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Summary 

                 Lactobacilli are attractive candidates for vaccine delivery vehicles 

because they are considered as GRAS (Generally regarded as safe) organisms with 

a very long record of safe oral consumption. They have greater intrinsic 

immunogenicity and colonizing ability in the GI tract that make them potentially 

better candidates for vaccination. The health promoting effects of Lactobacillus 

rhamnosus GG have also been studied extensively; however it has been poorly 

exploited as a vaccine delivery vehicle. This dissertation aims to characterize LGG 

as vaccine delivery vehicle.  Mucosal immunization with LGG expressing GFP or 

IL2-GFP induced GFP specific serum IgG and IgA. The fusion of IL2 to GFP 

resulted in significantly increased GFP specific serum IgA and IgG and SIgA titers 

compared to LGG-GFP immunization. Immunization in nasal route showed no 

abnormal lung damage though increased cellular infiltration was seen initially and 

subsequently reverted close to normal. Immunohistochemical staining of the lung 

tissue showed IgA producing B cells at 80th day of post primary immunization. 

There were increased GFP specific CD8 T cells in the recall assay which was 

significantly increased by IL2- GFP mucosal delivery.   

                Members of γc cytokine family (IL7, IL15 and IL2) have been 

expressed with PSA in LGG and co-cultured in vitro with DC or neutrophils to 

study the antigen presentation. LGG itself have stimulatory effects on DC 

maturation and increased the expression of CD86, CD80, CD40 and MHC II.  

IL15-PSA or IL2–PSA secreting LGG reduced IL10 production by DC, IL7 did 

not, but all three resulted in increased IL12p70 production. However, the T cell 

response did not correlate with differences in IL12 or IL10 production. 
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LGG-S-IL15-PSA treated DC primed T cells showed high IFNγ production and 

CTL response on target cells indicating efficient antigen presentation to T cells. 

LGG treated neutrophils did not induce any of the co-stimulatory molecules or 

MHC II expression but only showed elevated expression of the MHC I molecules. 

LGG treated neutrophils produced high and moderate levels of IL10 and IL12p70 

respectively and efficiently induced allogeneic T cell proliferation.  LGG treated 

neutrophils increased the expression of co-stimulatory molecules on DC that 

clearly showed bacteria treated neutrophils could deliver the maturation signals to 

immature DC. Recombinant LGG treated neutrophils provided antigen specificity 

to DC by unknown mechanism when it was co-cultured with DC and also rendered 

a cytotoxic effect in T cell presentation. This ensures the efficacy of LGG based 

antigen delivery in inducing immune response through neutrophils alone in the 

absence of direct bacteria-DC encounter. This dissertation showed that LGG as a 

promising antigen delivery vehicle and that IL15 is a good vaccine adjuvant 

especially when administered as fusion protein with antigen. 
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1.1. Mucosal immune system - An Overview 

The mammalian mucosal immune system consists of a network of lymphoid 

tissues which frequently encounters foreign invaders at mucosal surfaces. The 

mucosal surface is the major portal of entry for infectious agents and it has a vast 

and enormous surface area, approximately 300 to 400 m2. This requires a 

formidable defence system mainly contributed by the Mucosa Associated 

Lymphoid Tissue (MALT) through secretory IgA and effector T cells that act 

synergistically with the innate immune system (Fujihashi et al. 2008). The 

mucosa contains the highest lymphocyte concentration, approximately about 6 x 

1010 antibody-forming cells in MALT compared to 2.5 x 1010 lymphocytes in the 

lymphoid organs. The main components of MALT are Gut Associated Lymphoid 

Tissue (GALT), Bronchus Associated Lymphoid Tissue (BALT) and 

Nasopharyngeal Associated Lymphoreticular Tissue (NALT). The GALT is 

comprised of the Peyer’s patches (PP), the appendix, and the solitary lymphoid 

nodules. The tonsils and adenoids (human) or nasal associated lymphoreticular 

tissue comprise the NALT (Staats et al. 1996).  

 Most human pathogens enter the body through a mucosal surface, such as the 

intestine, and strong immune responses are required to protect this 

physiologically essential tissue. However active immunity against non-

pathogenic materials would be dangerous and lead to inflammatory disorders 

such as Coeliac disease and Crohn’s disease. As a result, the usual response to 

harmless gut antigens is the induction of local and systemic immunological 

tolerance, known as oral tolerance (Strobel et al. 1998).  The intestinal microflora 

play important roles in the modulation of oral tolerance (Moreau and Corthier et 

al, 1988). Administration of probiotics could restore oral tolerance in germfree 
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mice, and those effects are strain-dependent (Maeda et al. 2001). Immune 

tolerance in Lactobacilli administration may be avoided by choosing specific 

strain that induces Th1 rather than Th2 immune response (Drago et al. 2010) 

SED

 

 Figure 1.1   Schementic  representation of  gut associated lymphoid tissue          

(GALT)  

Peyer's patches are composed of a specialized follicle-associated epithelium 

(FAE) containing M cells, a subepithelial dome (SED) rich in dendritic cells 

(DCs), B and T lymphocytes.  

 

1.1.1. Peyer’s patches  (PP) 

The PP germinal centres in the gastrointestinal tract are the major sites for 

frequent B cell switches to IgA (Lebman et al. 1987; Butcher et al. 1982). 

Peyer’s patches are one of the major sources of IgA plasma cell precursors that 

undergo direct antigen driven proliferation. After antigenic stimulation, IgA+ 

lymphoblasts migrate through the lymph and blood circulation and eventually 
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home in to the lamina propria of the intestine. Mature Peyer’s patches consist of 

collections of large B-cell follicles and intervening T-cell areas. The lymphoid 

areas are separated from the intestinal lumen by a single layer of columnar 

epithelial cells, known as the follicle-associated epithelium (FAE) and the most 

notable feature of FAE is the presence of microfold cells (M) cells, which are 

specialized enterocytes that lack surface microvilli and the thick layer of mucus 

(Mowat et al. 2003). M cells serve as portals of entry for pathogens (Jones et al. 

1994) and are known to internalize and transport luminal antigens into the 

underlying lymphoid tissue (Wolf and Bye et al. 1984) where antigen presenting 

cells will acquire the antigens and present them to T cells after processing.  

 

1.1.2. Intestinal enterocytes  

Intestinal enterocytes are also known to process and present antigens (Zimmer et 

al. 2000), but they only induce tolerance since they do not express the co-

stimulatory molecules that are required for full T cell activation (Sanderson et al. 

1993).  However intestinal epithelial cells were reported to express non classical 

restriction elements CD1 and T1 in mouse and CD1d in man (Bleicher et al. 

1990; Blumberg et al. 1991; Panja et al. 1993). These class Ib molecules are 

capable of binding peptides and interestingly non-peptide antigens. Intestinal 

mucosa can discriminate pathogenic and non-pathogenic bacteria which may 

depend on recognition by pattern recognition receptors (PPR). Intestinal 

epithelial cells secrete fluid in response to invasive bacteria (Eckmann et al. 

1997). For non pathogenic bacteria 2 models have been proposed to explain the 

intestinal epithelial cell response. In the first model, Gram negative Escherichia 

coli and certain lactobacilli could trigger a NF-κB mediated inflammatory 
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response which is transient and is suppressed by immune cells which 

predominantly secrete IL-10 in the lamina propria. A second type of response is 

triggered by commensals that do not induce a pro-inflammatory response, but 

evoke the activation of TGF-β which induces tolerance and protects barrier 

integrity (Schiffrin et al. 2002). Recently a receptor mediated antigen uptake 

mechanism involving fetal Fc receptor has been established (Baker et al. 2009). 

This receptor binds IgG by a pH sensitive mechanism that facilitates vesicular 

bidirectional transport of intact-IgG or IgG-antigen complexes across mucosal 

epithelial cells and delivers them to underlying DCs to initiate T cell response 

and alternatively it can deliver IgG antibodies to the mucus lumen for the 

purpose of host defense against epithelial cell-associated pathogens (Yoshida et 

al. 2006).  

 

 1.1.3. Mesenteric lymph nodes (MLN) 

The MLNs are the largest lymph nodes in the body. It is considered as the cross 

roads between the peripheral and mucosal recirculation pathways (systemic 

immune system). Antigen encountered DCs prime the T cells in PP and exit 

through the draining lymphatics to the MLN or prime the T cells in MLN and 

reside for an undefined period for further differentiation. Then they migrate into 

the blood stream through the thoracic duct and finally accumulate in the mucosa 

to give efficient local immune response or tolerance (Mowat et al. 2003).  

  

1.1.4. Mucosal dendritic cells  

Several subsets of DC have been identified in the PP (Iwasaki et al. 2000; 

Johansson   et al. 2005; Kelsall et al. 2005 ). In addition to myeloid (CD8α 
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CD11b+) and lymphoid (CD8α+ CD11b ) subsets another subset (CD8α  

CD11b) was also found at the dome region immediately beneath the FAE.  The 

distinguishable feature of the DC subsets in PP is their ability to secrete IL-10 

rather than IL-12 which is produced by splenic DC in response to activation after 

ligation of the co-stimulatory molecule receptor activator of NF-κb (RANK) 

(Williamson et al. 2002). 

DCs at lamina propria (LP) process the antigen delivered by intestinal 

enterocytes or internalize the organism by extending their cellular processes into 

the lumen after migrating to the epithelial monolayer in the presence of bacteria. 

After processing the antigen, lamina propria DC interact with T cells mainly at 

the MLN rather than in the mucosa itself (Mowat et al. 2003).   

In antigen fed mice, DCs in the MLN produce IL-10 or TGFβ and preferentially 

stimulate antigen specific CD4+ T cells to produce IL-10 and or TGF-β (Akbari 

et al. 2001). This TR1 or TH3 cytokine pattern has been implicated in oral 

tolerance (Groux  et al. 1997). 

 

1.1.5. Mucosal lymphocytes 

The major population of T lymphocytes in intestines are lamina propria T cells, 

intraepithelial T cells and PP T cells. Lamina propria T cells and intraepithelial T 

cells express different pattern of T cell receptor (TCR) and TCRγδ cells are 

distinguished from their TCRαβ cell counterparts by their distinct set of 

somatically rearranged variable (V), diversity (D), joining (J), and constant (C) 

genes. The vast majority of T cells express a TCR composed of an alpha chain 

and a beta chain, whereas a minor T-cell population is characterized by the TCR 

gamma/delta. In contrast to conventional alpha/beta T cells, which are specific 
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for antigenic peptides presented by the major histocompatibility complex, 

gamma/delta T cells directly recognize proteins and even nonproteinacious 

phospholigands. In mice duodenum and jejunum, the intraepithelial T cells are 

present in higher numbers than lamina propria T cells and the distribution of 

TCRαβ cells to TCRγδ cells in intraepithelium is 1:3. In ileum it is reversed to 

3:1.  But the proportion of TCRαβ cells to TCRγδ cells in lamina propria is 

consistent throughout the small intestine at  3:1 (Tamura et al.  2003).  The major 

distribution of TCRαβ cells in lamina propria and the ability of antigen 

recognition by TCRαβ-MHC molecule interaction make lamina propria the main 

site for immune responses to be executed (Tamura et al. 2003). The nonclassical 

class I MHC (class Ib) molecules are recognized by TCRγδ cells and TCRγδ has 

a potential antiviral immune function (Sciammas et al. 1999). Interaction among 

TCRγδ, CD4+ TCRαβ and IgA B cells is reported to be necessary for maximum 

IgA responses (Kiyono et al. 1996)  

 

1.2. Mucosal Vaccines  

Injected vaccines are generally poor inducers of mucosal immunity and therefore 

less effective against mucosal surface infections unlike mucosally administered 

vaccines (Levine et al. 2000; Lamm et al. 1997). Mucosal vaccines induce a 

humoral response at the site of pathogen entry, are easy to administer without the 

need for sterile needles and syringes and thus have the potential for easy mass 

immunization. An important characteristic of the mucosal immune response is 

the local production and secretion of dimeric or multimeric immunoglobulin A 

which are resistant to degradation at the protease rich mucosal surfaces. 

Secretory IgA entraps the antigen or pathogenic microorganism and intercept 
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polymeric immunoglobulin receptor (pIgR) mediated pathogen transport (Lamm 

et al. 1997) 

The antigen specific B cell response to mucosally delivered vaccines is 

dependant on CD4+ Th cells and the frequency of Th1 and Th2 cell responses. In 

particular Th1 cells secreting IFNγ, IL2, and tumor necrosis factor β (TNFβ) are 

less efficient in antibody induction than the Th2 subset.  In the murine system, 

Th1 cells through the secretion of IFNγ are more efficient in the stimulation of 

IgG2a production, whereas Th2 cells producing IL-4 induce IgG1 and IgE 

antibodies (Snapper et al. 1988; Finkelman et al. 1989).  The type of immune 

response induced by immunization determines the efficacy of the vaccine. For 

example, cellular mediated immune responses (CMI) clear intracellular 

pathogens whereas strong antibody responses may be preferable to neutralize the 

effect of bacterial toxins. Vaccine adjuvants or cytokines may be co-administered 

to induce the desired immune response.  

However, with mucosal vaccines the concentration of antigen delivered and 

absorbed in the body or bioavailability of the antigen is poorly characterized. 

Hence, only a few mucosal vaccines have been approved for human use namely, 

oral vaccines against polio virus (Modlin et al. 2004), Salmonella typhi, Vibrio 

cholerae (Levine et al. 2000), rota virus (Kapikian et al. 1996) and nasal 

vaccines against the influenza virus (Belshe et al. 1998).  

The success of mucosal immunization is determined by the following factors: 

1)   Effective delivery of antigen,  

2)  Enhancement of mucosal immune response with immunomodulators or 

adjuvants  

3)  Choice of a regime and  
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4)  Route of mucosal immunization.  

 

Mucosal vaccine- challenges 

In recent years, the use of mucosal vaccines have been given more attention. 

Despite much progress, there are several issues that still need to be addressed.  

1. Mucosal vaccines that are administered orally or intranasally get diluted in 

mucosal secretion and trapped in mucus gel. Relatively larger doses of vaccine 

may be required and it is hard to determine what dose actually crosses the 

mucosal layer. 

2. The most frequently asked question about the mucosal vaccine is the possible 

induction of mucosal tolerance. It is known that repeated oral ingestion of 

antigen results in decreased or totally abrogated responsiveness to subsequent 

systemic immunization with the same antigen. Though some mucosal vaccines 

are intrinsically immunogenic, additional adjuvants like cholera toxin (CT) or 

cytokine co-expression may help to avoid tolerance induction.  

3. Recombinant bacterial vaccines when administered induce immune responses 

against the vaccine antigen initially, but the response to the neo-antigen is 

overwhelmed by response to the more immunodominant antigen of the bacteria 

itself.   

4.  The effectiveness of the live bacterial vaccines is partly dependant on the 

transport to organised lymphoid tissues. Vaccines derived from pathogenic 

microbes like live attenuated S. typhi (Levine et al. 2000) or live attenuated polio 

virus (Modlin et al. 2004) preferentially adhere to M cells and exploit M-cell 

transport to invade organized mucosal lymphoid tissues in the intestines (Jones et 

al. 1994; Sicinski et al. 1990). Lactobacilli are not known to invade lymphoid 
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tissue as the microbes discussed above. However expressing foreign protein with 

DC targeting peptide may improve  bacterial uptake (Mohamadzadeh et al. 

2009). 

5. The important challenge is to apply the results obtained with animal studies to 

clinical trials and to moitor systematically all parameters of the immune 

response.    

 

1.2.1. Live bacterial vaccines   

Both attenuated pathogenic bacteria and commensal microorganisms have been 

successfully used as carriers for vaccine antigens (Thole et al, 2000). Live 

attenuated  pathogens have the double advantage  that  they provide protective 

immunity to the pathogen and also elicit specific immune responses for the 

heterologous antigen that is carried by the pathogen. They also usually colonize 

the mucosae, ensuring prolonged exposure to the immune system for effective 

priming. Thus they do not necessitate repeated administrations. Listeria 

monocytogenes, Salmonella spp., V. cholera, Shigella spp., Mycobacterium bovis 

BCG and Yersinia enterocolitica are successfully used as attenuated mucosal 

pathogens in animal models. Table 1.1 shows the list of some attenuated 

pathogenic bacteria used as vaccine vehicles. Commensal microorganisms, 

Streptococcus gordonii, Lactobacillus spp. and Staphylococcus spp. are also 

commonly used as antigen delivery systems (Medina et al. 2001).  
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1.2.2. Disadvandages of using attenuated pathogenic bacteria as vaccines 

1. A potential risk of reversion to virulence.  

2.. Doses effective in non-endemic areas may not be effective in endemic areas 

where normal wild type strains are circulating (Detmer et al. 2006).  

 3. Immune induction against the antigen expressed in live bacteria may be 

compromised if the host has pre-existing immunity against carrier strain 

(example - Salmonella). 

 4. Permanent colonization of the intestines by the vaccine carrier may result in 

gene/plasmid transfer to the host’s indigenous flora competitive exclusion of 

indigenous flora . 
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Microorganisms 
 

Mechanism of immune 
induction 

Advantages 
 

        Disadvantages References 
 

Listeria monocytogenes (mutated in 
virulence associated determinants) 
 
 
 
 
Salmonella spp (mutants deficient in 
the biosynthesis of aromatic 
aminoacids or purines or cAMP, 
mutations affecting the global 
regulatory system phO/phQ have been 
used)   
Yersinia enterocolitica (Yop mutant, 
attenuated strain WA-314 sodA) 
 
Shigella spp. (induced mutation in 
virulent plasmid to generate non 
invasive, S. flexneri 2a. Istrati T32 is 
claimed be safer. Invasive-  Mutations 
in either icsA and/or in a variety of 
metabolic 
genes)  
 
Nasal administration of an attenuated 
strain of Bordetella pertussis (BPZE1) 
provided effective and sustained 
protection against lethal challenge with 
two different influenza A virus 
subtypes 
 
 

MHC class I restricted 
immune response 
 
 
 
 
MHC class I and class II 
restricted  immune 
response 
 
 
 
MHC class I restricted 
antigen presentation 
 
 
elicits CD8+ T cell 
response. 
 
 
 
 
  
An effective and sustained 
protection against lethal 
challenge with mouse-
adapted H3N2 or H1N1 
(A/PR/8/34) influenza A 
viruses 

Elicits strong cellular response. 
Useful in clearance of 
intracellular pathogens and 
cancer. Listeria based vaccine 
is under clinical trial phase I/II. 
 
Induce strong humoral and 
cellular immune response. 
Useful in viral diseases and 
cancer  
 
 
Induce cellular immune 
response. Useful against viral 
diseases and cancer. 
 
 
Deliver DNA vaccine plasmids 
to mucosal sites and induce 
protective T cell responses  
 
 
 
BPZE1 treatment protects mice 
from influenza virus-induced 
immunopathology and 
lymphocyte depletion. 

If virulence is not severely 
attenuated or if the mutated 
strain reverts to normal, 
listeria infection causes a 
fatal disease called 
listeriosis.  
Possibility for conversion 
from avirulent to virulent 
and translocation to organs. 
 
 
 
Poor colonizing ability in 
intestine and sometimes 
failure to elicit CD8+ T cell 
response in vivo. 
 
Possibility for conversion 
from avirulent to virulent 
and translocation to organs 
 
 
 
The viral load is not 
significantly reduced in 
BPZE1-treated mice 

 
Jiang et al. 
2007, 
Bruhn et al. 
2007. 

 
 
 
Bumann et al. 
2001, 
Medina et al. 
2001, 
Detmer et al. 
2006. 
 
 
 
Leibiger et.al. 
2008, 
Gundel et.al. 
2003. 

 
 
Shata  et  al.  
2001. 
Vecino  et  al. 
2002, 
Jennison et al. 
2004. 
 
 
 
 
 
Li et al. 2010. 

Table 1.1. Attenuated pathogenic bacteria as vaccine vehicles 
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1.2.3. Commensal microorganisms as vaccine vehicles 

Different Lactobacillus spp. based vaccines have been developed and 

administered by the mucosal route, leading to the elicitation of both mucosal and 

systemic immune responses against the expressed antigens (Zegers et al. 1999; 

Gerritse et al. 1990). Lactococcus lactis (a non colonizing strain), Lactobacilli 

(which are able to colonize) and Streptococcus gordonii, (an oral commensal 

organism of human origin which has been known for its stable antigen 

presentation) are commonly used vaccine carriers. Recombinant S. gordonii has 

been employed to develop vaccines against sexually transmitted pathogens (Di 

Fabio et al. 1998).   

 

1.3. Lactic Acid Bacteria as vaccine vehicles  

Lactic acid bacteria (LAB) are a group of Gram positive non-sporulating bacteria 

that include species of Lactobacillus, Leuconostoc, Pediococcus and 

Streptococcus. LAB are attractive candidates for vaccine delivery vehicles 

because they are considered as GRAS (Generally regarded as safe) organisms 

with a very long record of safe oral consumption. They have the following 

advantages as vaccine delivery vehicles (Wells et al.  2008).  

1. LAB strains are able to effectively survive passage through the stomach. 

However the survival of LAB in stomach acid and contact with bile is strain 

dependent. 

2. The mucosal route of administration can stimulate systemic immune response 

and elicit mucosal immune response by the induction of secretory 

Immunoglobulin A. 



                                                                                                                                    

                                          14

3. When administered by the  oral route , LAB can be taken up into the PP, the 

major inductive site in the GI tract. 

4. Killed recombinant LAB can be used for intranasal immunization. 

5. LAB only induce a low-level immune response against themselves.   

6. Colonizing LAB can synthesize the antigen continuously at the desired 

mucosal surface thereby triggering the underlying immune system. 

 If LAB are used for immunization a high level of antigen synthesis will not be a 

prerequisite as they can colonise the gastrointestinal tract. In the case of 

colonizers, strains appropriate for human use have to be selected on the basis of 

safety.  Amongst LAB, the natural inhabitants of the gastrointestinal tract, 

Lactococcus lactis, Lactobacillus spp and colonizers of the oral cavity, 

Streptococcus gordonii are commonly used as vaccine carriers.  

 

Cytokine co-expression with antigen in LAB based vaccines 

Cytokine co-expression with antigen that delivered by LAB was believed to 

enhance the immune response than the antigen alone.   Intranasal immunization 

of lactococci expressing Tetanus Toxoid Fragment C (TTFC) with either IL-2 or 

IL-6 resulted in a more rapid response and higher endpoint titres of TTFC-

specific antibodies (Steidler et al, 1998). Co-administration of IL12 secreting L. 

lactis with a cell wall-anchored human papillomavirus type 16 E7 antigen 

elicited more antigen specific cellular immune response than E7 antigen 

expressing L. lactis administration alone (Bermudez-Humaran et al, 2003).  IL10 

secreting L. lactis was shown to alleviate the symptoms in Crohn’s disease and 

Irritable Bowel Disease (IBD) (Steidler et al, 2000). Co-administration of IL10 
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secreting L. lactis with allergen expressing L. lactis may be useful in asthma like 

allergic disorders (Frossard et al, 2007).  

 

1.3.1. Lactococcus lactis    

Unlike other LAB, Lactococcus lactis does not colonize the digestive tract of 

man or animals. In mice it persists in digestive tract for less than 24 hours and 

in humans it passes through the gut in 3 days (Mercenier et al. 2000).  As it has 

limited capacity to produce and secrete antigen in vivo, Lactococcus lactis has 

been engineered to express antigen intracellularly, so that the bacteria are pre-

loaded with antigen before they are used for immunization. Using the 

lactococcal T7 system, heterologous antigens have been expressed so that they 

make up about 2-20% of total cellular protein (Mercenier  et al. 2000).  The 

most complete immunological study has been conducted with recombinant 

Lactococcus lactis producing the Tetanus Toxin Fragment C (TTFC) 

(Robinson et al. 1997; Norton et al. 1995; Steidler et al. 2002).  Lactococcus 

lactis expressing TTFC on the membrane, intracellularly or as a secretory 

protein were administered without adjuvant to mice. All three Lactococcal 

TTFC expressor strains were able to elicit antibodies and protected the mice 

from lethal toxin challenge. Intranasal immunization of Lactococcus lactis that 

co-express TTFC with murine IL2 or IL6 demonstrated the advantage of 

cytokine co-administration with antigen in enhancing the humoral immune 

response (Steidler et al. 1998).  Its poor colonizing ability has been considered 

the main disadvantage of using Lactococcus lactis as a vaccine vehicle. 
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1.3.2. Streptococcus gordonii    

S. gordonii is one of the pioneer organisms in the oral cavity and likely to 

appear in the oral cavity as early as 6 months of age. The advantage of being a 

pioneer organism is that there is less competition from other organisms. The 

persistent nature of S. gordonii in the oral cavity suggests it can be a potential 

economical vaccine preferably to be used soon after birth (Lee et al. 2003). So 

far, there are two approaches that have been used to express heterologous 

proteins in S. gordonii.  One approach is to express the protein on the surface 

by exploiting the C-terminal surface anchoring domain of the M6 protein or P1 

antigen of Streptococus pyogens or Streptococcus mutans respectively.  In the 

second approach, secretion of the antigen into the culture medium is made 

possible by using the M6 protein or P1 antigen signal sequence. Oral 

immunization  with recombinant S. gordonii expressing tetanus toxin fragment 

C or Fim A has been shown to confer some protection against tetanus toxin 

lethal challenge in mice and prevent  alveolar bone loss induced by 

Porphyromonas gingivalis infection in rats respectively (Medaglini et al. 2001, 

Sharma et al. 2001). Antigens secreted or surface expressed by S. gordonii are 

immunogenic in mucosal as well as parenteral administration.  However, 

obtaining a high level of immune induction has been an obstacle in S. gordonii 

based vaccines.  

 

1.3.3. Lactobacilli   

Compared to Lactococci and S. gordonii, Lactobacilli have greater intrinsic 

immunogenicity and colonizing ability in the GI tract that make them 

potentially better candidates for vaccination. Lactobacillus plantarum, 
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Lactobacillus casei, Lactobacillus helveticus, Lactobacillus acidophilus, 

Lactobacillus reuteri, Lactobacillus brevis and Lactobacillus rhamnosus GG 

(LGG) are commonly used Lactobacilli for vaccine delivery (Table 1.2). 

Lactobacilli are non invasive and the vaccine delivery to antigen presenting 

cells may be less effective than with invasive bacteria. Still antigen specific 

immune responses have been obtained with Lactobacilli based vaccines.  
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Bacterial 
strain  
 

Antigen expressed/ 
secreted 

Route of  
administration 
to mice 

   Immune response 
 
 

Results 
 
 

References 
 

L. plantarum 
 

 

 

L. plantarum 
L. casei 
 
 
 
 
L. plantarum,  
L. helveticus  
 

 

 

L. plantarum 

 

Urease B of 
Helicobactor pylori 
(Intracellular 
expression) 
 
 
TTFC 
(Intracellular 
expression or surface) 
 
 
 
 
PsaA (Pneumococcal 
surface antigen A) 
antigen of 
Streptococcus 
pneumoniae 
(secretory) 

 
TTFC 
(intracellular/surface/ 
secretory) 

Oral  
 
 
 
 
 
Oral, intranasal  
 
 
 

 

 
Intranasal 
 

 

 

 
Oral, intranasal 
 

specific serum antibody 
 
 
 
 
Serum antibody and 
secretory IgA in BALF,  
T cell response in 
draining lymph nodes 
 

 

Serum antibody and 
secretory IgA in BALF, 
 

 

 

Serum antibody and 
secretory IgA in BALF 

partial protection against infection 
with Helicobactor felis 
 
 
 
provides protection against lethal 
challenge of tetanus toxin. 
Immune response elicited was  
L. plantarum > L. casei and 
intracellular TTFC > surface 
expressed  TTFC  
 
 
Reduction in nasal colonization of 
S. pneumoniae. 
 
