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Summary

The publication of microdata poses a privacy threat: anonymous personal records

can be re-identified using third party data. Past research partitions data into

equivalence classes (ECs), i.e., groups of records indistinguishable on Quasi-

identifier values, and has striven to define the privacy guarantee that publish-

able ECs should satisfy, culminating in the notion of t-closeness. Despite this

progress, no algorithm tailored for t-closeness has been proposed so far. To fill

this gap, we present SABRE, a Sensitive Attribute Bucketization and REdistri-

bution framework for t-closeness. It first greedily partitions a table into buckets

of similar sensitive attribute (SA) values, and then redistributes the tuples of

each bucket into dynamically determined ECs. Nevertheless, t-closeness, as the

state of the art, still fails to translate t, the privacy threshold, into any intelligible

privacy guarantee. To address this limitation, we propose �-likeness, a novel ro-

bust model for microdata anonymization, which postulates that each EC should

satisfy a threshold on the positive relative difference between each SA value’s

frequency in the EC and that in the overall anonymized table. Thus, it clearly

quantifies the extra information that an adversary is allowed to gain after seeing

a published EC.

Most of privacy preserving techniques, including SABRE and �-likeness,

are designed for static data sets. However, in some application environments,

data appear in a sequence (stream) of append-only tuples, which are contin-

uous, transient, and usually unbounded. As such, traditional anonymization

schemes cannot be applied on them directly. Moreover, in streaming applica-

tions, there is a need to offer strong guarantees on the maximum allowed de-

lay between incoming data and the corresponding anonymized output. To cope
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with these requirements, we first present CASTLE (Continuously Anonymizing

STreaming data via adaptive cLustEring), a cluster-based scheme that continu-

ously anonymizes data streams and, at the same time, ensures the freshness of

the anonymized data by satisfying specified delay constraints. We further show

how CASTLE can be easily extended to handle ℓ-diversity. To better protect

the privacy of streaming data, we have also revised t-closeness and applied it

to data streams. We propose (!, t)-closeness, which requires that for any EC,

there exists a window, which has a size of ! and contains the EC, so that the

difference of SA distribution between the EC and the window is no more than t.

Thus, the closeness constraints are restricted in windows instead of a whole un-

bounded stream, complying with the general requirement that streaming tuples

are processed in windows.

We have implemented all the proposed schemes and conducted performance

evaluation on them. The extensive experimental results show that our schemes

achieve information quality superior to existing schemes, and can be faster as

well.
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CHAPTER 1

INTRODUCTION

Organizations such as government agencies or hospitals collect microdata (e.g.,

medical reports, financial transactions, and residence records), and regularly re-

lease them to serve the purposes of research and public benefits. For example,

a predication model (e.g., a decision tree) built on medical reports can help

clinicians determine the most appropriate care for newly diagnosed cases of dis-

eases. However, such data contain sensitive personal information, and improper

disclosure of them puts the privacy of individuals at risk. Consider again the

medical reports. The disclosure that someone suffers from diabetes has a nega-

tive impact on his/her employment and the coverage of insurance. Therefore, a

conflict exists between perceived benefits and the sacrifice of individual privacy

in data dissemination.

There are two extremes in handling the conflict: one is disseminating data

without any change, thus achieving full data utility at the expense of privacy;

the other is withholding the publication, hence sacrificing utility for full pri-

vacy. Obviously, neither of these is practical and useful. In this thesis, we adopt

an alternative approach by finding a balanced point between privacy and data

utility, using available privacy models and our newly developed ones.

Data publication takes place in both static and dynamic settings. In static set-

tings, data are collected, anonymized, and then published only once. In dynamic
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circumstances, data arrive continuously, and are anonymized/published in a se-

quence of times; in some cases a tuple can even appear in multiple anonymiza-

tions. Our study involves static data sets, and data streams, a common and

important case of dynamic setting.

1.1 Privacy protection for static data sets

In static settings, the privacy of data is guaranteed by the algorithms designed

according to different privacy models proposed so far [31, 76]. Each model

has its own requirements on the form that the data should follow before the

publication. The research of privacy protection on static data sets can be seen

as a history of progressively more sophisticated models. In the following we

briefly present these models related to our thesis in the chronological order, and

discuss their functions and limitations.

Age Sex Zipcode Disease
26 Male 53711 Bronchitis
27 Male 53710 Broken arm
27 Male 53712 AIDS
25 Male 53711 Hepatitis
25 Female 53712 Hepatitis
28 Female 53711 Hepatitis

Table 1.1: Microdata about patients

Name Age Sex Zipcode
Bob 26 Male 53711
Mike 27 Male 53710
John 27 Male 53712
Jack 25 Male 53711
Kate 25 Female 53712
Jane 28 Female 53711

Table 1.2: Voter registration list

1.1.1 k-anonymity

The pioneering work for privacy preserving data publication is the concept of

k-anonymity [66,67] proposed by Samarati and Sweeney. They discovered that

microdata with identity information (e.g., social security number, name, and

telephone number) removed, may still be vulnerable to linking attack. Consider

patient records in Table 1.1 and voter registration list in Table 1.2. Although all
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the records in Table 1.1 have their identity information removed, they can still

be re-identified by joining Table 1.1 with Table 1.2 on their shared attributes—

Age, Sex, and Zipcode. For example, after the join, we can infer that Bob suffers

from Bronchitis.

The set of attributes that can be exploited to re-identify individuals by join-

ing/matching them with external databases is called quasi-identifier (QI). In the

above example, {Age, Sex, Zipcode} is the QI. An attribute whose disclosure

puts the individual privacy at risk is known as the sensitive attribute (SA). Dis-

ease in Table 1.1 is such an SA. Under k-anonymity, records of the dataset

are partitioned into groups, each with a size of at least k, and the QI values

in a same group are replaced by a single generalized value. A group of tuples

with the same QI value is an equivalence class (EC). In this way, all the records

in the same group/EC are indistinguishable from each other with regard to QI.

Hence, k-anonymity successfully protects against identity disclosure, by hiding

one person in a crowd of at least k − 1 other persons. Let us go on with the

running example. Table 1.1 is 3-anonymized to Table 1.3 with two ECs of size

3 each. Consider the first record in Table 1.3. At present, Bob, Mike, and John

are all equally linkable to it. Thus, Bob is hidden in the crowd of {Bob, Mike,

John}.

EC Age Sex Zipcode Disease
[26-27] Male [53710-53712] Bronchitis

1 [26-27] Male [53710-53712] Broken arm
[26-27] Male [53710-53712] AIDS
[25-28] Person [53711-53712] Hepatitis

2 [25-28] Person [53711-53712] Hepatitis
[25-28] Person [53711-53712] Hepatitis

Table 1.3: A 3-anonymous table
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Although k-anonymity successfully protects against identity disclosure, it

suffers from homogeneous attack due to neglecting non-QI sensitive attribute.

When the distribution of sensitive attribute (SA) values in an EC is highly

skewed, an attacker may infer the sensitive value of an individual with a high

confidence. For instance, equivalence class 2 in Table 1.3 contains all tuples

with Hepatitis as SA value. Hence, an attacker can infer with 100% confidence

that all persons referred by EC 2 have hepatitis, i.e., Jack, Kate, and Jane all

have this disease.

1.1.2 ℓ-diversity

To address the limitation of k-anonymity, Machanavajjhala et al. [57] put for-

ward the principle of ℓ-diversity, which postulates that each EC should contain

at least ℓ distinct “well represented” SA values. The intuition behind ℓ-diversity

is that each person is linkable to ℓ distinct SA values, thus the association be-

tween the person and his/her specific SA value is blurred. Since the requirement

that values be “well represented” can be explained in multiple ways, there are

different instantiations of ℓ-diversity. Please refer to Section 2.1.2 for a survey.

Name Weight Age Disease
Mike 60 40 SARS
Alice 70 50 intestinal cancer
John 60 60 pneumonia
Bob 50 50 bronchitis
Beth 80 50 gastric flu
Carol 70 70 gastric ulcer

Table 1.4: Patient records

EC Weight Age Disease
[50-60] [40-60] SARS

1 [50-60] [40-60] pneumonia
[50-60] [40-60] bronchitis
[70-80] [50-70] intestinal cancer

2 [70-80] [50-70] gastric flu
[70-80] [50-70] gastric ulcer

Table 1.5: 3-diverse published table

Still, ℓ-diversity fails to protect against attacks by an adversary’s unavoidable

knowledge of the overall SA distribution in a released table [52]. In particular,

a similarity attack occurs when the SA values in an EC are semantically similar.

For example, Table 1.4 has {Weight, Age} as QI and Disease as SA. Attribute
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Name has been deleted from the Table; we put it outside the table only for

reference. Table 1.5 is a 3-diverse version of Table 1.4, nevertheless all tuples

in EC 1 indicate a respiratory problem.

Furthermore, a skewness attack may take place when the SA distribution

in an EC differs substantially from that in the published table as a whole. For

example, assume a 10-diverse form T ′ of a medical records table T , in which

0.1% persons are infected with HIV, and an EC G ∈ T ′ containing 10 distinct

SA values, with one occurrence of HIV among them. Then the probability of

HIV in G is 10%, while in T it is 0.1%. This 100-fold increase creates a big

undesirable leak of information.

1.1.3 t-closeness

The t-closeness guarantee [52] is conceived to address the limitations of ℓ-

diversity. It requires that the distance between the local SA distribution in any

EC and the global SA distribution in the whole table be at most t, a threshold.

t-closeness modeling takes the global SA distribution as the public knowledge,

and considers the difference between the two distributions as the additional in-

formation that an attacker gains. Intuitively, a smaller t indicates that the two

distributions are more similar, thus the information gain is smaller. t-closeness

directly protects against skewness attack, while it also provides defence against

similarity attack, depending on the extent to which semantic similarity exists

among SA values in the whole table.

So far, t-closeness schemes [52,53] are built on k-anonymity instantiations;

they extend either Incognito [48] or Mondrian [49] by adding an extra condition:

the produced ECs satisfy t-closeness. However, k-anonymity and t-closeness

are very different privacy models—the former focuses on the EC sizes, requiring
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the number of tuples in each EC to be no less than k; the latter focuses on the

SA distributions, constraining the similarity between SA distribution in any EC

and its global distribution. With such distinct requirements on created ECs, as

expected, a good t-closeness-complying scheme may not be derived from k-

anonymity schemes. Therefore, the question of designing a scheme tailored for

t-closeness remains open.

1.2 Privacy protection for data streams

Data streams are common to many application environments, such as, telecom-

munication, market-basket analysis, network monitoring, and sensor networks.

Mining these continuous data streams [36, 56, 85] helps companies (the owner

of data streams) to learn the behavior of their customers, thus bringing unique

opportunities. Many companies do not have the in-house expertise of data min-

ing, so it is beneficial to outsource the mining to a professional third party [62].

However, data streams may contain much private information that must be care-

fully protected. Consider Amazon.com. In a single day, it records hundreds of

thousands of online sales transactions, which are received in the form of stream-

ing data. Suppose that the sales transaction stream has the schema S(tid, cid,

goods), where tid is transaction identifier, cid is customer identifier, and goods

is a list of items bought by the corresponding customer. Suppose that a relation

C containing the information about Amazon customers is stored on disk, with

schema C(cid, name, sex, age, zipcode, address, telepℎone). Let SC1 be the

stream generated by joining S with C on cid. Suppose moreover that, to analyze

1In real stream systems, typically customer information does not appear in the stream to
reduce redundancy. Mining, which needs customer information, requires joining the data stream
with local customer databases. In what follows, we consider mining and anonymization on joint
streams.
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customers’ buying behavior (e.g., building a decision tree), the mining is on SC,

and Amazon.com outsources it to a professional third-party. To protect the pri-

vacy of customers, attributes that explicitly identify customers (such as name,

address and telepℎone) are projected out of SC. However, as pointed out in

Section 1.1.1, the remaining data in SC may still be re-identified by joining QI

attributes (e.g., sex, age and zipcode) with external public databases (e.g., a

voter registration table). Therefore, the streaming transactions in SC need to be

carefully anonymized before they are passed to the third-party.

Most of the previous anonymization algorithms are designed specifically for

static data sets. They cannot be directly applied on streaming data for the fol-

lowing reasons. First, these techniques typically assume that each record in a

data set is associated with a different person, that is, each person appears in the

data set only once. Although this assumption is reasonable in a static setting,

it is not realistic for streaming data. Second, due to the constraints of perfor-

mance and storage, backtracking over streaming data is not allowed. However,

traditional anonymization schemes scan a data set multiple times, contrary to

the one-pass requirement imposed on algorithms for data streams. Furthermore,

streaming tuples have a temporal dimension. They arrive at a certain rate, they

are dynamically processed, and the result is output with a certain delay. In some

applications, the output data are immediately used to trigger appropriate pro-

cedures. For example, in a sensor network application the output stream can

be used to react in real time to some anomalous situations, thus the time to

react is very crucial. Therefore, a data stream anonymization scheme should

ensure strong guarantees on the maximum delay between the input of data and

their output. Finally, some privacy models are not directly applicable to data
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streams. Models such as t-closeness assume the existence of a global SA dis-

tribution. However, data streams are unbounded, and such a global distribution

is unavailable. Therefore, these models themselves need to be modified before

being adopted for streaming tuples. As a consequence, all previous anonymi-

zation algorithms designed according to their constraints cannot be applied on

data streams.

Based on the above analysis, we can safely conclude that we need to specif-

ically design new algorithms for anonymizing stream data rather than simply

applying existing ones.

1.3 The thesis contributions

Our contributions are divided into two portions. In the first part, we propose

novel privacy models as well as sophisticated algorithms to anonymize static

data sets. In the second part, we customize privacy models to meet the unique re-

quirements of data streams, and develop new solutions to continuously anonymize

streaming data.

1.3.1 The models and algorithms in static setting

SABRE: A tailored t-closeness framework

The past research on privacy models culminates in t-closeness. Despite this

progress, there is no anonymization algorithm tailored for it. Therefore, our

first contribution is to fill this gap with SABRE, a Sensitive Attribute Bucketi-

zation and REdistribution framework for t-closeness. SABRE operates in two

phases. First, it partitions a table into buckets of similar SA values in a greedy

fashion. Then, it redistributes tuples from each bucket into dynamically config-

ured ECs. Following [52, 53], we employ the Earth Mover’s Distance (EMD)
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as a measure of closeness between distributions, and utilize a property of this

measure to facilitate our approach. Namely, a tight upper bound for the EMD

of the distribution in an EC from the overall distribution can be derived as a

function of localized upper bounds for each bucket, provided that the tuples in

the EC are picked proportionally to the sizes of the buckets they hail from. Fur-

thermore, we prove that if the bucket partitioning obeys t-closeness, then the

derived ECs also abide to t-closeness. We develop two SABRE instantiations.

The former, SABRE-AK focuses on efficiency. The latter, SABRE-KNN trades

some efficiency for information quality. Our extensive experimental evalua-

tion demonstrates that both instantiations achieve information quality superior

to schemes that extend algorithms customized for k-anonymity to t-closeness,

while SABRE-AK is much faster than them as well.

�-likeness: an enhanced model and its algorithm

Although t-closeness takes a big step forward in privacy preservation than its

predecessors, i.e., k-anonymity and ℓ-diversity, it still has its drawbacks. It cal-

culates the distance between two SA distributions in a cumulative way, without

any guarantee on the relative distance of a single SA value frequency between

an EC and the whole table. Let V = {v1, v2, . . . , vm} be the domain of sensitive

attribute SA in a table Dℬ, and P = (p1, p2, . . . , pm) and Q = (q1, q2, . . . , qm)

be the SA distributions in Dℬ and an EC, respectively. t-closeness does not

provide any guarantee on the relative distance between pi and qi for single SA

value vi ∈ V , i = 1, 2, . . . ,m. Thus, it fails to provide the privacy on individual

SA values.

Based on the above observation, we introduce the concept of �-likeness, a

novel, robust model for microdata anonymization that eschews the drawbacks
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(see Section 4.1 for details) of t-closeness. In �-likeness, a threshold is imposed

on the relative difference of each SA value frequency between an EC and the

overall table. Thereby, �-likeness provides a clear and comprehensible privacy

guarantee that limits the information gain an adversary is allowed to obtain with

respect to any SA value of interest. Moreover, we design BUREL, an anony-

mization algorithm tailored for the particular requirements of �-likeness. BU-

REL borrows ideas from SABRE; it first BUcketizes tuples into buckets, then

REdistributes tuples from buckets to ECs to attain �-likeness. Our extensive ex-

perimental study demonstrates that our �-likeness model and algorithm achieve

a better trade-off between information and privacy than the state-of-the-art t-

closeness schemes, even if privacy is measured by the criterion of t-closeness;

in addition, it is more effective and efficient in its task than an alternative task

extended from a k-anonymization algorithm.

1.3.2 The models and algorithms in data streams

k-anonymity of data streams and its scheme CASTLE

Our work on anonymizing streaming data starts with simple privacy model, i.e.,

k-anonymity, then goes on with more sophisticated ones, such as ℓ-diversity

and t-closeness. We customize k-anonymity for the unique requirements of

data streams (see Section 1.2). Then we present CASTLE, a scheme that Con-

tinuously k-Anonymizes STreaming data via adaptive cLustEring. CASTLE

exploits quasi-identifier attributes to define a metric space: tuples are modeled

as points in this space. Incoming tuples are grouped into clusters and all tuples

belonging to the same cluster are released with the same generalization. Clus-

tering of tuples is further constrained by the freshness of the output data—the

delay between a tuple’s input and its output is at most equal to a given parameter
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�.

CASTLE is extended to support ℓ-diversity on data streams in a straightfor-

ward manner by a cluster merge process. For each expiring tuple, i.e., tuple that

will violate the freshness constraint soon, we check the cluster holding it. If

the whole cluster as a single EC satisfies the diversity requirement, we simply

output all its tuples by its generalization. Otherwise, we merge the cluster with

its nearest neighbors, until such requirement is satisfied.

(!,t)-closeness and its algorithm SABREW

Besides k-anonymity and ℓ-diversity, we have also adopted t-closeness in data

streams. The t-closeness model [52] assumes the presence of a global SA dis-

tribution, and takes it as the baseline of prior knowledge. However, data streams

are continuous and unbounded, thus such a global distribution is unavailable.

Thereby, we revise the definition of t-closeness, by restricting closeness con-

straint only in each window instead of the whole data set. We propose (!,

t)-closeness: given any EC, and a window that has a size of ! and contains

the EC, the difference of their SA distributions is no more than t, a thresh-

old. Based on our static t-closeness framework SABRE, we accompany (!,

t)-closeness with a customized algorithm SABREW, whose soundness is sup-

ported by a solid theory foundation. Furthermore, we evaluate by experiments

SABREW and schemes extended from k-anonymity algorithms; the results show

that SABREW is superior to them with respect to both information quality and

elapsed time.
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1.4 The organization of the thesis

Just like our contributions, the thesis consists of two parts—one part for static

setting; the other for data streams. Before the formal introduction of specific

work, we will first provide some background knowledge in Chapter 2. It in-

cludes a survey on such popular privacy models as k-anonymity, ℓ-diversity, and

t-closeness; important algorithms proposed so far according to these models are

reviewed by discussing their contributions and limitations. After the survey on

related work, in the same chapter we briefly discuss about data streams, their

applications, unique characteristics, and underlying supporting engines. In ad-

dition, we also present information loss metrics that will be used throughout the

thesis to measure the information quality of anonymized data.

Chapter 3 and Chapter 4 are set apart for static data set. We put forward a

sophisticated t-closeness framework SABRE in Chapter 3. Specific t-closeness

algorithms can be instantiated from it based on user defined applications. We

provide two instantiations of SABRE, assuming that the anonymized data set is

for multiple purposes. The experiment results show that they are superior to ex-

isting algorithms with regard to information quality, while one of them is much

faster. Chapter 4 presents �-likeness, an enhanced privacy model compared with

t-closeness. �-likeness measures the relative difference on each single SA value

between an EC and the whole data set. Thus, it provides a clear relationship be-

tween parameter � and the privacy it affords. An algorithm BUREL customized

for �-likeness is proposed.

We devote Chapter 5 and Chapter 6 to data streams. Chapter 5 presents

CASTLE, a cluster-based scheme that continuously anonymizes streaming tu-

ples, meanwhile, ensuring the freshness of output data. Although CASTLE is

initially proposed for k-anonymity, it can be extended to support ℓ-diversity in
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a straightforward way. Chapter 6 introduces a t-closeness-resembling privacy

model for streaming data. It confines SA closeness constraint within each win-

dow instead of the whole unbounded data stream; it requires streaming tuples

to be anonymized and output once they are expiring. In addition, a customized

algorithm conforming to the privacy model has been designed.

At the end of the thesis, in Chapter 7 we conclude our works and discuss

interesting items in our agenda for future research.

Research in the thesis has been partially published in international journals

and conferences. Chapter 3 and Chapter 6 are from our work [27] accepted by

VLDB Journal. The work in Chapter 5 has been accepted as a poster [24] in

ICDE 2008 and will appear in IEEE Transactions on Dependable and Secure

Computing as a regular paper [26]. The work of Chapter 4 is under review.
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CHAPTER 2

BACKGROUND

Before the formal introduction of our sophisticated anonymization schemes and

novel privacy models, we first discuss the background knowledge that is closely

related to our thesis. At the beginning, we review works on microdata anonymi-

zation; in particular, we will focus on k-anonymity, ℓ-diversity, and t-closeness,

since they are representative models. After that, we briefly introduce data streams,

discussing their unique characteristics, applications, and supporting engines. Fi-

nally, we present the information loss metrics that will be used throughout this

thesis as a guide/heuristic for anonymization.

2.1 A survey on microdata anonymization

This section starts with two definitions: Quasi-identifier and Equivalence Class.

They are fundamental concepts and widely used in privacy preservation data

publication. Next, we will study the privacy models together with approaches

designed according to their specific requirements.

Definition 2.1 (Quasi-identifier). Consider a database table Dℬ(A1, A2, . . .,

An). The quasi-identifier (QI) of Dℬ is a subset of its attributes, {A1, A2, . . .,

Ad}⊆{A1, A2,. . ., An} that can, joined with an external database, reveal the

identities of the tuples involved.
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Definition 2.2 (Equivalence Class). An equivalence class (EC) is a group of

published tuples that have the same (generalized) QI values.

2.1.1 k-anonymity

The first privacy preserving model that anonymizes data while preserving their

integrity was the k-anonymity model [67]. Under k-anonymity, tuples are grouped

into ECs of no less than k tuples, with indistinguishable QI values. Still, the

problem of optimal (i.e., minimal-information-loss) k-anonymization is NP-

hard [12, 58] for k ≥ 3 and more than one QI attribute. Thus, past research

has proposed several heuristics for k-anonymization. Such schemes transform

the data by generalization and/or suppression. A generalization replaces, or re-

codes, all values of a QI attribute in an EC by a single range that contains them.

For example, QI gender with values male and female can be generalized to

person, and QI age with values 20, 25 and 32 can be generalized to [20, 32].

Suppression is an extreme case of generalization that deletes some QI values or

even tuples from the released table. Generalization for a categorical attribute is

typically facilitated by a hierarchy over its values.

Generalization recodings can be classified as follows: A global recoding

[19, 39, 43, 48, 67] maps all tuples with the same QI values to the same EC1.

On the other hand, a local recoding [11, 24, 40, 83] allows tuples of the same

QI values to be mapped to different generalized values (i.e., different ECs).

Intuitively, ECs generated by a local recoding may, but those generated by a

global recoding may not, overlap each other. The flexibility of local recoding

1Each tuple is one point in the metric space defined by considering each QI-attribute as one
dimension. Thus, an EC can be seen as the minimum bounding box that covers all the points in
it.
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allows for anonymizations of higher information quality [40, 48, 49]. Further-

more, a single-dimensional recoding considers the domain of each QI attribute

independently of the others [48] (hence forms a grid over the combined QI do-

mains); on the other hand, a multidimensional recoding freely defines ECs over

the combined domains of all QI attributes [49].

Recently, k-anonymity has been extended in multiple directions. Privacy

protection towards predefined workloads has been introduced— [39] is designed

specifically for classification by considering the information gain in splitting

ECs; [50] caters for selected mining tasks besides classification, thus more gen-

eral. However, both schemes are limited, once the workloads are unknown at the

moment of data publication. In addition, k-anonymity has also been explored in

dynamic settings. Wang and Fung [74] anonymize sequentially released views

of the same underlying table. Schemes [38, 61] enable multiple releases of a

table that has been incrementally updated.

2.1.2 ℓ-diversity

The k-anonymity model suffers from a critical limitation. While the objective

of anonymization is to conceal sensitive information about the subject involved,

k-anonymity pays no attention to non-QI sensitive attributes (SAs). Thus, a k-

anonymized table may contain ECs with so skewed a distribution of SA values,

that an adversary can still infer the SA value of a record with high confidence.

To address this limitation, Machanavajjhala et al. extended k-anonymity to the

ℓ-diversity model, which postulates that each EC contain at least ℓ “well rep-

resented” SA values [57]. The requirement that values be “well represented”

can be defined in diverse ways. Thus, by entropy ℓ-diversity, the entropy of SA

values in each EC should be at least log ℓ; by recursive (c, ℓ)-diversity, it should
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hold that r1 < c(rℓ + rℓ+1 + . . .+ rm), where ri is the number of occurrences of

the ith most frequent SA value in a given EC, c a constant, and m the number of

distinct sensitive values in that EC. Xiao and Tao propose a third instantiation

of ℓ-diversity, which requires that the most frequent sensitive value in any EC

occur in at most 1/ℓ of its records [80]. This special interpretation is similar to

(�, k)-Anonymity [78] once setting � = 1/ℓ.

The proposal of the ℓ-diversity model was not accompanied by an anonymi-

zation algorithm tailored for it. In response to this need, Ghinita et al. [40, 41]

provide a local-recoding ℓ-diversification framework that resolves the arising

high-dimensional partitioning problem via a space-filling curve, such as the

Hilbert curve [59]. Furthermore, Byun et al. [23] propose diversity-aware data

re-publication in the case of tuple insertion only. m-invariance [81] enhances

the re-publication by supporting both tuple insertion and deletion. Bu et al. [22]

make a further improvement by considering tuple update, i.e., the SA value of

an individual may change over time.

The ℓ-diversity model is designed with a categorical SA in mind; it does not

directly apply to the case of a numerical SA. Namely, a diversity of numerical

SA values does not guarantee privacy when their range in an EC is narrow (i.e.,

the values are close to each other); such a narrow range can provide accurate

enough information to an adversary. To address this deficiency, Zhang et al. [86]

propose a model that requires the range of a numerical SA’s values in an EC to

be wider than a threshold. However, an adversary may still be able to infer a

numerical SA value with high confidence, if most numerical SA values in an

EC are close, no matter how wide their total range is (i.e., the EC may simply

contain a few outliers). Thus, Li et al. [51] propose a scheme requiring that

∣gc∣
∣G∣ ≤ 1/m, where G is a given EC, gc any group of close tuples in G, and m a
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parameter.

The deficiency of ℓ-diversity outlined above is most conspicuous with nu-

merical SAs, but not restricted to them only. It can also apply to semantically

similar values of categorical SA. In general, ℓ-diversity fails to guarantee pri-

vacy whenever the distribution of SA values within an EC differs substantially

from their overall distribution in the released table, allowing skewness and sim-

ilarity attacks.

2.1.3 t-closeness

Li et al. propose the t-closeness model, which requires that the difference, mea-

sured by an appropriate metric, of the SA distribution within any EC from the

overall distribution of that SA be no more than a given threshold t [52]. Accord-

ing to the t-closeness model, an adversary who knows the overall SA distribu-

tion in the published table gains only limited more information about an EC by

seeing the SA distribution in it.

To our knowledge, three t-closeness-attaining techniques have been pro-

posed to date. The first of them [52] extends the Incognito method for k-

anonymization [48]. It operates in an iterative manner, employing a predefined

generalization hierarchy over the domain of eachQI attribute. In the first round,

it determines the level in the generalization hierarchy of each singleQI attribute

above which t-closeness is met. In the second round, it uses the findings of the

first round to establish those combinations of two QI attributes, generalized

at different levels over their respective hierarchies, that achieve t-closeness (a

lattice structure represents such combinations). The scheme proceeds in this

manner, examining subsets of QI attributes of size increased by one at each it-

eration, until it establishes the valid generalizations over all QI attributes that
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satisfy t-closeness, and selects the best of those. Unfortunately, this approach

shares the drawbacks of Incognito as an algorithm for k-anonymization: it is

limited to single-dimensional global recoding. Thus, it achieves low informa-

tion quality, while its worst-case time complexity is exponential in the number

of QI attributes.

Likewise, the second t-closeness-obtaining scheme [53] extends the Mon-

drian k-anonymization method [49]. Mondrian recursively partitions the com-

bined domain of all QI attributes, carrying out a split only if the resultant parti-

tions have sizes of at least k. It is extended to t-closeness with an extra condi-

tion: a splitting is allowed only if the resultant partitions also obey t-closeness

with respect to the overall distribution. While this method is more efficient than

the Incognito-based one, it still fails in terms of information quality, as it does

not cater to special features of t-closeness.

Recently, a scheme for t-closeness-like anonymization has been proposed

[63]. Still, it uses perturbation (i.e., postrandomization [45]) and adds noise to

anonymize the data; thus, it does not guarantee the integrity of the data, which

is a basic common feature of the generalization-based techniques we examine

in this thesis. Furthermore, [63] does not enforce the t threshold as a maximum

difference constraint, but only as an average distance metric; it compares distri-

butions measured over perturbed QI values (not over ECs) to that of the overall

table; and it employs KL-divergence instead of EMD as a distance metric. Thus,

the model of [63] does not provide the same worst-case privacy guarantees as

t-closeness.



20

2.1.4 Other privacy models

Evfimievski et al. [37] introduce �1-to-�2 privacy principle, which imposes a

bound �2 on the posterior probability (i.e., probability after release) of certain

properties in the data, given a bound �1 on the prior probability (i.e., before

data release). This model is modified in [72], where the posterior confidence

should simply not exceed the prior one by more than Δ. Still, both these mod-

els measure the absolute confidence gain (i.e., information leak), hence do not

sufficiently protect the privacy of infrequent values either. For example, both

these schemes treat a probability increase from 60% to 80% as tantamount to an

increase from 1% to 21%, even though the latter is an increase by 2000% and

the former by only 33%. Besides, these schemes apply perturbation on the data,

hence impair their integrity.

A newly proposed privacy model, �-disclosure [21], requires that for any

SA value vi with frequency pi in the original table, its frequency in any EC,

qi, should be such that ∣ log( qi
pi

)∣ < �. However, �-disclosure does not distin-

guish between an increase and a decrease in the adversary’s confidence on an

SA value. Moreover, log(qi) is defined only for qi > 0; in effect, �-disclosure

strictly requires that each SA value in the original table should appear in ev-

ery single EC. This requirement renders the �-disclosure an exceedingly rigid

and overprotective model. Besides, [21] does not propose an anonymization

algorithm tailored for the �-disclosure model; it only points out that the k-

anonymization algorithm in [50], applied on the models of ℓ-diversity, t-closeness,

and �-disclosure, yields anonymizations poor in terms of information loss; it

is inappropriate for [21] to directly compare the privacy gain with the utility

gain [54]. Furthermore, [21] also questions the basic assumption that each tuple

should be associated with a unique, homogeneous EC, as opposed to multiple,
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heterogeneous ones. This question is revisited in [79] with a methodology for

heterogeneous generalization, which can also be used on top of homogeneous

anonymizations to improve their utility.

Recently, [46] suggested a methodology for transforming a group of SA

values to follow a specified distribution, by permuting existing SA values and

adding fake ones. Still, this technique damages the integrity of the data too. [75]

suggested FF-anonymity, a privacy model that distinguishes between sensitive

and non-sensitive information only at the value level; an attribute may con-

tain both sensitive and non-sensitive values. Besides, [75] assumes that only

non-sensitive information is observable by an adversary, and that generalizing

a sensitive value to a non-sensitive hierarchy level conceals its sensitivity. Yet

such a generalization reveals that sensitivity is hidden behind it. For example,

the very act of generalizing AIDS to virus suggests that a sensitive value ex-

ists behind the generalized one. This argument is akin to that made by [77] in

another context.

2.2 Data streams

In the past few years, databases of some companies such as Amazon.com grow

at a rate of millions of records each day. Typically these data appear as a

sequence (stream) of append-only tuples. They arrive at high-speed continu-

ously and are unbounded. There is no control over their arriving order. Online

processing of such data brings unique commercial opportunities to the com-

panies, thus it is becoming an indispensable part of business operations. To

efficiently manage data streams, quite a few engines are designed. Borealis [5]

is a distributed stream processing system, which is based on Aurora [6] and

Medusa [84]. STREAM [15] is a “general-purpose” data stream management
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system (DSMS). TelegraphCQ [30] is specially designed to process adaptive

data flow with an extension to support shared continuous queries. Other exam-

ples are Alert [69], Tribeca [70], OpenCQ [55], NiagaraCQ [32], CAPE [87],

and so on.

Data streams have a wide range of applications. Examples include but are

not limited to network traffic analysis (e.g., click streams and network secu-

rity), sensor network, transaction log analysis, and financial analysis. Data

streams have special processing requirements, due to its unique characteris-

tics compared with traditional databases. It is impossible to store a complete

unbounded stream, so registered queries are imposed over summary structures

(e.g., synopses [15]), thus the returned query answers are approximate. Because

of the limitations on storage and performance, backtracking over streaming data

is not allowed, and online algorithms are restricted to making only one pass

over streaming data. Till now, a large amount of works have investigated these

newly raised research issues. Some of them are related to models and languages

(see [47] for a survey), some focus on continuous query processing problems,

e.g., load shedding, join problems and efficient window-based operators [17],

and many concentrate on data stream mining [36, 56, 85], and so on.

2.3 Information loss metrics

The anonymization problem calls for the enforcement of privacy principle (e.g.,

k-anonymity, ℓ-diversity, and t-closeness) on a data set, while sacrificing as lit-

tle of the information in the data as possible. To quantify the information quality

compromised for the sake of privacy, we need an appropriate information loss

metric. Past literature has proposed various metrics, such as the Classification

Metric [43] and the Discernibility Metric [19]. The best metric to use depends
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on the intended use of the data. We assume that the anonymized data is to be

used for multiple purposes, which may not be known in advance; hence we

adopt a General Loss Metric (GLM) [26, 40, 43, 83].

