15-19.3 0.0001
Sex 6.20 2.06-18.6 0.0002
Stage 3.28 1.01-10.6 0.03
Grade 4.81 1.57-14.7 0.002
Metastatic 
Status 

3.95 1.22-12.7 0.004

Size (>4 cm)* 4.70 1.50-14.8 0.005
ECOG PS 6.48 2.15-19.5 0.0001
UISS 4.74 1.51-14.9 0.002
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Matching genes in the prognostic predictor demonstrated utility 

in an external dataset. Although only 2 of 37 transcripts in our 

oligonucleotide predictor were a priori determined as being of sufficient quality 

in the Stanford spotted cDNA dataset, being PPAP2B (T71976) and EDNRB 

(H28710) (Figure 11, following page), hierarchical clustering of the sample 

data with these 2 genes generated 2 distinct prognostic clusters (R2 = 0.05, p 

= 0.005) (Figures 11, following page). Nonetheless, it is clear from the much 

reduced R2 that using these 2 genes only would certainly result in a poorer 

prediction relative to a potential full transcript predictor. 

Prognostic chromosomal aberrations were inferred from the 

expression profiles We inferred chromosomal aberrations associated with 

these distinct molecular subtypes of clear cell RCC with CGMA (Figure 11E, 

following page). This technique identified distinct regional expression biases 

corresponding to common cytogenetic abnormalities in clear cell RCC(Kovacs 

and Brusa 1988), such as deletions of chromosomes 3p, 6q, 9pq and 14q, as 

well as amplifications of  chromosomes 1, 3q, 5q, 8q and 12. These profiles 

were consistent with previous reports of associations between deletions of 

9pq and 14q and poor prognosis(Meloni-Ehrig 2002). Other known 

cytogenetic aberrations not previously linked to survival, such as amplification 

of 1q, 3q and deletion of 6q, were highlighted in our study as being of 

potential prognostic value. 
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High expression of VEGF-signaling pathway and increased MVD counts are 

associated with good outcomes. We noted during pathway analysis that high 

expression of many genes involved in angiogenesis, hypoxia-response and 

endothelial cell formation optimally predicted longer patient survival. To 

further confirm this, we examined expression of the specific genes involved in 

the canonical VEGF signaling pathway within the 2260 differentially 

expressed transcripts found using significance analysis of microarrays, which 

confirmed this observation (Figure 12, following page). We chose to evaluate 

this hypothesis using IHC to examine microvessel counts. Conventional CD31 

immunostaining yielded a median MVD of 65 vessels / field for 45 tumour 

samples. Using this as a cutoff, univariate analysis demonstrated that 

increased MVD was significantly correlated with prolonged survival (Figure 

14B-D), with R2 of 0.155 (p-value= 0.01).  

 

A pro-angiogenic phenotype is associated with longer survival. We have 

identified externally validated predictors of survival, which correspond to 

distinct molecular subtypes of clear cell RCC. Our results indicate that gene 

expression profiling is a promising adjunct for survival prediction in clear cell 

RCC patients. For clear cell RCC, the uncovered relationship between 

expression of genes associated with hypoxia response, angiogenesis and 

survival (Figure 12) is difficult to reconcile with current paradigms
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of cancer biology. This may represent the most interesting biological insight of 

this study. This surprising finding has been hinted at previously in an 

interesting minority of IHC studies (6 of 16 studies) correlating angiogenesis 

and patient survival in clear cell RCC, as contrasted with most other cancers 

where a consensus exists that hypoxia and angiogenesis are directly 

correlated with tumour aggressiveness(Weidner 1998; Weidner 1999). 6 

studies have shown a direct correlation between increasing MVD and 

prolonged survival in RCC(Delahunt et al. 1997; Herbst et al. 1998; Imao et 

al. 2004; Rioux-Leclercq et al. 2001; Sabo et al. 2001; Sandlund et al. 2006), 

5 studies have shown an inverse relationship(Dekel et al. 2002; Joo et al. 

2004; Nativ et al. 1998; Paradis et al. 2000; Yoshino et al. 1995) and 5 

studies have shown no significant correlation(Gelb et al. 1997; Imazano et al. 

1997; MacLennan and Bostwick 1995; Schraml et al. 2002; Slaton et al. 

2001). Our results are consistent with previous reports that RCC vascularity is 

correlated with mRNA expression of HIF-2 (Turner et al. 2002) and 

VEGF(Takahashi et al. 1994), both optimal predictors of longer survival in our 

study. The relationship we observe between tumour aggressiveness and 

angiogenesis suggests a hitherto unanticipated tumour biology underlying 

clear cell RCC. 

 

A biological hypothesis explaining the apparently paradoxical 

relationship between angiogenesis and survival. It is possible that this 

interesting correlation between hypoxia response, angiogenesis and 
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prognosis (Figure 3) may be related to an angioblastic origin of clear cell 

RCC, where different clear cell RCC prognostic groups correspond to various 

clonal subtypes at different endpoints of misdirected differentiation arrest. The 

dominant influence on the expression of genes involved in hypoxic response 

and angiogenesis may thus be similar to the processes driving haematopoetic 

lineage differentiation. There is circumstantial evidence supporting this 

hypothesis. A remarkable morphologic resemblance exists between clear cell 

RCC and haemangioblastoma, both hallmarks of the VHL syndrome. Both 

tumours show immunoreactivity consistent with angioblastic lineage 

arrest(Vortmeyer et al. 2003). Embryonic kidney cells are pluripotent and may 

function as intrinsic, vasculogenic angioblasts that synthesize microvessels 

rather than kidney tissue(Gering et al. 1998; Robert et al. 1996). 

 

Clinical implications of study for therapeutic trials for clear cell 

RCC. There is considerable current interest in clear cell RCC as a model for 

targeted therapy interrupting angiogenesis and hypoxia-response 

pathways(Rini et al. 2009). The results of Phase III trials of multi-targeted 

kinase inhibitors have been announced(Escudier et al. 2007; Motzer et al. 

2007; Sternberg et al. 2010), and various agents aimed at blocking HIF 

mediated pathways are also in development. This molecular prognostic 

predictor is likely to be relevant to Phase II and III trial data interpretation, 

especially where novel anti-angiogenesis or anti-HIF therapies have been 

employed. Our hypothesis of an angioblastic origin of RCC, a conceptual 



 90

insight paved by expression profiling, opens a new realm of speculation, 

especially with regards to therapy. Further, in view of the unexpected 

correlations between markers of hypoxia, angiogenesis and prognosis in clear 

cell RCC, it will be helpful to determine if good- and poor-prognosis tumours 

exhibit differential responses to anti-angiogenesis and anti-HIF agents. Our 

results also indicate that with appropriate stratification, adjuvant therapy 

should be investigated in individuals with poor-prognosis but apparently 

localized tumours whom are likely to experience disease recurrence following 

primary surgery. 

The prognostic subtypes are clonally distinct. A previous 

microarray study has suggested a metastatic expression signature encoded 

in the majority of cancer cells of a primary tumour(Ramaswamy et al. 2003). 

Given the successful predictions of unsupervised analysis independent of 

clinico-pathologic variables, an interpretation that fits our data more closely is 

that biological aggressiveness in clear cell RCC, rather than metastatic ability 

per se, is established by an early clonal event in tumour progression. Results 

from our test set B, comprising 25 samples of metastatic tumours, clearly 

highlight that metastatic status and biological aggressiveness are 

independent, since several metastatic tumours were also classified as good-

risk tumours. This phenomenon may have been particularly clear in RCC, 

which is well known for a proportion of highly indolent metastatic cancers. As 

such, our results support the existence of at least 2 molecularly distinct clear 

cell RCC clonal subtypes with distinct cytogenetic aberration patterns, each 
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subtype growing and metastasizing at different rates. We confirmed a direct 

prediction of this hypothesis, which was that expression profiles from tumour 

tissue separated from primary tumour by space (metastasis) and time 

(relapse) should be expected to exhibit the same correlation between 

expression signature and survival, as well as similar cytogenetic aberrations. 

These results account for well-known clinical observations where metastatic 

clear cell RCC may be startlingly indolent in a small group of untreated 

patients(Hughes et al. 2000) (Zisman et al. 2001). Inevitably, the question 

arises if this conclusion may be extrapolated to other cancers. An in vitro 

study provides support for this concept by demonstrating an independent 

gene signature for metastasis superimposed upon a poor prognostic gene set 

in a breast cancer cell line(Kang et al. 2003). In establishing that these 

subtypes are preserved over metastasis and relapse, this result emphasizes 

the well-known clinical distinction between tumour aggressiveness and 

metastatic potential per se. 

 

Other prognostic microarray studies of clear cell RCC. The gene 

predictors identified here are externally validated, consistent across array 

platforms and overlap each other. We were able to demonstrate prognostic 

utility for overlapping genes in our predictor and the Stanford dataset of 

Swedish patient(Zhao et al. 2006). No overlap was found between the 

prognostic predictors identified here and a separate microarray study in 

metastatic RCC(Vasselli et al. 2003). This discordance may be a result of the 
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inclusion of non-clear cell RCC histologies in this particular study as well as 

specimen quality concerns. However, concordant prognostic predictions 

among discordant gene predictors are also known(Fan et al. 2006). One 

interesting study (Jones et al. 2005) has sought to define a group of 

‘metastasis-related genes’ in kidney cancer by examining a range of 

histologies of RCC. We have previously speculated that prognostic subtype 

independent of metastasis forms a dominant contribution to variance in renal 

cell carcinoma gene expression(Takahashi et al. 2001). One group has used 

unsupervised analysis to study a small group of tumours, linking expression 

profiles to “tumour aggressiveness” (Kosari et al. 2005), defined by the group 

using a composite index of pathologic scoring, relapse and death.   

 

LIMITATIONS 

Although we were able to demonstrate that our predictor remained 

useful even after adjustment for single variables, including composite 

variables such as the UISS incorporating stage, grade and functional status, 

and that it has remained useful in externally generated datasets, ideally a full 

term model would permit a more measured assessment. Nonetheless, given 

that the generation of this data was through unsupervised analysis, the result 

likely represents a biological reality that clinical parameters are a proxy 

for(Iliopoulos et al. 1996). We were unable to use the Karakiewicz nomogram 

or the Leibovich score due to the absence of data on symptoms and 



 93

histologic tumour necrosis; it may well have resulted in a different result on a 

corresponding regression model. 

Secondly, the relatively low number of individuals that received 

immunotherapy in each group did not permit multivariate analysis by 

treatment. Nonetheless, given the strength of the predictor in predicting 

survival adjusted by metastatic status, and the documented modest benefits 

of immunotherapy in RCC (Atkins et al. 2004) it is unlikely that our 

conclusions will be modified to a major extent. Thirdly, many of the patients in 

our dataset did not receive targeted therapy, which is the current standard of 

care. It may be argued that it is difficult to do a study on patients on targeted 

therapy using overall survival or CSS as an outcome, as the use of these 

novel agents only became widespread in the last 3 years. There is however 

good data that the clinical prognostic factors that determine outcomes in 

metastatic cancer in the pre-targeted therapy era still drive outcomes in the 

targeted therapy era. 

