

ENHANCING PLAYER EXPERIENCE IN COMPUTER

GAMES: A COMPUTATIONAL INTELLIGENCE APPROACH

TAN CHIN HIONG

B.Eng (Hons., 1
st
 Class), NUS

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2010

 i

Summary

Gaming is by definition an interactive experience that often involves

the human player interacting with the non-player characters in the game which

are in turn controlled by the game artificial intelligence. Research in game AI

has traditionally been focused on improving its competency. However, a

competent game AI does not directly correlate to the satisfaction and

entertainment value experienced by the human player. This thesis focuses on

addressing two key issues of game AI affecting the player experience, namely

adaptability and believability, in real time computer games from a

computational intelligence perspective.

The nature of real time computer games requires that the game AI be

computationally efficient in addition to being competent in the game. This

thesis starts off by proposing a hybrid evolutionary behaviour-based design

framework that combines the good response time of behaviour-based systems

and the search capabilities of evolutionary algorithms. The result is a scalable

framework where new behaviours can be easily introduced. This lays the

groundwork for investigations into enhancing the player experience.

Two adaptive algorithms are built upon the proposed framework to

address the issue of adaptability in games. The two proposed adaptive

algorithms draw inspirations from reinforcement learning and evolutionary

algorithms to dynamically scale the difficulty of the game AI while the game

is being played such that offline training is not necessary. Such an adaptive

system has the potential to customize a personalized experience that grows

together with the human player.

 ii

The game AI framework is also augmented by the introduction of

evolved sensor noise in order to induce game agents with believable

movement behaviours. Furthermore, the action histogram and action sequence

histogram are explored as a means to quantify the believability of the game

agent‟s movements. A multi-objective optimization approach is then used to

improve the believability of the game agent without degrading its performance

and the results are verified in a user study. Improving the believability of game

agents has the potential to maintain the suspension of disbelief and increase

immersion in the game environment.

 iii

List of Publications

Journals

Tan, C. H., Tan, K. C. and Tay, A., “Computationally Efficient Behaviour

Based Controller for Real Time Car Racing Simulation”, Expert Systems

with Applications, vol. 37, no. 7, pp. 4850-4859, 2010.

Tan, C. H., Ramanathan, K., Guan, S. U. and Bao, C., “Recursive Hybrid

Decomposition with Reduced Pattern Training”, International Journal of

Hybrid Intelligent Systems, vol. 6, no. 3, pp. 135-146, 2009.

Togelius, J., Lucas, S., Ho, D. T., Garibaldi, J. M., Nakashima, T., Tan, C. H.,

Elhanany, I., Berant, S., Hingston, P., MacCallum, R. M., Haferlach, T.,

Gowrisankar, A. and Burrow, P., “The 2007 IEEE CEC simulated car

racing competition”, Genetic Programming and Evolvable Machines, vol.

9, no. 4, pp. 295-329, 2008.

Tan, C. H., Tan, K. C. and Tay, A., “Dynamic Game Difficulty Scaling using

Adaptive Behavioural Based AI”, IEEE Transactions on Computational

Intelligence and AI in Games, accepted.

Tan, C. H., Tan, K. C. and Tay, A., “Evolving Believable Behaviour in Games

using Sensor Noise and Action Histogram”, Evolutionary Computation,

submitted.

Conference papers

Tang, H., Tan, C. H., Tan, K. C. and Tay, A., “Neural Network versus

Behaviour Based Approach in Simulated Car Racing”, Proceedings of

IEEE Workshop on Evolving and Self-Developing Intelligent Systems, pp.

58-65, 2009.

Tan, K. L., Tan, C. H., Tan, K. C. and Tay, A., “Adaptive Game AI for

Gomoku”, Proceedings of the Fourth International Conference on

Autonomous Robots and Agents, pp. 507-512, 2009.

 iv

Tan, C. H., Ang, J. H., Tan, K. C. and Tay, A., “Online Adaptive Controller

for Simulated Car Racing”, Proceedings of IEEE Congress on

Evolutionary Computation, pp. 2239-2245, 2008.

Ang, J. H., Teoh, E. J., Tan, C. H., Goh, K. C. and Tan, K. C., “Dimension

Reduction using Evolutionary Support Vector Machines”, Proceedings of

IEEE Congress on Evolutionary Computation, pp. 3635-3642, 2008.

Tan, C. H., Goh, C. K., Tan, K. C. and Tay, A., “A Cooperative

Coevolutionary Algorithm for Multiobjective Particle Swarm

Optimization”, Proceedings of IEEE Congress on Evolutionary

Computation, pp. 3180-3186, 2007.

 v

Acknowledgements

First and foremost, I would like to thank my Ph.D. supervisor,

Associate Professor Tan Kay Chen for giving me the opportunity to pursue

research in the field of computational intelligence. His indispensable guidance

and kind words of encouragement kept me motivated and on track throughout

my candidature. I would also like to thank my co-supervisor, Associate

Professor Arthur Tay for his support in both my research and my participation

in the ECE outreach program.

I would also like to extend my gratitude to Sara, Hengwei and Chee

Siong for giving me the logistical support during my time at the lab; and the

outreach staff Henry and Marsita for making my outreach experience one

filled with fun and enjoyment.

I am also grateful to my fellow labmates at the Control and Simulation

lab for making my four years of Ph.D. life full of fond memories: Chi Keong

for always providing novel and interesting research suggestions; Dasheng for

always being there when it is time to Bang!; Eujin for our numerous late night

journeys to the bus interchange; Brian for literally bringing us round our sunny

island in search of food and games; Chiam for bringing BS to the group; Chun

Yew for always organizing our four player incomplete information zero sum

set collection excursions; Han Yang for sharing with me his enthusiasm for

film and traveling; Teck Wee (from the lab upstairs) for teaching me so much

about photography during our trip to Hong Kong; Vui Ann for his ever jovial

presence; Calvin for giving me new perspectives on a teaching career; and Jun

 vi

Yong for helping to rearrange all the furniture when our work space

underwent renovations during the holidays.

Last but not least, I wish to thank my parents and sister for all their

love and support. I wish to especially thank my wife, Juney, for going on this

journey with me, for together building a family we can call our own, for

giving birth to our wonderful daughter, for always being there. Finally, I wish

to thank my 6 month old daughter, Yurou, for melting my heart everyday with

her toothless baby grin. Kyaa~ 

 vii

Table of Contents

Summary ... i

List of Publications ...iii

Acknowledgements .. v

Table of Contents ... vii

List of Tables ... xii

List of Figures ... xiv

1 Introduction ... 1

1.1 Game AI and computational intelligence .. 2

1.2 Types of computer games .. 6

1.3 Player experience ... 9

1.4 Contributions.. 11

1.5 Thesis outline ... 12

2 Computational intelligence ... 15

2.1 Elements of evolutionary algorithms ... 15

2.1.1 Overview .. 15

2.1.2 Representation.. 17

2.1.3 Fitness and evaluation .. 18

2.1.4 Population and generation.. 18

2.1.5 Selection ... 19

2.1.6 Crossover ... 20

2.1.7 Mutation ... 20

2.1.8 Elitism .. 21

2.1.9 Stopping criteria ... 22

 viii

2.2 Genetic algorithms ... 22

2.3 Evolution strategies .. 23

2.4 Co-evolution .. 23

2.5 Multi-objective optimization ... 25

2.6 Neural networks ... 27

2.6.1 Multi-layer perceptrons .. 27

2.6.2 Evolutionary neural networks .. 29

2.7 Summary .. 30

3 Real time car racing simulator .. 31

3.1 Introduction .. 32

3.2 Waypoint generation .. 33

3.3 Vehicle controls ... 35

3.4 Sensors model .. 37

3.5 Mechanics .. 37

3.6 Example controllers ... 40

3.6.1 GreedyController ... 40

3.6.2 HeuristicSensibleController ... 41

3.6.3 HeuristicCombinedController .. 41

3.7 Summary .. 42

4 Evolving computational efficient behaviour-based AI for real time

games .. 43

4.1 Introduction .. 44

4.2 Controller design .. 47

4.2.1 Neural network controller .. 47

4.2.2 Behaviour-based controller .. 53

 ix

4.2.3 Comparative discussion ... 63

4.3 Results and analysis ... 67

4.3.1 Effects of crossover operator ... 68

4.3.2 Effects of mutation operator .. 69

4.3.3 Analysis of evolved parameters 70

4.3.4 Analysis of behaviour components 74

4.3.5 Generalization performance ... 78

4.4 Summary .. 84

5 Dynamic game difficulty scaling using adaptive game AI 86

5.1 Introduction .. 87

5.2 Behaviour-based controller .. 91

5.3 Adaptive controllers ... 94

5.3.1 Satisfying gameplay experience 94

5.3.2 Artificial stupidity .. 96

5.3.3 Uni-chromosome adaptive controller (AUC) 96

5.3.4 Duo-chromosome adaptive controller (ADC) 99

5.3.5 Static controllers .. 100

5.4 Results and analysis ... 105

5.4.1 Fully activated behaviours ... 105

5.4.2 Randomly activated behaviours 107

5.4.3 Analysis of AUC .. 109

5.4.4 Analysis of ADC .. 113

5.4.5 Score difference distribution .. 116

5.4.6 Behaviour activation probability distribution 124

5.5 Summary .. 131

 x

6 Evolving believable behaviour in games using sensor noise and action

histograms ... 133

6.1 Introduction .. 134

6.1.1 Modifications to simulator ... 138

6.2 Controller design .. 139

6.2.1 Hyperbolic tangent driving .. 139

6.2.2 Hyperbolic tangent steering ... 140

6.2.3 Introducing sensor noise .. 142

6.3 Action histograms .. 145

6.3.1 Action histogram (Histo1) ... 146

6.3.2 Action sequence histogram (Histo2) 146

6.3.3 Data collection ... 147

6.3.4 Case study .. 151

6.3.5 Histograms of small window sizes 162

6.4 Fitness functions .. 164

6.4.1 Waypoints .. 164

6.4.2 Histo1 (Action histogram) ... 164

6.4.3 Histo2 (Action sequence histogram) 165

6.5 Single objective evolution.. 166

6.5.1 Number of waypoints ... 166

6.5.2 Action histogram (Histo1) ... 170

6.6 Multi-objective evolution... 175

6.6.1 Training .. 176

6.6.2 Effects of noise .. 183

6.6.3 Generalization .. 189

 xi

6.6.4 User study .. 193

6.7 Summary .. 196

7 Conclusion .. 198

7.1 Summary of experiments ... 198

7.2 Future works .. 201

Bibliography .. 204

 xii

List of Tables

Table 3.1 Full list of sensors available in the real time car racing simulator .. 36

Table 4.1 Evolution parameters for neural network controller 52

Table 4.2 Results for neural network controller .. 52

Table 4.3 Evolution parameters for behaviour-based controller 62

Table 4.4 Comparative results between neural network controller and

behaviour-based controller ... 65

Table 4.5 Evolved force field trajectory parameters of best individual 72

Table 4.6 Evolved heading alignment parameters of best individual 74

Table 4.7 Comparative studies of behaviour set .. 76

Table 4.8 Comparative results of CompetitionScore of behaviour-based

controller against top 5 controllers ... 80

Table 4.9 Pareto ranks of behaviour-based controller and top 5 controllers ... 81

Table 4.10 Results for direct competition between behaviour-based controller

and top 5 controllers ... 83

Table 4.11 Consolidated results for round robin tournament of behaviour-

based controller and top 5 controllers ... 83

Table 5.1 Comparative results for AUC versus static controllers for varying

learning rate and fixed mutation rate .. 110

Table 5.2 Comparative results for AUC versus static controllers for fixed

learning rate and varying mutation rate 112

Table 5.3 Comparative results for ADC versus static controllers for varying

learning rate and fixed mutation rate .. 114

Table 5.4 Comparative results for ADC versus static controllers for fixed

learning rate and varying mutation rate 115

Table 5.5 Cumulative percentages of games according to score difference .. 121

Table 6.1 List of all possible output actions at each time step in the car racing

simulator ... 146

Table 6.2 Number of waypoints passed by human collected over 5 trials 148

 xiii

Table 6.3 Action histograms and action sequence histograms by human

collected over 5 trials .. 149

Table 6.4 Abbreviated list of controllers that are frequently used in text 176

Table 6.5 Comparative results of human driving data, multi-objective

controllers, and single objective controllers on training track 1 and

testing tracks 2, 3, 4 and 5 .. 191

Table 6.6 Description of experience level rating of the respondents in the user

study .. 194

Table 6.7 Description of human-ness rating of the controllers in the user study

 .. 194

Table 6.8 Believability index of controllers in the user study 194

 xiv

List of Figures

Figure ‎2.1 Flowchart of genetic algorithm .. 17

Figure ‎2.2 Illustrations of (a) Pareto dominance relationship and (b) Pareto-

optimal front ... 26

Figure ‎2.3 A simplified view of a MLP ... 28

Figure ‎3.1 The real time car racing simulator game area 31

Figure ‎3.2 Graphical representation of the controller and its corresponding

integer value in the Java Controller interface 35

Figure ‎4.1 Training fitness of neural network controller 52

Figure ‎4.2 Overview of behaviour-based controller .. 55

Figure ‎4.3 Training fitness of behaviour-based controller 63

Figure ‎4.4 Point by point diagram of a partial game between neural network

controller and behaviour-based controller 64

Figure ‎4.5 Effects of varying crossover rate; mutation rate fixed at 0.2 69

Figure ‎4.6 Effects of varying mutation rate; crossover rate fixed at 0.8 70

Figure ‎4.7 Graph of evolved parameters for behaviour-based controller for (a)

field strength against distance from particle and (b) desired driving

speed against distance from destination 73

Figure ‎4.8 Pareto plot pf log10 (simulation time) against log10

(CompetitionScore) ... 81

Figure ‎5.1 Representation of the chromosome used in AUC 97

Figure ‎5.2 Training fitness of (a) HC and (b) NNC 101

Figure ‎5.3 Comparative results of static controllers in solo games 104

Figure ‎5.4 Boxplot of the results from playing the FC against the five static

controllers ... 106

Figure ‎5.5 Histogram of the results from playing the FC against the five static

controllers ... 106

Figure ‎5.6 Boxplot of the results from playing the RDC against the five static

controllers ... 108

 xv

Figure ‎5.7 Histogram of the results from playing the RDC against the five

static controllers .. 108

Figure ‎5.8 Histogram of the score difference of the adaptive controllers against

the (a) HC (b) NNC (c) RC (d) PSC and (e) PFC 119

Figure ‎5.9 Boxplot of the results from playing the AUC against the five static

controllers ... 120

Figure ‎5.10 Boxplot of the results from playing the ADC against the five static

controllers ... 120

Figure ‎5.11 A sample diagram of 5000 games between the AUC and HC ... 122

Figure ‎5.12 Plot of the score difference between the AUC and the static

controllers ... 123

Figure ‎5.13 Plot of the score difference between the ADC and the static

controllers ... 123

Figure ‎5.14 Boxplot and histogram of ending chromosome values of the AUC

against the (a) HC (b) NNC (c) RC (d) PSC and (e) PFC 127

Figure ‎5.15 Boxplot and histogram of ending chromosome values of the ADC

against the HC ... 128

Figure ‎5.16 Boxplot and histogram of ending chromosome values of the ADC

against the NNC .. 129

Figure ‎5.17 Boxplot and histogram of ending chromosome values of the ADC

against the RC ... 129

Figure ‎5.18 Boxplot and histogram of ending chromosome values of the ADC

against the PSC ... 130

Figure ‎5.19 Boxplot and histogram of ending chromosome values of the ADC

against the PFC ... 130

Figure ‎6.1 Polar diagram of the waypoints of (a) track 1 (b) track 2 (c) track 3

