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Summary 

Gaming is by definition an interactive experience that often involves 

the human player interacting with the non-player characters in the game which 

are in turn controlled by the game artificial intelligence. Research in game AI 

has traditionally been focused on improving its competency. However, a 

competent game AI does not directly correlate to the satisfaction and 

entertainment value experienced by the human player. This thesis focuses on 

addressing two key issues of game AI affecting the player experience, namely 

adaptability and believability, in real time computer games from a 

computational intelligence perspective. 

The nature of real time computer games requires that the game AI be 

computationally efficient in addition to being competent in the game. This 

thesis starts off by proposing a hybrid evolutionary behaviour-based design 

framework that combines the good response time of behaviour-based systems 

and the search capabilities of evolutionary algorithms. The result is a scalable 

framework where new behaviours can be easily introduced. This lays the 

groundwork for investigations into enhancing the player experience. 

Two adaptive algorithms are built upon the proposed framework to 

address the issue of adaptability in games. The two proposed adaptive 

algorithms draw inspirations from reinforcement learning and evolutionary 

algorithms to dynamically scale the difficulty of the game AI while the game 

is being played such that offline training is not necessary. Such an adaptive 

system has the potential to customize a personalized experience that grows 

together with the human player. 
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The game AI framework is also augmented by the introduction of 

evolved sensor noise in order to induce game agents with believable 

movement behaviours. Furthermore, the action histogram and action sequence 

histogram are explored as a means to quantify the believability of the game 

agent‟s movements. A multi-objective optimization approach is then used to 

improve the believability of the game agent without degrading its performance 

and the results are verified in a user study. Improving the believability of game 

agents has the potential to maintain the suspension of disbelief and increase 

immersion in the game environment. 



 iii 

List of Publications 

Journals 

Tan, C. H., Tan, K. C. and Tay, A., “Computationally Efficient Behaviour 

Based Controller for Real Time Car Racing Simulation”, Expert Systems 

with Applications, vol. 37, no. 7, pp. 4850-4859, 2010. 

Tan, C. H., Ramanathan, K., Guan, S. U. and Bao, C., “Recursive Hybrid 

Decomposition with Reduced Pattern Training”, International Journal of 

Hybrid Intelligent Systems, vol. 6, no. 3, pp. 135-146, 2009. 

Togelius, J., Lucas, S., Ho, D. T., Garibaldi, J. M., Nakashima, T., Tan, C. H., 

Elhanany, I., Berant, S., Hingston, P., MacCallum, R. M., Haferlach, T., 

Gowrisankar, A. and Burrow, P., “The 2007 IEEE CEC simulated car 

racing competition”, Genetic Programming and Evolvable Machines, vol. 

9, no. 4, pp. 295-329, 2008. 

Tan, C. H., Tan, K. C. and Tay, A., “Dynamic Game Difficulty Scaling using 

Adaptive Behavioural Based AI”, IEEE Transactions on Computational 

Intelligence and AI in Games, accepted. 

Tan, C. H., Tan, K. C. and Tay, A., “Evolving Believable Behaviour in Games 

using Sensor Noise and Action Histogram”, Evolutionary Computation, 

submitted. 

Conference papers 

Tang, H., Tan, C. H., Tan, K. C. and Tay, A., “Neural Network versus 

Behaviour Based Approach in Simulated Car Racing”, Proceedings of 

IEEE Workshop on Evolving and Self-Developing Intelligent Systems, pp. 

58-65, 2009. 

Tan, K. L., Tan, C. H., Tan, K. C. and Tay, A., “Adaptive Game AI for 

Gomoku”, Proceedings of the Fourth International Conference on 

Autonomous Robots and Agents, pp. 507-512, 2009. 



 iv 

Tan, C. H., Ang, J. H., Tan, K. C. and Tay, A., “Online Adaptive Controller 

for Simulated Car Racing”, Proceedings of IEEE Congress on 

Evolutionary Computation, pp. 2239-2245, 2008. 

Ang, J. H., Teoh, E. J., Tan, C. H., Goh, K. C. and Tan, K. C., “Dimension 

Reduction using Evolutionary Support Vector Machines”, Proceedings of 

IEEE Congress on Evolutionary Computation, pp. 3635-3642, 2008. 

Tan, C. H., Goh, C. K., Tan, K. C. and Tay, A., “A Cooperative 

Coevolutionary Algorithm for Multiobjective Particle Swarm 

Optimization”, Proceedings of IEEE Congress on Evolutionary 

Computation, pp. 3180-3186, 2007. 

 



 v 

Acknowledgements 

First and foremost, I would like to thank my Ph.D. supervisor, 

Associate Professor Tan Kay Chen for giving me the opportunity to pursue 

research in the field of computational intelligence. His indispensable guidance 

and kind words of encouragement kept me motivated and on track throughout 

my candidature. I would also like to thank my co-supervisor, Associate 

Professor Arthur Tay for his support in both my research and my participation 

in the ECE outreach program. 

I would also like to extend my gratitude to Sara, Hengwei and Chee 

Siong for giving me the logistical support during my time at the lab; and the 

outreach staff Henry and Marsita for making my outreach experience one 

filled with fun and enjoyment. 

I am also grateful to my fellow labmates at the Control and Simulation 

lab for making my four years of Ph.D. life full of fond memories: Chi Keong 

for always providing novel and interesting research suggestions; Dasheng for 

always being there when it is time to Bang!; Eujin for our numerous late night 

journeys to the bus interchange; Brian for literally bringing us round our sunny 

island in search of food and games; Chiam for bringing BS to the group; Chun 

Yew for always organizing our four player incomplete information zero sum 

set collection excursions; Han Yang for sharing with me his enthusiasm for 

film and traveling; Teck Wee (from the lab upstairs) for teaching me so much 

about photography during our trip to Hong Kong; Vui Ann for his ever jovial 

presence; Calvin for giving me new perspectives on a teaching career; and Jun 



 vi 

Yong for helping to rearrange all the furniture when our work space 

underwent renovations during the holidays. 

Last but not least, I wish to thank my parents and sister for all their 

love and support. I wish to especially thank my wife, Juney, for going on this 

journey with me, for together building a family we can call our own, for 

giving birth to our wonderful daughter, for always being there. Finally, I wish 

to thank my 6 month old daughter, Yurou, for melting my heart everyday with 

her toothless baby grin. Kyaa~  



 vii 

Table of Contents 

Summary ............................................................................................................. i 

List of Publications ...........................................................................................iii 

Acknowledgements ............................................................................................ v 

Table of Contents ............................................................................................. vii 

List of Tables ................................................................................................... xii 

List of Figures ................................................................................................. xiv 

1 Introduction ............................................................................................... 1 

1.1 Game AI and computational intelligence ........................................ 2 

1.2 Types of computer games ................................................................ 6 

1.3 Player experience ............................................................................. 9 

1.4 Contributions.................................................................................. 11 

1.5 Thesis outline ................................................................................. 12 

2 Computational intelligence ..................................................................... 15 

2.1 Elements of evolutionary algorithms ............................................. 15 

2.1.1 Overview .......................................................................... 15 

2.1.2 Representation.................................................................. 17 

2.1.3 Fitness and evaluation ...................................................... 18 

2.1.4 Population and generation................................................ 18 

2.1.5 Selection ........................................................................... 19 

2.1.6 Crossover ......................................................................... 20 

2.1.7 Mutation ........................................................................... 20 

2.1.8 Elitism .............................................................................. 21 

2.1.9 Stopping criteria ............................................................... 22 



 viii 

2.2 Genetic algorithms ......................................................................... 22 

2.3 Evolution strategies ........................................................................ 23 

2.4 Co-evolution .................................................................................. 23 

2.5 Multi-objective optimization ......................................................... 25 

2.6 Neural networks ............................................................................. 27 

2.6.1 Multi-layer perceptrons .................................................... 27 

2.6.2 Evolutionary neural networks .......................................... 29 

2.7 Summary ........................................................................................ 30 

3 Real time car racing simulator ................................................................ 31 

3.1 Introduction .................................................................................... 32 

3.2 Waypoint generation ...................................................................... 33 

3.3 Vehicle controls ............................................................................. 35 

3.4 Sensors model ................................................................................ 37 

3.5 Mechanics ...................................................................................... 37 

3.6 Example controllers ....................................................................... 40 

3.6.1 GreedyController ............................................................. 40 

3.6.2 HeuristicSensibleController ............................................. 41 

3.6.3 HeuristicCombinedController .......................................... 41 

3.7 Summary ........................................................................................ 42 

4 Evolving computational efficient behaviour-based AI for real time 

games ...................................................................................................... 43 

4.1 Introduction .................................................................................... 44 

4.2 Controller design ............................................................................ 47 

4.2.1 Neural network controller ................................................ 47 

4.2.2 Behaviour-based controller .............................................. 53 



 ix 

4.2.3 Comparative discussion ................................................... 63 

4.3 Results and analysis ....................................................................... 67 

4.3.1 Effects of crossover operator ........................................... 68 

4.3.2 Effects of mutation operator ............................................ 69 

4.3.3 Analysis of evolved parameters ....................................... 70 

4.3.4 Analysis of behaviour components .................................. 74 

4.3.5 Generalization performance ............................................. 78 

4.4 Summary ........................................................................................ 84 

5 Dynamic game difficulty scaling using adaptive game AI ..................... 86 

5.1 Introduction .................................................................................... 87 

5.2 Behaviour-based controller ............................................................ 91 

5.3 Adaptive controllers ....................................................................... 94 

5.3.1 Satisfying gameplay experience ...................................... 94 

5.3.2 Artificial stupidity ............................................................ 96 

5.3.3 Uni-chromosome adaptive controller (AUC) .................. 96 

5.3.4 Duo-chromosome adaptive controller (ADC) ................. 99 

5.3.5 Static controllers ............................................................ 100 

5.4 Results and analysis ..................................................................... 105 

5.4.1 Fully activated behaviours ............................................. 105 

5.4.2 Randomly activated behaviours ..................................... 107 

5.4.3 Analysis of AUC ............................................................ 109 

5.4.4 Analysis of ADC ............................................................ 113 

5.4.5 Score difference distribution .......................................... 116 

5.4.6 Behaviour activation probability distribution ................ 124 

5.5 Summary ...................................................................................... 131 



 x 

6 Evolving believable behaviour in games using sensor noise and action 

histograms ............................................................................................. 133 

6.1 Introduction .................................................................................. 134 

6.1.1 Modifications to simulator ............................................. 138 

6.2 Controller design .......................................................................... 139 

6.2.1 Hyperbolic tangent driving ............................................ 139 

6.2.2 Hyperbolic tangent steering ........................................... 140 

6.2.3 Introducing sensor noise ................................................ 142 

6.3 Action histograms ........................................................................ 145 

6.3.1 Action histogram (Histo1) ............................................. 146 

6.3.2 Action sequence histogram (Histo2) .............................. 146 

6.3.3 Data collection ............................................................... 147 

6.3.4 Case study ...................................................................... 151 

6.3.5 Histograms of small window sizes ................................ 162 

6.4 Fitness functions .......................................................................... 164 

6.4.1 Waypoints ...................................................................... 164 

6.4.2 Histo1 (Action histogram) ............................................. 164 

6.4.3 Histo2 (Action sequence histogram) .............................. 165 

6.5 Single objective evolution............................................................ 166 

6.5.1 Number of waypoints ..................................................... 166 

6.5.2 Action histogram (Histo1) ............................................. 170 

6.6 Multi-objective evolution............................................................. 175 

6.6.1 Training .......................................................................... 176 

6.6.2 Effects of noise .............................................................. 183 

6.6.3 Generalization ................................................................ 189 



 xi 

6.6.4 User study ...................................................................... 193 

6.7 Summary ...................................................................................... 196 

7 Conclusion ............................................................................................ 198 

7.1 Summary of experiments ............................................................. 198 

7.2 Future works ................................................................................ 201 

Bibliography .................................................................................................. 204 

 



 xii 

List of Tables 

Table 3.1 Full list of sensors available in the real time car racing simulator .. 36 

Table 4.1 Evolution parameters for neural network controller ........................ 52 

Table 4.2 Results for neural network controller .............................................. 52 

Table 4.3 Evolution parameters for behaviour-based controller ..................... 62 

Table 4.4 Comparative results between neural network controller and 

behaviour-based controller ........................................................... 65 

Table 4.5 Evolved force field trajectory parameters of best individual ........... 72 

Table 4.6 Evolved heading alignment parameters of best individual .............. 74 

Table 4.7 Comparative studies of behaviour set .............................................. 76 

Table 4.8 Comparative results of CompetitionScore of behaviour-based 

controller against top 5 controllers ............................................... 80 

Table 4.9 Pareto ranks of behaviour-based controller and top 5 controllers ... 81 

Table 4.10 Results for direct competition between behaviour-based controller 

and top 5 controllers ..................................................................... 83 

Table 4.11 Consolidated results for round robin tournament of behaviour-

based controller and top 5 controllers ........................................... 83 

Table 5.1 Comparative results for AUC versus static controllers for varying 

learning rate and fixed mutation rate .......................................... 110 

Table 5.2 Comparative results for AUC versus static controllers for fixed 

learning rate and varying mutation rate ...................................... 112 

Table 5.3 Comparative results for ADC versus static controllers for varying 

learning rate and fixed mutation rate .......................................... 114 

Table 5.4 Comparative results for ADC versus static controllers for fixed 

learning rate and varying mutation rate ...................................... 115 

Table 5.5 Cumulative percentages of games according to score difference .. 121 

Table 6.1 List of all possible output actions at each time step in the car racing 

simulator ..................................................................................... 146 

Table 6.2 Number of waypoints passed by human collected over 5 trials .... 148 



 xiii 

Table 6.3 Action histograms and action sequence histograms by human 

collected over 5 trials .................................................................. 149 

Table 6.4 Abbreviated list of controllers that are frequently used in text ...... 176 

Table 6.5 Comparative results of human driving data, multi-objective 

controllers, and single objective controllers on training track 1 and 

testing tracks 2, 3, 4 and 5 .......................................................... 191 

Table 6.6 Description of experience level rating of the respondents in the user 

study ............................................................................................ 194 

Table 6.7 Description of human-ness rating of the controllers in the user study

 .................................................................................................... 194 

Table 6.8 Believability index of controllers in the user study ....................... 194 

 



 xiv 

List of Figures 

Figure ‎2.1 Flowchart of genetic algorithm ...................................................... 17 

Figure ‎2.2 Illustrations of (a) Pareto dominance relationship and (b) Pareto-

optimal front ................................................................................. 26 

Figure ‎2.3 A simplified view of a MLP ........................................................... 28 

Figure ‎3.1 The real time car racing simulator game area ................................ 31 

Figure ‎3.2 Graphical representation of the controller and its corresponding 

integer value in the Java Controller interface ............................... 35 

Figure ‎4.1 Training fitness of neural network controller ................................. 52 

Figure ‎4.2 Overview of behaviour-based controller ........................................ 55 

Figure ‎4.3 Training fitness of behaviour-based controller ............................... 63 

Figure ‎4.4 Point by point diagram of a partial game between neural network 

controller and behaviour-based controller .................................... 64 

Figure ‎4.5 Effects of varying crossover rate; mutation rate fixed at 0.2 ......... 69 

Figure ‎4.6 Effects of varying mutation rate; crossover rate fixed at 0.8 ......... 70 

Figure ‎4.7 Graph of evolved parameters for behaviour-based controller for (a) 

field strength against distance from particle and (b) desired driving 

speed against distance from destination ....................................... 73 

Figure ‎4.8 Pareto plot pf log10 (simulation time) against log10 

(CompetitionScore) ....................................................................... 81 

Figure ‎5.1 Representation of the chromosome used in AUC .......................... 97 

Figure ‎5.2 Training fitness of (a) HC and (b) NNC ....................................... 101 

Figure ‎5.3 Comparative results of static controllers in solo games ............... 104 

Figure ‎5.4 Boxplot of the results from playing the FC against the five static 

controllers ................................................................................... 106 

Figure ‎5.5 Histogram of the results from playing the FC against the five static 

controllers ................................................................................... 106 

Figure ‎5.6 Boxplot of the results from playing the RDC against the five static 

controllers ................................................................................... 108 



 xv 

Figure ‎5.7 Histogram of the results from playing the RDC against the five 

static controllers .......................................................................... 108 

Figure ‎5.8 Histogram of the score difference of the adaptive controllers against 

the (a) HC (b) NNC (c) RC (d) PSC and (e) PFC ...................... 119 

Figure ‎5.9 Boxplot of the results from playing the AUC against the five static 

controllers ................................................................................... 120 

Figure ‎5.10 Boxplot of the results from playing the ADC against the five static 

controllers ................................................................................... 120 

Figure ‎5.11 A sample diagram of 5000 games between the AUC and HC ... 122 

Figure ‎5.12 Plot of the score difference between the AUC and the static 

controllers ................................................................................... 123 

Figure ‎5.13 Plot of the score difference between the ADC and the static 

controllers ................................................................................... 123 

Figure ‎5.14 Boxplot and histogram of ending chromosome values of the AUC 

against the (a) HC (b) NNC (c) RC (d) PSC and (e) PFC .......... 127 

Figure ‎5.15 Boxplot and histogram of ending chromosome values of the ADC 

against the HC ............................................................................. 128 

Figure ‎5.16 Boxplot and histogram of ending chromosome values of the ADC 

against the NNC .......................................................................... 129 

Figure ‎5.17 Boxplot and histogram of ending chromosome values of the ADC 

against the RC ............................................................................. 129 

Figure ‎5.18 Boxplot and histogram of ending chromosome values of the ADC 

against the PSC ........................................................................... 130 

Figure ‎5.19 Boxplot and histogram of ending chromosome values of the ADC 

against the PFC ........................................................................... 130 

Figure ‎6.1 Polar diagram of the waypoints of (a) track 1 (b) track 2 (c) track 3 

(d) track 4 and (e) track 5 ........................................................... 148 

Figure ‎6.2 Graphical representation of the action histogram to mimic the 

layout of arrow keys on the keyboard ......................................... 151 

Figure ‎6.3 Graphical representation of the action sequence histogram based on 

the layout in Figure ‎6.2 ............................................................... 152 

Figure ‎6.4 Histogram of the (a) output actions and (b) output action sequences 

of the EH on track 1 .................................................................... 153 

Figure ‎6.5 Histogram of the (a) output actions and (b) output action sequences 

of the ENN on track 1 ................................................................. 153 



 xvi 

Figure ‎6.6 Histogram of the (a) output actions and (b) output action sequences 

of the Hu on track 1 .................................................................... 153 

Figure ‎6.7 Comparative (a) action histograms and (b) action sequence 

histograms of human driving data, heuristic evolved controller, 

and neural network evolved controller on track 1 ...................... 154 

Figure ‎6.8 Comparative (a) action histograms and (b) action sequence 

histograms of human driving data, heuristic evolved controller, 

and neural network evolved controller on track 2 ...................... 155 

Figure ‎6.9 Comparative (a) action histograms and (b) action sequence 

histograms of human driving data, heuristic evolved controller, 

and neural network evolved controller on track 3 ...................... 156 

Figure ‎6.10 Comparative (a) action histograms and (b) action sequence 

histograms of human driving data, heuristic evolved controller, 

and neural network evolved controller on track 4 ...................... 157 

Figure ‎6.11 Comparative (a) action histograms and (b) action sequence 

histograms of human driving data, heuristic evolved controller, 

and neural network evolved controller on track 5 ...................... 158 

Figure ‎6.12 Boxplot of the number of waypoints for single objective 

optimization to maximize number of waypoints, without sensor 

noise ............................................................................................ 167 

Figure ‎6.13 Boxplot of the sum of square errors of Histo1 for single objective 

optimization to maximize number of waypoints, without sensor 

noise ............................................................................................ 168 

Figure ‎6.14 Boxplot of the number of waypoints for single objective 

optimization to maximize number of waypoints, with sensor noise

 .................................................................................................... 169 

Figure ‎6.15 Boxplot of the sum of square errors of Histo1 for single objective 

optimization to maximize number of waypoints, with sensor noise

 .................................................................................................... 170 

Figure ‎6.16 Boxplot of the number of waypoints for single objective 

optimization to minimize the sum of squared errors of Histo1, 

without sensor noise ................................................................... 171 

Figure ‎6.17 Boxplot of the sum of squared errors of Histo1 for single objective 

optimization to minimize the sum of squared errors of Histo1, 

without sensor noise ................................................................... 172 

Figure ‎6.18 Boxplot of the number of waypoints for single objective 

optimization to minimize the sum of squared errors of Histo1, with 

sensor noise ................................................................................. 173 



 xvii 

Figure ‎6.19 Boxplot of the sum of squared errors of Histo1 for single objective 

optimization to minimize the sum of squared errors of Histo1, with 

sensor noise ................................................................................. 174 

Figure ‎6.20 Multi-objective optimization to maximize the number of 

waypoints and minimize the sum of squared errors of Histo1 ... 178 

Figure ‎6.21 Comparative action histograms of Hu, H1L, and EH (left to right)

 .................................................................................................... 178 

Figure ‎6.22 Comparative action sequence histograms of Hu, H1L, and EH (left 

to right) ....................................................................................... 179 

Figure ‎6.23 Multi-objective optimization to maximize the number of 

waypoints and minimize the sum of squared errors of Histo2 ... 180 

Figure ‎6.24 Comparative action histograms of Hu, H2L, and EH (left to right)

 .................................................................................................... 181 

Figure ‎6.25 Comparative action sequence histograms of Hu, H2L, and EH (left 

to right) ....................................................................................... 181 

Figure ‎6.26 Pareto diagram of solutions evolved using waypoints and Histo1 

as objectives ................................................................................ 184 

Figure ‎6.27 Pareto diagram of solutions evolved using waypoints and Histo2 

as objectives ................................................................................ 185 

Figure ‎6.28 Evolved decision space of hyperbolic tangent driving function for 

the case of no noise and standard deviation only ....................... 187 

Figure ‎6.29 Sample trajectories and headings of controllers EH, H1L, and H2L 

in the first 300 time steps on track 1 ........................................... 192 

Figure ‎6.30 Boxplot of ratings where H1L and H2L were shown as pairs ... 195 



 1 

Chapter One 

1 Introduction 

Computer games play many roles in the society today. For example, 

military simulations in the form of war-games are used in military training. 

Management simulations and economic simulations are also becoming 

valuable training tools in their industries. Educational games have gained 

widespread acceptance for enhancing the learning experience of pre-school 

children. However, the most prominent role of computer games is still one as a 

form of entertainment. 

The computer game industry has seen tremendous growth in the recent 

decade. According to the Entertainment Software Association, the sales of 

computer games in the U.S. grew from 2.6 billion U.S. dollars in 1996 to 7.6 

billion U.S. dollars in 2004 to 11.7 billion U.S. dollars in 2008 [44]. Coupled 

with the constant broadening of gamer demographics in both age and gender 

as a result of casual gaming, the computer game industry has the potential to 

reach out to a widening range of audiences and continue its growth in the near 

future. 

The quality of computer games, and hence its success, is directly 

related to their entertainment value [182]. Traditionally, game developers 

competed with one another in terms of a game‟s graphical presentation and 

visual effects. However, in recent years, as graphics improvements begins to 
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saturate, game developers are attempting to compete by offering better 

gameplay experiences through other means. Game artificial intelligence (AI), 

being an essential part of a gameplay experience, has emerged as an important 

selling point of games [49]. 

Gaming is inherently an interactive experience that involves the human 

player interacting with the non-player characters (NPC) in the game which are 

in turn controlled by the game AI. Research in game AI has traditionally been 

focused on improving its competency. However, a competent game AI does 

not directly correlate to the satisfaction and entertainment value experienced 

by the human player. The player experience also depends on other factors such 

as the suitability of the challenge provided, the amount of curiosity invoked, 

the level of rationality presented by the NPC, amongst others. This thesis 

focuses on the use of computational intelligence techniques on two key issues 

of game AI affecting the player experience, namely adaptability and 

believability. 

1.1 Game AI and computational intelligence 

Artificial intelligence (AI), as explained by one of the founders of the 

field, John McCarthy, is the science and engineering of making intelligent 

machines, especially intelligent computer programs. AI is derived from a 

branch of computer science that seeks to create intelligence for machines. An 

intelligence machine or agent can be seen as an embodied system that is able 

to perceive its environment and execute actions or sequence of actions that 

fulfills or brings it closer to its desired outcome. The study of AI encompasses 

areas such as reasoning, planning and scheduling, speech and facial 

recognition, natural language, behavioural learning and adaptation. Its 
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applications are deeply embedded in day to day living, more so than most 

people realize. These systems range from directing road traffic, managing 

public transportation schedules and making weather predictions to interactive 

gaming, filtering spam e-mails and returning relevant results for an Internet 

search. 

The goal for AI that researchers set for themselves is an ambitious one, 

one that would pass the Turing test described by Alan Turing in 1950 [183]. A 

machine is said to pass the test if a human judge cannot reliably distinguish 

whether it is a human or machine in a natural language conversation. 

Livingstone also discussed the Turing test in the context of games [85]. Today, 

AI research still has not produced a machine with sufficient common sense to 

describe a static scene, but it did develop Deep Blue, the IBM supercomputer 

that defeated the human chess champion in 1997 [74]. Common sense, 

ironically, turns out to be a difficult challenge in AI research. This led to the 

paradigm shift from mimicking human intelligence to advancing expert 

systems in specific focused applications. Currently, AI technology is used by 

search engines to organize data, helping doctors with diagnosis and treatment, 

and employed by police for fraud detection. Computer games, nonetheless, is 

still an ideal platform for AI research [28]. 

Game AI today is an interdisciplinary field consisting of knowledge 

based systems, machine learning, multi-agent systems, computer graphics, 

animation and data structures. Game AI is about creating the illusion of human 

behaviour. It needs to be smart to a certain extent, make unpredictable but 

rational decisions. A NPC controlled by the game AI needs to display 
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emotional influences and make use of body language to communicate 

emotions to the player. 

In order to create the illusion of human behaviour, the game AI is not 

allowed to cheat obviously. Cheating methods such as allocating more 

resources, neglecting speed limits, and switching off fog-of-war for computer 

controlled opponents had been commonly employ in game AI. But these types 

of obvious cheating are easily detected by the human player and generally 

degrade the gameplay experience. In other words, sensory honesty is a 

fundamental requirement for game agents [76]. In addition, game AI should be 

not display obviously stupid behaviour such as being stuck in a corner, or 

jumping out of a window under no threat. More importantly, game AI that 

exhibit self-correction, learning from experience and creative maneuvers will 

improve their perceived intelligence. It should also be noted that, in general, 

game AI has the inherent advantage of not being required to manipulate the 

graphical user interface (GUI), and is therefore faster when it comes to issuing 

game commands to the game engine. 

Game designers of early computer games have already acknowledged 

the need for computer controlled opponents to show pseudo-intelligent 

behaviours. From an entertainment point of view, there is no need for this 

behaviour to be comparable to human intelligence, yet it should be intelligent 

enough to entertain the person that is playing the game. A classic example of 

an entertaining game AI can be seen in the game Pac-Man. This game 

implements a basic form of AI where each ghost moves, based on a simple set 

of rules, through the game environment with an increasing speed. With the 

growing realism and high fidelity in modern computer games, players expect 
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much more from the game AI. AI controlled NPCs are expected to patrol in 

formations, exhibit squad based tactics, call for reinforcements, take cover 

from fire and retreat when facing a losing battle [80]. 

Indeed, the benchmark of “standard” game AI is rising, yet its growth 

is greatly outpaced by other components of gaming such as special effects 

animation, game mechanics design and in-game kinematics modeling. Game 

AI technology has been performing poorly for the following reasons. First, 

modern games tend to be very complex, featuring many different interacting 

objects, incomplete information, noisy environment and a large variety of 

possible actions at any given game instance. Second, there are severe time 

constraints on game AI to make real time decisions [27] [28]. It must be 

capable of solving real time decision task quickly, rationally and satisfactorily 

in a dynamic adversarial environment [100]. 

In general, academic research in AI centres around the development of 

automated inference machines and algorithms that infer certain consequences 

or outcomes based on a certain set of existing conditions. The techniques 

designed to achieve this can roughly be categorized into two schools of 

thought, conventional AI and computational intelligence (CI). Conventional 

AI includes methods such as expert systems, case based reasoning, Bayesian 

networks and behaviour-based AI. These systems are usually characterized by 

formalism and statistical analysis and attempts to mimic human intelligence 

through knowledge bases. Deep Blue of 1997 can be considered as a classical 

demonstration of conventional AI. 

Computational intelligence on the other hand is known for its use of 

informal, non-statistical and often trial and error approaches. Learning, in its 
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case, is an iterative process based on empirical data and is often associated 

with soft computing. Techniques such as neural networks, fuzzy systems, 

swarm intelligence and evolutionary computation fall under this classification. 

The branch of computational intelligence adopts a philosophical belief that 

intelligence is often too complex and computationally intractable to solve by 

the clear, elegant and homogenous systems as advocated by conventional AI 

methods. 

This does not mean that these two approaches to AI are mutually 

exclusive. Existing research have established the viability and capability of 

using CI techniques to complement conventional AI. In addition, domain 

knowledge can be presented to guide the training process in achieving fast, 

accurate and efficient learning. CI techniques automate the process of finding 

a good solution, without the need to undergo the tedious cycle of devising the 

scheme of problem solving through manual means. This not only lowers the 

efforts expended remarkably but also adds value by increasing the potential of 

deriving solutions that are better than using either approach alone. This thesis 

proposes methods of developing techniques from computational intelligence, 

some inspired by ideas from conventional AI, with the focus on enhancing the 

player experience in computer games. 

1.2 Types of computer games 

In mainstream media, computer games are often categorized into many 

genres such as first person shooters (FPS), real time strategy (RTS), role 

playing game (RPG), adventure, simulation, etc. And many more hybrid 

genres exists such as action-adventure, role playing strategy, and more are 

being created as the industry develops. The point to note from this is that 
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computer games are grouped according to the underlying game mechanics and 

the types of skills required to play the game. Such classifications are not so 

useful from a research standpoint. Instead, the three categories of computer 

games put forward by Togelius will be discussed [175]: computerized games, 

management games, and agent games. 

Computerized games are games that tend to have discrete state spaces 

and a clear set of rules. Games in this category include board games such as 

Chess and Checkers, card games such as Poker and Bridge, and puzzle games 

such as Sudoku and Picross. These games generally do not require high 

amounts of computational resources to implement and a majority of them can 

be played without using a computer at all. The simplicity of implementing 

such games makes them a convenient benchmark for comparing the 

performance different AI algorithms, as well as between and against human 

players. However, the nature of these games also makes them unsuitable for 

investigating human cognition and perception. 

Management games are games where the player takes a more macro 

role in the game world. These games often involve some form of economic, 

warfare, or life simulation. In these games, the player does not control any 

single character in the game but instead devises strategies, allocates resources, 

sets goals, and schedules productions in order to advance the game. Games in 

this category include real time strategy games such as Warcraft and Starcraft, 

god games such as The Sims, sports management games such as 

Championship Manager, and civilization games such as Civilization. These 

games tend to be complex, featuring multiple interconnected game mechanics, 

incomplete information and noisy environments. As with computerized games, 
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management games are usually unsuited for research into cognition and 

perception issues. 

Agent games are games where the player directly controls a character 

or agent within a game environment. The player decides where the agent goes 

and what the agent does at all time during the game. Games in this category 

include platform games such as Super Mario Bros and Rayman, arcade games 

such as Pac Man and Space Invaders, racing games such as Need for Speed 

and Gran Turismo, fighting games such as Street Fighter, and action games 

such as Grand Theft Auto. Agent games are well suited for investigating 

cognition and perception because the agent that is being controlled by the 

human player in the game environment is said to be both situated and 

embodied. That is, the agent is represented by a body in the game environment 

and is able to interact, affect, and perceive the world and its body through its 

actions. These games tend to play out in real time, hence placing additional 

constraints on the performance of its AI. This thesis investigates the issues of 

enhancing player experience through the use of agent games. In particular, 

chapter 4 of this thesis proposes and describes in detail a framework for a 

computationally efficient game AI suitable for implementation in real time 

games. The framework is generic enough to be applied to any agent games 

where the game AI can be expressed as a combination of behaviours. The 

proposed framework is tested using a real time car racing simulator game. The 

resulting car driver is able to outperform previously unseen opponents in 

direct competition, and is also the most computationally efficient. 
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1.3 Player experience 

The most prominent role of computer games is one as a form of 

entertainment. Therefore, it is important for game developers to produce 

games that are entertaining, satisfying, and fun. Game designer Raph Koster 

said that for a game to be fun, the level of challenge need to be approximately 

right [79]. A game that is too easy or too difficult is perceived as boring. In a 

similar way, Thomas Malone described the essence of fun in three categories: 

challenge, fantasy and curiosity. In challenge, there needs to be a goal in the 

game to provide entertainment value but this goal should not be too easy or 

too hard to achieve [91]. Csikszentmihályi‟s theory of flow proposed that how 

much an opponent is perceived to be challenging depends on the skill of the 

player in playing the game [38]. An expert player may be bored by a weak 

computer controller opponent while the same opponent may pose too much 

difficulty to a novice player. Hence, adaptability is an important consideration 

in a game AI. The core game AI that is encoded in a game needs to cater to a 

wide variety of audiences who play the game. In addition, these players learn 

to play the game better over time, so the game AI needs to scale appropriately 

to continually provide sufficient challenge to the player. Furthermore, such an 

adaptive game AI implementation will have the potential to customize a 

personalized and entertaining game experience to a specific player. Chapter 5 

of this thesis presents two adaptive algorithms that use ideas from 

reinforcement learning and evolutionary computation to improve player 

satisfaction by scaling the difficulty of the game AI while the game is being 

played. The effects of varying the algorithm parameters are investigated for 

both algorithms and a general rule of thumb for the selection of these two 
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parameters is proposed. The key contribution of this algorithm is the absence 

of a training phase. This way, the human player can immediately feel the 

effects of adaptation without having to play several games first just to train the 

game AI. 