Thirdly, CGMA as an analytic tool remains fundamentally exploratory, 

focused on virtual karyotyping which requires further definitive validation by 

cytogenetic approaches, particularly for the copy number aberrations 

identified. The implications of CGMA results, particularly in interaction with 

pathway analysis and the generation of expression profile predictors, remain 

uncertain, and more research is needed.  
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CONCLUSION 

In summary, we have identified clinically useful prognostic gene 

predictors for clear cell RCC using gene expression profiling. Increased 

expression of genes classically associated with the VEGF-signaling pathway, 

angiogenesis and the hypoxic response predicted longer patient survival. 

Matching genes of our predictor have prognostic value in a public data set 

that was externally generated. The expression signatures predicted survival in 

metastatic tumour samples resected following patient relapse, leading to a 

speculation that the evolution of subtypes with varying biological 

aggressiveness, propensities for metastasis and cytogenetic aberration 

patterns is determined in early clonal events during tumour progression. A 

hypothesis paved by genomic profiling raises the possibility of an angioblastic 

origin for clear cell RCC. 
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PAPILLARY RCC 

Considering the pathological and clinical issues for papillary RCC discussed 

in Overall Background and Background (Molecular Models), our goal was to 

use gene expression profiling as a promising adjunct for cancer diagnosis and 

prognosis to search for distinct molecular subtypes of papillary RCC that were 

both biologically and clinically relevant. We also sought to identify novel 

immunohistochemical markers for each entity. 

METHODS 

SUBJECTS AND STUDY DESIGN 

A total of 43 primary tumour specimens with a diagnosis of papillary 

RCC after routine pathologic review at 5 medical centers were initially 

collected following nephrectomy. Participating centres were University of 

Chicago, Northwestern University, Spectrum Health Grand Rapids, Johns 

Hopkins University, and University of California Los Angeles. All tumour 

specimens were collected from participating institutions in the United States, 

except one case from Japan. 12 non-neoplastic kidney samples were also 

obtained as controls; these are the same 12 controls for CGMA used for the 

other microarray studies in other subtypes. 

Written informed consent for analysis of clinical samples was obtained 

from all patients, and all institutional review boards of participating institutions 

approved the study. Tumour tissue was flash frozen in liquid nitrogen 

immediately after nephrectomy and stored at –80°C. Portions of the tumours 
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were fixed in buffered formalin. Each sample was confirmed by pathologic 

analysis and anonymized prior to the study. A portion of the tumour sample 

was frozen in liquid nitrogen immediately after surgery and stored at –80˚C. 

Total RNA was isolated from the frozen tissues using Trizol reagent 

(Invitrogen, Carlsbad, CA). This was subsequently purified with a RNeasy kit 

(Qiagen, CA), and quality was assessed on denaturing gel electrophoresis. 

Representative tissue sections of RCC were cut and stained with 

hematoxylin-eosin for confirmation of histological diagnosis and confirmation 

of tumour tissue content (>70%). All samples were examined by a central 

expert uropathologist. Clinicopathologic information was derived by review of 

pathologic, radiologic, and case notes by individual clinicians. Tumours with 

sarcomatoid change were classified as grade 4 tumours. Tumour size was 

defined as the maximum tumour dimension on direct pathological 

measurement. Patient follow-up status was assessed by directly contacting 

patients where possible, or at routine clinical follow-up.  

 

OLIGONUCLEOTIDE ARRAY PROFILING 

For oligonucleotide array gene profiling, we extracted and purified total 

RNA from homogenized samples using Trizol reageant (Invitrogen, CA) 

followed by RNeasy columns (Qiagen, CA) according to manufacturers’ 

recommendations. Oligonucleotide array gene profiling was performed using 

the manufacturer’s recommended protocol (GeneChip Expression Analysis 

Technical Manual, April 2003, Affymetrix, CA). Approximately 5-20 
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micrograms of total RNA was used to prepare antisense biotinylated RNA. A 

subset of cases were spiked with external poly(A) RNA controls. Synthesis of 

single-stranged and double-stranded cDNA was done with the use of T7-

oligo(dT) primer (Affymetrix). In vitro transcription was done using Enzo 

Bioarray Transcript Labeling kit (Enzo, Farmingdale, NY). The biotinylated 

cRNA was subsequently fragmented and 10 micrograms were hybridized to 

each array at 45°C ovr 16 hours. We used the HGU133 Plus 2.0 GeneChip, 

containing 54,675 probe sets, representing approximately 47,000 transcripts 

and variants. Scanning was done in a GeneChip 3000 scanner. Quality 

indices reviewed for all samples included mean percentage present, mean 

background, mean scaling factor and a mean GADPH 3’/5’ ratio (Median 

background was 73, median scaling factor was 3.06, and median GADPH 

3’/5’ ratio was 1.03, indicative of a high overall array and RNA quality).  All 

clinical and microarray data for published data has been uploaded to the 

Gene Expression Omnibus. The gene expression data can be obtained at the 

Gene Expression Omnibus (GSE2748). Because of the sample size (n=34), 

we used supervised analysis, with an internal validation approach. Principal 

component analysis was used to visualize the 34 expression profiles. 

Significance analysis of microarrays (SAM) (Tusher et al. 2001) based on two-

class unpaired analysis, assumption of unequal group variances, and 10,000 

permutations was used to derive a list of genes differentially expressed 

between tumour subclasses and ordered by relative fold change. For 

derivation of a small gene classifier, we used prediction analysis of 
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microarrays (PAM) (Tibshirani et al. 2002), a R implementation of nearest 

shrunken centroids methodology with 10-fold cross-validation over 30 gene 

thresholds and an offset percentage of 30%. Gene predictors corresponding 

to a minimum misclassification error were obtained, with class discriminant 

scores calculated for class 1 and 2 tumours. Two-tailed Student's t test and 

Fisher's exact testing was used to evaluate correlation between variables and 

tumour subclassification. For the purpose of this analysis, tumour grade and 

stage was classified into two categories corresponding to low grade or stage 

(1 and 2) versus high grade and stage (3 and 4).  

 

PATHWAY ANALYSIS 

For pathway analysis in the studies focusing on the molecular aspects 

of RCC, the Ingenuity Pathways database version 3.0 (Ingenuity Systems, 

Mountain View, CA) was used. A list of transcripts was generated using 

significance analysis of microarrays (SAM) based on a 2-class unpaired 

analysis with 1000 permutations. For the study focusing on chromophobe 

RCC and oncocytoma, KEGG pathway(Kanehisa et al. 2010) and gene 

ontology (GO) analysis of enriched gene sets was performed using 

hypergeometric tests available in the GOstats (Falcon and Gentleman 2007) 

package in Bioconductor after having identified unique genes with 

corresponding annotations.  For KEGG pathway analysis, the p-value 

threshold was 0.01.  For GO analysis, conditional testing was performed, and 
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the threshold for p was 0.001.  Molecular function, biologic process, and 

cellular component analyses were performed. 

 

STATISTICAL ANALYSIS 

Statistical analyses were done using R 2.0.1 (Ihaka and Gentleman 1996) 

using packages from the Bioconductor project. The Robust Multichip Average 

algorithm was used to perform preprocessing of the CEL files, including 

background adjustment, quartile normalization, and summarization. Principal 

component analysis was used to visualize the 34 expression profiles. 

Significance analysis of microarrays (SAM) based on two-class unpaired 

analysis, assumption of unequal group variances, and 10,000 permutations 

was used to derive a list of genes differentially expressed between tumour 

subclasses and ordered by relative fold change. We did pathway analysis on 

these genes using Ingenuity Pathway Analysis (Ingenuity Systems, Mountain 

View, CA), and enrichment of canonical pathways was assessed for 

significance by a hypergeometric 

algorithm that did not correct for multiple testing. For derivation of a small 

gene classifier, we used prediction analysis of microarrays (PAM), a R 

implementation of nearest shrunken centroids methodology with 10-fold 

cross-validation over 30 gene thresholds and an offset percentage of 

30%(Tibshirani et al. 2002). Gene predictors corresponding to a minimum 

misclassification error 

were obtained, with class discriminant scores calculated for class 1 and 2 
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Table 11 : Individual patient demographic data for papillary RCC dataset 

Patient ID Age (years) Gender 
Histological 
Classification 

Molecular 
Classification

Size 
(cm) 

TNM 
Stage M Stage Grade 

Patient 
status* Survival (Months) 

P 01 46 F Type 2B Class 2 15.2 4 1 3 NA NA 
P 02 59 M Type 1 Class 1 4.5 1 X 1 NA NA 
P 03 68 M Type 1 Class 1 4 1 X 2 NA NA 
P 04 32 M Type 2A Class 1 7 1 X 2 NA NA 

P 05 71 M 
Type 1 and 
2A Class 1 4.7 1 0 2 DOO 30 

P 06 70 M Type 1 Class 1 1.2 3 0 2 NED 26 
P 07 72 F Type 1 Class 1 3 1 0 2 DOO 8 
P 08 73 F Type 1 Class 1 3 1 0 2 NED 25 
P 09 84 F Type 1 Class 1 3.5 1 0 2 NED 27 
P 10 56 F Type 1 Class 1 14 3 0 2 NED 13 
P 11 56 M Type 1 Class 1 3.5 1 0 2 NED 13 
P 12 80 F Type 1 Class 1 2.5 1 0 2 NED 4 
P 13 64 M Type 1 Class 1 5.5 1 0 2 DOD 74 
P 14 44 M Type 1 Class 1 3.5 3 0 2 NED 95 

P 15 76 M 
Type 1 and 
2A Class 1 4.5 1 0 2 NED 58 

P 16 72 M Type 2B Class 2 10 3 0 4 DOD 17 
P 17 55 M Type 1 Class 1 5 3 0 2 NED 30 
P 18 71 F Type 2B Class 2 3 1 0 3 NED 32 
P 19 76 M Type 2B Class 2 5.7 3 0 3 NED 36 
P 20 71 M Type 1 Class 1 2.7 1 0 2 DOO 63 
P 21 80 F Type 2A Class 1 3.5 2 0 2 NED 66 

P 22 53 M 
Type 1 and 
2A Class 1 2.3 1 0 2 NED 61 

P 23 54 M Type 2B Class 2 8 4 0 4 DOD 12 
P 24 50 M Type 2B Class 2 11 3 1 3 DOO 37 
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P 25 44 M Type 2B Class 2 14 4 1 4 AWC 12 
P 26 75 M Type 2A Class 1 9 2 0 2 NA NA 

P 27 74 M 
Type 1 and 
2A Class 1 6 1 0 2 NED 24 

P 28 37 M 
Type 1 and 
2A Class 1 6 1 0 2 DOO 12 

P 29 43 M Type 1 Class 1 5 1 0 2 NA NA 
P 30 63 M Type 2A Class 2 6.9 3 0 2 DOO 34 
P 31 62 M Type 2B Class 2 6.8 4 1 3 DOO 4 
P 32 56 M Type 2B Class 2 6 4 1 3 DOD 16 
P 33 71 F Type 2B Class 2 15 4 1 3 DOD 29 
P 34 49 F Type 2B Class 2 15 4 1 3 DOD 9 
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We visualized the 34 expression profiles by principal component 

analysis. We noted overlap between histologic type 1 and 2 tumours, contrary 

to our expectation of distinct molecular subtypes (Figure 13, page 105). 