(d) track 4 and (e) track 5 ... 148

Figure ‎6.2 Graphical representation of the action histogram to mimic the

layout of arrow keys on the keyboard ... 151

Figure ‎6.3 Graphical representation of the action sequence histogram based on

the layout in Figure ‎6.2 ... 152

Figure ‎6.4 Histogram of the (a) output actions and (b) output action sequences

of the EH on track 1 .. 153

Figure ‎6.5 Histogram of the (a) output actions and (b) output action sequences

of the ENN on track 1 ... 153

 xvi

Figure ‎6.6 Histogram of the (a) output actions and (b) output action sequences

of the Hu on track 1 .. 153

Figure ‎6.7 Comparative (a) action histograms and (b) action sequence

histograms of human driving data, heuristic evolved controller,

and neural network evolved controller on track 1 154

Figure ‎6.8 Comparative (a) action histograms and (b) action sequence

histograms of human driving data, heuristic evolved controller,

and neural network evolved controller on track 2 155

Figure ‎6.9 Comparative (a) action histograms and (b) action sequence

histograms of human driving data, heuristic evolved controller,

and neural network evolved controller on track 3 156

Figure ‎6.10 Comparative (a) action histograms and (b) action sequence

histograms of human driving data, heuristic evolved controller,

and neural network evolved controller on track 4 157

Figure ‎6.11 Comparative (a) action histograms and (b) action sequence

histograms of human driving data, heuristic evolved controller,

and neural network evolved controller on track 5 158

Figure ‎6.12 Boxplot of the number of waypoints for single objective

optimization to maximize number of waypoints, without sensor

noise .. 167

Figure ‎6.13 Boxplot of the sum of square errors of Histo1 for single objective

optimization to maximize number of waypoints, without sensor

noise .. 168

Figure ‎6.14 Boxplot of the number of waypoints for single objective

optimization to maximize number of waypoints, with sensor noise

 .. 169

Figure ‎6.15 Boxplot of the sum of square errors of Histo1 for single objective

optimization to maximize number of waypoints, with sensor noise

 .. 170

Figure ‎6.16 Boxplot of the number of waypoints for single objective

optimization to minimize the sum of squared errors of Histo1,

without sensor noise ... 171

Figure ‎6.17 Boxplot of the sum of squared errors of Histo1 for single objective

optimization to minimize the sum of squared errors of Histo1,

without sensor noise ... 172

Figure ‎6.18 Boxplot of the number of waypoints for single objective

optimization to minimize the sum of squared errors of Histo1, with

sensor noise ... 173

 xvii

Figure ‎6.19 Boxplot of the sum of squared errors of Histo1 for single objective

optimization to minimize the sum of squared errors of Histo1, with

sensor noise ... 174

Figure ‎6.20 Multi-objective optimization to maximize the number of

waypoints and minimize the sum of squared errors of Histo1 ... 178

Figure ‎6.21 Comparative action histograms of Hu, H1L, and EH (left to right)

 .. 178

Figure ‎6.22 Comparative action sequence histograms of Hu, H1L, and EH (left

to right) ... 179

Figure ‎6.23 Multi-objective optimization to maximize the number of

waypoints and minimize the sum of squared errors of Histo2 ... 180

Figure ‎6.24 Comparative action histograms of Hu, H2L, and EH (left to right)

 .. 181

Figure ‎6.25 Comparative action sequence histograms of Hu, H2L, and EH (left

to right) ... 181

Figure ‎6.26 Pareto diagram of solutions evolved using waypoints and Histo1

as objectives .. 184

Figure ‎6.27 Pareto diagram of solutions evolved using waypoints and Histo2

as objectives .. 185

Figure ‎6.28 Evolved decision space of hyperbolic tangent driving function for

the case of no noise and standard deviation only 187

Figure ‎6.29 Sample trajectories and headings of controllers EH, H1L, and H2L

in the first 300 time steps on track 1 ... 192

Figure ‎6.30 Boxplot of ratings where H1L and H2L were shown as pairs ... 195

 1

Chapter One

1 Introduction

Computer games play many roles in the society today. For example,

military simulations in the form of war-games are used in military training.

Management simulations and economic simulations are also becoming

valuable training tools in their industries. Educational games have gained

widespread acceptance for enhancing the learning experience of pre-school

children. However, the most prominent role of computer games is still one as a

form of entertainment.

The computer game industry has seen tremendous growth in the recent

decade. According to the Entertainment Software Association, the sales of

computer games in the U.S. grew from 2.6 billion U.S. dollars in 1996 to 7.6

billion U.S. dollars in 2004 to 11.7 billion U.S. dollars in 2008 [44]. Coupled

with the constant broadening of gamer demographics in both age and gender

as a result of casual gaming, the computer game industry has the potential to

reach out to a widening range of audiences and continue its growth in the near

future.

The quality of computer games, and hence its success, is directly

related to their entertainment value [182]. Traditionally, game developers

competed with one another in terms of a game‟s graphical presentation and

visual effects. However, in recent years, as graphics improvements begins to

 2

saturate, game developers are attempting to compete by offering better

gameplay experiences through other means. Game artificial intelligence (AI),

being an essential part of a gameplay experience, has emerged as an important

selling point of games [49].

Gaming is inherently an interactive experience that involves the human

player interacting with the non-player characters (NPC) in the game which are

in turn controlled by the game AI. Research in game AI has traditionally been

focused on improving its competency. However, a competent game AI does

not directly correlate to the satisfaction and entertainment value experienced

by the human player. The player experience also depends on other factors such

as the suitability of the challenge provided, the amount of curiosity invoked,

the level of rationality presented by the NPC, amongst others. This thesis

focuses on the use of computational intelligence techniques on two key issues

of game AI affecting the player experience, namely adaptability and

believability.

1.1 Game AI and computational intelligence

Artificial intelligence (AI), as explained by one of the founders of the

field, John McCarthy, is the science and engineering of making intelligent

machines, especially intelligent computer programs. AI is derived from a

branch of computer science that seeks to create intelligence for machines. An

intelligence machine or agent can be seen as an embodied system that is able

to perceive its environment and execute actions or sequence of actions that

fulfills or brings it closer to its desired outcome. The study of AI encompasses

areas such as reasoning, planning and scheduling, speech and facial

recognition, natural language, behavioural learning and adaptation. Its

 3

applications are deeply embedded in day to day living, more so than most

people realize. These systems range from directing road traffic, managing

public transportation schedules and making weather predictions to interactive

gaming, filtering spam e-mails and returning relevant results for an Internet

search.

The goal for AI that researchers set for themselves is an ambitious one,

one that would pass the Turing test described by Alan Turing in 1950 [183]. A

machine is said to pass the test if a human judge cannot reliably distinguish

whether it is a human or machine in a natural language conversation.

Livingstone also discussed the Turing test in the context of games [85]. Today,

AI research still has not produced a machine with sufficient common sense to

describe a static scene, but it did develop Deep Blue, the IBM supercomputer

that defeated the human chess champion in 1997 [74]. Common sense,

ironically, turns out to be a difficult challenge in AI research. This led to the

paradigm shift from mimicking human intelligence to advancing expert

systems in specific focused applications. Currently, AI technology is used by

search engines to organize data, helping doctors with diagnosis and treatment,

and employed by police for fraud detection. Computer games, nonetheless, is

still an ideal platform for AI research [28].

Game AI today is an interdisciplinary field consisting of knowledge

based systems, machine learning, multi-agent systems, computer graphics,

animation and data structures. Game AI is about creating the illusion of human

behaviour. It needs to be smart to a certain extent, make unpredictable but

rational decisions. A NPC controlled by the game AI needs to display

 4

emotional influences and make use of body language to communicate

emotions to the player.

In order to create the illusion of human behaviour, the game AI is not

allowed to cheat obviously. Cheating methods such as allocating more

resources, neglecting speed limits, and switching off fog-of-war for computer

controlled opponents had been commonly employ in game AI. But these types

of obvious cheating are easily detected by the human player and generally

degrade the gameplay experience. In other words, sensory honesty is a

fundamental requirement for game agents [76]. In addition, game AI should be

not display obviously stupid behaviour such as being stuck in a corner, or

jumping out of a window under no threat. More importantly, game AI that

exhibit self-correction, learning from experience and creative maneuvers will

improve their perceived intelligence. It should also be noted that, in general,

game AI has the inherent advantage of not being required to manipulate the

graphical user interface (GUI), and is therefore faster when it comes to issuing

game commands to the game engine.

Game designers of early computer games have already acknowledged

the need for computer controlled opponents to show pseudo-intelligent

behaviours. From an entertainment point of view, there is no need for this

behaviour to be comparable to human intelligence, yet it should be intelligent

enough to entertain the person that is playing the game. A classic example of

an entertaining game AI can be seen in the game Pac-Man. This game

implements a basic form of AI where each ghost moves, based on a simple set

of rules, through the game environment with an increasing speed. With the

growing realism and high fidelity in modern computer games, players expect

 5

much more from the game AI. AI controlled NPCs are expected to patrol in

formations, exhibit squad based tactics, call for reinforcements, take cover

from fire and retreat when facing a losing battle [80].

Indeed, the benchmark of “standard” game AI is rising, yet its growth

is greatly outpaced by other components of gaming such as special effects

animation, game mechanics design and in-game kinematics modeling. Game

AI technology has been performing poorly for the following reasons. First,

modern games tend to be very complex, featuring many different interacting

objects, incomplete information, noisy environment and a large variety of

possible actions at any given game instance. Second, there are severe time

constraints on game AI to make real time decisions [27] [28]. It must be

capable of solving real time decision task quickly, rationally and satisfactorily

in a dynamic adversarial environment [100].

In general, academic research in AI centres around the development of

automated inference machines and algorithms that infer certain consequences

or outcomes based on a certain set of existing conditions. The techniques

designed to achieve this can roughly be categorized into two schools of

thought, conventional AI and computational intelligence (CI). Conventional

AI includes methods such as expert systems, case based reasoning, Bayesian

networks and behaviour-based AI. These systems are usually characterized by

formalism and statistical analysis and attempts to mimic human intelligence

through knowledge bases. Deep Blue of 1997 can be considered as a classical

demonstration of conventional AI.

Computational intelligence on the other hand is known for its use of

informal, non-statistical and often trial and error approaches. Learning, in its

 6

case, is an iterative process based on empirical data and is often associated

with soft computing. Techniques such as neural networks, fuzzy systems,

swarm intelligence and evolutionary computation fall under this classification.

The branch of computational intelligence adopts a philosophical belief that

intelligence is often too complex and computationally intractable to solve by

the clear, elegant and homogenous systems as advocated by conventional AI

methods.

This does not mean that these two approaches to AI are mutually

exclusive. Existing research have established the viability and capability of

using CI techniques to complement conventional AI. In addition, domain

knowledge can be presented to guide the training process in achieving fast,

accurate and efficient learning. CI techniques automate the process of finding

a good solution, without the need to undergo the tedious cycle of devising the

scheme of problem solving through manual means. This not only lowers the

efforts expended remarkably but also adds value by increasing the potential of

deriving solutions that are better than using either approach alone. This thesis

proposes methods of developing techniques from computational intelligence,

some inspired by ideas from conventional AI, with the focus on enhancing the

player experience in computer games.

1.2 Types of computer games

In mainstream media, computer games are often categorized into many

genres such as first person shooters (FPS), real time strategy (RTS), role

playing game (RPG), adventure, simulation, etc. And many more hybrid

genres exists such as action-adventure, role playing strategy, and more are

being created as the industry develops. The point to note from this is that

 7

computer games are grouped according to the underlying game mechanics and

the types of skills required to play the game. Such classifications are not so

useful from a research standpoint. Instead, the three categories of computer

games put forward by Togelius will be discussed [175]: computerized games,

management games, and agent games.

Computerized games are games that tend to have discrete state spaces

and a clear set of rules. Games in this category include board games such as

Chess and Checkers, card games such as Poker and Bridge, and puzzle games

such as Sudoku and Picross. These games generally do not require high

amounts of computational resources to implement and a majority of them can

be played without using a computer at all. The simplicity of implementing

such games makes them a convenient benchmark for comparing the

performance different AI algorithms, as well as between and against human

players. However, the nature of these games also makes them unsuitable for

investigating human cognition and perception.

Management games are games where the player takes a more macro

role in the game world. These games often involve some form of economic,

warfare, or life simulation. In these games, the player does not control any

single character in the game but instead devises strategies, allocates resources,

sets goals, and schedules productions in order to advance the game. Games in

this category include real time strategy games such as Warcraft and Starcraft,

god games such as The Sims, sports management games such as

Championship Manager, and civilization games such as Civilization. These

games tend to be complex, featuring multiple interconnected game mechanics,

incomplete information and noisy environments. As with computerized games,

 8

management games are usually unsuited for research into cognition and

perception issues.

Agent games are games where the player directly controls a character

or agent within a game environment. The player decides where the agent goes

and what the agent does at all time during the game. Games in this category

include platform games such as Super Mario Bros and Rayman, arcade games

such as Pac Man and Space Invaders, racing games such as Need for Speed

and Gran Turismo, fighting games such as Street Fighter, and action games

such as Grand Theft Auto. Agent games are well suited for investigating

cognition and perception because the agent that is being controlled by the

human player in the game environment is said to be both situated and

embodied. That is, the agent is represented by a body in the game environment

and is able to interact, affect, and perceive the world and its body through its

actions. These games tend to play out in real time, hence placing additional

constraints on the performance of its AI. This thesis investigates the issues of

enhancing player experience through the use of agent games. In particular,

chapter 4 of this thesis proposes and describes in detail a framework for a

computationally efficient game AI suitable for implementation in real time

games. The framework is generic enough to be applied to any agent games

where the game AI can be expressed as a combination of behaviours. The

proposed framework is tested using a real time car racing simulator game. The

resulting car driver is able to outperform previously unseen opponents in

direct competition, and is also the most computationally efficient.

 9

1.3 Player experience

The most prominent role of computer games is one as a form of

entertainment. Therefore, it is important for game developers to produce

games that are entertaining, satisfying, and fun. Game designer Raph Koster

said that for a game to be fun, the level of challenge need to be approximately

right [79]. A game that is too easy or too difficult is perceived as boring. In a

similar way, Thomas Malone described the essence of fun in three categories:

challenge, fantasy and curiosity. In challenge, there needs to be a goal in the

game to provide entertainment value but this goal should not be too easy or

too hard to achieve [91]. Csikszentmihályi‟s theory of flow proposed that how

much an opponent is perceived to be challenging depends on the skill of the

player in playing the game [38]. An expert player may be bored by a weak

computer controller opponent while the same opponent may pose too much

difficulty to a novice player. Hence, adaptability is an important consideration

in a game AI. The core game AI that is encoded in a game needs to cater to a

wide variety of audiences who play the game. In addition, these players learn

to play the game better over time, so the game AI needs to scale appropriately

to continually provide sufficient challenge to the player. Furthermore, such an

adaptive game AI implementation will have the potential to customize a

personalized and entertaining game experience to a specific player. Chapter 5

of this thesis presents two adaptive algorithms that use ideas from

reinforcement learning and evolutionary computation to improve player

satisfaction by scaling the difficulty of the game AI while the game is being

played. The effects of varying the algorithm parameters are investigated for

both algorithms and a general rule of thumb for the selection of these two

 10

parameters is proposed. The key contribution of this algorithm is the absence

of a training phase. This way, the human player can immediately feel the

effects of adaptation without having to play several games first just to train the

game AI.