A believable game AI can help players to immerse in the game world, 

thereby making the game more enjoyable and satisfying. Murray defines 

immersion as a metaphorical term to describe the sensation of being 

surrounded by a completely other reality [99]. Believability in a game is one 

way of achieving such an immersion and maintains the suspension of the 

player‟s disbelief. The concept of suspension of disbelief was first coined by 

Coleridge in 1817 to describe the quality of a good fiction to make readers 

accept the unexplained or seemingly irrational aspects of the story for the 

purpose of enjoying the story. Extending this concept to the context of 

computer games, a believable game agent is one whose actions appear lifelike, 

rational, and allows the player to suspend disbelief [93]. Bryant also argued 

that an intelligent game agent must sometimes go beyond the ability to 

complete a task by completing it in a visibly intelligent manner [24]. Chapter 6 

of this thesis focuses on evolving believable movement behaviours in game 

agents using two ideas, namely, introducing sensor noise to simulate errors in 

human judgment, and using action histograms to indirectly model 

idiosyncrasies in human controlled game agents. Game agents are evolved 

using a multi-objective approach to optimize the incomparable objectives of 

performance and believability. In a user study involving 58 respondents, the 

proposed game agents are found to be more believable compared to one 

optimized for performance alone. 
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1.4 Contributions 

This thesis describes in detail a number experiments and studies, many 

of which form the premise for subsequent ones, that explore the primary aim 

of investigating and developing novel computational intelligence approaches 

to enhance the player experience in real time computer games. This section 

will summarize the main achievements and contributions of this thesis to 

advance the state-of-the-art of AI in computer games. 

 A framework for designing a computationally efficient agent game 

AI based on a hybrid evolutionary behaviour-based methodology is 

introduced. This method is shown to have successfully and 

automatically exploited some collaboration between the different 

behaviour components which may have gone unnoticed if designed 

by hand. It is also easy for designers to incorporate symbolic domain 

knowledge without specifying its related parameters. 

 A dynamic difficulty scaling and online adaptation algorithm is 

designed over the framework to increase player satisfaction. It has the 

advantage of being easily scalable by adding new behaviour 

components. The proposed adaptive algorithm learns during the game 

session and no offline training is required. This will allow new 

players to immediately feel the effects of the adaptive game AI. 

Newly introduced parameters are thoroughly investigated and a 

general rule of thumb for their selection is put forward. 

 The action histograms and action sequence histograms are introduced 

as a means to analyze differences between game players (humans and 

AI). A case study is conducted to quantify the unnatural behaviours 
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seen in existing AI agents. The proposed histograms are shown to be 

successfully used as fitness functions to imitate low level behavioural 

tendencies of human players. The novel use of small window sizes of 

action sequences differs from conventional state-action approaches. 

 Our experiments have introduced and verified the use of deliberate 

evolvable sensor noise in game AI agents to simulate systematic 

errors and random errors in human judgment during game playing. 

The introduction and co-evolution of these noise parameters is also 

demonstrated to improve the believability of AI agents. 

 The believability of AI agents is shown to have the potential to be 

improved without degrading its game competency. A user study is 

conducted and the game AI agent evolved using the proposed 

histograms and sensor noise is verified as being more believable by 

human observers. 

1.5 Thesis outline 

This thesis is organized into seven chapters. The current chapter 

provides an introduction to computer games, game AI, and player experience, 

and motivates the research documented in this thesis. The primary aim of this 

thesis is to present an investigation on a computational intelligence approach 

to enhancing player experience in computer games. Two key issues of game 

AI affecting the player experience, adaptability and believability, are 

considered in this thesis. 

Chapter 2 expands on the topic of computational intelligence and 

focuses on the main techniques used in this thesis. In particular, the basic 

framework of evolutionary algorithms, genetics algorithms, evolution 
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strategies, co-evolution, multi-objective algorithms including Pareto 

dominance and optimality, and neural networks are discussed in this chapter. 

Chapter 3 presents the real time car racing simulator game used in this 

thesis. The mechanisms for waypoint generation, vehicular controls, sensors 

model, and physics model are described in detail. Finally, the performance and 

characteristics of several heuristic controllers which were used as trainers in 

later chapters are discussed. 

Chapter 4 proposes and describes in detail a framework for a 

computationally efficient game AI that is suitable for implementation in real 

time games. This approach combines the good response time of behaviour-

based systems and the search capabilities of evolutionary algorithms. The 

proposed framework is demonstrated using the real time car racing simulator 

game and the evolved behaviours are quantitatively and qualitatively analyzed. 

The resulting car driver is then tested against previously unseen real world 

opponents written by other researchers. 

Chapter 5 presents two adaptive algorithms that use ideas from 

reinforcement learning and evolutionary computation to improve player 

satisfaction by scaling the difficulty of the game AI during the game itself. 

The objective of the adaptive algorithm is to match the game difficult to the 

proficiency of the game player to provide a suitable amount of challenge. Two 

indicators are also proposed as a measure of how well an adaptive algorithm is 

able to match its opponent. 

Chapter 6 focuses on evolving believable game agents to improve the 

player‟s immersion in the game. Two ideas, namely sensor noise and action 

histograms, are introduced to induce believable movement behaviours in the 
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game AI. A multi-objective approach is applied to simultaneously optimize 

both game performance and believability in the game agent. A user study is 

also conducted to quantify the improvement in believability achieved by this 

approach. 

Finally, a high level summary of this thesis and some directions for 

future work are discussed in chapter 7. 



 15 

Chapter Two 

2 Computational intelligence 

Computational intelligence is part of the larger family of computer 

science and engineering. The field of computational intelligence encompasses 

techniques such as artificial neural networks, evolutionary computation, fuzzy 

logic systems, ant colony optimization, particle swarm optimization, and 

artificial immune systems, etc. The computational intelligence approaches that 

are used in this thesis will be introduced in this chapter. 

2.1 Elements of evolutionary algorithms 

Evolutionary algorithms are stochastic, population based search 

algorithms that are inspired by Darwin‟s theory of evolution. It implements 

several evolutionary approaches found in nature such as selection, 

reproduction, crossover and mutation, amongst others, to improve the survival 

chances of a population over several generations. It follows the basic principle 

of survival of the fittest. Each element in the evolutionary algorithm 

framework will be discussed in this section. 

2.1.1 Overview 

In nature, all organisms have their unique set of genes. During the 

reproduction process, these genes are recombined by the process of gene 

crossover to form an offspring that carries characteristics from both parents 
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and occasionally new characteristics by gene mutation that may or may not be 

beneficial. All organisms are then tested in their environment and only the 

ones most suited for the environment will survive to propagate their genes to 

the next generations. 

Evolutionary algorithm uses these elements in an algorithm to solve 

complex optimization problems via a population of candidates. Each 

individual in the population consists of a set of variables that forms the 

solution to the problem. Individuals are tested and sorted according to their 

performance and those that perform better are more likely to be selected as 

parents to reproduce. The selected individuals exchange information by 

merging or swapping parts of their solutions to form a new population of 

offspring. The cycle then repeats itself by testing and sorting the new 

population of candidates. After substantial iterations, the algorithm should 

evolve a solution that is optimal for the problem. This process can be better 

visualized in the form of a flowchart of a basic genetic algorithm shown in 

Figure 2.1. 

Other than nature inspired genetic operators such as crossover and 

mutation, computer scientists have also introduced new mechanisms which are 

not found in nature to evolutionary algorithms. An example of such is the 

concept of elitism. Some of the fittest individuals in the current population are 

cloned to the next generation without modifications so as to ensure that good 

solutions found in this generation will not be lost through the recombination 

operators. Such mechanisms can improve the performance of evolutionary 

algorithms over the course of the search process. 
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Figure 2.1 Flowchart of genetic algorithm 

2.1.2 Representation 

Just as genetic information is encoded in the DNA of living organisms, 

the solution to the problem in an evolutionary algorithm is encoded in the 

chromosome of an individual. In other words, each individual in the 

population encodes a solution to the problem. The manner in which a solution 

is encoded in an individual is referred to as the representation. For example, 

the integer value 8 can be represented simply as an integer variable „8‟ or it 

can be represented as a binary value „111‟. The representation directly affects 

the performance of the evolution. If a chosen representation is not generic 

enough to cover the entire search space, then such regions will become 

inaccessible to the evolutionary algorithm and good solutions within such 

regions will not be found. For example, an individual represented by integer 

variables will be unable to optimize a problem where the optimal parameters 
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are real numbers. Therefore, it is important to design representations that are 

well suited for the problem. Some popularly used representations include real 

number, binary or more complex data structures such as tree nodes and neural 

network nodes. 

2.1.3 Fitness and evaluation 

The fitness of an individual is the criteria by which the environment 

evaluates the individual. An individual of high fitness is said to be well suited 

for the environment and will likely survive on to subsequent generations. In 

nature, the typical measure of fitness is the lifespan of an organism. The 

longer an organism is able to survive, the more opportunities it will have to 

reproduce and create offsprings. In evolutionary algorithm, the fitness of an 

individual is measured by the goodness of the solution it represents. For 

example, in function maximization problems, the fitness is simply the function 

output; the higher the function output, the fitter the individual. The fitness 

value is then used to determine the extent to which an individual is allowed to 

reproduce for the next generation. 

2.1.4 Population and generation 

Evolutionary algorithms use a population-based approach in its search 

process. A population consists of a predefined number of individuals which 

will evaluate different parts of the search space. In the beginning, the 

individuals in the population are randomly initialized to populate the search 

space. Each individual in the population will be evaluated to determine its 

fitness. When all the individuals in a population have been evaluated, 

recombination will be performed and a new population of offspring will be 
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created. With the creation of the population of offspring, one generation or one 

evolutionary cycle is said to have elapsed. A large population size will 

typically survey a larger search space and increase the probability of finding 

good solutions at the expense of longer computation time. Depending on the 

complexity and difficulty of the problem, evolutionary algorithms typically 

require tens to thousands of generations before a reasonably good solution can 

be found. 

2.1.5 Selection 

Inspired by the laws of nature, a fitter individual in a population should 

be given a higher likelihood of survival and more opportunities to reproduce 

than a weaker individual. Nevertheless, the weaker individual should still be 

given some small finite chance of survival and propagation. Such a 

mechanism is realized in evolutionary algorithms as the selection process. In a 

popular implementation of the selection process known as the roulette wheel 

selection [8], each individual is assigned a probability of being selected based 

on its normalized fitness against the total population fitness. Hence, an 

individual with high fitness will have a higher probability of being selected for 

propagation while an individual with low fitness will still have a small but 

finite probability of being selected. A good selection mechanism should seek 

to maintain a balance of good and weak individuals in a population. Too high 

an emphasis on retaining good individuals may result in premature 

convergence and having the population trapped in local optima. Conversely, a 

high emphasis on retaining weak individuals may lead to low selection 

pressure and slow rate of convergence. A balance of exploration and 

exploitation is required for the good performance of evolutionary algorithms. 
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Other commonly used selection mechanisms include tournament selection [96] 

and rank-based selection [8]. 

2.1.6 Crossover 

Crossover, or sometimes known as recombination, is the process where 

genetic information from two parent individuals are exchanged to produce an 

offspring. Such an offspring will receive characteristics from both parents in 

the hope that the new combination of genes will produce an individual that is 

fitter than both its parents. The crossover process is associated with a 

probability of crossover which determines the likelihood of a crossover taking 

place. The probability of crossover is typically set high so as to facilitate the 

exchange of search information between individuals and improve the 

efficiency of the algorithm. The actual implementation of a crossover 

operation is often problem and representation dependent. Some commonly 

used crossover mechanisms [59] include single-point, multi-point, uniform, 

shuffle, arithmetic, and order based crossovers. 

2.1.7 Mutation 

Mutation denotes the random modification of some genetic material of 

an individual. Although mutations are often viewed as being harmful, they 

may also be beneficial in some instances and may result in individuals that are 

more fit when compared to it predecessors. In evolutionary algorithms, 

mutation is necessary to preserve diversity in a population. That is, mutation 

helps to maintain the exploration ability of the population and to escape from 

local optima should the population become trapped. As with the crossover 

operation, the mutation operation is associated with a probability of mutation 
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which determines the likelihood of a mutation taking place. When used in 

conjunction with the crossover operation, the probability of mutation is 

typically set low so as to maintain diversity in the population without 

disrupting the flow of the population. In the absence of the crossover operation, 

the probability of mutation is set high as it becomes the main mechanism for 

exploration. The actual implementation of a mutation operation is often 

problem and representation dependent. Some commonly used mutation 

mechanisms include bit-flip mutation, position swap, and Gaussian 

perturbation. 

2.1.8 Elitism 

Elitism is an example of a process not found in nature but was 

introduced to evolutionary algorithms to improve its performance. It was first 

conceptualized by De Jong [39] to preserve the best individuals found and 

prevent the lost of good solutions due to the stochastic nature of evolutionary 

processes. It is implemented in evolutionary algorithms by simply copying the 

fittest individuals in the population to the next generation without any 

alterations. Elitism ensures that the minimum fitness of a population never 

decreases across generations and typically results in a higher rate of 

convergence. In practice, the implementation of elitism requires the algorithm 

designer to specify a percentage of individuals from the parent population to 

directly replace the same percentage of the weakest individuals in the 

offspring population. 
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2.1.9 Stopping criteria 

The stopping criteria refer to the conditions which will stop the 

evolutionary algorithm when met. This is an important consideration as both 

computational resources and time are limited and it is not practical to allow an 

algorithm to run indefinitely. A good stopping criterion will allow sufficient 

resources for the evolutionary algorithm to convergence to good, if not 

optimal, solutions. Some commonly used stopping criteria include setting a 

desired fitness level, setting a maximum number of generations, stopping 

when the fitness level stagnate for some number of generations, and stopping 

when the standard deviation of fitness level stagnate. 

2.2 Genetic algorithms 

Genetic algorithm (GA) [67] was introduced by Holland in the 1970s. 

The basic GA consists of a fixed population size, a fixed length of 

chromosome represented by binary strings, and uses a conventional objective 

function. It is typically applied to discrete optimization problems such as 

combinatorial problems. It emphasizes the use of crossover operators to 

combine information from good parents. The crossover and mutation operators 

work by flipping and swapping binary bits. The basic GA represents the 

general framework of evolutionary algorithms and many variants can be 

created by using the basic GA framework as a starting point. GA has been 

applied successfully to a wide variety of problems. An example from the 

finance industry would be futures trading [103]. The simplicity and flexibility 

of GA also makes it easy to hybridize with other computational intelligence 
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techniques such as neural networks and fuzzy logic [75] [77], and also 

heuristics methods [143]. 

2.3 Evolution strategies 

Evolution strategies (ES) [124] was introduced by Ingo Rechenberg 

and Hans-Paul Schwefel in the 1970s. ES is particularly suited for real valued 

optimization problems because its solutions are represented as real numbers. It 

uses only the mutation operator and does not use any crossover operators. A 

special feature of ES is the inclusion of self-adapting mutation parameters as a 

standard procedure in its algorithm. The self-adapting mutation parameters are 

encoded together with the solution in the chromosome hence making the 

chromosome twice as long. ES also defines two types of selection mechanisms, 

namely plus and comma strategy. In the plus strategy, μ parents participate in 

the production of λ offsprings. Next, the λ least fit individuals are removed 

from the μ+λ individuals and the remaining individuals form the new 

generation. The plus strategy always retains the best solution and can get stuck 

in local optima. In the comma strategy, μ parents participate in the production 

of λ offsprings, but the new generation will be selected from λ offspring 

individuals only. The advantage of this is that the comma strategy is better in 

escaping from local optima but the disadvantage is that it might lose the 

individual with the best solution. 

2.4 Co-evolution 

Co-evolution can be classified into two main classes, namely 

competitive co-evolution and cooperative co-evolution. In this section, only 

competitive co-evolution will be describe as it is the only paradigm that will 
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be used in the experiments. A good read on the topic of co-evolution can be 

found in [35]. 

The competitive co-evolution model [52] [64] [130] is often described 

as a host-parasite or predator-prey interaction. This is implemented as two 

sub-populations in an evolutionary algorithm. One sub-population represents 

the potential solution to the problem while the other sub-population acts as 

fitness tests. Each sub-population will evolve and adapt to counter the other 

sub-population in order to become the new winning sub-population. This 

results in an evolutionary arms race as each sub-population tries to exploit 

weaknesses and outperform the other sub-population. This has the advantage 

of ensuring that neither sub-population becomes over trained and thereby 

losing generalization capability. The resulting solution will likely be good and 

generic. Successful applications of co-evolution can be found in pursuit evade 

games [105], multi-agent games [201], strategy games [7] and board games 

[72] [87] [131]. 

The actual implementation of co-evolution in evolutionary algorithms 

is problem dependent. Hence, co-evolution is better viewed as an 

implementation concept more than a specific technique. In the experiments, 

co-evolution is implemented by playing members of the same population 

against each other in a two player game. Individuals within the same 

population will exploit weaknesses of other individuals. The resulting 

population is one that is continually changing and rooting out weak traits from 

the population. 
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2.5 Multi-objective optimization 

Some types of problems involve multiple objectives that are competing 

and incomparable. Such problems are said to be multi-objective (MO) 

problems. For example, consider the problem of commuting from home to the 

university everyday. Two possible objectives that one may take into 

consideration are the cost of transportation and the time required for the 

journey. The cheapest form of transportation may be the public bus but it is 

also the slowest. The fastest form of transportation may be to take a taxi but 

that is also the most expensive. 

Generally, many real-world applications involve complex optimization 

problems with various competing specifications and constraints. A 

minimization problem with decision space, X, a subset of real numbers, can be 

used without loss of generality. For minimization problems, it tends to find a 

parameter set P shown in (2.1). 
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The solution to MO optimization problems exist in the form of an 

alternate tradeoff known as Pareto optimal set. A single objective component 

belonging to any non-dominated solution in the Pareto optimal set can only be 

improved at the expense of degrading at least one of its other objective 

components. A vector Fa is said to dominate another vector Fb, denoted as 
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In the absence of specific domain information regarding the preference 

of objectives, a ranking scheme based on Pareto optimality is regarded as an 

appropriate approach to representing the fitness of an individual in 

evolutionary MO optimization problems [48]. The concepts of the Pareto 

dominance relationship and the Pareto-optimal front are illustrated in Figure 

2.2. 

 
 

(a) (b) 

Figure 2.2 Illustrations of (a) Pareto dominance relationship and (b) Pareto-optimal front 

The solution to MO optimization problems exist in the form of an 

alternate tradeoff known as Pareto optimal set. A single objective component 

belonging to any non-dominated solution in the Pareto optimal set can only be 

improved at the expense of degrading at least one of its other objective 

components. Each solution in the population is given a Pareto rank given by 

equation (2.3). 

     ( )  1   
i

rank i n      (2.3) 

where ni is the number of solutions in the population dominating the 

individual i in the objective domain. In a Pareto optimal set, each solution is 

fitter than any other solution in at least one objective. The solutions with a 

lower Pareto rank have a higher likelihood of being selected as parents for the 
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next generation. At the end of the algorithm, a decision is made to determine 

the most suitable solution for the intended problem. Examples of MO 

algorithms include non-dominated sorting genetic algorithm II (NSGA-II) [40], 

strength Pareto evolutionary algorithm 2 (SPEA2) ‎[202] and Pareto archived 

evolution strategy (PAES) [78] etc. A good introduction to multi-objective 

optimization can be found in [36]. 

2.6 Neural networks 

Artificial neural networks (or simply neural networks) [63] are a class 

of machines that are designed to model the way in which the brain performs 

tasks. In particular, these machines must exhibit the behaviour of learning and 

the ability to store knowledge. A neural network consists of an interconnected 

group of artificial neurons designed to model some properties of biological 

neural networks. 

Neural networks have been widely used for image processing, speech 

processing, pattern recognition [90] [162] [185], function approximation [83], 

and time series prediction. Its applications can be seen in many areas like 

control problems [55], medical diagnosis, robotics [71], game AI [126] [139], 

financial analysis [192], criminal investigation, and even driving a car [13] 

[15]. The main reason for the successful application of neural networks is its 

ability to learn and generalize well to unseen situations. 

2.6.1 Multi-layer perceptrons 

Neural networks consist of input units, hidden units and output units 

call nodes. Each node (or perceptron) has an activation function, which acts as 

a mapping function. Each connection has a strength represented by a weight, 
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which help to define the input-output relationship of the network. A simplified 

view of a multi-layer perceptron (MLP) is shown in Figure 2.3. 

 

Figure 2.3 A simplified view of a MLP 

Neural networks can be trained using a paradigm known as supervised 

learning. In supervised learning, a set of example and their desired outputs, 

known as a training set, is available from experiments. The examples from the 

training set are shown repeatedly to the neural network and an output is 

produced from the neural network. If this output is different from the desired 

output, then the neural network adjusts its weights to make an improvement. 

This process is known as the training algorithm. The aim of the training 

algorithm is to minimize the error function as shown in (2.4) 
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where W is the weight vector of the neural network, d(j) is the desired 

output of the j-th example and y(j) is the neural network output of the j-th 

example. 

The error function is to be minimized using the right values for the 

weights W via the gradient descent method. The computation of the gradient 

can be obtained using a method called the backpropagation which efficiently 

Inputs Outputs 
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exploits the use of the chain rule on composite functions. For conciseness, the 

detailed workings of the backpropagation algorithm can be found in textbooks 

[63] and shall not be discussed here. One of the main disadvantages of the 

gradient descent method is its long computation time. Methods to find the 

global optimum are usually very computational expensive if not impossible at 

all. 

2.6.2 Evolutionary neural networks 

As the name implies, evolutionary neural networks are the hybrid 

between evolutionary algorithms and neural networks. The training of neural 

networks involves finding a set of weights that will generate the desired output 

for a given input. As discussed in the previous section, such weights can be 

optimized by the backpropagation algorithm. Alternatively, one may also use 

evolutionary algorithms, which is itself an optimization technique, to optimize 

the weights of the neural network. A good introduction to the field of 

evolutionary neural networks can be found in [200]. 

In evolutionary neural networks, the fitness function is often defined as 

the minimum sum of square errors between the outputs of the neural network 

and the desired outputs from the training data. In its simplest form, the number 

of hidden units in the neural network is predefined by the user and the weights 

of the neural network are represented as an array of real numbers in the 

chromosome of the evolutionary algorithm. However, many variants are also 

possible, such as automatically evolving the number of hidden units in the 

neural network [54], constructing recurrent neural networks [6] and evolving 

the entire topology of the neural network [149] [150] [151]. 
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2.7 Summary 

In this chapter, the computational intelligence approaches that are used 

in this thesis are introduced. The core elements of the evolutionary algorithm 

framework are discussed in detail as a good understanding of these basic 

building blocks will allow us to improve their performance and find new 

applications for them. Two specific implementations, namely genetic 

algorithms and evolution strategies, are primarily used in the experiments. 

Other concepts such as co-evolution and multi-objective optimization are used 

in conjunction with the basic framework to allow evolutionary algorithms to 

be applied to a wider range of problems. This is followed by the introduction 

of artificial neural networks and the use of evolutionary algorithms as their 

training methods. 
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Chapter Three 

3 Real time car racing simulator 

The car racing simulator model used in the experiments is modified 

from the one used in Simulated Car Racing Competition held during IEEE 

CEC 2007 [179] [180]. The main features of the simulator will be summarized 

in this section. In this game, up to 2 players drive their cars in an open arena 

and earn points by driving through an ordered sequence of waypoints. In a 2 

player game, the player with more points at the end of the stipulated game 

time wins the game. In a 1 player game, it becomes a reverse time trial as the 

player tries to achieve as high a score as possible within the stipulated game 

time. An illustration of the game arena in a 2 player game is shown in Figure 

3.1. 

 

Figure 3.1 The real time car racing simulator game area 

Current waypoint 

Second waypoint 

Scoreboard 
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3.1 Introduction 

The time keeping system in games can be broadly categorized into two 

types, namely turn based and real time. In the turn based system, players in the 

game take turns to perform actions within the game. That is, while one player 

is performing his actions, the other players may only observe the game 

environment without any active participation. Only when the current player 

completes his turn may the next player begin his turn. Conversely, in a real 

time system, game time passes continuously according to a global game clock. 

All players perform their actions simultaneously and at the same time observe 

the effects of their opponents‟ actions and response in real time. Hence, there 

is an element of time management involved in real time games. In real world 

games, chess is a classic example of turn based games, while ball sports such 

as basketball and soccer and examples of real time games. 

The dimension of the competition field is 400 pixels by 400 pixels and 

is not occupied by any walls or obstacles. As such, vehicles are free to drive 

outside of the competition field. However, only the competition field is visible 

to the human controlled player. Hence, this setup is advantageous to computer 

controlled cars as their sensors will continue to function even if their current 

position is outside the game field. Assuming the lower left corner to be the 

origin, the starting position of the first vehicle is fixed at the coordinate (100, 

200) while the starting position of the second vehicle is fixed at the coordinate 

(300, 200). 

The objective of each race is to drive through as many waypoints as 

possible within an allotted time. Two waypoints are visible on the competition 

field, the current and the next. However, the next waypoint can be driven 
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through but is not worth any points unless the current waypoint is driven 

through first. That is, the waypoints must be driven through in an ordered 

sequence. Nothing will happen when a car drives through the next waypoint. 

Whenever the current waypoint is driven through, the car that drove through it 

gains 1 point, the next waypoint will become the new current waypoint and a 

new waypoint will be generated to replace the next. 

It should also be noted that in the context of computer games, real time 

games are not subjected to real time constraints such as operational deadlines 

from event to system responses encountered in real time control systems. 

Computer games are typically produced to operate at 30 frames per second. In 

the event that the game AI requires more than 1/30 seconds to response, the 

frame will be dropped. The result is a game that runs at a lower frame rate. 

However, it is still desirable for game AI to be computationally efficient so 

that frame rates can be maintained at 30 fps or more to provide a better 

playing experience. 

3.2 Waypoint generation 

There are several ways to generate the new waypoint. One such 

method is to randomly generate a new waypoint anywhere within the playing 

area. The main disadvantage of randomly generated waypoints is that two or 

more sequential waypoints may be generated in close proximity of one another 

and in severe cases, even overlapping. This results in a particular vehicle 

gaining two or more points in a single approach. This can be viewed as a 

biased allocation of points especially in a race where collecting waypoints is 

its main objective. 
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As such, the following method of generating waypoints is proposed. 

The locus of the (k+1)-th waypoint will always be generated on the 

circumference of a circle of radius (400/3) pixels centred on the k-th waypoint 

within the visible competition area. The arbitrarily chosen radius is to ensure  

that waypoints do not overlap while maintaining some distance between 

waypoints to allow opposing vehicles an opportunity to mount a viable 

counter strategy. In addition, the very first waypoint is always initialized on 

the locus of a vertical straight line running through the centre of the field. This 

is to ensure that the initial conditions are not in favor of any vehicle in 

particular. 

Another way to generate the waypoints is to make use of a stored array 

of waypoint coordinates. That is, a sufficiently long list of waypoints, usually 

about 35 waypoints for a game of 1000 time steps, is generated before the 

game begins. Whenever a waypoint is passed, instead of generating a new 

waypoint on the fly, it is simply loaded from the next item on the list. This 

allows the designer to predefine a unique route for the player to drive through. 

This can be used to simulate a virtual race track where the designer can 

incorporate difficult situations such as creating routes that require very small 

turning radii. Such designer tracks can also be used in control experiments to 

benchmark the performance of the human or AI players. 
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Figure 3.2 Graphical representation of the controller and its corresponding integer value in the 

Java Controller interface 

3.3 Vehicle controls 

The vehicles themselves are controlled using digital trigger type 

controllers like the directional controls found on console game control pads. 

The 4 distinct on-off control signals: accelerate (up), decelerate (down), left 

and right turn combine to form a total of nine possible controller states, 

inclusive of a neutral state where no key is asserted. This is better illustrated in 

Figure 3.2. 

The controller can take inputs either from the keyboard or an AI 

algorithm. On a keyboard, accelerate and decelerate actions are mapped to the 

up and down arrow keys respectively, while the left and right actions are 

mapped to the left and right arrow keys respectively. If no keys are depressed, 

then a neutral action is asserted. In the AI controller, the control mechanism of 

the car in the racing game is implemented via the Java Controller interface that 

returns an integer value from 0 to 8, which represents the nine possible 

controller states, to the game engine at each time step. 
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Table 3.1 Full list of sensors available in the real time car racing simulator 

Sensor name Description 

getSpeed 
Double. Returns the speed of the 

controlled vehicle. 

getAngleToNextWaypoint 

Double. Returns the angle of the currently 

activated waypoint from the controlled 

vehicle in radians, -π to π. 

getDistanceToNextWaypoint 

Double. Returns the distance of the 

currently activated waypoint from the 

controlled vehicle. 

getAngleToNextNextWaypoint 

Double. Returns the angle of the next 

activated waypoint from the controlled 

vehicle in radians, -π to π. 

getDistanceToNextNextWaypoint 

Double. Returns the distance of the next 

activated waypoint from the controlled 

vehicle. 

getAngleToOtherVehicle 

Double. Returns the angle of the other 

vehicle from the controlled vehicle in 

radians, -π to π. 

getDistanceToOtherVehicle 
Double. Returns the distance of the other 

vehicle from the controlled vehicle. 

otherVehicleIsPresent 

Boolean. Returns true if the other vehicle 

is present (i.e. 2 player game) or false 

otherwise (i.e. 1 player game). 

justPassedWaypoint 

Boolean. Returns true at the time step that 

a waypoint is passed by either vehicle or 

false otherwise. 

otherVehicleJustPassedWaypoint 

Boolean. Returns true at the time step that 

a waypoint is pass by the other vehicle or 

false otherwise. 

getPosition 
Vector. Returns the x and y coordinates of 

the controlled vehicle. 

getVelocity 
Vector. Returns the x and y component of 

the velocity of the controlled vehicle. 

getOrientation 

Double. Returns the direction in which 

the controlled vehicle is facing in radians, 

-π to π. 

getAngularVelocity 

Double. Returns the angular velocity of 

the controlled vehicle in radians per time 

step. 

getDirectionOfMovement 

Double. Returns the direction in which 

the controlled vehicle is traveling in 

radians, -π to π. 

getOtherVehiclePosition 
Vector. Returns the x and y coordinates of 

the other vehicle. 

getOtherVehicleVelocity 
Vector. Returns the x and y component of 

the velocity of the other vehicle. 

getOtherVehicleOrientation 

Double. Returns the direction in which 

the other vehicle is facing in radians, -π to 

π. 

getNextWaypointPosition 
Vector. Returns the x and y coordinates of 

the currently activated waypoint. 

getNextNextWaypointPosition 
Vector. Returns the x and y coordinates of 

the next activated waypoint. 
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3.4 Sensors model 

The AI controllers can access but not modify the full state of the game 

in a third-person representation similar to that used internally by the game. 

Additionally, controllers can access much of the information in a more 

convenient first-person perspective, e.g. angles and distances from the frame 

of reference of the car. The full list of sensors available and their description is 

listed in Table 3.1. 

3.5 Mechanics 

In the simulation, a vehicle is specified by its position, velocity, 

orientation and angular velocity. The equations that govern these variables are 

given in equations (3.1) to (3.4). 

1t t ts s v       (3.1) 

 1 1t t drag driving gripv v c f f         (3.2) 

1t t          (3.3) 

 1 ( )t traction steering tf f        (3.4) 

where st is the position of the vehicle at time t, vt is the velocity of the 

car at time t, cdrag is a scalar constant which is set to 0.1, fdriving is the driving 

force provided by the vehicle engine which is set to 4 for acceleration, 2 for 

deceleration and 0 for neutral, fgrip is the force between the tires and the 

ground surface, its magnitude is set to 2 and its direction is set to 0 when the 

orientation of the vehicle and the direction of movement differ by less than 

π/16, θ – (π/2) when the difference is positive and θ + (π/2) when the 

difference is negative, θt is the orientation of the vehicle at time t, t  is the 

angular velocity of the vehicle at time t, ftraction limits the change in angular 
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velocity to between -0.2 and 0.2, and fsteering is the magnitude of vt if the 

vehicle is steering left and negative magnitude of vt if steering right. 

In 2 player games, vehicle collisions are also modeled in the simulation. 

Collision is detected by checking whether the rectangular spaces occupied by 

the vehicles on screen intersect each other. When a collision is detected, the 

collision resolution methods on both vehicles are called. The velocities of both 

vehicles are then exchanged and both vehicles are shifted several pixels away 

from each other to undo the intersecting spaces in order to prevent repeated 

collisions in the next time step. Next, the angular velocities are updated by 

equation (3.5). 

   
2

other thismag v mag v
 


     (3.5) 

where mag() is the magnitude function of a vector, vother is the velocity 

of the other vehicle, vthis is the velocity of this vehicle, and the sign of the 

operation depends on the relative position of the point of collision to the centre 

of the vehicle. 

The included physics model is reasonably detailed, allowing for 

collisions between vehicles as well as side skidding. When cornering, a 

technically skilled controller, human or not, will be able to execute such 

maneuvers to their advantage. 

When driving towards the current waypoint, care must be taken not to 

approach it at too high a speed. A driver that is accelerating and steering 

towards a waypoint may overshoot it and ends up orbiting around the 

waypoint. Additionally, if a driver overshoots the current waypoint, it may be 

put at a disadvantage if the next waypoint is positioned behind the car. Driving 

at a slower speed may help in most situations but runs the risk of losing the 
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current waypoint to the opposing driver and therefore wasting valuable time 

driving towards a waypoint that it is unable to win. 