Let QI = {A1, A2, . . . , Ad} and G be an EC. For a numerical attribute

NA ∈ QI , let [ℒNA,UNA] be its domain range and [lGNA, u
G
NA] the minimum

sub-range containing all its values in G; then the information loss with respect

to NA in G is defined as:

ℐℒNA(G) =
uGNA−l

G
NA

UNA−ℒNA

Any

Secondary

Ph.D.MasterBachelor
School
Secondary

University

School
Primary

Figure 2.1: Domain generalization hierarchy of education

For a categorical attribute CA, we assume a generalization hierarchy ℋCA

over its domain. Figure 2.1 illustrates such an example, where the leaves repre-

sent the specific values in the domain of attribute education, and each inter-

nal node represents a generalized value of all its descendants. If a is the lowest

common ancestor in ℋCA of all CA values in G, then the information loss with

respect to CA in G is defined as:

ℐℒCA(G) =

⎧⎨⎩ 0, ∣Leaves(a)∣ = 1
∣Leaves(a)∣
∣Leaves(ℋCA)∣ , otherwise

where Leaves(a) is the set of leaves under the subtree of ℋCA rooted at a, and

Leaves(ℋCA) is the total set of leaves in ℋCA. The total information loss of G

is then:

ℐℒ(G) =
∑d
i=1wi × ℐℒAi(G)
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where wi is the weight ofAi and
∑d
i=1wi = 1. In our experiments, we treat each

Ai as equally important, hence assign wi = 1/d. The total information loss on

a database table Dℬ, partitioned into a set SG of ECs, is defined as:

Aℐℒ(SG) =

∑
G∈SG ∣G∣ × ℐℒ(G)

∣Dℬ∣

2.4 Summary

This chapter studies related anonymization methods, briefly discusses the data

streams, and introduces the information loss measure. These form the back-

ground knowledge of our thesis.
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CHAPTER 3

SABRE: A SENSITIVE

ATTRIBUTE BUCKETIZATION AND

REDISTRIBUTION FRAMEWORK

FOR t-CLOSENESS

Organizations such as ministries or hospitals regularly release microdata (e.g.,

census data or medical records) to serve the public benefits. However, as dis-

cussed in Chapter 1, such data are vulnerable to linking attack. Past research

has striven to define the privacy principle to limit it. The main highlights of the

efforts consist of the k-anonymity [66, 67], ℓ-diversity [57], and, most recently,

the t-closeness [52] models. k-anonymity successfully protects against identity

disclosure, but suffers from homogeneous attack (see Section 1.1.1). While ℓ-

diversity [57] has addressed the limitation existing in k-anonymity, it is still vul-

nerable to skewness and similarity attacks (see Section 1.1.2). The t-closeness

model takes a step forward in privacy enforcement than its predecessors. In

spite of that, all the existing t-closeness schemes are straightforwardly extended

from k-anonymity instantiations, lacking a customization towards the specific

features of the t-closeness model. To fill this gap, in this chapter we propose

SABRE, a Sensitive Attribute Bucketization and REdistribution framework for

t-closeness.
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3.1 Introduction

The t-closeness model aims to forestall the type of attacks against ℓ-diversity

(i.e., skewness and similarity attacks), by requiring that the SA distribution in

any EC differs from its overall distribution by at most a given threshold t, ac-

cording to an appropriate distance metric. The value of t constrains the addi-

tional information an adversary gains after seeing a single EC, measured with

respect to the information provided by the full released table. The t-closeness

guarantee directly protects against a skewness attack, while it also provides de-

fense against a similarity attack, depending on the extent to which semantic

similarity exists among the SA values in the whole table [52].

The t-closeness model poses the problem of bringing a microdata table to a

form that complies with it while degrading data quality as little as possible. This

problem is distinct from those posed by other privacy models. Each model poses

a particular tradeoff between privacy and information quality, which needs to be

resolved in an effective and efficient manner. However, the two extant schemes

for t-closeness [52, 53] are extensions of algorithms designed for k-anonymity;

they employ either the Incognito [48] or the Mondrian [49] technique for k-

anonymization, merely adding to them the extra condition that the produced

ECs should satisfy t-closeness. Still, a good t-closeness anonymization does

not1 necessarily derive from a good k-anonymization. Thus, unfortunately, the

techniques in [52, 53] limit the effectiveness of achieving t-closeness by build-

ing themselves on top of k-anonymizations, and fail in terms of efficiency by

performing too many brute-force t-closeness satisfaction checks. The question

of an algorithm tailored for t-closeness-abiding anonymization remains open.

1An analogous observation was made with respect to the particular problem posed by ℓ-
diversity in [41].
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Therefore, we provide SABRE, a Sensitive Attribute Bucketization and RE-

distribution framework for t-closeness. SABRE operates in two phases. First, it

partitions a table into buckets of similar SA values in a greedy fashion. Then,

it redistributes tuples from each bucket into dynamically configured ECs. Fol-

lowing [52, 53], we employ the Earth Mover’s Distance (EMD) as a measure of

closeness between distributions, and utilize a property of this measure to facili-

tate our approach. Namely, a tight upper bound for the EMD of the distribution

in an EC from the overall distribution can be derived as a function of localized

upper bounds for each bucket, provided that the tuples in the EC are picked pro-

portionally to the sizes of the buckets they hail from. Furthermore, we prove

that if the bucket partitioning obeys t-closeness, then the derived ECs also abide

to t-closeness. We develop two SABRE instantiations. The former, SABRE-AK

focuses on efficiency. The latter, SABRE-KNN trades some efficiency for infor-

mation quality. Our extensive experimental evaluation demonstrates that both

instantiations achieve information quality superior to schemes that extend algo-

rithms customized for k-anonymity to t-closeness, while SABRE-AK is much

faster than them as well.

The rest of this chapter is organized as follows. In the next section, we dis-

cuss the Earth Mover’s Distance. Section 3.3 introduces an observation from

which SABRE is derived. We propose SABRE framework and outline its two

instantiations in Section 3.4. In section 3.5, we present the results of an exten-

sive performance study. We discuss our findings in Section 3.6 and conclude

this chapter in Section 3.7.

3.2 The earth mover’s distance metric

t-closeness model postulates that the SA distribution in any EC differ from that



28

in the whole table by no more than a threshold t. Neither the Kullback-Leibler

(KL) nor the variational distance is appropriate for evaluating the difference of

two distributions, as they do not consider semantic relationships of SA values

[52]. Here, we adopt the same metric as [52]—Earth Mover’s Distance [65], to

measure the difference between two distributions.

The Earth Mover’s Distance (EMD) is suggested as a metric for quantifying

the difference between distributions. Intuitively, it views one distribution as a

mass of earth piles spread over a space, and the other as a collection of holes, in

which the mass fits, over the same space. The EMD between the two is defined

as the minimum work needed to fill the holes with earth, thereby transforming

one distribution to the other.

LetP = (p1, p2, . . . , pm) be the distribution of “holes”,Q = (q1, q2, . . . , qm)

that of “earth”, dij the ground distance of qi from pj , and F = [fij], fij ≥ 0 a

flow of mass of earth moved from element qi to pj , 1 ≤ i, j ≤ m. The EMD is

the minimum value of the work required to transform Q to P by F :

WORK(P ,Q, F ) =
∑m
i=1

∑m
j=1 dij × fij

For the chapter to be self-contained, in the following, we present the EMD

formulas given in [52].

In case of a numerical SA, let its ordered domain be {v1, v2, . . . , vm}, where

vi is the itℎ smallest value (P and Q are distributions over these values). The

distance between two values vi, vj in this domain is defined by the number

of values between them in the total order, as ∣i−j∣
m−1

. Then the minimal work for

transformingQ toP can be calculated by sequentially satisfying the earth needs

of each hole element, moving earth from/to its immediate neighbor pile [52].

Thus, the EMD between P and Q is defined as:

EMD(P ,Q) = 1
m−1

∑m−1
i=1

∣∣∣∑i
j=1(qj − pj)

∣∣∣
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In case of a categorical SA, we assume a generalization hierarchy ℋ over

its domain. For example, Figure 3.1 depicts a hierarchy of respiratory and di-

gestive diseases. The distance between two (leaf) values vi and vj is defined as

ℎ(vi,vj)

ℎ(ℋ)
, where ℎ(ℋ) is the height ofℋ, and ℎ(vi, vj) that of the lowest common

ancestor of vi and vj in ℋ. To define EMD, we first define the following recur-

sive function of the collective extra earth residing among the leaves under node

n inℋ.

extra(n) =

⎧⎨⎩ qi − pi, if n is a leaf vi∑
c∈cℎild(n) extra(c), otherwise

Respiratory and 
digestive diseases

Respiratory
diseases

Digestive 
diseases

Pneumonia BronchitisSARS Gastric flu Gastric 
ulcer

Intestinal 
cancer

Figure 3.1: The hierarchy for disease

The value of extra(n) denotes the exact amount of earth that should be

moved in/out of node n. Furthermore, we define the accumulated amount of

earth to be moved inwards and outwards for an internal node ofℋ:

nege(n) =
∑

c∈cℎild(n)∧extra(c)<0

∣extra(c)∣

pose(n) =
∑

c∈cℎild(n)∧extra(c)>0

extra(c)

Then the minimum of the above quantities signifies the cost of all pending earth

movements among the leaves under node n, after their cumulative earth ex-

cess/deficit has been corrected:

cost(n) = ℎ(n)
ℎ(ℋ)

min(pose(n), nege(n))
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Where ℎ(n) is the height of node n in the hierarchy of ℋ. Then, the total EMD

between P and Q is:

EMD(P ,Q) =
∑
n cost(n)

where n is a non-leaf node inℋ.

Name Weight Age Disease
Mike 60 40 SARS
Alice 70 50 intestinal cancer
John 60 60 pneumonia
Bob 50 50 bronchitis
Beth 80 50 gastric flu
Carol 70 70 gastric ulcer

Table 3.1: Patient records

EC Weight Age Disease
[50-60] [40-60] SARS

1 [50-60] [40-60] pneumonia
[50-60] [40-60] bronchitis
[70-80] [50-70] intestinal cancer

2 [70-80] [50-70] gastric flu
[70-80] [50-70] gastric ulcer

Table 3.2: 3-diverse published table

Example 3.1. Assume Table 3.1 is the input table, {weight, age} the QI ,

disease the SA, and Table 3.2 the published table. Let R, D and RD rep-

resent respiratory diseases, digestive diseases, and respiratory and digestive

diseases, respectively. The SA distribution in Table 3.1 is P = (1
6
, 1

6
, . . . , 1

6
),

while that in EC 1 of Table 3.2 is Q = (1
3
, 1

3
, 1

3
, 0, 0, 0). Then extra(SARS) =

extra(pneumonia) = extra(broncℎitis) = 1
6
. Thus, extra(R) = 1

2
, pose(R) =

1
2
, and nege(RD) = 0, hence cost(R) = 0. Likewise, extra(D) = −1

2
and

cost(D) = 0. In effect, extra(RD) = 0, and pose(RD) = nege(RD) = 1
2
.

Therefore, cost(RD) = 1×min(pose(RD), nege(RD)) = 1
2
, andEMD(P ,Q) =

cost(R) + cost(D) + cost(RD) = 0.5.

3.3 Observations and challenges

This section describes the observations, from which our SABRE framework is

derived. Table 3.3 gathers together the notations we will use throughout the

chapter.



31

Notation Denotation
Dℬ A microdata table (original table)
SA The sensitive attribute in Dℬ

V = {v1, v2, . . . , vm} The domain of SA
Ni The number of tuples with vi in Dℬ

pi = Ni/∣Dℬ∣ The distribution of value vi in Dℬ
P = (p1, p2, . . . , pm) Overall distribution of SA in Dℬ

G An equivalence class
Q = (q1, q2, . . . , qm) The distribution of SA in G

Table 3.3: Employed notations

SABRE consists of two phases. In the first one, bucketization, it partitions

Dℬ into a set of buckets, so that each SA value appears in only one bucket,

defined as follows.

Definition 3.1 (bucket partition). Given a table Dℬ, sensitive attribute SA, we

say that a set of buckets ' forms a bucket partition ofDℬ if and only if
∪
∀ℬ∈'
ℬ =

Dℬ and each SA value appears in exactly one bucket.

In the second phase, redistribution, SABRE reallocates tuples from buckets

to ECs. For the sake of exposition, we first consider the requirement that the

number of tuples assigned to an EC from a certain bucket is proportional to that

bucket’s size. This proportionality requirement is defined as follows.

Definition 3.2 (proportionality requirement). Given a table Dℬ and a bucket

partition thereof ', assume that an EC, G, is formed with a subset of tuples xi

from bucket ℬi ∈ ', i = 1, 2, . . . , ∣'∣. G abides to the proportionality require-

ment with respect to ', if and only if the sizes of xi are proportional to those of

ℬi, i.e., ∣x1∣ : ∣x2∣ : . . . : ∣x∣'∣∣ = ∣ℬ1∣ : ∣ℬ2∣ : . . . : ∣ℬ∣'∣∣.

Assume we create a partitioning '′ = {b1, b2, . . . , bm}, in which bucket bi

includes those and only those tuples in Dℬ that have SA value vi. Then we
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select xi tuples from bucket bi, i = 1, 2, . . . , ∣'∣, to form an EC G. In this case,

if G follows the proportional requirement with respect to '′, then it also holds

that ∣x1∣ : ∣x2∣ : . . . : ∣xm∣ = N1 : N2 : . . . : Nm, where Ni = ∣bi∣ is the

number of tuples with SA value vi inDℬ. In effect, G is 0-close toDℬ; thus, an

adversary gains no extra information by seeing G. Still, a complete enforcement

of 0-closeness for all ECs would severely degrade information quality. This is

not what we aim for; we wish to allow for some loss of privacy, delimited by the

t-closeness constraint, in order to preserve more in terms of information quality.

Thus, we need to opt for a more flexible arrangement in our scheme.

To that end, we can start out with buckets of more than one distinct SA

value. We slice Dℬ into an alternative bucket partition ' = {ℬ1,ℬ2, . . . ,ℬ∣'∣},

in which each bucket ℬi may contain multiple semantically close SA values. In

this case, an EC G that satisfies the proportionality requirement with respect to

the buckets in ' does not necessarily obey the relationship ∣z1∣ : ∣z2∣ : . . . :

∣zm∣ = N1 : N2 : . . . : Nm, where zi is the set of tuples with SA value vi in

G, i = 1, 2, . . . ,m. After all, when we pick tuples from a bucket ℬi to form

G, we do not discriminate between different SA values. The following example

illustrates the two EC compositions described above.

Age

weight50 60 70 80

40

70

60

50

Disease
SARS

gastric ulcer

gastric flu

bronchitis

pneumonia

Intestinal cancer

3

2

1

3

12

Figure 3.2: Information quality under SABRE
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Example 3.2. Consider Table 3.1, where {weight, age} is the QI, and

disease is the SA. Figure 3.2 shows the QI-space and the distribution of

tuples from Table 3.1 (each QI attribute corresponds to a dimension). A bucket

partition'′ of this table could consist of six buckets of one tuple each, b1, b2, . . . , b6,

with SA values SARS, pneumonia, bronchitis, intestinal cancer, gastric flu, and

gastric ulcer, respectively. Taking one tuple from each of these buckets, we could

build a single EC of 0-close privacy. Still, such an EC covers the entire QI-

space, incurring high information loss. Another bucket partition could consist

of two buckets of three semantically similar tuples each, ' = {ℬ1,ℬ2}, with

SARS, pneumonia, and bronchitis in bucket ℬ1 and the rest in ℬ2. We can then

build three ECs, by taking one tuple from each of these buckets, as shown in

Figure 3.2. Tuples in the same EC are labeled by the same number in the fig-

ure. This EC partitioning achieves better information quality, as the minimum

bounding boxes of ECs in QI-space are smaller.

An equivalence class G constructed from a looser bucket partition achieves

higher information quality, but is no longer 0-close. Still, it suffices to construct

it in a manner that obeys t-closeness for a given t. In Example 3.2, all three

ECs generated from ' are 1
3
-close with respect to the distribution of disease

in Table 3.1, hence satisfying t-closeness for t ≥ 1
3
.

Following the above observations, SABRE first partitions tuples according

to their SA values, and then redistributes the tuples to ECs. In order to en-

sure t-closeness and good information quality, we need to address the following

questions:

1. How should we partition SA values into buckets? How many buckets

should we generate to ensure t-closeness?

2. How many ECs should we generate? How should we choose tuples from
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each bucket to form an EC?

Next we present our approaches to these questions.

3.4 The SABRE framework

The SABRE framework consists of two phases: first, a bucketization phase par-

titions the microdata into a set of buckets of similar SA values (Section 3.4.1),

then a redistribution phase dynamically determines EC sizes (Section 3.4.2).

Section 3.4.3 puts the above phases together and summarizes the SABRE frame-

work.

3.4.1 SABRE’s bucketization scheme

We commence the presentation of our bucketization scheme with a property of

the proportionality requirement.

Consider a categorical SA with the domain hierarchy in Figure 3.1. Assume

that a tableDℬ contains 50 tuples with SARS, 30 with Pneumonia, 20 with Bron-

chitis, 40 with Gastric flu, 20 with Gastric ulcer, and 20 with Intestinal cancer.

Suppose a bucket partition ' = {ℬ1,ℬ2} of Dℬ, where ℬ1 contains all tuples

with SARS, Pneumonia and Bronchitis, and ℬ2 includes tuples with the remain-

ing three SA values. The overall SA distribution is P =
(

5
18
, 3

18
, 2

18
, 4

18
, 2

18
, 2

18

)
.

Then an EC, G, with 10 tuples from ℬ1 and 8 tuples from ℬ2 satisfies the pro-

portionality requirement with respect to '. For instance, G may comprise 4

tuples with SARS, 2 with Pneumonia, 4 with Bronchitis, 0 with Gastric flu, 4

with Gastric ulcer, and 4 with Intestinal cancer. Then the SA distribution in G

is Q =
(

4
18
, 2

18
, 4

18
, 0, 4

18
, 4

18

)
.

Now, we can divide the elements (i.e., holes) of P in two subsets, H1 ={
5
18
, 3

18
, 2

18

}
and H2 =

{
4
18
, 2

18
, 2

18

}
, and, likewise, the piles of earth in Q in
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E1 =
{

4
18
, 2

18
, 4

18

}
and E2 =

{
0, 4

18
, 4

18

}
, corresponding to the division of SA

values into respiratory diseases in ℬ1 and digestive diseases in ℬ2. Then the

volume of holes in H1 is 5
18

+ 3
18

+ 2
18

= 10
18

, equal to the volume of earth in

E1, 4
18

+ 2
18

+ 4
18

= 10
18

. Likewise, the volume of holes in H2 equals that of

earth in E2. In effect, the transformation from Q to P can be decomposed in

two independent subtasks: filling the holes in H1 with earth from E1, and those

in H2 with earth from E2. We name such a subtask earth transportation in a

bucket, defined as follows.

Definition 3.3 (earth transportation in a bucket). Assume a bucket partition '

of a table Dℬ with sensitive attribute SA, and any equivalence class G that

follows the proportionality requirement with respect to '. Without loss of gen-

erality, assume bucket ℬ ∈ ' contains the SA values v1, v2, . . . , vj . Then, earth

transportation in ℬ with regard to G is the transformation from (q1, q2, . . . , qj) to

(p1, p2, . . . , pj), where qi is the distribution of vi in G and pi is the distribution

of vi in Dℬ, i = 1, 2, . . . , j.

We denote the cost of this earth transportation in bucket ℬ with regard to EC

G as CET (ℬ,G). Once a table Dℬ is given, p1, p2, . . . , pj are fixed. But the

values of q1, q2, . . . , qj depend on the EC G at hand. For instance, in our running

scenario, the distribution of the 10 tuples from ℬ1 in G among values SARS,

Pneumonia, and Bronchitis is q1 = 4
18

, q2 = 2
18

, and q3 = 4
18

. If the 10 tuples

are all Bronchitis, then q1 = q2 = 0 and q3 = 10
18

. Actually, they could be any 10

tuples from ℬ1. Still, we are interested in the worst-case value of CET (ℬ,G)

over all possible ECs following the proportionality requirement to '. Thus, we

define an upper bound of CET (ℬ,G) as follows.

Definition 3.4 (upper-bound cost in a bucket). Assume a bucket partition ' of

a table Dℬ with sensitive attribute SA, and a bucket ℬ ∈ '. Then, we define
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CETUℬ , the upper-bound cost of earth transportation inℬ, as the highest possible

value of CET (ℬ,G) over all possible equivalence classes G that follow the

proportionality requirement to '.

CETUℬ = max
∀G
{CET (ℬ,G)}

In the following, we present three theorems that form the foundation of

SABRE. Let ' be a bucket partition of tableDℬ, and G be an EC following pro-

portionality requirement with respect to '. Theorem 3.1 formalizes the intuition

gained from the above scenario—it essentially tells us that earth transportation

in a bucket can be independent from that of any other bucket. Given a bucket

B ∈ ', theorem 3.2 determines CETUℬ . Based on the above two, theorem 3.3

states that we can compute the cost of transforming the SA distribution in G to

that in Dℬ, by the summation of the upper bounds related with all buckets in '.

Theorem 3.1 (Independence). Let G be an EC that follows the proportionality

requirement with respect to a bucket partition ' of table Dℬ with sensitive at-

tribute SA. Given any bucket ℬ ∈ ', the earth transportation in ℬ with regard

to G is independent from buckets in ' ∖ {ℬ}.

Proof. Without loss of generality, assume that ℬ contains tuples with SA values

of v1, v2, . . . , vj , and let zi be the set of tuples in G with SA value of vi, i =

1, 2, . . . , j. We consider {p1, p2, . . . , pj}, pi = Ni/∣Dℬ∣, as the set of holes,

and {q1, q2, . . . , qj}, qi = ∣zi∣/∣G∣, as the piles of earth. Given that G follows

the proportionality requirement with respect to ', the number of tuples from ℬ

assigned to G is
∑j
i=1 ∣zi∣ =

∣ℬ∣
∣Dℬ∣ ⋅ ∣G∣. Then,

j∑
i=1

qi =
1

∣G∣

j∑
i=1

∣zi∣ =
∣ℬ∣
∣Dℬ∣

=
1

∣Dℬ∣

j∑
i=1

Ni =
j∑
i=1

pi

Therefore, the volume of earth equals the volume of holes, hence earth trans-

portation between them can be done locally, i.e., the transformation from (q1, q2,
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. . . , qj) to (p1, p2, . . . , pj) can be independent from the earth transportation of

any other bucket in ' ∖ {ℬ}.

Theorem 3.2 (Upper bound). Let ' be a bucket partition of table Dℬ with

sensitive attribute SA; assume that bucket ℬ ∈ ' contains SA values of v1,

v2, . . ., vj . Then CETUℬ , the upper-bound cost of earth transportation in ℬ, is

determined as follows:

∙ For a categorical SA,

CETUℬ =
ℎ(n)

ℎ(ℋ)
⋅

⎛⎝ j∑
i=1

pi −min{p1, p2, . . . , pj}

⎞⎠
, where ℋ is the domain hierarchy of SA and n is the lowest common

ancestor of v1, . . . , vj .

∙ For a numerical SA,

CETUℬ = max
ℓ=1,2,...,j

⎧⎨⎩
j∑
i=1

dℓi × pi

⎫⎬⎭
, where dℓi is the distance between vℓ and vi.

Proof. Again, we consider {p1, p2, . . . , pj} as a collection of holes, and {q1, q2,

. . . , qj} as piles of earth, where qi is the distribution of vi in G (an EC following

proportionality requirement with respect to '). By Theorem 3.1,
∑j
i=1 pi =∑j

i=1 qi. Categorical SA. We divide the set of holes into two subsets: The

subset of holes “missing earth”, H1 = {pℓ∣pℓ > qℓ, 1 ≤ ℓ ≤ j}, and that of

holes “in excess of earth”, H2 = {pℓ∣pℓ ≤ qℓ, 1 ≤ ℓ ≤ j}. Likewise, we

separate the set of earth-piles in two corresponding subsets: that of “deficient”

piles, E1 = {qℓ∣pℓ > qℓ, 1 ≤ ℓ ≤ j}, and that of “superfluous” piles, E2 =

{qℓ∣pℓ ≤ qℓ, 1 ≤ ℓ ≤ j}. The earth transportation in ℬ involving G is done by

two steps.
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In the first step, we fill up hole pi with earth qi, i = 1, 2, . . . , j. Since the

distance between pi and qi is 0, the cost of this step is 0. Still, all the earth of

deficient piles in E1 is used up; thus, in order to fill up the holes missing earth

in H1, we need extra earth of nege(n) =
∑
∀qℓ∈E1

(pℓ − qℓ). Symmetrically, the

holes in excess of earth in H2 are completely filled, and the superfluous earth-

piles in E2 have extra earth of exactly pose(n) =
∑
∀qℓ∈E2

(qℓ − pℓ). From the

independence of earth transportation within ℬ, i.e., from
∑j
i=1 pi =

∑j
i=1 qi, it

follows that nege(n) = pose(n), as we would expect.

In the second step, we have to move nege(n) earth from the superfluous

piles in E2 to the holes missing earth in H1. Since the distance between any two

elements in {v1, . . . , vj} is at most ℎ(n)
ℎ(ℋ)

, the cost of the whole earth movement

is at most ℎ(n)
ℎ(ℋ)
⋅ nege(n). However, nege(n) ≤ ∑

∀pℓ∈H1
pℓ. Besides, because

there is at least one hole in H2 (i.e., at least one superfluous pile), it follows

that
∑
∀pℓ∈H1

pℓ ≤
∑j
i=1 pi −min{p1, p2, . . . , pj}. Putting it all together, we get

CET (ℬ,G) ≤ ℎ(n)
ℎ(ℋ)
⋅
(∑j

i=1 pi −min{p1, p2, . . . , pj}
)
.

Numerical SA. We scan the holes {p1, p2, . . . , pj} sequentially, and fill

up every hole in need of earth that we encounter. For each such hole, we use

earth from its nearest pile, resolving ties arbitrarily. If the nearest pile is used

up, we move earth from its second nearest pile. This continues until the hole

is filled up. Thus, we transfer earth in the most affordable way. Let qℓ, 1 ≤

ℓ ≤ j, be the last pile that the process takes earth from. After qℓ is used up,

all the holes are filled. Using qℓ, we divide the holes {p1, p2, . . . , pj} into two

groups: H1, holes that are entirely filled by earth hailing from qℓ, and H2, the

rest. We name the above as sequential process, and denote its cost by seqc. The

following situation, which has all earth concentrated in the ℓtℎ pile, corresponds

to distribution (q̃1, q̃2, . . . , q̃j), where q̃ℓ =
∑j
i=1 pi and q̃i = 0 if i ∕= ℓ. The cost
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of the given situation (by transforming (q̃1, q̃2, . . . , q̃j) to (p1, p2, . . . , pj)) is an

upper bound of seqc. That is because filling a hole in H1 sequential process has

the same cost as the given situation; on the other hand, filling a hole in H2 the

former costs less than the latter, because in the former case some earth is brought

to the hole from a pile that is, by the definition of H2, closer to it than pile qℓ.

The cost of the given situation is
∑j
i=1(dℓi × pi). We cannot know which pile qℓ

is, thus we consider the worst-case scenario, i.e., the maximum out of all ℓ. In

effect, the cost to transform {q1, q2, . . . , qj} to {p1, p2, . . . , pj} is upper-bounded

by max
ℓ=1,2,...,j

⎧⎨⎩
j∑
i=1

dℓi × pi

⎫⎬⎭.

Both upper bounds are tight. The bounds are reached when the tuples from

ℬ assigned to G all have the same SA value vℓ. For categorial SA, vℓ is the

least frequent value among v1, v2, . . . , vj , with pℓ = min{p1, p2, . . . , pj}. For

numerical SA, vℓ is the value for which
∑j
i=1(dℓi × pi) is maximized.

Theorem 3.3 (Additivity). Let G be any EC that follows the proportionality

requirement with respect to a bucket partition ' of table Dℬ with sensitive at-

tribute SA. Then the EMD of transforming the SA distribution Q in G to the

distribution P in Dℬ is tightly upper bounded by
∑
∀ℬ∈'

CETUℬ .

Proof. In order to transform Q to P , we need to carry out the earth transporta-

tion in each bucket ℬ ∈ '. Since these transportations do not affect each other

(Theorem 3.1), the EMD required to transformQ to P is the sum of their costs,

and the upper bound of this sum is the sum of the upper bounds to the individual

costs. The bound is tight, and reached when the cost of earth transportation in

each bucket ℬ arrives at its tight upper bound, i.e., all tuples allocated to G from

ℬ share a same SA value (Theorem 3.2).

Example 3.3. Consider once again our running scenario. We still assume that

SARS, pneumonia, and bronchitis are in ℬ1, and ℬ2 comprises tuples of the
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remaining three SA values. We select 10 tuples from ℬ1 and 8 tuples from ℬ2 to

form G. If the 10 tuples from ℬ1 all have SA value bronchitis, then (q1, q2, q3) =

(0, 0, 10
18

) and the cost of earth transportation in ℬ1 reaches its upper bound

1
2
⋅ [(p1 + p2 + p3)−min{p1, p2, p3}] = 2

9
, where (p1, p2, p3) = ( 5

18
, 3

18
, 2

18
). This

upper bound is realized by moving 5
18

earth from q3 to p1 (cost is 1
2
× 5

18
), 3

18
earth

from q3 to p2 (cost is 1
2
× 3

18
), and 2

18
earth from q3 to p3 (cost is 0× 2

18
). Likewise,

if the 8 tuples from ℬ2 are all with gastric ulcer (or intestinal cancer), then the

cost of earth transportation in ℬ2 reaches its upper bound 1
2
⋅ [(p4 + p5 + p6)−

min{p4, p5, p6}] = 1
6
. With 10 tuples of bronchitis and 8 of gastric ulcer, the SA

distribution in G isQ = (0, 0, 10
18
, 0, 8

18
, 0). The overall SA distribution in Dℬ is

P = ( 5
18
, 3

18
, 2

18
, 4

18
, 2

18
, 2

18
). After the earth transportations in B1 and B2, Q is

transformed to P with a cost upper bounded by CETUℬ1 +CETUℬ2 = 2
9

+ 1
6

= 7
18

.

After the above foundations, we can now discuss the generation of buck-

ets. SABRE partitions Dℬ hierarchically, based on the SA values of its tuples,

forming a bucketization tree. Each node of this tree denotes a bucket containing

tuples having a certain subset of SA values. The leaf nodes of the tree are the

buckets that correspond to the actual bucket partition of Dℬ. The tree starts

with a single node — the root — which corresponds to the entire table with the

whole domain of SA. Then the tree grows in a top-down manner by recursively

splitting leaf nodes. In each iteration, we can compute the upper bounded cost

of each node/bucket (based on Theorem 3.2). By Theorem 3.3, we determine U ,

the summation of all the upper bounds. In this way, we select the node that con-

tributes to the largest reduction of U as the node to be further split. This process

terminates when U becomes smaller than the closeness threshold t. By Theo-

rem 3.3, this termination condition guarantees that the SA distribution in any

EC formed from the final buckets according to the proportionality requirement
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will not differ from that in Dℬ by more than t.

We now elaborate on the way we split a leaf bucket/node n. For a categorical

SA, let ℋ be the domain hierarchy of SA. Then each node in the bucketization

tree has a corresponding node in ℋ. The root of the tree matches the root of ℋ.

When splitting n, its new children are the children of its corresponding node in

ℋ.

Respiratory and 
digestive diseases

Respiratory
diseases

Digestive 
diseases

(2/9) (1/6)

Figure 3.3: Splitting at root

Respiratory and 
digestive diseases

Respiratory
diseases

Digestive 
diseases

(2/9) (1/6)

Pneumonia BronchitisSARS

(0)(0)(0)

Figure 3.4: Splitting at respiratory diseases

Example 3.4. Let disease be a categorical SA with the domain hierarchy of

Figure 3.1. Assume a table Dℬ, containing 5 tuples with SARS, 3 with Pneu-

monia, 2 with Bronchitis, 4 with Gastric flu, 2 with Gastric ulcer, and 2 with

Intestinal cancer. The resultant distribution is
(

5
18
, 3

18
, 2

18
, 4

18
, 2

18
, 2

18

)
. Assume

a threshold t = 0.2. We build the bucketization tree in a top-down fashion as

follows. At the beginning, the tree comprises the root, respiratory and digestive

diseases. The upper bound cost of the root is calculated as 1× (( 5
18

+ . . .+ 2
18

+

2
18

) − min{ 5
18
, . . . , 2

18
, 2

18
}) = 1 × (1 − 2

18
) = 0.889. Since 0.889 > 0.2, we

split it. We add its two children respiratory diseases, digestive diseases to the

tree, as in Figure 3.3. Now the upper bound cost of node respiratory diseases is

1
2
×
(

10
18
− 2

18

)
= 2

9
, and that of digestive diseases is 1

2
×
(

8
18
− 2

18

)
= 1

6
. Since

2
9

+ 1
6

is still larger than t, we further split the tree. Splitting respiratory diseases

would reduce U by 2
9
, whereas splitting digestive diseases would reduce it by
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1
6
; thus, we opt for the former. We add the three children of node respiratory

diseases to the tree. Now the sum of upper bounds of all leaf nodes is 1
6
< t.

Figure 3.4 shows the final tree.

On the other hand, for a numerical SA, the children of n are dynamically

determined. Let lv be the set of SA values included in n, sorted in ascending

order. We split lv to a left child c1, containing values in lv to the left of the

splitting point, and a right child c2 with the remaining ones. The splitting point

is the one that minimizes CETUc1 + CETUc2 .

Example 3.5. Let salary be a numerical SA with values 1k, 2k, 3k, 4k. As-

sume that a tableDℬ contains 2 tuples with 1k, 3 with 2k, 3 with 3k, and 2 with

4k. Then the salary distribution is (0.2, 0.3, 0.3, 0.2). We label the four values

from 1 to 4 sequentially. The upper bound cost for a bucketization tree com-

posed only of the root (1k−4k) is d11×0.2+d12×0.3+d13×0.3+d14×0.2 =

0 + 1
3
× 0.3 + 2

3
× 0.3 + 1× 0.2 = 0.5. If we set the splitting point at 1k, then

the left child of 1k−4k will be 1k, and its right child 2k−4k. The upper bound

cost of 1k is 0, and that of 2k − 4k is d42 × 0.3 + d43 × 0.3 + d44 × 0.2 = 0.3,

as shown in Figure 3.5(a). Figures 3.5(b),(c) depict the corresponding trees for

splitting along 2k and 3k. The minimum sum of upper bounds is that in Figure

3.5(b). Thus, for a threshold t = 0.25, the tree in Figure 3.5(b) is the final tree.

(0)(0.3)(0) (0.3) (0.1)(0.1)
(a) (c)

1k-4k 1k-4k1k-4k

2k-4k

(b)

1k-2k 3k-4k 1k-3k 4k1k

Figure 3.5: Splitting of salary at 1k-4k
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Function bucketCat generates buckets for a categorical SA. Input parameter

ℋ is the domain hierarchy of SA; VP is the list of (vi, pi) pairs, the SA value and

its frequency in the whole table, i = 1, 2, . . . ,m. ℒ stores all the leaf nodes of

the bucketization tree (steps 1-2). We use a node to represent its corresponding

bucket. Step 4 calculates the upper bound cost of the root r. Steps 5-7 compute

the potential cost reduction after splitting r (dv denotes the decreased value).

The root r is the first node added to ℒ. U , the sum of all upper bounds of the

nodes in ℒ, is initialized to CETUr (step 8). The leaf node n whose splitting

reduces U at most is split (step 10), n is replaced by its children in ℒ (steps 11-

13), and U is accordingly reduced (step 14). Steps 17-20 calculate how much

U can be deduced if n’s child is split. This process continues iteratively (steps

9-20) until U < t (steps 15-16). Eventually, each node in ℒ is associated to a

bucket in ', and ' is returned (steps 21-22).

