
HIGH PERFORMANCE COMPUTATIONAL 

VIRTUAL SCREENING TOOLS: DEVELOPMENT 

AND APPLICATION TO THE DISCOVERY OF 

KINASE INHIBITORS 

 

 

 

MA XIAOHUA 

(M.Sc, Sichuan Univ.; B.Sc, Sichuan Univ.) 

 

 

A THESIS SUBMITTED 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF PHARMACY 

NATIONAL UNIVERSITY OF SINGAPORE 

 

2010 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48638753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

  i 

Acknowledgements 

First and foremost, I wish to express my heartfelt appreciation to my 

supervisor, Prof. Chen Yu Zong, who provides me with excellent guidance, 

invaluable advices and suggestions throughout my Ph.D study. I have 

tremendously benefited from his profound knowledge, expertise in scientific 

research, as well as his enormous support, which will inspire and motivate me 

to go further in my future professional career.  

I would also like to thank Prof. Low Boon Chuan. As my co-supervisor, he 

gave me many valuable comments on my research and kind suggestions for 

my career. His insights and knowledge always give me new idea during our 

discussion. Great thanks also go to Prof. YAP Chun Wei for his great supports 

and encouragements. 

I also wish to thank present and previous BIDD group members. In particulars, 

I would like to thank Dr. Li Hu, Dr. Han Lianyi, Dr. Lin Honghuang, Dr. 

Zhang Hailei, Dr. Wang Rong, Ms Jia jia, Mr Zhu Feng, Mr Liu Xianghui, Ms 

Liu Xin, Ms Shi Zhe, Ms Sit Win Yee, Mr Han Bucong, Mr Zhang Jingxian, 

Ms Wei Xiaona, Ms Huang Lu, Mr Guo Yangfan, Mr Tao Lin, Mr Zhang 

Cheng, Ms Qin Chu, etc. I am really thankful for their valuable suggestions 

and support in my project, as well as enjoy the close friendship among us. 

Last, but not the least, I am profoundly grateful to my parents, my husband 

and my son for their encouragement and accompany. 

Ma Xiaohua 

Aug 2010 



 

  ii 

Table of Contents 

Acknowledgements ......................................................................................................... i 

Table of Contents ........................................................................................................... ii 

Summary ....................................................................................................................... vi 

List of Tables ............................................................................................................. viii 

List of Figures ............................................................................................................... xi 

List of Acronyms ....................................................................................................... xiii 

List of Publications ...................................................................................................... xv 

Chapter 1 Introduction.................................................................................................. 1 

1.1 Virtual screening in drug discovery ..................................................................... 2 

1.1.1 Structure-based virtual screening .......................................................... 5 

1.1.2 Ligand-based virtual screening ............................................................. 6 

1.2 Machine learning in virtual screening .................................................................. 7 

1.3 Protein kinase inhibitors in cancer treatment ..................................................... 21 

1.4 In-Silico approaches to multi-target drug discovery .......................................... 22 

1.5 Objectives and outline of this work .................................................................... 28 

Chapter 2 Methods ..................................................................................................... 31 

2.1 Datasets .............................................................................................................. 31 

2.1.1 Data source .......................................................................................... 31 

2.1.2 Data quality analysis ........................................................................... 32 

2.1.3 Determination of structural diversity .................................................. 33 

2.2 Molecular descriptors ......................................................................................... 34 

2.2.1 Types of molecular descriptors ........................................................... 34 

2.2.2 Scaling of molecular descriptors ......................................................... 37 

2.3 Machine learning classification methods ........................................................... 38 

2.3.1 Support vector machines method ........................................................ 39 

2.3.2 K-nearest neighbor method ................................................................. 42 

2.3.3 Probabilistic neural network method .................................................. 42 



 

  iii 

2.3.4 Tanimoto similarity searching method ............................................... 47 

2.4 Virtual screening model validation and performance evaluation ....................... 47 

2.4.1 Model validation ................................................................................. 47 

2.4.2 Performance evaluation methods ........................................................ 48 

2.4.3 Overfitting problem and its prevention ............................................... 50 

Chapter 3 Development and Evaluation of High Performance Virtual 
Screening Tools ........................................................................................................... 51 

3.1 Introduction ........................................................................................................ 51 

3.2 Methods .............................................................................................................. 58 

3.2.1 Collection of active compounds .......................................................... 58 

3.2.2 Generation of putative inactive compounds ....................................... 62 

3.2.3 Molecular descriptors .......................................................................... 65 

3.2.4 Development of support vector machines virtual screening 

tools .............................................................................................................. 65 

3.3 Assessment of virtual screening performance .................................................... 66 

3.4 Comparative analysis of virtual screening performance of our method ............ 69 

3.5 Discussion .......................................................................................................... 71 

3.6 Further perspective ............................................................................................. 73 

Chapter 4 Evaluation of Virtual Screening by Sparsely Distributed Active 
Compounds .................................................................................................................. 74 

4.1 Introduction ........................................................................................................ 74 

4.2 Methods .............................................................................................................. 80 

4.2.1 Construction of active training and testing datasets ........................... 80 

4.2.2 Generation of putative inactive training and testing datasets ............. 81 

4.2.3 Molecular descriptors .......................................................................... 83 

4.3 Results and discussion ........................................................................................ 84 

4.3.1 Comparative analysis of virtual screening performance of 

SVM trained by regularly sparse active datasets ......................................... 84 

4.3.2 Virtual screening performance of SVM trained by very sparse 

active datasets .............................................................................................. 89 



 

  iv 

4.3.3 Evaluation of false-hit rates of SVM against inactives of 

similar molecular descriptors to the known actives ..................................... 92 

4.3.4 Evaluation of SVM identified false hits .............................................. 92 

4.3.5 Does SVM select active compounds or membership of 

compound families? ..................................................................................... 96 

4.4 Further perspective ............................................................................................. 96 

Chapter 5 Virtual Screening of Selective Kinase Inhibitors ...................................... 98 

5.1 Virtual screening of c-Src kinase inhibitors ....................................................... 98 

5.1.1 c-Src, c-Src inhibitors and cancer ....................................................... 98 

5.1.2 Virtual screening model development .............................................. 100 

5.1.3 Results and Discussion ..................................................................... 102 

5.1.4 Further perspective ............................................................................ 111 

5.2 Virtual screening of VEGFR-2 kinase inhibitors ............................................. 112 

5.2.1 VEGFR, VEGFR inhibitors and cancer ............................................ 112 

5.2.2 Virtual screening model development .............................................. 114 

5.2.3 Results and Discussion ..................................................................... 116 

5.2.4 Further perspective ............................................................................ 125 

Chapter 6 Virtual Screening of Selective Multi-Target Kinase Inhibitors ............... 126 

6.1 Introduction ...................................................................................................... 126 

6.2 Materials and methods ..................................................................................... 131 

6.2.1 Compound collection, training and testing datasets, molecular 

descriptors .................................................................................................. 131 

6.2.2 Computational models ...................................................................... 136 

6.3 Results and discussion ...................................................................................... 137 

6.3.1 Dual-inhibitors and non-dual inhibitors of the studied kinase-

pairs ............................................................................................................ 137 

6.3.2 Virtual screening performance of Combinatorial SVM in 

searching kinase dual-inhibitors from large libraries ................................. 142 

6.3.3 Comparison of the performance of Combinatorial SVM with 

other virtual screening methods ................................................................. 148 

6.3.4 Evaluation of Combinatorial SVM identified MDDR virtual-

hits .............................................................................................................. 154 



 

  v 

6.3.5 Does Combinatorial SVM select kinase inhibitors or 

membership of compound families? .......................................................... 159 

6.3.6 Molecular features important for selecting dual-kinase 

inhibitors .................................................................................................... 159 

6.4 Further perspective ........................................................................................... 160 

Chapter 7 Concluding Remarks ............................................................................... 162 

7.1 Major findings and contributions ..................................................................... 162 

7.2 Limitations and suggestions for future studies ................................................. 165 

BIBLIOGRAPHY ...................................................................................................... 172 

 



 

  vi 

Summary 

Virtual screening (VS) can provide valuable contributions in hit and lead 

compound discovery. Numerous software tools have been developed for this 

purpose.  However, the insufficient coverage of compound diversity, high 

false positive, high false negative prediction and lower speed of screening 

compound libraries are also required to address in the development of virtual 

screening methods. In this work, training-sets of diverse inactive compounds 

are used to improve the performance of Support vector machine (SVM) virtual 

screening tools. In retrospective database screening of active compounds of 

single mechanism (HIV protease inhibitors, DHFR inhibitors, dopamine 

antagonists) and multiple mechanisms (CNS active agents) from large libraries 

of 2.986 million compounds, the yields, hit-rates, and enrichment factors of 

our SVM models are  compared to those of structure-based VS and other 

ligand-based VS tools in screening libraries of ≥1 million compounds. The 

hit-rates are comparable and the enrichment factors are substantially better 

than the best results of other VS tools. SVM appears to be potentially useful 

for facilitating lead discovery in VS of large compound libraries. 

 

Virtual screening performance of SVM depends on the diversity of training 

active and inactive compounds. We also evaluated the performance of SVM 

trained by sparsely distributed actives in six MDDR biological target classes 

composed of high number of known actives of high, intermediate, and low 

structural diversity. The results show SVM has substantial capability in 

identifying novel active compounds from sparse active datasets at low false-hit 

rates. 



 

  vii 

 

 c-Src and VEGFR-2 are two important kinases that play various roles in 

tumour progression, invasion, metastasis, angiogenesis and survival. The 

successes of their inhibitors and the encountered problems have led to further 

efforts for discovering new inhibitors for c-Src and VEGFR-2. We applied our 

developed SVM based virtual screening tools for searching c-Src and VEGFR-

2 inhibitors from large compound libraries. SVM models showed around 60% 

accuracy for independent testing sets and >99.9% accuracy for non-inhibitors 

(very low false hit-rate) that is favorable for selecting potential leads to further 

study in wet-lab experiment. 

 

Multi-target agents have been increasingly explored for enhancing therapeutic 

efficacies and improving safety and resistance profiles by selectively 

modulating the elements of these counter-target and toxicity activities. In the 

final part of my thesis, combinatorial support vector machines (C-SVMs), 

virtual screening tools for searching multi-target agents are developed based 

on our previous high performance SVM based virtual screening tools. C-

SVMs models were tested for searching dual-inhibitors of 11 combinations of 

9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, 

CDK2, GSK3). Moreover, C-SVMs were compared to other VS methods 

DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and 

1.02M Zinc clean-leads dataset. C-SVMs produced comparable dual-inhibitor 

yields, slightly better false-hit rates for kinase inhibitors, and significantly 

lower false-hit rates for the Zinc clean-leads dataset. 
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Chapter 1 Introduction 

The discovery of novel chemical entities (NCEs) in the pharmaceutical 

industry is becoming increasingly difficult, costly and time-consuming. Many 

approaches have been suggested to increase the cost-effectiveness of 

discovery programmes, one of them being the use of virtual screening methods 

to complement the more traditional chemical and biological approaches. 

Presently, a variety of computational virtual screening tools are being 

developed and refined to effectively employ fast screening methods to yield 

potent lead hits such as docking, quantitative structure activity relationship 

(QSAR) and machine learning methods etc. However, virtual screening also 

faces several fundamental challenges. It can be regarded as less accurate, 

since speed and the possibility to capture most (but not necessarily all) 

potentially positives are its key attributes. The insufficient coverage of 

compound diversity, high false positive, high false negative prediction and 

lower speed of screening compound libraries are also required to address in 

the development of virtual screening method. This work on “high performance 

computational virtual screening tools: development and application to the 

discovery of kinase inhibitors” is one of such kind of strategies to improve the 

screening speed and the prediction accuracy and decrease the false hit rate.  

 

The following sections will describe an overview of virtual screening in drug 

discovery (Section 1.1), machine learning methods in virtual screening 

(Section 1.2) and discuss the important role of kinase inhibitors in cancer 

treatment (Section 1.3) and in-silico approaches to multi-target drug 
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discovery (Section 1.4). In addition, the objectives and outline of this project 

(Section 1.5) will be introduced. 

1.1 Virtual screening in drug discovery 

In current drug discovery, lead compounds of high quality and structural 

diversity are keys to the successful development of the drug candidates. 

During the last 10 to 15 years, High throughput screening (HTS) of 

proprietary compound collections at pharmaceutical companies has 

represented the most important source of leads in the industry. However, the 

use of HTS is very expensive and companies need to purchase the synthesized 

compounds to be screened (if available at all). Moreover, these physically 

existing compounds (in-house libraries) represent only a tiny fraction of the 

drug-like chemical space. In more recent years, virtual screening (VS) has 

complemented the experimental identification of bioactive compounds. Virtual 

screening offers many possibilities for new structures beyond those found in 

in-house libraries. The term 'virtual screening' was first used in 1997, and 

relates to the search for compounds with a defined biological activity using 

computational models1. During the last decade, a huge number of different 

virtual screening methods have been reported and used to search for novel 

bioactive compounds for many targets. Like HTS, VS searches large libraries 

of potentially bioactive molecules for hits. Unlike HTS, there is no need for 

physically existing compounds, which is a key advantage of VS. Another 

advantage of VS comes from the exploration of the chemical space outside the 

in-house compound pool. The typical screening collection of a large 

pharmaceutical company is of the order of a few million compounds at most. 

This is a tiny fraction of the huge chemical space2,3, which is many orders of 
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magnitude larger than this, even if only drug-like compounds are considered4. 

Of the order of 10 million compounds are commercially available, which are 

an additional source of potential leads that can be exploited with the VS 

approach. Another source of accessible compounds is virtual combinatorial 

libraries. The chemical space accessible through virtual combinatorial libraries 

is at least 1 million-fold larger than that available from in-house pools and 

external vendor compounds, respectively, and adds a new dimension to the VS 

search space (Figure 1-1).  

 

 

Figure 1-1 Typical numbers of compounds available in the chemical space. 

 

Virtual screening methods are often divided into structure-based virtual 

screening (SBVS) and ligand-based virtual screening (LBVS)  depending on 

what is already known about a target and its ligands5. Structure-based virtual 

screening involves docking of candidate ligands into a protein target followed 

by applying a scoring function to estimate the likelihood that the ligand will 

bind to the protein with high affinity6,7. LBVS methods include 

pharmacophore methods8 and chemical similarity analysis methods9. Figure 
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1-2 shows the general procedure used in SBVS and LBVS.  

 

 

 

Figure 1-2 General procedure used in SBVS and LBVS (adopted from Rafael 
V.C. et al10). 
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1.1.1 Structure-based virtual screening  

When 3D protein target structure information, derived either from 

experimental data (X-ray or NMR spectroscopy) or from homology modeling, 

is available, the most frequently used VS method is docking. Binding modes 

for each ligand can be predicted in silico, together with numerical assessment 

(score) of the interaction energy between the ligand and the protein. Most 

docking algorithms and scoring functions are tuned towards high throughput, 

which requires a compromise between the speed and accuracy of binding 

mode and energy prediction. The major challenges in scoring functions are 

how to account for the solvent effect and how to accurately account for 

entropic effect. Now desolvation and entropy contributions of both ligand and 

protein are included only in an approximate way. To date, more than 60 

docking programs and 30 scoring functions have been reported. Both docking 

programs and scoring functions have been evaluated and reviewed 

extensively11,12. Most researchers agree that there is currently no single 

docking program that outperforms all others with regard to either docking 

accuracy or hit enrichment. The hit enrichment is defined as the fraction of 

true active compounds in, for example, the upper 1% of the ranked VS hit list 

compared with the average fraction of active compounds in the search space. 

The performance of a docking program is difficult to assess in advance, and 

depends on the nature of the target11-13. Despite all optimization efforts, the 

currently available scoring functions do not provide reliable estimates of free 

binding energies, and are not able to rank-order compounds according to 

affinity12,14. The published comparisons of docking programs have been 

critically reviewed15-17.  
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1.1.2 Ligand-based virtual screening  

Ligand-based VS begins with the use of one or more active compounds as 

templates, and no details about the target are needed. In general, LBVS 

methods depend on the application of computational descriptors of molecular 

structure, properties, or pharmacophore features and analyze relationships 

between active and database or test compounds in however defined chemical 

descriptor spaces. It is computationally efficient and can rapidly search very 

large databases. As a result, it is often used to sequentially filter large 

compound sets before more complex tools are applied. Myriads of different 

methods have been reported, and there are literally thousands of different 

descriptors, which are derived from the 2D or 3D distribution of atomic 

properties in compounds, or from the presence or absence of specific structural 

elements. Many methods exist for the comparison of the similarity of 

compounds based on these descriptors. In ligand-based VS, shape comparison 

is frequently used18, and pharmacophore searches are also a long-established 

technique8,19. Other methods use molecular fields to define the similarity of 

structures20,21. If large sets of active and inactive compounds are known, 

machine learning techniques, such as artificial neural nets, decision trees, 

support vector machines or Bayesian classifiers, can be used to train models 

that distinguish active from inactive compounds based on their specific 

structural features. For a comprehensive overview of ligand-based VS the 

reader is referred to a number of reviews22,23. 
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1.2 Machine learning in virtual screening 

Machine learning methods have been explored as an alternative virtual 

screening method. It utilize nonlinear supervised learning methods to develop 

statistical models that map physicochemical properties (molecular descriptors) 

with their activity classes, so they are more capable of predicting a more 

diverse spectrum of compounds and more complex structure-activity 

relationships than structure-based virtual screening methods and other ligand-

based virtual screening methods such as QSAR, pharmacophore, and 

clustering methods24-31. This capability arises because machine learning 

methods are capable of generating complex nonlinear mappings from 

molecular descriptors to activity classes without restriction on structural 

frameworks, and without requiring prior knowledge of relevant molecular 

descriptors and functional form of structure-activity relationships32-36. 

Moreover, machine learning methods can overcome several problems that 

have impeded progress in the application of structure-based virtual screening 

and other ligand-based virtual screening tools33,37. These problems include the 

vastness and sparse nature of searched chemical space, limited availability of 

target structures (only 15% of known proteins have known 3D structures); 

limited diversity biased by training molecules, complexity and flexibility of 

target structures, and difficulties in computing binding affinity and solvation 

effects.  

 

The reported performance of machine learning methods in screening 

pharmacodynamically active compounds from libraries of >25,000 compounds 

is summarized in Table 1-1. The screening tasks of these reported studies38-45 
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are primarily focused on the prediction of compounds that inhibit, antagonize, 

block, agonize, or activate specific therapeutic target protein. Machine 

learning methods have been found to show generally good performances. In 

the majority of the reported studies, the yields, hit rates, and enrichment 

factors of machine learning methods are in the range of 50%~94%, 10%~98%, 

and 30~108 respectively. 

 

For tentative comparison of the performance of machine learning methods 

with other virtual screening methods, the reported performances of structure-

based VS methods and two classes of ligand-based VS methods, 

pharmacophore and clustering, are summarized in Table 2, Table 3 and Table 

4 respectively. The yields, hit rates, and enrichment factors of the majority of 

the reported studies by other methods shown in Table 1-2, Table 1-3 and 

Table 1-4 are in the range of 7%~95%, 1%~32%, and 5~1189 for structure-

based, 11%~76%, ~0.33%, and 3~41 for pharmacophore, and 20%~63%, 

2%~10%, and 6~54 for clustering methods respectively. Therefore, the 

general performance of machine learning methods appears to be comparable to 

or in some cases better than the reported performances of the VS studies by 

using structure-based, pharmacophore and clustering methods. However, we 

can see from the Table 1-2, Table 1-3, Table 1-4, in screening extremely-

large libraries, the reported yields, hit-rates and enrichment factors of machine 

learning VS tools are in the range of 55%~81%, 0.2%~0.7% and 110~795 

respectively, compared to those of 62%~95%, 0.65%~35% and 20~1,200 by 

structure-based VS tools In screening libraries of ~98,000 compounds, the 

reported hit-rates of some machine learning VS tools are comparable to those 
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of structure-based VS tools, but their enrichment factors are substantially 

smaller. Therefore, while exhibiting equally good yield, in screening 

extremely-large (≥1 million) and large (130,000~400,000) libraries, the 

currently developed machine learning VS tools appear to show lower hit-rates 

and, in some cases, lower enrichment factors than the best performing 

structure-based VS tools.  

 

Two approaches have been explored to improve hit-rates and enrichment 

factors. One is the selection of top-ranked hits, which has been extensively 

used in ligand-based46-51 and structure-based 52-57 VS tools. The other is the 

elimination of unlikely hits at the pre-screening stage by using such filters as 

Lipinski’s rule of five58 for drug-like compounds, identification of specific 

chemical groups or interaction patterns52,53,59,60, and pharmacophore 

recognition54. These two methods are effective to improve hit-rates and 

enrichment factors but they are just supplemental methods combined with 

virtual screening methods. Higher performance virtual screening methods are 

required. The performance of machine learning VS tools in screening large 

libraries can be further improved by using training sets of more diverse 

spectrum of compounds to develop more optimally performing machine 

learning VS tools.  These tools have been generated by using two-tier 

supervised classification machine learning methods36,46-49,61-63, which require 

training sets of diverse spectrum of active and inactive compounds.  

 

Machine learning methods have shown promising capability in virtual 

screening of compounds of diverse ranges of structures for identifying 
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compounds of a wide variety of pharmacodynamic and other properties. In 

virtual screening of large libraries, these methods have been found to be 

capable of achieving comparable performance to other structure-based and 

ligand-based VS methods. By using training sets of more diverse spectrum of 

inactive compounds, the hit-rates and enrichment factors of machine learning 

VS tools can be substantially improved to the level comparable to and in some 

cases higher than those of the best performing structure-based and ligand-

based VS tools. 
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Table 1-1 Performance of machine learning methods in virtual screening test for identifying inhibitors, agonists and substrates of 
proteins of pharmaceutical relevance. The relevant literature references are given in the method column. 
 

Screening 
task 

Compounds screened Method 
and 
reference 
of 
reported 
study 

Molecular 
descriptors 

Compounds 
in training 
set (No of 
positives / 
No of 
negatives) 

Compounds selected Known hits selected 

No of 
compounds 

No of 
known 
hits 
included 

No of 
compounds 
selected 

Percentage 
of screened 
compounds 
selected 

No of 
hits 
selected 

Yield Hit 
rates 

Enrichment 
factor 

COX2 
inhibitors 

2.5M 22 SVM 49 Molecular 
fingerprints

94/200K 2,500 0.1% 18 81% 0.7% 795 

25,300 25 SVM+ 
BKD 46 

DRAGON 
descriptors 

125/5035 506 2% 20 80% 
 

3.9% 39.5 
 

COX 
inhibitors 

102,514 536 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 76 14.3% 
 

1.4% 2.7 
 

98,435 536 CKD 36 Pipeline pilot 100/4000 984 1% 232 43.4% 23.7% 43.1 
ECFP4 100/4000 984 1% 365 68.1% 37.2% 67.7 

SVM-
RBF 36  

Pipeline pilot 100/4000 984 1% 240 44.7% 24.4% 44.5 

Thrombin 
inhibitors 

2.5M 46 SVM 49 Molecular 
fingerprints 

188/200K 11,250 0.45% 25 55% 
 

0.2% 108.7 
 

102,514 703 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 367 52,3% 
 

7.1% 10.3 
 

98,435 703 CKD 36  Pipeline pilot 100/4000 984 1% 435 61.9% 44.4% 61.7 
ECFP4 100/4000 984 1% 603 85.8% 61.5% 85.5 

SVM-
RBF 36

Pipeline pilot 100/4000 984 1% 381 54.2% 38.9% 54.0 

Protease 
inhibitors 

171,726 118 SVM 47 Extended 
connectivity 
fingerprints 

228/4200 1717 1% 26 22% 
 

1.5% 21.8 
 

LMNB 47 19 16% 
 

1% 14.5 
 

Chemokine 
receptor 
antagonists 

171,560 128 SVM 47 Extended 
connectivity 
fingerprints 

258/4199 1716 1% 70 55% 
 

4.1% 54.9 
 

LMNB 
48,62 

68 53% 
 

3.9% 52.3 
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5HT3 
antagonists 

102,514 652 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 236 36.3% 
 

4.6% 7.2 
 

98,435 852 CKD 36 Pipeline pilot 100/4000 984 1% 480 56.4% 49.0% 56.3 
ECFP4 100/4000 984 1% 680 79.8% 69.4% 79.8 

SVM-
RBF 36 

Pipeline pilot 100/4000 984 1% 529 62.1% 54.0% 62.1 

5HT1A 
antagonists 

102,514 727 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 224 30.9% 
 

4.3% 6.1 
 

98,435 727 CKD 36 Pipeline pilot 100/4000 984 1% 268 36.9% 27.3% 36.9
ECFP4 100/4000 984 1% 426 58.6% 43.5% 58.7 

SVM-
RBF 36 

Pipeline pilot 100/4000 984 1% 319 43.9% 32.6% 44.0 

5HT reuptake 
inhibitors 

102,514 259 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 65 25% 1.2% 4.7 
 

98,435 259 CKD 36  Pipeline pilot 100/4000 984 1% 131 50.7% 13.4% 51.5 
ECFP4 100/4000 984 1% 194 75.6% 19.7% 75.9 

SVM-
RBF 36  

Pipeline pilot 100/4000 984 1% 137 52.9% 14.0% 53.8 

D2 
antagonists 

102,514 295 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 90 30.6% 
 

1.7% 5.9 
 

98,435 295 CKD 36 Pipeline pilot 100/4000 984 1% 132 44.7% 13.5% 44.9 
ECFP4 100/4000 984 1% 219 74.4% 22.4% 74.7 

SVM-
RBF 36 

Pipeline pilot 100/4000 984 1% 137 46.4% 14.0% 53.8 

Rennin 
inhibitors 

102,514 1030 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 972 94.4% 
 

18.9% 18.9 
 

98,435 1030 CKD 36  Pipeline pilot 100/4000 984 1% 842 81.8% 86.0% 81.9 
ECFP4 100/4000 984 1% 960 93.2% 98.0% 93.3 

SVM-
RBF 36

Pipeline pilot 100/4000 984 1% 710 68.9% 72.4% 69.0 

Angiotesin II 
AT1 
antagonists 

102,514 843 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 776 92.1% 
 

15.1% 18.4 
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98,435 843 CKD 36  Pipeline pilot 100/4000 984 1% 393 46.6% 40.1% 46.6 
ECFP4 100/4000 984 1% 593 70.4% 60.6% 70.4 

SVM-
RBF 36 

Pipeline pilot 100/4000 984 1% 384 45.6% 39.2% 45.6 

Substance P 
antagonists 

102,514 1146 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 378 33% 
 

7.3% 6.5 
 

98,435 1146 CKD 36 Pipeline pilot 100/4000 984 1% 705 61.5% 71.9% 61.5 
ECFP4 100/4000 984 1% 942 82.2% 96.1% 82.2 

SVM-
RBF 36 

Pipeline pilot 100/4000 984 1% 509 44.4% 51.9% 44.4 

HIV protease 
inhibitors 

102,514 650 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 377 58% 
 

7.3% 11.5 
 

98,435 650 CKD 36 Pipeline pilot 100/4000 984 1% 436 67.1% 44.5% 67.4 
ECFP4 100/4000 984 1% 574 88.3% 58.6% 88.7 

SVM-
RBF 36

Pipeline pilot 100/4000 984 1% 355 54.6% 36.2% 54.9 

Protein kinase 
C inhibitors 

102,514 353 BKD 48,51 Extended 
connectivity 
fingerprints 

100/400 5125 5% 81 23.1% 
 

1.5% 4.4 
 

98,435 353 CKD 36  Pipeline pilot 100/4000 984 1% 238 67.3% 24.2% 67.3 
ECFP4 100/4000 984 1% 291 82.5% 29.7% 82.5 

SVM-
RBF 36 

Pipeline pilot 100/4000 984 1% 206 58.3% 21.0% 58.3 

MAO 
inhibitors 

101,437 1166 BKD 61 Atom pairs and 
topological 
torsions APTT 
descriptors

1166/3834 6000 5.9% 600 51.4% 
 

10% 11.5 
 

Muscarinic 
M1 agonists 

98,435 748 CKD 36 Pipeline pilot 100/4000 984 1% 467 62.4% 47.4% 62.4
ECFP4 100/4000 984 1% 597 79.8% 60.7% 79.8 

NMDA 
receptor 
antagonists 

98,435 1211 CKD 36 Pipeline pilot 100/4000 984 1% 604 49.9% 61.4% 49.9 
ECFP4 100/4000 984 1% 889 73.4% 90.3% 73.4 

Nitric oxide 
synthase 
inhibitors 

98,435 277 CKD 36 Pipeline pilot 100/4000 984 1% 192 69.3% 19.5% 69.7
ECFP4 100/4000 984 1% 244 88.2% 27.3% 97.6 

Aldose 98,435 782 CKD 36 Pipeline pilot 100/4000 984 1% 436 55.8% 44.3% 56.1 
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reductase 
inhibitors 

ECFP4 100/4000 984 1% 665 85.0% 67.6% 85.5 

Reverse 
transcriptase 
inhibitors 

98,435 419 CKD 36 Pipeline pilot 100/4000 984 1% 238 56.9% 24.2% 56.3 
ECFP4 100/4000 984 1% 337 80.4% 34.2% 79.6 

Aromatase 
inhibitors 

98,435 413 CKD 36 Pipeline pilot 100/4000 984 1% 284 68.7% 28.8% 68.6 
ECFP4 100/4000 984 1% 389 94.1% 39.5% 94.0 

Phospholipase 
A2 inhibitors 

98,435 604 CKD 36 Pipeline pilot 100/4000 984 1% 297 49.2% 30.2% 49.5 
ECFP4 100/4000 984 1% 447 74.0% 45.4% 74.5 

CDK2 
inhibitors 

25,300 25 SVM+ 
BKD 46 

DRAGON 
descriptors 

125/5035 506 2% 18 72% 
 

3.5% 35.4 
 

FXa 
inhibitors 

25,300 25 SVM+ 
BKD 46 

DRAGON 
descriptors 

125/5035 506 2% 21 84% 
 

4.1% N/A 

PDE5 
inhibitors 

50,000 19 RO5+ DS 
64 

Pharmacophore 
and 
macroscopic 
descriptors 

130/10K 1821 3.6% 11 57.8% 
 

0.6% 15.8 
 

25,300 25 SVM+ 
BKD 46 

DRAGON 
descriptors 

125/5035 506 2% 21 84% 
 

4.1% 41.5 
 

Alpha1A AR 
antagonists 

25,300 25 SVM+ 
BKD 46

DRAGON 
descriptors

125/5035 506 2% 20 80% 3.9% 39.5 

 
BKD – binary kernel discrimination; CKD – Continuous kernel discrimination; DS – decision tree; LMNB – laplacian modified naive Bayesian; SVM – 
support vector machine; DRAGON – (an application for the calculation of molecular descriptors); AR – androgen receptor; PDE 5 – phosphodiesterase 
type 5; FXa – factor Xa;  CDK2 – cyclin-dependent kinase 2; MAO – mono amino oxidase; HIV – human immunodeficiency virus; COX – 
cycloocygenase; 
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Table 1-2 Performance of docking methods in virtual screening test for identifying inhibitors, agonists and substrates of proteins 
of pharmaceutical relevance. The relevant literature references are given in the method column. 
 