 
 
 
 
Surface expression requires a 
lower dose to be immunogenic and 
high intracellular expression elicits  
the highest serum IgG titre. 

Corthesy 
et al.  2005 
 
 
 
 
 
 

Grangette et al. 
2001 
Shaw et al. 2000 
 
 
 
 
 
 
Oliveira et al. 
2006 
 
 
 
 
 
 
 
 
 

Reveneau et al. 
2002  
 
 

 

    

                                           
                                                    Table 1.2. Lactobacillus based vaccines 
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L. acidophilus 
 
 
 
 
 
L. casei 
 
 
 
 
 
 
L. casei 
 
 
 
 
Cellwall mutant  
L.plantarum 
(alanine 
racemase  
mutants) or 
wild type 

 
Bacillus anthracis 
protective antigen (PA) 
fused with dendritic 
cell targeting peptide 
(secretory) 
 
Severe acute 
respiratory syndrome 
coronavirus spike 
protein-surface display 
 
 
human papillomavirus 
type 16 E7 protein-
surface display 
 
 
 
TTFC  
(intracellular) 

 
 

Oral 

 

  
Oral or nasal 
 
 
 
 
 
Oral  
 
 
 
 
Oral or 
intravaginal 

 

PA specific IgA, Serum 
IgG,neutralizing 
Antibody. 
 
 
 
High serum IgG and 
mucosal IgA  
 
 
 
 
Serum antibody, mucosal 
IgA and T cell response 
(ELISPOT) 
 
 
High serum IgG, mucosal 
IgA. 

 
 
protective immunity against B. 
anthracis. 
 
 
 
 
Oral immunization renders higher 
neutralizing antibody production 
than nasal immunization.  
 
 
 
Protection demonstrated against 
injection of E-7 expressing tumour 
cell line. 
 
 
In oral immunization, mutant 
strain was far more immunogenic 
than wild type. TTFC specific IgA 
only induced with mutant strain. 
Much stronger TTFC specific 
serum IgG was produced in  
intravaginal immunization of 
mutant strain. 

 
 
Mohamadzadeh, 
M et al. 2009 
 
 
 
 
 
 
Lee et al.  2006 
 
 
 
 
 
 
Poo et al.  2006 
 
 
 
 
 
 

 
Grangette et al. 
2004 
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Among Lactobacilli based vaccines, L. plantarum and L. casei are commonly 

used vaccine vehicles.  L. plantarum based TTFC vaccine delivery induced a 

higher TTFC specific antibody over L.casei in oral  and intranasal 

immunization of C57BL/6  and Balb/c mice. Mitomycin treated L. plantarum 

induced eight fold less neutralizing tetanus antibody levels than live bacteria 

though it elicted almost the same level of serum TTFC specific antibody in 

intranasal immunization. (Grangette et al. 2001). 

 L. plantarum has also been used to induce tolerance in treating allergy. 

Immunization of recombinant L. plantarum expressing house mite allergen Der 

p1 or mucosal co-application of  L. plantarum with birch pollen allergen Bet v1 

could suppress the dust mite specific T cell response or pollen allergen specific 

Th2 allergic immune response respectively (Kruisselbrink et al. 2001; Repa et 

al. 2003). Recombinant L. casei expressing transmissible gastroentritis 

coronavirus spike glycoprotein or Porcine Parvovirus VP2 protein elicited 

antigen specific mucosal IgA or serum antibodies by intragastic administration 

(Ho et al. 2005; Xu et al. 2007). Immunomodulatory potential of L. casei was 

demonstrated by showing significant inhibition of β-lactoglobulin specific IgE 

in oral immunization of BLG expressing L. casei (Hazebrouck et al. 2009). 

1.3.3.1. Lactobacillus rhamnosus GG  

Lactobacillus rhamnosus strain GG was discovered in 1985 (Gupta et al. 2009) 

and later, LGG  was sub grouped  as member of the L. casei based on cell wall 

peptidoglycans and the fermentation pathway of pentoses and hexoses 

(Hammes et al. 1995). LGG was the first probiotic, which received most 

clinical attention to date. (Gorbach et al. 2000). The health promoting effects 
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of LGG have also been studied extensively, making it the best characterized 

probiotic bacterium. 

 

1.3.3.2. Benefits of using LGG 

1.  Survival of LGG in the human gastrointestinal tract -  In human trials, LGG 

was shown to survive better in the gastrointestinal tract and to persist in 87% or 

33% (sample size - 77) of volunteers for 4 or 7 days after oral consumption of 

bacteria. (Goldin et al. 1992) 

2.  Better adherence   to  mucosal tissue -  LGG was demonstrated to have a 

strong  

in-vitro adherence to HT-29 cells (Verdenelli et al. 2009). The strong adherent 

ability of LGG to cervico-vaginal cells and antagonistic effect on vaginosis 

associated pathogens also   have been reported (Coudeyras et al. 2008). 

3. Easing symptoms of gastrointestinal disorders. A clinical study done by The 

European society for Pediatric Gastroenterology, hepatology, and nutrition  

involving 287 children aged 1 - 36 months from 10 countries suffering from 

moderate to severe diarrhoea showed that patients receiving LGG had 

decreased severity and shorter duration of illness. (Guandalini et al. 2000). 

LGG was reported to block inflammatory signaling in vivo via reactive oxygen 

species generation and thereby may prevent necrotizing enterocolitis (NEC) in 

premature infants ( Lin et al. 2009).  

4. In alleviating allergic reactions- The immunomodulatory potential of LGG 

in allergic conditions has been extensively documented. LGG consumption in 

pregnant women for 2 - 4 weeks before their delivery date reduced the 
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incidence of atopic eczema in their children who were breast fed. (Kalliomaki 

et al. 2001). 

5. In cancer - LGG cytoplasmic fraction exerted  antiproliferative and 

proapoptotic effects on HGC-27 human gastric carcinoma cell lines. (Russo et 

al. 2007). LGG was also reported to induce antiproliferative or cytotoxic 

effects on human transitional carcinoma cell lines MGH and RT112 

respectively. (Seow et al. 2002).  LGG DNA containing novel 

oligodeoxynucleotide pattern elicited a strong immunostimulation in murine 

immune cells ( Iliev et al, 2005). In  mice bearing bladder tumours oral 

administration of LGG immediately after tumor cell implantation reduced the 

tumour size and inhibited tumour development. (Lim et al. 2002) 

 

Lactobacillus rhamnosus GG as vaccine vehicle  

Despite of having many beneficial effects on consumption, LGG has been 

poorly exploited as a vaccine delivery vehicle.  

 

1.3.4. Dose and route of administration of lactobacilli:  

Many studies were  performed to analyze the effective dose of lactobacillus 

that could  induce an immune response and enhanced phagocytic cell function  

which has been taken as an index of immune enhancement by lactobacillus 

(Perdigon et al. 1986). Generally oral delivery of 109 cfu (LGG HN001) was 

found to be effective in enhancing an immune response (Gill et al. 2000). A 

dose of 107cfu LGG HN001 was also shown to be sufficient to enhance the 

phagocytic capacity of blood leukocytes but a minimum daily dose of 109 cfu 

was found necessary to enhance the phagocytic capacity of peritoneal cells 
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(Gill et al. 2001). Interestingly, there was no further increase in peritoneal cell 

phagocytosis by increasing the dose from 109 to 1011 cfu.  However the 

effective dose of recombinant lactobacilli may vary depending on the 

immunogenicity and stability of the heterologous protein. 

In mucosal delivery the choice of the immunization route may be crucial in 

inducing an effective immune response. Sometimes antibody induction may 

vary based on the route of immunization. For example, intranasal delivery of β- 

lactoglobulin (BLG) producing L. casei stimulated serum BLG-specific IgG2a 

and IgG1 responses and fecal IgA response as well, but did not inhibit BLG 

specific IgE induction. However intranasal immunization of recombinant 

lactobacilli expressing IgE mimotope induced anti IgE pecific IgG response 

which may be a clinical benefit for atopic patients (Scheppler et al, 2005).  In 

contrast oral immunization of the same bacteria inhibited BLG specific IgE 

production while IgG2a and IgG1 responses were not stimulated (Hazebrouck 

et al. 2009). There have been controversial reports on the efficacy of the 

immune response with regard to the route of immunization either oral or 

intranasal using LAB as the vaccine (Cheun et al. 2004; Ramasamy et al. 2006; 

Oliveira et al. 2006; Robinson et al. 1997). Bacteria strain, booster 

immunization, choice of antigen expression (cytoplasmic, secreted or cell wall 

anchored) and scheme of immunization may determine the efficacy of 

immunization via different routes.  

Another important factor, bacterial persistence or colonization at mucosal sites 

should be considered. For instance, the efficacy of intranasal immunization of 

lactobacilli was greater compared to Lactococcus lactis and the difference in 

immune induction was explained by low level of antigen expression in 
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Lactococcus lactis or the fact that lactobacilli were able to persist in mice nasal 

mucosa for up to 3 days while Lactococcus lactis were detectable only after the 

first day of inoculation (Oliveira et al. 2006). 

 

1.3.5. Immunomodulatory functions of lactobacilli on dendritic cells and 

neutrophils: 

Dendritic cells (DC) play a pivotal immunoregulatory role in the Th1, Th2, and 

Th3 cell balance and are present throughout the gastrointestinal tract. Thus, DC 

may be targets for modulation by gut microbes, including ingested probiotics. 

The different species of Lactobacillus differentially activate DC. When bone 

marrow-derived murine DC were exposed to various lethally irradiated 

Lactobacillus spp, almost all different strains up-regulated surface MHC class 

II and B7-2 (CD86), though  they induced diffrential cytokine production from 

DC. Significant differences among the lactobacilli species were observed for 

the production of IL-12 and TNF-α   with the following ranking of the species 

L. casei >> L. plantarum Lb1 > L. fermentum ∼L. johnsonii ∼L. plantarum  

>> L. reuteri (Christensen et al, 2002). Lactobacilli activated human dendritic 

cells skew T cells toward T helper 1 polarization. Lactobacilli treated 

monocyte derived human dendritic cells co-cultured with  T cells induced 

allogeneic or autologous CD4+ and CD8+ T cell proliferation  (Mohamadzadeh 

et al, 2005) .   

Recently more interest has been shown on the role of neutrophils in antigen 

presentation. Neutrophils may influence T cell responses to bacteria, either by 

directly presenting peptide-MHC-I complexes or by delivering peptides to 

other APCs for presentation (Potter et al, 2001). Neutrophils were recently 
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shown to be able to cross present antigens to cytotoxic T cells.   Cross-

presentation by neutrophils was TAP and proteasome dependent and was as 

efficient as in macrophages. Moreover, it actually occurred earlier than in 

professional antigen-presenting cells. 

However only limited literature is available on lactobacilli mediated direct 

immunomodulatory effect on neutrophils. In vitro experiments with 

Lactobacillus plantarum showed an inhibited intestinal epithelial migration of 

neutrophils induced by enteropathogenic Escherichia coli (Michail et al, 2003). 

Primary culture of peritoneal neutrophils treated with L. casei lysates showed  

higher Nitric Oxide  production and demonstrated an enhanced phagocytotic 

and free radical scavenging activity (Lee et al, 2010). Lactobacillus casei 

treatment restored neutrophil phagocytic capacity in cirrhosis, possibly by 

changing IL10 secretion and TLR4 expression (Stadlbauer  et al, 2008). 

However lactobacilli mediated indirect DC activation by neutrophils has not 

been evaluated. 

  

1.4. Role of promoter and cellular location (surface/intracellular/cell wall 

anchoring/ secretory) of antigen in immune induction 

Studies of gene expression and regulation in lactobacilli have received more 

attention recently for their potential role in heterologous expression of protein 

especially industrially important enzymes. Constitutive and inducible promoter 

systems in lactobacilli have been well exploited to express foreign proteins. A 

constitutive promoter system is a natural choice for colonizing lactobacilli 

during in situ production in the human body or when steady state gene 

expression is required (Jensen et al. 1993). Efficient and established 
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constitutive promoters used in lactobacilli were lactate hydrogenase (ldh) and 

surface layer protein A (slpA) promoters (Table 1.3). In constitutive 

expression, continuous high-level of production of a protein could lead to 

intracellular accumulation, aggregation, or degradation of protein in the 

cytoplasm which is deleterious to cells (Makrides et al. 1996). In that case, 

inducible expression would be the best choice.  Inducible expression may also 

be preferable in cases where the aim is to overproduce a desired protein at high 

levels. For inducible promoters, several expression systems have been 

constructed for Lactococcus lactis (Sorvig et al. 2003, 2005). Among the 

inducible promoters, the bacteriocin inducible system is one of the most 

commonly used (Table 1.4). Many LAB produce antimicrobial peptides called 

bacteriocins and their production is regulated by the secreted peptide 

pheromone which activates a two component regulatory system consisting of a 

histidine kinase receptor and cognate response regulator. In strains, producing 

class I bacteriocins (such as nisin), the bacteriocin itself acts as pheromone 

(Kuipers et al. 1995). Strains producing class II bacteriocins, such as sakacin A 

and sakacin P produce a separate peptide pheromone (Nes et al.1999). In both 

cases, pheromones activate the transcription of all the operons involved in 

bacteriocin production through the response regulator. Though the best 

characterized and most commonly used controllable expression system is the 

nisin controlled expression (NICE) system, in which nisin serves as an inducer,  

(de Ruyter et al. 1996a; de Ruyter et al.  1996b) it often exhibits significant 

basal activity, i.e. activity without activation. (Eichenbaum et al. 1998; Pavan 

et al. 2000). In that case inducible expression system involving class II 

bacteriocins may be preferred. 



                                                                                                                                    

                               

27

Promoter Source Host for expression Cellular location of 
the antigen 

Level of protein 
expression 

References 

Constitutive 
 
cbh (conjugated bile 
salts hydrolase) 
 
ldh (lactate 
dehydrogenase) 
 
ldhUTLS (untranslated 
leader sequence) 
 
 
 
 
ldh 
 
 
 
slpA (S-layer protein)  
 
 
Pgm 
(Phosphoglyceromutase) 
 
 

 
 
L. plantarum 
 
 
 
L. casei 
 
L. casei 
 (core  promoter) 
and L. acidophilus 
(untranslated leader 
sequence) 
 
L. casei 
 
 
 
Lactobacillus 
brevis 
 
 
L.acidophilus 
 
 

 
 
L. planatarum 
 
 
 
L. plantarum 
 
 
 
L. casei 
 
 
 
L. casei Shirota 
 
 
Lactococcus lactis,  
L. brevis,    
 L. plantarum 
 
 
L. acidophilus 
 
 

 
 
Intracellular  
 
 
 
Intracellular 
 
Surface display using  
anchor protein Bacillus 
subtilis subsp. 
chungkookjang PgsA 
 
Secretory- using 
secretion signal of prt P 
gene of L. casei. 
 
Secretory-  using  
L. brevis S layer 
protein A secretory 
signal 
 
Secretory  
 
 

 
 
2% of the total protein 
 
 
 
1-2% of the total protein  
 
 
Not determined 
 
 
 
 
Not determined 
 
 
50 μg/ml in Lactococcus 
lactis, 30 μg/ml in 
L.brevis and 15 μg/ml in  
L. plantarum 
 
not determined 
 
 

 

 
Pouwels et al. 
1996 
 
 
 
Pouwels et al. 
1996 
 
 
Narita et al. 
2006 
 
 
 
 
Ho et al. 2005 
 
 
 
Savijoki et al. 
1997 
 
 
 
Mohamadzadeh 
et al. 2009 
 
 
 

Table 1.3.  Heterologous protein expression under constitutive promoters in LAB 
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Promoter 
 
Inducible 
 
PnisA (Nisin inducible) 
 
 
PnisA (Nisin inducible) 
 
 
PnisA (Nisin inducible) 
 
 
 
 
 
PsapA, PsapIP, Porf1 (in  
pSIP300 series)- 
Sakacin A or PsppA, 
Porf330, Porfx (pSIP400 
series) -Sakacin P 
inducible) 
 
Porfx (Sakacin P 
inducible)  
 

 
Source 
 
 
 
Lactococcus lactis 
 
 
Lactococcus lactis 
 
 
Lactococcus lactis 
 
 
 
 
 
Lactococcus lactis 
L. plantarum 
 
 
 
 
L. plantarum 

 
Host for expression 
 
 
 
Lactococcus lactis 
 
 
Lactococcus lactis 
 
 
Lactococcus lactis 
 
 
 
 
 
Lactococcus lactis 
Lactobacilli 
 
 
 
 
L. plantarum  

 
Cellular location of 
antigen 
 
cytoplasmic, 
Secretory   
and cell wall anchored  
 
surface anchored  
 
secretion of murine 
IL12p35-p40 
heterodimer using 
signal peptide of usp45 
(SPusp45) 
 
 
measured GusA 
activity 
 
 
 
 
cytplasmic expression 
of oxalate 
decarboxylase from  
Bacillus subtilis  

 
Level of protein 
expression 
 
0.5 μg/ml 
3  μg/ml 
not determined. 
 
not determined 
 
 
 
25 pg/ml 
 
 
induction factor was about 
127 in L. sakei using 
pSIP409 plasmid 
compared to 24 in  
L. plantarum using two 
plasmid NICE system.  
 
enzymatic activity was 
about 19.8 U/mg which is 
same as the yield obtained 
with E. coli expression 
 system. 

 

References 
 
 
 
 

Ribeiro et al. 
2002 
 
 
Bermudez-
Humaran et al.  
2004 
 
Bermudez-
Humaran et al. 
2003 
 
 
 
 
Sorvig et al. 
2005 
 
 
 
 
 
Kolandaswamy  
et al. 2009 
 
 
 
 

Table 1.4.  Heterologous protein expression under Inducible  promoter in LAB 
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1.5. Mucosal vaccine- challenges 

In recent years, the use of recombinant LAB for mucosal delivery has been given 

more attention. Despite much progress, there are several issues that still need to be 

addressed.  

1. LAB vaccines that are administered orally or intranasally get diluted in mucosal 

secretion and trapped in mucus gel. Relatively larger doses of vaccine may be 

required and it is hard to determine what dose actually crosses the mucosal layer. 

2. The most frequently asked question about the LAB based mucosal vaccine is the 

possible induction of mucosal tolerance. Repeated oral ingestion of antigen results 

in decreased or totally abrogated responsiveness to subsequent systemic 

immunization with the same antigen. Though some LAB are intrinsically 

immunogenic, additional adjuvants like cholera toxin (CT) or cytokine co-

expression may help to avoid tolerance induction.  

3. Recombinant bacterial vaccines when administered induce immune responses 

against the vaccine antigen initially, but the response to the neo-antigen is 

overwhelmed by response to the more immunodominant antigen of the bacteria 

itself.   

4.  The effectiveness of the live bacterial vaccines is partly dependant on the 

transport to organised lymphoid tissues. Vaccines derived from pathogenic 

microbes like live attenuated S. typhi (Levine et al. 2000) or live attenuated polio 

virus (Modlin et al. 2004) preferentially adhere to M cells and exploit M-cell 

transport to invade organized mucosal lymphoid tissues in the intestines (Jones et 

al. 1994; Sicinski et al. 1990). Lactobacilli are not known to invade lymphoid 
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tissue as the microbes discussed above. However expressing foreign protein with 

DC targeting peptide may improve  bacterial uptake (Mohamadzadeh et al. 2009). 

   

1.6. Scope of study 

To date, there is limited literature documenting the use of LGG as a vaccine 

vehicle.  Our hypothesis is  

 LGG can be a good antigen delivery vehicle in mucosal immunization and this 

dissertation aims to characterize LGG as vaccine delivery vehicle in the following 

manner. 

Objectives of the work  

a)  Study the humoral and cellular immune response by oral or nasal immunization 

in mice using GFP (Green Fluorescent Protein) as a model antigen expressed in 

LGG.  

b) Study the advantage of Interleukin-2 (IL2) co-expression with antigen in 

enhancing specific immune induction  

   c) Study the dendritic cells and neutrophils mediated antigen presentation of IL15 

or IL2 or IL7- Prostate Specific Antigen (PSA) fusion protein secreting LGG to 

activate T cells. 

d)  Study the compatibility of different promoters in LGG and optimization of the    

 promoter for efficient secretion of the antigen. 
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2. Materials and methods 
 
2.1 Production of Lactobacillus rhamnosus GG expressing protein antigens  
 
2.1.1 Lactobacillus rhamnosus strain GG (LGG) 

Lactobacillus rhamnosus GG  (ATCC 53013) (a kind gift from Dr Seppo 

Salminen of University of Turku, Finland) growth curves  were produced by 

plotting OD550 nm versus number of bacterial colonies of freshly prepared, 

serially-diluted cultures grown on de Man, Rogosa, Sharpe (MRS) (Merck, 

Darmstadt, Germany) agar plates. Bacteria were harvested at the late log phase 

(OD550 nm for L. rhamnosus  was 5.2) 

and the CFU were approximately 3 x 109 colony forming units/ml (cfu/ml). 

Overnight cultures of LGG were routinely used for animal experiments. The 

bacteria were grown and maintained in MRS media (Merck) at 37oC. To avoid 

strain variation from prolonged culture, new LGG glycerol stocks were thawed to 

start a fresh culture every 2 - 3 months. 

2.1.2. Plasmid for protein expression in Lactobacillus. 

 

 p 
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Figure 2.1. Restriction map of E. coli- Lactobacillus shuttle vector, pLP500 

 The Lactobacillus - E. coli shuttle vector pLP500 (Fig 2.1), was obtained from 

Prof. Pouwels PH of the TNO-Nutrition and Food Research Institute, The 

Netherlands. The plasmid contains the constitutive promoter of the L-(+)-lactate 

dehydrogenase  

(L-ldh) gene, downstream of the secretory signal of the prt P gene of L. casei 

which confers secretable expression (Ho et al. 2005) It also carries both ampicillin 

and erythromycin resistance genes for selection in E.coli or Lactobacilli 

respectively.  

 

2.1.3. LGG-green fluorescent protein (LGG-GFP)  

LGG-eGFP (enhanced Green Fluorescent Protein) was a gift from Prof. Chua Kaw 

Yan, Dept of Pediatrics, National University of Singapore, Singapore. LGG-GFP 

was cultured in MRS media supplemented with 10 g/ml erythromycin (Sigma-

Aldrich, St. Louis, MO) 

 

2.1.4. Cloning of murine Interleukin-2 (IL2) gene to generate IL2-GFP fusion 

protein 

The mature peptide sequence (nucleotides 108 - 554bp) encoding mouse 

interleukin-2 was amplified from pBUD-IL2 plasmid by polymerase chain 

reaction using the primers listed in Table. 2.1(a). The 3’ primer  was designed 

without its termination codon and after subcloning into the pLP500 vector at the N 

terminus of the GFP gene, 2 amino acids, glycine and serine were inserted before 
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the GFP protein sequence. The construct pLP500-IL2-GFP was verified by 

nucleotide sequencing. 

 

2.1.5. Genomic DNA extraction from L. acidophilus 

Genomic DNA from L. acidophilus was extracted as described before (Martin-

Platero et al. 2007) with some modifications. An overnight culture (50-100ml) of 

L. acidophilus was centrifuged and resuspended in 100 ml TES buffer (10% 

sucrose, 25 mM Tris HCl pH 8.0, 10 mM EDTA). Then 10 mg/ml of freshly 

prepared lysozyme, 100 U/ml mutanolysin and 40 µg/ml of RNase were added and 

incubated for 30 minutes at 37°C. Cells were pelleted down and lysed with 600 µl 

of lysis buffer (100 mM Tris HCl pH8.0, 100 mM EDTA, 10 mM NaCl and 1% 

SDS) by mixing gently and incubated for 10 to 15 minutes at room temperature. 

The lysate was treated with proteinase K (10 mg/ml) and incubated for 15 minutes 

at 37°C followed by another incubation at 80°C for 5 minutes. Then samples were 

allowed to cool to room temperature for 10 minutes. 200 µl of 3M sodium acetate 

pH 5.2 was added and the sample was vortexed for 10 - 15 seconds and chilled for 

10 - 15 minutes. Then the sample was centrifuged at 20,000x g for 10 minutes to 

precipitate proteins. The supernatant was transferred to a new tube and DNA was 

precipitated by adding an equal volume of isopropanol. The tube was inverted 

several times and DNA was precipitated by centrifugation at 20,000x g for 5 

minutes. The pellet was washed once with 1 ml 70% ethanol and subsequently 

dried at room temperature. Finally the DNA was resuspended in 200 µl of TE 

buffer and analyzed  by gel electrophoresis. 
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2.1.6. Replacement of the ldh promoter of pLP500 with the slpA promoter to 

produce pLP500-slpAP plasmid 

 The slpA (S-layer protein gene) promoter with secretory signal peptide sequence 

was amplified by PCR using the primer pair listed in Table 2.1(a) which were 

designed to have a BglII site at the 5’end and EcoRV site at the 3’end respectively.  

This amplified PCR product replaced the Pldh promoter in pLP500 by restriction 

digestion with BglII and EcoRV and the plasmid produced was named pLP500-

slpAp.  

 

2.1.7. Producing different promoter constructs to modify antigen secretion  

The core ldh promoter without ribosome binding site (RBS) or coding sequence 

was amplified by PCR from genomic DNA of L. casei using the primer pair listed 

in Table 2.1 (b) which were designed to have a BglII site at both 5’ and 3’ends and 

subcloned  in to pLP500-slpAp plasmid, upstream to slpA promoter sequence. The 

construction and orientation of the Pldh  insert was confirmed by sequencing.   

The putative promoter of L. acidophilus  pgm gene was amplified from genomic 

DNA by PCR using the primer pair listed in Table 2.1(b) which were designed to 

have a Bgl II site at the 5’ end and EcoRV at 3’ end and subcloned into BglII, 

EcoRV digested pLP500 plasmid to produce pLP500-pgmp plasmid. The 

construction was confirmed by sequencing. 
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2.1.8. Cloning of murine IL2 in pLP500ldh-slpAp (tandem promoter) or 

pLP500-pgmP plasmid  

Mouse interleukin-2 was amplified from pBUD-IL2 plasmid as described above 

and subcloned in to pLP500ldh-slpAp or pLP500-pgmp and or pLP500.  The 

constructs were verified by nucleotide sequencing. 

 

 2.1.9. Cloning of human Prostate Specific Antigen (PSA) or murine IL2 or 

IL15 or IL7 in pLP500-slpAP plasmid. 