Using a more aggressive approach, the driver may choose to 

intentionally collide with the opposing driver in the hope of throwing its 

opponent off course and thereby increasing its own chances of arriving at the 

current waypoint first. Alternatively, the driver may choose to throw itself in 

the path of its opponent to block its path and perhaps get a helpful bump 

towards the current waypoint. However, this requires that the driver itself be 

competent in recovering from collisions and also be able to predict the most 

likely outcome of a collision in order to determine whether or not it is 

advantageous to do so. 

From a more tactical point of view, the driver can try to predict which 

driver will reach the current waypoint first. Given the situation, the driver can 

choose to drive faster towards the current waypoint or drive towards the next 

waypoint and wait there instead. This way, the driver loses a point for the 

current waypoint but wins the next point once it becomes activated and all is 

square for the race to the waypoint after that. However, predicting which 

driver will reach the current waypoint first requires a good understanding of 

the game dynamics as well as the driving behaviour of the opposing driver. 

Conversely, the opposing driver may also decide to forsake the current 

waypoint, in which case it becomes more logical to drive towards the current 

waypoint instead. In the example shown in Figure 3.1, both cars are roughly 

equidistance from the current waypoint. The red car is on the right and the 

blue car is on the left. However, the red car is facing away from the waypoint 

while the blue car is facing the waypoint directly. The red car can choose to 
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reverse towards the waypoint to avoid wasting time to make a U-turn. But if 

the red controller knows that the reversing acceleration is slower than the 

forward acceleration, it will know that the race to the current waypoint is lost. 

In such a situation, the red car should forgo this waypoint and drive forwards 

toward the next waypoint instead. Additionally, the blue car, after driving 

through the current waypoint, will likely be back facing the next waypoint and 

hence be in a poor position to win the next point. 

3.6 Example controllers 

Three heuristic controllers with basic driving behaviours, which are 

packaged in the car racing simulator [179], will be described in the following 

sub-sections. These controllers are used in various experiments in this thesis. 

In particular, the HeuristicSensibleController is used as the main training 

opponent as it represents a well tuned naïve driver that places sufficient 

selection pressure on the evolving population. More sophisticated controllers 

have been developed [179], some by conventional AI and others by 

computational intelligence. However, the sophisticated controllers are not used 

during training because they encourage over training, specialized solutions and 

poor generalization. Therefore, only basic controllers are used during training 

to encourage better generalization. 

3.6.1 GreedyController 

The GreedyController (GC) is a simple controller that always outputs 

the acceleration motor command and there is no upper limit for its speed. It 

will steer towards the next waypoint intuitively depending on whether the 

angle to the current waypoint is negative or positive. This controller is rather 
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ineffective in practice. When observed visually, it typically overshoots the 

waypoint due to its fast driving speed. In situations when the next waypoint is 

in the opposite direction, this controller needs to take a big detour, wasting 

valuable time. 

3.6.2 HeuristicSensibleController 

The HeuristicSensibleController (HSC) drives directly towards the 

current waypoint much like the GC but with an upper speed limit of 7 pixels 

per time step which is a moderate speed. If the instantaneous speed falls below 

the speed limit, it exerts the accelerate command but if it is above the limit it 

simply issues the neutral driving command. In general, this controller 

performs better than the GC in solo tests. The main drawback of this controller 

is that it does not have any waypoint prediction mechanisms. That is, it simply 

drives towards the current waypoint, disregarding whether or not it will reach 

the waypoint before its opponent does. 

3.6.3 HeuristicCombinedController 

The HeuristicCombinedController (HCC) is a more complex controller 

when compared to the HSC. Its behaviour will change depending on whether 

or not its present position is nearer to the current waypoint than its opponent. 

If it is nearer, it behaves identically to the HSC. However, if it is further away, 

the controller activates an “underdog” mode and drives towards the next 

waypoint instead, stopping in the vicinity of the next waypoint. In underdog 

mode, its speed limit is proportionate to the distance towards the next 

waypoint. It reduces to the HSC in solo races. 
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3.7 Summary 

In this chapter, the real time car racing simulator used in this thesis is 

presented. Three methods of waypoint generation were discussed, the discrete 

control scheme used in the simulator was illustrated and the sensors available 

to the game AI were introduced. Next, the mechanics of the vehicles were 

presented along with some discussion on possible driving strategies. Finally, 

three simple heuristic controllers, which will be used as training opponents in 

the experiments, were described. 
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Chapter Four 

4 Evolving computational efficient behaviour-

based AI for real time games 

This chapter examines the design of a game AI that is computationally 

efficient yet demonstrates highly competitive performance for a real time car 

racing simulator game. In turn based games, the game AI is able to 

compensate for its lack of game reasoning by evaluating board positions 

millions of times faster than the human player. However, such extreme 

resource requirements are impractical for fast paced and real time games, i.e. 

racing games, sports simulators, first person shooters and real time strategy 

games. This chapter proposes and describes in detail an evolved behaviour-

based controller that combines the good response time of behaviour-based 

systems and search capability of evolutionary algorithms to evolve 

competitive driving behaviours for a real time car racing game. The proposed 

controller is tested against the top 5 participants in the Simulated Car Racing 

Competition held during the 2007 IEEE Congress on Evolutionary 

Computation to evaluate its generalization performance against previously 

unseen controllers. The proposed behaviour-based controller is able to 

outperform all its opponents in direct competition, and is also the most 

computationally efficient. 
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4.1 Introduction 

The quality of commercial computer games is directly related to their 

entertainment value ‎[182]. Game AI, being an essential part of a game, has 

become an important selling point of games ‎[49]. In this aspect, game 

developers compete with one another by creating more sophisticated and 

intelligent game AI to offer better game play experiences. However, the 

current state of game AI is still, in general, of low quality ‎[137]. There is a 

general dissatisfaction among game players with the level of the artificial 

intelligence of computer controller opponents. This has led to players 

preferring to play against human controlled opponents ‎[137], via hot seat, split 

screen, local network, Bluetooth, infrared and most prominently the Internet. 

This group of players tends to value intelligent behaviours [157]. Such player 

preferences have also partly contributed to the boom in the development of 

massively multi-player online games in recent years. However, in situations 

where human game partners are unavailable, a competent game AI is still 

desirable. 

World class game AI does exist and many examples have been 

developed that are able to beat good human players ‎[89]. But these are 

generally restricted to slower paced, turn based, and perfect information 

games ‎[27] such as Deep Blue for International Chess ‎[74] and Chinook for 

Checkers ‎[136]. Deep Blue compensates for its lack of game reasoning by 

evaluating individual board positions millions of times faster than the human 

player. These search methods can also be extended to multi-player games [68] 

[155]. However, such extreme resource requirements are impractical for 

commercial games where majority of the CPU time and memory is allocated 
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to graphics rendering instead of AI. For faster paced, real time type of games, 

i.e. racing games, sports games, flight simulators, first person shooters (FPS) 

and real time strategy (RTS), such brute force evaluation methods are not 

feasible.  In real time games, game time progresses continually and all players 

are required to perform their actions simultaneously. Computationally efficient 

methods that do not compromise in performance are necessary requirements 

for the implementation of game AI in such real time games ‎[148]. 

Behaviour-based artificial intelligence (BBAI), which is popular in the 

field of robotics, provides some inspiration to address these real time 

computational requirements. In this methodology [22], intelligence is 

perceived as a large number of relatively simple and robust modular 

components. Each of these components work only within a specific set of 

conditions which it can identify from the environment. BBAI is reactive in 

nature and operates without search or deliberation, and is therefore very 

successful in time critical applications such robotics and interactive virtual 

reality ‎[141] and suitable as game agents [69]. However, the disadvantage of 

reactive intelligence is in its design process since individual components need 

to be designed by hand. 

Fortunately, computational intelligence (CI) techniques such as neural 

network, fuzzy logic and evolutionary computation have been demonstrated to 

be a valuable tool that can be employed to simplify the process of designing 

controller behaviours and to optimize its related parameters. Neural networks 

were trained as evaluation functions for checkers [32] ‎[33] and as a targeting 

system for shooting games [58]. Evolutionary algorithms had been applied to 

evolve competent players and to analyze results in “Prisoner‟s Dilemma” 
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games [51] [119]. Hybrid fuzzy logic methodologies had been applied to 

incomplete information resource allocation games and network flow board 

games ‎[21]. Genetic programming was applied to learn tactical behaviours by 

observing how human players perform in a driving simulator ‎[46]. CI 

techniques have also been applied to physical cars in the DARPA Grand 

Challenge [167]. Game agent controllers employing CI techniques had been 

successfully applied to many games such as chess [43] [107], racing games 

[1] ‎[30] [50] [65] [66] [112] [173] [174] [177], soccer simulation ‎[101] [102] 

[113] [118] [133] [134] [154], role playing games [146], predator prey games 

[18] [41] [88] ‎[193] [195], action games [37] [45] [108] [116] [186], puzzles 

[92] [97], real time strategy games [11] ‎[23] [94] [114] [135] [153] [184], and 

even sumo wrestling [142] with reasonable performance against an average 

human player. CI techniques have also been used to design game contents [61] 

[62] [178]. While complex behaviours cannot be reliably and predictably 

evolved, simpler behaviours can be quickly found and thoroughly exploited. 

This characteristic suitably complements the process of designing the simple 

modules used in behaviour-based controllers. 

This chapter examines the design of a computationally efficient 

controller for controlling a car in a real time car racing simulator game by 

using a hybridization of behaviour-based design and evolutionary computation 

search. The proposed controller will be referred to as behaviour-based 

controller for the remaining of this chapter. The behaviour-based controller 

will be evaluated and compared based on 2 metrics, computational efficiency 

and competitive performance. The best evolved controller will then be tested 

against the top 5 participants from the Simulated Car Racing Competition held 
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during 2007 IEEE Congress on Evolutionary Computation (CEC) [180] in 

order to benchmark its generalization performance against previously unseen 

controllers. 

The result of this design is a framework for a computationally efficient 

agent game AI based on a hybrid evolutionary behaviour-based methodology 

that is able to automatically exploit some collaboration between the different 

behaviour components which may have gone unnoticed if designed by hand. 

This demonstrates the possible synergy between conventional AI and 

computational intelligence. 

4.2 Controller design 

In this section, the design of the behaviour-based controller will be 

discussed in detail. First, an artificial neural network controller is evolved and 

its behaviour is analyzed. Learning from the relatively poor performance of 

the neural networks controller, a new set of component behaviours are 

proposed for implementation in the behaviour-based controller. The 

component behaviours are deliberately made generic and evolution strategies 

is employed to optimize the behaviour-based controller. A comparative 

analysis will be made between the neural network controller and the 

behaviour-based controller. 

4.2.1 Neural network controller 

An artificial neural network (ANN) [63] is a massively parallel 

distributed processor made up of simple processing units which has a natural 

propensity for storing experiential knowledge. A class of ANN employing 

multi-layer perceptrons (MLP) represents one of the widely used and 
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effectively machine learning methods currently applied to data classification 

and function approximation problems. Although it usually takes a substantial 

amount of time to train a neural network, a trained network is computationally 

fast in its application due to it being a string of addition, multiplication and 

function mapping operations. 

The neural network model is used to implement the game controller 

because a properly trained neural network can infer an output from a set of 

observational inputs. This is useful as it avoids the complicated task of 

analyzing the system and designing driving rules by hand. However, the 

disadvantage of this approach is that the resultant neural network acts as a 

black box control unit, making it difficult to make analysis or draw 

conclusions from the evolved weight values of the neural network. In this 

situation, the neural network controller is inspected and described visually to 

quantify its driving behaviours. In this section, a car racing controller 

constructed solely by neural networks is explored to study its potential as a 

real time game controller. 

The neural network used is a standard multi-layer feedforward fully 

connected MLP with 10 inputs, a single hidden layer with 6 hidden nodes and 

2 outputs. The inputs are the angle to the other car, the distance to the other car, 

the orientation of the other car, the angle to the current waypoint, the distance 

to the current waypoint, the angle to the next waypoint, the distance to the next 

waypoint, the direction of movement, the orientation of the car, and the speed 

of the car. Each neuron implements the hyperbolic activation function. At each 

time step, the observational inputs are fed from the sensor model to the neural 

network. The outputs are two real number values, one for steering and one for 
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driving. Four additional threshold variables are defined to discretize the 

outputs into the on-off controllers of the simulator. The variables 

SteeringLimitLow and SteeringLimitHigh defines the lower and upper 

threshold of the steering output while the variable DrivingLimitLow and 

DrivingLimitHigh defines the lower and upper threshold for the driving output. 

The pseudo code for discretizing the output of the neural network can be 

summarized as follows. 

if (output_steer < SteeringLimitLow) 

 steering = 0; 

elseif (steering > SteeringLimitHigh) 

 steering = 2; 

else 

 steering = 1; 

if (output_drive < DrivingLimitLow) 

 driving = 0; 

elseif (output_drive > DrivingLimitHigh) 

 driving = 2; 

else 

 driving = 1; 

Note that although SteeringLimitLow is logically supposed to be less 

than SteeringLimitHigh, it is not enforced as a constraint in the evolution so as 

to promote discovery of varied strategies. In a similar way, DrivingLimitLow 

and DrivingLimitHigh are not constrained in any way. For example, in the 

event that DrivingLimitLow is evolved to be a large positive number, the 

controller will likely drive the car in reverse most of the time. This 

representation of the controller is theoretically capable of driving either 

forwards or in reverse, and also to come to a complete stop. The neural 

network weights as well as its output threshold variables are trained using 

evolution strategies.  
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4.2.1.1 Experiments 

A (100+100) evolution strategies (ES) [124], running for 200 

generations was used as a training method for the neural network controller. 

The mutation operator was a Gaussian perturbation with the step size set to a 

fixed value of 0.1 for all variables. The evolution parameters are summarized 

in Table 4.1. Each individual is evaluated against the HSC for 5 rounds of 

competition, followed by 5 rounds of competitive co-evolution against another 

individual from the population. The competitive co-evolution was introduced 

to prevent over training, encourage better generalization and also to promote 

population diversity [53]. The fitness function was defined as the number of 

waypoints the individual collected averaged over the 10 rounds of game play. 

No solo game was used during the training. Elitism was implemented by 

retaining the best 4 individuals from each generation. Each chromosome for 

the neural network controller was encoded with a total of 84 real valued 

variables, 80 for the neural network weights and bias and 4 for output 

thresholds. In terms of computation time, each run of 200 generations, 

consisting of 200 × 100 × 10 = 200000 games took less than 10 minutes to 

complete. 

The evolution of the neural network controller is plotted in Figure 4.1. 

It was observed that the neural network controller stagnated in terms of mean 

score at around 16 points after the first 30 generations. The comparative 

results, averaged over 500 games, for the neural network controller against the 

heuristic controllers are shown in Table 4.2. The mean results were given and 

the standard deviation quoted in parentheses. 
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In solo runs, it was observed that the neural network controller is able 

to outperform all 3 heuristic controllers with a higher mean score and yet 

smaller standard deviation. This implied that the evolved neural network 

controller is a well optimized and consistent driver. In competitive 2 player 

games against the heuristic controllers, the neural network controller was able 

to defeat all its heuristic controller opponents in mean score over 500 games. 

In particular, the game against the HCC yielded a very high combined end 

game score of 16.246 + 15.440 = 31.686. This was due to the waypoint 

predictive nature of the HCC. When the neural network controller was heading 

towards the current waypoint, there were instances where the HCC gave up 

the current waypoint and headed towards the next waypoint. So when the 

neural network controller passed the current waypoint, the HCC very quickly 

passed the newly activated waypoint. This made the game faster paced and led 

to high end game scores. 

Since the neural network is a black box controller, its driving 

behaviour was analyzed visually. While the neural network was randomly 

initialized, it did evolve into a competent point to point driver that took 

advantage of the difference in acceleration between driving forward and in 

reverse. The neural network controller avoided the problem of orbiting a 

waypoint faced by the heuristic controllers by driving entirely in reverse. The 

lower acceleration gave it more control in steering and a smaller turning radius 

that improved its maneuverability and made navigating around waypoints an 

easier task. However, the novelty stopped at that. 
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Table 4.1 Evolution parameters for neural network controller 

Parameter Neural network 

Method Plus 

Population size 100 

Generations 200 

Mutation type Gaussian 

Mutation probability 1 

Mutation step size 0.1 

Table 4.2 Results for neural network controller 

Controller Score 

Greedy (GC) 12.774 (5.103) 

HeuristicSensibleController (HSC) 10.578 (6.601) 

HeuristicCombinedController (HCC) 9.284 (6.414) 

Neural Network Controller (NN) 20.188 (3.090) 

NN - GC 14.692 (2.092) - 11.020 (1.891) 

NN - HSC 14.516 (2.240) - 11.996 (2.104) 

NN - HCC 16.246 (3.393) - 15.440 (3.189) 
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Figure 4.1 Training fitness of neural network controller 

The neural network controller never learnt to decelerate or stop and 

hence always overshot the target point. The controller did not drive in the 

opposite direction (i.e. forwards) towards a waypoint. The neural network 

controller also did not evolve any form of prediction mechanism to decide to 
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approach the next waypoint when the current waypoint was an obvious loss. 

Therefore, it was concluded that although the neural network representation 

used here does theoretically allow for the evolution of advanced driving 

behaviours and strategies, it only exploited the most basic of driving 

behaviours in the game and was trapped in a local minima. Perhaps the choice 

of using a single large neural network to approach this complex racing game 

was too ambitious. It may be possible to break down the individual aspects of 

driving and train separate neural networks to learn each part independently or 

in tandem. The lessons learnt from evolving the neural network controller was 

used to design the behaviour components of the behaviour-based controller in 

the next section. 

4.2.2 Behaviour-based controller 

The proposed controller design is inspired by the behaviour-based 

design methodology to take advantage of its computation efficiency. In this 

section, the behaviour-based AI (BBAI) methodology will be briefly described 

followed by a detailed discussion of the various components and performance 

of the behaviour-based controller. 

In BBAI, intelligence is made up of a large number of modular 

components which are relative simple and robust. Each of these components 

work within a specific set of conditions which it is able to observe from the 

environment. These components are organized into layers in a hierarchy which 

are able to interact with one another. The constraints here are that no 

components will have access to another‟s internal states but it is possible to 

observe their inputs and outputs. Additionally, a higher layer may subsume a 
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lower layer by affecting its inputs and outputs. This is known as the 

subsumption architecture ‎[22].  

This methodology is powerful because of its simplicity and robustness. 

Each individual component encodes only a simple behaviour such as moving 

forward, turning or avoiding objects, and thus can be programmed reliably. In 

the original implementation, there was no memory or learning in its 

architecture, hence the resultant was that of a reactive behaviour. This turns 

out to be an advantage for BBAI because it is computationally efficient and 

hence suitable for systems that require good response time such as in the 

design of smart robots ‎[42] [122] and also in the real time racing game in this 

chapter. 

In the behaviour-based controller, the basic driving behaviours of the 

car racing controller such as accelerating, braking and steering are organized 

at the lowest level. A separate component for the prediction of waypoints is 

placed at a higher level so that it is able to augment the input of the driving 

layer in order to dictate which waypoint is more advantageous for the car to 

drive towards. 

The disadvantage of reactive intelligence is its design process because 

it performs no search or learning by itself ‎[26] and all behaviours must be 

designed by hand. However, this difficulty can be adverted with the inclusion 

of computational intelligence as a design companion. In the behaviour-based 

controller, only generic representations are specified for each behaviour 

component. Each component is subsequently trained using genetic algorithm. 

For example, a potential field representation is used for the steering control 

but it is not specified beforehand whether the interactions are attractive or 
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repulsive in nature. The evolved controller exhibits attractive forces which is 

necessary for good performance in the game. 

The behaviour-based controller consists of 5 main components. The 

interactions between components are illustrated in Figure 4.2. Components 

that form the basic driving behaviour are organized at the lower base level 

while tactical behaviours are organized at the higher first level. The first level 

can be said to subsume the base driving level. The individual component will 

now be discussed in further detail. 

 

Figure 4.2 Overview of behaviour-based controller 

The advantage of the behaviour-based methodology over the neural 

network one is that the former is a white box design while the latter is a black 

box design. Being a white box allows the designer to gather insights to how 

individual components complement one and another, and how parameters are 

evolved to exhibit the winning behaviour. Furthermore, the behaviour-based 

methodology allows the designer to input domain knowledge which can guide 

the evolution towards better solutions with faster convergence. 

4.2.2.1 Force field trajectory 

The first is a trajectory planning mechanism inspired by the interaction 

between charged particles in space. Potential field methods are widely used in 

Waypoint prediction Reverse driving 

Heading alignment 

Force field trajectory Speed regulation 

outputs 

first level 

sensor 
inputs 

base driving level 



 56 

the field of robotics due to its simplicity ‎[125]. Every foreign particle in the 

playing area, namely the car belonging to the opponent, the current waypoint 

and the next waypoint, induces either an attractive or repulsive field on the 

game area. At any point in the game area, the controller tries to align its car in 

the direction of the local induced vector field. As such, the controller car will 

move along the resultant field lines induced by the interaction of these charged 

particles. However, these field lines only indicate the steering path and not the 

driving speed. The field equation for the particles in the game arena is defined 

in (4.1). 

ˆip

i iE q r r ,  i other, wp1, wp2    (4.1) 

where other is the opponent vehicle, wp1 is the current waypoint, wp2 

is the next waypoint, iE  is the field vector induced by the point particle i, qi is 

the charge of particle i, r is the distance from the particle with charge qi to the 

evaluation point, pi is the power factor of the distance r and r̂  is the unit 

vector pointing from the particle with charge qi to the evaluation point. The 

variables qi and pi for the opponent car, the current waypoint and the next 

waypoint are optimized using genetic algorithm. The controller car is 

considered a positive point charge in calculations in order to evaluate the 

resultant force exerted on the controller car. There are no constraints on the 

evolved variables so it is entirely possible that the results may turn out to be 

other than expected. 

4.2.2.2 Speed regulation 

The force field trajectory component determines only the driving path 

of the car and not the driving speed. Hence, a speed regulating function, which 
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constitutes the second base component of this controller, is introduced to 

specify the driving speeds along the steering trajectory. An important driving 

feature which is crucial for the performance of the controller is the ability to 

stop at a specific position in the playing area. Although it may seem 

counterintuitive to stop in a racing game, this action becomes necessary when 

one considers going for the next waypoint instead of the current waypoint. 

Suppose the opponent is going to reach the current waypoint first, it makes 

sense to head towards the next waypoint directly. But in the situation that the 

controller car arrive at the next waypoint before the opponent can reach the 

current waypoint, the controller will then need to stop the car at the next 

waypoint and wait until it becomes activated. The equation for the speed 

regulating function is defined in (4.2). 

 tanhSpeed a b r c d        (4.2) 

where r is the distance to the destination and a, b, c and d are 

parameters characterizing the speed regulation function respectively. The 4 

parameters are optimized using genetic algorithm. The hyperbolic tangent 

function is chosen because of its general shape. The tapering of its outputs at 

high values of r is analogous to the notion that the car should cruise at a 

constant speed at far distances from its destination (i.e. the cruising speed 

should not increase indefinitely with distance). Additionally, the steep gradient 

around the origin is analogous to deceleration when it is near the destination. 

The values a, b, c and d serves to shape the hyperbolic tangent function to one 

most desirable for this car racing simulation. There are no constraints that the 

function needs to pass through the origin or that it should be positive or 

negative. 
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4.2.2.3 Reverse driving 

A desirable driving feature for this type of point to point race is the 

ability to drive in reverse. A human player who just started playing the game 

will very soon realize that if a waypoint is situated at close proximity but 

directly behind the car, it is faster to simply reverse the car towards it. This 

type of behaviour was not present in the HeuristicSensibleController (HSC). 

As a result, the HSC was often seen, much to the frustration of the human 

observer, to take a non-optimal U-turn to approach a waypoint behind it. 

Moreover, in the process of performing the U-turn, the controller often 

underestimated the turning radius and became trapped in an endless orbit 

about the waypoint. To rectify such unrealistic behaviours, a reverse driving 

threshold variable is introduced to the behaviour-based controller. The angle 

towards the destination is included to determine whether to drive forwards or 

in reverse for a given situation. If the angle is within a given threshold, the 

speed function will be negated and the controller will reverse the car towards 

the destination instead. The threshold parameters are also evolved using 

genetic algorithm. 

4.2.2.4 Waypoint prediction 

The fourth component is a predictive module that chooses which 

waypoint to compete for. By observing the state of the game area, the 

controller predicts which car will reach the current waypoint first. In the event 

that the opponent is predicted to be faster to the current waypoint, the 

controller should then direct the car towards the next waypoint instead and 

vise versa. This predictive module sits on top of the base driving layer and is 
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capable of augmenting the inputs to the base driving layer. The pseudo code 

for the waypoint prediction component is as follows. 

if 1
distance (c,wp1)

distance (o,wp1)

 
 

 
 

return c; 

elseif 1
distance (c,wp1) speed (o, wp1)

speed (c,wp1) distance (o,wp1)

 
  

 
 

return c; 

else 

return o; 

end 

where distance (i, j) refers to the Euclidean distance measured between 

point i and point j, speed (i, j) refers to the magnitude of the vector component 

of the speed of vehicle i along the direction from point i towards point j, c is 

the car controlled by the controller calling this function, o is the opponent 

vehicle and wp1 is the current waypoint. 

During each time step, the waypoint prediction system determines 

which vehicle will reach the current waypoint first. If the opponent vehicle 

will reach first, then the controller will direct both the force field trajectory 

and the speed regulator towards the next waypoint instead. The waypoint 

prediction system is designed using simple domain knowledge and reasoning. 

First, the component speed of each vehicle in the direction of the current 

waypoint is calculated using vector scalar product. Next, the pseudo code is 

used to determine which vehicle will reach the current waypoint earlier. In 

essence, the controller will drive the car towards the current waypoint if it is 

nearer to the current waypoint than the opponent vehicle is. Even if it is 

further away compared to the opponent, it will still drive towards the current 

waypoint if it takes a shorter time to reach there based on the instantaneous 

component speed of each vehicle calculated in the previous step. 
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4.2.2.5 Heading alignment 

When the controller is driving the car towards the current waypoint, it 

may be advantageous to align its heading to that of the next waypoint just as it 

passes through the current waypoint. This will allow for a smoother driving 

line from the current waypoint to the next and increase the likelihood of 

reaching the next waypoint before its opponent. Currently, this behaviour is 

only implemented for the forward driving direction. The pseudo code for the 

heading alignment behaviour is as follows. 

if 
     

  
1 2 2

3

, 1 , 2distance c wp k AND k angle c wp k

AND speed c k

    
 
  

 

return true; 

else 

return false; 

end 

where distance (i, j) refers to the Euclidean distance measured between 

point i and point j, angle (i, j) refers to the angle in radians of point j from 

point i, speed (i) refers to the current instantaneous speed of object i, c is the 

car controlled by the controller calling this function, wp1 is the current 

waypoint and wp2 is the next waypoint. Three variables k1, k2 and k3 defines 

the thresholds of the activation of this function and are evolved using genetic 

algorithm. If the function returns true, the car will be steered to face the next 

waypoint instead of the current waypoint. Otherwise, the car will continue on 

its current path. 

4.2.2.6 Experiments 

A (50+50) ES, running for 200 generations was used as a training 

method for the behaviour-based controller. As the behaviour-based controller 
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had lesser variables in its chromosome, it was trained with a reduced 

population size of 50, all other conditions remained constant as with the neural 

network controller. The mutation operator was a Gaussian perturbation with 

the step size set to a fixed value of 0.1 for all variables. Each individual was 

evaluated against the HSC for 5 rounds of competition, followed by 5 rounds 

of competitive co-evolution against another individual from the population. 

The fitness function was defined as the number of waypoints the individual 

collected averaged over the 10 rounds of game play. Elitism was implemented 

by retaining the best 4 individuals of each generation. Each chromosome for 

the behaviour-based controller was encoded with a total of 14 real valued 

variables, 6 from force field component, 4 from speed regulation component, 1 

additional variable which encoded the threshold for reversing driving, and 3 

variables for the heading alignment component. All variables were initialized 

by a random Gaussian distribution with a mean of 0 and a variance of 1. The 

parameters are summarized in Table 4.3. 

The force field trajectory component provided some guidelines for the 

controller to plan its path from the current waypoint to the next waypoint. The 

speed regulating component defined the acceleration, deceleration and 

stopping behaviour. The reverse threshold decided when the best time to 

reverse towards a target was. The waypoint prediction directed the car to the 

next waypoint if the current waypoint cannot be reached before the opponent. 

Finally, the heading alignment component made sure the car will be in a good 

position for the next waypoint. The evolution of the behaviour-based 

controller is plotted in Figure 4.3. It was noted that potential field methods 

such as the force field trajectory component used here were prone to the 
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problem of local minima. However, this problem was not noticeable in the 

experiments as little variations were observed when parameters were tuned. 

From the simulation results, it was observed that a driving speed limit 

of approximated 7 units per time step was imposed by the speed regulating 

function on the controller vehicle. For distances less than 0.2 to the destination, 

the car switched to rapid deceleration before coming to a halt at the destination 

point. The negative values of distance r were not used in the actual game as 

distances were strictly positive. Traveling within these speed limits, the car 

could not skid and hence did not exhibit any advanced driving techniques that 

required skidding. 

Table 4.3 Evolution parameters for behaviour-based controller 

Parameter Behaviour-based 

Method (50+50) 

Population size 50 

Generations 200 

Mutation type Gaussian 

Mutation probability 1 

Mutation step size 0.1 
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Figure 4.3 Training fitness of behaviour-based controller 

An additional parameter was included to determine whether to drive 

forwards or in reverse for a given situation. If the angle to the destination was 

within the threshold stated by the parameter, the speed regulating function 

would be negated and the controller would reverse the car towards the 

destination instead. The final evolved value of this parameter was 1.897 

radians. This implied that if the waypoint was located within a span of 142.5° 

centred directly behind the car, the controller would drive in reverse towards 

the destination instead. 

4.2.3 Comparative discussion 

The overall performance of the behaviour-based controller and its 

comparison against the neural network controller will be presented in this 

section. The results of the comparative studies from both controllers are 

summarized in Table 4.4. Parts of the results were retrieved from Table 4.2 
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and presented here for better readability. The mean results were given and the 

standard deviation presented in parentheses. 
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[8 – 13] [8 – 14] [8 – 15] [8 – 16] 

A circle symbol marks the current waypoint; a square symbol marks the next waypoint; a plus symbol and 

a cross symbol respectively marks the starting position of the neural network and the behaviour-based 

controller when a new waypoint is activated; solid lines marks the paths traced by the respective 

controllers. Each sub-diagram ends when one of the controllers passes the current waypoint, and is 

annotated by the score of the game just after the current waypoint is passed. The score is read as [neural 

network – behaviour-based]. 

Figure 4.4 Point by point diagram of a partial game between neural network controller and 

behaviour-based controller 



 65 

Table 4.4 Comparative results between neural network controller and behaviour-based 

controller 

Category Neural network Behaviour-based 

Training best 18.0 22.6 

Solo 20.188 (3.090) 22.626 (2.429) 

Time taken 76.1 (3.035) seconds 36.1 (0.316) seconds 

vs GC 
14.692 (2.092) - 11.020 

(1.891) 

18.630 (2.047) - 10.266 

(2.034) 

vs HSC 
14.516 (2.240) - 11.996 

(2.104) 

18.726 (2.023) - 11.194 

(2.283) 

vs HCC 
16.246 (3.393) - 15.440 

(3.189) 

19.388 (4.379) - 15.108 

(3.663) 

vs each other 13.826 (2.391) 20.324 (1.895) 

In the solo game, the behaviour-based controller obtained a mean score 

of 22.626 which outperformed the neural network controller‟s score of 20.188, 

averaged over 500 trials. At the same time, the behaviour-based controller also 

had a smaller standard deviation implying that it is more competent and also 

more consistent compared to the neural network controller. Similarly, in 2 

player competitions against the 3 heuristic controllers, the behaviour-based 

controller was able to achieve larger winning margins as well as higher 

nominal mean scores. The two controllers were also placed in a direct 

competition with each other to validate their relative performance with respect 

to each other. In direct competition, the behaviour-based controller scored 

20.324 points against the 13.826 points of the neural network controller. A 

visual inspection of the match up was conducted to further ascertain the 

reasons for the behaviour-based controller‟s better performance. It was 

observed that the reverse driving and waypoint prediction components were 

the main contributors to the success of the behaviour-based controller. The 

reverse driving decision component was able to choose the more time efficient 

route for the controller to approach its target, as observed in Figure 4.4 [6-11] 

and [7-13]. This could be seen from the sharp angles in the paths traced by the 

cross symbol (behaviour-based controller), while the plus symbol (neural 
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network controller) was seen making large U-turns in Figure 4.4 [2-4], [6-11] 

and [7-12]. The waypoint prediction component enabled the controller to 

quickly reclaim a point by driving to the next waypoint when the current one 

cannot be won, as observed in Figure 4.4 [2-4], [5-7] and [6-9]. In particular, 

the cross symbol (behaviour-based controller) traced a path towards the square 

symbol (next waypoint) when it predicted a loss for the current waypoint. 

These features made the driving path traced by the behaviour-based controller 

during the game very fluid and efficient. 

