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Summary 

 

One primary objective of this study is to develop and implement applicable data 

assimilation methods to improve the forecasting accuracy of the Singapore Regional 

Model. A novel hybrid data assimilation scheme is proposed, which assimilates the 

observed data into the numerical model in two steps: (i) predicting the model errors at the 

measurement stations, and (ii) distributing the predicted errors to the non-measurement 

stations. Specifically, three approaches are studied, the local model approach (LM), the 

multilayer perceptron (MLP), and the Kalman filter (KF). 

At the stations where observations are available, both the local model approach and 

the multilayer perceptron are utilized to forecast the model errors based on the patterns 

revealed in the phase spaces reconstructed by the past recordings. In cases of smaller 

prediction horizons, such as 2, 24T   hours, the local model approach outperforms the 

multilayer perceptron. However, due to the less competency of the local model approach 

in capturing the trajectories of the state vectors in the higher-dimensional phase spaces, 

the prediction accuracy of the local model approach decreases by a wider margin when 

T  progresses to 48, 96 hours. Averaged over 5 different prediction horizons, both 

methods are able to remove more than 60% of the root mean square errors (RMSE) in the 

model error time series, while the multilayer perceptron performs slightly better. 
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To extend the updating ability to the remainder of the model domain, Kalman filter 

and the multilayer perceptron are used to spatially distribute the predicted model errors to 

the non-measurement stations. When the outputs of the Singapore Regional Model at the 

non-measurement stations and the measurement stations are highly correlated, such as at 

Bukom and Raffles, both approaches exhibit remarkable potentials of distributing the 

predicted errors to the non-measurement stations, resulting in an error reduction of more 

than 50% on average. However, the performance of Kalman filter in error distribution 

deteriorates at a rapid pace when the correlation decreases, with only about 40% of the 

root mean square errors removed at Sembawang and 20% at Horsburgh. Comparatively, 

the multilayer perceptron is less sensitive to the correlations with a more consistent 

performance, which removes more than 40% of the root mean square errors at 

Sembawang and Horsburgh. In addition, the error distribution study demonstrates for the 

first time that distributing the predicted errors from more measurement stations does not 

necessarily produce the best results due to the misleading information from less 

correlated stations. As suggested by this finding, to conduct a prior correlation analysis 

among possible sites is favorable when planning the future layout of the measurement 

stations. 

Another major objective of this study is to analyze and predict the sea level anomalies 

by means of data assimilation. Sea level anomalies are extracted based on tidal analysis 

from both altimeter data and in-situ measurements. A reasonable fit between the altimeter 

sea level anomalies and the in-situ sea level anomalies can be observed, indicating the 

coherence and consistency of different data sources. As a demonstration of the proposed 
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data assimilation scheme, the sea level anomalies explored in this study are the spatially 

and temporally interpolated DUACS sea level anomalies. 

At the open boundaries of the Singapore Regional Model, the sea level anomaly time 

series are predicted using multilayer perceptron with prediction horizon 24T   hours. 

Multilayer perceptron successfully captures the motion dynamics of the sea level 

anomalies, with more than 90% of the root mean squares (RMS, quadratic mean) 

removed on average. The sea level anomalies inside the model domain are then 

numerically modelled by imposing the sea level anomalies predicted at the open 

boundaries as driving force to the Singapore Regional Model. A reasonable 

correspondence are observed between the modelled sea level anomalies and the DUACS 

sea level anomalies, verifying that the internal sea level anomalies can be decently 

modelled through numerical simulation provided that the sea level anomalies are properly 

prescribed at the open boundaries. 
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Chapter 1  

Introduction 

 

1.1  Background 

Oceanographic system forecasting is of prime importance for safe navigation and 

offshore operations as well as understanding oceanographic physics, such as ocean waves, 

ocean currents, transport and mixing characteristics. Great effort has been devoted to 

developing different approaches to forecast the oceanographic system. These approaches 

can be classified into three general categories: numerical models, data mining and data 

assimilation. 

With the development of computer science, the use of numerical models that are 

governed by a set of mathematical equations is the preferred way for researchers to 

predict the future of oceanographic system. Numerous numerical models have been 

developed under different numerical environments to describe the movement of local 

water or even the circulation of entire ocean (Pugh, 1996; Palacio et al., 2001; Marchuk 

et.al, 2003). The improvement of numerical calculation and the increasing power of 

computers made people extremely confident in the competence of the numerical models. 

It was believed that numerical models could become complex enough to reach any level 

of precision, simply by refining the model scales and calculating for long enough. 
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However, some researchers have indicated that the numerical models are far from being 

perfect as they are indeed only models of reality (Madsen et al., 2003; Babovic et al., 

2005; Mancarella et al., 2007). The prediction capability of the numerical models could 

be diminished due to certain inherent delimiting factors, such as simplifying assumptions 

employed in the numerical models, errors in the numerical schemes, inaccuracy in the 

model parameters and uncertainty in the prescribed forcing terms. Therefore, numerical 

models tend to produce imperfect model results even if the governing laws can model the 

prediction framework with good aptness. 

The opposite approach to numerical models in oceanographic forecasting is 

encompassed in the term data mining. The original philosophy behind data mining is the 

attempt to circumvent the numerical models. Data mining has become an important tool 

to transform data into information as a process of extracting hidden patterns from data. In 

domains where the numerical models are poor and data have been collected over long 

periods, through data mining the researchers would be able to capture and reproduce the 

dynamics of the system just by analyzing the data (Cipolla, 1995; Wang, 1999; Poncelet 

et al., 2007). However, the performance of data mining critically relies on the data quality 

and availability. Sometimes the size and complexity of the data make it difficult to find 

useful information (Kamath, 2006; Hong et al., 2009). Discarding the experience 

accumulated by the refinement of theories also makes data mining less convincing to the 

researchers who wonder about the science still undiscovered in the data. 

With the objective to take the best of both numerical models and observed data, a 

method referred to as data assimilation was designed, following the terminology in 
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meteorology (Daley, 1991). As defined by Robinson et al. (1998), data assimilation is a 

methodology that can optimize the extraction of reliable information from observed data, 

and assimilate it into the numerical models to improve the quality of the estimate. Due to 

the outstanding accuracy in forecasting the natural systems, data assimilation has recently 

attracted extensive research effort with a wide range of applications, such as physics, 

economics, earth sciences, hydrology and oceanography (Hartnack and Madsen, 2001; 

Haugen and Evensen, 2002; Reichle, 2008). 

In the following sections, an attempt is made to review in general terms the most 

well-known and applied data assimilation techniques, followed by a brief review of the 

Singapore Regional Model (SRM), the objectives of present study and the organization of 

thesis. 

 

1.2  Review of Data Assimilation 

1.2.1  Classification 

According to the way the system is updated, data assimilation can be divided into two 

different categories. 

 Variational data assimilation: 

Variational data assimilation is based on the optimal control theory. Optimization is 

performed by minimizing a given cost function that measures the model to data misfit. As 

illustrated in Figure 1.1, variational data assimilation corrects the initial conditions of the 

model in order to obtain the best overall fit of the state to the observations based on all 
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the data available during the assimilation period, from the start of the modelling until the 

present time. 

The most widely applied variational data assimilation is the adjoint method (Le Dimet 

and Talagrand, 1986; Nechaev and Yaremchuk, 1994; Luong et al., 1998). The adjoint 

method computes the gradient of a quadratic function with respect to the variables to be 

adjusted, and then approaches the exact trajectory of the state by propagating backwards 

the differences with the adjoint equations. The adjoint method has been applied for off-

line estimation of model parameters. However, the complexity of the adjoint methods 

makes it a difficult task to apply such methods in on-line forecasting procedures. 

 Sequential data assimilation: 

Sequential data assimilation is usually associated with estimation theory, where the 

system state is estimated sequentially by propagating information only forward in time. 

As illustrated in Figure 1.2, sequential data assimilation corrects the present state of the 

model as soon as the observations are available. In contrast to variational data 

assimilation, sequential data assimilation usually leads to discontinuities in the time series 

of the corrected state. 

Many sequential data assimilation methods have been proposed in recent years, such 

as in Cañizares (1999), Pham (2000), Verlaan and Heemink (2001). Sequential data 

assimilation avoids driving numerical models backwards, which makes it more applicable 

for updating the system state and hence results in more research effort directed to its 

development. 
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1.2.2  Methodology 

Referred to as process models in WMO (1992) and Refsgaard (1997), Numerical models 

can be described as a set of equations that contain state variables and parameters. In 

classical numerical stimulation, state variables vary with time whereas parameters remain 

constant. According to the variables modified during the updating process, four different 

methodologies of data assimilation have been defined as follows (see Figure 1.3): 

 Updating of input variables: 

Updating of Input variables is the classical method, justified by the fact that input 

uncertainties may be the dominant error source in operational forecasting. 

 Updating of state variables: 

State variables are a set of variables that represent the state of a general system. The 

adjustment of the state variables can be done in different ways. The theoretically most 

comprehensive methodology is based on Kalman filter (KF, Kalman, 1960). Kalman 

filter was originally proposed as the optimal updating procedure for linear systems, but 

with some modifications, Kalman filter also provides approximate solutions for nonlinear 

systems. 

 Updating of model parameters: 

As the operation of any numerical system cannot significantly change over the short 

interval of time, recalibration of the model parameters at every time step has no real 

advantages for numerical models of nontrivial complexity, Therefore, updating of model 

parameters remains debatable and is least popular as a data assimilation method. 

 Updating of output variables: 
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The deviations between the forecasted and the observed data are called model errors. 

The model errors are usually found to be serially correlated, making it possible to 

forecast the future values of these errors. Predicting the model errors and then 

superimposing on the numerical model outputs usually simulate the system with a better 

accuracy. This method is most often referred to as error prediction. 

 

1.3  Overview of Singapore Regional Model 

Motivated by different interests involved in safety, ecology and economy, Singapore has 

a great thirst for accurate water level prediction. With the intention to provide reliable 

hydrodynamic information of the water surrounding Singapore, the Singapore Regional 

Model (SRM) was developed in 2004 by WL | Delft hydraulics, the Netherlands 

(Kernkamp and Zijl, 2004). 

The Singapore Regional Model was constructed within the Delft3D modelling system, 

which is Deltares’ state-of-the-art framework for the modelling of surface water systems 

(Deltares, 2009). The Singapore Regional Model has been intensively calibrated, and is 

able to predict the water levels for any selected period with reasonably good accuracy. 

However, noticeable errors can still be observed between the model output and the water 

level measurements due to certain limitations in the model setup and in the numerical 

modelling. 

At the open boundaries of the Singapore Regional Model, 8 tidal constituents, i.e. Q1, 

O1, P1, K1, N2, M2, S2 and K2, are prescribed to generate water level time series as the 

forcing terms to the numerical model. The generated water levels propagate according to 
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the numerical rule from the open boundary to the model domain. In tide theory, the 

astronomical component of water levels can be decomposed into 234 tidal constituents in 

total (Kantha and Clayson, 1999). Although the 8 tidal constituents prescribed account 

for most portions of water levels, the missing of other constituents can still sacrifice the 

forecasting accuracy to a great extent. 

Wind stress on the sea surface is an important factor which affects the water levels. 

When the wind blows in one direction, it will push against the water and cause the water 

to pile up higher than the normal sea level. This pile of water is pushed and propagated in 

the direction of wind, generating the meteorological component of sea level referred to as 

a storm surge. However, due to the lack of available wind information, wind is not 

included in the setup of the Singapore Regional Model. This distinction from real 

condition neglects the contribution from the storm surge, and hence generates 

discrepancies between the observed water levels, especially in the two significant 

monsoon seasons. 

The Delft3D modelling system consists of a set of partial differential equations, 

describing how the state variables evolve in time. Solving these equations requires 

discretization in space and time, which entails that only processes with scales larger than 

grid sizes and time steps can be reproduced reliably. In addition, the Singapore Regional 

Model contains model parameters, such as model bathymetry, bottom roughness and 

viscosity coefficients. These parameters are not known exactly and determined 

empirically. 



CHAPTER 1. INTRODUCTION 

8 

The error sources stated above would accumulate to generate model errors in the 

Singapore Regional Model output. Inaccurate water levels predicted may lead to 

concerning issues, such as unnecessary high fuel consumption due to sub-optimal route, 

increased port operating costs due to delays and rescheduling, and uncertainties in the 

trajectory track of sediment transport, etc. 

 

1.4  Objectives of Present Study 

One primary objective of this study is to develop and implement applicable data 

assimilation methods to improve the forecasting accuracy of the Singapore Regional 

Model. Depending on the availability of the observed water levels, this objective is 

specifically achieved in two steps, i.e. model error prediction and then model error 

distribution. 

At the stations where observations are available in the model domain, future values of 

the model errors can be directly forecasted based on the past recordings. Two state-of-art 

time series prediction methods are herein adopted, i.e. local model (LM) based on chaos 

theory, and multilayer perceptron (MLP) in artificial neural networks (ANN). Local 

model and multilayer perceptron are widely used in time series prediction due to their 

favourable applicability, but no research has been done to compare their performance. In 

this study, both methods are applied to predict the model error time series, with a 

thorough performance comparison conducted afterwards. 

The effect of error prediction is confined within the measurement stations. To extend 

the updating ability to the remainder of the computational domain, two approaches of 
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error distribution are explored, i.e. Kalman filter and multilayer perceptron. Kalman filter 

is a recursive algorithm to estimate the system state, whereas multilayer perceptron 

determines the variable relationships by simulating the human brains. This study applies 

both Kalman filter and multilayer perceptron to distribute the model errors to the non-

measurement stations, and also compares their performance afterwards. 

Sea level anomalies (SLA) are important phenomena in the Singapore and Malacca 

Straits. At times sea level anomalies can overtake the regular tidal flow conditions, 

causing serious troubles for ship navigation and port operation. Research reveals that sea 

level anomalies mostly result from persistent basin-scale monsoon winds and their short 

scale variations over the South China Sea and Andaman Sea. Failing to consider the 

influence from the wind, the Singapore Regional Model is incompetent to numerically 

capture the dynamics of the sea level anomalies. This motivates another major objective 

of this study, i.e. to analyze and predict sea level anomalies by means of assimilating the 

sea level anomaly measurements into the numerical model. 

Sea level anomalies are extracted based on tidal analysis from both altimeter data and 

in-situ measurements, whereas the altimeter sea level anomalies are explored in this study 

as a demonstration of the data assimilation scheme. At the open boundaries of the 

Singapore Regional Model, the sea level anomaly time series are predicted using 

multilayer perceptron. The sea level anomalies inside the model domain are then 

numerically modelled by imposing the sea level anomalies predicted at the open 

boundaries as driving force to the Singapore Regional Model. To assess the efficiency of 
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the data assimilation scheme, the predicted sea level anomalies and the modelled sea 

level anomalies will be compared with the altimeter sea level anomalies. 

 

1.5  Organization of Thesis 

Chapters 2, 3, and 4 review in detail the techniques involved, i.e. chaos theory, artificial 

neural networks and Kalman filter. 

Chapter 5 first introduces the numerical modelling system – Delft3D-FLOW, 

including conceptual description and numerical aspects, whereafter the dedicated 

Singapore Regional Model is described. 

Chapter 6 applies local model and multilayer perceptron in model error prediction. 

Detailed comparison results on the prediction performance are also presented. 

Chapter 7 demonstrates the application of Kalman filter and multilayer perceptron in 

error distribution, with a performance comparison conducted thereafter. 

Chapter 8 studies the features of the sea level anomalies, and applies data assimilation 

techniques on the prediction of sea level anomalies. 

Chapter 9 draws conclusions resulting from the present study. A number of 

recommendations for the further research are given in the end. 
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Figure 1.1 Variational data assimilation approach. The original model run (grey line and 
dots) is given better initial conditions that lead to a new model run (black line and dots) 
closer to the observations (+). 
 

 

Figure 1.2 Sequential data assimilation approach. When an observation (+) is available, 
the model forecast (grey dot) is updated to a value closer to the observation (black dot) 
that is used to make the next model forecast. 
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Figure 1.3 Schematic diagram of simulation and forecasting with emphasis on the four 
different updating methodologies (Adapted from Refsgaard, 1997). 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Chapter 2 

Chaos Theory 

 

Time series prediction plays an important role in various fields, ranging from economics 

through physics to engineering. Fundamentally, the goal of time series prediction is to 

estimate some future value based on current and past data samples. Mathematically stated, 

 , ,t T t a t b t cx f x x x     , (2.1) 

where t Tx   is the future value of a discrete time series ix . The mapping function  f   in 

Equation (2.1) is required to be determined, such that the predicted future value ˆt Tx   is 

unbiased and consistent. 