A 0.69 kbp cDNA fragment (nucleotides 136 - 827), encoding PSA or kallikrein-

related peptidase 3 (KLK3) gene was amplified from pSec Tag2/Hygro/PSA 

plasmid (Invitrogen, CA, USA) by PCR using the primers listed in table 2.1(a) and 

subcloned into pLP500 plasmid, downstream to the slpA promoter sequence. The 

construction of the gene and whether the psa gene was in frame with slpA signal 

peptide sequence were confirmed by sequencing. For mouse IL2, IL15 and IL7 the 

primers listed in Table 2.1(a) were used to amplify the mature pepetide sequence 

of the respective cytokines which were cloned singly and upstream of PSA.  
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Plasmid/ DNA 
Source 

Primers  Plasmid produced/ 
recombinant LGG 

Genomic DNA of  

L. acidophilus  

 

Nucleotide -286 to + 111 of the slp promoter region with secretion signal 
forward primer  5' GGG AGA TCT TGC TTG TGG GGT AAG CGG TAG 3’ and   
Reverse primer  5' GAT ATC TGC GTT AAT AGT AGT AGC AGC GC '3 
which contained Bgl II and EcoRV sites 

pLP500slpAp / 

 LGG-S 

 
pSec Tag2/Hygro/PSA nucleotide 136-827 of PSA  gene (codes for mature protein minus 8aa) 

forward primer  5'  CC GAT ATC ATG GAG AAG CAT TCC CAA CCC 3’ and   
Reverse primers  5’GGG GAT CC TCA GGG GTT GGC CAC GAT GGT 3’  
which contained EcoRV and BamH1 

pLP500slpAp PSA/ 

LGG-S-PSA 

mature peptide nucleotide sequence 108-554bp 
Forward primer  5’ GGG GAT CC GCA CCC ACT TCA AGC TCC AC 3’ and 
Reverse primer  5’GAT GGG GAT CC TTG AGG GCT TGT TGA GAT 
which contained BamH1 at both sites 
mature peptide nucleotide sequence 108-554bp 
Forward primer  5’CC GAT ATC GCA CCC ACT TCA AGC TCC AC 3’ and  
Reverse primer  5’GAT GGG GAT CC TTG AGG GCT TGT TGA GAT 3’  
which contained EcoRV and BamH1 

pLP500ldhp IL2- GFP 

LGG-IL2-GFP 

 

pLP500slpAp IL2- PSA/ 

 LGG-S-IL2-PSA 

 

pBud- IL2 

Reverse primer  5’ GAT GGG GAT CC T TAT TGA GGG CTT GTT GA3’ pLP500slpAp IL2/ 

 LGG-S-IL2 

Mature peptide encoded by nucleotides 610-951bp 
Forward primer  5’CC GAT ATC AAC TGG ATA GAT GTA AGA TAT G 3’ and  
Reverse primer  5’ GGG GAT CC GGA CGT GTT GAT GAA CAT 3’ 
which contained EcoRV and BamH1 

pLP500slpAp IL15-PSA/ 

 LGG-S-IL15-PSA 

 

pCMV-SPORT6 IL15 
(ATCC) 

Reverse primer  5’ GGG GAT CCT CAG GAC GTG TTG ATG AAC AT3’ pLP500slpAp IL15/  

LGG-S-IL15 

Mouse IL7 mRNA encoded by nucleotides 247-712 bp  
Forward primer   5' GG GAT ATC ATG TTC CAT GTT TCT TTT AGA  3'  and  
Reverse primer   5’ GGG GGA TCC TAT ACT GCC CTT CAA AAT TTT  3’ 
which contained EcoRV and BamH1 

pLP500slpAp IL7-PSA/ 

 LGG-S-IL7-PSA 

 

Mouse bone marrow cells 

Reverse primer   5’ GGG GGA TCC TTA TAT ACT GCC CTT CAA AAT TTT   pLP500slpAp IL7/ 

 LGG-S- IL7 

Table 2.1 (a). Plasmids  generated 
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2.1.10. Preparation of LGG electrocompetent cells 

Preparation of electrocompetent LGG was done as described before (De 

Keersmaecker et al. 2006) with some modifications. An overnight culture of LGG 

was inoculated into prewarmed MRS medium supplemented with 2% glycine and 

was incubated without agitation at 37°C. After overnight growth, 5ml of the 

culture in the exponential growth phase (OD 600 0.8 to 1) was inoculated into 100 

ml of prewarmed MRS medium supplemented with 2% glycine. The resulting 

culture was kept in a tightly closed 100ml flask and incubated without agitation at 

37°C. When the OD 600 was 0.2 to 0.3, ampicillin (10 μg/ml) was added and 

bacteria were further incubated to an OD 600 reading of 0.4 to 0.5. Cells were 

harvested by centrifugation at room temperature for 10 minutes at 4000x g. The 

cells were washed three times with electroporation buffer (0.4 M sucrose, 5 mM 

potassium dihydrogen phosphate [pH 6.0], 1 mM MgCl2) at room temperature and 

finally resuspended in 1 ml of the same buffer and placed on ice. The 

Plasmid/DNA 
source 

Primers Plasmid produced/ 
recombinant LGG 

 

 

pLP500slpAp/ 

Genomic DNA 
of  L. caesei 

 

 

pLP500/ 

Genomic DNA of  
L. acidophilus 

 
Nucleotide  -511  to  -18 of the ldh promoter region  
Forward primer   
5' GGG AGA TCT GAA TTC AGA TCT ACT AGA 
GGA TCT GTG 3’ 
Reverse primer  
5’ CCC AGA TCT TTA TGT GCA TGC AAA CTG C 3’. 
which contained Bgl II at both sites. 
 

putative promoter region of pgm gene. 
Forward primer  5' GGG AGA TCT TGC GAC AAG TAA 
TAA ACT AAA C 3’ 
Reverse primer 5’ CCC GAT ATC AGC CTT CTT AGC 
TTC TTC AAC A 3’ 
which contained Bgl II and EcoRV sites. 
 

 

pLP500 ldh-slpAp/  

LGG-LS 

 

 

 

pLP500pgmp 

LGG-P 

Table 2.1 (b). Plasmids  generated 
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electrocompetent cells were used immediately for electroporation.  

 

2.1.11. Electroporation of LGG. 

Electroporation was performed as described before (De Keersmaecker et al. 2006). 

A mixture containing 100 µl of a cooled cell suspension and 400 ng of plasmid 

DNA  

(maximum volume 5 µl) was transferred into a precooled electroporation cuvette 

(Bio-rad, CA, USA)  with a  0.2 cm electrode gap and immediately electroporated 

(Gene Pulser: Bio-rad) using the following settings; peak voltage, 1.7 kV:; 

capacitance, 25 µF: and parallel resistance, 200Ω. Following the pulse, the cells 

were immediately diluted with 5 ml of MRS medium containing 2mM CaCl2 and 

20mM MgCl2 and incubated for 37°C for 3 hours without agitation before they 

were plated onto MRS agar plates containing the 10 µg/ml of erythromycin. Plates 

were incubated at 37° C, 5% CO2 for 48 to 72 hours. 

 

  2.1.12. Determination of IL-2 or IL-15 biological activity 

The IL2 dependent mouse cytotoxic T lymphocyte cell line – CTLL-2 (ATCC, 

Manassas,VA,USA) ( ATCC number- TIB-214™ ) was purchased from ATCC 

and maintained in RPMI 1640 media (Sigma Aldrich) supplemented with 2 mM L-

glutamine (Sigma Aldrich), 1 mM sodium pyruvate (GIBCO BRL, CA, USA), 

10% v/v foetal bovine serum (FBS) (Hyclone, USA) and 5000U/ml Penicillin and 

5 mg/ml Streptomycin (Sigma Aldrich) and 10% T-STIM with Con A ( BD 

Biosciences, San Jose, CA, USA) . For the proliferation assay, the cells were 
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washed twice and suspended at 1.4 x 105 cells per ml in IL-2 free media (T-STIM 

with Con A) as described by Vorauer et al. 1996. Recombinant human IL-2 (e-

bioscience, San Diego, CA,USA.) from 20 to 0.3 U/ml or conditioned media, that 

was prepared from bacterial supernatant (from LGG-IL2 [ldhp]  or LGG-IL2-GFP 

or LGG-IL2[SlpAP] or LGG-IL15 or LGG-IL2-PSA or LGG-IL15-PSA) dialyzed 

against blank RPMI media were added to the cells for 28 - 72 hours. Cell 

proliferation was determined by CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay (MTS) (Promega, Madison, WI, USA). 

 

2.1.13. Analysis of cytokines, PSA or GFP  expression  

GFP expression in the bacteria was analyzed on a Coulter EPICS ELITE ESP flow 

cytometer. GFP in LGG-GFP or LGG-IL2-GFP culture supernatant or bacteria 

lysates were determined by ELISA (Reacti-Bind Anti GFP coated plates, Pierce 

biotechnology Inc, Rockford, IL, USA) and GFP fluorescence was detected by a 

luminescence spectrometer (Perkin-Elmer LS50B, Waltham, Massachusetts, USA) 

(De Keersmaecker  et al. 2006).  

Recombinant LGG were initially inoculated in 5ml of MRS broth with 10 μg/ml of 

erythromycin (Sigma Aldrich) and incubated at 37ºC for 8 hours. Then the culture 

was diluted 20 times with MRS broth containing 10 μg/ml of erythromycin and 

incubated up to 20 - 22 hours when the culture supernatants were harvested and 

analyzed for cytokine or PSA. IL2 (BD Biosciences), IL15 (eBiosciences) and IL7 

(Ray biotech, Norcross GA, USA) were analyzed with commercial ELISA kits. 

For ELISA, briefly, 100 l capture antibody (Ab) diluted in coating buffer was 
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added to each well, and incubated overnight (4oC) except for IL7 in which 

precoated plates were used. The plates were then washed three times with wash 

buffer (PBS with 0.05% v/v Tween 20) and blocked with 200 l assay diluent ( 

RT for 1 hour). Following which, the plates were washed 3 times before the 

addition of 100 l standard or bacterial supernatant from LGG (neat or diluted). 

Plates were incubated for 2 hour at RT. The plates were washed again, then 100 l 

working detector (biotinylated detection Ab and streptavidin-horseradish 

peroxidase conjugate [HRP]) was added to each well (RT, 1hour). The plates were 

then washed before 100 l TMB substrate solution (Pierce Biotechnology Inc) was 

added to each well, and incubated in the dark (RT, 30 min). The reaction was 

stopped with the addition of 50 l stop solution (2N H2SO4) to each well. The 

absorbance was read at 450 nm; reference wavelength 570 nm (Tecan GENios/ 

Magellan, Männedorf, Switzerland). For PSA ELISA, MaxiSorp™ immuno 

modules (NUNC, Roskilde, Denmark) were coated overnight at 4oC with 1 μg/ml 

rabbit anti human PSA antibody (US Biologicals, Swampscott, MA) in 1x Tris 

Buffered Saline (TBS – 50 mM Tris, 150 mM NaCl, pH adjusted with HCl to 7.4). 

Then the plates were washed once with washing buffer (TBS containing 0.1% 

Tween 20) and blocked with 300 μL of TBS containing 2% BSA for 3 hours at RT 

with gentle shaking. Subsequently the plates were washed 3 times before either 50 

μL of PSA  standards (Chemicon, Temecula, CA) and dialyzed bacterial 

supernatant (neat or diluted in TBS containing 0.05% BSA) were incubated for 1 

hour at RT with gentle shaking. The plates were washed 5 times with the washing 

buffer before adding 100 μL of the secondary antibody (1 μg/mL mouse anti-PSA 
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monoclonal antibody conjugated with horseradish peroxidase, US Biologicals, 

Swampscott, MA) diluted in 0.5% BSA and 0.1% Tween 20 in TBS. After 1 hour 

at RT with gentle shaking, the plates were washed 5 times with the washing buffer. 

The plate was then developed using 1-Step™ Turbo TMB-ELISA substrate 

(Pierce Chemical Co.) for 30 minutes at RT in the dark. The reaction was stopped 

by adding 2N H2SO4 and the absorbance was read at 450 nm; reference 

wavelength 570 nm.  The Cytokine or PSA concentration read off the appropriate 

standard curve. Cytokines or PSA secretion were expressed as ng/ml of 

supernatant.  

 

2.2 In vivo analysis of LGG vaccines  

2.2.1. Animals  

4 – 6 week old female C57BL/6 mice were maintained at the National University 

of Singapore’s (NUS) Animal Holding Unit throughout the duration of the 

experiment with food and water ad libitum. The mice were acclimatized for a 

week prior to the start of each experiment. All experiments were performed 

according to guidelines set by the NUS Institutional Animal Care and Use 

Committee (IACUC).  

 

2.2.2. Translocation of bacteria 

Four groups (n=12/group) of mice were immunized via the nasal or oral route with 

“live” 108  LGG-GFP or LGG-IL2-GFP, or with sterile PBS. Four mice from each 

group were euthanized after 24h, 48h and 1 week. NALT, cervical lymph node 
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(CLN) and mediastinal lymph Nodes (Med.LN) or Mesentric lymphnodes  were 

harvested in intranasally or orally immunized mice respectively. Spleen and liver 

tissues were also collected and the tissues were homogenized in an ice bath using 

polytron homogenizer equipped with metal probe. The homogenates were serially 

diluted with sterile saline and plated on MRS agar plates containing 10 µg/ml 

erythromycin. Bacterial colonies were enumerated after 48 – 72 hours and data 

was expressed as CFU per gm of tissue.  

 

2.2.3. Intranasal immunization protocol and immune cells, cytokine analysis 

in BAL    (Bronchoalveolar lavage)  fluid 

For intranasal immunization, four groups with twenty mice each were immunized 

under anesthesia with either 108 LGG or LGG-GFP or LGG-IL2-GFP or with PBS 

(20 µl) on days 0, 14 and 28 as previously described (Steidler et al. 1998). Four 

mice from each group were euthanized on days 0, 10, 24, 35 and 80 and the serum 

and BAL fluid were collected (Hopfenspirger et al. 2002) and centrifuged to 

separate the cells from the fluid. The BAL supernatant was stored in aliquots at -

80ºC for cytokine analysis. The cells were H & E stained and enumerated.  

NALT and CLN were harvested on the 10th, 24th and 35th days and single cell 

suspensions were prepared for flow cytometry. Collected NALT tissues were 

mashed and single cell suspension was prepared by filtering through a 70 µm cell 

strainer (BD Falcon, USA). CLN tissues were placed in a 6-well culture plate on 

ice and cut into fine pieces. Subsequently they were digested with collagenase 

(Sigma Aldrich) resuspended in complete media (1 mg/ml per tissue) for 30min at 
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37oC with shaking. The suspension was then filtered through a 70 m cell strainer 

(BD Falcon, USA) and collected in a 2 ml tube, then centrifuged at 8,000 rpm 

(4oC, 2 min). The supernatant was removed and the pellet subjected to red blood 

cell (RBC) lysis using RBC lysis buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1 

mM EDTA). The lysed suspension was then centrifuged at 8,000 rpm (4oC, 2 min) 

(Eppendorf Centrifuge, Hamburg, Germany) and the cell pellet was rinsed twice 

with cold PBS. The cells were finally resuspended 1 ml PBS with 0.01% sodium 

azide, 1% (w/v) bovine serum albumin (BSA) and 0.1% formaldehyde for flow 

cytometry analysis. Single cell suspensions from the CLN were stained with 

antibodies to B220, IgA, CD4, CD8, CD3, Mac-3 (M3/84) and pan NK(DX5) (BD 

Pharmingen, USA) while those from the NALT were stained with B-220 and IgA 

antibodies. About 1.0 x 104 cells were examined on a Coulter flow cytometer 

(Fullerton, CA, USA) and analyzed with Win MDI software.  
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Gene Primer sequence 5’-3’ Annealing 
temperature 

Expected PCR 
product size 

Rps27a F 
Rps27a R 
 
CCL2 F 
CCL2 R 
 
CCL6 F 
CCL6 R 
 
CCL17 F 
CCL17 R 
 
CCL25 F 
CCL25 F 
 
CCR2 F 
CCR2 R 
 
CXCL5 F 
CXCL5 R 
 
FCγ r1 F 
FCγ r1 R 
 
IL1r1 F 
IL1r1 R 
 
IL16 F 
IL16 F 
 
IL10 F 
IL10 R 
 
IL20 F 
IL20 R 
 
IL2rg F 
IL2rg R 
 
IL5ra F 
IL5ra R 
 
IP10 F 
IP10 R  
 
 CD8a F 
 CD8a R 
 
 
 

ACCATCACGCTCGAGGTTGA 
AGGACACTCTCGACGAAGTC 
 
GCATCCACGTGTTGGCTCAG 
CACACTGGTCACTCCTACAG 
 
ATCCTTGTGGCTGTCCTTGG 
GGCACCTCTGAACTCTCC 
 
GGTCACTTCAGATGCTGCTC 
TCTGCACAGATGAGATTGCC 
 
AGGTGCCTTTGAAGACTGCT 
TCACCATCCTGGGATGACCT 
 
GAGCCTGATCCTGCCTCTAC 
GGCACTGTTTGAAGAGACGT 
 
GACTCTGACCCCAGTGAAG 
GTGAGATGAGCAGGAAGC 
 
ACCTCCCTCAGGTCCAGATA 
GTGACACCCATGTAAGCCGT 
 
CTCATGGTGCCTCTGCTGTC 
CCCTCTGTGCTCTTCAGCCA 
 
GACCCAAGGCAAGCTGTGAT 
CTGGAGGCTGGTCCTTCTGA  

 
GAGACTTGCTCTTGCACTAC 
CCTGGAGTCCAGCAGACTCA 
 
ATGAAAGGCTTTGGTCTTGC 
TAGCATCTCCTCCATCCATCT 
 
CTTCCAGAGGTTCAGTGCTT 
CTCCGAACCCGAAATGTGTA 
 
CTGCCTTTCCAGATCATTGC 
GGGCCGGAACCGGTGGAAA 
 
ATGAACCCAAGTGCTGCCGTC 
TGGAGAGACAGGCTCTCTGCT 
 
AAATGGACGCCGAACTTGGT 
CTGAGCAGAAATAGTAGCCTTCG 

   55 
 
 
  60 
 
 
 
  60 
 
 
  60 
 
 
 53 
 
 
 58 
 
 
 53 
 
 
57 
 
 
60 
 
 
58 
 
53 
 
 
51 
 
 
53 
 
 
53 
 
 
57 
 
 
60 

333 
 
 
383 
 
 
 
268 
 
 
220 
 
 
337 
 
 
371 
 
 
125 
 
 
264 
 
 
529 
 
 
399 
 
634 
 
 
527 
 
 
489 
 
 
436 
 
 
358 
 
 
272 

Table 2.2. Primer sequences for Reverse transcriptase polymerase chain reaction  
(RT-PCR) 
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2.2.4. Expression of inflammatory cytokines and receptors in mice lung after 

35th or 80th day of post primary intranasal immunization     

Mice lungs were harvested on the 35th or 80th day of post primary nasal 

immunization and one  lung from each treatment group was used to probe a mouse 

inflammatory cytokines and receptors Oligo GEArray (SuperArray, USA) 

according to manufacturer’s instructions. Briefly, total RNA was extracted using 

Trizol (Invitrogen Life Technologies, Inc.) and poly A+ RNA was isolated using 

Oligotex mRNA Kit (Qiagen, Germany). Biotinylated cRNA was synthesised 

from the purified poly A+ RNA using the TrueLabeling-AMP Linear RNA 

Amplication Kit (SuperArray, USA). The target cRNA probe (5 g) was allowed 

to hybridize to the membrane for 24 hours. The chemiluminescent array image 

was recorded on X-ray film and the scanned TIFF image of the array was then 

analyzed with the GEArray Expression Analysis Suite. 

 

2.2.5. Reverse transcriptase polymerase chain reaction (RT-PCR) 

To corroborate the oligo array data, lungs from immunizaed mice on 35th or 80th 

day of post primary immunization were harvested. Total RNA (1 g) was used to 

generate cDNAs with 80 units M-MuLV Reverse Transcriptase (New England 

Biolabs, USA) with specific primers sets (Table 2.2) for amplification of GAPDH, 

chemokine (C-C motif) ligand 2, Ccl6, Ccl17 and Ccl25 Chemokine (C-X-C 

motif) ligand 5, chemokine (C-C motif) receptor 2 and Fc gamma receptor 1 (Fc 

r1).  



                                                                                                                                    

                                          

47

For IL1rl,, IL10, IL16, IL2rg, IL5ra and IL20, 5 g total RNA and 80 units of 

Superscript II RNase H- Reverse Transcriptase (Invitrogen Life Technologies, Inc.) 

were used. Specific primer sequences are listed in Table 2.2. 

The PCR assay conditions for the housekeeping gene, Rps27a were: 94°C for 5 

min, 30 cycles of amplification (94°C for 45 sec, 55°C for 45 sec [annealing 

temperature], 72°C for 60 sec), and an additional extension step of 72°C for 5 min. 

Primer sequences for all other genes are also listed in Table 2.2 along with their 

respective annealing temperature. PCR products were separated on a 1.5% agarose 

gel containing ethidium bromide and then photographed under ultraviolet light. 

The message band intensities were quantified with SynGene GeneTools analysis 

software. The values of the mRNA transcripts were normalized against Rps27a. 

 

2.2.6. Histopathological analysis of the immunized mice lungs 

Lung tissues were harvested on the 35th and 80th days, fixed with 10% phosphate-

buffered formalin and embedded in paraffin for sectioning. Sections   4m thick 

were cut and stained with hematoxylin and eosin (H & E) reagent to evaluate the 

general morphology. The specimens were examined by Dr. Nilesh Shah, 

pathologist, Dept of Pathology, NUS  who was blinded to the treatment groups. 

 

2.2.7. Immunohistochemical staining 

Lung tissues were harvested on the 80th day and snap frozen in isopentane (Sigma 

Aldrich) prechilled in liquid nitrogen and stored at -80ºC. 10 μm Cryosections 

(Leica microsystem GmbH) were air-dried on poly-L-lysine coated glass slides. 
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They were overlaid and incubated for 1 hour at RT with 5% normal goat serum 

(Dako).  

B cells or IgA were stained with FITC conjugated anti-mouse CD45R/B220 

(Biolegend) or rabbit anti mouse IgA (Zymed, Invitrogen Life Technologies, Inc) 

respectively for 1 hour following manufacturers instructions. After washing with 

PBS (3 x 5min) each sections were treated with rhodamine conjugated goat anti 

rabbit IgG (US biologicals) for 1 hour. Cells were counterstained with 4, 6-

diamidino-2-phenylindole (DAPI) (Roche Diagnostics) according to the 

manufacturer’s instructions. The slides were mounted using mounting medium   

and visualized under fluorescence microscope (Carl Zeiss, Inc., Thornwood, 

USA). 

 

2.2.8. Oral immunization protocol and immune cell analysis in mesenteric 

lymph nodes (MLN) 

Four groups with eight C57BL/6 or Balb/c mice in each were immunized by oral 

gavage with either 108 wild type LGG, LGG-GFP, LGG-IL2-GFP or with PBS on 

days 0, 14 and 28 (Steidler et al. 1998). Sera and feces were collected on days 0, 

10, 24, 35 and 80. In a second set of experiments, on the 35th day the MLN from 

C57BL/6 mice were harvested and single cell suspensions were prepared for 

staining with antibodies to B220, IgA, CD4, CD8, CD3 (BD Pharmingen, USA) 

for flow cytometric analysis. About 1.0 x 104 cells were examined on a CyAnADP 

(Dako Cytomation, Sweden). Data was analyzed with Summit software (Dako 

Cytomation). 
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2.2.9. Intestinal fragment cultures from orally immunized mice. 

The Peyer’s patches were removed from the harvested small intestine and 

transverse colon of mice, washed with PBS to remove the fecal content and then 

100mg of tissue were incubated in 1ml of RPMI supplemented with 10 % FBS; 

100 U/ml penicillin; 100 µg/ml streptomycin; 0.25 µg Amphotericin B ( GIBCO); 

2 mM L-glutamine; 1 mM sodium pyruvate (GIBCO);  5 x 10-5 M 2-

mercaptoethanol (Merck) and 50 µg/ml gentamicin (Sigma) at 37ºC for 24 hours. 

Supernatants were collected and stored at -20 ºC for cytokines analysis. 

2.2.10. ELISA for total and GFP specific antibodies in serum and mucosal 

tissues 

Polystyrene microtitre plates were coated overnight at 4ºC with 50 ng/well of 

purified goat anti mouse IgG (Immuno pure- Pierce biotechnology Inc) or rabbit 

anti mouse IgA (Immunology Consultant laboratories, New berg, OR, USA) or 

IgM (Bethyl laboratories, Montgomery, TX, USA) or IgE (Biolegend, San Diego, 

CA, USA)  or recombinant GFP (Alpha diagnostic laboratories, San Antonio, 

USA) or PSA (Chemicon International) in PBS. Wells were blocked for 3 hours at 

room temperature using 3% BSA for IgG and 1hour at room temperature using 1% 

BSA for IgA, IgM, IgE and anti-GFP specific antibodies. Sera were tested at 

dilutions of 1/10,000 for IgG or 1/5000 for IgG1 or 1/1000 for IgG2a, IgA, IgM or 

1/100 for IgE or 1/500 for GFP antibodies. Fecal extracts or BAL were screened at 

dilutions of 1/500 for total IgA and 1/5 for GFP specific IgA. Intestinal fragment 

culture supernatant were also tested for total and GFP specific IgA. 
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Standard curves were produced using a dilution series of purified mouse IgG 

(Immuno pure- Pierce biotechnology Inc); IgG1, IgG2a (BD Pharmingen, San 

Diego, CA); IgA (Bethyl laboratories); IgM and IgE (BD Pharmingen, San Diego, 

CA.) and GFP or PSA  monoclonal antibodies (Chemicon, USA). For GFP 

specific IgA  ELISA ,GFP specific mouse IgA standard was not available, hence 

the values were expressed  in Optical density (OD).  Rabbit anti mouse IgG 

(DAKO, Glostrup, Genmark); IgG1 and IgG2a (Serotec, Kidlington, OX5 1GE, 

UK); goat anti mouse IgA (Immunology Consultant laboratories); IgM and IgE 

(Serotec) antibodies conjugated to (HRP) horseradish peroxidase was applied 

before color development using TMB substrate (Pierce biotechnology Inc). The 

absorbance was read at 450 nm; reference wavelength 570 nm (Tecan GENios/ 

Magellan). 

At 80th day of post primary nasal immunization, mice bladder, intestines and 

vaginal tissue were collected and homogenized in the presence of protease 

inhibitors (Protease inhibitor cocktail, Roche, Basel, Switzerland). Total protein 

and IgA concentrations were estimated using the Micro BCA protein assay kit 

(Pierce biotechnology Inc) and ELISA respectively.  

  2.2.11. Detection of anti lactobacillus antibodies 

An extract of lactobacillus protein was prepared as previously described for 

Lactococci (Wells et al. 1993). Lactobacilli were recovered from MRS medium by 

centrifugation following addition of NaCl to a final concentration of 1M. Cells 

were washed three times with wash buffer (100 mM Tris-HCl pH7.5, 5 mM 

MgCl2, 2mM EDTA, 1 mM PMSF) and each gram of cells (wet weight) 
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suspended in about 3-4 ml of ice cold wash buffer containing protease inhibitors (2 

µM leupeptin,1 µM pepstatin A and 0.1 mM PMSF). The cells were homogenized 

with 40-50 g of glass beads (0.10 mm diameter) for 2 x 30s. The glass beads were 

removed by glass filter and the homogenate centrifuged at 10,000 x g for 15 min to 

pellet the cell walls. The membranes were removed from soluble protein fraction 

by centrifugation at 144000 x g for 75 min at 4º C. ELISA plates were coated 

overnight with 100 ng/well of membrane extract in PBS at 4ºC and then blocked 

for 1 hour at room temperature with 1% BSA (Sigma). Serum, BAL fluid and fecal 

extract were tested for LGG specific antibodies. To compare the specific and non 

specific antibody induction the high antibody titer serum collected on day 35 was 

serially diluted to obtain approximately the same absorbance for both anti-LGG 

and anti-GFP ELISA and the titer differences were calculated by comparing the 

serum dilution factors. 