A performance indicator raised earlier in this chapter was the 

computational efficiency of the controller. A game AI in a real time driving 

game such as this would not have the computation resource to evaluate all 

possible moves at a given game state. Both the neural network and the 

behaviour-based design methodology were considered because of their 

computationally efficient characteristics. To investigate their comparative time 

efficiency, both controllers were timed for 10 sets of 5000 solo run trials and 

the results are also shown in Table 4.4. To establish a common benchmark for 

comparison, all simulations were conducted on the same computer terminal 

under the same boot conditions. The neural network controller took 76.1 

seconds to complete 5000 solo run trials or 76.1 / 5000 = 0.0152 seconds per 

trial or 0.0152 / 1000 = 15.2 microseconds per time step while the behaviour-

based controller took 36.1 seconds for 5000 trials or 0.00722 seconds per trials 

or 7.22 microseconds per time step. To put the comparison into perspective, in 

a visual game where the car racing game is graphically simulated on screen, 

each game typically lasts 60 seconds. Both controllers were computationally 

efficient but the behaviour-based controller was able to outperform the neural 
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network controller while being computationally 2.11 times faster. The 

computational gain may not be significant in this simplified simulation as 

there was no emphasis on graphics and sounds. However, in the context of a 

commercial game where a large percentage of the CPU cycle is dedicated to 

rendering graphics and sounds, a computationally efficient game controller 

becomes desirable. Also, in this simulation, there are only 2 game agents 

present. In games where there are hundreds of interacting game agents, the 

savings in computational time becomes significant in ensuring an 

uninterrupted game presentation. 

4.3 Results and analysis 

In this section, the behaviour-based controller will be analyzed with 

respect to the effects of crossover and mutation, the parameters evolved, the 

performance of individual behaviour components, and the generalization 

performance against opponents unseen during training. 

A genetic algorithm (GA) of population size of 30, running for 100 

generations was used as a training method for the behaviour-based controller. 

Each individual was evaluated against the HeuristicSensibleController (HSC) 

for 5 rounds of competition, followed by 5 rounds of competitive co-evolution 

against a random elite individual from the population. The fitness function was 

defined as the number of waypoints the individual collected averaged over the 

10 rounds of game play. Each game was played for 1000 time steps. Elitism 

was implemented by retaining the best 4 individuals of each generation. The 

same 4 elite individuals also participate as co-evolution opponents during the 

fitness evaluation of other individuals in the population. Each chromosome for 

the behaviour-based controller was encoded with a total of 14 real valued 



 68 

variables, 6 from force field component, 4 from speed regulation component, 1 

variable which encoded the threshold for reversing driving, and 3 variables for 

the heading alignment component. All variables were initialized by a random 

Gaussian distribution with a mean of 0 and a variance of 1. The crossover and 

mutation operate will be discussed in further details next. 

4.3.1 Effects of crossover operator 

Each chromosome was encoded using real values so the crossover 

operator must be designed to work with real numbers. The pseudo code for the 

crossover operator is as follows. 

for each pair of genes 

 if (random [0,1] < crossover rate) 

  weight = random [0,1]; 

  offspring = weight × parent1 + (1 – weight) × parent2; 

 end 

end 

The variable weight placed a random emphasis on the gene from one 

parent. For example, if the weight was 0.5, the result would be the average 

value of the genes from both parents. However, if the weight was 0.8, then the 

offspring would inherit 80% of the gene from parent1 and the remaining 20% 

of the gene from parent2. 

The effect of the crossover rate was investigated by varying its value 

from 0.0 to 1.0 in steps of 0.2 while the value of the mutation rate was 

arbitrarily set to 0.2. The results of varying the crossover rate are plotted in 

Figure 4.5. The inclusion of the crossover operator generally produced better 

results compared to when the crossover rate was set to 0. In all cases, the 

results converge after about 30 generations. 
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Figure 4.5 Effects of varying crossover rate; mutation rate fixed at 0.2 

4.3.2 Effects of mutation operator 

A Gaussian perturbation with a mean value of 0 and variance of 1 was 

used as the mutation operator. For each gene, the Gaussian perturbation was 

applied with a probability given by the mutation rate. 

The effect of the mutation rate was investigated by varying its value 

from 0.0 to 1.0 in steps of 0.2 while the value of the crossover rate was 

arbitrarily set to 0.8. The results of varying the mutation rate are plotted in 

Figure 4.6. In particular, the case of mutation rate = 0.0 converged to a local 

minimum, likely due to the lack of diversity. The value of mutation rate = 0.2 

was observed to be most optimal amongst the different choices of mutation 

rate. The rate of convergence was also around 30 generations. 
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Figure 4.6 Effects of varying mutation rate; crossover rate fixed at 0.8 

4.3.3 Analysis of evolved parameters 

Based on the prior investigation, a crossover rate of 0.8 and a mutation 

rate of 0.2 were chosen to evolve the behaviour-based controller. The best 

individual from the last generation was examined to investigate the 

characteristics of the evolved behaviour-based controller. The 5 components 

are described as follows. The force field trajectory component provided some 

guidelines for the controller to plans its path from the current waypoint to the 

next. The speed regulating component defined the acceleration, deceleration 

and stopping behaviour. The reverse threshold decided when the best time to 

reverse towards a target is. The waypoint prediction directed the car to the 

next waypoint if the current waypoint cannot be reached before the opponent. 

Finally, the heading alignment decided when it is best to turn towards the next 

waypoint. The results and performance of the behaviour-based controller will 

be discussed from 2 perspectives in this section. Firstly, the white box nature 
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of the behaviour-based controller allowed for the analysis of the evolved 

values. These evolved parameters will be examined to gain a better 

appreciation of the behaviour of the behaviour-based controller. Secondly, the 

functionality of the individual components will be examined for their impact 

on the overall performance of the controller. 

The evolved values for the force field trajectory component are 

presented in Table 4.5 and the field strength is plotted against distance r in 

Figure 4.7. All forces acting on the car were attractive in nature since all the 

controlled cars were assumed to be a positive point charge and the evolved qi 

values turned out to be negative. The field strength of the current waypoint 

was at least 10 times larger than that of the opponent car and the next 

waypoint within the range of the game area. This implied that the controller 

car was strongly attracted to the current waypoint while the effects from the 

opponent car and the next waypoint were minimal. Therefore, the controller 

would direct the car towards the current waypoint regardless of its distance. 

This result was similar to the common intuition that is to steer in the direction 

of the destination. Additionally, this way of steering was applicable both when 

driving forward and in reverse. The value of qother was initially expected to be 

repulsive in nature as it seemed sensible to avoid collisions with the opponent, 

but this controller evolved a new strategy that was to intentionally collide with 

the opponent when sufficiently near. This was because the reverse driving 

component allowed the controller to recover quickly after a collision by 

simply driving in the direction facing the current waypoint. This became an 

advantage if the opponent only drove in one direction like the HSC. In general, 

the output trajectory of the force field component was an approximate straight 
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line towards the current waypoint with minor disturbances coming from the 

other vehicle and next waypoint. 

Table 4.5 Evolved force field trajectory parameters of best individual 

i other wp1 wp2 

qi -0.02803 -0.896679 -0.063289 

pi -0.10153 -0.08817 0.377045 

From Figure 4.7 (b), it was observed that a driving speed limit of 

approximately 7 units per time step was imposed by the speed regulating 

function on the controller vehicle. For distances less than 0.2 to the destination, 

the car switched to rapid deceleration before coming to a halt at the destination 

point. This could be seen by the speed regulation function passing through the 

origin. The negative values of distance r were not used in the actual game as 

distances were strictly positive in the game. Traveling within these speed 

limits, the car could not skid and hence did not exhibit any advanced driving 

techniques that required skidding. 

An additional parameter was included to determine whether to drive 

forwards or in reverse in a given situation. If the angle to the destination was 

within the threshold stated by the parameter, the speed regulating function 

would be negated and the controller would reverse the car towards the 

destination instead. The final evolved value of this parameter was 1.897 

radians. This implied that if the waypoint was located within a span of 142.5° 

centred directly behind the car, the controller would drive in reverse towards 

the destination. Additionally, the speed regulating function plots of both 

forward and reverse in Figure 4.7 (b) passes very close to the origin. In the 

actual game, this was sufficient to stop the vehicle exactly at its desired 

destination. This was observed in two player competition where the 
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behaviour-based controller often stopped at the next waypoint while waiting 

for the current waypoint to be passed by its opponent. 
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Figure 4.7 Graph of evolved parameters for behaviour-based controller for (a) field strength 

against distance from particle and (b) desired driving speed against distance from destination 
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Table 4.6 Evolved heading alignment parameters of best individual 

Parameter Value 

k1 0.0551 

k2 2.5513 

k3 4.3076 

The evolved parameters for the heading alignment component are 

summarized in Table 4.6. At a distance of 0.0551, the behaviour-based 

controller was likely in a state of deceleration according to Figure 4.7 (b). At 

this distance, if the next waypoint was within -2.5513 to 2.5513 radians or 

within -146.2° to 146.2° centred in front of the car and the speed of the car 

was more than 4.3076 units per time step, the heading alignment component 

would steer the car to face the next waypoint while continuing its approach 

toward the current waypoint. The speed threshold ensured that the car did not 

miss its current waypoint while trying to steer towards the next. This enabled 

the behaviour-based controller to put itself in a better position to accelerate 

towards the next waypoint once it passed the current one. 

4.3.4 Analysis of behaviour components 

Five behavioural components were implemented in the behaviour-

based controller. Each of these components could be optionally activated or 

deactivated, giving a total of 32 combinations. In order to appreciate the 

impact of each component on the overall performance of the behaviour-based 

controller, all combinations of the controller were benchmarked against the 

case of solo run, competition against the HeuristicSensibleController (HSC) 

and against the HeuristicCombinedController (HCC) in Table 4.7. The 

combination of components activated is abbreviated under the column 

Behaviour in the format X1X2X3X4X5 where X1 represents waypoint 

prediction, X2 represents force field trajectory, X3 represents speed regulation, 
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X4 represents reversing and X5 represents heading alignment. In the 

deactivated state, the force field trajectory was replaced with intuitive steering 

that steered in the direction of the destination and the speed regulation 

threshold was set to 7 independent of distance. As a reference, the results for 

HSC running the same benchmark are also listed on row 0. 

It was observed that component X1 (waypoint prediction) had 

insignificant impact during the solo run. This was to be expected as there was 

no opponent in the solo case and performance was entirely dependent on 

driving behaviours. In two player situations, waypoint prediction generally 

improved the controller performance as evident when comparing pair wise 

between rows 1 to 16 with their counterpart from rows 17 to 32. This implied 

that waypoint prediction mainly contributed to improvements in competitive 

games. 

Although pair wise comparisons for X2 (force field trajectory) from 

Table 4.7 did not give a clear indication of its advantage, its value could be 

better appreciated visually. In general, the driving line traced by the force field 

trajectory was smoother than that of intuitive steering, resulting in a more 

realistic driving style rather than a mechanic one that constantly jerked left and 

right in order to keep on a straight path. 

By comparing pair wise of rows 1 & 5 and other corresponding pairs 

that compare X3 (speed regulator), it was observed that the speed regulator 

improved performance both in the solo run and against HCC. This was mainly 

due the speed regulator slowing the car down near its destination, hence 

greatly reducing the occurrence of orbiting, and this translated into higher 

scored points for the controller. The difference was even greater when the 
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speed regulator worked in combination with the waypoint predictor as it 

enabled the controller to stop the car at the next waypoint when waiting for its 

opponent to pass the current waypoint. 

Table 4.7 Comparative studies of behaviour set 

Row Behaviour Solo vs HSC vs HCC 

0 HSC 13.730 10.528 10.726 

1 00000 11.424 11.674 9.678 

2 00001 10.802 11.668 9.660 

3 00010 14.350 12.880 12.654 

4 00011 14.016 12.766 12.580 

5 00100 16.422 11.894 14.700 

6 00101 17.178 12.236 15.256 

7 00110 20.092 13.154 16.746 

8 00111 20.974 13.272 16.858 

9 01000 10.988 11.572 9.292 

10 01001 11.308 11.684 9.774 

11 01010 14.354 13.168 12.154 

12 01011 13.854 13.044 12.324 

13 01100 16.262 11.810 15.176 

14 01101 17.532 11.922 15.204 

15 01110 20.168 13.478 16.920 

16 01111 21.006 13.388 16.938 

17 10000 11.396 14.728 10.524 

18 10001 10.926 14.828 10.574 

19 10010 14.288 16.144 13.692 

20 10011 13.904 16.216 13.442 

21 10100 16.598 15.966 18.292 

22 10101 17.472 16.184 18.970 

23 10110 20.084 17.252 19.740 

24 10111 20.776 17.646 20.116 

25 11000 11.142 14.600 10.282 

26 11001 11.248 14.672 10.658 

27 11010 14.640 15.942 13.302 

28 11011 13.646 16.116 13.374 

29 11100 16.596 16.006 18.384 

30 11101 17.182 16.046 18.316 

31 11110 20.224 17.148 19.742 

32 11111 21.074 17.758 20.026 

In the comparison for component X4 (reversing) the general trend 

observed was that activating the reverse driving feature improved performance 

in all three cases of solo run and competitive games (i.e. rows 1 & 3). The 

difference was more significant when it was used in combination with the 
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speed regulator (i.e. rows 1 & 7). This was because the speed regulator slowed 

down the car at its destination, making the change of direction smoother and 

less time consuming. In visually observed games, the reversing behaviour was 

also seen as the main contributor to collision recovery as the controller was 

able to drive in whichever direction that was facing its destination after a 

collision. 

The independent effects of component X5 (heading alignment) could 

be observed by comparing the columns of solo play on rows 5 & 6 and rows 7 

& 8. The heading alignment mainly improved the performance of solo games 

when used in conjunction with the speed regulation component. This was 

likely due to the fact that all parameters were evolved simultaneously. As a 

result, the genetic algorithm successfully exploited this collaboration between 

the two components. The heading alignment behaviour also improved results 

in two player games but the improvement was of a smaller margin. 

The analysis of the individual components of the behaviour-based 

controller had also provided some insights on how the controller can be 

improved in the future. These suggestions will be discussed here for possible 

implementation in the future. An inefficiency of the speed regulator was that it 

treated the current waypoint and next waypoint indifferently, which turned out 

to be sub-optimal. Although the controller needed to stop the car at the next 

waypoint, the same cannot be said about the current waypoint. In a race to the 

current waypoint, there was no need to slow to a complete halt at the waypoint. 

Instead, crossing the current waypoint with moderate and controllable speed 

could be considered a better choice. Hence, separate speed regulation models 

for the current and the next waypoint could improve the performance of the 
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controller. To further complicate matters, the forward acceleration was twice 

that of the reverse acceleration in the game. This meant the speed regulation 

could be further broken down into forward and reverse components rather than 

simply negating one component to get the other. While these incremental 

improvements will likely be beneficial, including these features will require 

detailed analysis of the game dynamics. Another method of implementation 

may be to divide the speed regulation component into 4 separate functions and 

employ GA to optimize the function parameters without the need to analyze 

the game dynamics. 

4.3.5 Generalization performance 

The comparative studies so far were conducted under a controlled 

environment where simple heuristic controllers were used. To further 

substantiate its performance, the behaviour-based controller was tested against 

the top 5 entries of the Simulated Car Racing Competition held during the 

2007 IEEE Congress of Evolutionary Computation (CEC) [180] to test its 

generalization performance against previously unseen opponents. In the 

competition, each entry is ranked using a competition benchmark known as 

CompetitionScore. However, the controller with the highest benchmark score 

at this point is not necessarily the winner of the competition. The winner of the 

competition is the winner of a final round robin tournament. The tests in this 

section will be conducted in a similar manner. The top 5 controllers and the 

behaviour-based controller will run the benchmark CompetitionScore and their 

scores and the time taken for simulation will be recorded. Thereafter, all 6 

controllers will take part in a round robin tournament and the scores of each 

pairings will be recorded. 
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4.3.5.1 CompetitionScore benchmark 

The CompetitionScore metric is the benchmark metric used to rank the 

submitted controllers before the final tournament. This metric is defined as the 

mean fitness of 500 trials in each of these three scenarios: solo trial, versus 

HeuristicSensibleController (HSC) and versus HeuristicCombinedController 

(HCC). In order to achieve a high CompetitionScore, a controller needs to 

perform well on its own (i.e. solo run), as well as against a weak (i.e. HSC) 

and an intermediate (i.e. HCC) controller. 

The mean scores and times of the CompetitionScore benchmark, and 

their standard deviations in parentheses, are presented in Table 4.8. 

Controllers A, B, C, D & E are the controllers ranked 1, 2, 3, 4 & 5 

respectively on the competition website [177]. Since there are two metrics of 

comparison, the results are plotted in the form of a Pareto dominance diagram 

in Figure 4.8 for better visualization. The axes are shown in logarithmic form 

due to the presence of very large and very small differences in simulation 

times. The behaviour-based controller is highlighted in bold. The performance 

of the behaviour-based controller will be discussed in this section in terms of 

its score as well as its computation efficiency. The results are averaged over 

10 runs. 

The behaviour-based controller scored 19.558 in the benchmark and 

was ranked second amongst the 6 controllers. In terms of computation 

efficiency, the behaviour-based controller was the most efficient controller, 

completing the benchmark in 17.5 seconds. Comparatively, the top scoring 

controller (Controller A) took an average of 8450.1 seconds to complete the 

benchmark, or (8450.1 / 17.5 ≈) 482 times slower than the behaviour-based 
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controller. In real time games, game AI is usually allocated a very small CPU 

cycle budget (a large portion goes to rendering graphics), making 

computational intensive algorithms less attractive and hence the need for an 

efficient game controller. This makes the behaviour-based controller a more 

suitable candidate for implementation in real time games. 

Table 4.8 Comparative results of CompetitionScore of behaviour-based controller against top 

5 controllers 

Controller CompetitionScore Simulation time in seconds 

Controller A 20.539 (0.0416) 8450.1 (308.27) 

Controller B 16.551 (0.0509) 2683.5 (217.95) 

Controller C 19.176 (0.0388) 20.3 (2.31) 

Controller D 18.933 (0.0662) 473.8 (73.86) 

Controller E 18.797 (0.0757) 66.6 (2.675) 

Behaviour-based 19.558 (0.0536) 17.5 (2.42) 

In order to appreciate how the controllers performed in terms of both 

performance metrics simultaneously, the Pareto ranking of the controllers are 

considered in Figure 4.8. In a two dimensional Pareto diagram, each axes 

represents a performance metric. For this experiment, the two performance 

metrics are, simulation time on the vertical axes, and CompetitionScore on the 

horizontal axes. A low simulation time and a high CompetitionScore are 

desired. A controller is said to be dominated if there is another controller that 

outperforms it in both the performance metrics. Conversely, a controller is 

said to be non-dominated if there are no other controllers that outperforms it in 

both performance metrics. A controller is then given a Pareto rank defined by 

equation (4.3). 

( )  1   
i

rank i n      (4.3) 

where ni is the number of controllers dominating the individual 

controller i. For example, Controller E is dominated by Controller C and the 

behaviour-based controller, hence nE = 2 and rank(E) = 3. The minimum 
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Pareto rank is 1. The Pareto ranks of the controllers are summarized in Table 

4.9. 
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Figure 4.8 Pareto plot of log10 (simulation time) against log10 (CompetitionScore) 

Table 4.9 Pareto ranks of behaviour-based controller and top 5 controllers 

Controller Pareto rank 

Controller A 1 

Controller B 5 

Controller C 2 

Controller D 3 

Controller E 3 

Behaviour-based 1 

It was observed from Table 4.9 that, according to Pareto optimality, the 

behaviour-based controller and Controller A obtained the highest Pareto rank 

of 1 amongst the 6 controllers. This meant that neither of the two controllers 

was completely dominant over the other controller. Controller A had obtained 

a higher CompetitionScore compared to the behaviour-based controller while 

the latter obtained a lower simulation time. In order to gain better insights to 
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the differences between the 2 controllers, another performance indicator was 

required. 

4.3.5.2 Round robin tournament 

In CompetitionScore, all the controllers were tested on their own, and 

against 2 benchmark controllers. These benchmark controllers could be used 

during training to obtain a high CompetitionScore value. This benchmark did 

not test their generalization performance against unseen opponents. As such, 

generalization performance could be used to further distinguish the controllers. 

To do this, the 6 controllers were tested against one another in a round robin 

tournament. The scores from the round robin tournament are recorded in Table 

4.10 and the t-values are also listed below each pair of scores. Each pair of 

controllers played 500 games against each other. The results are summarized 

in Table 4.11, sorted first by the number of wins, then by number of draws, 

then by number of losses, and finally by the total points scored. The 

behaviour-based controller is highlighted in bold in both tables. 

From Table 4.10, it was observed that the behaviour-based controller 

obtained a higher mean score (significant at 0.05 level) than its opponent 

against all the other 5 controllers. Controller A, which had a Pareto ranking 

rank(A) = 1, lost against the behaviour-based controller and drew (difference 

in score not significant at 0.05 level) its game against Controller C. It was also 

noted that Controller B (Pareto ranking, rank(B) = 5) drew its game against 

Controller E (Pareto ranking, rank(E) = 3). From Table 4.11, the behaviour-

based controller was the best performing controller with 5 wins and it also 

scored the highest total number of points in the tournament. This implied that 

the behaviour-based controller exhibit the best generalization performance 
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amongst the 6 controllers being tested. This result also distinguished the 

behaviour-based controller, from the similarly Pareto ranked (rank(A) = 1) 

Controller A, as the better performing controller. Generalization performance 

is important in the context of games because of its wide array of varied 

customer base. If the game AI does not perform reliably well against players 

with different playing styles, its perceived quality will be degraded. 

Table 4.10 Results for direct competition between behaviour-based controller and top 5 

controllers 

Controll

ers 
A B C D E 

Behaviour-

based 

A - 
17.256 (2.928) – 
11.404 (2.760) 

19.188 (2.424) – 
19.128 (2.110) 

18.234 (2.715) – 
17.344 (2.258) 

18.890 (2.640) – 
13.736 (2.455) 

18.888 (2.417) – 

19.470 (2.060) 

t-value - 32.52 0.42 5.64 31.97 -4.10 

B - - 
12.912 (2.257) – 
18.510 (2.102) 

13.198 (2.369) – 
18.142 (2.202) 

11.960 (2.360) – 
11.796 (2.435) 

12.694 (2.300) – 

18.704 (2.145) 

t-value - - -40.59 -34.18 1.08 -42.73 

C - - - 
19.374 (1.923) – 
18.462 (2.346) 

18.522 (2.059) – 
15.502 (2.281) 

19.570 (2.137) – 

19.834 (1.965) 

t-value - - - 6.72 21.98 -2.03 

D - - - - 
17.284 (2.342) – 

12.992 (2.799) 
18.436 (2.469) – 

19.570 (2.230) 

t-value - - - - 26.30 -7.62 

E - - - - - 
15.346 (2.321) – 

18.858 (2.204) 

t-value - - - - - -24.54 

Behavio

ur-

based 

- - - - - - 

t-value - - - - - - 

Table 4.11 Consolidated results for round robin tournament of behaviour-based controller and 

top 5 controllers 

Controller Win / Draw / Loss Points scored Points against 

Behaviour-based 5 / 0 / 0 96.436 84.934 

C 3 / 1 / 1 95.104 85.898 

A 3 / 1 / 1 92.456 81.082 

D 2 / 0 / 3 89.668 83.368 

E 0 / 1 / 4 69.372 85.514 

B 0 / 1 / 4 62.168 84.408 

The behaviour-based controller was able to demonstrate its 

generalization performance and computation efficiency through this 

experiment. The behaviour base controller was Pareto non-dominated in terms 

of CompetitionScore and simulation time, and also top ranked in the round 

robin competition amongst the 6 controllers. For future work, the extension of 

the behaviour-based controller to incorporate learning behaviours will be 
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considered. The current behaviour-based controller is a static controller which 

does not learn as it plays the game. As such, good human players will be able 

to learn its driving patterns and develop counter strategies that can reliably win 

against it. In fact, I have a strategy that can reliably win against the behaviour-

based controller in direct competition. In order to consistently offer a 

challenging game playing experience and hence upgrade the entertainment 

value of the game for the human player, a controller that is capable of in-game 

learning is desirable, but this must also work within the computational 

efficiency requirement of real time games. 

4.4 Summary 

A framework for designing computationally efficient controllers for 

real time games based on a hybrid evolutionary behaviour-based methodology 

was proposed in this chapter. The disadvantage of developing a behaviour-

based controller was its requirement for hand designed components. The 

proposed methodology utilized genetic algorithm to complement the design of 

individual behavioural components. Five behaviour components were evolved 

using genetic algorithms. In the analysis of the evolved behaviours, it was 

observed that the genetic algorithm successfully exploited some collaboration 

between the different behaviour components which may have gone unnoticed 

if it was designed by hand. The best evolved controller was benchmarked 

against the top 5 controllers from the IEEE CEC 2007 Simulated Car Racing 

competition to test its generalization performance against unseen opponents. 

The controllers were evaluated based on their scores using the 

CompetitionScore benchmark, the simulation time taken, and their 

generalization performance in a round robin tournament against one another. 
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The behaviour-based controller scored the second highest in CompetitionScore 

but was 482 times faster than the top scoring controller. In the round robin 

tournament, the behaviour-based controller was able to demonstrate its better 

generalization capability and outperformed all the other 5 controllers. Its better 

computation efficiency and generalization performance makes the behaviour-

based controller a more suitable candidate for implementation in real time 

games. 
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Chapter Five 

5 Dynamic game difficulty scaling using 

adaptive game AI 

Games are played by wide variety of audiences. For any given game, 

different individuals will play with different gaming styles and employ 

different strategic approaches. This often involves interacting with both the 

game environment and non-player characters that are controlled by the game 

artificial intelligence to achieve their goal. From the standpoint of a developer, 

it is important to design a game AI that is able to satisfy the variety of players 

that will interact with the game. Thus, the implementation of an adaptive game 

AI that can scale the difficulty of the game according to the proficiency of the 

player has greater potential to customize a personalized and entertaining game 

experience to a specific player compared to a static game AI. In particular, 

dynamic game difficulty scaling refers to the use of an adaptive game AI that 

performs game adaptations in real time during the game session. This chapter 

presents two adaptive algorithms that use ideas from reinforcement learning 

and evolutionary computation to improve player satisfaction by scaling the 

difficulty of the game AI while the game is being played. The effects of 

varying the learning rate and mutation rate are investigated for both algorithms 

and a general rule of thumb for the selection of these two parameters is 

proposed. The proposed algorithms are also demonstrated to be capable of 
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matching its opponents in terms of mean scores and winning percentages. 

Both algorithms are also able to generalize well to a variety of opponent 

driving styles. 

5.1 Introduction 

Gaming is by definition an interactive experience [104]. It involves 

interacting with both the game environment and non-player characters (NPC) 

that are controlled by the game artificial intelligence (AI). In this chapter, the 

interaction between the player and the game AI will be examined. 

High quality game AI has become an important selling point of 

computer games in recent years [49]. However, game players still prefer to 

play against human controlled opponents (via network) rather than computer 

controlled ones. Indeed, multi-player support and playing against human 

opponents over the Internet has become the norm. This is because the gaming 

community feels that the quality of game AI is still generally low [137]. 

Nevertheless, there exist situations where human game partners are 

unavailable such as in the absence of a viable network connection (e.g. public 

buses, commercial flights). In such situations, an entertaining game AI with 

high replay value is still desirable. 

A given game is played by a wide variety of audiences who play with 

different gaming styles and employ different strategic approaches. Thus, a 

static game AI is unlikely to be able to cater to the playing styles of all types 

of players. An adaptive game AI, on the other hand, has the potential to create 

a different game experience for different players, and thereby adding value 

and replayability to a game. A study with human players conducted by 

Hägelback & Johansson also demonstrated that players found it more 
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enjoyable to play an even game against an opponent that adapts to the 

performance of the player [60]. Hence, the objective of this chapter is to 

develop an adaptive game AI that tries to entertain its opponent rather than to 

defeat him. 

Adaptive game AI refers to a dynamic computer controlled player that 

adapts its game behaviour in response to its opponents, either during the game 

playing session or in between sessions. In particular, dynamic game difficulty 

scaling uses adaptive game AI to automatically adapt game parameters and 

behaviours in real time according to the proficiency of the player in the game. 

It has the potential to keep the player interested for a longer period of time and 

improve the playing experience of the game [31]. As such, adaptive 

mechanisms in games have been actively explored in recent years. Togelius et 

al used evolutionary algorithms to evolve racing tracks that maximized the 

entertainment value to particular human players [172] [176]. Spronck et al 

introduced an adaptive algorithm that used an adaptive rulebase that can be 

used with current scripting game AI [144] [145]. Hunicke & Chapman 

controlled the game environment to make challenges easier or harder [73]. 

Olesen et al used rtNEAT (real time Neuro-Evolution of Augmenting 

Topologies) to adjust the difficult of a real time strategy game [106]. Rani et al 

kept the challenge at an optimal level using physiological feedback such as 

pulse transition time and mean temperature [123]. Bergsma & Spronck 

implemented ADAPTA (Allocation and Decomposition Architecture for 

Performing Tactical AI) that can learn and defeat static opponents in combat 

for a turn-based strategy game [17]. Bryant & Miikkulainen used 

neuroevolution to evolve a team of adaptive agents that can learn and adopt 
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strategies in a strategy game [23]. Stanley et al used rtNEAT to allow agents 

in a game to adapt and improve during the game [152]. Yannakakis used 

evolutionary machine learning to exploit cooperative behaviours that can 

increase a player‟s interest while playing [194]. Yannakakis & Hallam 

implemented an adaptive Bug-Smasher game that improved the satisfaction of 

children that played it [196] [199]. Thue et al used an interactive storytelling 

system that models a player automatically to dynamically select content to 

create an interactive story [168]. Riedl & Stern developed an automated story 

director that can adapt the plot of a story even when the player lands in an 

unexpected scenario [127]. Barber & Kudenko proposed an adaptive narrative 

engine that is able to automatically generate story events based on the 

interactions and decisions made by the user [14]. Quek et al used co-

evolutionary learning as a means of adaptation to study agent interactions in a 

public goods game that can be used in the genre of business simulation games 

[120]. Tan et al experimented with adaptive rules for a minimax search tree to 

adapt to its opponents in Gomoku [164]. Fogel et al proposed a platform 

where intelligent and interactive adversarial game agents can be evolved [47]. 

Bellotti et al implemented an adaptive experience engine in the context of 

serious games [16]. Sánchez-Ruiz et al proposed an adaptive planner for turn 

based strategy game [132]. Bakkes et al demonstrated how domain knowledge 

can be gathered and adapted to new situations [10] [12]. Ponsen & Spronck 

used evolutionary algorithm to find new tactics to deal with opponents that 

were better than itself [115]. Szita et al proposed a macro learning method that 

can be used to generate new diverse behaviours or to adapt to its opponent 

[160]. 
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Reinforcement learning [70] [156] [191] is concerned with how an 

agent chooses an action or sequence of action in an environment (or state) to 

maximize some form of long term reward. This is analogous to how a game 

agent acts in a game world in an effort to become the eventual winner. As such, 

reinforcement learning has been used to train the game AI in agent games. 

Andrade et al used a reinforcement learning approach to quickly identify and 

track the proficiency of a human player in a real time fighting game [4] [5]. 

Wang et al used a reinforcement learning algorithm to improve a team of bots 

against its opponents in Unreal Tournament [190]. Tan used reinforcement 

learning in a multi-agent predator prey game to train cooperative behaviours 

[165]. 

This chapter focuses on the adaptation of the game AI during a game 

session. In other words, the difficulty scaling is done in real time. The adaptive 

game AI needs to be smart enough to make unpredictable but rational 

decisions like human players do, but should not display obviously stupid 

behaviour such as being stuck in an endless loop. The adaptive game AI 

should also be able to profile its opponent efficiently during the early phase of 

the game and adapts its own playing style to the proficiency of the player so 

that the player feels entertained playing against the AI. This chapter presents 

two adaptive algorithms that use ideas from reinforcement learning and 

evolutionary computation to play adaptively during a game session in a real 

time car racing simulator game to provide the opponent with a competitive and 

entertaining experience. Two indicators, namely, mean score difference and 

winning percentage difference, are proposed as a measure of entertainment 

value. The proposed algorithm is significant because it does not require a 
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training phase. This will allow the human player to immediately feel the 

impact of adaptive behaviour from the first game played. This will also avoid 

the frustration a human player may feel if he is required to conduct a training 

phase with the game AI. This chapter also presents the first use of occurrence 

distribution as a measure of the performance of an adaptive game AI to play 

an even game. 

5.2 Behaviour-based controller 

The behaviour-based controller proposed in the previous chapter will 

be used as the basis controller [163] to develop the adaptive controller in this 

chapter. The various mechanisms of this controller will be briefly discussed in 

this section as it forms the basis for the implementation of the proposed 

adaptive controller. 

The behaviour-based controller is inspired by behaviour-based AI [22], 

commonly used in the field of robotics, consisted of four independent driving 

behaviours that were aimed at improving the driving performance of the 

controller and one tactical behaviour that seek to outplay the opponent in the 

game. Each of the behaviour can be activated or deactivated to vary the 

driving behaviour of the controller. Similar behaviour selection mechanisms 

have also been shown to be useful in robotics [138]. 

Two additional tactical behaviours are introduced in this chapter to 

take advantage of the dynamism of such a two player competitive game. 

Driving behaviours ignore the existence of the opponent in the playing field, 

leading to inferior performance. Conversely, tactical behaviours help the 

controller to plan and decide which waypoint to head towards or even whether 

to go for any waypoint. As such, driving behaviours can be viewed as lower 
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level operational intelligence while tactical behaviours can be viewed as 

higher level decision making intelligence [121]. More details about the driving 

and tactical behaviours can also be found in [163]. 