A believable game AI can help players to immerse in the game world,

thereby making the game more enjoyable and satisfying. Murray defines

immersion as a metaphorical term to describe the sensation of being

surrounded by a completely other reality [99]. Believability in a game is one

way of achieving such an immersion and maintains the suspension of the

player‟s disbelief. The concept of suspension of disbelief was first coined by

Coleridge in 1817 to describe the quality of a good fiction to make readers

accept the unexplained or seemingly irrational aspects of the story for the

purpose of enjoying the story. Extending this concept to the context of

computer games, a believable game agent is one whose actions appear lifelike,

rational, and allows the player to suspend disbelief [93]. Bryant also argued

that an intelligent game agent must sometimes go beyond the ability to

complete a task by completing it in a visibly intelligent manner [24]. Chapter 6

of this thesis focuses on evolving believable movement behaviours in game

agents using two ideas, namely, introducing sensor noise to simulate errors in

human judgment, and using action histograms to indirectly model

idiosyncrasies in human controlled game agents. Game agents are evolved

using a multi-objective approach to optimize the incomparable objectives of

performance and believability. In a user study involving 58 respondents, the

proposed game agents are found to be more believable compared to one

optimized for performance alone.

 11

1.4 Contributions

This thesis describes in detail a number experiments and studies, many

of which form the premise for subsequent ones, that explore the primary aim

of investigating and developing novel computational intelligence approaches

to enhance the player experience in real time computer games. This section

will summarize the main achievements and contributions of this thesis to

advance the state-of-the-art of AI in computer games.

 A framework for designing a computationally efficient agent game

AI based on a hybrid evolutionary behaviour-based methodology is

introduced. This method is shown to have successfully and

automatically exploited some collaboration between the different

behaviour components which may have gone unnoticed if designed

by hand. It is also easy for designers to incorporate symbolic domain

knowledge without specifying its related parameters.

 A dynamic difficulty scaling and online adaptation algorithm is

designed over the framework to increase player satisfaction. It has the

advantage of being easily scalable by adding new behaviour

components. The proposed adaptive algorithm learns during the game

session and no offline training is required. This will allow new

players to immediately feel the effects of the adaptive game AI.

Newly introduced parameters are thoroughly investigated and a

general rule of thumb for their selection is put forward.

 The action histograms and action sequence histograms are introduced

as a means to analyze differences between game players (humans and

AI). A case study is conducted to quantify the unnatural behaviours

 12

seen in existing AI agents. The proposed histograms are shown to be

successfully used as fitness functions to imitate low level behavioural

tendencies of human players. The novel use of small window sizes of

action sequences differs from conventional state-action approaches.

 Our experiments have introduced and verified the use of deliberate

evolvable sensor noise in game AI agents to simulate systematic

errors and random errors in human judgment during game playing.

The introduction and co-evolution of these noise parameters is also

demonstrated to improve the believability of AI agents.

 The believability of AI agents is shown to have the potential to be

improved without degrading its game competency. A user study is

conducted and the game AI agent evolved using the proposed

histograms and sensor noise is verified as being more believable by

human observers.

1.5 Thesis outline

This thesis is organized into seven chapters. The current chapter

provides an introduction to computer games, game AI, and player experience,

and motivates the research documented in this thesis. The primary aim of this

thesis is to present an investigation on a computational intelligence approach

to enhancing player experience in computer games. Two key issues of game

AI affecting the player experience, adaptability and believability, are

considered in this thesis.

Chapter 2 expands on the topic of computational intelligence and

focuses on the main techniques used in this thesis. In particular, the basic

framework of evolutionary algorithms, genetics algorithms, evolution

 13

strategies, co-evolution, multi-objective algorithms including Pareto

dominance and optimality, and neural networks are discussed in this chapter.

Chapter 3 presents the real time car racing simulator game used in this

thesis. The mechanisms for waypoint generation, vehicular controls, sensors

model, and physics model are described in detail. Finally, the performance and

characteristics of several heuristic controllers which were used as trainers in

later chapters are discussed.

Chapter 4 proposes and describes in detail a framework for a

computationally efficient game AI that is suitable for implementation in real

time games. This approach combines the good response time of behaviour-

based systems and the search capabilities of evolutionary algorithms. The

proposed framework is demonstrated using the real time car racing simulator

game and the evolved behaviours are quantitatively and qualitatively analyzed.

The resulting car driver is then tested against previously unseen real world

opponents written by other researchers.

Chapter 5 presents two adaptive algorithms that use ideas from

reinforcement learning and evolutionary computation to improve player

satisfaction by scaling the difficulty of the game AI during the game itself.

The objective of the adaptive algorithm is to match the game difficult to the

proficiency of the game player to provide a suitable amount of challenge. Two

indicators are also proposed as a measure of how well an adaptive algorithm is

able to match its opponent.

Chapter 6 focuses on evolving believable game agents to improve the

player‟s immersion in the game. Two ideas, namely sensor noise and action

histograms, are introduced to induce believable movement behaviours in the

 14

game AI. A multi-objective approach is applied to simultaneously optimize

both game performance and believability in the game agent. A user study is

also conducted to quantify the improvement in believability achieved by this

approach.

Finally, a high level summary of this thesis and some directions for

future work are discussed in chapter 7.

 15

Chapter Two

2 Computational intelligence

Computational intelligence is part of the larger family of computer

science and engineering. The field of computational intelligence encompasses

techniques such as artificial neural networks, evolutionary computation, fuzzy

logic systems, ant colony optimization, particle swarm optimization, and

artificial immune systems, etc. The computational intelligence approaches that

are used in this thesis will be introduced in this chapter.

2.1 Elements of evolutionary algorithms

Evolutionary algorithms are stochastic, population based search

algorithms that are inspired by Darwin‟s theory of evolution. It implements

several evolutionary approaches found in nature such as selection,

reproduction, crossover and mutation, amongst others, to improve the survival

chances of a population over several generations. It follows the basic principle

of survival of the fittest. Each element in the evolutionary algorithm

framework will be discussed in this section.

2.1.1 Overview

In nature, all organisms have their unique set of genes. During the

reproduction process, these genes are recombined by the process of gene

crossover to form an offspring that carries characteristics from both parents

 16

and occasionally new characteristics by gene mutation that may or may not be

beneficial. All organisms are then tested in their environment and only the

ones most suited for the environment will survive to propagate their genes to

the next generations.

Evolutionary algorithm uses these elements in an algorithm to solve

complex optimization problems via a population of candidates. Each

individual in the population consists of a set of variables that forms the

solution to the problem. Individuals are tested and sorted according to their

performance and those that perform better are more likely to be selected as

parents to reproduce. The selected individuals exchange information by

merging or swapping parts of their solutions to form a new population of

offspring. The cycle then repeats itself by testing and sorting the new

population of candidates. After substantial iterations, the algorithm should

evolve a solution that is optimal for the problem. This process can be better

visualized in the form of a flowchart of a basic genetic algorithm shown in

Figure 2.1.

Other than nature inspired genetic operators such as crossover and

mutation, computer scientists have also introduced new mechanisms which are

not found in nature to evolutionary algorithms. An example of such is the

concept of elitism. Some of the fittest individuals in the current population are

cloned to the next generation without modifications so as to ensure that good

solutions found in this generation will not be lost through the recombination

operators. Such mechanisms can improve the performance of evolutionary

algorithms over the course of the search process.

 17

Figure 2.1 Flowchart of genetic algorithm

2.1.2 Representation

Just as genetic information is encoded in the DNA of living organisms,

the solution to the problem in an evolutionary algorithm is encoded in the

chromosome of an individual. In other words, each individual in the

population encodes a solution to the problem. The manner in which a solution

is encoded in an individual is referred to as the representation. For example,

the integer value 8 can be represented simply as an integer variable „8‟ or it

can be represented as a binary value „111‟. The representation directly affects

the performance of the evolution. If a chosen representation is not generic

enough to cover the entire search space, then such regions will become

inaccessible to the evolutionary algorithm and good solutions within such

regions will not be found. For example, an individual represented by integer

variables will be unable to optimize a problem where the optimal parameters

Begin

Initialization

Evaluate fitness

Selection

Crossover

Mutation

New population

Final result

End

Stop?

No

Yes

 18

are real numbers. Therefore, it is important to design representations that are

well suited for the problem. Some popularly used representations include real

number, binary or more complex data structures such as tree nodes and neural

network nodes.

2.1.3 Fitness and evaluation

The fitness of an individual is the criteria by which the environment

evaluates the individual. An individual of high fitness is said to be well suited

for the environment and will likely survive on to subsequent generations. In

nature, the typical measure of fitness is the lifespan of an organism. The

longer an organism is able to survive, the more opportunities it will have to

reproduce and create offsprings. In evolutionary algorithm, the fitness of an

individual is measured by the goodness of the solution it represents. For

example, in function maximization problems, the fitness is simply the function

output; the higher the function output, the fitter the individual. The fitness

value is then used to determine the extent to which an individual is allowed to

reproduce for the next generation.

2.1.4 Population and generation

Evolutionary algorithms use a population-based approach in its search

process. A population consists of a predefined number of individuals which

will evaluate different parts of the search space. In the beginning, the

individuals in the population are randomly initialized to populate the search

space. Each individual in the population will be evaluated to determine its

fitness. When all the individuals in a population have been evaluated,

recombination will be performed and a new population of offspring will be

 19

created. With the creation of the population of offspring, one generation or one

evolutionary cycle is said to have elapsed. A large population size will

typically survey a larger search space and increase the probability of finding

good solutions at the expense of longer computation time. Depending on the

complexity and difficulty of the problem, evolutionary algorithms typically

require tens to thousands of generations before a reasonably good solution can

be found.

2.1.5 Selection

Inspired by the laws of nature, a fitter individual in a population should

be given a higher likelihood of survival and more opportunities to reproduce

than a weaker individual. Nevertheless, the weaker individual should still be

given some small finite chance of survival and propagation. Such a

mechanism is realized in evolutionary algorithms as the selection process. In a

popular implementation of the selection process known as the roulette wheel

selection [8], each individual is assigned a probability of being selected based

on its normalized fitness against the total population fitness. Hence, an

individual with high fitness will have a higher probability of being selected for

propagation while an individual with low fitness will still have a small but

finite probability of being selected. A good selection mechanism should seek

to maintain a balance of good and weak individuals in a population. Too high

an emphasis on retaining good individuals may result in premature

convergence and having the population trapped in local optima. Conversely, a

high emphasis on retaining weak individuals may lead to low selection

pressure and slow rate of convergence. A balance of exploration and

exploitation is required for the good performance of evolutionary algorithms.

 20

Other commonly used selection mechanisms include tournament selection [96]

and rank-based selection [8].

2.1.6 Crossover

Crossover, or sometimes known as recombination, is the process where

genetic information from two parent individuals are exchanged to produce an

offspring. Such an offspring will receive characteristics from both parents in

the hope that the new combination of genes will produce an individual that is

fitter than both its parents. The crossover process is associated with a

probability of crossover which determines the likelihood of a crossover taking

place. The probability of crossover is typically set high so as to facilitate the

exchange of search information between individuals and improve the

efficiency of the algorithm. The actual implementation of a crossover

operation is often problem and representation dependent. Some commonly

used crossover mechanisms [59] include single-point, multi-point, uniform,

shuffle, arithmetic, and order based crossovers.

2.1.7 Mutation

Mutation denotes the random modification of some genetic material of

an individual. Although mutations are often viewed as being harmful, they

may also be beneficial in some instances and may result in individuals that are

more fit when compared to it predecessors. In evolutionary algorithms,

mutation is necessary to preserve diversity in a population. That is, mutation

helps to maintain the exploration ability of the population and to escape from

local optima should the population become trapped. As with the crossover

operation, the mutation operation is associated with a probability of mutation

 21

which determines the likelihood of a mutation taking place. When used in

conjunction with the crossover operation, the probability of mutation is

typically set low so as to maintain diversity in the population without

disrupting the flow of the population. In the absence of the crossover operation,

the probability of mutation is set high as it becomes the main mechanism for

exploration. The actual implementation of a mutation operation is often

problem and representation dependent. Some commonly used mutation

mechanisms include bit-flip mutation, position swap, and Gaussian

perturbation.

2.1.8 Elitism

Elitism is an example of a process not found in nature but was

introduced to evolutionary algorithms to improve its performance. It was first

conceptualized by De Jong [39] to preserve the best individuals found and

prevent the lost of good solutions due to the stochastic nature of evolutionary

processes. It is implemented in evolutionary algorithms by simply copying the

fittest individuals in the population to the next generation without any

alterations. Elitism ensures that the minimum fitness of a population never

decreases across generations and typically results in a higher rate of

convergence. In practice, the implementation of elitism requires the algorithm

designer to specify a percentage of individuals from the parent population to

directly replace the same percentage of the weakest individuals in the

offspring population.

 22

2.1.9 Stopping criteria

The stopping criteria refer to the conditions which will stop the

evolutionary algorithm when met. This is an important consideration as both

computational resources and time are limited and it is not practical to allow an

algorithm to run indefinitely. A good stopping criterion will allow sufficient

resources for the evolutionary algorithm to convergence to good, if not

optimal, solutions. Some commonly used stopping criteria include setting a

desired fitness level, setting a maximum number of generations, stopping

when the fitness level stagnate for some number of generations, and stopping

when the standard deviation of fitness level stagnate.

2.2 Genetic algorithms

Genetic algorithm (GA) [67] was introduced by Holland in the 1970s.

The basic GA consists of a fixed population size, a fixed length of

chromosome represented by binary strings, and uses a conventional objective

function. It is typically applied to discrete optimization problems such as

combinatorial problems. It emphasizes the use of crossover operators to

combine information from good parents. The crossover and mutation operators

work by flipping and swapping binary bits. The basic GA represents the

general framework of evolutionary algorithms and many variants can be

created by using the basic GA framework as a starting point. GA has been

applied successfully to a wide variety of problems. An example from the

finance industry would be futures trading [103]. The simplicity and flexibility

of GA also makes it easy to hybridize with other computational intelligence

 23

techniques such as neural networks and fuzzy logic [75] [77], and also

heuristics methods [143].

2.3 Evolution strategies

Evolution strategies (ES) [124] was introduced by Ingo Rechenberg

and Hans-Paul Schwefel in the 1970s. ES is particularly suited for real valued

optimization problems because its solutions are represented as real numbers. It

uses only the mutation operator and does not use any crossover operators. A

special feature of ES is the inclusion of self-adapting mutation parameters as a

standard procedure in its algorithm. The self-adapting mutation parameters are

encoded together with the solution in the chromosome hence making the

chromosome twice as long. ES also defines two types of selection mechanisms,

namely plus and comma strategy. In the plus strategy, μ parents participate in

the production of λ offsprings. Next, the λ least fit individuals are removed

from the μ+λ individuals and the remaining individuals form the new

generation. The plus strategy always retains the best solution and can get stuck

in local optima. In the comma strategy, μ parents participate in the production

of λ offsprings, but the new generation will be selected from λ offspring

individuals only. The advantage of this is that the comma strategy is better in

escaping from local optima but the disadvantage is that it might lose the

individual with the best solution.