Tumours with mixed type 1 and 2 components (n = 5) grouped with type 1 

tumours. PAM with 10-fold cross-validation persistently classified three of four 

low-grade type 2 tumours with type 1 tumours over a wide range of shrinking 

gene thresholds. The only low-grade type 2 tumour that persistently classified 

with the high-grade type 2 tumours was P30 (the only tumour we were unable 

to personally evaluate histologically). These results supported a hypothesis 

that type 2 tumours were molecularly heterogenous. We analyzed the profiles 

based on this morphologic subtyping into two classes (class 1 corresponding 

to type 1, low-grade type 2, and mixed type 1/low-grade type 2 tumours and 

class 2 corresponding to high-grade type 2 tumours) from a molecular 

viewpoint. The first two principal components accounted for 95.7% of all 

variation, allowing for effective clustering. Visualization of the first two 

principal components now showed distinct differentiation between expression 

profiles of class 1 and 2 tumours, consistent with distinct tumour subclasses 

(Fig 15F). Transcripts (n = 796) (available online as Supplemental Data 

http://cancerres.aacrjournals.org/content/vol65/issue13/images/data/5628/DC

1/Supplementary_Table_1.xls) differentially expressed between class 1 and 2 

tumours were identified using SAM at delta of 1.8, with a false discovery rate 

(FDR) of 0.01.  
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We were able to identify multiple gene classifiers that effectively differentiated 

class 1 and 2 tumours at 97% accuracy at multiple shrinkage thresholds using 

PAM (between 7 and 3,881 transcripts) using nearest shrunken centroids 

methodology. We report here the seven-transcript predictor that achieved this 

accuracy (Table 12). Only the tumour of P30, initially reported as a type 2 

tumour with grade 2, which we were unable to confirm histologically, 

persistently classified as a class 2 tumour, rather than as a class 1 tumour, 

throughout these multiple shrinkage thresholds. 

 

Table 12 : The 7 transcript predictor discriminating Class 1 and 2 papillary RCC 
Probe ID Gene Description Class.1.score Class.2.score 

232151_at 
MRNA full length insert cDNA clone 
EUROIMAGE 2344436 0.1789 -0.3741

1566766_a_at 
MRNA full length insert cDNA clone 
EUROIMAGE 2344436 0.1419 -0.2967

204304_s_at prominin 1  0.1182 -0.2472
210298_x_at four and a half LIM domains 1 0.0164 -0.0342
201539_s_at four and a half LIM domains 1 0.0159 -0.0332
214505_s_at four and a half LIM domains 1 0.0101 -0.0211
205597_at chromosome 6 open reading frame 29 0.0044 -0.0092

* These class scores are linear discriminant scores for each class as described in the 
reference for significance analysis of microarrays in the text. 

 

 

We list the top 50 transcripts relatively upexpressed in each subclass (Table 

13) (this represents an arbitrary cutoff for presentation, and is not based on a 

p-value threshold) and show a hierarchical clustering of the tumour samples 

based on these 100 transcripts (Figure 14, page 111).
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Table 13 : Top 50 transcripts differentially expressed in Class 1 and 2 papillary RCC 
GENES UPEXPRESSED IN CLASS 1 papillary RCC           

Probe ID Gene Description D(i)* 
Standard 
deviation p-value q-value 

Fold-
Change** 

213456_at sclerostin domain containing 1 -7.2 0.5 0.0 0.0 33.4
201539_s_at four and a half LIM domains 1 -10.9 0.3 0.0 0.0 14.8
204304_s_at prominin 1 -8.0 0.6 0.0 0.0 14.4
210298_x_at four and a half LIM domains 1 -9.9 0.4 0.0 0.0 14.3
214505_s_at four and a half LIM domains 1 -11.3 0.3 0.0 0.0 12.1
210299_s_at four and a half LIM domains 1 -8.1 0.5 0.0 0.0 10.6
209016_s_at keratin 7 -6.9 0.5 0.0 0.0 8.4
205597_at chromosome 6 open reading frame 29 -11.4 0.3 0.0 0.0 8.3
232151_at MRNA full length insert cDNA clone EUROIMAGE 2344436 -9.2 0.4 0.0 0.0 8.0
1566764_at MRNA full length insert cDNA clone EUROIMAGE 2344436 -8.0 0.4 0.0 0.0 7.5
1553809_a_at chromosome 9 open reading frame 71 -6.9 0.3 0.0 0.0 6.5
1566766_a_at MRNA full length insert cDNA clone EUROIMAGE 2344436 -10.0 0.3 0.0 0.0 6.0
224027_at chemokine (C-C motif) ligand 28 -7.2 0.3 0.0 0.0 5.7
1555203_s_at chromosome 6 open reading frame 29 -9.7 0.2 0.0 0.0 5.3
238184_at Transcribed sequences -9.4 0.2 0.0 0.0 4.8
202820_at aryl hydrocarbon receptor -7.2 0.3 0.0 0.0 4.2
202790_at claudin 7 -9.1 0.2 0.0 0.0 4.0
222764_at asparaginase like 1 -8.1 0.2 0.0 0.0 3.9
219127_at hypothetical protein MGC11242 -7.5 0.2 0.0 0.0 3.6
218857_s_at asparaginase like 1 -9.0 0.2 0.0 0.0 3.5
229084_at contactin 4 -6.9 0.2 0.0 0.0 3.4
219614_s_at solute carrier family 6 (neurotransmitter transporter), member 20 -10.1 0.2 0.0 0.0 3.2
210398_x_at fucosyltransferase 6 (alpha (1,3) fucosyltransferase) -8.3 0.2 0.0 0.0 3.1
205405_at Semaphorin 5A -7.3 0.2 0.0 0.0 3.0
1559361_at MRNA full length insert cDNA clone EUROIMAGE 2344436 -8.2 0.2 0.0 0.0 2.8
203365_s_at matrix metalloproteinase 15 (membrane-inserted) -10.0 0.1 0.0 0.0 2.6
229144_at KIAA1026 protein -7.9 0.2 0.0 0.0 2.4
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211110_s_at androgen receptor  -6.9 0.2 0.0 0.0 2.3
223636_at zinc finger, MYND domain containing 12 -7.5 0.1 0.0 0.0 2.2
231022_at Transcribed sequences -7.0 0.2 0.0 0.0 2.2
221665_s_at EPS8-like 1 -8.0 0.1 0.0 0.0 2.1
235937_at Occluding -7.1 0.1 0.0 0.0 2.1
217795_s_at hypothetical protein MGC3222 -7.5 0.1 0.0 0.0 2.1
211621_at androgen receptor -7.3 0.1 0.0 0.0 2.1
210399_x_at fucosyltransferase 6 (alpha (1,3) fucosyltransferase) -7.1 0.1 0.0 0.0 2.0

202005_at 
suppression of tumourigenicity 14 (colon carcinoma, matriptase, 
epithin) -7.1 0.1 0.0 0.0 1.9

243225_at hypothetical protein LOC283481 -7.2 0.1 0.0 0.0 1.9
91826_at EPS8-like 1 -8.2 0.1 0.0 0.0 1.7
218779_x_at EPS8-like 1 -7.5 0.1 0.0 0.0 1.7
205977_s_at EphA1 -9.1 0.1 0.0 0.0 1.6
235293_at CDNA FLJ45593 fis, clone BRTHA3014920 -7.5 0.1 0.0 0.0 1.6
238028_at Similar to hypothetical protein BC006605 (LOC389389), mRNA -7.9 0.1 0.0 0.0 1.6
221655_x_at EPS8-like 1 -7.2 0.1 0.0 0.0 1.5
236058_at hypothetical protein FLJ34633 -8.8 0.1 0.0 0.0 1.5
225778_at RNA binding motif, single stranded interacting protein 2 -6.9 0.1 0.0 0.0 1.5
223724_s_at DKFZp434A0131 protein -6.9 0.1 0.0 0.0 1.5

230111_at 
Transcribed sequence with moderate similarity to protein 
ref:NP_308425.1 -7.4 0.1 0.0 0.0 1.5

226095_s_at hypothetical protein LOC146517 -7.3 0.1 0.0 0.0 1.4
239812_s_at hypothetical protein FLJ12476 -8.1 0.1 0.0 0.0 1.4
238318_at Transcribed sequences -7.1 0.0 0.0 0.0 1.2

 

GENES UPEXPRESSED IN CLASS 2 papillary RCC 

Probe ID Gene Description D(i)* 
Standard 
deviation p-value q-value 

Fold-
Change** 

201292_at topoisomerase (DNA) II alpha 170kDa 6.0 0.4 0.0 0.0 6.5
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202920_at ankyrin 2, neuronal 5.7 0.4 0.0 0.0 5.9
228776_at CDNA FLJ40955 fis, clone UTERU2011199 6.3 0.4 0.0 0.0 4.4
201761_at methylene tetrahydrofolate dehydrogenase (NAD+ dependent) 7.7 0.3 0.0 0.0 4.1

209900_s_at 
solute carrier family 16 (monocarboxylic acid transporters), 
member 1 6.7 0.3 0.0 0.0 3.9

218009_s_at protein regulator of cytokinesis 1  5.6 0.3 0.0 0.0 3.6

202234_s_at 
solute carrier family 16 (monocarboxylic acid transporters), 
member 1 7.1 0.2 0.0 0.0 3.5

209773_s_at ribonucleotide reductase M2 polypeptide 6.2 0.3 0.0 0.0 3.2
210052_s_at TPX2, microtubule-associated protein homolog (Xenopus laevis) 6.5 0.2 0.0 0.0 3.2
218883_s_at KSHV latent nuclear antigen interacting protein 1 5.5 0.3 0.0 0.0 3.1
225655_at ubiquitin-like, containing PHD and RING finger domains, 1 5.6 0.3 0.0 0.0 3.1
218039_at nucleolar and spindle associated protein 1 6.0 0.3 0.0 0.0 3.0
204822_at TTK protein kinase 5.7 0.2 0.0 0.0 2.9

227607_at 
associated molecule with the SH3 domain of STAM (AMSH) like 
protein 5.8 0.3 0.0 0.0 2.8

201664_at SMC4 structural maintenance of chromosomes 4-like 1 (yeast) 7.8 0.2 0.0 0.0 2.7
201663_s_at SMC4 structural maintenance of chromosomes 4-like 1 (yeast) 5.7 0.2 0.0 0.0 2.5
212110_at solute carrier family 39 (zinc transporter), member 14 5.6 0.2 0.0 0.0 2.5
203554_x_at pituitary tumour-transforming 1 6.3 0.2 0.0 0.0 2.5
202338_at thymidine kinase 1, soluble 5.9 0.2 0.0 0.0 2.3
1555758_a_at cyclin-dependent kinase inhibitor 3  5.8 0.2 0.0 0.0 2.3
202954_at ubiquitin-conjugating enzyme E2 6.2 0.2 0.0 0.0 2.2
1554408_a_at thymidine kinase 1, soluble 6.1 0.2 0.0 0.0 2.2