An advantage of the behaviour-based system used in this controller is 

its scalability. New behaviours can easily be added or removed from the 

existing set of behaviours, be it complementary or conflicting. The adaptive 

algorithm will automatically select a combination of behaviours suitable for its 

opponent. 

The following summarizes the basic behaviours inherited from the 

previous chapter and describes in detail the newly added tactical behaviours. It 

should be noted that the heading alignment behaviour has been omitted in this 

experiment. 

Driving behaviours are as follows: 

1) Hyperbolic tangent speed regulator 

The speed of the car is regulated by a hyperbolic tangent function of 

the distance away from its destination. It provides cues to accelerate, 

decelerate, cruise at constant velocity and stop depending on its distance from 

the destination. This behaviour only acts in the forward direction. 

2) Reversing 

The angle to the destination was included to determine whether to 

drive forwards or reverse in a given situation. If the angle is within a given 

threshold, the speed function will be negated and the controller will reverse 

the car towards the destination instead. 
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3) Direction switching compensation 

For instance, when the car is moving backwards and the destination is 

in the forward right direction, steering right at this point will instead orientate 

the car to the left, increasing the difference in heading. Instead, the controller 

should steer left until the reversing car comes to a halt before steering right 

and applying the accelerator. The same scenario applies when the car is 

moving forwards and the destination is behind. 

4) Tight angle turning 

Occasionally, when the turning angle is too small, the controller gets 

stuck in an orbit around the destination point and stays in that orbit. This is 

partly due to the nature of the on-off controls used in the simulator. To 

overcome this problem, a manual pulse width modulation technique is used to 

lower the acceleration during tight turns to avoid being trapped. 

Tactical behaviours are as follows: 

5) Waypoint prediction 

This is a predictive module that chooses which waypoint is more 

advantageous for the controller to head towards. By observing the state of the 

game area, this behaviour predicts which car will reach the current waypoint 

first. In the event that the opponent is predicted to be faster to the current 

waypoint, the controller should then direct the car towards the next waypoint 

instead and vise versa. 

6) Time wasting 

In time constrained games such as soccer, the side in possession of the 

ball may choose to pass the ball around in their half of the pitch and not 

commence any attacks. This strategy is used especially when the side in 
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possession of the ball is in the lead and wishes to preserve their lead. In the car 

racing simulator, the controller may choose to stop in the proximity of the 

current waypoint and not drive through it if the opponent is sufficiently far 

away or is heading towards the next waypoint. This forces the opponent to 

approach the current waypoint and lose the advantage of heading towards the 

next waypoint. 

7) Blocking 

When both cars are headed towards the current waypoint, the 

controller may choose to drive on the path between the opposing car and the 

waypoint, hence blocking it from the opponent. In the event of a collision, the 

controller receives a velocity boost towards the current waypoint, hence 

increasing its chances of reaching the waypoint before its opponent does. 

Furthermore, if the controller also activates the reversing behaviour, it may be 

able to recover from a collision faster than the opponent. 

5.3 Adaptive controllers 

This section describes in detail the evaluation criteria used to evaluate 

the performance of the adaptive controllers. Two adaptive controller 

algorithms, the uni-chromosome adaptive controller (AUC) and the duo-

chromosome adaptive controller (ADC), will also be introduced and discussed 

in detail. 

5.3.1 Satisfying gameplay experience 

A game experience is considered satisfying or entertaining when it is 

difficult to defeat [27]. This may be applicable to advanced players but may 

not necessarily apply for beginners or casual gamers. The elites, however, 



 95 

often only make up a small percentage of the demographics while the majority 

of the population is made up of low–to–medium level gamers. For this group 

of players, the game is most entertaining when it is challenging yet beatable 

[140]. Malone also pointed to challenge as one of the categories that make 

games fun [91]. That is, the game should neither be too easy nor too difficulty. 

A study with human players conducted by Hägelback & Johansson also 

demonstrated that players found it more enjoyable to play an even game 

against an opponent that adapts to the performance of the player [60]. In other 

words, in a two player competitive games, the player and his opponent should 

be evenly matched and the win-loss margin in each game should be small. 

Spronck et al used a top culling technique to train a game AI to play an even 

game with its opponent [145]. However, their method required a training 

period of 50 encounters. The adaptive algorithms proposed in this chapter 

have the advantage of not requiring a training phase as the adaptation is 

achieved during the game session. 

In the context of the car racing simulator game, there can be three 

possible outcomes, win, lose or draw. Therefore, in a set of n games, the 

player is considered most satisfied if w = l = (n – d) / 2 where w is the number 

of player wins, l is the number of player losses and d is the number of drawn 

games. In this chapter, two indicators are introduced to measure the 

satisfaction a player derives from the game. 

1) |w – l| should be minimized and d should also be minimized. A 

high number of drawn games is deemed as more frustrating than fun. 

2) |s1 – s2| should be minimized and max(s1, s2) should be 

maximized, where s1 and s2 are the average individual scores of player 
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1 and player 2 over n games respectively. A small difference between 

s1 and s2 indicate a similar proficiency of play and a high average score 

indicates a competitive and fast paced game. 

5.3.2 Artificial stupidity 

A game is more entertaining when an opponent‟s mistakes are 

intentional but plausible [84]. Artificial stupidity refers to the fine tuning of a 

game AI such that it provides the player with an entertaining experience by 

deliberately making mistakes. This also means that a game AI has to be over-

designed. That is, the game AI has to be able to defeat the player to begin with. 

Only when such a condition is satisfied can there be potential of deliberate 

handicapping. 

The adaptive controllers proposed in this chapter adopt a similar 

approach to the above analogy. An over-designed car racing simulator 

controller with a good set of game behaviours is first developed. In the 

behaviour-based AI, handicapping can be done by selectively activating or 

deactivating specific behaviours. The adaptive controller then estimates the 

ability of opposing player during the game and progressively selects a subset 

of behaviours to use for the remainder of the game so as to provide an 

engaging and satisfying game. This in turn makes the game more challenging 

and fun for the opposing player who now stands a chance of winning. 

5.3.3 Uni-chromosome adaptive controller (AUC) 

The uni-chromosome or single chromosome adaptive controller (AUC) 

does not need to be trained offline. The training and adaptation process occurs 

in real time during the game. As its name suggests, AUC stores one 
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chromosome which encodes 7 real numbers [0,1], one for each of the 7 

behaviours as shown in Figure 5.1. Each real number represents the 

probability of activating a behaviour module whenever a waypoint is passed. 

The expected behaviour set encoded by this chromosome represents a 

„winning‟ strategy. In a sense, the chromosome models the proficiency level 

of the opponent by encoding a behaviour set that is expected to be „good 

enough‟ to defeat him. It is assumed here, for simplicity, that the complement 

of the expected behaviour set represents a „losing‟ strategy. The complement 

of an activation probability is calculated using equation (5.1). 

' 1i ip p      (5.1) 

where pi is the probability of activation of behaviour i encoded in the 

chromosome. 

 
The chromosome is a one-dimensional array of seven real numbers [0,1]. Each position in 

the chromosome corresponds to one behavioural module in the behaviour-based controller. 

The real number represents the probability of activating a behaviour whenever a waypoint 

is passed. 

Figure 5.1 Representation of the chromosome used in AUC 

The chromosome is randomly initialized at the start of each game. 

When a waypoint is passed, the chromosome is updated by the follow rules: 

1) If AUC win 

for each behaviouri (i = 1 to 7) 

if (rand() < myDist / (myDist + otherDist)) 

wini = (wini + sgn(behaviouri) × l) × m; 

2) If AUC lose 

for each behaviouri (i = 1 to 7) 

if (rand() < otherDist / (myDist + otherDist)) 

wini = (wini - sgn(behaviouri) × l) × m; 

where rand() is a random number [0,1), myDist is the distance from the 

controller car to the destination at the previous update, otherDist is the 

distance from the opponent car to the destination at the previous update, wini 
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denotes the probability of activating the i-th behaviour in the win chromosome 

for the next phase of the game, behaviouri is the binary state of the i-th 

behaviour before the update, 1 for activated and -1 for deactivated, l is the 

learning rate, and m is the mutation rate. 

An important consideration here is the issue of credit assignment. For 

the car racing simulator, the relative distance of each car from the current 

waypoint determines the likelihood of reaching the waypoint first. For 

example, if the controller car is nearer to the destination than its opponent, 

then it is easier to win this waypoint even with a weaker set of behaviour by 

virtue of the closer proximity. Hence, this set of behaviour should be inherited 

by the chromosome with lower confidence. Conversely, if the controller car 

wins the waypoint when it is initially further away from the destination, then 

that set of behaviour is demonstrated to be a winning strategy against this 

opponent and therefore it is inherited by the chromosome with higher 

confidence. In summary, the activation probability encoded in the 

chromosome is updated with the likelihood proportional to the relative 

distances of the cars to the destination. Finally, a mutation operator in the form 

of a Gaussian perturbation of mean zero is applied to each gene of the 

chromosome to introduce some diversity. 

Each real number in the chromosome denotes the probability of 

activating the corresponding behaviour. Whenever a waypoint is passed, the 

AUC checks the new game state and chooses a set of behaviour for the next 

phase of the game according to the values encoded in its chromosome. Each 

time step in a game is classified into 7 states based on the difference in score 

at that time step. From the perspective of the adaptive controller, the 7 states 
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are: losing by 3 points or more (g-3), losing by 2 points (g-2), losing by 1 point 

(g-1), draw (g0), winning by 1 point (g1), winning by 2 point (g2) and winning 

by 3 points or more (g3). If the game state is g-3, g-2, g-1 or g0, a strategy is 

chosen based on the chromosome. This encourages the controller to try to win 

the next point if it is either losing or drawn in score. In cases of draw, the 

controller tries to go for a win so as to increase the tension in the game and to 

challenge the player to outperform it. If the game state is g1, g2 or g3, the 

chromosome is complemented before the strategy is chosen. 

5.3.4 Duo-chromosome adaptive controller (ADC) 

The duo-chromosome or double chromosome adaptive controller 

(ADC) is similar to AUC except that it does not assume the complement of an 

expected winning strategy to be a losing strategy. Instead, it maintains 2 sets 

of chromosomes, one winning chromosome and one losing chromosome, 

throughout the game. The update rules are modified as follows: 

1) If ADC win 

for each behaviouri (i = 1 to 7) 

if (rand() < myDist / (myDist + otherDist)) 

wini = (wini + sgn(behaviouri) × l) × m; 

2) If ADC lose 

for each behaviouri (i = 1 to 7) 

if (rand() < otherDist / (myDist + otherDist)) 

losei = (losei + sgn(behaviouri) × l) × m; 

where rand() is a random number [0,1), myDist is the distance from the 

controller car to the destination at the previous update, otherDist is the 

distance from the opponent car to the destination at the previous update, wini 

denotes the probability of activating the i-th behaviour in the win chromosome 

for the next phase of the game, losei denotes the probability of activating the i-

th behaviour in the lose chromosome for the next phase of the game, 
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behaviouri is the binary state of the i-th behaviour before the update, 1 for 

activated and -1 for deactivated, l is the learning rate, and m is the mutation 

rate. The mutation operator is also applied to both chromosomes after the 

updating process. In this controller, whenever a waypoint is passed, ADC 

checks the new game state. If the game state is g-3, g-2, g-1 or g0, the win 

chromosome is used to generate the next behaviour set. If the game state is g1, 

g2 or g3, the lose chromosome is used instead. 

5.3.5 Static controllers 

The adaptive controllers were tested against the following static 

controllers of different driving characteristics used to simulate different player 

with different styles of play. The purpose is to demonstrate that the adaptive 

algorithm is able to adapt to opponents with varying styles and competency. It 

should be noted that the objective of the adaptive algorithm is not to defeat its 

opponent. Rather, it is to play an even game. 
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The training fitness shown here comes from the best evolved controller from 20 independent 

trials of experiment. 

Figure 5.2 Training fitness of (a) HC and (b) NNC 

5.3.5.1 Heuristic controller (HC) 

The heuristic controller (HC) makes use of simple rules to collect 

waypoints in the game. It will steer in the direction of the current waypoint if 

its difference in heading exceeds a threshold value. It will accelerate if its 

speed is below its speed range or decelerate if above its speed range. The 3 

parameters, speed limit, speed limit variance and angle threshold are 

optimized by a plus-ES, population size of 50 and 200 generations by 

maximizing the number of waypoints collects against a simple hand designed 

heuristic controller. This controller does not have a predictive component so it 

ignores the existence of its opponent and always heads towards the current 

waypoint. The training fitness is shown in Figure 5.2 (a) is selected from the 

best evolved HC from 20 independent trials. 
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5.3.5.2 Neural network controller (NNC) 

A neural network of 9 inputs, 6 hidden and 2 outputs is trained as a 

controller. The inputs are its own orientation, opponent orientation, own speed, 

angle to current waypoint, distance to current waypoint, angle to next 

waypoint, distance to next waypoint, angle to opponent and distance to 

opponent. The outputs are steering control and driving control. 3 additional 

parameters encoding the threshold to convert the neural network outputs to on-

off controls are included in the training. The training conditions are identical 

to that of the heuristic controller. The neural network representation is capable 

of predictive properties but this was not seen in the best evolved candidate. 

However, its driving capabilities are smoother and more refined than the HC. 

The training fitness is shown in Figure 5.2 (b) is selected from the best 

evolved NNC from 20 independent trials. 

5.3.5.3 Reverse enabled controller (RC) 

The reverse enabled controller (RC) is a simplification of the 

behaviour-based controller described earlier. The hyperbolic tangent speed 

regulator was deactivated and replaced with a hard speed limit of 5. Only the 

reversing and direction switching compensation behaviour was activated while 

all other driving and tactical behaviours were deactivated. This controller 

ignores the opponent in the two player game but makes good use of its ability 

to drive both forwards and backwards to earn points, and recovers quickly 

from collisions. 
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5.3.5.4 Predictive slow controller (PSC) 

The predictive slow controller (PSC) is an extension of the HC with 

the addition of the waypoint prediction component from the set of tactical 

behaviours. The speed limit is set to 5 to simulate a relatively slower moving 

car compared to the HC. 

5.3.5.5 Predictive fast controller (PFC) 

The predictive fast controller (PFC) is a variation of the PSC but with 

the speed limit set to 8 instead, a car faster than the HC. To prevent the fast 

moving car from getting trapped in orbit too frequently, a stopping mechanism 

is implemented to decelerate the car when it is sufficient close to its 

destination. 

5.3.5.6 Solo game 

The results of the solo run of the static controllers presented in Figure 

5.3 gives an indication of the driving capabilities of the controller. Since there 

were no opponent vehicles in this mode, PSC and PFC reduced to a variant of 

the HC but with different speed limits in the solo case. 
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An outlier at zero score indicates that the controller is stuck in orbit at the very first waypoint. 

The results were obtained from n = 5000 games. 

Figure 5.3 Comparative results of static controllers in solo games 

It was observed that the controllers HC, NNC, RC and PSC exhibit 

similar driving capabilities with controller NNC being slightly less consistent. 

Controller PFC was the worst performing controller with a much lower 

average score and was very inconsistent with a large standard deviation. The 

reason was that its high speed limits often resulted in skidding during a turn 

and hence it often overshot a waypoint, wasting valuable time. However, 

controller PFC did not report any games with zero score outlier, unlike 

controllers HC, NNC and RC. A zero score outlier indicated that the controller 

was stuck in orbit at the very first waypoint. This showed that a low speed 

limit (PSC) and a stopping mechanism (PFC) are effective in preventing 

orbiting. 
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5.4 Results and analysis 

The following experiments were carried out to evaluate the 

performance and effectiveness of the proposed adaptive algorithms. In all 

experiments, the results were obtained over n = 5000 games and each game 

lasted 1000 time steps. 

5.4.1 Fully activated behaviours 

The first step of the experiment was to establish the playing 

proficiency of the basis behaviour-based controller to be used in the adaptive 

algorithms. There was a need to verify whether or not the basis behaviour-

based controller was indeed an over-design and hence possessed the potential 

to play even games against its opponents. The most competent controller was 

one with all behaviours permanently activated and represented the adaptive 

controller playing at full strength throughout each game. The full controller 

(FC) was played against each of the five static controllers. The results are 

presented in the form of a boxplot of the difference in score between the two 

players (i.e. the score of the FC minus the score of its opponent) in Figure 5.4. 

A positive score difference indicated that the FC won a particular game while 

a negative score difference indicated that the opposing controller won the 

game. A score difference of zero would indicate a drawn game. The winning 

percentages from the perspective of the FC against each of its opponents are 

presented in Figure 5.5. Each collection of three connected bars represents win, 

lose and draw percentages from left to right. 
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The results are shown in terms of score differences between the FC and its opponent. A 

positive score difference indicates that the FC won; while a negative score difference indicates 

that the opponent won. 

Figure 5.4 Boxplot of the results from playing the FC against the five static controllers 
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For each static controller, the three histogram bars from left to right (blue, green and red) 

represent the percentage of games that the FC won, lost and drew respectively. 

Figure 5.5 Histogram of the results from playing the FC against the five static controllers 
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It was observed that the FC was a very competent controller with 

positive median score differences against all its opponents. The lower quartile 

score differences were positive against four of its opponents and zero against 

only the PSC. This could also be observed in Figure 5.5 where the FC 

obtained the lowest winning percentage of 74.42% against the PSC. However, 

it was clear that the FC was a very competent player against the static 

controllers. This made the FC a suitable candidate to handicap itself during a 

game and to adapt to its opponent. The objective is to match an opponent in 

score (i.e. score difference should have a median value of zero) and also to 

match it in winning and losing percentages. 

5.4.2 Randomly activated behaviours 

Besides having a suitable candidate for adaptation, it was also 

important to know whether or not adaptation was a necessity. A simple 

random algorithm was used in this experiment to demonstrate the need for 

guided learning in an adaptive algorithm. The random controller (RDC) 

operated by randomly picking a new set of behaviour to use every time a 

waypoint was passed. The RDC was played against each of the five static 

controllers and the results are presented in the form of a boxplot of the 

difference in score between the two players (i.e. the score of the RDC minus 

the score of its opponent) in Figure 5.6. A positive score difference indicated 

that the RDC won a particular game and vice versa. A score difference of zero 

would indicate a drawn game. The winning percentages presented in Figure 

5.7 were from the perspective of the RDC. Each group of three connected bars 

represents win, lose and draw percentages from left to right. 
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The results are shown in terms of score differences between the RDC and its opponent. A 

positive score difference indicates that the RDC won; while a negative score difference 

indicates that the opponent won. 

Figure 5.6 Boxplot of the results from playing the RDC against the five static controllers 
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For each static controller, the three histogram bars from left to right (blue, green and red) 

represent the percentage of games that the RDC won, lost and drew respectively. 

Figure 5.7 Histogram of the results from playing the RDC against the five static controllers 
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It was observed from Figure 5.6 that the median of the score 

differences were all negative. That is, the score of the RDC was lower than 

that of its opponent. This could be confirmed in Figure 5.7 by observing that 

the RDC had a higher losing percentage than winning percentage against all 

five opponents. This implied that a competent player playing with random 

behaviours was unable to consistently win against players of lower 

competency. Hence, the random use of effective behaviours did not equate to a 

good player. Furthermore, the choice of what behaviours to use to match an 

opponent in a game needs to be guided. 

5.4.3 Analysis of AUC 

The AUC stores one chromosome which encodes 7 real numbers in the 

range [0,1], one for each of the 7 behaviours. Each value represents the 

probability of activating a behaviour for use. The expected behaviour set 

encoded by this chromosome represents a „winning‟ strategy. Whenever a 

waypoint is passed in the game, the chromosome is updated by the rules 

described earlier in section 5.3.3 and a new set of behaviours will be generated 

for use until the next waypoint is triggered. The proposed algorithm 

introduced 2 variables, the learning rate and the mutation rate. The effects of 

varying these variables will be discussed in this section. 

5.4.3.1 Effects of varying learning rate 

In this experiment, the mutation rate was set to zero and the learning 

rate was varied from 0.1 to 1.0 in steps of 0.1. The results of the mean scores, 

standard deviation and winning percentages over n = 5000 games are 

summarized in Table 5.1. 
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Table 5.1 Comparative results for AUC versus static controllers for varying learning rate and 

fixed mutation rate 

For each pair of results, the left column represents the AUC and the right represents the static 

controller in that column. Winning percentages do not sum to 100%, the remainder are drawn 

games. The best results are bolded for each static controller. 
AUC 
Mutation rate = 

0 

Learning rate Heuristic Neural network Reverse Predictive slow Predictive fast 

0.1 Mean 14.10 14.10 14.00 14.00 14.46 14.44 14.72 14.71 14.55 14.54 

 Std 2.37 2.67 2.45 2.55 2.29 2.88 2.62 3.12 2.58 2.89 

 Win (%) 45.24 45.24 44.58 45.26 44.98 45.64 44.66 44.66 43.64 44.48 
0.2 Mean 14.10 14.08 13.92 13.91 14.59 14.43 14.90 14.78 14.72 14.72 

 Std 2.39 2.66 2.48 2.58 2.26 2.80 2.49 3.04 2.46 2.81 

 Win (%) 45.52 45.20 44.72 45.34 44.14 46.42 43.98 46.22 44.50 45.12 
0.3 Mean 14.15 14.13 14.07 14.06 14.68 14.08 15.04 14.66 14.82 14.83 

 Std 2.37 2.56 2.46 2.55 2.24 2.67 2.48 2.89 2.42 2.70 

 Win (%) 45.50 45.08 44.76 45.46 39.72 51.18 41.06 48.60 44.16 44.68 

0.4 Mean 14.22 13.97 14.09 14.08 14.70 14.11 15.06 14.57 14.84 14.83 

 Std 2.40 2.53 2.45 2.46 2.23 2.68 2.44 2.82 2.32 2.63 

 Win (%) 42.50 48.52 45.22 45.82 39.92 50.90 39.44 50.74 44.42 44.84 

0.5 Mean 14.20 14.02 14.22 14.11 14.75 14.00 15.05 14.60 14.92 14.85 

 Std 2.39 2.48 2.39 2.37 2.24 2.68 2.45 2.78 2.31 2.60 

 Win (%) 43.80 46.36 44.58 45.58 38.56 52.66 39.66 50.30 43.28 45.96 
0.6 Mean 14.24 13.89 14.25 14.03 14.80 13.93 15.11 14.50 14.98 14.89 

 Std 2.39 2.47 2.47 2.41 2.22 2.65 2.44 2.76 2.22 2.51 

 Win (%) 42.88 47.56 42.92 47.36 36.82 53.50 38.50 51.36 43.32 45.56 
0.7 Mean 14.26 13.82 14.15 14.00 14.81 13.94 15.12 14.38 14.99 14.77 

 Std 2.36 2.40 2.39 2.35 2.23 2.61 2.50 2.80 2.26 2.53 

 Win (%) 41.40 49.42 44.64 46.26 36.72 53.92 37.90 53.08 42.90 46.96 
0.8 Mean 14.27 13.81 14.21 13.97 14.81 13.91 15.11 14.33 14.95 14.75 

 Std 2.34 2.41 2.44 2.36 2.20 2.58 2.50 2.79 2.25 2.51 

 Win (%) 41.44 49.32 42.52 47.52 36.94 53.94 36.84 52.94 41.98 46.88 
0.9 Mean 14.30 13.79 14.26 13.98 14.86 13.88 15.17 14.38 14.94 14.71 

 Std 2.40 2.42 2.42 2.34 2.16 2.51 2.47 2.80 2.31 2.48 

 Win (%) 40.10 50.82 42.68 47.54 35.40 54.18 36.96 52.90 41.96 47.46 
1.0 Mean 14.22 13.85 14.22 13.92 14.81 13.78 15.04 14.32 14.94 14.69 

 Std 2.35 2.38 2.40 2.34 2.23 2.58 2.51 2.79 2.32 2.52 

 Win (%) 42.50 47.96 42.56 47.72 35.74 54.86 37.80 52.82 41.82 47.92 

The results were evaluated based on the two criteria described in 

section 5.3.1. The difference in winning percentage |w – l| should be minimal 

and the number of draws d should also be minimized. A high number of drawn 

games was deemed as more frustrating than fun. The difference between the 

mean scores |s1 – s2| should be minimal and the higher of the two scores 

max(s1, s2) should be maximal. A high average score indicated a competitive 

and fast paced game that was deemed to provide more satisfaction for the 

player. The best results based on these criteria are highlighted in bold in Table 

5.1. 

It was observed from Table 5.1 that the general trend of increasing 

learning rate was an increase in mean score differences and also an increase in 

winning percentage difference. This was because a large learning rate will 
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quickly saturate the chromosome values to either 0 or 1. The resulting 

fluctuations in the chromosome values produce erratic behaviours that were 

unable to adapt and track its opponent‟s progress during the game. At low 

learning rates, the score differences and winning percentages were smaller and 

the AUC was able to match its opponent in both criteria. A learning rate of 0.1 

obtained the best result for 7 out of 10 evaluations (2 evaluation criteria for 

each of 5 static controllers). It was also the dominant learning rate for 3 out of 

5 static controllers, namely, HC, NNC and PSC. Although the learning rate of 

0.1 did not obtain the best result for either evaluation criteria against the PFC, 

the mean score difference of 0.01 and winning percentage difference of 0.84 

were considered within acceptable range. Therefore, a learning rate of 0.1 was 

chosen as a good general rule of thumb that could be used in situations where 

opponents were varied and unknown. This value of learning rate will also be 

used as default value in the experiment of varying mutation rate in the next 

section. 

It was also worth noting that in the lower half of Table 5.1 (i.e. l > 0.5), 

the mean score of the adaptive controller was higher than that of the static 

controllers but the winning percentages of the AUC is lower than that of the 

static controllers. This was likely caused by the AUC losing frequently by 

small margins but winning by large margins. This exemplified that higher 

mean scores did not directly imply higher winning percentages. 

5.4.3.2 Effects of varying mutation rate 

In this experiment, the learning rate was set to 0.1 and the mutation 

rate was varied from 0.1 to 1.0 in steps of 0.1. The mutation rate controlled the 

size of the standard deviation in a Gaussian perturbation of zero mean. The 
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mutations were applied independently to each chromosome value after the 

learning rate was applied. The results of the mean scores, standard deviation 

and winning percentages are summarized in Table 5.2. 

Table 5.2 Comparative results for AUC versus static controllers for fixed learning rate and 

varying mutation rate 

For each pair of results, the left column represents the AUC and the right represents the static 

controller in that column. Winning percentages do not sum to 100%, the remainder are drawn 

games. The best results are bolded for each static controller. 
AUC 
Learning rate = 

0.1 

Mutation rate Heuristic Neural network Reverse Predictive slow Predictive fast 

0.1 Mean 14.12 14.06 14.05 14.06 14.64 13.98 15.01 14.54 14.81 14.79 

 Std 2.37 2.60 2.44 2.52 2.22 2.78 2.52 3.01 2.41 2.70 

 Win (%) 44.08 46.68 44.74 45.42 39.50 51.52 40.70 49.48 40.90 47.52 
0.2 Mean 14.10 13.92 14.13 14.04 14.72 13.84 15.05 14.40 14.94 14.88 

 Std 2.37 2.50 2.42 2.41 2.25 2.64 2.52 2.83 2.27 2.53 

 Win (%) 44.08 46.22 45.02 45.46 36.34 54.06 38.20 51.90 44.26 44.60 

0.3 Mean 14.11 13.88 14.18 13.95 14.74 13.80 15.11 14.33 14.88 14.85 

 Std 2.34 2.38 2.36 2.30 2.16 2.54 2.50 2.83 2.34 2.53 

 Win (%) 42.58 47.38 43.48 46.88 36.14 53.74 37.18 53.44 43.96 45.26 
0.4 Mean 14.18 13.82 14.17 13.96 14.70 13.85 15.13 14.28 14.95 14.87 

 Std 2.27 2.31 2.38 2.27 2.16 2.50 2.48 2.75 2.24 2.46 

 Win (%) 41.44 48.62 43.02 47.04 37.74 53.28 35.64 54.38 44.26 45.02 
0.5 Mean 14.19 13.74 14.15 13.92 14.79 13.72 15.15 14.27 14.95 14.87 

 Std 2.31 2.34 2.34 2.25 2.20 2.54 2.42 2.69 2.32 2.46 

 Win (%) 41.24 48.56 42.76 47.04 33.92 55.70 36.14 53.86 43.02 45.16 
0.6 Mean 14.26 13.71 14.24 13.87 14.76 13.71 15.09 14.28 14.91 14.82 

 Std 2.32 2.30 2.40 2.22 2.14 2.42 2.43 2.64 2.25 2.43 

 Win (%) 40.26 49.58 41.26 48.80 34.44 54.84 36.38 53.44 43.26 46.22 

0.7 Mean 14.26 13.71 14.20 13.85 14.78 13.69 15.15 14.19 14.97 14.75 

 Std 2.30 2.32 2.38 2.27 2.15 2.43 2.48 2.71 2.25 2.38 

 Win (%) 40.36 49.98 41.72 47.90 34.23 56.22 35.08 54.86 43.20 46.30 
0.8 Mean 14.24 13.72 14.25 13.79 14.82 13.60 15.06 14.14 14.98 14.72 

 Std 2.36 2.32 2.37 2.22 2.18 2.53 2.57 2.76 2.25 2.40 

 Win (%) 40.74 49.14 40.26 49.54 33.62 56.66 35.40 54.40 41.20 47.34 
0.9 Mean 14.29 13.65 14.18 13.82 14.84 13.64 15.14 14.12 14.99 14.71 

 Std 2.34 2.22 2.38 2.21 2.17 2.46 2.46 2.63 2.25 2.36 

 Win (%) 39.08 50.76 41.20 48.82 34.34 56.24 34.38 54.80 41.02 47.32 
1.0 Mean 14.26 13.68 14.27 13.83 14.88 13.59 15.10 14.06 14.98 14.74 

 Std 2.34 2.25 2.37 2.21 2.18 2.47 2.54 2.74 2.26 2.43 

 Win (%) 38.70 51.00 41.60 48.82 33.00 58.46 34.40 55.08 40.66 47.64 

It was observed from Table 5.2 that higher mutation rates was more 

likely to produce larger differences in mean score and winning percentage. 

Similar to the case of high learning rate, high mutation rate produced large 

fluctuations in the chromosome values, making the AUC overcompensate in 

its behaviours. This was analogous to noise being amplified by the differential 

component of a PID (proportional–integral–derivative) controller. The best 

performing mutation rate was 0.1 with 7 out of 10 best evaluations. However, 

this result must be interpreted against the earlier result from varying the 
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learning rate (i.e. m = 0). By comparison, the best results from m = 0.1, were 

worse (i.e. larger differences in mean score and winning percentage) compared 

to those from m = 0. This implied that the additional mutation operation might 

have introduced unnecessary divergence to the chromosome values, leading to 

poorer results. Therefore, in general, the mutation rate should be 0 for the 

AUC. 

5.4.4 Analysis of ADC 

In this section, the performance of the ADC will be assessed in terms 

of varying learning rate and varying mutation rate. The ADC differs from the 

AUC in that it does not make the assumption that the complement of a 

„winning‟ chromosome is a „losing‟ chromosome. Instead, it maintains two 

sets of chromosomes, each of which encodes 7 real number in the range [0,1]. 

One chromosome represents a „winning‟ behaviour set while the other 

represents a „losing‟ behaviour set. Each chromosome is updated 

independently when a waypoint is passed. However, the same learning rate 

and mutation rate is applied to both chromosomes. 