 

2.2.12. Cytokine analysis of BAL and intestinal fragment culture supernatant 

Cytokines (TNF IFNγ, IL2, IL4, IL6, IL10, IL12 and TGFβ) were analyzed with 

commercial ELISA kits (BD Biosciences or eBiosciences ). Briefly, 100 l capture 

antibody (Ab) diluted in coating buffer was added to each well, and incubated 

overnight (4oC). The plates were then washed three times with wash buffer (PBS 

with 0.05% v/v Tween 20) and blocked with 200 l assay diluent (RT, 1 hour). 

Following which, the plates were washed 3 times before the addition of 100 l 

standard or sample. Plates were incubated for 2 hour at RT. The plates were 

washed again, then 100 l working detector (biotinylated detection Ab and 
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strepavidin-horseradish peroxidase conjugate (HRP) was added to each well (RT, 

1hour). The plates were then washed before 100 l TMB substrate solution (Pierce 

Biotechnology Inc., USA) was added to each well, and incubated in the dark (RT, 

30 min). 50 l stop solution (2N H2SO4) was added to each well to stop the 

reaction. The absorbance was read at 450 nm; reference wavelength 570 nm 

(Tecan GENios/ Magellan). 

 

2.2.13. Visualization of the bacteria after oral or nasal immunization 

2.2.13.1. Confocal or electron microscopy 

Twenty four hours after oral immunization, mice were anesthetized by 

intraperitoneal injection of ketamine (100 mg/kg) and xylazine (9 mg/kg) and 

perfused with a warm PBS followed by freshly prepared fixative mixture (2% 

paraformaldehyde + 3% glutaraldehyde) in a buffer system for 15 minutes.  After 

that, mice small intestines, cecum and large intestines were removed and some of 

them were snap frozen in isopentane (Sigma Aldrich) that was prechilled in liquid 

nitrogen. Cryosections (5-10 μm) of the specimens were directly visualized for 

green fluorescence under confocal microscopy (Carl Zeiss). For Transmission 

electron microscopy (TEM), tissues were cut into small pieces of 1 mm3 and 

immersed in the fixative (2% paraformaldehyde + 3% glutaraldehyde ) for 2 - 4 

hours at 4º C. Thereafter, tissues were rinsed in the same buffer (5% sucrose) and 

post fixed in 1 to 2% OsO4 ,pH 7.4 for 1 hour at room temperature. After washing 

in the buffer for 5 - 10 minutes, samples were dehydrated (25% ethanol, 5 min; 

50% ethanol, 10 min; 75% ethanol, 10 min; 95% ethanol, 10 min; 100% ethanol 
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10 min). After dehydration, the samples were transferred to 100% Acetone 10 min 

(twice with fresh acetone each time). The samples were incubated in ethanol-

araldite (1: 1) solution for 15 min, then overnight at room temperature in ethanol-

araldite (1: 6) solution. The following day, the samples were incubated for 1 hour 

each in 100% araldite at 40oC, 45oC, and 50oC. Finally the samples were 

embedded in pure araldite (60oC for 24 hours), then trimmed and sectioned with an 

Ultramicrotome (~80 nm thick sections) and viewed with an electron microscope 

(Phillips, Netherlands). 

 

2.2.13.2. Bacterial uptake in situ 

4-6 weeks old, female C57BL/6 mice were anesthetized by intra peritoneal 

injection of 100 mg/kg of ketamine and xylazine (9 mg/kg) per mouse. Around 10 

cm long segments of the small intestine of mice were ligated at both ends with 

surgical thread as described by Jang et al. 2004. GFP-expressing LGG (1 x 108 

CFU) were suspended in 1.0 ml of sterile PBS and inoculated into the loop and 

incubated in situ. One hour later, intestinal segments (without PP) were removed 

and extensively washed with cold PBS and RPMI medium 1640 containing 

gentamycin (100 μg/ml). Whole mounted intestinal segments were fixed in 4% 

paraformaldehyde followed by washing in 10% FBS in PBS, and M cells  and 

columnar epithelial cells were stained with rhodamine conjugated Ulex europaeus 

agglutinin (UEA-1, Vector laboratories) and Alexa fluor 633 conjugated Wheat 

germ agglutinin (WGA, Molecular probes, Invitrogen) respectively. Some 

intestinal parts were cryosectioned and stained for M cells or columnal epithelial 
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cells as described above. Tissue sections or whole-mounted small intestinal 

segments were viewed under confocal microscopy (Carl Zeiss).    

 

2.2.13.3. Tracking of GFP expressing LGG in lung after 24 hrs of nasal 

immunization 

Mice were euthanized one day after nasal immunization with LGG-GFP and lungs 

were harvested and cut into small pieces before being snap frozen in isopentane 

that was pre-chilled in liquid nitrogen. About 10 μm size cryosections were made 

and air dried on poly L-lysine coated slides. The slides were blocked in 3% H2O2 

dissolved in methanol for 15 min to inhibit the endoperoxidase activity. After 

blocking, the slides were washed then blocked in 5% normal rabbit serum for 60 

mins; washed and incubated with anti-GFP monoclonal antibody (Abcam Inc, 

Cambridge, USA)  overnight at 4ºC (1:500). The next day, the slides were washed 

before incubation with horseradish peroxidase labeled rabbit anti-mouse IgG 

(1:1000 dilution) for 1 hr. The slides were washed three times in 1 x PBS (5 min 

per wash) before a final rinse with Tris-Buffered Saline (TBS). Following which 

the slides were incubated in DAB solution for 10 mins then washed 5 times in 

TBS (5 min per wash). The slides were counterstained with methyl green for 5 min 

and then rinsed in ddH2O. Finally the stained slides were dehydrated in alcohol, 

cleared in Histoclear and mounted with a coverslip.  
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2.3 Ex vivo experiments  

 The murine transitional cell carcinoma cell line, MB49 was maintained in RPMI 

1640 supplemented with 10% fetal bovine serum (Hyclone), 2 mmol/L L-

glutamine, 50 units/ml penicillin, 50 µg/ml streptomycin (Invitrogen) at 37oC and 

5% CO2. MB49-PSA or MB49-GFP cells, were MB49 cells stably transfected with 

the human prostate specific antigen (PSA) or GFP  (Wu et al. 2004) and were 

maintained as described above with 0.2 mg/ml hygromycin (Invitrogen).  

 

2.3.1. Generation and purification of bone marrow-derived dendritic cells 

(BMDC) 

The procedure used to generate DCs from bone marrow cultures was as described 

previously by Mayordomo et al. 1995 with minor modifications. Briefly, the bone 

marrow was flushed from the long bones of the limbs of C57BL/6 mice, filtered 

through a 70 m cell strainer, and depleted of red cells with RBC lysis buffer. 

Bone marrow cells were plated in a culture dish (1.5 x 106 cells/ml; 10 ml/dish) in 

RPMI 1640 supplemented with 10% heat-inactivated FCS, 50 µM 2-

mercaptoethanol (ME), 1% penicillin, streptomycin, glutamine, MEM (Minimum 

essential medium), and 0.1% sodium pyruvate. Recombinant Murine Granulocyte 

Macrophage Colony Stimulating Factor (GM-CSF, eBiosciences) was added at a 

concentration of 20 ng/ml. Every 3-4 days, the culture media was changed and 

fresh mGM-CSF was added.  On days 8–10 DC were harvested by gentle 

pipetting. For purification, cells were centrifuged at 200 x g for 10 minutes and 

resuspended in 400 µl MACS buffer (PBS, pH 7.2, supplemented with 0.5% BSA 
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and 2 mM EDTA). To obtain high purity, Fc receptor blocking was done 

(CD16/32 antibody – Miltenyi biotec, Bergisch Gladbach, Germany) before 

adding 100 µl of CD11c microbeads (Miltenyi biotec). After CD11c microbeads 

were added, cells were mixed well and incubated for 15 minutes at 4 - 8°C. Cells 

were washed by adding 1-2ml of MACS buffer per 108 cells and centrifuged at 200 

x g for 10 minutes. The supernatant was removed and cells were resuspended in 

500 µl of buffer. A MS column was placed in the magnetic field of a suitable 

MACS Separator and rinsed with 500 µl of MACS buffer. The cell suspension was 

applied in 500 µl to 1ml volume and after it passed through, the column was 

washed with 3 x 500 µl of MACS buffer. Retained cells were eluted outside of the 

magnetic field and collected as dendritic cells. The purity of the dendritic cells 

were analyzed by flow cytometry BD FACS Canto (Beckton Dickinson, San Jose, 

CA) and FACSDiva software (Fig.2.2.b). 

 

2.3.2. Murine bone marrow neutrophils (BMN) purification    

Neutrophil purification from bone marrow cultures was done as described before 

with some modifications (Beauvillain  et al. 2007). The bone marrow was 

flushed from the long bones of the C57BL/6 mice limbs, filtered through a 70 

m cell strainer, and depleted of red cells with RBC lysis buffer. Cells were spun 

down at 2000 rpm for 5 mins and the supernatant was discarded. The cell pellet 

was resuspended in 200 µl of MACS buffer (cell count <108 for MS column). 

and 50 l of Anti-Ly6G Biotin was added (Miltenyi biotech) and mixed well, 

followed by incubation at 4 - 8oC for 10 mins. Then 150 l of MACS buffer and 
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100 l of Anti-Biotin Microbeads were added. Cells were mixed well and 

incubated for 15 minutes at 4 - 8oC. Cells were washed by adding 5-10ml of 

MACS buffer followed by centrifugation at 300 x g for 10 mins. The supernatant 

was removed completely and the pellet resuspended  in 500 l of buffer and 

loaded on a rinsed MS column was placed in the magnetic field of a suitable 

MACS Separator.  The column was washed with MACS buffer (3 x 500µl). 

Retained cells (neutrophils) were eluted outside of the magnetic field with 500 µl 

of MACS buffer. Cells were stained with FITC labeled Ly6G antibody and 

analyzed by flow cytometry (Fig 2.2.a)  

 

2.3.3. Bacteria – DC or neutrophils  co-culture 

BMDC or bone marrow derived neutrophils (5 x 105) were plated in 24 well 

plates in RPMI medium supplemented with 2Mm L-glutamine, 50U/ml of 

penicillin, 50 µM β-mercaptoethanol (sigma), 10% FCS and 10ng/ml of GM-

CSF ( eBiosciences).  Cells were incubated with recombinant LGG carrying IL2 

or IL15 or IL7 with or without PSA for 24 hours at a bacteria to cell ratio of 

100:1. Cells were washed in PBS three times and stained with the mAbs directed 

against the surface molecules CD86, CD80, CD83, CD11c, MHC II, and CD40 

or appropriate isotype-matched controls. Neutrophils were stained for CD86, 

CD83, CD11b or appropriate isotype controls. Analysis was performed with BD 

FACS DivaTM software. Supernatants from bacteria-DC or neutrophils co-culture 

were harvested and analyzed  by ELISA for mouse IL2, IL6, IL12p70, IL10, 

TNFα, and IFNγ .   
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2.3.4. Induction of PSA specific primary T cells  in vitro 

PSA specific primary T cells were generated as described before with some 

modifications (Rouse et al. 1994). T lymphocytes from naive C57BL/6 mice 

spleen were enriched by using STEM CELL-Easy sepR T cell isolation kit (Stem 

cell technologies, Vancouver, BC, Canada). A single cell suspension was 

prepared from spleen after mechanical disruption at a concentration of 1x108 

cells/ml in medium ( PBS with 2% FBS and 5% normal rat serum). Cells were 

placed in a 5 ml (12 x 75 mm) polystyrene tube or polystyrene round bottom 

tube (BD biosciences) to properly fit into the purple EasySep magnet. EasySep 

mouse T cell enrichment cocktail at 50 l/ml of cells (e.g. for 2 ml of cells 100 

l of cocktail) was added to the cells and incubated at 4° C for 15 minutes. Then 

biotin selection cocktail at 100 l /ml cells was added followed by gentle 

mixing. Sample was incubated at 4°C for 15 mins. Magnetic nanoparticles were 

mixed to ensure that they are in uniform suspension by pipetting vigorously for 5 

mins. Nanoparticles were added at 50 l /ml cells followed by incubation at 4°C 

for 15 mins. The cell suspension total volume was brought to 2.5 ml by adding 

the recommended medium without rat serum. Cells were mixed by gentle 

pipetting up and down 2 - 3 times. Then the tube was placed into the magnet 

(without cap) and left for 5 minutes. The magnet and tube were lifted and 

inverted (2 - 3s) to collect the fraction of cells that were not bound, in a new 5 ml 

polystyrene tube. The magnetically labeled unwanted cells remained bound 

inside the original tube, held by the magnetic field of the magnet. Usually the 

desired fraction was about 95 - 98% CD3 positive as seen in Fig. 2.2.c. Purified 
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T cells (1.0 x 107 cells per ml) were cultured with DC  infected (1.0  x  l05 cells 

per ml) with PSA secreting recombinant LGG to give responder-to-stimulator 

ratio-100:1 in 200 µl of LDA medium (NCTC 109 and RPMI 1640 [1:1]), 

supplemented with 10% heat-inactivated FCS, 10 mM Lglutamine, 1 mM 

oxalacetic acid, 0.2 U of bovine insulin per ml, and 50  µM of 2-

mercaptoethanol in 96-well U-bottom plates. The plates were incubated at 37°C 

under 5% CO2 . For positive control,   splenocytes from naive mice (60 x 106 

cells per flask) were incubated with  5 µg/ml of PSA specific CTL peptide ( 

VISNDVCAQV,  Proimmune, UK).  After 5 days, cells were used as effector 

cells for antigen presentation assay or CTL (cytotoxic lymphocyte) assay. 
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                                       Figure 2.2. Purity of the cells used for the bacteria stimulation experiments 

a) Purity of the bone marrow derived neutrophils after positively enriched by using Ly6G microbeads.  b) Purity of bone marrow derived 

dendritic cells harvested on 9th day of culture. c) Purity of the CD3+ T cells enriched from the mice spleen by negative selection.  
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2.3.5. CTL and antigen presentation assays 

The antigen presentation assay was done as described before with some 

modifications (Cheadle et al. 2005).  Dendritic cells (5 x 105) were plated in 

24 well plate (total volume 2 ml and infected with recombinant LGG 

secreting IL2 or IL15 or IL7 or  PSA or IL2-PSA or IL15-PSA and or IL7-

PSA at a bacteria to cell ratio of 100:1 for 24 hours. After gentamycin 

treatment (200 g/ml for 2 hours) and three washes in PBS,  2 x 104 DCs 

were cultured with  5 x 105 purified T cells from naïve mice in 96 well U-

bottom plates  to give responder to stimulator ratio of 25:1. After 5 days, 100 

l of  medium  was removed for IL2 and IFNγ detection. For CTL assay 100 

l of medium was removed and 100 l of target cells were added and 

incubated for 5 hours. Syngenic mice splenocytes pulsed with PSA CTL 

peptide (2 - 5 hours) or MB49-PSA were used as target cells. The supernatant 

were harvested and LDH activity was determined by using CytoTox 96TM kit 

(Promega, Madison, WI, USA). The mean percentage of specific lysis of 

quadruplicate wells was determined using the following formula: % of 

cytotoxicity = [(experimental – effector spontaneous-target spontaneous) / 

Target maximum-target spontaneous)] x 100.  

 

2.3.6. Ex vivo ELISPOT assay  

Ex vivo ELISPOT assay was done as described before with some modification 

(Parent et al. 2005). On the 80th day, intranasally or orally immunized mice 

were euthanized and splenocytes were harvested. CD4+ T cells were positively 

enriched using CD4 microbeads (Miltenyi Biotec). The resultant cells were 

>85% CD4+ as determined by flow cytometry. 1 x 105 CD4+ T cells in DMEM 
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complete medium (Dulbecco’s Modified Eagle medium) were plated on mouse 

IFNγ ELISPOT plates (BD Pharmingen). Each well also contained 1 x 105 

mitomycin C (Sigma) pretreated splenocytes (50 g/ml) harvested from PBS 

administered mice and 10U of IL-2/ml. The plates were incubated at 37ºC with 

5% CO2 for 48 hours with or without 1g of recombinant GFP. For CD8 

ELISPOT, plates were loaded with 1 x 106 splenocytes per well, with GFP 

specific CTL peptide (H-2Kd HYLSTQSAL) (1 µg/ml) and 1 x 105 mitomycin 

C treated control splenocytes. Then the plates were incubated for 48 hours. The 

antigen specific IFN-γ secreting CD4 or CD8 T cells were visualized and 

enumerated.  

 

2.3.7. CTL response against MB49-GFP tumour cells 

CTL activity of spelnocytes from immunized mice was determined by 

measuring lactate dehydrogenase (LDH) activity released from lysed cells 

(Cytotox 96R, Promega). Briefly, 1 x 106 spleen cells were co-cultured with 1 

x 106 mitomycin-C treated  MB49-GFP cells and 1 µg/ml of  GFP specific CTL 

peptide (H-2Kd HYLSTQSAL, Proimmune, UK) in RPMI 1640 supplemented 

with 5% FBS, 50U/ ml penicillin, and 50 u/ml of streptomycin for 5 days. The 

splenocytes were recovered and used as effector cells against 1 x 104 viable 

MB49-GFP cells as target cells at a ratio of 1:1, 10:1 and 30:1. After 5 hours of 

culture, supernatants were recovered and LDH activity was determined. The 

mean percentage of specific lysis of quadruplicate wells was determined using 

the following formula: % of cytotoxicity = [(experimental – effector 

spontaneous-target spontaneous) / Target maximum-target spontaneous)] x 100 
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2.4. Statistical analysis 

All animal experiments were independently replicated at least twice whereas in 

vitro experiments were independently replicated at least thrice, each time in 

duplicates. Graphs were prepared using GraphPad Prism and statistical analysis 

was performed using one way ANOVA with post hoc Scheffe test (SPSS 

software).  A p value of < 0.05 was taken to indicate a significant difference.  

All graphical data was expressed as the mean ± SD (unless stated otherwise) of 

combined data from the replicate experiments.  
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3.1. Expression of the model antigen GFP with a cytokine in LGG 

The specific aim of this dissertation was to explore the potential of 

Lactobacillus rhamnosus GG (LGG) as antigen delivery vehicle. A model 

antigen GFP was expressed in LGG and to enhance the immune response, 

murine IL2 was also co-expressed with the antigen. GFP was cloned in the E 

.col i- Lactobacillus shuttle vector, pLP500 under the control of the  ldh 

promoter with or without murine IL2. To study the general or specific immune 

response elicited by mucosal immunization, mice were immunized orally or 

intranasally with LGG secreting GFP or IL2-GFP. Wild type LGG or PBS was 

administered as controls.   

 

3.1.2. Expression or co-expression of model antigen, GFP with murine IL2  

The supernatant from overnight cultures of LGG-GFP or LGG IL-2-GFP were 

collected to assess GFP and IL2 secretion and the bacteria were collected for 

analysis of bacterial numbers by plating. GFP expression in LGG-GFP and 

LGG-IL2-GFP was confirmed by flow cytometry and confocal microscopy 

(Figure 3.1). 

As the GFP expression in LGG-GFP or LGG-IL2-GFP was almost similar, 

either flow cytometry or confocal microscopy picture was only shown for GFP 

expression.  
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Figure 3.1. GFP or IL2 expression in modified LGG (LGG-GFP or LGG-IL2-GFP) 
GFP fluorescence was visualized under confocal microscopy (scale bar 50 μm), a) control wild type LGG and b) LGG-GFP; c) Analysis of 
GFP expression in LGG-IL2-GFP by flow cyometry; d) Secretion of IL-2 vs bacterial cfu with time, the dashed line represents cfu/ml of 
bacteria and the solid line represents IL-2 secreted into the supernatant in pg/ml; e) Secretion of GFP in the culture supernatant- the dashed 
line represents LGG-GFP and solid line represents LGG-IL2-GFP and f) Intracellular expression of GFP or IL2- the dotted or solid line 
represents GFP or IL2 expression in LGG-IL2-GFP respectively and the dashed line represents GFP expression  in LGG-GFP.  
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Even though, the plasmid has a secretory signal sequence from the prt P gene 

of L. casei (Ho et al. 2005) for secretable expression, there was a significantly 

detectable level of internal expression as well.  The levels of IL-2 and GFP 

secreted in the culture media increased with bacterial CFU reaching a 

maximum at about 22 hours when the bacteria were at the end of the 

exponential phase and decreasing thereafter (Figure 3.1.d). Therefore the 

bacteria used for immunization were harvested after 22 hours of culture. At 

this point the total production (intracellular and secretory) of IL-2 and GFP 

was about 1.143 and 1.072 ng/ml respectively from 1.3 x 109 CFU/ml of 

LGG-IL2-GFP. GFP concentration in LGG-GFP was about 1.021 ng/ml at 22 

hours of culture (Fig 3.1.f). Only 1/5 of the total protein produced was 

secreted and the secretion of GFP from LGG-IL2-GFP and LGG-GFP was 

248 and 251 pg/ml respectively and the amount of IL2 secreted by LGG-IL2-

GFP was 265 pg/ml as seen in fig. 3.1.e. 

 

3.1.3. IL2 secreted by LGG-IL2-GFP is biologically active 

To analyze the biological activity of IL2 secreted by LGG-IL2-GFP, a CTLL-

2 proliferation assay was performed.  Culture supernatants from LGG-IL2-

GFP was harvested after 22 hours of culture and dialyzed against blank RPMI 

followed by ultra filtration to concentrate the protein. FBS was added to get 

10% FBS in RPMI and sterile filtered. CTLL-2 cells were harvested from 

stock cultures supplemented with IL-2 and washed twice by centrifugation. 

CTLL-2 cells were dispensed into 96 well assay plates (5 x 103 cells/well) and 

cultured for 20-24 hours in the presence of IL-2 or bacterial culture 

supernatant. Various concentrations of Human Recombinant IL-2 were used as 



                                          68

standard. To confirm the IL2 mediated proliferation, a blocking antibody to 

IL2R  was added with  bacterial culture supernatant. After 1 day of culture, 

20μl of CellTiter 96® AQueous One Solution Reagent, was added  and the 

assay plates were incubated for an additional 4 hour period. 490nm absorbance 

was recorded directly from the CellTiter 96® Assay plate. The bioactivity of 

IL-2 fused to GFP was determined to be 3.244 U/ml of culture supernatant 

(Figure 3.2). 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.2. CTLL-2 proliferation assay. IL2-GFP-LGGculture 
supernatant was dialyzed against blank RPMI and concentrated by ultra 
filtration before determining its biological activity with a  CTLL-2 
proliferation assay. Media without IL2 was used as blank. IL2 induced 
proliferation was abolished in the presence of the blocking antibody to 
IL2Rα (arrow). * Statistically significant (p value <0.05). 
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3.1.4. Stability of transformed bacteria 

  The heterologous protein expression depends on the stability of the 

recombinant plasmid. Culturing recombinant bacteria in antibiotic selection 

ensures the survival of bacteria which possess the recombinant plasmid. 

Recombinant LGG may loose the plasmid at mucosal sites, since antibiotic 

selection is not possible in vivo.  

 

 

 

                  

 
 
 
 
 
 
 
 
 
Figure. 3.3. Divergent stability of recombinant plasmids in LGG in non 
selective environment.  LGG secreting GFP (a) or IL2-GFP (b)   were 
subcultured every day in  MRS broth with (dotted line) or without (solid line) 
erythromycin. Bacterial CFU in the daily culture was determined by plating 
bacteria on MRS agar plates with eryhtromycin.  
 
 
Though booster immunization may be helpful in colonization of recombinant 

LGG at mucosal sites, plasmid stability in a non-selective environment would 

determine the continuous antigen production from the bacteria at colonizing 

sites.  We analyzed the stability of IL2-GFP or GFP secreting LGG in a non-

selective environment by sub- culturing the bacteria every day in MRS broth 

with or without erythromycin and plating the bacteria on ery+ MRS plates to 

determine the number of bacteria that still have the plasmids.  Though 
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continuous propagation in non-selective media caused gradual plasmid loss 

both in GFP or IL2-GFP secreting LGG, the pLP500-GFP plasmid was more 

stable than the pLP500-IL2-GFP plasmid (Figure 3. 3). However, there was a 

50% reduction in bacteria carrying the IL-2-GFP plasmid only after 20 days of 

continuos culture.  

 

3.2. Survival and colonization ability of LGG after oral or nasal 

immunization. 

The main advantage of using a Lactobacillus  based vaccine is the ability of 

lactobacilli to colonize the mucosa. Therefore bacterial localization in lung or 

intestines; bacterial translocation to draining lymph nodes or spleen or liver 

and persistence after nasal and oral immunization were examined.  

 

3.2.1.  Translocation of modified LGG after nasal  or oral immunization 

To locate Lactobacilli after oral or nasal immunization with 1x108 CFU of 

bacteria the MLN (oral immunization) or NALT, CLN and Med.LN ( nasal 

immunization) were collected. For the analysis of systemic translocation, the 

spleen and liver were also collected. The tissues were homogenized and 

bacterial cfu determined by quantitative plating on Ery+ MRS agar plates. 

Bacterial load was determined at 24 hours, 48 hours and 1 week post-

immunization. Twenty-four hours after intranasal immunization, more bacteria 

were found in the NALT than CLN or Med.LN (Table 3.1). These bacteria 

were progressively and completely cleared from the NALT, CLN and Med.LN 

and no more bacteria were found after 1 week. No bacteria were detected in 
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the spleen or liver. Both modified Lactobacilli showed the same pattern of 

translocation.   

   After oral immunization many bacteria were found to be translocated to MLN. 

IL2-GFP secreting LGG translocated in higher numbers to the MLN after 24 

and were still present in significantly higher number after 48 hours (Table 

3.1). 
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Table 3.1 Translocation of recombinant LGG after oral or intranasal immunization 

                    Bacterial cfu/gm of tissue  

MLN  Spleen  Liver  

LGG 
expressing 

  24 hrs   48 hrs   168 hrs 
 (1 week) 

  24 hrs    48 hrs   168 hrs 
 (1 week) 

24 hrs   48 hrs   168 hrs 
 (1 week) 

O
ra

l a
dm

in
is

tr
at

io
n 

 

  GFP 
 
  GFP- IL2  

  96 ± 48 
 
 1308 ± 501*  

 0 
 
 67 ± 9*  

   0 
 
   0 
 

7 ± 11 

78 ± 41 

 0 
 
 15 ± 4  

   0 
 
   0 
 

15 ± 3 
 
45±13  

0 
 
0  

   0 
 
   0 
 

NALT   CLN   Med.LN   

  24 hrs   48 hrs    168 hrs 
 (1 week) 

  24 hrs    48 hrs   168 hrs 
 (1 week) 

24 hrs  48 hrs  168 hrs 
 (1 week) 

  I
nt

ra
na

sa
l a

dm
in

is
tr

at
io

n 
  

 
 
 
 
GFP 
 
GFP-IL2  

 9944 ± 1523 
 
10052 ± 1259  

144 ± 132 
 
140 ± 96  

   0 
 
   0 
 
 
 

  37 ± 11 
 
  37 ± 12  

  0 
 
  0  

   0 
 
   0 
 

110 ± 40 
 

114 ± 31  

0 
 
0  

   0 
 
   0 
 

Data represent mean cfu ± standard deviations 

* Statistically significant (p <  0.05) 
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3.2.2. Persistence of modified LGG after oral immunization at gut on 80th 

day. 

Lactobacilli were known to colonize the intestine. We examined LGG 

colonization at the end of the immunization schedule. Different colonization 

ability of LGG-GFP or LGG-IL2-GFP in the small intestines were analyzed on 

the 80th day post primary immunization (52 days after the last immunization) by 

quantitative plating (Table. 3.4).   