227606_s_at 
associated molecule with the SH3 domain of STAM (AMSH) like 
protein 5.6 0.2 0.0 0.0 2.1

203764_at discs, large homolog 7 (Drosophila) 5.9 0.2 0.0 0.0 2.1
221923_s_at nucleophosmin (nucleolar phosphoprotein B23, numatrin) 5.7 0.2 0.0 0.0 2.0
212295_s_at solute carrier family 7, member 1 5.4 0.2 0.0 0.0 2.0
204092_s_at serine/threonine kinase 6 5.6 0.2 0.0 0.0 2.0
202705_at cyclin B2 5.7 0.2 0.0 0.0 1.9
213188_s_at MYC induced nuclear antigen 5.8 0.2 0.0 0.0 1.9
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228245_s_at ovostatin 2 6.0 0.2 0.0 0.0 1.9
207828_s_at centromere protein F, 350/400ka (mitosin) 5.6 0.2 0.0 0.0 1.9
205345_at BRCA1 associated RING domain 1 5.6 0.2 0.0 0.0 1.9
203669_s_at diacylglycerol O-acyltransferase homolog 1 (mouse) 5.8 0.1 0.0 0.0 1.8
213689_x_at ribosomal protein L5 5.8 0.1 0.0 0.0 1.7
203562_at fasciculation and elongation protein zeta 1 (zygin I) 5.6 0.1 0.0 0.0 1.7
214096_s_at serine hydroxymethyltransferase 2 (mitochondrial) 5.4 0.1 0.0 0.0 1.7
205651_x_at Rap guanine nucleotide exchange factor (GEF) 4 5.4 0.1 0.0 0.0 1.7
213947_s_at nucleoporin 210 5.7 0.1 0.0 0.0 1.7
230165_at shugoshin-like 2 (S. pombe) 5.4 0.1 0.0 0.0 1.6

218950_at 
ARF-GAP, RHO-GAP, ankyrin repeat and plekstrin homology 
domains-containing protein 3 6.5 0.1 0.0 0.0 1.6

203022_at ribonuclease H2, large subunit 6.4 0.1 0.0 0.0 1.5
203719_at excision repair cross-complementing rodent repair deficiency 6.3 0.1 0.0 0.0 1.5
218115_at ASF1 anti-silencing function 1 homolog B (S. cerevisiae) 5.4 0.1 0.0 0.0 1.5
210023_s_at likely ortholog of mouse nervous system polycomb 1 6.1 0.1 0.0 0.0 1.4
221591_s_at hypothetical protein FLJ10156 5.6 0.1 0.0 0.0 1.4
204126_s_at CDC45 cell division cycle 45-like (S. cerevisiae) 6.7 0.1 0.0 0.0 1.3
214426_x_at chromatin assembly factor 1, subunit A (p150) 5.9 0.1 0.0 0.0 1.3
212313_at hypothetical protein MGC29816 5.9 0.1 0.0 0.0 1.3
221779_at molecule interacting with Rab13 5.8 0.1 0.0 0.0 1.3
239680_at hypothetical protein FLJ12973 6.0 0.1 0.0 0.0 1.3
  

 

 * D(i) is a modified t-statistic calculated by SAM. 

 ** Fold-change is shown in terms of a relationship between the tumour with higher expression relative to the tumour 

with lower expression. 
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Survival analysis  showed that this refined morphologic and molecular 

classification system showed a survival prediction that showed a statistically 

insignificant edge over the previous morphology-based classification 

approach (Nagelkerke's R2 = 0.505 and P = 0.001 versus R2 = 0.389 and P = 

0.005). Class 2 tumours were larger in tumour dimension (P = 0.003), of 

higher grade (P < 0.001), of higher stage (P < 0.001), and were more likely to 

exhibit distant metastases at initial surgery (P < 0.001) than class 1 tumours. 

Indeed, all tumours metastatic at initial surgery were class 2 tumours (n = 7). 

No significant difference in age (P = 0.37) or gender (P = 0.70) was found 

between the two classes.  

Chromosomal aberrations inferred by CGMA. Distinct cytogenetic 

profiles for each tumour were generated using high-resolution CGMA (Figure 

15, following page) Full-length gains in chromosomes 7, 12, 16, 17, and 20 

was found both in class 1 and 2 tumours, consistent with the previously 

reported trisomies observed by using conventional cytogenetic analysis 

characteristic of papillary RCC. However, in comparison with class 1 tumours, 

class 2 tumours exhibited more frequent gains at 1q, 2, and 8q and losses at 

3p and 6q and showed fewer gains of chromosome 3, 7, and 16. More 

frequent losses of 6q and 14q were also evident.  
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Table 14 : Immunohistochemical results for Class 1 and Class 2 papillary RCC 

  

Cytokeratin 7 immunostaining TopIIα immunostaining 

Negative 
Focally 
positive Positive Negative

Focally 
positive Positive 

Profiled tumours Type 1 0 0 10 10 0 0 
  Type 2A 0 0 1 1 0 0 
  Mixed Type 1 and 2A0 1 2 3 0 0 
  Type 2B 4 1 0 0 1 4 
Independent tumours Type 1 0 1 4 5 0 0 
  Type 2A 1 0 1 0 2 0 
  Mixed Type 1 and 2A0 0 0 0 0 0 
  Type 2B 6 2 0 0 0 8 
TOTAL   11 5 18 19 3 12 
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DISCUSSION 

Morphologic classification. The morphologic classification of papillary 

RCC into type 1 and 2 tumours has been supported by several histologic studies, 

although there is relatively limited molecular evidence to substantiate this 

subtyping. There remains controversy over the recent proposed morphologic 

classification system of papillary RCC, preventing its widespread application. For 

example, there is no agreement whether a tumour with eosinophilic cytoplasm 

but low nuclear grade should be classified as type 1 or 2. In the initial proposal 

outlining this morphologic subtyping. 63% of type 2 tumours were assessed as 

being of low Fuhrman nuclear grade despite pleomorphic nuclei being defined as 

a characteristic of type 2 tumours (Delahunt and Eble 1997). More recently, Allory 

et al. classified only 1 of 13 (8%) as low-grade type 2 tumours using a modified 

criteria (Allory et al. 2003). The high frequency of tumours with coexisting type 1 

and 2 components poses difficulties for such a binary classification, the 

prevalence of such mixed tumours having been reported as high as 28%. Allory 

et al. chose to classify these tumours with mixed (type 1 and 2) features as type 1 

tumours, an approach in line with our molecular classification.  

Molecular classification. Our results provide only partial support for the 

proposed histologic subtyping of papillary RCC into type 1 and 2 tumours. Type 2 

tumours are molecularly heterogenous, with a subset of type 2 (low-grade) 

tumours and mixed type 1 and 2 tumours demonstrating molecular profiles more 

consistent with type 1 tumours. These type 2 tumours were all low-grade tumours 
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and showed excellent clinical outcomes, in contrast with the poor outcomes 

recorded in high-grade type 2 tumours. Type 2 papillary RCC is composed of at 

least two genetically distinct subtypes: one subtype (type 2A) resembles type 1 in 

terms of indolent tumour behavior, excellent survival, low tumour grade, similar 

expression profiles, immunoreactivity, and inferred cytogenetic profiles; the other 

subtype (type 2B) is an highly metastatic, aggressive cancer that is molecularly 

distinct from type 1 or 2A tumours. Our findings support a view that nuclear grade 

is the key correlate for a molecular classification with both biological and clinical 

relevance, with features such as cell size or cytoplasmic eosinophilia being more 

peripheral. Additional distinctive histopathologic features for these subclasses 

may be defined with a larger series. In this report, the molecular classification 

showed a statistically insignificant edge in prognostication over the previously 

proposed histologic classification. However, the molecular approach with 

correlation to nuclear grade may be more relevant, as it also accurately classifies 

mixed type 1 and 2 tumours, which are not well accounted for in the histologic 

classification. This refined classification of papillary RCC based on both 

morphologic features and molecular studies may be more relevant and is likely to 

benefit diagnosis, prognostication, clinical follow-up, and experimental selection 

of therapeutic targets.  

We successfully generated an internally validated seven-transcript 

predictor, which was able to classify class 1 and 2 tumours with 97% accuracy, 

the only misclassification arising from a tumour (P30) that we were unable to 

personally evaluate. Consistent with our microarray classification, this tumour 
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from P30 behaved in an aggressive fashion, the patient relapsing 2 years after 

surgery. The patient died of a non-cancer-related cause 10 months after relapse. 

External validation in a second population is required for assessment of true 

generalizability of these gene predictors, but these results are very encouraging.  

Inferred cytogenetic profiles. Aneuploidy is well established as a key 

driver of global gene expression, and regional DNA copy number correlates well 

with regional expression in cancer, which we have also shown in RCC 

classification. Papillary RCC typically shows frequent trisomies of chromosomes 

7, 12, 16, 17, and 20 (Amin et al. 1997) (Kovacs et al. 1991) (Kattar et al. 1997). 

For papillary RCC subclassification, our results are strictly not directly 

comparable with recent cytogenetic studies that have classified their results by 

the type 1 and 2 classification (Jiang et al. 1998) (Gunawan et al. 2003). As 

expected, our inferred cytogenetic profiles were consistent with previous studies 

correlating cytogenetic findings with tumour grade; Lager et al. identifying less 

frequent trisomy of 7 in high-grade tumours (Lager et al. 1995) and Renshaw and 

Corless reporting that trisomy of 3 was found in a defined subset of low-grade 

papillary RCC tumours (Renshaw and Corless 1995). In addition to these 

findings, in demonstrating that loss of 9q occurred more commonly in class 2 

tumours, our results support a report that loss of heterozygosity at 9q is 

associated with reduced survival.  

Immunohistochemical findings. To validate the gene predictor and to 

derive IHC markers for the pathology laboratory, we used IHC to confirm high 
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mutated in a group of families with type 2 papillary RCC (Tomlinson et al. 2002), 

was not observed (data not shown).  

The implication of dysregulation of the G2-M checkpoint regulation in class 

2 tumours is particularly interesting from a therapeutic point of view. We took a 

particular interest in DNA TopII, which we additionally established as a diagnostic 

marker for class 2 tumours. As there is no effective medical therapy for advanced 

papillary RCC and this enzyme is associated with the more aggressive papillary 

RCC subclass, TopII inhibitors are distinct possibilities for a therapeutic trial of 

papillary RCC. G2 arrest occurs in response to these agents (Clifford et al. 2003) 

and may therefore be particularly appropriate. Although several kidney cancer 

trials have reported disappointing results for TopII inhibitors (Escudier et al. 2002; 

Law et al. 1994), these trials have predominantly recruited patients with clear cell 

RCC, a genetically distinct disease. In further support of this suggestion, a 

previous study reports that this gene is the most overexpressed gene in pediatric 

Wilms' tumour, for which current therapeutic regimens consisting primarily of 

TopII inhibitors are very effective(Takahashi et al. 2002).  