Function bucketCat(ℋ, VP)
Let ℒ be the set of leaf nodes in the bucketization tree;1
Initialize ℒ to be empty;2
Let r be the root ofℋ;3

Calculate CETU
r ;4

foreach child c of r inℋ do5
calculate CETU

c ;6

dvr=CETU
r −

∑
c∈cℎild(r) CET

U
c ;7

Add r to ℒ and initialize U = CETU
r ;8

while U ≥ t do9
Let n be the node in ℒ with the maximum dv value;10
Remove n from ℒ;11
foreach child c of n inℋ do12

Add c to ℒ;13
U = U − dvn;14
if U < t then15

break;16
foreach child c of n do17

foreach child gc of c inℋ do18
Calculate CETU

gc;19

dvc = CETU
c −

∑
gc∈cℎild(c) CET

U
gc;20

Let ' be the set of buckets related with nodes in ℒ;21
Return ';22
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Function bucketNum(VP)
Let ℒ be the set of leaf nodes in the bucketization tree;1
Initialize ℒ to be empty;2
Create root r and initialize its SA values lvr to be VP;3

Calculate CETU
r ;4

Create c1 and c2, the left and right children of r;5
split (r, c1, c2 );6

dvr = CETU
r − CETU

c1 − CET
U
c2 ;7

Add r to ℒ and initialize U = CETU
r ;8

while U ≥ t do9
Find the node n in ℒ with the maximum value of dv;10
Remove n from ℒ;11
foreach child c of n do12

Add c to ℒ;13
U = U − dvn;14
if U < t then15

break;16
foreach child c of n do17

Create g1 and g2, the left and right children of c;18
split ( c, g1, g2 );19

dvc = CETU
c − CETU

g1 − CET
U
g2 ;20

Let ' be the set of buckets related with nodes in ℒ;21
Return ';22

Similarly, Function bucketNum generates buckets of a numerical SA. Input

parameter VP is the list of SA values and their frequencies in the whole table,

sorted in ascending order of SA values. Each node in the bucketization tree has

a container lv that records all SA values covered by that node. The root r has

lv equal to VP , i.e. r covers all SA values (step 3). Procedure split calculates

the best gain of dividing r into two child nodes (step 6) and r is added as the

first node to ℒ (step 8). CETUr (step 4) is assigned as the initial value of U

(step 8). Then, nodes in ℒ are split iteratively until U becomes smaller than

the closeness threshold t (steps 9-20). In each round, the most cost-reducing

node n is chosen from ℒ to be split (step 10), and replaced by its two children

(steps 11-13). The gain of splitting the children of n is also calculated (steps

17-20). The best grandchildren for n are dynamically determined by Procedure

split (step 19). Eventually, each node in ℒ is associated to a bucket, and the set
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of all buckets ' is returned (steps 21-22).

Procedure split(n, c1, c2)
u1 = 1.0, u2 = 1.0 ;1
foreach split point SP in lvn do2

Clear lvc1 and lvc2 ;3
Push all elements in lvn to the left of SP into lvc1 ;4
Allocate all remaining elements of lvn to lvc2 ;5

Calculate CETU
c1 and CETU

c2 ;6

if CETU
c1 + CETU

c2 < u1 + u2 then7
u1 = CETU

c1 ;8

u2 = CETU
c2 ;9

bestP = SP ;10
Clear lvc1 and lvc2 ;11
Push all elements in lvn to the left of bestP into lvc1 ;12
Allocate all the remaining elements of lvn to lvc2 ;13

CETU
c1 = u1;14

CETU
c2 = u2;15

Procedure split dynamically divides a node n into a left child c1 and a right

child c2. Each possible splitting point is tested, and the one that minimizes

CETUc1 +CETUc2 is selected (steps 2-10). The elements in lvn are appropriately

assigned to the two children (steps 12-13).

3.4.2 SABRE’s redistribution scheme

The bucketization phase delivers a set of buckets ', such that
∑
∀ℬ∈'

CETUℬ < t.

To generate an equivalence class G conforming to the proportionality require-

ment, we need to select ∣G∣ ⋅ ∣ℬi∣∣Dℬ∣ tuples from bucket ℬi, i = 1, 2, . . . , ∣'∣.

However, ∣G∣ ⋅ ∣ℬi∣∣Dℬ∣ may not be an integer for some sizes of G and some i ∈

{1, 2, . . . , ∣'∣}. Setting a constraint to the size of G so that each ∣G∣ ⋅ ∣ℬi∣∣Dℬ∣ be

an integer may severely limit the allowed EC size, hence defeat the purpose

of our study, which is to provide a flexible and quality-aware scheme for t-

closeness. For example, assume that ∣Dℬ∣ = 50, 000 and ∣ℬi∣
∣Dℬ∣ = 0.1333 for

some i ∈ {1, 2, . . . , ∣'∣}. Then each EC should have a size of at least 10, 000.

Such large ECs generally incur high information loss.
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We conclude that we should better relax the proportionality requirement:

it suffices that the number of tuples from each bucket ℬi in an EC G be ap-

proximately proportional to the size of the bucket. To ensure t-closeness, we

determine the size of each EC dynamically. Theorem 3.4 establishes that this

is always possible. Before presenting it, we introduce some auxiliary concepts

and notations.

Definition 3.5 (' distribution in an EC). Let G be an EC from table Dℬ with

bucket partition'. The' distribution in G, denoted by d(G, '), is
(
∣x1∣
∣G∣ ,

∣x2∣
∣G∣ , . . . ,

∣x∣'∣∣
∣G∣

)
, where xi is the set of tuples from bucket ℬi ∈ ' in G and

∪∣'∣
i=1 xi = G.

If we take the whole table Dℬ as a single EC, then its ' distribution is

d(Dℬ, ') =
(
∣ℬ1∣
∣Dℬ∣ ,

∣ℬ2∣
∣Dℬ∣ , . . . ,

∣ℬ∣'∣∣
∣Dℬ∣

)
. Furthermore, if G conforms to the propor-

tionality requirement with respect to ', then d(G, ') = d(Dℬ, '). Given two '

distributions, we define duij to be the distance between element i of the former

and element j of the latter. Let dyz be the ground distance between two SA val-

ues vy and vz, and Vi be the set of SA values in bucket ℬi ∈ ', then we define

our duij metric as follows.

duij =

⎧⎨⎩ max{dyz∣vy ∈ Vi, vz ∈ Vj}, i ∕= j

0, i = j

We can transform the SA distributionQ in an EC G to that in the whole table,

P in two steps: First, we transformQ toQ′, the SA distribution of an EC G ′ that

follows the proportionality requirement; then, we transform Q′ to P . Lemma

3.1 proves that Q′ exists and gives the upper bound cost of the transformation

from Q to Q′. Theorem 3.4 builds on Lemma 3.1 and specifies the conditions

for EC sizes that satisfy t-closeness.

Lemma 3.1. Let G be an EC generated from table Dℬ with bucket partition

', and Q = (q1, q2, . . . , qm) be the SA distribution in G. Then there exists an
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SA distribution Q′ = (q′1, q
′
2, . . . , q

′
m) of an EC following the proportionality

requirement with respect to ', such that the cost of transforming Q to Q′ is

upper bounded by D = EMD(d(G, '), d(Dℬ, ')).

Proof. Let V = {v1, v2, . . . , vm} be the domain of SA. Consider the partition

of V , V = {V1,V2, . . . ,V∣'∣}, where Vi is the set of SA values in ℬi ∈ '. Given

V , we derive Q = (Q1,Q2, . . . ,Q∣'∣) and Q′ = (Q′1,Q′2, . . . ,Q′∣'∣), where

qy ∈ Qi (q′y ∈ Q′i) if and only if vy ∈ Vi. Let xi be the set of tuples from

bucket ℬi in G. Then,
∑
∀qy∈Qi

qy =
∣xi∣
∣G∣

. The ' distribution in G is d(G, ') =(
∣x1∣
∣G∣ ,

∣x2∣
∣G∣ , . . . ,

∣x∣'∣∣
∣G∣

)
, and that in Dℬ is d(Dℬ, ') =

(
∣ℬ1∣
∣Dℬ∣ ,

∣ℬ2∣
∣Dℬ∣ , . . . ,

∣ℬ∣'∣∣
∣Dℬ∣

)
. We

need to find a distribution Q′ = (q′1, q
′
2, . . . , q

′
m) so that

∣ℬj ∣
∣Dℬ∣

=
∑
∀q′z∈Q′

j

q′z, j =

1, 2, . . . , ∣'∣. Initially, we set q′z = 0, z = 1, 2, . . . ,m. We see d(Dℬ, ') as

a collection of holes to be filled by piles of earth transported from d(G, ').

Moreover, we see Q and Q′ as piles of earth. The elements Qi ∈ Q (Q′i ∈

Q′) can be seen as clusters of piles of earth from Q (Q′). During the earth

transportation – from d(G, ') to d(Dℬ, ') – whenever � earth is moved from

∣xi∣
∣G∣ to ∣ℬj ∣

∣Dℬ∣ (costing by definition duij ⋅ �), then we also move � earth from (a

pile in) the corresponding cluster Qi to (a pile in) cluster Q′j . Then, after all

holes in d(Dℬ, ') are filled with earth from d(G, '), the volume of earth in

cluster Q′j is equal to the volume of hole ∣ℬj ∣
∣Dℬ∣ , i.e.

∣ℬj ∣
∣Dℬ∣

=
∑
∀q′z∈Q′

j

q′z, j =

1, 2, . . . , ∣'∣. In other words, Q is transformed to an SA distribution Q′ that

follows the proportionality requirement with respect to '. Concerning the cost,

we distinguish two cases during the above earth transportation operation:

Case 1: If i ∕= j, then the cost of earth transportation from (a pile in) cluster

Qi to (a pile in) cluster Q′j is at most duij ⋅ �, since duij is, by its definition, the

maximum ground distance between any pile qy ∈ Qi and any pile q′z ∈ Q′j .

Case 2: If i = j, then, at the transportation from (a pile in) cluster Qi to (a
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pile in) cluster Q′i, we simply require that earth from pile qy ∈ Qi only goes to

the corresponding pile q′y ∈ Q′i; the ground distance between these piles (qy and

q′y) is 0, hence the cost of earth transportation is 0 too.

Based on the above two cases, we conclude that the cost of transforming Q

to Q′ is upper-bounded by D.

Example 3.6. We return to Example 3.4. Assume that t = 0.45, so that Figure

3.3 shows the final bucketization tree. ℬ1 relates to Respiratory diseases with

∣ℬ1∣ = 10. ℬ2 relates to Digestive diseases, with ∣ℬ2∣ = 8. ' = {ℬ1,ℬ2}

is a bucket partition of Dℬ with du12 = 1. Suppose that G contains 3 tuples

with SARS from ℬ1 and 2 tuples with Gastric flu from ℬ2. The disease dis-

tribution in G then is Q = (q1, . . . , q6) = (3
5
, 0, 0, 2

5
, 0, 0). Initially, Q′ =

(q′1, . . . , q
′
6) = (0, . . . , 0). Thus, Q = (Q1,Q2) = ({q1, q2, q3}, {q4, q5, q6}) =

({3
5
, 0, 0}, {2

5
, 0, 0, }), andQ′ = (Q′1,Q′2) = ({q′1, q′2, q′3}, {q′4, q′5, q′6}) = ({0, 0,

0}, {0, 0, 0}). We have d (Dℬ, ') =
(
∣ℬ1∣
∣Dℬ∣ ,

∣ℬ2∣
∣Dℬ∣

)
=
(

5
9
, 4

9

)
, and d(G, ') =

( ∣x1∣∣G∣ ,
∣x2∣
∣G∣ ) = (3

5
, 2

5
). To transform d(G, ') to d(Dℬ, '), we move 5

9
earth from

∣x1∣
∣G∣ to ∣ℬ1∣

∣Dℬ∣ (at cost 0), 2
5

earth from ∣x2∣
∣G∣ to ∣ℬ2∣

∣Dℬ∣ (cost 0), and 3
5
− 5

9
= 2

45
from

∣x1∣
∣G∣ to ∣ℬ2∣

∣Dℬ∣ (at cost 2
45

). Thus, EMD(d(G, '), d(Dℬ, ')) = 2
45

. Accordingly,

we also move 5
9

earth from Q1 to Q′1 (i.e., from q1 to q′1, at cost 0), and 2
5

earth

from Q2 to Q′2 (i.e., from q4 to q′4), hence Q′ =
(
{5

9
, 0, 0}, {2

5
, 0, 0}

)
(at cost

0). When moving 2
45

earth from Q1 to Q′2, there are multiple choices, we can

move 2
45

earth from q1 to q′4, q′5, or q′6 (at cost 2
45

). Assume that it is moved from

q1 to q′4, then Q′ = ({5
9
, 0, 0}, {4

9
, 0, 0}), and

∣ℬj ∣
∣Dℬ∣

=
∑
∀q′z∈Q′

j

q′z, j = 1, 2. The

resultant SA distribution Q′ =
(

5
9
, 0, 0, 4

9
, 0, 0

)
follows the proportionality re-

quirement with respect to '. Alternatively, if 2
45

earth is moved to q′5, then Q′ =(
5
9
, 0, 0, 2

5
, 2

45
, 0
)
. If the earth is moved to q′6, then Q′ =

(
5
9
, 0, 0, 2

5
, 0, 2

45

)
. In all

three cases, the cost of transformingQ toQ′ is 2
45
≤ EMD(d(G, '), d(Dℬ, ')).
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Theorem 3.4 (Triangle inequality). Let G be an EC from table Dℬ with bucket

partition '. If D + U ≤ t, where D = EMD(d(G, '), d(Dℬ, ')) and U =∑
∀ℬ∈'CET

U
ℬ , then the SA distribution Q in G is t-close to the SA distribution

P in Dℬ.

Proof. We transform Q to P in two steps. First, we transform Q to Q′, a distri-

bution that follows the proportionality requirement with respect to '; then, we

transform Q′ to P . By Lemma 3.1, the cost of transforming Q to Q′ is upper-

bounded by D. Furthermore, by Theorem 3.3, the cost of transforming Q′ to P

is upper bounded by U . Therefore, the EMD of transforming Q to P via Q′ is

upper bounded by D+U . Thus, if D+U ≤ t, the EMD betweenQ and P is at

most t.

We now consider the process of dynamically determining the size of an

EC, or deciding how many tuples to take out from each bucket to form an

EC. First, we consider all tuples of Dℬ (i.e., all the buckets in ') as a single

EC, r. Then we split r into two ECs by dichotomizing ℬi into ℬ1
i and ℬ2

i ,

where i = 1, 2 . . . , ∣'∣. ℬ1
i and ℬ2

i have approximately the same size. The left

child c1 of r is composed of ℬ1
i , and the right child c2 of r is composed of

ℬ2
i , where i = 1, 2, . . . , ∣'∣. Let d(c1, ') and d(c2, ') be the ' distributions

in c1 and c2 respectively. By Theorem 3.4, the split is allowed only if both

EMD(d(c1, '), d(Dℬ, ')) + U ≤ t and EMD(d(c2, '), d(Dℬ, ')) + U ≤ t

hold. After r is split, we recursively split c1 and c2 in the same way. We illustrate

this process with an example.

Example 3.7. Re-consider Example 3.6, with t = 0.45, ' = {ℬ1,ℬ2}, and

du12 = 1. If we strictly follow the proportionality requirement, then there are at

most two ECs, each having 5 tuples from ℬ1 and 4 tuples from ℬ2. However,

we can generate more ECs by dynamically determining their size as follows. By
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[10, 8]

[5, 4]

[2, 2][3, 2]

[1, 1][1, 1]

[5, 4]

[2, 2][3, 2]

[1, 1][1, 1]

Figure 3.6: Example of dynamically determining EC size

Theorem 3.3, we have U = CETUℬ1 + CETUℬ2 = 2
9

+ 1
6

= 7
18

(see Example 3.3).

The notation r = [10, 8] in Figure 3.6 means that r contains 10 tuples from ℬ1

and 8 tuples from ℬ2 (i.e., all tuples in Dℬ). We dichotomize r into c1 = [5, 4]

and c2 = [5, 4]. Since both c1 and c2 follow the proportionality requirement with

respect to ', and U = 7
18
< t, the split is allowed. We proceed to split c1 into

g1 = [3, 2] and g2 = [2, 2]. Now d(Dℬ, ') = (5
9
, 4

9
), d(g1, ') = (3

5
, 2

5
), and

d(g2, ') = (1
2
, 1

2
). Since EMD(d(g1, '), d(Dℬ, ')) + U = 2

45
+ 7

18
< 0.45 and

EMD(d(g2, '), d(Dℬ, ')) + U = 1
18

+ 7
18
< 0.45, splitting c1 is allowed by

Theorem 3.4. If we further dichotomize g1 into gg1 = [2, 1] and gg2 = [1, 1],

then EMD(d(gg1, '), d(Dℬ, ')) + U = 1
9

+ 7
18
> 0.45. Thus, splitting g1 is

not allowed. Still, further splitting g2 into two ECs each having one tuple from

ℬ1 and one tuple from ℬ2 is allowed. The process of splitting c2 is similar to

c1. The recursive splitting process generates the tree shown in Figure 3.6. Each

leaf node represents the size of a possible EC.

The redistribution phase of SABRE uses the binary tree as illustrated in Fig-

ure 3.6 to effectively split ECs. The same tree structure has also been employed

in Mondrian [49]. However, the trees for the two methods are generated in a

very different manner due to the distinct requirements of their underlying pri-

vacy models. The Mondrian k-anonymi-zation algorithm, under local recoding,

splits a node in the binary tree once it accommodates at least 2k tuples. Instead,
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the redistribution phase of SABRE, tailored for t-closeness, allows such a split-

ting, only if the resultant ECs strictly satisfy the conditions specified in Theorem

3.4. Still, the redistribution phase only determines the size of each possible EC

(i.e., the number of tuples from each bucket to compose it). How real tuples are

retrieved from each bucket to create an EC is discussed in Section 3.4.3.

Function ECSize(')
Let ' = {ℬ1,ℬ2, ⋅ ⋅ ⋅ ,ℬ∣'∣} be the set of buckets generated from the bucketization1
phase;
Let a be an array, and ai be the itℎ element of a;2
Create a tree ECT and its root r;3
Initialize r.a by r.ai = ∣ℬi∣, i = 1, 2, . . . , ∣'∣;4
dichotomize (r, ');5
Let Sa be a set of arrays initialized to be empty;6
Traverse ECT , and for each leaf node n add n.a to Sa;7
Return Sa;8

Function ECSize describes our algorithm that determines the number of tu-

ples to be taken out from ℬi, i = 1, 2, . . . , ∣'∣. Parameter ' is the set of buckets

generated from the bucketization phase (step 1, see Section 3.4.1). Each array

a represents an EC, and its itℎ element ai is the number of tuples from ℬi when

generating the EC (step 2). ECT is a tree with each node associated with an

array a. The root of ECT is r, and r.a represents an EC composed of the whole

table (steps 3-4). We call function dichotomize to generate ECT (step 5). In the

final ECT , each leaf node represents an EC that cannot be further split. Even-

tually, each leaf node n in ECT is scanned, and its n.a is stored in Sa (steps

7-8).

Procedure dichotomize splits ECT recursively. Parameter n is a node in

ECT , and ' is the computed bucket partition (see Section 3.4.1) of table Dℬ.

Steps 3-5 split the EC denoted by node n into two, whose sizes are determined

by a1
i and a2

i respectively, i = 1, 2, . . . , ∣'∣. If both c1 and c2 follow Theorem



52

Procedure dichotomize(n,')
if n.ai

< 2, for all i ∈ {1, . . . , ∣'∣} then1
Return;2

foreach i ∈ {1, . . . , ∣'∣} do3
a1
i = round(0.5× n.ai

);4
a2
i = n.ai

− a1
i ;5

Set c1.a by c1.ai
= a1

i , i = 1, . . . , ∣'∣;6
D1 = EMD(d(c1, '), d(Dℬ, '));7
Set c2.a by c2.ai

= a2
i , i = 1, . . . , ∣'∣;8

D2 = EMD(d(c2, '), d(Dℬ, '));9
if D1 + U ≤ t and D2 + U ≤ t then10

Set c1 and c2 to be the left and right child of n respectively;11
dichotomize (c1, ');12
dichotomize (c2, ');13

3.4 (steps 6-10), then n will acquire c1 and c2 as its children (step 11). Steps 12-

13 recursively examines whether the two newly generated children can be split.

The process terminates if splitting a node cannot generate two smaller ECs (the

evaluation of step 1 is true) or the evaluation of step 10 is false. When none of

the nodes in ECT can be split, ECT is fully generated.

Now our presentation of the two phases is complete. In the following, we

put the bucketization phase (Section 3.4.1) and the redistribution phase (section

3.4.2) together and summarize the framework of SABRE.

3.4.3 SABRE and its two instantiations

Algorithm SABRE provides a high level description of our framework. {v1, v2,

. . . , vm} is the domain of the sensitive attribute. The global SA distribution in

the whole tableDℬ is (p1, p2, . . . , pm), where pi = Ni
∣Dℬ∣ andNi is the number of

tuples in Dℬ with SA value of vi (step 1). Steps 2-8 deal with the bucketization

phase. Function bucketCat computes the bucketization tree for categorical sen-

sitive attribute (step 5). If the SA is numerical, the tree is generated by function

bucketNum (step 8). In the final bucketization tree, each leaf node is associ-

ated to a bucket, and all the tuples with the SA values included in the leaf node
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will be pushed to the corresponding bucket. Thus, a bucket partition of Dℬ,

', is formed. Step 9 is the redistribution phase; function ECSize dynamically

determines the size of each possible EC. Steps 10-15 form all possible ECs and

output them. Sa, returned by ECSize, is a list of arrays. Each array represents

an EC. Given an array a (step 10), SABRE takes ai tuples from bucket ℬi ∈ ',

where ai is the itℎ element of a and i = 1, 2, . . . , ∣'∣ (step 13). Then SABRE

forms an EC G out of them (step 14). Each generated EC is output (step 15).

Algorithm: SABRE ( Dℬ, SA, t )
Let {v1, v2, . . . , vm} be all the SA values in Dℬ, and {p1, p2, . . . , pm} be their1
distributions;
Let VP be the list of (vi, pi), i = 1, 2, . . . ,m;2
if SA is categorical then3

Letℋ be the domain hierarchy of SA;4
' = bucketCat (ℋ,VP);5

else6
Sort VP in the ascending order of SA values;7
' = bucketNum (VP);8

Sa = ECSize (');9
foreach array a in Sa do10

Create an empty EC, say G;11

foreach ai, itℎ element of a do12
eci = takeOut (ℬi, ai);13
add eci to G;14

output G;15

When taking out tuples from a bucket, SABRE does not distinguish their

SA values. The t-closeness between the EC and the whole table is anyway

guaranteed by Theorems 3.3 and 3.4. Which tuples to pick is to be determined

by information loss considerations. As discussed, we adopt the General Loss

Metric (GLM) (see Section 2.3), as we assume that the anonymized data are for

multiple, not known a priori, uses. GLM requires the minimum bound boxes of

ECs to be as small as possible. We achieve this by greedily picking tuples of

similar QI values, to the extent that is possible.

We provide two instantiations of SABRE: SABRE-KNN and SABRE-AK.
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They differ only in function takeOut (ℬi, ai) (step 13 of Algorithm SABRE),

which determines the tuples that should be picked from each bucket. Both

schemes utilize the notion of nearest neighbors. SABRE-KNN finds the exact

neighbors, whereas SABRE-AK uses approximate neighbors.

We define a multidimensional space with each of the QI attributes serving

as a dimension. The axis for a dimension defined by a numerical QI attribute is

straightforward. For a categorical QI, the ordering of all leaves by a pre-order

traversal of its domain hierarchy forms the axis. Thus, each tuple is represented

as a point in this space. We use the Euclidean distance to measure the distance

between two points.

SABRE-KNN selects ai tuples from bucket ℬi based on a kNN search. First,

it forms an empty EC G. Then it selects a random tuple x from a randomly

selected bucket ℬ ∈ '. Finally, in each bucket ℬi, i = 1, 2, . . . , ∣'∣, it finds the

nearest ai neighbors of x and adds them into G. x and all its selected nearest

neighbors are deleted from their original buckets. Thus, to form an EC, all

tuples in the buckets need to be scanned once. The time cost of this operation

is O(∣SG∣ ⋅ ∣Dℬ∣), where ∣SG∣ is the number of ECs and ∣Dℬ∣ is the size of the

dataset.

As an alternative to the computationally more demanding SABRE-KNN, we

also suggest a more efficient scheme, SABRE-AK, that looks for approximate

nearest neighbors of x. This is facilitated by the Hilbert space-filling curve [59],

a continuous fractal that maps regions of the multidimensional QI space to one-

dimensional Hilbert values. Each tuple has a Hilbert value corresponding to the

region that contains it. If two tuples are close in the multi-dimensional space,

their Hilbert values are also close with high probability. SABRE-AK first sorts

all tuples in each bucket in ascending order of their Hilbert values. Then, when
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looking for x’s ai nearest neighbors in bucket ℬi, it selects the ai tuples that

are closest to x in terms of their Hilbert values. In practice, we use binary

search to find in ℬi a tuple x̄, whose Hilbert value is closest to that of x. Then

we check the neighbors of x̄ and select the closest ai ones (including x̄) to

x. The average time cost of this search is O
(
∣SG∣ ⋅

(
log ∣Dℬ∣∣'∣ + ∣Dℬ∣

∣SG ∣⋅∣'∣

)
⋅ ∣'∣

)
,

where ∣'∣ is the number of buckets, ∣Dℬ∣∣'∣ the average size of a bucket, and ∣Dℬ∣
∣SG ∣⋅∣'∣

the average number of tuples taken out from a bucket to form an EC. Since(
log ∣Dℬ∣∣'∣ + ∣Dℬ∣

∣SG ∣⋅∣'∣

)
⋅ ∣'∣) << ∣Dℬ∣, we expect SABRE-AK to be more efficient

than SABRE-KNN.

3.5 Experimental study

In this section we evaluate the performance of our SABRE-based schemes:

SABRE-KNN, SABRE-AK. We compare SABRE against tIncognito [52] and

tMondrian [53], i.e., the t-closeness schemes extended from Incognito [48] and

Mondrian [49], respectively. The prototype was implemented in Java and the

experiments were run on a core-2 duo 2.33GHz CPU machine, with 4GB RAM,

running windows XP. We use the CENSUS dataset [3], which contains 500,000

tuples, and has 8 attributes as shown in Table 3.4; the value following the type is

the height of the corresponding attribute hierarchy. For instance, attribute mari-

tal status is categorical and has a hierarchy of height 2. The first 7 attributes are

used by default as the QI, and the last one (i.e., salary) as the sensitive attribute

divided into 50 classes. The least frequent salary class is 49 with frequency

0.2018%, while the most frequent one is 12 with frequency 4.8402%. We gen-

erate 5 microdata tables by randomly taking 100,000 to 500,000 tuples from the

dataset; the one with 100,000 tuples is the default dataset. t-closeness provides

protection against the disclosure of SA values. Yet it does not handle identity
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disclosure. k-anonymity copes with identity disclosure by ensuring that each re-

leased tuple is indistinguishable from at least k − 1 other tuples with respect to

their QI values. Still, to create a level playing field, as tIncognito and tMondrian

do, SABRE combines t-closeness and k-anonymity together. We set the default

value of k to be 6 (i.e., the size of EC is at least 6). The closeness threshold t is

a variable, in default it is set to 0.35.

Attribute Cardinality Type
age 79 numerical (4)
sex 2 categorical (1)

education 17 numerical (4)
marital status 6 categorical (2)

race 9 categorical (1)
work class 10 categorical (3)
birth place 83 categorical (2)

salary 50 numerical

Table 3.4: The CENSUS dataset

We use several metrics to evaluate the quality of the anonymized dataset un-

der the schemes we compare. First, we measure the average information loss

(see section 2.3). Then we study the utility of the anonymized dataset using

median relative errors [82] and KL-divergence [40]. We also compare the effi-

ciency of the various schemes based on the elapsed time.

3.5.1 Basic results

We first study the effect of varying the closeness threshold t. Figure 3.7 shows

the results. As expected, as t grows and the requirement for similarity between

the salary distribution in each EC and that in the whole table is relaxed, the in-

formation quality for all schemes is improved (Figure 3.7(a)). The two SABRE-

based schemes are about equally effective (with SABRE-KNN slightly better
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than SABRE-AK) and provide superior information quality (i.e., lower average

information loss) compared to both tIncognito and tMondrian. The benefit of

a scheme tailored for t-closeness emerges. After all, SABRE selects tuples

from buckets in a sophisticated manner, and forms ECs with tuples of as close

as possible QI values. Thus, it competes successfully against the schemes of

both tIncognito and tMondrian; these schemes were principally designed for the

less complex problem of k-anonymization. Moreover, as Figure 3.7(b) shows,

SABRE-AK is the most efficient. In all cases, it takes no more than 4 seconds

to complete the processing. The time efficiency of tMondrian is comparable to

SABRE-AK. They are two orders of magnitude faster than the other two meth-

ods.
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Figure 3.7: Effect of varying closeness threshold

Next, we investigate the effect of the QI size. We vary the QI size from 3

to 7. When the QI dimensionality increases, data becomes more sparse in the

QI space, due to the higher-dimensional degrees of freedom offered; thus, the

formed ECs are more likely to have bigger minimum bounding boxes. Thus, we

expect information quality to worsen as dimensionality grows for all methods.

Still, Figure 3.8(a) shows that the average information loss of both tIncognito

and tMondrian grows in a substantially steep manner as QI size grows, while the
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SABRE-based schemes degrade only marginally. Thus, the information qual-

ity gap between tIncognito/tMondrian and the SABRE-based schemes widens

as the QI size increases. This result clearly indicates that the SABRE-based

methods are more scalable with respect to QI size. Moreover, Figure 3.8(b)

shows that SABRE-AK is the fastest, followed by tMondrian, tIncognito, and

SABRE-KNN.
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Figure 3.8: Effect of varying QI size

Our next experiment studies the effect of database size. We vary the size

of microdata table from 100,000 to 500,000 tuples. The results are reported in

Figure 3.9. As Figure 3.9(a) shows, the data size has no much effect on the

information quality of the schemes, except tIncognito. Still, as expected, the

elapsed time increases as the table size grows for all schemes; SABRE-AK and

tMondrian remain superior in this case.

SABRE guarantees that the EMD difference between the distribution of a

sensitive attribute in an EC and that in the original input table is at most t.

However, the actual closeness of the anonymized data may be smaller than t.

We check the real closeness of the anonymized data as follows. For each EC we

calculate its closeness value, and we use the maximum one as the real closeness

of the whole anonymized dataset. In Figure 3.10(a), we vary t from 0.15 to 0.55.

In Figure 3.10(b), we set t to 0.35, and vary the QI size from 3 to 7. We observe
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Figure 3.9: Effect of varying Dℬ dimensionality (size)

that the real EMD difference of all schemes is smaller than the given threshold

t. This result indicates that the anonymized data achieves better privacy than the

requirement. Furthermore, the SABRE-based schemes and tIncognito achieve

consistently smaller real difference than tMondrian; this result indicates that

SABRE and tIncognito offer better privacy than tMondrian.
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Figure 3.10: Real closeness

Figure 3.11 presents the results of the four approaches as we vary the k

parameter of the k-anonymity guarantee that all methods also provide. As k

increases, identity protection is improved. But a larger k implies that more

tuples will be in an EC, thus the minimum bounding box to cover them becomes

larger, resulting in higher information loss. The behavior of tIncognito is not

uniform, due to its highly heuristic nature.
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3.5.2 Accuracy of aggregation queries

Apart from information loss, we also study the utility of the anonymized data. In

this section, we focus on aggregation queries as they are the basis of statistical

analysis and many data mining applications (e.g., association rule mining and

decision trees). We first consider the following type of aggregation queries with

the median relative error as the metric [82]:

SELECT COUNT(*) FROM Anonymized-data

WHERE pred(A1) AND . . . AND pred(A�) AND pred(SA)

Each Ai is a QI attribute. SA is a sensitive attribute. The query has predicates

on the � randomly selected QI attributes and SA. Let A be one of these � + 1

attributes (� QI attributes + SA). pred(A) has the form of A ∈ R. R is a

random interval in the domain of A. R has the length of ∣A∣ ⋅ �
1

�+1 , where

∣A∣ is the domain length of A and � is the expected selectivity. Given a query,

the precise result prec is computed from the original table, and the estimated

result est is obtained from the anonymized table. To calculate est, we assume

that tuples in each EC are uniformly distributed, and consider the intersection

between the query and the EC. We define ∣est−prec∣
prec

× 100% as the relative error.

Our workload consists of 10,000 queries, and we measure the workload error as

the median relative error. Relative error is undefined when prec is 0. If prec in
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a given query is 0, we drop that query.
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Figure 3.12: Median relative error

We first set � to 0.1, and vary �. Each predicate in the WHERE clause ex-

cept the one on SA has some error. As � increases, the number of predicates

increases, hence the overall error of all the predicates is expected to increase

as well. Not surprisingly, the error increases as � grows, as shown in Figure

3.12(a). In the following experiments we fix � to 3. Next we set � to 0.1, and

vary the QI size. As the QI size increases, data tend to be more sparse in the

QI space, and it is more likely that ECs with bigger minimum bound boxes are

created. Consequently, the information loss of the anonymized data grows, and

the error we measure also increases. Expectedly, in Figure 3.12(b) the workload

error increases with QI size. In Figure 3.12(c) we fix � to 0.1 and vary t. As

t grows, the requirement on the distribution of each EC is relaxed, hence the
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information quality of anonymized data rises, and the error we measure drops.

Finally, in Figure 3.12(d) we vary the selectivity �. When � increases, the range

R for each attribute in a predicate increases. This makes the minimum bound

box of an EC more likely to be entirely contained in the query region, there-

fore, the estimate becomes slightly more accurate and the error smaller. In all

the above experiments, we find that SABRE-based schemes offer better utility.

Remarkably, SABRE-based techniques outperform tIncognito by one order of

magnitude in terms of median relative error.

In the following, we evaluate the utility based on typical OLAP queries using

the KL-divergence metric (as in [40]):

SELECT A1, A2,..., A�, COUNT(*)

FROM Anonymized-data

WHERE SA = val

GROUP BY A1, A2,..., A�

All GROUP-BYs for all possible combinations of the QI attributes compose

the OLAP datacube lattice. Level � of the lattice corresponds to all GROUP-

BYs over exactly � attributes. We build two datacube lattices on the CENSUS

dataset: � (on the original dataset), and � (on the anonymized dataset). For each

cell of �, we consider the intersection between the cell and each EC, assuming a

uniform distribution of tuples within the EC. Let �c and �c be values of a cell in

� and � respectively. We use KL-divergence to measure the difference between

the cells in � and those in �:

KL-divergence(�, �) =
∑
∀cell c

�c × log
�c
�c

In Figure 3.13(a), the level of the lattice is set to 2, and we vary t. As t in-

creases, KL-divergence decreases. This is so because, for larger t, the closeness

requirement is relaxed, hence the information quality of the anonymized data is
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improved. Ideally, the lower the KL-divergence is, the better the quality of the

anonymized data. When all the cells in � and � are the same, KL-divergence

is 0. In Figure 3.13(b) we vary the lattice level. When the level is higher, the

granularity of the GROUP-BYs in the aggregation query becomes finer. On the

other hand, when the level is lower, an aggregation query is more likely to in-

clude the whole range of an anonymized EC. This effect makes the four schemes

perform better at lower levels. In Figure 3.13(c) we set the level of lattice to 2,

and vary the QI size. SABRE-KNN and SABRE-AK are significantly more scal-

able than the other two methods with growing QI size. Eventually, in Figure

3.13(d) we set the level to 2, and vary the size of the dataset, to get a slightly

improving trend of information quality, due to increasing data density. In all the

above comparisons, SABRE-based schemes clearly outperform tIncognito and

tMondrian.
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Figure 3.13: KL-divergence with OLAP queries
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3.6 Discussion

In this section we make a discussion on SABRE. First, we examine the effect of

the SA hierarchy on information quality. For a categorical SA, the set of chil-

dren of a split node in the bucketization tree depends on the pre-defined domain

hierarchy of SA. With Figure 3.1 as the hierarchy, the root of the bucketization

tree is respiratory and digestive diseases. If it is split, its children will be res-

piratory diseases and digestive diseases, which are pre-defined in Figure 3.1.