Screening task Compounds screened Method and 
reference of 
reported 
study 

No of pre-
docking 
selected 
compounds 

Docking 
cut-off 

Compounds selected Known hits selected 

No of 
compounds 

No of 
known 
hits 
included 

No of 
compounds 
selected 

Percentage 
of screened 
compounds 
selected 

No of 
hits 
selected 

Yield Hit 
rates 

Enrichment 
factor 

Factor Xa inhibitors 2M 630 AUTODOCK 
+ pre-docking 
RO5 and EA 
screen 65 

60,000 Binding 
energy <   
-10.5 
kcal/mol 

60,000 3% 392 62% 0.65% 20 

COX2 inhibitors 1.2M 355 DOCK+ pre-
docking 
chemical group 
screen 52  

13,711 DOCK 
scores <    
-35 

959 0.08% for 
all 

7% for 
actually 
docked  

337 95% 
 

35.2% 1189.2 for 
all 
13.6 for 
actually 
docked 

Human casein 
kinase II 

400K >4 DOCK4 + H-
bond and hinge 
segment screen 
59  

<400K N/A 35 0.0087% 4 N/A 11.4% N/A 

Thyroid hormone 
receptor antagonists 

250K >14 ICM VLS 
module 
(Molsoft) 66 + 
pre-docking 
RO5 

190K Selected 
75 from 
top-100 

dock 
scores 

75 0.03% for 
all 

0.039% for 
actually 
docked 

14 N/A 18.7% N/A 

PTP1B inhibitors 235K >127 DOCK3.5 + 
atom count 
(17~60) screen 
67 

165,581 Top-500 
+ Top-

500 

889 0.38% 127 N/A 14.3% N/A 

141K 10 GOLD + 
elements and 
chemical group 
screen 53 

<141K Top-2% <2820 <2.5% 8 80% <0.28% 39.4 

BCL-2 inhibitors 206,876 >1 DOCK3.5 + 
non-peptidic 

<206,876 Top-500 35 0.017% 1 N/A 2.9% N/A 
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screen 68 
HIV-1 protease 
inhibitors 

141K 5 GLIDE + 
elements and 
chemical group 
screen 53 

<141K Top-5% <7050 <5% 1 20% <0.014% 4.6 

HDM2 inhibitors 141K 14 DOCK + 
elements and 
chemical group 
screen 53 

<141K Top-5% <7050 <5% 4 28.6% <0.056% 5.7 

UPA inhibitors 141K 10 GOLD + 
elements and 
chemical group 
screen 53 

<141K Top-2% <2820 <2.5% 9 90% <0.32% 45.1 

Alpha 1A 
adrenergic receptor 
antagonists 

141K >38 GOLD on 
homology 
model + 
pharmacophore 
screen 54

22,950 Top-300 300 0.21% 38 N/A N/A N/A 

Thrombin inhibitors 141K 10 GLIDE + 
elements and 
chemical group 
screen 53 

<141K Top-2% <2820 <2.5% 3 30% <0.11% 15.5 

133.8K 760 FlexX + 
Similarity 69 

<133.8K Top-1% 1338 1% 231 29.3% 17.3% 30.5 

DHFR inhibitors 135K 165 DOCK3.5.54 
applied to holo 
form 55 

135K Top-1% 
of 50k 
docked 

1350 1% 47 25% 3.4% 27.8 

DOCK3.5.54 
applied to appo 
form 55 

135K Top-1% 
of 100k 
docked 

1000 1% 16 9.7% 1.6% 13.1 

Neutral 
endopeptidase 
inhibitors 

135K 356 DOCK3.5.54 
55 

135K Top-1% 
of 

125.5K 
docked 

1255 0.74% 3 0.8% 0.24% ~1 

Thrombin inhibitors 135K 788 DOCK3.5.54 
55 

135K Top-1% 
of 

121.5K 
docked 

1215 0.9% 61 7.7% 5.0% 8.6 
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Thymidylate 
synthase inhibitors 

135K 185 DOCK3.5.54 
55 

135K Top-1% 
of 54K 
docked 

540 0.4% 49 26.5% 9.1% 66.4 

Phospholipase C 
inhibitors 

135K 25 DOCK3.5.54 
55 

135K Top-1% 
of 123K 
docked 

1230 0.9% 5 20% 0.4% 21.6 

Adenosine kinase 
inhibitors 

135K 356 DOCK3.5.54 
applied to holo 
form 55 

135K Top-5% 
of 

database 

4500 3.3% 10 2.8% 0.22% ~1 

DOCK3.5.54 
applied to appo 
form 55 

135K Top-5% 
of 

database 

4500 3.3% 5 1.4% 0.11% <1 

133.8K 59 FlexX + 
Similarity 69 

<133.8K Top-1% 1338 1% 13 22% 0.97% 22.0 

Acetylcholinesterase 
inhibitors  

135K 637 DOCK3.5.54 
applied to holo 
form 55 

135K Top-1% 
of 77K 
docked 

770 0.57% 49 7.7% 6.4% 13.6 

DOCK3.5.54 
applied to appo 
form 55 

135K Top-1% 
of 37.5K 
docked 

375 0.28% 25 3.9% 6.7% 14.2 

HMG-CoA 
reductase inhibitors 

133.8K 1016 FlexX + 
Similarity 69 

<133.8K Top-1% 1338 1% 35 3.4% 2.6% 3.4 
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Table 1-3 Performance of pharmacophore methods in virtual screening test for identifying inhibitors, agonists and substrates of 
proteins of pharmaceutical relevance. The relevant literature references are given in the method column. 
 
Screening 
task 

Compounds screened Method and 
reference of 
reported study 

Compounds selected Known hits selected 

No of 
compounds 

No of 
known 
hits 
included

No of 
compounds 
selected 

Percentage 
of screened 
compounds 
selected 

No of 
hits 
selected

Yield Hit 
rates 

Enrichment 
factor 

ACE 
inhibitors 

3.8M 55 Pharmacophore 70 1M 26% 39 70.1% 
 

0.0039% 2.8 
 

3.8M 55 Structure-based 
pharmacophore 71 

91K 2.4% 6 10.9% 0.0066% 4.6 

11-
hydroxysteroid 
dehydrogenase 
1 inhibitors 

1.77M 144 Pharmacophore 30 20.3K 1.15% 17 11.8% 0.084% 10.3 

Rhinovirus 3C 
protease 
inhibitors 

380K 30 Pharmacophore 31 6,917 1.82% 23 76.7% 0.33% 41.8 
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Table 1-4 Performance of clustering methods in virtual screening test for identifying inhibitors, agonists and substrates of 
proteins of pharmaceutical relevance. The relevant literature references are given in the method column. 
 
Screening 
task 

Compounds screened Method and reference 
of reported study 

Compounds selected Known hits selected 

No of 
compounds 

No of 
known 
hits 
included

No of 
compounds 
selected 

Percentage 
of screened 
compounds 
selected 

No of 
hits 
selected

Yield Hit 
rates 

Enrichment 
factor 

ACE 
inhibitors 

344.5K 490 Hierachical k-means 29 5590 1.6% 246 50.2% 
 

4.4% 31.2 
 

NIPALSTREE 29 8174 2.4% 188 38.4% 2.3% 16.2 
Hierachical k-means + 
NIPALSTREE 
disjunction 29 

12240 3.6% 306 62.4% 2.5% 17.6 

Hierachical k-means + 
NIPALSTREE 
conjunction 29 

1662 0.48% 128 26.1% 7.7% 54 

COX 
inhibitors 

344.5K 1556 Hierachical k-means 29 15322 4.4% 761 48.9% 5.0% 11 
NIPALSTREE 29 22321 6.5% 625 40.2% 2.8% 6.16 
Hierachical k-means + 
NIPALSTREE 
disjunction 29 

33793 9.8% 980 63.0% 2.9% 6.42 

Hierachical k-means + 
NIPALSTREE 
conjunction 29 

3980 1.2% 406 26.1% 10.2% 22.6 

Adrenoceptor 
ligand 

344.5K 542 Hierachical k-means 29 21285 6.2% 298 55.0% 1.4% 8.99 
NIPALSTREE 29 28125 8.2% 270 49.8% 0.96% 6.14 
Hierachical k-means + 
NIPALSTREE 
disjunction 29 

42365 12.3% 394 72.7% 0.93% 5.93 

Hierachical k-means + 
NIPALSTREE 
conjunction 29 

6692 1.9% 174 32.1% 2.6% 16..3 
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Glucocorticoid 
receptor 
ligand 

344.5K 91 Hierachical k-means 29 3750 1.1% 27 29.7% 0.72% 27..3 
NIPALSTREE 29 3469 1.0% 17 18.7% 0.49% 18.7 
Hierachical k-means + 
NIPALSTREE 
disjunction 29 

7317 2.1% 30 33.0% 0.41% 15.6 

Hierachical k-means + 
NIPALSTREE 
conjunction 29 

538 0.16% 14 15.4% 2.6% 98 

GABA 
receptor 
ligand 

344.5K 478 Hierachical k-means 29 10000 2.9% 110 23% 1.1% 7.97 
NIPALSTREE 29 17143 5.0% 84 17.6% 0.49% 3.51 
Hierachical k-means + 
NIPALSTREE 
disjunction 29 

24265 7.0% 165 34.5% 0.68% 4.86 

Hierachical k-means + 
NIPALSTREE 
conjunction 29 

2636 0.77% 29 6.1% 1.1% 7.77 
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1.3 Protein kinase inhibitors in cancer treatment 

There are some 518 protein kinases that share a catalytic domain highly 

conserved in sequence and structure in the human genome. The kinase family 

is one of the largest target families and its key function in signal transduction 

for all organisms makes it a very attractive target class for therapeutic 

interventions in many disease states such as cancer, diabetes, inflammation, 

and arthritis. Protein kinases play important roles in regulating most cellular 

functions such as proliferation/cell cycle, cell metabolism, survival/apoptosis, 

DNA damage repair, cell motility, response to the microenvironment, so they 

are often themselves oncogenes. Kinases such as c-Src, c-Abl, mitogen 

activated protein (MAP) kinase, phosphotidylinositol-3-kinase (PI3K) AKT, 

and the epidermal growth factor (EGF) receptor are commonly activated in 

cancer cells, and are known to contribute to tumorigenesis72,73. Small molecule 

kinase inhibitors have been designed to inhibit the enzyme's adenosine 

triphosphate (ATP) binding site for cancer treatment74. There are currently 

over 70 reported small molecule kinase inhibitors at various stages of clinical 

trials in oncology (www.clinicaltrials.gov) which emphasises the potential 

importance in targeting protein kinases for treating human malignancies. The 

advent of kinase targeted therapy for the treatment of human cancer offers a 

potential therapy to improve both patient survival and quality of life during 

treatment75. 

 

Kinase inhibitors designed to bind the catalytic ATP-binding site can have 

broad specificity because of kinases’ high conserved sequence and structure. 

Imatinib (Gleevec, Novartis) is a highly successful cancer drug due to its 
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activity as an inhibitor of the Abelson cytoplasmic tyrosine kinase (Abl), 

which is constitutively active in a majority of patients with chronic 

myelogenous leukemia (FDA-approved in May 2001). Imatinib also inhibit c-

Kit and the platelet-derived growth factor (PDGF) receptor tyrosine kinases. 

So it can be used to treat gastrointestinal stromal and other types of tumors 

associated with activation of these signaling molecules. Cancer cells use 

multiple pathways to promote their own survival and proliferation, 

combination therapies (of multiple targeted therapeutics, or of targeted drugs 

plus chemotherapy) are likely to be required to completely eradicate a tumor 

and prevent resistance or relapse. Due to kinases’ broad specificity, it is 

possible to design multi-target kinase inhibitors for achieving enhanced 

therapeutic efficacies through controlling multiple pathways in cancer network. 

However, just because of this broad specificity, many kinase inhibitors have 

“off-target” effect in modulating signaling pathway. It is also necessary to 

design more specific kinase inhibitors for cancer treatment.  

1.4 In-Silico approaches to multi-target drug discovery 

Therapeutic agents directed at an individual target frequently show reduced 

efficacies, undesired safety profiles and drug resistances due to network 

robustness76, redundancy77, crosstalk78, compensatory and neutralizing 

actions79, anti-target and counter-target activities80, and on-target and off-

target toxicities81. Multi-target agents directed at selected multiple targets have 

been increasingly explored76,82 for achieving enhanced therapeutic efficacies, 

improved safety profiles, and reduced resistance activities by simultaneously 

modulating the activity of a primary therapeutic target and the counteractive 

elements and resistance activities83 while limiting un-wanted cross-reactivities 
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via optimization of target selectivity84. Examples of clinically successful 

multi-target drugs are anticancer kinase inhibitors sunitinib against PDGFR 

and VEGFR, dasatinib against Abl and Src, and lapatinib against EGFR and 

HER285,86. These multi-target anticancer agents inhibit a primary therapeutic 

target that promote tumor growth in specific cancer patient group and block 

the alternative signalling or escape mechanism79,87,88.  

 

In-silico methods have been widely explored for facilitating lead discovery 

against individual targets37,89,90. In particular, molecular docking91, 

pharmacophore92, structure-activity relationship (SAR) and quantitative 

structure activity relationship (QSAR)93, machine learning94, and combination 

methods95 have been extensively used for searching and designing active 

compounds against individual targets. Some of these methods have recently 

been explored for searching and designing multi-target agents. Figure 1-3, 

Figure 1-4, Figure 1-5, and Figure 1-6 outline the strategies of using 

molecular docking, combined molecular docking and pharmacophore, 

framework combination, and fragment-based approaches for multi-target drug 

discovery using dual-inhibitor discovery as examples. These methods are 

classified into combinatorial approaches and fragment–based approaches. 

Combinatorial approaches (Figure 1-3 and Figure 1-4) straightforwardly 

conduct parallel search against each individual targets to find virtual hits that 

simultaneously interact with multiple targets. Combinatorial approaches are 

practically useful if the retrieval rates against individual targets are sufficiently 

high and the false-hit rates are sufficiently low. High retrieval rates 

compensate for the reduced collective retrieval rates (if the retrieval rate 
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against individual target is 50%~70%, the collective retrieval rate for multi-

target agents against two targets may be statistically reduced to 25%~49%). 

Low false-hit rates are needed for high enrichment in searching multi-target 

agents that are significantly fewer in numbers and more sparsely distributed in 

the chemical space than agents against an individual target.  

 

 
 

 

Figure 1-3 Molecular docking strategy for multi-target inhibitor discovery. 
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Figure 1-4 Combined pharmacophore and molecular docking strategy of 
multi-target inhibitor discovery. 
 

 

 

Figure 1-5 Illustration of framework combination approach to multi-target 
drug discovery. 
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Figure 1-6 Illustration of fragment-based approach to multi-target drug 
discovery. 
 

 

Fragment-based approaches (Figure 1-5 and Figure 1-6) combine multiple 

elements of structural frameworks or multiple fragments that bind to each 

individual target to design compounds that bind to multiple targets, which 

have been introduced as tools for the design of multi-target agents96. In one 

approach, the structure-activity relationships against individual targets are 

analyzed to find molecular fragments and essential binding features which are 

either combined or incorporated into active agents against selected multiple 

targets96. Fragment combination often results in larger and more complex non-

drug like molecules. Drug-like features may be retained if the degree of 

framework overlap is maximized and the size of the selected fragments is 

minimized. In another approach, molecular fragment libraries are searched to 

find the fragments with certain level of activities against selected multiple 
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targets, and the identified fragments are further optimized into more potent 

bigger-sized multi-target active agents96. Optimizing fragments with weak 

multiple activities into potent multi-target drug-like agents can be more easily 

achieved for targets sharing a conserved binding site97. As binding sites 

become more dissimilar, it is increasingly difficult to improve and adequately 

balance the high binding affinities needed to achieve acceptable in-vivo 

efficacy and safety. One way to reduce this difficulty is to explore synergistic 

targets, such that multi-target agents with modest activity at one or more of the 

relevant targets may still produce similar or better in-vivo effects compared 

with higher-affinity target-selective compounds98. 

 

Moreover, multi-target QSAR models for identification of multi-target 

agents99 and active agents against multiple bacterial100, fungal101,102 and 

viral100 species have been developed by incorporating  multi-target or species 

variations of binding-site features into the multi-target dependent molecular 

descriptors or species-dependent molecular descriptors, and stochastic Markov 

drug-binding process models. These multi-target QSAR models achieve high 

retrieval rates of 72%~85% and moderately low false-hit rates of 15%~28%. 

Development of multi-target QSAR models may be limited by the inadequate 

number of drug data for some of the targets or species. Moreover, the 

molecular size of the testing drugs needs to be in a certain range for accurate 

computation of multi-target dependent or species-dependent molecular 

descriptors, which in some cases may also affect one’s capability for 

developing multi-target QSAR models102. 

 



Chapter 1 Introduction 

  28 

Multi-target based in-silico methods have been increasingly explored and have 

shown promising potential as virtual screening tools for identifying selective 

multi-target agents. The capability of these methods may be further enhanced 

by incorporating knowledge of newly discovered selective multi-target agents 

from the current and future drug discovery efforts85,86, and by the 

improvement of virtual screening methods103-109.  

1.5 Objectives and outline of this work 

Overall, there are four major objectives for this work.  

1. To construct high performance virtual screening tools for searching 

potential inhibitors or antagonists through screening large chemical 

libraries.  

2. To evaluate the robustness of our virtual screening tools. In this work, 

sparsely distributed active compounds are used to achieve this objective.  

3. To search potential c-Src and VEGFR-2 selective kinase inhibitors 

applying the developed virtual screening tools. 

4. To build combinatorial support vector machines (C-SVMs) models 

applying the developed virtual screening tools to search dual inhibitors of 

kinase pairs. 

 

In summary, this work is aimed at the development, evaluation and application 

of high performance virtual screening tools. More specifically, the study seeks 

to search potential single kinase inhibitors (c-Src and VEGFR-2) and multi-

target kinase inhibitors through screening large compound libraries. The 

present study may shed some light on the capability of machine learning based 

virtual screening methods in searching potential active agents from large 
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compound libraries at low false-hit rates, which could help in the lead 

discovery and optimization. 

 

The complete outline of this thesis is as follows: In Chapter 1, an introduction 

to virtual screening in drug discovery is described. Machine learning method 

is compared with other virtual screening method according to the literature 

review. In addition, the importance of potential kinase inhibitors discovery and 

in silico approaches of multi-target kinase discovery are presented.  

 

In Chapter 2, methods used in this work are described. In particular, the 

dataset quality analysis, the molecular descriptors, various statistical learning 

methods used in this work, and the model evaluation methods are presented in 

more detail. 

 

Chapter 3 is devoted to the development of high performance virtual screening 

tools. In particular, putative negative dataset is involved in training dataset to 

build SVM model to improve the performance of virtual screening. The 

performance of this virtual screening platform is evaluated using four datasets: 

HIV-1 protease inhibitors, DHFR inhibitors, Dopamine antagonists and CNS 

active agents. The results of screening 2.98M PubChem database using this 

platform show that the hit-rates are comparable and the enrichment factors are 

substantially better than the best results of other virtual screening (VS) tools. 

 

Chapter 4 is devoted to the evaluation of the virtual screening tools developed 

in Chapter 3 by using sparsely distributed active compounds. SVM models are 



Chapter 1 Introduction 

  30 

trained by regularly sparse datasets of 100 actives and very sparse datasets of 

40 datasets from six MDDR biological target classes. These models’ 

performance of virtual screening PubChem and MDDR database show that the 

platform developed in Chapter 3 has substantial capability in identifying novel 

active compounds from sparse active datasets at low false-hit rates. 

 

In Chapter 5, virtual screening models of kinase c-Src and VEGFR-2 

inhibitors are built using the method discussed in Chapter 3 to screen large 

compound libraries. Independent dataset and MDDR screening results show 

that rational c-Src and VEGFR-2 hits are given by our virtual screening tools. 

 

In Chapter 6, combinatorial support vector machines (C-SVMs) models were 

provided as virtual screening tools for searching dual-inhibitors of 11 

combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, 

FGFR, Lck, CDK1, CDK2, GSK3). In particular, C-SVMs method was 

compared to other VS methods DOCK Blaster, kNN and PNN against the 

same sets of kinase inhibitors and 1.02M Zinc clean-leads dataset. 

 

Finally, in the last chapter, Chapter 7, major findings and contributions of 

current work for the development and application of high performance virtual 

screening tools were discussed. Limitations and suggestions for future studies 

were also rationalized in this chapter.  
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Chapter 2 Methods 

Machine learning based virtual screening for drug leads discovery will 

normally consist of three main components: (1) pharmaceutical agent datasets 

and chemical compound libraries (section 2.1), (2) physicochemical and 

structural descriptions of the compounds in the dataset (section 2.2 ) and (3) a 

statistical learning technique used to correlate the first two components 

(section 2.3). In this chapter, these three components are described and all the 

methods used in this work for developing virtual screening model are featured. 

Methods that are used for checking the validity and usefulness of virtual 

screening models are also described (section 2.4). 

2.1 Datasets  

2.1.1 Data source  

Data accessibility is critical for the success of a drug discovery and 

development. Huge amounts of small molecules and their related information 

have been accumulated in scientific literatures and databases. Some important 

small molecule databases are given in Table 2-1.  

 

In this work, datasets are mainly collected from the journals (Bioorganic & 

Medicinal Chemistry Letters, Bioorganic & Medicinal Chemistry, European 

Journal of Medicinal Chemistry, European Journal of Organic Chemistry and 

Journal of Medicinal Chemistry,etc)  and databases (BindingDB110, MDDR, 

PubChem and ZINC111, etc).   
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Table 2-1 Some small molecule databases available online. 
 

Database 

Name 

URL 

BindingDB http://www.bindingdb.org/bind/index.jsp 

MDDR http://www.symyx.com/products/databases/bioactivity/mddr/index.jsp 

PubChem  http://nihroadmap.nih.gov 

ZINC  http://zinc.docking.org/  

ChEMBL http://www.ebi.ac.uk/chembl/  

DrugBank  http://www.drugbank.ca/  

eMolecules  http://www.emolecules.com/  

WOMBAT http://www.sunsetmolecular.com 

 

2.1.2 Data quality analysis  

The development of reliable pharmacological properties classification models 

depends on the availability of high quality pharmacological property 

descriptor data with low experimental errors112. Ideally, these pharmacological 

properties descriptors should be measured by a single protocol so that different 

compounds can be reliably compared with each other. However, some 

pharmacological properties descriptors have been measured only for a limited 

number of compounds and these data are rarely determined by the same 

protocol. Thus data selection has been primarily based on comparison of data 

of compounds commonly studied by different protocols, and incorporation of 

additional experimental information. For this work, several methods are 

adopted to ensure that inter-laboratory variations in experimental protocols do 

not significantly affect the quality of the training sets. The sources for the 
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pharmacological property descriptor data for each compound were 

investigated to ensure that there were no wide variations in experimental 

protocols from those of the majority of the compounds in the training set. 

Compounds that were investigated in more than one source are used to 

estimate the quality of each source. It is assumed that the most common range 

of the pharmacological properties descriptor data for the compounds 

investigated in more than one source was used to select compounds for the 

different classes113.  

 

2.1.3 Determination of structural diversity 

Structural diversity of a collection of compounds can be evaluated by using 

the Diversity Index (DI), which is the average value of the similarity between 

pairs of compounds in a dataset114, 
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where k  is the number of descriptors calculated for the compounds in the 

dataset.  
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2.2 Molecular descriptors  

2.2.1 Types of molecular descriptors  

Molecular descriptors have been extensively used in deriving structure-activity 

relationships116,117, quantitative structure activity relationships118,119, and 

machine learning prediction models for pharmaceutical agents120-123. A 

descriptor is “the final result of a logical and mathematical procedure which 

transforms chemical information encoded within a symbolic representation of 

a compound into a useful number or the result of some standardized 

experiment”. A number of programs e.g. DRAGON124, Molconn-Z125, 

MODEL126, Chemistry Development Kit (CDK)127,128, JOELib129 and Xue 

descriptor set130, are available to calculate chemical descriptors. These 

methods can be used for deriving >3,000 molecular descriptors including 

constitutional descriptors, topological descriptors, RDF descriptors131, 

molecular walk counts132, 3D-MoRSE descriptors133, BCUT descriptors134, 

WHIM descriptors135, Galvez topological charge indices and charge 

descriptors136, GETAWAY descriptors137, 2D autocorrelations, functional 

groups, atom-centred descriptors, aromaticity indices138, Randic molecular 

profiles139, electrotopological state descriptors140, linear solvation energy 

relationship descriptors141, and other empirical and molecular properties. Not 

all of the available descriptors are needed for representing features of a 

particular class of compounds. Moreover, without properly selecting the 

appropriate set of descriptors, the performance of a developed ML VS tool 

may be affected to some degrees because of the noise arising from the high 
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redundancy and overlapping of the available descriptors. In this work, the Xue 

descriptor set and 98 1D and 2D descriptors were used. These 98 descriptors 

were selected from the descriptors derived from MODEL program by 

discarding those that were redundant and unrelated to the problem studied 

here. The Xue descriptor set and these 98 descriptors are listed in Table 2-2 

and Table 2-3. 

Table 2-2 Xue descriptor set used in this work. 
 

Descriptor Class  Number of 

descriptor in 

class  

Descriptors 

Simple molecular 

properties  

18  Molecular weight, Number of rings, rotatable bonds, H-

bond donors, and H-bond acceptors, Element counts 

Molecular connectivity 

and shape  

28  Molecular connectivity indices, Valence molecular 

connectivity indices, Molecular shape Kappa indices, 

Kappa alpha indices, flexibility index 

Electro-topological 

state  

97  Electrotopological state indices, and Atom type 

electrotopological state indices, Weiner Index, Centric 

Index, Altenburg Index, Balaban Index, Harary Number, 

Schultz Index, PetitJohn R2 Index, PetitJohn D2 Index, 

Mean Distance Index, PetitJohn I2 Index, Information 

Weiner, Balaban RMSD Index, Graph Distance Index  

Quantum chemical 

properties  

31  Polarizability index, Hydrogen bond acceptor basicity 

(covalent HBAB), Hydrogen bond donor acidity (covalent 

HBDA), Molecular dipole moment, Absolute hardness, 

Softness, Ionization potential, Electron affinity, Chemical 

potential, Electronegativity index, Electrophilicity index, 

Most positive charge on H, C, N, O atoms, Most negative 

charge on H, C, N, O atoms, Most positive and negative 

charge in a molecule, Sum of squares of charges on 

H,C,N,O and all atoms, Mean of positive charges, Mean of 

negative charges, Mean absolute charge, Relative positive 

charge, Relative negative charge  
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Geometrical properties 25 Length vectors (longest distance, longest third atom, 4th 

atom), Molecular van der Waals volume, Solvent 

accessible surface area, Molecular surface area, van der 

Waals surface area, Polar molecular surface area, Sum of 

solvent accessible surface areas of positively charged 

atoms, Sum of solvent accessible surface areas of 

negatively charged atoms, Sum of charge weighted solvent 

accessible surface areas of positively charged atoms, Sum 

of charge weighted solvent accessible surface areas of 

negatively charged atoms, Sum of van der Waals surface 

areas of positively charged atoms, Sum of van der Waals 

surface areas of negatively charged atoms, Sum of charge 

weighted van der Waals surface areas of positively 

charged atoms, Sum of charge weighted van der Waals 

surface areas of negatively charged atoms, Molecular 

rugosity, Molecular globularity, Hydrophilic region, 

Hydrophobic region, Capacity factor, Hydrophilic-

Hydrophobic balance, Hydrophilic Intery Moment, 

Hydrophobic Intery Moment, Amphiphilic Moment 

 
Table 2-3 98 molecular descriptors used in this work. 
 

Descriptor 

Class 

No of 

Descriptors 

in Class 

Descriptors 

Simple 

molecular 

properties 

18 Number of C,N,O,P,S, Number of total atoms, Number of  rings, 

Number of bonds, Number of non-H bonds, Molecular weight,, 

Number of rotatable bonds, number of H-bond donors, number of H-

bond acceptors, Number of 5-member aromatic rings, Number of 6-

member aromatic rings, Number of N heterocyclic rings, Number of O 

heterocyclic rings, Number of S heterocyclic rings. 