Clonal origin versus progression. It has been hypothesized previously 

based on cytogenetic findings that type 1 tumours progress to type 2 

tumours(Gunawan et al. 2003). Prudent evaluation of our results in the context of 

this hypothesis is required. Although microarrays of gross tumour tissue show a 

global expression signature presumably reflective of early clonal events 

(Ramaswamy et al. 2003), it is plausible that a competitive growth advantage 
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may accrue to the transformation of a single cell into a class 2 within a class 1 

tumour, resulting in its expansion at the expense of other class 1 tumour cells. 

Nonetheless, the additional presence of a distinct group of mixed tumours with 

coexisting type 1 and 2A histology and presenting with molecular profiles 

resembling other type 1 tumours strongly suggests that type 1 and 2A tumours 

are clonally more closely related to each other than to type 2B tumours. We did 

not note the presence of low-grade components in any of our type 2B tumours. 

Given the divergent survival outcomes following nephrectomy between class 1 

(type 1, type 2A, and mixed type 1/2A tumours) and class 2 tumours, we do not 

favor the idea of progression between class 1 and 2 tumours. 

In terms of specific limitations to this study, the relatively small sample size 

requires subsequent validation in a larger study. Additionally, future pathway 

analysis is likely to benefit from novel methods to control for multiple testing in 

pathway analysis.  Certainly the findings of dysregulation of G1-S
 checkpoint 

genes in class 1 papillary RCC and dysregulation of G2-M checkpoint genes in 

class 2 papillary RCC should be deemed to be exploratory, requiring validation in 

a second study.  

CONCLUSION 

In conclusion, using gene expression profiling supported by 

immunohistochemical and morphologic studies, we have identified two distinct 

classes of papillary RCC that differ strikingly in their clinical behavior and have 

dysregulation of genes controlling different parts of the cell cycle. This finding 
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represents a biologically and clinically relevant refinement to previously proposed 

morphologic criteria for subclassification of papillary RCC. We summarize our 

findings that may be practically evaluated in the clinical setting laboratory as 

follows: class 2 (type 2B) papillary RCC may be distinguished from class 1 (type 

1, mixed type 1 and 2A, and type 2A tumours) by the following characteristics: 

larger gross tumour size, higher nuclear grade (3-4), decreased CK7 staining and 

increased Top II alpha staining, higher rate 

of metastases at surgery, and poorer patient survival. Morphologic findings of 

less specificity include larger cell size and eosinophilic cytoplasm in class 2 

tumours. Our findings may benefit further efforts to elucidate the molecular basis 

of development and progression of papillary RCC and will be helpful in stratifying 

patients for additional interventions. 
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CHROMOPHOBE RCC AND ONCOCYTOMA 

Considering the pathological and clinical issues for chromophobe RCC and 

oncocytoma discussed in Overall Background and Background (Molecular 

Models), our goal was to perform a comprehensive characterization of both 

enetities by integrating gene expression and high resolution single-nucleotide 

polymorphism (SNP) profiling for the identification of a useful and valid molecular 

predictor. We also sought to identify novel immunohistochemical markers for 

each entity. Further to identifying novel cytogenetic abnormalities underlying the 

two entities, we chose to investigate further the specific genes and pathways that 

may be responsible for dysregulation of gene expression.  

METHODS 

SUBJECTS AND STUDY DESIGN 

A total of 30 frozen primary kidney tumours (15 chromophobe RCC and 15 

oncocytomas) were obtained from the French Kidney Tumours Consortium, 

University of Chicago, Northwestern University, and Spectrum Health Hospital 

(Grand Rapids, MI). 12 non-neoplastic kidney samples were also obtained as 

controls for regional expression bias analysis. 

Written informed consent for analysis of clinical samples was obtained 

from all patients, and all IRB boards of participating institutions approved the 

study. Tumour tissue was flash frozen in liquid nitrogen immediately after 

nephrectomy and stored at –80°C. Portions of the tumours were fixed in buffered 

formalin. Each sample was confirmed by pathologic analysis and anonymized 
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prior to the study. A portion of the tumour sample was frozen in liquid nitrogen 

immediately after surgery and stored at –80˚C. Total RNA was isolated from the 

frozen tissues using Trizol reagent (Invitrogen, Carlsbad, CA). This was 

subsequently purified with a RNeasy kit (Qiagen, CA), and quality was assessed 

on denaturing gel electrophoresis. Representative tissue sections of RCC were 

cut and stained with hematoxylin-eosin for confirmation of histological diagnosis 

and confirmation of tumour tissue content (>70%). All samples were examined by 

a central expert uropathologist (X.Y.). Clinicopathologic information was derived 

by review of pathologic, radiologic, and case notes by individual clinicians. 

Tumours with sarcomatoid change were classified as grade 4 tumours. Tumour 

size was defined as the maximum tumour dimension on direct pathological 

measurement. Patient follow-up status was assessed by directly contacting 

patients where possible, or at routine clinical follow-up. 12 non-neoplastic kidney 

samples from unrelated patients were also obtained as controls for regional 

expression bias analysis; these are the same 12 controls for regional expression 

bias used for the other microarray studies in other subtypes in this thesis. 

OLIGONUCLEOTIDE ARRAY PROFILING 

For oligonucleotide array gene profiling, we extracted and purified total RNA from 

homogenized samples using Trizol reageant (Invitrogen, CA) followed by RNeasy 

columns (Qiagen, CA) according to manufacturers’ recommendations. 

Oligonucleotide array gene profiling was performed using the manufacturer’s 

recommended protocol (GeneChip Expression Analysis Technical Manual, April 

2003, Affymetrix, CA). Approximately 5-20 micrograms of total RNA was used to 
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prepare antisense biotinylated RNA. A subset of cases were spiked with external 

poly(A) RNA controls. Synthesis of single-stranged and double-stranded cDNA 

was done with the use of T7-oligo(dT) primer (Affymetrix). In vitro transcription 

was done using Enzo Bioarray Transcript Labeling kit (Enzo, Farmingdale, NY). 

The biotinylated cRNA was subsequently fragmented and 10 micrograms were 

hybridized to each array at 45°C ovr 16 hours. We used the HGU133 Plus 2.0 

GeneChip, containing 54,675 probe sets, representing approximately 47,000 

transcripts and variants. Scanning was done in a GeneChip 3000 scanner. 

Quality indices reviewed for all samples included mean percentage present, 

mean background, mean scaling factor and a mean GADPH 3’/5’ ratio).  All 

clinical and microarray data for published data has been uploaded to the Gene 

Expression Omnibus. The gene expression data can be obtained at the Gene 

Expression Omnibus (GSE19982). For external validation in a dataset with 

oncocytoma and chromophobe data, an external GEO data-set of gene 

expression profiles of oncocytomas and chRCC from Cornell University was 

obtained for validation (GSE12090) (Rohan et al. 2006). Statistical analyses were 

performed in the statistical environment R 2.6.0, utilizing packages from the 

Bioconductor project. Data preprocessing was performed using the RMA method 

as implemented in the affy package and using updated probe set mappings such 

that a single probe set describes each gene (Dai et al. 2005) (Gentleman et al. 

2004). Chromosomal abnormalities were predicted using the comparative 

genomic microarray analysis (CGMA) method as implemented in the reb 

package (Furge et al. 2005). Briefly, for each measured gene, the gene 
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expression value was normalized such that the average gene expression value in 

the nondiseased samples was subtracted from the tumour-derived gene 

expression value. A Welsh's t-test was applied to the relative gene expression 

values that mapped to each chromosome arm. For the smoothing curve, the 

normalized expression values derived from genes mapping to chromosome 19 

were replaced by a summary score that comprised a running two-sided t-test 

statistic using window sizes of 61, 245, and 611 (representing 5%, 20%, and 50% 

of the length of the chromosome). The results of the three smoothing curves 

were averaged. For purposes of hierarchical analysis using complete linkage 

analysis, probe set filtering for coefficient of variation (0.05, with at least 2 

samples showing log2 value expression of 8) was performed.  Significance 

analysis of microarrays (SAM) on unfiltered data based on two-class unpaired 

analysis, assumption of unequal group variances and 10,000 permutations was 

used to derive a list of probe sets differentially expressed between tumour 

subclasses, and ordered by relative fold-change. A maximum false discovery rate 

threshold was defined as 0.05.  

PATHWAY ANALYSIS 

KEGG pathway(Kanehisa et al. 2010) and gene ontology (GO) analysis of 

enriched gene sets was performed using hypergeometric tests available in the 

GOstats (Falcon and Gentleman 2007) package in Bioconductor after having 

identified unique genes with corresponding annotations.  For KEGG pathway 

analysis, the p-value threshold was 0.01.  For GO analysis, conditional testing 
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was performed, and the threshold for p was 0.001.  Molecular function, biologic 

process, and cellular component analyses were performed. 

SINGLE NUCLEOTIDE POLYMORPHISM ANALYSIS 

An independent set of samples were obtained from the Cooperative 

Human Tissue Network (CHTN) for high throughput single-nucleotide 

polymorphism (SNP) array analysis (chromophobe RCC n=6 and oncocytoma 

n=8). A Jetquick DNA extraction kit (Genomed, Lohne, Germany) was used to 

isolate DNA based on manufacturer’s protocol. The SNP assay was performed 

according to the manufacturer’s instructions using the Affymetrix GeneChip 

mapping 100K array (Affymetrix, Santa Clara, CA). Image quantification was 

performed using a GeneChip Scanner 3000, and the resulting data was 

processed using GCOS 1.4 (Affymetrix). Allele calls were generated using 

Affymetrix GeneChip Genotyping analysis (GTYPE v.4) with a confidence 

threshold set at 0.25. Raw copy numbers in log-transformed format (non-paired 

reference and test samples) were exported from the CNAG version 2.0 

(Affymetrix) software using normal references downloaded from Affymetrix 

(http://www.affymetrix.com;ccnt_reference_data). The NCBI human genome 

reference build 36 was used for analysis. DNA copy number changes were 

visualized using data smoothing in which raw copy number values were replaced 

by a summary score that comprised a running 1-sided t test statistic with window 

size set to 31, where each SNP probe along with 15 5’ SNP and 15 3’ SNPs were 

included in the window. DNA copy number data can be obtained at the Gene 

Expression Omnibus (GSE8271) 
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IMMUNOHISTOCHEMISTRY 

IHC staining was performed on an independent set of chromophobe RCC 

(n=11) and oncocytomas (n=7).  Aquaporin 6 and synaptogrin 3 were selected 

from the PAM (Table 1).  Parafibromin (218578_at) (2-fold mean expression 

difference) and cytokeratin 7 (209016_s_at) were selected from the SAM 

analysis of the gene expression profiles for validation. Candidate marker choice 

was determined by factors including fold-change, specificity, biological and 

clinical interest. CK7, a previously recognized marker, was selected here for 

testing to ascertain the additional benefit of routine pathologic practice in the 

samples. Briefly, following blocking and antigen retrieval, 4-micron sections on 

coated slides were incubated with the following antibodies: a mouse anti-

cytokeratin 7 monoclonal antibody (DakoCytomation, Carpinteria, CA, 1:50, 

cytoplasmic staining), a polyclonal rabbit anti-human aquaporin 6 (AQP6, Alpha 

Diagnostic International, San Antonio, TX, 1:100, overnight at 4C, membranous 

staining), polyclonal goat anti-synaptogyrin 3 N-18 and C-18 antibodies 

(SYNGR3, Santa Cruz Biotechnology, Santa Cruz, CA, cytoplasmic and 

membranous staining), an mouse monoclonal anti-parafibromin antibody (1:250, 

1 hour at room temperature, nuclear staining) (Tan et al. 2004a), a rabbit 

monoclonal anti-HER2 antibody (Neomarker RM 9103-S clone SP3, 1:200, 

membranous staining), a phospho-AKT (Ser473) antibody (Cell Signaling 

Technology, 1:30, cytoplasmic and nuclear staining). For the latter two 

antibodies, 22 chromophobe RCC and 8 oncocytoma specimens were available. 