Thus, the bucketization process is affected by the SA hierarchy. Besides, the

structure of a hierarchy is shaped by the number of its leaves and the fanouts

of its root and internal nodes (the height is automatically decided thereby). We

assume that the hierarchy is well defined by its domain expert.
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Figure 3.14: Effect of varying fanout

In Table 3.4, salary is a numerical sensitive attribute with 50 distinct val-

ues. Next, we consider them as 50 leaves, and build hierarchies over them to see

the effects on anonymization process. To simplify the problem, we assume that

the fanouts in a simulated hierarchy are uniform, while its leaves are sorted from

left to right by the ascending order of their values. Figure 3.14 presents our ex-

perimental results. We observe that the information quality of the anonymized

data does not change uniformly as a function of fanout. Still, overall the curves
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suggest that a smaller value of fanout tends to preserve more information. After

all, when the fanout is smaller, the hierarchy is deeper. Thus, the intermediate

levels between the root and leaves are increased, hence the bucketization gains

more flexibility in partitioning SA values to buckets at several levels. In effect,

the redistribution phase can later redistribute tuples to ECs more effectively.

Apart from the preceding discussion, we also examine the potential for an

extension of SABRE to settings with more than one sensitive attributes. With-

out loss of generality, assume that Dℬ has two sensitive attributes SA1 =

{u1, u2, . . . , un} and SA2 = {v1, v2, . . . , vm}. For the sake of simplicity we

consider the case that SA1 is independent of SA2. SABRE is extended to attain

t-closeness with respect to both SA1 and SA2 as follows. It first transforms

Dℬ to Dℬ1, which satisfies t-closeness with respect to SA1. Then it checks

each EC in Dℬ1 to determine whether it also observes t-closeness with respect

to SA2. If it does not, then it is merged with its nearest neighbor ECs, until

t-closeness is attained. This effect is always achievable because an EC formed

from the union of two ECs will not have an increased distance from Dℬ with

respect to SA2 distribution. In particular, let P be the overall SA2 distribution

in Dℬ, and Q1 and Q2 be the SA2 distributions of two ECs in Dℬ1, respec-

tively. Let Q be the SA2 distribution of the EC formed from the union of the

two ECs; then, EMD(P ,Q) ≤ max{EMD(P ,Q1), EMD(P ,Q2)} [52]. In

effect, after all the required merges of ECs in Dℬ1, we can transform Dℬ1 to

Dℬ2, which attains t-closeness with respect to both SA1 and SA2.

Lastly, we discuss the applicability of other distance metrics in SABRE.

Let d be a distance measure, and P1, P2, P3 be any three sensitive attribute

distributions. To be applicable in SABRE, d needs to satisfy the following

properties: I. non-negativity: d(P1,P2) ≥ 0; II. identity of indiscernibles:
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d(P1,P2) = 0 if and only if P1 = P2; and III. triangle inequality: d(P1,P3) ≤

d(P1,P2) + d(P2,P3). If d also has the property of symmetry, then d is a

metric. Therefore, besides EMD, other measures such as Euclidean metric

and Hamming distance can also be applied to SABRE. However, neither the

KL-divergence nor the Jensen-Shannon divergence has the triangle inequality

property, hence they are inapplicable to SABRE. Still, the square root of the

Jensen-Shannon divergence is a metric and therefore a possible candidate dis-

tance measure for SABRE. Nevertheless, when a new distance measure is ap-

plied to SABRE, the upper bound of the cost related with a bucket (Theorem

3.2) needs to be customized for that measure.

As a final note, t-closeness based on EMD has the drawback that it defines

no clear intelligible relationship between t and the privacy it affords. However,

EMD is still a meaningful distance measure for t-closeness, due to its following

attractive properties [53]: 1. Awareness of semantic closeness; 2. Simplicity for

understanding; 3. Subset property (i.e., if table Dℬ satisfies t-closeness in QI,

then it also satisfies t-closeness in any subset of QI.)

3.7 Summary

This chapter proposed SABRE, a novel framework for distribution-aware mi-

crodata anonymization based on the t-closeness principle. SABRE guarantees

t-closeness in an elegant and efficient manner, without depending on techniques

developed for other privacy models. We have shown the applicability of our

scheme on both categorical and numerical attributes. Our extensive exper-

imental study demonstrated that our two SABRE instantiations, SABRE-AK

and SABRE-KNN, clearly outperform previous schemes in terms of informa-

tion quality, while SABRE-AK also outperforms them in terms of efficiency. In



67

conclusion, SABRE provides the best known resolution of the tradeoff between

privacy, information quality, and computational efficiency with a t-closeness

guarantee in mind.
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CHAPTER 4

�-LIKENESS: ROBUST

MICRODATA ANONYMIZATION

The most recently proposed privacy model, t-closeness, raises the privacy guar-

antees above those of its predecessors, i.e., k-anonymity and ℓ-diversity. How-

ever, all the instantiations of t-closeness interpret the t threshold as a bound on

the cumulative distance between two frequency distributions, failing to translate

t to a comprehensible privacy guarantee. In this chapter we propose �-likeness,

a new privacy principle, which requires that each equivalence class (EC) should

satisfy a threshold � on the positive relative difference between each SA value’s

frequency in the EC and that in the whole table. Therefore, the � value corre-

sponds to an intelligible privacy guarantee that limits an attacker’s information

gain.

4.1 Introduction

The t-closeness model requires that the frequency distribution of SA values in an

EC differs from their overall distribution by at most a given threshold t; in effect,

this threshold aims to constrain the information an adversary gains after seeing

a single EC with respect to the information provided by the full released table.



69

Just like ℓ-diversity is open to many ways of measuring the number of “well-

represented” values in an EC [57], t-closeness is open to diverse frequency

distribution distance functions. To date, functions such as the Earth Mover’s

Distance (EMD) [52], Kullback-Leibler divergence [63], and Jensen-Shannon

divergence [53, 54] have been adopted. Still, all these functions interpret the t

threshold as a bound on the cumulative difference between two frequency dis-

tributions. Indeed, this interpretation emanates out of the t-closeness model

itself [52, 53], not out of a particular manifestation. However, a privacy model

should provide grounds for effective and human-understandable policy [60]. Yet

a model that bounds a cumulative function of frequency differences between dis-

tributions fails to provide a meaningful privacy guarantee for the persons whose

privacy is at stake.

To elaborate on this point, we first discuss EMD. Assume a data set Dℬ

with SA values HIV and Flu, having semantic distance 1 (for the purpose of

measuring EMD between them). If the overall SA distribution between them

is P = (0.4, 0.6), and their distribution in an EC is Q = (0.5, 0.5), then the

EMD between P and Q is EMD(P ,Q) = 0.1. Still, if their overall distribu-

tion is P ′ = (0.01, 0.99) and their distribution in an EC is Q′ = (0.11, 0.89),

then EMD(P ′,Q′) = 0.1 again. Both cases satisfy 0.1-closeness. However,

the information gain in the latter case is much larger than that in the former:

the probability of HIV rises by only 25% from 0.4 to 0.5, but it rises by 1000%

from 0.01 to 0.11. In effect, the two cases do not afford the same privacy in hu-

man terms. This example appears in [52], where it is noted that EMD does not

provide a clear privacy guarantee. In fact, not only EMD, but any distance func-

tion that aggregates absolute differences would face a similar problem, since
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such functions do not provide informative maximum relative difference guaran-

tees [44] about individual SA values. In the current example, a small relative

difference of Flu-frequency between P ′ and Q′ evens up a large relative differ-

ence of HIV-frequency between them.

The recently proposed alternatives to EMD as frequency distribution dis-

tance functions, namely Kullback-Leibler divergence [63] and Jensen-Shannon

divergence [53, 54], also fail to pay appropriate attention to less frequent SA

values and their relative differences. In our running example, assume a dataset

where the overall distribution of HIV and Flu is P̃ = (0.01, 0.99), and their

distribution in an EC is Q̃= (0.03, 0.97). Then the K-L divergence (J-S diver-

gence) between P and Q (see above), is 0.0290 (0.0073), while that between P̃

and Q̃ is 0.0133 (0.0038). In effect, both these alternatives estimate the privacy

afforded by Q̃ with respect to P̃ as higher than that afforded by Q with respect

to P . However, the confidence for HIV increases only by 25% in the latter case,

while it rises by 200% in the former. Furthermore, the observed problem is ag-

gravated when small frequency differences for a multitude of SA values balance

out a large difference (i.e., privacy breach) for a single critical value.

From the above discussion, we derive a property that a more appropriate

privacy model should have: it should require that each EC satisfy a bound on

the relative frequency difference of each single SA value therein. Besides, in

most real-world applications, it is information gain in the form of an increase in

the adversary’s confidence for a certain SA value (e.g., HIV-positive) that poses

a privacy threat. A decrease in the adversary’s confidence does not1 constitute

1In case of a binary sensitive value (e.g., homosexual, heterosexual) a decrease in one implies
an increase in the other.
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a threat. We deduce that it suffices to pose a bound on positive frequency dif-

ferences only. Besides, a novel privacy model requires an anonymization algo-

rithm customized for the particular privacy-utility tradeoff posed by that model

itself [27, 41].

Past work has attempted to propose a privacy model that has the first prop-

erty outlined above: �-disclosure [21]. However, this attempt fails in three fun-

damental respects: (1) it postulates that every SA value in the overall table

should also occur in each EC; (2) it does not distinguish between an increase

and a decrease in the adversary’s confidence on an SA value; (3) it focuses on

a negative result, namely the destruction of data-mining utility by existing algo-

rithms adopted to �-disclosure (and other models). Our work differs from [21]

in all these three respects.

In this chapter, we propose �-likeness: a robust model for microdata anony-

mization that follows on the progression from k-anonymity to ℓ-diversity to t-

closeness, while eschewing the drawbacks of �-disclosure; this model imposes

a threshold on the positive relative difference of each SA value frequency be-

tween an EC and the overall table. Thereby, it provides a human-understandable

privacy guarantee that limits an adversary’s information gain; such a compre-

hensible guarantee is not provided by aggregate measures. Furthermore, we

accompany our privacy model with an anonymization algorithm tailored for its

own particular requirements. Our scheme first partitions tuples into buckets by

their SA value frequencies, and then redistributes those tuples to ECs. Our ex-

perimental study demonstrates that our scheme: (i) provides effective privacy

guarantees in a way that state-of-the-art t-closeness schemes cannot, even when

set to achieve the same information accuracy or privacy measured by the crite-

rion of t-closeness; (ii) is more effective and efficient in its task than both the
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�-disclosure scheme used in [21] (which is an adaptation of Mondrian [49,50]),

and a similar benchmark scheme that we devise by adapting Mondrian to the

new model.

The remaining of this chapter is organized as follows. In the next section,

we introduce the modeling of �-likeness. Section 4.3 presents BUREL, an al-

gorithm customized for �-likeness. We carry out a comprehensive performance

evaluation in Section 4.4, and conclude our work in Section 4.5.

4.2 The privacy model

This section introduces our new privacy model, �-likeness. Table 4.1 gathers

together the notations we use throughout this chapter.

Dℬ Original microdata table
SA Sensitive attribute in Dℬ

V = {v1, v2, . . . , vm} The domain of SA
Ni Number of tuples with vi in Dℬ

pi = Ni/∣Dℬ∣ Frequency of vi in Dℬ
P = (p1, p2, . . . , pm) Overall SA distribution in Dℬ

G Equivalence class
Q = (q1, q2, . . . , qm) SA distribution in G

Table 4.1: Notations

4.2.1 �-likeness

In our model, we do not perturb the SA value of any tuple in Dℬ. Therefore,

once Dℬ is anonymized and published, P , the SA distribution in Dℬ, will be

public knowledge. Thus, given any EC G with SA distribution Q, we need to

constrain the information gained from Q with respect to P .
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Definition 4.1 (information gain). Assume a table Dℬ with a sensitive attribute

SA. Let V = {v1, v2, . . . , vm} be the SA domain, and P = (p1, p2, . . . , pm)

be the overall SA distribution in Dℬ. Suppose that Q = (q1, q2, . . . , qm) is

the SA distribution in an equivalence class G, formed by tuples from Dℬ. The

information gain on any SA value vi ∈ V is D(pi, qi), where D is a distance

function between pi and qi.

We say that the information gain on vi is positive, when pi < qi, and neg-

ative, when pi ≥ qi. Negative information gain lowers the correlation between

a personal record and vi in EC G below that in the whole table. In most cases,

such gain enhances privacy. However, there may exist SA values such as het-

erosexual, for which a reduced likelihood may inadvertently violate privacy.

Nevertheless, we assume that the SA domain always includes the negation of

such values. Thus, negative information gain on heterosexual always appears

as positive gain for homosexual. Therefore, we can directly control the positive

gain on the value (such as homosexual) that poses the privacy threat. Under this

reasonable assumption, we are concerned with positive information gain only.

Then we define basic �-likeness as follows.

Definition 4.2 (basic �-likeness). Given table Dℬ with sensitive attribute SA,

let V = {v1, . . . , vm} be the SA domain, and P = (p1, . . . , pm) the overall SA

distribution in Dℬ. An EC G with SA distribution Q= (q1, . . . , qm) is said to

satisfy basic �-likeness, if and only if max{D(pi, qi)∣pi ∈ P , pi < qi} ≤ �,

where � > 0 is a threshold.

For a table Dℬ′ anonymized from table Dℬ to obey �-likeness, all equiv-

alence classes G ⊂ Dℬ′ have to conform to �-likeness. Contrary to previous
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models [21, 52, 54, 63], basic �-likeness clearly quantifies the relationship be-

tween the � threshold and positive information gain. Thanks to the maximum-

distance threshold it imposes, it inherently safeguards against skewness attacks

and semantic attacks [52]. Lastly, as it clearly distinguishes between positive

and negative information gain (and accepts SA values absent from an EC), it

allows for more flexibility in anonymization, hence higher information quality

than models like �-disclosure [21].

Apart from specifying a maximum, instead of a cumulative, distance thresh-

old, we should also define the distance function D in an appropriate manner. As

we have argued, a measure of absolute difference does not serve our purposes,

since it fails to protect less frequent SA values. We opt for relative difference

instead, and define the distance function as D(pi, qi) = qi−pi
pi

. This function

obeys the monotonicity property.

Lemma 4.1 (Monotonicity Property). Assume that an SA value vi ∈ V has

frequency pi in the overall table Dℬ, q1
i (q2

i ) in EC G1 (G2), generated from

tuples in Dℬ, and q3
i in G1 ∪ G2. Then D(pi, q

3
i ) ≤ max{D(pi, q

1
i ),D(pi, q

2
i )}.

Proof. Assume there are n1 (n2) tuples with vi in G1 (G2). Then q1
i = n1

∣G1∣ ,

q2
i = n2

∣G2∣ , and q3
i = n1+n2

∣G1∣+∣G2∣ =
q1i ∣G1∣+q

2
i ∣G2∣

∣G1∣+∣G2∣ ≤ max{q1
i , q

2
i }. Thus, D(pi, q

3
i ) ≤

max{D(pi, q
1
i ),D(pi, q

2
i )}.

The monotonicity property ensures that a union of two ECs yields no larger

distance between pi and qi than its united parts. Hence, ECs violating �-likeness

can be transformed to follow �-likeness by merge operations. The relative dis-

tance function instantiates basic �-likeness by the constraint D(pi, qi) = qi−pi
pi
≤

�, where pi and qi are the distributions of any SA value vi ∈ V in the whole ta-

ble and an EC, respectively. This constraint amounts to an upper bound for the

frequency of vi in any EC, qi, namely qi ≤ (1 + �) ⋅ pi. Our relative distance
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function pays due attention to less frequent SA values. However, this function

provides a meaningful frequency bound only if (1 + �) ⋅ pi < 1; it then caters

for SA values whose frequency in Dℬ is pi < 1
1+�

. In our effort to pay due

attention to such less frequent values, we have discriminated against SA values

of frequency larger than 1
1+�

. Such values can assume frequency 1 in an EC.

Thus, an adversary identifying that a person’s record is within such an EC can

infer the SA value of that person with 100% confidence. The disclosure of such

frequent SA values may pose a privacy threat. To address this limitation, we

provide an enhanced definition of �-likeness.

Definition 4.3 (enhanced �-likeness). For tableDℬ with sensitive attribute SA,

let V = {v1, . . . , vm} be the SA domain, and P = (p1, . . . , pm) the overall

SA distribution in Dℬ. An EC G with SA distribution Q = (q1, . . . , qm) is

said to satisfy enhanced �-likeness, if and only if ∀qi, D(pi, qi) = qi−pi
pi
≤

min{�,− ln(pi)}, where � > 0 is a threshold and ln(pi) is the natural loga-

rithm of pi.

The inequality constraint in the above definition implies qi ≤ pi ⋅ (1 +

min{�,− ln(pi)}). We can then define the upper bound that enhanced �-likeness

imposes on the frequency of vi in an EC by function f(pi) = pi⋅(1+min{�,− ln(pi)}),

which can be decomposed as follows.

f(pi) =

⎧⎨⎩ pi (1 + �) , 0 < pi ≤ e−�

pi (1− ln(pi)) , e−� ≤ pi ≤ 1
(4.1)

The first segment of f(pi) is a linear, monotonically increasing function of

pi. The second segment is a concave, also monotonically increasing function of

pi, with derivative− ln(pi). The two segments meet at pi = e−� . In effect, f(pi)

is a continuous, monotonically increasing function of pi in (0, 1] with f(0) = 0

and f(1) = 1. Intuitively, the second segment bends the function’s slope so
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as not to exceed the maximum value of 1. The monotonicity of f(pi) implies

that an EC G following the enhanced �-likeness constraint obeys the following

properties:

1. The maximum frequency of an SA value vi in G is less than 1, i.e., f(pi) <

1 for any pi < 1.

2. For two SA values vi and vℓ, such that pi < pℓ, the maximum allowed

frequency of vi in G is less than that of vℓ, i.e., f(pi) < f(pℓ).

3. For an SA value vi that is ‘infrequent’ in table Dℬ, with pi ≤ e−� , its

frequency in G is at most � times larger than pi, i.e., qi ≤ f(pi) = (1 +

�) ⋅ pi.

4. For an SA value vi that is ‘frequent’ in table Dℬ, with pi > e−� , its

frequency in G is at most − ln(pi) times larger than pi, i.e., qi ≤ f(pi) =

(1− ln(pi)) ⋅ pi < (1 + �) ⋅ pi.

These properties guarantee that privacy is protected for all SA values. Less

frequent values receive due attention, with a concrete privacy guarantee, while

more frequent values are disallowed from assuming frequency values of 1. The

function of the � parameter is twofold: It defines the privacy constraint for

less frequent values, as well as the frequency threshold e−� above which SA

values are considered frequent enough for their privacy constraint to assume a

default form independent of �. We emphasize that our framework for enhanced

�-likeness is valid for any monotonic upper-bound function, and independent

of the particular choice we make. Our choice of the natural logarithm of pi is

justified as a convenient choice that confers the desirable properties to the f(pi)

function.



77

Since enhanced �-likeness provides even more robust privacy than basic �-

likeness, in the following we focus on it. Unless specified otherwise, �-likeness

henceforward always refers to enhanced �-likeness.

4.2.2 Extensions of �-likeness

Definition 4.3 limits the information gain on a single SA value. Still, it usually

makes sense to treat groups of related SA values in unison. For a categorical SA,

an attacker may also be interested in the association between an individual and a

group of semantically related SA values. Assuming a domain hierarchy having

all values in V as leaf nodes, the set of leaves under a common ancestor are

semantically related. Figure 4.1 shows an example hierarchy for SA disease.

Values SARS, pneumonia, and bronchitis are semantically related, as

they are all respiratory diseases. Likewise, in case of a numerical SA, it may be

sufficient for an adversary to detect a range within which an SA value resides

[51, 86].

Respiratory and 
digestive diseases

Respiratory
diseases

Digestive 
diseases

Pneumonia BronchitisSARS Gastric flu Gastric 
ulcer

Intestinal 
cancer

Figure 4.1: Domain hierarchy for diseases

Let V ′ ⊆ V be a set of semantically related SA values in an EC G. The prior

probability of associating an individual with V ′ is �1 =
∑
vi∈V ′ pi; the respective

posterior probability is �2 =
∑
vi∈V ′ qi. To effectively evaluate the information

gain on V ′, we need to measure the distance between �1 and �2, as follows.
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Definition 4.4 (Semantic �-likeness). Let G be an EC generated from tuples in

table Dℬ with a categorical SA, ℋ be the domain hierarchy of SA. G obeys

semantic �-likeness iff, for any internal node I below a certain level ℓ in ℋ,

D(�1, �2) ≤ min{�,− ln(�1)}, with �1 =
∑
vi∈leaves(I) pi, �2 =

∑
vi∈leaves(I) qi,

where leaves(I) is the set of leaves under I .

We develop an analogous definition for numerical SA as follows.

Definition 4.5 (Range-based �-likeness). Let G be an EC generated from tuples

in table Dℬ with a numerical SA. We say that G conforms to range-based �-

likeness iff, for any contiguous interval of SA values V ′⊆V such that max
vi∈V ′
{vi}−

min
vi∈V ′
{vi} ≤ ", D(�1, �2) ≤ min{�,− ln(�1)}, where �1 =

∑
vi∈V ′ pi and �2 =∑

vi∈V ′ qi.

In definition 4.5, the range V ′ is specified by the absolute difference between

the maximum and minimum value therein. Instead, we can also define the subset

by relative difference as follows.

maxvi∈V ′{vi} −minvi∈V ′{vi}
minvi∈V ′{vi}

≤ "

Lemma 4.1 proves the monotonicity of distance function D(pi, qi). Simi-

larly, D(�1, �2) also has this property.

Lemma 4.2. Let (q1
1, q

1
2, . . . , q

1
m) and (q2

1, q
2
2, . . . , q

2
m) be the SA distributions of

two ECs G1 and G2, respectively, and (q3
1, q

3
2, . . . , q

3
m) be the SA distribution in

G1 ∪ G2. Assume that V ′ ⊂ V is any subset of related SA values. Then, we have

D(�1, �
3
2) ≤ max{D(�1, �

1
2),D(�1, �

2
2)}, where �1 =

∑
vi∈V ′ pi, �n2 =

∑
vi∈V ′ qni ,

n = 1, 2, 3.

The proof is analogous to that of lemma 4.1. The extensions of �-likeness

further enhance the privacy it affords. However, a data set satisfying the regular
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definition of enhanced �-likeness (Definition 4.3) does not automatically fulfill

its semantic and range-based extensions (Definitions 4.4 and 4.5). The following

Lemma provides a formal proof.

Lemma 4.3. Given an EC G satisfying enhanced �-likeness, G does not auto-

matically follow extended �-likeness.

Proof. We offer a counter example. Given � and two related SA values, under

an extension of �-likeness, v1 and v2, assume that their frequencies in Dℬ and

G are 0 < p1 = p2 = p ≤ 1, q1 = q2 = q, respectively, and that � > − ln(p).

Since G follows enhanced �-likeness, it holds that D(p1, q1) = D(p2, q2) ≤

− ln(p). Thus, q ≤ p − p ln(p). Assume that q = p − p ln(p). In order for G

to satisfy extended (i.e., semantic or range-based) �-likeness, it should hold that

q1 + q2 ≤ (p1 + p2) − (p1 + p2) ln(p1 + p2), or q ≤ p − p ln(2p)
2

. Substituting

q, it should hold that p − p ln(p) ≤ p − p ln(2p)
2
⇔ 2 ln(p) ≥ ln(2p) ⇔ p ≥ 2.

However, p < 1, hence the last inequality cannot hold. Thus, neither semantic

nor range-based �-likeness follows from regular enhanced �-likeness.

4.3 The algorithm

In this section we design our algorithm customized for �-likeness. The funda-

mental intuition is based on the following observation. Assume Dℬ is parti-

tioned into a set of buckets by a ‘group-by’ on SA. If we form an EC by taking

from each bucket a number of tuples proportional to the bucket’s size, then the

SA distribution in the formed EC will be the same as the global SA distribution

in Dℬ, preventing adversaries from gaining extra information on SA values.

However, we actually wish to allow for some variation in SA distributions,
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observing the �-likeness constraint. Thus, we can follow a more relaxed ap-

proach, in which again all tuples of the same SA value still appear in a single

bucket, but now more than one SA values may co-exist in one bucket. Again

we form ECs choosing tuples proportionally to the sizes of the buckets they hail

from, without discriminating between different SA values therein. This way, the

SA distribution in the created EC is not guaranteed to be the same as that inDℬ.

Some privacy is sacrificed for the sake of flexibility and information quality. We

do aim at such information quality, to the extent allowed by the �-likeness con-

straint. The following two definitions along with the example clarify the above

intuition. Our analysis borrows some formulations from SABRE (see Chapter

3), our work where we develop an algorithm for the t-closeness model.

Definition 4.6 (bucket partition (Chapter 3)). Let Dℬ be a table with sensitive

attribute SA, we say that a set of buckets ' forms an exact bucket partition of

Dℬ if and only if
∪
∀ℬ∈'
ℬ = Dℬ and each SA value, and each tuple, appears in

exactly one bucket.

Definition 4.7 (proportionality requirement (Chapter 3)). Let ' be a bucket par-

tition of table Dℬ. Assume that an EC, G, is formed with xj tuples from bucket

ℬj ∈ ', j = 1, 2, . . . , ∣'∣. G abides to the proportionality requirement with

respect to ', if and only if the values xj are proportional to the sizes of buckets

∣ℬj∣, i.e., x1 : x2 : . . . : x∣'∣ = ∣ℬ1∣ : ∣ℬ2∣ : . . . : ∣ℬ∣'∣∣.

Name Weight Age Disease

Mike 70 40 SARS

John 60 60 pneumonia

Bob 50 50 bronchitis

Alice 70 50 intestinal cancer

Beth 80 50 hepatitis

Carol 60 70 gastric ulcer

Table 4.2: Patient records

Age

weight50 60 70 80

40

70

60

50

Disease
SARS

Gastric ulcer

Hepatitis

Bronchitis

Pneumonia

Intestinal cancer

2

1

1

2

12

Figure 4.2: Better information quality
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Example 4.1. Consider Table 4.2, where {weight, age} is the QI, and

disease is the SA. Figure 4.2 shows the QI-space and the distribution of

tuples, with each QI attribute corresponding to a dimension. A bucket partition

' of this table could consist of six buckets of one tuple each, b1, b2, . . . , b6, with

SA values SARS, pneumonia, bronchitis, hepatitis, gastric ulcer, and intestinal

cancer, respectively. Taking one tuple from each of these buckets, we could build

a single EC satisfying 0-likeness. Still, such an EC covers the entire QI-space,

incurring high information loss. An alternative bucket partition could consist

of three buckets of two tuples each, ' = {ℬ1,ℬ2,ℬ3}, with SARS and pneu-

monia in bucket ℬ1, bronchitis and hepatitis in ℬ2, and the rest in ℬ3. We can

then build two ECs, by taking one tuple from each of these buckets, as shown in

Figure 4.2. Tuples in the same EC are labeled by the same number in the fig-

ure. This EC partitioning achieves better information quality, as the minimum

bounding boxes of ECs in QI-space are smaller.

A relaxed bucket partition, as in the above example, enables higher informa-

tion quality, but no longer abides by 0-likeness. Still, it suffices to create ECs in

such a way that they obey �-likeness for a given �. For instance, the anonymi-

zation produced in Example 4.1 satisfies �-likeness (for � ≥ 1) with respect to

the distribution of disease in Table 4.2.

Following the above observations, we propose our �-likeness scheme, whose

main body is composed of two phases—first, the bucketization phase partitions

tuples into a set of buckets, so that ECs formed under the proportionality re-

quirement obey �-likeness; then, the redistribution phase relaxes the propor-

tionality requirement to further improve information quality, and dynamically
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determines the size of each possible EC. After the EC sizes are calculated, tu-

ples are retrieved from buckets in a way that aims to preserve information qual-

ity, and concrete ECs are generated over them.

4.3.1 Bucketization phase

Let V = {v1, v2, . . . , vm} be the domain of SA, and P = (p1, p2, . . . , pm) be the

overall distribution of SA values in a tableDℬ. We partition V into subsets, and

use them to divideDℬ into a bucket partition '; that is, all tuples inDℬ with SA

values in the same subset of V are pushed to a single bucket of '. Suppose that

EC G is formed by taking xj tuples from bucket ℬj∈', j=1, 2, . . . , ∣'∣. Let Vj

be the subset of SA values contained in bucket ℬj . In a worst-case scenario, all

xj tuples may have the least frequent SA value in Vj , vℓj , with pℓj = min
vi∈Vj
{pi},

hence the frequency of vℓj in G will be qℓj = xj
∣G∣ . For �-likeness to hold, it should

hold in this worst-case scenario, i.e., xj
∣G∣ ≤ f(pℓj) = (1 + min{�,− ln(pℓj)}) ⋅

pℓj . We then arrive at the following theorem.

Theorem 4.1 (Eligibility Condition). Let ' be a bucket partition of table Dℬ

with sensitive attribute SA, G an EC formed with xj tuples from bucket ℬj ∈',

Vj the set of SA values in bucket ℬj∈', and pℓj = min
vi∈Vj
{pi}, j=1, 2, . . . , ∣'∣. If

∀j∈{1, 2, . . . , ∣'∣}, xj
∣G∣ ≤ f(pℓj), then G follows �-likeness.

Proof. For any SA value vk ∈ V , let ℬj ∈ ' be the single bucket that contains

tuples in Dℬ with vk as their SA value, hence vk ∈Vj . Since G draws xj tuples

from ℬj , the frequency of vk in G is qk≤ xj
∣G∣≤f(pℓj)≤f(pk). Expanding to all

vk∈V , we conclude that G follows �-likeness.

Theorem 4.1 defines the eligibility condition for an EC to follow �-likeness.

However, it does not provide a way to specify a particular number of tuples
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xj to choose from a given bucket ℬj . In other words, although it effectively

allows to verify �-likeness, it offers no guidance for constructing a �-likeness-

complying anonymization. To overcome this lack of guidance, we start out by

assuming that ECs are formed following the proportionality requirement. Under

this assumption, it holds that xj
∣G∣ = ∣ℬj ∣

∣Dℬ∣ =
∑
vi∈Vj pi, and the next lemma can be

easily deduced from Theorem 4.1.

Lemma 4.4. Let G be an EC that follows the proportionality requirement with

respect to a bucket partition ' of table Dℬ with sensitive attribute SA, Vj the

set of SA values in bucket ℬj ∈ ', and pℓj = min
vi∈Vj
{pi}, j = 1, 2, . . . , ∣'∣. If

∀j ∈ {1, 2, . . . , ∣'∣}, ∑vi∈Vj pi ≤ f(pℓj), then G follows �-likeness.

In effect, Lemma 4.4 determines the condition that the frequencies of a sub-

set of SA values, Vj ⊂ V , should obey, so that, if the values in Vj are put in the

same bucketBj of a bucket partition ', then ECs obeying the proportionality re-

quirement over 'will satisfy �-likeness. This condition is trivially satisfied by a

bucket partition with a single SA value per bucket. However, such a bucket par-

tition would force every EC to follow a strict proportionality requirement over

a large number of buckets, leading to anonymizations of poor information qual-

ity. We should better strive to achieve a loose bucket partition that satisfies the

condition of Lemma 4.4 in a non-trivial manner, having more than one distinct

SA values per bucket and as few buckets as possible (as in Example 4.1).

We develop a bucketization scheme for this task. We start out by rep-

resenting, P , the set of SA frequencies in Dℬ, in ascending order so that,

pi ≤ pi+1, i = 1, . . . ,m− 1. By Lemma 4.4, a set of consecutive SA val-

ues in V , vb, vb+1, . . . , ve, are allowed to be in the same bucket provided that∑e
i=b pi < f(pℓ), where pℓ=min{pb, pb+1, . . . , pe}.

Our bucketization scheme, presented in Function DPpartition, partitions V
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by dynamic programming, aiming to minimize the number of buckets. Let N [e]

denote the minimum number of buckets to which we can partition the prefix of

e elements in V , i.e., v1, v2, . . . , ve. The value of N [e] is calculated recursively

as:

N [e] = min
{b∣Combinable(b,e)=true}

{N [b− 1]}+ 1 (4.2)

Function Combinable(b, e) checks whether SA values vb, . . . , ve, b < e are al-

lowed to be in the same bucket, i.e., whether the inequality
∑e
i=b pi < f(pℓ),

holds, with pℓ=min{pb, pb+1, . . . , pe}. The base case is N(0) = 0.

Function DPpartition(Dℬ, SA)
Let V = {v1, v2, . . . , vm} be the domain of SA, with overall distribution1
P = (p1, p2, . . . , pm) in Dℬ;
Assume that pn ≤ pn+1, where n = 1, 2, . . . ,m− 1;2
N [0] = 0;3
S[0] = 0;4
for e=1 to m do5

N [e] = N [e− 1] + 1;6
S[e] = e;7
b = e− 1;8
while b > 0 and Combinable(b, e) = true do9

if N [b− 1] + 1 < N [e] then10
N [e] = N [b− 1] + 1;11
S[e] = b;12

b = b− 1;13
Initialize ' to be empty;14
e = m;15
while e > 0 do16

b = S[e];17
Create a new bucket ℬ, containing tuples with SA values in {vb, vb+1, . . . , ve};18
' = ' ∪ {ℬ};19
e = S[e]− 1;20

Return ';21

Function DPpartition consists of two parts. The first part (steps 3-13) runs

the DP recursion of Equation 4.2 (recording the value of b that minimizes the

number of segments for the first e elements - step 12) to evaluate the final min-

imum value N [m] and split V into segments accordingly; thereby it needs to

assess the combinability of m2 possible buckets of consecutive values in V . To
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assess combinability, we maintain the running
∑
pi within a bucket, updated in

O(1) at each step, while the min{pi} within a bucket is simply its first element.

The complexity of this part is O(m2). The second part (steps 14-20) uses the

results of the first part to build the derived bucket partition. Tuples with the

SA values in a segment are pushed into a corresponding bucket (step 18), in

O(∣Dℬ∣). The overall time complexity of the algorithm is O(m2 + ∣Dℬ∣).

4.3.2 Redistribution phase

The bucketization phase of our scheme delivers a bucket partition ' of Dℬ. We

have so far assumed, as a starting point, that ECs are formed from ' strictly

following the proportionality requirement, so as to satisfy �-likeness. However,

a strict adherence to the proportionality requirement may result in large ECs,

incurring high information loss. For example, if the size of some bucket ℬj ∈ '

is a prime number (other than 2), then, in order to strictly follow the propor-

tionality requirement, we should form an EC out of the whole table. We should

rather relax the proportionality requirement: it should suffice that the number

of tuples xj chosen from bucket ℬj in EC G be approximately proportional to

the size of ℬj , i.e., xj
∣G∣ ≈

∣ℬj ∣
∣Dℬ∣ =

∑
vi∈Vj pi. The rationale for this relaxation is

as follows. The bucket partition ' returned by DPpartition obeys the inequal-

ity
∑
vi∈Vj pi ≤ f(pℓj) (Lemma 4.4), where Vj is the set of SA values in bucket

ℬj ∈ ' and vℓj is the least frequent value in Vj . It follows that, if xj
∣G∣ ≈

∑
vi∈Vj pi

(i.e., if we draw tuples into ECs approximately proportionally to the size of the

bucket in ' they hail from), then the eligibility condition xj
∣G∣ ≤ f(pℓj) (Theorem

4.1), and hence �-likeness, will be easy to achieve.