Chemical 

properties 

3 Sanderson electronegativity, Molecular polarizability, ALogp 

Molecular 

Connectivity 

and shape 

35 Schultz molecular topological index, Gutman molecular topological 

index, Wiener index, Harary index, Gravitational topological index, 

Molecular path count of length 1-6, Total path count, Balaban Index J, 

0-2th valence connectivity index, 0-2th order delta chi index, Pogliani 

index, 0-2th Solvation connectivity index, 1-3th order Kier shape 

index, 1-3th order Kappa alpha shape index, Kier Molecular Flexibility 

Index, Topological radius, Graph-theoretical shape coefficient, 
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Eccentricity, Centralization, Logp from connectivity. 

Electro-

topological 

state 

42 Sum of Estate of atom type sCH3, dCH2, ssCH2, dsCH, aaCH, sssCH, 

dssC, aasC, aaaC, sssC, sNH3, sNH2, ssNH2, dNH, ssNH, aaNH, dsN, 

aaN, sssN, ddsN, aOH, sOH, ssO, sSH; Sum of Estate of all heavy 

atoms, all C atoms, all hetero atoms, Sum of Estate of H-bond 

acceptors, Sum of H Estate of atom type HsOH, HdNH, HsSH, 

HsNH2, HssNH, HaaNH, HtCH, HdCH2, HdsCH, HaaCH, HCsats, 

HCsatu, Havin, Sum of H Estate of H-bond donors 

 

In our work, descriptors were computed from the 3D structure of the 

compounds. The 2D structure of each of the compounds was generated by 

using ChemDraw or downloaded from other database like PubChem, 

BindingDB110 database and was subsequently converted into 3D structure by 

using CORINA142. All the generated geometries had been fully optimized 

without symmetry restrictions. The 3D structure of each compound was 

manually inspected to ensure that the chirality of each chiral agent was 

properly generated. All salts and elements, such as sodium or calcium, were 

removed prior to descriptor calculation. 

 

2.2.2 Scaling of molecular descriptors 

Chemical descriptors are normally scaled before they can be employed for 

machine learning. Scaling of chemical descriptors ensures that each descriptor 

has an unbiased contribution in creating the prediction models143. Scaling can 

be done by number of ways e.g. auto-scaling, range scaling, Pareto scaling144, 

and feature weighting143. In this work, range scaling is used to scale the 

chemical descriptor data. Range scaling is done by dividing the difference 

between the descriptor value and the minimum value of that descriptor with 

the in range of that descriptor:  
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                                 (3) 

Where , 
ij
 , d

j,max
 and d

j,min 
are the scale descriptor value of 

compound i, absolute descriptor value of compound i , maximum and 

minimum  values of descriptor j respectively. The scaled descriptor value falls 

in the range of 0 and 1.  

2.3 Machine learning classification methods  

Machine learning classification methods employ computational and statistical 

methods to construct mathematical models from training samples which is 

used to classify independent test sample. The training samples are represented 

by vectors which can binary, categorical or continuous.  Machine learning can 

be divided into two types: Supervised and Unsupervised. Supervised machine 

learning, as the name indicates, generally needs feeding which generally 

involves already labeled or classified training data. Example of supervised 

machine learning includes Support Vector Machine, Artificial Neural 

Network, Decision tree learning, Inductive logic programming, Boosting, 

Gaussian process regression etc. Unsupervised machine learning, as the name 

indicates, gets unlabeled training data and the learning task involves finding 

the organization of data. Examples of unsupervised machine learning include 

Clustering, Adaptive Resonance Theory, and Self Organized Map (SOM). 

Some of machine learning methods employed in this work are SVM, 

Probabilistic Neural Network (PNN), k nearest neighbor (KNN). They are 

explained below in subsequent sub sections. For a comparative study, 

Tanimoto similarity searching method is also introduced.  
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2.3.1 Support vector machines method 

The process of training and using a SVM VS model for screening compounds 

based on their molecular descriptors is schematically illustrated in Figure 2-1. 

SVM is based on the structural risk minimization principle of statistical 

learning theory145,146, which consistently shows outstanding classification 

performance, is less penalized by sample redundancy, and has lower risk for 

over-fitting147,148. In linearly separable cases, SVM constructs a hyper-plane to 

separate active and inactive classes of compounds with a maximum margin. A 

compound is represented by a vector xi composed of its molecular descriptors. 

The hyper-plane is constructed by finding another vector w and a parameter b 

that minimizes
2

w  and satisfies the following conditions: 

 1,  for 1i ib y     w x  Class 1 (active)   (4) 

 1,  for 1i ib y     w x  Class 2 (inactive)   (5) 

where yi is the class index, w is a vector normal to the hyperplane, /b w  is 

the perpendicular distance from the hyperplane to the origin and 
2

w  is the 

Euclidean norm of w. Base on w and b, a given vector x can be classified by 

f(x) = [( ) ]sign b w x .  A positive or negative f(x) value indicates that the 

vector x belongs to the active or inactive class respectively.  

 

In nonlinearly separable cases, which frequently occur in classifying 

compounds of diverse structures46-48,63,149-151, SVM maps the input vectors into 

a higher dimensional feature space by using a kernel function K(xi, xj). We 

used RBF kernel  
2 2/ 2

( , ) j i

i jK e
  x x

x x which has been extensively used and 
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consistently shown better performance than other kernel functions24,152,153. 

Linear SVM can then applied to this feature space based on the following 

decision function: 0

1

( ) ( ( , ) )
l

i i i
i

f sign y K b


 x x x , where the coefficients i
0 

and b are determined by maximizing the following Langrangian expression: 

1 1 1

1
( , )

2

l l l

i i j i j i j
i i j

y y K  
  

  x x  under the conditions  0i      and     





l

i
ii y

1

0 . A positive or negative f(x) value indicates that the vector x is an 

inhibitor or non-inhibitor respectively. 
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Figure 2-1 Schematic diagram illustrating the process of the training a 
prediction model and using it for predicting active compounds of a compound 
class from their structurally-derived properties (molecular descriptors) by 
using support vector machines. A, B, E, F and (hj, pj, vj,…) represents such 
structural and physicochemical properties as hydrophobicity, volume, 
polarizability, etc. 
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2.3.2 K-nearest neighbor method 

k-NN is illustrated in Figure 2-2. k-NN measures the Euclidean distance 

2

iD  x x  between a compound x and each individual inhibitor or non-

inhibitor xi in the training set154,155. A total of k number of vectors nearest to 

the vector x are used to determine the decision function f(x): 

1

ˆ ( ) arg max ( , ( ))
k

v V i
i

f v f


 x x                                                        (6) 

where ( , ) 1 if  and ( , ) 0 if a b a b a b a b      , argmax is the maximum 

of the function, V is a finite set of vectors {v1,...,vs}  and ˆ ( )f x  is an estimate 

of f(x). Here estimate refers to the class of the majority compound group (i.e. 

inhibitors or non-inhibitors) of the k nearest neighbours.  

 

2.3.3 Probabilistic neural network method 

As illustrated in Figure 2-3, PNN is a form of neural network designed for 

classification through the use of Bayes’ optimal decision rule113 

 ( ) ( )i i i j j jh c f h c fx x                    

where hi and hj are the prior probabilities, ci and cj are the costs of 

misclassification and fi(x) and fj(x) are the probability density function for 

class i and j respectively. An unknown vector x is classified into population i 

if the product of all the three terms is greater for class i than for any other class 

j (not equal to i). In most applications, the prior probabilities and costs of 

misclassifications are treated as being equal. The probability density function 

for each class for a univariate case can be estimated by using the Parzen’s 

nonparametric estimator156, 
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1

1
( ) ( )

n
i

i

g W
n 


  x x

x                  (7)

  

where n is the sample size,  is a scaling parameter which defines the width of 

the bell curve that surrounds each sample point, W(d) is a weight function 

which has its largest value at d = 0 and (x – xi) is the distance between the 

unknown vector and a vector in the training set. The Parzen’s nonparametric 

estimator was later expanded by Cacoullos for the multivariate case. 

          ,1 1,
1

11 1

1
( , , ) ( , , )

n
p p ii

p
ip p

x xx x
g x x W

n   


  


              (8) 

The Gaussian function is frequently used as the weight function 

because it is well behaved, easily calculated and satisfies the conditions 

required by Parzen’s estimator. Thus the probability density function for the 

multivariate case becomes 

           

2

1 1

1
( ) exp( )

pn
j ij

i j j

x x
g

n  

 
    

 
 x                (9)

  

The network architectures of PNN are determined by the number of 

compounds and descriptors in the training set. There are 4 layers in a PNN. 

The input layer provides input values to all neurons in the pattern layer and 

has as many neurons as the number of descriptors in the training set. The 

number of pattern neurons is determined by the total number of compounds in 

the training set. Each pattern neuron computes a distance measure between the 

input and the training case represented by that neuron and then subjects the 

distance measure to the Parzen’s nonparametric estimator. The summation 

layer has a neuron for each class and the neurons sum all the pattern neurons’ 
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output corresponding to members of that summation neuron’s class to obtain 

the estimated probability density function for that class. The single neuron in 

the output layer then estimates the class of the unknown vector x by 

comparing all the probability density function from the summation neurons 

and choosing the class with the highest probability density function. 
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Figure 2-2 Schematic diagram illustrating the process of the prediction of 
compounds of a particular property from their structure by using a machine 
learning method – k-nearest neighbors (k-NN). A, B: feature vectors of agents 
with the property; E, F: feature vectors of agents without the property; feature 
vector (hj, pj, vj,…) represents such structural and physicochemical properties 
as hydrophobicity, volume, polarizability, etc. 
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Figure 2-3 Schematic diagram illustrating the process of the prediction of the 
prediction of compounds of a particular property from their structure by using 
a machine learning method –probabilistic neural networks (PNN). A, B: 
feature vectors of agents with the property; E, F: feature vectors of agents 
without the property; feature vector (hj, pj, vj,…) represents such structural and 
physicochemical properties as hydrophobicity, volume, polarizability, etc. 
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2.3.4 Tanimoto similarity searching method  

Compounds similar to at least one compound in a training dataset can be 

identified by using the Tanimoto coefficient sim(i,j)115 

1

2 2

1 1 1

( , )
( ) ( )

l

di dj
d

l l l

di dj di dj
d d d

x x
sim i j

x x x x



  


 



  
                           

 (10)

 

where l is the number of molecular descriptors. A compound i is 

considered to be similar to a known active j in the active dataset if the 

corresponding sim(i,j) value is greater than a cut-off value. In this work, the 

similarity search was conducted for MDDR compounds. Therefore, in 

computing sim(i,j), the molecular descriptor vectors xis were scaled with 

respect to all of the MDDR compounds. The cut-off values for similarity 

compounds are typically in the range of 0.8 to 0.9157,158. A stricter cut-off 

value of 0.9 was used in this work 

2.4 Virtual screening model validation and performance 

evaluation 

2.4.1 Model validation 

One of the objectives of modeling is to allow prediction of the 

pharmacological properties of compounds which have not been clinically and 

biologically tested. Thus it is important to determine the ability of the derived 

pharmacological property prediction models to predict the properties of 

compounds that are not present in the training set. The validation methods 

used in this work are 5-fold cross validation and independent validation 
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dataset. In 5-fold cross validation, compounds are randomly divided into five 

subsets of approximately equal size. Four subsets are used as a training set for 

developing a model; the remaining one is used as a test set for evaluating the 

prediction performance of that model. This process is repeated five times such 

that every subset is used as a testing set once. The average accuracy of the five 

time models is used for measuring the generalization capability of that method. 

However, cross validation methods have a tendency of underestimating the 

prediction capability of a classification model, especially if important 

molecular features are present in only a minority of the compounds in the 

training set159,160. Thus a model having low cross-validation accurary can still 

be predictive159. This lead to some studies which suggest that an independent 

validation dateset may provide a more reliable estimation of the prediction 

capability of a pharmacological property model161,162. An independent 

validation dataset should ideally be obtained independently from the training 

set and should be representative of the training set so that it can properly 

assess the prediction capabilities of the pharmacological property model. It is 

even better if the validation dataset is composed of newly published 

experimentally validated chemical compounds with a particular 

pharmacological property.  

 

2.4.2 Performance evaluation methods  

The performance of virtual screening model can be evaluated by the quantity 

of true positives TP (pharmaceutical agents possessing a specific 

pharmacological property), true negatives TN (pharmaceutical agents not 

possessing a specific pharmacological property), false positives FP 
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(pharmaceutical agents not possessing a specific pharmacological property but 

predicted as agents possessing the specific pharmacological property), false 

negatives FN (pharmaceutical agents possessing a specific pharmacological 

property but predicted as agents not possessing the specific pharmacological 

property). Sensitivity and specificity are the prediction accuracy for 

pharmaceutical agents possessing a specific pharmacological property and 

agents not possessing that pharmacological property respectively. The overall 

prediction accuracy (Q) and Matthews correlation coefficient (MCC)163 are 

used to measure the overall prediction performance: 

SE FNTP

TP

                                                                                   (11) 

SP FPTN

TN

                                                                                   (12) 

FNFPTNTP

TNTP
Q





                                                                    (13) 

    FPTNFNTNFPTPFNTP

FPFNTNTP
MCC





                            (14) 

The model performance in screening large libraries can be typically 

measured33 by yield (percentage of known positives predicted as virtual hits), 

hit-rate (percentage of virtual hits that are known positives), false hit-rate 

(percentage of virtual hits that are known negatives) and enrichment factor EF 

(magnitude of hit-rate improvement over random selection):  

Yield = SE                                     

(15) 

Hit-rate = TP/(TP+FP)                                   

(16) 

False hit-rate = FP/(TP+FP)                                    
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(17) 

Enrichment factor EF = hit-rate / (TP+FN)/(TP+FN+TN+FP)               

(18) 

 

2.4.3 Overfitting problem and its prevention 

Overfitting is the phenomenon of building a model that agrees well with the 

observed data but has no predictive ability (it does not agree with unseen or 

future data). It is a major concern in machine learning classification methods. 

There are two main types of overfitting: (1) using a model that is more flexible 

than it needs to be and (2) using a model that includes irrelevant descriptors160. 

A frequently used method for checking whether a prediction system is 

overfitted is to compare the prediction accuracies determined by using cross 

validation methods with those determined by using independent validation 

sets160. An over-fitted classification system is expected to have much higher 

prediction accuracy for the cross validation sets than that for the independent 

validation sets.  
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Chapter 3 Development and Evaluation of High 

Performance Virtual Screening Tools 

Support vector machines (SVM) and other machine-learning (ML) methods 

have been explored as ligand-based virtual screening (VS) tools for 

facilitating lead discovery. While exhibiting good hit selection performance, in 

screening large compound libraries, these methods tend to produce lower hit-

rate than those of the best performing VS tools, partly because their training-

sets contain a limited spectrum of inactive compounds. In this chapter, we 

tested whether the performance of SVM can be improved by using training-

sets of diverse inactive compounds. 

3.1 Introduction 

Virtual screening (VS) has been extensively explored for facilitating lead 

discovery 27,37,164,165 and for identifying agents of desirable pharmacokinetic 

and toxicological properties26,166. Machine learning (ML) methods have 

recently been used for developing ligand-based VS (LBVS) tools36,46-49,61,62,167 

to complement or to be combined with structure-based VS (SBVS) 37,52-55,59,65-

67,69,168-170 and other LBVS27-31 tools aimed at improving the coverage, 

performance and speed of VS tools. 

 

ML methods have been used as part of the efforts to overcome several 

problems that have impeded progress in more extensive applications of SBVS 

and LBVS tools33,37. These problems include the vastness and sparse nature of 

chemical space that needs to be searched, limited availability of target 
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structures (only 15% of known proteins have known 3D structures), 

complexity and flexibility of target structures, and difficulties in computing 

binding affinity and solvation effects. LBVS may in some cases limit the 

diversity of hits due to the bias of training molecules168. Therefore, alternative 

approaches that enhance screening speed and compound diversity without 

relying on target structural information are highly desired. ML methods have 

been  explored for developing such alternative VS tools46,47,61 because of their 

high-CPU speed (100K data points per hour on 3GHz PC)62 and capability for 

covering highly diverse spectrum of compounds171. 

 

The reported performance of various LBVS and SBVS tools in screening 

compound libraries of >90,000 compounds is summarized in Table 3-1. 

Caution needs to be raised about straightforward comparison of these reported 

results, which might be misleading because the outcome of VS strongly 

depends on the datasets used. The dataset-dependence of VS performance can 

be illustrated by a test shown in a subsequent section 3.4 of this chapter. 

Therefore, the listed results should be viewed as providing very crude pictures 

about the reported VS performances. While exhibiting equally good hit 

selection performance, in screening extremely-large (≥1 million) and large 

(100,000~900,000) libraries, the currently developed ML tools tend to show 

lower hit-rate (ratio of known hits and the predicted hits) and, in some cases, 

lower enrichment factor (magnitude of hit-rate improvement over random 

selection) than the best performing SBVS tools. For instance, in screening 

extremely-large libraries, the reported yield (percentage of known hits 

predicted), hit-rate and enrichment factor of ML tools are in the range of 
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55%~81%, 0.2%~0.7% and 110~795 respectively 172, compared to those of 

62%~95%, 0.65%~35% and 20~1,200 by SBVS tools 46-51. While in screening 

libraries of ~98,000 compounds the reported hit-rates of some ML tools are 

comparable to those of SBVS tools, their enrichment factors are substantially 

smaller. A lower hit-rate gives rise to a higher number of false-hits and a 

lower enrichment factor suggests that there might be bigger room for further 

optimizing a VS tool. Hence, there is a need for further improving the hit-rate 

and enrichment factor of ML tools. It is not uncommon for the pharmaceutical 

industry to screen >1 million compounds per high-throughput screening 

campaign172. The goal of virtual screening is the drastic reduction of 

compound libraries to a manageable size for synthesis and biological testing. 

Therefore, improvement of hit-rate and enrichment factor is highly desirable 

for developing practically useful ML tools for LBVS. 

 

Two approaches have been explored for minimizing false hits. One is the 

selection of top-ranked hits, which has been extensively used in LBVS46-51 and 

SBVS52-57. The other is the elimination of potentially unpromising hits in pre-

screening stage by using such filters as Lipinski’s rule of five58 65, and 

recognition of  pharmacophore 54 and specific chemical groups or interaction 

patterns52,53,59,60. In addition to the application of these approaches, the 

performance of ML tools in screening large libraries may be further improved 

by using training sets of more diverse spectrum of compounds to develop 

more optimally performing ML models.  These models have been generated 

by using two-tier supervised classification ML methods36,46-49,61-63, which 

require training sets of diverse spectrum of active and inactive compounds. 
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The training inactive compounds in these models have been collected from up 

to a few hundred known inactive compounds or/and putative inactive 

compounds from up to a few dozen biological target classes in MDDR 

database36,46-49,61-63, which may not always be sufficient to fully represent 

inactive compounds in the vast chemical space, thereby making it difficult to 

optimally minimize false hit prediction rate of ML models. 
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Table 3-1 Comparison of the reported performance of different virtual screening (VS) methods in screening large libraries of 
compounds. 
 

Type of VS method 
and  size of 
compound libraries 
screened 

VS method 
(number of 
studies) 
[references] 

Compounds screened Virtual hits selected by 
VS method 

Known hits selected by VS method 

No of 
compou
nds 

No of 
known 
hits  

Percent of 
known 
hits  

No of 
compound
s selected 
as virtual 
hits 

Percent of 
screened 
compounds 
selected as 
virtual hits 

No of 
known 
hits 
selected 

Yield Hit rates Enrichment 
factor 

Structure-based VS, 
extremely large 
libraries ( ≥1M) 

Docking + pre-
screening filter 
(2)52,65 

1M~2M 355~63
0 

~0.03% 1K~60K 0.08%~3% 340~390 62%~ 95% 0.65%~ 35% 20~1200 

Structure-based VS, 
large libraries 

Docking + pre-
screening filter 
(11)53-55,59,66,67,69 

134K~4
00K 

100~ 
1016 

0.12%~ 
0.76% 

375~4.5K 0.28%~3% 5~231 2%~ 30% 
 

0.11%~ 17% 4~66 

Ligand-based VS 
(machine learning), 
extremely large 
libraries ( ≥1M) 

Machine learning 
- SVM (2)46,48,62  

2.5M 22~46 0.0009%~ 
0.0018% 

2.5K~11K 0.1%~0.45% 18~25 55%~ 81% 0.2%~ 0.7% 110~795 

Ligand-based VS 
(machine learning), 
large libraries 

Machine learning 
– SVM (2)47  
 

172K 118~12
8 

~0.07% 1.7K 1% 26~70 22%~ 55% 1.5%~ 4.1% 22~55 

Machine learning 
– SVM (11)36  

98.4K 259~ 
1146 

0.26%~ 
1.16% 

984 1% 131~710 44%~ 69% 14%~ 72% 44~69 

Machine learning 
– BKD (12)47-49,62  

101K~1
03K 

259~ 
1166 

0.25%~ 
1.2% 

5.1K 5% 65~972 14%~ 94% 1.2%~ 18.9% 3~19 

Machine learning 
– LMNB (1)48,62  

172K 118 0.069% 1.7K 1% 19 16% 1% 15 

Machine learning 
– CKD (18)36  

98.4K 259~ 
1211

0.26%~ 
1.23%

984 1% 132~960 34%~ 94% 13%~ 98% 53~94 

Ligand-based VS 
(clustering), large 
libraries 

Hierachical k-
means (5)29   

344.5K 91~155
6 

0.026% 
~0.45% 

3750~2128
5 

1.1%~6.2% 27~761 23% ~55% 0.72%~5% 7.97~31.2 

NIPALSTREE 
(5)29   

344.5K 91~155
6 

0.026% 
~0.45% 

3469~2812
5 

1.0%~8.2% 17~625 18% ~50% 0.49%~ 2.8% 3.51~18.7 

Hierachical k- 344.5K 91~155 0.026% 7317~4316 2.1%~12.3% 30~980 33% ~72% 0.41% ~2.9% 4.86~17.6 
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means + 
NIPALSTREE 
disjunction (5)29  

6 ~0.45% 5 

Hierachical k-
means + 
NIPALSTREE 
conjunction (5)29  

344.5K 91~155
6 

0.026% 
~0.45% 

538~6692 0.16%~1.9% 14~406 6% ~32% 1.1% ~10.2% 7.77~98 

Ligand-based VS 
(structural signatures), 
extremely large 
libraries ( ≥1M) 

Pharmacophore 
(3) 30,70,71  

1.77M~3
.8M 

55~144 0.0014% 
~0.0081% 

20K~1M 1.15%~26% 6~39 11% ~70% 0.0039%~ 
0.084% 

3~10.3 

Ligand-based VS 
(structural signatures), 
large libraries 

Pharmacophore 
(1) 31  

380K 30 0.0079% 6917 1.82% 23 76.7% 0.33 41.8 

Ligand-based VS, 
extremely large 
libraries ( ≥1M) for 
HIV protease, 
inhibitors DHFR 
inhibitors, Dopamine 
antagonists, CNS 
active agents 

SVM 2.986M 2351 0.076% 8157 0.27% 1833 78.0% 22.5% 296 

SVM 2.986M 225 0.007% 160 0.0054% 118 52.4% 73.8% 10543 

SVM 2.986M 37 0.0012% 299 0.01% 23 62.2% 7.7% 6417 

SVM 2.986M 664 0.022% 9502 0.32% 442 66.6% 4.7% 214 
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In this work, we examined to what extent hit rate and enrichment factor of ML 

tools can be improved by using training-sets of more diverse spectrum of 

inactive compounds. A widely used and better performing ML method, 

support vector machines (SVM) 36,46,47,49,62,167, was used to develop SVM 

models for identifying active compounds of single mechanism (HIV-1 

protease inhibitors, dihydrofolate reductase (DHFR) inhibitors, dopamine 

receptor antagonists) and multiple mechanisms (central nervous system (CNS) 

active agents). HIV-1 protease inhibitors form an important class of anti-HIV 

agents some of which have been successfully used clinically41. DHFR 

inhibitors are useful for the treatment of microbial infections173, cancer174, and 

parasitic diseases175. Dopamine antagonists have been used as antipsychotic 

agents176 and for the treatment of cervical dystonia177, vertigo178, and 

gastrointestinal motility disorders179. CNS active agents are composed of a 

diverse spectrum of CNS acting compounds that produce anxiolytic, 

antipsychotic, antidepressant, analgesic, anticonvulsant, antimigraine, 

antiischemic, antiparkinsonian, nootropic, neurologic, epileptic, neuroleptic, 

neurotropic, neuronal injury inhibiting,  narcotics antagonizing, and CNS 

stimuating effects180. Because of their diverse therapeutic applications and 

structural frameworks, these compounds are highly useful for testing the 

performance of SVM and other ML tools in LBVS of large compound 

libraries. 

 

Our SVM models were trained by using known active compounds and 

putative inactive compounds extracted from compound families that contain 

no known active compound. Compound families can be generated by 
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clustering distinct compounds of chemical databases into groups of similar 

structural and physicochemical properties29. The developed SVM models were 

tested in screening libraries of 2.986 million compounds from the PubChem 

database that are not in the training sets of these SVM models. The yields, hit-

rates and enrichment factors derived from these tests were compared with 

those of SBVS and other LBVS tools applied in the screening of extremely-

large libraries to determine to which extent the overall performance of SVM 

models can be enhanced and whether it is comparable to that of the best 

performing VS tools reported in the literature. To further evaluate whether our 

SVM models predict active and inactive compounds rather than membership 

of certain compound families, distribution of the predicted active and inactive 

compounds in the compound families were analyzed. 

3.2 Methods 

3.2.1 Collection of active compounds 

Table 3-2 gives the statistics of collected active compounds for the four active 

compound classes and their structural diversity index (DI) (defined in 

Methods Chapter section 2.1.3). The structures of a few selected compounds 

for each class are shown in Figure 3-1. For comparison of structural diversity 

of the compounds in these and those of the other structurally diverse classes, 

the statistics and DI values of several such classes are also listed in Table 3-2. 

A total of 5,161 HIV-1 protease inhibitors, with log (IC50) values in the range 

of -7.85 to -3.30, were selected from the HIV/OI Enzyme Inhibition Database 

of the National Institute of Allergy and Infectious Diseases of NIH. 76.6% of 

which are peptide-based inhibitors (66% and 5% are peptidomimetics and 
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symmetry-based inhibitors respectively) and 23.4% are non-peptide-based 

inhibitors. The quality of these inhibitors were further validated against 

literature reports we found from the literature database PUBMED to ensure 

that they have been described as HIV-1 protease inhibitors with IC50 values in 

the range of binding potencies considered to be important in various cases. 

Table 3-2 Diversity index (DI) and number of HIV protease inhibitors, DHFR 
inhibitors, dopamine antagonists, and CNS active agents used for developing 
support vector machines ligand-based virtual screening tools. For comparison, 
relevant data of several other compound classes of highly diverse structures 
are also included. These compound classes are arranged in descending order of 
structural diversity. 
 

Chemical Class No. of Active Compounds DI Value 

Blood-brain barrier penetrating agents 181  276 0.430 

FDA approved drugs 1,121 0.495 

NCI diversity set 1,804 0.544 

P-glycoprotein substrates 130 116 0.555 

CYP 2D6 inhibitors 180 0.575 

CNS active agents (this work) 16,182 0.578 

CYP 2D6 substrates 198 0.588 

Human intestine absorbing agents 182 131 0.596 

Estrogen receptor agonists 167 243 0.618 

HIV protease inhibitors (this work) 5,161 0.626 

DHFR inhibitors (this work) 755 0.719 

Dopamine antagonists (this work) 1,184 0.741 

 

DHFR inhibitors were collected from a publication183. We were able to use 

our software182 to generate molecular descriptors of 755 of the 756 collected 

inhibitors. We collected 1,184 distinct dopamine antagonists from three 

separate sources, which include 1,163 from MDDR database, 126 from 

PubChem database, and 41 from a publication184. CNS active agents were 
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retrieved from those compounds in MDDR database annotated as anxiolytic, 

antipsychotic, antidepressant, analgesic (non-opioid and opioid), 

anticonvulsant, antimigraine, antiischemic (cerebral), antiparkinsonian, 

stimulant in central, antagonist to narcotics, centrally acting agent, nootropic 

agent, neurologic agent, epileptic, and neuronal injury 

inhibitor/neuroleptic/neurotropic. We were able to use our software182 to 

derive molecular descriptors for 16,182 of the collected 16,390 non-redundant 

CNS active compounds. Molecular descriptorsof part of active compounds 

cannot be calculated because of non-availability of their reasonable 3D 

structures. 
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(a) HIV-1 protease inhibitors 

 
C452983 

 
C10459 

 
C373261 

(b) DHFR inhibitors 

 
C1987 

 
C4112 

 
C341273 

(c) Dopamine antagonists 

 
C115007  

 
C3037308 

 
C125564 

(e) CNS active agents 

C127434 C104929 C119600 
 
Figure 3-1 Structures of the selected HIV protease inhibitors, DHFR 
inhibitors, dopamine antagonists, and CNS active agents. The PubChem 
accession number of these compounds is given. 
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3.2.2 Generation of putative inactive compounds 

Apart from the use of known inactive compounds and active compounds of 

other biological target classes as putative inactive compounds36,46-49,61-63, a 

new approach extensively used for generating inactive proteins in ML 

classification of various classes of proteins185-187 may be applied for generating 

putative inactive compounds. An advantage of this approach is its 

independence on the knowledge of known inactive compounds and active 

compounds of other biological target classes, which enables more expanded 

coverage of the “inactive” chemical space in cases of limited knowledge of 

inactive compounds and compounds of other biological classes. A drawback 

of this approach is the possible inclusion of some undiscovered active 

compounds in the “inactive” class, which may affect the capability of ML 

methods for identifying novel active compounds. As will be demonstrated, 

such an adverse effect is expected to be relatively small for many biological 

target classes. 