5.4.4.1 Effects of varying learning rate 

In this experiment, the mutation rate was first set to zero and the 

learning rate was varied from 0.1 to 1.0 in steps of 0.1. The same learning rate 

was applied to both chromosomes of the ADC. The results of the mean scores, 

standard deviation and winning percentages are summarized in Table 5.3. As 

is the case in Table 5.1, the best results are highlighted in bold. 
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Table 5.3 Comparative results for ADC versus static controllers for varying learning rate and 

fixed mutation rate 

For each pair of results, the left column represents the ADC and the right represents the static 

controller in that column. Winning percentages do not sum to 100%, the remainder are drawn 

games. The best results are bolded for each static controller. 
ADC 
Mutation rate = 

0 

Learning rate Heuristic Neural network Reverse Predictive slow Predictive fast 

0.1 Mean 8.16 10.81 12.16 12.16 14.31 14.31 10.23 10.23 11.78 11.78 

 Std 2.57 2.55 2.85 2.98 2.57 2.80 3.36 3.09 3.29 3.23 

 Win (%) 73.00 18.48 44.74 43.10 43.38 43.80 43.98 41.48 41.16 40.22 

0.2 Mean 11.12 13.10 13.99 13.25 14.24 13.60 15.22 14.54 9.29 10.01 

 Std 2.00 1.95 2.34 1.80 2.20 2.33 2.38 2.31 2.23 2.10 

 Win (%) 65.76 24.08 39.40 51.96 38.80 51.68 37.06 52.36 54.72 32.98 
0.3 Mean 13.87 12.34 7.93 10.87 9.93 11.28 9.75 9.76 8.97 9.99 

 Std 2.27 1.98 2.54 2.47 4.08 4.53 2.55 2.32 2.12 2.01 

 Win (%) 29.70 60.42 76.28 16.38 58.18 27.16 44.68 41.78 57.40 29.52 

0.4 Mean 8.81 13.35 12.42 13.45 12.14 16.19 9.43 9.46 14.67 15.98 

 Std 2.58 2.90 2.30 1.93 1.91 2.17 2.40 2.16 2.39 2.27 

 Win (%) 88.94 5.84 55.50 34.98 82.44 10.98 43.84 41.60 59.34 29.62 
0.5 Mean 14.19 12.22 12.05 12.05 8.47 9.64 8.74 9.25 8.94 9.94 

 Std 2.15 2.31 2.53 2.29 4.46 5.13 2.49 2.24 2.18 1.99 

 Win (%) 26.70 63.98 44.86 44.38 55.64 27.46 51.72 35.24 57.78 30.14 
0.6 Mean 13.13 11.04 14.29 11.97 12.13 12.13 8.92 9.44 14.42 13.44 

 Std 2.20 1.92 2.26 1.81 4.36 4.37 2.45 2.17 2.30 2.61 

 Win (%) 24.18 66.76 21.70 69.18 42.48 42.38 51.78 35.40 34.12 55.94 
0.7 Mean 8.11 10.86 9.92 13.33 14.27 13.44 14.71 18.74 9.35 12.55 

 Std 2.57 2.54 2.33 2.24 2.25 2.38 2.65 2.99 2.32 2.24 

 Win (%) 74.10 17.72 79.84 13.36 37.06 53.24 85.06 9.28 81.60 11.00 
0.8 Mean 13.08 11.17 9.40 13.72 11.45 14.78 9.43 9.44 9.37 12.51 

 Std 2.20 1.91 2.28 2.28 1.74 1.91 2.34 2.13 2.28 2.27 

 Win (%) 25.72 65.00 87.68 7.32 78.72 13.82 43.74 41.96 81.04 10.68 
0.9 Mean 11.50 16.66 9.95 13.41 14.25 20.62 15.24 13.38 10.74 13.50 

 Std 2.00 1.91 2.37 2.21 2.04 1.97 2.18 2.46 2.29 2.19 

 Win (%) 93.00 3.36 79.68 13.64 96.04 2.02 27.04 63.94 79.98 11.64 
1.0 Mean 10.24 13.07 13.97 13.26 12.63 13.58 13.40 13.39 9.29 9.98 

 Std 2.44 2.10 2.37 1.80 2.16 2.54 2.87 3.05 2.14 2.04 

 Win (%) 76.26 16.44 38.40 51.46 53.66 36.02 43.58 44.24 53.72 33.06 

It was observed in Table 5.3 there were no trends with varying the 

learning rate. This was likely caused by the reduction of the frequency of 

update opportunities for each chromosome. The average number of updates 

during each game was the sum of the mean scores of the two players. With the 

ADC, only one chromosome was updated whenever a waypoint was passed 

depending on whether the controller won or lost the point. This meant that, on 

average, each chromosome in the ADC was updated half as frequently as the 

chromosome in the AUC. The reduced updating frequency also reduced the 

effectiveness of the ADC to match its opponent in mean score and winning 

percentage. Nevertheless, a learning rate of 0.1 obtained the best result in 5 out 

of 10 evaluations. Therefore, l = 0.1 will be used as the default value in the 

experiment of varying mutation rate in the next section. 
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5.4.4.2 Effects of varying mutation rate 

In this experiment, the learning rate was set to 0.1 and the mutation 

rate was varied from 0.1 to 1.0 in steps of 0.1. The mutation rate controlled the 

size of the standard deviation in a Gaussian perturbation of zero mean. The 

mutations were applied independently to each chromosome value after the 

learning rate was applied. The same mutation rate was applied to both 

chromosomes of the ADC. The results of the mean scores, standard deviation 

and winning percentages are summarized in Table 5.4. 

Table 5.4 Comparative results for ADC versus static controllers for fixed learning rate and 

varying mutation rate 

For each pair of results, the left column represents the ADC and the right represents the static 

controller in that column. Winning percentages do not sum to 100%, the remainder are drawn 

games. The best results are bolded for each static controller. 
ADC 
Learning rate = 

0.1 

Mutation rate Heuristic Neural network Reverse Predictive slow Predictive fast 

0.1 Mean 13.89 13.88 13.97 13.96 14.43 14.38 14.93 14.71 14.27 14.26 
 Std 2.45 2.86 2.52 2.84 2.28 3.03 2.51 3.20 2.74 3.13 

 Win (%) 45.82 45.22 45.58 45.22 45.28 46.26 44.06 46.68 44.40 44.66 

0.2 Mean 14.15 13.91 13.95 13.91 14.68 13.91 15.01 14.46 14.79 14.79 

 Std 2.32 2.53 2.47 2.55 2.17 2.71 2.51 2.92 2.41 2.67 

 Win (%) 42.68 47.04 45.42 45.02 37.96 52.10 39.42 51.18 44.18 44.90 

0.3 Mean 14.17 13.89 14.07 14.01 14.71 13.90 15.01 14.44 14.90 14.89 
 Std 2.30 2.43 2.41 2.38 2.20 2.61 2.42 2.79 2.34 2.54 

 Win (%) 42.40 47.26 44.20 45.96 37.90 52.68 38.80 50.22 44.80 44.66 

0.4 Mean 14.17 13.82 14.09 14.04 14.68 13.81 15.02 14.32 14.86 14.82 
 Std 2.27 2.33 2.38 2.31 2.17 2.57 2.44 2.79 2.38 2.52 

 Win (%) 41.62 48.20 44.62 45.52 36.46 53.92 37.50 51.94 43.82 45.36 

0.5 Mean 14.19 13.80 14.14 13.92 14.66 13.78 15.06 14.29 15.02 14.94 
 Std 2.34 2.34 2.39 2.31 2.19 2.54 2.51 2.76 2.30 2.40 

 Win (%) 42.24 48.70 43.22 47.66 35.86 53.80 36.56 52.88 43.66 44.94 

0.6 Mean 14.17 13.82 14.24 13.91 14.75 13.75 15.11 14.22 14.91 14.80 
 Std 2.31 2.30 2.34 2.28 2.17 2.48 2.42 2.69 2.33 2.47 

 Win (%) 41.74 48.30 42.54 48.00 34.74 55.56 35.32 53.66 43.30 45.88 
0.7 Mean 14.26 13.66 14.16 13.93 14.71 13.77 15.14 14.20 14.97 14.88 

 Std 2.34 2.30 2.33 2.24 2.17 2.47 2.49 2.67 2.23 2.43 

 Win (%) 38.98 51.16 43.06 46.68 36.16 54.22 35.66 55.08 43.12 45.38 

0.8 Mean 14.20 13.75 14.19 13.89 14.73 13.69 15.10 14.21 14.97 14.89 

 Std 2.31 2.28 2.40 2.23 2.21 2.49 2.50 2.71 2.20 2.34 

 Win (%) 40.94 48.96 43.08 46.70 34.70 55.62 36.76 53.46 42.94 45.90 
0.9 Mean 14.24 13.67 14.23 13.86 14.86 13.61 15.12 14.09 14.98 14.77 

 Std 2.33 2.29 2.36 2.21 2.14 2.42 2.46 2.68 2.27 2.41 

 Win (%) 40.28 49.68 41.68 48.46 32.16 57.98 34.82 54.92 41.64 46.34 
1.0 Mean 14.23 13.66 14.20 13.93 14.80 13.61 15.20 14.15 14.92 14.76 

 Std 2.32 2.25 2.34 2.23 2.18 2.48 2.38 2.63 2.25 2.37 

 Win (%) 39.78 49.46 42.24 47.44 33.52 57.24 33.66 56.06 42.54 46.06 

It was observed in Table 5.4 that the mutation value of 0.1 obtained the 

best result in 9 out of 10 evaluations. The only exception was for the case of 

mean score difference against the PFC. However, their mean scores only 
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differed by 0.01 and could be considered within acceptable range. The results 

of the ADC improved greatly due to the introduction of the mutation operation 

as the mutation operation offered more opportunities for the chromosome 

values to adapt compared to using only the learning rate operation. The mean 

scores and winning percentages were similar to those of the AUC. 

Additionally, the ADC (l = 0.1, m = 0.1, 9 of 10 evaluations) was able to 

produce more consistent results compared to the AUC (l = 0.1, m = 0, 7 of 10 

evaluations) in response to varied and unknown opponents. The disadvantage 

was that the ADC requires more memory and more computation. 

5.4.5 Score difference distribution 

Both the AUC and ADC, using the optimized parameters, were 

demonstrated to be effective in matching its opponent in terms of mean score 

difference and winning percentage difference. In this section, the distribution 

of the difference in score in each of the n = 5000 games will be further 

analyzed. The following analysis will be divided into two sections, namely, 

the overall distribution of score differences and the distribution of the 

occurrence of the score differences. 

5.4.5.1 Distribution of score difference 

The significance of analyzing the distribution of score differences is to 

investigate the effects of the adaptive controllers on the game experience of its 

opponents. A game experience is considered satisfying or entertaining when it 

is difficult to defeat. This idea can also be extended to say that a game 

experience is considered satisfying or entertaining when it is won or lost by a 

small margin. In the context of the car racing simulator game, this can be 
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interpreted as a small score difference between the two competing players. 

From real world user experience, a game was subconsciously considered won 

or lost by a player when a score difference of more than 5 was observed 

during the game. The typical score of a player for one game was around 13 to 

15 points. Therefore, if the end game score difference is 4 or less, it is said that 

the player is entertained during the game. 

The histograms of the score difference are presented in Figure 5.8. The 

boxplot of the score difference of the AUC and the ADC with optimized 

parameters against the five static opponents are presented in Figure 5.9 and 

Figure 5.10 respectively. The number of game results that fall within a specific 

score difference is summarized in Table 5.5 as a percentage of total games 

played. 
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A positive score difference indicates that the adaptive controller won; while a negative score 

difference indicates that the static controller won. 

Figure 5.8 Histogram of the score difference of the adaptive controllers against the (a) HC (b) 

NNC (c) RC (d) PSC and (e) PFC 
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The results are shown in terms of score differences between the AUC and its opponent. A 

positive score difference indicates that the AUC won; while a negative score difference 

indicates that the opponent won. 

Figure 5.9 Boxplot of the results from playing the AUC against the five static controllers 
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The results are shown in terms of score differences between the ADC and its opponent. A 

positive score difference indicates that the ADC won; while a negative score difference 

indicates that the opponent won. 

Figure 5.10 Boxplot of the results from playing the ADC against the five static controllers 
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Table 5.5 Cumulative percentages of games according to score difference 

Score 
diff 

AUC ADC 

Heuristic 
Neural 

network 
Reverse 

Predictive 

slow 

Predictive 

fast 
Heuristic 

Neural 

network 
Reverse 

Predictive 

slow 

Predictive 

fast 

0 0.0952 0.1016 0.0938 0.1068 0.1188 0.0896 0.0920 0.0846 0.0926 0.1094 

≤1 0.2932 0.3078 0.2834 0.3106 0.3416 0.2586 0.2718 0.2596 0.2764 0.3168 

≤2 0.4584 0.4826 0.4500 0.4792 0.5358 0.4322 0.4352 0.4362 0.4464 0.5050 

≤3 0.6120 0.6278 0.5908 0.6272 0.6880 0.5838 0.5802 0.5806 0.5890 0.6540 

≤4 0.7318 0.7422 0.7082 0.7404 0.8040 0.7038 0.7022 0.7024 0.7114 0.7808 

≤5 0.8224 0.8336 0.8012 0.8286 0.8814 0.8010 0.7968 0.7938 0.8080 0.8634 

It was observed in Figure 5.9 and Figure 5.10 that the median values of 

both AUC and ADC against all their opponents were zero. It was also 

observed from Figure 5.8 that, by the near symmetry of the histogram, their 

mean values were very close to zero. These implied that both adaptive 

controllers were able to match their opponents in terms of mean score 

difference and winning percentage difference. The upper and lower quartiles 

of both adaptive controllers were 3 and -3 respectively for HC, NNC, RC and 

PSC. It was 2 and -2 respectively for the PFC. In addition, it was observed 

from Table 5.5 that a minimum of 70.22% of the game results between the 

adaptive and static controllers had a score difference of 4 or less. This 

indicated that the opponent was entertained in at least 70.22% of the games 

played. 

It was observed from Figure 5.8 that the ADC was likely to have a 

lower number of drawn games compared to the AUC. Having a lower number 

of drawn games was a desirable effect as drawn games were deemed to be 

more frustrating than fun. Hence, the ADC had the advantage of being able to 

consistently produce a low frequency of drawn games against varied and 

unknown opponents. 
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The dots represent an scattered data points of the score difference plotted against the game 

count. The line represents the mean occurrence of the score difference. 

Figure 5.11 A sample diagram of 5000 games between the AUC and HC 

5.4.5.2 Distribution of the occurrence of the score difference 

The purpose of investigating the distribution of the occurrence of the 

score difference is to verify that each score difference is evenly distributed 

over the n = 5000 games. That is, the adaptive controller should win by 2 

points as well as lose by 2 points regularly and uniformly over the 5000 

sequential games. As an extreme example, the opposite would be to win the 

first 2500 games by 2 points and lose the last 2500 games by 2 points. In this 

example, the mean score difference and winning percentage difference is zero 

but the opposing player will feel dissatisfied by losing the first 2500 games. A 

sample diagram of the 5000 games between the AUC and HC is shown in 

Figure 5.11. 
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The lines represent the mean occurrence of the score difference against the static controllers. 

Mean occurrences near the 2500
th

 game indicate that the score difference represented in the 

vertical axis is evenly distributed across the total number of games played. 

Figure 5.12 Plot of the score difference between the AUC and the static controllers 
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The lines represent the mean occurrence of the score difference against the static controllers. 

Mean occurrences near the 2500
th

 game indicate that the score difference represented in the 

vertical axis is evenly distributed across the total number of games played. 

Figure 5.13 Plot of the score difference between the ADC and the static controllers 
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The horizontal axis represents the game count while the vertical axis 

represents the score difference. Each dot represents the outcome of the game 

while the line represents the mean occurrence of the score difference on the 

vertical axis. It is desirable that the mean occurrence of each score difference 

is around the 2500th game (i.e. vertically along the centre line). This would 

imply that the particular score difference is evenly distributed. It was observed 

from Figure 5.11 that the mean occurrence values for score differences of 

more than 5 tend to diverge away from the centre line. This is due to a low 

frequency of these score differences as 82.24% of the games occur with a 

score difference of 5 and less. As such, only score differences of 5 and less 

will be considered for this analysis. 

The results of all the games for the AUC against the five static 

controllers are plotted together in Figure 5.12. The individual game outcomes 

are left out to make the diagram more reader friendly. Only the mean value 

lines are plotted. The results for ADC are shown in Figure 5.13. It was 

observed that both adaptive controllers had consistent and near zero mean 

occurrences for score differences in the range of -5 to 5. This indicated that 

both adaptive controllers were able to evenly distribute varying score 

differences across a long run of sequential games. This helped to keep the 

opposing player interested in the game by uniformly winning and losing. 

5.4.6 Behaviour activation probability distribution 

In this section, the final values of the behaviour activation probability 

that is encoded in the chromosomes of the adaptive controllers will be 

discussed. The objective of this discussion is to identify any general trends or 
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preferences in behaviours when the adaptive controllers are playing against 

varied opponents. 

5.4.6.1 Analysis of AUC 

The AUC contains one chromosome which encodes 7 real numbers, 

one for each of the 7 behaviours. Each value represents the probability of 

activating a specific behaviour. The expected behaviour set encoded by this 

chromosome represents a „winning‟ strategy while its complement is assumed 

to be a losing strategy. The boxplots and histograms of each of the 7 

behaviours plotted against the five static opponents are presented in Figure 

5.14. The line plotted across the boxplots connects the mean values of each 

behaviour component. The histogram consists of 10 bins with an interval of 

0.1 from 0 to 1. For each bin, the frequency of each behaviour component is 

represented by a different colour bar. 

It was observed from Figure 5.14 that there were some general trends 

in the chromosome values encoded by the AUC at the end of each game. The 

reversing and direction switching behaviours were selected with high 

probabilities against all its opponents, indicating that these two behaviours 

were important behaviours to choose if the AUC wanted to express a winning 

strategy. The tight angle turning and time wasting behaviours had means and 

medians of around 0.5 against all opponents. This implied that these two 

behaviours were not as significant in deciding whether or not a strategy was a 

winning one. 
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(e) (f) 

The vertical axis of the boxplot represents the behaviour modules; while the horizontal axis 

represents the chromosome values in the range [0,1]. The green line connects the mean value 

of each behaviour modules. The histogram consists of ten bins; the legend for the histogram is 

shown in (f). 

Figure 5.14 Boxplot and histogram of ending chromosome values of the AUC against the (a) 

HC (b) NNC (c) RC (d) PSC and (e) PFC 

The blocking behaviour was selected with the lowest probability 

amongst the other behaviours. This was because blocking an opponent during 

a game was a defensive behaviour used to prevent the opponent from getting a 

point rather than to gain a point for itself. Hence, the AUC generally assigned 

a lower probability of activation for this behaviour in its chromosome which 

encoded a winning strategy. This also helped to demonstrate an advantage of 

the proposed adaptive algorithm in that it was able to select a suitable subset 

of behaviours automatically via its chromosome. Conflicting behaviours were 

selected with lower probabilities while complementary behaviours were 

selected with higher probabilities. 
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5.4.6.2 Analysis of ADC 

The ADC consists of two chromosomes instead of one, each encodes 7 

real numbers. One of the chromosomes represents a „winning‟ strategy while 

the other represents a „losing‟ strategy. The boxplots and histograms of each 

of the final value of each of the chromosomes are presented in Figure 5.15 to 

Figure 5.19. 
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The winning and losing chromosome are shown on the left and right column respectively. The 

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis 

represents the chromosome values in the range [0,1]. The histogram consists of ten bins. 

Figure 5.15 Boxplot and histogram of ending chromosome values of the ADC against the HC 
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The winning and losing chromosome are shown on the left and right column respectively. The 

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis 

represents the chromosome values in the range [0,1]. The histogram consists of ten bins. 

Figure 5.16 Boxplot and histogram of ending chromosome values of the ADC against the 

NNC 
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The winning and losing chromosome are shown on the left and right column respectively. The 

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis 

represents the chromosome values in the range [0,1]. The histogram consists of ten bins. 

Figure 5.17 Boxplot and histogram of ending chromosome values of the ADC against the RC 
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The winning and losing chromosome are shown on the left and right column respectively. The 

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis 

represents the chromosome values in the range [0,1]. The histogram consists of ten bins. 

Figure 5.18 Boxplot and histogram of ending chromosome values of the ADC against the PSC 
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The winning and losing chromosome are shown on the left and right column respectively. The 

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis 

represents the chromosome values in the range [0,1]. The histogram consists of ten bins. 

Figure 5.19 Boxplot and histogram of ending chromosome values of the ADC against the PFC 
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It was observed from the histogram in Figure 5.15 to Figure 5.19 that 

both winning and losing chromosomes was likely to produce high frequencies 

for the two bin values nearest to 0 and 1. This was likely due to the positive 

reinforcement nature of the update rules used in the ADC. Behaviours that 

resulted in winning a waypoint was updated only to the winning chromosome 

while behaviours that resulted in losing a waypoint was updated only to the 

losing chromosome. This resulted in a high frequency of chromosomes taking 

values at the extremities. The shape of the boxplot of the winning 

chromosome resembled that of the chromosome from the AUC. This was 

expected as the single chromosome from the AUC encodes a winning strategy 

as well. There were no observable trends in the losing chromosome. This 

might indicate that there were many possible combinations of losing 

behaviours and that the algorithm learnt a different one each time. 

5.5 Summary 

Two adaptive algorithms were introduced in this chapter to enhance 

player satisfaction, namely, AUC and ADC. The effects of varying the 

learning rate and mutation rate were investigated for both algorithms and a 

general rule of thumb for the selection of these two parameters was put 

forward. The distribution of the score difference was examined and both 

algorithms were able to achieve a score difference of 4 or less for a minimum 

70.22% of the games. The occurrence of wins and losses was also well 

distributed over the sequence of consecutive games. It was also observed that 

while the AUC was more computationally efficient, the ADC was able to 

maintain a lesser number of drawn games which may help to reduce player 

frustration. In the examination of the ending values of the chromosomes, it 



 132 

was found that the adaptive algorithms select different combinations of 

behaviours to cope with different opponents although the reversing and 

direction switching behaviours were observed to be more prominent in 

winning chromosomes. Both proposed adaptive algorithms were able to 

automatically learn suitable sets of behaviours to match the different 

opponents in terms of mean score and winning percentage. Also, both 

proposed adaptive algorithms were able to generalize well to a variety of 

opponent driving styles. 
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Chapter Six 

6 Evolving believable behaviour in games using 

sensor noise and action histograms 

A believable game AI can help players to immerse in the game world 

and maintain the suspension of disbelief, thereby making the game more 

enjoyable and satisfying. This chapter explores the use of two main ideas to 

acquire believable behaviours. First, sensor noise is introduced to simulate 

errors in human judgment and its associated parameters are evolved together 

with the game controller. Second, indirect modeling of human behavioural 

tendencies is achieved by using output action histograms as optimization 

objectives. Two types of histograms will be explored, the action histogram and 

the action sequence histogram. The proposed approach differs from 

conventional approaches by focusing on imitating actions within a small 

window size instead of imitating the entire action sequence. The resulting 

controllers with evolved sensor noise are able to achieve both objectives of 

performance and believability in training, and demonstrate good 

generalization capability on 4 other previously unseen test tracks. In a study 

involving 58 respondents, the same controllers are also evaluated as more 

believable compared to one evolved for performance alone. 
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6.1 Introduction 

Computational intelligence design methodology has seen an increase in 

its application to games in the recent decade. Techniques such as neural 

networks, fuzzy logic and evolutionary computation have been applied to 

design and develop game artificial intelligence (AI) for game characters. Often, 

these game characters are adversarial in nature and seek to outplay and defeat 

its opponent in a game. As such, research involving computational intelligence 

and games is traditionally concerned with playing a game as well as possible. 

Most often the objectives are to get the highest score, fastest time or to defeat 

the opponent. A few examples are given as follows. Chellapilla & Fogel 

evolved neural networks to play checkers and was able to defeat two expert 

level players on an internet game room ‎[32]. Stanley et al used the real time 

NeuroEvolution of Augmenting Topologies method to evolve a team of robots 

to defeat opposing robot teams [152]. Spronck and Spronck et al used the 

dynamic scripting algorithm to adaptively optimize the game performance of 

opponents in a role playing game [147] ‎[148]. Togelius & Lucas evolved 

controllers that were able to exhibit good racing behaviour in a car racing 

simulator [171]. 

Indeed, a competent game AI is an important factor in enhancing the 

gaming experience of the player [49], but it is not the only factor. Game 

designers also want their players to immerse in the game world and suspend 

disbelief [158], thereby making the game more enjoyable and satisfying. As 

such, the field of computational intelligence in games has seen the emergence 

of more player centric works in the recent years that focused on improving a 

human player‟s experience ‎[164]. Togelius et al evolved personalized racing 
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tracks that catered to the driving styles of different human players ‎[172] [176]. 

Tan et al implemented online driving adaptation to match the proficiency level 

of its opponents ‎[161]. Spronck et al adapted the dynamic scripting algorithm 

to play even games against its opponents [145]. van Lankveld et al introduced 

incongruity as a potential measure for entertainment [188] [189]. Yannakakis 

used evolutionary machine learning to exploit cooperative behaviours that can 

increase a player‟s interest while playing [194]. Yannakakis et al also 

implemented an adaptive Bug-Smasher game that improved the satisfaction of 

children who played the game [198] ‎[199]. Thue et al used an interactive 

storytelling system that models a player automatically to dynamically select 

content to create an interactive story ‎[168] [169]. Pedersen et al optimized the 

level design of platform games for improving player experience [109] ‎[110] 

[111] using Super Mario Bros [181]. Choi et al and Langley et al outlined an 

approach to constructing believable game players games using a cognitive 

architecture [34] [82]. Sweetser & Wiles developed game agents that were 

able to respond believably to the environment [159]. Miles & Tashakkori 

evolved a more believable game agent using genetic algorithms compared to 

using traditional finite state machines [95].  

An important area of player centric research deals with the creation of 

believable game agents. Game agents that are believable can help to maintain 

the suspension of disbelief and build a more immersive game world that can 

improve the player‟s satisfaction in a game [19]. For example, Rizzo et al 

implemented a personality model for agents to perform personality driven 

behaviours [129]. Computational intelligence techniques can also be used to 

acquire such believable game behaviours. Bryant & Miikkulainen evolved 
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neural networks to induce game agents with human similarity in a turn based 

strategy game [25]. Thurau et al applied imitation learning for a first person 

shooting game to learn strategic, tactical and reactive behaviours [170]. van 

Hoorn et al evolved humanlike driving behaviours in the TORCS game by 

imitating steering and acceleration data from human players [187]. 

Yannakakis provided a review on several approaches used to model player 

satisfaction [197]. 

Imitation learning has indeed been demonstrated as a powerful tool for 

learning many types of complex behaviours [9] including game behaviours. 

Cardamone et al developed an approach to imitate high level actions in 

TORCS to improve driving performance [29]. Muñoz et al used artificial 

neural networks to train controllers that imitate humans and other AI ‎[98]. 

Priesterjahn & Eberling used imitation and social learning to quickly generate 

competitive game agents [117]. Aler et al used imitation learning to train game 

agents for Robosoccer [3]. So far, the works in literature shared a common 

approach in imitation learning. Data collected from human players is used as 

training data in the form of state-action pairs. That is, the learning agent is 

trained to imitate the decision (i.e. in-game output action) of the human player 

for a given situation (i.e. game state or sensor readings). The learnt agent thus 

exhibits humanlike-ness because it reacts in the same way as the human player 

for a given situation. In this chapter, a different approach will be introduced. 

Using the same idea of imitation learning, instead of imitating state-

action pairs, the imitation of human behavioural tendencies will be considered 

as a means to induce humanlike-ness in generic agents. As a metaphoric 

example, instead of learning how to reply questions, the game agent learns 
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how to blink his eyes in a believable manner while replying. Believability is 

achieved through the learning of such low level human tendencies or 

idiosyncrasies. This chapter focuses on the evolution of believable behaviours 

in games using a combination of sensor noise and action histograms. Two 

main ideas will be explored in this chapter. First, some noise is introduced to 

the sensors of the game AI in order to imitate errors in human judgment. The 

parameters associated with the noise are evolved simultaneously with the 

game AI to allow the evolution process to discover what values are suitable to 

induce believable behaviours. Second, the output action histograms and output 

action sequence histograms are introduced as a means to capture low level 

behavioural tendencies of the game agent. This is motivated by the 

observation that previously evolved car controllers [166], which drove in 

unconvincing manners, have very different histograms when compared to the 

histograms collected from human driving. Hence, the car controllers will be 

trained to indirectly model human driving in terms of histogram instead of 

directly modeling state-action pairs in the game. Concurrently learning of both 

performance and believability requires the use of multi-objective evolution. 

Multi-objective evolution has been successfully applied to games to introduce 

other desirable objectives in addition to basic performance. van Hoorn et al 

evolved performance while imitating human drivers ‎[187], Gomez et al 

evolved performance with behavioural complexity ‎[56], and Agapitos et al 

used multi-objective optimization to evolve car drivers with different driving 

style [2]. The multi-objective evolution framework will be used in this work to 

balance the two incomparable and partially conflicting objectives of 

performance and believability via action histograms. Although the proposed 
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training methodology is demonstrated in a car racing simulator game, the 

framework can be easily extended to games of similar control schemes such as 

platform games (i.e. Super Mario, Rayman, etc) and arcade shooters (i.e. 

Asteroids, Space Invaders, etc). This is the first work to explore the use of 

action histograms and evolvable sensor noise as a means to develop believable 

behaviours. 

6.1.1 Modifications to simulator 

The discrete control scheme that is used in the car racing simulator 

provided a suitable test bed for capturing low level behaviours using the 

proposed action histograms. Nevertheless, the ideas introduced in this chapter 

can be extended to similar discrete control games such as platform games and 

arcade shooters. 

For the purpose of this experiment, a few changes are made to the car 

racing simulator. The car racing simulator is modified to be played by only 1 

player and only the current waypoint will be visible to the player. This is so as 

to focus on basic driving behaviours instead of predictive and planning 

abilities. The same simulator will be played by human testers in this 

experiment. 

At any time, only one waypoint is visible on the competition field, the 

current waypoint. The player must drive through this waypoint in order to 

score a point. Whenever the current waypoint is passed, 1 point will be added 

to the total score and a new waypoint will be generated. The position of each 

waypoint is randomly generated anywhere within the boundaries of the game 

area. The random number generator can also be seeded with a fixed integer in 
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order to generate a fixed sequence of waypoints which can be used to define a 

repeatable race track. 

6.2 Controller design 

The design of the car racing controller will be described in this section. 

The controller consists of 2 sub-modules, one for controlling the accelerating 

and reversing behaviour of the car while the other controls the steering 

behaviour of the car. Both sub-modules use the same hyperbolic tangent 

function as a basis function. 

6.2.1 Hyperbolic tangent driving 

The hyperbolic tangent driving function is the first of 2 sub-modules 

that controls the behaviour of the car. As the name suggests, this sub-module 

controls the speed of the car by issuing an accelerate command, a brake 

command, or a neutral command. It decides which command is issued at every 

time step by comparing the instantaneous speed of the car to the desired speed 

of the car which is defined by the equation for the hyperbolic tangent driving 

function in (6.1). 

        1tanhv r a b r rZ c d         (6.1) 

where r is the Euclidean distance to the current waypoint, a, b, c and d 

are real value parameters characterizing the hyperbolic tangent function, v is 

the desired scalar speed at a given Euclidean distance r, and Z1 is a noise 

variable. The 4 parameters a, b, c and d will be optimized by evolution. The 

hyperbolic tangent function is chosen because of its general shape. The 

tapering of its outputs at high values of r is analogous to the notion that the car 

should cruise at a constant speed at far distances from its destination (i.e. the 



 140 

cruising speed should not increase indefinitely with distance). Additionally, 

the steep gradient around the origin is analogous to deceleration when it is 

near the destination. The values a, b, c and d serve to shape the hyperbolic 

tangent function to one most desirable for this car racing simulation. There are 

no constraints that the function; e.g. it does not need to pass through the origin 

or that it should be positive or negative. 

At each time step, the controller will calculate the desired speed of the 

car using the hyperbolic tangent driving function, and compare it to its 

instantaneous speed. The command to accelerate, reverse or remain neutral 

will then be decided based on the rules in (6.2). 

 

 

 

2

2

1 ,

1 ,

.

i i d

d i i i d

if v v Z n vaccelerate

O v brake if v v Z n v

neutral otherwise

  


   



   (6.2) 

where Od is the output of the driving module, vi is the instantaneous 

speed of the car, v is the desired speed, nd is a real number, and Z2 is a noise 

variable. The purpose of nd is to provide a margin of allowable difference 

between Od and vi within which the instantaneous speed is considered to be 

desirable and a neutral command is issued. The parameter nd will be optimized 

by evolution and it is also unconstrained. 

6.2.2 Hyperbolic tangent steering 

The hyperbolic tangent steering function is the second of 2 sub-

modules that controls the behaviour of the car. This sub-module determines 

the heading of the car by issuing a steer left, steer right or neutral command. It 

decides which command is issued at every time step by comparing the 

instantaneous angular speed of the car to the desired angular speed of the car 
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which is defined by the equation for the hyperbolic tangent steering function 

in (6.3). 

    3tanhe f rZ g h           (6.3) 

where θ is the angular distance to the current waypoint, e, f, g and h are 

real value parameters characterizing the hyperbolic tangent function, ω is the 

desired angular speed at a given angular distance θ, and Z3 is a noise variable 

The 4 parameters e, f, g and h will be optimized by evolution. The design of 

the steering function is similar to that of the accelerating-braking function 

except that the input is replaced by an angular distance and the output gives 

the desired angular speed. In a similar vein, the hyperbolic tangent function is 

chosen because it is natural for the car to be steering strongly when it is not 

aligned with its destination (i.e. large angular distance to the current waypoint), 

and also to reduce its steering action as it aligns with its destination. The 

function should pass through the origin as the desired angular speed should be 

zero (i.e. straight) when the angular distance is zero (i.e. exactly aligned to its 

destination). However, no constraints are placed on the parameters e, f, g and 

h as the evolution process is expected to find such a solution as an optimum 

solution. 

At each time step, the controller will calculate the desired angular 

speed of the car using the hyperbolic tangent steering function and compare it 

to its instantaneous angular speed. The command to turn left, right or remain 

neutral will then be decided based on the rules in (6.4). 
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  (6.4) 
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where Os is the output of the steering module, ωi is the instantaneous 

angular speed of the car, ω is the desired angular speed, ns is a real number, 

and Z4 is a noise variable. Similar to that of the driving module, the purpose of 

ns is to provide a margin of allowable difference between Os and ωi within 

which the instantaneous angular speed is considered to be desirable and a 

neutral command is issued. Similarly, the parameter ns will be optimized by 

evolution and it is also unconstrained. 

6.2.3 Introducing sensor noise 

The car racing simulator model is a fully deterministic model. That is, 

a controller will output the same sequence of driving and steering commands 

and trace exactly the same trajectory as long as the positions of the sequence 

of waypoint remain the same. This is both uninteresting and unrealistic. In a 

realistic simulation, for example, humans tend to be able to judge distances 

better when the subject is in close proximity. When the subject is far away, the 

error in judgment also becomes larger. 

As such, noise is introduced to the sensors of the vehicles in the car 

racing simulator model to make the simulation more stochastic and realistic. 

The sensor noise being introduced to the system takes the form of additive 

Gaussian noise, Z, with mean, μ, and standard deviation, σ, which follows the 

normal distribution given in (6.5). 

 2~ ,Z N       (6.5) 

The mean and standard deviations of the Gaussian noise is not 

specified by design. Instead, these values are evolved together with the 

controller by evolution strategies. The idea is to allow the evolution process to 
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discover what combinations of sensor noises will result in humanlike 

behaviours. 