The traditional statistical fitting methods, such as autoregressive (AR), moving 

average (MA) and autoregressive moving average (ARMA) models, have once 

dominated the fields of time series analysis (Box and Jenkins, 1976). In these models, the 

future values of the time series are expressed as a linear combination of the current and 

past data samples weighted by a set of coefficients plus residual white noise.  However, 

due to the inherent linearity assumptions, such appealing simplicity can be entirely 

inapplicable in the complex systems where weak nonlinearities occur (Pasternack, 1999; 

Ding et al., 2008). 
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With the recent development in chaos theory, numerous nonlinear systems have been 

identified to arise from purely deterministic dynamics despite their random behaviors. 

Time series analysis within the chaotic dynamic system has hence gained popularity in a 

variety of applications (Ott, 1993; Alligood et al., 1997; Babovic et al., 2001; Sprott, 

2003; Karunasinghe and Liong, 2006). 

 

2.1  Introduction 

Chaos is not a rare phenomenon. Chaotic behaviors have been widely observed in the 

laboratory and nature, such as molecular vibrations, chemical reactions, magnetic fields 

and fluid dynamics. Defined by Williams (1997), chaos is a sustained and disorderly-

looking evolution that satisfies certain special mathematical criteria and that occurs in a 

deterministic nonlinear system. 

An early pioneer of chaos theory was Edward Lorenz, whose interest in chaos came 

about accidently through his work on weather prediction (Lorenz, 1963). Lorenz 

discovered that even tiny changes in initial conditions could produce large changes in the 

long-term weather prediction. This finding is popularly known as the “Butterfly Effect”, 

as Lorenz stated that ‘the flap of a butterfly’s wings in Brazil may set off a tornado in 

Texas’. This quote essentially reveals the extreme sensitivity of chaos to its initial 

conditions. 

Lorenz model is a system of 3 ordinary differential equations abstracted by Lorenz 

from the Galerkin approximation to the partial differential equations of thermal 

convection in the lower atmosphere derived by Salzmann (1962). The equations read, 
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 x y x

y xz rx y

z xy bz

 

   
 





, (2.2) 

where  , r  and b  are parameters with standard values 16  , 4b   and 45.92r  . 

The  x t  component is solved using a straightforward fourth order Runge-Kutta method 

with time step of 0.01t  . As plotted in Figure 2.1, the orbits of the  x t  component 

exhibit non-periodic motion with chaotic characteristics. Lorenz model is a typical 

example of the chaotic system, and will be used as prototype of time series prediction in 

Chapters 2 and 3. 

 

2.2  Time-delay Embedding Theorem 

Takens’ time-delay embedding theorem (Takens, 1981) paved the way for the analysis of 

chaotic time series in the chaotic systems. This theorem establishes that, given a scalar 

time series ix  from a chaotic system, it is possible to reconstruct a phase space in terms 

of the phase space vectors ix  expressed as 

  1, , ,i i i i mx x x   x  , (2.3) 

where m  is the embedding dimension, and   is the time delay. The time-delay 

embedding theorem essentially indicates that the underlying structures in the chaotic time 

series cannot be seen in the scalar space, but can only be equivalently viewed when 

unfolded into the phase space. 

In general, analysis of chaotic time series can be divided into three phases: 
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 System characterization; 

 Phase space reconstruction; 

 Time series prediction. 

System characterization investigates whether a time series is chaotic or not. Being 

identified chaotic, the time series can be projected into a phase space, which is 

reconstructed through the optimization of the time delay   and the embedding dimension 

m . Based on the underlying structures revealed in the phase space, the chaotic time 

series can be correspondingly predicted. 

 

2.3  System Characterization 

For the systems evolving with deterministic equations, broadband power spectra are 

sufficient to identify chaos. However, identification of chaos is a difficult task in real 

world where the governing equations are not always available. As the stochastic time 

series also has broadband power spectra, Fourier analysis alone is not sufficient to 

recognize chaotic behaviors. A number of methods have emerged to distinguish the 

chaotic time series from the stochastic time series, such as the Kolmogorov entropy 

method (Grassberger and Procaccia, 1983a), the Lyapunove exponent method (Wolf et al., 

1985) and the surrogate data method (Schreiber and Schmitz, 1996). Among these 

methods, the correlation dimension method, proposed by Grassberger and Procaccia 

(1983b, c), is the most popular with wide applications in meteorology, geology and 

hydrology. 
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The correlation dimension method is also called the correlation integral analysis 

(CIA), as the correlation integral is usually used to estimate the correlation dimension. 

The correlation integral is the mean probability that the states at two different times are 

close. Consider a set of state vectors ix , the correlation integral can be expressed by 

   2
, 1

1
lim

N

i j
N

i j

C H
N

 




   x x  (2.4) 

where N  is the number of considered states,  H   is the Heaviside step function,   is a 

threshold distance, and  
, 1

N

i j
i j

H 


  x x  counts the number of pairs  ,i j  whose 

distance i j  x x . As the number of points tends to infinity, the correlation integral, 

for small values of  , will take the form 

  vC    when N   (2.5) 

where v  is referred to as the correlation exponent. The correlation dimension (denoted by 

d ) is then defined as 

 
0 0

ln
lim lim

ln

C
d

 




 
   (2.6) 

The correlation dimension d  is a measure of the dimensionality of the space occupied by 

the random points. 

Caputo et al. (1986) suggested that, the correlation dimension d  of a system can be 

estimated as the saturated correlation exponent v  in the plot of  ln C   against ln . If 

the correlation dimension increases without bound, the system is supposed to be 

stochastic. If the correlation dimension leads to a finite value, the system is thought to be 
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governed by deterministic dynamics. If the correlation dimension is small and non-

integer, the system is governed by chaos. 

Figure 2.2 displays the Fourier power spectrum of the Lorenz time series. As 

expected from a non-periodic signal, the spectrum is continuous with broadband. Figure 

2.3 shows the results of correlation integral analysis to identify chaos. The lines with 

different colors represent the analysis results in different embedding dimensions m  

within a predefined range [1, 10]. In the saturation region, the correlation dimension 

satisfies 2 3d  ,  which verifies that Lorenz model is governed by low dimensional 

chaos. 

Although the chaos identification methods are widely accepted, some debates can be 

observed on the claims that certain phenomena are chaotic (Grassberger, 1986; Theiler, 

1990; Lorenz, 1991; Pasternack, 1999). As stated by Kantz and Schreiber (2004), too 

much effort has been directed to investigate whether a system is chaotic or not, whereas 

chaos based techniques can be applied in situations where determinism cannot be 

established, even to analyze systems with stochastic behaviors. With this understanding, 

more emphasis should be placed on the other two phases, i.e. phase space reconstruction 

and time series prediction. 

 

2.4  Phase Space Reconstruction 
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Reconstruction of the phase space requires transforming the time series ix  into the phase 

space vectors ix , which involves the determination of the time delay   and the 

embedding dimension m . 

 

2.4.1  Time Delay   

To produce good phase space reconstruction, the time delay   must be large enough so 

that ix  and ix   are rather independent of each other, but not be so large that ix  and ix   

are completely independent in a statistical sense. Fraser and Swinney (1986) suggested 

using the average mutual information (AMI) analysis to determine the optimal time delay 

 . 

Defined by Gallager (1968), the mutual information between measurement ia  drawn 

from a set  iA a  and measurement jb  drawn from a set  jB b  is the amount 

learned by the measurement of ia  about the measurement of jb . The mutual information 

can be expressed in bits as 

 
   2

,
log

AB i j

A i B j

P a b

P a P b

 
 
  

, (2.7) 

where  ,ABP a b  is the joint probability density for measurements A  and B ,  AP a  and 

 BP b  are the individual probability densities for measurements A  and B . If ia  is 

completely independent of jb , then      ,AB i j A i B jP a b P a P b , the mutual information 

is zero as it should be. The average over all measurements of this information statistic, 
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known as the average mutual information between A  measurements and B  

measurements, is 

   
   2

,

,
, log

i j

AB i j

AB AB i j
a b A i B j

P a b
I P a b

P a P b

 
  

  
 . (2.8) 

Taking ix  as ia  in measurements A  and ix   as jb  in measurements B , the average 

mutual information between ix  and ix  , i.e. the amount learned by ix  about ix  , is 

     
   2

,

,
, log

i i

i i
i i

x x i i

P x x
I P x x

P x P x















 
  

 
 . (2.9) 

As shown in Equation (2.9), when the time delay   becomes large, the chaotic 

behavior of the signal makes ix  and ix   independent, i.e.      ,i i i iP x x P x P x   , 

the average mutual information  I   will tend to zero. The   value at which the first 

minimum of the average mutual information  I   occurs is suggested to be selected as 

the optimal time delay (Abarbanel, 1996). 

Figure 2.4 shows the average mutual information of the Lorenz time series. The first 

minimum of  I   is at 10  , which is selected as the optimal time delay to reconstruct 

the phase space for Lorenz model. 

 

2.4.2  Embedding Dimension m  

In the reconstructed phase space, the nearest neighbors of ix  may come to the 

neighborhood of ix  either through dynamical origins or by projection from a lower 

dimension. In the latter case, the nearest neighbors are referred to as the false nearest 
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neighbors (FNN). Embedding dimension m  is the lowest dimension which unfolds the 

state vectors so that none of the false nearest neighbors remains. Kennel et al. (1992) 

developed the false nearest neighbors method to determine the optimal embedding 

dimension m . 

Denote one nearest neighbor of ix  in the m  dimensional phase space as 

  1, , ,NN NN NN NN
i i i i mx x x   x  , it can be easily established whether NN

ix  is false or not by 

comparing the distance between ix  and NN
ix  in dimension m  with the distance in 

dimension 1m . The square of the Euclidian distance between ix  and NN
ix  in dimension 

m  is 

     

22

1 1
1

m
NN

i i j i j
j

R m x x    


    , (2.10) 

while in dimension 1m  it is 

     

 

1 22
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i m
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R m x x

R m x x


 

 



   




    

  


. (2.11) 

The distance between ix  and NN
ix  in dimension 1m  relative to the distance in 

dimension m  is 

   
   

2 2

2

1
i m

NN
i mi i

ii

x xR m R m

R mR m
   

 . (2.12) 

In practice, when this quantity is larger than some threshold, approximately 15, the 

nearest neighbor NN
ix  will be declared false. When the phase space dimension increases, 
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the percentage of false nearest neighbors will decrease. The optimal embedding 

dimension m  can be determined by selecting the one where the percentage of false 

nearest neighbors drops to zero. 

As shown in Figure 2.5, for the Lorenz time series with time delay 10  , the 

percentage of false nearest neighbors drops to zero at 3m  . This indicates that the 

Lorenz time series ix  can be reconstructed in a phase space of  10 2 10, ,i i i ix x x  x . This 

reconstructed phase space for Lorenz model is plotted in Figure 2.6, where a clear pattern 

is revealed compared to its random evolution as shown in Figure 2.1. 

 

2.5  Time Series Prediction 

Having reconstructed the phase space and revealed the underlying determinism, the time 

series prediction can be achieved using phase space vectors as surrogates. The basic idea 

is to set a functional relationship between the current state tx  and the future state t Tx  in 

the form 

 t T T tf x x , (2.13) 

where T  is the lead time or prediction horizon, and  Tf   is the mapping function. 

 

2.5.1  Local Model 

Local model (LM), often referred to as local linear model, is an effective method of 

finding  the optimal expression for the mapping function  Tf  , in which only the most 

similar trajectories from the past are used to make predictions for the future. Local model 
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was first brought up by Farmer and Sidorowich in 1987 (Farmer and Sidorowich, 1987), 

and was gradually improved with applications in different disciplines, e.g. Babovic and 

Keijzer 1999, Babovic et al. 2005, Sannasiraj et al. 2005. 

A conceptual sketch of the local model approach is depicted in Figure 2.7. The steps 

involved can be described as follows, 

 Embedding the time series ix  into a phase space ix  

As discussed in Section 2.4, this step requires the determination of time delay   and 

embedding dimension m . 

 Finding k  nearest neighbors in the phase space 

To predict a future state t Tx , a Euclidean metric is imposed on the phase space to 

find the k  nearest neighbors of the current state tx , denoted by  1, 2, ,n n k x . 

 Calculating the ‘expected’ future state 

Having reconstructed the phase space and pooled the k  nearest neighbors of the 

current state tx , the ‘expected’ vector of the future state t Tx , denoted as ˆ t Tx , can be 

estimated through averaging as 

1

ˆ
k

t T n T
n

k 


   
 
x x . (2.14) 

 Deriving the forecasted scalar value 

In the phase space, the ‘expected’ future state ˆ t Tx  can be expressed in the form of 

Equation (2.3) as 

  1
ˆ ˆ ˆ ˆ, , ,t T t T t T t T mx x x       x  . (2.15) 
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The predicted scalar values ˆt Tx  , ˆt Tx   , … in the time series ix  can be retrieved 

according to the structure. 

 

Local model shares fundamental ideas with Takens’ time-delay embedding theorem, 

making it well suited for the prediction of chaotic time series. Although local model 

makes use of a linear approximation for each prediction, the resulting overall model can 

be highly nonlinear, as each of these linear approximations is made for each separate 

neighborhood. 

 

2.5.2  Standard Approach 

Besides the embedding parameters m  and  , the number of nearest neighbors k  also 

needs to be determined in local model. There are two approaches to determine these 

parameters, i.e. the standard approach and the inverse approach. The standard approach 

uses the theoretical sights as criteria, whereas the inverse approach solves a global 

optimization problem to determine these parameters. 

In the standard approach, the embedding parameters m  and   are respectively 

optimized through the false nearest neighbors and average mutual information analyses, 

as described in Section 2.4.1 and Section 2.4.2. The number of nearest neighbors k  is 

calculated by following empirical formulae (Farmer and Sidorwich, 1987) 

1k m  , (2.16) 

or 

2 1k m  . (2.17) 



CHAPTER 2. CHAOS THEORY 

25 

 

2.5.3  Inverse Approach 

The standard approach has been shown to provide suboptimal choices of the local model 

parameters (Babovic et al., 2000; Liong et al., 2005). Babovic et al. (2000) proposed an 

alternative inverse approach, in which genetic algorithm (GA) acts as a search engine to 

simultaneously optimize these parameters. As defined by Holland (1975) and Goldberg 

(1989), genetic algorithm is a search technique based upon the mechanics of natural 

genetics, which combines Darwin’s theory of evolution with a structured information 

exchange among chromosomes. 

Figure 2.8 displays the flow diagram of inverse approach, with the evolving process 

in genetic algorithm illustrated in Figure 2.9. The steps in the inverse approach can be 

summarized as follows, 

1. Initializing population 

An initial population of chromosomes  , ,iP m k , where m ,   and k  are 

represented by binary bits, is randomly generated within the specified ranges of 

parameters. 

2. Evaluating the fitness of each chromosome in the initial population 

Fitness of each initial chromosome is evaluated in terms of the root mean square error 

(RMSE) produced by local model designed with corresponding parameters. 

3. Evolving chromosomes through the following process until an entirely new 

population is generated 
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 Selection: The roulette wheel selection scheme is adopted to select the 

chromosomes to reproduce offspring according to their respective fitness. The 

chromosome with higher fitness has a better chance of being selected. 

 Crossover: Some portion of a pair of chromosomes selected from the population 

is exchanged according to some constraints in order to generate two new sets of 

parameters. 

 Mutation: One individual chromosome selected from the population is 

transformed to a new individual by inverting some of its binary values. 

4. Evaluating the fitness of each chromosome in the new population and repeating 3until 

stop criterion 

Fitness of each new chromosome is evaluated, and the process of selection, crossover 

and mutation is repeated. With the hope that the fitter parents will create a better 

generation of children, successive generations are created until the user-defined 

threshold for the fitness or number of maximum generation is reached. 

 

Neither Equation (2.9) nor Equation (2.12) is a function of prediction horizon T , the 

average mutual information and false nearest neighbors analyses will therefore result in 

the same set of m  and   irrespective of T . In contrast, the inverse approach targets to 

achieve the best prediction accuracy, different m ,   and k  will therefore be resulted 

from different T . 

 

2.5.4  Lorenz Time Series Prediction 
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This section applies local model to predict the Lorenz time series, in which the 

parameters are determined by both the standard approach and the inverse approach. The 

data set is divided into two subsets, i.e. training data and testing data. Training data are 

used to determine the parameters, whereas the testing set is used to test the performance 

of local model. 

As described in preceding sections, the set of parameters  , ,m k  for the Lorenz 

time series has been identified by the standard approach to be  3,10,4 . Figure 2.10 

shows the predicted Lorenz time series when 2T  , together with the desired values and 

the residuals. The Lorenz time series are well predicted, reducing root mean square (RMS, 

quadratic mean) from 12.7033 to 0.4366. 

The typical parameters in the inverse approach to predict the Lorenz time series when 

2T   is summarized in Table 2.1. The search result for  , ,m k  is  4,4,2 , which 

differs from  3,10,4  determined by the standard approach. Figure 2.11 shows the 

predicted Lorenz time series when 2T  , together with the desired values and the 

residuals. Local model with parameters determined by the inverse approach successfully 

predicts the Lorenz time series, further reducing the root mean square of residuals to 

0.2714. 
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Figure 2.1 Lorenz time series. 
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Figure 2.2 Fourier power spectrum of Lorenz time series. 
 