 

In applying this approach to proteins, all known proteins are clustered into 

~8,900 protein families based on the clustering of their amino acid 

sequences129, and a set of putative inactive proteins can be tentatively 

extracted from a few representative proteins in those families without a single 

known active protein. Undiscovered active proteins of a specific functional 

class typically cover no more than a few hundred families, which gives a 

maximum possible “wrong” family representation rate of <10% even when all 

of the undiscovered active proteins are misplaced into the inactive class188. 

Importantly, inclusion of the representative of a “wrong” family into the 
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inactive class does not preclude other active family members from being 

classified as active. Statistically, a substantial percentage of active members 

can be classified by ML methods as active even if its family representative is 

in the inactive class188. Therefore, in principle, a reasonably good ML model 

can be derived from these putative inactive samples, which has been 

confirmed by a number of studies185-188. 

 

In a similar manner, known compounds can be grouped into compound 

families by clustering them in the chemical space defined by their molecular 

descriptors29,189. As ML methods predict compound activities based on their 

molecular descriptors, in developing ML tools, it makes sense to cluster as 

well as to represent compounds in terms of molecular descriptors. By using a 

K-means method 29,189 and molecular descriptors computed from our own 

software182, we generated 7,990 cluster families from the available compounds 

in PubChem database, which is consistent with the 12,800 compound-

occupying neurons (regions of topologically close structures) for 26.4 million 

compounds of up to 11 atoms3, and the 2,851 clusters for 171,045 natural 

products190. Analogue groups such as steroids and catecholamines are 

distributed in a few families. Active compounds in extensively studied target 

classes such as those of HIV-1 protease inhibitors, DHFR inhibitors, and 

dopamine antagonists are distributed in 770, 135, and 799 families 

respectively.  Because of the extensive effort in searching the known 

compound libraries for identifying active compounds in these target classes, 

the number of undiscovered “active” families in PubChem database is 

expected to be relatively small, most likely no more than several hundred 
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families. The ratio of the undiscovered “active” families (hundreds on less) 

and the families that contain no known active compound (6,000~7,000 based 

on current version of PubChem) for these and possibly many other target 

classes is expected to be <15%. Therefore, putative inactive compounds can 

be generated by extracting a few representative compounds of those families 

that contain no known active compound, with a maximum possible “wrong” 

family representation rate of <15% even when all of the undiscovered active 

compounds are misplaced into the inactive class.  

 

CNS active agents are distributed in numerous biological target classes such as 

agonists, antagonists, regulators of G-protein coupled receptors and nuclear 

receptors, blockers and regulators of ion channels, substrates, inhibitors, 

activators, and regulators of transporters, and inhibitors and regulators of 

enzymes involved in the synthesis and metabolism of signalling molecules in 

the CNS system180. Therefore, agents in this multi-target class are expected to 

cover a significantly larger portion of the chemical space than those of a single 

target class, leading to a possibly higher “wrong” family representation rate 

because of the likelihood of higher number of undiscovered active families in 

the limited chemical space covered by the currently available compounds in 

existing databases. As a result, the quality of the putative non-CNS active 

compounds generated by the new approach may be affected to some extent. 

The new approach is expected to become more and more useful for multi-

target classes when the coverage of chemical space can be significantly 

expanded as a result of increasing volume of the chemical databases. 
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There are 7,220, 7,855, 7,191, 3,440 families that contain no known HIV-1 

protease inhibitor, DHFR inhibitor, dopamine antagonist, and CNS active 

agent respectively. Thus datasets of 41,254 putative non- HIV-1 protease 

inhibitors, 44,856 putative non-DHFR inhibitors, 42,804 putative non-

dopamine antagonists, and 20,465 putative non-CAN active compounds were 

generated by random selection of 5~6 representative compounds from each of 

these families respectively.  

 

3.2.3 Molecular descriptors 

A total of 199 descriptors derived by using our software182 were used in this 

work. The details of the molecular descriptors are explained in Chapter 2 

Section 2.2. 

 

3.2.4 Development of support vector machines virtual 

screening tools 

SVM models for identifying HIV protease inhibitors, DHFR inhibitors, 

dopamine antagonists, and CNS active agents were developed by a procedure 

widely used for developing SVM protein classification models of optimal 

performance185-187. In the first step, active and inactive compounds were each 

divided into separate training, testing and independent evaluation sets. 

Specifically, active and inactive compounds were each clustered into groups 

based on their distance in the molecular descriptor space by using a 

hierarchical clustering method132 . An upper-limit of the largest separation of 

20 was used for each cluster. One representative compound was randomly 

selected from each group to form a training set that is sufficiently diverse and 



Chapter 3 Development and Evaluation of High Performance Virtual Screening Tools 

  66 

broadly distributed in the descriptor space. One or up to 50% of the remaining 

compounds in each group were randomly selected to form the testing set. The 

selected compounds from each group were further checked to ensure that they 

are distinguished from those of other groups. The remaining compounds were 

used as the independent evaluation set, which are also of reasonable level of 

diversity. Moreover, an analysis of the compounds in each cluster shows that 

the majority of the compounds in a cluster are substantially different. Thus, the 

testing and independent evaluation sets are expected to have certain level of 

usefulness for performing their task of fine-tuning the parameter of a SVM 

model and for evaluating its prediction performance. In the second step, SVM 

models were trained by using the training set and their parameters were 

optimized by using the testing set. The SVM model with the best overall 

performance on both the testing and independent evaluation sets was selected 

as a VS tool. 

3.3 Assessment of virtual screening performance 

The developed SVM models for identifying HIV protease inhibitors, DHFR 

inhibitors, dopamine antagonists, and CNS active agents in screening 2.986 

million distinct compounds from the PubChem database that are not in the 

training sets of our developed SVM models. The performance of these SVM 

models is given in Table 3-3, which can be compared with the reported 

performance of other SBVS and LBVS tools listed in Table 3-1. There are 

2,351, 225, 37, and 664 known HIV protease inhibitors, DHFR inhibitors, 

dopamine antagonists, and CNS active agents in the PubChem database not in 

the training sets of our SVM models. Our SVM models were able to identify 

78.0%, 52.4%, 62.2%, and 66.6% of these known hits, which are comparable 
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to the range of 62%~95% by the SBVS tools52,65 and 55%~81% by other 

LBVS 46,48,62
 tools in screening libraries of ≥1 million compounds, and they 

are also comparable to the percentages in screening libraries of 

98,400~344,500 compounds by other SBVS53-55,59,66,67,69,168-170 and LBVS 

tools29,31,36,47-49,62. These results suggest that our developed SVM models are 

equally effective in selecting potential hits in VS of large libraries. 

 

In addition to the exhibition of equally effective hit selection performance, our 

SVM models appear to show relatively lower “false” hit identification rate. 

Without the use of top-ranked cut-off or additional filter, our SVM models 

identified a total of 8,157, 160, 299, and 9,502 virtual hits for the four 

compound classes respectively, which are comparable to and in some cases 

smaller than those identified by SBVS52-55,59,65-67,69,168-170 and other 

LBVS29,36,46-48,62,150,151 tools even though a substantially larger number of 

compounds (2.983M vs. 98.4K~2.5M) were screened. As a result, smaller 

percentages of screened compounds were selected as virtual hits, which are in 

the range of 0.0054%~0.32% as compared to those of 0.08%~3% by SBVS 

tools52-55,59,65-67,69,168-170, 0.1%~5% by other reported ML models36,47-49,62, 

0.16%~82.% by clustering methods29 , and 1.15%~26% by pharmacophore 

models30,31,70,71. By using Lipinski’s rule of five58 as a filter, the numbers of 

identified virtual hits are further reduced to 333, 115, 209, and 8,035 for the 

four compound classes respectively, suggesting that introduction of such 

filters or combination with other VS methods may enable further reduction of 

the number of predicted hits. 
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The hit-rates of our SVM models are 22.5%, 73.8%, 7.7%, and 4.7% for the 

four classes of compounds respectively, which are comparable to those of 

0.65%~35% by SBVS tools and substantially improved against those of 

0.2%~0.7% by other reported SVM models in screening extremely large 

libraries. These hit-rates are also greater than the majority of the hit-rates in 

screening large libraries of 98,400~344,500 compounds by SBVS and other 

LBVS tools.  The enrichment factors of our SVM models are 296, 10,543, 

6,417, and 214 for the four classes of compounds respectively, which are 

substantially improved against those of 20~1,200 by SBVS tools and 110~795 

by other reported SVM models in screening extremely large libraries. 

Therefore, our method is useful in improving the hit-rate and enrichment 

factor of SVM while maintaining an equally high hit identification rate as 

other SBVS and LBVS tools. 

 

To further evaluate whether our SVM models predict active compounds rather 

than membership of certain compound families, compound family distribution 

of the predicted active and inactive compounds for the four compound classes 

were analyzed. As shown in Table 3-3, 24.3%, 71.3%, 87.6%, 85.7% of the 

predicted HIV protease inhibitors, DHFR inhibitors, dopamine antagonists, 

and CNS active agents belong to the families that contain no known active 

compound. For those families that contain at least one known active 

compound, >70% of the compounds (>90% in majority cases) in each of these 

families were predicted as inactive compounds by our SVM models. These 

results suggest that our SVM models predict active compounds rather than 

membership to certain compound families. Some of the predicted active 



Chapter 3 Development and Evaluation of High Performance Virtual Screening Tools 

  69 

compounds not in the family of known active compounds may serve as 

potential “novel” active compounds. Therefore, as in the case shown by an 

earlier study191, SVM methods have certain capacity for predicting novel 

active compounds. 

3.4 Comparative analysis of virtual screening performance of 

our method 

The performance of our method can be more appropriately evaluated by using 

it to develop VS tools and test them based on the same dataset construction 

and testing procedures as those used in other VS methods. In this work, we 

specifically developed additional VS prediction models by using the same 

dataset construction method and same data source of a standard similarity-

based method, the data fusion method48, the performance of both methods 

were then compared by using the same data source. The data fusion method is 

based on Taminoto based similarity searching using multiple reference 

compounds, which have shown good performances for a number of active 

compound groups by using only a small number of training active 

compounds48, and thus is a good reference method for evaluating the 

performance of our method. 
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Table 3-3 Performance of support vector machines virtual screening tools developed in this work for identifying HIV protease 
inhibitors, DHFR inhibitors, dopamine antagonists, and CNS active agents in screening 2.986 million compounds. 
 

Screening 
task 

Compounds screened Virtual hits selected by SVM Known hits selected by SVM 

No of 
compounds 

No of 
known 
hits not 
in 
training 
sets of 
SVM-
LBVS 
tool 

Percent 
of 
known 
hits  

No of 
families 
covered 
by 
known 
hits 

No of 
selected 
virtual 
hits 

Percent 
of 
selected 
virtual 
hits not 
in the 
families 
covered 
by 
known 
hits 

Percent of 
screened 
compounds 
selected as 
virtual hits 

No of 
selected 
virtual 
hits 
passed 
rule-of-
five 

Percent 
of 
selected 
virtual 
hits 
passed 
rule-of-
five 
and not 
in the 
families 
covered 
by 
known 
hits

No of 
known 
hits 
selected 

Yield Hit 
rates 

Enrichment 
factor 

HIV 
protease 
inhibitors 

2.986M 2351 0.076% 496 8157 24.3% 0.27% 333 42.6% 1833 78.0% 22.5% 296 

DHFR 
inhibitors 

2.986M 225 0.007% 60 160 71.3% 0.0054% 115 64.4% 118 52.4% 73.8% 10543 

Dopamine 
antagonists 

2.986M 37 0.0012% 29 299 87.6% 0.01% 209 82.8% 23 62.2% 7.7% 6417 

CNS 
active 
agents 

2.986M 664 0.022% 519 9502 85.7% 0.32% 8035 84.1% 442 66.6% 4.7% 214 
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 We developed three separate HIV protease inhibitor VS tools by using our 

method and datasets of similar sizes and from the same sources as that used by 

the reported studies of the data fusion method48,192. Our training and testing 

datasets were generated from 1,054 HIV protease inhibitors extracted from the 

MDDR database. Based on the training set generation procedure of the data 

fusion method192, three sets of 60, 80 and 100 inhibitors were selected from 

this full set of 1,054 inhibitors as the active compound training sets, from 

which the inactive compound training sets were generated by using our 

method.  Using the same testing method of the data fusion method, the 

performance of the three developed SVM VS tools were evaluated by using 

the remaining 994, 974 and 954 HIV protease inhibitors respectively, which 

showed that 59.5%, 62.2% and 67.3% of these remaining inhibitors were 

correctly identified. The performance of these SVM VS tools is similar to and 

in some cases slightly improved against that of 55.2%~58.0% of the data 

fusion method that used a similar number of training HIV protease 

inhibitors48. This suggests that, by using the equally small active compounds 

as training data, our SVM model is capable of performing at the same level 

and in some cases slightly improved level than that of the data fusion method. 

3.5 Discussion 

The performance of SVM and other ML methods critically depends on the 

diversity of compounds in a training dataset and the appropriate description of 

the compounds. The datasets used in developing ML models described in 

Table 3-1 and in this work are not expected to be fully representative of all of 

the active and inactive compounds. Known inactive compounds, particularly 

those structurally similar to an active compound, may serve to further refine 
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ML models at higher “structural resolutions” than those achievable by using 

only the putative inactive compounds generated from this work. Mining of 

known active compounds and inactive compounds from the literature103 and 

other sources 193,194 is a key to developing more optimally performing ML 

models for VS.  

 

Examination of incorrectly predicted compounds by ML models consistently 

suggests that the currently-used molecular descriptors are insufficient to 

adequately represent some of the compounds that contain complex structural 

or chemical configurations130,149,181. Examples of these agents are those with 

large rigid structures combined with a short flexible hydrophilic tail, 

compounds that contain multi-rings with various hetero atoms such as 

nitrogen, oxygen, sulphur, fluorine and chlorine. Due to the limited coverage 

of the number of bond links in a hetero-atom loop, the currently available 

topological descriptors are not yet capable of describing the special features of 

a complex multi-ring structure that contains multiple hetero atoms. It appears 

that none of the currently-available descriptors are capable of fully 

representing molecules containing a long flexible chain. Therefore, it might be 

helpful to explore different combination of descriptors and to select more 

optimal set of descriptors by using more refined feature selection algorithms 

and parameters130,195. However, indiscriminate use of many existing 

topological descriptors, which are overlapping and redundant to each other, 

may introduce noise as well as extend the coverage of some the aspects of 

these special features. Thus, it may be necessary to introduce new descriptors 

for more appropriately representing these and other special features. 
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3.6 Further perspective 

By using training sets of more diverse spectrum of inactive compounds, the 

hit-rates and enrichment factors of SVM models can be substantially improved 

to the level comparable to and in some cases higher than those of the best 

performing SBVS and LBVS tools reported in the literature. Because of their 

high computing speed and capability for covering highly diverse spectrum 

compounds, SVM and other ML methods can be potentially explored to 

develop useful VS tools to complement other VS methods or to be used as part 

of integrated VS tools in facilitating lead discovery65,69,71. 
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Chapter 4 Evaluation of Virtual Screening by Sparsely 

Distributed Active Compounds 

Virtual screening performance of support vector machines (SVM) depends on 

the diversity of training active and inactive compounds. While diverse inactive 

compounds can be routinely generated, the number and diversity of known 

actives are typically low. In this chapter, we evaluated the performance of 

SVM trained by sparsely distributed actives in six MDDR biological target 

classes composed of high number of known actives of high, intermediate, and 

low structural diversity (muscarinic M1 receptor agonists, NMDA receptor 

antagonists, thrombin inhibitors, HIV protease inhibitors, cephalosporins, and 

rennin inhibitors). 

4.1 Introduction 

As part of the efforts in further developing virtual screening (VS) methods for 

facilitating lead discovery27,37,164,165, support vector machines (SVM)167have 

recently been explored as ligand-based VS (LBVS) tools to complement or to 

be used in combination with structure-based VS (SBVS)37,52-55,65-67,69,168-170 

and other LBVS27 tools. A particular objective for exploring these approaches 

is to overcome several problems that have impeded progress in more extensive 

applications of VS33,37,168. These problems include the vastness and sparse 

nature of chemical space to be searched, limited hit diversity due to the bias of 

training molecules, limited availability of target structures (only 15% of 

known proteins have experimentally-determined 3D structures), complexity 
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and flexibility of target structures, and difficulties in computing binding 

affinity and solvation effects. 

 

SVM is of particular interest because it classifies active compounds based on 

the differentiating physicochemical profiles between active and inactive 

compounds rather than structural similarity to active compounds per se. 

Moreover, SVM does not require the knowledge of target structure and 

activity-related molecular descriptors, and the computation of binding affinity 

and solvation effects. Its fast speed enables efficient search of vast chemical 

space. Some of these advantages have been exhibited by good VS 

performance in screening large compound libraries48,62,108. None-the-less, as in 

the cases of all statistical learning methods, the performance of SVM is 

significantly influenced by the levels of the training active and inactive 

compounds in representing the physicochemical profiles of the remaining 

compounds in the chemical space. 

 

Active compounds (actives) typically occupy small pockets of the chemical 

space. It may be possible to construct a training active dataset to substantially 

represent the properties of the remaining actives by using relatively small 

number of known actives. However, inactive compounds (inactives) generally 

occupy larger portions of the chemical space. A large number of training 

inactives is needed to reach sufficient level of diversity for representing the 

remaining inactives in the chemical space. SVM constructs a hyper-plane in a 

higher dimensional molecular descriptor space to separate actives from 

inactives based on whether or not the molecular descriptor vector of a 
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compound is distributed on the known active side of the hyper-plane. As 

illustrated in Figure 4-1, the position and orientation of the SVM hyper-plane, 

which extends to far regions of the chemical space, can in many cases be 

influenced by inactives distributed remotely from the known actives as well as 

those closely resembling known actives. The level of influence tends to be 

stronger for sparsely distributed known actives and inactives as there is more 

room in the local space for altering the position and orientation of the hyper-

plane. Therefore, highly diverse inactive datasets are typically needed for 

constructing SVM VS models33,108. 

 

 

Figure 4-1 Illustration of the influence of the inactive compounds distributed 
far away from the active compounds on the position and orientation of the 
hyper-plane of support vector machines that separates active and inactive 
compounds. +: active compounds, -: inactive compounds used for constructing 
the first hyper-plane (dashed line), x: additional inactive compounds used for 
constructing the more-refined hyper-plane (solid line). 
 

Highly diverse inactive training datasets can be routinely generated by large-

scale sampling of active compounds of other biological target classes36,48,62,63 

and by using representative compounds from compound families that contain 

no known actives108. In contrast, the diversity and the level of representation 
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of active training datasets are often constrained by the small number of known 

actives sparsely distributed in the active regions of chemical space (active 

regions are defined as regions of chemical space covered by discovered and 

yet-to-be-discovered actives). There is a need to evaluate the VS performance 

of SVM trained by sparse active datasets to determine its capability in 

identifying novel actives from sparsely distributed known actives. 

 

In this work, we examined the VS performance of SVM trained by sparse 

active datasets generated from available active datasets of sufficiently high 

number of known actives and varying degrees of structural diversity. The high 

number of actives in the studied datasets makes it possible to generate 

sufficiently sparse training active datasets, and varying degrees of diversity 

enables objective evaluation of the VS performance of SVM on different 

classes of actives. To facilitate comprehensive analysis and further 

comparative studies, six of the well-studied MDDR biological target classes48 

of high number of actives (983~1,645) of both high, intermediate, low 

structural diversity were used for this study. These classes include muscarinic 

M1 receptor agonists and NMDA receptor antagonists representing high-

diversity, thrombin inhibitors and HIV protease inhibitors representing 

intermediate-diversity, and cephalosporins and rennin inhibitors representing 

low-diversity classes respectively. 

 

Muscarinic M1 receptor agonists are useful for the treatment of Alzheimer's 

disease by improving the performance in cognitive tests in Alzheimer's 

patients196. NMDA receptor antagonists have been explored for 
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neuroprotection197 and the treatment of postoperative pain198. Thrombin 

inhibitors produce anticoagulant effects and have been used as antithrombotic 

agents199. HIV protease inhibitors form an important class of anti-HIV agents 

some of which have been successfully used clinically41. Cephalosporins are in 

clinical development as broad-spectrum antibacterial agents200. Rennin 

inhibitors have shown effectiveness in cardiovascular pharmacotherapy201. 

Because of their diverse therapeutic applications and structural frameworks, 

these compounds are highly useful for testing the performance of SVM as well 

as other methods48. 

 

For each biological target class, two training datasets were generated. A 

regularly sparse active dataset, which contains the same number of actives as 

those in earlier sparse dataset studies33,48 was generated by extracting 100 

actives (representing 6.1%~10.2% of the known actives) scattered in the 

known active region of chemical space. A very sparse active dataset was 

generated by extracting 40 active compounds (representing 2.4%~4.1% of the 

known actives) scattered in the known active region of chemical space. To 

generate a dataset of N number of actives from a larger number actives, all 

actives were clustered into N clusters followed by the extraction of one 

compound from each of these clusters. Putative inactive datasets were 

generated by extracting representative compounds from all compound families 

that contain no known active compound108. Compound families can be 

generated by clustering distinct compounds of chemical databases into groups 

of similar structural and physicochemical properties29,189.  
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The regularly sparse active datasets were used for facilitating crude estimation 

of the level of performance of our SVM VS tools with respect to those of other 

VS tools such as the data fusion method48 and other methods33  that have been 

frequently developed by using ~100 active compounds. Caution needs to be 

raised about straightforward comparison of these results, which might be 

misleading because the outcome of VS strongly depends on the datasets and 

molecular descriptors used. To further evaluate whether the performance of 

our SVM VS tools are attributed to the SVM classification models or the 

molecular descriptors used, a study was conducted to compare the 

performance our SVM VS tools with that of the Tanimoto-based similarity 

searching method115 using the same datasets and the same molecular 

descriptors.  

 

The yields (percent of testing actives identified as active) of our SVM VS 

tools were estimated by using the remaining 89.7%~97.4% of the known 

actives. The false-hit rates (percent of inactives identified as active) of our 

SVM VS tools were estimated by using the remaining 167K MDDR 

compounds outside the training datasets and by using the 9.997M PubChem 

compounds that exclude the known actives. To further evaluate whether our 

SVM VS tools predict active and inactive compounds rather than membership 

of certain compound families, distribution of the predicted active and inactive 

compounds in the compound families were analyzed. 

 

VS performance may be over-estimated by training datasets that contain 

higher percentages of inactives significantly different from the known actives, 
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because the easily distinguishable features may make VS enrichments 

appearing artificially good202. Therefore, VS performance may be more 

strictly tested by using subsets of inactives that resemble the physicochemical 

properties of the known actives so that enrichment is not simply a separation 

of trivial physicochemical features158. In this work, the performance of our 

SVM VS tools was further evaluated by the subsets of MDDR compounds that 

are similar in physicochemical properties to those of the known actives. 

4.2 Methods 

4.2.1 Construction of active training and testing datasets 

All actives of the six biological target classes are from MDDR, from which we 

obtained 983 muscarinic M1 receptor agonists, 1,510 NMDA receptor 

antagonists, 1,252 thrombin inhibitors, 1,054 HIV protease inhibitors, 1,645 

cephalosporins, and 1,241 rennin inhibitors. The structure of representative 

compounds of these six classes is shown in Figure 4-2. To generate the 

popular-sized sparse and highly sparse active training datasets and the 

corresponding testing datasets, all known actives of each of these classes were 

clustered into 100 and 40 clusters respectively by using a K-means 

method29,189 and molecular descriptors computed from our own software182. 

For each class, the regularly sparse and very sparse active training datasets of 

100 and 40 active compounds were generated by extracting one compound 

from each of the 100 and 40 active clusters respectively. The remaining 

actives were used as the corresponding active testing set. 
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4.2.2 Generation of putative inactive training and testing 

datasets  

Methods in Chapter 3 Section 3.2.2 are used to generate putative inactive 

training and testing datasets. 

 

The classes of muscarinic M1 receptor agonists, NMDA receptor antagonists, 

thrombin inhibitors, HIV protease inhibitors, cephalosporins, and rennin 

inhibitors are distributed in 203, 538, 161, 281, 95, and 138 families 

respectively. Because of the extensive effort in searching the known 

compound libraries for identifying active compounds in these target classes, 

the number of undiscovered “active” families in PubChem database is 

expected to be relatively small, most likely no more than several hundred 

families. The ratio of the discovered and undiscovered “active” families 

(hundreds) and the families that contain no known active compound (~8,993 

based on the current versions of PubChem and MDDR) for these and possibly 

many other target classes is expected to be <15%. Therefore, putative inactive 

training datasets can be generated by extracting a few representative 

compounds of those families that contain no known active compound in the 

active training set, with a maximum possible “wrong” family representation 

rate of <15% even when all of the undiscovered active compounds are 

misplaced into the inactive class, and with the expectation that a substantial 

percentage of active members in the putative “inactive” families can be 

classified as active despite of their family representatives are placed into the 

inactive training sets.  
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Figure 4-2 Structures of the selected muscarinic M1 receptor agonists, NMDA 
receptor antagonists, thrombin inhibitors, HIV protease inhibitors, 
cephalosporins, and rennin inhibitors. PubChem accession number of these 
compounds is given. 
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There are 8790, 8455, 8832, 8712, 8898, and 8855 compound families that 

contain no known muscarinic M1 receptor agonist, NMDA receptor 

antagonist, thrombin inhibitor, HIV protease inhibitor, cephalosporin, and 

rennin inhibitor respectively. Thus the inactive training dataset corresponding 

to each sparse or biased active training dataset was generated by random 

selection of 5~6 representative compounds from each of these “inactive” 

families and those active families with none of their members in the active 

training set. The remaining compounds of the “inactive” families in PubChem 

and MDDR can be used as putative inactive testing sets. It is noted that 

9.6%~68.7% of the active containing families are not covered in the active 

training set, and their representative compounds were deliberately placed into 

the inactive training set as they are not supposed to be known in our study. As 

shown in an earlier study48,49,62 (Chapter 3) and in this work, a substantial 

percentage of the active compounds in these misplaced active containing 

families were predicted as active by our SVM models. Moreover, a small 

percentage of the compounds in these putative inactive datasets are expected 

to be un-reported and un-discovered actives for each of the six biological 

target classes, their presence in these datasets is not expected to significantly 

affect the estimated false positive rate of the developed SVM VS tools. 

 

4.2.3 Molecular descriptors 

A total of 98 important descriptors were chosen from the chemical descriptors 

calculated by our program MODEL which were used in this work. The detail 

about molecular descriptors is explained in Chapter 2 Section 2.2.  
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4.3 Results and discussion 

4.3.1 Comparative analysis of virtual screening performance of 

SVM trained by regularly sparse active datasets 

It is of interest to evaluate the performance of SVM trained from regularly 

sparse active datasets by comparison with literature reported VS performance 

based on similar dataset construction/testing procedures and the same data 

sources. As discussed in the introduction section, the comparison of these 

results should be viewed as providing very crude pictures about the level of 

performance of SVM. In this work, we specifically compared the performance 

of SVM VS tools with those a standard similarity-based method, the data 

fusion method48,192. The data fusion method is based on Tanimoto-based 

similarity searching using multiple reference compounds, which have shown 

good performances for a number of active compound groups by using only a 

small number of ~100 training active compounds48,192, which serves as a good 

reference method for evaluating the performance of SVM. To further evaluate 

whether the performance of SVM is due to the SVM classification models or 

to the molecular descriptors used, SVM results were compared with those of 

the Tanimoto-based similarity searching method based on the same training 

and testing datasets and molecular descriptors. 

 

The statistics of the regularly sparse active datasets, the performance of our 

method, the reported performance of the data fusion method, and the results of 

the Tanimoto-based similarity searching method for the six biological classes 

are given in Table 4-1. As shown in Table 4-1, the percentage of known 

actives in these datasets is in the range of 6.1%~10.2%. The percentage of 
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“active” families (defined as the families that include at least one known 

active compound) covered by these datasets is in the range of 15.4%~67.2% 

with five of the sets below 31.5%. Therefore, these datasets are reasonably 

sparse.   

 

By using the same testing procedure of the data fusion method, the 

performance of the six developed SVM VS tools were evaluated by using the 

remaining 883~1,545 actives and ~167K MDDR compounds of other 

biological target classes. The yields of our SVM VS tools are 26.7%~49.5% 

for the high, 60.0%~67.3% for the intermediate, and 82.1%~91.9% for the low 

diversity classes respectively. The reported yields of the data fusion method 

are 15.7%~46.6% for the high, 44.5%~58.0% for the intermediate, and 

90.4%~94.7% for the low diversity classes respectively48,192. The false-hit 

rates (estimated from the percentage of the ~167K MDDR compounds of 

other biological target classes identified as active) of our SVM VS tools are in 

the range of 1.0%~2.9%. The false-hit rates of data fusion method can be 

deduced as 4% based on the reported top 5% hit selection criterion from 

~150K compounds of other MDDR biological target classes48,192. Compared 

with those of data fusion method, the yields of our SVM VS tools are slightly 

improved for the high and intermediate classes, and the false-hit rates of our 

SVM VS tools are substantially reduced for all three classes. These results 

suggest that, by using the equally small number of active compounds as 

training data, SVM is capable of producing equally good or slightly better 

yields and generalization capability at substantially reduced false-hit rates than 

those of the data fusion method.  
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As shown in Table 4-1, the yields of the Tanimoto-based similarity searching 

method are 9.4%~ 24.2% for the high, 19.0%~27.8% for the intermediate, and 

38.4%~39.3% for the low diversity classes respectively. The false-hit rates are 

in the range of 3.3%~4.4%. Compared to these results, the yields of SVM are 

significantly improved and the false-hit rates of SVM are substantially 

reduced. This suggests that SVM performance is due primarily to the SVM 

classification models rather than the molecular descriptors used. 
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Table 4-1 Dataset statistics and the virtual screening performance of support vector machines developed by using regularly sparse 
datasets of 100 active compounds for screening MDDR database. The results are compared with that of the Tanimoto similarity 
searching method using the same dataset and molecular descriptors, and with the reported performance of similarity search 
methods trained by using ~100 active compounds (Ref 48) for identifying muscarinic M1 receptor agonists, NMDA receptor 
antagonists, thrombin inhibitors, HIV protease inhibitors, cephalosporins, and rennin inhibitors. Known “active” chemical 
families refer to chemical families that contain at least one known active compound. Yields and false hit rates are the percent of 
testing active compounds identified as active. 
 