For p-AKT, staining in the stromal and tumour cell compartments was separately 
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assessed.  Subsequent reactions were performed with biotin-free HRP enzyme 

labeled polymer of EnVision Plus detection system (DakoCytomation). All slides 

were examined by a pathologist in a blinded fashion.  

 

FLUORESCENT IN SITU HYBRIZATION AND WHOLE CHROMOSOME 

PAINTING 

For fluorescent in-situ hybridization and whole chromosome painting, 

bacterial artificial chromosomes (BACs) RP11-157B13 (19p12), RP11-1137G4 

(19p13.3), RP11-15A1 (19q13.31) were obtained from the Children's Hospital 

Oakland Research Institute and BAC CTC-429C10 (19q13.41) was purchased 

from Invitrogen (Invitrogen Corporation, Carlsbad, CA). These clones were 

labeled with either SpectrumGreen or SpectrumOrange (Abbott Molecular Inc, 

Des Plaines, IL) by nick translation and applied to tissue touch preps of 

oncocytoma samples as described, with the exception that slides were 

counterstained with VECTASHIELD (Vector Laboratories, Inc. Burlingame, CA) 

anti-fade 4′,6-diamidino-2-phenylindole (DAPI). Telomere-specific DNA probes, 

the chr 1,5,19 alpha satellite probe, and the arm-specific paints were purchased 

from Q-BIOgene (MP Biomedicals, Solon, OH). FISH was performed using these 

probes according to the manufacturer's supplied protocol. As the alpha satellite 

probe cross-hybridizes to chromosome 1 and chromosome 5, in all studies 

chromosome 19 was co-labeled with a probe that maps distal to the centromere, 

RP11-157B13 (19p12). In addition, analysis of the centromeric probe on the 

metaphase spreads of control cells revealed that hybridization to chromosome 1 
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resulted in a significantly brighter signal (data not shown). These hybridization 

characteristics allowed the discrimination between chr 1 and 5 cross-

hybridization. For image quantification, three separate photomicrographs 

containing five, six, and three cells, respectively, in which the 19q31.31 FISH 

signals were in the same image plane were obtained. Photomicrographs were 

processed using the rtiff package for the R environment. The fluorescent FISH 

signals were automatically segmented from background using the method of 

Ridler and Calvard, individual spots were identified using the connected 

component algorithm, and the number of pixels per feature were calculated. 

Twelve doublet FISH signals and eight singlet FISH signals were compared. 

Differences in size were evaluated using a one-sided Student's t-test. 
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A gene predictor comprising 14 probe sets was identified (Table 15), 

which yielded an overall accuracy of 93% in the internal data-set (28/30) (Table 

16, next page).  The same predictor successfully classified 17 of 18 samples in 

the external dataset from Cornell University, corresponding to an overall 

accuracy of 94% (Table 15).  5,210 probe sets were found to be differentially 

expressed between the two entities as identified using SAM at a delta of 1.4, with 

a false discovery rate of 0.03 corresponding to an estimated 222 probe sets. 

2,564 number of probe sets were relatively overexpressed in chromophobe RCC, 

and 2,646 transcripts relatively underexpressed in chromophobe RCC. 

 

Table 15 : Predictor derived by nearest shrunken centroid methodology for sample 
classification of chromophobe RCC and oncocytoma 

 

Affymetrix 
Probe ID Gene description 

ChRCC-
score* 

Oncocyto
ma-score* 

Fold 
change** 

216219_at aquaporin 6 -0.1972 0.1972 0.20 
 

240304_s_
at 

transmembrane channel-like 5 0.1247 -0.1247 13.0 
 

208435_s_
at 

aquaporin 6 -0.1218 0.1218 0.22 
 

205691_at synaptogyrin 3 0.1108 -0.1108 3.75 
 

230110_at mucolipin 2 -0.0731 0.0731 0.15 
 

52940_at single immunoglobulin and toll-
interleukin receptor (TIR) 
domain 

0.0577 -0.0577 3.28 
 

217879_at cell division cycle 27 homolog 
(S. cerevisiae) 
 

-0.0403 0.0403 0. 

222574_s_
at 

DEAH (Asp-Glu-Ala-His) box 
polypeptide 40 

-0.0228 0.0228 0.48 
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* A class discriminant score derived from nearest shrunken centroids 
methodology. 

** Fold change of gene expression in chromophobe RCC relative to 
oncocytoma 

 

 

Table 16 : Predictor performance in sample classification in distinguishing chromophobe 
RCC and oncocytoma in internal and external datasets 
  Gene predictor (14 probe sets) 
  Predicted 

chromophobe 
RCC 

Predicted oncocytoma

Internal Data-Set 
chromophobe 
RCC 

13/15 (87%) 2/15 (13%) 

 Oncocytoma 0/15 (0%) 15/15 (100%) 
External Data-
Set  

chromophobe 
RCC 

8/9 (89%) 1/9 (11%) 

(Cornell) Oncocytoma 0/9 (0%) 9/9 (100%) 
 
 

218921_at single immunoglobulin and toll-
interleukin receptor (TIR) 
domain 

0.0205 -0.0205 3.16 
 

230644_at leucine rich repeat and 
fibronectin type III  domain 
containing 5 

0.0172 -0.0172 4.90 
 

223087_at enoyl Coenzyme A hydratase 
domain containing 1 

-0.0167 0.0167 0.42 
 

203039_s_
at 

NADH dehydrogenase 
(ubiquinone) Fe-S protein 1 

-0.0093 0.0093 0.46 
 

202502_at acyl-Coenzyme A 
dehydrogenase 

-0.0089 0.0089 0.35 
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Immunohistochemical findings The IHC profiling is summarized in 

Table 17 and Figure 19 (next page), results of which were consistent with the 

microarray quantitation. The immunoreactivity of chromophobe RCC to 

cytokeratin 7 was higher than that of oncocytomas and normal kidney.  For 

parafibromin, clear differential staining was noted, with predominantly nuclear 

expression in oncocytomas, and absent expression in chromophobe RCC.  For 

synaptogyrin-3, both N-18 and C-18 antibodies yielded a similar signal, but the N-

18 antibody yielded a crisper result though the maximal signal was distinctly 

weaker compared to AQP6, for which crisp membranous staining was noted in 

oncocytoma, but not in chromophobe RCC. For p-AKT, there was an apparent 

but non-significant higher immunoreactivity in chromophobe RCC than 

oncocytoma, particularly in the stromal cells relative to the tumour cells. For 

extracellular HER2, all samples were unreactive.  

 

Table 17 : Results of IHC staining showing sample discrimination between chromophobe 
RCC and oncocytoma. 
 
 chromophobe RCC Oncocytoma  

Protein Positive Negative Positive Negative P-value 

AQP6 3/11 (28%) 8/11 (72%) 6/7 (86%) 1/7 (14%) 0.05 

Parafibromin 1/11 (9%) 10/11 (91%) 5/7 (71%) 2/7 (29%) 0.01 

CK7 8/11 (72%) 3/11 (27%) 1/7 (14%) 6/7 (86%) 0.05 

SYNGR3 9/11 (82%) 2/11 (18%) 0/7 (0%) 
7/7 
(100%) 

0.002 

p-AKT 
(stromal) 

5/22  (28%) 17/22 (72%) 0/8 (0%) 
8/8 
(100%) 

0.29 

p-AKT 
(tumour) 

13/22 (59%) 8/22 (41%) 4/8 (50%) 4/8 (50%) 0.68 

Extracellular 
HER2 

0/22 (0%) 
22/22 
(100%) 

0/8 (0%) 
8/8 
(100%) 

NA 
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Pathway Analysis. Pathway and GO analysis was performed on the SAM 

analysis, demonstrating an enrichment of genes involved in metabolic pathways 

in oncocytomas relative to chromophobe RCC (Table 18, next page).  These 

metabolic pathways include oxidative phosphorylation, amino acid metabolism, 

and fatty acid metabolism.  Conversely, high expression of genes involved in cell 

adhesion, immune receptor signaling as well as proliferative pathways such as c-

erbB2 (Her-2/neu) and mammalian target of rapamycin (mTOR) signaling are 

detected in chromophobe RCC.  Further gene ontology analyses (not presented) 

performed supported these results highlighting that mitochondrial genes were 

highly overrepresented among genes relatively overexpressed in oncocytomas, 

whereas tight junction genes were similarly overrepresented among genes 

overexpressed in chromophobe RCC. 
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Table 18 : Molecular pathways discriminating chromophobe RCC and oncocytoma 

Pathways relatively upregulated in oncocytoma 

KEGGID   Pvalue  OddsRatio  ExpCount  Count  Size  Term 

280 0 6.206 4 17 44 Valine, leucine and isoleucine degradation 

640 0 6.349 3 13 33 Propanoate metabolism 

190 0 3.093 11 27 114 Oxidative phosphorylation 

970 0 4.488 4 12 38 Aminoacyl-tRNA biosynthesis 

20 0.001 4.833 3 9 27 Citrate cycle (TCA cycle) 

330 0.001 4.032 3 10 34 Arginine and proline metabolism 

4120 0.003 3.13 4 11 45 Ubiquitin mediated proteolysis  

 
Pathways relatively upregulated in chromophobe RCC 

KEGGID   Pvalue  OddsRatio  ExpCount  Count  Size  Term 

4660 0 3.263 9 23 93 T cell receptor signaling pathway 

4662 0 3.945 6 18 63 B cell receptor signaling pathway 

4514 0 2.505 12 26 129 Cell adhesion molecules (CAMs) 

4670 0 2.676 10 23 108 Leukocyte transendothelial migration 

5220 0 3.05 7 18 76 Chronic myeloid leukemia 

5212 0 2.977 7 17 73 Pancreatic cancer 

4520 0.001 2.823 7 17 76 Adherens junction 

5130 0.001 3.335 5 13 51 Pathogenic Escherichia coli infection - EHEC 

5131 0.001 3.335 5 13 51 Pathogenic Escherichia coli infection - EPEC 

4530 0.001 2.277 11 22 117 Tight junction 

4664 0.001 2.65 7 16 75 Fc epsilon RI signaling pathway 

4620 0.003 2.268 10 19 101 Toll-like receptor signaling pathway 

4012 0.003 2.372 8 17 87 ErbB signaling pathway 

564 0.003 2.621 6 14 66 Glycerophospholipid metabolism 

4150 0.004 2.964 4 11 47 mTOR signaling pathway 

5120 0.004 2.523 6 14 68 Epithelial cell signaling in Helicobacter pylori infection

4210 0.005 2.293 8 16 84 Apoptosis 

4070 0.006 2.317 7 15 78 Phosphatidylinositol signaling system 

4540 0.007 2.124 9 17 95 Gap junction 

4912 0.009 2.07 9 17 97 GnRH signaling pathway 

5221 0.01 2.536 5 11 53 Acute myeloid leukemia 
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We report in particular that our high throughput methods demonstrate that 

there is a common gene alteration to both tumours (loss of chromosome 1p), 

which may represent an early event common in the histogenesis of both tumours. 