  Table 3.2. Different colonizing ability of recombinant LGG in oral 

immunization.  

  
  Data represent mean  ± standard deviations  

* Statistically significant (p< 0.05) compared to LGG-IL2-GFP.  
 

3.3. Tracking of recombinant LGG using GFP as visible marker in 

immunization  

Direct observation of the GFP expressing bacteria by fluorescence microscopy 

(Figure 3.4, a - d); immunohistochemical staining (Figure 3.4, e-h) and 

Transmission Electron Microscopy (Figure 3.5, a-f )  allow us to trace bacteria 

in intestinal sections or lung sections of mice fed with GFP or IL2-GFP 

expressing LGG. Though quantitative analysis was not done, It also will be 

possible to analyze the interaction of LGG with M cells by using a ligated-

intestinal-loop system to avoid in vivo dilution of the sample. 

Bacteria CFU/ml of small intestine homogenate  Immunization 

duodenum  jejunum ileum 

LGG 

(pLP500) 

LGG-GFP 

LGG-IL2-GFP 

131 ± 32* 

144 ± 42* 

21 ± 8 

38 ± 19 

56 ± 24 

0 

12980 ± 1230* 

12120  ±  850* 

967 ± 117 
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Immunohistochemical staining of LGG in lung and confocal microscopic 

examination of intestine showed the bacterial persistence in lung or intestine. 

Transmission electron microcopic examination clearly showed the bacterial 

uptake in intestine. ( Figure 3.5, a-c).  However many bacteria especially IL2-

GFP secreting LGG were seen in intravascular region which was an 

uncharacteristic for lactobacilli (Figure 3.5, e&f ). Orally immunized bacteria 

are known to be taken up by M cells at peyers patches (Macpherson et al. 2004). 

However in our TEM study the bacterial uptake was found to be mediated 

through intestinal epithelial cells. Hence LGG uptake by M cells at intestinal 

villus was investigated by loop ligation method as described previously for 

Salmonella typhimurium (Jang et al. 2004).  

   Under anaesthesia mouse intestine was ligated near caecum and 10cm from 

caecum and bacteria was injected (LGG-GFP - 108 cfu) in to intestine. After 1 

hour mice were euthanized and intestine was harvested and stained for M cells 

and FAE. As seen in Figure. 3.6, few GFP fluorescing LGG were co-localized 

with M cells at intestinal villi which suggested M cell mediated LGG uptake at 

intestinal epithelium (Figure. 3.6) 
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    Figure 3.4.  Tracking of LGG-GFP ( a,b & e,f) or LGG-IL2-GFP (c,d & g,h) in mice intestine (a-d) and lung (e-h)  
    24hours  after of oral or intranasal immunization. Cryosections of orally immunized mice caecum (a-c) or small intestines 
    (d) were examined under confocal microscopy and compressed Z-stack of optical sections were taken.  Paraffin sections  
   of nasally immunized mice lungs were stained with Horseradish Peroxidase labeled anti-GFP  antibody followed by  
   detection with diaminobenzidine (DAB) substrate. Bacteria were stained brown   and were observed in the bronchiolar 
    linings. Figure (h) is the magnified view of the boxed region in figure (g). The scale bar for a) is 20 μm; for b and c it is  
   10 μm and for d it is 20 μm. For e, f, h the magnification is 2 x 20  and for g, the magnification is 2 x 10.  

 

e) g) f) h) 

a) b) d) c) 
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 Figure 3.5.  Visualization of recombinant LGG in mice intestine ultrathin sections 24 hrs after oral administration 
by Transmission Electron Microscopy (TEM). Mice intestines were sterilized with ampicillin by oral administration 
followed by immunization with 108 CFU recombinant LGG. After 24hrs, the small intestine, large intestine and caecum 
were processed and examined for LGG-GFP (a-c) or LGG-IL2-GFP (d-f) under TEM. The scale bar for a and b is 0.2 μm; 
for c and d it is 0.5 μm and for e and f it is 1 μm. Arrows indicate the uptake (a, c, d) and the presence of bacteria in the 
intravascular region (e and f). 
 

                

a) b) c) a)

e) d) e) f) 
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      3.3.1. Bacterial uptake in mice intestinal villus  

         a)                                                                  b)                                                                c) 

                 
  

Figure 3.6. Confocal microscopic view of villous epithelium. Villus epithelium was stained for M cell and columnar epithelial 
cell-with UEA-1-TRITC (Ulex europaeus agglutinin) and WGA- Alexa fluor 633 (Wheat germ agglutinin) respectively. Whole 
mount preparation of small intestine (a & b) or cryosection of the intestinal segment (c). M Cells were stained by UEA-1 (red, 
arrow), enterocytes by WGA (blue), and goblet cells by UEA-1 and WGA (red-blue mix, arrowhead). LGG-GFP ( a&b) or LGG-
IL2-GFP (c)  were seen co-localized with M cells(◄). The scale bar for a and b is 20 μm; for c 10 μm. 
 

 
                                                    
 
 

◄

◄

◄

◄
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Summary I 

Though the recombinant LGG were able to secrete GFP or IL2-GFP, the level of 

secretion was about 240 pg only. Moreover the secretion was not 100% and the 

majority of the recombinant protein was intracellular. However IL2 secreted as 

IL2-GFP fusion protein by recombinant LGG was biologically active.  

Recombinant LGG were able to colonize the intestine and lung after oral or 

nasal immunization. So the colonized recombinant LGG would secrete antigen 

which will be continuously taken up by dendritic cells. Live bacteria were 

isolated after 24 hours of oral or nasal immunization from mesenteric lymph 

nodes or NALT respectively. Interestingly IL2-GFP secreting LGG were 

translocated in higher numbers than GFP secreting LGG. Confocal microscopic 

examination of orally immunized mice intestine showed LGG were taken up by 

M cells. Transmission electron microscopic analyses also showed bacterial 

uptake in intestines.   
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3.4. Mucosal  immunization with recombinant LGG  

For mucosal immunization, the oral and nasal routes were examined. C57BL/6 

and Balb/c mice were used to study the total or antigen specific immune 

response after oral immunization while the nasal immunization was performed 

only on C57BL/6 mice. Feces (oral immunization) or BAL fluid (nasal 

immunization) and sera were collected on days 0, 10, 24, 35 and 80 to study the 

mucosal and systemic immune responses respectively (Figure 3.7). 

 

 

Figure  3.7. Oral or nasal immunization and sample collection schedule  
Primary immunization begins on Day 0. 
 
 
3.4.1. Systemic antibody production- general and specific after oral 

immunization 

There was no significant increase of total serum IgG or IgA in either mice strain.  

As shown in Figure 3.8 (a - d). From the 24th day onwards, GFP specific IgG 

levels were significantly increased in both C57BL/6 and Balb/c mice immunized 

with modified LGG and on 35th day the IgG titres were significantly higher in 

LGG-IL-2-GFP immunized mice compared to the other groups (Figure 3.8 e&f 

).  
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Figure 3.8. Total and GFP specific systemic immune induction in oral 
immunization. 
Total and GFP specific serum IgG or IgA in C57BL/6  and Balb/c mice after 
oral immunization with modified LGG, wild type LGG and PBS. Eight mice 
from each group were inoculated on days 0, 14 and 28 with 108 modified 
LGG-GFP (angled stripes) or LGG-IL2-GFP (shaded) or wild type LGG 
(black) or with PBS (clear).  Graphs  a, c and e) represent total IgG, IgA and 
GFP pseciifc IgG in the sera of C57bL/6 mice. Graphs b,d and f) represent 
total IgG, IgA and GFP specific IgG from Balb/c mice. 
  *denotes statistical significance from PBS and LGG and ** indicates       
statistical significance from PBS, LGG and LGG-GFP (p< 0.05). Data are 
represented by the mean ± SEM in each group.  
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3.4.1.1. Local  antibody production- general and specific  

Secretory IgA (sIgA) levels increased significantly from day 10 and day 24 

onwards in C57BL/6 and Balb/c mice respectively after immunization with 

LGG (Figure 3.9 a & b). The IgA antibody titers remained elevated 52 days 

after the last booster dose (day 80).   GFP specific sIgA was also increased in 

fecal extracts from 24th or 10th day onwards in    C57BL6 or Balb/c mice 

respectively (Figure.3.9 c&d). By the 35th and 80th days in the C57BL/6 mice 

the titre was significantly higher in mice immunized with LGG-IL2-GFP 

compared to the other groups. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9. Total and GFP specific mouse IgA  in fecal extracts of 
C57BL/6 or Balb/c  mice after oral immunization with modified LGG, 
wild type LGG and PBS. a&b) Total mouse IgA in fecal extracts of 
C57BL/6 or Balb/c  mice respectively. 
c&d) GFP specific IgA in C57BL/6 and Balb/c mice after oral immunization. 

LGG-GFP (angled stripes) or LGG-IL2-GFP (shaded) or wild type LGG (black) 
or with PBS (clear). * denotes statistical significance from PBS and LGG and 
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** indicates statistical significance from PBS, LGG and LGG-GFP (p< 0.05). 
Data are represented by the mean ± SEM in each group. 

 
 

3.4.1.2. IL2 co-expression enhanced GFP specific Ig production  

The fecal extracts collected on 35th day were serially diluted to obtain 

approximately the same absorbance for total IgA/IgG and GFP IgA/IgG on the 

ELISA. The dilutions producing the same absorbance for GFP and total 

IgA/IgG were expressed as a percentage of the dilution of GFP over the dilution 

of total IgA/IgG. Similarly, the dilutions producing the same absorbance for 

GFP and LGG were used to determine the relative amount of GFP to LGG 

specific antibodies (fold difference).  

Immunization with LGG-IL2-GFP and LGG-GFP resulted in 25 and 10 fold 

more GFP specific IgG and 5 and 2 fold more GFP specific IgA production in 

C57BL/6 mice whereas in Balb/c the ratios were lower primarily due to a higher 

production of LGG specific IgA after immunization (Figure 3.10). 

 

 

 

 

 

 

 

 
Figure 3.10. IL2 co-expression enhances GFP specific IgG induction. 
At the 35th day of post primary immunization sera were analyzed for GFP or 
LGG specific IgG. a). Fold difference of GFP Vs  LGG specific serum IgG 
induction in C57BL/6 mice. b) Fold difference of GFP Vs LGG specific IgG in 
Balb/c mice. Anti-GFP IgG (angled stripes) and anti-LGG IgG (black) in mice 
inoculated with  LGG-GFP and anti-GFP IgG (shaded) and anti-LGG IgG 
(clear) in LGG-IL2-GFP inoculated mice. The difference in GFP and 
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Lactobacillus specific antibody levels were determined by comparing the 
dilutions of each required to obtain the same OD at 450 nm. 
 
 
The mean percentage of GFP specific IgG (GFP specific IgG/Total IgG X 100) 

in LGG-IL2-GFP immunized mice was about 0.036 and 0.037 compared to 

0.023 and 0.021 in LGG-GFP immunized C57BL/6 and Balb/c mice 

respectively. The percentage of GFP specific IgA was also higher in IL2-GFP-

LGG immunized mice and was 0.063 and 0.050 compared to 0.011 or 0.012 in 

LGG-GFP immunized C57BL/6 and Balb/c mice respectively (Table. 3.1).  

 

3.4.1.3. Analysis of GFP specific IgA and cytokines in intestinal fragment 

cultures  

At day 35 the small and large intestine were harvested and 100 mg of tissue 

fragments were placed in culture media. After 24 hours, the culture supernatant 

was analyzed for total IgA, GFP specific IgA, IL2, IL6, IL4, TNFα, IFN and 

TGFβ1. Total IgA production was increased in both wild type and modified LGG 

immunized mice and it was significantly greater in the large intestine of LGG-

IL2-GFP immunized mice than in PBS or LGG immunized mice respectively 

(Table. 3.2). Cultures of the small intestine, from LGG-IL2-GFP immunized 

mice produced a higher percentage of GFP specific IgA (0.063) compared to 

LGG-GFP (0.042) immunized C57BL6 mice. Similarly in the large intestines 

the ratio of GFP specific IgA was 0.02 for LGG-IL2-GFP immunized mice 

compared to  0.013 for LGG-GFP immunized C57BL6 mice.  

 There was no detectable IL2 or IFN. In LGG-IL2-GFP immunized mice small 

intestine culture, IL6 production was significantly higher and by contrast, 
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TGFβ1 levels were significantly lower when compared to PBS or LGG 

immunized mice (Table.3.2). 
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     Table 3.3. Cytokine and IgA levels in intestinal culture supernatant  
 

 Data represent mean % of cells ± standard deviations  
* Statistically significant (p< 0.05) compared to PBS and LGG administration  
 ♦ Statistically significant (p< 0.05) compared to LGG and LGG-IL2-GFP administration 

 
 
 

TNFα (pg/ml) IL6 (ng/ml)   sIgA (μg/100 g of tissue)       TGFβ (ng/ml)  Group 
Small intestine Large intestine Small intestine Large intestine Small intestine Large intestine Small intestine Large intestine 

PBS 

LGG 

LGG-GFP 

LGG-IL2-GFP

9.3 ± 3.6 

4.2 ± 3.7 

11.1 ± 1.1 

9.9 ± 6.8 

6.1 ± 1.9 

14.2 ± 4.1 

10.7 ± 5.1 

20.1 ± 10.6 

0.09 ± 0.06 

0.12 ± 0.07 

0.23 ± 0.13 

0.63 ± 0.30* 

0.53 ± 0.14 

0.90 ± 0.15 

0.91 ± 0.39 

0.99 ± 0.31 

15.3 ± 2.2 

31.1 ± 6.7 

35.0 ± 4.1 

38.0 ± 6.8 

 

0.8 ± 0.1 

2.1 ± 1.0 

8.6 ± 4.8 

12.8 ± 7.0* 

 

7.78 ± 2.50 

6.21 ± 3.02 

6.02 ± 2.97 

1.65 ± 1.07* 

2.63 ± 0.21 

2.84 ± 0.20 

1.84 ± 0.28♦ 

3.39 ± 0.69 
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3.4.1.4. IFNγ ELISPOT for antigen specific CD4 and CD8 T cell responses 

To monitor the induction of CD4 and CD8 antigen specific T cells, an IFN- 

Elispot assay was performed on splenocytes isolated on days 35 and 80. 

Increased IFNγ secreting CD4+ or CD8+ T cells were seen after modified LGG 

immunization  

(p< 0.05) in both C57BL6 and Balb/c mice. LGG-IL2-GFP immunization 

generated significantly higher GFP specific CD8+ T cells (187 ± 31) than 

LGG-GFP (90 ± 25) in C57BL6 mice at day 35. A similar response, 121 ± 23 

and 69 ± 11 CD8+T cells from LGG-IL-2-GFP and LGG-GFP immunized 

mice was also observed in Balb/c mice at day 80 (Figure. 3.11).  
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Figure  3.11. IFN- ELISPOT for the analysis of GFP specific CD4+ or 
CD8+ T cells   More expln here 
 GFP specific CD4+T  or CD8+ T cell responses in C57BL6 (a&c) or Balb/c 
(b&d) mice. * indicates statistical significance from PBS and LGG immunized 
mice and ** indicates statistical significance from PBS, LGG and LGG-GFP 
(p <0.05). Data are represented as the mean ± SEM in each group. 
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 3.4.1.5. Immunization with LGG-GFP and IL2-GFP-LGG produced a GFP 

specific CTL response 

  A CTL assay was performed on splenocytes from immunized mice at day 35. 

Splenocytes were stimulated in vitro with mitomycin C treated MB49-GFP cells 

and GFP specific CTL peptide. Stimulated splenocytes were then tested for 

recognition and lysis of fresh viable MB49-GFP cells. As shown in figure.3.12, 

spleen cells from mice immunized with LGG-IL2-GFP or LGG-GFP had 

significant CTL activity compared to LGG or PBS immunized mice. LGG-IL2-

GFP immunized mice produced significantly more CTL activity than LGG-GFP 

immunized mice at all effector to target cell ratios.  

 

 

 

 

 

 
 
 
 
 
 

Figure  3.12.  Induction of GFP specific CTL response in splenocytes of 
mice immunized with recombinant LGG.  
Four mice per group immunized via the oral route on days of 0, 14 and 28 with 
either PBS or wild type LGG or LGG-GFP or LGG-IL2-GFP were killed on day 
35. Splenocytes from immunized mice were pooled and co-cultured with 
mitomycin C treated MB49-GFP  cells and CTL peptide of GFP for 5 days. 
These splenocytes were used as effector cells and live MB49-GFP cells served 
as target cells. The assay was performed at the following effector to target (E:T) 
ratios (1:1,10:1,and 30:1). Specific lysis was determined by quantitative 
measurements of LDH. 
* indicates statistical significance from PBS and LGG immunized mice and 
** indicates statistical significance from PBS, LGG and LGG-GFP (p <0.05). 
Data are represented as the mean ± SEM in each group. 
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3.4.1.6. Phenotyping of mononuclear cell subsets in MLN after oral 

immunization 

Single cell suspensions from the MLN were prepared from the mice on the 35th 

day after primary immunization. Both wild type and modified LGG 

immunization increased the number of CD4+, CD8+ T cells and IgA+B cells in 

MLN compared to mice receiving PBS. LGG-IL2-GFP immunization induced 

increased maturation of DC at MLN (Table. 3.3).   
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Table  3.4. Mononuclear cell subsets in MLN on the 35th day after immunization 

 

 
 
 
 
 
 
 
 
 
 
 

Data represent mean % of cells ± standard deviations  
* Statistically significant (p <0.05) compared to PBS.  
 
 
 
 
 
 
 
 
 
 
 
 

IImmunizati

on 

B220+ IgA+ CD3+CD4+ CD3+CD8+ CD11c+CD8

6+ 

 CD11c+ 

CD80+ 

PBS 

LGG 

LGG-GFP 

LGG-IL2-

GFP 

12.1 ± 2.15 

18.7 ± 4.47 

18.1 ± 2.90 

20.0 ± 2.67* 

17.7 ± 2.84 

35.9 ± 4.34* 

35.2 ± 3.48* 

36.8 ± 3.30* 

20.6 ± 1.64 

38.6 ± 4.50* 

38.8 ± 4.60* 

38.0 ± 2.22* 

73.7 ± 3.14 

78.7 ± 4.41 

82.3 ± 4.57 

86.0 ± 7.04*  

25.9 ± 3.26 

28.3 ± 2.94 

28.3 ± 5.77 

30.1 ± 3.81 
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Summary II 

 In this present study both recombinant LGG were shown to be able to elicit 

mucosal and systemic humoral responses after oral immunization in both 

C57BL/6 and Balb/c mice. Oral immunization of LGG elicited a sustained 

mucosal IgA induction and ex vivo culture of the intestines also showed a higher 

IgA level even 56 days after the last booster immunization. Lactobacillus 

delivery of GFP (approximately 0.1 ng) resulted in approximately 0.3 g/ml of 

GFP specific IgG antibodies being produced from LGG-GFP, while co-delivery 

of IL2 and GFP resulted in more antibody production namely 0.5 g/ml of GFP 

specific antibodies.  Our data indicates that a low level of secreted IL2 

(approximately 20 pg) is sufficient to produce significant adjuvant effects a 1.6 

fold increase in antibody production. The increased level of anti-LGG antibodies 

was not as great as the increase in GFP antibodies produced by the IL-2 fusion 

protein. Thus Lactobacilli are excellent delivery vehicles as they do not evoke a 

strong antibody response against themselves. There were increased GFP specific 

CD8+T cells in the recall assay and these were increased by IL2 co-expression. 

The CD8 T cells were cytotoxic to MB49 cells secreting GFP. The results of this 

study showed the beneficial effect of IL2 expression as a fusion protein with an 

antigen to elicit enhanced local and systemic humoral immune response as well 

as cellular immune response. 
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3.4.2. Nasal Immunization. 

Previous results with Lactobacillus plantarum expressing human papilloma 

virus 16 (HPV-16) E7 antigen demonstrated that intranasal route immunization 

was more effective than intragastric immunization (Cortes-Perez et al. 2007). As 

the choice of route of immunization is a crucial step in developing live mucosal 

vaccines, the immune induction elicited by nasal immunization was compared 

with the results obtained in oral immunization. 

 

3.4.2.1. General and specific antibody induction in nasal immunization 

Nasal immunization results in brisk and sustained induction of serum IgM, IgA, 

IgG and mucosal IgA (Waldo et al, 1994). Moreover intranasal co-

administration of  lactobacilli with cow’s milk allergen prevented the mice from 

sensitization (Cortes-Perez et al, 2007). Hence serum IgM, IgG, IgA and IgE 

were measured after nasal immunization.  The serum IgA levels (Figure 3.13 a) 

increased after the priming dose and were significantly increased by day 35 

(LGG-IL2-GFP) and remained high at day 80 (both modified microbes). There 

was a slight increase in total serum IgG (Figure 3.13 b) and IgM antibodies (data 

was not shown) but it was not statistically different from PBS or LGG 

administered mice and there was no change in IgE levels (data was not shown).  

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov.ejproxy.a-star.edu.sg/pubmed?term=%22Cortes-Perez%20NG%22%5BAuthor%5D�
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a)                                                               b)                                                                              

 

 

 

 

 

         c) 

 

 

 

 

 

 

 

Figure 3.13. Systemic immune response in C57BL/6 mice after nasal 
immunization with of PBS  or  LGG or LGG-GFP or LGG-IL2-GFP. a, b,  
represent the mouse serum IgA, IgG induced  after nasal immunization  with 
LGG-GFP (angled stripes) or LGG-IL2-GFP (shaded) or wild type LGG 
(black) or PBS (clear) and c) represents the serum IgG1/IgG2a  ratio.  
* denotes statistically significant with PBS or  LGG immunization. (p <0.05). 
Data are represented as the mean ± SEM in each group. 
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GFP specific IgG titers increased rapidly (Figure 3.14), IL2 significantly 

increased GFP specific IgG production. The GFP specific IgG1/IgG2a ratio 

initially increased due to increasing IgG1 levels and decreased later as IgG2a 

levels increased (day 35 maximal, Fig. 3.14.b). GFP specific IgA in serum 

increased rapidly and with similar kinetics and profile as total IgA. Anti-GFP 

IgA levels were significantly increased in mice immunized with LGG-IL2-GFP 

compared to the other groups as seen in Figure 3.14.c. Similarly, anti-GFP sIgA 

levels were differentially induced by modified LGG in the BAL (Fig 3.14.e).    
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          a)                                                               b) 

 

 

 

 

        

         c)                                                                d) 

                               

 

 

 

       

      e) 

 

 

 

 

 

 

 

 

Figure 3.14.  GFP specific local or systemic immune response induced in 
serum or BAL in C57BL/6 mice after nasal immunization with of LGG or 
modified LGG.  
a) GFP specific IgG  b) GFP specific IgG1/IgG2a  c) GFP specific IgA induced 
in serum. d) Total sIgA and e) GFP specific IgA induced in BAL. LGG-GFP 
(angled stripes) or LGG-IL2-GFP (shaded) or wild type LGG (black) or PBS 
(clear)  
* denotes statistically significant with PBS or  LGG immunization and  
 ** denotes statistically significant with PBS or LGG or LGG-GFP 
immunization. (p <0.05).  Data are represented as the mean ± SEM in each 
group. 
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3.4.2.2.  Immune induction at ectopic mucosal tissues 

Nasal immunization also induced IgA secretion in other mucosal sites as well. 

IgA secreted in intestines particularly from LGG-IL2-GFP immunized mice 

were statistically significant with PBS immunized mice as seen in Fig3.15.a.  

Though the OD for GFP specific IgA in modified LGG immunized mice vaginal 

mucosa was very low, it was  statistically significant with wild type LGG 

immunized mice ( Fig 3.15.b). 

 

a)                                                                       b) 

          

 

 

 

 

 

 

Figure 3.15. Total and GFP specific IgA produced  at the intestinal(I), 
bladder(B),  and Vaginal mucosa (V) at the 80th day after nasal 
immunization. a) Total mouse IgA and b) GFP specific IgA. Tissues. * 
denotes statistical significance from PBS and LGG and ♦  denotes 
statistical significance from PBS, p<0.05. Data are represented by the 
mean ± SEM in each group.  
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3.4.2.3. Antibody induction by intranasal immunization with LGG-IL2-

GFP was more antigen specific 

At day 35, immunization with LGG-IL2-GFP and LGG-GFP induced 

approximately 32 and 24 times more GFP than LGG specific IgG or 12 and 10 

fold more anti-GFP IgA relative to anti-LGG IgA antibodies in serum or BAL 

respectively (Fig 3.16).  

  

a)                                                             b)       

 

 

 

 

 

Figure 3.16. Analysis of  GFP Vs LGG specific antibody induction  
At the 35th day post primary immunization, serum or BAL were analyzed for 
GFP or LGG specific IgG or IgA respectively. a). Fold difference of GFP Vs  
LGG specific serum IgG induction in serum. b) Fold difference of GFP Vs LGG 
specific IgA in BAL. Anti-GFP IgG or IgA (angled stripes) and anti-LGG IgG 
or IgA (black) in mice inoculated with  LGG-GFP and anti-GFP IgG or IgA 
(shaded) and anti-LGG IgG or IgA(clear) in LGG-IL2-GFP inoculated mice. 
The difference in GFP and Lactobacillus specific antibody levels were 
determined by comparing the dilutions of each required to obtain the same OD 
at 450 nm. 

 
 

3.4.2.4. Analysis of total and GFP specific IgA in CLN, NALT and lung  

tissue    ex  vivo 

At the 35th day post primary nasal immunization, the CLN, NALT and lung 

tissues from immunized mice were harvested and cultured ex vivo for 24 hours. 
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IgG (Fig 3.17). In LGG-IL2-GFP immunized mice, lung  and CLN cells 

produced a higher GFP specific IgA or IgG which was statistically significant 

from LGG immunized mice as seen in figure 3.17. c&d.  

        a)                                                                 b) 

 

 

 

        

 

 

 

 

Figure  3.17. Total  or GFP specific Ig induction in ex vivo culture.  

At the 35th day post primary immunization, CLN, NALT and lung tissues of the 
mice immunized with LGG-GFP (angled stripes) or LGG-IL2-GFP (shaded) or 
wild type LGG (crossed stripes) or PBS (clear) were aseptically harvested and 
cultured ex vivo for 24 hours and supernatants were analyzed for total (a & b) or 
GFP specific IgA or IgG (c & d). For lung and CLN, 100mg of tissues were 
cultured and for NALT, the whole tissue was cultured. * denotes statistical 
significance from PBS, ** denotes statistical significance from PBS and LGG 
and *** denotes statistical significance from PBS, LGG, LGG-GFP, p <0.05. 
Data are represented by the mean ± SEM in each group.  
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3.4.2.5. Analysis of inflammatory cells in BAL after nasal immunization. 