Compound 
Diversity 
Category 
Defined in 
Ref 48 

Compound 
Biological 
Target Class 
(No of 
compounds) 
[average mean 
pair-wise 
similarity value 
computed in 
Ref 48] 

Active Compounds in 
Training Set 

Active Compounds in 
Testing Set 

SVM Virtual 
Screening 
Performance 
(This Work) 

Virtual Screening 
Performance of 
similarity searching 
methods reported in 
Ref 48 

Virtual 
Screening 
Performance 
of Tanimoto 
similarity 
searching 
method (This 
work) 

No and 
Percent of 
Active 
Compounds 

No and 
Percent of 
Known 
“Active” 
Chemical 
Families 
Covered by 
Active 
Compounds 

No and 
Percent of 
Active 
Compounds 

No and 
Percent of 
Known 
“Active” 
Chemical 
Families 
Covered by 
Active 
Compounds 

Yields False 
Hit 
Rates 

Yields  False 
Hit 
Rates 

Yields False 
Hit 
Rates 

High Muscarinic M1 
receptor 
agonists (983) 
[0.206] 

100 (10.2%) 64 (31.5%) 883 (89.8%) 171 (84.2%) 49.5% 1.7% 27.4%~46.6% 4% 24.2% 3.9% 

NMDA receptor 
antagonists 
(1510) [0.199] 

100 (6.6%) 83 (15.4%) 1410 
(93.4%) 

503 (93.5%) 26.7% 2.8% 15.7%~20.7% 4% 9.4% 4.4% 
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Intermediate Thrombin 
inhibitors (1252) 
[0.321] 

100 (8.0%) 46 (28.6%) 1152 
(92.0%) 

227 (91.7%) 60.0% 2.9% 44.5%~52.3% 4% 19.0% 4.3% 

HIV protease 
inhibitors (1054) 
[0.313] 

100 (9.5%) 74 (26.3%) 954 (90.5%) 248 (88.3%) 67.3% 2.9% 51.6%~58.0% 4% 27.8% 4.4% 

Low Cephalosporins 
(1645) [0.501] 

100 (6.1%) 43 (67.2%) 1545 
(93.9%) 

78 (82.5%) 82.1% 1.0% NA NA 39.3% 3.7% 

Rennin 
inhibitors (1241) 
[0.459] 

100 (8.1%) 51 (37.0%) 1141 
(91.9%) 

121 (87.7%) 90.9% 1.8% 90.4%~94.7% 4% 38.4% 3.3% 
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4.3.2 Virtual screening performance of SVM trained by very 

sparse active datasets 

The level of sparseness of the very sparse active datasets for the six biological 

target classes can be measured by the percentage of known actives in these 

training sets and the percentage of “active” families they occupy. As shown in 

Table 4-2, the percentage of known actives in the sparse active training sets is 

in the range of 2.4%~4.7%. The percentage of “active” families covered by the 

sparse active training sets is in the range of 6.7%~42.2% with five of these 

below 22.5%. Therefore, the level of sparseness of the very sparse active 

datasets is significantly higher than those of the regularly sparse active 

datasets. 

 

The SVM VS tools developed by using the very sparse active datasets for 

identifying active compounds of the six biological target classes were tested 

by using three testing sets for each compound class. These testing sets are the 

active testing set for each class, 9.98 million distinct compounds from the 

PubChem, and the remaining 167K MDDR compounds outside the training 

sets of our developed SVM models. The performance of these SVM VS tools 

is given in Table 4-2. In spite of the use of very sparse active training sets of 

<4.7% of the actives covering 6.7%~42.2% of the “active” families, our SVM 

VS tools were able to achieve yields of 17.5%~35.5% for the high, 

23.0%~48.1% for the intermediate, and 70.2%~92.4% for the low diversity 

classes. Therefore, our method appears to have some level of generalization 

capability in identifying a substantial amount of novel active compounds 
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outside the known active chemical families from a very sparse active training 

dataset. 

 

In addition to the exhibition of effective hit selection performance, our SVM 

models appear to show substantially lower false-hit rates. In screening 9.997M 

PubChem compounds that exclude the known actives, without using top-

ranked cut-off or additional filter, our SVM VS tools identified 398~2,336 

compounds as active, representing 0.004%~0.01% of the 9.997M PubChem 

compounds. The estimated false-hit rates in screening 167K MDDR 

compounds of the other biological classes are in the range of 0.5%~1.6%. 

Even though a substantially larger number of compounds (9.997M vs. 

98.4K~2.5M) were screened, these false-hit rates are comparable and in many 

cases better than those of 0.08%~3% by SBVS tools53-55,59,65-67,69,168-170, 

0.1%~5% by other reported ML models48,49,62, 0.16%~82.% by clustering 

methods29 , and 1.15%~26% by pharmacophore models. 
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Table 4-2 Dataset statistics and virtual screening performance of support vector machines developed by using very sparse active 
datasets of 40 active compounds for identifying muscarinic M1 receptor agonists, NMDA receptor antagonists, thrombin 
inhibitors, HIV protease inhibitors, cephalosporins, and rennin inhibitors from PubChem and MDDR databases. Known “active” 
chemical families refer to chemical families that contain at least one known active compound. 
 
Compound 
Diversity 
Category 
Defined in 
Ref 48 

Compound 
Biological 
Target Class 
(No of 
compounds) 
[average 
mean pairwise 
similarity 
value 
computed in 
Ref 48] 

Active Compounds in 
Training Set 

Active Compounds in 
Testing Set 

Virtual Screening Performance  

No and 
Percent of 
Active 
Compounds 

No and 
Percent of 
Known 
“Active” 
Chemical 
Families 
Covered by 
Active 
Compounds 

No and 
Percent of 
Active 
Compounds 

No and 
Percent of 
Known 
“Active” 
Chemical 
Families 
Covered by 
Active 
Compounds 

Yields  No and 
Percent of 
Identified  
Testing 
Active 
Compounds 
Outside 
Training 
Chemical 
Families 

No and 
Percent of 
9.997M 
PubChem 
Compounds 
identified as 
Active 

No and 
Percent of 
the 
Remaining 
167K MDDR 
Compounds 
as Active 

High Muscarinic M1 
receptor 
agonists (983) 
[0.206] 

40 (4.1%) 34 (16.7%) 943 (95.9%) 191 (94.1%) 39.5% 149 (40.1%) 1,130 (0.01%) 1,618 (1.0%) 

NMDA 
receptor 
antagonists 
(1510) [0.199] 

40 (2.7%) 36 (6.7%) 1470 
(97.3%) 

524 (97.4%) 17.5% 165 (64.2%) 2,336 (0.02%) 2,001 (1.2%) 

Intermediate Thrombin 
inhibitors 
(1252) [0.321] 

40 (3.2%) 25 (15.5%) 1212 
(96.8%) 

237 (96.0%) 23.0% 102 (57.0%) 529 (0.005%) 1,198 (0.7%) 

HIV protease 
inhibitors 
(1054) [0.313] 

40 (3.8%) 36 (12.8%) 1014 
(96.2%) 

269 (95.7%) 48.1% 301 (68.7%) 530 (0.005%) 2,658 (1.6%) 

Low Cephalosporins 
(1645) [0.501] 

40 (2.4%) 27 (42.2%) 1605 
(97.6%) 

86 (89.7%) 92.4% 205 (13.8%) 770 (0.007%) 791 (0.5%) 

Rennin 
inhibitors 
(1241) [0.459] 

40 (3.2%) 31 (22.5%) 1201 
(96.8%) 

130 (94.2%) 70.2% 410 (48.6%) 398 (0.004%) 2,220 (1.3%) 
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4.3.3 Evaluation of false-hit rates of SVM against inactives of 

similar molecular descriptors to the known actives 

The subsets of MDDR compounds that are similar in molecular descriptors to 

at least one known active of the six biological target classes were selected by 

using the condition that the Tanimoto coefficient sim(i,j) is ≥ 0.9 with respect 

to at least one known active of each of these classes. A total of 19,495, 38,436, 

32,037, 29,990, 29,127, and 24,166 inactives of similar molecular descriptors 

were collected for the muscarinic M1 receptor agonist, NMDA receptor 

antagonist, thrombin inhibitor, HIV protease inhibitor, cephalosporin, and 

rennin inhibitor classes respectively. Each of these six sets of inactives were 

used as the testing sets for evaluating the false-hit rates of our developed SVM 

VS tools against similarity compounds.  

 

As shown in Table 4-3, against these similarity datasets, the false-hit rates of 

our SVM VS tools developed by using regularly sparse and very sparse active 

datasets are in the range of 4.6%~8.3% and 2.6%~6.3% respectively. 

Compared to the ranges of hit rates of 1.0%~2.9% and 0.5%~1.6% against the 

full set of the ~167K MDDR compounds of other biological target classes, our 

developed SVM VS tools appear to show fairly good performance in 

distinguishing the actives from the inactives that resemble the 

physicochemical properties of the known actives. 

 

4.3.4 Evaluation of SVM identified false hits 

Some of the false hits are known inhibitors that share structural frameworks 

with those of the studied biological target class. For instance, a number of 
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SVM identified “false” hits of HIV protease inhibitors are known rennin 

inhibitors. Some of the HIV protease inhibitors have been designed based on 

the transition state analogues of renin inhibitors203. Many of the SVM 

identified false hits of thrombin inhibitors are known peptidomimetic 

inhibitors of renin, HIV protease, farnesyltransferase, and trypsin. 

Peptidomimetic inhibitors arising from similar structural frameworks have 

been designed for renin, thrombin, HIV protease, Ras farnesyltransferase, and 

various other proteases204. Therefore, some of the false hits may partly arise 

from the mis-identification of compounds of similar structural frameworks. It 

cannot be ruled out that some of them may exhibit weak inhibitory activities 

due to the similar structural frameworks and thus were “correctly” identified 

by our SVM VS tools. 

 

Examination of the false hits identified by SVM and other machine learning 

methods consistently suggests that the currently-used molecular descriptors 

are insufficient to adequately represent some of the compounds that contain 

complex structural or chemical configurations130,149,181. Examples of these 

agents are those with large rigid structure combined with a short flexible 

hydrophilic tail, compounds that contain multi-rings with various hetero atoms 

such as nitrogen, oxygen, sulphur, fluorine and chlorine. Due to the limited 

coverage of the number of bond links in a hetero-atom loop, the currently 

available topological descriptors are not yet capable of describing the special 

features of a complex multi-ring structure that contains multiple hetero atoms. 

It appears that none of the currently-available descriptors are capable of fully 

representing molecules containing a long flexible chain. Therefore, it might be 
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helpful to explore different combination of descriptors and to select more 

optimal set of descriptors by using more refined feature selection algorithms 

and parameters130,195. However, indiscriminate use of many existing 

topological descriptors, which are overlapping and redundant to each other, 

may introduce noise as well as extending the coverage of some the aspects of 

these special features. Thus, it may be necessary to introduce new descriptors 

for more appropriately representing these and other special features. 
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Table 4-3 Evaluation of support vector machines virtual screening tools for identifying muscarinic M1 receptor agonists, NMDA 
receptor antagonists, thrombin inhibitors, HIV protease inhibitors, cephalosporins, and rennin inhibitors against the subset of 
inactive MDDR compounds that are similar to at least one known active compound in each respective active compound class. 
Similarity is defined by Tanimoto coefficient ≥0.9, which is computed by using molecular descriptors. The yields are given in 
Table 4-1 and Table 4-2 respectively. 
 

Compound Diversity 
Category Defined in Ref 
48 

Compound Biological 
Target Class (No of 
compounds)  

No and Percent of Active 
Compounds in Training 
Set 

No of Inactive Compounds 
Similar to an Active 
Compound  

(Testing Set) 

SVM Virtual Screening Performance 

No of Inactive 
Compounds Predicted as 
Active 

False Hit Rate 

High Muscarinic M1 receptor 
agonists (983)  

40 (4.1%) 19,495 531 4.4% 

100 (10.2%) 1,068 7.8% 

NMDA receptor antagonists 
(1510)  

40 (2.7%) 38,436 729 2.6% 

100(6.6%) 1,349 4.6% 

Intermediate Thrombin inhibitors (1252)  40 (3.2%) 32,037 1,535 5.7% 

100(8.0%) 1,267 6.4% 

HIV protease inhibitors 
(1054)  

40 (3.8%) 29,990 603 3.3% 

100(9.5%) 1,398 6.4% 

Low Cephalosporins (1645)  40 (2.4%) 29,127 181 5.8% 

100(6.1%) 612 7.6% 

Rennin inhibitors (1241) 40 (3.2%) 24,166 637 6.3% 

100(8.1%) 887 8.3% 
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4.3.5 Does SVM select active compounds or membership of 

compound families? 

To further evaluate whether our SVM VS tools identify active compounds 

rather than membership of certain compound families, Compound family 

distribution of the identified actives and inactives for the six biological target 

classes were analyzed. As shown in Table 4-2, 40.1%, 64.2%, 57.0%, 68.7%, 

13.8%, and 48.6% of the identified muscarinic M1 receptor agonists, NMDA 

receptor antagonists, thrombin inhibitors, HIV protease inhibitors, 

cephalosporins, and rennin inhibitors belong to the families that contain no 

known active. For those families that contain at least one known active, >70% 

of the compounds (>90% in majority cases) in each of these families were 

predicted as inactive by our SVM VS tools. These results suggest that our 

SVM VS tools identify active compounds rather than membership to certain 

compound families. Some of the identified actives not in the family of known 

active compounds may serve as potential “novel” active compounds. 

Therefore, as in the case shown by earlier studies108,191, SVM has certain 

capacity for identifying novel active compounds from sparse as well as 

regular-sized active datasets. 

4.4 Further perspective 

SVM VS tools developed by using highly sparse active datasets show some 

level of capability in identifying novel active compounds at comparable and in 

many cases substantially lower false-hit rates than those of typical SBVS and 

LBVS tools reported in the literatures. The performance of SVM is 

significantly better than that of Tanimoto-based similarity search method 
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based on the same datasets and molecular descriptors, suggesting that the VS 

performance of SVM is primarily due to SVM classification models rather 

than the molecular descriptors used. Because of their high computing speed 

and generalization capability for covering highly diverse spectrum 

compounds, SVM can be potentially explored to develop useful VS tools to 

complement other VS methods or to be used as part of integrated VS tools in 

facilitating lead discovery from sparse active datasets65,69,71. 
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Chapter 5 Virtual Screening of Selective Kinase 

Inhibitors 

High performance virtual screening tools we built in Chapter 3 can be applied 

for searching novel ligands for many targets whose ligands are available. The 

aim of this chapter is to investigate the applicability of our virtual screening 

method in predicting and searching potential c-Src (Section 5.1) and VEGFR-

2 (Section 5.2) selective kinase inhibitors. c-Src and VEGFR-2 are two 

important kinases that play various roles in tumour progression, invasion, 

metastasis, angiogenesis and survival. New inhibitors for c-Src and VEGFR-2 

are necessary for pharmaceutical research of cancer treatment. 

5.1 Virtual screening of c-Src kinase inhibitors 

5.1.1 c-Src, c-Src inhibitors and cancer 

Src promotes tumour invasion and metastasis, facilitates VEGF-mediated 

angiogenesis and survival in endothelial cells, and enhances growth factor 

driven proliferation in fibroblasts205. It is one of the multiple kinase targets of 

a number of multi-target kinase inhibitors effective in the clinical treatment of 

leukemia and in clinical trials of other cancers86,206,207. The successes and 

problems of these inhibitors have raised significant interest and efforts in 

discovering new Src inhibitors208-210. Several in-silico methods have been used 

for facilitating the search and design of Src inhibitors, which include 

pharmacophore211, QSAR212, and molecular docking209.  
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While these in-silico methods have shown impressive capability in the 

identification of potential Src inhibitors, their applications may be affected by 

such problems as the vastness and sparse nature of chemical space that needs 

to be searched, complexity and flexibility of target structures, difficulties in 

accurately estimating binding affinity and solvation effects, and limited 

diversity of training active compounds33,37,168. It is desirable to explore other 

in-silico methods that complement these methods by expanded coverage of 

chemical space, increased screening speed, and reduced false-hit rates without 

necessarily relying on the modelling of target structural flexibility, binding 

affinity and salvation effects.  

 

In this work, we developed a SVM VS model for identifying Src inhibitors, 

and evaluated its performance by both 5-fold cross validation test and large 

compound database screening test. In 5-fold cross validation test, a dataset of 

Src inhibitors and non-inhibitors was randomly divided into 5 groups of 

approximately equal size, with 4 groups used for training a SVM VS tool and 

1 group used for testing it, and the test process is repeated for all 5 possible 

compositions to derive an average VS performance. In large database 

screening test, a SVM VS tool was developed by using Src inhibitors 

published before 2008, its yield (percent of known inhibitors identified as 

virtual-hits) was estimated by using Src inhibitors reported since 2008 and not 

included in the training datasets, virtual-hit rate and false-hit rate in searching 

large libraries were evaluated by using 13.56M PubChem, 168K MDDR, and 

9,305 MDDR compounds similar in structural and physicochemical properties 

to the known Src inhibitors.  
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PubChem and MDDR contain high percentages of inactive compounds 

significantly different from the known Src inhibitors, and the easily 

distinguishable features may make VS enrichments artificially good202. 

Therefore, VS performance may be more strictly tested by using subsets of 

compounds that resemble the physicochemical properties of the known Src 

inhibitors so that enrichment is not simply a separation of trivial 

physicochemical features158. To further evaluate whether our SVM VS tool 

predict Src inhibitors and non-inhibitors rather than membership of certain 

compound families, distribution of the predicted active and inactive 

compounds in the compound families were analyzed. 

5.1.2 Virtual screening model development 

5.1.2.1 Compound collections and construction of training and 

testing datasets 

We collected 1,020 Src inhibitors, with IC50<50M, from the literatures213-217 

and the BindingDB database110. Our collected Src inhibitors are distributed in 

288 families. The inhibitor selection criterion of IC50<50M was used 

because it covers most of the reported HTS and VS hits218. The structures of 

representative Src inhibitors are shown in Figure 5-1. As few non-inhibitors 

have been reported, putative non-inhibitors were generated by using our 

method for generating putative inactive compounds108,219 (please refer to 

Chapter 3 Section 3.2.2).  

 

In the database screening test, 60.1% of families that contain Src inhibitors 

reported since 2008 are not covered by the Src inhibitor training dataset 
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(inhibitors reported before 2008), and the representative compounds of these 

families were deliberately placed into the inactive training sets as these 

inhibitors are not supposed to be known in our study. As shown in earlier 

studies108,219 and in this work, a substantial percentage of the inhibitors in 

these misplaced inhibitor-containing “non-inhibitor” families were predicted 

as inhibitors by our SVM VS tool. Moreover, a small percentage of the 

compounds in these putative non-inhibitor datasets are expected to be un-

reported and un-discovered inhibitors, their presence in these datasets is not 

expected to significantly affect the estimated false hit rate of SVM. 
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Figure 5-1 The structures of representative c-Src inhibitors  
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5.1.2.2 Molecular descriptors and computational model 

A total of 98 important descriptors were chosen from the chemical descriptors 

calculated by our program MODEL which were used in this work. The details 

of molecular descriptors are explained in Chapter 2 Section 2.2. 

Computational model for virtual screening is developed by using SVM. 

 

5.1.3 Results and Discussion 

5.1.3.1 Performance of SVM identification of Src inhibitors 

based on 5-fold cross validation test 

Table 5-1 shows the 5-fold cross validation test results of SVM identification 

of Src inhibitors and putative non-inhibitors. The inhibitor and non-inhibitor 

prediction accuracies are 87.8%~93.1% and 99.75%~99.88% respectively. 

The overall prediction accuracy Q and Matthews correlation coefficient C are 

99.61%~99.77% and 0.759~0.857 respectively. The inhibitor accuracies of our 

SVM are comparable to or slightly better than the reported accuracies of 

58.3%~67.3% for protein kinase C inhibitors by SVM-RBF and CKD 

methods36, 83% for Lck inhibitors by SVM method218, and 74%~87% for 

inhibitors of any of the 8 kinases (3 Ser/Thr and 5 Tyr kinases) by SVM, 

ANN, GA/kNN, and RP methods94. The non-inhibitor accuracies are 

comparable to the value of 99.9% for Lck inhibitors218 and substantially better 

than the typical values of 77%~96% of other studies36,94. Caution needs to be 

exercised about straightforward comparison of these results, which might be 

misleading because the outcome of VS strongly depends on the datasets and 

molecular descriptors used.  Based on these rough comparisons, SVM appears 

to show good capability in identifying Src inhibitors at low false-hit rates. 
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Similar prediction accuracies were also found from two additional 5-fold cross 

validation studies conducted by using training-testing sets separately generated 

from different random number seed parameters. 
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Table 5-1 Performance of support vector machines for identifying Src 
inhibitors and non-inhibitors evaluated by 5-fold cross validation study. 
 

Cross –

Validation 

Src inhibitors Src non-inhibitors   

Q (%) 

 

 C 

No of 

training/ 

testing 

inhibitors 

TP FN SE(%) No of 

training/ 

testing non-

inhibitors 

TN FP SP(%)   

1 816/204 189 15 92.65% 51966/12992 12959 33 99.75% 99.64% 0.786 

2 816/204 184 20 90.20% 51966/12992 12975 17 99.87% 99.72% 0.823 

3 816/204 179 25 87.75

% 

51966/1299

2 

12965 27 99.79% 99.61% 0.759 

4 816/204 190 14 93.14% 51967/12991 12959 32 99.75% 99.65% 0.794 

5 816/204 190 14 93.14% 51967/12991 12975 16 99.88% 99.77% 0.857 

average    91.47%    99.81% 99.68% 0.804 

SD    0.0212    0.000557 0.000605 0.0336

SE    0.0095    0.00025 0.00027 0.0150

 

5.1.3.2 Virtual screening performance of SVM in searching Src 

inhibitors from large compound libraries 

As outlined in the methods section, we developed a SVM VS tool for 

searching Src inhibitors from large were developed by using Src kinases 

reported before 2008. The VS performance of SVM in identifying Src 

inhibitors reported since 2008 and in searching MDDR and PubChem 

databases is summarised in Table 5-2. The yield in searching Src inhibitors 

reported since 2008 is 66.2%, which is comparable to the reported 50%~94% 



Chapter 5 Virtual Screening of Selective Kinase Inhibitors 

  105 

yields of various VS tools220. Strictly speaking, direct comparison of the 

reported performances of these VS tools is inappropriate because of the 

differences in the type, composition and diversity of compounds screened, and 

in the molecular descriptors, VS tools and their parameters used. The 

comparison cannot go beyond the statistics of accuracies.  

Table 5-2 Virtual screening performance of support vector machines for 
identifying Src inhibitors from large compound libraries 
 

Inhibitors in 

Training Set 

Number of Inhibitors 1020 

Number of Chemical Families Covered by Inhibitors 288 

Inhibitors in Testing 

Set 

Number of Inhibitors 133 

Number of Chemical Families Covered by Inhibitors 65 

Percent of Inhibitors in Chemical Families Covered by 

Inhibitors in Training Set 

39.9% 

Virtual Screening 

Performance 

Yield 66.2% 

Number and Percent of Identified  True Inhibitors 

Outside Training Chemical Families 

43 (32.3%) 

Number and Percent of 13.56M PubChemCompounds 

Identified as Inhibitors 

44,843 

(0.33%) 

Number and Percent of the 168K MDDR Compounds 

Identified as Inhibitors 

1,496 

(0.89%) 

Number and Percent of the 9,305 MDDR Compounds 

Similar to the Known Inhibitors Identified as Inhibitors

719 (7.73%) 

 

We also evaluated virtual-hit rates and false-hit rates of SVM in screening 

compounds that resemble the structural and physicochemical properties of the 

known Src inhibitors by using 9,305 MDDR compounds similar to an Src 

inhibitor in the training dataset. Similarity was defined by Tanimoto similarity 

coefficient ≥0.9 between a MDDR compound and its closest inhibitor219. SVM 
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identified 719 virtual-hits from these 9,305 MDDR similarity compounds 

(virtual-hit rate 7.73%), which suggests that SVM has some level of capability 

in distinguishing Src inhibitors from non-inhibitor similarity compounds. 

Significantly lower virtual-hit rates and thus false-hit rates were found in 

screening large libraries of 168K MDDR and 13.56M PubChem compounds. 

The numbers of virtual-hits and virtual-hit rates in screening 168K MDDR 

compounds are 1,496 and 0.89% respectively. The numbers of virtual-hits and 

virtual-hit rates in screening 13.56M PubChem compounds are 44,843 and 

0.33% respectively.  

 

Substantial percentages of the MDDR virtual-hits belong to the classes of 

antineoplastic, tyrosine-specific protein kinase inhibitors, signal transduction 

inhibitors, antiangiogenic, and antiarthritic (Table 5-3, details in next section). 

As some of these virtual-hits may be true Src inhibitors, the false-hit rate of 

our SVM is at most equal to and likely less than the virtual-hit rate. Hence the 

false-hit rate is <7.73% in screening 9,305 MDDR similarity compounds, 

<0.89% in screening 168K MDDR compounds, and <0.33% in screening 

13.56M PubChem compounds, which are comparable and in some cases better 

than the reported false-hit rates of 0.0054%~8.3% of SVM89,219, 0.08%~3% of 

structure-based methods, 0.1%~5% by other machine learning methods, 

0.16%~8.2% by clustering methods, and 1.15%~26% by pharmacophore 

models220. 
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5.1.3.3 Evaluation of SVM identified MDDR virtual-hits 

SVM identified MDDR virtual-hits were evaluated based on the known 

biological or therapeutic target classes specified in MDDR. Table 5-3 gives 

the MDDR classes that contain higher percentage (≥3%) of SVM virtual-hits 

and the percentage values. We found that 623 (41.6%) of the 1,496 virtual-hits 

belong to the antineoplastic class, which represent 2.9% of the 21,557 MDDR 

compounds in the class. In particular, 231 (15.4%) of the virtual-hits belong to 

the tyrosine-specific protein kinase inhibitor class, which represent 19.6% of 

the 1,181 MDDR compounds in the class. Moreover, 194 (13.0%) and 75 

(5.0%) of the virtual-hits belong to the signal transduction inhibitor and 

antiangiogenic classes, representing 9.5% and 4.6% of the 2,037 and 1,629 

members in these classes respectively. Therefore, many of the SVM virtual-

hits are antineoplastic compounds that inhibit tyrosine kinases and possibly 

other kinases involved in signal transduction and angiogensis pathways. While 

some of these kinase inhibitors might be true Src inhibitors, a significant 

percentage of them are expected to arise from false selection of inhibitors of 

other kinases.  
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Table 5-3 MDDR classes that contain higher percentage (≥3%) of virtual-hits 
identified by SVMs in screening 168K MDDR compounds for Src inhibitors. 
The total number of SVM identified virtual hits is 1,496. 
 
MDDR Classes that Contain 

Higher Percentage (≥3%) of 

Virtual Hits  

No of Virtual Hits 

in Class 

Percentage of Class 

Members Selected as 

Virtual Hits 

Antineoplastic 623 (41.6%) 2.9% 

Tyrosine-Specific Protein Kinase 

Inhibitor 

231 (15.4%) 19.6% 

Signal Transduction Inhibitor 194 (13.0%) 9.5% 

Antiarthritic 176 (11.8%) 1.5% 

Antiallergic/Antiasthmatic 83 (5.5%) 0.8% 

Antihypertensive 76 (5.1%) 0.7% 

Antiangiogenic 75 (5.0%) 4.6% 

Treatment for Osteoporosis 55 (3.68%) 2.2% 

Antidepressant 49 (3.27%) 0.8% 

 

176 (11.8%) of the SVM virtual-hits belong to the antiarthritic class. A 

primary feature of rheumatoid arthritis in synovial tissues is the abnormal 

stimulation of fibrin deposition, angiogenesis and proinflammatory processes, 

which are promoted by thrombin increased IL-6 production via the PAR1 

receptor/PI-PLC/PKC alpha/c-Src/NF-kappaB and p300 signaling 

pathways221. Therefore, Src inhibitors may have some effects against arthritis 

via interference with some of these processes. Moreover, several other kinases 

have been implicated in arthritis. An Abl inhibitor Gleevec has been reported 

to be effective in treatment of arthritis, which is probably due to its inhibition 
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of other related kinases such as c-kit and PDGFR222. EGFR-like receptor 

stimulates synovial cells and its elevated activities may be involved in the 

pathogenesis of rheumatoid arthritis89. VEGF has been related to such 

autoimmune diseases as systemic lupus erythematosus, rheumatoid arthritis, 

and multiple sclerosis223. FGFR may partly mediates osteoarthritis224. PDGF-

like factors stimulates the proliferative and invasive phenotype of rheumatoid 

arthritis synovial connective tissue cells225. Lck inhibition leads to 

immunosuppression and has been explored for the treatment of rheumatoid 

arthritis and asthma226. Therefore, some of the SVM virtual-hits in the 

antiarthritic class may be inhibitors of these kinases or their kinase-likes 

capable of producing antiarthritic activities.  