 

Figure 2.3 Correlation integral analysis for Lorenz time series (different colors represent 
different embedding dimensions). 
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Figure 2.4 Average mutual information of Lorenz time series. 
 

 

Figure 2.5 False nearest neighbors analysis for Lorenz time series. 
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Figure 2.6 Reconstructed phase space for Lorenz model. 
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Figure 2.7 Conceptual sketch of the local model approach (the black stars are the nearest 
neighbors to the white star representing the predicted value). 
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Figure 2.8 Flow diagram of genetic algorithm. 
 

 

Figure 2.9 Schematic illustration of evolving process in genetic algorithm. 
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Figure 2.10 Lorenz time series prediction using local model (standard approach; T=2). 
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Figure 2.11 Lorenz time series prediction using local model (inverse approach; T=2). 
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Table 2.1 Parameters in the inverse approach for Lorenz model. 
 

Parameters Value Remark 

T 2 prediction horizon 

parmin 1, 1, 1 minimum values of m ,   and k  

parmax 6, 20, 50 maximum values of m ,   and k  

npopsiz 10 population size 

maxgen 200 maximum number of generation 

pcross 50 probability of crossover (%) 

pmutate 2 probability of mutation (%) 

rmsestop 0 stop RMSE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Chapter 3 

Artificial Neural Networks 

 

3.1  Introduction 

The human brain is a highly complex, nonlinear, and parallel information processing 

system. It has the capability to perform certain computations many times faster than the 

fastest digital computer in existence. The recognition that the human brain computes in 

an entirely different way from the conventional digital computer has motivated the 

emergence and rapid development of artificial neural networks, commonly referred to as 

neural networks (McCulloch and Pitts, 1943; Rosenblatt, 1958; Minsky and Papert, 1969; 

Hopfield, 1982; Kohonen, 1982; Powell, 1985; Vapnik, 1995). 

Haykin (1999) offered a deliberate definition as, artificial neural networks are 

massively parallel distributed processors made up of simple processing units, known as 

neurons, which have a natural propensity for storing experiential knowledge and making 

it available for use. Artificial neural networks resemble the human brain in two respects: 

 Knowledge is acquired by the network from its environment through a learning 

process. 
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 Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge. 

 

The purpose of this chapter is to provide basic concepts of artificial neural networks 

and variants pertaining to this study. For a complete discussion about artificial neural 

networks, please refer to Haykin (1999). 

 

3.2  Neuron 

Neurons are information processing units that are fundamental to the operation of 

artificial neural networks. As shown in the block diagram of Figure 3.1, a neuron is 

composed of 3 basic elements: 

1. A set of synapses, each of which is characterized by a weight of its own. 

2. An adder for summing the input signals, weighted by the respective synapses of the 

neuron. 

3. An activation function for limiting the amplitude of the output of a neuron. 

In mathematical terms, a neuron k  can be described by following pair of equations, 

1

m

k kj j
j

u w x


   (3.1) 

and 

 k k ky u b   (3.2) 
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where 1x , 2x , …, mx  are the input signals, 1kw , 2kw , …, kmw  are the synaptic weights of 

neuron k , ku  is the linear combiner output due to the input signals, kb  is the bias,     is 

the activation function, and ky  is the output signal of the neuron. 

The bias kb  has the effect of applying an affine transformation to the output ku  of the 

linear combiner. Adding a new synapse with its input signal 0 1x    and its synaptic 

weight 0k kw b , the model of neuron k  can be reformulated as 

0

m

k kj j
j

v w x


   (3.3) 

and 

 k ky v  (3.4) 

where k k kv u b   is the net input of the activation function, often referred to as the 

induced local field or activation potential. 

 

3.3  Activation Function 

The activation function, denoted by    , defines the output of a neuron in terms of the 

activation potential v . Two basic types of activation functions can be identified as 

follows, 

 Threshold Function (Hard Limiter) 

 
1 0

0 0

v
v

v



  

 (3.5) 
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In engineering literature, this form of an activation function is commonly referred to 

as a Heaviside step function. Such a neuron is called the McCulloch-Pitts model, in 

recognition of the pioneering work done by McCulloch and Pitts. 

 Sigmoid Function 

The sigmoid function, whose graph is s-shaped, is by far the most common form of 

activation function used in the construction of artificial neural networks. The sigmoid 

function is defined as a strictly increasing function that exhibits a graceful balance 

between linear and nonlinear behavior. An example of the sigmoid function is the 

logistic function, defined by 

   
1

1 exp
v

av
 

 
 (3.6) 

where a  is the slope parameter of the sigmoid function. Compared to the threshold 

function, the sigmoid function is differential everywhere with a continuous range of 

values from 0 to 1. 

 

3.4  Multilayer Perceptron 

Single-layer perceptron is the simplest form of an artificial neural network developed as a 

pattern classifier by Rosenblatt in 1958 (Rosenblatt, 1958). As shown in Figure 3.2, 

single-layer perceptron is basically built around a single neuron, i.e. the McClulloch-Pitts 

model. Single-layer perceptron is capable of performing pattern classification with 

linearly separable classes. However, if the classes are not linearly separable, there cannot 
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be any single-layer perceptron that achieves the classification task (Minsky and Papert, 

1969). 

By introducing extra layers, multilayer perceptron successfully resolves the limitation 

of single-layer perceptron. Figure 3.3 shows the architecture of a multilayer perceptron 

with two hidden layers. Multilayer perceptron has three distinctive characteristics, 

1. Multilayer perceptron is a feedforward artificial neural network, where the input 

signals propagate through the network in a forward direction on a layer-by-layer basis. 

2. The network contains one or more layer of hidden neurons, which enable the network 

to learn complex tasks by extracting progressively more meaningful features from the 

input signals. 

3. As opposed to the hard limiter used in Rosenblatt’s perceptron, multilayer perceptron 

typically adopts a continuously differentiable nonlinear activation function for each 

neuron. 

 

3.5  Back-propagation Algorithm 

The back-propagation algorithm is a popular algorithm to train multilayer perceptron in a 

supervised manner (Werbos, 1974; Rumelhart and MeClelland, 1986; Rumelhart et al., 

1986). In the back-propagation algorithm, the synaptic weights of the network is adjusted 

according to the generalized delta rule 

     1ji ji jiw n w n w n    , (3.7) 

where 
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       1ji ji j iw n w n n y n      . (3.8) 

In Equation (3.8),   is called the momentum constant,   is the learning rate parameter, 

and  j n is the local gradient. The local gradient  j n  can be recursively calculated by 

      '
j j j jn e n v n  , for output neuron j , (3.9) 

and 

        '
j k kj j j

k C

n n w n v n  


 , for hidden neuron j . (3.10) 

The detailed description and derivation of the back-propagation algorithm are 

presented in Appendix A. 

 

3.6  Application of Multilayer Perceptron 

Multilayer perceptron is normally applied to two tasks, i.e. pattern classification and 

function approximation. Both error prediction and error distribution in this study fall 

within the latter category – function approximation. To predict the model errors, the 

mapping function that explicitly reveals the relationship in the time series is 

approximated, whereas error distribution is achieved by approximating the mapping 

function between the model outputs at different stations. This section will discuss the 

method implemented in error prediction, and error distribution will be discussed in 

Chapter 7. 

 

3.6.1  Network Architecture 

As stated in Chapter 2, the general form of time series prediction can be formulated by 
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 , ,t T t a t b t cx f x x x     . (3.11) 

By feeding the scalar values , ,t a t b t cx x x    as input to the network with the future value 

t Tx   being the desired output, multilayer perceptron can be applied to approximate the 

mapping function  f  . 

An issue of time series prediction using multilayer perceptron lies in the selection of 

the input scalars. Experience, trial and error are two common methods, such as in 

Karunasinghe and Liong (2006), Chang et al. (2007) and Wang et al. (2007). Although 

these networks show acceptable results, the selection strategies are insufficiently 

supported from theoretical point of view. Inspired by the fact that the underlying structure 

of the time series can be better viewed in the reconstructed phase space, Equation (3.11) 

can be reformulated as 

 t T T tx g  x , (3.12) 

where   1, , ,t t t t mx x x   x   is the current state vector, and  Tg   is an alternative 

mapping function. The components of the state vectors tx  can be determined by the 

average mutual information and false nearest neighbors analyses in chaos theory. 

Supported by the universal approximation theorem (Cybenko, 1989), essentially 

stating that a single hidden layer is sufficient for multilayer perceptron to compute a 

uniform approximation of any continuous function, multilayer perceptron used in study 

has only one hidden layer. The structures of input state vectors and output scalar in 

Equation (3.12) require m  input neurons in the network, and one neuron in the output 

layer. 
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3.6.2  Lorenz Time Series Prediction 

A network is said to generalize well when the input-output mapping computed by the 

network is correct for data never used in training the network. To reach the point of best 

generalization, cross validation data are required for multilayer perceptron to avoid 

overfitting. When the errors between the predicted values and the desired values in the 

cross validation data begin to increase, the training stops and this is considered to be the 

point of best generalization. Different from in local model, the data set is divided into 

three subsets when applying multilayer perceptron, i.e. training data, cross validation data 

and testing data. 

Parameters for the networks and in the training algorithm are highly dependent on the 

nature of the problem, the complexity of the issue and the computational power. To 

predict the Lorenz time series, parameters are set as follows, 

 No. of hidden neurons: 20 

 No. of epochs: 100 

 learning rate 0.1   

 momentum constant 0.7   

Figure 3.4 shows the predicted Lorenz time series when 2T  , together with the desired 

values and the residuals. Multilayer perceptron almost perfectly predicts the Lorenz time 

series, with root mean square reduced to 0.2612, same order as in the GA-based local 

model. 
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Figure 3.1 Nonlinear model of a neuron. 
 

 

Figure 3.2 Model of a single-layer perceptron. 
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Figure 3.3 Architectural graph of a multilayer perceptron with two hidden layers. 
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Figure 3.4 Lorenz time series prediction using multilayer perceptron (T=2). 
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Chapter 4 

Kalman Filter 

 

Kalman filter is essentially a recursive algorithm for estimating the state of a dynamic 

system. With the focus to address how Kalman filter is implemented in error distribution, 

this chapter will briefly describe three variants related to this study, i.e. the linear Kalman 

filter, the extended Klaman filter and the steady-state Kalman filter. For a complete 

description about the Kalman filter theory, please refer to Maybeck (1979). 

 

4.1  Linear Kalman Filter 

Kalman filter is named after Rudolph E. Kalman, who in 1960 published his famous 

paper describing a recursive solution to the linear filtering problem (Kalman 1960). The 

originally proposed Kalman filter, referred to as the linear Kalman filter, deals with the 

linear dynamic system controlled by the coupled equations in the state-space form 

(Welch and Bishop, 2001) 

1 1k k k k k k   x A x B u w , (4.1) 

k k k k z H x v . (4.2) 
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Equation (4.1) describes the numerical scheme in a deterministic model, where n
k Rx  

is the state vector, l
k Ru  is the forcing term, 1

n
k R w  represents the model noise, the 

n n  matrix kA  relates the state at the previous time step -1k  to the state at the current 

step k , while the n l  matrix kB  relates the forcing term to the state. Equation (4.2) 

formulates the measurements that are available in the model domain, where m
k Rz  is 

the measurement vector, m
k Rv  represents the measurement noise, and the m n  matrix 

kH  relates the state to the measurement. 

In the linear Kalman filter, the model noise kw  and the measurement noise kv  are 

assumed to be independent, and of normal probability distributions, 

   0,k kp Nw Q , (4.3) 

   0,k kp Nv R , (4.4) 

where T
k k kE   Q = w w  and T

k k kE   R = v v  are respectively the model error covariance 

and the measurement error covariance. 

Denote the forecast state estimate as f n
k Rx  issued from the model, and the analysis 

state estimate as a n
k Rx  in consideration of the measurement kz , the error covariances 

for the forecast estimate and the analysis estimate can be calculated by 

f f f T
k k kE   P = e e , (4.5) 

a a aT
k k kE   P = e e , (4.6) 

where f f
k k ke = x x , a a

k k ke = x x  represent the forecast and analysis errors respectively. 
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The objective of linear Kalman filter is to find the analysis state estimate a
kx  that 

yields the minimum analysis error covariance a
kP . The qualified analysis state estimate 

a
kx  can be formulated as (Hayking, 2001) 

 a f f
k k k k k kx = x + K z H x . (4.7) 

In Equation (4.7), f
k kH x  indicates the forecast measurement, the difference f

k k kz H x  is 

called the measurement innovation, and the n m  matrix kK , referred to as the Kalman 

gain, serves as a weighting function between the model forecast f
kx  and the measurement 

innovation f
k k kz H x . 

Appendix B describes in detail the derivation of the linear Kalman filter algorithm. 

As shown in Figure 4.1, the linear Kalman filter algorithm can be summarized as follows 

 At time step 0k  , initialize a
kx  and a

kP  as 

 0 0
a Ex = x , (4.8) 

   0 0 0 0 0

Ta a aE      
P = x x x x . (4.9) 

 At time step 1,2,3,k   , 

 Forecast step (‘Predict’): Project forward the forecast state estimate and the 

forecast error covariance from time step 1k   to k . 

1
f a

k k k k k x A x B u  (4.10) 

1
f a T

k k k k k P = A P A Q  (4.11) 
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 Analysis step (‘Correct’): Compute the Kalman gain, incorporate a measurement 

into the model forecast to obtain an improved analysis state estimate, calculate the 

analysis error covariance. 

1f T f T
k k k k k k k


   K P H H P H R  (4.12) 

 a f f
k k k k k kx = x + K z H x  (4.13) 

 a f
k k k kP = I K H P  (4.14) 

 1k k  : Repeat the forecast step and the analysis step until the desired time step 

k  is reached. 

 

4.2  Extended Kalman Filter 

The extended Kalman filter evolves from the linear Kalman filter through a statistical 

linearization procedure, dealing with the nonlinear system controlled by the coupled 

equations in the state-space form 

 1 1,k k k kf   x x u w , (4.15) 

 k k kh z x v , (4.16) 

where, in contrast with the linear system,  f   and  h   respectively denote a nonlinear 

model operator and a nonlinear measurement operator. 

Analogous to the linear Kalman filter, the state vector and the measurement vector 

can be forecasted irrespective of the model and measurement noise 

 1,
f a

k k kf x x u , (4.17) 
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 f f
k khz x , (4.18) 

where f
kx , f

kz  represent the forecast estimate of the state and measurement, while 1
a
kx  is 

the analysis state estimate in consideration of the measurement 1kz . 

Based on Equations (4.17) and (4.18), Equations (4.15) and (4.16) can be linearized 

in the neighborhood of  1,
a f
k kx x  and  ,f f

k kx z  using the first-order Taylor series 

expansion 

 1 1 1
f a

k k k k k k    x x A x x w , (4.19) 

 f f
k k k k k k  z z H x x v , (4.20) 

where kA , kH  are the Jacobian matrices in the forms of 

 
1 1

1 a
k k

k
k

f

 


 



x = x

A
x

, (4.21) 

 
f

k k

k
k

h 



x = x

H
x

. (4.22) 

The ij th entry of kA  is equal to the partial derivative of the i th component of  f   with 

respect to the j th component of 1kx . kH  is constructed in like manner. 

Notice Equations (4.21) and (4.22) closely resemble Equations (4.1) and (4.2), the 

linear Kalman filter algorithm can be applied to derive the extended Kalman filter 

algorithm. Figure 4.2 shows the extended Kalman filter algorithm, which compared to the 

linear Kalman filter algorithm is only different in the way to forecast the state vector and 

the measurement vector. 
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4.3  Steady-state Kalman Filter 

In the classical Kalman filter algorithm, the propagation of the error covariance 

matrix normally requires huge computational power, which hampers the application of 

Kalman filter in high dimensional systems. Some sub-optimal Kalman filter 

approximations have been developed to solve this problem, such as the ensemble Kalman 

filter (Evensen, 1994; Madsen and Cañizares, 1999; Haugen and Evensen, 2002; Evensen, 

2003), the reduced rank square root filter (Verlann and Heemink, 1997; Cañizares et al., 

1998; Madsen and Cañizares, 1999), and the steady-state Kalman filter (Cañizares et al., 

2001; Sørensen et al., 2001; Oke et al., 2002; Verlaan et al., 2005; Serafy and Mynett, 

2008). 

The ensemble Kalman filter is based on a Monte Carlo simulation approach for the 

propagation of error covariance. The reduced rank square root filter uses square root 

factorization to approximate the error covariance matrix by a reduced rank matrix, in 

which only the leading eigenvectors of the error covariance matrix are kept. A constant 

Kalman gain calculated off-line is used in the steady-state Kalman filter to circumvent 

the error covariance propagation, making the steady-state Kalman filter the most cost-

efficient among the sub-optimal routines. 