2.4 Co-evolution

Co-evolution can be classified into two main classes, namely

competitive co-evolution and cooperative co-evolution. In this section, only

competitive co-evolution will be describe as it is the only paradigm that will

 24

be used in the experiments. A good read on the topic of co-evolution can be

found in [35].

The competitive co-evolution model [52] [64] [130] is often described

as a host-parasite or predator-prey interaction. This is implemented as two

sub-populations in an evolutionary algorithm. One sub-population represents

the potential solution to the problem while the other sub-population acts as

fitness tests. Each sub-population will evolve and adapt to counter the other

sub-population in order to become the new winning sub-population. This

results in an evolutionary arms race as each sub-population tries to exploit

weaknesses and outperform the other sub-population. This has the advantage

of ensuring that neither sub-population becomes over trained and thereby

losing generalization capability. The resulting solution will likely be good and

generic. Successful applications of co-evolution can be found in pursuit evade

games [105], multi-agent games [201], strategy games [7] and board games

[72] [87] [131].

The actual implementation of co-evolution in evolutionary algorithms

is problem dependent. Hence, co-evolution is better viewed as an

implementation concept more than a specific technique. In the experiments,

co-evolution is implemented by playing members of the same population

against each other in a two player game. Individuals within the same

population will exploit weaknesses of other individuals. The resulting

population is one that is continually changing and rooting out weak traits from

the population.

 25

2.5 Multi-objective optimization

Some types of problems involve multiple objectives that are competing

and incomparable. Such problems are said to be multi-objective (MO)

problems. For example, consider the problem of commuting from home to the

university everyday. Two possible objectives that one may take into

consideration are the cost of transportation and the time required for the

journey. The cheapest form of transportation may be the public bus but it is

also the slowest. The fastest form of transportation may be to take a taxi but

that is also the most expensive.

Generally, many real-world applications involve complex optimization

problems with various competing specifications and constraints. A

minimization problem with decision space, X, a subset of real numbers, can be

used without loss of generality. For minimization problems, it tends to find a

parameter set P shown in (2.1).

Min (),
D

X

P R
P

F P (2.1)

where
1 2

{ , , ..., }
D

P p p p is a vector with D decision variables and

1 2
{ , , ..., }

M
F f f f are M objectives to be minimized.

The solution to MO optimization problems exist in the form of an

alternate tradeoff known as Pareto optimal set. A single objective component

belonging to any non-dominated solution in the Pareto optimal set can only be

improved at the expense of degrading at least one of its other objective

components. A vector Fa is said to dominate another vector Fb, denoted as

shown in (2.2).

, , , ,
, {1,2,..., } {1,2,..., }

a b a i b i a i b i
F F iff f f i M and j M where f f     (2.2)

 26

In the absence of specific domain information regarding the preference

of objectives, a ranking scheme based on Pareto optimality is regarded as an

appropriate approach to representing the fitness of an individual in

evolutionary MO optimization problems [48]. The concepts of the Pareto

dominance relationship and the Pareto-optimal front are illustrated in Figure

2.2.

(a) (b)

Figure 2.2 Illustrations of (a) Pareto dominance relationship and (b) Pareto-optimal front

The solution to MO optimization problems exist in the form of an

alternate tradeoff known as Pareto optimal set. A single objective component

belonging to any non-dominated solution in the Pareto optimal set can only be

improved at the expense of degrading at least one of its other objective

components. Each solution in the population is given a Pareto rank given by

equation (2.3).

 () 1
i

rank i n  (2.3)

where ni is the number of solutions in the population dominating the

individual i in the objective domain. In a Pareto optimal set, each solution is

fitter than any other solution in at least one objective. The solutions with a

lower Pareto rank have a higher likelihood of being selected as parents for the

 27

next generation. At the end of the algorithm, a decision is made to determine

the most suitable solution for the intended problem. Examples of MO

algorithms include non-dominated sorting genetic algorithm II (NSGA-II) [40],

strength Pareto evolutionary algorithm 2 (SPEA2) ‎[202] and Pareto archived

evolution strategy (PAES) [78] etc. A good introduction to multi-objective

optimization can be found in [36].

2.6 Neural networks

Artificial neural networks (or simply neural networks) [63] are a class

of machines that are designed to model the way in which the brain performs

tasks. In particular, these machines must exhibit the behaviour of learning and

the ability to store knowledge. A neural network consists of an interconnected

group of artificial neurons designed to model some properties of biological

neural networks.

Neural networks have been widely used for image processing, speech

processing, pattern recognition [90] [162] [185], function approximation [83],

and time series prediction. Its applications can be seen in many areas like

control problems [55], medical diagnosis, robotics [71], game AI [126] [139],

financial analysis [192], criminal investigation, and even driving a car [13]

[15]. The main reason for the successful application of neural networks is its

ability to learn and generalize well to unseen situations.

2.6.1 Multi-layer perceptrons

Neural networks consist of input units, hidden units and output units

call nodes. Each node (or perceptron) has an activation function, which acts as

a mapping function. Each connection has a strength represented by a weight,

 28

which help to define the input-output relationship of the network. A simplified

view of a multi-layer perceptron (MLP) is shown in Figure 2.3.

Figure 2.3 A simplified view of a MLP

Neural networks can be trained using a paradigm known as supervised

learning. In supervised learning, a set of example and their desired outputs,

known as a training set, is available from experiments. The examples from the

training set are shown repeatedly to the neural network and an output is

produced from the neural network. If this output is different from the desired

output, then the neural network adjusts its weights to make an improvement.

This process is known as the training algorithm. The aim of the training

algorithm is to minimize the error function as shown in (2.4)

       



N

j

jyjdWJ
1

2

2

1
 (2.4)

where W is the weight vector of the neural network, d(j) is the desired

output of the j-th example and y(j) is the neural network output of the j-th

example.

The error function is to be minimized using the right values for the

weights W via the gradient descent method. The computation of the gradient

can be obtained using a method called the backpropagation which efficiently

Inputs Outputs

 29

exploits the use of the chain rule on composite functions. For conciseness, the

detailed workings of the backpropagation algorithm can be found in textbooks

[63] and shall not be discussed here. One of the main disadvantages of the

gradient descent method is its long computation time. Methods to find the

global optimum are usually very computational expensive if not impossible at

all.

2.6.2 Evolutionary neural networks

As the name implies, evolutionary neural networks are the hybrid

between evolutionary algorithms and neural networks. The training of neural

networks involves finding a set of weights that will generate the desired output

for a given input. As discussed in the previous section, such weights can be

optimized by the backpropagation algorithm. Alternatively, one may also use

evolutionary algorithms, which is itself an optimization technique, to optimize

the weights of the neural network. A good introduction to the field of

evolutionary neural networks can be found in [200].

In evolutionary neural networks, the fitness function is often defined as

the minimum sum of square errors between the outputs of the neural network

and the desired outputs from the training data. In its simplest form, the number

of hidden units in the neural network is predefined by the user and the weights

of the neural network are represented as an array of real numbers in the

chromosome of the evolutionary algorithm. However, many variants are also

possible, such as automatically evolving the number of hidden units in the

neural network [54], constructing recurrent neural networks [6] and evolving

the entire topology of the neural network [149] [150] [151].

 30

2.7 Summary

In this chapter, the computational intelligence approaches that are used

in this thesis are introduced. The core elements of the evolutionary algorithm

framework are discussed in detail as a good understanding of these basic

building blocks will allow us to improve their performance and find new

applications for them. Two specific implementations, namely genetic

algorithms and evolution strategies, are primarily used in the experiments.

Other concepts such as co-evolution and multi-objective optimization are used

in conjunction with the basic framework to allow evolutionary algorithms to

be applied to a wider range of problems. This is followed by the introduction

of artificial neural networks and the use of evolutionary algorithms as their

training methods.

 31

Chapter Three

3 Real time car racing simulator

The car racing simulator model used in the experiments is modified

from the one used in Simulated Car Racing Competition held during IEEE

CEC 2007 [179] [180]. The main features of the simulator will be summarized

in this section. In this game, up to 2 players drive their cars in an open arena

and earn points by driving through an ordered sequence of waypoints. In a 2

player game, the player with more points at the end of the stipulated game

time wins the game. In a 1 player game, it becomes a reverse time trial as the

player tries to achieve as high a score as possible within the stipulated game

time. An illustration of the game arena in a 2 player game is shown in Figure

3.1.

Figure 3.1 The real time car racing simulator game area

Current waypoint

Second waypoint

Scoreboard

 32

3.1 Introduction

The time keeping system in games can be broadly categorized into two

types, namely turn based and real time. In the turn based system, players in the

game take turns to perform actions within the game. That is, while one player

is performing his actions, the other players may only observe the game

environment without any active participation. Only when the current player

completes his turn may the next player begin his turn. Conversely, in a real

time system, game time passes continuously according to a global game clock.

All players perform their actions simultaneously and at the same time observe

the effects of their opponents‟ actions and response in real time. Hence, there

is an element of time management involved in real time games. In real world

games, chess is a classic example of turn based games, while ball sports such

as basketball and soccer and examples of real time games.

The dimension of the competition field is 400 pixels by 400 pixels and

is not occupied by any walls or obstacles. As such, vehicles are free to drive

outside of the competition field. However, only the competition field is visible

to the human controlled player. Hence, this setup is advantageous to computer

controlled cars as their sensors will continue to function even if their current

position is outside the game field. Assuming the lower left corner to be the

origin, the starting position of the first vehicle is fixed at the coordinate (100,

200) while the starting position of the second vehicle is fixed at the coordinate

(300, 200).

The objective of each race is to drive through as many waypoints as

possible within an allotted time. Two waypoints are visible on the competition

field, the current and the next. However, the next waypoint can be driven

 33

through but is not worth any points unless the current waypoint is driven

through first. That is, the waypoints must be driven through in an ordered

sequence. Nothing will happen when a car drives through the next waypoint.

Whenever the current waypoint is driven through, the car that drove through it

gains 1 point, the next waypoint will become the new current waypoint and a

new waypoint will be generated to replace the next.

It should also be noted that in the context of computer games, real time

games are not subjected to real time constraints such as operational deadlines

from event to system responses encountered in real time control systems.

Computer games are typically produced to operate at 30 frames per second. In

the event that the game AI requires more than 1/30 seconds to response, the

frame will be dropped. The result is a game that runs at a lower frame rate.

However, it is still desirable for game AI to be computationally efficient so

that frame rates can be maintained at 30 fps or more to provide a better

playing experience.

3.2 Waypoint generation

There are several ways to generate the new waypoint. One such

method is to randomly generate a new waypoint anywhere within the playing

area. The main disadvantage of randomly generated waypoints is that two or

more sequential waypoints may be generated in close proximity of one another

and in severe cases, even overlapping. This results in a particular vehicle

gaining two or more points in a single approach. This can be viewed as a

biased allocation of points especially in a race where collecting waypoints is

its main objective.

 34

As such, the following method of generating waypoints is proposed.

The locus of the (k+1)-th waypoint will always be generated on the

circumference of a circle of radius (400/3) pixels centred on the k-th waypoint

within the visible competition area. The arbitrarily chosen radius is to ensure

that waypoints do not overlap while maintaining some distance between

waypoints to allow opposing vehicles an opportunity to mount a viable

counter strategy. In addition, the very first waypoint is always initialized on

the locus of a vertical straight line running through the centre of the field. This

is to ensure that the initial conditions are not in favor of any vehicle in

particular.

Another way to generate the waypoints is to make use of a stored array

of waypoint coordinates. That is, a sufficiently long list of waypoints, usually

about 35 waypoints for a game of 1000 time steps, is generated before the

game begins. Whenever a waypoint is passed, instead of generating a new

waypoint on the fly, it is simply loaded from the next item on the list. This

allows the designer to predefine a unique route for the player to drive through.

This can be used to simulate a virtual race track where the designer can

incorporate difficult situations such as creating routes that require very small

turning radii. Such designer tracks can also be used in control experiments to

benchmark the performance of the human or AI players.

 35

Accelerate and Steer

left

6

Accelerate

7

Accelerate and Steer

right

8

Steer left

3

Neutral

4

Steer right

5

Decelerate / Reverse

and Steer left

0

Decelerate / Reverse

1

Decelerate / Reverse

and Steer left

2

Figure 3.2 Graphical representation of the controller and its corresponding integer value in the

Java Controller interface

3.3 Vehicle controls

The vehicles themselves are controlled using digital trigger type

controllers like the directional controls found on console game control pads.

The 4 distinct on-off control signals: accelerate (up), decelerate (down), left

and right turn combine to form a total of nine possible controller states,

inclusive of a neutral state where no key is asserted. This is better illustrated in

Figure 3.2.

The controller can take inputs either from the keyboard or an AI

algorithm. On a keyboard, accelerate and decelerate actions are mapped to the

up and down arrow keys respectively, while the left and right actions are

mapped to the left and right arrow keys respectively. If no keys are depressed,

then a neutral action is asserted. In the AI controller, the control mechanism of

the car in the racing game is implemented via the Java Controller interface that

returns an integer value from 0 to 8, which represents the nine possible

controller states, to the game engine at each time step.

 36

Table 3.1 Full list of sensors available in the real time car racing simulator

Sensor name Description

getSpeed
Double. Returns the speed of the

controlled vehicle.

getAngleToNextWaypoint

Double. Returns the angle of the currently

activated waypoint from the controlled

vehicle in radians, -π to π.

getDistanceToNextWaypoint

Double. Returns the distance of the

currently activated waypoint from the

controlled vehicle.

getAngleToNextNextWaypoint

Double. Returns the angle of the next

activated waypoint from the controlled

vehicle in radians, -π to π.

getDistanceToNextNextWaypoint

Double. Returns the distance of the next

activated waypoint from the controlled

vehicle.

getAngleToOtherVehicle

Double. Returns the angle of the other

vehicle from the controlled vehicle in

radians, -π to π.

getDistanceToOtherVehicle
Double. Returns the distance of the other

vehicle from the controlled vehicle.

otherVehicleIsPresent

Boolean. Returns true if the other vehicle

is present (i.e. 2 player game) or false

otherwise (i.e. 1 player game).

justPassedWaypoint

Boolean. Returns true at the time step that

a waypoint is passed by either vehicle or

false otherwise.

otherVehicleJustPassedWaypoint

Boolean. Returns true at the time step that

a waypoint is pass by the other vehicle or

false otherwise.

getPosition
Vector. Returns the x and y coordinates of

the controlled vehicle.

getVelocity
Vector. Returns the x and y component of

the velocity of the controlled vehicle.

getOrientation

Double. Returns the direction in which

the controlled vehicle is facing in radians,

-π to π.

getAngularVelocity

Double. Returns the angular velocity of

the controlled vehicle in radians per time

step.

getDirectionOfMovement

Double. Returns the direction in which

the controlled vehicle is traveling in

radians, -π to π.

getOtherVehiclePosition
Vector. Returns the x and y coordinates of

the other vehicle.

getOtherVehicleVelocity
Vector. Returns the x and y component of

the velocity of the other vehicle.

getOtherVehicleOrientation

Double. Returns the direction in which

the other vehicle is facing in radians, -π to

π.

getNextWaypointPosition
Vector. Returns the x and y coordinates of

the currently activated waypoint.

getNextNextWaypointPosition
Vector. Returns the x and y coordinates of

the next activated waypoint.

 37

3.4 Sensors model

The AI controllers can access but not modify the full state of the game

in a third-person representation similar to that used internally by the game.