 

Moreover, 83 (5.5%), 76 (5.1%), 55 (3.7%) and 49 (3.3%) of the SVM virtual 

hits are in the antiallergic/antiasthmatic, antihypertensive, osteoporosis 

treatment and antidepressant classes respectively. Src or Src family kinases 

have been implicated in and the respective inhibitors have shown observable 

effects against these diseases. For instance, Src family kinases and lipid 

mediators have been found to partly control allergic inflammation227. 

Inhibition of Src family kinase-dependent signaling cascades in mast cells may 

exert anti-allergic activity228. Up-regulation of Src signaling has been 

suggested to be important in the profibrotic and proinflammatory actions of 

aldosterone in a genetic model of hypertension, which can be significantly 

reduced by mineralocorticoid receptor blocker and Src inhibitor229. Src 

signalling pathways play critical roles in osteoclasts and osteoblasts, and Src 

inhibitors have been developed as therapeutic agents for bone diseases230,231. 
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Src-family protein tyrosine kinases negatively regulate cerebellar long-term 

depression, which can be recovered by the application of Src-family protein 

tyrosine kinase inhibitors232. Therefore, some of the SVM virtual hits in these 

four MDDR classes may be Src inhibitors or Src family kinase inhibitors 

capable of regulating allergic inflammation, hypertension, osteoporosis and 

depression respectively. 

 

5.1.3.4 Comparison of Virtual Screening Performance of SVM 

with Tanimoto-Based Similarity Searching Method 

To evaluate whether the performance of SVM is due to the SVM classification 

models or to the molecular descriptors used, SVM results were compared with 

those of the Tanimoto-based similarity searching method (please refer to 

Chapter 2 Section 2.3.4) based on the same molecular descriptors, training 

dataset of Src inhibitors reported before 2008, and the testing dataset of Src 

inhibitors reported since 2008 and 168K MDDR compounds. The yield and 

maximum possible false-hit rate of the Tanimoto-based similarity searching 

method is 36.84% and 5.54% respectively. Compared to these results, the 

yield of SVM is smaller than but still comparable to that of the Tanimoto-

based similarity searching method, and the false-hit rate of SVM is 

significantly reduced by ~10 fold. This suggests that SVM performance is due 

primarily to the SVM classification models rather than the molecular 

descriptors used, and SVM is capable of achieving comparable yield at 

significantly reduced false-hit rate as compared to Tanimoto similarity-based 

approach. 
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5.1.3.5 Does SVM select Src inhibitors or membership of 

compound families? 

To further evaluate whether SVM identifies Src inhibitors rather than 

membership of certain compound families, Compound family distribution of 

the identified Src inhibitors and non-inhibitors were analyzed. 48.9% of the 

identified inhibitors belong to the families that contain no known Src 

inhibitors. For those families that contain at least one known Src inhibitor, 

>70% of the compounds (>90% in majority cases) in each of these families 

were predicted as non-inhibitor by SVM. These results suggest that SVM 

identify Src inhibitors rather than membership to certain compound families. 

Some of the identified inhibitors not in the family of known inhibitors may 

serve as potential “novel” Src inhibitors. Therefore, as in the case shown by 

earlier studies108, SVM has certain capacity for identifying novel active 

compounds from sparse as well as regular-sized active datasets. 

 

5.1.4 Further perspective 

Our study suggested that SVM is capable of identifying Src inhibitors at 

comparable yield and in many cases substantially lower false-hit rate than 

those of typical VS tools reported in the literatures. It can be used for 

searching large compound libraries at sizes comparable to the 13.56M 

PubChem and 168K MDDR compounds at low false-hit rates without the need 

to define an applicability domain, i.e. it has a broad applicability domain that 

covers the whole chemical space defined by the current versions of PubChem 

and MDDR databases. The performance of SVM is substantially improved 

against Tanimoto-based similarity search method based on the same datasets 
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and molecular descriptors, suggesting that the VS performance of SVM is 

primarily due to SVM classification models rather than the molecular 

descriptors used. Because of its high computing speed and generalization 

capability for covering highly diverse spectrum compounds, SVM can be 

potentially explored to develop useful VS tools to complement other VS 

methods or to be used as part of integrated VS tools in facilitating the 

discovery of Src inhibitors and other active compounds65,69,71. 

5.2 Virtual screening of VEGFR-2 kinase inhibitors 

5.2.1 VEGFR, VEGFR inhibitors and cancer 

VEGFR regulates angiogenesis, growth, migration and survival233. There are 3 

main VEGFR subtypes, VEGFR-2 mediates almost all of the known cellular 

responses to VEGF, VEGFR-1 modulates VEGFR-2 signaling and acts as a 

dummy/decoy receptor, and VEGFR-3 mediates lymphangiogenesis in 

response to VEGF-C and VEGF-D233. VEGFR inhibitors have been 

successfully used for cancer treatments86,234. While increasing number of 

VEGFR inhibitors have been developed and tested, several problems limit the 

scope of their practical applications. These problems include increased toxicity 

partly due to the targeting of multiple kinases, acquired resistances, and 

reduced tumor responses (VEGFR inhibitors can cause extensive tumor 

necrosis without a marked decrease in tumor size) 235. Moreover, on-target 

toxicity against specific VEGFR subtypes in various tissues is also a 

significant problem for the applications of VEGFR inhibitors236.  The 

successes of VEGFR inhibitors and the encountered problems have led to 

further efforts for discovering new inhibitors86,234.  
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In-silico methods such as pharmacophore237, QSAR63,238,239, fragment-based 

method240, molecular docking241,242, and their combinations237,239 have been 

used for facilitating the search and design of VEGFR inhibitors, which have 

shown impressive capability in the identification of potential VEGFR 

inhibitors. In this work, SVM was tested for its capability in searching 

VEGFR-2 inhibitors from large compound libraries. Our focus on inhibitors of 

VEGFR-2 subtype was based on the availability of reported inhibitors of the 

subtype and the consideration that VEGFR-2 mediates almost all of the known 

cellular responses to VEGF233. The performance of SVM was evaluated by 

both 5-fold cross validation test and large database screening test. In 5-fold 

cross validation test, VEGFR-2 inhibitors and non-inhibitors was randomly 

divided into 5 groups of approximately equal size, with 4 groups used for 

training a SVM VS tool and 1 group used for testing it, and the test process is 

repeated for all 5 possible compositions to derive an average VS performance. 

In large database screening test, SVM was developed by using VEGFR-2 

inhibitors published before 2008, its yield (percent of known inhibitors 

identified as virtual-hits) was estimated by using VEGFR-2 inhibitors reported 

since 2008 and not included in the training datasets, virtual-hit rate and false-

hit rate of the SVM in searching large libraries were evaluated by using 

13.56M PubChem, 168K MDDR, and 13,872 MDDR compounds similar in 

structural and physicochemical properties to the known VEGFR-2 inhibitors.  

 

Databases such as PubChem and MDDR contain high percentages of inactive 

compounds significantly different from VEGFR-2 inhibitors, and the easily 
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distinguishable features may make VS enrichments artificially good202. 

Therefore, VS performance may be more strictly tested by using subsets of 

compounds that resemble the physicochemical properties of the known 

VEGFR-2 inhibitors so that enrichment is not simply a separation of trivial 

physicochemical features158. To further evaluate whether SVM predict 

VEGFR-2 inhibitors and non-inhibitors rather than membership of certain 

compound families, distribution of the predicted active and inactive 

compounds in the compound families were analyzed. Moreover, VS 

performance of SVM for screening MDDR compounds was compared with 

that of Tanimoto similarity search method on the same molecular descriptors, 

training dataset to determine whether the performance of SVM is due to the 

SVM classification models or to the molecular descriptors used. 

 

5.2.2 Virtual screening model development 

5.2.2.1 Compound collection, training and testing datasets, 

molecular descriptors 

Using the inhibitor selection criterion of IC50<10M, which covers most of 

the reported HTS and VS hits243,244,  we collected 1,293 VEGFR-2 inhibitors 

regardless of their activities against other VEGFR subtypes from the 

literatures245-255 and the BindingDB database110. The structures of 

representative VEGFR-2 inhibitors are shown in Figure 5-2. Our collected 

VEGFR-2 inhibitors are distributed in 433 families. As few non-inhibitors 

have been reported, putative non-inhibitors were generated by using our 

method for generating putative inactive compounds108,219 (please refer to 

Chapter 3 Section 3.2.2).  
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Figure 5-2 The structures of representative VEGFR-2 inhibitors 
 
 
In conducting large database screening test, 1293 VEGFR-2 inhibitors 

reported before 2008 were used as a training dataset for developing SVM and 

372 VEGFR-2 inhibitors reported since 2008 were used as an independent 

testing dataset for testing SVM. Only 27.6% of the families that contain 

VEGFR-2 inhibitors reported since 2008 are covered in the families that 

contain at least one VEGFR-2 inhibitor reported before 2008, and the 

representative compounds of these families were deliberately placed into the 
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inactive training sets as these inhibitors are not supposed to be known in our 

study. As shown in earlier studies256 and in this work, a substantial percentage 

of the inhibitors in these misplaced inhibitor-containing “non-inhibitor” 

families were predicted as inhibitors by SVM. Moreover, a small percentage 

of the compounds in these putative non-inhibitor datasets are expected to be 

un-reported and un-discovered inhibitors, their presence in these datasets is 

not expected to significantly affect the estimated false hit rate of SVM. 

 

5.2.2.2 Molecular Descriptors and computational model 

A total of 98 important descriptors were chosen from the chemical descriptors 

calculated by our program MODEL which were used in this work. The detail 

about molecular descriptors is explained in Chapter 2 Section 2.2. 

Computational model for virtual screening is developed by using SVM. 

 

5.2.3 Results and Discussion 

5.2.3.1 VEGFR-2 Inhibitor prediction Performance of SVM 

evaluated by 5-fold cross validation test 

Table 5-4 gives the 5-fold cross validation test results of SVM in identifying 

VEGFR-2 inhibitors and non-inhibitors. The accuracies for predicting 

inhibitors and non-inhibitors are 86.0%~90.0% and 99.62%~99.73% 

respectively. The overall prediction accuracy Q and Matthews correlation 

coefficient C are 99.40%~99.47% and 0.7236~0.7548 respectively. The 

inhibitor accuracies of our SVM are comparable to or better than the reported 

accuracies of 58.3%~67.3% for protein kinase C inhibitors by SVM-RBF and 

CKD methods36, 83% for Lck inhibitors by SVM method218, and 74%~87% 
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for inhibitors of any of the 8 kinases (3 Ser/Thr and 5 Tyr kinases) by SVM, 

ANN, GA/kNN, and RP methods94. The non-inhibitor accuracies are 

comparable to the value of 99.9% for Lck inhibitors218 and substantially better 

than the typical values of 77%~96% of other studies36,94. These are consistent 

with the result of a study of the comparison of SVM with 16 classification 

methods and 9 regression methods, which has shown that SVMs showed 

mostly good performances both on classification and regression tasks but other 

methods proved to be very competitive256. Caution needs to be raised about 

straightforward comparison of these results, which might be misleading 

because the outcome of VS strongly depends on the datasets and molecular 

descriptors used.  Based on these rough comparisons, SVM appears to show 

good prediction capability in identifying VEGFR-2 inhibitors at low false-hit 

rates. Similar prediction accuracies are also found from two additional 5-fold 

cross validation studies conducted by using training-testing sets separately 

generated from different random number seed parameters. 
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Table 5-4 Performance of support vector machines for identifying VEGFR-2 
inhibitors and non-inhibitors evaluated by 5-fold cross validation study. 
 

Cross -

Validation 

VEGFR-2 inhibitors VEGFR-2 non-inhibitors   

Q (%) 

 

 C 

No of 

training/ 

testing 

inhibitors 

TP FN SE(%) No of 

training/ 

testing non-

inhibitors 

TN FP SP(%)   

1 1034/259 227 32 87.64% 51038/12760 12714 46 99.64% 99.40% 0.7236

2 1034/259 231 28 89.19% 51038/12760 12712 48 99.62% 99.42% 0.7334

3 1034/259 233 26 89.96

% 

51038/1275

9 

12715 43 99.66% 99.47% 0.7548

4 1035/258 229 41 88.76% 51039/12759 12718 41 99.68% 99.46% 0.7481

5 1035/258 222 36 86.05% 51039/12759 12725 34 99.73% 99.46% 0.7415

Average    88.32%    99.67% 99.44% 0.7403

SD    0.0152     0.000422 0.000303 0.0122

SE    0.0068    0.000189 0.000136 0.0055

 

5.2.3.2 Virtual screening performance of SVM in searching 

VEGFR-2 inhibitors from large compound libraries 

A SVM in searching VEGFR-2 inhibitors from large libraries was developed 

by using VEGFR-2 inhibitors reported before 2008. The VS performance of 

this SVM in identifying VEGFR-2 inhibitors reported since 2008 and in 

searching MDDR and PubChem databases is summarised in Table 5-5. The 

yield in searching VEGFR-2 inhibitors reported since 2008 is 57.3%, which is 

comparable to the reported 50%~94% yields of various VS tools220. Strictly 
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speaking, direct comparison of the reported performances of these VS tools is 

inappropriate because of the differences in the type, composition and diversity 

of compounds screened, and in the molecular descriptors, VS tools and their 

parameters used. The comparison cannot go beyond the statistics of accuracies 

as the reports are not detailed enough to address questions of whether all 

methods detect the same hit.  

Table 5-5 Virtual screening performance of support vector machines for 
identifying VEGFR-2 inhibitors from large compound libraries. 
 

Inhibitors in 

Training Dataset 

No of Inhibitors 1293 

No of Chemical Families Covered by Inhibitors 433 

Inhibitors in Testing 

Dataset 

No of Inhibitors 372 

No of Chemical Families Covered by Inhibitors 152 

Percent of Inhibitors in Chemical Families Covered by 

Inhibitors in Training Set 

27.63% 

Virtual Screening 

Performance 

Yield 57.26% 

No and Percent of Identified  True Inhibitors Outside 

Training Chemical Families 

114 (53.5%) 

No and Percent of 13.56M PubChemCompounds 

Identified as Inhibitors 

89,572 

(0.66%) 

No and Percent of the 168K MDDR Compounds 

Identified as Inhibitors 

2,717 

(1.62%) 

No and Percent of the 13,872 MDDR Compounds 

Similar to the Known Inhibitors Identified as Inhibitors 

1,714 

(12.36%) 

 

Virtual-hit rates and false-hit rates of SVM in screening compounds that 

resemble the structural and physicochemical properties of the VEGFR-2 

inhibitors were evaluated by using 13,872 MDDR compounds similar to a 

VEGFR-2 inhibitor in the training dataset. Similarity was defined by 
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Tanimoto similarity coefficient ≥0.9 between a MDDR compound and its 

closest dual-inhibitor124. SVM identified 1,714 virtual-hits from these 13,872 

MDDR similarity compounds (virtual-hit rate 12.4%), which suggests that 

SVM has some level of capability in distinguishing VEGFR-2 inhibitors from 

similarity non-inhibitors. Significantly lower virtual-hit rates and thus false-hit 

rates were found in screening large libraries of 168K MDDR and 13.56M 

PubChem compounds. The numbers of virtual-hits and virtual-hit rates in 

screening 168K MDDR compounds are 2,717 and 1.62% respectively. The 

numbers of virtual-hits and virtual-hit rates in screening 3.56M PubChem 

compounds are 89,572 and 0.66% respectively.  

 

Many of the 2,717 MDDR virtual-hits belong to the classes of antineoplastic 

(45.3%), tyrosine-specific protein kinase inhibitor (12.7%), signal transduction 

inhibitor (12.7%), antiarthritic (11.0%), and antiangiogenic (9.3%), 

antihypertensive (5.1%), antiallergic/antiasthmatic (4.3%), and antidepressant 

(3.4%) (Table 5-6, details in next section). As some of these virtual-hits may 

be true VEGFR inhibitors, the false-hit rate of our SVM is at most equal to 

and likely less than the virtual-hit rate. Hence the false-hit rate is ≤12.36% in 

screening 13,872 MDDR similarity compounds, ≤1.62% in screening 168K 

MDDR compounds, and ≤0.66% in screening 13.56M PubChem compounds, 

which are comparable and in some cases better than the reported false-hit rates 

of 0.0054%~8.3% of SVM257, 0.08%~3% of structure-based methods, 

0.1%~5% by other machine learning methods, 0.16%~8.2% by clustering 

methods, and 1.15%~26% by pharmacophore models258. 
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Table 5-6 MDDR classes that contain higher percentage (≥3%) of virtual-hits 
identified by SVMs in screening 168K MDDR compounds for VEGFR-2 
inhibitors. The total number of SVM identified virtual hits is 2,717. 
 

MDDR Classes that Contain Higher 

Percentage (>3%) of Virtual Hits  

No and 

Percentage of 

Virtual Hits in 

Class  

Percentage of Class 

Members 

Selected as Virtual 

Hits 

Antineoplastic 1230 (45.3%) 5.7% 

Tyrosine-Specific Protein Kinase 

Inhibitor 

346 (12.7%) 29.3% 

Signal Transduction Inhibitor 345 (12.7%) 16.9% 

Antiarthritic 300 (11.0%) 2.6% 

Antiangiogenic 256 (9.3%) 15.7% 

Antihypertensive 139 (5.1%) 1.3% 

Antiallergic/Antiasthmatic 118 (4.3%) 1.1% 

Antidepressant 93 (3.4%) 1.5% 

 

5.2.3.3 Evaluation of SVM identified MDDR virtual-hits 

SVM identified MDDR virtual-hits were evaluated based on the known 

biological or therapeutic target classes specified in MDDR. Table 4 gives the 

MDDR classes that contain higher percentage (≥3%) of SVM virtual-hits and 

the percentage values. We found that 1,230 or 45.3% of the 2,717 virtual-hits 

belong to the antineoplastic class, which represent 5.7% of the 21,557 MDDR 

compounds in the class. In particular, 346 or 12.7% of the virtual-hits belong 

to the tyrosine-specific protein kinase inhibitor class, which represent 29.3% 

of the 1,181 MDDR compounds in the class. Moreover, 12.7% and 9.4% of 
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the virtual-hits belong to the signal transduction inhibitor and antiangiogenic 

classes, representing 16.9% and 15.7% of the 2,037 and 1,629 members in the 

two classes respectively. Therefore, many of the SVM virtual-hits are 

antineoplastic compounds that inhibit tyrosine kinases and possibly other 

kinases involved in signal transduction, angiogenesis and other cancer-related 

pathways. Some of these SVM selected kinase inhibitors might have VEGFR 

inhibitory activities, and others were expectedly selected due to false selection 

of inhibitors of other kinases (at ≤1.62%~12.36% false-hit rates).  

 

Substantial percentages of the SVM virtual-hits belong to the antiarthritic 

(11.0%), antihypertensive (5.1%), and antiallergic/antiasthmatic (4.3%) 

therapeutic classes. Some VEGFR inhibitors have been reported to show 

respective therapeutic effects. VEGF has been related to such autoimmune 

diseases as systemic lupus erythematosus, rheumatoid arthritis, and multiple 

sclerosis223. Both VEGFR-1 and VEGFR-2 are expressed in human 

osteoarthritic cartilage259. VEGFR-2 and VEGFR-3 are present in most of the 

sublining blood vessels in arthritic synovium260. A VEGFR-2 inhibitor, 

PTK787/ZK222584, has been reported to cause significant anti-arthritic 

effects in models of rheumatoid arthritis via anti-angiogenic actions124. 

Hypertension is characterized by the development of a hyperdynamic 

circulation which can be markedly inhibited by EGFR-2 inhibitor (e.g. 

SU5416) blockade of the VEGF signaling pathway, leading to the 

consideration of modulation of angiogenesis for the treatment of 

hypertension257. VEGFR-2 and VEGFR-1 have been shown to be involved in 

the pathogenesis of the contact hypersensitivity reaction, and both the 
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induction and elicitation phases of contact hypersensitivity can be inhibited by 

VEGFR inhibitor PTK787/ZK222584258. Therefore, some of the SVM virtual-

hits in the antiarthritic, antihypertensive, and antiallergic/antiasthmatic classes 

may be VEGFR inhibitors capable of producing the respective therapeutic 

effects.  

 

Moreover, 93 (3.4%) of the SVM virtual hits are in the antidepressant class. It 

has been reported that depressive episodes in the context of borderline 

personality disorder may be accompanied by increased serum concentrations 

of VEGF and FGF-2261. VEGF has been implicated in neuronal survival, 

neuroprotection, regeneration, growth, differentiation, and axonal outgrowth, 

which is involved in the pathophysiology of major depressive disorder and the 

higher expression levels of VEGF in the peripheral leukocytes are associated 

with the depressive state262. Therefore, there is a possibility that inhibition of 

VEGFR signalling may have some level of antidepressant effect or act as 

enhancer of other antidepressant agents263, and some of the SVM virtual hits 

in the antidepressant class may be possible VEGFR inhibitors that partly 

explain their antidepressant activities. 

 

5.2.3.4 Comparison of Virtual Screening Performance of SVM 

with Tanimoto-Based Similarity Searching Method 

To evaluate whether the performance of SVM is due to the SVM classification 

models or to the molecular descriptors used, SVM results were compared with 

those of the Tanimoto-based similarity searching method (please refer to 

Chapter 2 Section 2.3.4) based on the same molecular descriptors, training 
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dataset of VEGFR-2 inhibitors reported before 2008, and the testing dataset of 

VEGFR-2 inhibitors reported since 2008 and 168K MDDR compounds. The 

yield and false-hit rate of the Tanimoto-based similarity searching method is 

39.3% and 4.4% respectively. Compared to these results, the yield of SVM is 

significantly improved and the false-hit rate of SVM is substantially reduced. 

This suggests that SVM performance is due primarily to the SVM 

classification models rather than the molecular descriptors used. 

 

5.2.3.5 Does SVM select VEGFR inhibitors or membership of 

compound families? 

To further evaluate whether SVM identifies VEGFR-2 inhibitors rather than 

membership of certain compound families, Compound family distribution of 

the identified VEGFR-2 inhibitors and non-inhibitors were analyzed. A total 

of 53.5% of the identified VEGFR-2 inhibitors belong to the families that 

contain no known VEGFR-2 inhibitors. For those families that contain at least 

one known inhibitor, >70% of the compounds (>90% in majority cases) in 

each of these families were predicted as non-inhibitor by SVM. These results 

suggest that SVM identifies VEGFR-2 inhibitors rather than membership to 

certain compound families. Some of the identified inhibitors not in the family 

of known inhibitors may serve as potential “novel” VEGFR-2 inhibitors. 

Therefore, as in the case shown by earlier studies108, SVM has certain capacity 

for identifying novel active compounds from sparse as well as regular-sized 

active datasets. 
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5.2.4 Further perspective 

By using training dataset of more diverse spectrum of inactive compounds as 

well as substantial number of literature-reported VEGFR-2 inhibitors, SVM 

shows substantial capability in identifying VEGFR-2 inhibitors at comparable 

yield and in many cases substantially lower false-hit rate than those of typical 

VS tools reported in the literatures. It is capable of searching large compound 

libraries at sizes comparable to the 13.56M PubChem and 168K MDDR 

compounds at low false-hit rates without the need to define an applicability 

domain, i.e. it has a broad applicability domain that covers the whole chemical 

space defined by the PubChem and MDDR databases. The performance of 

SVM is significantly better than that of Tanimoto-based similarity search 

method based on the same datasets and molecular descriptors, suggesting that 

the VS performance of SVM is primarily due to SVM classification models 

rather than the molecular descriptors used. Because of their high computing 

speed and generalization capability for covering highly diverse spectrum 

compounds, SVM can be potentially explored to develop useful VS tools to 

complement other VS methods or to be used as part of integrated VS tools in 

facilitating the discovery of VEGFR inhibitors and other active 

compounds65,69,71. It is also possible to discover dual kinase inhibitor of c-Src 

and VEGFR based on our developed models in our further study. 
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Chapter 6 Virtual Screening of Selective Multi-Target 

Kinase Inhibitors 

Multi-target agents have been increasingly explored for enhancing efficacy 

and reducing counter-target activities and toxicities. Efficient virtual 

screening (VS) tools for searching selective multi-target agents are desired. In 

this chapter, combinatorial support vector machines (C-SVMs) were tested as 

VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer 

kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, 

GSK3). This is another application of our high performance virtual screening 

tool in drug discovery. 

6.1 Introduction 

Large percentage of drugs in development, which are typically directed at an 

individual target, frequently show reduced efficacies and undesired safety and 

resistance profiles due to network robustness76, redundancy77, crosstalk78, 

compensatory and neutralizing actions79, anti-target and counter-target 

activities80, and on-target and off-target toxicities81. Multi-target agents and 

drug-combinations have been increasingly explored76,82 for enhancing 

therapeutic efficacies and improving safety and resistance profiles by 

selectively modulating the elements of these counter-target and toxicity 

activities83. In particular, multi-target kinase inhibitors are among the most 

successful clinical anticancer drugs (e.g. sunitinib against PDGFR and 

VEGFR, dasatinib against Abl and Src, sorafenib against Braf and VEGFR, 

and lapatinib against EGFR and HER2) and have been actively pursued in 
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current drug discovery efforts85,86. Methods for efficient search of multi-target 

agents are highly desired. 

 

Virtual screening (VS) methods have been widely explored for facilitating 

lead discovery against individual targets37,89,219.  In particular, molecular 

docking91, pharmacophore92, QSAR93, machine learning94, and combination 

methods95 have been extensively used for VS of single-target kinase 

inhibitors, but few multi-target VS studies have been reported264,265. An 

interesting strategy for identifying multi-target kinase inhibitors is to use  

experimentally obtained small-scale profiles for  predicting inhibitors of  a 

larger kinase set265. In principle, single-target VS tools may be combined to 

collectively identify multi-target agents, which is practically useful if the 

individual VS tools have sufficiently high yields and low false-hit rates. High 

yields compensate for the reduced collective yields of combinatorial VS tools 

(For two statistically-independent VS tools of 50%-70% yields, the collective 

yield of their combination is roughly the product of the yield of individual 

tools, which is 25%-49%). Low false-hit rates are needed for high enrichment 

factors in searching multi-target agents that are significantly fewer in numbers 

and more sparsely distributed in the chemical space than non-dual inhibitors 

(Table 6-1).  

 

An extensively-used machine learning method, support vector machines 

(SVM), may be potentially explored as multi-target VS tools because it has 

shown high yields and low false-hit rates in searching single-target agents108 

sometimes based on sparsely distributed active compounds219. SVM identifies 



Chapter 6 Virtual Screening of Selective Multi‐Target Kinase Inhibitors 

  128 

active compounds in fast-speed by differentiating physicochemical profiles 

rather than structural similarity to active compounds per se, and requires no 

knowledge of target structure and no computation of structural flexibility, 

activity-related features, solvation effects and binding affinities. Multi-target 

VS performance of combinatorial SVMs (C-SMV), which combine the 

prediction of two separate SVM classifier for each the multiple kinases, was 

tested by using them to search dual-inhibitors of combinations of 9 anticancer 

kinase targets EGFR, VEGFR, PDGFR, FGFR, Src, Lck, CDK1, CDK2, and 

GSK3. Figure 6-1 shows the illustration of using combinatorial support vector 

machines method (C-SVM) for searching multi-target inhibitors. These kinase 

targets were selected because of their therapeutic relevance and the availability 

of sufficient number of the known inhibitors and dual-inhibitors. The first six 

kinases belong to the protein kinase group PTK group and the last three 

belong to the CMGC group respectively.  

 

Figure 6-1 Illustration of using combinatorial support vector machines 
method (C-SVM) for searching multi-target inhibitors for searching multi-
target inhibitors. 
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Based on dual-inhibitor availability, we focused on 11 kinase-pairs EGFR-

PDGFR, EGFR-FGFR, EGFR-Src, VEGFR-Lck, PDGFR-FGFR, PDGFR-

Src, Src-Lck, CDK1-CDK2, CDK1-GSK3, CDK2-GSK3, and CDK1-

VEGFR. The first 7 kinase-pairs are intra-PTK group, the 8th to 10th and intra-

CMGC group, and the 11th are inter-PTK-CMGC group kinase-pairs 

respectively, representative of different types of kinase-pairs.  These kinase-

pairs are frequently co-expressed or co-activated in various cancers266,267, and 

targeted by multi-target agents85,86 with good anticancer efficacies.  Inhibitors 

of growth factor receptor tyrosine kinases EGFR, VEGFR, PDGFR and FGFR 

have been successfully used for cancer treatments86,234,268-271. EGFR promotes 

proliferation and survival268. VEGFR regulates angiogenesis and survival234. 

PDGFR modulates angiogenesis and growth, and is one of the multi-targets of 

several approved and clinical trial drugs86,270. FGFR regulates angiogenesis 

and cancer progression, and is one of the multi-targets of several clinical trial 

drugs86,271. Src-family kinases Src and Lck modulate multiple pathways of cell 

growth, differentiation, migration and survival, and are part of the multi-

targets of several marketed and clinical trial drugs86,272. CDKs promote cell 

cycle progression, their inhibition severely limits the aberrant cell-cycle 

process in tumor and induces apoptosis, and CDK inhibitors are being 

developed and tested in clinical trials for anticancer therapeutics273. GSK3 

modulates glucose metabolism and the function of various proteins, and is 

associated with neurodegenerative diseases, stroke, bipolar disorder, diabetes 

and cancer274. GSK3 inhibitors have started to reach clinical development for 

the treatment of various disorders274. 
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Multi-target VS performance was tested by a rigorous method that assumes no 

explicit knowledge of known multi-target agents, because the number of 

known multi-target agents are generally small for many target-pairs. SVM of 

each kinase was trained by using non-dual inhibitors of that kinase. The 

collective yield of C-SVM of each kinase-pair (percent of known dual-

inhibitors identified as dual-inhibitors) was estimated by using known dual-

inhibitors of each kinase-pair. Target selectivity of each C-SVM was assessed 

by using non-dual inhibitors of the kinas-pair and inhibitors of the other 7 

kinases, out of the 9 evaluated kinases, not included in the kinase-pair. 