Cañizares et al. (2001) proposed the steady-state Kalman filter, realizing the fact that 

the Kalman gain kK  shows little time variation. In the steady-state Kalman filter, the 

error covariance is propagated off-line, i.e. 
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1
f a T

k k k k k P = A P A Q , (4.23) 

 a f
k k k kP = I K H P , (4.24) 

1f T f T
k k k k k k k


   K P H H P H R . (4.25) 

When the solution for Equations (4.23), (4.24) and (4.25) reaches a steady state, the 

constant Kalman gain K  is determined as the average of the Kalman gains kK . Once the 

Kalman gain K  is available, only the equations for the state forecast and analysis have to 

be solved on-line, i.e. 

1
f a

k k k k k x A x B u , (4.26) 

 a f f
k k k k kx = x + K z H x . (4.27) 

On-line error propagation is not part of the steady-state Kalman filter implying that the 

computational costs are only slightly more expensive than a normal model run. 

 

4.4  Application of Kalman Filter in Error Distribution 

Although Kalman filter computes the error covariance internally, it is a valid depiction of 

the true errors committed by the filter only to the extent that the filter’s own model 

adequately portrays the true system behavior (Maybeck, 1979). In other words, Kalman 

filter will give an optimal estimate only if the specified error statistics exactly represent 

the true measurement and model errors. However, it is impossible to access the true error 

statistics in practice. As a prevailing way to solve this issue, the structure of the error 
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covariance can be explicitly modelled under the assumption of isotropy and homogeneity 

(Verlaan, 1998; Mitchell and Houtekamer 2000; Sørensen et al., 2001). 

In the error distribution application of this study, the model error covariance Q  and 

the measurement error covariance R  are respectively formulated as 

2
,

ijd

i j moQ     Q = , (4.28) 

2 2
1, ,me mepdiag    R = , (4.29) 

where   is the spatial correlation for the model errors, 2ijd i j   is the distance 

between element ij  and diagonal in matrix Q , mo  is the standard deviation of the model 

errors, mei  ( 1,2, ,i p  ) is the standard deviation of the i th measurement error, and p  

is the total number of measurements. Parameters in Equations (4.28) and (4.29) are 

determined through an exhaustive search within a pre-defined range. 

Once the model errors are predicted at the measurement stations, the measurements 

can be updated as a combination of the predicted errors and the model outputs. The 

updated measurements and the model outputs are then optimally merged weighted by the 

constant Kalman gain computed off-line. As a consequence, the predicted errors are 

distributed to the stations of interest, where the forecasting accuracy can also be 

improved. 
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Figure 4.1 Linear Kalman filter algorithm. 
 

 

Figure 4.2 Extended Kalman filter algorithm. 
 

 

 

 



 

 

 

 

Chapter 5 

Singapore Regional Model 

 

Singapore Strait is one of the busiest shipping routes in the world. Since the 1960s, the 

coastal area has been heavily utilized as ports or related industrial facilities with rapid 

economic development. With the intention to provide hydrodynamic information of the 

water surrounding Singapore for accurate scheduling of harbor facilities, docking and 

sailing times, the dedicated Singapore Regional Model (SRM) was developed within the 

Delft3D-FLOW modelling system in 2004 by WL | Delft Hydraulics, the Netherlands 

(Kernkamp and Zijl, 2004). 

This chapter presents a general description of the modelling environment - Delft3D-

FLOW, including governing equations and numerical approximations. The model set-up 

of the Singapore Regional Model is then discussed, followed by examples of the model 

output. 

 

5.1  Delft3D-FLOW 

5.1.1  Introduction 
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Delft3D is a fully integrated computer software suite for numerical computations in the 

fluvial, estuarine and coastal environments, developed by WL | Delft Hydraulics, the 

Netherlands (Deltares, 2009). Delft3D is composed of several modules, which can 

respectively carry out simulations of flows, waves, water quality, particle tracking, 

ecology, sediment transports and morphological development. These modules are 

grouped around a mutual interface and capable of interacting with one another. 

Delft3D-FLOW is the core of Delft3D, providing hydrodynamic basis for the other 

modules. Delft3D-FLOW has been validated for modelling a wide range of flow 

conditions, such as turbulent flows in laboratory flumes, rapidly varying flows in rivers, 

wind driven flows in lakes and tidal flows in estuaries. The validation approach is based 

on the Guidelines for Validation Documents of the International Association for 

Hydraulic Research (IAHR Bulletin, 1994). 

 

5.1.2  Governing Equations 

Delft3D-FLOW solves the shallow water equations, which are derived from the 

principles of mass and momentum conservations under the shallow water and the 

Boussinesq assumptions. Formulated in the orthogonal curvilinear co-ordinates  ,   in 

the horizontal direction and in the   co-ordinate in the vertical direction, these governing 

equations can be formulated as 

   1 1d U G d V G
Q

t G G G G

 

   

 
 

            
  

, (5.1) 
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, (5.2) 
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 
  

 

          

, (5.3) 

where, 

  - free surface elevation 

t  - time 

G , G  - co-ordinates transforming coefficients 

d  - water depth 

U , V  - depth-averaged velocities in   and   directions 

Q  - global source/sink per unit area 

u , v ,   - flow velocities in x , y , and   directions 

f  - Coriolis coefficient 

0  - reference water density 

P , P  - hydrostatic pressure gradients 
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F , F  - turbulent momentum fluxes 

mol , 3D , back
V  - kinematic viscosity, eddy viscosity and background vertical viscosity 

M , M  - sources/sinks of momentum 

Noting that   is the vertical velocity relative to the moving   plane, the vertical flow 

velocity w  in the Cartesian z  co-ordinate system can be calculated by 

1 H H
w u G v G

G G

H

t t

 
 

   
   



       
               

      

,  (5.4) 

where H d    is the total water depth. 

To make the mathematical problem well-posed, the governing equations are 

supplemented by appropriate boundary conditions. At the closed boundaries, such as 

river banks and coast lines, the boundary condition is specified as 

0v  , (5.5) 

which means no inflow or outflow can pass through the closed boundaries. At the open 

boundaries, following types of boundary conditions can be prescribed 

 Water level:  F t  , 

 Velocity:  UU F t , 

 Discharge:  QQ F t , 

 Riemann invariant:  R

g
U F t

d
  . 
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The data needed for the open boundary conditions can be obtained from measurements, 

tide tables, or a larger model which encloses the present model. 

 

5.1.3  Numerical Aspects 

The numerical method of Delft3D-FLOW is based on finite differences. As shown in 

Figure 5.1, the variables describing the flows are arranged in a staggered grid system. 

The water level points are defined in the centre of a cell, the depth points are defined at 

the corners of a cell, while the velocity components are defined to be perpendicular to the 

grid cell faces. Staggered grid has several advantages, such as (Stelling, 1983) 

 Boundary conditions can be implemented in a rather simple way; 

 Staggered grid can achieve better accuracy compared to non-staggered grid; 

 Staggered grid prevents spatial oscillations in the water levels. 

Delft3D-FLOW adopts the Alternating Direction Implicit (ADI) method for temporal 

integration. The Alternating Direction Implicit method was introduced by Leendertse 

(1967, 1971, 1973) and extended by Stelling (1983). As a computationally efficient finite 

difference method, the Alternating Direction Implicit method splits one time step into 

two stages, which can be formulated in vector form as 

Stage 1: 

1
1 12
2 2

1 1
1 2 2
2

x y

U U
A U A U BU d

t


 

   


   

    
, (5.6) 

Stage 2: 
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, (5.9) 

and 

0 0

0 0

0 0

B






 
   
  

, (5.10) 

where   is the linearized bottom friction coefficient, and d


 denotes the external forces 

like wind and atmospheric pressure. 

In stage 1, the v  momentum equation, Equation (5.3), is solved first explicitly, thus 

the v  velocity components are available for the cross terms in the u  momentum equation, 

Equation (5.2). The u  momentum equation is then coupled with the continuity equation, 

Equation (5.1), and solved implicitly. Similar procedure is performed in stage 2, but first 
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for the u  momentum equation explicitly, followed by the v  momentum equation and the 

continuity equation implicitly. For a complete time step, each separate term of the 

equations is still a second-order consistent approximation to the differential equations. 

As the Alternating Direction Implicit method is essentially an implicit scheme, 

stability is not an essential issue in most cases for Delft3D-FLOW. However, the 

Alternating Direction Implicit method may lead to inaccurately predicted flow patterns 

due to the ADI-effect that is introduced by splitting the spatial operator in two directions. 

The accuracy is dependent on the Courant number defined by 

 ,

t gH
Cr

x y

 


 
, (5.11) 

where t  is the time step, g  is the acceleration of gravity, H  is the water depth, and 

 ,x y   is the minimal value of the grid spacing in either direction. In practical 

situations, the Courant number should not exceed a value of 10. 

Further details about Delft3D-FLOW can be found in Deltares (2009). 

 

5.2  Singapore Regional Model 

5.2.1  Model Set-up 

Figure 5.2 shows the extent, grid and bathymetry of the Singapore Regional Model. In 

order to compute the residual currents in Singapore Strait, large parts of the seas around 

Singapore are included in the model domain. Open boundaries are located in the 

Andaman Sea, in the South China Sea, and in the Java Sea. The Singapore Regional 

Model grid consists of around 38,500 curvilinear grid cells in the horizontal plane. Grid 
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sizes vary from about 200 m to 300 m around Singapore up to over 15 km at the open 

boundaries. The bathymetry in the Singapore Regional Model is based on Admiralty 

charts. The maximum depth of the model is about 2000 m in the Andaman Sea, whereas 

the maximum depth in Singapore Strait is over 160 m. 

Singapore is located between two large water bodies: the South China Sea on the east 

and the Andaman Sea on the west. The water motion in Singapore Strait is driven by 

tides coming from both sides, by mean sea level differences between seas and by the 

wind. Therefore, the hydrodynamics of Singapore water is complex. 

The Singapore Regional Model has been intensively calibrated with following 

parameters determined (Kernkamp and Zijl, 2004) 

 Time step: 4 min 

 Initial water level: 0 m 

 Gravity: 9.81 m/s2 

 Water density: 1023 kg/m3 

 Bottom roughness: Manning 0.022 s/m1/3 

 Wall roughness: Free slip 

 Horizontal eddy viscosity: 1.00 m2/s 

The values for these parameters were initially set based on the specialist knowledge of 

the modellers, and then fine-tuned through a sensitivity analysis process. 

 

5.2.2  Numerical Simulation 
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Figure 5.3 illustrates the 6 measurement stations studied, which are located at Jurong 

(1.31 N, 103.72 E), Tanjong Pagar (1.26 N, 103.85 E), Bukom (1.23 N, 103.78 E), 

Raffles (1.16 N, 103.74 E), Sembawang (1.47 N and 103.84 E) and Horsburgh (1.33 N, 

104.41 E). In order to take account of the seasonal variation in the model outputs, the 

numerical simulation covers a period of one and a half years from 1st January 2000 00:00 

to 31st June 2001 23:00, producing time series of 13,128 hourly data for all grid points. 

The corresponding observed tidal levels at the measurement stations are provided by the 

Singapore Marine and Port Authority (MPA). 

As summarized in Table 5.1, the Singapore Regional Model outputs are compared 

with the observations at the 6 measurement stations, in terms of root mean square error 

(RMSE) and correlation coefficient (r) defined as 

 2'

1

1
RMSE

N

i i
iN

 


   (5.12) 
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 (5.13) 

i
i N


   ; 

'
' i

i N


    (5.14) 

where N  is the length of the time series, i  represent the observed values, and '
i  are the 

Singapore Regional Model outputs. When tides propagate from the deep ocean to the 

shallow water, both spatial and temporal characteristics tend to transform due to the 

bottom friction from the sea bed. Attributed to the shoaling effect, the Singapore 
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Regional Model is less competent to capture the complex tidal movement in the coastal 

area, and hence produces larger model errors at the near shore measurement stations. 

Examples of the model outputs at Jurong and Horsburgh are plotted in Figures 5.4 

and 5.5, accompanied by the observations and the model errors. The discrepancies 

between the model outputs and the observations can be noticed especially at the tidal 

level extrema. To get a direct perception of the model errors, Figures 5.6 and 5.7 

demonstrate independently the model errors at Jurong and Horsburgh. The model errors 

oscillate drastically with obvious random behaviors. 
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Figure 5.1 Staggered grid of Delft3D-FLOW. 
 

Legend: 

 Full lines      the numerical grid 

                  water level point ( ) 

                    depth point ( d ) 

                  horizontal velocity component 

                     vertical velocity component 

          variables with identical index ( ,m n ) 

          a continuity cell / a computational control volume 
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Figure 5.2 Extent, grid and bathymetry of Singapore Regional Model. 
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Figure 5.3 Measurement stations around Singapore. 
 

 

 



CHAPTER 5. SINGAPORE REGIONAL MODEL 

69 

6/1/01 0:00 6/5/01 0:00 6/9/01 0:00 6/13/01 0:00 6/17/01 0:00 6/21/01 0:00
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Date - Time

T
id

e
 l
ev

e
l (

m
)

Jurong

 

 
SRM output
Observation
Model error

 

Figure 5.4 SRM outputs, observations and model errors at Jurong. 
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Figure 5.5 SRM outputs, observations and model errors at Horsburgh. 
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Figure 5.6 Model errors at Jurong. 
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Figure 5.7 Model errors at Horsburgh. 
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Table 5.1 Statistics of model errors at the measurement stations. 
 

 Jurong Tanjong Pagar Bukom Raffles Sembawang Horsburgh 

RMSE (cm) 18.80 18.57 16.54 16.16 19.40 13.91 

r 0.91 0.91 0.91 0.91 0.89 0.93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Chapter 6 

Error Prediction with Local Model and Multilayer Perceptron 

 

6.1  Introduction 

As discussed in previous chapters, Singapore Regional Model produces model errors with 

significant magnitudes. These model errors come from several sources, 

 Insufficient tidal constituents prescribed at the open boundaries, 

 Neglect of wind, 

 Inaccuracy in the numerical discretization scheme, 

 Uncertainties in the model parameters, 

 Nonlinearities caused by the shoaling effect. 

In order to compensate for these limitations and hence improve the forecast accuracy 

of the numerical model, this chapter applies both local model and multilayer perceptron 

to predict the model errors at the measurement stations. The model errors are forecasted 

to 5 prediction horizons ranging from 2 hours to 96 hours. The methodologies and results 

are discussed in detail, followed by a performance comparison between these two 

methods. 
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6.2  Application of Local Model in Error Prediction 

6.2.1  Chaos Identification 

Although the model errors exhibit distinct random behaviors, whether these behaviors 

arise from chaotic or stochastic dynamics remains undetermined. Correlation integral 

analysis is then conducted to identify chaos. 

Using the model errors at Jurong as an example, Figure 6.1 illustrates the results of 

correlation integral analysis. The lines with different colors represent the analysis results 

in different embedding dimensions m  within a predefined range [1, 10]. In the saturation 

region, the correlation dimension d  falls within 1 to 4. This verifies the model error time 

series is governed by low dimensional chaos, and validates the applicability of predicting 

the model errors in the chaotic dynamic system. Same conclusions can be drawn for other 

measurement stations. 

 

6.2.2  Parameter Determination 

The first 120 data points (1st January 0:00 – 5th January 23:00) are discarded in order to 

eliminate the effect of initial conditions. The model error data sets are divided into two 

subsets, i.e. training data (from 121 to 8784; 6th January 0:00 – 31st December 23:00) and 

testing data (from 8785 to 13128; 1st January 0:00 – 30st June 23:00). Training data are 

used to determine the optimal m ,   and k , whereas the testing set is used to test the 

performance of local model. 

The inverse approach is applied on the training data to simultaneously optimize m ,   

and k . Table 6.1 summarizes the parameter settings in genetic algorithm, verified to be 
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sufficient for the algorithm to converge. The optimized parameters m ,   and k  are 

summarized in Table 6.2. Because the higher complexity of the chaotic systems 

progressing along with the prediction horizons requires a higher dimension to unfold the 

underlying structures, the embedding dimension m  increases when the prediction 

horizon T  increases. Attributed to the extreme sensitivity of the chaotic systems to the 

initial conditions, the optimized parameters are unique for each prediction horizon at 

different measurement stations. 

The reconstructed phase spaces are only visualizable when the embedding dimension 

3m . An example of the reconstructed phase spaces at Jurong is plotted in Figure 6.2. 

Compared to the original chaotic model error time series, clear patterns are revealed in 

the phase spaces. Trends in the trajectories of the state vectors establish the basis to 

predict the model errors. 

 

6.2.3  Results 

Figures 6.3 – 6.6 illustrate examples at Jurong and Horsburgh of error prediction with 

local model when prediction horizon 2T   hours and 96T   hours. The 2-hour local 

model forecast agrees well with the model errors, whereas the discrepancies become 

larger when 96T   hours. When the prediction horizon increases, the local model 

approach becomes less competent to capture the trajectories of the state vectors in the 

higher-dimensional phase spaces. However, even when 96T   hours, the local model 

forecast still successfully resolves the rising and falling tendencies of the model errors, 

resulting in residual errors with reduced magnitudes. 
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By integrating the predicted model errors into the model outputs, the forecasting 

accuracy of the Singapore Regional Model can be improved. Figures 6.7 – 6.8 plot the 

scatter diagrams at Jurong of the model outputs and the local model corrected outputs 

when 2T   hours. The Singapore Regional Model tends to over-predict the reality, while 

the scatter is significantly reduced in the local model corrected outputs. 