Additionally, controllers can access much of the information in a more

convenient first-person perspective, e.g. angles and distances from the frame

of reference of the car. The full list of sensors available and their description is

listed in Table 3.1.

3.5 Mechanics

In the simulation, a vehicle is specified by its position, velocity,

orientation and angular velocity. The equations that govern these variables are

given in equations (3.1) to (3.4).

1t t ts s v   (3.1)

 1 1t t drag driving gripv v c f f      (3.2)

1t t     (3.3)

 1 ()t traction steering tf f     (3.4)

where st is the position of the vehicle at time t, vt is the velocity of the

car at time t, cdrag is a scalar constant which is set to 0.1, fdriving is the driving

force provided by the vehicle engine which is set to 4 for acceleration, 2 for

deceleration and 0 for neutral, fgrip is the force between the tires and the

ground surface, its magnitude is set to 2 and its direction is set to 0 when the

orientation of the vehicle and the direction of movement differ by less than

π/16, θ – (π/2) when the difference is positive and θ + (π/2) when the

difference is negative, θt is the orientation of the vehicle at time t, t is the

angular velocity of the vehicle at time t, ftraction limits the change in angular

 38

velocity to between -0.2 and 0.2, and fsteering is the magnitude of vt if the

vehicle is steering left and negative magnitude of vt if steering right.

In 2 player games, vehicle collisions are also modeled in the simulation.

Collision is detected by checking whether the rectangular spaces occupied by

the vehicles on screen intersect each other. When a collision is detected, the

collision resolution methods on both vehicles are called. The velocities of both

vehicles are then exchanged and both vehicles are shifted several pixels away

from each other to undo the intersecting spaces in order to prevent repeated

collisions in the next time step. Next, the angular velocities are updated by

equation (3.5).

   
2

other thismag v mag v
 


  (3.5)

where mag() is the magnitude function of a vector, vother is the velocity

of the other vehicle, vthis is the velocity of this vehicle, and the sign of the

operation depends on the relative position of the point of collision to the centre

of the vehicle.

The included physics model is reasonably detailed, allowing for

collisions between vehicles as well as side skidding. When cornering, a

technically skilled controller, human or not, will be able to execute such

maneuvers to their advantage.

When driving towards the current waypoint, care must be taken not to

approach it at too high a speed. A driver that is accelerating and steering

towards a waypoint may overshoot it and ends up orbiting around the

waypoint. Additionally, if a driver overshoots the current waypoint, it may be

put at a disadvantage if the next waypoint is positioned behind the car. Driving

at a slower speed may help in most situations but runs the risk of losing the

 39

current waypoint to the opposing driver and therefore wasting valuable time

driving towards a waypoint that it is unable to win.

Using a more aggressive approach, the driver may choose to

intentionally collide with the opposing driver in the hope of throwing its

opponent off course and thereby increasing its own chances of arriving at the

current waypoint first. Alternatively, the driver may choose to throw itself in

the path of its opponent to block its path and perhaps get a helpful bump

towards the current waypoint. However, this requires that the driver itself be

competent in recovering from collisions and also be able to predict the most

likely outcome of a collision in order to determine whether or not it is

advantageous to do so.

From a more tactical point of view, the driver can try to predict which

driver will reach the current waypoint first. Given the situation, the driver can

choose to drive faster towards the current waypoint or drive towards the next

waypoint and wait there instead. This way, the driver loses a point for the

current waypoint but wins the next point once it becomes activated and all is

square for the race to the waypoint after that. However, predicting which

driver will reach the current waypoint first requires a good understanding of

the game dynamics as well as the driving behaviour of the opposing driver.

Conversely, the opposing driver may also decide to forsake the current

waypoint, in which case it becomes more logical to drive towards the current

waypoint instead. In the example shown in Figure 3.1, both cars are roughly

equidistance from the current waypoint. The red car is on the right and the

blue car is on the left. However, the red car is facing away from the waypoint

while the blue car is facing the waypoint directly. The red car can choose to

 40

reverse towards the waypoint to avoid wasting time to make a U-turn. But if

the red controller knows that the reversing acceleration is slower than the

forward acceleration, it will know that the race to the current waypoint is lost.

In such a situation, the red car should forgo this waypoint and drive forwards

toward the next waypoint instead. Additionally, the blue car, after driving

through the current waypoint, will likely be back facing the next waypoint and

hence be in a poor position to win the next point.

3.6 Example controllers

Three heuristic controllers with basic driving behaviours, which are

packaged in the car racing simulator [179], will be described in the following

sub-sections. These controllers are used in various experiments in this thesis.

In particular, the HeuristicSensibleController is used as the main training

opponent as it represents a well tuned naïve driver that places sufficient

selection pressure on the evolving population. More sophisticated controllers

have been developed [179], some by conventional AI and others by

computational intelligence. However, the sophisticated controllers are not used

during training because they encourage over training, specialized solutions and

poor generalization. Therefore, only basic controllers are used during training

to encourage better generalization.

3.6.1 GreedyController

The GreedyController (GC) is a simple controller that always outputs

the acceleration motor command and there is no upper limit for its speed. It

will steer towards the next waypoint intuitively depending on whether the

angle to the current waypoint is negative or positive. This controller is rather

 41

ineffective in practice. When observed visually, it typically overshoots the

waypoint due to its fast driving speed. In situations when the next waypoint is

in the opposite direction, this controller needs to take a big detour, wasting

valuable time.

3.6.2 HeuristicSensibleController

The HeuristicSensibleController (HSC) drives directly towards the

current waypoint much like the GC but with an upper speed limit of 7 pixels

per time step which is a moderate speed. If the instantaneous speed falls below

the speed limit, it exerts the accelerate command but if it is above the limit it

simply issues the neutral driving command. In general, this controller

performs better than the GC in solo tests. The main drawback of this controller

is that it does not have any waypoint prediction mechanisms. That is, it simply

drives towards the current waypoint, disregarding whether or not it will reach

the waypoint before its opponent does.

3.6.3 HeuristicCombinedController

The HeuristicCombinedController (HCC) is a more complex controller

when compared to the HSC. Its behaviour will change depending on whether

or not its present position is nearer to the current waypoint than its opponent.

If it is nearer, it behaves identically to the HSC. However, if it is further away,

the controller activates an “underdog” mode and drives towards the next

waypoint instead, stopping in the vicinity of the next waypoint. In underdog

mode, its speed limit is proportionate to the distance towards the next

waypoint. It reduces to the HSC in solo races.

 42

3.7 Summary

In this chapter, the real time car racing simulator used in this thesis is

presented. Three methods of waypoint generation were discussed, the discrete

control scheme used in the simulator was illustrated and the sensors available

to the game AI were introduced. Next, the mechanics of the vehicles were

presented along with some discussion on possible driving strategies. Finally,

three simple heuristic controllers, which will be used as training opponents in

the experiments, were described.

 43

Chapter Four

4 Evolving computational efficient behaviour-

based AI for real time games

This chapter examines the design of a game AI that is computationally

efficient yet demonstrates highly competitive performance for a real time car

racing simulator game. In turn based games, the game AI is able to

compensate for its lack of game reasoning by evaluating board positions

millions of times faster than the human player. However, such extreme

resource requirements are impractical for fast paced and real time games, i.e.

racing games, sports simulators, first person shooters and real time strategy

games. This chapter proposes and describes in detail an evolved behaviour-

based controller that combines the good response time of behaviour-based

systems and search capability of evolutionary algorithms to evolve

competitive driving behaviours for a real time car racing game. The proposed

controller is tested against the top 5 participants in the Simulated Car Racing

Competition held during the 2007 IEEE Congress on Evolutionary

Computation to evaluate its generalization performance against previously

unseen controllers. The proposed behaviour-based controller is able to

outperform all its opponents in direct competition, and is also the most

computationally efficient.

 44

4.1 Introduction

The quality of commercial computer games is directly related to their

entertainment value ‎[182]. Game AI, being an essential part of a game, has

become an important selling point of games ‎[49]. In this aspect, game

developers compete with one another by creating more sophisticated and

intelligent game AI to offer better game play experiences. However, the

current state of game AI is still, in general, of low quality ‎[137]. There is a

general dissatisfaction among game players with the level of the artificial

intelligence of computer controller opponents. This has led to players

preferring to play against human controlled opponents ‎[137], via hot seat, split

screen, local network, Bluetooth, infrared and most prominently the Internet.

This group of players tends to value intelligent behaviours [157]. Such player

preferences have also partly contributed to the boom in the development of

massively multi-player online games in recent years. However, in situations

where human game partners are unavailable, a competent game AI is still

desirable.

World class game AI does exist and many examples have been

developed that are able to beat good human players ‎[89]. But these are

generally restricted to slower paced, turn based, and perfect information

games ‎[27] such as Deep Blue for International Chess ‎[74] and Chinook for

Checkers ‎[136]. Deep Blue compensates for its lack of game reasoning by

evaluating individual board positions millions of times faster than the human

player. These search methods can also be extended to multi-player games [68]

[155]. However, such extreme resource requirements are impractical for

commercial games where majority of the CPU time and memory is allocated

 45

to graphics rendering instead of AI. For faster paced, real time type of games,

i.e. racing games, sports games, flight simulators, first person shooters (FPS)

and real time strategy (RTS), such brute force evaluation methods are not

feasible. In real time games, game time progresses continually and all players

are required to perform their actions simultaneously. Computationally efficient

methods that do not compromise in performance are necessary requirements

for the implementation of game AI in such real time games ‎[148].

Behaviour-based artificial intelligence (BBAI), which is popular in the

field of robotics, provides some inspiration to address these real time

computational requirements. In this methodology [22], intelligence is

perceived as a large number of relatively simple and robust modular

components. Each of these components work only within a specific set of

conditions which it can identify from the environment. BBAI is reactive in

nature and operates without search or deliberation, and is therefore very

successful in time critical applications such robotics and interactive virtual

reality ‎[141] and suitable as game agents [69]. However, the disadvantage of

reactive intelligence is in its design process since individual components need

to be designed by hand.

Fortunately, computational intelligence (CI) techniques such as neural

network, fuzzy logic and evolutionary computation have been demonstrated to

be a valuable tool that can be employed to simplify the process of designing

controller behaviours and to optimize its related parameters. Neural networks

were trained as evaluation functions for checkers [32] ‎[33] and as a targeting

system for shooting games [58]. Evolutionary algorithms had been applied to

evolve competent players and to analyze results in “Prisoner‟s Dilemma”

 46

games [51] [119]. Hybrid fuzzy logic methodologies had been applied to

incomplete information resource allocation games and network flow board

games ‎[21]. Genetic programming was applied to learn tactical behaviours by

observing how human players perform in a driving simulator ‎[46]. CI

techniques have also been applied to physical cars in the DARPA Grand

Challenge [167]. Game agent controllers employing CI techniques had been

successfully applied to many games such as chess [43] [107], racing games

[1] ‎[30] [50] [65] [66] [112] [173] [174] [177], soccer simulation ‎[101] [102]

[113] [118] [133] [134] [154], role playing games [146], predator prey games

[18] [41] [88] ‎[193] [195], action games [37] [45] [108] [116] [186], puzzles

[92] [97], real time strategy games [11] ‎[23] [94] [114] [135] [153] [184], and

even sumo wrestling [142] with reasonable performance against an average

human player. CI techniques have also been used to design game contents [61]

[62] [178]. While complex behaviours cannot be reliably and predictably

evolved, simpler behaviours can be quickly found and thoroughly exploited.

This characteristic suitably complements the process of designing the simple

modules used in behaviour-based controllers.

This chapter examines the design of a computationally efficient

controller for controlling a car in a real time car racing simulator game by

using a hybridization of behaviour-based design and evolutionary computation

search. The proposed controller will be referred to as behaviour-based

controller for the remaining of this chapter. The behaviour-based controller

will be evaluated and compared based on 2 metrics, computational efficiency

and competitive performance. The best evolved controller will then be tested

against the top 5 participants from the Simulated Car Racing Competition held

 47

during 2007 IEEE Congress on Evolutionary Computation (CEC) [180] in

order to benchmark its generalization performance against previously unseen

controllers.

The result of this design is a framework for a computationally efficient

agent game AI based on a hybrid evolutionary behaviour-based methodology

that is able to automatically exploit some collaboration between the different

behaviour components which may have gone unnoticed if designed by hand.

This demonstrates the possible synergy between conventional AI and

computational intelligence.

4.2 Controller design

In this section, the design of the behaviour-based controller will be

discussed in detail. First, an artificial neural network controller is evolved and

its behaviour is analyzed. Learning from the relatively poor performance of

the neural networks controller, a new set of component behaviours are

proposed for implementation in the behaviour-based controller. The

component behaviours are deliberately made generic and evolution strategies

is employed to optimize the behaviour-based controller. A comparative

analysis will be made between the neural network controller and the

behaviour-based controller.

4.2.1 Neural network controller

An artificial neural network (ANN) [63] is a massively parallel

distributed processor made up of simple processing units which has a natural

propensity for storing experiential knowledge. A class of ANN employing

multi-layer perceptrons (MLP) represents one of the widely used and

 48

effectively machine learning methods currently applied to data classification

and function approximation problems. Although it usually takes a substantial

amount of time to train a neural network, a trained network is computationally

fast in its application due to it being a string of addition, multiplication and

function mapping operations.

The neural network model is used to implement the game controller

because a properly trained neural network can infer an output from a set of

observational inputs. This is useful as it avoids the complicated task of

analyzing the system and designing driving rules by hand. However, the

disadvantage of this approach is that the resultant neural network acts as a

black box control unit, making it difficult to make analysis or draw

conclusions from the evolved weight values of the neural network. In this

situation, the neural network controller is inspected and described visually to

quantify its driving behaviours. In this section, a car racing controller

constructed solely by neural networks is explored to study its potential as a

real time game controller.

The neural network used is a standard multi-layer feedforward fully

connected MLP with 10 inputs, a single hidden layer with 6 hidden nodes and

2 outputs. The inputs are the angle to the other car, the distance to the other car,

the orientation of the other car, the angle to the current waypoint, the distance

to the current waypoint, the angle to the next waypoint, the distance to the next

waypoint, the direction of movement, the orientation of the car, and the speed

of the car. Each neuron implements the hyperbolic activation function. At each

time step, the observational inputs are fed from the sensor model to the neural

network. The outputs are two real number values, one for steering and one for

 49

driving. Four additional threshold variables are defined to discretize the

outputs into the on-off controllers of the simulator. The variables

SteeringLimitLow and SteeringLimitHigh defines the lower and upper

threshold of the steering output while the variable DrivingLimitLow and

DrivingLimitHigh defines the lower and upper threshold for the driving output.

The pseudo code for discretizing the output of the neural network can be

summarized as follows.

if (output_steer < SteeringLimitLow)

 steering = 0;

elseif (steering > SteeringLimitHigh)

 steering = 2;

else

 steering = 1;

if (output_drive < DrivingLimitLow)

 driving = 0;

elseif (output_drive > DrivingLimitHigh)

 driving = 2;

else

 driving = 1;

Note that although SteeringLimitLow is logically supposed to be less

than SteeringLimitHigh, it is not enforced as a constraint in the evolution so as

to promote discovery of varied strategies. In a similar way, DrivingLimitLow

and DrivingLimitHigh are not constrained in any way. For example, in the

event that DrivingLimitLow is evolved to be a large positive number, the

controller will likely drive the car in reverse most of the time. This

representation of the controller is theoretically capable of driving either

forwards or in reverse, and also to come to a complete stop. The neural

network weights as well as its output threshold variables are trained using

evolution strategies.