Virtual-hit rates and false-hit rates in searching large compound libraries were 

evaluated by using 13.56 million PubChem, 168 thousand compounds from 

the MDL Drug Data Report (MDDR) database, and 276-3,806 MDDR 

compounds similar in structural and physicochemical properties to the known 

dual-kinase inhibitors. MDDR contains biologically relevant compounds 

(active against individual molecular target or biological assay) and well-

defined derivatives reported in the patent literature, journals, meetings and 

congresses. PubChem and MDDR contain high percentages of inactive or 

active compounds significantly different from the dual-inhibitors, and the 

easily distinguishable features may make VS enrichments artificially good202. 

Therefore, VS performance is more strictly tested by using subset of MDDR 

compounds similar to the dual-inhibitors so that enrichment is not simply a 

separation of trivial physicochemical features158.  
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VS performance of C-SVM was further compared with those of three VS 

methods, which include a popular molecular docking software DOCK version 

3.5.54 at the DOCK Blaster server275, a similarity-based statistical learning 

method k nearest neighbour (kNN) 73, and a machine-learning method 

probabilistic neural networks (PNN) 276  against the same sets of dual- and 

non-dual kinase inhibitors and 1.02 million Zinc clean-leads dataset (Zinc-

CLD) 111. The specific indicators to be compared are the dual-inhibitor yields 

for both intra-group and inter-group dual-kinase inhibitors, and the false-hit 

rates for non-dual kinase inhibitors and the Zinc-CLD dataset, which enable 

objective assessment of the capability of C-SVM with respect to those of the 

popular as well as machine learning based VS methods. 

6.2 Materials and methods 

6.2.1 Compound collection, training and testing datasets, 

molecular descriptors 

A total of 233-1,316 non-dual inhibitors of EGFR, VEGFR, PDGFR, FGFR, 

Src, Lck, CDK1, CDK2, and GSK3, and 41-230 dual inhibitors of EGFR-

PDGFR, EGFR-FGFR, EGFR-Src, VEGFR-Lck, PDGFR-FGFR, PDGFR-

Src, Src-Lck, CDK1-CDK2, CDK1-GSK3, CDK2-GSK3, and CDK1-

VEGFR, each with IC50≤10M, were collected from the literature277-286 and 

the BindingDB database110. Dual-inhibitors and non-dual inhibitors of a 

kinase-pair refer to inhibitors of both and one of the two kinases respectively 

regardless of their activities against other kinases. Table 6-1 summarises the 

statistics of these inhibitors and MDDR compounds similar to at least one 

dual-inhibitor. Figure 6-2 shows the Venn graph of our collected dual-



Chapter 6 Virtual Screening of Selective Multi‐Target Kinase Inhibitors 

  132 

inhibitors the 11 evaluated kinase pairs and non-dual-inhibitors of the 9 

evaluated kinases. As few non-inhibitors have been reported, putative non-

inhibitors of each kinase were generated by using our published method that 

requires no knowledge of inactive compounds or active compounds of other 

target classes and enables more expanded coverage of the “non-inhibitor” 

chemical space89,219. First, 13.56 million PubChem and 168 thousand MDDR 

compounds were clustered into 8,993 compound families of similar molecular 

descriptors189, which are consistent with the reported 12,800 compound-

occupying neurons (regions of topologically close structures) for 26.4 million 

compounds of up to 11 atoms3, and 2,851 clusters for 171,045 natural 

products190. A total of 42,670- 44,115 compounds extracted from the 8,534-

8,823 families (5 per family) that contain no known inhibitor were used as the 

putative non-inhibitors.  
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Figure 6-2 The Venn graph of the collected dual-inhibitors the 11 evaluated 
kinase-pairs and non-dual-inhibitors of the 9 evaluated kinases. 
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Table 6-1 Datasets of dual-inhibitors and non-dual-inhibitors of the kinase-pairs used for developing and testing combinatorial 
SVM dual-inhibitor virtual screening tools.  Additional sets of 13.56 million PubChem compounds and 168 thousand MDDR 
active compounds were also used for the test. 
 

Kinase Pair  Inhibitors in Training Sets Inhibitors and Other Compounds in Testing Set 
Kinase A – 
Kinase B 

Training Set for Kinase A Training Set for Kinase B Dual Inhibitors of A and B Inhibitors 
of other 7 
kinases 

MDDR 
Compounds 
Similar to 
Dual 
Inhibitors of 
A and B 

 No of 
inhibitors 
of A that 
are non-
inhibitor of 
B (No of 
families) 

No of  
these 
inhibitors 
that are in 
the B 
inhibitor 
families 
(No of 
families) 

No of 
these 
inhibitor
s that are 
in the 
families 
of dual 
inhibitor
s of A 
and B 
(No of 
families) 

No of 
inhibitors 
of B that 
are non-
inhibitor 
of A (No 
of 
families) 

No of 
these 
inhibitors 
that are in 
the A 
inhibitors 
families 
(No of 
families) 

No of  
these 
inhibitors 
that are 
in the 
families 
of dual 
inhibitors 
of A and 
B (No of 
families) 

No of 
dual 
inhibitors 
of A and 
B (No of 
families) 

No (%) of 
dual 
inhibitors in 
the families 
that contain 
both A and 
B non-dual 
inhibitor in 
training sets 

No (%) of 
dual-
inhibitors of 
A and B as 
inhibitor of 
at least one 
of the other 7 
kinases 
studied in 
this work 

No (%) of 
dual-
inhibitors 
of A and 
B as 
inhibitor 
of more 
than 2 of 
the other 7 
kinases 
studied in 
this work 

No of 
inhibitors  

No of 
Compounds 

EGFR-PDGFR 1316 (384) 336 (70) 100 (19) 622 (202) 251 (70) 153 (23) 58 (40) 22 (37.9%) 50 (86.2%) 3 (5.2%) 4097 3806 
EGFR-FGFR 1303 (388) 284 (52) 160 (22) 392 (131) 154 (52) 124 (27) 71 (39) 37 (52.1%) 70 (98.6%) 2 (2.8%) 4327 1001 
EGFR-Src 1262 (372) 331 (73) 166 (31) 748 (216) 243 (73) 168 (38) 112 (64) 46 (41.1%) 46 (41.1%) 2 (1.8%) 3971 1127 
VEGFR-Lck 1232 (427) 220 (69) 102 (17) 445 (171) 206 (69) 52 (11) 61 (23) 29 (47.5%) 37 (60.7%) 0 (0.0%) 4355 413
PDGFR-FGFR 450 (168) 100 (29) 118 (27) 233 (90) 89 (29) 79 (25) 230 (78) 90 (39.1%) 214 (93.0%) 3 (1.3%) 5180 3614 
PDGFR-Src 492 (174) 237 (53) 144 (24) 672 (213) 206 (53) 170 (38) 188 (67) 71 (37.8%) 184 (97.9%) 3 (1.6%) 4741 2893 
Src-Lck 804 (236) 222 (49) 98 (11) 450 (175) 160 (49) 23 (9) 56 (17) 23 (41.1%) 38 (67.9%) 0 (0.0%) 4783 276 
CDK1-CDK2 484 (199) 183 (52) 99 (28) 650 (251) 178 (52) 68 (34) 174 (84) 53 (30.5%) 24 (13.8%) 0 (0.0%) 4785 2629 
CDK1-GSK3 503 (224) 140 (45) 38 (20) 642 (266) 143 (45) 83 (22) 155 (51) 49 (31.6%) 17 (11.0%) 0 (0.0%) 4793 3279 
CDK2-GSK3 749 (280) 226 (62) 58 (23) 722 (275) 249 (62) 107 (24) 75 (44) 31 (41.3%) 17 (22.7%) 0 (0.0%) 4547 1617 
CDK1-VEGFR 651 (251) 250 (75) 23 (8) 1285(434) 251 (75) 70 (17) 41 (25) 7 (17.1%) 0 (0.0%) 0 (0.0%) 4149 427 
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The collected non-dual and dual inhibitors of EGFR, VEGFR, PDGFR, FGFR, 

Src, Lck, CDK1, CDK2, and GSK3 are distributed in 431, 456, 246, 170, 284, 

192, 255, 301, and 295 families respectively, which is consistent with reported 

191 unique scaffolds (154 clusters and 43 singletons) for 565 kinase 

inhibitors94.  Because of the extensive efforts in searching kinase inhibitors, 

the number of undiscovered “inhibitor” families for each kinase in PubChem 

and MDDR is expected to be relatively small, most likely no more than 

several hundred families. The ratio of the “inhibitor” and “inactive” families 

for each kinase (hundreds families vs 8,534-8,823 families contained in 

PubChem and MDDR at present) is expected to be no more than ~999/8500, 

which is <13%. Therefore, putative non-inhibitor training dataset can be 

generated by extracting a few representative compounds from each of the 

families that contain no known inhibitor, with a maximum possible “wrong” 

classification rate of <13% even in the extreme and unlikely cases that all of 

the undiscovered inhibitors are misplaced into the non-inhibitor class (please 

refer to Chapter 3 Section 3.2.2). The noise level generated by up to 13% 

“wrong” negative family represntation is expected to be substantially smaller 

than the maximum 50% false-negative noise level tolerated by SVM47. It is 

noted that 40%-62.2% of the dual-inhibitor families contain no non-dual 

inhibitor of the same kinase-pair, whose representative compounds were 

included in the inactive training datasets as dual-inhibitors are supposed to be 

unknown in our study. A substantial percentage of the dual-inhibitors in these 

“non-inhibitor” families were non-the-less identified as dual-inhibitors by our 

C-SVMs.  
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A total of 98 important descriptors were chosen from the chemical descriptors 

calculated by our program MODEL which were used in this work. The detail 

about molecular descriptors is explained in Chapter 2 Section 2.2. 

6.2.2 Computational models 

SVM is based on the structural risk minimization principle of statistical 

learning theory145. It consistently shows outstanding classification 

performance, is less penalized by sample redundancy, has lower risk for over-

fitting, is capable of accommodating large and structurally diverse training and 

testing datasets, and is fast in performing classification tasks147,148. However, 

the performance of SVM is critically dependent on the diversity of training 

datasets. Because of the limited knowledge of known inhibitors for many 

kinase targets, sufficiently good SVM VS tools may not be readily developed 

for these targets. Non-the-less, SVM VS tools with comparable performances 

or partially improved performances in certain aspects (e.g. reduced false-hit 

rates at comparable inhibitor yield) are useful to complement other VS tools. 

The detailed mathematical algorithms of SVM are described in Chapter 2 

Section 2.3.1. Readers are referred to this section. Our SVM VS models were 

developed by using a hard margin c=100,000 and their  values are in the 

range of 0.1-2. In terms of the numbers of true positives TP (true inhibitors), 

true negatives TN (true non-inhibitors), false positives FP (false inhibitors), 

and false negatives FN (false non-inhibitors), the yield and false-hit rate are 

given by TP/(TP+FN) and FP/(TP+FP) respectively. 
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6.3 Results and discussion 

6.3.1 Dual-inhibitors and non-dual inhibitors of the studied 

kinase-pairs 

As shown in Table 6-1, the numbers of dual-inhibitors and non-dual inhibitors 

of the kinase-pairs are 58, 1,316 and 622 for EGFR-PDGFR, 71, 1,303 and 

392 for EGFR-FGFR, 112, 1,262 and 748 for EGFR-Src, 61, 1,232 and 445 

for VEGFR-Lck, 230, 450 and 233 for PDGFR-FGFR, 188, 492 and 672 for 

PDGFR-Src, 56, 804 and 450 for Src-Lck, 174, 484, and 650 for CDK1-

CDK2, 155, 503, and 642 for CDK1-GSK3, 75, 749, and 722 for CDK2-

GSK3, and 41, 651, and 1285 for CDK1-VEGFR respectively. The dual-

inhibitors and non-dual inhibitors are distributed in 17-84 and 90-427 families 

respectively. Hence, both the numbers and diversity of non-dual inhibitors and 

dual-inhibitors are at reasonable levels for developing and testing VS tools. 

The percentages of dual-inhibitors outside the common families of the non-

dual inhibitors in the training datasets are 62.1% for EGFR-PDGFR, 57.9% 

for EGFR-FGFR, 58.9% for EGFR-Src, 52.5% for VEGFR-Lck, 60.9% for 

PDGFR-FGFR, 62.2% for PDGFR-Src, 58.9% for Src-Lck, 69.5% for CDK1-

CDK2, 68.4% for CDK1-GSK3, 58.7% for CDK2-GSK3, and 82.9% for 

CDK1-VEGFR respectively. Therefore, these dual-inhibitors have substantial 

degree of novelty against non-dual inhibitors. Moreover, 0.0%-98.6% of the 

dual-inhibitors of the kinase-pairs are inhibitor of at least one of the other 7 

kinases, but only up to 5.2% of the dual-inhibitors are inhibitor of at least 3 of 

the other 7 kinases. Hence, most of these dual-inhibitors are non-ubiquitous 

inhibitors and show some degree of kinase selectivity even-though the 

majority of them target more than 2 kinases.  
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Some distinguished features of dual-inhibitors may be probed by evaluating 

the top-6 scaffolds contained in higher percentages of the dual-inhibitors of 

the studied intra-PTK group kinase-pairs, which are shown in Figure 6-3. 

Table 6-2 shows the distribution of these scaffolds in the dual-inhibitors and 

non-dual-inhibitors of the studied intra-PTK group kinase-pairs. Scaffold A is 

contained in 63.8% of EGFR-PDGFR, 76.1% of PDGFR-Src, 33.9% of 

EGFR-Src, 54.9% of EGFR-FGFR and 27.8% of VEGFR-Lck dual-inhibitors 

respectively; Scaffold B is contained in 57.1% of Src-Lck, 29.5% of VEGFR-

Lck and 25.9% of EGFR-Src dual-inhibitors respectively. Scaffold A and 

scaffold B appear to be the backbone of majority of dual-inhibitors of the 

studied kinase-pairs. Scaffold C is mainly contained in 19.6% of EGFR-Src 

dual inhibitors. Scaffold D is mainly contained in 32.4% in EGFR-FGFR and 

4.5% in EGFR-Src dual-inhibitors. Scaffold E is contained in 17.8% of 

PDGFR-FGFR, 8.6% of EGFR-PDGFR, 7.0% of EGFR-FGFR and 6.9% of 

PDGFR-Src dual-inhibitors. Scaffold F is contained in 37.5% of Src-Lck and 

34.4% of VEGFR-Lck dual-inhibitors. These scaffolds are also contained, 

mostly at significantly lower percentage levels, in the non-dual inhibitors of at 

least one of the kinases of the respective kinase-pairs. Therefore, some 

specific variations of side-chain groups of these scaffolds appear to be 

sufficient to convert some dual-inhibitors into non-dual inhibitors, which 

suggest that physicochemical properties as well as structural features are 

important for distinguishing dual and non-dual inhibitors 
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Figure 6-3 Top-6 scaffolds contained in higher percentages of the dual-
inhibitors of the studied intra-PTK group kinase-pairs. 
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Table 6-2 Distribution of top-6 scaffolds in dual-inhibitors of 7 intra-PTK group kinase combinations of EGFR, VEGFR, 
PDGFR, FGFR, Src and Lck, and non-dual inhibitors of the constituent kinases 
 

Kinase Pair Datasets 

Percentage of 

inhibitors 

containing 

scaffold A  

Percentage of 

inhibitors 

containing 

scaffold B 

Percentage of 

inhibitors 

containing 

scaffold C 

Percentage of 

inhibitors 

containing 

scaffold D 

Percentage of 

inhibitors 

containing 

scaffold E 

Percentage of 

inhibitors 

containing 

scaffold F 

EGFR-PDGFR Dual inhibitors 63.8% (37/58) 0% (0/58) 0% (0/58) 1.7% (1/58) 8.6% (5/58) 0% (0/58) 

EGFR non-dual 

inhibitors 

0.2% (3/1316) 6.3% (83/1316) 1.2% (16/1316) 7.7% (101/1316) 0% (0/1316) 0% (0/1316) 

PDGFR non-

dual inhibitors 

20.3% (126/622) 0% (0/622) 0% (0/622) 0% (0/622) 7.1% (44/622) 0% (0/622) 

EGFR-FGFR Dual inhibitors 54.9% (39/71) 0% (0/71) 0% (0/71) 32.4% (23/71) 7.0% (5/71) 0% (0/71) 

EGFR non-dual 

inhibitors 

0.1% (1/1303) 6.4% (83/1303) 1.2% (16/1303) 6.1% (79/1303) 0% (0/1303) 0% (0/1303) 

FGFR non-dual 

inhibitors 

25.5% (100/392) 0% (0/392) 0% (0/392) 2.3% (9/392) 10.0% (39/392) 0.3% (1/392) 

EGFR-Src Dual inhibitors 33.9% (38/112) 25.9% (29/112) 19.6% (22/112) 4.5% (5/112) 2.7% (3/112) 0% (0/112) 

EGFR non-dual 

inhibitors 

0.2% (2/1262) 4.3% (54/1262) 1.6% (20/1262) 7.7% (97/1262) 0.2% (2/1262) 0% (0/1262) 

Src non-dual 

inhibitors 

18.2% (136/748) 10.4% (78/748) 0.8% (6/748) 5.0% (37/748) 1.60% (12/748) 2.8% (21/748) 

VEGFR-Lck Dual inhibitors 27.9% (17/61) 29.5% (18/61) 0%  (0/61) 0%  (0/61) 0%  (0/61) 34.4% (21/61) 

VEGFR non-

dual inhibitors 

0.7% (8/1232) 0.8% (10/1232) 0% (0/1232) 5.4% (66/1232) 4.7% (58/1232) 0% (0/1232) 

Lck non-dual 5.6% (25/445) 10.3% (46/445) 0% (0/445) 1.6% (7/445) 0% (0/445) 1.6% (7/445) 
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inhibitors 

PDGFR-FGFR Dual inhibitors 67.4% (155/230) 0% (0/230) 0% (0/230) 0% (0/230) 17.8% (41/230) 0% (0/230) 

PDGFR non-

dual inhibitors 

1.8% (8/450) 0% (0/450) 0% (0/450) 0.2% (1/450) 1.8% (8/450) 0% (0/450) 

FGFR non-dual 

inhibitors 

11.2% (26/233) 0% (0/233) 0% (0/233) 13.7% (32/233) 1.3% (3/233) 0.4% (1/233) 

PDGFR-Src Dual inhibitors 76.1% (143/188) 0% (0/188) 0% (0/188) 0% (0/188) 6.9% (13/188) 0% (0/188) 

PDGFR non-

dual inhibitors 

2.9% (14/492) 0% (0/492) 0% (0/492) 0.2% (1/492) 7.3% (36/492) 0% (0/492) 

Src non-dual 

inhibitors 

3.7% (25/672) 15.9% (107/672) 1.9% (13/672) 6.3% (42/672) 0.3% (2/672) 3.1% (21/672) 

Src-Lck Dual inhibitors 0% (0/56) 57.1% (32/56) 0% (0/56) 1.8% (1/56) 1.8% (1/56) 37.5% (21/56) 

Src non-dual 

inhibitors 

21.6% (174/804) 9.3% (75/804) 1.6% (13/804) 5.1% (41/804) 1.9% (15/804) 0% (0/804) 

Lck non-dual 

inhibitors 

5.9% (26/450) 7.8% (35/450) 0% (0/450) 1.3% (6/450) 0% (0/450) 2% (9/450) 
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6.3.2 Virtual screening performance of Combinatorial SVM in 

searching kinase dual-inhibitors from large libraries 

The VS performance of C-SVMs in identifying dual-inhibitors of the 11 

kinase-pairs is summarised in Table 6-3 and further shown in Figure 6-4.  

The parameters of the developed SVM classification models for the evaluated 

kinases are in the ranges of =0.5~0.8. The dual-inhibitor yields are 27.6% for 

EGFR-PDGFR, 40.9% for EGFR-FGFR, 26.8% for EGFR-Src, 52.6% for 

VEGFR-Lck, 33.9% for PDGFR-FGFR, 38.3% for PDGFR-Src, 48.2% for 

Src-Lck, 52.3% for CDK1-CDK2, 49.0% for CDK1-GSK3, 57.3% for CDK2-

GSK3, and 12.2% for CDK1-VEGFR respectively. The yields for the intra-

PTK group and intra-CMGC group kinase pairs are comparable to the 

expected 25%-49% yields of combinations of good VS tools with individual 

yields of 50%-70%. Therefore, C-SVMs show reasonably good capability in 

identifying multi-target agents for kinase-pairs within a protein kinase group 

without requiring explicit knowledge of multi-target agents. However, the 

yield for the inter-PTK-CMGC kinase group CDK1-VEGFR kinase-pair is 

only 12.2%, which is significantly lower than those for the intra-PTK group 

and intra-CMGC group kinase-pairs. Structural analysis of the inhibitors of 

CDK1 and VEGFR binding sites has revealed that inhibitors generally make 

extensive favorable van der Waals contacts and several hydrogen bonds with 

Lys33, Leu83 and Asp86 at the hinge region of CDK1, and with Cys919, 

Asn923, Cys1045 and Asp1046 at the hinge region of VEGFR respectively, 

relatively small structural changes may easily reduce the optimal fit to the 

binding site, and some dual-inhibitors are able to bind to both kinases because 

of their structural flexibility to tolerate the different binding site geometry and 
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to form alternative hydrogen bonds287. In some cases, dual selectivity of 

inhibitors of inter-kinase-group kinase-pairs may require structural flexibility 

to fit in a hydrophobic pocket conserved in both kinase classes288. Such special 

structural features in dual-inhibitors of inter-kinase-group kinase-pairs are not 

necessarily needed and thus may not be found in non-dual inhibitors of 

individual kinases used in our training datasets, which likely be an important 

reason for the reduced yield of C-SVM in identifying CDK1-VEGFR dual-

inhibitors. The smaller number of known CDK1-VEGFR dual-inhibitors may 

also affect the accurate assessment of VS outcome. 

 

Figure 6-4 The VS performance of C-SVMs in identifying dual-inhibitors of 
11 combinations of EGFR, VEGFR, PDGFR, FGFR, Src, Lck, CDK1, CDK2, 
and GSK3 
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Table 6-3 Virtual screening performance of combinatorial SVMs for identifying dual-inhibitors of 11 combinations of EGFR, 
VEGFR, PDGFR, FGFR, Src, Lck, CDK1, CDK2, and GSK3 
 
Kinase  Virtual Screening Performance 

  Dual inhibitors Non-dual inhibitors of 
the same kinase pair 

Inhibitors of 
other 7 
kinases 

MDDR 
compounds 
similar to 
dual 
inhibitors 

All 168 
thousand 
MDDR 
compounds 

13.56 million 
PubChem 
comnds 

1.02 million 
Zinc clean-leads 
dataset 

  Yield No (%) of 
identified 
true hits 
outside the 
common 
training 
active 
families of 
both kinases 

False hit 
rate for 
inhibitors 
of kinase 
A 

False hit 
rate for 
inhibitors 
of kinase 
B 

False hit rate  Virtual hit 
rate (No of 
virtual hits) 

Virtual hit 
rate (No of 
virtual hits) 

Virtual hit rate 
(No of virtual 
hits) 

Virtual hit rate 
(No of virtual 
hits) 

EGFR-PDGFR 27.60% 9 (15.5%) 9.20% 14.30% 1.88% 1.5% (57) 0.10% (175) 0.031% (4155) 0.025% (257) 

EGFR-FGFR 40.90% 6 (8.5%) 10.10% 8.70% 1.06% 6.5% (65) 0.07% (126) 0.016% (2200) 0.004% (36) 

EGFR-Src 26.80% 13 (11.6%) 12.90% 11.10% 1.49% 2.13% (24) 0.096% (162) 0.033% (4471) 0.007% (76) 

VEGFR-Lck 52.60% 8 (13.1%) 6.60% 29.20% 2.80% 5.1% (21) 0.10% (170) 0.036% (4817) 0.011% (113) 

PDGFR-FGFR 33.90% 35 (15.2%) 15.60% 22.30% 0.98% 1.4% (51) 0.057% (95) 0.013% (1746) 0.0008% (8) 

PDGFR-Src 38.30% 30 (16.0%) 25.80% 11.60% 1.81% 2.9% (84) 0.104% (175) 0.021% (2799) 0.001% (14) 

Src-Lck 48.20% 9 (16.1%) 15.80% 18.70% 0.98% 9.4% (26) 0.078% (131) 0.020% (2674) 0.002% (25) 

CDK1-CDK2 52.30% 57 (32.8%) 39.20% 48.10% 3.39% 0.34% (9) 0.075% (126) 0.022% (2953) 0.014% (139) 

CDK1-GSK3 49.00% 41 (26.5%) 38.40% 37.40% 4.30% 0.30% (10) 0.028% (47) 0.016% (2218) 0.016% (159) 

CDK2-GSK3 57.30% 24 (32.0%) 36.80% 37.70% 2.99% 0.43% (7) 0.085% (142) 0.021% (2901) 0.020% (203) 

CDK1-VEGFR 12.20% 0 (0.0%) 14.00% 3.70% 4.77% 0.0% (0) 0.007% (12) 0.023% (3113) 0.002% (19) 
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Target selectivity was tested by using C-SVMs to screen the 233-1,316 non-

dual inhibitors of the 11 kinase-pairs, which misidentified 9.2% and 14.3% of 

the non-dual inhibitors of the kinase-pair as dual-inhibitors for EGFR-PDGFR, 

10.1% and 8.7% for EGFR-FGFR, 12.9% and 11.1% for EGFR-Src, 6.6% and 

29.2% for VEGFR-Lck, 15.6% and 22.3% for PDGFR-FGFR, 25.8% and 

11.6% for PDGFR-Src, 15.8% and 18.7% for Src-Lck, 39.2% and 48.1% for 

CDK1-CDK2, 38.4% and 37.4% for CDK1-GSK3, 36.8% and 37.7% for 

CDK2-GSK3, and 14.0% and 3.7% for CDK1-VEGFR respectively. 

Therefore, C-SVMs are reasonably selective in distinguishing dual-inhibitors 

from non-dual inhibitors. There are two possible reasons for the 

misidentification of a substantial percentage of non-dual inhibitors as dual-

inhibitors. First, SVMs were trained by non-dual inhibitors only, which may 

not fully distinguish dual and non-dual inhibitors. Secondly, some of the 

misidentified non-dual inhibitors are probably true dual-inhibitors not yet 

experimentally tested for multi-target activities. It is noted that “mistaken” 

selection of these non-dual inhibitors is still useful for searching single-target 

leads. 

 

Target selectivity was further tested by using C-SVMs to screen the 3,971-

5,180 inhibitors of the other 7 kinases not included in a particular kinase-pair. 

We found that 1.88% of these inhibitors were misidentified as dual-inhibitors 

for EGFR-PDGFR, 1.06% for EGFR-FGFR, 1.49% for EGFR-Src, 2.80% for 

VEGFR-Lck, 0.98% for PDGFR-FGFR, 1.81% for PDGFR-Src, 0.98% for 

Src-Lck, 3.39% for CDK1-CDK2, 4.30% for CDK1-GSK3, 2.99% for CDK2-

GSK3, and 4.77% for CDK1-VEGFR respectively. These showed that C-
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SVMs are fairly selective in separating inhibitors of specific kinase-pair from 

those of other kinases.  

 

Virtual-hit rates and false-hit rates of C-SVMs in screening compounds that 

resemble the structural and physicochemical properties of the training datasets 

were evaluated by using 276-3,614 MDDR compounds similar to a dual-

inhibitor of each kinase-pair. Similarity was defined by Tanimoto similarity 

coefficient ≥0.9 between a MDDR compound and its closest dual-inhibitor219. 

C-SVMs identified 57 virtual-hits from 3,806 MDDR similarity compounds 

(virtual-hit rate 1,5%) for EGFR-PDGFR, 65 from 1,001 MDDR compounds 

(6.5%) for EGFR-FGFR, 24 from 1,127 MDDR compounds (2.1%) for 

EGFR-Src, 21 from 413 MDDR compounds (5.1%) for VEGFR-Lck, 51 from 

3,614 MDDR compounds (1.4%) for PDGFR-FGFR, 84 from 2,893 MDDR 

compounds (2.9%) for PDGFR-Src, 26 from 276 MDDR compounds (9.4%) 

for Src-Lck, 9 from 2,629 MDDR compounds (0.34%) for CDK1-CDK2, 10 

from 3,279 MDDR compounds (0.30%) for CDK1-GSK3, 7 from 1,617 

MDDR compounds (0.43%) for CDK2-GSK3, and 0 from 505 MDDR 

compounds (0.0%) for CDK1-VEGFR respectively.  

 

Significantly lower virtual-hit rates and thus false-hit rates were found in 

screening large libraries of 168 thousand MDDR and 13.56 million PubChem 

compounds.  The numbers of virtual-hits and virtual-hit rates in screening 168 

thousand MDDR compounds are 175 and 0.1% for EGFR-PDGFR, 126 and 

0.07% for EGFR-FGFR, 162 and 0.096% for EGFR-Src, 170 and 0.1% for 

VEGFR-Lck, 95 and 0.057% for PDGFR-FGFR, 175 and 0.104% for 
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PDGFR-Src, and 131 and 0.078% for Src-Lck, 126 and 0.075% for CDK1-

CDK2, 47 and 0.028% for CDK1-GSK3, 142 and 0.085% for CDK2-GSK3 

and 12 and 0.007% for CDK1-VEGFR respectively. The numbers of virtual-

hits and virtual-hit rates in screening 13.56M PubChem compounds are 4,155 

and 0.031% for EGFR-PDGFR, 2,200 and 0.015% for EGFR-FGFR, 4,471 

and 0.033% for EGFR-Src, 4,817 and 0.036% for VEGFR-Lck, 1,746 and 

0.013% for PDGFR-FGFR, 2,799 and 0.021% for PDGFR-Src, 2,674 and 

0.02% for Src-Lck, 2,953 and 0.022% for CDK1-CDK2, 2,218 and 0.016% 

for CDK1-GSK3, 2,901 and 0.021% for CDK2-GSK3, and 3,113 and 0.023% 

for CDK1-VEGFR respectively.  