To ensure �-likeness, we determine the EC sizes to use in the anonymization

by constructing a binary tree, the ECTree, in a top-down fashion. We start with a
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bucket partition ' = {ℬ1, . . . ,ℬ∣'∣}. The root of the tree r represents a potential

EC that contains all tuples in Dℬ, i.e., ∣ℬj∣ tuples from bucket ℬj . We denote

the contents of the root as r =
[
∣ℬ1∣, . . . , ∣ℬ∣'∣∣

]
. This can be a valid EC, but we

prefer to have smaller ones. Then, we proceed to split r into two children (each

representing an EC) by dichotomizing each ℬj into ℬ1
j and ℬ2

j . The left child

cL contains ℬ1
j and the right child cR contains ℬ2

j , j = 1, 2, . . . , ∣'∣. We ensure

that ℬ1
j and ℬ2

j have approximately the same size by setting ∣ℬ1
j ∣ = round

(
∣ℬj ∣

2

)
and ∣ℬ2

j ∣ = ∣ℬj∣ − ∣ℬ1
j ∣. The split is allowed only if both cL and cR satisfy

the eligibility condition (Theorem 4.1), i.e., they can form ECs satisfying �-

likeness. Assume the left child of r is cL =
[
∣ℬ1

1∣, . . . , ∣ℬ1
∣'∣∣
]
. Then, for the

eligibility condition to be satisfied, it should hold that
∣ℬ1j ∣∑∣'∣
n=1
∣ℬ1n∣
≤f(pℓj), where

pℓj is the frequency of the least frequent (in Dℬ) SA value included in ℬj . An

analogous condition applies for the right child cR. If splitting r into cL and cR

is allowed, we proceed to check whether we can split cL and cR themselves.

The splitting terminates when no node can be split any further. Then we get a

final ECTree, in which each leaf node configures the number of tuples an EC

should get from each bucket. A function biSplit(') returns the list of leaf nodes.

Example 4.2 illustrates this process.

[5, 6, 8]

[1, 1, 2]

[3, 3, 4][2, 3, 4]

[1, 2, 2]

Figure 4.3: An example of dynamically determining EC sizes

Example 4.2. Let disease be a categorical SA with the domain hierarchy of

figure 4.1. Consider a table, containing 2 tuples with SARS, 3 with pneumonia,

3 with bronchitis, 3 with hepatitis, 4 with gastric ulcer, and 4

with intestinal cancer. Assume that � = 2. Therefore, the overall SA
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distribution is P = (p1, p2, p3, p4, p5, p6) = ( 2
19
, 3

19
, 3

19
, 3

19
, 4

19
, 4

19
). f(p1) ≈

0.31, f(p2) = f(p3) = f(p4) ≈ 0.45, and f(p5) = f(p6) ≈ 0.54. By the

bucketization phase (see algorithm DPpartition) we have a bucket partition of

the table, ' = {B1, B2, B3}, where B1 accommodates tuples with SARS and

pneumonia, B2 has bronchitis and hepatitis, and B3 contains the

remaining two. The root node r = [5, 6, 8] in Figure 4.3 represents an EC with

5 tuples from B1, 6 from B2, and 8 from B3 (i.e., all tuples in the table). We

split r into c1 = [2, 3, 4] and c2 = [3, 3, 4]. Then EC c1 has a size 9, and

contains 2 tuples from B1 with 2
9
< min{f(p1), f(p2)}, 3 tuples from B2 with

3
9
< min{f(p3), f(p4)}, and 4 tuples from B3 with 4

9
< min{f(p5), f(p6)}.

Thus, c1 obeys the eligibility condition (Theorem 4.1). Similarly, we can ver-

ify that c2 also satisfies the condition. Therefore, splitting r into c1 and c2 is

allowed. Recursively, we can split c1 into [1, 1, 2] and [1, 2, 2]. When we try

to split c2 into g1 = [1, 1, 2] and g2 = [2, 2, 2], we find g2 does not satisfy the

eligibility condition (Theorem 4.1), because 2
6
> min{f(p1), f(p2)}, hence this

splitting is not allowed. Figure 4.3 is the final tree, with each leaf node showing

the number of tuples a possible EC should draw from each bucket. In this case,

no EC draws 0 tuples from a bucket, but that can be allowed in the general case,

conferring flexibility to the algorithm.

4.3.3 BUREL

We now put the above two phases together to devise BUREL, our algorithm that

first BUcketizes tuples into buckets and then REdistributes them from buckets to

ECs to attain �-Likeness. BUREL and SABRE (Chapter 3) have two phases of

common names. However, their internal workings, and the theoretical analysis

that accompanies them, are different and particular to each scheme and model.
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In its own bucketization phase, SABRE organizes SA values in a tree and hashes

them into buckets by the tree hierarchy so that similar SA values stay in the same

bucket. On the other hand, BUREL sorts the SA values by ascending order of

frequencies and employs dynamic programming to partition them in segments

of SA values with similar frequencies. In the redistribution phase, both SABRE

and BUREL use a binary tree to split ECs. However, each algorithm caters to the

requirements of the model it is designed for, extracted from the corresponding

theoretical analysis, when checking the eligibility of a split.

Algorithm: BUREL ( Dℬ, SA, � )
Let {v1, v2, . . . , vm} be all the SA values in Dℬ, and {p1, p2, . . . , pm} be their1
distributions;
' = DPpartition(Dℬ,SA);2
Sa = biSplit(');3
foreach array a in Sa do4

Create an empty EC, say G;5

foreach aj , jtℎ element of a do6
ecj = Retrieve(ℬj , aj);7
add ecj to G;8

Output G;9

The bucketization phase of BUREL returns ', a bucket partition of Dℬ (step

2). Then, its redistribution phase (function biSplit) determines the size of each

possible EC as a leaf in the ECTree and returns a list of arrays Sa (step 3).

Each array contains the size values in a leaf of the ECTree. Then, specific ECs

following the prescribed sizes are materialized and output (steps 4-9). Given an

array a ∈ Sa, BUREL retrieves aj tuples from bucket ℬj ∈ ', where aj is the

jth element of a and j = 1, 2, . . . , ∣'∣, and forms an EC G out of the retrieved

tuples (steps 6-8).

When retrieving tuples from a bucket, BUREL does not consider their SA

values. The �-likeness between the constructed EC G and the whole table Dℬ

is guaranteed by Theorem 4.1. Instead, it determines which tuples to select
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by information loss considerations, as prescribed by the General Loss Metric

(GLM) (Section 2.3). GLM requires the Minimum Bounding Boxes of ECs to

be as small as possible. Thus, function Retrieve(ℬi, ai) (step 7) greedily picks

tuples of as similar as possible QI values. Our greedy strategy utilizes the notion

of nearest neighbors. We define a multidimensional space with each of the QI

attributes as a dimension. The mapping to such a QI-space for a numerical QI

attribute NA is straightforward [41]. The axis of a categorical QI attribute CA is

formed by the order provided by a pre-order traversal of the leaves in its domain

hierarchyℋCA. Each tuple is represented as a point in this QI-space.

In order to form an EC G, BUREL first randomly picks a tuple x from a

bucket of ' in G. Then, the function Retrieve finds the aj nearest neighbors (by

Euclidean distance) of x in each bucket ℬj , j = 1, 2, . . . , ∣'∣, and adds them

into G, until the size specifications are satisfied. Still, this process can be com-

putationally demanding even with a sophisticated index structure [34]. Thus,

we suggest a more efficient heuristic method using the Hilbert space-filling

curve [59], a continuous fractal that can map regions of QI-space, hence tuples,

to 1D Hilbert values, as in [41]. Tuples that are close in the QI-space are also

likely to have nearby Hilbert values. Thus BUREL sorts all tuples in a bucket

ℬj by the ascending order of their Hilbert values. Thereafter it uses this order to

select the aj nearest neighbors of a tuple xwithin each bucket. In our implemen-

tation, we find the nearest Hilbert-neighbor x̄ of x within a bucket ℬj by binary

search, and then expand to the next closest aj neighbors to x. The average time

complexity for this search operation is O
(
∣SG∣∣'∣ ⋅

(
log ∣Dℬ∣∣'∣ + ∣Dℬ∣

∣SG ∣∣'∣

))
, where

∣'∣ is the number of buckets, ∣Dℬ∣∣'∣ the average size of a bucket, and ∣Dℬ∣
∣SG ∣∣'∣

the

average number of tuples taken out from a bucket to form an EC.
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4.3.4 BUREL for extended �-likeness

We now extend BUREL to semantic and range-based �-likeness. Instead of ac-

cepting each generated EC as it is, we buffer it in an EC list LG . After the

generation of all possible ECs, we check each EC in LG . Given an EC G1, its

distance from another EC G2 is calculated as ℐℒ(G1 ∪G2)−ℐℒ(G1), i.e., as the

increased information loss of G1 after being merged with G2. If an EC does not

satisfy extended �-likeness, we greedily merge it with its nearest neighbors, one

by one, until extended �-likeness is satisfied. Such a result is always possible,

since extended �-likeness obeys the monotonicity property (Lemma 4.2). To

find the nearest neighbors of an EC, we scan the whole list LG . Therefore, the

time complexity of the whole process is O(∣LG∣2). We emphasize that BUREL

for range-based �-likeness provides a robust solution to the problem of anony-

mization under a numerical SA, studied in [51, 86].

4.4 Experiments

In this section we evaluate the performance of BUREL. Our prototype was im-

plemented in Java and the experiments were run on a Core2 Duo 2.33GHz CPU

machine with 4GB RAM running Windows XP. In our experimental study, we

have used the CENSUS dataset2 [3], which contains 500, 000 tuples on 6 at-

tributes as shown in Table 4.3. For categorical attributes, the value following the

type is the height of the corresponding attribute hierarchy; for instance, attribute

marital status is categorical and has a hierarchy of height 2. The first 5 attributes

are potential QI-attributes, and the last one (i.e., salary class) is the sensitive at-

tribute. By default, we take the first three attributes as QI. The least frequent

2This dataset is the same as that in the experiments of SABRE (Chapter 3). We select 6 out of
the 8 attributes to avoid the curse of high dimensionality [8], thus better preserving information.
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value of SA salary class is 49, with frequency 0.2018%; the most frequent SA

value is 12, with frequency 4.8402%. The value � = 1 produces frequency

threshold e−� ≈ 37%, which marks all SA values as ‘infrequent’, and allows the

frequency of any SA value in any EC to be at most 4.8402%×2 = 9.7%. Thus, 1

is already a small threshold of �. In our experiments, we use � ∈ {1, 2, 3, 4, 5}.

We generate 5 microdata tables by randomly taking 100, 000 to 500, 000 tuples

from the dataset; the one with 500, 000 tuples is our default dataset.

Attribute Cardinality Type
Age 79 numerical

Gender 2 categorical (1)
Education Level 17 numerical
Marital Status 6 categorical (2)

Work Class 10 categorical (3)
Salary Class 50 sensitive attribute

Table 4.3: The CENSUS dataset

We treat the likeness threshold � as a variable, set by default to 4. Then, for

any SA value vi, if pi ≤ e−4 = 0.018, then its frequency qi in any EC should

not exceed 5pi; if pi > 1.8%, then qi ≤ (1− ln(pi)) ⋅ pi. The highest SA value

frequency in our data set does not exceed 5%, so the frequency of any salary

value in any EC will not exceed 20%.

As we have discussed, there are two predecessor distribution-based models

that �-likeness can be compared to: t-closeness and �-disclosure. The latter can

be configured to achieve a privacy guarantee comparable, though not equiva-

lent, to �-likeness. On the other hand, t-closeness cannot be configured in a

similar fashion. Thus, in order to compare our �-likeness scheme to existing

t-closeness schemes, we configure all compared schemes to achieve either the

same privacy in terms of t-closeness, or the same information loss, on a given
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data, and compare the privacy guarantee they achieve in terms of �-likeness;

this approach creates an even playing field. Then, we evaluate BUREL on infor-

mation loss, runtime, and accuracy on aggregate queries; for this evaluation, we

compare it to both the �-disclosure scheme used in [21] (which is an adaptation

of Mondrian [49, 50]), as well as to a similar �-likeness scheme that we devise

by adapting Mondrian to the new model. Finally, we also evaluate BUREL on

range-based �-likeness.

4.4.1 Face-to-face with t-closeness

Our first task is to compare our new �-likeness privacy model to the predecessor

distribution-based model of t-closeness. We argue that �-likeness provides a

more informative and comprehensible privacy guarantee than t-closeness does.

Still, in order to create an even playing field on which to compare �-likeness to

t-closeness, we conducted three face-to-face comparisons as follows.
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Figure 4.4: Comparison to t-closeness

In the first comparison, for a given dataset Dℬ and �, we let BUREL trans-

form Dℬ to Dℬ� , satisfying �-likeness. We then measure the closeness t� ,

by the t-closeness model, between Dℬ� and Dℬ, i.e., the maximum EMD of

the SA distribution in an EC of Dℬ� from its distribution in Dℬ. We then ap-

ply t-closeness schemes tMondrian [53] and SABRE on Dℬ as well, with t�
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as the t-closeness threshold, to produce DℬMt� and DℬSt� , respectively. There-

fore, data sets Dℬ� , DℬMt� , and DℬSt� all achieve the same privacy under the

criterion of t-closeness, as expressed by the value of t� . Then we measure the

� value achieved by DℬMt� and DℬSt� with respect to Dℬ. Given that all three

schemes achieve the same privacy in terms of t-closeness, we are interested to

compare the privacy they ahieve in terms of �-likeness. Figure 4.4(a) shows the

results (in logarithmic y-axis), as a function of the � parameter. Remarkably,

while all the three schemes are tuned to ensure the same t-closeness guarantee,

BUREL provides consistently higher privacy by the criterion of �-likeness than

SABRE and tMondrian. This result is expected, since t-closeness restricts only

the cumulative difference between SA distributions, indifferent to the relative

frequency difference of each individual SA value between an EC and the whole

table.

In the second comparison, for a given dataset Dℬ and a closeness constraint

t, we let tMondrian (SABRE) transform Dℬ to DℬMt (DℬSt ), abiding by t-

closeness. We then let BUREL find, by binary search, a value �t, such that,

when �-likeness is enforced on Dℬ by BUREL for �t, it produces an anony-

mization Dℬ�t characterized by the same (or smaller) closeness parameter t as

DℬMt (DℬSt ). Thus, again we get three anonymized versions ofDℬ that achieve

the same degree of privacy under t-closeness. While in our first comparison we

arrived at this state starting out with a � parameter, now we do so starting out

with a t parameter. Therefore, our results are not biased against t-closeness

schemes. As before, we compare the �-likeness achieved by DℬMt (DℬSt ) to

that achieved by Dℬ�t , as a function of t. The results, shown in Figure 4.4(b),

reaffirm our previous findings.

In our last experiment, given an AIL value l, we let BUREL determine, by
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binary search on its � threshold, a value �l, such that the data set Dℬ�l gener-

ated by BUREL from Dℬ with �l as the likeness threshold achieves AIL equal

to (or smaller than) l. Similarly, we determine, by binary search, a value tMl

(tSl ), which, taken as the closeness threshold in algorithm tMondrian (SABRE),

generates data set DℬtM
l

(DℬtS
l
) with AIL near l too, allowing for a small dif-

ference �. Thus, we obtain three data sets Dℬ�l , DℬtMl , and DℬtS
l
, generated by

BUREL, tMondrian, and SABRE, respectively, which all have information loss

near l; to ensure the comparison is not biased in favor of BUREL, we ensure

its AIL value is not greater than those of the other algorithms. We then com-

pare the privacy they achieve in terms of �-likeness. Figure 4.4(c) shows the

results. Not surprisingly, BUREL provides the highest privacy again, followed

by SABRE and tMondrian.

The above experiments testify that, with other relevant factors being equal,

state-of-the-art t-closeness schemes fail by a wide margin (as indicated by the

logarithmic y-axes) to achieve privacy good in terms of �-likeness. Thus, they

reaffirm that �-likeness is a privacy model raising substantially different require-

ments from those of t-closeness and requiring a different approach.

4.4.2 Performance evaluation

In this section we evaluate the performance of BUREL as a �-likeness algo-

rithm in its own field. As there is no previous work on �-likeness, we em-

ploy two comparison benchmarks adopting some suggestions of related work.

First, we devise an algorithm for �-likeness, following the conventional wis-

dom on designing algorithms for new privacy models: We adapt Mondrian
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[49, 50], a k-anonymization algorithm, to the purposes of �-likeness, as pre-

vious works have done for other privacy models [21, 52, 54, 57]. Our adap-

tation, LMondrian, splits an EC only if both resultant ECs satisfy �-likeness.

Second, in a similar way we extend Mondrian to a �-disclosure [21] scheme,

DMondrian. To render DMondrian comparable to BUREL and LMondrian, we

set the value of � so that the data anonymized by DMondrian obey �-likeness.

As we have discussed, while �-likeness demands that an SA value’s distribu-

tion in an EC be qi ≤ (1+min{�,−ln pi}) ⋅pi, for a given �, �-disclosure re-

quires that e−� ⋅pi < qi < e� ⋅pi, where pi is the overall distribution of vi in

the whole dataset. Thus, an algorithm for �-disclosure achieves �-likeness for

� ≤ log(1+min{�,−ln pi}), for all pi; in view of all SA values in V , we set

� = log
(

1+min
{
�,−ln

(
max
vi∈V
{pi}

)})
. We first compare the three schemes

with respect to average information loss and wall-clock time.
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Figure 4.5: Effect of varying �

First, we study performance as a function of the � threshold. Figure 4.5

shows the results. As � grows, the constraint on the relative difference of

each SA (i.e., salary) value frequency between an EC and the overall table is

relaxed, hence information quality rises (Figure 4.5(a)). BUREL outperforms

both LMondrian and DMondrian in information quality, showing the benefit of

a scheme tailored for �-likeness. This result reconfirms the finding of [21] that
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a k-anonymization algorithm, adapted to �-disclosure, yields unacceptably high

information loss; as we discussed, we aim at a positive result and propose a bet-

ter alternative. In addition, given that �-disclosure overprotects data by impos-

ing a constraint on negative information gain, LMondrian performs better than

its stricter sibling, DMondrian. More remarkably, BUREL also outpaces both

Mondrian-based schemes in time efficiency (Figure 4.5(b)). Overall, BUREL

achieves almost half the information loss of its Mondrian-based competitors in

about half the time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5
QI size

AIL
BUREL

LMondrian
DMondrian

 0

 4

 8

 12

 16

 1  2  3  4  5
QI size

Time(sec)
BUREL

LMondrian
DMondrian

(a) information loss (b) time

Figure 4.6: Effect of varying QI

Next, we investigate the effect of QI dimensionality (size), varying it from 1

to 5. As QI dimensionality increases, the data become more sparse in QI space,

as more high-dimensional degrees of freedom are offered; thus, the formed ECs

are more likely to have large minimum bounding boxes, and information quality

degrades, as Figure 4.6(a) shows. The information loss of BUREL is again lower

than that of the Mondrian-based methods. In addition, BUREL is again the

fastest of the three (Figure 4.6(b)).

Our next experiment studies the effect of database size, varying the size of

the microdata table from 100K to 500K tuples. Figure 4.7 presents our results.

Interestingly, data size has no clear effect on information quality. This is due to

the fact that, as the amount of tuples grows, more sensitive values are revealed,
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Figure 4.7: Effect of varying dataset

imposing their own requirements. The mere increase of data density does not

help, as it would with simpler models like k-anonymity. Still, the elapsed time

increases as the table size grows; BUREL is again found to be superior in both

respects.

We now study the utility of the anonymized data on aggregation queries,

which are the basis of real data analysis tasks such as statistical analysis and

data mining applications. We consider the following type of queries, as in [82]:

SELECT COUNT(*) FROM Anonymized-data

WHERE pred(A1) AND . . . AND pred(A�)

AND pred(SA)

Each Ai is a QI attribute. The query has predicates on � randomly selected QI

attributes and the SA. For each of these �+1 attributes A, pred(A) has the

form of A ∈ RA, where RA is an arbitrary interval in the domain of A. The

expected selectivity over the table is 0 < � < 1. Assuming data are uniformly

distributed, � can be achieved if each attribute A selects records within a range

of length ∣A∣⋅�A of its domain, such that (�A)�+1 =�. In effect, the length of RA

should be ∣A∣⋅�
1
�+1 , where ∣A∣ is the domain length of attribute A. Given a query,

the precise result prec is computed from the original table, and an estimated
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result est is obtained from the anonymized table. To calculate est, we assume

that tuples in each EC are uniformly distributed, and consider the intersection

between the query and the EC. We define ∣est−prec∣
prec

× 100% as the relative error.

Our workload consists of 10K queries, and we measure the workload error as

the median relative error. Relative error is undefined when prec is 0. If prec in

a given query is 0, we drop that query.
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In our first experiment, we use the first 5 attributes in Table 4.3 as the QI,

with expected selectivity �= 0.1, and vary the dimensionality of the query, i.e.

the number of QI attributes � on which predicates are defined. These attributes

contribute to the error. Thus, the increase of � exercises a negative effect on

error. However, as � grows, the length of the query range RA in the domain

of each queried attribute also grows (for constant �); thereby, the minimum
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bounding box of an EC becomes more likely to be entirely contained in the

query region. In effect, the error does not depend monotonically on � (Figure

4.8(a)); it does not matter much how many attributes a given selectivity � is

shared among. In the next experiment, we fix � to 3, � to 0.1, and vary �. Figure

4.8(b) shows the results. As � grows, the privacy requirement is relaxed, hence

information quality rises and the error drops. Next, we set � to 0.1, and vary the

QI size. As the QI size increases, the data tend to be more sparse in QI-space,

hence it is more likely that ECs with bigger bounding boxes are created. Thus,

in Figure 4.8(c) the workload error increases with QI size. Finally, Figure 4.8(d)

presents the results as a function of selectivity �. As � grows, the length of the

range RA for each attribute in a predicate increases. This makes the minimum

bounding box of an EC more likely to be entirely contained in the query region,

so the estimate becomes more accurate and the error smaller. In all experiments,

BUREL achieves consistently better utility.

4.4.3 Extension to range-based �-likeness

Now we evaluate the extension of BUREL to range-based �-likeness. For the

comparison, we adapted LMondrian (similarly for DMondrian), so that the split

of ECs it performs is allowed only when both resultant ECs satisfy range-based

�-likeness.

Figure 4.9 presents our results. As SA Salary is a numerical sensitive at-

tribute, we employ a parameter " that bounds the range of values by Definition

4.5. A bigger " indicates that there are more salary values in a range, hence the

privacy constraint becomes stronger and information quality degrades. Figure

4.9(a) shows the result with varying ", with QI size 3 and � = 4. To show

the extra information loss due to the constraint on range-based �-likeness, we
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add three horizontal lines in the figure, which represent the information loss

of the same schemes when only enhanced �-likeness is applied. Information

loss grows slightly with "; the additional requirement of range-based �-likeness

incurs only marginally more information loss. This result reconfirms the ro-

bustness of �-likeness: an EC that satisfies �-likeness is usually likely to also

fulfill its range-based variant. Figure 4.9(b) shows our results with " set to 6 and

varying �. Information quality grows with �, with three comparison lines added

again. The results reconfirm that range-based �-likeness imposes a minimal

premium on information quality.

4.5 Summary

This chapter has revisited the microdata anonymization problem, and made two

contributions. First, we propose �-likeness, a robust privacy model that provides

a comprehensible privacy guarantee, expressed as a limit on the relative positive

information gain on each single sensitive attribute value. Second, we devise

BUREL, an algorithm customized for that model itself. Our experimental results

testify that the problem raised by the �-likeness concept cannot be treated by

algorithms developed for other privacy models, and verify the effectiveness and
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efficiency of BUREL in the task it aims to accomplish, as opposed to approaches

adapting other algorithms to the new model.
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CHAPTER 5

CASTLE: CONTINUOUSLY

ANONYMIZING DATA STREAMS

So far, we have focused on static data sets. In this and the next chapters we

will concentrate on the privacy preservation of data streams. Compared with

traditional data sets, data streams are continuous and unbounded. Due to the

constraints on performance and storage, algorithms designed for streaming data

are permitted to make only one pass over the data; backtracking is not allowed.

These unique requirements arising in the context of data streams make the task

of anonymizing data streams a more challenging issue. Therefore, our work to

protect the privacy of streaming data will start with simple privacy model, i.e.,

k-anonymity, then go on with more sophisticated ones, such as ℓ-diversity and

t-closeness.

In this chapter, we will first extend the k-anonymity model to the context

of data streams. Then we will present CASTLE (Continuously k-Anonymizes

STreaming data via adaptive cLustEring), a cluster-based scheme that anonymizes

data on-the-fly and, at the same time, ensures the freshness of output data by

satisfying specified delay constraints. We further show how CASTLE can be

extended to support ℓ-diversity in a straightforward way.
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5.1 Introduction

Data streams are common to many application environments, such as, telecom-

munication, market-basket analysis, network monitoring, and sensor networks.

Mining these continuous data streams [36, 56, 85] helps companies (the owner

of data streams) to learn the behavior of their customers, thus bringing unique

opportunities. Many companies do not have the in-house expertise of data min-

ing, so it is beneficial to outsource the mining to a professional third party [62].

However, data streams may contain much private information that must be care-

fully protected. Consider Amazon.com. In a single day, it records hundreds of

thousands of online sales transactions, which are received in the form of stream-

ing data. Suppose that the sales transaction stream has the schema S(tid, cid,

goods), where tid is transaction identifier, cid is customer identifier, and goods

is a list of items bought by the corresponding customer. Suppose that a relation

ℛ containing the information about Amazon customers is stored on disk, with

schema ℛ(cid, name, sex, age, zipcode, address, telepℎone). Let Sℛ be the

stream generated by joining S with ℛ on cid. Suppose moreover that, to ana-

lyze customers’ buying behavior (e.g., building a decision tree), the mining is

on Sℛ1, and Amazon.com outsources it to a professional third-party. To protect

the privacy of customers, attributes that explicitly identify customers (such as

name, address and telepℎone) are projected out of Sℛ. However, the remain-

ing data in Sℛmay still be vulnerable to linking attacks, as illustrated in Figure

5.1, by joining QI attributes (e.g., sex, zipcode, and age) with external public

databases (e.g., a voter registration table). Therefore, the streaming transactions

1In real stream systems, typically customer information does not appear in the stream to
reduce redundancy. Mining, which needs customer information, requires joining the data stream
with local customer databases. In what follows, we consider mining and anonymization on joint
streams.
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in Sℛ need to be carefully anonymized before they are passed to the third-party.
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Figure 5.1: Linking attack on transactional data streams

A well-known technique to anonymize data is k-anonymity [67]. However,

most of previous k-anonymization algorithms are designed specifically for static

data sets. They cannot be directly applied on streaming data for the following

reasons. First, these techniques typically assume that an individual only has one

record for publishing. Under this assumption, once an equivalence class (EC)

contains k tuples, it will hide the released information of one person among

a crowd of k − 1 other persons. However, this assumption is not realistic for

streaming data and incurs the following attack. Consider that the QI size is

big enough and the QI values of two distinct persons are different with a high

probability. Consider again the example of Amazon.com and assume that one

customer has purchased n ≥ k items. After joining these transactions with

customer relationℛ, n tuples with the same QI value will appear in the resultant

stream. According to traditional k-anonymity schemes these n tuples can form

an EC and be output immediately without any generalization on their QI values.

However, the precise QI value can be linked to a single person in the voting list

with a high probability. Thus, the customer is re-identified and his/her privacy

is violated.
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A second reason that traditional k-anonymity schemes cannot be applied to

streaming data is the one-pass requirement imposed on algorithms designed for

data streams. Due to the constraints of performance and storage, an algorithm

is allowed to make only one-pass over the streaming data (backtracking over

data is not allowed). However, traditional anonymization schemes scan a data

set multiple times, contrary to the one-pass requirement. Furthermore, data

streams have a temporal dimension. Streaming tuples arrive at a certain rate,

they are dynamically processed, and the result is output with a certain delay. In

some applications, the output data are immediately used to trigger appropriate

procedures. For example, in a sensor network application the output stream can

be used to real-time react to some anomalous situations, thus the time to react

is very crucial. Therefore, a data stream anonymization scheme should ensure

strong guarantees on the maximum delay between the input of data and their

output.

Apart from traditional k-anonymity schemes, other alternative techniques,

such as weak k-anonymity [16], privacy preservation for table republication

[23, 61, 73, 81], and data stream clustering [9, 42], cannot be directly applied

to anonymize streaming data either. As we will further explain in Section 5.2,

these techniques either guarantee weaker privacy than k-anonymity, or target

goals very different from that of anonymizing streaming tuples.

To cope with all the above-discussed requirements, in this chapter, we present

CASTLE (Continuously Anonymizing STreaming data via adaptive cLustEring),

a cluster-based scheme that k-anonymizes streams on the fly and, at the same

time, ensures the freshness (i.e., the maximum delay between the arrival of a tu-

ple and its release to the third party) of anonymized data by satisfying specified

delay constraints. Moreover, we propose an extension of CASTLE to support
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ℓ-diversity [57] on data streams. To the best of our knowledge, this is the first

reported work that considers k-anonymity and ℓ-diversity on data streams.

The basic idea of the proposed approach is to exploit quasi-identifier at-

tributes to define a metric space: tuples are modeled as points in this space.

CASTLE groups incoming tuples into clusters and releases all tuples belong-

ing to the same cluster with the same generalization. CASTLE supports the

anonymization of both numerical and categorical attributes, by generalizing the

latter through domain generalization hierarchies, and the first through intervals.

Clustering of tuples is further constrained by the need to have fresh anonymized

data. To cope with this requirement, CASTLE ensures that the delay between a

tuple’s input and its output is at most equal to a given parameter �. We refer to

this constraint as delay constraint. When a tuple is going to expire (i.e., its delay

is equal to � − 1), CASTLE immediately releases it. Obviously, it could be the

case that an expiring tuple does not belong to a cluster with size at least k. To

manage this case, CASTLE implements a merge and split technique to obtain a

cluster with size at least k and whose generalization minimizes the information

loss. Additionally, to reduce information loss, CASTLE exploits a strategy that

allows the reuse of clusters. When a cluster is anonymized and all its tuples have

been given in output, CASTLE still keeps it (a.k.a. the corresponding general-

ization) in memory to anonymize newly arriving tuples, if necessary. However,

we found that adopting a naive reuse strategy is flawed even if it strictly follows

the definition of k-anonymity on static data sets, since it is vulnerable to infer-

ence attacks that exploit the sequence of anonymized tuples returned as output.

In the chapter, we present the reuse strategy employed by CASTLE to avoid

such privacy breaches.

The rest of the chapter is organized as follows. In the next section, we
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discuss why the alternative techniques cannot be adopted to anonymize data

streams. Section 5.3 proposes our privacy model customized for the anonymi-

zation of streaming data. We present a general overview of CASTLE frame-

work in Section 5.4. The detailed algorithms including an extension to support

ℓ-diversity, and the security analysis, are presented in Section 5.5. After that,

Section 5.6 makes a formal analysis of the time/space complexity of CASTLE.

Finally, we report the experimental results on the effectiveness of CASTLE in

Section 5.7 and conclude this chapter in Section 5.8.

5.2 Alternative strategies

In this section we investigate related techniques. They are inadequate for data

streams, because they either offer weaker protection on data streams than k-

anonymity, or target goals different from that of anonymizing data streams.

The first strategy we will study is an extension of weak k-anonymity [16].

It achieves stream anonymity by joining data stream S with a k-anonymized

version of customer relation ℛ. The first problem with this solution is that the

dimensions to be anonymized (i.e., QI attributes) may come from bothℛ and S.

Thus, anonymizing onlyℛ is inadequate, since the resultant joined stream need

be further anonymized. Furthermore, such a solution opens inference channels

for an attacker. Weak k-anonymity does not require that each equivalence class

has a size of at least k. It only requires that the QI value of each released tuple

can be linked to at least k individuals in a public table. It is proven that once k-

anonymity is achieved, weak k-anonymity is automatically satisfied. However,

the reverse is not true. Therefore, weak k-anonymity is less secure than k-

anonymity. Furthermore, weak k-anonymity provides privacy only under the

assumption that an adversary does not know a priori whether an individual is in
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the released data or not, which appears too strong for most of the application

environments related to data streams.

As an example, assume Table 5.1 is a portion of the customer table, in which

quasi-identifier attributes are Sex, Zipcode and Age. Table 5.2 is a 3-anonymized

version of Table 5.1, where CID and Name are put outside of the table only for

row referencing. Suppose that Mike has bought something from a store and

there is an anonymized record in the output stream published by this store, i.e.,

x̄(M, [53703-53708], [26-31], sex video). In addition, no other record with the

same generalized QI value is found. Suppose that Beth is an attacker, and that

she knows the detailed QI information of Mike. If Beth does not know that Mike

appears in the stream (the fact that Mike has made a purchase), by joining x̄with

Table 5.2 she will find that x̄ is linkable to 3 persons: Mike, John, and Mike.

This is weak 3-anonymity. The identity of the buyer of sex video is hidden.

However, once Beth knows that Mike has made a purchase, she is sure that x̄

refers to Mike, not to John or Mike, and knows that Mike bought sex video.

Mike’s privacy is therefore violated.

CID Name Sex Zipcode Age
C01 Mike M 53708 31
C02 Alice F 53715 21
C03 John M 53703 28
C04 Bob M 53706 26
C05 Beth F 53703 24
C06 Carol F 53706 22

Table 5.1: Customer table

CID Name Sex Zipcode Age
C01 Mike M [53703-53708] [26-31]
C03 John M [53703-53708] [26-31]
C04 Bob M [53703-53708] [26-31]
C02 Alice F [53703-53715] [21-24]
C05 Beth F [53703-53715] [21-24]
C06 Carol F [53703-53715] [21-24]

Table 5.2: 3-anonymized customer table

In addition, applying the above method requires a further anonymization

step if we want to support ℓ-diversity [57] principle. To satisfy this principle,

the tuples with the same generalized value should have at least ℓ distinct values

for each different sensitive attribute. Since the resultant joined stream only k-

anonymizes QI attributes from ℛ, it should be further processed to make the
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sensitive attributes from S ℓ-diverse.

Recently, the problem of anonymizing dynamic datasets, which evolve with

tuple insertions and deletions, has started to be investigated [23,61,73,81]. Still,

such methods cannot be applied on data streams, since the inferences arising in

dynamic datasets are different from those existing in the context of data streams,

as the following discussion clarifies. Anonymizing dynamic datasets requires

to publish multiple k-anonymized releases of a table. As a consequence, an

attacker, by analyzing the multiple generalizations of a same tuple x in the dif-

ferent releases, is able to calculate the intersection of all these generalizations,

thus having a better guess of x’s real QI value. In some cases, the attacker may

even find the exact QI value of x, and link it with a specific victim, as shown

in [23, 61, 81]. Anyway, such an inference does not occur when anonymiz-

ing data stream, since each streaming tuple is anonymized only once, instead of

multiple times. Actually, the possible inferences arising from the anonymization

of data stream are due to the fact that an attacker is able to inspect the sequence

of anonymized tuples in the output stream (as discussed in Section 5.5.3 below).

Lastly, we discuss the schemes of clustering data streams [9,42]. They focus

on finding ' centers in the streaming data so that the sum of distances from data

points to their closest centers is minimized. As a consequence, the principle

regulating clustering generation is to minimize the distance while the number

of total clusters is at most '. In contrast, in order to k-anonymize streaming

data, the proposed approaches have to follow another principle (i.e., the number

of tuples in each cluster has to be at least k), which requires to devise new

clustering algorithms.