 50

4.2.1.1 Experiments

A (100+100) evolution strategies (ES) [124], running for 200

generations was used as a training method for the neural network controller.

The mutation operator was a Gaussian perturbation with the step size set to a

fixed value of 0.1 for all variables. The evolution parameters are summarized

in Table 4.1. Each individual is evaluated against the HSC for 5 rounds of

competition, followed by 5 rounds of competitive co-evolution against another

individual from the population. The competitive co-evolution was introduced

to prevent over training, encourage better generalization and also to promote

population diversity [53]. The fitness function was defined as the number of

waypoints the individual collected averaged over the 10 rounds of game play.

No solo game was used during the training. Elitism was implemented by

retaining the best 4 individuals from each generation. Each chromosome for

the neural network controller was encoded with a total of 84 real valued

variables, 80 for the neural network weights and bias and 4 for output

thresholds. In terms of computation time, each run of 200 generations,

consisting of 200 × 100 × 10 = 200000 games took less than 10 minutes to

complete.

The evolution of the neural network controller is plotted in Figure 4.1.

It was observed that the neural network controller stagnated in terms of mean

score at around 16 points after the first 30 generations. The comparative

results, averaged over 500 games, for the neural network controller against the

heuristic controllers are shown in Table 4.2. The mean results were given and

the standard deviation quoted in parentheses.

 51

In solo runs, it was observed that the neural network controller is able

to outperform all 3 heuristic controllers with a higher mean score and yet

smaller standard deviation. This implied that the evolved neural network

controller is a well optimized and consistent driver. In competitive 2 player

games against the heuristic controllers, the neural network controller was able

to defeat all its heuristic controller opponents in mean score over 500 games.

In particular, the game against the HCC yielded a very high combined end

game score of 16.246 + 15.440 = 31.686. This was due to the waypoint

predictive nature of the HCC. When the neural network controller was heading

towards the current waypoint, there were instances where the HCC gave up

the current waypoint and headed towards the next waypoint. So when the

neural network controller passed the current waypoint, the HCC very quickly

passed the newly activated waypoint. This made the game faster paced and led

to high end game scores.

Since the neural network is a black box controller, its driving

behaviour was analyzed visually. While the neural network was randomly

initialized, it did evolve into a competent point to point driver that took

advantage of the difference in acceleration between driving forward and in

reverse. The neural network controller avoided the problem of orbiting a

waypoint faced by the heuristic controllers by driving entirely in reverse. The

lower acceleration gave it more control in steering and a smaller turning radius

that improved its maneuverability and made navigating around waypoints an

easier task. However, the novelty stopped at that.

 52

Table 4.1 Evolution parameters for neural network controller

Parameter Neural network

Method Plus

Population size 100

Generations 200

Mutation type Gaussian

Mutation probability 1

Mutation step size 0.1

Table 4.2 Results for neural network controller

Controller Score

Greedy (GC) 12.774 (5.103)

HeuristicSensibleController (HSC) 10.578 (6.601)

HeuristicCombinedController (HCC) 9.284 (6.414)

Neural Network Controller (NN) 20.188 (3.090)

NN - GC 14.692 (2.092) - 11.020 (1.891)

NN - HSC 14.516 (2.240) - 11.996 (2.104)

NN - HCC 16.246 (3.393) - 15.440 (3.189)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Generation

M
e
a
n
 s

c
o
re

Neural Network Controller

Figure 4.1 Training fitness of neural network controller

The neural network controller never learnt to decelerate or stop and

hence always overshot the target point. The controller did not drive in the

opposite direction (i.e. forwards) towards a waypoint. The neural network

controller also did not evolve any form of prediction mechanism to decide to

 53

approach the next waypoint when the current waypoint was an obvious loss.

Therefore, it was concluded that although the neural network representation

used here does theoretically allow for the evolution of advanced driving

behaviours and strategies, it only exploited the most basic of driving

behaviours in the game and was trapped in a local minima. Perhaps the choice

of using a single large neural network to approach this complex racing game

was too ambitious. It may be possible to break down the individual aspects of

driving and train separate neural networks to learn each part independently or

in tandem. The lessons learnt from evolving the neural network controller was

used to design the behaviour components of the behaviour-based controller in

the next section.

4.2.2 Behaviour-based controller

The proposed controller design is inspired by the behaviour-based

design methodology to take advantage of its computation efficiency. In this

section, the behaviour-based AI (BBAI) methodology will be briefly described

followed by a detailed discussion of the various components and performance

of the behaviour-based controller.

In BBAI, intelligence is made up of a large number of modular

components which are relative simple and robust. Each of these components

work within a specific set of conditions which it is able to observe from the

environment. These components are organized into layers in a hierarchy which

are able to interact with one another. The constraints here are that no

components will have access to another‟s internal states but it is possible to

observe their inputs and outputs. Additionally, a higher layer may subsume a

 54

lower layer by affecting its inputs and outputs. This is known as the

subsumption architecture ‎[22].

This methodology is powerful because of its simplicity and robustness.

Each individual component encodes only a simple behaviour such as moving

forward, turning or avoiding objects, and thus can be programmed reliably. In

the original implementation, there was no memory or learning in its

architecture, hence the resultant was that of a reactive behaviour. This turns

out to be an advantage for BBAI because it is computationally efficient and

hence suitable for systems that require good response time such as in the

design of smart robots ‎[42] [122] and also in the real time racing game in this

chapter.

In the behaviour-based controller, the basic driving behaviours of the

car racing controller such as accelerating, braking and steering are organized

at the lowest level. A separate component for the prediction of waypoints is

placed at a higher level so that it is able to augment the input of the driving

layer in order to dictate which waypoint is more advantageous for the car to

drive towards.

The disadvantage of reactive intelligence is its design process because

it performs no search or learning by itself ‎[26] and all behaviours must be

designed by hand. However, this difficulty can be adverted with the inclusion

of computational intelligence as a design companion. In the behaviour-based

controller, only generic representations are specified for each behaviour

component. Each component is subsequently trained using genetic algorithm.

For example, a potential field representation is used for the steering control

but it is not specified beforehand whether the interactions are attractive or

 55

repulsive in nature. The evolved controller exhibits attractive forces which is

necessary for good performance in the game.

The behaviour-based controller consists of 5 main components. The

interactions between components are illustrated in Figure 4.2. Components

that form the basic driving behaviour are organized at the lower base level

while tactical behaviours are organized at the higher first level. The first level

can be said to subsume the base driving level. The individual component will

now be discussed in further detail.

Figure 4.2 Overview of behaviour-based controller

The advantage of the behaviour-based methodology over the neural

network one is that the former is a white box design while the latter is a black

box design. Being a white box allows the designer to gather insights to how

individual components complement one and another, and how parameters are

evolved to exhibit the winning behaviour. Furthermore, the behaviour-based

methodology allows the designer to input domain knowledge which can guide

the evolution towards better solutions with faster convergence.

4.2.2.1 Force field trajectory

The first is a trajectory planning mechanism inspired by the interaction

between charged particles in space. Potential field methods are widely used in

Waypoint prediction Reverse driving

Heading alignment

Force field trajectory Speed regulation

outputs

first level

sensor
inputs

base driving level

 56

the field of robotics due to its simplicity ‎[125]. Every foreign particle in the

playing area, namely the car belonging to the opponent, the current waypoint

and the next waypoint, induces either an attractive or repulsive field on the

game area. At any point in the game area, the controller tries to align its car in

the direction of the local induced vector field. As such, the controller car will

move along the resultant field lines induced by the interaction of these charged

particles. However, these field lines only indicate the steering path and not the

driving speed. The field equation for the particles in the game arena is defined

in (4.1).

ˆip

i iE q r r ,  i other, wp1, wp2 (4.1)

where other is the opponent vehicle, wp1 is the current waypoint, wp2

is the next waypoint, iE is the field vector induced by the point particle i, qi is

the charge of particle i, r is the distance from the particle with charge qi to the

evaluation point, pi is the power factor of the distance r and r̂ is the unit

vector pointing from the particle with charge qi to the evaluation point. The

variables qi and pi for the opponent car, the current waypoint and the next

waypoint are optimized using genetic algorithm. The controller car is

considered a positive point charge in calculations in order to evaluate the

resultant force exerted on the controller car. There are no constraints on the

evolved variables so it is entirely possible that the results may turn out to be

other than expected.

4.2.2.2 Speed regulation

The force field trajectory component determines only the driving path

of the car and not the driving speed. Hence, a speed regulating function, which

 57

constitutes the second base component of this controller, is introduced to

specify the driving speeds along the steering trajectory. An important driving

feature which is crucial for the performance of the controller is the ability to

stop at a specific position in the playing area. Although it may seem

counterintuitive to stop in a racing game, this action becomes necessary when

one considers going for the next waypoint instead of the current waypoint.

Suppose the opponent is going to reach the current waypoint first, it makes

sense to head towards the next waypoint directly. But in the situation that the

controller car arrive at the next waypoint before the opponent can reach the

current waypoint, the controller will then need to stop the car at the next

waypoint and wait until it becomes activated. The equation for the speed

regulating function is defined in (4.2).

 tanhSpeed a b r c d     (4.2)

where r is the distance to the destination and a, b, c and d are

parameters characterizing the speed regulation function respectively. The 4

parameters are optimized using genetic algorithm. The hyperbolic tangent

function is chosen because of its general shape. The tapering of its outputs at

high values of r is analogous to the notion that the car should cruise at a

constant speed at far distances from its destination (i.e. the cruising speed

should not increase indefinitely with distance). Additionally, the steep gradient

around the origin is analogous to deceleration when it is near the destination.

The values a, b, c and d serves to shape the hyperbolic tangent function to one

most desirable for this car racing simulation. There are no constraints that the

function needs to pass through the origin or that it should be positive or

negative.

 58

4.2.2.3 Reverse driving

A desirable driving feature for this type of point to point race is the

ability to drive in reverse. A human player who just started playing the game

will very soon realize that if a waypoint is situated at close proximity but

directly behind the car, it is faster to simply reverse the car towards it. This

type of behaviour was not present in the HeuristicSensibleController (HSC).

As a result, the HSC was often seen, much to the frustration of the human

observer, to take a non-optimal U-turn to approach a waypoint behind it.

Moreover, in the process of performing the U-turn, the controller often

underestimated the turning radius and became trapped in an endless orbit

about the waypoint. To rectify such unrealistic behaviours, a reverse driving

threshold variable is introduced to the behaviour-based controller. The angle

towards the destination is included to determine whether to drive forwards or

in reverse for a given situation. If the angle is within a given threshold, the

speed function will be negated and the controller will reverse the car towards

the destination instead. The threshold parameters are also evolved using

genetic algorithm.

4.2.2.4 Waypoint prediction

The fourth component is a predictive module that chooses which

waypoint to compete for. By observing the state of the game area, the

controller predicts which car will reach the current waypoint first. In the event

that the opponent is predicted to be faster to the current waypoint, the

controller should then direct the car towards the next waypoint instead and

vise versa. This predictive module sits on top of the base driving layer and is

 59

capable of augmenting the inputs to the base driving layer. The pseudo code

for the waypoint prediction component is as follows.

if 1
distance (c,wp1)

distance (o,wp1)

 
 

 

return c;

elseif 1
distance (c,wp1) speed (o, wp1)

speed (c,wp1) distance (o,wp1)

 
  

 

return c;

else

return o;

end

where distance (i, j) refers to the Euclidean distance measured between

point i and point j, speed (i, j) refers to the magnitude of the vector component

of the speed of vehicle i along the direction from point i towards point j, c is

the car controlled by the controller calling this function, o is the opponent

vehicle and wp1 is the current waypoint.

During each time step, the waypoint prediction system determines

which vehicle will reach the current waypoint first. If the opponent vehicle

will reach first, then the controller will direct both the force field trajectory

and the speed regulator towards the next waypoint instead. The waypoint

prediction system is designed using simple domain knowledge and reasoning.

First, the component speed of each vehicle in the direction of the current

waypoint is calculated using vector scalar product. Next, the pseudo code is

used to determine which vehicle will reach the current waypoint earlier. In

essence, the controller will drive the car towards the current waypoint if it is

nearer to the current waypoint than the opponent vehicle is. Even if it is

further away compared to the opponent, it will still drive towards the current

waypoint if it takes a shorter time to reach there based on the instantaneous

component speed of each vehicle calculated in the previous step.

 60

4.2.2.5 Heading alignment

When the controller is driving the car towards the current waypoint, it

may be advantageous to align its heading to that of the next waypoint just as it

passes through the current waypoint. This will allow for a smoother driving

line from the current waypoint to the next and increase the likelihood of

reaching the next waypoint before its opponent. Currently, this behaviour is

only implemented for the forward driving direction. The pseudo code for the

heading alignment behaviour is as follows.

if
     

  
1 2 2

3

, 1 , 2distance c wp k AND k angle c wp k

AND speed c k

    
 
  

return true;

else

return false;

end

where distance (i, j) refers to the Euclidean distance measured between

point i and point j, angle (i, j) refers to the angle in radians of point j from

point i, speed (i) refers to the current instantaneous speed of object i, c is the

car controlled by the controller calling this function, wp1 is the current

waypoint and wp2 is the next waypoint. Three variables k1, k2 and k3 defines

the thresholds of the activation of this function and are evolved using genetic

algorithm. If the function returns true, the car will be steered to face the next

waypoint instead of the current waypoint. Otherwise, the car will continue on

its current path.

4.2.2.6 Experiments

A (50+50) ES, running for 200 generations was used as a training

method for the behaviour-based controller. As the behaviour-based controller

 61

had lesser variables in its chromosome, it was trained with a reduced

population size of 50, all other conditions remained constant as with the neural

network controller. The mutation operator was a Gaussian perturbation with

the step size set to a fixed value of 0.1 for all variables. Each individual was

evaluated against the HSC for 5 rounds of competition, followed by 5 rounds

of competitive co-evolution against another individual from the population.

The fitness function was defined as the number of waypoints the individual

collected averaged over the 10 rounds of game play. Elitism was implemented

by retaining the best 4 individuals of each generation. Each chromosome for

the behaviour-based controller was encoded with a total of 14 real valued

variables, 6 from force field component, 4 from speed regulation component, 1

additional variable which encoded the threshold for reversing driving, and 3

variables for the heading alignment component. All variables were initialized

by a random Gaussian distribution with a mean of 0 and a variance of 1. The

parameters are summarized in Table 4.3.

The force field trajectory component provided some guidelines for the

controller to plan its path from the current waypoint to the next waypoint. The

speed regulating component defined the acceleration, deceleration and

stopping behaviour. The reverse threshold decided when the best time to

reverse towards a target was. The waypoint prediction directed the car to the

next waypoint if the current waypoint cannot be reached before the opponent.

Finally, the heading alignment component made sure the car will be in a good

position for the next waypoint. The evolution of the behaviour-based

controller is plotted in Figure 4.3. It was noted that potential field methods

such as the force field trajectory component used here were prone to the

 62

problem of local minima. However, this problem was not noticeable in the

experiments as little variations were observed when parameters were tuned.

From the simulation results, it was observed that a driving speed limit

of approximated 7 units per time step was imposed by the speed regulating

function on the controller vehicle. For distances less than 0.2 to the destination,

the car switched to rapid deceleration before coming to a halt at the destination

point. The negative values of distance r were not used in the actual game as

distances were strictly positive. Traveling within these speed limits, the car

could not skid and hence did not exhibit any advanced driving techniques that

required skidding.