Table 6.3 summarizes the error prediction efficiency of local model through 

evaluating the respective residual root mean square error and the correlation coefficient 

after error correction. For the prediction horizon 2T   hours, almost 80% of the root 

mean square errors have been removed from the Singapore Regional Model outputs. 

When 96T   hours, local model forecast removes about 50% of the root mean square 

errors. Averaged over 5 prediction horizons, the error reduction is about 60%, and the 

correlation coefficient between the corrected model outputs and the observations is 

enhanced to 0.98. 

 

6.3  Application of Multilayer Perceptron in Error Prediction 

6.3.1  Methodology 

Cross validation data are required for multilayer perceptron to avoid overfitting. 

Therefore, the model error data sets are divided into three subsets, i.e. training data (from 

121 to 8784; 6th January 0:00 – 31st December 23:00), cross validation data (from 8785 to 

10944; 1st January 0:00 – 31st March 23:00) and testing data (from 10945 to 13128; 1st 

April 0:00 – 30st June 23:00). 
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The average mutual information and the false nearest neighbors analyses are then 

applied on the training data for the optimization of the embedding parameters m  and  . 

Analyses examples at Jurong are plotted in Figures 6.9 and 6.10. The optimal time delay 

  is selected at the first minimum of the average mutual information, whereas the 

optimal embedding dimension m  is determined when the percentage of false nearest 

neighbors drops to zero. The optimized parameters m  and   are summarized in Table 

6.4. Compared to the parameters in local model, identical set of embedding parameters is 

utilized in multilayer perceptron to reconstruct the phase spaces for different prediction 

horizons. 

To approximate the mapping function  Tg   in Equation (3.12), i.e.  t T T tx g  x , 

the components of tx  are fed as input to the multilayer perceptron with t Tx   being the 

desired response. Therefore, as shown in Figure 6.11, multilayer perceptron is composed 

of an input layer with m  input neurons, a hidden layer, and an output layer with one 

output neuron. The logistic function is used as the activation function in the hidden layer, 

and the linear function is used in the output layer. 

Fine-tuned by trial and error and in consideration of both learning rate and stability, 

parameters for the networks and in the training algorithm are set as follows, 

 No. of hidden neurons: 50 

 No. of epochs: 200 

 learning rate 0.1   

 momentum constant 0.7   
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The prediction accuracy improves when increasing no. of hidden neurons and epochs, but 

deteriorates at certain critical values due to the generalization effect. 

Multilayer perceptron tends to converge to local optima if the synaptic weights are 

not properly initialized. A set of 5 multilayer perceptrons with different initial synaptic 

weights is trained. The multilayer perceptron with the best prediction accuracy in the 

cross validation data set is selected as the optimal network, which is applied to predict the 

testing data set. 

 

6.3.2  Results 

Figures 6.12 and 6.13 illustrate examples of error prediction with multilayer perceptron at 

Jurong when prediction horizon 2T   hours and 96T   hours. Both the 2-hour and 96-

hour multilayer perceptron forecast successfully resolves the oscillating trend of the 

model error time series, while the magnitudes of the residual errors increase slightly 

when 96T   hours. 

The error prediction efficiency of multilayer perceptron is summarized in Table 6.5 

through evaluating the respective residual root mean square error and the correlation 

coefficient after error correction. For the prediction horizon 2T   hours, more than 70% 

of the root mean square errors have been removed from the Singapore Regional Model 

outputs, while multilayer perceptron still removes over 50% of the root mean square 

errors when 96T   hours. Averaged over 5 prediction horizons, the error reduction is 

about 65%, and the correlation coefficient between the corrected model outputs and the 

observations is enhanced to 0.98. 
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6.4  Comparison between Local Model and Multilayer Perceptron 

Figures 6.14 and 6.15 plot the residual root mean square error resulted from both local 

model and multilayer perceptron against the prediction horizon at Jurong and Horsburgh, 

together with the root mean square error before error correction. When the prediction 

horizons are small, the chaotic system exhibits low dimensional dynamical behavior, and 

local model is capable of capturing the dynamics in a better way than multilayer 

perceptron. When the prediction horizon increases, the local model approach becomes 

less competent to capture the trajectories of the state vectors in the higher-dimensional 

phase spaces, making the prediction accuracy of the local model approach deteriorate 

relatively drastically when T  increases. Comparatively, multilayer perceptron is less 

sensitive to the prediction horizon with a more consistent performance. Averaged over 5 

different prediction horizons, both methods are able to remove about 60% of the root 

mean square errors in the model error time series, while the overall performance of 

multilayer perceptron is slightly better. 

In terms of computational cost, local model is more efficient than multilayer 

perceptron in model error prediction. Coded in FORTRAN and running in an Intel Core 

Due T2400 1.83 GHz machine with 2.5 GB RAM, it only takes less than 2 hours for local 

model to analyze one model error time series, including parameter determination and 

time series prediction. Multilayer perceptron is implemented using MATLAB Neural 

Networks Toolbox and running in the same machine. Without considering the time to 

optimize the embedding parameters, it takes about 20 hours to train a network. The 
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computational time increases significantly along with the data set size, the number of 

hidden neurons and epochs. However, as it is once-and-for-all to train a network, 

multilayer perceptron is still practical in real applications. 

In the present study, the parameters in local model are determined by the inverse 

approach from searching in a sufficient scope, while the parameters in multilayer 

perceptron are determined by average mutual information and false nearest neighbors 

analyses. The fact that multilayer percptron with sub-optimal parameters outperforms 

local model implies that multilayer perceptron is preferable to predict the model errors, 

especially in case of large prediction horizons. 
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Figure 6.1 Correlation integral analysis for the model error time series at Jurong 
(different colors represent different embedding dimensions). 
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Figure 6.2 Reconstructed phase space for the model errors at Jurong (T=2 hours). 
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Figure 6.3 Error prediction with local model at Jurong (T=2 hours). 
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Figure 6.4 Error prediction with local model at Jurong (T=96 hours). 
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Figure 6.5 Error prediction with local model at Horsburgh (T=2 hours). 
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Figure 6.6 Error prediction with local model at Horsburgh (T=96 hours). 
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Figure 6.7 Scatter diagrams of SRM outputs at Jurong. 
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Figure 6.8 Scatter diagrams of LM corrected outputs at Jurong (T=2 hours). 
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Figure 6.9 Average mutual information of the model errors at Jurong. 
 

 

Figure 6.10 False nearest neighbors analysis for the model errors at Jurong. 
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Figure 6.11 Architecture of multilayer perceptron in error prediction. 
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Figure 6.12 Error prediction with multilayer perceptron at Jurong (T=2 hours). 
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Figure 6.13 Error prediction with multilayer perceptron at Jurong (T=96 hours). 
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Figure 6.14 RMSE vs. prediction horizon at Jurong. 
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Figure 6.15 RMSE vs. prediction horizon at Horsburgh. 
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Table 6.1 Parameter settings in genetic algorithm. 
 

Parameters Value Remark 

T 2, 24, 48, 72, 96 prediction horizon 

parmin 1, 1, 1 minimum values of m ,   and k  

parmax 20, 50, 100 maximum values of m ,   and k  

npopsiz 10 population size 

maxgen 200 maximum number of generation 

pcross 50 probability of crossover (%) 

pmutate 2 probability of mutation (%) 

rmsestop 0 stop RMSE 
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Table 6.2 Embedding parameters ( m ,  , k ) in local model. 
 

 
Jurong Tanjong Pagar Bukom Raffles Sembawang Horsburgh 

m    k  m    k  m    k  m    k  m    k  m    k  

T=2 Hr 3 1 35 3 1 13 3 1 24 4 1 36 2 1 28 4 1 23 

T=24 Hr 4 12 53 4 21 44 5 17 50 5 15 49 3 12 48 6 21 37 

T=48 Hr 5 25 41 6 24 40 6 16 51 7 11 76 4 21 43 7 31 34 

T=72 Hr 7 29 41 8 32 51 7 44 12 8 44 41 5 44 46 9 44 28 

T=96 Hr 9 36 44 12 34 60 10 40 17 11 36 34 6 34 39 14 43 53 
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Table 6.3 Statistics of residual errors at the measurement stations (local model). 
 

 

Jurong Tanjong Pagar Bukom Raffles Sembawang Horsburgh 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

SRM 18.80 0.91 18.57 0.91 16.54 0.91 16.16 0.91 19.40 0.89 13.91 0.93 

T=2 Hr 4.05 0.99 4.09 0.99 3.67 0.99 3.58 0.99 4.28 0.98 3.51 0.99 

T=24 Hr 6.08 0.99 6.11 0.99 5.74 0.99 5.82 0.99 5.93 0.98 4.73 0.99 

T=48 Hr 7.64 0.98 7.81 0.98 7.04 0.98 7.23 0.98 7.30 0.98 5.96 0.98 

T=72 Hr 9.21 0.98 8.94 0.98 8.27 0.98 8.35 0.98 8.49 0.97 7.11 0.98 

T=96 Hr 10.12 0.97 9.76 0.97 9.07 0.97 9.11 0.97 9.60 0.97 8.19 0.98 

Average 7.42 0.98 7.34 0.98 6.76 0.98 6.82 0.98 7.12 0.98 5.90 0.98 
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Table 6.4 Embedding parameters ( m ,  ) in multilayer perceptron. 
 

 Jurong Tanjong Pagar Bukom Raffles Sembawang Horsburgh 

m  6 5 4 4 5 4 

  4 4 6 6 4 5 
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Table 6.5 Statistics of residual errors at the measurement stations (multilayer perceptron). 
 

 

Jurong Tanjong Pagar Bukom Raffles Sembawang Horsburgh 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

RMSE 

(cm) 
r 

SRM 18.80 0.91 18.57 0.91 16.54 0.91 16.16 0.91 19.40 0.89 13.91 0.93 

T=2 Hr 4.64 0.99 4.71 0.99 4.33 0.99 4.43 0.99 5.34 0.98 4.12 0.99 

T=24 Hr 6.21 0.99 5.94 0.99 5.59 0.99 5.49 0.99 6.14 0.98 4.93 0.99 

T=48 Hr 7.03 0.98 6.91 0.98 6.43 0.98 6.24 0.98 6.82 0.98 5.67 0.98 

T=72 Hr 7.69 0.98 7.56 0.98 6.85 0.98 6.66 0.98 7.46 0.97 6.23 0.98 

T=96 Hr 8.19 0.97 8.03 0.97 7.03 0.97 6.99 0.97 7.99 0.97 6.58 0.98 

Average 6.75 0.98 6.63 0.98 6.05 0.98 5.96 0.98 6.75 0.98 5.51 0.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Chapter 7  

Error Distribution with Kalman Filter and Multilayer 

Perceptron 

 

7.1  Introduction 

Having predicted the model errors at the measurement stations within the chaotic 

dynamic system, the forecasting interest can be extended to the remainder of the 

computational domain by distributing the predicted model errors using optimal 

interpolation schemes. Two approaches of error distribution are explored in the present 

study, i.e. Kalman filter and multilayer perceptron. 

Among the 6 stations in the Singapore Regional Model domain, 2 near shore stations, 

i.e. Jurong and Tanjong Pagar, are assumed to be the measurement stations, where the 

model errors are directly forecasted using multilayer perceptron based on the past 

recordings. The remaining 4 stations, i.e. Bukom, Raffles, Sembawang and Horsburgh, 

are assumed to be the non-measurement stations, where the model outputs are corrected 

by spatially distributing the predicted errors from the measurement stations. The 

corrected model outputs at the non-measurement stations are compared against the 

observations, which are assumed to be unavailable in the process of error correction. 
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In order to test the sensitivity of the error distribution approaches to the information 

contained in the predicted errors at the 2 measurement stations, 3 different combinations 

are utilized to distribute the errors, 

 Case 1: Jurong and Tanjong Pagar; 

 Case 2: Jurong only; 

 Case 3: Tanjong Pagar only. 

The correlation coefficients between the Singapore Regional Model outputs at the 

measurement stations and the non-measurement stations are summarized in Table 7.1. As 

indicated, the model outputs are highly correlated at the stations located near to each 

other, while the correlation becomes smaller when the distance increases. 

 

7.2  Application of Kalman Filter in Error Distribution 

7.2.1  Error Statistics Approximation 

As discussed in Chapter 4, applying Kalman filter requires the knowledge of the error 

statistics of the numerical models and the measurements. Under the assumption of 

isotropy and homogeneity, in this study the model error covariance Q  and the 

measurement error covariance R  are explicitly formulated as 

2
,

ijd

i j moQ     Q = , (7.1) 

2 2
1, ,me mepdiag    R = , (7.2) 

where   is the spatial correlation for the model errors, 2ijd i j   is the distance 

between element ij  and diagonal in matrix Q , mo  is the standard deviation of the model 
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errors, mei  ( 1,2, ,i p  ) is the standard deviation of the i th measurement error, and p  

is the total number of measurements. 

To determine the parameters in Equations (7.1) and (7.2), an exhaustive search is 

executed in a predefined range. The possible spatial correlation values considered are 0.6, 

0.7, …, 1.0, while the standard deviations for model errors and measurement errors are 

set between 0.01 to 0.20 with a step of 0.01. For each combination of parameters, Kalman 

filter is run and the updating process is conducted. The selection criterion is based on the 

residual errors between the measurements and the corrected model forecasts. Following 

parameters are finally specified, 

 Spatial correlation for the model errors: 0.9  ; 

 Standard deviation for the model errors: 0.15mo   m; 

 Standard deviation for the measurement errors: 0.01mei   m ( 1,2, ,i p  ). 

In the searching process, the Kalman filter is quite robust to the error statistics. Small 

changes in the parameters will not affect the results. This finding agrees with Madsen and 

Cañizares (1999), Cañizares et al. (2001) and Sørensen et al. (2001). 

The error covariance is propagated off-line after determining Q  and R . A constant 

Kalman gain K  is then calculated as the average of the Kalman gains kK  in the off-line 

error covariance propagation. Once the Kalman gain K  is available, it will serve as a 

weighting function between the model forecast and the measurement, with only the 

equations for the state forecast and analysis solved on-line. 
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7.2.2  Results 

Overviews of error distribution efficiency with Kalman filter at Bukom, Raffles, 

Sembawang and Horsburgh are summarized in Tables 7.2 – 7.5 respectively, in terms of 

residual root mean square error as well as the correlation coefficient after error correction. 

The best cases of error distribution are highlighted (*) in Tables 7.2 – 7.5. The distributed 

errors at Horsburgh from the best cases are plotted in Figures 7.1 and 7.2, together with 

the model errors and the residual errors. 

At Bukom and Raffles, where the outputs of the Singapore Regional Model at the 

non-measurement stations and the measurement stations are highly correlated, Kalman 

filter performs well in distributing the predicted errors to the non-measurement stations. 

For the best cases, more than 50% of the root mean square errors in the Singapore 

Regional Model outputs have been removed on average. The correlation coefficient also 

increases from 0.91 to 0.97 after error distribution. However, when the correlation 

decreases, the performance of Kalman filter in error distribution deteriorates at a rapid 

pace. As shown in Figures 7.1 and 7.2, although the distributed errors are still able to 

follow the up and down trends of the model errors, the magnitudes of the residual errors 

increase significantly at Horsburgh. Averaged over 5 prediction horizons, Kalman filter 

removes only about 40% of the root mean square errors at Sembawang and 20% of the 

root mean errors at Horsburgh. 

 

7.3  Application of Multilayer Perceptron in Error Distribution 

7.3.1  Methodology 
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The Singapore regional model, due to the shoaling effect, produces larger model errors at 

the near shore measurement stations, where the water levels are relatively larger. In other 

words, the magnitude of the model errors is directly proportional to the magnitude of the 

water levels. In addition, as shown in Figures 5.4 to 5.7, the model errors reach maximum 

absolute values at the tidal level extrema, whereas the model errors reach minimum 

absolute values at zero tidal levels. The high correlation between the model errors and the 

model outputs inspires an error distribution scheme based on multilayer perceptron. 