LGG-IL-2-GFP immunized mice had significantly more lymphocytes in the 

BAL than LGG immunized mice (Fig 3.18e). Macrophage and neutrophil 

numbers did not differ between the different LGG groups. By the 80th day, the 

pattern of immune cells was almost back to that in PBS treated mice except for 

lymphocytes which, though much lower than at day 35, were significantly 

higher in mice immunized with modified LGG (Fig 3.18f). 

        a)                            b)                            c)                           d)  

              

                                            

             

                                                    

    

 

 

 

Figure 3.18. Immune cells in BAL fluid after immunization with modified 
LGG or wild type LGG or PBS. On days 35 and 80, BAL fluid cells from 
immunized mice were cytospined and H & E stained. Cells were visualized and 
examined under microscopy (magnification 2 x 20 - a to d). M - monocytes, L - 
lymphocytes, N- neutrophils. The number of macrophages/monocytes (clear), 
lymphocytes (striped) and neutrophils (shaded) in 5000 cells were enumerated. 
Immune cell populations in e) day 35 and f) day 80 BAL fluid samples are 
shown. * indicates statistical significance from PBS and LGG administration 
and ♦ indicates statistical significance from PBS administration. Data are 
represented as the mean ± SEM in each group. 
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3.4.2.6. Cytokine levels in BAL  on the 35th day after nasal immunization 

At day 35 only IFN- was significantly increased in the BAL of mice 

administered LGG-IL2-GFP compared to mice given LGG-GFP, LGG  and PBS 

(Table 3.5). While TNFα was significantly greater in the BAL of both modified 

LGG compared to LGG and PBS administered mice. IL12, IL4 and IL10 levels 

in BAL were similar in all groups.  
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     This experiment was repeated twice and the data shown here is the mean ± standard deviation from one experiment.  
    ** Statistically significant (p< 0.05) compared to PBS, LGG, LGG-GFP administration 
    *Statistically significant (p< 0.05) compared to PBS, LGG administration  
    ♦ Statistically significant (p< 0.05) compared to PBS administration 
 
 
 

                                     Cytokine levels in lung lavage fluid (pg/ml) Immunization 

TNFα IL12 IFNγ  IL6 
 

IL10 
 

IL4 

PBS  68.0 ± 22.02 
 

392.6 ± 179.3 74.15 ± 7.38 81.5 ± 26.07 158.5 ± 32.46 15.66 ± 7.78 

LGG 
 

107.74 ±41.93 501.49 ± 111.15 
 

81.47 ± 32.49 
 
 

142.6 ± 15.64 182.8 ± 28.89 11.41 ±4.23 

LGG-GFP 158.48 ± 30.61 ♦ 
 
 

513.68 ±  142.88
 

105.89 ± 31.47 
 

137.5 ± 19.03 172.0 ± 17.43 11.62 ± 4.15 

LGG-IL2-GFP 186.05 ± 34.13 * 649.19 ± 71.13 177.87 ± 32.68 ** 189.21 ± 19.95 ♦ 177.3 ± 13.95 8.74 ± 5.88 

    Table 3.5 . Cytokine levels in fluid from lung lavage on the 35 th day after nasal immunization 
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3.4.2.7. Phenotyping of cells in CLN and NALT after intranasal immunization  

Single cell suspensions from the CLN and NALT were prepared from the mice on 

days 10, 24 and 35. Though the differences are small, the modified LGG 

immunization elicited significantly higher numbers of IgA+ B cells and CD8+ T 

cells in CLN. A Significant difference in IgA+ B cell numbers was only observed at 

day 35 in NALT with LGG-IL2-GFP imunization (Table 3.6). While LGG 

administration generally increased the number of CD4+ cells. 
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                 Table  3.6. Mononuclear cell subsets in CLN and NALT on the 35th day after immunization 
 
 
 
 
 
 
 
 
 

 
   
 
 

      
                      
 
 
 
                      Data represent mean absolute  number or  % of cells ± standard deviations  
                    * Statistically significant (p< 0.05) compared to PBS and LGG administration  
                     ♦ Statistically significant (p< 0.05) compared to PBS administration 

                                        CLN x106  cells NALT 
% of cells 

Immunization 

B220 IgA+ CD3+CD4+ CD3+CD8+ Mac+ B220 IgA+ 

PBS 

LGG 

LGG-GFP 

LGG-IL2-
GFP 

1.38 ± 0.13 

2.20 ± 0.14 

3.03± .26* 

3.53± .36* 

1.17 ±  0.11 

1.87 ±  0.12♦ 

2.00 ±  0.17♦ 

2.06 ±  0.21♦ 

1.61 ± 0.11 

2.14 ± 0.14 

2.59 ± 0.22* 

2.58 ± 0.26* 

1.00 ± 0.09 

1.88 ± 0.12♦ 

1.38 ± 0.12♦ 

0.91 ± 0.05 

13.6 ± 4.12 
 
22.6 ± 5.16 
 
40.0 ± 13.66 
 
56.3 ± 1.29* 
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3.4.2.8. Histopathological analyses and immunohistochemical staining of 

the   lungs from immunized mice 

         As the lung are not the usual site for LGG, it was necessary to determine if nasal 

immunization with LGG would lead to tissue damage. Lung tissues were 

examined for signs of immune cell accumulation and fibrosis. At the 35th day 

(Fig 3.19.a) there was increased cellular infiltration in the peribronchiolar 

regions of the lung tissues, isolated from LGG, LGG-GFP and LGG- IL2-GFP 

immunized mice compared to PBS immunized mice. However the cellular 

infiltrates were reduced by day 80 (Fig 3.19.b). Immunohistochemical staining 

of lungs from immunized mice showed the nasal immunization of wild type 

LGG or modified LGG induced IgA secretion from B cells (Figure. 3.19.c). 
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             Figure 3.19. Histopathological analyses and immunohistochemical 

staining of IgA secreting B cells in murine lung tissue. 
            On days 35 and 80, lungs were harvested from immunized mice and fixed in 

10% formalin. The paraffin embedded tissue sections were H & E stained and 
evaluated for cellular infiltration or inflammatory changes (boxed region). 
Tissue sections of the mice immunized with PBS , LGG , LGG-GFP  and  
LGG-IL2-GFP  which were harvested on the 35th  (a) and 80th  (b) days. On 
80th day lungs from mice immunized with PBS or LGG or LGG-GFP  or 
LGG-IL2-GFP  were cryopreserved and 5-10µm size frozen sections were 
stained with rhodamine labeled anti mouse IgA and FITC labeled anti mouse 
B220 antibodies followed by counter staining with DAPI. Sections were 
examined under confocal microscopy (c). Yellow fluorescent B220+ IgA+ 
cells were easily distinguished from red fluorescent IgA+ or green fluorescent 
B220+ cells.  ( magnification 2 x 20)   
 

 
 

PBS 

LGG 

LGG - 
GFP 

LGG- 
IL2-GFP 

a) b) c)
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3.4.2.9. Analysis of mouse inflammatory cytokines and receptors with 

microarray in lungs of immunized mice  

One lung was harvested from each group at the 35th day  post primary 

immunization to  study the mRNA profile of inflammatory cytokines, chemokines 

and their receptors. At 35 the day Ccl17,Ccl2, Ccl25, Ccl6, Ccr2, Fcgr1, Cxcl5, 

Il10, Il16, Il1r1, Il20, Il2rg, and Il5ra genes were differentially expressed in the 

lungs of the mice immunized with PBS or LGG or LGG-GFP or LGG-IL2-GFP 

(figure 3.20 and Table 3.7).  

        Control(PBS)                  LGG                   LGG-GFP             LGG-IL2- GFP 

           
    

                Figure 3.20 . X - Ray images of cRNA array – at 35th day-   Gene expression   
profiling of the mouse lung harvested at 35th day of post primary immunization 
with PBS or LGG or LGG-GFP or LGG-IL2-GFP.  
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Table  3.7. List of the genes expression upregulated on oligo array. 

 

Fold increase on oligoarray at 35th day of 

post primary immunization 

 

 

 

 

Symbol 

LGG / 

control 

LGG-GFP/  

control  

LGG-IL2-

GFP / control 

NM_011332 

NM_011333 

NM_009138 

NM_009139  

NM_009915 

NM_010186   

NM_009141 

NM_010548 

NM_010551 

NM_008362 

NM_021380 

NM_013563 

NM_008370 

 

Ccl17 

Ccl2 

Ccl25 

Ccl6 

Ccr2 

Fcgr1 

Cxcl5 

Il10 

Il16 

Il1r1 

Il20 

Il2rg 

Il5ra 

 

 

6.03 

0.28 

28.06 

19.27 

1.26 

8.83 

12.22 

75.57 

0.11 

10.05 

11.74 

6.03 

46.19 

 

6.78 

0.238 

66.64 

13.26 

4.04 

2.24 

44.09 

56.41 

0.426 

15.78 

7.62 

7.23 

28.27 

7.89 

5.09 

82.27 

50.09 

6.21 

9.39 

21.40 

20.81 

4.84 

20.03 

11.73 

11.73 

61.05 

  Ccl25, Ccr2, Fcgr1 and Il16 (bold and underlined) up regulation were confirmed with 
PCR. Apart from the genes screened in oligo array, IP-10 and CD8a genes were also 
analyzed with PCR.  
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At the 35th day post primary immunization IL16, CCR2, IP10, CD8a and 

CCL25 mRNA transcripts were significantly increased after LGG-IL2-

GFP immunization. IL16 expression in LGG-IL2-GFP immunized mice 

lung was statistically significant with PBS immunization (Table 3.8). 

CCR2, IP10, CD8a or CCL25 expression in LGG-IL2-GFP immunized 

mice lung was statistically significant from PBS, LGG, LGG-GFP or PBS, 

LGG immunization respectively ( Figure 3.21)   

 
 
 
                            Rps27a 

        IL16                   
        CCR2                                                  
      CCL25                                                      
       FcgR1                                        
       CD8 
       IP10 
        
                PBS         LGG-IL2-GFP        LGG           LGG-GFP 
 
 
Figure 3.21.  Gene expression changes induced by the recombinant or 
wild type LGG in lung.  
To confirm the array data cDNA was synthesized from total RNA isolated 
from the lungs of PBS (n = 4), LGG (n = 4), LGG-GFP (n = 4) and LGG-
IL2-GFP (n = 4) immunized mice on the 35th day post primary 
immunization. PCR was performed to confirm and identify gene 
expression changes. The following genes were found to be differentially 
expressed: IL16, CCR2, CCL25, IP-10, CD8a and FcgR1.  
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Table  3.8. Relative expression of chemokine genes analyzed by semi-
quantitative PCR 

 

 
Data expressed is relative to Rps27a; ‘-‘ indicates not detectable. Data is 
presented as mean ± SD. * denotes statistically significant with PBS, ** denotes 
statistically significant with PBS and LGG and *** denotes statistically 
significant with PBS, LGG and LGG-GFP. P  value <  0.05. 
Gene expression was normalised with Rps27a levels. The PCR product band 
intensities were quantified with SynGene GeneTools analysis software. The 
values of the mRNA transcripts were normalized against Rps27a. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                          Treatment Gene 

PBS LGG LGG-GFP LGG-IL2-GFP 

IL16 

CCR2 

FcgR1 

CCL25 

IP10 

CD8a 

 

0.292 ± 0.280 

- 

- 

0.054 ± 0.064 

0.085 ± 0.026 

- 

0.656 ± 0.494 

- 

- 

0.061 ± 0.013 

0.279 ± 0.029 

- 

0.808 ± 0.244 

0.014 ± 0.007 

- 

0.162 ± 0.093 

0.166 ± 0.042 

0.005 ± 0.009 

1.144 ± 0.2 * 

0.156 ± 0.05*** 

0.309 ± 0.36 

0.427 ± 0.27** 

0.806 ± 0.16*** 

0.161 ± 0.12*** 



                                          111

3.4.2.10. Induction of GFP specific cellular immune response by nasal 

immunization 

Antigen specific cellular immune was analyzed by ex vivo ELISPOT assays for 

IFNγ secreting CD4+ or CD8+ T cells on splenocytes isolated on day 80 or 35 

respectively. Increased IFNγ secreting CD4+ (Figure 3.22.a) and CD8+ T cells 

(Figure 3.22.b) were seen after modified LGG immunization (p <0.05). LGG-

GFP or LGG-IL2-GFP immunization generated about 314 ± 129 or 401 ± 109 

GFP specific CD4+T cells respectively. LGG-IL2-GFP immunization generated 

significantly higher GFP specific CD8+ T cells (197 ± 27) than LGG-GFP (105 

± 23).  The cytotoxic activity of these cells against a GFP expressing cancer cell 

line, MB49-GFP was examined. The CTL activity in splenocytes isolated from 

mice immunized with LGG-IL2-GFP was about 2 fold greater than in those 

immunized with LGG-GFP, which was consistent with the Elispot data (Fig 

3.22.c). 
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         a)                                                          b ) 

 

                                                                                                                                                                      

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.22. IFN- ELISPOT for the analysis of GFP specific CD4+ or CD8+ 
T cells and CTL assay 
a) shows GFP specific CD4+T cell responses on day 80. PBS immunized mice 
splenocytes treated with mitomycin–C cultured alone (column 1); cultured with 
CD4+ T cells enriched from-  PBS immunized mice without (column 2) or with 
GFP (column 6); LGG immunized mice without (column 3)  or with GFP 
(column 7);  LGG-GFP immunized mice without (column 4) or with GFP 
(column 8) and LGG-IL2-GFP immunized mice without (column 5) or with 
GFP (column 9). B) shows GFP specific CD8+T cell responses on day 35. The 
legend is as for CD4+ T cell responses above except that whole splenocytes 
harvested from immunized mice were co-cultured with mitomycin-C treated 
splenocytes and GFP specific CTL peptide .  
C) ) GFP specific CTL responses of splenocytes from mice immunized with 
modified or wild type LGG. Splenocytes (effector cells) from immunized mice 
were pooled 7 days after the last booster administration (day 35) and co-cultured 
with mitomycin C treated MB49-GFP cells and the GFP peptide for 5 days. The 
MB49-GFP cells (target cells) were mixed with effector cells at various E:T 
ratios (1:1, 10:1,and 30:1). Specific lysis was determined by quantitative 
measurements of LDH. * indicates statistical significance from PBS and LGG 
immunized mice and ** indicates statistical significance from PBS, LGG and 
LGG-GFP (p < 0.05). Data are represented as the mean ± SEM in each group. 
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Summary III 

Intranasal immunization with both modified LGG induced GFP specific serum 

IgG, IgA, IgM and SIgA. The fusion of IL2 to GFP resulted in significantly 

increased GFP specific serum IgA and IgG and SIgA titers compared to LGG-

GFP immunization. Lactobacillus delivery of GFP (approximately 0.1 ng) 

resulted in approximately 2.0 g/ml of GFP specific IgG antibodies being 

produced from LGG-GFP, while co-delivery of IL2 and GFP resulted in more 

antibody production namely 3.2 g/ml of GFP specific antibodies.  Our data 

indicates that a low level of secreted IL2 (approximately 20 pg) is sufficient to 

produce significant adjuvant effects (a 1.6 fold increase in antibody production).  

Histopathological examination of lung tissues harvested on 35th and 80th day 

showed no abnormal lung damage happened in nasal immunization of live LGG 

though increased cellular infiltration was observed on 35th day which was 

reduced on 80th day. Histopathological examination may be required to be 

performed 100- 180 days  post primary immunization to rule out the persistence 

of cellular infiltration and chronic lung inflammation. Immunohistochemical 

staining of the lung tissue showed IgA producing B cells at 80th day of post 

primary immunization. Nasal delivery of LGG-IL2-GFP  induced the expression 

of chemotactic factors Interleukin-16 (chemotactic factor for CD4+ T cells), 

chemokine (C-C motif) ligand 25 (CCL25 - chemotactic factor for thymocytes, 

macrophages and DC) and Interferon γ  inducible protein ( IP10- 

chemoattractant for moncytes/macrophages, T cells, NK cells and DC) in lung. 

Moreover, the expression of chemokine (C-C motif) receptor 2 (CCR2) which is 

a receptor for monocyte chemoattractant protein-1, a chemokine which 
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specifically mediates monocyte chemotaxis and CD8a were also upregulated in 

LGG-IL2-GFP imunization. Increased CD8a mRNA expression indicates 

increased recruitment of CD8+ T cells to lungs.   There were increased GFP 

specific CD8 T cells in the recall assay which was significantly increased by 

IL2- GFP nasal delivery.   

 
3.5. Lactobacilli secreting IL15/IL2/IL7 and antigen stimulate bone marrow 

derived dendritic cells and increase antigen specific cytotoxic T 

lymphocytes responses  

The immunomodulatory potential of lactobacilli and its ability as a vaccine 

delivery vehicle are well accepted (Poo et al. 2006; Zegers et al. 1999) in 

infection models.  In a few cancer models, where the cancer expresses a viral 

protein or is induced by bacterial infection Lactobacilli vaccines have been 

shown to be efficacious (Corthesy et al. 2005;  Ho et al. 2005;  Poo et al.  2006). 

One main problem in cancer is the identification of specific antigens. One of the 

best studied examples of a cancer marker is the Prostate specific antigen (PSA) 

which is elevated in prostate cancer. 

Cytokines can potentiate the immune response elicited by vaccines but if 

they promote cytotoxic T lymphocyte (CTL) production as do members of γc 

cytokine family (IL7, IL15, IL21 and IL2), they may be beneficial for tumour 

immunotherapy (Fry et al.  2002;  Ma et al. 2003;  Mueller et al. 2008;  

Pulendran et al.   2004).  IL-2 has demonstrated activity against renal cell, 

melanoma, lymphoma, and leukemia (Niethammer et al. 2001;  Foa et al. 1994). 

IL15 is pivotal in the development and maintenance of antigen specific CD8+ T 

cells and co-injection of IL15 gene with a viral DNA vaccine increased CTL 

responses (Kim et al. 1998).  
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Co-administration of IL15 is known to induce stronger cellular and 

humoral immune responses systemically and mucosally (Stevceva et al. 2006). 

IL7 has a potential role in modulating peripheral T cell expansion and 

proliferation in response to high and low affinity antigens (Fry et al. 2002). IL21 

is more recently identified and in a number of murine tumor models genetically 

modified to secrete IL21 there was tumor regression or rejection but this 

response has been linked to NK cell activation rather than T cells (Di Carlo et al. 

2004; Ma et al. 2003).  Therefore this study was limited to IL2, IL15 and IL7 to 

determine their vaccine adjuvant effect using LGG as the delivery vehicle and 

PSA as the tumor marker. 

 

   3.5.1. Increased antigen production with the pLP500slpA promoter plasmid 

LGG transformed with the pLP500 plasmid with the ldh promoter of L. casei 

upstream of a IL-2-GFP gene fusion produces approximately 1ng of antigen/1.3 

x 109 CFU/ml in total and about 1/5th  of this is secreted. To improve antigen 

production the ldh promoter (523bp) was replaced with the slpA promoter from 

L. acidophilus S-layer protein (McCracken et al. 2000; Savijoki et al. 1997) and 

its secretory sequence (397 bp). Fig 3.23. shows the slpA promoter region and 

signal sequence that were amplified and cloned. The cytokine antigen constructs 
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were produced using this new plasmid as described in Table 2.1. 

 

 

 
After transformation, LGG Ery+ positive colonies were selected and their 

growth curves established. Culture supernatants from LGG-S-PSA, LGG-S-IL2-

PSA, LGG-S-IL15-PSA and LGG-S-IL7-PSA were harvested at the late 

exponential phase (approximately after 20-22 hours of culture) and analyzed for 

PSA or cytokine secretion. The antigen was 100% secreted and the PSA or 

cytokine-PSA fusion proteins were in the range of 16 - 19 ng/2 x 109 CFU/ml 

which was approximately 10 fold higher than that produced with ldh promoter. 

The biological activity of IL2-PSA and IL15-PSA fusion proteins were 

measured using a proliferation assay with the IL2 dependent mouse cell line 

CTLL-2. The biological activity of IL2 or IL15 fused to PSA was not different 

from IL2 or IL15 secreted without PSA and identical to the activity of the 

Figure  3.23. Nucleotide sequence of the S-layer protein A promoter 
region of Lactobacillus acidophilus that was amplified and cloned into 
pLP500.  Oligonucleotides slpA FP and slpA RP were used to amplify the 
promoter region. The location of the -35 and -10 signal, ribosome binding site 
and signal peptide sequence are indicated on the sequence.  
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human IL2 standard. 

 

3.5.2. Both recombinant LGG and control LGG efficiently mature DCs 

 Previous studies have shown that Lactobacilli can induce the up regulation of 

co-stimulatory molecules in human and mice DCs (Christensen et al. 2002; 

Veckman et al. 2004). To determine if this response is modulated by the 

cytokines, the BMDC were co-cultured with 100 fold more LGG secreting 

cytokines and antigen and analyzed by flow cytometry (Figure 3.24). All LGG 

treatment up regulated the expression of CD86, CD80, CD83, CD40 and MHC 

class II (Table 3.9). LGG-S-IL15-PSA induced statistically significant up 

regulation of CD80, CD86 and CD40 compared to DC only and DC treated with 

LGG-S, LGG-S-IL2-PSA and LGG–S-PSA (Table 3.9).  
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Figure 3.24.  Lactobacilli induce the maturation of bone marrow derived 
dendritic cells (BMDC). BMDC were incubated with LGG-S or LGG-S-
IL15-PSA at a bacteria to BMDC ratio of 100:1 overnight and stained with 
antibodies to co-stimulatory molecules. Flow cytometry histograms are shown 
for untreated BMDC or BMDC treated with LGG-S or LGG-S-IL15-PSA. The 
numbers indicate the percentage of cells adjusted by subtraction of the 
fluorescence by control matched isotype antibodies. The flow cytometry 
histograms are representative of two independent experiments.  
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      Table  3.9. Expression of maturation markers on dendritic cells after recombinant LGG treatment. 

 

 

 

 

 

 

 

                                 % surface expression of co stimulatory receptors Treatment 

CD86 CD80 CD83 CD40 MHC II 

BMDC only 

DC+LGG (SlpA) 

DC+ LGG (IL2-PSA) 

DC+LGG (IL15-PSA) 

DC+LGG (IL7-PSA) 

DC+LGG (PSA)  

16.1 ± 1.29 

52.5 ± 2.93 

60.4 ± 6.03 

61.4 ± 6.17 

58.1 ± 2.59 

61.8 ± 3.39 

 

16.5 ±1.98 

32.4 ± 2.86 

29.1 ± 3.54 

39.3 ± 3.22* 

38.3 ± 3.61* 

35.8 ± 2.26 

24.7 ± 2.09 

38.7 ± 3.28 

38.7 ± 3.11 

38.0 ± 1.76 

38.5 ± 2.42 

37.5 ± 1.81 

7.0 ± 0.94 

41.6 ± 2.92 

45.4 ± 3.81 

52.1 ± 2.00** 

46.5 ± 2.03 

47.8 ± 2.02 

53.8 ± 1.71 

67.4 ± 2.34 

67.3 ± 0.9 

68.2 ± 1.77 

68.4 ± 1.20 

68.6 ± 1.37 

* Statistically significant (p<0.05) compared to DC only and DC+LGG (IL2-PSA).  
** Statistically significant compared to DC only, DC+ LGG(SlpA) and DC+LGG(IL2-PSA). 

* Statistically significant (p <  0.05) compared to DC only and DC +  LGG (IL2-PSA). ** Statistically significant compared to DC only,   
DC +  LGG(SlpA) and DC + LGG(IL2-PSA). 
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3.5.3. LGG–S-IL15-PSA induces more IL12p70 production by BMDCs  

 DCs are known to secrete IL12 when cultured with Lactobacillus species 

(Mohamadzadeh et al. 2005). We analyzed the effect of the cytokines on the 

induction of IL12p70 (bioactive IL12) by BMDC. Figure 3.25.a, shows the level 

of IL12p70 produced during BMDC-bacteria co-culture. All the cytokine-PSA 

secreting LGG induced statistically significant IL12 production compared to 

control LGG (LGG-S) or LGG-S-PSA. IL15-PSA secreting LGG induced a 

statistically significant increase in IL12 (about 670 pg/ml) production compared 

with IL2 or IL7-PSA secreting LGG. However, there was no difference in the 

levels of TNFα produced after stimulation of BMDCs by any of the modified 

LGG as seen in Figure 3.25.b. IL15 and IL2-PSA secreting LGG suppressed IL10 

secretion by BMDC and it was statistically significant with IL10 induced by 

control LGG or IL7-PSA or PSA secreting LGG (figure 3.25.c). 
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Figure 3.25. Induction of IL12p70, TNFα and IL10 production by BMDCs 
treated with recombinant LGG.  BMDCs were treated with recombinant LGG 
overnight and analyzed for IL10, IL12p70 and  TNFα  by ELISA. * denotes 
statistical significance from DC, DC+ LGG-S and DC+ LGG-S-IL7-PSA. *♦ 
denotes statistical significance from DC, DC+ LGG-S, DC+ LGG-S-IL7-PSA 
and LGG-S-PSA.  ** denotes statistical significance from DC, DC+ LGG-S and  
LGG-S-PSA. *** denotes statistical significance from DC, DC+ LGG-S, DC + 
LGG-S-IL2-PSA, DC+LGG-S-IL7-PSA and LGG-S-PSA. A p < 0.05 is 
statistically significant. Data are represented as mean ± SEM for triplicates of 
two independent experiments.  
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3.5.4. Induction of T cell proliferation and activation by BMDC mediated 

antigen presentation 

DC induce the adaptive immune response by priming T cells to proliferate and 

secrete IL2 or IFNγ.  Priming of T cells depends on antigen presentation by MHC 

I or II complexes on antigen presenting cells. BMDC were incubated overnight 

with either cytokine–PSA secreting or PSA secreting or control LGG. External 

bacteria were killed and cleared and the BMDC were incubated with CFSE 

labeled or unlabeled naïve T cells for 5 days for antigen priming. T cell 

proliferation was observed in co-culture with DCs treated with LGG-S or LGG-S-

IL15-PSA compared to untreated DC, Figure 3.26. a - d.  
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Figure 3.26. Induction of T cell proliferation by DC stimulated with 
lactobacilli. BMDC were treated with LGG-S or LGG-S-IL15-PSA 
overnight at a bacteria to BMDC ratio of 100:1 and then the bacteria were 
killed by gentamycin treatment. The DCs were then co-cultured with CFSE 
labelled naive T cells at a stimulator to responder ratio of 1:100 for 3 days. 
Proliferation of CD4+ or CD8+ T cells were analyzed by flowcytometer. For  
CD8+ T cells proliferation *** denotes statistically significant with 
1,2,3,4,6&7,** statistically significant with 1,2,3,4&7 and statistically 
significant with 1,2,3 &4. For CD4+ T cells proliferation ♦ denotes 
statistically significant  with 1,2,3,4 &7. 
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IL15-PSA secreting LGG induced a high allogeneic CD8+ T cell proliferation 

which was statistically significant with LGG or PSA secreting LGG or IL2/IL7-

PSA secreting LGG treated groups. Though the CD8+ T cells co-cultured with 

LGG-PSA and LGG-IL15 treated DC also demonstrated a high proliferation rate 

compared to other treatment groups, it was not as high as the proliferation 

observed with LGG-IL15-PSA treatment which highlighted the enhanced antigen 

presentation obtained with fusion construct (Figure 3.26).  

LGG itself stimulated DC to activate T cell IL-2 production and this was 

increased in the presence of antigen and was further enhanced by the presence of 

IL15. LGG-S-IL15-PSA treated DC induced T cells to secrete a higher level of 

IL2 (p < 0.05) than LGG-S (Figure 3.27.a). All PSA/cytokine-PSA secreting LGG 

treated DC cultured with T cells elicited significant IFNγ production (p < 0.05) 

compared to LGG-S. IFN production induced by LGG-S-IL15-PSA was 

significantly more than that produced after stimulation with LGG-S-IL2-PSA or 

LGG-S-PSA (figure 3.27.b). 
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Figure 3.27. LGG itself stimulated DC to activate T cell IL-2 production and 
this was increased in the presence of antigen and was further enhanced by 
the presence of IL15. LGG-S-IL15-PSA treated DC induced T cells to secrete a 
higher level of IL2 (p < 0.05) than LGG-S (a). All PSA/cytokine-PSA secreting 
LGG treated DC cultured with T cells elicited significant IFNγ production (p < 
0.05) compared to LGG-S. IFN production induced by LGG-S-IL15-PSA was 
significantly more than that produced after stimulation with LGG-S-IL2-PSA or 
LGG-S-PSA (b).  