Table 4.3 Evolution parameters for behaviour-based controller

Parameter Behaviour-based

Method (50+50)

Population size 50

Generations 200

Mutation type Gaussian

Mutation probability 1

Mutation step size 0.1

 63

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Generation

M
e
a
n
 S

c
o
re

Force Field Controller

Figure 4.3 Training fitness of behaviour-based controller

An additional parameter was included to determine whether to drive

forwards or in reverse for a given situation. If the angle to the destination was

within the threshold stated by the parameter, the speed regulating function

would be negated and the controller would reverse the car towards the

destination instead. The final evolved value of this parameter was 1.897

radians. This implied that if the waypoint was located within a span of 142.5°

centred directly behind the car, the controller would drive in reverse towards

the destination instead.

4.2.3 Comparative discussion

The overall performance of the behaviour-based controller and its

comparison against the neural network controller will be presented in this

section. The results of the comparative studies from both controllers are

summarized in Table 4.4. Parts of the results were retrieved from Table 4.2

 64

and presented here for better readability. The mean results were given and the

standard deviation presented in parentheses.

-50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

[0 – 1] [1 – 1] [1 – 2] [1 – 3]

-50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

[1 – 4] [2 – 4] [2 – 5] [2 – 6]

-50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

[3 – 6] [3 – 7] [4 – 7] [5 – 7]

-50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

[5 – 8] [5 – 9] [6 – 9] [6 – 10]

-50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

[6 – 11] [7 – 11] [7 – 12] [7 – 13]

-50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

 -50 0 50 100 150 200 250 300 350 400 450
-50

0

50

100

150

200

250

300

350

400

450

[8 – 13] [8 – 14] [8 – 15] [8 – 16]

A circle symbol marks the current waypoint; a square symbol marks the next waypoint; a plus symbol and

a cross symbol respectively marks the starting position of the neural network and the behaviour-based

controller when a new waypoint is activated; solid lines marks the paths traced by the respective

controllers. Each sub-diagram ends when one of the controllers passes the current waypoint, and is

annotated by the score of the game just after the current waypoint is passed. The score is read as [neural

network – behaviour-based].

Figure 4.4 Point by point diagram of a partial game between neural network controller and

behaviour-based controller

 65

Table 4.4 Comparative results between neural network controller and behaviour-based

controller

Category Neural network Behaviour-based

Training best 18.0 22.6

Solo 20.188 (3.090) 22.626 (2.429)

Time taken 76.1 (3.035) seconds 36.1 (0.316) seconds

vs GC
14.692 (2.092) - 11.020

(1.891)

18.630 (2.047) - 10.266

(2.034)

vs HSC
14.516 (2.240) - 11.996

(2.104)

18.726 (2.023) - 11.194

(2.283)

vs HCC
16.246 (3.393) - 15.440

(3.189)

19.388 (4.379) - 15.108

(3.663)

vs each other 13.826 (2.391) 20.324 (1.895)

In the solo game, the behaviour-based controller obtained a mean score

of 22.626 which outperformed the neural network controller‟s score of 20.188,

averaged over 500 trials. At the same time, the behaviour-based controller also

had a smaller standard deviation implying that it is more competent and also

more consistent compared to the neural network controller. Similarly, in 2

player competitions against the 3 heuristic controllers, the behaviour-based

controller was able to achieve larger winning margins as well as higher

nominal mean scores. The two controllers were also placed in a direct

competition with each other to validate their relative performance with respect

to each other. In direct competition, the behaviour-based controller scored

20.324 points against the 13.826 points of the neural network controller. A

visual inspection of the match up was conducted to further ascertain the

reasons for the behaviour-based controller‟s better performance. It was

observed that the reverse driving and waypoint prediction components were

the main contributors to the success of the behaviour-based controller. The

reverse driving decision component was able to choose the more time efficient

route for the controller to approach its target, as observed in Figure 4.4 [6-11]

and [7-13]. This could be seen from the sharp angles in the paths traced by the

cross symbol (behaviour-based controller), while the plus symbol (neural

 66

network controller) was seen making large U-turns in Figure 4.4 [2-4], [6-11]

and [7-12]. The waypoint prediction component enabled the controller to

quickly reclaim a point by driving to the next waypoint when the current one

cannot be won, as observed in Figure 4.4 [2-4], [5-7] and [6-9]. In particular,

the cross symbol (behaviour-based controller) traced a path towards the square

symbol (next waypoint) when it predicted a loss for the current waypoint.

These features made the driving path traced by the behaviour-based controller

during the game very fluid and efficient.

A performance indicator raised earlier in this chapter was the

computational efficiency of the controller. A game AI in a real time driving

game such as this would not have the computation resource to evaluate all

possible moves at a given game state. Both the neural network and the

behaviour-based design methodology were considered because of their

computationally efficient characteristics. To investigate their comparative time

efficiency, both controllers were timed for 10 sets of 5000 solo run trials and

the results are also shown in Table 4.4. To establish a common benchmark for

comparison, all simulations were conducted on the same computer terminal

under the same boot conditions. The neural network controller took 76.1

seconds to complete 5000 solo run trials or 76.1 / 5000 = 0.0152 seconds per

trial or 0.0152 / 1000 = 15.2 microseconds per time step while the behaviour-

based controller took 36.1 seconds for 5000 trials or 0.00722 seconds per trials

or 7.22 microseconds per time step. To put the comparison into perspective, in

a visual game where the car racing game is graphically simulated on screen,

each game typically lasts 60 seconds. Both controllers were computationally

efficient but the behaviour-based controller was able to outperform the neural

 67

network controller while being computationally 2.11 times faster. The

computational gain may not be significant in this simplified simulation as

there was no emphasis on graphics and sounds. However, in the context of a

commercial game where a large percentage of the CPU cycle is dedicated to

rendering graphics and sounds, a computationally efficient game controller

becomes desirable. Also, in this simulation, there are only 2 game agents

present. In games where there are hundreds of interacting game agents, the

savings in computational time becomes significant in ensuring an

uninterrupted game presentation.

4.3 Results and analysis

In this section, the behaviour-based controller will be analyzed with

respect to the effects of crossover and mutation, the parameters evolved, the

performance of individual behaviour components, and the generalization

performance against opponents unseen during training.

A genetic algorithm (GA) of population size of 30, running for 100

generations was used as a training method for the behaviour-based controller.

Each individual was evaluated against the HeuristicSensibleController (HSC)

for 5 rounds of competition, followed by 5 rounds of competitive co-evolution

against a random elite individual from the population. The fitness function was

defined as the number of waypoints the individual collected averaged over the

10 rounds of game play. Each game was played for 1000 time steps. Elitism

was implemented by retaining the best 4 individuals of each generation. The

same 4 elite individuals also participate as co-evolution opponents during the

fitness evaluation of other individuals in the population. Each chromosome for

the behaviour-based controller was encoded with a total of 14 real valued

 68

variables, 6 from force field component, 4 from speed regulation component, 1

variable which encoded the threshold for reversing driving, and 3 variables for

the heading alignment component. All variables were initialized by a random

Gaussian distribution with a mean of 0 and a variance of 1. The crossover and

mutation operate will be discussed in further details next.

4.3.1 Effects of crossover operator

Each chromosome was encoded using real values so the crossover

operator must be designed to work with real numbers. The pseudo code for the

crossover operator is as follows.

for each pair of genes

 if (random [0,1] < crossover rate)

 weight = random [0,1];

 offspring = weight × parent1 + (1 – weight) × parent2;

 end

end

The variable weight placed a random emphasis on the gene from one

parent. For example, if the weight was 0.5, the result would be the average

value of the genes from both parents. However, if the weight was 0.8, then the

offspring would inherit 80% of the gene from parent1 and the remaining 20%

of the gene from parent2.

The effect of the crossover rate was investigated by varying its value

from 0.0 to 1.0 in steps of 0.2 while the value of the mutation rate was

arbitrarily set to 0.2. The results of varying the crossover rate are plotted in

Figure 4.5. The inclusion of the crossover operator generally produced better

results compared to when the crossover rate was set to 0. In all cases, the

results converge after about 30 generations.

 69

0 10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

20

22

Generation

M
e
a
n
 s

c
o
re

crossover = 0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.5 Effects of varying crossover rate; mutation rate fixed at 0.2

4.3.2 Effects of mutation operator

A Gaussian perturbation with a mean value of 0 and variance of 1 was

used as the mutation operator. For each gene, the Gaussian perturbation was

applied with a probability given by the mutation rate.

The effect of the mutation rate was investigated by varying its value

from 0.0 to 1.0 in steps of 0.2 while the value of the crossover rate was

arbitrarily set to 0.8. The results of varying the mutation rate are plotted in

Figure 4.6. In particular, the case of mutation rate = 0.0 converged to a local

minimum, likely due to the lack of diversity. The value of mutation rate = 0.2

was observed to be most optimal amongst the different choices of mutation

rate. The rate of convergence was also around 30 generations.

 70

0 10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

20

Generation

M
e
a
n
 s

c
o
re

mutation = 0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6 Effects of varying mutation rate; crossover rate fixed at 0.8

4.3.3 Analysis of evolved parameters

Based on the prior investigation, a crossover rate of 0.8 and a mutation

rate of 0.2 were chosen to evolve the behaviour-based controller. The best

individual from the last generation was examined to investigate the

characteristics of the evolved behaviour-based controller. The 5 components

are described as follows. The force field trajectory component provided some

guidelines for the controller to plans its path from the current waypoint to the

next. The speed regulating component defined the acceleration, deceleration

and stopping behaviour. The reverse threshold decided when the best time to

reverse towards a target is. The waypoint prediction directed the car to the

next waypoint if the current waypoint cannot be reached before the opponent.

Finally, the heading alignment decided when it is best to turn towards the next

waypoint. The results and performance of the behaviour-based controller will

be discussed from 2 perspectives in this section. Firstly, the white box nature

 71

of the behaviour-based controller allowed for the analysis of the evolved

values. These evolved parameters will be examined to gain a better

appreciation of the behaviour of the behaviour-based controller. Secondly, the

functionality of the individual components will be examined for their impact

on the overall performance of the controller.

The evolved values for the force field trajectory component are

presented in Table 4.5 and the field strength is plotted against distance r in

Figure 4.7. All forces acting on the car were attractive in nature since all the

controlled cars were assumed to be a positive point charge and the evolved qi

values turned out to be negative. The field strength of the current waypoint

was at least 10 times larger than that of the opponent car and the next

waypoint within the range of the game area. This implied that the controller

car was strongly attracted to the current waypoint while the effects from the

opponent car and the next waypoint were minimal. Therefore, the controller

would direct the car towards the current waypoint regardless of its distance.

This result was similar to the common intuition that is to steer in the direction

of the destination. Additionally, this way of steering was applicable both when

driving forward and in reverse. The value of qother was initially expected to be

repulsive in nature as it seemed sensible to avoid collisions with the opponent,

but this controller evolved a new strategy that was to intentionally collide with

the opponent when sufficiently near. This was because the reverse driving

component allowed the controller to recover quickly after a collision by

simply driving in the direction facing the current waypoint. This became an

advantage if the opponent only drove in one direction like the HSC. In general,

the output trajectory of the force field component was an approximate straight

 72

line towards the current waypoint with minor disturbances coming from the

other vehicle and next waypoint.

Table 4.5 Evolved force field trajectory parameters of best individual

i other wp1 wp2

qi -0.02803 -0.896679 -0.063289

pi -0.10153 -0.08817 0.377045

From Figure 4.7 (b), it was observed that a driving speed limit of

approximately 7 units per time step was imposed by the speed regulating

function on the controller vehicle. For distances less than 0.2 to the destination,

the car switched to rapid deceleration before coming to a halt at the destination

point. This could be seen by the speed regulation function passing through the

origin. The negative values of distance r were not used in the actual game as

distances were strictly positive in the game. Traveling within these speed

limits, the car could not skid and hence did not exhibit any advanced driving

techniques that required skidding.

An additional parameter was included to determine whether to drive

forwards or in reverse in a given situation. If the angle to the destination was

within the threshold stated by the parameter, the speed regulating function

would be negated and the controller would reverse the car towards the

destination instead. The final evolved value of this parameter was 1.897

radians. This implied that if the waypoint was located within a span of 142.5°

centred directly behind the car, the controller would drive in reverse towards

the destination. Additionally, the speed regulating function plots of both

forward and reverse in Figure 4.7 (b) passes very close to the origin. In the

actual game, this was sufficient to stop the vehicle exactly at its desired

destination. This was observed in two player competition where the

 73

behaviour-based controller often stopped at the next waypoint while waiting

for the current waypoint to be passed by its opponent.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

distance

fi
e
ld

 s
tr

e
n
g
th

other vehicle

current waypoint

next waypoint

(a)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

distance

s
p
e
e
d

forward

reverse

(b)

Figure 4.7 Graph of evolved parameters for behaviour-based controller for (a) field strength

against distance from particle and (b) desired driving speed against distance from destination

 74

Table 4.6 Evolved heading alignment parameters of best individual

Parameter Value

k1 0.0551

k2 2.5513

k3 4.3076

The evolved parameters for the heading alignment component are

summarized in Table 4.6. At a distance of 0.0551, the behaviour-based

controller was likely in a state of deceleration according to Figure 4.7 (b). At

this distance, if the next waypoint was within -2.5513 to 2.5513 radians or

within -146.2° to 146.2° centred in front of the car and the speed of the car

was more than 4.3076 units per time step, the heading alignment component

would steer the car to face the next waypoint while continuing its approach

toward the current waypoint. The speed threshold ensured that the car did not

miss its current waypoint while trying to steer towards the next. This enabled

the behaviour-based controller to put itself in a better position to accelerate

towards the next waypoint once it passed the current one.

4.3.4 Analysis of behaviour components

Five behavioural components were implemented in the behaviour-

based controller. Each of these components could be optionally activated or

deactivated, giving a total of 32 combinations. In order to appreciate the

impact of each component on the overall performance of the behaviour-based

controller, all combinations of the controller were benchmarked against the

case of solo run, competition against the HeuristicSensibleController (HSC)

and against the HeuristicCombinedController (HCC) in Table 4.7. The

combination of components activated is abbreviated under the column

Behaviour in the format X1X2X3X4X5 where X1 represents waypoint

prediction, X2 represents force field trajectory, X3 represents speed regulation,

 75

X4 represents reversing and X5 represents heading alignment. In the

deactivated state, the force field trajectory was replaced with intuitive steering

that steered in the direction of the destination and the speed regulation

threshold was set to 7 independent of distance. As a reference, the results for

HSC running the same benchmark are also listed on row 0.

It was observed that component X1 (waypoint prediction) had

insignificant impact during the solo run. This was to be expected as there was

no opponent in the solo case and performance was entirely dependent on

driving behaviours. In two player situations, waypoint prediction generally

improved the controller performance as evident when comparing pair wise

between rows 1 to 16 with their counterpart from rows 17 to 32. This implied

that waypoint prediction mainly contributed to improvements in competitive

games.

Although pair wise comparisons for X2 (force field trajectory) from

Table 4.7 did not give a clear indication of its advantage, its value could be

better appreciated visually. In general, the driving line traced by the force field

trajectory was smoother than that of intuitive steering, resulting in a more

realistic driving style rather than a mechanic one that constantly jerked left and

right in order to keep on a straight path.