Otherwise, consistent with previous cytogenetic studies, the renal oncocytoma 

cells were largely devoid of transcriptional abnormalities that would reflect a DNA 

amplification or deletion. In contrast, losses of chromosomes  2, 6, 10, and 17 are 

frequently found in chromophobe RCC. In our chromophobe RCC samples, these 

well-established chromosomal losses were strongly reflected in the gene 

expression profiling data. In addition, a transcriptional abnormality involving 

genes mapping to chromosome 19 was frequently identified in both the renal 

oncocytomas and the chromophobe RCCs. In renal oncocytomas, the 

transcriptional abnormality primarily involved the q arm of chromosome 19, while 

in chromophobe RCC the abnormality involved the entire chromosome (Figure 

22, next page). For each gene on chromosome 19, the average log2-transformed 

expression ratio comparing oncocytoma or chromophobe RCC to non-diseased 

kidney was plotted relative to genomic location (Figure 22, next page). A 

smoothing curve was fit to the log2-transformed data to highlight regions that 

contain a disproportionate number of up-regulated genes. 
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Semi-quantitative image analysis was used to examine the characteristics 

of the large FISH singlet (Figure 23, preceding page) This analysis demonstrated 

that the size of the singlet FISH signal was on average 1.5-fold larger than the 

size of two well-separated 19q FISH signals (P = 0.02). This large signal was 

observed using multiple probes directed against the q arm of the chromosome, 

including centromeric and telomeric probes (Figure 23, preceding page). The 

large FISH singlet had striking similarities to the FISH signals observed in studies 

of somatically paired chromosomes. Somatic pairing refers to the close 

association of homologous chromosomes and is typically associated with 

chromosomes in meiotic prophase. However, somatic pairing has also been 

observed in interphase in normal human cells and some tumour cells. The 

presence of a large FISH singlet reflects the overlapping FISH signals generated 

from two chromosomal regions in very close proximity. The lack of evidence for a 

DNA copy number change coupled with the presence of large FISH singlets and 

proximal doublets using multiple locus-specific probes, suggested that chr 19q 

was somatically paired. To confirm that the q arms of chr 19 were somatically 

paired in the renal oncocytoma cells, the p and q arms of chr 19 were visualized 

simultaneously using whole-arm chromosome painting (WCP) (Figure 24, next 

page). 
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DISCUSSION 

ChRCC and oncocytoma are morphologic and genetically related entities, 

and distinction between these two tumours is important because of their different 

biological behaviors.  However, these entities can be difficult to distinguish 

morphologically.  We report the derivation of a novel and useful gene predictor 

validated both on an internal and an independent external data-set, implying its 

generalizability.  Our results suggest that it is possible to classify accurately 

histopathologically challenging tumours. The degree of accuracy achieved at 

93% is reasonable for a genetic classifier. However integration into clinical 

practice requires a comprehensive evaluation of these classifiers within a clinical 

setting, comparing clinical outcomes in routine pathologic evaluation relative to 

that derived from novel classifiers. This may be most practically if not most ideally 

done in a retrospective fashion on paraffin-embedded tissue in a large multi-

institutional collaboration, which we are currently pursuing. This issue may 

become progressively more important with the increase in incidentally detected 

small tumours on radiologic surveillance, where the dilemma between 

observation or intervention is commonly posed. 

Novel cytogenetic alterations both common and discriminating. 

Integrating RNA and DNA genomic data allows us to verify genomic alterations in 

tumour samples and distinguish the genomic signatures of different tumour 

subtypes.  Frequent losses of chromosome 1, 2, 6, 10, 13, 17, and 21 and gains 

in chromosome 4, 7, 11, 12, 14q and 18q were observed in chromophobe RCC, 

consistent with previously reported data(Bugert and Kovacs 1996). For renal 
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oncocytoma, we show a high prevalence of chromosome 1p loss.  Both 

chromophobe RCC and oncocytoma share this chromosomal alteration, 

consistent with a speculation that this may represent an early event in neoplastic 

transformation of a common progenitor cell.  

Chromosome 1p loss represents a common cytogenetic alteration in both 

chromophobe RCC and renal oncocytoma identified by high-throughput SNP 

studies.  This may suggest that this is an early event in the histogenesis of both 

tumours, before additional cellular events lead to malignancy in lesions that 

progress to chromophobe RCC, similar to chromosome 3p loss in clear cell RCC, 

which is thought to be an early event in carcinogenesis.  Loss of chromosome 1p 

has been identified recently in renal oncocytoma(Picken et al. 2008), but this has 

not been previously shown to be a common cytogenetic alteration common to 

both entities, which is the key insight.  Our delineation of the nature of 

chromosome 1p loss in renal oncocytoma provides the opportunity to identify 

novel tumour suppressor genes in future studies, and in establishing a possible 

carcinogenesis progression sequence.  

Pathway identification in oncocytoma and chromophobe RCC. There 

has been a recent advent of targeted therapies for a wide variety of cancers.  

Given the relative rarity of chromophobe RCC, there is no current standard of 

care and it is unlikely that any specific clinical trial is feasible or will be initiated.  

Here, we report two clinically relevant pathways—the c-erbB2/HER2 pathway 

and the mTOR signaling pathway—are dysregulated in chromophobe RCC on 

exploratory pathway analysis of mRNA expression, but our evaluation of 
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cxtracellular HER2 and phospho-AKT IHC expression has not provided direct 

support for this mRNA finding. On a clinical trial level, in a subgroup analysis of a 

Phase III trial of temsirolimus, an mTOR inhibitor, in poor-prognosis RCC of all 

subtypes, patients of non-clear cell histology benefited as much as patients with 

clear cell histology, if not more(Hudes et al. 2007).  Our findings do not permit a 

single definitive conclusion about the nature of pathway activation in these two 

entities. Currently, mTOR inhibitors remain a clinical standard of care for poor-

risk metastatic non-clear cell RCC. HER2 expression has been evaluated in 

chromophobe RCC and oncocytoma, with distinct patterns of peptide expression 

varying according to epitope(Seliger et al. 2000). Interestingly, this study showed 

that strong intracellular HER2 expression (as defined by a 3+ expression) was 

strongly expressed in chromophobe RCC (9/19) but not in oncocytoma (1/11), 

whereas neither chromophobe RCC nor oncocytoma showed strong extracellular 

HER2 expression. Further evaluation of this is warranted, in conjunction with 

relevant fluorescent in-situ hybridization studies.  

It has been previously reported that oxidative phosphorylation and energy 

pathway genes are overexpressed in chromophobe RCC and renal oncocytoma 

relative to the other subtypes of RCC(Schuetz et al. 2005). We are able to clarify 

this issue, demonstrating that even between these two entities, there are major 

differences in quantitative expression of the same pathways discriminating the 

two entities.  Consistent with these results, it has been recently reported that 

oncocytomas exhibit mitochondrial DNA mutations with clonal expansion and 

complex I deficiencies(Gasparre et al. 2008; Mayr et al. 2008). Oncocytoma 
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contains a large number of mitochondria, and the overexpression of these genes 

involved in cellular metabolism may reflect the relative quantitative excess of the 

mitochondria. A similar profound modification in energy metabolism genes has 

been observed in thyroid oncocytomas(Baris et al. 2004), with high activity of the 

aerobic respiratory pathway. It may be speculated that potential inhibition of 

autophagy in the chromophobe RCC may correspond to this difference as well. 

Rohan et al have previously reported in a smaller data-set that gene expression 

profiling is able to discriminate oncocytomas and chromophobe RCC(Rohan et 

al. 2006), and has reported that vesicular transport and cell junction proteins are 

relatively upregulated in chromophobe RCC.  

Novel biomarker identification discriminating chromophobe RCC and 

oncocytoma. In the process of validating our high-throughput expression 

studies, we report three novel markers discriminating between chromophobe 

RCC and oncocytoma: parafibromin, aquaporin 6, and synaptogyrin 3.  

Parafibromin, the protein product of the HRPT2 tumour suppressor gene, has 

been reported to be downregulated in a variety of tumours(Selvarajan et al. 2008; 

Tan et al. 2004a), and a role has been assigned to it in the Wnt signaling 

pathway(Mosimann et al. 2006). While the mechanism of parafibromin 

downregulation in parathyroid carcinoma appears to be mediated through gene 

mutation, this does not seem to be the mechanism in chromophobe RCC, as we 

have not identified any HRPT2 mutations after analyzing DNA samples from 5 

chromophobe RCC tumours (data not shown).  Similarly, other investigators have 

reported allelic imbalances in the HRPT2 gene in oncocytoma and chromophobe 
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RCC, but no mutations(Zhao et al. 2007).  Aquaporin 6 is an intracellular vesicle 

water channel protein reported to be expressed in the intercalated cells of the 

collecting duct(Yasui et al. 1999), which is hypothesized to be the originating cell 

for oncocytoma and chromophobe RCC.  Little is known about synaptogyrin-3, a 

tyrosine-phosphorylated protein that is expressed in synaptic vesicles(Belizaire et 

al. 2004).  The reasons underlying the reduced expression of aquaporin 6 and 

increased expression of synaptogyrin-3 in chromophobe RCC, relative to 

oncocytoma are uncertain. 

Based on our transcriptional and genomic DNA studies, we reveal somatic 

pairing of chr 19q as a recurrent cytogenetic abnormality in renal oncocytoma 

that results in dramatic changes in transcription within the paired region. Somatic 

pairing refers to the close association of homologous chromosomes and is 

typically associated with chromosomes in meiotic prophase. However, somatic 

pairing has also been observed in interphase in normal human cells and some 

tumour cells (Atkin and Jackson 1996; Brown et al. 1994; Lewis et al. 1993; 

Zhang et al. 1997). The functional consequence of chromosome joining is 

formally unknown but it is may disrupt chromatin structure causing the 

juxtaposition of cis and trans regulatory regions that modulate the transcription of 

a large set of genes. The changes in gene expression that accompanied the 

somatic pairing suggested that deregulation of a gene, or multiple genes, 

associated with tumour development mapped within the paired chr 19q region. 

The identification of EGLN2 as a significantly deregulated gene that maps within 

the paired chromosome 19q region directly implicates defects in the oxygen-
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sensing network to the pathobiology of renal oncocytoma. These results suggest 

that in addition to numerical and structural chromosomal abnormalities, somatic 

pairing should be considered as a chromosomal event that associates with 

tumourigenesis. 