* denotes statistical significance (p < 0.05) from untreated DC-T co-culture and 
** denotes statistical significance from untreated DC-T and LGG -S treated DC-
T cells co-culture. Data are represented as mean ± SEM of experiments
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3.5.5. Antigen specific cytotoxicity assay 

  To determine the functional activity of T cells the T cells were harvested after 5 

days of co-culture and incubated with the target tumor cells MB49-PSA or control 

MB49 cells. The LDH activity was measured in the supernatant after 5 hours 

incubation. DC primed T cells (with or without bacterial stimulation) showed a 

non-specific cytotoxic effect on control MB49 (about 30 - 40%), figure 3.28 (a)  T 

cells primed with DC that had been stimulated with PSA or cytokine–PSA 

secreting bacteria demonstrated a higher cytotoxic effect on MB49-PSA cells 

(about 50 - 70%), figure 3.28 (b). LGG-S-IL15-PSA treated DC primed T cells to 

kill significantly more MB49-PSA cells than LGG-S-IL2-PSA (p < 0.05) as seen 

in figure.3.28 (b). To determine if the fusion protein of IL15and PSA was as 

effective as IL15 and PSA secreted singly, LGG expressing each gene singly were 

also produce. Interestingly, LGG-S-IL15-PSA (fusion protein) treated DC primed 

T cells showed a higher cytotoxic effect on MB-49-PSA or MB-49 than LGG-S-

IL15 + LGG-S-PSA treated DC primed T cells as seen in figure 3.28.(c). 
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LGG secreting 

Figure 3.28. Recombinant LGG stimulated DC efficiently prime naïve T cells and   
generate antigen specific CD8+ T cells. 
 
a)  and b) T cell mediated cytotoxicity on MB49 or PSA secreting MB49  target cells 
respectively. Target cells were added to 5 days DC-T cell co-cultures and LDH activity 
was measured in the supernatant after 5 hours of incubation. % of cytotoxicity was 
calculated from LDH activity. c) LGG-S-IL15-PSA or LGG-S-IL15+LGG-S-PSA 
treated DC primed T cell mediated cytotoxicity on target cells MB49PSA.  
DC stimulated overnight with LGG-S-IL15-PSA or LGG-S-IL15+LGG-S-PSA were 
co-cultured with naïve T cells for 5 days and target cells MB49 PSA (clear) or MB 49 
(cross striped) were added. LDH activity was measured in the supernatant after 5 hours 
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Summary IV 
 
Improved antigen production was seen in LGG using the slpA promoter and 

secretory signal and that cytokines especially IL15 enhanced antigen presentation 

and activation of T cells. The cytotoxic T cells produced by DCs primed with 

LGG secreting PSA or cytokine PSA fusion proteins specifically recognized 

tumour cells secreting PSA. 

All the antigens produced were secreted unlike LGG transformed with the 

PLP500 plasmid with the ldh promoter, where most of the antigen produced 

remained within the bacteria.  IL15-PSA or IL2–PSA secreting LGG reduced 

IL10 production by DC, IL7 did not, but all three resulted in increased IL12p70 

production. However, the T cell response did not correlate with differences in 

IL12 or IL10 production. 

LGG-S-IL15-PSA treated DC showed high IFNγ production and CTL 

response on target cells indicating efficient antigen presentation to T cells. The 

increased antigen specific cytotoxicity rendered by the T cells primed with DC 

that had been stimulated with IL15-PSA secreting LGG was statistically 

significant from combined stimulation with IL15 or PSA secreting LGG. Thus our 

data indicate that LGG as a promising antigen delivery vehicle and that IL15 is a 

good vaccine adjuvant especially when administered as fusion protein with 

antigen. It also indicates that formation of the fusion protein induces a better 

response.  

                             *Denotes statistical significance (p<0.05) from untreated DC-T and LGG-S treated 
DC-T cells co-culture, *♦ denotes statistical significance from DC cultured with T 
cells or DC cultured with T cells after stimulation with LGG-S, LGG-S-IL2-PSA 
and LGG-S-PSA. ♦ denotes statistical significance from DC cultured with T cells 
or DC cultured with T cells after stimulation with LGG-S and LGG-S-PSA. Data 
are represented as mean ± SEM of experiments performed independently twice in 
triplicates.  
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3.6. Cross talk between LGG treated neutrophils and dendritic cells and its 

effect on DC activation and antigen presentation  

After intranasal immunization we observed neutrophils recruitment to the lungs. 

Neutrophils are effective phagocytic scavengers and the first line of defense 

against invading microbes. During infections, polymorphonuclear leukocytes are 

the first cell type to arrive to the infection site and upon encountering bacteria, 

neutrophils release the generation of reactive oxygen intermediates, preformed 

lytic enzymes and inflammatory mediators to kill the bacteria. Infected neutrophils 

are programmed to die by apoptosis and subsequently are removed by 

macrophages or dendritic cells which are also chemoattracted to the infection site. 

At the site of inflammation activated neutrophils and DCs are shown to interact 

positively through Mac-1/DC-SIGN molecules expressed by neutrophils and 

dendritic cells respectively.  

Even after the clearance of the bacteria at the infection site, live or apoptotic 

neutrophils could transfer the antigen to DC allowing the latter to stimulate the T 

cells to secrete IL2 or IFNγ.  In intranasal immunization, neutrophils would 

internalize the recombinant LGG and transfer the antigen to DC to render the 

antigen specific immune response. In this study, we analyzed the cross talk 

between LGG treated neutrophils and dendritic cells and its effect on DC 

activation and antigen presentation to T cells. 

 

3.6.1. IL10 and TNFα predominantly produced in LGG stimulated 

neutrophils culture. 

Bone marrow derived neutrophils were treated with IL15-PSA or PSA 

secreting LGG or LGG-S for 18hours. Culture supernatants were analyzed for 
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IL12p70 or IL10 or TNFα. Lactobacilli stimulated neutrophils produced 

bioactive IL12, IL10 and TNFα (Table  3.10). 

 

Table 3.10. Cytokines produced from neutrophils on LGG treatment for 18 

hours 

                   level of cytokines (pg/ml) Treatment 
IL10 IL12 p70 TNFα 

Neutrophils only 
 
Neutrophils + LGG-S 
 
Neutrophils + LGG-S-
IL15-PSA 
Neutrophils + LGG-S-
PSA 

0 
 
1632.8 ± 129.38* 
 
1601.4 ± 133.48 
 
1401.4 ± 61.32 
 
 

19.4 ± 13.66 
 
117.3 ± 5.37 
 
131.0 ± 20.36 
 
123.5 ± 24.56 

14.4 ± 4.57 
 
1314.0 ± 66.49 
 
1357.0 ± 99.27 
 
1391.0 ± 89.85 

 

Data represent mean ± standard deviations  

* Statistically significant (p < 0.05) compared to neutrophils treated with LGG-

S-PSA or neutrophils only. 

 

3.6.2. Induction of T cell activation by bone marrow derived neutrophil 

(BMN)      mediated antigen presentation  

Neutrophils induce the adaptive immune response by activating T cells to secrete 

IL2 or IFNγ.  Unlike the DC, neutrophils stimulated with recombinant 

lactobacilli did not show a higher level of MHC II, rather they showed a higher 

level of MHC I expression. MHC I expression on unstimulated BMN was about 

37% whereas all recombinant LGG stimulated BMN showed the expression in 

the range of 64 - 67%. BMN were incubated for 18 hours with either IL15–PSA 

secreting or PSA secreting LGG or control LGG. External bacteria were killed 

and cleared and the BMDC were incubated with allogeneic T cells for 2 days for 

activation. IL2 produced from LGG-S-IL15-PSA or LGG-S-PSA  treated 
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neutrophils induced T cells was not significantly different from LGG-S 

stimulated neutrophils – T cell co-culture as seen figure 3.29.a.  However LGG-

S-PSA or LGG-S-IL15-PSA treated neutrophils induced a higher level of IFNγ  

(p < 0.05) than LGG-S. IFN production induced by LGG-S-IL15-PSA was 

significantly more than that produced after stimulation with LGG-S-PSA (p < 

0.05)   as seen in figure 3.29.b. 

 

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.29.  LGG treated neutrophils induce T cells proliferation  
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Unstimulated neutrophils or overnight stimulated neutrophils with LGG-S or 
LGG-S-IL15-PSA or LGG-S-PSA were co-cultured with allogeneic T cells for 2 
days. After 2 days culture supernatants were harvested and analyzed for IL2 (a) 
or IFNγ (b). *denotes statistically significant and ʌ denotes statistical significance 
from unstimulated neutrophils or LGG-S treated neutrophils – T cells co-culture 
or LGG-S-PSA treated neutrophils-T cells co-culture. (p<0.05). Data are 
represented by the mean ± SEM in each group. Data are representative of three 
different experiments. 

 
3.6.3. Impact of LGG stimulated neutrophils on DC activation 

We investigated neutrophils-DC crosstalk in response to LGG. For the 

neutrophils treatment LGG-S and LGG-S-IL15-PSA were used. Neutrophils 

were stimulated with LGG-S or LGG-S-IL15-PSA for 2 hour. After extracellular 

bacteria were killed by gentamycin treatment and subsequent PBS wash, cells 

were incubated with BMDC for 16 hours. For control, neutrophils or BMDC 

were stimulated with rLGG for 2 hours and incubated for 18 hours in fresh media 

after gentamycin treatment and PBS wash. We analyzed whether LGG 

stimulated neutrophils could activate immature DC.  

Co-stimulatory molecules: CD86, CD80, CD83, CD40 and MHC II were 

significantly up regulated on DC in all LGG stimulated neutrophils-DC co-

culture as seen in Table 3.11. 
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Table 3.11. LGG treated neutrophils upregulate co-stimulatory molecules 

on  DC 

        % of co stimulatory molecules expression on DC 
 

 
Treatment 

 
CD86 

 
CD80 

 
CD83 

 
CD40 

 
MHC II 

Neut+DC 
only 
 
DC[ LGG-S] 
 
DC+Neut  
[LGG-S] 
 
DC+ Neut 
[LGG-PSA] 
 
DC+ Neut 
[LGG-IL15-
PSA] 
 

3.69 ± 3.2 
 
65.4 ± 1.2* 
 
73.9 ± 3.2* 
 
 
72.55 ± 0.9* 
 
 
76.91 ± 3.1* 
 

5.57 ± 2.1 
 
29.4± 3.1* 
 
33.3±2.1* 
 
 
35.6±1.2* 
 
 
35.7±2.9* 
 

11.64±2.8 
 
28.23±2.8*
 
28.57±3.1*
 
 
25.81±0.7*
 
 
28.99±3.1*
 

6.29±3.4 
 
57.4±1.9* 
 
55.8±2.4* 
 
 
61.21±4.1* 
 
 
61.51±4.2* 
 

40.3± 3.2 
 
68.2 ± 3.2* 
 
75.25±2.2* 
 
 
73.33±3.2* 
 
 
75.76±2.0* 
 

  
Data represent mean % of cells ± standard deviations  
* Statistically significant (p < 0.05) compared to unstimulated Neutrophils - DC co   
culture. 

 
 

3.6.4. LGG treated neutrophils differentially affect cytokine production by 

DC Direct interaction of LGG with BMDC or neutrophils produced  higher 

IL12p70 or IL10 respectively. LGG-S-IL15-PSA stimulation induced 

significantly higher level of IL12 than that produced by LGG-S.  However LGG 

stimulated neutrophils downregulate IL12p70 and increase IL10 production from 

BMDC in BMDC-neutrophils co-culture. This up regulated IL10 or 

downregulated IL12 production from BMDC induced by LGG stimulated 

neutrophils was significantly different from IL10 or IL12 produced from 

neutrophils or BMDC that were directly stimulated with LGG (figure 3.30. a&b).  
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TNFα was highly produced from DC or neutrophils upon LGG stimulation. 

LGG-S or LGG-S-IL15-PSA induced almost the same level of TNFα from DC 

in direct stimulation. But in indirect stimulation through neutrophils, TNFα 

production was enhanced or suppressed depending on whether LGG-IL15-PSA 

or LGG-S was used  as seen in figure 3.30.c.   

Unstimulated DC produced a high level of TGFβ by itself. Upon LGG 

stimulation, TGFβ production was significantly reduced from DC and 

interestingly, neutrophils could elevate TGFβ production when co cultured with 

DC. The level of TGFβ production from DC co-cultured with neutrophils which 

had been stimulated with LGG-S or LGG-S-IL15-PSA was significantly 

inhibited compared to DC co cultured with untreated neutrophils. (Figure 

3.30.d).  Moreover, TGFβ production from LGG-S or LGG-S-IL15-PSA treated 

neutrophils-DC co-culture was statistically significant from neutrophils or DC 

individually stimulated with LGG-S or LGG-S-IL15-PSA respectively. 
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Figure 3.30. Bioactive  IL12 
or  IL10 or TNFα and or 
TGFβ levels in LGG treated 
BMN or BMDC or LGG 
treated BMN-BMDC co 
culture . 
 
BMN  or BMDC were treated 
with LGG-S or LGG-S-IL15-
PSA  for 2 hours before the 
bacteria were killed and the 
treated BMN co cultured with 
BMDC overnight. Culture 
supernatants were harvested and 
analyzed for IL12p70 (a) or 
IL10 (b) or TNFα (c) and or 
TGFβ (d).  Data represents 
three separate experiments. 
Data are represented by the 
mean ± SEM in each group. 
* denotes statistical ignificance,  
^ denotes statistically ignificant 
with all groups. P value  < 0.05.    
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3.6.5. DC co-cultured with recombinant LGG treated neutrophils elicit T 

cells to produce anti-inflammatory cytokines 

We investigated whether the DC mediated T cell antigen presentation through 

neutrophils could be different from direct antigen presentation. In direct antigen 

presentation, DC mediated antigen presentation was more efficient than 

neutrophils mediated presentation with respect to IL2 or IFNγ production. 

However, LGG-S not LGG-S-IL15-PSA treated neutrophils mediated indirect 

antigen presentation in DC induces a significantly higher IL2, which was 

statistically significant from LGG-S treated DC mediated direct antigen 

presentation. But IFNγ from T cells in direct antigen presentation was not 

different from neutrophils mediated indirect antigen presentation  as seen in 

Figure 3.31. a&b.  

Direct DC mediated antigen presentation actually suppressed TGFβ production 

which is in contrast with enhanced TGF β production observed in neutrophils 

mediated antigen presentation. DC mediated antigen presentation to T cells after 

culture with neutrophils engenders an anti-inflammatory milieu which was 

represented by a significantly higher TGFβ and IL10, Figure 3.31 c & d. 
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Figure 3.31.  Cytokine production 
by neutrophils mediated direct or 
indirect antigen presentation 
through DC to allogeneic T cells. 
  
BMN or BMDC were treated with 
LGG-S or LGG-S- IL15-PSA  for 2 
hours and treated BMN were co-
cultured with BMDC overnight 
followed by addition of allogeneic 
T cells and incubated for 48 hours. 
Culture supernatants were 
harvested and analyzed for IL2 (a);   
IFNγ (b);  IL10(c)  and TGFβ (d).  
 
Data represents two separate 
experiments. Data are represented 
by the mean ± SEM in each group.  
 
*denotes statistically significant 
 (P < 0.05). 
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3.6.6. Study of antigen specific cytotoxic T cells generated by neutrophil 

indirect antigen presentation through DC 

The differential cytokine profile observed in neutrophil antigen presentation  

through DC may influence antigen specific T cell cytotoxicity. After bacteria 

treated neutrophils-DC co-culture, DCs were enriched using CD11c microbeads 

and co-cultured with naïve T cells for 5 days to generate PSA specific T cells. 

Then target tumour cells MB49-PSA or control MB49 were added to study the 

cytotoxic effect. PSA specific cytotoxicity was calculated based on the LDH 

released to the culture supernatant. LGG-IL15-PSA or LGG-PSA treated DC 

were able to generate a high number of antigen specific T cells as the % of 

cytotoxicity observed in DC mediated direct antigen presentation is higher (40.9 

± 0.78 or 31.0 ± 1.09)  compared to neutrophils mediated indirect DC antigen 

presentation (23.8 ± 1.77 or 21.7 ± 1.55). Another interesting feature, 2 hours 

LGG-IL15-PSA treated DC elicited a significant cytotoxic effect compared to 

LGG-PSA treated DC (Fig 3.32 a&b). 
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Figure 3.32.  Antigen specific cytotoxicity of the T cells generated by co-
culture with DC treated with recombinant LGG for 2 hours (a) or DC 
enriched from overnight culture of DC+ LGG treated neutrophils (b).   
Neutrophils or DC treated with LGG-S (striped) or LGG-IL15-PSA (shaded) or 
LGG-PSA (cross striped) or left untreated (clear) and used for DC co-culture 
followed by T cell presentation assay or T cells co-culture respectively. PSA 
secreting (MB49-PSA) or control mouse urothelial cancer cell line (MB49) was 
used as target cells. Data are represented by the mean ± SEM in each group. * 
Statistically significant (p < 0.05) compared to untreated or treatment with LGG-
S. ** Statistically significant compared to untreated or treatment with LGG-S or 
LGG-PSA. 

 

Summary V 

LGG treatment with neutrophils did produce bioactive IL12 and a high level of 

IL10 and TNFα.  Moreover, LGG treated neutrophils did not induce any of the 

co-stimulatory molecules or MHC II expression, but only showed elevated 

expression of the MHC I molecules. In antigen presentation even though 
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overnight stimulated LGG efficiently induced allogeneic T cells proliferation, 2 

hours stimulated neutrophils elicited 1.05 or 1.49 ng of IFNγ which are slightly 

higher than 0.70 or 1.11 ng produced in overnight stimulation with LGG-S or 

LGG-S-IL15-PSA treatment respectively.  Increased expression of co-

stimulatory molecules on DC in neutrophils-DC co-culture clearly showed 

bacteria treated neutrophils could deliver the maturation signals to immature 

DC. However, LGG treated neutrophils stimulate higher IL10 but not IL12 from 

DC. High IL10 along with increased production of TGFβ was observed in DC-

LGG treated neutrophils co-culture. However it did not affect the T cell 

presentation very much that was characterized by high IL2 and IFNγ which were 

almost the same level as the DC or much higher than neutrophils mediated direct 

antigen presentation. But the cytotoxic effect elicited by the T cells generated by 

co-culturing with recombinant LGG treated DC  was higher than that  with the 

DC that were co-cultured with recombinant LGG treated neutrophils.  
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3.7. Improvement of antigen production in LGG using different promoters  

Though high antigen production was not considered as a prerequisite for 

colonizing lactic acid bacteria in mucosal immunization, high antigen producing 

bacteria will enhance the antigen specific immune induction. Our initial 

experiment done with LGG transformed with pLP500-IL2-GFP plasmid which 

has lactate dehydrogenase promoter (ldh) promoter, expressed only about 1-2ng 

antigen. Later experiments done with the replacement of ldh with S-layer protein 

A (slpA) promoter in the plasmid increased the antigen expression to 20ng. 

However it was not as high as previously reported using lactobacillus brevis S-

layer signal (Savijoki et al. 1997).  Recombinant protein production normally 

depends on the strength of the promoter of the plasmid, plasmid copy number 

and the target strain. The knowledge of stable or strong promoters in LGG was 

limited since LGG’s complete genome sequence is not known and LGG is 

infrequently used as a vaccine vehicle to express foreign protein.  In this study 

two strategies were attempted to improve the protein expression as seen in 

Figure 3.33. 

1. To express the protein using a tandem promoter contruct. 

 An enhanced gene expression under two tandem promoters was reported in 

Lactococcus lactis ( Wei et al, 2002).  We cloned two promoters, ldh or  slpA 

separately or tandemly  by integrating the core ldh promoter without ribosome 

binding site with slpA promoter. 

2. To use the phosphoglycerate mutase (pgm) promoter of L. acidophilus. 

Promoter pgm was cloned with its secretory signal peptide sequence in pLP500 

plasmid after  ldh promoter was removed by restriction digestion. 
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Mouse IL2 cDNA was cloned in either plasmid and the efficiency of protein 

expression was analyzed. 

 

Figure 3.33. Construction of plasmids that secrete murine IL2 under 
different promoters. a) or b) are IL2 secreting plasmids under ldh or slpA 
promoters.  c) IL2 secreting plasmid under ldh-slpA tandem promoter. d) IL2 
secreting plasmid under putative promoter of pgm gene. S.S- secretory sequence 
of slpA promoter. TSS-transcription start site. RBS- ribosome binding site. S.S 
(prt)-  secretory sequence of proteinase gene.  
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3.7.1. Construction of pLP500ldh-slpAp  plasmid  

The core promoter region without ribosome binding site of ldh (figure.3.34) was 

amplified from L. caesei genomic DNA by PCR using the primers listed in 

Table. 2.2 and cloned in pLP500-slpAp  plasmid to give  pLP500ldh- slpAp .  

GAATTCAGAT CTACTAGAGG …….                                 ……. AAACAGGATTCACAA

GTCTT GCTGTAGTAA GGCTCGACGC CATTTTTTGA CAATGGCAAAATCATGAAA

AAGTCTATCAAATTTGTTTCA GGGAATTGATAATGTGTTAT ACTCAACGTG AAA

TGCAGTTTGCATGCACATAAA 

-35 signal -10 signal

Pldh FP

Pldh RP

 

3.7.2. Construction of pLP500pgmp plasmid 

A putative promoter of pgm gene of L. acidophilus (Figure 3.35) was amplified  

from genomic DNA by PCR using the primers listed in Table. 2.2 and cloned in 

to Pldh removed pLP500 plasmid to generate pLP500pgmp.  

 

Figure 3.34. Nucleotide sequence of the Lactobacillus caesei ldh core promoter 
without RBS. Oligonucleotides Pldh FP and Pldh RP were used to amplify the 
promoter region. The location of the -35 and -10 signal are indicated on the 
sequence.  
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TGCGACAAGTAATAAA….                     …..TCTTAGGAGA 

TATTTC ATG TCAAA… ….. GTTGACGTTAACC

TTTCAGAAAAAGGTGTTGAAGAAGCTAAGAAGGCT

Pgm FP

Pgm RP

RBS

Translation start

Pgm

MSKLV….

 

 

3.7.3. Estimation of IL2 expression or secretion in recombinant  LGG 

Murine IL2 cDNA was amplified from pBud- IL2 plasmid by PCR using the 

primers listed Table 2.1 and cloned in frame with secretory signal sequence of 

slpA gene and the recombinant plasmid was electroporated to LGG.  After 

transformation, LGG Ery+ positive colonies were selected and their growth 

curves established. Culture supernatant or bacterial pellet  from LGG-IL2 

(pLP500ldhp-IL2), LGG-IL2 (pLP500slpAp-IL2), and LGG-IL2 (pLP500pgmp-

IL2) were harvested after 20 -22 hrs of culture (late exponential phase) for IL2 

estimation and  LGG-IL2 (pLP500ldh-slpAp-IL2) were harvested at 24 – 26 hrs 

of culture since it grows  a bit slower than the other recombinant LGG. At this 

time the bacterial CFU was approximately 2 x 109 /ml. Protein was extracted 

from bacterial cell lysate and analyzed for IL2 along with the supernatants.  IL2 

was  100% secreted in LGG-IL2 (pLP500slpAp-IL2), LGG-IL2 (pLP500ldh-

slpAp-IL2) and there was only 20% of IL2 was secreted in LGG-IL2 

Figure 3.35. Nucleotide sequence of the putative pgm promoter of  Lactobacillus 
acidophilus with coding sequence for the first 39 amino acids.  Oligonucleotides 
pgmFP and pgm RP were used to amplify the desired region. The location of the 
RBS and putative translation start site are indicated on the sequence.  
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(pLP500ldhp-IL2). There was no IL2 secretion  observed in LGG-IL2 

(pLP500pgmp-IL2).  IL2 secretion from 2 x 109 CFU LGG was about 96 ng or 

20 ng under ldh-slpA tandem promoter or slpA promoter respectively and the 

total  production (intracellular and secretory) of IL-2 under ldh promoter was 

about 1.76 ng (Figure 3.36). Only 1/5 of the total protein produced was secreted 

which was about 407 pg/ml. 

 

                                   
 
 

 

 

 

 

 

 

 
Figure 3.36. IL2 secretion or expression from LGG.  
Bacterial lysate or culture supernatants were screened for mouse IL2 and 
bacterial CFU were also analyzed by quantitative plating.  
 

 
Summary VI 

slpA promoter of L. acidophilus was recognized well in LGG and produced a 

high IL2 production. ldh promoter, though it was a strong constitutive promoter 

in L. caesei it gave only 2 ng of IL2 production. So the efficiency of the 

recognition of the ldh promoter region may be host dependent. However when 

expressed as a tandem promoter with slpA, ldh produced a higher level of IL2 

which was almost 5 times more than that was produced by slpA promoter alone.  
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Putative promoter of L. acidophilus pgm gene was considered as a strong 

constitutive promoter and the heterologous protein expression  under this 

promoter in L. acidophilus was reported before. But we did not see IL2 secretion 

under this promoter in LGG. So the pgm promoter may not have been 

recognized in LGG.  
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LAB  based vaccines are being explored for prophylaxis or treatment for 

infections or allergic diseases. Because of their GRAS status, they can be used 

without any reservation as it is unlikely that they could induce any adverse 

effects except the possibility of septicaemia in severely immuno-compromised 

recipients (Schlegel et al. 1998). Among LAB, Lactococcus lactis and L. 

plantarum are widely studied as vaccine delivery vehicles. LGG has rarely been 

analyzed as a vaccine delivery vehicle. However, the beneficial effects of LGG 

in cancer has been studied in murine models (Seow et al. 2009; Lim et al. 2002). 

Its intrinsic anti-cancer effect; ability to adhere strongly and colonize mucosal 

sites makes this microbe an attractive candidate for evaluation as an antigen 

delivery vehicle.  

 

4.1. Oral or nasal co-delivery of IL-2 and an antigen, the green fluorescence 

protein, by Lactobacillus rhamnosus GG results in increased antigen 

specific humoral immune response with enhanced CD8 and CD4 T cells 

responses 

GFP has been expressed in bacteria to track microbes in the host after 

immunization.  In our study we used GFP as a model antigen and also to track 

the bacteria in the intestines or lung after oral and nasal immunization 

respectively. The oral route is the main infection site for many pathogens. Orally 

administered mucosal vaccines induce secretory IgA production (Mestecky et al. 

2008) and contain the infections at its initial stage by preventing the replication 

of pathogens. In this present  study, LGG secreting GFP or IL2-GFP as a fusion 

protein both were shown to be able to elicit both mucosal and systemic humoral 

responses after oral immunization in mice which was in agreement with a study 
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conducted by Steidler et al (1998). Oral immunization of LGG elicited a 

sustained mucosal IgA induction and ex vivo culture of the intestines also 

showed a higher IgA level 56 days after the last booster immunization. 