 

Substantial percentages of the MDDR virtual-hits belong to the classes of 

antineoplastic, tyrosine-specific protein kinase inhibitors, and signal 

transduction inhibitors (Table 6-5, details in next section). As some of these 

virtual-hits may be true dual-inhibitors, the actual number of true false-hits 

may be smaller than the total number of virtual-hits for each kinase-pair. 

Hence, the false-hit rates of our combinatorial SVMs are at most equal to and 

likely less than the virtual-hit rates. Hence the false-hit rates are ≤1.4%-9.4% 

in screening 276-3,614 MDDR similarity compounds, ≤0.057%-0.104% in 

screening 168 thousand MDDR compounds, and ≤0.013%-0.036% in 

screening 13.56 million PubChem compounds, which are comparable and in 

some cases better than single-target false-hit rates of 0.0054%-8.3% of single-

target SVMs89,219, 0.08%-3% of structure-based methods, 0.1%-5% by other 

machine learning methods, 0.16%-8.2% by clustering methods, and 1.15%-

26% by pharmacophore models220. 
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6.3.3 Comparison of the performance of Combinatorial SVM 

with other virtual screening methods  

The VS performance of C-SVMs was further compared with DOCK 3.5.54 at 

the DOCK Blaster server275, kNN73, and PNN276 by using the common testing 

datasets composed of 41~230 dual-inhibitors of the 11 evaluated kinase-pairs 

(set-1), 3,971~5,180 non-dual inhibitors of the 9 evaluated kinases (set-2), and 

1.02 million Zinc clean-leads dataset (Zinc-CLD) 111 (set-3)  respectively. 

DOCK VS studies were conducted against the protein crystal structures 

typically used in DOCK Blaster VS studies275. Specifically, the PDB entry for 

EGFR, FGFR, c-Src, VEGFR, CDK2, Lck, and GSK3 are 3BEL, 3C4F, 

1YOL, 1Y6B, 2A4L, 2OG8, and 1Q5K respectively275.  Moreover, a modelled 

3D structure of PDGFR in the well-established molecular docking 

benchmarking sets158  was used for PDGFR. CDK1 was not evaluated because 

we were unable to find a published experimental or modelled 3D structure.  

 

In DOCK studies, the dual-inhibitor yield was estimated based on the 

screening results of set-1 and set-2 compounds, which is the percentage of the 

known dual-inhibitors made to the top-50% of the successfully docked set-1 

and set-2 compounds for every kinase of a kinase-pair, the false-hit rate for 

misidentifying inhibitors of other 7 kinases as dual-inhibitors of a kinase-pair 

is the percentage of these inhibitors made to the top-50% of the successfully 

docked set-1 and set-2 compounds for every kinase of that kinase-pair, and the 

virtual-hit rate for the Zinc-CLD compounds is the percentage of these 

compounds made to the top-2% of the successfully docked set-3 compounds 
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for every kinase of that kinase-pair. The kNN and PNN methods and software 

used in this study were described in Chapter 2 Section 2.3.2 and Section 

2.3.3. The training datasets of kNN and PNN and the methods for estimating 

the yield and virtual hit rate are the same as those of SVM. The parameters of 

the developed k-NN and PNN classification models for the evaluated kinases 

are in the ranges of k=1 or 3, and δ=0.003~0.11 respectively. The CPU time is 

~0.12, ~8, and ~5.5 hours per kinase target of SVM, kNN, and PNN models in 

screening the 1.02 million Zinc clean-leads dataset respectively. The 

classification speed of SVM is faster than that of k-NN and PNN due to the 

fact that SVM typically uses 0.007~0.017% of the training dataset as support 

vectors for classification, whereas k-NN and PNN use the whole training 

dataset. It took ~ 2 weeks to get the docking results from the DOCK Blaster 

server for screening the whole Zinc clean-leads dataset per kinase target. 

 

Table 6-4 and Figure 6-5 shows the comparison of the performance of C-

SVMs with the other three VS methods for identifying dual-inhibitors of 11 

combinations of EGFR, VEGFR, PDGFR, FGFR, Src, Lck, CDK1, CDK2, 

and GSK3 from the three common testing datasets. Overall, the yields of all 

VS methods are comparable, mostly in the ranges of 21.3%~57.3% for the 

intra-PTK and intra-CMGC group kinase-pairs and 12.2%~19.5% for the 

inter-PTK-CMGC group kinase-pair. C-SVM, kNN and PNN also produced 

comparable false hit-rates, at 0.98%~6.05%, for misidentifying inhibitors of 

other 7 kinases as dual-inhibitors of the evaluated kinase-pairs, with SVM 

showing slightly lower false hit-rates for the majority of the evaluated kinase-

pairs.  



Chapter 6 Virtual Screening of Selective Multi‐Target Kinase Inhibitors 

  150 

 

For the 8 kinase-pairs with available 3D structure, DOCK produced higher 

false hit-rates than other three evaluated VS methods in misidentifying 

inhibitors of other 7 kinases as dual-inhibitors. These false-hit rates may be 

significantly reduced by adjusting the docking cut-off values for individual 

kinases, e.g. from top-50% to top-10%, which may however lead to 

significantly reduced yields.  High false-positive rates has been a common 

issue in structure-based VS, and the false-positives in kinase docking studies 

arise partly from the inability to favourably score certain key hydrogen-

binding interactions required for kinase binding and to discriminate 

conformational artifacts of docked ligands60. False-hit rates can be 

significantly reduced by such strategies as the incorporation of the reported 

kinase binding features into docking constrains60, consensus scoring using 

multiple ligand information and maximum common binding modes for 

multiple kinases105, and combining docking with pharmacophore filtering289. 

 

C-SVM produced substantially lower virtual-hit rates (0.008%~0.025%) than 

those (0.009%~0.348%) of the other three VS methods for identifying the 

Zinc-CLD compounds as virtual dual-inhibitors of the evaluated kinase-pairs. 

The numbers of Zinc-CLD compounds identified as virtual-hits by C-SVM are 

in the range of 8~203, compared to those of 1439~3963, 96~1406, and 

332~2830 by DOCK, kNN, and PNN respectively. The numbers of un-

discovered dual-inhibitors of the evaluated kinase-pairs in the Zinc-CLD are 

un-known. It is noted that only 12.1% of the known dual-inhibitors of the 

evaluated kinase-pairs and 14.0% the known non-dual inhibitors of the 
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evaluated kinases satisfy the criteria used for assembling the Zinc-CLD. 

Therefore, the numbers of un-discovered dual-inhibitors in the Zinc-CLD are 

expected to be very small, most likely fewer than 100. Based on this estimate, 

the minimum and maximum numbers of false-hits of C-SVM, DOCK, kNN, 

and PNN are 0~103 and 8~203, 1339~3863 and 1439~3963, 0~1306 and 

96~1406, and 232~2730 and 332~2839 respectively. C-SVM appears to show 

substantially lower false-hit rates than those of the other three VS methods in 

screening a large compound database. 

 

 
Figure 6-5 The comparison of the performance of C-SVMs with the other 
three VS methods DOCK, kNN and PNN for identifying dual-inhibitors of 11 
combinations of EGFR, VEGFR, PDGFR, FGFR, Src, Lck, CDK1, CDK2, 
and GSK3. The labels S, D, K, P beneath the performance bars represent C-
SVM, DOCK, kNN, and PNN respectively.
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Table 6-4 Comparison of the performance of combinatorial SVMs with other virtual screening methods for identifying dual-
inhibitors of 11 combinations of EGFR, VEGFR, PDGFR, FGFR, Src, Lck, CDK1, CDK2, and GSK3. 
 

Kinase  

Pair 

Virtual Screening Performance 

  SVM KNN PNN DOCK 

  Yield of 

Dual 

inhibitors 

False Hit 

Rate for 

Predicting 

Inhibitors 

of Other 7 

Kinases 

as Dual 

Inhibitor 

of the 

Kinase 

Pair 

Virtual 

hit rate 

(No of 

virtual 

hits) for 

screening 

1.02 

million 

Zinc 

clean-

leads 

dataset 

Yield of 

Dual 

inhibitors 

False Hit 

Rate for 

Predicting 

Inhibitors 

of Other 7 

Kinases 

as Dual 

Inhibitor 

of the 

Kinase 

Pair 

Virtual 

hit rate 

(No of 

virtual 

hits) for 

screening 

1.02 

million 

Zinc 

clean-

leads 

dataset 

Yield of 

Dual 

inhibitors 

False Hit 

Rate for 

Predicting 

Inhibitors 

of Other 7 

Kinases 

as Dual 

Inhibitor 

of the 

Kinase 

Pair 

Virtual 

hit rate 

(No of 

virtual 

hits) for 

screening 

1.02 

million 

Zinc 

clean-

leads 

dataset 

Yield of 

Dual 

inhibitors 

False Hit 

Rate for 

Predicting 

Inhibitors 

of Other 7 

Kinases 

as Dual 

Inhibitor 

of the 

Kinase 

Pair 

Virtual 

hit rate 

(No of 

virtual 

hits) for 

screening 

1.02 

million 

Zinc 

clean-

leads 

dataset 

EGFR-

PDGFR 

27.60% 1.88% 0.025% 

(257) 

34.50% 2.88% 0.112% 

(1144) 

36.20% 3.49% 0.217% 

(2211) 

8.60% 25.04% 0.141% 

(1439) 

EGFR-

FGFR 

40.90% 1.06% 0.004% 

(36) 

52.50% 2.22% 0.057% 

(579) 

56.30% 3.03% 0.095% 

(971) 

28.20% 33.93% 0.247% 

(2516) 

EGFR-

Src 

26.80% 1.49% 0.007% 

(76) 

29.50% 2.90% 0.081% 

(824) 

37.50% 4.53% 0.107% 

(1095) 

27.70% 35.28% 0.158% 

(1615) 

VEGFR-

Lck 

52.60% 2.80% 0.011% 

(113) 

42.60% 3.33% 0.091% 

(927) 

49.20% 4.55% 0.167% 

(1700) 

45.90% 34.14% 0.236% 

(2404) 
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PDGFR-

FGFR 

33.90% 0.98% 0.0008% 

(8) 

31.30% 2.51% 0.009% 

(96) 

46.50% 4.27% 0.033% 

(332) 

17.00% 25.68% 0.291% 

(2968) 

PDGFR-

Src 

38.30% 1.81% 0.001% 

(14) 

40.40% 3.27% 0.048% 

(494) 

48.40% 4.41% 0.105% 

(1070) 

14.40% 19.45% 0.144% 

(1468) 

Src-Lck 48.20% 0.98% 0.002% 

(25) 

50.00% 2.26% 0.029% 

(294) 

53.60% 2.82% 0.037% 

(376) 

53.60% 37.07% 0.348% 

(3542) 

CDK1-

CDK2 

52.30% 3.39% 0.014% 

(139) 

18.40% 2.03% 0.135% 

(1377) 

21.30% 2.97% 0.367% 

(3738) 

N.A N.A N.A 

CDK1-

GSK3 

49.00% 4.30% 0.016% 

(159) 

32.30% 2.51% 0.131% 

(1331) 

37.40% 4.27% 0.281% 

(2865) 

N.A N.A N.A 

CDK2-

GSK3 

57.30% 2.99% 0.020% 

(203) 

32.00% 2.31% 0.118% 

(1203) 

41.30% 2.88% 0.245% 

(2498) 

24.50% 40.55% 0.389% 

(3963) 

CDK1-

VEGFR 

12.20% 4.77% 0.002% 

(19) 

17.10% 5.01% 0.138% 

(1409) 

19.50% 6.05% 0.278% 

(2830) 

N.A N.A N.A 
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6.3.4 Evaluation of Combinatorial SVM identified MDDR 

virtual-hits 

C-SVM identified MDDR virtual-hits were evaluated based on the known 

biological or therapeutic target classes specified in MDDR. Table 6-5 gives 

the MDDR classes that contain higher percentage (≥9%) of C-SVM virtual-

hits and the percentage values. We found that 58-110 or 50%-62% of the 95-

175 virtual-hits belong to the antineoplastic class, which represent 0.30%-

0.51% of the 21,557 MDDR compounds in the class. In particular, 34-71 or 

21%-40% of the virtual-hits belong to the tyrosine-specific protein kinase 

inhibitor class, which represent 2.9%-6.0% of the 1,181 MDDR compounds in 

the class. Moreover, 13%-28% and 9%-14% of the virtual-hits belong to the 

signal transduction inhibitor and antiangiogenic classes, representing 0.83%-

2.4% and 0.98%-1.5% of the 2,037 and 1,629 members in the two classes 

respectively. Therefore, many of the C-SVM virtual-hits are antineoplastic 

compounds that inhibit tyrosine kinases and possibly other kinases involved in 

signal transduction, angiogenesis and other cancer-related pathways. While 

some of these kinase inhibitors might be true dual-inhibitors of specific 

kinase-pairs, the majority of them are expected to arise from false selection of 

non-dual inhibitors of the same kinase-pairs (at 6.6%-29.2% false-hit rates) 

and inhibitors of other kinases (at 0.2%-12.7% false-hit rates).  

 

Some of the C-SVM virtual-hits belong to the antiarthritic class. Five of our 

evaluated kinases or their kinase-likes have been linked to arthritis in the 

literature. EGFR-like receptor stimulates synovial cells and its elevated 

activities may be involved in the pathogenesis of rheumatoid arthritis89. VEGF 
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has been related to such autoimmune diseases as systemic lupus 

erythematosus, rheumatoid arthritis, and multiple sclerosis223. FGFR may 

partly mediates osteoarthritis224. PDGF-like factors stimulates the proliferative 

and invasive phenotype of rheumatoid arthritis synovial connective tissue 

cells225. Lck inhibition leads to immunosuppression and has been explored for 

the treatment of rheumatoid arthritis and asthma226. Therefore, some of the C-

SVM virtual-hits in the antiarthritic class may be inhibitors of our evaluated 

kinases or their kinase-likes capable of producing antiarthritic activities.  

 

Moreover, some of the C-SVM virtual-hits for PDGFR-FGFR belong to the 

atherosclerosis therapy class. Both kinases have been implicated in 

atherosclerosis. PDGF drives pathological mesenchymal responses in such 

vascular disorders as atherosclerosis, restenosis, pulmonary hypertension, 

retinal diseases, and fibrotic diseases290. Multiple FGFRs are elevated in 

therosclerotic lesions in apoE-/- micand and active FGFR-1 signalling 

promotes atherosclerosis development via increased SMC proliferation and by 

augmenting macrophage accumulation via increased expression of MCP-1 and 

factors promoting macrophage retention in lesions291. Therefore, some of the 

C-SVM virtual-hits in the atherosclerosis therapy may be the inhibitors of the 

two kinases. 
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Table 6-5  MDDR classes that contain higher percentage (≥9%) of virtual-hits identified by combinatorial SVMs in screening 
168 thousand MDDR compounds for dual-inhibitors of 11 combinations of EGFR, VEGFR, PDGFR, FGFR, Src, Lck, CDK1, 
CDK2, and GSK3. 

 
Kinase Pair No of SVM 

Identified Virtual 
Hits 

MDDR Classes that Contain Higher Percentage of Virtual Hits No of Virtual 
Hits in Class 

Percentage of Class 
member as Virtual 
Hits 

EGFR-PDGFR 175 Antineoplastic 110 0.50% 

Tyrosine-Specific Protein Kinase Inhibitor 71 6.00% 

Signal Transduction Inhibitor 39 2.00% 

Antiangiogenic 25 1.50% 

Antiarthritic 21 0.20% 

EGFR-FGFR 126 Antineoplastic 78 0.40% 

Tyrosine-Specific Protein Kinase Inhibitor 47 4.00% 

Antiarthritic 37 0.30% 

Signal Transduction Inhibitor 23 1.10% 

Antiangiogenic 16 1.00% 

EGFR-Src 162 Antineoplastic 95 0.40% 

Tyrosine-Specific Protein Kinase Inhibitor 42 3.60% 

Signal Transduction Inhibitor 39 1.90% 

Antiangiogenic 21 1.30% 

Antiarthritic 15 0.10% 

VEGFR-Lck 170 Antineoplastic 87 0.40% 

Antiarthritic 42 0.40% 

Tyrosine-Specific Protein Kinase Inhibitor 36 3.00% 

Signal Transduction Inhibitor 31 1.50% 

Antiangiogenic 16 1.00% 
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PDGFR-FGFR 95 Antineoplastic 58 0.30% 

Tyrosine-Specific Protein Kinase Inhibitor 27 2.30% 

Signal Transduction Inhibitor 22 1.10% 

Atherosclerosis Therapy 10 0.90% 

Antiarthritic 10 0.10% 

PDGFR-Src 175 Antineoplastic 103 0.50% 

Signal Transduction Inhibitor 49 2.40% 

Tyrosine-Specific Protein Kinase Inhibitor 40 3.40% 

Antiangiogenic 16 1.00% 

Src-Lck 131 Antineoplastic 65 0.30% 

Tyrosine-Specific Protein Kinase Inhibitor 34 2.90% 

Antiarthritic 23 0.20% 

Signal Transduction Inhibitor 17 0.80% 

Antineoplastic Enhancer 14 2.20% 

CDK1-CDK2 126 Antineoplastic 87 0.40% 

Protein Kinase C Inhibitor 23 4.02% 

Antiviral 20 0.51% 

Tyrosine-Specific Protein Kinase Inhibitor 19 1.61% 

Signal Transduction Inhibitor 14 0.69% 

CDK1-GSK3 47 Antineoplastic 27 0.13% 

Tyrosine-Specific Protein Kinase Inhibitor 10 0.85% 

Antihypertensive 5 0.05% 

Protein Kinase C Inhibitor 5 0.87% 

Antidepressant 4 0.06% 

CDK2-GSK3 142 Antineoplastic 100 0.46% 

Protein Kinase C Inhibitor 28 4.90% 



Chapter 6 Virtual Screening of Selective Multi‐Target Kinase Inhibitors 

  158

Antihypertensive 21 0.19% 

Antiviral 20 0.51% 

Signal Transduction Inhibitor 18 0.88% 

CDK1-VEGFR 12 Antineoplastic 5 0.02% 

Tyrosine-Specific Protein Kinase Inhibitor 3 0.25% 

Neuronal Injury Inhibitor 2 0.04% 

Antiangiogenic 2 0.12% 

Antiarthritic 2 0.02% 
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6.3.5 Does Combinatorial SVM select kinase inhibitors or 

membership of compound families? 

To further evaluate whether C-SVMs identify kinase inhibitors rather than 

membership of certain compound families, Compound family distribution of 

the identified dual-inhibitors of the 7 intra-PTK group kinase-pairs were 

analyzed. As shown in Table 6-4, 15.5%, 8.5%, 11.6%, 13.1%, 15.2%, 16.0% 

and 16.1% of the identified EGFR-PDGFR, EGFR-FGFR, EGFR-Src, 

VEGFR-Lck, PDGFR-FGFR, PDGFR-Src, and Src-Lck dual-inhibitors are 

outside the families that contain at least one pair of non-dual inhibitors of the 

two kinases of the kinase-pair (i.e., at least one inhibitor for kinase A and one 

inhibitor for kinase B). For those families that contain at least one pair of non-

dual inhibitors of the two kinases of a kinase-pair, 17.2%-68.2% of the 

compounds (>40.0% in majority cases) in each of these families were 

predicted as non-dual inhibitors by C-SVMs. These results suggest that C-

SVMs identify dual-inhibitors not solely based on membership to certain 

compound families. 

 

6.3.6 Molecular features important for selecting dual-kinase 

inhibitors 

The molecular features important for selecting dual-kinase inhibitors were 

preliminarily analyzed by testing the VS performance with varying sets of 

molecular descriptors. Our analysis suggested that the VS performance is 

critically dependent on a proper combination of multiple simple molecular 

property descriptors that reflect ring and hydrogen binding features, chemical 



Chapter 6 Virtual Screening of Selective Multi‐Target Kinase Inhibitors 

  160 

property descriptors that represent hydrophobicity and molecular 

polarizability, molecular connectivity and shape profile descriptors that define 

the structural and flexibility features, and electro-topological state descriptors 

that determine the molecular skeletons, structural frameworks and their 

electronic properties. Our analysis is consistent with the reported structural 

analysis of the inhibitors of CDK1 and VEGFR that shows the importance of 

molecular structures for making extensive van der Waals contacts, hydrogen 

bonding with specific residues in both kinases, and structural flexibility to 

accommodate the different binding site geometry and to allow the formation 

of alternative hydrogen bonds. Our analysis is also consistent with another 

report that dual-kinase binding may require a combination of structural 

flexibility and the favourable hydrophobic interactions at specific pocket 

conserved in both kinase classes. Moreover, many dual-inhibitors adopt 

specific scaffolds, such as those illustrated in Figure 6-3, that enable them to 

more easily fit to the particular regions of the ATP site, which may be partly 

captured by the electro-topological state descriptors. A more comprehensive 

analysis using structural-based and feature selection methods may shed more 

light on the detailed molecular features of dual-kinase inhibition as well as 

single kinase inhibition. 

6.4 Further perspective 

Combinatorial SVM VS tools developed by using non-dual inhibitors show 

good capability in identifying dual-inhibitors of several anticancer target 

kinase-pairs at comparable and in many cases substantially lower false-hit 

rates than those of typical VS tools reported in the literatures. The capability 
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of the combinatorial SVMs and other VS tools in identifying multi-kinase 

inhibitors and other multi-target agents may be further enhanced by 

incorporating knowledge of multi-target agents into VS tool development 

processes. With the discovery of increasing number of selective multi-target 

agents from the current and future drug discovery efforts, it is possible to 

introduce more comprehensive elements of distinguished structural and 

physicochemical features of selective multi-target agents into the training of 

combinatorial VS tools for more effective identification of selective multi-

target agents. These multi-target VS tools may be combined with structure-

based filters for enhanced target selectivity. Because of their high computing 

speed and generalization capability, combinatorial SVM can be potentially 

explored to develop useful VS tools to complement other VS methods or to be 

used as part of integrated VS tools in facilitating the discovery of multi-kinase 

inhibitors and other multi-target agents. 
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Chapter 7 Concluding Remarks 

This last chapter summarizes the major findings and contributions of this 

study (Section 7.1). Limitation of present study and suggestion on possible 

areas for further studies are discussed in Section 7.2. 

7.1 Major findings and contributions 

Machine learning methods have been explored for developing such alternative 

VS tools because of their high-CPU speed and capability for covering highly 

diverse spectrum of compounds. However, while exhibiting equally good hit 

selection performance in screening extremely-large and large libraries, the 

currently developed machine learning tools tend to show lower hit-rate and, in 

some cases, lower enrichment factor than the best performing SBVS tools. 

This work selected the most popular ML method support vector machine to 

test whether the performance of SVM can be improved by using training-sets 

of diverse inactive compounds. Apart from the use of known inactive 

compounds and active compounds of other biological target classes as putative 

inactive compounds. This approach was applied for generating putative 

inactive compounds. An advantage of this approach is its independence on the 

knowledge of known inactive compounds and active compounds of other 

biological target classes, which enables more expanded coverage of the 

“inactive” chemical space in cases of limited knowledge of inactive 

compounds and compounds of other biological classes. In retrospective 

database screening of active compounds from large libraries such as 

PubChem, MDDR and ZINC, The hit-rates of our methods are comparable 

and the enrichment factors are substantially better than the best results of other 
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VS tools. The putative negatives generation method plays an important role in 

it. This method greatly increased the performance of VS without losing much 

positive accuracy. It showed that at the study of chemistry and biological 

problems, certain assumption could be made to solve the problems although 

sometimes it may lead to certain degree of noise. 

 

This work also evaluated the performance of SVM trained by sparsely 

distributed actives (regularly sparse and very sparse actives) in six MDDR 

biological target classes composed of high number of known actives 

(983~1,645) of high, intermediate, and low structural diversity (muscarinic 

M1 receptor agonists, NMDA receptor antagonists, thrombin inhibitors, HIV 

protease inhibitors, cephalosporins, and rennin inhibitors). Comparing the 

results with those of data fusion method, the yields of our regularly sparse 

SVM models are slightly improved for the high and intermediate classes, and 

the false-hit rates of our SVM models are substantially reduced for all three 

classes. These results suggest that, by using the equally small number of active 

compounds as training data, SVM is capable of producing equally good or 

slightly better yields and generalization capability at substantially reduced 

false-hit rates than those of the data fusion method. It was also found that our 

SVM models have substantial capability in identifying novel active 

compounds from sparse active datasets at low false-hit rates. An important 

feature of these SVM virtual screening methods is that they have 

generalization capability for covering highly diverse spectrum compounds. 

Even based on the sparse active datasets, SVM also can be potentially used to 
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develop useful VS (virtual screening) tools or be used as part of integrated VS 

tools in facilitating lead discovery. 

 

By using training dataset of more diverse spectrum of inactive compounds as 

well as substantial number of literature-reported c-Src and VEGFR-2 

inhibitors, the results of SVM based virtual screening shows substantial 

capability in identifying c-Src and VEGFR-2 inhibitors at comparable yield 

and in many cases substantially lower false-hit rate than those of typical VS 

tools reported in the literatures. It is capable of searching large compound 

libraries at sizes comparable to the 13.56M PubChem and 168K MDDR 

compounds at low false-hit rates without the need to define an applicability 

domain, i.e. it has a broad applicability domain that covers the whole chemical 

space defined by the PubChem and MDDR databases. Because of their high 

computing speed and generalization capability for covering highly diverse 

spectrum compounds, Our SVM models can be applied to discover the 

potential leads of c-Src and VEGFR-2 inhibitors for pharmaceutical purposes. 

 

This work on the prediction of multi-target kinase inhibitors pioneers the 

applicaton of SVM based virtual screening. Combinatorial support vector 

machines (C-SVMs) were tested as VS tools for searching dual-inhibitors of 

11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, 

FGFR, Lck, CDK1, CDK2, GSK3). C-SVMs Models were fairly selective in 

misidentifying as dual-inhibitors of the non-dual inhibitors of the same kinase-

pairs and produced low false-hit rates in misidentifying as dual-inhibitors of 

PubChem and MDDR databases. Compared with other methods, 
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Combinatorial SVM VS tools show good capability in identifying dual-

inhibitors of several anticancer target kinase-pairs at comparable and in many 

cases substantially lower false-hit rates. Therefore, C-SVMs models are 

potentially useful to discover multi-target agents for enhancing efficacy and 

reducing counter-target activities and toxicities. 

 

7.2 Limitations and suggestions for future studies 

The SVM models developed using our putative negative dataset are not 

perfect. There are still some false hits that cannot be ruled out easily. These 

false hits are “correctly” identified by our SVM models due to the similar 

structural frameworks with real active compounds. Our molecular descriptors 

used in the SVM model are insufficient to adequately differentiate the 

compounds with similar structural frameworks. Therefore, it is necessary to 

explore different combinations of descriptors and to select any more optimal 

sets of descriptors by using more refined feature selection algorithms and 

parameters in future work. Also it may be helpful to introduce new descriptors 

for more appropriate representations of compounds or descriptors which can 

be used to describe the interaction between proteins and their ligands. 

 

The putative negatives generation method helps a lot in improving the 

performance of SVM based virtual screening. However, a drawback of this 

approach is the possible inclusion of some undiscovered active compounds in 

the “inactive” class, which may affect the capability of ML methods for 

identifying novel active compounds. As will be demonstrated, such an adverse 
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effect is expected to be relatively small for many biological target classes. On 

the other hand, the clustering of chemical space also can affect the generation 

of putative negative dataset. Chemical space clustering is a difficult area in 

cheminformatics. The clustering method, distance metrix selection and 

descriptors are three important factors for clustering. K-means clustering 

method used in this work is not the best clustering method but is suitable and 

computable for large chemical spaces. In future studies, new clustering 

algorithm can be developed for improving the accuracy of chemical space 

clustering. The selection of correlation coefficients and other chemical 

descriptors such as fingerprint also can be the direction of improvement.   

 

The good performance of our SVM based VS system has been showed in 

several projects. However, the good performance of virtual screening is not 

only in screening hits, yield and enrichment factors but also a good potential in 

terms of prediction of novel structure. Experimental studies are necessary to 

do for validating our high performance virtual screening tools. Based on this, 

we have formed extensive collaborations with several research groups on drug 

development. Some compounds are selected and sent to our collaborators for 

further study.  

 

The capability of the combinatorial SVMs in identifying multi-kinase 

inhibitors and other multi-target agents need be further enhanced by 

incorporating knowledge of multi-target agents into VS tool development 

processes. With the discovery of increasing number of selective multi-target 

agents from the current and future drug discovery efforts, it is possible to 
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introduce more comprehensive elements of distinguished structural and 

physicochemical features of selective multi-target agents into the training of 

combinatorial VS tools for more effective identification of selective multi-

target agents. 

 

These years have seen plenty of debate aimed to define which of the many VS 

approaches is the best. However, this question remains with no conclusive 

answer. Each approach has its own advantages and drawbacks, and the choice 

of one or others depends on the particular question faced by the medicinal 

chemist. In terms of performance, ligand based methods tend to present better 

enrichment factors and higher speed serving as a more efficient methodologies 

to remove non active compounds but target based method provides a more 

straightforward picture of interactions between the drug and molecular target 

and a better prediction in terms of novel structures. Now a synergistic, 

rational, synthetic combination of different approaches is a trend. Combined 

VS approach tends to include less costly approaches, usually ligand based VS, 

at the first stage, while the most demanding methods, usually docking, for the 

last stage when the original large compound library has been reduced to a 

manageable size. 
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