Assuming that the model errors will be distributed in a similar manner as the 

distribution of the model outputs, the error distribution scheme based on multilayer 

perceptron can be accomplished in 3 steps, 

 Step 1. Approximate with multilayer perceptron a non-linear mapping function     

between the numerical model outputs at the measurement stations M  and the non-

measurement stations N  

 N M  (7.3) 

 Step 2. Given the model errors forecasted at the measurement stations, ˆ
ME , the 

distributed errors at the non-measurement stations ˆ
NE  can be calculated by 

 ˆ ˆ
N ME E  (7.4) 

 Step 3. Correct the numerical model outputs at the non-measurement stations 

ˆ ˆ
NN N + E  (7.5) 
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To approximate the mapping function    , the model outputs at the measurement 

stations are fed as input to the multilayer perceptron with the model outputs at the non-

measurement stations being the desired response. Therefore, as shown in Figure 7.3, 

multilayer perceptron is composed of an input layer with two input neurons or one input 

neuron, corresponding to case 1 and cases 2 or 3, a hidden layer, and an output layer with 

4 output neurons. Logistic function and linear function are respectively used as the 

activation function in the hidden layer and in the output layer. Parameters for the 

networks and in the training algorithm are set as follows 

 No. of hidden neurons: 50 

 No. of epochs: 200 

 learning rate: 0.1   

 momentum constant: 0.7   

To avoid converging to local optima, a set of 5 multilayer perceptrons with different 

initial synaptic weights is trained. The multilayer perceptron with the best accuracy is 

selected as the optimal network to distribute the model errors. 

 

7.3.2  Results 

Overviews of error distribution efficiency with multilayer perceptron at Bukom, Raffles, 

Sembawang and Horsburgh are summarized in Tables 7.6 – 7.9 respectively, in terms of 

residual root mean square error as well as the correlation coefficient after error correction. 

The best cases of error distribution are highlighted (*) in Tables 7.6 – 7.9. Compared to 

Kalman filter, multilayer perceptron is less sensitive to the correlations. For the best cases, 
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multilayer perceptron removes more than 50% of the root mean square errors at Bukom 

and Raffles on average, while the error reduction keeps larger than 40% at Sembawang 

and Horsburgh. 

Figures 7.4 and 7.5 illustrate examples of error distribution with multilayer 

perceptron at Horsburgh when prediction horizon 2T   hours and 96T   hours. Both 

the 2-hour and 96-hour distributed errors successfully approach the model errors, 

generating residual errors with reduced magnitudes. 

 

7.4  Comparison between Kalman Filter and Multilayer Perceptron 

When the model outputs at the measurement stations and the non-measurement stations 

are highly correlated, i.e. at Bukom and Raffles, both Kalman filter and multilayer 

perceptron successfully remove over 50% of the root mean square errors. When the 

correlation decreases, i.e. at Sembawang and Horsburgh, the performance of both 

Kalman filter and multilayer perceptron deteriorates. Kalman filter can only remove 

about 40% of the root mean square errors at Sembawang and 20% at Horsburgh. In 

comparison, multilayer perceptron has a more consistent performance in error 

distribution, with an error reduction of more than 40% at both Sembawang and 

Horsburgh. Figures 7.6 plots the residual root mean square error at Horsburgh resulted 

from both Kalman filter and multilayer perceptron against the prediction horizon, 

together with the root mean square error before error correction, from which the better 

error distribution performance of multilayer perceptron in case of smaller correlations can 

be noticed. 
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Multilayer perceptron is also more computationally efficient than Kalman filter in 

model error distribution. Kalman filter is coded in MATLAB and run in an Intel Core 

Duo T2400 1.83 GHz machine with 2.5 GB RAM. Although assumptions about the error 

covariance structures and the constant Kalman gain accelerate the operation of Kalman 

filter, it is required to run Kalman filter dozens of times in the parameter searching 

procedure, each of which takes a computational time of 2 hours. Multilayer perceptron is 

implemented using MATLAB Neural Networks Toolbox and running in the same 

machine. It takes about 20 hours to train a network, and one multilayer perceptron is 

capable of distributing the model errors to all the non-measurement stations. Considering 

both performance efficiency and computational cost, multilayer perceptron is the 

preferable approach to distribute the model errors. 

As indicated in Tables 7.2 – 7.9, distributing the predicted errors from both 

measurement stations gives the best results at Bukom and Raffles, while at Sembawang 

and Horsburgh the cases with only one measurement station show the superiority. Due to 

the misleading information from less correlated stations, more measurement stations will 

not necessarily guarantee more accurate error distribution. Apart from the relative 

geographical locations, the correlation coefficients of the model outputs are valuable 

references in selecting the correlated measurement stations. As suggested by this finding, 

for locating future measurement stations which are also intended for model correction 

purposes, a prior correlation analysis among possible sites is favorable. 
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Figure 7.1 Error distribution with Kalman filter at Horsburgh (T=2 hours; Case 3). 
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Figure 7.2 Error distribution with Kalman filter at Horsburgh (T=96 hours; Case 3).  
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Figure 7.3 Architecture of multilayer perceptron in error distribution. 
 

 

 

 



CHAPTER 7. ERROR DISTRIBUTION WITH KALMAN FILTER 
AND MULTILAYER PERCEPTRON 

104 

6/1/01 0:00 6/5/01 0:00 6/9/01 0:00 6/13/01 0:00 6/17/01 0:00 6/21/01 0:00
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Date - Time

E
rr

o
r 

(m
)

MLP error distribution (Horsburgh; T=2 hours)

 

 
Model error
Distributed error
Residual error

 

Figure 7.4 Error distribution with multilayer perceptron at Horsburgh (T=2 hours; Case 
3). 
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Figure 7.5 Error distribution with multilayer perceptron at Horsburgh (T=96 hours; Case 
3). 
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Figure 7.6 RMSE vs. prediction horizon at Horsburgh 
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Table 7.1 Correlation coefficient between the SRM outputs at the measurement stations 
and the non-measurement stations. 
 

 Bukom Raffles Sembawang Horsburgh 

Jurong 0.9574 0.9482 0.8028 0.6805 

Tanjong Pagar 0.9520 0.9475 0.9016 0.8040 

Average 0.9547 0.9479 0.8522 0.7423 
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Table 7.2 Statistics of residual errors at Bukom (Kalman filter; *: best case). 
 

 

Bukom 

Case 1 * Case 2 Case 3 

RMSE (cm) r RMSE (cm) r RMSE (cm) r 

SRM 16.54 0.91 16.54 0.91 16.54 0.91 

T=2 Hr 5.19 0.98 5.30 0.98 5.39 0.98 

T=24 Hr 6.46 0.97 6.75 0.97 6.77 0.97 

T=48 Hr 7.65 0.97 7.92 0.97 7.98 0.97 

T=72 Hr 8.80 0.97 8.98 0.97 9.06 0.97 

T=96 Hr 9.82 0.97 10.07 0.97 10.45 0.97 

Average 7.58 0.97 7.80 0.97 7.92 0.97 

 

Table 7.3 Statistics of residual errors at Raffles (Kalman filter; *: best case). 
 

 

Raffles 

Case 1 * Case 2 Case 3 

RMSE (cm) r RMSE (cm) r RMSE (cm) r 

SRM 16.16 0.91 16.16 0.91 16.16 0.91 

T=2 Hr 5.33 0.98 5.43 0.98 5.44 0.98 

T=24 Hr 6.58 0.97 6.72 0.97 6.75 0.97 

T=48 Hr 7.75 0.97 7.98 0.97 8.14 0.97 

T=72 Hr 8.84 0.97 9.02 0.97 9.35 0.97 

T=96 Hr 9.89 0.97 10.17 0.97 10.49 0.97 

Average 7.69 0.97 7.86 0.97 8.03 0.97 
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Table 7.4 Statistics of residual errors at Sembawang (Kalman filter; *: best case). 
 

 

Sembawang 

Case 1 Case 2 Case 3 * 

RMSE (cm) r RMSE (cm) r RMSE (cm) r 

SRM 19.40 0.89 19.40 0.89 19.40 0.89 

T=2 Hr 10.54 0.96 12.09 0.95 9.35 0.97 

T=24 Hr 11.37 0.95 12.86 0.95 10.46 0.96 

T=48 Hr 12.14 0.95 13.72 0.94 11.48 0.95 

T=72 Hr 12.97 0.94 14.56 0.93 12.51 0.95 

T=96 Hr 13.66 0.94 15.23 0.93 13.87 0.94 

Average 12.14 0.95 13.69 0.94 11.53 0.95 

 

Table 7.5 Statistics of residual errors at Horsburgh (Kalman filter; *: best case). 
 

 

Horsburgh 

Case 1 Case 2 Case 3 * 

RMSE (cm) r RMSE (cm) r RMSE (cm) r 

SRM 13.91 0.93 13.91 0.93 13.91 0.93 

T=2 Hr 9.73 0.97 10.37 0.96 9.57 0.97 

T=24 Hr 10.60 0.96 11.04 0.95 10.35 0.96 

T=48 Hr 11.48 0.95 11.81 0.95 11.13 0.96 

T=72 Hr 12.27 0.94 12.63 0.94 11.87 0.95 

T=96 Hr 13.05 0.94 13.58 0.93 12.657 0.94 

Average 11.43 0.95 11.89 0.95 11.11 0.96 
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Table 7.6 Statistics of residual errors at Bukom (multilayer perceptron; *: best case).  
 

 

Bukom 

Case 1 * Case 2 Case 3 

RMSE (cm) r RMSE (cm) r RMSE (cm) r 

SRM 16.54 0.91 16.54 0.91 16.54 0.91 

T=2 Hr 5.28 0.98 5.46 0.98 5.63 0.98 

T=24 Hr 6.14 0.97 6.57 0.97 6.78 0.97 

T=48 Hr 7.06 0.97 7.59 0.97 7.85 0.97 

T=72 Hr 7.98 0.97 8.67 0.97 8.99 0.97 

T=96 Hr 8.92 0.97 9.70 0.97 10.14 0.97 

Average 7.08 0.97 7.60 0.97 7.88 0.97 

 

Table 7.7 Statistics of residual errors at Raffles (multilayer perceptron; *: best case). 
 

 

Raffles 

Case 1 * Case 2 Case 3 

RMSE (cm) r RMSE (cm) r RMSE (cm) r 

SRM 16.16 0.91 16.16 0.91 16.16 0.91 

T=2 Hr 5.17 0.98 5.34 0.98 5.68 0.98 

T=24 Hr 6.05 0.97 6.37 0.97 6.87 0.97 

T=48 Hr 6.97 0.97 7.49 0.97 8.04 0.97 

T=72 Hr 7.94 0.97 8.51 0.97 9.15 0.97 

T=96 Hr 8.87 0.97 9.67 0.97 10.34 0.97 

Average 7.00 0.97 7.86 0.97 8.02 0.97 
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Table 7.8 Statistics of residual errors at Sembawang (multilayer perceptron; *: best case). 
 

 

Sembawang 

Case 1 Case 2 Case 3 * 

RMSE (cm) r RMSE (cm) r RMSE (cm) r 

SRM 19.40 0.89 19.40 0.89 19.40 0.89 

T=2 Hr 8.46 0.97 9.20 0.97 7.93 0.97 

T=24 Hr 9.47 0.97 10.21 0.96 8.84 0.97 

T=48 Hr 10.51 0.96 11.37 0.95 9.78 0.96 

T=72 Hr 11.59 0.95 12.46 0.94 10.65 0.96 

T=96 Hr 12.66 0.94 13.73 0.94 11.73 0.95 

Average 10.54 0.96 11.39 0.95 9.79 0.96 

 

Table 7.9 Statistics of residual errors at Horsburgh (multilayer perceptron; *: best case). 
 

 

Horsburgh 

Case 1 Case 2 Case 3 * 

RMSE (cm) r RMSE (cm) r RMSE (cm) r 

SRM 13.91 0.93 13.91 0.93 13.91 0.93 

T=2 Hr 7.47 0.97 8.03 0.97 6.82 0.97 

T=24 Hr 8.30 0.97 9.01 0.97 7.41 0.97 

T=48 Hr 9.24 0.97 9.92 0.96 8.15 0.97 

T=72 Hr 10.17 0.96 10.80 0.96 8.87 0.97 

T=96 Hr 11.05 0.95 11.78 0.95 9.43 0.97 

Average 9.25 0.96 9.91 0.96 8.14 0.97 

 

 

 



 

 

 

 

Chapter 8 

Use of Data Assimilation in Understanding Sea Level 

Anomalies 

 

8.1  Introduction 

Sea level anomalies (SLA), defined as non-tidal water levels, are known to be important 

phenomena in narrow straits separating large water bodies, such as the Singapore and 

Malacca Straits. Many locations in this region experience sea level anomalies as high as 

60 cm to 130 cm, indicating the presence of a strong non-tidal driving force. Effects of 

sea level anomalies can at times dominate the tidal flow conditions; reports from pilot’s 

logs indicate that in monsoon periods current velocities may be much stronger and more 

persistent than suggested by the tidal tables; on occasions flow reversal actually 

disappears. This provides a motivation for studying of sea level anomalies and associated 

current anomalies (CA) in the Singapore and Malacca Straits, targeting on distinguishing 

the driving forces behind these processes and assessing whether they can be modelled in 

real time to facilitate navigation and port operation support systems. 

The origin of sea level anomalies is not fully understood, but some research reveals 

that persistent basin-scale monsoon winds and their short scale variations over the South 
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China Sea and Andaman Sea are major contributing factors, creating regional water level 

variations that drive residual currents through the Straits (Babovic, 2007; Gerritsen et al., 

2009). As discussed in Chapters 1 and 5, the Singapore Regional Model fails to consider 

the influence from the wind, and hence is unable to model the sea level anomalies. Even 

if wind was included in the Singapore Regional Model as an external force, the 

inaccuracy in the wind data, the uncertainty in meteorological prediction, the constraint 

from the domain size, will hamper the real time modelling of sea level anomalies. 

This chapter tends to apply the data assimilation techniques in the analysis and 

prediction of sea level anomalies. At the open boundaries of the Singapore Regional 

Model, hourly sea level anomalies can be predicted using multilayer perceptron with 

prediction horizon 24T   hours. Imposing sea level anomalies predicted at the open 

boundaries as driving force to the numerical model will facilitate numerically modelling 

the sea level anomalies inside the model domain. The extraction of the anomaly data, the 

procedure of data assimilation, and the detailed results will be discussed in this chapter. 

 

8.2  Overview of Sea Level Anomalies 

8.2.1  Sources of Marine Data 

The water level data used to extract sea level anomalies are primarily from archived radar 

altimeter data, measured by satellites that routinely track the open ocean with repeated 

cycles of 10 days (T/P and Jason-1) or 35 days (ERS ½; Envisat). Figure 8.1 shows the 

Jason-1 and Envisat ground tracks in the vicinity of Malacca Strait, with Table 8.1 

summarizing some general properties of these two satellites. Jason-1 has a higher 
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temporal resolution and lower spatial resolution, while Envisat has a lower temporal 

resolution and higher spatial resolution. 

The altimeter sea level anomalies can be accessed from the Radar Altimeter Database 

System (RADS, http://rads,tudelft.nl) and the gridded AVISO (DUACS, 

www.aviso.oceanobs.com) data sets. RADS provides level 2 altimeter data, implying 

these are geo-located along-track measurements at 10 days or 35 days intervals with 

calibrations and corrections applied to convert the raw measurement into a geophysical 

quantity of interest. Comparatively, DUACS provides level 3 altimeter data, implying 

that the along-track sea level anomalies have been processed into composite gridded 

maps (1/3o  1/3o) at weekly intervals based on optimal interpolation algorithms. 

As a complementary source of sea level anomalies, the in-situ water level 

measurements are obtained from the database at the University of Hawaii Sea Level 

Center (UHSLC, http://ilikai.soest.hawaii.edu/uhslc/datai.html). These research quality 

data sets are based on the local tidal gauge measurements with good temporal coverage. 

Figure 8.2 depicts the geographical locations for various measurement stations in the 

region, with station codes inherited from the UHSLC website. The water level data are 

available at 17 stations for periods between 1996 and 2005. 

 

8.2.2  Extraction of Sea Level Anomalies 

Sea level anomalies are the residuals when the astronomic tide is subtracted from sea 

level measurements, mathematically stated, 

SLA (t) = Measured water level (t) – Tidal water level (t) (8.1) 
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Tidal water level in Equation (8.1) can be described in terms of a series of simple 

harmonic constituent motions. The general formula for the astronomic tide is, 

    
1

cos
k

o i i i o ii
i

H t A A F t V u G


        , (8.2) 

where 

 H t  - astronomic tidal level 

oA  - mean water level 

i  - index of a constituent 

k  - number of relevant constituents 

iA  - amplitude of a constituent 

iF  - amplitude factor of a constituent 

i  - angular velocity of a constituent 

 o i
V u  - astronomical argument of a constituent 

iG  - phase lag of a constituent 

In Equation (8.2), iF  and  o i
V u  are frequency dependent, whose values are pre-

determined for each constituent with own characteristic angular velocity i ; oA , iA  and 

iG  are on the other hand position dependent variables representing the local 

characteristics of the tide, whose values can be determined through tidal analysis based 

on the least-square fitting technique. 

Figure 8.3 gives an example of the tidal analysis of the RADS altimeter data and the 

in-situ measurements. The amplitudes and phases of M2 along the satellite ground tracks 
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are plotted, while the full-dot symbols show the same information derived from the in-

situ measurements. The results, analyzed from these two different data sources, show a 

good agreement. 