Based on all the above discussion, we strongly believe that a solution for the

anonymization of data streams need to be specifically designed.
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5.3 The privacy model

We model data stream as an infinite append-only sequence of tuples. Each

streaming tuple contains, together with application-specific attributes, also a

time stamp that indicates its time of origin. Time stamp is usually modeled

as the time when the tuple is generated, or the position of the tuple inside the

stream. Without loss of generality, we will consider the tuple position through-

out the chapter. Thus, given a tuple x in a stream S , we denote with x.p the

attribute of x storing the position of tuple x.

Definition 5.1 (k-anonymity of data streams). Let S(p, pid, a1, . . . , aj , A1, . . . ,

Ad) be a stream, where {A1,. . . ,Ad} is the QI, pid is the person’s identity, p is

the tuple’s position, and a1, . . . , aj are the remaining attributes. Let Sout be the

anonymized stream generated from S where p and pid have been pruned. We

say that Sout is k-anonymized, if both the following conditions hold:

∙ For each tuple x ∈ S, if it is not suppressed, there exists in Sout the

corresponding anonymized tuple x̄.

∙ Given a tuple x̄ ∈ Sout, we define Gx̄ = {x̄′ ∈ Sout∣x̄′.Ai = x̄.Ai, i ∈

[1, d]} as the EC containing the anonymized tuples with the same gen-

eralized QI value as x̄. Let DP(Gx̄) be the set of distinct persons which

tuples in Gx̄ refer to. Then for each possible Gx̄ ⊂ Sout, ∣DP(Gx̄)∣ ≥ k.

Traditional k-anonymity schemes [19, 39, 43, 48, 67] assume that each indi-

vidual has only one tuple appearing in the data set, so they form ECs, each with

at least k tuples only. However, such an assumption does not hold for streaming

data as discussed in the introduction. To address this, Definition 5.1 explicitly

requires that each EC in the context of data streams refer to at least k distinct

persons (Example 5.1 in Section 5.4.1 illustrates a case when k = 3).
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A relevant feature that closely related to the anonymization of data streams

is the freshness of the output data. This can be considered as the maximum

allowed time of a tuple staying in the memory before it is output, which is

formally defined as follows.

Definition 5.2 (Delay constraint). Let A be a k-anonymization scheme that

takes as input a data stream S and generates in output a data stream Sout,

and let � be a positive integer. We say that A satisfies the delay constraint � if

and only if for each new arriving tuple x ∈ S with position x.p, all tuples with

position less than x.p− � have already been output by A.

According to the above definition, when a new tuple x arrives, the tuple x′

with position x′.p = x.p − � can still stay in the memory. However, when

the next new tuple with position x.p + 1 comes, x′ should already have been

output. Therefore, once x has arrived, x′ is expiring and needs to be output.

Note that the � parameter can be tuned on the basis of the application domain,

the temporal requirements, and the desired information quality. Indeed, when �

increases, the maximum delay between the arrival of a tuple and its release to the

third party for data ming is increased. However, this allows CASTLE to buffer

more tuples, and the defined metric space (each QI attribute is one dimension)

becomes denser. So CASTLE is more likely to group similar tuples together

and reduces information loss. Therefore, it is possible to trade off between the

allowed delay and the obtained information quality. The experiments in Section

5.7 verify this relationship.

In the introduction, we have discussed the prior knowledge (capability) of

an attacker. We formalize it as follows.

Definition 5.3 (Adversary model). At any instant {, an attacker’s knowledge

includes:
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∙ The deployed generalization principle (that is, the algorithms according

to which tuples are generalized by CASTLE).

∙ The values of all the anonymized tuples released at instant {, and the val-

ues of all the others released earlier.

∙ The QI value of any victim, and whether a tuple related to the victim

appears in the output stream.

The above modelling shows the unique characteristics of the anonymization

of data streams. Therefore, in the following we denote k-anonymity of data

streams by ks-anonymity to distinguish it from k-anonymity for static data sets.

The aim of CASTLE is continuously ks-anonymizing data streams under the

delay constraint, so that the output streams are immune from adversarial attacks,

and at the same time, preserving as much information as possible (by GLM in

Section 2.3).

5.4 The CASTLE framework

We present the CASTLE framework in this section. Before that, we first intro-

duce the notion of clusters over data streams.

5.4.1 Clusters over data streams

The basic idea of CASTLE is to exploit QI attributes to define a metric space,

so that streaming tuples are considered as points in this space. According to this

strategy, a cluster can be seen as d-dimensional intervals, where d is the number

of QI-attributes. The formal definition of cluster is given below.

Definition 5.4 (Cluster over a data stream). Let S(p, pid, a1, . . . , aj ,A1, . . . ,Ad)

be a stream where {A1, . . . , Ad} are the QI attributes. Let S ′ ⊂ S be a subset of
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tuples. A cluster C over S ′ is defined as a set of intervals, called range intervals,

in the QI attribute domains. For each QI attribute Ai, the corresponding range

interval ri is defined as follows:

∙ If Ai is a continuous attribute with domain [ℒAi ,UAi ], ri ⊂ [ℒAi ,UAi ] is

the minimal sub-interval that contains all values of Ai in S ′.

∙ If Ai is a categorical attribute with domain hierarchy ℋi, let Leaves(ℋi)

be the set of leaves of ℋi generated by a left-most traversal of all the

leaves in ℋi. Let SℒAi be the smallest subset of Leaves(ℋi) containing

all values of Ai in S ′, ri’s bounds are the left-most and the right-most

values of SℒAi , respectively.

Given a cluster C we denote with C.size the number of distinct persons

which tuples in C refer to. This can be easily calculated by considering the

number of distinct values of the pid attribute. Moreover, we denote with C.ri

the i-th range interval of C, and with C(r1,. . . ,rn) the cluster together with its

range intervals.

Example 5.1. Consider the stream S(p, pid, a1, . . . , aj , Age, Edu), where {Age,

Edu} is the QI, and the domain hierarchy ℋEdu of categorical attribute Edu is

shown in Figure 5.2. Assume the following tuples2: (pid1, 25, Bachelor), (pid2,

26, Master), and (pid3, 30, Ph.D). According to Definition 5.4, cluster C defined

over these three tuples has [25, 30] as Age range interval and [Bachelor, Ph.D]

as Edu range interval. Therefore, it is denoted as C([25, 30], [Bachelor, Ph.D])

with size equal to 3. If we further add the tuple (pid1, 25, Bachelor) to C, it does

not change its range intervals nor its size (which is still equal to 3).

2For simplicity here and in the following we only consider the pid and QI attributes. More-
over, where not relevant, pid attribute is omitted.
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Figure 5.2: Domain generalization hierarchy of education

Given a cluster C with the size of at least k, if all its tuples are output by

sharing a same generalized QI value, then the properties of ks-anonymity can

be satisfied (see Definition 5.1). The following defines the generalization related

to such an output.

Definition 5.5 (Cluster generalization). Let C(r1,. . . ,rn) be a cluster. The cor-

responding cluster generalization (or simply generalization), denoted as CG =

(g1, . . . , gn), is so defined that, for each ri, i ∈ [1, n], gi is computed as follows:

∙ if ri is defined on a continuous attribute Ai, gi = ri;

∙ if ri is defined on a categorical attribute Ai with domain hierarchy ℋi,

then gi ∈ ℋi is the lowest common ancestor of the bounds in ri.

Moreover, we say that a tuple x is output with C’s generalization, if each

QI attribute Ai, i ∈ [1, n], of x is replaced by the corresponding value gi in the

generalization associated with C.

Example 5.2. Consider the cluster of Example 5.1, that is, C([25, 30], [Bach-

elor, Ph.D]). According to the domain generalization hierarchy presented in

Figure 5.2, the generalization associated with C is ([25, 30], University), since

University is the lowest common ancestor of Bachelor and Ph.D.

After a cluster reaches the size of k and outputs all its tuples, we may buffer

its generalization. Later when a tuple falling in this cluster is expiring, we can
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release the tuple by reusing buffered generalization (see Section 5.4.3 below

for details). Clearly, this output tuple together with other released tuples by

this cluster share a same QI value (i.e., the generalization), and form an EC

complying with ks-anonymity. We call such a reused cluster ks-anonymized

cluster, which is defined as follows.

Definition 5.6 (ks-anonymized cluster). Let C(r1,. . . ,rn) be a cluster, and (g1,. . . ,gn)

be the corresponding generalization. If at a given time instant {, C.size is

greater than or equal to k and all tuples in C are output with C’s generaliza-

tion (g1,. . . ,gn), we say that, starting from {, C is a ks-anonymized cluster.

At the end of this subsection, we define the information loss metrics3 for the

clusters over data stream. Let {A1, A2, . . . , Ad} be the QI, and C(g1, g2, . . . , gd)

be a cluster and its generalization. We define the information loss with respect

to QI attribute Ai in cluster C as ℐℒAi(gi, C). If Ai is numerical with domain

range [ℒAi ,UAi ], and gi is an interval [lCAi , u
C
Ai

], then ℐℒAi(gi, C) =
uCAi
−lCAi

UAi−ℒAi
. If

Ai is categorical with the domain hierarchyℋAi , and gi is a node inℋAi , then

ℐℒAi(gi, C) =

⎧⎨⎩
0, ∣Leaves(gi)∣ = 1
∣Leaves(gi)∣
∣Leaves(ℋAi )∣

, otherwise

where Leaves(gi) is the set of leaves under the subtree of ℋAi rooted at gi, and

Leaves(ℋAi) is the whole set of leaves in ℋAi . Therefore, the information loss

of cluster C is ℐℒ(C) = 1
d
×∑d

i=1 ℐℒAi(gi, C).

5.4.2 Scheme overview

Initially, no clusters are in memory. When CASTLE receives the first tuple, it

generates a cluster over it. Then, for every newly arriving tuple x, CASTLE

3Once we regard a cluster as an EC, these metrics will be the same as those in Section 2.3.
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selects, among all the existing clusters, the one that is closest to x. We intro-

duce a concept, cluster enlargement (defined as below), to evaluate the distance

between a tuple and a cluster. Given the selected cluster C and the new tuple x,

C may need to enlarge its range intervals to accommodate x. As a consequence,

the enlargement implies an increase of information loss. To minimize informa-

tion loss, when selecting the cluster, CASTLE chooses the one that needs the

smallest enlargement.

Definition 5.7 (Cluster enlargement). Consider a data stream S(p, pid, a1, . . . , aj,

A1, . . . , Ad) with {A1, . . . , Ad} as QI. Let C be a cluster defined over tuples in

S ′ ⊂ S, and (g1, g2, ..., gn) be its generalization. Let x be a tuple in S ∖ S ′, and

C+x(g̃1, g̃2, ..., g̃n) be another cluster and its generalization defined over tuples

in S ′ ∪ {x}. Then, the enlargement of C with respect to x is defined as follows:

Enlargement(C, x) = 1
d

∑d
i=1 (ℐℒAi(g̃i, C+x)− ℐℒAi(gi, C))

Note that in the case C contains only one tuple x̄, we say that Enlargement(C, x)

returns the distance between x̄ and x.

28

26

24
22

18

PS SS Ba Ma Ph.D.

C

C2

1

  x

Figure 5.3: Cluster selection

Example 5.3. Consider clusters C1 and C2 in Figure 5.3. To enclose tuple x(24,

Bachelor) into cluster C1 its range intervals should be enlarged to [18, 24] and
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[Primary School, Bachelor], respectively, which implies that the new general-

ization associated with C1 is ([18, 24], Any). Assume that [18, 120] is the

domain of the Age attribute. Thus, the enlargement of C1 due to absorbing x is

Enlargement(C1, x) = 1/2 × (6/102 + 5/5) − 1/2 × (4/102 + 2/5) = 0.309.

In contrast, the range intervals of C2, enlarged to enclose x, are [24, 28] and

[Bachelor, Master], respectively, which correspond to the new generalization

associated with C2: ([24, 28], University). This implies that the enlargement of

C2 due to absorbing x is Enlargement(C2, x) = 1/2 × (4/102 + 3/5) − 1/2 ×

(2/102 + 3/5) = 0.01. Thus, x is pushed into C2.

However, always pushing a new tuple into an existing cluster may result in

clusters with big generalizations, thus implying poor information quality. There-

fore, to prevent clusters from becoming too big, if pushing a new tuple to any

existing cluster makes the information loss of that cluster greater than a thresh-

old � , CASTLE generates a new cluster over the new tuple (see Section 5.4.2

for more details).

To satisfy delay constraints, when a new tuple arrives, CASTLE checks

whether a tuple in some cluster is going to expire. If this is true, the correspond-

ing tuple must be immediately output. Here, there are two main cases. The

first is when cluster C, hosting the expiring tuple, has already a size greater than

or equal to k. In this case CASTLE simply outputs all the tuples in C with its

generalization, and starting from the instant of outputting, it considers C as a ks-

anonymized cluster. The second case is when the cluster C hosting the expiring

tuple has size less than k. To immediately output the expiring tuple, CASTLE

merges C with some of its neighboring clusters such that the size of the resultant

cluster is greater than or equal to k. More precisely, CASTLE selects those that

result in minimum enlargement to C. Then, all the tuples contained in the new
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cluster can be output with its generalization (see Section 5.5 for more details on

the merge operation).

In both cases, before outputting the cluster’s tuples, CASTLE verifies whether

the cluster can be split into smaller sub-clusters. Indeed, according to the adopted

information loss metric, the smaller the cluster is (i.e., its range intervals), the

smaller its information loss will be. Therefore, if C’s size is at least 2k, before

outputting the tuples, CASTLE splits it into two or more sub-clusters, each with

size at least k (see Section 5.5 for more details on the split operation).

5.4.3 Reuse of ks-anonymized clusters

To increase the information quality of anonymized data, we have enhanced

CASTLE with a strategy that enables to reuse ks-anonymized clusters (i.e.,

their generalizations). According to this approach, after a cluster becomes ks-

anonymized, it is not deleted from memory. Instead, its generalization is kept,

and is used later on to output expiring tuples contained in it.

A ks-anonymized cluster will be no more ks-anonymized if its range inter-

vals are enlarged due to the insertion of new tuples. Therefore, when a new tuple

x arrives, CASTLE selects the cluster to absorb x only among the set of non-ks-

anonymized clusters. This not only avoids the enlargement of ks-anonymized

clusters, but also gives to the non-ks-anonymized clusters more possibilities to

become ks-anonymized. It is relevant to note that this strategy leads to overlaps

between ks-anonymized and non-ks-anonymized clusters. The main advantage

of overlaps is that the generalizations of ks-anonymized clusters can be used for

anonymizing expiring tuples that have been absorbed by non-ks-anonymized

clusters but are also enclosed into ks-anonymized clusters. Therefore, every

time a tuple x inside a non-ks-anonymized cluster is going to expire, CASTLE
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verifies whether x also falls in a ks-anonymized cluster KC. If this happens, x

is immediately output with KC’s generalization. Thus, the reuse strategy avoids

some cluster merges and consequently improves information quality.

Example 5.4. Let us suppose that, at a given instant, cluster C2([26, 28], [Bach-

elor, Master]) becomes ks-anonymized. Moreover, suppose that, after some

time, a new cluster C3([24, 27], [Bachelor, Master]) is generated (see Figure

5.4). In case a tuple x(26, Bachelor) of C3 is going to expire and C3 still has size

less than k, x can be given in output with C2’s generalization, that is, ([26, 28],

University).

����
����
����
����
����

����
����
����
����
����

PS SS Ba Ma Ph.D.

27
C2

28

26

24
C3

25

Figure 5.4: Overlapping clusters

When a tuple x is expiring, the best way to preserve information is to se-

lect from all the ks-anonymized clusters the one which contains x and has the

minimal information loss. However, this method allows an attacker to infer ad-

ditional knowledge about a tuple’s value or even guess its exact value, as the

following example shows.

Example 5.5. With reference to Figure 5.4, suppose that at a given instant { both

clusters C2([26, 28], [Bachelor, Master]) and C3([24, 27], [Bachelor, Master])

are ks-anonymized. Suppose moreover that a tuple x̃ (25, Master) arrives after
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instant { and that, after some time, it is expiring. CASTLE outputs this tuple

with C3’s generalization, i.e., ([24, 27], University). However, by tracing the

output stream, an attacker is able to infer that x̃.Age is not [26, 27] (the age

overlap between C2 and C3), otherwise, x would be in C2 and would have been

output with C2’s generalization, which preserves more information comparing

with C3’s generalization. Thus, an attacker can infer that x̃.Age belongs to

C3.Age ∖ (C2.Age ∩ C3.Age) = [24, 25].

To overcome this attack, we employ the following reuse strategy: if an expir-

ing tuple falls into the overlap of two or more ks-anonymized clusters, CASTLE

randomly selects one of them and anonymizes the tuple with its generalization.

This avoids the security flaw previously discussed (see Section 5.5.3 for a formal

proof).

Example 5.6. Consider again Example 5.5 and assume that the strategy dis-

cussed above is adopted. When an attacker sees the generalization of x̃ (the

generalization of C3), s/he knows that x̃ could be in C2∩C3 (the overlap between

C2 and C3) or C3 ∖ (C2 ∩ C3). This inference tells that x̃ could be in any place of

(C2 ∩ C3) ∪ (C3 ∖ (C2 ∩ C3)), which is exactly the generalization of C3.

5.4.4 Adaptability to data stream distribution

In order to adapt CASTLE to data stream distribution we introduce several

strategies. The first is related to the value of � , i.e., the threshold determin-

ing whether an arriving tuple should be pushed to an existing cluster or a new

cluster should be created over it. To make CASTLE adaptive to the data stream

distribution, we do not consider a predefined and fixed � . Instead, � is set to the

average information loss of the � most recent ks-anonymized clusters (see Sec-

tion 5.7 for a description on how to set the number �). Let us see the benefits
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of this dynamically calculated � . When a data stream contains well clustered

tuples, it is possible to generate over them small clusters with low information

loss. As a consequence, � will assume a small value, and a new tuple will be

pushed into a cluster only if they are very close. This ensures that if tuples in

a stream are well clustered, only clusters with small range intervals are formed.

On the contrary, if a data stream contains sparsely distributed tuples, clusters

with big range intervals are generated. This implies a high value of � , and also

allows an increased enlargement. Thus, a new tuple is more likely to be pushed

into an existing cluster. Accordingly, each cluster has improved possibility of

reaching the size of k, and the number of cluster merging operations is reduced.

Another adaptivity is obtained by constraining the maximum number of non-

ks-anonymized clusters that stay in memory, delimited by a parameter �. This

parameter co-operates with � to handle the variation of data distribution. More

precisely, suppose that, at the beginning all tuples are well clustered, so � has

a small value. If the newly arriving tuples are sparsely distributed, many small-

size clusters will be formed since the small � only allows a small cluster en-

largement. The large number of clusters increases the overhead of searching for

the best cluster into which a new tuple should be pushed, and it also increases

the overhead of merging clusters when tuples expire. The introduction of � pre-

vents the generation of a possibly large number of clusters and thus limit the

overhead discussed above. The value of � can be set regarding the available

computational and storage resources. Hence, a new cluster is generated only if

the number of non-ks-anonymized clusters is fewer than �. Otherwise, a tuple

is pushed to the existing cluster, which still requires the minimum enlargement

to enclose it.



122

5.5 CASTLE algorithms and security analysis

In the following, we present the algorithms implementing the techniques il-

lustrated in the previous section. Then, we show their extension to achieve

ℓ-diversity. Moreover, we analyze their security.

5.5.1 Algorithms

The main algorithm of our work is CASTLE, which continuously processes the

incoming data stream by producing in output a flow of ks-anonymized tuples.

Algorithm: CASTLE (S, k, �, �)
Let Γ be the set of non-ks-anonymized clusters, initialized to be empty;1
Let Ω be the list of ks-anonymized clusters, set to be empty;2
� = 0;3
while new tuples still come from S do4

Get the arriving tuple x from S;5
C = bestSelection(x);6
if C = NULL then7

Create a new cluster over x and insert the cluster into Γ;8
else9

Push x into C;10
Suppose that x′ is the tuple so that x′.p = x.p− �;11
if x′ has not yet been output then12

delayConstraint(x′);13

Algorithm CASTLE takes as input the original data stream S together with

other parameters: k, � and �. At the beginning, the set of non-ks-anonymized

clusters (i.e., Γ) as well as the set of ks-anonymized clusters (i.e., Ω) are empty.

Then, every time a tuple x arrives (step 5), it calls function bestSelection (step

6), to select from Γ the best cluster into which x is pushed (step 10). If such

a cluster does not exist, a new cluster over x is created (steps 7-8). In addi-

tion, CASTLE verifies whether the arrival of the new tuple x forces another

tuple x′ with position x.p − � to expire (step 11). If this is the case, proce-

dure delayConstraint will be called (step 13). In the following, we illustrate the
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procedures/functions used by Algorithm CASTLE.

Function bestSelection(x)
Initialize E to be an empty set;1
foreach C ∈ Γ do2

Calculate e = Enlargement(C, x);3
Insert (e, C) into E;4

em = min
∀e
{e ∣ (e, C) ∈ E} ;5

Sem = {Ĉ ∣ Ĉ ∈ Γ and Enlargement(Ĉ, x) = em};6

foreach Ĉ ∈ Sem do7

Compute ℐℒ(Ĉ ∪ {x}), i.e., the information loss of Ĉ after absorbing x;8

if ℐℒ(Ĉ ∪ {x}) ≤ � then9

Insert Ĉ into SCx;10
if SCx is empty then11

if ∣Γ∣ ≥ � then12
Return any cluster in Sem with minimum size;13

else14
Return NULL;15

else16
Return any cluster in SCx with minimum size;17

Function bestSelection. According to the reuse strategy, a new tuple is al-

ways pushed into a close non-ks-anonymized cluster. bestSelection first calcu-

lates the set of non-ks-anonymized clusters Sem , which requires the minimum

enlargement to absorb incoming tuple x (steps 1-6). To be adaptive to the data

stream distribution described in Section 5.4.4, we refine Sem , thus only clus-

ters whose information loss after absorbing x will not exceed � are kept (steps

7-10). These remaining clusters are stored in SCx (step 10). If SCx is not

empty (the evaluation of step 11 is false), bestSelection returns the cluster with

the minimum size (step 17). Otherwise, it implies that a new cluster should be

created over x. Still, to avoid a large number of non-ks-anonymized clusters,

thus better adaptive to data stream distribution, the function verifies whether the

constraint on the maximum number of non-ks-anonymized clusters is satisfied.

When the number of non-ks-anonymized clusters is greater than or equal to �

(step 12), it is impossible to create a new cluster. In this case, among clusters
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requiring the minimum enlargement, i.e., Sem , the one with the minimum size

is returned (step 13). Otherwise, the function returns a NULL value (step 15),

which triggers in Algorithm CASTLE the generation of a new cluster over x.

Procedure delayConstraint(x)
Find C the non-ks-anonymized cluster holding the expiring tuple x;1
if C.size ≥ k then2

outputCluster(C);3
else4

Let SKC be the set of ks-anonymized clusters in Ω containing x;5
if ∣SKC ∣ > 0 then6

Randomly select a cluster Ĉ from SKC ;7

Output x with the generalization of Ĉ;8
Return;9

if
∑∣Γ∣

i=1 Ci.size < k then10
Suppress x;11
Return;12

MC = mergeClusters(C,Γ ∖ C);13
outputCluster(MC);14

Procedure delayConstraint. When a tuple x is expiring, delayConstraint

takes the responsibility of outputting it. The anonymization of x is achieved case

by case. First, delayConstraint checks the size of the non-ks-anonymized clus-

ter C, which contains x. If C reaches the size of k, x together with other tuples

in C are output by C’s generalization (steps 1-3). Otherwise, delayConstraint

verifies whether it is possible to apply on the expiring tuple the reuse strategy

illustrated in Section 5.4.3 (steps 5-9). This is possible, if there exist one or

more ks-anonymized clusters, i.e., SKC , containing x. In addition, to overcome

the inference problem described in Section 5.4.3, a cluster is randomly selected

from SKC , and x is output by its generalization (steps 7-8). As the last alterna-

tive, procedure delayConstraint examines whether a merge of C with some other

non-ks-anonymized clusters is possible. Note that, if the total size of all clusters

in Γ is fewer than k (step 10), a merge operation would not produce a cluster

with the size at least k. Therefore, the only way to output the expiring tuple
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is suppressing it (step 11). Otherwise, the merge takes place (step 13), and the

resultant cluster is output (step 14).

The mergeClusters function receives as input the cluster to be merged, i.e.,

C, and the set of non-ks-anonymized clusters excluding C itself. For every non-

ks-anonymized cluster Ci, it calculates the enlargement of C due to the potential

merge with Ci. Then, it selects the one, which incurs the minimum enlargement

to C, and merges C with it. This process continues until C’s size is at least k.

Finally, the resultant cluster is returned.

Procedure outputCluster(C)
if C.size ≥ 2k then1

Sc = splitk(C);2
else3

Sc = {C};4
foreach Ci ∈ Sc do5

Output all tuples in Ci with its generalization;6
Update � according to ℐℒ(Ci);7
if ℐℒ(Ci) < � then8

Insert Ci into Ω;9
else10

Delete Ci;11
Delete Ci from Γ;12

Procedure outputCluster. At the moment of outputting, a cluster with size

no less than 2k will be split into sub-clusters, each with size at least k (steps

1-2). Then all the tuples staying in a cluster are output by the corresponding

cluster generalization (steps 5-6). Meanwhile, � is updated to be the average

information loss of the most recent ks-anonymized clusters including the new

ones (step 7). Furthermore, we insert the newly created ks-anonymized clusters

into Ω for later reuse. To minimize information loss, only those with good

information quality are preserved (steps 8-11).

Function splitk. CASTLE employs KNN search [10] to split a cluster C of

size at least 2k. It works as follows. First, a tuple x is randomly selected from
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C and a sub-cluster Cnew is created over it. Then, x’s k-1 nearest neighbors in

C (x itself excluded) are inserted into Cnew. To comply with the constraints of

ks-anonymity in Definition 5.1, no pair of tuples in Cnew share a pid value. x

together with the selected neighbors are deleted from C. This process repeats,

each time generating a new sub-cluster, until the size of C is less than k. Finally,

the remaining tuples in C are pushed into the above newly created sub-clusters.

Function splitk(C)
Initialize Sc to be an empty set;1
Let ' be the set of buckets created by grouping tuples in C by pid attribute;2
while ∣'∣ ≥ k do3

Randomly select a bucket ℬ ∈ ', and pick one of its tuples x;4
Delete x from ℬ and create a new subcluster Cnew over x;5
if ℬ is empty then6

delete ℬ from ';7
Let Hk−1 be a heap with k − 1 nodes, each set to be infinitely faraway from x;8
foreach bucket in ' ∖ ℬ do9

Pick one of its tuples x̂, and calculate the distance between x̂ and x;10
if x̂ is closer to x than the root of Hk−1 then11

x̂ replaces the root, and Hk−1 is adjusted accordingly;12
foreach node in Hk−1 do13

Assume that x′ is the tuple in the node;14
Insert x′ into Cnew;15
Find ℬ′ the bucket containing x′;16
Delete x′ from ℬ′;17
if ℬ′ is empty then18

delete ℬ′ from ';19
Add Cnew to Sc;20

foreach bucket ℬ̃ ∈ ' do21
Pick a tuple x̃ ∈ ℬ̃;22

Find x̃’s nearest cluster in Sc, and add all the tuples from ℬ̃ to the cluster;23

Delete ℬ̃;24
return Sc;25

Let us see in more details how splitk works. First, the function groups all

tuples in C by their pid values, creating a set of buckets ' (step 2), each one

containing only tuples with the same value for attribute pid. Then, it randomly

selects a tuple x and creates a new cluster Cnew over it (steps 4-5). To speed up

the process of finding the k-1 nearest neighbors of x, we adopt a heap with
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k-1 nodes (step 8). From each bucket, we select a representative tuple and

calculate its distance from x (step 10). Note that all the tuples in a bucket have

the same distance from x, because they all share a single QI value. The heap

is so maintained that only the k-1 nearest representatives are stored in it (steps

11-12). All the nodes in the heap are pushed to the new sub-cluster Cnew (steps

13-19). Since each node in the heap is from a different bucket, it is sure that

the k tuples in Cnew refer to k distinct persons. Thus, Cnew strictly follows ks-

anonymity. All the tuples in the new sub-cluster are deleted from the buckets

they hail from (steps 5, 17). The above process continues to create new sub-

clusters, until the number of buckets is less than k (steps 3-19). Finally, each

of the remaining tuples is added to its nearest sub-cluster created above (steps

21-24).

5.5.2 Extension to ℓ-diversity

Recently, Machanavajjhala et al. [57] proposed the ℓ-diversity principle to pro-

vide defence against the attacks based on the distribution of non-QI sensitive at-

tribute (SA). In this section we illustrate how CASTLE can be straightforwardly

extended to support ℓ-diversity on data streams. ℓ-diversity postulates that each

EC contain at least ℓ “well represented” SA values. It can be instantiated in

multiple ways, such as distinct ℓ-diversity, entropy ℓ-diversity, and recursive (c,

ℓ)-diversity. Here we consider distinct ℓ-diversity, which requires that each EC

contains ℓ distinct SA values. Given a cluster C, we denote with C.diversity

the number of distinct SA values for tuples in C. In order to ensure that the

output data by CASTLE comply with also ℓ-diversity besides ks-anonymity, we

slightly modify the definition of ks-anonymized cluster as follows.

Definition 5.8 (ks-anonymized and ℓ-diversified cluster). Let C(r1,. . . ,rn) be a
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cluster, and (g1,. . . ,gn) be the corresponding generalization. If, at a given time

instant {: (1) C.size is greater than or equal to k, (2) C.diversity is greater

than or equal to ℓ, and (3) all tuples in C are output with C’s generalization

(g1,. . . ,gn), we say that, starting from {, C is a ks-anonymized and ℓ-diversified

cluster.

After the alteration of the ks-anonymized cluster, accordingly we need to ad-

just the algorithms of CASTLE. The overall CASTLE framework is the same;

it is only necessary to customize algorithms delayConstraint and splitk according

to the extra requirements enforced by ℓ-diversity. Now, Procedure delayConstraint

outputs a whole non-ks-anonymized cluster C (line 2 of delayConstraint), only

if the following two conditions hold at the same time: 1) C.size ≥ k, and 2)

C.diversity ≥ ℓ. Moreover, it gives up the merge operation and chooses to sup-

press a tuple (lines 10-11 of delayConstraint), if
∑Γ
i=1Ci.size < k or there does

not exist at least ℓ distinct SA values among all clusters in Γ. Function splitk

conforms to the cluster size constraint only. In the following, we redefine it so

that it will also follow the diversity requirement.

Function splitℓ. The basic idea of splitting a cluster C works as follows. It

first partitions the set of tuples from C into buckets by grouping by their SA

values. Then, it selects a portion of tuples from each bucket, altogether k tuples,

and creates a sub-cluster Csub over them. Since each bucket contributes tuples

to Csub and the number of buckets is at least ℓ, the constraint of ℓ is satisfied

automatically. However, one person may have multiple tuples in the stream, so

the buckets grouped by SA may overlap on pid values. Likewise, the set of

k tuples selected from the buckets may also overlap on pid, thus they refer to

less than k distinct persons and violate the property of k-anonymity. Therefore,

to assist the process of selecting k tuples each with a different pid value, we
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consider buckets without overlap on pid and turn to the following strategy. It is

done by selecting only one tuple from C for each distinct pid value, and grouping

only these selected tuples into buckets according to their SA values. Avoiding

overlaps ensures that the k tuples selected from buckets have different pids, thus

ensuring the size of the new generated subcluster Csub to be k exactly. After

creating all the possible sub-clusters, each tuple x previously not selected from

C is inserted into one of the new sub-clusters. In particular, tuple x is inserted

into the unique sub-cluster that contains a tuple with the same pid of x.

Function splitℓ(C, SA)
Let ' be the set of disjoint buckets generated by generateBuckets(C,SA);1
Initialize Sc to be an empty set;2
while ∣'∣ ≥ ℓ and sum =

∑
ℬi∈' ℬi.size ≥ k do3

Select a tuple x from a randomly selected bucket ℬ ∈ ';4
Delete x from ℬ and generate a subcluster Csub over it;5

foreach bucket ℬ̂ ∈ ' do6

foreach tuple x̂ ∈ ℬ̂ do7
Calculate ê = Enlargement(Csub, x̂);8

Sort tuples in ℬ̂ by the ascending order of their enlargement ê;9

Assume that T̂ is the set of the first k × ℬ̂.sizesum tuples in ℬ̂;10

Insert T̂ into Csub and delete it from ℬ̂;11

if ℬ̂.size = 0 then12

Delete ℬ̂ from ';13
Add Csub to Sc;14

foreach ℬ′ ∈ ' do15
foreach tuple x′ ∈ ℬ′ do16

Find the nearest subcluster Cnear ∈ Sc to x′;17
Insert x′ into Cnear;18

Delete ℬ′;19
foreach subcluster Csub ∈ Sc do20

foreach tuple x̃ ∈ Csub do21
Let Ex̃ be the set of tuples in C, such that Ex̃ = {x ∈ C∣x.pid = x̃.pid};22
Insert Ex̃ into Csub;23

Return Sc;24

Let us see now in more details how splitℓ works. In the first step, it calls

Function generateBuckets to create the set of buckets ' without overlaps. Once

the number of buckets is greater than ℓ and the number of tuples in ' is greater
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than k, a new ks-anonymized and ℓ-diversified subcluster Csub is formed (lines

3-13). In particular, the function selects, from each bucket ℬ̂ ∈ ', a subset of

tuples T̂ proportional to the bucket size (lines 6-11). To reduce the information

loss, T̂ are only tuples from ℬ̂ which require the minimum enlargement to Csub

(lines 7-10). These tuples are then inserted into Csub (line 11). Finally, when one

or both the conditions of the while loop are no more satisfied (the evaluation of

line 3 is false), remaining tuples are accommodated into the new created sub-

clusters (lines 15-23).

5.5.3 Formal results

In this sub-section, we analyze the security of CASTLE. We start by proving

that CASTLE generates ks-anonymized data streams.

Theorem 5.1. Let S(p, pid, a1, . . . , aj , A1, . . . , Ad) be the input stream with

{A1, . . . , Ad} as QI, and Sout be the stream output by CASTLE. Then Sout is

ks-anonymized.

Proof. According to the definition of ks-anonymity (Definition 5.1), the theo-

rem holds if the following two conditions are satisfied:

1. For each tuple x in the input stream S, if it is not suppressed, there exists

in output stream Sout the corresponding anonymized tuple x̄.

2. For any possible EC Gx̄ ⊂ Sout that contains all the tuples with the same

generalized QI value as x̄, the number of distinct individuals which tuples

in Gx̄ refer to is greater than or equal to k, that is, ∣DP(Gx̄)∣ ≥ k.

Let us first consider point 1. When tuple x is expiring, it is passed to

procedure delayConstraint. We prove that this procedure always outputs an

anonymized tuple corresponding to x, if x is not suppressed. Different cases
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may arise. The first is when the non-ks-anonymized cluster hosting x has the

size greater than or equal to k. In this case, the procedure calls outputCluster

(step 3 of delayConstraint), which gives in output a generalized tuple for x,

thus the thesis holds. If the non-ks-anonymized cluster hosting x has size less

than k, procedure delayConstraint verifies whether the reuse strategy can be ap-

plied. If this is the case, x is given in output with the generalization of one

of the ks-anonymized clusters enclosing it, thus the thesis also holds (step 8 of

delayConstraint). Finally, delayConstraint tests if it is possible to merge clusters.