Intranasal immunization with both modified LGG induced GFP specific serum 

IgG, IgA, IgM and SIgA. While comparing the immune induction in oral and 

nasal immunization, nasal immunization produced a higher specific humoral or 

cellular immune response. The advantage of intranasal over oral route in 

mucosal immunization has been demonstrated with recombinant Lactococcus 

lactis (Cortes-Perez et al. 2007). Intransal immunization with lactococci 

displaying human papillomavirus type 16 (HPV-16) E7 antigen at its surface 

(LL-E7) and secreting IL12 induced a higher antigen specific IgG or IgA in 

serum or gastric lavage fluid (GAL) respectively and enhanced E7 antigen 

specific IFNγ secreting T cells in spleen more than observed in oral 

immunization. IL2 coexpression with GFP enhanced immune response after 

both in oral and nasal immunization. The fusion of IL2 to GFP resulted in 

significantly increased GFP specific serum IgA and IgG compared to LGG-GFP 

immunization in both oral and nasal immunization. Steidler et al (1998) have 

previously shown the adjuvant effects of cytokines produced by modified 

Lactococci were observed if they were secreted. Several studies also have been 

done to elucidate the significance of IL2 or IL4 in the induction of B cell 

proliferation and Ig secretion (Franz et al. 1991; Valle et al. 1991; Forman et al. 

1991). Addition of IL2 to cultures of B cells activated with anti Ig or CD4+ T 

cells results in enhancement of antibody secretion (Croft et al. 1991; Boom et al. 

1988; Abraham et al. 1992) and moreover in oral immunization, IL2 is known to 

stimulate CD3є- IL2Rα+ cells at the gut lamina propria to secrete IL5 which 
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helps B cells to produce IgA (Kuraoka et al. 2004). IL2 co-expression correlated 

with a significant accumulation of IgA+ B cells in NALT and CLN after nasal 

immunization. Clonal expansion of IgA+B cells could occur in the NALT prior 

to the dissemination of sensitized lymphocytes to mucosal and non mucosal 

lymphoid tissues (Kiyono et al. 2004; Hameleers et al. 1991; Tilney et al. 1971). 

Lactobacillus delivery of GFP (approximately 0.1 ng) resulted in approximately 

0.3 or 2.0 g/ml of GFP specific IgG antibodies being produced from LGG-

GFP, while co-delivery of IL2 and GFP resulted in more antibody production 

namely 0.52 or 3.2 g/ml of GFP specific antibodies after oral or nasal 

immunization respectively. In contrast delivery of 10g of purified Tat protein 

either alone or with macrophage-activating lipopeptide-2 [MALP-2] or Freund’s 

adjuvant produced 7, 68 and 173 g/ml respectively of specific IgG antibodies 

after nasal immunization (Borsutzky et al. 2003). This clearly highlights the 

efficacy of Lactobacilli and IL2 as adjuvants and our data indicates that a low 

level of secreted IL2 is sufficient to produce significant adjuvant effects namely 

a 1.73 fold (oral) and a 1.6 fold (nasal) increase in antibody production.  

The increased level of anti-LGG antibodies was not as great as the 

increase in GFP antibodies produced by the IL-2 fusion protein. LGG-IL2-GFP 

induced higher GFP specific serum IgG or sIgA over LGG specific antibodies 

than LGG-GFP in oral and nasal immunization. Though nasal immunization 

produced higher GFP specific IgG and IgA, IL2 mediated specific antibody 

induction (GFP specific Ab over LGG specific Ab) was higher in oral 

immunization. In oral immunization LGG-IL2-GFP elicited 2.5 or 1.33 fold 

higher specific IgG or IgA respectively compared to 1.33 or 1.2 folds induced 

after nasal immunization.  
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          Thus Lactobacilli with IL2 co-expression are excellent delivery vehicles 

as they do not evoke a strong antibody response against themselves. The CD8 

recall response was similar to that reported by Poo et al. (Poo et al.  2006). After 

oral immunization with 5 x 109 cfu L. casei expressing an E7 antigen on the 

surface they obtained about 500 plus IFN- secreting CD8+ T cells in contrast to 

the 187  31 GFP specific IFN- secreting T cells produced with 1 x 108cfu of 

LGG-IL2-GFP immunization in this study. The differences between our studies 

may be due to the strain difference (Shaw et al. 2000; Oliveira et al. 2006) and 

the mode of the delivery of the antigen i.e. surface bound rather than secreted or 

intracellular expression.  

             Microarray and semi quantitative PCR analyses showed significantly 

increased gene expression of CCR2, IP-10 and CD8a in mice lungs immunized 

with LGG-IL2-GFP.  Interferon inducible protein of 10 kDa (IP-10 or CXCL10) 

is known as one of the potent chemokines that regulate the migration of effector 

T lymphocytes. Vaccination with DC2.4 cell line transduced with IP-10 gene 

generated strong E7-specific CD8+ T cell immune responses and mediated a 

stronger anti-tumor effects against an E7- expressing murine tumor cell (TC-1) 

(Kang et al. 2009). Increased IP-10 expression in LGG-IL2-GFP immunized 

mice lung was observed with elevated expression of CD8a suggesting that IP-10 

would have probably induced the migration of CD8+ T cells. CCR2 expression 

was reported to be up-regulated following growth factor deprivation and its 

ligand CCL2 has a role in the proliferation of CD8+ functional T cells in 

response to IL-2 or to secondary antigenic challenges (Diaz-Guerra et al. 2007). 

However, the underlying mechanism for the concomitant expression of CCR2 

not CCL2 with CD8a expression in LGG-IL2-GFP immunized mice lung is not 
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clear. Nonethless gene expression analyses of the lung suggested LGG-IL2-GFP 

immunization preferentially increased CD8+T cells. 

                IL2 was initially described as a negative regulator  of the memory 

CD8+ T cell response since IL2 was reported to cause activation induced cell 

death (AICD) among T cells (Marks-Konczalik et al. 2000) and injection of 

anti-IL2 antibody decreased the numbers of memory phenotype CD8+ T cells in 

animals by affecting dividing cells (Ku et al. 2000). But, recent reports have 

demonstrated the positive role of IL2 on memory CD8+ T cells as injection of 

anti-IL2 antibody increases the biological activity of IL2 possibly through the 

formation of immune complexes (Boyman et al. 2006). In this study it was 

showed that IL2 secreted at low level (approximately 20 pg) is sufficient to 

produce significant CD8+ T cell response. The mechanism of enhanced CD8+ T 

cell response mediated by low level of IL2 was not clear. It is posible that fusion 

with GFP increases IL-2 survival in vivo (half-life normally about 10 mins) and 

this ensures that though very low levels are expressed it is sufficient to enhance 

the responses to the antigen (Melder et al. 2005; Smith et al. 2006).  Another 

possibility is that IL2 physical linkage to antigen may have led to an enhanced 

MHC- class I presentation of antigen as observed for the E7-IL2 DNA vaccine 

(Lin et al. 2007) which elicited an enhanced CD8+ T cell immune response. 

Hence, it is therefore postulated that lactobacilli stimulation through TLR2 on T 

cells may further enhance the T cell response by IL2 linkage since TLR2 

induced IFNγ production was enhanced in the presence of IL2 (Imanishi et al. 

2007). In the experiments conducted in the present study, culturable LGG were 

isolated from MLN or NALT in large numbers 24hrs after oral or nasal 

immunization respectively. Viable IL2-GFP secreting LGG might engage TLR2 
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on T cells at MLN or NALT and act in synergy with IL2 (IL2-GFP) to modulate 

the IFNγ secretion capacity of T cells (Cottalorda et al. 2009).  More studies will 

need to be carried out to determine the detailed mechanism that causes the 

improved CD8+ T cell response. 

The M cells located in the FAE are believed to be a route for pathogen 

invasion into the circulation and for presentation of antigens to the immune 

system (Neutra et al. 1999). The adherence of lactobacilli to FAE was observed 

in a previous study (Edelman et al. 2002) and is in line with earlier report of 

association of certain lactobacilli with Peyer's patches of the mouse (Plant et al. 

2001). However the possible interaction of lactobacillus with M cells has not 

been reported till now.  In  this study, it was demonstrated for the first time the 

M cells mediated LGG uptake in intestinal villus. After being transported 

through M cells, bacteria are engulfed by DC or macrophages in the sub-

epithelial dome (SED) region underlying the FAE and transported to MLN 

(Ruedl et al. 1996). Macpherson et al (2004) reported after oral administration of 

109 Enterobacter cloacae, 1000 or 800 CFU bacteria were recovered from MLN 

at 24 or 48hrs respectively and no bacteria were recovered from splenocytes. In 

agreement with their observation, there was a high number of live LGG were 

isolated from MLN in this current study although there were also many live 

LGG (178 ± 41) isolated from spleen after 24hrs of immunization. However the 

number of bacteria were reduced after 48hrs (15 ± 4) and completely cleared in 

1 week with the oral administration of 1 x 108 CFU LGG-IL2-GFP.  Their 

finding with gastric lavage of E. cloacae showed that commensal bacteria are 

prevented from entering the systemic immune compartment like spleen as they 

are efficiently killed by macrophages. However this present study indicate that 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Macpherson%20AJ%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�
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their finding with E. cloacae may not be applicable to all commensal bacteria. A 

previous study showed that LGG are resistant to the intracellular killing activity 

of macrophages (Asahara et al. 2003).  Moreover, L. rhamnosus and L. caesei 

have been sometimes reported as the causes for infective endocarditis (Harty et 

al. 1994). Though Lactobacillus bacteremia was a very uncommon condition, it 

was believed to occur due to translocation of the bacteria across intestinal 

mucosa (Antony et al. 1996). So the questions are still unanswered whether the 

LGG-loaded DC are only confined within the mesenteric lymph nodes  and  

whether CD11c - CD11b+ intestinal murine macrophages are able to kill LGG 

effectively in vivo. These are avenues for further studies to redefine the 

compartmentalization of the immune responses to lactobacilli.   

In summary, the results of this study clearly demonstrate the beneficial 

effects of low levels of IL2 when expressed as a fusion protein with an antigen 

and conveyed by Lactobacilli, to elicit enhanced local and systemic immune 

responses to the antigen, as well as the safety and efficacy of Lactobacilli 

secreting cytokines. It is likely that the immune response to antigens delivered 

by LGG could be increased by either the delivery of more Lactobacilli (Ho et al. 

2005; Russell et al. 1996) or by using plasmids with different promoter strengths 

so as to increase antigen production (Narita et al. 2006; Sorvig et al. 2005) or 

even using co-expression of different cytokines.  

  4.2. Lactobacilli secreting IL15/IL2/IL7 and antigen stimulate bone marrow 

derived dendritic cells and increase antigen specific cytotoxic T 

lymphocytes responses 

  There was an improved antigen production by LGG using the slpA promoter and 

secretory signal and that cytokines especially IL15 enhanced antigen 
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presentation and activation of T cells. The cytotoxic T cells produced by DCs 

primed with LGG secreting antigen or cytokine antigen fusion proteins 

specifically recognized tumour cells secreting PSA. 

            It was previously reported that the L. acidophilus S layer promoter (P-

slpA) was three times more effective than the most active homologous L casei 

promoter (Boot et al. 1996)  and it directed efficient transcription in L 

rhamnosus as well  (McCracken et al. 2000). The S-layer proteins are efficiently 

secreted as well, so the promoter elements as well as the signal sequence were 

used to produce LGG that secrete antigens. All the antigens produced were 

secreted unlike LGG transformed with the PLP500 plasmid with the ldh 

promoter, where most of the antigen produced remained within the bacteria.   

      

  L. reuteri reduced and L. casei induced up regulation of CD86 (Christensen  et 

al. 2002).  LGG stimulated human monocyte derived DCs at a low bacterial 

dose (5:1 – bacteria : DC ratio) showed only moderate expression of co-

stimulatory molecules and produced low levels of cytokines ( Veckman et al. 

2004). However a high dose (100 : 1 – bacteria : DC ratio) of LGG can have 

stimulatory effects on DC maturation and antigen presentation.  

                 The present study showed LGG stimulation alone on BMDC produced  

high levels of IL-12 without CD40L help. IL12 production was also induced in 

DC by stimulation with Toxoplasma gondii extract or lipopolysaccharide 

without CD40L help (Reis e Sousa et al. 1997). CD40L has been known to 

synergize with soluble tachyzoite antigen (STAg) of T. gondii or CpG DNA to 

induce high levels of IL-12 production by DC (Schulz et al. 2000).  DC from 

IL15 knock out mice (IL15-/-) are known to produce low IL-12p70 and 
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exogenous supply of recombinant IL15 will increase IL-12p70 production but 

not in IL15R-/- DC  (Ohteki et al. 2001). In agreement with these findings 

BMDC stimulated with LGG-S-IL15-PSA produced a significantly higher 

amount of IL12p70.  

               T cells incubated with LGG-S-IL15-PSA treated DC showed high IFNγ 

production and CTL response on target cells indicating efficient antigen 

presentation to T cells. IL-15 itself is able to activate DC in vivo and in vitro, to 

enhance the ability of DC to stimulate Ag-specific CD8+ T cells (Ohteki et al. 

2001; Pulendran et al. 2004; Mattei et al. 2001). The mechanism by which IL15 

mediates enhanced antigen presentation has not been defined but evidence in the 

literature points to several possible pathways. Firstly, enhanced antigen 

presentation could be a consequence of increased IL12 production engendered 

by LGG-S-IL15-PSA treatment (Christensen et al. 2002). The second possible 

mechanism for increased antigen specific CD8 + T cells expansion could be 

through trans presentation of IL15 by DC.  IL15 can up regulate IL-15αR 

expression on DC and IL15αR can efficiently trans present the bacteria secreted 

IL15 to IL-2Rβ/ c heterodimeric receptor on responding cells to initiate 

signaling (Wu et al. 2008) which up-regulates anti-apoptotic signals such as Bcl-

2, promoting T cell survival. The IL15/IL15R complex can recycle through the 

endosomal vesicles for several days (Dubois  et al. 2002) and so the signalling 

activity would persist even after removal of the bacteria by gentamycin 

treatment. No evidence exists for such a mechanism for IL7, but stimulated DC 

do produce IL7.  Expression of IL7R on B or T cells lineage was reported (Sudo 

et al. 1993) but its expression on DC has not been defined yet.  
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            Another possible mechanism is the effect of IL15 on the regulation of the 

antigen processing machinery (APM) in DC. Tumour cells down regulate APM 

expression in DC and recombinant IL15 administration restores MHC class I 

APM component expression in DC (Tourkova et al. 2005). Trauma has also 

been shown to suppress splenic DC antigen presentation and exogenous IL15 

can attenuate this response. (Kawasaki et al. 2009).   

PSA specific cytotoxic effect on target cells in T cell presentation with 

LGG-S-IL2-PSA stimulated DC was not significantly different with LGG-S-

PSA stimulation. IL2 role on DC has not been clearly defined as yet. DC from 

IL-2–/– mice are impaired in their ability to induce allogeneic CD4+ T-cell 

proliferation (Granucci et al. 2001). DC treated with IL2Rα antibody and LPS 

caused a reduction in IL-12, IL-1, TNF- , IL-6, and IFN-  production and 

decreased the DC ability to prime allogeneic CD4+ T cells compared with 

stimulation with LPS alone (Mnasria et al. 2008). Hence, LGG-S-IL2-PSA 

treated DC may have a role in inducing CD4+ not CD8+ T cells. 

   T cells incubated with LGG-S-IL7-PSA treated DC showed CTL response on 

target cells which is significantly different from LGG-S or LGG-S-PSA 

treatment. High IL7 was reported to promote not CD4+ but CD8+ T cell 

proliferation and  IL-7 signalling down regulates MHCII expression in IL7Rα+ 

DC that contribute to diminished CD4+T cell homeostatic proliferation 

(Guimond et al. 2009). Further study may be required to investigate whether 

IL7 secreted by LGG-S is enough to induce the preferential proliferation of 

CD8+ T cells which would be observed as higher cytotoxic effect on target 

cells.  
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   In summary, the data in this study indicate that LGG as a promising antigen 

delivery vehicle and that IL15 or IL7 is a good vaccine adjuvant.  

 

   4.3. Cross talk between LGG treated neutrophils and dendritic cells and its 

effect on DC activation and antigen presentation 

In agreement with previous reports on microbes treatment with neutrophils  

(Bennouna et al. 2003), LGG treatment with neutrophils did not produce a vey 

high bioactive IL12 rather it produces a high level of IL10 and TNFα. Moreover, 

LGG treated neutrophils did not induce any of the co-stimulatory molecules or 

MHC II expression, but only showed elevated expression of the MHC I 

molecules. Human polymorphonuclear neutrophils (PMN) require prior 

treatment of IFNγ, GM-CSF and IL3 to express MHC II molecules (Gosselin et 

al. 1993). Even after IFNγ and GM-CSF treatment, not all antigens were known 

to be processed and elicit specific T cells proliferation presented in a MHC II 

restricted manner. Super antigen but not tetanus toxoid (TT) treated PMN 

stimulated specific T cell proliferation (Fanger et al. 1997; Radsak et al. 2000). 

In mice, neutrophils purified from peritoneal exudate cells (PEC) were shown to 

express MHC II molecules expression and neutrophils pulsed with OVA323-339 

peptide induced specific CD4+T cells proliferation (Culshaw et al. 2008). 

However, we did not observe increased MHC II expression in bone marrow 

derived neutrophils (BMN) after LGG treatment. It may suggest bone marrow 

derived neutrophils may have a different MHC expression profile compared to 

PEC neutrophils.  Potter et al (2001) reported neutrophils process the exogenous 

bacteria in alternate MHC I pathway and present the antigen to T cells. It was 

presumed that  following phagocytosis, LGG also would be processed in the 
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alternate MHC I pathway since it elicited only the expression of MHC I 

molecules. After  antigen presentation for 2 hours neutrophils elicited 1.05 or 

1.49 ng of IFNγ which are slightly higher than 0.70 or 1.11 ng produced in 

overnight stimulation with LGG-S or LGG-S-IL15-PSA treatment respectively. 

The reduced IFNγ production in overnight stimulated neutrophils suggests the 

suppressive effect rendered by higher IL10 production (Fiorentino et al. 1991). 

Increased expression of co-stimulatory molecules on DC in neutrophils-DC co-

culture clearly showed bacteria treated neutrophils could deliver the maturation 

signals to immature DC. However, LGG treated  neutrophils stimulate higher 

IL10 but not IL12 from DC which is an opposite effect seen in  BCG (Morel et 

al. 2008) or Toxoplasma  (Bennouna et al. 2003) treatment with neutrophils. 

High IL10 along with increased production of TGFβ in DC-LGG treated 

neutrophils co-culture generates an anti-inflammatory milieu. IL10 produced in 

neutrophils-DC co-culture was positively correlated with the concentration of 

the bacteria used to stimulate neutrophils (data was not shown). After 

encountering a  high number of bacteria, neutrophils may undergo apoptosis, 

(Ocana et al. 2008) perhaps TRAIL/Apo-2L mediated as seen in BCG 

stimulation (Kemp et al. 2005) and apoptotic neutrophils may be phagocytosed 

by DC (Stark et al.  2005). The uptake of apoptotic cells by phagocytosis could 

trigger a powerful anti inflammatory signal (Savill  et al. 2000; Stuart  et al. 

2002) like increased release of IL10 (Steinman et al. 2000), TGF-β and 

inhibition of IL12 and IL8 (Voll et al. 1997; Kim et al. 2004). Apoptotic 

neutrophils bind to protein S in serum which interact with TAM receptor 

(protein tyrosine kinases-TYRO3, AXL and MER) (Lemke et al. 2008) 

expressed on DC or macrophage (McColl et al. 2009) that augment phagocytic 
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removal of apoptotic neutrophils.  Further investigation is required to examine 

whether the apoptosis would be induced in neutrophils with LGG stimulation 

(1:100 neutrophils: LGG ratio) and the level of TAM receptor expression on DC 

in DC – neutrophils (stimulated with LGG) co-culture.   

The immunosuppressive environment observed in neutrophils-DC co-

culture did not affect the T cell presentation that was characterized by high IL2 

and IFNγ which were almost the same level as the DC or  much higher than 

neutrophils mediated direct antigen presentation. Recombinant LGG treated 

neutrophils provided antigen specificity to DC when it was co-cultured with DC 

and also rendered a moderate cytotoxic effect in T cell presentation. This 

ensures the efficacy of LGG based antigen delivery in inducing immune 

response through neutrophils alone in the absence of direct bacteria-DC 

encounter.  Further study may be required to analyze the proportionate antigen 

specific T cells generated in neutrophils mediated direct or indirect antigen 

presentation and the inhibitory mechanism of inflammatory cytokines 

production in DC that phagocytose the apoptotic neutrophils.   

In summary, the present study demonstrates the effect of LGG in 

neutrophils- dendritic cells cross talk, highlights the balancing effect of LGG 

treated neutrophils on DC to shut down the inflammatory response. However 

further studies may be required to demonstrate the LGG treated neutrophils-DC 

cross talk in vivo in the priming of antigen specific T cells.   
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 4.4. Improvement of antigen production in LGG using ldh-slpA tandem  

promoter  

 For high protein production, a strong promoter is necessary. Improvement by 

genetic engineering to induce high protein production in the target strain have 

been carried out by modifying the promoter sequence ( Estrem et  al. 1998; 

Jensen and Hammer et al. 1998;  Solem and Jensen et al. 2002 ). Protein 

production was shown to have increased in recombinant bacteria under two or 

three tandem promoters in contrast to one alone in Bacillus subtilis. (Widner et 

al. 2000). This strategy has been applied in Lactococcus lactis for the expression 

of staphylokinase variant gene (sakXH) under the control of two tandem 

promoters (P32-PlacA) and showed improved protein production (Wei et al. 

2002). In our study we developed a protein expression system using LGG as the 

host strain and constructing two tandem promoters, ldh and slpA for protein 

expression. The expression of α amylase was improved under the control of ldh 

promoter that was integrated with the untranslated leader sequence (UTLS) of 

the slpA gene from L. acidophilus (Narita et al. 2006). The structure of the 

UTLS is deduced to be important in the mRNA stability (Daguer et al. 2005; 

Fournier et al. 2001) and in our study we used the whole promoter sequence of 

the slpA gene including UTLS coupled with ldh core promoter. The RBS of the 

slpA promoter was used in this study instead of the RBS of the ldh to prevent 

the destruction of the structure. The fusion expression system increased the IL2 

production to almost 5 folds compared to IL2 secreted under slpA promoter 

alone.  

In another strategy to improve the IL2 secretion we used a putative 

promoter of pgm and its secretory signal sequence including coding sequence 
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for 39 aminoacids for pgm protein to generate pgm-IL2 fusion protein. 

Phosphoglycerate mutase (PGM), an important enzyme in the glycolytic 

pathway, catalyzes the transfer of a phosphate group between the 2 and the 3 

positions of glyceric acid. Lactobacilli which grow better in anaerobic 

environment (Pant et al. 1996) may have a high expression of pgm. 

Mohamadzadeh et al reported the oral administration of L. acidophilus mediated 

delivery of Bacillus anthracis protective antigen-dendritic cells targeting fusion 

protein ( PA-DC pep ) under the expression of L. acidophilus pgm promoter 

generated protective immunity against B. anthracis lethal challenge. Though we 

followed the same strategy, the transformed LGG did not result in IL2 

production. We surmise that the pgm promoter may not have been recognized in 

LGG.  

4.5. Conclusion 

In most of the studies in which Lactobacilli have been explored as vaccine 

candidate in either oral or nasal route, bacteria used for immunization were more 

than 108 CFU. In the present study 108 CFU LGG was used and demonstrated  

the antigen specific humoral and cellular immune induction. Despite the low IL2 

level expressed in LGG as IL2-GFP fusion protein, it convincingly enhanced 

GFP specific immune induction. Strikingly, the enhanced immune induction has 

lasted even 50 days after the booster immunization. While comparing oral or 

nasal immunization, nasal immunization showed better immune response. Live 

bacterial administration were mostly discouraged in nasal immunization as live 

bacteria may cause lung infection and some times may result in pneumonia. 

However because of the GRAS status Lactobacilli administration did not 
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produce any lung damage except scattered cellular infiltration observed after 

few days of immunization.  

         L. acidophilus slpA promoter enhanced the protein expression more than 

10 folds in LGG. Moreover slpA secretory signal was well recognized in LGG 

and showed almost 100% extracellular delivery of heterologous protein. Protein 

expression under SlpA-ldh tandem promoter improved the protein expression to 

5 or 50 folds more than the protein expression under individual slpA or ldh 

promoter respectively.  IL15 co-expression with tumour antigen PSA enhanced 

antigen presentation and showed a higher antigen specific cytotoxic effect 

followed by IL7 co-expression.  It also demonstrated an enhanced DC mediated 

antigen presentation to T cells and induced a high CD8+ T cell proliferation. 

Recombinant LGG treated neutrophils interact positively with DC to produce T 

cell presentation and antigen specific cytotoxic effect though it has not been as 

high as direct DC antigen presentation.  However it needs further investigation 

to characterize the anti-inflammatory immune induction in DC-neutrophils 

mediated T cell presentation.  

Seow et al (2009) reported that intravesical administration of LGG recruited 

large numbers of neutrophils and macrophages to the tumor site and showed 

better cure rate than BCG (89% vs 77%) which is considered as gold standard 

for bladder cancer immunotherapy.  This cytotoxic effect may be enhanced 

further with the intravesical instillation of recombinant LGG that express 

specific tumour antigens like BLCA-4 (Van Le et al. 2004) since recombinant 

LGG can induce neutrophils mediated antigen specific cytotoxic effect.  
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   4.6. Future directions 

It has been shown convincingly in this series of experiments that LGG could 

deliver the antigen efficiently and induce specific immune response. The 

beneficial effect of cytokine-antigen co-expression in enhancing antigen specific 

cytotoxic effect has been also demonstrated. However, the enhanced antigen 

presentation and cytotoxic effect in common gamma chain cytokine – antigen 

expressing LGG treated DC needs to be shown in vivo and the mechanism for 

the enhanced immune response after immunization with fusion proteins also 

needs to be unravelled. As such further research should be aimed at the 

following: 

1.  Future experiments should determine how IL2 in pg levels preferentially 

produces a high CD8+ T cell response. It may be extended to see the effect of 

high IL2 (in ng to µg level) in the induction of CD8+T cell response.     

2.  Though the cellular infiltration observed in 35th day of post primary nasal 

immunization was reduced on 80th day, some inflammatory cells were still 

present and thus it may be required to examine the infiltration or inflammatory 

changes up to 100-180 days to rule out LGG mediated persistent or chronic lung 

inflammation. If the latter is present than LGG vaccines should only be 

delivered via the oral route. 

 3. LGG-S-IL15-PSA treated DC showed high IFNγ production and CTL 

response on PSA secreting tumour cells indicating efficient antigen presentation 

to T cells in vitro. In future experiments, IL-15 mediated enhanced antigen 

presentation has to be confirmed in vivo by analyzing whether mucosal 

immunization of IL15-antigen fusion protein secreting LGG efficiently kill the 
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tumour cells compared to immunization with antigen alone or with other 

cytokine-antigen fusion protein in an animal tumour model.  

4. Future experiments may also be focussed on neutrophil mediated in vivo 

indirect antigen presentation to T cells and the analysis of T cell mediated 

antigen specific cytotoxic effect in the murine bladder cancer model by 

intravesical instillation of recombinant LGG.  

5. In neutrophils-DC cross talk study, DC mediated antigen presentation to T 

cells through  neutrophils engenders an anti-inflammatory milieu which was 

represented by a significantly higher TGFβ and IL10.  Future study may be 

focussed on the T cell phenotype which secrete TGFβ.  

6. Increased antigen production may be imperative for inducing a high antigen 

specific immune response. Future studies should explore the possibilities of a)  

stronger promoters and b) to design the cassette to express the antigen and 

cytokine under different promoters, so that their expression will be manipulated 

individually to study the impact of cytokine concentration on the immune 

response.  
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