In order to optimally de-tide the measured water levels, the number of relevant 

constituents k  is determined through an iteration of tidal analysis and Fourier analysis. 

The steps of iteration are summarized as follows, 

1. Initialize the constituents. 

Initial set of constituents consists of annual constituent SA, semi-annual constituent 

SSA, the 8 major diurnal and semi-diurnal constituents, i.e. Q1, O1, P1, K1, N2, M2, 

S2 and K2, and other related higher-order harmonic constituents. 

2. Conduct tidal analysis on the water levels. 

The constituents with amplitudes smaller than min 0.002A   m are considered to be 

noise, and will be excluded in the next run. 

3. Conduct Fourier analysis on the residuals. 

Residuals’ frequencies with amplitude larger than max 0.03A   m are picked up as 

constituents overlooked, and will be supplemented in the next run. 

4. Repeat steps 2 and 3 with the updated constituents. 

Steps 2 and 3 are repeated until all the constituents’ amplitudes in tidal analysis are 

larger than min 0.002A   m, and no residuals’ frequencies in Fourier analysis have 

amplitude larger than max 0.03A   m. 

 

8.2.3  Statistical Analysis of Sea Level Anomalies 
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The in-situ sea level anomaly time series in 2004 are compiled and statistically analyzed 

for each UHSLC station. Table 8.2 summarizes the analysis results of the sea level 

anomalies at the 17 stations, in terms of mean, max, min, and root mean square (RMS, 

quadratic mean) defined as 

 2

1

1
RMS SLA

N

t

t
N 

  , (8.3) 

where N  is the length of the sea level anomaly time series. 

The mean sea level anomaly values at all the 17 stations are observed to be 0, 

indicating no major long term shifts or long term trends in sea level anomalies in this 

region. The sea level anomalies vary in a wide range between -78 cm to 79 cm. Stations 

322 and 140 appear to be high sea level anomaly activity locations with largest RMS 

values, whereas station 387 shows smallest sea level anomaly fluctuations. Due to the 

high complexity in the bathymetry and topography of this region, there exists no obvious 

regularity for sea level anomaly distribution, but in general anomalous ocean dynamics is 

more pronounced in shallower water area. 

 

8.2.4  RADS SLA vs. DUACS SLA 

Figures 8.4 and 8.5 respectively show the along track RADS sea level anomalies and 

gridded DUACS sea level anomalies for a period centered on 20th November 2005. As 

shown in Figure 8.4, a build-up of high sea level anomalies to the east of Thailand and 

Malaysia can be observed in the along track RADS data, which reaches peak values of 

above 0.5 m in the period between 20th and 23rd November 2005. However, these high 
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sea level anomalies are less pronounced from the gridded DUACS data as shown in 

Figure 8.5. The maximum sea level anomalies to the east of Malaysia on 23rd November 

2005 are of the order 20 to 30 cm, which are considerably below values from along track 

RADS data. 

As discussed in Section 8.2.1, the along track RADS data represent the actual 

altimeter records, whereas for the gridded DUACS data the records have been 

interpolated in both space and time, leading to smoothing of the sea level anomaly signal. 

In consequence, along track RADS data are more representative for the actual along track 

state at a specific time, while the gridded DUACS data provide a more synoptic overview. 

 

8.2.5  Altimeter SLA vs. In-situ SLA 

To compare the time series of RADS and DUACS altimeter sea level anomalies with 

UHSLC in-situ sea level anomalies, the along track RADS data from Jason-1 and Envisat 

are selected at cross-over locations in the vicinity of the UHSLC station, the gridded 

DUACS data are interpolated to the location of interest, and the UHSLC in-situ data are 

smoothed using a 24 hours moving average filter to remove the higher frequency noise. 

Examples of comparison results are shown in Figures 8.6 and 8.7. A reasonable fit 

between the different sea level anomalies can be observed. The RMS differences between 

the altimeter data and in-situ data are 0.07 m and 0.1 m at station Cendering/320, and 

increase to 0.1 m and 0.13 m at station Kelang/140. Attributing to the different data 

selection and processing procedure applied, the overall RMS differences for DUACS sea 

level anomalies are about 3 cm below the RMS differences for RADS data. 



CHAPTER 8. USE OF DATA ASSIMILATION IN UNDERSTANDING 
SEA LEVEL ANOMALIES 

118 

 

8.3  Assimilation of Sea Level Anomalies into Singapore Regional Model 

As shown in Figure 8.8, the Singapore Regional Model has 3 open boundaries located in 

3 sea basins with a total of 17 boundary support points. At the boundary support points 

along the open boundaries, the correct model forcing of actual water levels (AWL) 

should be prescribed as, 

AWL (t) = MDT + TWL (t) + SLA (t) (8.4) 

where the mean dynamic topography (MDT) signifies the stationary part of the sea 

surface topography, related to long term ocean circulation, meteorological forcing and 

geostrophy, the tidal water levels (TWL) are represented by a set of tidal constituents, the 

sea level anomaly (SLA) is the non-tidal, largely monsoon driven sea level variations. 

In the original set-up of the Singapore Regional Model, the forcing terms of mean 

dynamic topography and tidal water levels are included. To assimilate the sea level 

anomalies into the Singapore Regional Model and assess the effect on the water 

dynamics from the sea level anomalies, this section will apply multilayer perceptron to 

predict the sea level anomaly time series at the open boundaries with prediction horizon 

24T   hours, and then impose the sea level anomalies predicted at the open boundaries 

as driving force to the numerical model with the hope to numerically model the sea level 

anomalies inside the model domain. 

 

8.3.1  Prediction of SLA at Open Boundaries 

8.3.1.1  Preprocess of SLA Time Series 
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Due to the sparse spatial distribution of the in-situ measurement stations, the prediction of 

sea level anomalies will be based on the gridded DUACS sea level anomaly data sets. 

Although the prescription of actual sea level anomalies at the open boundaries is required 

for simulating the full dynamics of barotropic motion, prescription of DUACS sea level 

anomalies at the open boundaries can serve as a first proxy to demonstrate the process 

and assess the efficiency of data assimilation. 

Altimeter DUACS sea level anomaly data in 2005 are used to obtain the hourly sea 

level anomaly time series at the 17 boundary support points of the Singapore Regional 

Model. The DUACS data are processed in the following way, 

 Linear interpolation of the gridded DUACS sea level anomalies to the boundary 

support points. 

 Spline interpolation of the weekly DUACS sea level anomalies into hourly sea level 

anomaly time series. 

Resulting sea level anomalies at one support point of each Singapore Regional Model 

boundary are illustrated in Figure 8.9. The asterisks indicate the weekly DUACS sea 

level anomalies, whereas the continuous lines indicate the hourly sea level anomaly time 

series. Figure 8.9 clearly reveals the different cycles of sea level anomalies in 

representative locations along the three boundaries. 

 

8.3.1.2  Methodology 

As concluded in Chapter 6, multilayer perceptron is preferable over local model to 

predict the chaotic time series. This section will therefore apply multilayer perceptron to 
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the prediction of sea level anomalies. The hourly sea level anomaly time series are 

divided into three subsets, i.e. training data (from 1 to 3000), cross validation data (from 

3001 to 4000), and testing data (from 4001 to 8760). Training data are used to train the 

network in adjusting the synaptic weights, cross validation data are used for avoiding 

overfitting, whereas the performance of multilayer perceptron is tested on the remaining 

testing data. 

Training multilayer perceptron to approximate the mapping function  Tg   in 

 t T T tx g  x  requires feeding the components of   1, , ,t t t t mx x x   x   as input to 

the network with t Tx   being the desired response. Therefore, as shown in Figure 8.10, 

multilayer perceptron is composed of an input layer with m  input neurons, a hidden layer, 

and an output layer with one output neuron. The optimal embedding parameters m  and 

  are determined by applying the average mutual information and the false nearest 

neighbors analyses on the training data and cross validation data. For the support points 

at the SCS boundary (ID 9), the Andaman Sea boundary (ID 4), and the Java Sea 

boundary (ID 15), the optimized ( m ,  ) are respectively (3, 6), (2, 15) and (2, 6). 

Parameters for the networks and in the training algorithm are set as follows 

 number of hidden neurons: 50 

 number of epochs: 200 

 learning rate 0.1   

 momentum constant 0.7   
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To avoid converging to local optima, a set of 5 multilayer perceptrons with different 

initial synaptic weights is trained. The network with the best prediction accuracy in the 

cross validation data set is considered to be optimal, which is then applied to predict the 

testing data set. 

 

8.3.1.3  Results 

Figures 8.11 to 8.13 illustrate examples of sea level anomaly prediction with multilayer 

perceptron at the SCS, the Andaman Sea, and the Java Sea boundary support points with 

prediction horizon 24T   hours. The 24-hour multilayer perceptron forecast successfully 

captures the up and down trends of the sea level anomaly time series, producing residues 

with significantly reduced magnitudes. Compared to the root mean squares of the sea 

level anomaly time series, the root mean squares of the residues at the 3 boundary support 

points are respectively reduced from 5.74 cm, 5.14 cm, and 3.44 cm to 0.38 cm, 0.42 cm, 

and 0.26 cm. 

 

8.3.2  Numerical Simulation of Internal SLA 

Having predicted the sea level anomalies at the open boundaries, the effect of the sea 

level anomalies on the water dynamics inside the model domain can be assessed by 

applying the predicted sea level anomalies at the open boundaries as forcing terms to the 

numerical model. 

Figure 8.14 plots the numerically simulated sea level anomalies (red line) at Tanjong 

Pagar, together with the DUACS sea level anomalies (blue asterisks). Although the 
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simulated sea level anomalies fluctuate with high frequencies, the trend of the DUACS 

sea level anomalies is successfully captured in the numerical simulation Figure 8.15 

shows sea level anomaly maps from the numerical simulation (left panels) in selected 

months compared to sea level anomaly maps obtained from the DUACS data sets (right 

panels). A reasonable correspondence can be observed between the modelled sea level 

anomalies and the DUACS sea level anomalies, verifying that the internal sea level 

anomalies can be decently modelled through numerical simulation provided that the sea 

level anomalies are properly prescribed at the open boundaries. 

 

8.4  Research in Progress and Future 

Chapter 8 proposed an effective method to predict the sea level anomalies by means of 

data assimilation. This data assimilation procedure is validated to be operational in real 

time. At the open boundaries of the Singapore Regional Model, the sea level anomaly 

time series are predicted using multilayer perceptron with prediction horizon 24T   

hours. Imposing the sea level anomalies predicted at the open boundaries as driving force 

to the Singapore Regional Model numerically models the sea level anomalies inside the 

model domain. 

Altimetry provides global data with good spatial resolution, but sparse in time. In-situ 

measurements are spatially sparse, but with good temporal resolution, hourly or better. 

As a demonstration of the proposed data assimilation scheme, the sea level anomaly time 

series herein analyzed are the spatially and temporally interpolated DUACS sea level 

anomalies. To predict the real sea level anomalies at the open boundaries and to force the 
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Singapore Regional Model with real sea level anomalies using the complementary 

features of the altimeter data and in-situ measurements will be a direct extension of 

present work. 

In a hydrodynamic model, the governing equations correlate variations of currents 

with water level gradients and vice versa. This inspires a hypothesis for future study: a 

major contribution to the current anomalies results from sea level anomaly gradients. 

Although some research indicates the current anomalies and the sea level anomaly 

gradients are fairly correlated based on limited in-situ measurements (Calkoen et al., 

2009, Gerritsen et al., 2009), to further validate this hypothesis based on numerical 

modelling is an important subject requiring additional investigation. 
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Figure 8.1 Jason-1 (upper) and Envisat (lower) ground tracks (cross-over points 
numbered for data processing). 
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Figure 8.2 Locations of the UHSLC stations. 
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Figure 8.3 Amplitudes (upper) and phases (lower) of M2 from RADS altimeter data and 
from in-site measurements. 
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Figure 8.4 Along track RADS sea level anomalies for period from 14th to 29th November 
2005. 
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Figure 8.5 Gridded DUACS sea level anomalies for period from 16th to 30th November 
2005. 
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Figure 8.6 Comparison of sea level anomalies obtained from the RADS and DUACS data 
sets with sea level anomalies obtained from UHSLC in-situ measurements (Kelang/140; 
2005). 
 

 

Figure 8.7 Comparison of sea level anomalies obtained from the RADS and DUACS data 
sets with sea level anomalies obtained from UHSLC in-situ measurements (Cendering 
/320; 2005). 
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Figure 8.8 Extent, bathymetry of the Singapore Regional Model with 17 boundary 
support points. 
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Figure 8.9 Extracted SLA at selected Singapore Regional Model SCS, Andaman Sea, and 
Java Sea boundary support points. 
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Figure 8.10 Architecture of multilayer perceptron in sea level anomaly prediction. 
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Figure 8.11 SLA prediction with multilayer perceptron at SCS boundary (ID 9; T=24 
hours). 
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Figure 8.12 SLA prediction with multilayer perceptron at Andaman Sea boundary (ID 4; 
T=24 hours). 
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Figure 8.13 SLA prediction with multilayer perceptron at Java Sea boundary (ID 15; 
T=24 hours). 
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Figure 8.14 SRM simulated SLA (red line) compared to DUACS SLA (blue asterisks) at 
Tanjong Pagar. 
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Figure 8.15 SRM simulated SLA (left panels) compared to DUACS SLA maps (right 
panels). 
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Table 8.1. General aspects of Jason-1 and Envisat. 
 

 Jason-1 Envisat 

Repeat cycle 9.9156 days 35 days 

Number of passes per cycle 254 501 

Ground track separation at Equator 315 km 85 km 
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Table 9.2 Summary of statistical analysis results of the sea level anomalies. 
 

Station name/code Lat/long Mean Max Min RMS 

Kelang/140 3.050/101.367 -3.19E-09 0.6221 -0.6498 0.1691

Keling/141 2.217/102.150 3.42E-09 0.2839 -0.235 0.0652

Langkawi/142 6.433/99.767 3.42E-10 0.3851 -0.7854 0.062

Lumut/143 4.233/100.617 -1.14E-10 0.2824 -0.2178 0.0595

Penang/144 5.417/100.350 -1.37E-09 0.5702 -0.5422 0.1267

Ko Taphao Noi/148 7.833/98.433 -3.98E-09 0.3646 -0.4919 0.0658

Surabaya/160 -7.217/112.733 -1.87E-09 0.6432 -0.5813 0.1297

Cendering/320 5.267/103.183 8.54E-09 0.533 -0.2721 0.0917

Johor Baharu/321 1.467/103.800 -4.02E-09 0.5473 -0.3155 0.0877

Kuantan/322 3.983/103.433 1.59E-09 0.6276 -0.5009 0.1706

Tioman/323 2.800/104.133 -3.01E-18 0.5719 -0.2799 0.0831

Sedili/324 1.933/104.117 -2.73E-09 0.7996 -0.5195 0.1652

Kukup/325 1.333/103.450 -2.96E-09 0.4055 -0.2736 0.0699

Getting/326 6.233/102.100 3.30E-09 0.5045 -0.3325 0.1023

Ko Lak/328 11.800/99.817 2.73E-09 0.5056 -0.4865 0.1181

Bintulu/387 3.217/113.067 3.76E-09 0.1908 -0.1726 0.0478

Tanjong Pagar/699 1.267/103.850 -8.99E-10 0.6342 -0.35 0.1042
 

 

 

 

 

 

 

 

 



 

 

 

 

Chapter 9  

Conclusions and Recommendations 

 

9.1  Conclusions 

One primary objective of this study is to develop and implement applicable data 

assimilation methods to improve the forecasting accuracy of the Singapore Regional 

Model. A novel hybrid data assimilation scheme is proposed, which assimilates the 

observed data into the numerical model in two steps: (i) predicting the model errors at the 

measurement stations, and (ii) distributing the predicted errors to the non-measurement 

stations. Specifically, three approaches are studied, the local model approach (LM), the 

multilayer perceptron (MLP), and the Kalman filter (KF). 

At the stations where observations are available, both the local model approach and 

the multilayer perceptron are utilized to forecast the model errors based on the patterns 

revealed in the phase spaces reconstructed by the past recordings. In cases of smaller 

prediction horizons, such as 2, 24T   hours, the local model approach outperforms the 

multilayer perceptron. However, due to the local model approach is less competent to 

capture the trajectories of the state vectors in the higher-dimensional phase spaces, the 

prediction accuracy of the local model approach decreases by a wider margin when T  
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progresses to 48, 96 hours. Averaged over 5 different prediction horizons, both methods 

are able to remove more than 60% of the root mean square errors in the model error time 

series, while the multilayer perceptron performs slightly better. 