If this is impossible, x is suppressed (step 11 of delayConstraint). Otherwise, all

the tuples in the cluster resulting from the merge operation are given in output

(step 14 of delayConstraint). In both the cases, the thesis holds.

Let us consider now point 2. To prove it, we discuss all the three possible

ways of outputting a tuple one by one. Case 1: Tuple x is contained in a cluster

C with the size at least k; x is output together with all the other tuples in C by the

generalization of C. Obviously, the output tuples from C belong to a same EC Gx̄.

Since C has the size at least k, the number of distinct individuals which tuples

in Gx̄ refer to is greater or equal to k, that is, ∣DP(Gx̄)∣ ≥ k. Case 2: Tuple x is

output individually by the reuse strategy. Let KC be the ks-anonymized cluster

selected by the reuse strategy to output x. Since KC is ks-anonymized, at some

instant before the output of x, KC must have the size at least k and all its tuples

are output with its generalization. Let Gx̄ be the EC that contains all the output

tuples from KC. Then the anonymized tuple x̄ of tuple x belongs to Gx̄, and

∣DP(Gx̄)∣ ≥ k. Case 3: Furthermore, a tuple can be also suppressed. In this

case, the ks-anonymity definition does not require that ∣DP(Gx̄)∣ ≥ k.

To show that CASTLE generates ks-anonymized data streams is not enough.

As shown by Example 5.5, reuse of ks-anonymized clusters should be carefully
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managed, otherwise, a potential attacker may infer additional knowledge about

a tuple’s value, or even guess its exact value. We have therefore to prove that

the reuse strategy adopted by CASTLE is secure. Before the formal proof, we

first introduce some notions, and investigate the underlying factors that enable

this inference attack.

Given a cluster C and its generalization (g1, . . . , gd), the generalization gj

of the QI attribute Aj shows the range in which the real values of Aj for tuples

in C falls. For instance, given QI attribute Edu and its domain hierarchy shown

in Figure 5.2, if the generalized value for Edu is University, we can infer that

the corresponding original tuple can have as value for this attribute one of the

elements in the set {Bachelor,Master, Ph.D.}. Similarly, if the value given in

output by CASTLE for QI attribute Age is [25-30], then the Age attribute of

the corresponding non-anonymized tuple has a value in the interval [25,30]. In

what follows, given a cluster and its generalization C(g1, . . . , gd), we denote

with values(C.gi) the set of values implied by the generalization gi for attribute

Ai. More precisely, if Ai is a continuous attribute, values(C.gi) contains all the

values in the interval corresponding to C.gi. In contrast, if Ai is a categorical

attribute, values(C.gi) contains all the leaves of the subtree inℋi rooted at C.gi,

whereℋi denotes the domain hierarchy for attribute Ai.

Now let us consider Example 5.5 once more. Without a careful reuse man-

agement, given a tuple x̄ output by cluster generalization C(g1, . . . , gd), an at-

tacker may, by tracing the sequence of anonymized tuples, may infer that the

possible real values of x̄ on attribute Ai (i = 1, . . . , d) stay in a subset of

values(C.gi), instead of values(C.gi) itself. Such an inference enables an at-

tacker to link tuple x̄ to less than k individuals, thus violating k-anonymity. The

next example better clarifies this.
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Example 5.7. Recall Example 5.5. Suppose that k = 4 and QI is {Age, Edu}.

Assume 4 persons P1, P2, P3, and P4, with QI values (24, Bachelor), (25, Mas-

ter), (26, Bachelor), and (27, Master), respectively. Suppose that at instant {,

each of the 4 persons has at least one tuple in C3, and C3 becomes ks-anonymized

after outputting all its tuples by its generalization. Moreover, suppose that after

some time, x̃=(25, Master, Video on sex) is expiring, and is output by reusing

C3’s generalization ([24, 27], University). As shown in Example 5.5, if the reuse

strategy always tries to minimize information loss, then an attacker can learn

that the original values of x̃ on Age is [24, 25], instead of C3.Age = [24, 27].

By linking ([24, 25], University) to the QI values of the discussed 4 persons, we

know only P1 or P2 (excluding P3 and P4) can be the owner of x̃. Consequently,

the privacy of P1 and P2 is weaken.

To avoid this possible inference attack, CASTLE adopts the cluster reuse

strategy introduced in Section 5.4.3. As the following theorem states, this strat-

egy ensures that under the adversary model presented in Definition 5.3 an at-

tacker cannot infer any additional knowledge on a tuple x other than the set of

real values associated with the generalization according to which it has been

given in output.

Theorem 5.2. Let S(p, pid, a1, . . . , aj , A1, . . . , Ad) be a stream with {A1, . . . ,

Ad} as QI, and Sout be the stream output by CASTLE. Suppose that C1, . . . , Cm

is the sequence of ks-anonymized clusters appearing in Sout, and that x is a

tuple output by the cluster generalization of Cr, 1 ≤ r ≤ m. Then, for each QI

attribute Ai, i = 1, . . . , d, an attacker is unable to infer that the real value of

x.Ai belongs to a subset of values(Cr.Ai).

Proof. For the simplicity of discussion, let us consider a data stream S with a

single QI attribute q. Consider a tuple x ks-anonymized with generalization Cr.
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In this case, an attacker could infer a set of possible values � ⊂ values(Cr.q)

for attribute q, only if there exists a set of tuples T ⊆ Sout ∖ {x} ks-anonymized

with a generalization Cs (1 ≤ s ≤ m) that overlaps Cr. Two generalizations

Cr and Cs overlap if values(Cr.q) ∩ values(Cs.q) ∕= ∅. Let us assume that an

attacker infers a set of possible values � ⊂ values(Cr.q) for attribute q, and

prove that a contradiction arises. We first consider the case that q is a continu-

ous attribute. � can be inferred by analyzing the overlap between Cr and Cs, and

can be formalized as follows: �= values(Cr.q) ∖ values(Cs.q). Thus, � consists

of the values in values(Cr.q) which are not in values(Cs.q). However, if there

exists an overlap between values(Cr.q) and values(Cs.q), it implies that CAS-

TLE anonymizes x.q by randomly selecting between Cr.q and Cs.q (see line 7,

procedure delayConstraint). Hence, the possible real values of x.q that can be

inferred are, in addition to those in �, also those in values(Cr.q)∩values(Cs.q).

Therefore, �= (values(Cr.q) ∖ values(Cs.q)) ∪ (values(Cr.q) ∩ values(Cs.q)),

that is, � = values(Cr.q), and a contradiction arises. We omit the proof when q

is a categorical attribute, since it is very similar to the proof given for continuous

attributes.

It is important to note that above theorem holds only under the setting (Defi-

nition 5.3), where the adversary does not have any extra background knowledge

(e.g., temporal background knowledge: the attacker may know that Mike buys

an item at time 10). Considering further background knowledge is a challenging

issue, that we plan to investigate in the future, and that may require the definition

of alternative techniques to achieve ks-anonymity.

Furthermore, CASTLE may output some tuples before their expiration. Con-

sequenlty, the ordering of the output stream may be different from that of the in-

put. Formally, we say that input stream S and output stream Sout share the same
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ordering, if the following condition holds: Given any two tuples x1, x2 ∈ S,

and their corresponding output versions x̄1, x̄2 ∈ Sout, if x1.p < x2.p, then x̄1

is output earlier than x̄2. Some data mining applications may be sensitive to

the tuple ordering. If this is the case, we reorder output streams with regard to

input streams, by releasing a tuple x̄ anonymized from x only after all the tuples

with position less than x.p have already been output. The reordering strategy

ensures the same ordering, but also incurs extra time delay. Now the total buffer

time of a tuple x before its output is composed of two parts: 1) the time interval

between its arrival and its anonymization, and 2) the buffer time for reordering.

Anyway, the next theorem proves that even with the reordering the total buffer

time is still upper bounded by �, hence the delay constraint (Definition 5.2) still

holds.

Theorem 5.3. Let S be an input stream, and Sout be its output stream generated

and reordered by CASTLE. Assume that � is an integer representing the maxi-

mum allowed delay between a tuple’s input and its output. Then, the total buffer

time of any tuple x ∈ S before its output is upper bounded by �, and the delay

constraint is still guaranteed.

Proof. Let x and x̄ be an input tuple and its anonymized one, respectively. When

tuple x1 with position x1.p = x.p+� comes, all tuples (denote them byET ) with

position less than x.p = x1.p − � have already expired and been anonymized.

At the instant of x1.p, x is expiring and is already anonymized to x̄ (x can be

anonymized at any time in [x.p, x1.p] and buffered). We release x̄ following

the output of all the tuples in ET . According to the above buffer and release

procedure, it is obvious that for any tuple x′ ∈ S with the position x′.p < x.p,

x′ is output earlier than x. Therefore, the input and output streams have the same

ordering. Furthermore, when x1 comes, x and all the tuples with position less



136

than x.p = x1.p− � are output, so the total buffering time of x is upper bounded

by �, and delay constraint is satisfied.

Note that, if an attacker has the knowledge of the ordering of the input

stream, the reordering will enable him/her to link released tuples to their own-

ers. For the simplicity of discussion, we assume that tuple positions start from

1 and are consecutive. Suppose that Mike buys an item. Let x be the record

for Mike’s purchase. If an attacker knows the ordering of input tuples, that is

to say, s/he knows that Mike buys the item at time x.p, then s/he can infer that

x.p-th tuple in the output stream belongs to Mike. Mike’s privacy is violated.

Therefore, if an attacker has the ordering knowledge, to protect the privacy, we

need to add some randomness to the output ordering.

5.6 CASTLE complexity

We study the efficiency of the proposed approach by a formal analysis of the

time/space complexity of the CASTLE algorithms. The parameters involved

in the analysis have been summarized in Table 5.3. The third column in the

table shows the typical values for the corresponding parameter; these values are

obtained through the tuning process in the experiments presented in Section 5.7

below.

5.6.1 Time complexity

The time complexity of CASTLE is up to the main operations it carries out,

that is: (1) Function bestSelection, selecting the best cluster where pushing a

new tuple; (2) Function mergeClusters, merging clusters to generate a new ks-

anonymized cluster; (3)Function splitk, splitting a cluster to into ks-anonymized
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Parameter Description Typical values
k value of k in ks-anonymity 100∼1,000
d number of quasi-identifier attributes 6∼10
� delay constraint 5,000∼30,000
� maximum number of non-ks-anonymized clusters 50
Nks maximum number of ks-anonymized clusters
Ce time required to enlarge a single dimension of a cluster
Cℎ time required to replace the root of a heap log(k)

Sg
space required to store the generalization of a QI at-
tribute

Sx space required to store in memory a tuple

Table 5.3: Parameters used in the complexity analysis

sub-clusters. Next, let us see them one by one in more details.

Function bestSelection. Given an arriving tuple x, Function bestSelection

places it into its nearest non-ks-anonymized cluster. The distance between x and

a non-ks-anonymized cluster C ∈ Γ is computed by Enlargement(C, x). In the

worst case, cluster C need to enlarge over all its dimensions to enclose x. Thus,

assuming the cost of calculating the enlargement over a dimension is Ce, then

the time of Enlargement(C, x) is Ce ⋅d. Moreover, since Γ contains at maximum

� non-ks-anonymized clusters, we can estimate the worst case time complexity

of bestSelection as:

Cw
bestSelection = Ce ⋅ d ⋅ � (5.1)

Function mergeClusters. Given a cluster C, the merge operation is done re-

peatedly, each time combing C with its selected nearest neighbor. In each round,

Function mergeClusters scans the whole list of non-ks-anonymized clusters in Γ

(excluding C itself), the one that incurs the minimum enlargement to C is chosen

as the nearest neighbor. This alone requires time complexity of (∣Γ∣−1)⋅(Ce ⋅d).

The merge runs continuously, until C reaches the size of k. In the worst case,

Γ contains � clusters, and all of them are merged into C. Moreover, at each

iteration the size of Γ is decremented by one. Therefore, the upper bound time
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complexity of mergeClusters is:

Cw
merge =

�−1∑
i=1

(Ce ⋅ d)(� − i) =
� ⋅ (� − 1)

2
⋅ (Ce ⋅ d) (5.2)

Function splitk. Recall lines 4-19 of Function splitk, we know that separat-

ing a sub-cluster from cluster C is done by randomly selecting a tuple x ∈ C

and finding its k-1 nearest neighbors. Let ' be the set of buckets grouped by

pid. In each bucket, a representative tuple is selected, and its distance from x is

calculated. If the representative is closer to x than the root in the heap, it will

replace the root and the heap will be adjusted accordingly. Therefore, to create

a sub-cluster, the required time is ∣'∣ ⋅ (Ce ⋅ d + Cℎ), where Ce ⋅ d is the time

to calculate the distance between two tuples, and Cℎ is the time to adjust the

heap. This cost reaches the maximum when each tuple in C assumes a different

pid value. Let n be the number of tuples in C. Then the time to generate one

sub-cluster is at most n ⋅ (Ce ⋅ d+Cℎ). The above process repeatedly runs until

all the possible sub-clusters are created. Since the number of sub-clusters is at

most ⌊n/k⌋ and in each iteration the size of C is decreased by k, the total cost of

generating sub-clusters is no more than
∑⌊n/k⌋−1
i=0 (n− i ⋅k)(Ce ⋅d+Cℎ). Finally,

the remaining tuples in C are inserted into the new sub-clusters generated above.

For each of the remaining n− k ⋅ ⌊n/k⌋ tuples, it is calculated the enlargement

of each sub-cluster (the cost is ⌊n/k⌋ ⋅ (Ce ⋅ d)). Therefore, the upper bound of

the time complexity of the splitk is:

Cw
splitk =

⎡⎣⌊n/k⌋−1∑
i=0

(n− i ⋅ k)(Ce ⋅ d+ Cℎ)

⎤⎦+

(n− k ⋅ ⌊n/k⌋)(⌊n/k⌋ ⋅ (Ce ⋅ d))

≈ n2

2k
(Ce ⋅ d) (5.3)

Note that Cℎ is upper bounded by log(k) (the hight of heap) comparisons,

so it is much smaller than Ce ⋅ d, and the total cost of splitk is roughly n2

2k
(Ce ⋅
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d). If tuples are uniformly distributed among non-ks-anonymized clusters, then

cluster C assumes n = �/k tuples and the cost will be �2

2k3
(Ce ⋅ d). However,

with highly skew distribution, cluster C may contain almost all the � tuples. In

this case the cost is �2

2k
(Ce ⋅ d).

Let us now discuss the overall time complexity of CASTLE. In doing that,

we estimate how many times bestSelection, mergeClusters, and splitk are called

by CASTLE. Let S be the stream given in input to CASTLE, where with ∣S∣ we

denote the number of tuples in S.

bestSelection is called for each of the ∣S∣ tuples, thus its overall time com-

plexity is:

CToT bestSelection = ∣S∣ ⋅ Cw
bestSelection = ∣S∣ ⋅ Ce ⋅ d ⋅ � (5.4)

Moreover, since � is a predefined value, and will not exceed 100 in the experi-

ments according to Table 5.3, we can estimate this cost as O(∣S∣).

Recall that a merge is performed when a tuple is expiring and no other way

to output it is possible. Thus, we can say that in the worst case mergeClusters

is called for each one of the ∣S∣ tuples. However, every time a merge is per-

formed the number of tuples in S that still have to be evaluated by CASTLE

decreases by at least k. Therefore, the upper bound of the total number of pos-

sible merge operations is ∣S∣
k

, which implies that the overall time complexity of

mergeClusters is:

CToT mergeClusters =
∣S∣
k
⋅ Cw

merge

=
∣S∣
k
⋅ � ⋅ (� − 1)

2
⋅ (Ce ⋅ d) (5.5)

Moreover, using the same reasoning we have made before regarding the � pa-

rameter, we can estimate this cost as O( ∣S∣
k

).
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Finally, the splitk function is called when an expiring tuple is contained in

a non-ks-anonymized with size at least 2k. In the worst case, we can say that

this happens for all tuples in S. However, similarly to the merge operation,

every time a split is performed the number of tuples decreases by at least 2k.

Therefore, the number of possible split over ∣S∣ tuples is at most ∣S∣
2k

, which

implies that the overall time complexity of splitk is:

CToT splitk =
∣S∣
2k
⋅ Cw

splitk

=
∣S∣
2k
⋅ n

2

2k
⋅ (Ce ⋅ d)

≤ ∣S∣
2k
⋅ �

2

2k
⋅ (Ce ⋅ d) (5.6)

Therefore, the overall time complexity of CASTLE is bounded by the time

complexity of splitk, i.e., O( ∣S∣⋅�
2

k2
). However, since ∣S∣ is much more greater

than both k and �, we can conclude that the overall time complexity of CASTLE

is O(S).

5.6.2 Space complexity

To estimate the space complexity we need to consider the information stored in

memory when executing CASTLE. This consists of two main components: (1)

the data stream tuples (i.e., tuples in the non-ks-anonymized clusters), (2) the

information about non-ks-anonymized and ks-anonymized clusters.

Regarding the first component, it is important to note that delay constraint

ensures that, at any instant, there are at most � tuples in memory. Thus, let Sx

be the space required to store a single tuple, the first component requires � ⋅ Sx

space.
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Let us consider the second component. For each cluster, either non-ks-

anonymized or ks-anonymized cluster, CASTLE stores the corresponding gen-

eralization. Thus, let Sg be the space required to store the generalization for a

QI attribute, storing the generalization of a cluster requires d ⋅ Sg space. Since

the number of non-ks-anonymized clusters is upper bounded by �, and that of

ks-anonymized clusters is assumed no more than Nks
4, the space required by

the second component will be at most (� +Nks) ⋅ d ⋅ Sg.

Put it all together, the total space required by CASTLE is:

Scost = � ⋅ Sx + (� +Nks)(d ⋅ Sg). (5.7)

5.7 Performance evaluation

We have implemented CASTLE and have conducted several experiments. Our

experiments have been designed with two objectives in mind. First we would

like to verify that the proposed method is able to continuously anonymize a

data stream while keeping the data useful. Second, to illustrate the effectiveness

of CASTLE, we compare it with the approach presented in [10], which is the

one comparable to our approach since it k-anonymizes the data set by a single

pass on them. For these experiments, we used both synthetic and real world

data. In particular, we have adopted the Adult data set from UC Irvine Machine

Learning Repository [4], UCI-Adult, which has become a standard for studying

k-anonymity. Moreover, in order to have a better simulation of a data stream,

we have also considered the data set used in [39]. We refer to this as SFU-

Adult [1]. We configure UCI-Adult5 by removing tuples with missing values.

Thus it contains 30,162 tuples. SFU-Adult contains 45,222 tuples after adding
4Nks

is a threshold that can be determined based on the available memory.
5Both UCI-Adult and SFU-Adult contain only one tuple for each person. In Section 5.7.1

we will generate a stream with multiple tuples belonging to a same individual.
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15,060 extra tuples to UCI-Adult. Of the 14 attributes in the two datasets, we

choose 10 as the potential QI-attributes. Their characteristics are shown in Table

5.4.

Attribute Type Numerical range
# Leaves # Levels

Age Numerical 17 - 90
Final-weight Numerical 13492 - 1490400
Education-num Numerical 1 - 16
Capital-gain Numerical 0 - 99999
Capital-loss Numerical 0 - 4356
Hours-per-week Numerical 1 - 99
Education Categorical 16 5
Martial-status Categorical 7 4
Occupation Categorical 14 3
Native-country Categorical 40 5

Table 5.4: Characteristics of the attributes

The algorithms were implemented by Microsoft visual C++ and the experi-

ments were conducted on an Intel Pentium IV 2.4GHz with 1 GB RAM, running

windows XP. In the following, we evaluate CASTLE using the metric described

in Section 2.3.

5.7.1 Tuning CASTLE

The parameters that affect the performance of CASTLE are: �, k, the number of

QI attributes, �, �, and the data distribution.

Effects of � and �. CASTLE’s adaptability to data distribution is controlled

by two parameters: �, the number of most recent ks-anonymized clusters on

which � is calculated, and �, the threshold for controlling the maximum number

of non-ks-anonymized clusters in the memory. Figure 5.5 presents the average

information loss of ks-anonymized tuples by simultaneously varying � and �.
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Figure 5.5: Varying � and �

We have set k = 100, � = 10000 and have used 10 QI attributes. We run

the experiments on both the SFU-Adult (Figure 5.5(a)) and UCI-Adult (Figure

5.5(b)) data sets. In both data sets � = 50 minimizes the information loss. In

the experiment of SFU-Adult, � = 100 and � = 150 yield the best information

quality; in the experiment of UCI-Adult, � = 100 outperforms � = 150. In the

following experiments, we shall use � = 50 and � = 100 as the default values.

Effects of quasi-identifiers. A further experiment measures how the size of QI

affects the average information loss. The experiment has been conducted on the

UCI-Adult and SFU-Adult data sets with k = 100 and � = 10000. Figure 5.6(a)

reports how the average information loss varies by increasing the size of QI. The

exploited metric space is defined based on QI attributes (i.e., each QI attribute is

one dimension). When the size of QI increases, the data become more sparse in

the defined space, and clusters are more likely to have ‘big’ minimum bounding

boxes. This is related to the curse of dimensionality [8]. Therefore, as expected,

the information loss increases when increasing the number of QI attributes.

Effects of k. Figure 5.6(b) shows how the average information loss increases

by increasing the value of k. In this experiment we have considered 10 QI

attributes, � = 10000, and both UCI-Adult and SFU-Adult data sets. The results

are expected as a larger k implies that we need a larger cluster to anonymize
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Figure 5.6: Varying QI and k

data — this translates to bigger loss in information.

Effects of data distribution. We have conducted several experiments to inves-

tigate how CASTLE scales with different data distributions. In order to do that,

we have evaluated CASTLE on synthetic data sets following power law distribu-

tion generated by means of genzipf [2]. More precisely, a value v generated by

genzipf has the following probability property: p(v) = c
v�
, v ∈ {1, . . . , N} and∑N

v=1 p(v) = 1, where c is the normalization constant automatically initialized

and N is the biggest possible integer value in generation. Figure 5.7 reports the

average information loss with different � values. The experiments have been

conducted with fixed k and by varying �. We have evaluated the behavior of

CASTLE with respect to data distribution with different k values (cfr. Figures

5.7(a), . . . 5.7(d)). From the results, it is clear that CASTLE is very effective for

clustered data. This is promising as real data are typically clustered.

Effect of multiple tuples referring to the same person. In the previous experi-

ments we have considered the UCI-Adult and SFU-Adult datasets, by assuming

that each tuple refers to a distinct person, that is, each tuple has a different

pid. However, in a data stream multiple tuples may refer to a same person,

so we have run further experiments to test how this duplication of pids may
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Figure 5.7: Information loss on power-law synthetic data

affect the information quality. In particular, we exploit the IBM Quest Syn-

thetic Data Generation Code [14] to generate a set of tuples Ttran with schema

(pid, tid, list of items), where pid is a customer’s id, tid represents transaction

id, and list of items are the items a customer has bought. Then, we join Ttran

with UCI-Adult on their pid to produce the data stream. Since Ttran is bigger

than UCI-Adult, which contains 30,162 tuples only, we join tuples in Ttran with

pid > 30, 162 with randomly selected tuples in UCI-Adult. As a result, the

streaming tuples have the schema (pid, tid,QI, list of items). Moreover, to

simulate the presence of more transactions referring to the same person, when a

streaming tuple x is pushed into a cluster, CASTLE splits it into multiple tuples

with schema (pid, tid,QI, item), one for each distinct item contained in x. Ac-

cording to this approach, we have generated three different synthetic datasets,
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by varying the length of list of items.
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Figure 5.8: Information loss on transaction stream

The experiments are carried out by setting � = 10000, and varying k and the

size of QI. In particular, in Figure 5.8(a) we set k = 100 and vary the size of

QI, where dup = 5, dup = 10, and dup = 15 indicates the synthetic dataset on

average with 5, 10, and 15 items in the list of items, respectively. In general,

when the size of QI increases, the information quality degrades. In Figure 5.8(b)

we set the size of QI to be 4, and vary k. We find that information loss uniformly

increases as a function of k.

5.7.2 Utility

In this section, we study the utility of the anonymized stream. We consider

aggregated queries as they are the basis of statistical analysis and many mining

applications (e.g., decision tree and association rule mining), and exploit the

metric [82] to evaluate the query accuracy:

SELECT COUNT(*) FROM Anonymized-stream

WHERE pred(A1) AND . . . AND pred(A�) AND pred(SA)

Each Ai is a QI attribute. SA is a sensitive attribute. The query has predicates

on � randomly selected QI attributes and SA. For each of those �+ 1 attributes

A, pred(A) has the form of A ∈ RA, where RA is an arbitrary interval in the
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domain of A. The expected selectivity over the table is 0<�<1. Assuming data

are uniformly distributed, � can be achieved if each attribute A selects records

within a range of length ∣A∣ ⋅ �A of its domain, such that (�A)�+1 = �. In effect,

the length ofRA should be ∣A∣ ⋅�
1

�+1 , where ∣A∣ is the domain length of attribute

A.

We evaluate the same queries on both output and input streams, i.e.. Sout

and S. Given a query Q, if its result in itℎ window of Sout is est, and if its

result in itℎ window of S is act, then the relative error of this query is defined

as ∣act− est∣/∣act∣. Given a window W in a data stream, we run 5,000 queries

on W , and take the median relative error of these queries as the window error.

As W advances, a sequence of windows are generated. We calculate all the

window errors, and take their average as the workload error. Furthermore, the

metric [82] assumes a uniform distribution of tuples in each EC, so attributes

with a skewed distribution of values will not be included in the experiments.

Among all the 30,162 tuples in UCI-Adult dataset, 27,624 ones have the value

of 0 on attribute capital-gain, which has a range [0,99999]. Similarly, attribute

capital-loss has the value of 0 in 28,735 tuples, even though its range is [0,4356].

Therefore, neither capital-gain nor capital-loss is involved in the evaluation.

Figure 5.9 reports the experiment results. We set the window size ∣W ∣ as

large as �. In Figure 5.9(a) we set ∣QI∣ = 4, k = 100 and � = 0.1, and vary

�. When � increases, CASTLE can select nearest neighbors among more tuples,

thus the formed clusters are more likely to have smaller minimum bounding

boxes. Hence, the utility increases as a function of �. In Figure 5.9(b) we

consider 4 QI attributes, set � = 10000 and � = 0.1, and vary k. When k

increases, utility degrades since a larger k requires a cluster containing more

tuples, which implies a larger generalization. Figure 5.9(c) presents the result
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Figure 5.9: Workload error

of varying QI when k = 100, � = 10000, and � = 0.1; the workload error does

not change uniformly as the size of QI increases. However, in general utility

is reduced when QI has a higher dimensionality. Figure 5.9(d) is the result by

varying selectivity � with 4 QI attributes, k = 100, and � = 10000. Bigger �

yields a higher accuracy since a bigger � indicates bigger RA, thus allowing a

larger generalization of attribute A. In all these experiments, the workload error

of CASTLE is less than 13%, indicating high utility of anonymized streams.

5.7.3 Comparative study

As there is no previous work of continuously anonymizing data streams, we em-

ploy a comparison benchmark presented in [10], hereafter called dynamicGroup.
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dynamicGroup outputs the anonymized data only after the whole process is com-

plete (i.e., after scanning the entire data set). To create a level playing field,

CASTLE anonymizes the stream data up to its end as follows: after the last

tuple from the stream is pushed to a cluster, CASTLE outputs all the clusters

with sizes not less than k. Then CASTLE generalizes all the tuples which fall

in ks-anonymized clusters. Finally, CASTLE merges all the remaining non-

anonymized tuples to form a cluster and outputs it. dynamicGroup uses histori-

cal data to build the first set of clusters in the memory. We take the first n tuples

in UCI-Adult as the historical data, and all the remaining ones as the streaming

data. We vary n from 2,000 to 8,000, and select the best one for dynamicGroup,

that is 8,000.
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Figure 5.10: A comparison with dynamicGroup on information loss

The first experiment is on average information loss, with UCI-Adult as the
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test dataset, and its 6 continuous attributes as QI. Note that dynamicGroup can

process continuous attribute only. Figure 5.10 reports the results by varying �.

We have studied several values of k (see Figures 5.10(a), (b), (c), and (d)). It

is important to note that dynamicGroup does not consider the delay constraint.

Thus, it retains tuples till the end of the process, which obviously influences the

information loss. For a fair comparison between CASTLE and dynamicGroup

we must consider only the average information loss of CASTLE with � set to

infinity. As shown in Figure 5.10, the information quality of CASTLE increases

as a function of �; CASTLE outperforms dynamicGroup when � is 10,000.
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Figure 5.11: A comparison with dynamicGroup on median relative error

We also compare CASTLE with dynamicGroup with respect to the utility. In

Figure 5.11 we consider 4 continuous QI attributes (excluding capital-gain and

capital-loss since they are not uniformly distributed), and set � = 20, 000. In

Figure 5.11(a) we vary k, by setting � = 0.1, whereas in Figure 5.11(b) we vary

the selectivity �, by setting k = 200. In both experiments CASTLE outperforms

dynamicGroup clearly.

5.7.4 ks-anonymity and ℓ-diversity

In our last experiment, we extend CASTLE to support ℓ-diversity. Figure 5.12

and Figure 5.13 report the results on the UCI-Adult data set, while setting
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� = 10000, k = 100, and ∣QI∣ = 5. In Figure 5.12 the sensitive attribute is age,

whereas in Figure 5.13 occupation is used as the sensitive attribute. When the

diversity increases, a cluster should contain potentially more tuples, thus both

information quality and utility decrease. However, when k increases and/or di-

versity ℓ increases, the security of the anonymized data stream is higher. There-

fore, based on all the above experiments, we can conclude that the information

loss/utility and the security is a trade-off: to better preserve the privacy we may

need to degrade information quality/utility; to preserve more information/utility,

we need to reduce k and/or ℓ.
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Figure 5.12: ks-anonymity and ℓ-diversity: Age

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 4 6 8 10
diversity

AIL
ks-anonymity

ks-anonymity &  l-diversity

6%

7%

8%

9%

10%

2 4 6 8 10
diversity

median relative error
ks-anonymity

ks-anonymity & l-diversity

(a) information loss (b) utility

Figure 5.13: ks-anonymity and ℓ-diversity: Occupation



152

5.8 Summary

In this chapter we have presented CASTLE a cluster-based framework to k-

anonymize data streams. Relevant features of CASTLE are the enforcement

of delay constraints, its adaptability to data distributions, and the cluster reuse

strategy that improves the performance without compromising security. Perfor-

mance evaluation reported in this chapter have shown that CASTLE is efficient

and effective.
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CHAPTER 6

SABREW: WINDOW-BASED

t-CLOSENESS ON DATA STREAMS

In this chapter we study the notion of t-closeness for streaming data, thus serv-

ing anonymized tuples with stronger privacy than what CASTLE (Chapter 5)

ensures. Since data streams are continuous and unbounded, the existing t-

closeness concept is not directly applicable. Thus, we revise the definition of

t-closeness, by restricting closeness constraint in each window only, instead of

the whole data stream. In particular, we propose (!, t)-closeness: for any EC,

there exists a window that has a size of ! and contains the EC, so that the dif-

ference of the SA distribution between the EC and the window is no more than

a threshold t. At the same time, we design a customized algorithm to ensure (!,

t)-closeness.

6.1 Introduction

As far as we know, CASTE, presented in Chapter 5, is the first scheme proposed

up to now that is able to continuously anonymize streaming data, while ensur-

ing the maximum delay between any tuple’s input and its output not more than a

threshold �. The anonymized data output by CASTLE are served with a privacy

guarantee enabled by k-anonymity and/or ℓ-diversity. However, k-anonymity
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suffers from homogeneous attack, when most tuples in an EC share a same SA

value (Section 1.1.1). ℓ-diversity copes with this limitation with a diversity re-

quirement on the SA values in the EC. Nevertheless, it is susceptible to skewness

and similarity attacks (Section 1.1.2), since it pays no attention to the unavoid-

able adversarial knowledge on the global SA distribution in the whole table.

CASTLE is developed according to k-anonymity and/or ℓ-diversity. Therefore,

it inevitably shares the same drawbacks with its underlying privacy models.

Among all the solutions to strengthen the security of streaming tuples, a

possible one is applying an enhanced privacy model on the data. Such a solu-

tion is straightforward but effective, since the extent to which the anonymized

data are immune from attacks is up to their supporting privacy model. Here, we

make use of t-closeness [52], a successor of k-anonymity and ℓ-diversity with

improved security. t-closeness is originally proposed for static microdata, with

an assumption that all the data involved are available before any anonymiza-

tion. It takes the global SA distribution of the whole data set as the baseline

of the prior knowledge, and constrains the extra information an attacker gains

after seeing an EC. However, data streams are continuous and unbounded. Con-

sequently, such a global distribution is unavailable. Therefore, the t-closeness

model cannot be applied in the context of streaming data directly.

In this chapter we first revise the definition of t-closeness with respect to the

unique characteristics of data streams. We restrict the closeness constraints in

each window instead of the whole data stream by (!, t)-closeness — for any

EC, there exists a window that has a size of ! and contains the EC, so that

the difference of the SA distribution between the EC and the window is no more

than a threshold t. As discussed in Section 5.1, the output stream may be used to

real-time react to some anomalies. Therefore, we enforce expiring constraint on
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the anonymization procedure to make sure the freshness of output data. Given

the window size ! and ℐ, the time interval of window advance, the delay be-

tween the input of a tuple and its output is at most ! + ℐ. With (!, t)-closeness

principle and expiring constraint as the underlying model requirements, we put

forward SABREW, a window-based t-closeness scheme, which reuses static t-

closeness framework SABRE (see Chapter 3) as a building block to anonymize

streaming tuples. Coming along with the algorithm is a solid theory foundation,

proving that SABREW strictly follows the stated model constraints. We compare

SABREW with schemes extended from k-anonymity algorithms; the evaluation

results show that SABREW outperforms them in terms of both information qual-

ity and time efficiency.

The remaining of the chapter is organized as follows. The next section intro-

duces a window-based t-closeness-resembling model. We develop an algorithm

tailored for the model in Section 6.3, and prove its soundness by a solid theory

foundation in Section 6.4. After that, Section 6.5 reports the results of an ex-

perimental evaluation. Finally, we discuss how to reuse the algorithm to adapt

�-likeness to data streams in Section 6.6, and conclude this chapter in Section

6.7.

6.2 The privacy modeling

In this section we present the privacy model underlying our anonymization

scheme. It preserves the privacy of streaming tuples and ensures their fresh-

ness through two concepts: (!,t)-closeness and expiring constraint. Table 6.1

lists some symbols that will be used throughout the chapter; some notations and

the relationship among them will be later clarified.
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Notation Denotation
Sin The input data stream
Sout The output data stream generated from Sin
W A window in Sin
ℐ Time interval of window advance
! Window size; ! = j ⋅ ℐ, where j > 0 is an integer

ℛ(W) All the tuples inW
ℛ(W, o) All the already output tuples ofW
ℛ(W, ō) All the not-yet-output tuples inW ,

ℛ(W) = ℛ(W, o) ∪ℛ(W, ō)

ℛ(W, eō) Expiring and not-yet-output tuples inW
SA(W) SA distribution inℛ(W)

SA(W, ō) SA distribution inℛ(W, ō)

DW ō EMD(SA(W), SA(W, ō))

Table 6.1: Streaming notations

Definition 6.1 ((!,t)-closeness). Let Sin be an input stream, SA its sensitive

attribute, and Sout the output stream generated from Sin. We monitor Sin on a

window of size !. We say that Sout follows the (!, t)-closeness, if and only if the

following conditions hold:

∙ For each tuple x ∈ Sin, there exists in Sout an equivalence class, which

contains the corresponding anonymized tuple of x.