The choice of using Gaussian noise in the noise model is inspired by 

the study of measurement uncertainty. Measurement errors made by humans 

are divided into two components, systematic error and random error. A basic 

type of systematic error is caused by the incorrect calibration of the measuring 

instrument. This error is constant and always present in separate 

measurements. The mean of the Gaussian noise introduced to the controller is 

analogous to systematic errors. On the other hand, random errors are 

inconsistent in repeated measures and tend to be scattered about the true value. 

Random errors can be caused by imprecise instruments or subjective 

interpretation of the instrument reading by the user, and this is analogous to 

the standard deviation of the Gaussian noise introduced to the controller. 

Therefore, these reasons make Gaussian noise a suitable choice to imitate 

errors in human judgment. 

Sensor noise is introduced to the four sensors that are used in the 

driving and steering sub-modules. They are the Euclidean distance to the 

current waypoint, the instantaneous speed of the car, the angular distance to 

the current waypoint, and the instantaneous angular speed of the car. The 

addition of these sensor noises modifies the behaviour of the hyperbolic 

tangent driving and hyperbolic tangent steering components. 

 2~ , {1,2,3,4}j j jZ N for j     (6.6) 

The additive Gaussian noise variables Z1, Z2, Z3 and Z4 shown in 

equation (6.6) are added to the sensor values shown in equations (6.1), (6.2), 

(6.3) and (6.4) respectively. These noise variables are also modified by a 
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corresponding coefficient depending on the state of the car in the game. Noise 

variables Z1 and Z3, which affects the sensing of the distance and angular 

distance respectively, are modified by the real distance between the car and 

the next waypoint. That is, more noise is added when the car is far away from 

the next waypoint; and less noise is added when the car is near its next 

waypoint. In other words, the amount of noise decays with decreasing distance. 

It should be noted that modern hardware sensors, such as those used in 

robotics, do not behave in this way. The noise decay is introduced in the noise 

model to imitate human judgment in a gaming environment. This is in line 

with the result that the error in judging distances in a virtual environment 

increases with distance ‎[20]. In the model, the relationship is assumed to be 

linear for simplicity. This concept is also extended to speeds and judging 

speeds. Similarly, noise variables Z2 and Z4, which affects the sensing of 

speed and angular speed, are modified by the real instantaneous speed of the 

car. That is, more noise is added when the car is moving quickly and less noise 

is added when the car is moving slowly. For simplicity, the relationship is also 

assumed to be linear. 

In this chapter, the use of evolvable sensor noise will be explored as a 

means to simulate human judgment errors in order to improve the believability 

of the evolved controllers. The parameters that are used to define the sensor 

noise are evolved alongside the parameters that define the driving and steering 

components of the controller so as to allow the evolution process to discover 

the optimal amount of noise required to improve believability. 
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6.3 Action histograms 

In earlier experiments with developing a controller for the car racing 

simulator, the controllers were evolved using a single objective approach with 

the fitness function defined by the number of waypoints passed within a given 

number of time steps. The resulting controllers were able to competently drive 

around the race area collecting waypoints and also react to situations that were 

unseen during the training phase. It could be said that the evolved controllers 

were robust and were able to generalize well. However, the visually observed 

behaviour of these controllers was unnatural and unrealistic. 

In order to investigate the differences in observed behaviours, the 

output actions of the Evolved Heuristic controller (EH) ‎[166], Evolved Neural 

Network (ENN) controller [166] and Human (Hu) are quantitatively and 

qualitatively analyzed in this section. During each time step in the simulation, 

each controller is required to output one of the nine possible actions presented 

in Table 6.1. The set of output actions used by each controller on the same 

given track is collected and presented in the form of histograms. In effect, this 

measures the frequency with which a keystroke is being used when driving 

around a given track. 

This section will introduce and discuss two types of histograms. They 

are the action histogram and the action sequence histogram. The experimental 

procedure for data collection and the types of tracks used will also be 

discussed and analyzed. Finally, the motivations for using histograms of small 

window sizes will be presented. 
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Table 6.1 List of all possible output actions at each time step in the car racing simulator 

Action Description 

1 Reverse Left 

2 Reverse 

3 Reverse Right 

4 Left 

5 Neutral 

6 Right 

7 Forward Left 

8 Forward 

9 Forward Right 

6.3.1 Action histogram (Histo1) 

The action histogram is the histogram of the set of n output actions 

used by a controller during a simulation of n time steps. There are 9 possible 

output actions during each time step. Hence, the action histogram contains 9 

bins, as given in equation (6.7). 

9

1

i

i

m n


     (6.7) 

where n is the total number of observations, in this case n = 1000, and 

mi is the number of observations that fall into bin i. The action histogram can 

be thought of as a histogram of the output actions with window size one. 

6.3.2 Action sequence histogram (Histo2) 

The action sequence histogram is the histogram of the set of n-1 

transitions of sequential output actions used by a controller during a 

simulation of n time steps. That is, the action sequence histogram can be 

thought of as a histogram of output actions with window size two. For a set of 

9 possible output actions, there are 81 possible transitions of output actions. 

Hence, the action sequence histogram contains 81 bins, as given in equation 

(6.8). 
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81

1

1i

i

m n


     (6.8) 

where n is the total number of observations, in this case n = 1000, and 

mi is the number of observations that fall into bin i. Action sequence a-b falls 

into bin (9a-9+b). The action histogram can be thought of as a histogram of 

the output actions with window size two. 

6.3.3 Data collection 

The first task of this experiment was to collect human driving data in 

order to build the training data to be used in the evolution process. The human 

player was asked to play the solo version of the car racing simulator game 

several times to be familiarized with its control mechanisms and game physics. 

The initial trial runs were conducted on randomly generated tracks and were 

not recorded. 

Next, the human player was asked to drive on a predefined track. At 

each time step in the simulation, the state of the game was recorded together 

with the output action from the human player. Each simulation lasted 1000 

time steps. The experiment was then repeat 4 more times for a total of 5 sets of 

data on the same race track. It was necessary to restrict the data collection to 5 

trials per track because the human player was able to learn from experience 

and memorize the position of the next waypoint on a track after a few trials. 

The entire experiment was then repeated for 4 other predefined tracks for a 

total of 5 tracks. 

The sets of human driving data for each track were then converted to 

action histograms Histo1 and action sequence histogram Histo2. For each 

track, the averages were obtained from the 5 sets of collected data. 
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Table 6.2 Number of waypoints passed by human collected over 5 trials 

Human 
Score 

Mean Std 

Track 1 17.8 0.45 

Track 2 15 0 

Track 3 15.8 0.45 

Track 4 16 0 

Track 5 17.8 0.84 
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Each point on the polar diagram represents the distance and heading of the current waypoint 

with respect to the last waypoint. 

Figure 6.1 Polar diagram of the waypoints of (a) track 1 (b) track 2 (c) track 3 (d) track 4 and 

(e) track 5 
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Table 6.3 Action histograms and action sequence histograms by human collected over 5 trials 

Track 1 

Histo1       

215.6 215.6 73.4       

82.8 359.8 52.8       

0 0 0             

Histo2 

188.6 15.4 0 11.4 161.4 5.8 0.2 7.6 56.8 

5.2 6 0 1 35 0.6 0 2.8 6 

0 0 0 0 0 0 0 0 0 

13.6 0.2 0 1.8 30.2 1.4 0 0.8 9.4 

57 11.8 0 19.6 292.4 14.4 0 10.8 31.8 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Track 2 

Histo1       

222 255.6 37       

58.6 399 27.8       

0 0 0             

Histo2 

198.6 16.8 0 9.4 199.4 3.4 0 3.6 31.2 

0.8 5.8 0 0.4 42.6 0.2 0 1.8 0.2 

0 0 0 0 0 0 0 0 0 

13 0.4 0 1 35.2 0.2 0 0.2 2.2 

36 9.2 0 21.4 330.2 10.8 0 8.4 16.6 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Track 3 

Histo1       

140.8 204.4 168.4       

29.8 396.2 60.4       

0 0 0             

Histo2 

128.6 8.2 0 4.6 159.8 3.6 0 10.2 150.2 

0.2 3.4 0 0 35.6 0.6 0 4 4 

0 0 0 0 0 0 0 0 0 

6.6 0.2 0 1 26 0.8 0 0 13.8 

17.4 5.6 0 12.2 339.4 16.4 0 7.2 39.4 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Track 4 

Histo1       

107.2 197 185.2       

27.6 448.6 34.4       

0 0 0             

Histo2 

96.8 8.6 0 2.8 159.4 3 0 9.6 173 

0.2 1.6 0 0.4 31 0.4 0 1.2 0.8 

0 0 0 0 0 0 0 0 0 

5.6 0.4 0 2 18.8 0.2 0 0.2 9 

14.6 6.8 0 12.4 402 13 0 5 20.2 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Track 5 

Histo1       

109.2 240.2 157       

65 376 52.6       

0 0 0             

Histo2 

93.8 8.8 0 2.8 195.8 5.8 0 13.2 141.2 

4.8 1.6 0 0.4 35.2 0.2 0 1.6 1 

0 0 0 0 0 0 0 0 0 

11.4 0.4 0 1.2 21.4 0.2 0 0.6 9.8 

44.2 8.8 0 15.6 322.4 14.6 0 5.4 36.8 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
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The 5 tracks used in this experiment were randomly generated in a 

boundary free area. Hence, many portions of each track were overlapping and 

difficult to visualize even if the routes were plotted. As such, the 

characteristics of each track are summarized in the form of a polar diagram in 

Figure 6.1. Each waypoint on a track is characterized by its bearing and 

distance from the last waypoint. A waypoint that is very near and yet at a large 

bearing from the previous waypoint will require the car to make a sharp turn to 

reach it while a waypoint that is very far and have a small bearing offers a 

chance for the car to accelerate to higher speeds. Therefore, the difficulty of a 

given track can be characterized by the distribution of its waypoints on the 

polar diagram. This approach is not as effective as seeing the real layout of a 

track, but it works as a good compromise given the overlapping nature of the 

driving routes. 

The waypoint scores are presented in Table 6.2 while the histograms 

Histo1 and Histo2 are presented in table form in Table 6.3. It was observed 

that human driving used only the actions 4 (Left), 5 (Neutral), 6 (Right), 7 

(Forward Left), 8 (Forward) and 9 (Forward Right) for all the 5 tracks. The 

reversing actions, 1 (Reverse Left), 2 (Reverse) and 3 (Reverse Right) were 

not used. Human driving data also showed a high percentage of the time spent 

doing nothing (i.e. action 5) on all tracks. In Histo2, the dominant action 

sequence was also doing nothing (i.e. 5-5). This was to allow the car to slow 

down due to friction and also to observe feedback of the effects of its actions 

during previous time steps before making the next action. The next dominating 

action sequence was forward acceleration (i.e. 8-8) which was used to drive 

forward in a straight line. 
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Only the data from track 1 will be used for training purposes. The 

remaining tracks will be reserved for testing the generalization capability of 

the evolved controllers. 

6.3.4 Case study 

This section presents an analysis, using histograms, of the differences 

in behaviour between the Human (Hu), Evolved Heuristic (EH) and Evolved 

Neural Network (ENN) controller. Figure 6.4, Figure 6.5 and Figure 6.6 show 

the normalized histogram of the output actions of the controllers EH, ENN and 

Hu respectively. In each figure, high colour intensity (white) indicates a low 

frequency of usage of the output action while low colour intensity (black) 

indicates a high frequency of usage. 
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Figure 6.2 Graphical representation of the action histogram to mimic the layout of arrow keys 

on the keyboard 

Figure 6.4 (a), Figure 6.5 (a) and Figure 6.6 (a) show the simple 

histogram of the actions taken by the controllers during a game. Figure 6.2 

shows how the positions of the squares in the action histograms are interpreted. 

Figure 6.4 (b), Figure 6.5 (b) and Figure 6.6 (b) show the histogram of the 



 152 

change in sequential actions during a game. Figure 6.3 shows how the 

positions of the squares in the action sequence histograms are interpreted. For 

example, if the output action of a controller in the previous time step is 8 

(forward) and the output action in this time step is 9 (forward right), then the 

frequency of the change in action from 8 to 9 is incremented by one. In a 

sequence histogram, this is represented in Figure 6.3 as the square in the first 

row from the top, sixth column from the left and labeled “8-9”. In a game of 

1000 time steps, there are 999 changes in sequential actions. 
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For example, the sequence 8-8 (Forward-Forward) is obtained by pressing the Up arrow 

key twice, hence the „8‟ position of the large grid (single solid line) followed by the „8‟ 

position of the small grid (single dotted line). 

Figure 6.3 Graphical representation of the action sequence histogram based on the layout in 

Figure 6.2 

The comparative action histograms and action sequence histograms for 

tracks 1, 2, 3, 4 and 5 are plotted in Figure 6.7, Figure 6.8, Figure 6.9, Figure 

6.10 and Figure 6.11 respectively. First, the histogram of actions of the 

controllers will be examined for unnatural behaviours. It was observed from 

Figure 6.4 (a) that EH used only the actions 4 (Left), 6 (Right), 7 (Forward 

Left) and 9 (Forward Right), and predominantly actions 7 and 9. This meant 

that in terms of steering, EH was constantly steering either left or right but 
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never neutral. This was counterintuitive as the controllers were expected to 

naturally drive straight once it had aligned itself to the waypoint. 
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Values are normalized. High colour intensity (white) indicates a low frequency of usage while 

low colour intensity (black) indicates a high frequency of usage. 

Figure 6.4 Histogram of the (a) output actions and (b) output action sequences of the EH on 

track 1 
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Values are normalized. High colour intensity (white) indicates a low frequency of usage while 

low colour intensity (black) indicates a high frequency of usage. 

Figure 6.5 Histogram of the (a) output actions and (b) output action sequences of the ENN on 

track 1 
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Values are normalized. High colour intensity (white) indicates a low frequency of usage while 

low colour intensity (black) indicates a high frequency of usage. 

Figure 6.6 Histogram of the (a) output actions and (b) output action sequences of the Hu on 

track 1 
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(b) 

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on 

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits 

from action a to action b. 

Figure 6.7 Comparative (a) action histograms and (b) action sequence histograms of human 

driving data, heuristic evolved controller, and neural network evolved controller on track 1 
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(b) 

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on 

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits 

from action a to action b. 

Figure 6.8 Comparative (a) action histograms and (b) action sequence histograms of human 

driving data, heuristic evolved controller, and neural network evolved controller on track 2 
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(b) 

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on 

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits 

from action a to action b. 

Figure 6.9 Comparative (a) action histograms and (b) action sequence histograms of human 

driving data, heuristic evolved controller, and neural network evolved controller on track 3 
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(b) 

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on 

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits 

from action a to action b. 

Figure 6.10 Comparative (a) action histograms and (b) action sequence histograms of human 

driving data, heuristic evolved controller, and neural network evolved controller on track 4 
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(b) 

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on 

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits 

from action a to action b. 

Figure 6.11 Comparative (a) action histograms and (b) action sequence histograms of human 

driving data, heuristic evolved controller, and neural network evolved controller on track 5 
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In the case of ENN, it was observed in Figure 6.5 (a) that the controller 

used only the actions 1 (Reverse Left) and 3 (Reverse Right). This meant that 

ENN was driving in reverse throughout the simulation. ENN found this as a 

better solution than driving forwards because the acceleration associated with 

reverse driving is smaller in magnitude compared to the acceleration for 

forward driving. The result of this was that ENN can better manipulate the 

driving trajectory of the car and avoid being trapped in orbits around 

waypoints due to large minimum turning radius. However, it was highly 

unnatural for a human player to drive a vehicle in reverse throughout the entire 

game. Moreover, ENN suffers the same constant steering but never neutral 

problem as EH. 

The action histogram of Hu is shown in Figure 6.6 (a). It was observed 

that Hu used the actions 4 (Left), 5 (Neutral), 6 (Right), 7 (Forward Left), 8 

(Forward) and 9 (Forward Right), and predominantly action 5. Hu did not 

drive in reverse because forward driving was more intuitive. Hu also spent a 

high percentage of the time doing nothing (i.e. action 5). This was to allow the 

car to slow down due to friction and also to observe feedback of the effects of 

its actions during previous time steps before making the next action. 

Additionally, action 8 (i.e. Forward only and neutral steering) was frequently 

used once Hu had aligned the car to the waypoint. 

Next, the histogram of the action sequence of the controllers will be 

examined. It was observed in Figure 6.4 (b) that EH frequently used the 

sequences 7-7 (Forward Left-Forward Left), 7-9 (Forward Left-Forward 

Right), 9-7 (Forward Right-Forward Left) and 9-9 (Forward Right-Forward 

Right). The sequences 7-7 and 9-9 were natural as it implied that the controller 
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needed to make a hard left turn (7-7) or hard right turn (9-9) and so it used the 

same action sequentially. However, it was unnaturally to frequently switch 

between right and left (7-9 and 9-7). During visual observations, EH could be 

seen oscillating its heading left and right about the straight line from its 

current position to the waypoint. This constant „fidgeting‟ made its driving 

behaviour unnatural to the human observer. 

The action sequence histogram of ENN is shown in Figure 6.5 (b). It 

was observed that ENN used only the sequences 1-1 (Reverse Left-Reverse 

Left), 1-3 (Reverse Left-Reverse Right), 3-1 (Reverse Right-Reverse Left) and 

3-3 (Reverse Right-Reverse Right). Similar to that of EH, the sequences 1-1 

and 3-3 were natural driving behaviours. However, ENN also had the same 

unnatural driving behaviour as with EH. It also oscillated its heading about the 

straight line from its current position to the waypoint, only this time in the 

reverse direction. 

For Hu, it was observed from Figure 6.6 (b) that the more prominent 

sequences used were 4-4 (Left-Left), 5-5 (Neutral-Neutral), 6-6 (Right-Right), 

7-7 (Forward Left-Forward Left), 8-8 (Forward-Forward) and 9-9 (Forward 

Right-Forward Right). In effect, Hu frequently repeated its actions and seldom 

switched to other actions. In contrast to EH and ENN, Hu did not frequently 

use left to right or right to left switching. The result was a more believable 

driving behaviour. 

The discussion above can easily be generalized to other tracks as 

demonstrated by the similarity of the histograms in Figure 6.7, Figure 6.8, 

Figure 6.9, Figure 6.10 and Figure 6.11. The lack of neutral commands was 
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evident in all tracks and the differences in frequencies of left and right 

commands was a result of the track profile. 

From the observations above, the advantages and the disadvantages of 

evolutionary computation were demonstrated. The evolved controllers were 

able to exploit the fitness function to find good driving controllers that 

maximize the number of waypoints passed. They were also able to find 

unexpected solutions that satisfied the fitness function just as well. However, 

unexpected solutions can be a double edged sword. In data mining problems, 

unexpected solutions can lead to the discovery of novel relationships amongst 

large data sets. But in application to gaming, unexpected solutions can ruin the 

suspension of disbelief for the user, thereby reducing their satisfaction in the 

game. As shown in this case study, the evolved controllers produced 

unexpected and also unnatural driving behaviours. 

In this section, the action histograms and action sequence histograms 

of previously evolved controllers were quantitatively and qualitatively 

analyzed and associated to some of the unnatural and unrealistic driving 

behaviours that were visually observed. It could be seen that the differences in 

driving behaviours between the evolved controllers and the human player 

could be traced to the types of actions and sequence of actions used during the 

simulation. 

As such, the use of action histograms and action sequence histograms 

is proposed as a form of guided training so as to evolve believable controllers 

that appear more natural to human players by imitating the low level 

behavioural tendencies of human players. That is, if the evolved controller is 

able to learn the histograms of the data collected from human driving, then the 
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evolved controller will drive in a more believable manner. As driving 

competency and driving believability are not directly related, the basic single 

objective evolutionary framework will be unable to optimize both these 

criteria at the same time. Therefore, the multi-objective evolutionary 

framework needs to be introduced to cope with the addition of believability as 

a second objective. 

6.3.5 Histograms of small window sizes 

Following the above discussion, it can be seen that histograms of larger 

window sizes up to n is possible. The number of input samples in a histogram 

is related to the window size by equation (6.9). 

 1k n w       (6.9) 

where k is the number of input samples in a histogram of window size 

w, and n is the total number of observations. In the case where n = w, there 

would only be one input to the histogram. 

The size of a histogram (i.e. the number of frequency bins) of window 

size w is given by 9
w
. It was observed that with increasing window size, the 

number of input samples decreased linearly while the number of frequency 

bins in the corresponding histogram increased exponentially. This would result 

in many unfilled frequency bins. Unfilled bins are undesirable because an 

evolutionary algorithm will not be able to distinguish one unfilled bin from 

another. That is, unfilled bins do not provide useful information to guide the 

evolution. Therefore, increasing the window size will make the fitness 

landscape increasingly complex and difficult. To illustrate, if a histogram of 

window size n (i.e. n = w = 1000) is used, then only one bin will be filled 
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while all the other 9
w
 – 1 bins will be unfilled. This encourages the evolution 

process to find a solution that will imitate the training data exactly. Not only is 

this problem difficult, it will also likely produce a solution that will not be able 

to generalize well to other unseen situations. This makes histograms of larger 

window sizes not suitable as candidates for fitness functions. 

The choice of using histograms of small window sizes as fitness 

functions serves yet another objective. The objective of this experiment is not 

to imitate human behaviours. Rather, the aim is to induce non-player 

characters (NPC) in a game with humanlike characteristics through evolution. 

That is, the window sizes of the histograms are deliberately made small in 

order to capture low level reactionary behavioural tendencies in humans rather 

than high level strategic planning. Strategies are problem dependent (i.e. track 

dependent) but reactionary behaviours tend to be consistent. For instance, 

characters may choose to smile or frown depending on who they are talking to, 

but they will always blink their eyes. Hence, the goal is to improve the 

believability of an NPC through the induction of such behavioural tendencies 

(i.e. learning how to blink our eyes). Additionally, the use of histograms of 

small window sizes discourages the learning of long action sequence chains 

during training so that the evolved solution is more likely to generalize better 

to situations other than the ones in training. The proposed action histograms 

framework is designed to work with other games of similar discrete control 

schemes such as platform games (i.e. Super Mario, Rayman) and arcade 

shooters (i.e. Asteroids, Space Invaders). 
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6.4 Fitness functions 

The controller needs to drive well on a given track and at the same 

time drive in a believable manner. Hence, the fitness functions to use for 

evolution must be able to guide the evolution of the controller towards a 

balance of these incomparable objectives. 

6.4.1 Waypoints 

The number of waypoints is used as an objective to evolve driving 

performance. How well a controller drives on a given track can be directly 

measure by the distance covered by the car within a stipulated time. In the 

experiments, the time of each game is fixed at 1000 time steps. Each track is 

defined by the sequential order of its waypoints within a square, obstacle-free 

game area. From one waypoint to the next, a controller is not confined to any 

particular path. In practice, the controller may choose to drive around a large 

circular path or simply a straight line towards the next waypoint. Hence, 

directly measuring the distance covered by the car may not be a good indicator 

of the driving ability of a controller in a track. Instead, the number of 

waypoints passed by a car is used as a measure of the racing ability of a 

controller. That is, the more waypoints passed the more effective the controller 

is in driving towards its destination. Therefore, the objective is to maximize 

the number of waypoints passed. 

6.4.2 Histo1 (Action histogram) 

The action histogram is the first of two fitness functions used as an 

objective to evolve believability. An evolved controller is considered to be 

believable if it is able to drive around a given training track using a set of 
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actions similar to that of a human player driving on the same track. For a given 

training track, the objective is to minimize the sum of squared difference 

between the action histogram of the evolved controller and that of the human 

player, as given in equation (6.10). 

 
9

2

1

1

min i i

i

f H m


                 (6.10) 

where Hi is the number of observations that fall into bin i for the 

human player and mi is the number of observations that fall into bin i for the 

evolved controller. 

6.4.3 Histo2 (Action sequence histogram) 

The action sequence histogram is the second function used as an 

objective to evolve believability. The effectiveness of both the action 

histogram and the action sequence histogram will be compared in subsequent 

experiments. An evolved controller is considered to be believable if it is able 

to drive around a given training track using a set of actions transitions similar 

to that of a human player driving on the same track. For a given training track, 

the objective is to minimize the sum of squared difference between the action 

sequence histogram of the evolved controller and that of the human player, as 

given in (6.11). 

 
81

2

2

1

min i i

i

f H m


                 (6.11) 

where Hi is the number of observations that fall into bin i for the 

human player and mi is the number of observations that fall into bin i for the 

evolved controller. 
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6.5 Single objective evolution 

The purpose of the single objective experiments is to demonstrate the 

incomparable nature of the good driving and believable driving. In addition, 

the effects of introducing sensor noise will also be discussed. In the single 

objective experiments, a (40+40) ES ‎[124], running for 200 generations was 

used as a training method. Self adaptive learning was not applied. The 

mutation operator was a Gaussian perturbation with a step size of 0.1 and a 

probability of 0.9. Tournament selection was used and elitism was set to 10%. 

Each individual was evaluated on its own (i.e. solo game) and the results were 

averaged over 10 evaluations. Two fitness functions were compared, the 

number of waypoints and the sum of squared errors (SSE) of Histo1. Each set 

of experiments was repeated with sensor noise and without sensor noise. In the 

case without sensor noise, each individual was encoded with 10 real value 

variables. In the case with sensor noise, each individual was encoded with 18 

real value variables. The track used for training was track 1. 

6.5.1 Number of waypoints 

The objective was to maximize the number of waypoints passed. The 

experiment was conducted for 2 cases, without sensor noise and with sensor 

noise. For each experiment, both the number of waypoints and the SSE of 

Histo1 are presented for discussion although only the number of waypoints 

was used as the fitness function.  
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6.5.1.1 Without noise 

The training fitness for the case without sensor noise is presented in 

Figure 6.12 and Figure 6.13. The figures were obtained by plotting the boxplot 

of the fitness of the best individual at each generation of 10 independent runs. 

It was observed from Figure 6.12 that the fitness of independent runs 

converged to a score of 21 waypoints at 92 generations. The score of 21 

waypoints was also significantly higher than the 17.8 waypoints for human 

driving. Next, the values of the SSE of Histo1 over the generations were 

examined to see if there were observable relationships to the number of 

waypoints. It was observed from Figure 6.13 that the SSE steadily decreased 

over the first 60 generations. This result was expected as the controllers 

evolved from random actions to directed actions that drove towards the 

waypoints. 
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Boxplot of the number of waypoints at every generation up to 200 generations. 

Figure 6.12 Boxplot of the number of waypoints for single objective optimization to maximize 

number of waypoints, without sensor noise 
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Boxplot of the sum of square errors of Histo1 (actions) at every generation up to 200 

generations. Final mean value is 2.790×10
5
. 

Figure 6.13 Boxplot of the sum of square errors of Histo1 for single objective optimization to 

maximize number of waypoints, without sensor noise 

However, the SSE of Histo1 stagnated after 60 generations to a mean 

of 2.790×10
5
 even as the number of waypoints continued to increase. Visual 

observations of the evolved controllers revealed that the evolved behaviour 

was identical to that of the Evolved Heuristic Controller. This indicated that 

the number of waypoints scored and SSE of Histo1 were not directly related. 

6.5.1.2 With noise 

Next, sensor noise was introduced to the controller to investigate if the 

use of noisy sensors to imitate errors in human judgments would improve the 

believability of the evolved controllers. The training fitness for the case with 

sensor noise is presented in Figure 6.14 and Figure 6.15. 

In Figure 6.14, it was observed that the population converged to the 

same optimal waypoint score of 21, similar to the case without the 
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introduction of sensor noise. Therefore, it could be said that the introduction of 

sensor noise did not degrade the driving performance of the evolved controller, 

and that evolving the sensor noise parameters and the controller parameters 

together was feasible. However, it did delay the rate of convergence as the 

population converged after about 120 generations compared to 92 generations 

without noise. This result was expected as there were more variables to evolve 

in the case with noise. Furthermore, the stochastic nature of the sensors made 

the search space more complicated. 
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Boxplot of the number of waypoints at every generation up to 200 generations. 

Figure 6.14 Boxplot of the number of waypoints for single objective optimization to maximize 

number of waypoints, with sensor noise 
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Boxplot of the sum of square errors of Histo1 (actions) at every generation up to 200 

generations. Final mean value is 1.381×10
5
. 

Figure 6.15 Boxplot of the sum of square errors of Histo1 for single objective optimization to 

maximize number of waypoints, with sensor noise 

It was observed from Figure 6.15 that the SSE of Histo1 was 

decreasing throughout the evolution, even after the waypoint score converged 

to a mean of 1.381×10
5
 after 120 generations. The value of the SSE was also 

lower than the case without noise (i.e. 2.790×10
5
). Firstly, this showed that for 

the same performance in waypoint score, the SSE of Histo1 had the potential 

to be further reduced. Secondly, the introduction of sensor noise to the evolved 

controllers had the potential to be effective in improving the believability of 

the evolved controllers (i.e. reduce SSE of Histo1). 

6.5.2 Action histogram (Histo1) 

In this section, the objective was changed to minimize the SSE of the 

Histo1. The training track and data used was track 1. The experiment was 

conducted for 2 cases, without sensor noise and with sensor noise. For each 
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experiment, both the number of waypoints passed and the SSE of Histo1 are 

presented for discussion although only the SSE of Histo1 was used as the 

fitness function. 

6.5.2.1 Without noise 

The training fitness for the case without sensor noise is presented in 

Figure 6.16 and Figure 6.17. The figures were obtained by plotting the 

respective boxplot of the fitness of the best individual at each generation of 10 

independent runs. 
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Boxplot of the number of waypoints at every generation up to 200 generations. 

Figure 6.16 Boxplot of the number of waypoints for single objective optimization to minimize 

the sum of squared errors of Histo1, without sensor noise 
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Boxplot of the sum of squared errors of Histo1 (actions) at every generation up to 200 

generations. Final mean value is 7.165×10
4
. 

Figure 6.17 Boxplot of the sum of squared errors of Histo1 for single objective optimization to 

minimize the sum of squared errors of Histo1, without sensor noise 

It was observed from Figure 6.16 that the waypoint score rose to as 

high as 5 points, albeit only an outlier, in the first 30 generations although it 

was not used as a fitness function. This was likely due to the random 

movement of the evolved controller that coincidentally passed through some 

waypoints. For the remaining of the generations, the waypoint score remained 

at zero. 

In Figure 6.17, it was observed that the SSE of Histo1 decreased 

rapidly for the first 30 generations. In the remaining generations, only 

incremental improvements were observed. The final value of the SSE of 

Histo1 had a mean of 7.165×10
4
 which was lower than the case of optimizing 

only waypoint score with sensor noise (i.e. 1.381×10
5
). This implied that the 

SSE could still be further reduced. 



 173 

Taking both Figure 6.16 and Figure 6.17 as a whole, it was observed 

that optimizing Histo1 alone did not improve driving performance. This result 

further reinforced that the number of waypoints scored and the SSE of Histo1 

were not directly related. Hence, a multi-objective framework was necessary 

to optimize both objectives simultaneously. 

6.5.2.2 With noise 

Next, sensor noise was introduced to the controllers and evolved using 

the SSE of Histo1 as the fitness function. The training fitness for the case with 

sensor noise is presented in Figure 6.18 and Figure 6.19. 
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Boxplot of the number of waypoints at every generation up to 200 generations. 

Figure 6.18 Boxplot of the number of waypoints for single objective optimization to minimize 

the sum of squared errors of Histo1, with sensor noise 
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Boxplot of the sum of squared errors of Histo1 (actions) at every generation up to 200 

generations. Final mean value is 5.486×10
3
. 

Figure 6.19 Boxplot of the sum of squared errors of Histo1 for single objective optimization to 

minimize the sum of squared errors of Histo1, with sensor noise 

It was observed in Figure 6.18 that the waypoint scores between 

independent runs during training had a higher standard deviation compared to 

the case without sensor noise. This was due to the stochastic nature of the 

noise in the sensors which resulted in more coincidental passing through of 

waypoints. However, the scores were still close to zero and no upward trend 

was observed. 

From Figure 6.19, it was observed that the SSE of Histo1 reduced 

rapidly for the first 70 generations before converging. The mean value of the 

converged SSE of Histo1 was 5.486×10
3
, significantly lower than 7.165×10

4
 

in the case of optimizing the SSE of Histo1 without noise, 1.381×10
5
 in the 

case of optimizing waypoint score with noise, and 2.790×10
5
 in the case of 

optimizing waypoint score without noise. This meant that there was, on 

average, an error of 24.69 actions per bin in Histo1 for optimizing the SSE of 
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Histo1 with noise compared to an average of 176.1 error actions per bin in the 

case of optimizing waypoints without noise. This result was significant 

because it demonstrated that evolving controllers to imitate human behaviours 

using action histograms as the fitness function was feasible. The range of 

acceptable values for the SSE of Histo1 should be in the magnitude of 10
3
. 

The next step would involve evolving controllers that were able to drive well 

and believably at the same time using the multi-objective framework. 

6.6 Multi-objective evolution 

In the previous section, it was demonstrated that the objectives of 

driving well (i.e. number of waypoints) and driving believably (i.e. SSE of 

Histo1) were not directly related. In the single objective experiments, either 

one of the objectives could be optimized but not both simultaneously. It was 

also demonstrated that the inclusion of sensor noise that evolved together with 

the controllers was feasible and could improve the SSE of Histo1 without 

degrading the driving performance of the controller. In this section, both 

driving performance and driving believability will be optimized together using 

the multi-objective (MO) evolutionary framework. Multi-objective 

optimization is introduced in this work to find a balance between two 

incomparable objectives, driving performance and driving believability. That 

is, the controller needs to be able to drive well on a given track and at the same 

time drive in a believable manner. 