To extend the updating ability to the remainder of the model domain, Kalman filter 

and the multilayer perceptron are used to spatially distribute the predicted model errors to 

the non-measurement stations. When the outputs of the Singapore Regional Model at the 

non-measurement stations and the measurement stations are highly correlated, such as at 

Bukom and Raffles, both approaches exhibit remarkable potentials of distributing the 

predicted errors to the non-measurement stations, resulting in an error reduction of more 

than 50% on average. However, the performance of Kalman filter in error distribution 

deteriorates at a rapid pace when the correlation decreases, with only about 40% of the 

root mean square errors removed at Sembawang and 20% at Horsburgh. Comparatively, 

the multilayer perceptron is less sensitive to the correlations with a more consistent 

performance, which removes more than 40% of the root mean square errors at 

Sembawang and Horsburgh. In addition, the error distribution study demonstrates for the 

first time that distributing the predicted errors from more measurement stations does not 

necessarily produce the best results due to the misleading information from less 

correlated stations. As suggested by this finding, to conduct a prior correlation analysis 

among possible sites is favorable when planning the future layout of the measurement 

stations. 

Another major objective of this study is to analyze and predict the sea level anomalies 

by means of data assimilation. Sea level anomalies are extracted based on tidal analysis 
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from both altimeter data and in-situ measurements. A reasonable fit between the altimeter 

sea level anomalies and the in-situ sea level anomalies can be observed, indicating the 

coherence and consistency of different data sources. As a demonstration of the proposed 

data assimilation scheme, the sea level anomalies explored in this study are the spatially 

and temporally interpolated DUACS sea level anomalies. 

At the open boundaries of the Singapore Regional Model, the sea level anomaly time 

series are predicted using multilayer perceptron with prediction horizon 24T   hours. 

Multilayer perceptron successfully captures the motion dynamics of the sea level 

anomalies, with more than 90% of the root mean squares removed on average. The sea 

level anomalies inside the model domain are then numerically modelled by imposing the 

sea level anomalies predicted at the open boundaries as driving force to the Singapore 

Regional Model. A reasonable correspondence are observed between the modelled sea 

level anomalies and the DUACS sea level anomalies, verifying that the internal sea level 

anomalies can be decently modelled through numerical simulation provided that the sea 

level anomalies are properly prescribed at the open boundaries. 

 

9.2  Recommendations 

Considering the data assimilation techniques are still at a developing stage and some 

study on sea level anomalies is still ongoing, the following aspects are recommended for 

future research. 

 Analogous to the local model approach, multilayer perceptron can be coupled with 

genetic algorithm to determine simultaneously both the embedding parameters  ,m   
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and the parameters of the network and in the training algorithm. The performance of 

multilayer perceptron in model error and sea level anomaly prediction will be further 

improved in all probability with these optimal parameters determined. 

 The assumptions about exponential and diagonal structures of model and 

measurement error covariances facilitate the application of Kalman filter in error 

distribution, but they may be too simplified to represent the real error covariances and 

hence limit the performance of Kalman filter. Therefore, to pursue a better substitute 

for error covariances is of necessity in the future research. 

 Multilayer perceptron is a traditional type of artificial neural networks. Other 

categories of artificial neural networks, such as time-lag recurrent network (TLRN), 

radial basis function network (RBFN) and support vector machines (SVM), have 

developed rapidly and shown improved promise in pattern recognition and function 

approximation. Therefore, to investigate the applicability of the newly developed 

networks in data assimilation is another possible avenue of future work. 

 Future studies should place stress on utilizing the complementary features of the 

altimeter data and in-situ measurements, to force the Singapore Regional Model with 

updated real sea level anomalies. 

 More tests should be conducted in future to validate the hypothesis on the correlations 

between the sea level anomaly gradients and current anomalies based on numerical 

modelling. 
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Appendix A Back-Propagation Algorithm 

 

Back-propagation algorithm is a computationally efficient method of training artificial 

neural networks, specifically multilayer perceptrons, to perform a desired task. The 

development of the back-propagation algorithm put to rest the pessimism about learning 

in multilayer perceptrons, and hence led to a renaissance in artificial neural networks. It 

was first developed by Werbos in 1974 (Werbos, 1974), however it wasn’t until 1986, 

through the publication of the seminar book entitled Parallel Distributed Processing 

(Rumelhart and MeClelland, 1986), that it gained recognition. 

Denote  jd n  as the desired response for an output neuron j  at iteration n  (i.e. 

presentation of the n th training example), and  jy n  as the actual output of the output 

neuron j  at iteration n , the instantaneous error energy  E n  for the network can be 

defined by 

        221 1

2 2j j j
j C j C

E n e n d n y n
 

    , (A.1) 

where      j j je n d n y n   is the error signal at the output neuron j , and the set C  

includes all the neurons in the output layer of the network. The average squared error 
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energy is obtained by summing  E n  over all n  and then normalizing with respect to the 

set size N  (total number of training examples), as shown by 

   2

1 1

1 1

2

N N

av j
n n j C

E E n e n
N N  

   . (A.2) 

For a given training set, avE  represents the cost function as a measure of learning 

performance. The objective of the learning process is to adjust the synaptic weights of the 

network to minimize avE . 

During the learning process, one complete presentation of the entire training set is 

called an epoch. Back-propagation learning may thus proceed in two basic ways for a 

given training set, i.e. Sequential Mode and Batch Mode. In the sequential mode the 

synaptic weights are updated after the presentation of each training example, whereas in 

the batch mode the synaptic weight updating is performed after the presentation of all the 

training examples that constitute an epoch. Following will consider the sequential mode 

for the derivation of the back-propagation algorithm. 

In the sequential mode, the adjustments to the synaptic weights are made in 

accordance with the respective errors computed for each pattern presented to the network. 

The arithmetic average of these individual synaptic weight changes over the training set 

is therefore an estimate of the true change that would result from modifying the weights 

based on minimizing the cost function avE  over the entire training set. In this context, a 

correction  jiw n  applied to the synaptic weight  jiw n  can be defined by the delta rule, 

   
 ji

ji

E n
w n

w n



  


, (A.3) 
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where   is the learning rate parameter, and the minus sigh accounts for gradient descent 

in the synaptic weight space. Reformulate the correction  jiw n  according to the chain 

rule of calculus as 

   
 

 
 

j
ji

j ji

v nE n
w n

v n w n



  

 
  (A.4) 

In Equation (A.4),  jv n  is the induced local field produced at the input of the activation 

function  j  associated with neuron j , i.e. 

     
0

m

j ji i
i

v n w n y n


 , (A.5) 

where  iy n  is the input signal of neuron j , and m  is the total number of inputs applied 

to neuron j . Defining the local gradient  j n  as 

   
 j

j

E n
n

v n



 


, (A.6) 

and substituting Equation (A.5) into Equation (A.4) yields 

     ji j iw n n y n  . (A.7) 

Equation (A.7) is the universal equation derived for the back-propagation algorithm. 

Next step is to find a proper expression for the local gradient  j n . Unlike Equations 

(A.1) and (A.2), notation j  in Equations (A.3) – (A.7) represents a general neuron in the 

network, which can be either an output neuron or a hidden neuron. Two distinct cases are 

therefore identified depending on where in the network neuron j  is located. 

 Case 1 Neuron j  Is an Output Node 
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Consider Figure A.1, which depicts an output neuron j  being fed by a set of signals 

produced by a layer of neurons to its left. Rewrite Equation (A.6) as 

   
 

 
 

 
 

j j
j

j j j

e n y nE n
n

e n y n v n


 
 

  
. (A.8) 

In Equation (A.8),  jy n  is the output signal of neuron j  calculated by 

     j j jy n v n . (A.9) 

Substituting Equations (A.1) and (A.9) into Equation (A.8), the local gradient  j n  for 

output neuron j  can be finalized as 

      '
j j j jn e n v n  . (A.10) 

The local gradient  j n  for output neuron j  is equal to the product of the 

corresponding error signal  je n  for that neuron and the derivative   '
j jv n  of the 

associated activation function. 

 Case 2 Neuron j  Is a Hidden Node 

Consider Figure A.2, which depicts a hidden neuron j  connected to an output neuron 

k . Rewrite Equation (A.6) as 

   
 

 
 

j
j

j j

y nE n
n

y n v n



 

 
. (A.11) 

From Figure A.2, the error energy  E n  can be calculated by 

   21

2 k
k C

E n e n


  . (A.12) 

Substituting Equations (A.12) and (A.9) into Equation (A.10) yields 
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     
    'k

j k j j
k C j

e n
n e n v n

y n
 




 

 . (A.13) 

Reformulate Equation (A.13) according to the chain rule as 

      
 

 
    'k k

j k j j
k C k j

e n v n
n e n v n

v n y n
 



 
 

  . (A.14) 

From Figure A.2, it can be noticed that 

     k k ke n d n y n  , (A.15) 

    k k ky n v n , (A.16) 

and 

     
0

m

k kj j
j

v n w n y n


  , (A.17) 

where  jy n  is the input signal of neuron k , and m is the total number of inputs applied 

to neuron k . 

Substituting Equations (A.15) – (A.17) into Equation (A.14), and making use of the 

definition of the local gradient  j n  given in Equation (A.10) with the index k  

substituted for j , i.e. 

      '
k k k kn e n v n  , (A.18) 

the local gradient  j n  for hidden neuron j  can be finalized as 

        '
j k kj j j

k C

n n w n v n  


 . (A.19)  
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The local gradient  j n  for hidden neuron j  is equal to the product of the weighted 

sum of the  k n s computed for the neurons in the layer to the immediate right of that 

neuron and the derivative   '
j jv n  of the associated activation function. 

The back-propagation algorithm provides an approximation to the trajectory in 

synaptic weight space computed by the method of steepest descent. Small learning rate 

parameter   tends to be desirable to make the trajectory smooth. However, this merit is 

attained at the cost of a slow learning rate. With the intention to speed up the learning rate 

yet avoid the danger of instability, Rumelhart et al. (1986) modified the delta rule of 

Equation (A.7) into the generalized delta rule, as shown by 

       1ji ji j iw n w n n y n      , (A.20) 

where   is referred to as the momentum constant, restricted to the range 0 1  , and 

 1jiw n   is called the momentum term. 

Figure A.3 presents the back-propagation algorithm cycle for the sequential mode. 

The corresponding steps can be summarized as follows, 

 Initialization. 

Initialize the synaptic weights in the network. If no prior information is available, 

synaptic weights are usually assumed to follow the uniform distribution with zero 

mean and specified variance. 

 Presentations of Training Examples. 

Present the network with an epoch of training examples. For each training example, 

perform the sequence of forward and backward computations described as follows. 
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 Forward Computation. 

By proceeding forward through the network layer by layer, compute the induced local 

fields and function signals of the network 

     
0

m

j ji i
i

v n w n y n


 , (A.21) 

and 

    j j jy n v n . (A.22) 

For output neuron j , compute the error signal 

     j j je n d n y n  , for output neuron j . (A.23) 

 Backward Computation. 

By passing the error signals backward through the network layer by layer, compute 

recursively the local gradients  s of the network 

      '
j j j jn e n v n  , for output neuron j , (A.24) 

and 

        '
j k kj j j

k C

n n w n v n  


 , for hidden neuron j . (A.25) 

Adjust the synaptic weights of the network in accordance with the generalized delta 

rule 

     1ji ji jiw n w n w n    , (A.26) 

where 

       1ji ji j iw n w n n y n      . (A.27) 
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 Iteration. 

Iterate Presentations of Training Examples, Forward Computation and Backward 

Computation until the stopping criterion is met. Possible stopping criteria include: the 

synaptic weights stabilize, the generalization performance is adequate, the average 

squared error energy avE  is less than some critical value, the absolute rate of change 

in the average squared error energy avE  is sufficiently small, etc. 

 

In the batch mode of back-propagation learning, the average squared error energy 

avE  is defined as the cost function, i.e. 

 2

1

1

2

N

av j
n j C

E e n
N  

  . (A.28) 

The adjustment  jiw n  applied to the synaptic weight  jiw n  can therefore be 

formulated according to the delta rule 

       
 1

N
jav

ji j
nji ji

e nE
w n e n

w n N w n





    

  , (A.29) 

where    j jie n w n   can be calculated in the same way proceeded in the sequential 

mode. According to Equation (A.29), the adjustment  jiw n  is made only after the 

entire training set has been presented to the network. 
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Figure A.1 Signal-flow graph of output neuron j . 
 

 

Figure A.2 Signal-flow graph of hidden neuron j  connected to output neuron k . 
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Figure A.3 Back-propagation algorithm cycle. 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Appendix B Linear Kalman Filter Algorithm 

 

Linear dynamic system is controlled by the coupled equations in the state-space form 

1 1k k k k k k   x A x B u w , (B.1) 

k k k k z H x v . (B.2) 

With a linear estimator as the objective, the analysis state estimate a
kx  can be expressed 

as a linear combination of the forecast state estimate f
kx  and the measurement kz  

'a f
k k k k k x K x K z , (B.3) 

where '
kK  and kK  are the multiplying factors to be determined. 

Applying the principle of orthogonality yields (Haykin, 2001) 

f T
k iE     0e z  for 1,2, ,i k  , (B.4) 

a T
k iE     0e z  for 1,2, ,i k  , (B.5) 

where f
ke , a

ke  are the forecast and analysis errors calculated by 

f f
k k ke = x x , (B.6) 

a a
k k ke = x x . (B.7) 

Using Equations (B.2), (B.3), and (B.7), Equation (B.5) can be rewritten as 

 ' f T
k k k k k k k k iE        0x K x K H x K v z  for 1,2, ,i k  . (B.8) 
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As the measurement noise v  is assumed to be Gaussian, it follows that 

T
k iE     0v z . (B.9) 

With Equations (B.4), (B.6) and (B.9), Equation (B.8) transforms into, 

 ' T
k k k k iE      I 0K K H x z  for 1,2, ,i k  . (B.10) 

For arbitrary values of the state kx  and measurement iz , Equation (B.10) can be satisfied 

only if  

'
k k k  I 0K K H , (B.11) 

or equivalently define '
kK  in terms of kK  as 

'
k k k IK K H . (B.12) 

Substituting Equation (B.12) into Equation (B.3), the analysis state estimate a
kx  can be 

formulated as 

 a f f
k k k k k kx = x + K z H x , (B.13) 

where matrix kK  is call the Kalman gain. 

There now remains the problem of deriving an explicit formula for the Kalman gain 

kK , such that the analysis error covariance 

a a aT
k k kE   P = e e  (B.14) 

can be minimized. 

Substituting Equations (B.2), (B.6), (B.7) and (B.13) into Equation (B.14), the 

analysis error covariance spreads to 
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    
      

Ta f f
k k k k k k k k k k k

T Tf f T T T f T T T
k k k k k k k k k k k k k k k

E

E

           

            

P I K H e K v I K H e K v

I K H e e I K H v K K v e I K H v K

. 

 (B.15) 

Model and measurement errors are assumed be to independent, i.e. 

0f T f T
k k k kE E         e v v e . (B.16) 

Substituting Equation (B.16) into Equation (B.15), Equation (B.15) can be simplified to 

   Ta f T
k k k k k k k k k  P = I K H P I K H K R K , (B.17) 

where kR , f
kP  are the measurement error covariance and forecast estimate error 

covariance defined as 

T
k k kE    R v v , (B.18) 

f f f T
k k kE   P = e e . (B.19) 

To minimize the analysis error covariance a
kP , it is equivalent to minimize the scalar sum 

of its diagonal elements, i.e. the trace of a
kP . To find kK  which produces a minimum, the 

partial derivative of  a
ktr P  with respect to kK  is equated to zero 

 
0

a
k

k

tr    


P

K
. (B.20) 

Substituting Equation (B.17) into Equation (B.20), and noticing the following relations in 

matrix calculus 

  2Ttr
    

ABA AB
A

 for matrices A  and B  where B  is symmetric, (B.21) 



APPENDIX B LINEAR KALMAN FILTER ALGORITHM 

164 

  T



AB

B
A

 for matrices A  and B , (B.22) 

Equation (B.20) can be transformed into 

 2 2 0f T
k k k k k k   I K H P H K R . (B.23) 

Solving Equation (B.23) for kK  yields 

1f T f T
k k k k k k k


   K P H H P H R . (B.24) 

Substituting Equation (B.23) into Equation (B.17), the analysis error covariance can be 

formulated as 

 a f
k k k kP = I K H P . (B.25) 

The initial conditions for the linear Kalman filter can be specified as 

 0 0
a Ex = x , (B.26) 

   0 0 0 0 0

Ta a aE      
P = x x x x . (B.27) 

In the forecast step, the forecast state estimate and the forecast error covariance are 

projected forward through time 

1
f a

k k k k k x A x B u , (B.28) 

1
f a T

k k k k k P = A P A Q . (B.29) 

Once f
kx  and f

kP  are calculated, the analysis state estimate and the analysis error 

covariance can be updated in the analysis step 

1f T f T
k k k k k k k


   K P H H P H R , (B.30) 

 a f f
k k k k k kx = x + K z H x , (B.31) 
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 a f
k k k kP = I K H P . (B.32) 

The process of forecast and analysis is repeated recursively until the desired time step is 

reached. 
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