∙ For each equivalence class G ∈ Sout, there exists a window W in Sin,

such that G is generated from the tuples in W , and the SA distribution

in G does not differ from that of all tuples in W by more than a given

threshold t.

(!, t)-closeness considers the SA distribution of all the tuples in a window

of size ! as the prior knowledge, and the SA distribution in an output EC as the

posterior knowledge. It limits the information gain from the prior knowledge

to the posterior one, by requiring that the difference of the two mentioned SA
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distributions be at most t, a threshold. (!, t)-closeness assumes that the SA

distribution in a window of size ! is non-sensitive, thus publishable. How to

better determine a non-sensitive prior knowledge of SA distribution by allowing

flexible window size is a future work.

We have discussed in Section 5.1 a feature that distinguishes data streams

from static datasets, that is, multiple tuples belonging to a single person may

appear in the streaming data. Thus, without a careful management there does

exist the possibility, no matter how small it is, that all the tuples in a single

EC belong to a same person. In this case, the QI value of this person will

remaining unchanged even after generalization. Consequently, he/she will be

re-identified through linking attack. To address this arising issue, we combine

(!,t)-closeness with k-anonymity in the experiments (Section 6.5), requiring

that the set of persons referred to by all the tuples in an EC has a cardinality of

at least k.

Definition 6.2 (Expiring constraint). Assume an (!, t)-closeness scheme T ,

which takes as input a data stream Sin and generates an output data stream

Sout. Let ℐ be a positive integer, and ! = j ⋅ ℐ, where j > 0 is an integer.

Assume that each window in Sin advances by ℐ tuples. T satisfies the expiring

constraint if and only if, each time a window in Sin advances its first ℐ tuples

expire and are output.

The above concept synchronizes the output of tuples with the window ad-

vance. Each time a window slides forwards, the tuples outside it will be output.

Such a synchronization controls the delay of tuples (i.e., also their freshness)

with regard to window size and the time interval of window sliding.

CASTLE in Section 5.3 has already defined delay constraint, requiring the

delay between the input of a tuple and its output below a threshold �. The above
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Definition 6.2 introduces another time constraint, confining the upper bound of

the delay by two parameters, i.e., ! and ℐ (Lemma 6.1 below will prove that

the upper bound is ! + ℐ). Such a constraint synchronizes the tuple output

with window sliding. In addition, it allows for more flexibility in the anonymi-

zation process: Users can tune ! and ℐ based on the requirements of specific

applications. Anyway, the two concepts are related. On the one hand, expiring

constraint can be reduced to delay constraint by setting ℐ = 1 and ! = � − 1.

On the other hand, delay constraint can also be seen as a special case of expiring

constraint.

Lemma 6.1. Assume a (!, t)-closeness on input stream Sin, which advances by

time interval ℐ. Then the delay time between the arrival of a tuple and its output

will not exceed ! + ℐ.

The proof of the lemma is trivial. So it is omitted.

As the window slides, a sequence of windowsW1, W2, . . ., Wi, Wi+1, . . .

are generated. When windowWi advances by ℐ tuples, a new windowWi+1 is

generated. The first (oldest) ℐ tuples inWi, which are left outsideWi+1, should

be output. We call these expiring tuples. Thus, in Figure 6.1, as the window

slides from W1 to W2, the tuples in W1 ∖ W2 (the first ℐ tuples in W1), are

expiring and should be output.

w1

w2

Expiring Non-expiring

Figure 6.1: Windows and their advances
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Assume that Sin is an input (original) stream, and an (!,t)-closeness scheme

is applied on it. As tuples arrive from Sin, they are first buffered in memory.

When the window advances from Wi to Wi+1, we create ECs for the expiring

tuples inWi. Still, the expiring tuples on their own may not satisfy t-closeness

to the SA distribution of all tuples in Wi; thus, the created ECs may contain

both expiring and non-expiring tuples. As an example, letWi be the advancing

window and take ℐ = 1. With high probability, the single expiring tuple (the first

tuple inWi) is not t-close to the distribution of all the tuples inWi. Therefore,

we need to accompany the single expiring tuple with some non-expiring tuple(s)

in Wi to form an EC. After the ECs for the expiring tuples are generated, we

output all these ECs.

As the window advances continuously, an output stream Sout is generated.

Given that the output ECs may contain non-expired tuples, when the window

slides toWi+1, some tuples inWi+1 may have already been output. For instance,

in Figure 6.1, as the window slides fromW1 toW2, the first ℐ tuples inW1 are

expiring. ECs are created for the expiring tuples, and contain both the expiring

tuples and non-expiring ones; assume ECs are composed of the tuples in the

shaded segments inW1. These ECs are output. Thus, by the time the window

assumes the positionW2, some of its tuples have already been output.

W

R(W)

R(W, e)

R(W, eo)

R(W, o)

 

R(W, o)

Figure 6.2: The classification of tuples

Based on the above distinctions, we define the following classes of tuples,

illustrated in Figure 6.2 (also listed in Table 6.1):
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1. ℛ(W), all tuples in windowW;

2. ℛ(W , o), the already output tuples fromW;

3. ℛ(W , ō), the not-yet-output tuples inW ,ℛ(W , o) ∪ℛ(W , ō) = ℛ(W);

4. ℛ(W , e), the expiring tuples ofW when it advances (i.e., the first ℐ tuples

ofW), and

5. ℛ(W , eō), the expiring and not-yet-output tuples ofW .

6.3 The algorithm

Now we are ready to present SABREW, our window-based t-closeness scheme

in the context of data streams. SABREW is extended from our static t-closeness

framework SABRE (see Chapter 3), in particular, we reuse SABRE to anonymize

a window of tuples (i.e., the set of tuples staying in a same window). Before

presenting the detailed algorithm, we first give some intuition with an example.

 
w1

w2
w3

w4
w5

w6

 

 

 

 

start from scratch
……

Figure 6.3: An example for Algorithm SABREW

Example 6.1. Assume that Sin is the original input stream of SABREW. Figure

6.3 illustrates the sequence of windows, as the window advances in Sin. When

W1 is sliding at instant {1,ℛ(W1) = ℛ(W1, ō); i..e, none of its tuples is yet out-

put. We partition tuples inW1 into S1
G , a list of ECs, so that the SA distribution
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of each EC in S1
G is t-close to that of all the tuples inW1. ECs that contain ex-

piring tuples are output and deleted from S1
G . After thatW1 slides toW2. When

W2 begins to advance at instant {2, assume that ℛ(W2, ō) and ℛ(W2) have

similar SA distributions (i.e., the SA distribution of not-yet-output tuples inW2

is similar to that of all tuples in W2). Like what we did for W1, we partition

ℛ(W2, ō) into a set of ECs, S2
G (more in Case 2 of SABREW below). All the ECs

with expiring tuples are output and removed from S2
G . Then, W2 slides to W3.

When W3 slides at instant {3, assume that ℛ(W3, eō) is empty (i.e., all expir-

ing tuples have already been output). Under this circumstance, we do not have

to anonymize any tuple, and W3 simply slides to W4 (see Case 1 of SABREW

below). When W4 advances at instant {4, assume that the SA distribution of

ℛ(W4, ō) is very ‘different’ from that of ℛ(W4). If we partition ℛ(W4, ō) into

a set of ECs, some of them (containing expiring tuples) may also be very ‘differ-

ent’ from ℛ(W4) with respect to SA distribution, and (!, t)-closeness cannot

be guaranteed any more. However, ℛ(W4, eō) (i.e., the expiring and not-yet-

output tuples inW4) falls inW2, i.e. ℛ(W4, eō) ⊂ ℛ(W2, ō)
1. Sinceℛ(W2, ō)

is already partitioned into S2
G , each tuple in ℛ(W4, eō) must belong to an EC

of S2
G (see Case 3 of SABREW below). Thus, we output all the ECs in S2

G and

delete them. Hence, we ensure that all tuples in ℛ(W4, eō) are output, while

now all the tuples in W2 have also been output. Then, as W5 slides at instant

{5, all its expiring tuples have already been output because they fall inW2. So

W5 simply slides toW6. WhenW6 enters, none of its tuples is output, and the

anonymization of SABREW starts from scratch.

Algorithm SABREW anonymizes an input stream Sin into an output stream

Sout to attain the (!,t)-closeness and expiring constraint. Window W buffers
1ℛ(W2, ō) is not the set of not-yet-output tuples ofW2 at instant {4; it is the set of not-yet-

output tuples ofW2 at instant {2 whenW2 is advancing.
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Algorithm: SABREW(Sin, t, !, ℐ)
Let Sin and Sout be the input and output streams respectively;1
LetW be a window in Sin;2
W buffers the first ! tuples from Sin;3
Let SG be a set of ECs, initialized to be empty;4
while ℐ new tuples have arrived from Sin do5
Case 1:6

if ∣ℛ(W, eō)∣ = 0 then7
UpdateW by advancing ℐ tuples;8
Continue;9

Let SA(W, ō) be the SA distribution ofℛ(W, ō);10
Let SA(W) be the SA distribution ofℛ(W);11
Let DWō = EMD(SA(W, ō),SA(W));12

Case 2:13
if DWō < t then /* DIRECT begins */14

SG = SABRE (ℛ(W, ō), SA, t−DWō);15
foreach x ∈ ℛ(W, eō) do16

Find G ∈ SG , which contains x;17
Put G to Sout;18
Delete G from SG /* DIRECT end */19

Case 3:20
else /* INDIRECT begins */21

foreach G ∈ SG do22
Add G to Sout;23
Delete G from SG /* INDIRECT ends */24

UpdateW by advancing ℐ tuples;25

the first ! tuples from input stream Sin (steps 2-3). When ℐ new tuples have

arrived from Sin (step 5), the first ℐ tuples inW expire and need to be output.

ℛ(W , eō) is the set of expiring and not-yet-output tuples in W at the moment

of its advance. We distinguish the following cases.

∙ Case 1 (steps 7-9): ∣ℛ(W , eō)∣ = 0. All expiring tuples in W have

already been output (when a window advanced in a previous iteration), so

we do not need to anonymize any tuple. W simply slides by ℐ tuples (step

8) and SABREW goes back to step 5 (step 9).

∙ Case 2 (steps 14-19): ∣ℛ(W , eō)∣ > 0 and DW ō < t. In this case the

not-yet-output tuples inW and all the tuples inW have similar SA distri-

butions. We partition ℛ(W , ō), the not-yet-output tuples inW , into a set



163

of ECs and output those containing expiring tuples. Algorithm SABRE is

called and ℛ(W , ō) is anonymized into SG , a set of ECs (step 15). For

each equivalence class G ∈ SG , EMD(SA(G),SA(W , ō)) ≤ t − DW ō,

where SA(G) is the SA distribution in G. Since EMD(SA(G),SA(W , ō))

+ EMD(SA(W , ō),SA(W)) ≤ t − DW ō + DW ō = t, i.e. the EMD of

transforming SA(G) to SA(W) via SA(W , ō) is at most t, we conclude

that EMD(SA(G),SA(W)) ≤ t (the proof is similar to that of Theorem

3.4). Therefore, G is t-close to ℛ(W). Then, ECs that contain expiring

tuples are output and deleted from SG (steps 16-19). We denote the pro-

cedure of Case 2 by DIRECT, which means that ECs for ℛ(W , eō) are

obtained directly from a partition of not-yet-output tuples inW .

∙ Case 3 (steps 21-24): ∣ℛ(W , eō)∣ > 0 and DW ō ≥ t. In this case the

SA distribution of ℛ(W , ō) and that of ℛ(W) are very ‘different’. If we

partition ℛ(W , ō) into a set of ECs (as Case 2), some ECs containing

expiring tuples may also be very ‘different’ from ℛ(W) in terms of SA

distribution, and (!,t)-closeness may not be guaranteed. However, each

tuple of ℛ(W , eō) is contained in one EC of SG (see Theorem 6.1 below

for a formal proof). To anonymize and outputℛ(W , eō) we output all the

ECs in SG and clear it (steps 22-24). We denote the procedure of Case

3 by INDIRECT, which means that ECs for ℛ(W , eō) are not obtained

directly from a partition of not-yet-output tuples inW .

After the anonymization ofℛ(W , eō), windowW advances (step 25).

Now the presentation of Algorithm SABREW has completed. In the next

section we will prove that the algorithm strictly conforms to the defined privacy

model requirements, i.e., (!, t)-closeness, and expiring constraint.
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6.4 Formal analysis

The correctness of SABREW depends on the three cases discussed above in its

algorithm. Case 1 is trivial. The proof for Case 2 has already been given in its

description. Therefore, we only need to focus on Case 3. In the following we

will first propose four fundamental lemmas. Based on them, we present Theo-

rem 6.1, proving that Case 3 also follows (!, t)-closeness. After that, we will

show that SABREW conforms to both (!, t)-closeness and expiring constraint in

Theorem 6.2.

In Algorithm SABREW, each time ℐ new tuples arrive (step 5), windowW

will advance by ℐ tuples (steps 8, 25). Therefore, asW continuously advances,

a sequence of windows is generated. We use W to represent each generated

window, but, for the sake of clarity, in the following formal proof we will use

different notations to represent different windows. For example, we use W to

represent the window at instant { and W ′ to represent the window at instant

{′. We also note that DIRECT or INDIRECT is applied only when a window is

advancing.

Lemma 6.2. Assume that ! is the window size of input stream, each window

slides by ℐ tuples, and ! = j ⋅ ℐ, where j > 0 is an integer. Then, for two

overlapping windowsW ′ andW , withW ′ generated beforeW , the first ℐ tuples

inW also fall inW ′.

Proof. Since window size ! is a multiple of advance size ℐ, once two windows

overlap, their overlapping area contains at least ℐ tuples. Furthermore, sinceW ′

is generated beforeW , the first ℐ tuples inW are in the overlapping area, i.e.,

the first ℐ tuples inW also fall inW ′.

Lemma 6.2 shows the overlap relationship between two windows. The next
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lemma says that once procedure INDIRECT is applied, that is, Case 3 occurs,

parameter j must be larger than 1.

Lemma 6.3. Assume that ! is the window size of input stream, each window

advances by ℐ tuples, and ! = j ⋅ ℐ, where j > 0 is an integer. If INDIRECT is

applied in Algorithm SABREW, then j > 1.

Proof. The proof is by contradiction. For j = 1 (! = ℐ), whenever a win-

dow advances, all its tuples are expiring and will be output. This makes the

anonymizations in all the windows independent. Therefore, when a window

W advances, ℛ(W , ō) = ℛ(W) and DW ō = 0. Hence the precondition for

INDIRECT to be applied does not hold.

The next two lemmas clarify the sequential relationship between the two

procedures —DIRECT and INDIRECT. Lemma 6.4 indicates that one appli-

cation of INDIRECT cannot be followed immediately by another application

of INDIRECT. There must be at least one application of DIRECT between

them. Lemma 6.5 says that there must exist at least one DIRECT before any

INDIRECT.

Lemma 6.4. Given a window W , assume that INDIRECT is applied when it

advances at instant {. Suppose that at instant {′, {′ < {, there is an application

of DIRECT and no further application of DIRECT between {′ and {. Then there

is no application of INDIRECT between {′ and { either.

Proof. The advance ofW incurs the call of INDIRECT, so ∣ℛ(W , eō)∣ > 0 and

DW ō ≥ t at instant { (the preconditions of Case 3). Assume that there is AI ,

an application of INDIRECT, between {′ and {. Let W ′ be the window, whose

advance at instant {′ incurs the application of DIRECT. Suppose that DIRECT

partitions ℛ(W ′, ō) (not-yet-output tuples of W ′ at instant {′) into SG , a list of
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ECs. AI releases those and only those ECs that are in SG to the output stream

(steps 22-24). We make two points: First, all tuples inW ′ have been output after

AI; Second, AI outputs tuples only in W ′. There are two possibilities for an

overlapping relationship between W ′ and W . Possibility 1: W ′ overlaps with

W . By Lemma 6.2, ℛ(W , eō), a subset of the first ℐ tuples ofW , falls inW ′.

All the tuples inW ′ are already output after AI (point 1), so ∣ℛ(W , eō)∣ = 0 at

instant {. This conclusion contradicts the fact that ∣ℛ(W , eō)∣ > 0. Possibility

2: W ′ does not overlap with W . In SABREW only DIRECT and INDIRECT

output tuples. During the period between {′ and { there is no further application

of DIRECT, hence onlyAI outputs tuples in this period. SinceAI outputs tuples

only inW ′ (point 2), none of the tuples inW has been output whenW begins to

slide. Therefore, at instant {, ℛ(W , ō) = ℛ(W) and DW ō = 0; this conclusion

contradicts the fact thatDW ō ≥ t. In conclusion, under the assumption that there

is an application of INDIRECT between {′ and {, none of the two possibilities is

borne. By reductio ad absurdum, we conclude that there is no application of

INDIRECT between {′ and {.

Lemma 6.5. Given a window W , assume that INDIRECT is applied when it

advances at instant {. Then there is at least one application of DIRECT before

instant {.

Proof. We prove this also by contradiction. Assume that there is no application

of DIRECT before instant {. Let the list of generated windows beW1,W2, . . . ,

Wi,Wi+1, . . .. WhenW1 begins to advance, all its tuples are not-yet-output (i.e.,

ℛ(W1, ō) = ℛ(W1)). Thus, DIRECT is applied. Therefore, for any windowWi

(i > 1), ifWi advances at instant {i, there is at least one application of DIRECT

before instant {i. Since there is no application of DIRECT before instant { at

the advancing moment of W , then W must be W1. However, this conclusion
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contradicts the precondition that INDIRECT is applied whenW slides. By con-

tradiction, the assumption is incorrect, and there is at least one application of

DIRECT before instant {.

Putting the above four lemmas together, the following theorem proves that

Case 3 (i.e., procedure INDIRECT), anonymizes data strictly complying with

the principle of (!, t)-closeness.

Theorem 6.1. In Algorithm SABREW, given a windowW , assume that INDIRECT

is applied when it advances at instant {. Let ℛ(W , eō) be the expiring and not-

yet-output tuples inW at instant {. Then each tuple inℛ(W , eō) is contained in

one EC of SG .

Proof. The advance ofW incurs the call of INDIRECT, so ∣ℛ(W , eō)∣ > 0 and

DW ō ≥ t at instant { (the preconditions of Case 3). Assume that LD, the last

application of DIRECT before instant {, occurs at instant {′, {′ < { (there is no

further application of DIRECT between {′ and {). By Lemma 6.5, it follows that

LD exists. LetW ′ be the window whose advance at instant {′ incurs LD. Since

SG records the list of ECs generated by the last application of DIRECT, we know

that LD partitions ℛ(W ′, ō) (not-yet-output tuples ofW ′ at instant {′) into SG ,

a list of ECs (step 15).

Assume thatW ′ does not overlap withW . During the period between {′ and

{, there is neither an application of INDIRECT (Lemma 6.4) nor an application of

DIRECT. Still, only DIRECT and INDIRECT output tuples. In effect, there is no

tuple output between {′ and {. In addition, at instant {′ only ECs containing tuples

inW ′ have been released to the output stream (steps 16-19). We conclude that

none of tuples inW has been output whenW slides. So at instant {,ℛ(W , ō) =

ℛ(W) andDW ō = 0, which contradicts the fact thatDW ō ≥ t. By contradiction,

it follows that W ′ overlaps with W . By Lemma 6.2 we know that ℛ(W , eō),



168

a subset of the first ℐ tuples in W , falls in W ′, i.e., ℛ(W , eō) ⊂ ℛ(W ′, ō).

Therefore, each tuple in ℛ(W , eō) is contained in one EC of SG . In addition,

each EC of SG is t-close toW ′ with respect to its SA distribution.

So far, the closeness proof for Case 3 has completed. The next theorem

based on Theorem 6.1 will show that SABREW follows the privacy model de-

fined in Section 6.2.

Theorem 6.2. Algorithm SABREW follows the (!, t)-closeness and expiring

constraint.

Proof. Given an input stream Sin, SABREW anonymizes it into an output stream

Sout by the three cases we have presented. We discuss these three cases one by

one.

Case 1 (steps 7-9). Since all the expiring tuples are already output, the

expiring constraint is met. This case does not anonymize and output any tuple,

so the satisfaction of (!, t)-closeness depends on the remaining two cases.

Case 2 (steps 14-19). Given an advancing windowW at instant {, for each

expiring and not-yet-output tuple, an EC is formed and released to Sout. As

each expiring tuple is output, the expiring constraint is met. Besides, since each

output EC is t-close toW , (!, t)-closeness is satisfied.

Case 3 (steps 21-24). Given an advancing windowW at instant {, by The-

orem 6.1, each expiring and not-yet-output tuple is contained in an EC formed

by tuples from another window W ′, generated before W . All ECs containing

expiring tuples are output, hence the expiring constraint is met. Each output EC

is t-close toW ′, so this case attains (!, t)-closeness as well.

In conclusion, SABREW abides to both (!, t)-closeness and the expiring

constraint.
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6.5 Experiment evaluation

In this section we evaluate the performance of SABREW, our window-based

t-closeness scheme, on streaming data. We reuse Algorithm SABRE-AK as a

building block to anonymize a window of tuples (step 15 of Algorithm SABREW).

In a similar way, we extend tIncognito [52] and tMondrian [53] to the context

of data streams, thus, obtain tIncognitoW and tMondrianW, respectively. In Sec-

tion 3.5 we have already made a comparison among SABRE-AK, tIncognito,

and tMondrian, and found that SABRE-AK is most efficient with respect to both

information quality and elapsed time. In the experiments carried out in this

section, we discover the similar trends for the three extended window-based

t-closeness schemes, that is, SABREW is the most effective and efficient, fol-

lowed by tMondrianW, and tIncognitoW. Therefore, in the following we will

briefly present the experiment results, by only comparing the three algorithms

with regard to General Information Loss metrics (see Section 2.3) and elapsed

time.

Attribute Cardinality Type
age 79 numerical (4)
sex 2 categorical (1)

education 17 numerical (4)
marital status 6 categorical (2)

race 9 categorical (1)
work class 10 categorical (3)
birth place 83 categorical (2)

salary 50 numerical

Table 6.2: The CENSUS dataset

The prototypes were implemented in Java and the experiments were run

on a core-2 duo 2.33GHz CPU machine, with 4GB RAM, running windows

XP. We simulate the data stream by the CENSUS dataset [3], which contains
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500,000 tuples, and has 8 attributes as shown in Table 6.2; the value following

the type is the height of the corresponding attribute hierarchy. For instance,

attribute marital status is categorical and has a hierarchy of height 2. The first

7 attributes are used by default as the QI, and the last one (i.e., salary) as the

sensitive attribute. To provide defence against the attack arising when all the

tuples in an EC belong to a single person (Section 6.2), we combine (!, t)-

closeness and ks-anonymity. Hence, the anonymized data are protected against

both SA disclosure and identity disclosure. By default we set k to be 6 (i.e., the

number of distinct persons referred to by all the tuples in an EC is at least 6).

The closeness threshold t is a variable, and is set to 0.35 by default.
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Figure 6.4: Effect of varying ℐ

We first set window size ! to 20,000, and study the effect of the value of

ℐ, the time interval of window advance. Figure 6.4 (a) illustrates the result on

information loss. Algorithms tIncognitoW and tMondrianW are extended from

k-anonymity algorithms, hence lacking a customization towards the features of

(!, t)-closeness. On the contrary, SABREW has been specially designed for (!,

t)-closeness. Therefore, as expected, SABREW achieves the best information

quality, followed by tMondrianW and tIncognitoW. Figure 6.4 (b) is the result

on the elapsed time. Let ∣S∣ (∣S∣ >> !) be the size of stream, then the number
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of times to advance the window is ∣S∣−!ℐ ≈ ∣S∣
ℐ . Every time the window advances

there is one occurrence of anonymization. So when ℐ approaches !, the anony-

mization process is invoked fewer times, hence the elapsed time decreases. Still,

SABREW is the fastest method, and SABREW and tMondrianW are two orders

of magnitude faster than tIncognitoW.

In our next experiment, we set ℐ at 5000, and investigate the effect of the

window size !. As the value of ! grows, more tuples are involved in each

occurrence of anonymization (step 15 of algorithm SABREW). Therefore, the

possibility of grouping tuples with similar QI values is improved, and the in-

formation loss of the output ECs is reduced. Figure 6.5 (a) presents the results

consistent with our expectation; SABREW retains its superiority, outperforming

tIncognitoW and tMondrianW by a wide margin in information quality. Figure

6.5 (b) shows the time efficiency of the three algorithms. After ℐ is fixed, the

number of times of window advance will be closely approximate to ∣S∣ℐ , thus also

fixed. However, the increase of window size ! also indicates an increment of the

number of tuples participating in an anonymization. Therefore, the total elapsed

time grows as a result of the increase of the time spent in each anonymization

triggered by a window sliding. Similarly, SABREW and, to a certain extent,

tMondrianW perform much better than tIncognitoW in terms of time efficiency.
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Figure 6.5: Effect of varying window size
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Figure 6.6: Effect of varying closeness threshold

Figure 6.6 shows the results of varying closeness threshold t from 0.15 to

0.55, where window size ! is set to 20,000 and window advance size ℐ is set to

5,000. As expected, when the t value increases, the constraint on the similarity

between the SA distribution in any EC and that in a window containing the EC is

relaxed, hence the information quality of anonymized data of all the approaches

is improved.
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Figure 6.7: Effect of varying QI

Finally, we vary the QI size from 3 to 7 to examine its effect on anonymized

data. Again window size is set to 20,000 and window advance size is fixed to

5,000. Figure 6.7 (a) is the information loss of the anonymized streaming data

by the three involved approaches. As the QI dimensionality grows, the data
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is more sparse in the QI space2, thus the formed ECs are more likely to have

bigger minimum bounding boxes. As a result, the information quality degrades

as a function of the QI size. Figure 6.7 (b) records the time complexity. When

the QI dimensionality increases, the number of generalization hierarchies3 to

be searched by tIncognitoW grows exponentially. So its elapsed time increases

exponentially as displayed in the graph. Likewise, the other two methods, i.e.,

SABREW and tMondrian, also spend more time in anonymizing the data stream

as QI size grows. However, different from tIncognitoW, their increased cost

is mainly due to the calculation of the minimum bounding boxes with higher

dimensionality. In addition, they are more scalable.

6.6 A discussion on the extension to �-likeness

We have extended SABRE to the context of data streams in the above. The

strategy to achieve this goal is general, and can be reused to adapt other methods,

which consider global SA distribution as background knowledge, to streaming

data. BUREL, the �-likeness approach in Chapter 4, falls in the category of

such methods, and its extension towards streams can be done as follows. At

the beginning, we will constrain the �-likeness requirements within windows,

just as we define t-closeness in windows in Section 6.2. After that, we can

also propose a tailored scheme for the window-based �-likeness principle. The

steps of the scheme will be similar to those of Algorithm SABREW. However,

instead of checking the closeness (steps 12, 14 of Algorithm SABREW), we will

measure the likeness between the ECs and the windows containing them. In

2One QI attribute is one dimension in the QI space, and each streaming tuple is modelled as
one point in the space.

3A generalization hierarchy can be a subtree of the domain hierarchy of a related QI attribute
or the combined tree of two or more generalization hierarchies [48].
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addition, instead of using SABRE to anonymize a window of tuples (step 15

of Algorithm SABREW), we will reuse BUREL as a building block to process

the tuples staying in a window, so that their output conforms to the window-

based �-likeness requirements. As such, the solid theory foundation to prove

the correctness of the tailored scheme will also be like that in Section 6.4.

6.7 Summary

In this chapter we presented a t-closeness-resembling privacy model in the con-

text of streaming data. We have proposed an algorithm customized for the

model, together with a solid theory foundation proving the soundness of the

algorithm. Experimental evaluation has been conducted; the extensive results

show that our tailored algorithm outperforms those approaches extended from

existing k-anonymity methods, with regard to both information quality and time

efficiency.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this chapter we will first summarize the contributions of our work, then we

will discuss some research topics as future work.

7.1 Thesis summary

This thesis concentrates on the anonymization of microdata, with two goals in

mind: protecting individuals from being linked to specific tuples and/or sensitive

values, and at the same time, maximizing the utility of released data. To achieve

such targets, we first proposed SABRE, a sophisticated framework that achieves

t-closeness in an elegant and efficient manner. A solid theory foundation has

been provided to ensure that the two particular phases of SABRE, namely buck-

etization and redistribution, as a whole strictly follow t-closeness constraints.

We have shown the applicability of our scheme on both categorical and numer-

ical attributes. The extensive experimental results have demonstrated that our

two SABRE instantiations, SABRE-AK and SABRE-KNN, clearly outperform

previous schemes with respect to information quality, while SABRE-AK also

improves over them in terms of elapsed time. In conclusion, SABRE provides

the best known resolution of the tradeoff between privacy, information quality,

and computational efficiency, as far as t-closeness guarantee is concerned.

So far, all privacy preserving schemes that guarantee t-closeness [52,53,63]
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including SABRE do not consider an adversary’s information gain on each sin-

gle SA value. Therefore, even though t-closeness is an improved model beyond

k-anonymity [71] and ℓ-diversity [57], it still fails to translate t, the threshold,

into a human-understandable privacy guarantee. To cope with this limitation,

we proposed �-likeness, a robust privacy model for microdata anonymization.

It requires that the relative difference of each SA value frequency between an

EC and the whole table should not be more than a threshold �, thus precisely

interpreting the parameter to a comprehensible privacy guarantee. Furthermore,

we designed an algorithm BUREL, tailored for �-likeness model. A compari-

son with t-closeness schemes demonstrates that BUREL provides effective pri-

vacy guarantees in a way that state-of-the-art t-closeness schemes cannot, even

when set to achieve the same information accuracy or privacy measured by the

criterion of t-closeness. In the experiments, we have also shown that BUREL

is more effective and efficient than a �-likeness algorithm extended from k-

anonymization method [49].

There is a need of data publication for both static and streaming data. How-

ever, most of the developed privacy techniques, including SABRE and BUREL,

are designed for static data sets. They are inapplicable to streaming data. There-

fore, we proposed CASTLE, a cluster-based framework that continuously k-

anonymizes arriving tuples. CASTLE ensures the freshness of released data,

by imposing a delay constraint, so that the maximum delay between any tuple’s

input and its output is smaller than a threshold �. Other features of CASTLE in-

clude its adaptivity to data distributions, and its cluster reuse strategy to improve

the information quality without compromising security. The conducted perfor-

mance evaluation has shown that CASTLE is efficient and effective with regard

to the quality of the output data. We have further demonstrated that CASTLE
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can be extended to support ℓ-diversity in a straightforward way.

Besides k-anonymity and ℓ-diversity, we have also revised t-closeness and

applied it on data streams. We proposed (!, t)-closeness, which requires that

for any output EC, there exists a window, which has a size of ! and contains the

EC, so that the difference of SA distribution between the EC and the window

is no more than a threshold t. In this way, we restrict the closeness constraints

within each window instead of the whole dataset, following the conventional

wisdom that streaming tuples are processed in windows. Furthermore, an algo-

rithm customized for (!, t)-closeness has been introduced; its soundness is well

supported with a solid theory foundation. The experimental study has shown

that our tailored scheme outperforms methods extended from algorithms devel-

oped for k-anonymity model, in terms of both information quality and elapsed

time.

7.2 Future work

In this section we bring forward three topics on the agenda of our future re-

search.

7.2.1 Access control over data streams

Privacy-protection data publication treats each potential recipient (i.e., the user

of the data) equally. However, there are applications, such as battlefield, net-

work monitoring, and stock market, where users are classified into roles and

each role is permitted to see only a part of the data based on pre-defined poli-

cies. For example, stock prices are delivered to paying clients based on their

subscriptions. The concept of role base access control [68] was introduced with

such security requirements in mind. We have proposed a general framework to
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protect against unauthorized access to data streams [29]1. Given a submitted

query, we rewrite it according to its related role based access control policies

in such a way that only authorized tuples/attributes will be returned to the user.

In addition, we have implemented the framework in StreamBase (i.e., a popu-

lar commercial data stream engine), and demonstrated it [25]. The extension

of our framework includes but not limited to the following directions: the op-

timization of rewritten queries, updates of queries and access control policies,

and the support of sharing a common sub-query among users. It is important

to remark that our access control model is discretionary, just like most models

adopted in commercial data management systems. As such, it leaves the respon-

sibility of correctly defining control policies to the security administrator. As a

result, potential conflicts among policies exist, thus providing inference chan-

nels for the attackers. Therefore, another interesting direction for future work

is investigating how our framework can be complemented by inference control

techniques [20, 64].

7.2.2 Anonymization of transaction dataset

Transaction data have a wide range of applications, such as association rule

mining [13, 14], query expansion [35], and predicting user behavior [7]. How-

ever, the publication of such data may put the privacy of individuals at risk—an

attacker with the partial knowledge of transactions may associate individuals

with sensitive information. As a result, a careful anonymization of the data be-

fore their release is indispensable. Transaction data are set-valued; each entry

is a set of items, e.g., purchased items, query items, user preferences, chosen

from a universal domain. Consequently, anonymization methods developed on

1A paper invited and accepted by TISSEC.
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microdata, which has a fixed schema, cannot be applied directly on them. We

have proposed �-uncertainty [28], an inference-proof privacy principle. Given a

transaction dataset Dℬ, for any transaction x ∈ Dℬ, any subset of items � ⊂ x,

and any sensitive item � /∈ �, �-uncertainty requires that the confidence of the

sensitive association rule2 � → � be at most �. Obviously, �-uncertainty lim-

its the sensitive inference arising from prior knowledge �. We have designed

an algorithm, which solves the problem of �-uncertainty in a non-trivial way

by combining both generalization and suppression. Still, rendering a dataset

�-uncertain is a challenging task, due to the huge amount of sensitive associa-

tion rules existing in the data. Till now our algorithm can process only small

transactions. Therefore, a new approach, which can process longer transactions

and better preserve information, will be an item on our research agenda. Fur-

thermore, we are interested in applying �-uncertainty to the cognate problem of

anonymizing functional dependencies in a relational dataset.

7.2.3 Algorithm-based attacks

Like most other privacy approaches, the methods in this thesis assume random

worlds model [18], i.e., given an anonymized dataset, its possible inputs can be

many, and an attacker treats each of these “possible worlds” as equally likely.

As an example, suppose that tuple x appears in an anonymized dataset Dℬ′. To

determine the probability that x.SA is diabetes, an attacker will examine all the

input instances, each with an output equal to DB′, and compute the fractions of

those inputs consistent with x.SA = diabetes. Without further information, an

attacker can only treat each input instance equally. However, using the knowl-

edge of specific anonymization algorithms, an attacker can eliminate some input

2An association rule is sensitive, if its consequent contains at least one sensitive item.
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instances, and his/her belief in certain event can be raised, thus some desired pri-

vacy requirements may possibly be broken. Minimality attack [77] is one case

of such attacks; it is based on the observation that most anonymization methods

try to minimize information loss and such an attempt enables the attack. Re-

cently, Cormode et al. [33] have determined the scope of the effectiveness of

this attack. Therefore, another interesting topic for future research can be ex-

amining the internal workings of our proposed mechanisms with regard to the

analysis in [33], and then enhancing them to thwart the minimality attack.
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