The experiments conducted in this section will be discussed in four 

parts. The training results are discussed first. Next, the effects of the evolved 

sensor noise are examined. The generalization capability of the evolved 
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controllers is covered in the third section. Finally, a user study is conducted 

and its results are analyzed. 

In order to be more concise, the controllers of interest evolved during 

training will be abbreviated according to the list given in Table 6.4. Other 

frequently used controllers are also abbreviated. 

Table 6.4 Abbreviated list of controllers that are frequently used in text 

Controller name Objective 1 Objective 2 Remarks 

H1H 
Waypoints Histo1 

High score 

H1L Low SSE 

H2H 
Waypoints Histo2 

High score 

H2L Low SSE 

Hu - - Human 

EH Waypoints - Heuristic [166] 

ENN Waypoints - Neural network [166] 

6.6.1 Training 

In this section, both driving performance and driving believability will 

be optimized simultaneously using the MO evolutionary framework. The 

parameters used in the MO experiments were identical to that of the single 

objective experiments. A (40+40) ES, running for 200 generations was used as 

a training method. Self adaptive learning was not applied. The mutation 

operator was a Gaussian perturbation with a step size of 0.1 and a probability 

of 0.9. Each individual was evaluated on its own (i.e. solo game) and the 

results averaged over 10 evaluations. Two combinations of fitness functions 

were considered; first, maximize number of waypoints and minimize the SSE 

of Histo1, and second, maximize the number of waypoints and minimize the 

SSE of Histo2. At each generation, the individuals were ranked in terms of 

Pareto optimality, tournament selection was used. The objective was to 

compare the differences and effectiveness of using Histo1 or Histo2 to evolve 

believable behaviours. Each set of experiments was repeated without sensor 
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noise and with sensor noise. In the case without sensor noise, each individual 

was encoded with 10 real value variables. In the case with sensor noise, each 

individual was encoded with 18 real value variables. The track used for 

training was track 1. Note that because Histo1 consists of 9 frequency bins 

while Histo2 consists of 81 frequency bins, and Histo1 is populated by 1000 

actions samples while Histo2 is populated by 999 action sequences samples, 

the SSE values of Histo1 and Histo2 cannot be directly compared. 

6.6.1.1 Waypoints and Histo1 (action histogram) 

In this experiment, the objective was to maximize the number of 

waypoints scored and minimize the SSE of Histo1. The experiment was 

repeated without sensor noise and with sensor noise. The results were obtained 

from 10 independent runs and the non-dominated controllers are plotted in 

Figure 6.20. 

For both experiments, without and with noise, a clear Pareto front can 

be observed. These indicated that there existed a tradeoff between the number 

of waypoints scored and the SSE of Histo1. A high waypoint score could only 

be achieved by driving less humanlike, while a more humanlike driving 

behaviour would result in a lower waypoint score. 

It was also observed that the Pareto front of the case with sensor noise 

dominated the Pareto front of the case without sensor noise. It showed that 

introducing sensor noise to simulate realistic human judgment errors was 

necessary and had the effect of evolving controllers that drive more believably 

without degrading its driving performance. More details about the effects of 

sensor noise will be discussed in the next section. 
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Results are plotted at the end of 200 generations for experiments with and without sensor 

noise. With noise, the data ranged from (502.9, 18) to (5.55×10
4
, 20.8). Without noise, the 

data ranged from (2.215×10
4
, 3) to (2.722×10

5
, 21). 

Figure 6.20 Multi-objective optimization to maximize the number of waypoints and minimize 

the sum of squared errors of Histo1 
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Action labeled on the horizontal axis follows that in Table 6.1. 

Figure 6.21 Comparative action histograms of Hu, H1L, and EH (left to right) 
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Action sequence labeled on the horizontal axis is derived from the equation 9a-9+b where an 

action sequence transits from action a to action b. 

Figure 6.22 Comparative action sequence histograms of Hu, H1L, and EH (left to right) 

The next consideration for designers was to select the most suitable 

controller from the set of candidate solutions in the Pareto front. In this study, 

two ways of choosing the solution controller will be recommended. First, 

choose the controller with the lowest SSE because it had an action histogram 

that most resemble human driving data. Or second, choose the controller with 

a waypoint score that best match the human driving score. This will provide a 

good tradeoff of driving performance and believability. The solution with the 

lowest SSE (H1L) was selected for the purpose of comparison. The histograms 

from Hu, H1L, and EH are presented in bar chart form in Figure 6.21 and 

Figure 6.22. 

It was observed from Figure 6.21 that H1L was able to drive using 

actions similar to Hu terms of Histo1. There was a significant reduction in 

actions 7 and 9 compared to EH. Also, H1L made frequent use of actions 5 
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and 8 which were used in Hu but were not used by EH. In Figure 6.22, it was 

observed that H1L was also able to match Hu better than EH in terms of 

Histo2. 

6.6.1.2 Waypoints and Histo2 (action sequence histogram) 

In this experiment, the objective was to maximize the number of 

waypoints score and minimize the SSE of Histo2. This experiment was also 

repeated for cases without and with sensor noise. The results were obtained 

from 10 independent runs and the non-dominated controllers are plotted in 

Figure 6.23. 
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Results are plotted at the end of 200 generations for experiments with and without sensor 

noise. With noise, the data ranged from (1.432×10
4
, 16.2) to (4.335×10

4
, 20.4). Without noise, 

the data ranged from (8.673×10
4
, 14) to (1.293×10

5
, 21). 

Figure 6.23 Multi-objective optimization to maximize the number of waypoints and minimize 

the sum of squared errors of Histo2 
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Action labeled on the horizontal axis follows that in Table 6.1. 

Figure 6.24 Comparative action histograms of Hu, H2L, and EH (left to right) 
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Action sequence labeled on the horizontal axis is derived from the equation 9a-9+b where an 

action sequence transits from action a to action b. 

Figure 6.25 Comparative action sequence histograms of Hu, H2L, and EH (left to right) 

A point to note here was that the SSE of Histo1 and the SSE of Histo2 

were not directly comparable and should not be viewed as such. This was 
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because of the difference in histogram space. There were only 9 bins in Histo1 

compared to 81 bins in Histo2. For example, assuming the 1000 actions to be 

evenly distributed in the 9 bins of Histo1, the SSE for track 1 would be 

195397.6. Assuming the 999 action sequences to be evenly distributed in the 

81 bins in Histo2, the SSE for track 1 would be 570787.3. Therefore, it was 

expected that the optimized values of SSE of Histo1 would be usually lower 

than the optimized values of SSE of Histo2 because there was a lesser number 

of frequency bins in Histo1. 

It was observed that a clear Pareto front was created for both without 

and with sensor noise. This indicated that there existed a tradeoff between the 

number of waypoints scored and the SSE of Histo2. It was also noted that the 

controllers with sensor noise were able to form a Pareto front that dominated 

the one formed by the controllers without sensor noise. This reinforced the 

findings that introducing sensor noise to simulate human judgment errors had 

the effect of evolving controllers that drove more believably without 

degrading driving performance. 

In this experiment, the controller with the lowest SSE of Histo2 (H2L) 

was selected for comparison with the data from controllers Hu and EH. The 

histograms of these controllers are presented in bar chart form in Figure 6.24 

and Figure 6.25. 

From Figure 6.25, it was observed that H2L matched well with Hu in 

Histo2 since the SSE of Histo2 was used as the fitness function in this 

experiment. Although Histo1 was not used as a fitness function, H2L also 

managed to obtain Histo1 results that were similar to Hu. This was because the 

action sequences in Histo2 were derived from Histo1. Therefore, a controller 
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that was evolved to match the action sequences in Histo2 will also match the 

actions in Histo1 as a side effect. The computation time required to evaluate 

the fitness function was also increased. 

6.6.2 Effects of noise 

In this section, the effects of introducing sensor noise to the controller 

will be investigated. The Gaussian sensor noise introduced to the controller 

could be divided into three components, the mean, the standard deviation, and 

the decay. Since the noise was introduced to the sensors to imitate errors in 

human judgment, it will be analyzed in terms of measurement errors in 

observation. 

Measurement errors are divided into two components, systematic error 

and random error. A basic type of systematic error is caused by the incorrect 

calibration of the measuring instrument. This error is constant and is always 

present even in separate measurements. The mean of the Gaussian noise 

introduced to the controller is analogous to systematic errors. On the other 

hand, random errors are inconsistent in repeated measures and tend to be 

scattered about the true value. Random errors can be caused by imprecise 

instruments or subjective interpretation of the instrument reading by the user 

such as parallax errors. This is analogous to the standard deviation of the 

Gaussian noise introduced to the controller. Finally, the error in judging 

distances in a virtual environment increases with distance ‎[20]. This is 

represented by making the noise a function of the distance to the object. That 

is, more noise is introduced when observing a distant object and less noise for 

a nearby object. 
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It may be interesting to analyze the controller parameters and the noise 

parameters separately to see how much „noise‟ is optimal. However, this was 

not possible in practice. This was because while the controller and the noise 

components were designed as separate entities, the evolutionary algorithm saw 

the problem as a whole. In addition, evolutionary optimization algorithms 

were known to exploit the dynamics in the inputs and the fitness functions to 

produce good and unexpected results. Due to this limitation, it was not 

possible to isolate the noise component from the controller. Consequently, 

simply looking at the final evolved values of the mean and standard deviations 

were not meaningful either. As such, each noise component was introduced 

modularly and its effects analyzed using a black box approach. 
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Results are plotted at the end of 200 generations for various combinations of sensor noise. 

Figure 6.26 Pareto diagram of solutions evolved using waypoints and Histo1 as objectives 
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Results are plotted at the end of 200 generations for various combinations of sensor noise. 

Figure 6.27 Pareto diagram of solutions evolved using waypoints and Histo2 as objectives 

The three components of the noise were introduced to the controller in 

a modular way and the results of the training were summarized in the form of 

a Pareto diagram. The results for using Histo1 and Histo2 as the fitness 

function are shown in Figure 6.26 and Figure 6.27 respectively. Each figure 

has three Pareto fronts labeled front 1, front 2, and front 3 respectively. Front 

3 dominants front 2 which dominants front 1. 

The effect of evolving only the mean component of the Gaussian noise 

(systematic error) was first considered. For Histo1, it was observed that 

evolving mean noise degraded the performance of the controller. That is, the 

solutions with mean noise (front 1) were completely dominated by the 

solutions without noise at all (front 2). The result was similar in the case of 

Histo2 except that the solutions without noise was more scattered (front 1 and 

2) and did not consistently converge to an obvious Pareto front. These results 

suggested that adding only mean noise or simply a constant bias to the sensors 
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did not improve the performance of the controller. This can be appreciated 

intuitively as using an improperly calibrated instrument in an experiment will 

do more harm than good. 

Next, the effect of evolving the standard deviation component of the 

Gaussian noise (random error) was considered. In Histo1, evolving only 

standard deviation resulted in the formation of two Pareto fronts, one of which 

(front 2) is the same front as that of no noise added and one other (front 1) was 

the same as that with evolved mean noise. This implied that evolving the 

standard deviations increased the dimension of the search space and made the 

fitness landscape more complex such that some solutions became trapped in 

local optima. However, during good runs, the solutions with evolved standard 

deviation were as good as those without noise at all. Next, the case of evolving 

only mean against evolving both mean and standard deviation will be 

considered. It was observed in Figure 6.26 that evolving both mean and 

standard deviation produced two Pareto fronts, one (front 1) identical to that 

evolved with mean only, and a dominant one (front 3) better than that without 

noise (front 2). This suggested that evolving both mean and standard deviation 

produced better solutions than the case without noise. This result was also 

observed in the case of using Histo2 as the fitness function in Figure 6.27. 

To better appreciate the reasons for this improvement, the decision 

regions of the speed regulating component of the controller is plotted in Figure 

6.28. For each controller, two lines were plotted. If the instantaneous speed 

was above both lines, then a brake action was asserted. If the speed was below 

both lines, an accelerate action was asserted. If the speed was between the 

lines, a neutral action was asserted. It was observed that for the no noise 
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controller, the two lines were very close together. This meant that either the 

accelerate action or brake action would be asserted a large percentage of the 

time while the neutral action would rarely be asserted. For the controller with 

evolved standard deviation, the two lines were further apart and hence the 

neutral action was asserted more frequently. Recall that Hu used the neutral 

action more often than any other actions. Therefore, a controller that asserts 

the neutral action more frequently (i.e. controller with evolved standard 

deviation) would obtain a lower SSE and hence was a fitter solution. 
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If the instantaneous speed is above both lines, then accelerate; below both lines, then brake; 

otherwise, neutral. 

Figure 6.28 Evolved decision space of hyperbolic tangent driving function for the case of no 

noise and standard deviation only 

To further appreciate how such a solution was evolved, the decision 

space of the controller was examined. Suppose the two decision lines were 

close together and random noise (i.e. standard deviation) was present. Then for 

multiple similar situations, the observed sensor measurements would be 

different every time, both above and below the decision lines. This would 
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result in different actions asserted for the similar situations and hence 

inconsistent fitness values. As a result, the decision lines were evolved to have 

a large margin to minimize the difference in asserted actions for similar 

situations and hence more consistent results. As a side effect, the larger neutral 

region in the decision space produced lower SSE which further improved the 

fitness of the solution. This led to the better solutions (front 3) observed in 

Figure 6.26 and Figure 6.27. 

Next, the effect of adding the decay function to the noise was 

considered. It was observed in both Figure 6.26 and Figure 6.27 that adding 

the decay function resulted in slightly better solution fronts along front 3 

compared to the case without decay (i.e. evolved mean and standard deviation 

only). It could be said that the best solutions with decay dominates the best 

solutions without decay in both Histo1 and Histo2. Furthermore, the results for 

the case with the decay function were more consistent with nearly all its 

solutions in front 3 compared to the case without decay where only a handful 

of solutions were located in front 3. In the case of evolved mean and standard 

deviation without any decay mechanisms, there were soft constraints on both 

parameters. That is, if the mean (systematic error) or standard deviation 

(random error) were always present and too large in magnitude, the controller 

would be unable to score any points because it would not be able to arrive at 

its desired destination (i.e. the waypoint). The introduction of the decay 

function ensured that the effects of sensor errors be reduced when the 

destination was near so that the controller would eventually reach its 

destination to score a point. In effect, this removed the constraints on the noise 



 189 

parameters and made the fitness landscape less complex, resulting in the better 

rate of convergence and better solutions. 

6.6.3 Generalization 

It is important that the evolved controllers not only perform well in 

training, but they must also be able to perform well in new and unseen 

situations. As such, it is important to consider the generalization capability of 

the evolved controllers. Human driving data was collected for 5 different 

tracks. Only track 1 was used in the training process, the other tracks 2, 3, 4 

and 5 were reserved to test the generalization capability of the evolved 

controllers. 

Six controllers were evaluated on all 5 tracks. The six chosen 

controllers were Hu, H1L, H1H, H2L, H2H, and EH. The comparative results 

are presented in Table 6.5. The results with the lowest difference in score 

compared to the human, the lowest mean and standard deviation of SSE of 

Histo1, and the lowest mean and standard deviation of SSE of Histo2 are 

highlighted in bold. 

It was observed from Table 6.5 that some controllers had waypoint 

scores of 1 or 0. This meant that these controllers were able to pass through 

only 1 waypoint or no waypoint at all on the test tracks. This implied that the 

driving behaviours learnt in the training were not able to generalize well to 

previously unseen tracks. In this respect, the controllers EH and H2H failed on 

track 3. 

The controllers of more interest to us were the ones with high 

believability (i.e. low SSE). It was observed that the controllers H1L and H2L 

were able to obtain waypoint scores that were similar to the human in all 4 test 



 190 

tracks. These controllers were also able to maintain low mean values of SSE in 

both Histo1 (magnitude of 10
4
 or less) and Histo2 (magnitude of 10

5
 or less) 

on all 4 test tracks. Hence, it can be said that both controllers H1L and H2L 

were able to generalize well to previous unseen tracks. That is, both 

controllers were able to transfer the knowledge learnt on the training track 

onto previously unseen tracks. 

Comparing only H1L and H2L on each test track, H1L obtained a 

lower SSE in both Histo1 and Histo2 on test track 2 while H2L obtained a 

lower SSE in both Histo1 and Histo2 on test tracks 3, 4, and 5. It was also 

observed that H2L achieved lower standard deviations on all 4 test tracks. 

That is, on test tracks 3, 4, and 5, H2L which was evolved using Histo2 as its 

fitness function, obtained a lower SSE in Histo1 compared to H1L despite the 

fact that H1L was evolved using Histo1 as its fitness function. This implied 

that controllers evolved using Histo2 as the fitness function produced more 

robust and consistent controllers. This was because Histo2 was derived from 

Histo1. Hence, a controller optimized on Histo2 will inadvertently be 

optimized on Histo1 as well. The reverse was not true. From another 

perspective, Histo2 contained more information about the human than Histo1. 

This effect was evident on test tracks 3, 4, and 5 where H2L, which was 

evolved using Histo2, obtained lower SSE in Histo1 compared to H1L, despite 

the latter being evolved using Histo1 directly. However, the disadvantage was 

that the search space was more complicated and the computation time required 

was longer. 
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Table 6.5 Comparative results of human driving data, multi-objective controllers, and single 

objective controllers on training track 1 and testing tracks 2, 3, 4 and 5 

All controllers have sensor noise. For waypoint score, the controller with the smallest score 

difference when compared to the human driving data is highlighted in bold. For sum of 

square errors (SSE), the controller with the small mean value and the controller with the 

smallest standard deviation are highlighted in bold. Zero mean scores really mean the 

controllers scored zero points as they were stucked in an orbit around the first waypoint. 

Controller 
Score SSE of Histo1 SSE of Histo2 

Mean Std Mean Std Mean Std 

Track 1 (Training data) 

Hu 17.80 0.45 - - - - 

H1L 18.00 0.47 3923.76 1772.01 29208.36 3140.55 

H2L 17.40 0.52 5819.96 1664.82 28026.60 1688.36 

H1H 20.60 0.70 103420.96 6970.23 95822.40 4884.56 

H2H 20.70 0.48 204439.12 1228.00 129596.06 2079.94 

EH 21.00 0.00 120746.36 4401.44 109730.56 2239.79 

Track 2 

Hu 15.00 0.00 - - - - 

H1L 14.20 0.42 7534.56 2586.61 40353.76 2922.87 

H2L 14.00 0.00 16034.44 1626.80 45882.48 2785.06 

H1H 18.00 0.00 123563.40 11366.20 128920.44 7515.93 

H2H 19.00 0.00 240383.52 3440.06 149929.00 1745.29 

EH 16.70 0.95 93029.92 6501.68 113711.60 6256.08 

Track 3 

Hu 15.80 0.45 - - - - 

H1L 15.60 0.84 19205.80 12603.20 45645.08 10211.57 

H2L 16.00 0.00 5053.76 3809.68 33820.44 3690.19 

H1H 14.40 0.82 151808.56 31062.31 132936.44 19992.38 

H2H 1.00 0.00 819612.80 999.75 782722.80 573.66 

EH 0.00 0.00 942713.60 0.00 884091.92 0.00 

Track 4 

Hu 16.00 0.00 - - - - 

H1L 15.40 0.70 32426.36 16830.25 76525.64 13164.82 

H2L 16.60 0.52 1532.40 513.21 45084.64 2480.23 

H1H 16.30 0.48 237105.92 17236.08 240092.20 18210.00 

H2H 17.60 0.97 402390.16 10066.62 292699.68 7587.26 

EH 13.60 2.55 293268.96 68006.90 292117.40 53485.97 

Track 5 

Hu 17.80 0.84 - - - - 

H1L 16.70 0.67 7886.04 4766.16 41251.52 5917.33 

H2L 16.20 0.42 5807.20 1596.58 38763.72 3211.29 

H1H 17.90 0.57 113853.44 17007.15 114904.20 7083.31 

H2H 18.00 0.67 209914.72 8020.79 140758.96 3502.97 

EH 18.90 0.32 91323.16 10562.67 108883.88 3684.35 
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Figure 6.29 Sample trajectories and headings of controllers EH, H1L, and H2L in the first 300 

time steps on track 1 

It was also useful to subjectively discuss the believability of the 

evolved controllers by visual observation. The two controllers H1L and H2L 

were visually observed and compared to controller EH on all 4 test tracks. 

Sample trajectories and headings of the controllers EH, H1L and H2L in the 

first 300 time steps are plotted in Figure 6.29 for illustration. 

Both controllers learnt to drive in the forward direction unlike the 

controller ENN that drove in reverse. Both controllers were also able to drive 

smoothly around the track without the oscillatory behaviour that was observed 

with the EH and ENN. The oscillatory trajectory of EH can be seen at the 

regions pointed by arrows in Figure 6.29; the trajectories of H1L and H2L 

could be observed as smoother in the same regions. The smoother driving 

behaviour of H1L and H2L could be attributed to the larger distance between 

the driving and steering decision lines similar to those seen in Figure 6.28. 

Controllers H1L and H2L were also observed to speed up when they were far 
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away from the waypoint and slow down when approaching the waypoint. 

Often, when the controllers were near the waypoint, they would output action 

5 (neutral) and glided towards the waypoint with its residual momentum. This 

sometimes gave the impression that the controller was thinking or considering 

its next move. However, some unnatural behaviour still remained. For instance, 

the controllers tend to drive in a near perfect circular arc when making turns 

which seemed too precise to be humanlike. This circular trajectory could also 

be observed in Figure 6.29. For a more objective measure, a user study 

conducted to quantify the believability of the evolved controllers will be 

presented in the next section. 

6.6.4 User study 

A user study was conducted to objectively quantify the believability of 

the evolved controllers. Two research questions will be investigated in this 

study. First, whether the evolved controllers proposed in this chapter are 

distinguishable as more believable compared to one evolved for performance 

alone. Second, whether Histo1 or Histo2 as the fitness function evolve the 

more believable controller. 

An objective evaluation of believability is necessary for this study. 

Riedl & Young proposed an evaluation procedure for multi-agent story 

generation systems [128] but it is not suitable for evaluating the movement 

behaviours of game agents. Instead, the believability index proposed in ‎[57] 

will be used as an objective measure of believability in this study. The detailed 

procedure and discussion can be found in ‎[57]. Users were asked to watch 

recorded videos of four controllers. They are the controllers EH, Hu, H1L, and 

H2L. Each user was first given some time to play the game to familiarize 



 194 

themselves with the workings of the game. Next, the user was asked to 

estimate their experience with this type of driving game based on the ratings 

given in Table 6.6. The experience level of the person will be used to weigh 

his ratings in the overall believability index as well as to calculate the 

confidence index of the entire study. Next, the user was showed two videos 

simultaneously, each 51.5 seconds long equivalent to 1000 simulation time 

steps. The user was specifically instructed that the videos may depict any 

combination of human and artificial players. The user was then asked to give a 

rating as shown in Table 6.7 for each video. Each user was shown three pairs 

of videos of non repeated combinations. A total of 58 people participated in 

the study and a total of 348 video ratings were collected, of which 1 person‟s 

results (i.e. 6 video ratings) was discarded because it was discovered that he 

misunderstood the instructions. The results are presented in Table 6.8. 

Table 6.6 Description of experience level rating of the respondents in the user study 

Rating Description 

1 Never play 

2 Some passing familiarity 

3 Played once monthly 

4 Played once weekly 

5 Played three times weekly 

Table 6.7 Description of human-ness rating of the controllers in the user study 

Rating Description 

1 Human 

2 Probably human 

3 Don‟t know 

4 Probably computer 

5 Computer 

Table 6.8 Believability index of controllers in the user study 

Believability index ranges from 0 (least believable) to 1 (most believable). Confidence level 

of the user study is calculated based on the experience level of the respondents. 

Controller Believability index Confidence level 

EH 0.5178 

0.8034 
Hu 0.8906 

H1L 0.6311 

H2L 0.5833 
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The difference in each pair of ratings was also plotted. A negative rating implied that H2L was 

more believable than H1L. 

Figure 6.30 Boxplot of ratings where H1L and H2L were shown as pairs 

It was observed in Table 6.8 that the believability index for controllers 

EH, Hu, H1L and H2L were 0.5178, 0.8906, 0.6311, and 0.5833 respectively. 

That is, the controller Hu was correctly identified as human 89.06% of the 

time while the controller EH was misidentified as human 51.78% of the time. 

This showed that the users were able to discern between the human and the 

artificial controller EH. The controllers H1L and H2L were misidentified as 

human 63.11% and 58.33% of the time respectively. These results were an 

improvement over the controller EH, implying that the users perceived H1L 

and H2L as more believable compared to EH. This result provided evidence 

that the proposed method of using histograms and sensor noise to learn the 

behavioural tendencies of humans was feasible and that it improved the 

believability of the controller. However, the results were still some distance 

from that of an actual human of 89.06%. 
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Next, the two fitness functions, Histo1 or Histo2, were compared to 

find out which one evolved the more believable controller. To do this, the 

results of the user study where controllers H1L and H2L were shown as pairs 

to the user were examined. There were 28 instances of such a pairing. The 

distributions of the ratings are presented as a boxplot in Figure 6.30. For 

conciseness, the difference in each pair of ratings was also plotted in the same 

diagram. A one tailed paired t-test was performed on the results at the 5% 

significance level. The p-value did not give sufficient evidence to reject the 

null hypotheses at this level of significance. Hence, the user study did not 

reject that the controllers evolved using Histo1 and Histo2 were indifferent. 

The median and mode of the difference in ratings were both zero, also 

suggesting that the two controllers were indifferent. Still, some insights on the 

differences between these two controllers could be inferred from the 

comments given by the users. Several users commented that they rated Histo2 

as more believable than Histo1 because the former traveled at a slower speed. 

This suggested that the speed profile of a NPC might have effects on its 

believability. It would be interesting to investigate how the speed profile could 

be modeled and applied to evolve more believable behaviours. 

6.7 Summary 

Two main ideas were examined in this chapter. First, sensor noise was 

introduced to imitate errors in human judgment. The parameters associated 

with the sensor noise were evolved together with the car controller. This was 

demonstrated to be feasible and that the introduction of sensor noise can 

improve the believability of the controller without degrading the driving 

performance. Each component of the sensor noise was analyzed and the 
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combination of mean, standard deviation and decay was found to produce the 

best results. Second, the action histogram and action sequence histogram were 

quantitatively and qualitatively analyzed and associated to some of the 

unnatural and unrealistic driving behaviours in controllers evolved for 

performance alone. Hence, it was proposed that the evolved controller can 

learn to drive more believably by imitating the human driving histogram to 

learn low level behavioural tendencies of humans. The multi-objective 

evolution framework was applied to maximize the waypoint score and to 

minimize the sum of squared errors of the proposed histograms. The 

controllers were trained using only 1 track and tested on 4 other previously 

unseen tracks. The controllers selected based on low SSE from the set of 

Pareto optimal solutions were able to generalize well on all the testing tracks. 

A user study involving 58 respondents was conducted to objectively quantify 

the believability of the evolved controllers. The evolved controllers were 

evaluated as being more believable compared to the controller evolved for 

performance alone. The proposed action histograms framework was 

compatible with games using discrete control schemes. Games in this genre 

included platform games (i.e. Super Mario) and arcade shooters (i.e. 

Asteroids). 
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Chapter Seven 

7 Conclusion 

Enhancing the player experience is an important aspect of developing 

computer games. This thesis has explored and conducted successful 

experiments on two key issues affecting the player experience in computer 

games, namely adaptability and believability, by applying concepts from 

computational intelligence. This chapter provides a high level summary of the 

work documented in this thesis and some open directions for future research. 

7.1 Summary of experiments 

The primary aim of this thesis was to present an investigation on using 

the computational intelligence approach to enhance the player experience in 

computer games. A real time car racing simulator game was used as the test 

bed in the experiments. The real time nature of the test bed required that the 

game AI be computationally efficiency in addition to traditional performance 

competency. 

Chapter 4 proposed a framework for designing a computationally 

efficient game AI suitable for implementation in real time games based on a 

hybrid evolutionary behaviour-based methodology. Genetic algorithm was 

employed to complement and automate the process of hand designed 

components required in the behaviour-based methodology. The resulting AI 

was compared against the popular paradigm of evolutionary neural network 
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and the former was shown to have better performance as well as being more 

efficient. Genetic algorithm was shown to have successfully exploited some 

collaboration between the different behaviour components which might have 

gone unnoticed if it was designed by hand. By benchmarking against the top 5 

controllers from the IEEE CEC 2007 Simulated Car Racing competition, the 

proposed AI was also demonstrated to have good generalization performance. 

The proposed AI scored the second highest in benchmark performance but 

was 482 times faster than the top scoring AI. In the subsequent round robin 

tournament, the proposed AI was able to demonstrate its better generalization 

capability and outperformed all the other 5 controllers. The advantages of 

better computational efficiency and generalization performance made the 

proposed evolutionary behaviour-based framework a suitable candidate for 

implementation in real time games and laid the groundwork for investigations 

into adaptability and believability. 

Two adaptive algorithms, built upon the proposed framework, were 

introduced in chapter 5 to address the issue of adaptability in game AI. The 

adaptive algorithms drew inspirations from reinforcement learning and 

evolutionary algorithms to improve player satisfaction by scaling the difficulty 

of the game AI while the game was being played. The advantage was that 

adaptation was done during the game session itself and no offline training was 

required. The proposed algorithms also had the advantage of being easily 

scalable. Two new parameters, learning rate and mutation rate, were 

introduced by the proposed algorithms. Both parameters were thoroughly 

investigated and a general rule of thumb for the selection of these two 

parameters was put forward. Two indicators were also proposed as a measure 
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of an even game between the two players. An analysis of the respective score 

distributions showed that both algorithms were robust, consistent, and able to 

generalize well across different types of opponents. The single chromosome 

variant was shown to be more computationally efficient while the double 

chromosome variant was more useful in lessening player frustration. Both 

proposed adaptive algorithms were shown to automatically learn suitable sets 

of behaviours to adapt to the competency of different opponents, hence 

keeping the player engaged by continually providing sufficient challenge 

during the game. 

Chapter 6 presented two ideas to induce believable movement 

behaviours in game agents. First, evolvable sensor noise was used to imitate 

systematic errors and random errors made by humans. Second, the action 

histogram and action sequence histogram were proposed as a means to analyze 

the differences between the unnatural behaviours observed in performance 

optimized game AI and the behaviours of human players. Subsequently, the 

histograms were used as fitness functions to induce believable movement 

behaviours in the game AI by imitating low level behavioural tendencies of 

human players. It was also demonstrated that performance and believability 

were conflicting metrics and a multi-objective evolutionary approach was used 

to improve the believability of the game AI without degrading its performance. 

Results also showed that the evolution of sensor noise was necessary to 

encourage humanlike behaviours. A user study involving 58 respondents was 

conducted to objectively quantify the believability of the evolved game AI and 

the results verified that the evolved game AI was seen by human players as 

being more believable. 
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7.2 Future works 

Although computational intelligence techniques have been successfully 

applied to enhance some aspects of player experience in games, the series of 

works presented in this thesis barely scratched the surface of what is 

potentially left to be addressed. 

In the experiments involving adaptability, the capacity to match the 

competency of an opponent necessitates that the game AI be stronger than its 

opponent. However, human players are good learners and will likely discover 

ways of defeating the game AI eventually through repeated plays and 

accumulated experience with the game. In other words, a non-learning game 

AI places an upper limit on its own level of competency. It also implies that a 

human player that has learnt to defeat the game AI at its most difficult setting 

will not be able to benefit from the adaptive game AI. Therefore, a game AI 

that is able to continually learn and improve together with the human player is 

desirable. A game AI framework using evolvable fuzzy logic elements is 

currently being investigated as a possible candidate for such self learning 

paradigms. 

Some direction for future work was obtained from the comments of the 

user studies in chapter 6. A number of users noticed that the computer players 

were too fast to react when a new waypoint appeared and hence correctly 

identified the human player by noticing the delay in reaction times. Loyall 

defined that the responsiveness of a believable agent must be within the ranges 

people were willing to accept as believable [86]. Laird and Duchi also 

determined decision time as a factor affecting human-likeness [81]. It will be 

an interesting extension to add time delays as a form of both sensor noise and 
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actuator noise to the evolved controllers. Investigations will include the use of 

static or dynamic time delays, whether delays lead to more believable 

controllers, and the thresholds of delays that can be added before the controller 

becomes unstable or uncontrollable. The parameters that characterize the time 

delays can also be optimized by evolutionary algorithms. 

The scenarios explored so far in this thesis involved strictly two player 

games. However, there are other genres of games in which the human player is 

competing against numerous opponents in the game. With a greater number of 

AI controlled opponents, there is greater potential to create a more immersive 

game experience. For instance, in a three player car racing simulator game, the 

two AI opponents can collaborate by accidentally colliding into each other, 

hence giving the human player a better opportunity to reach the current 

waypoint first. However, care needs to be taken to ensure that such efforts by 

the game AI do not appear intentional. Otherwise, it may ruin the sense of 

achievement experienced by the human player. 

Game AI does not necessarily imply a computer controlled opponent 

that plays against a human player in a competitive environment. That is, game 

AI need not be adversarial in nature. Game AI can also be used to control 

game characters that play on the human player‟s side or are just neutral NPCs. 

For example, in the context of real time strategy games, a friendly game AI 

can be used to control a human player‟s individual units on the battle ground. 

This might mean that individual units can automatically and intelligently take 

cover when under fire, change formations according to combat situations, and 

retreat when being outnumbered. This will free the human player from the, 

sometimes mundane, task of having to micro manage every unit on the 
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battlefield and allow the player to make high level strategic decisions in order 

to defeat his opponent. 
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