Hypoxia-response dysregulation in chromophobe RCC and 

oncocytoma. A proper oxygen-sensing response is vital to the maintenance of 

normal cellular functions. Deregulation of HIF, the principal driver of the adaptive 

response to hypoxia, is associated with the pathogenesis of several diseases, 

including cancer. While the hypoxic tumour microenvironment - by the virtue of 

the ubiquitous oxygen-sensing pathway - results in modulation of HIF activity, 

loss-of-function mutations in a growing list of tumour suppressor genes also can 

affect HIF function. Mutations in PTEN, PML, TSC, and VHL have been identified 

in tumour cells that result in the deregulation of HIF via multiple distinct 

mechanisms involving Akt/PI3K, mTOR and the ubiquitin pathway. Emerging 

evidence now implicates cancer-causing mutations that directly impinge on 

EGLNs. For example, mutations in succinate dehydrogenase (SDH) result in the 

cytosolic accumulation of succinate, which inhibits EGLNs, leading to the 

stabilization and activation of HIF-1α. Inactivating germline mutations in EGLN1 

have been identified to cause erythrocytosis (Percy et al. 2006; Takeda et al. 

2008) and deregulation of EGLN3 has been linked to the development of 

pheochromocytoma, a neuroendocrine tumour of the adrenal glands(Lee et al. 

2005). 
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The disruption of HIF activity has been associated with kidney cancer 

related to VHL disease, sporadic clear cell RCC, and hereditary papillary 

RCC(Isaacs et al. 2005; Pollard et al. 2005; Tomlinson et al. 2002). 

CONCLUSION 

In conclusion, we have comprehensively characterized the molecular 

proiles of chromophone RCC and oncocytoma using high throughput expression 

and SNP profling. We have consequently derived discriminating expression 

signatures, pathways, cytogenetic profiles and protein markers that are of 

biologic, clinical and therapeutic interest. The present study reveals deregulation 

of the oxygen-sensing response in renal oncocytoma, as well as chromophobe 

RCCs (which display DNA amplification mediated up-regulation of EGLN2) and 

thereby supporting the dysfunction of HIF pathway as a common and perhaps 

central theme in the pathogenesis of kidney cancer. 
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OVERALL LIMITATIONS 

Given that multiple studies in this thesis rely on the use of high throughput 

technology such as gene expression profiling and single nucleotide 

polymorphism analysis, it is important to evaluate novel issues and 

considerations of this technology in common. Here I present several limitations 

common to all the studies in the Molecular Models section of this study, from both 

a classical as well as from a pathological viewpoint. 

 

STUDY DESIGN  

I will broadly focus on the issues of study design and validity in this 

discussion of the epidemiologic issues generated within the work on the 

molecular models, rather than focus on individual limitations arising within each 

individual paper. Describing these high-level overall limitations here also aids in 

reducing unnecessary duplication in the various sections. These issues are 

primarily related to the high-throughput technologies employed, before continuing 

with discussion of the individual issues in each paper. In essence, standard 

epidemiologic issues remain as relevant, if not more so, in this era of high 

throughput technology. 

VALIDITY 

In terms of internal validity, many conclusions for each study was 

generated from an initial sample set of frozen tissue samples from a wide range 

of centres that were made available to the Van Andel Research Institute for 
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research. As such, the issue of selection bias needs to be comprehensively 

discussed. Frozen tissue samples are relatively inaccessible. Legacy samples 

are often archived in tissue banks overseen by pathologists, and often with no 

clinical data available. Hence, while modern tissue banks have been addressing 

these issues, these are necessary and practical limitations to working with 

retrospective tissue samples of the past (and thus with long follow-up). While we 

were careful to define the time period for samples, it is necessary to accept that 

there may be some bias introduced in the assessment of the importance of these 

genetic markers by a retrospective design. Hence, for all studies, it was critical to 

introduce a degree of external validation by an independent sample set. For the 

study focusing on clear cell RCC, in addition to our internal sample set of primary 

clear cell RCC samples, our results were separately validated in terms of (i) an 

independent Swedish cDNA microarray data-set, across platforms (Larkin et al. 

2005) (ii) immunohistochemistry on an independent paraffin-embedded tissue 

set. This was validated in terms of immunohistochemistry on an independent 

paraffin-embedded tissue set. For the chromophobe RCC study, this was 

validated in terms of (i) a separate oligonucleotide array data-set of 

corresponding samples that is openly accessible and (ii) an independent set of 

tissue samples. With more sample sets becoming available in the foreseeable 

future (albeit largely selected hospital-based samples), external validation studies 

will certainly become easier. 
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EXPOSURE ASSESSMENT 

In terms of analytic validity, our study uses primarily high throughput 

techniques to elicit genome-level biomarkers against conventional survival based 

outcomes. Analytic validity is a major concern of high throughput technology – in 

particular, issues of bias introduced at the various steps of experiment design, 

sample processing, measurement, quantification, scanning  and data 

analysis(Zervakis et al. 2009). Further, on a meta-analytic level, the use of the 

same samples in different studies also may result in bias. Our studies use a 

common commercial platform – the Affymetrix U133Plus 2.0 microarray platform, 

with its own internal controls for sample quality (e.g. GADPH 3’-5’ ratios). Multiple 

replicates, both biologic and technical, are required for reducing the noise 

generated by analysis of high-dimensional data such as the microarray data we 

generate here (Larkin et al. 2005). It should be noted that multiple probesets for 

each gene may exist on this platform, and that only a subset of these probesets 

may be identified in a predictor. It is unclear that summarizing the multiple 

probeset data into a single gene expression value is superior to interpreting 

individual probeset expression values. 

It is well recognized that tumour tissue is heterogenous(Liu 2007). The 

studies here are based on microarrays of bulk tissue, inclusive of both tumour 

and stroma. Laser microdissection studies have shown that these two 

compartments differ in terms of gene expression profiles(Gregg et al. 2010). 

Nonetheless, it is important to note that the epidemiologic outcomes measured 



 159

here are primarily survival based, and thus, our primary interest is essentially 

external validation of a clinical based predictor. Indeed, the use of bulk tissue 

samples for microarray analysis may even yield insights, best seen in our work 

on clear cell RCC, where we suggest that the molecular determinants of 

prognosis may occur early in clonal development of a cancer cell, rather than 

arise later in individual subclones. 
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OVERALL CONCLUSIONS AND FUTURE RESEARCH 

In this work, we evaluate multiple clinical models for use in predicting 

outcomes in RCC, and determine that molecular studies may improve or 

complement these results, improving both clinical predictions and yielding useful 

biological insights. We describe the contributions in these specific areas as 

follows. 

For clinical models, we are able to determine that in terms of evaluating all 

the relevant clinical models, the Karakiewicz nomogram is superior to all other 

tested models in terms of predicting survival outcomes in localized RCC. In 

comparing models in current use in ongoing pharmaceutical trials, the Leibovich 

clinical trial criteria is superior to the UISS clinical trial criteria in terms of 

prediction of relapse free survival, but is equivalent to the UISS trial criteria in the 

prediction of CSS and OS. Exploratory analysis that we have performed is able to 

determine a potentially useful survival cutoff (a 5 year estimated cancer-specific 

survival of 0.9) for the Karakiewicz nomogram for dichotomization. This cut-off 

should be considered for use in future adjuvant trial design.  

We have surveyed multiple pathological subtypes of RCC for our 

molecular model analysis. For clear cell RCC, we have identified clinically useful 

prognostic gene predictors for clear cell RCC using gene expression profiling. 

Increased expression of genes classically associated with the VEGF-signaling 

pathway, angiogenesis and the hypoxic response predicted longer patient 

survival. 
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For papillary RCC, we have identified two distinct molecular classes of 

papillary RCC that differ strikingly in their clinical behavior and have dysregulation 

of genes controlling different parts of the cell cycle. This finding represents a 

biologically and clinically relevant refinement to previously proposed morphologic 

criteria for subclassification of papillary RCC. 

For chromophobe RCC, we have comprehensively characterized the 

molecular profiles of chromophobe RCC and oncocytoma using high throughput 

expression and SNP profiling.  We have consequently derived discriminating 

expression signatures, pathways, cytogenetic profiles and protein markers that 

are of biologic, clinical and therapeutic interest. Additionally, we show that while 

chromophobe RCC cells contain an extra copy of chromosome 19, the renal 

oncocytoma cells contain a rarely reported chromosomal abnormality. Both of 

these chromosomal abnormalities result in transcriptional disruptions of EGLN2, 

a gene that is located on chromosome 19. Defects in oxygen sensing are found 

in other types of kidney tumours, and the identification of EGLN2 directly 

implicates defects in the oxygen-sensing network in these neoplasias as well.  

Overall, this thesis thus provides insights into both classic and molecular 

epidemiology, representing a useful evaluation of existing statistical prognostic 

models for RCC, with immediate practical value for clinical practice, 

epidemiologic research and trial design. The use of molecular profiling for all 

major subtypes of RCC in this thesis has yielded novel subtypes for clear cell 

RCC and papillary RCC, with attending biologic, clinical and epidemiologic 

implications. The molecular predictors differentiating chromophobe RCC and 
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oncocytoma have provided useful insights as to the underlying biology, as well as 

provided opportunities for practical differentiation between these two highly 

related entities in the pathology laboratory.  

FUTURE RESEARCH 

This thesis lays out the molecular epidemiology of RCC as discerned 

through both a clinical and epidemiologic lens, predominantly with gene 

expression profiling techniques. These results clearly show the heterogeneity of 

RCC in terms of gene expression and survival outcomes. As such, it would be 

important to utilize the insights afforded by this subtyping in future epidemiologic 

studies of RCC, thereby clarifying the associated factors predisposing to, and 

influencing outcomes of RCC such as prognosis and drug response.  

From a biological viewpoint, evaluation of the molecular basis of these 

subtypes is crucial. Toward this goal, cancer genetics and epigenetics may be 

viewed as fundamental to investigating the dysregulated gene expression 

identified here. In particular, with improvements in next-generation sequencing 

technology and the identification of new somatic alterations such as mutations of 

PBRM1, such approaches will likely provide more information on the basis of the 

molecular epidemiology observed here. With better characterization of each 

sample, it is inevitable that more complex analyses will be possible. 

From a clinical viewpoint, these novel subtypes are useful for utilization in 

the context of clinical research. It is likely that different RCC subtypes even within 

the same pathological subtype may yield different outcomes when treated with 

different targeted therapies, particularly if the underlying genetics of these 
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subtypes differ. Hence, the use of our clinical and molecular predictors would be 

very relevant in the context of international drug trials. It is already recognized 

that even within clear cell RCC, indolent tumours respond better to anti-

angiogenic therapy and more aggressive tumours respond better to mTOR 

inhibitors. The extension of clinical trials as currently designed to accommodate 

novel insights of molecular epidemiology can improve study recruitment and 

outcomes.  

In particular, this thesis focuses primarily on the epidemiology of RCC, in 

terms of diagnosis and prognosis. With the approval of many novel targeted 

therapies for cancer in the last five years, the use of these agents for the 

treatment of RCC has become of major interest. Hence, the issue of how biology 

affects therapeutic response is a key future research area, and this work provides 

a clear biological foundation for this challenge.  
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