By comparing pair wise of rows 1 & 5 and other corresponding pairs

that compare X3 (speed regulator), it was observed that the speed regulator

improved performance both in the solo run and against HCC. This was mainly

due the speed regulator slowing the car down near its destination, hence

greatly reducing the occurrence of orbiting, and this translated into higher

scored points for the controller. The difference was even greater when the

 76

speed regulator worked in combination with the waypoint predictor as it

enabled the controller to stop the car at the next waypoint when waiting for its

opponent to pass the current waypoint.

Table 4.7 Comparative studies of behaviour set

Row Behaviour Solo vs HSC vs HCC

0 HSC 13.730 10.528 10.726

1 00000 11.424 11.674 9.678

2 00001 10.802 11.668 9.660

3 00010 14.350 12.880 12.654

4 00011 14.016 12.766 12.580

5 00100 16.422 11.894 14.700

6 00101 17.178 12.236 15.256

7 00110 20.092 13.154 16.746

8 00111 20.974 13.272 16.858

9 01000 10.988 11.572 9.292

10 01001 11.308 11.684 9.774

11 01010 14.354 13.168 12.154

12 01011 13.854 13.044 12.324

13 01100 16.262 11.810 15.176

14 01101 17.532 11.922 15.204

15 01110 20.168 13.478 16.920

16 01111 21.006 13.388 16.938

17 10000 11.396 14.728 10.524

18 10001 10.926 14.828 10.574

19 10010 14.288 16.144 13.692

20 10011 13.904 16.216 13.442

21 10100 16.598 15.966 18.292

22 10101 17.472 16.184 18.970

23 10110 20.084 17.252 19.740

24 10111 20.776 17.646 20.116

25 11000 11.142 14.600 10.282

26 11001 11.248 14.672 10.658

27 11010 14.640 15.942 13.302

28 11011 13.646 16.116 13.374

29 11100 16.596 16.006 18.384

30 11101 17.182 16.046 18.316

31 11110 20.224 17.148 19.742

32 11111 21.074 17.758 20.026

In the comparison for component X4 (reversing) the general trend

observed was that activating the reverse driving feature improved performance

in all three cases of solo run and competitive games (i.e. rows 1 & 3). The

difference was more significant when it was used in combination with the

 77

speed regulator (i.e. rows 1 & 7). This was because the speed regulator slowed

down the car at its destination, making the change of direction smoother and

less time consuming. In visually observed games, the reversing behaviour was

also seen as the main contributor to collision recovery as the controller was

able to drive in whichever direction that was facing its destination after a

collision.

The independent effects of component X5 (heading alignment) could

be observed by comparing the columns of solo play on rows 5 & 6 and rows 7

& 8. The heading alignment mainly improved the performance of solo games

when used in conjunction with the speed regulation component. This was

likely due to the fact that all parameters were evolved simultaneously. As a

result, the genetic algorithm successfully exploited this collaboration between

the two components. The heading alignment behaviour also improved results

in two player games but the improvement was of a smaller margin.

The analysis of the individual components of the behaviour-based

controller had also provided some insights on how the controller can be

improved in the future. These suggestions will be discussed here for possible

implementation in the future. An inefficiency of the speed regulator was that it

treated the current waypoint and next waypoint indifferently, which turned out

to be sub-optimal. Although the controller needed to stop the car at the next

waypoint, the same cannot be said about the current waypoint. In a race to the

current waypoint, there was no need to slow to a complete halt at the waypoint.

Instead, crossing the current waypoint with moderate and controllable speed

could be considered a better choice. Hence, separate speed regulation models

for the current and the next waypoint could improve the performance of the

 78

controller. To further complicate matters, the forward acceleration was twice

that of the reverse acceleration in the game. This meant the speed regulation

could be further broken down into forward and reverse components rather than

simply negating one component to get the other. While these incremental

improvements will likely be beneficial, including these features will require

detailed analysis of the game dynamics. Another method of implementation

may be to divide the speed regulation component into 4 separate functions and

employ GA to optimize the function parameters without the need to analyze

the game dynamics.

4.3.5 Generalization performance

The comparative studies so far were conducted under a controlled

environment where simple heuristic controllers were used. To further

substantiate its performance, the behaviour-based controller was tested against

the top 5 entries of the Simulated Car Racing Competition held during the

2007 IEEE Congress of Evolutionary Computation (CEC) [180] to test its

generalization performance against previously unseen opponents. In the

competition, each entry is ranked using a competition benchmark known as

CompetitionScore. However, the controller with the highest benchmark score

at this point is not necessarily the winner of the competition. The winner of the

competition is the winner of a final round robin tournament. The tests in this

section will be conducted in a similar manner. The top 5 controllers and the

behaviour-based controller will run the benchmark CompetitionScore and their

scores and the time taken for simulation will be recorded. Thereafter, all 6

controllers will take part in a round robin tournament and the scores of each

pairings will be recorded.

 79

4.3.5.1 CompetitionScore benchmark

The CompetitionScore metric is the benchmark metric used to rank the

submitted controllers before the final tournament. This metric is defined as the

mean fitness of 500 trials in each of these three scenarios: solo trial, versus

HeuristicSensibleController (HSC) and versus HeuristicCombinedController

(HCC). In order to achieve a high CompetitionScore, a controller needs to

perform well on its own (i.e. solo run), as well as against a weak (i.e. HSC)

and an intermediate (i.e. HCC) controller.

The mean scores and times of the CompetitionScore benchmark, and

their standard deviations in parentheses, are presented in Table 4.8.

Controllers A, B, C, D & E are the controllers ranked 1, 2, 3, 4 & 5

respectively on the competition website [177]. Since there are two metrics of

comparison, the results are plotted in the form of a Pareto dominance diagram

in Figure 4.8 for better visualization. The axes are shown in logarithmic form

due to the presence of very large and very small differences in simulation

times. The behaviour-based controller is highlighted in bold. The performance

of the behaviour-based controller will be discussed in this section in terms of

its score as well as its computation efficiency. The results are averaged over

10 runs.

The behaviour-based controller scored 19.558 in the benchmark and

was ranked second amongst the 6 controllers. In terms of computation

efficiency, the behaviour-based controller was the most efficient controller,

completing the benchmark in 17.5 seconds. Comparatively, the top scoring

controller (Controller A) took an average of 8450.1 seconds to complete the

benchmark, or (8450.1 / 17.5 ≈) 482 times slower than the behaviour-based

 80

controller. In real time games, game AI is usually allocated a very small CPU

cycle budget (a large portion goes to rendering graphics), making

computational intensive algorithms less attractive and hence the need for an

efficient game controller. This makes the behaviour-based controller a more

suitable candidate for implementation in real time games.

Table 4.8 Comparative results of CompetitionScore of behaviour-based controller against top

5 controllers

Controller CompetitionScore Simulation time in seconds

Controller A 20.539 (0.0416) 8450.1 (308.27)

Controller B 16.551 (0.0509) 2683.5 (217.95)

Controller C 19.176 (0.0388) 20.3 (2.31)

Controller D 18.933 (0.0662) 473.8 (73.86)

Controller E 18.797 (0.0757) 66.6 (2.675)

Behaviour-based 19.558 (0.0536) 17.5 (2.42)

In order to appreciate how the controllers performed in terms of both

performance metrics simultaneously, the Pareto ranking of the controllers are

considered in Figure 4.8. In a two dimensional Pareto diagram, each axes

represents a performance metric. For this experiment, the two performance

metrics are, simulation time on the vertical axes, and CompetitionScore on the

horizontal axes. A low simulation time and a high CompetitionScore are

desired. A controller is said to be dominated if there is another controller that

outperforms it in both the performance metrics. Conversely, a controller is

said to be non-dominated if there are no other controllers that outperforms it in

both performance metrics. A controller is then given a Pareto rank defined by

equation (4.3).

() 1
i

rank i n  (4.3)

where ni is the number of controllers dominating the individual

controller i. For example, Controller E is dominated by Controller C and the

behaviour-based controller, hence nE = 2 and rank(E) = 3. The minimum

 81

Pareto rank is 1. The Pareto ranks of the controllers are summarized in Table

4.9.

1.2 1.22 1.24 1.26 1.28 1.3 1.32
1

1.5

2

2.5

3

3.5

4

log (CompetitionScore)

lo
g
 (

s
im

u
la

ti
o
n
 t

im
e
)

Controller A

Controller B

Controller C

Controller D

Controller E

Behaviour based

Low simulation time & high CompetitionScore preferred

Figure 4.8 Pareto plot of log10 (simulation time) against log10 (CompetitionScore)

Table 4.9 Pareto ranks of behaviour-based controller and top 5 controllers

Controller Pareto rank

Controller A 1

Controller B 5

Controller C 2

Controller D 3

Controller E 3

Behaviour-based 1

It was observed from Table 4.9 that, according to Pareto optimality, the

behaviour-based controller and Controller A obtained the highest Pareto rank

of 1 amongst the 6 controllers. This meant that neither of the two controllers

was completely dominant over the other controller. Controller A had obtained

a higher CompetitionScore compared to the behaviour-based controller while

the latter obtained a lower simulation time. In order to gain better insights to

 82

the differences between the 2 controllers, another performance indicator was

required.

4.3.5.2 Round robin tournament

In CompetitionScore, all the controllers were tested on their own, and

against 2 benchmark controllers. These benchmark controllers could be used

during training to obtain a high CompetitionScore value. This benchmark did

not test their generalization performance against unseen opponents. As such,

generalization performance could be used to further distinguish the controllers.

To do this, the 6 controllers were tested against one another in a round robin

tournament. The scores from the round robin tournament are recorded in Table

4.10 and the t-values are also listed below each pair of scores. Each pair of

controllers played 500 games against each other. The results are summarized

in Table 4.11, sorted first by the number of wins, then by number of draws,

then by number of losses, and finally by the total points scored. The

behaviour-based controller is highlighted in bold in both tables.

From Table 4.10, it was observed that the behaviour-based controller

obtained a higher mean score (significant at 0.05 level) than its opponent

against all the other 5 controllers. Controller A, which had a Pareto ranking

rank(A) = 1, lost against the behaviour-based controller and drew (difference

in score not significant at 0.05 level) its game against Controller C. It was also

noted that Controller B (Pareto ranking, rank(B) = 5) drew its game against

Controller E (Pareto ranking, rank(E) = 3). From Table 4.11, the behaviour-

based controller was the best performing controller with 5 wins and it also

scored the highest total number of points in the tournament. This implied that

the behaviour-based controller exhibit the best generalization performance

 83

amongst the 6 controllers being tested. This result also distinguished the

behaviour-based controller, from the similarly Pareto ranked (rank(A) = 1)

Controller A, as the better performing controller. Generalization performance

is important in the context of games because of its wide array of varied

customer base. If the game AI does not perform reliably well against players

with different playing styles, its perceived quality will be degraded.

Table 4.10 Results for direct competition between behaviour-based controller and top 5

controllers

Controll

ers
A B C D E

Behaviour-

based

A -
17.256 (2.928) –
11.404 (2.760)

19.188 (2.424) –
19.128 (2.110)

18.234 (2.715) –
17.344 (2.258)

18.890 (2.640) –
13.736 (2.455)

18.888 (2.417) –

19.470 (2.060)

t-value - 32.52 0.42 5.64 31.97 -4.10

B - -
12.912 (2.257) –
18.510 (2.102)

13.198 (2.369) –
18.142 (2.202)

11.960 (2.360) –
11.796 (2.435)

12.694 (2.300) –

18.704 (2.145)

t-value - - -40.59 -34.18 1.08 -42.73

C - - -
19.374 (1.923) –
18.462 (2.346)

18.522 (2.059) –
15.502 (2.281)

19.570 (2.137) –

19.834 (1.965)

t-value - - - 6.72 21.98 -2.03

D - - - -
17.284 (2.342) –

12.992 (2.799)
18.436 (2.469) –

19.570 (2.230)

t-value - - - - 26.30 -7.62

E - - - - -
15.346 (2.321) –

18.858 (2.204)

t-value - - - - - -24.54

Behavio

ur-

based

- - - - - -

t-value - - - - - -

Table 4.11 Consolidated results for round robin tournament of behaviour-based controller and

top 5 controllers

Controller Win / Draw / Loss Points scored Points against

Behaviour-based 5 / 0 / 0 96.436 84.934

C 3 / 1 / 1 95.104 85.898

A 3 / 1 / 1 92.456 81.082

D 2 / 0 / 3 89.668 83.368

E 0 / 1 / 4 69.372 85.514

B 0 / 1 / 4 62.168 84.408

The behaviour-based controller was able to demonstrate its

generalization performance and computation efficiency through this

experiment. The behaviour base controller was Pareto non-dominated in terms

of CompetitionScore and simulation time, and also top ranked in the round

robin competition amongst the 6 controllers. For future work, the extension of

the behaviour-based controller to incorporate learning behaviours will be

 84

considered. The current behaviour-based controller is a static controller which

does not learn as it plays the game. As such, good human players will be able

to learn its driving patterns and develop counter strategies that can reliably win

against it. In fact, I have a strategy that can reliably win against the behaviour-

based controller in direct competition. In order to consistently offer a

challenging game playing experience and hence upgrade the entertainment

value of the game for the human player, a controller that is capable of in-game

learning is desirable, but this must also work within the computational

efficiency requirement of real time games.

4.4 Summary

A framework for designing computationally efficient controllers for

real time games based on a hybrid evolutionary behaviour-based methodology

was proposed in this chapter. The disadvantage of developing a behaviour-

based controller was its requirement for hand designed components. The

proposed methodology utilized genetic algorithm to complement the design of

individual behavioural components. Five behaviour components were evolved

using genetic algorithms. In the analysis of the evolved behaviours, it was

observed that the genetic algorithm successfully exploited some collaboration

between the different behaviour components which may have gone unnoticed

if it was designed by hand. The best evolved controller was benchmarked

against the top 5 controllers from the IEEE CEC 2007 Simulated Car Racing

competition to test its generalization performance against unseen opponents.

The controllers were evaluated based on their scores using the

CompetitionScore benchmark, the simulation time taken, and their

generalization performance in a round robin tournament against one another.

 85

The behaviour-based controller scored the second highest in CompetitionScore

but was 482 times faster than the top scoring controller. In the round robin

tournament, the behaviour-based controller was able to demonstrate its better

generalization capability and outperformed all the other 5 controllers. Its better

computation efficiency and generalization performance makes the behaviour-

based controller a more suitable candidate for implementation in real time

games.

 86

Chapter Five

5 Dynamic game difficulty scaling using

adaptive game AI

Games are played by wide variety of audiences. For any given game,

different individuals will play with different gaming styles and employ

different strategic approaches. This often involves interacting with both the

game environment and non-player characters that are controlled by the game

artificial intelligence to achieve their goal. From the standpoint of a developer,

it is important to design a game AI that is able to satisfy the variety of players

that will interact with the game. Thus, the implementation of an adaptive game

AI that can scale the difficulty of the game according to the proficiency of the

player has greater potential to customize a personalized and entertaining game

experience to a specific player compared to a static game AI. In particular,

dynamic game difficulty scaling refers to the use of an adaptive game AI that

performs game adaptations in real time during the game session. This chapter

presents two adaptive algorithms that use ideas from reinforcement learning

and evolutionary computation to improve player satisfaction by scaling the

difficulty of the game AI while the game is being played. The effects of

varying the learning rate and mutation rate are investigated for both algorithms

and a general rule of thumb for the selection of these two parameters is

proposed. The proposed algorithms are also demonstrated to be capable of

 87

matching its opponents in terms of mean scores and winning percentages.

Both algorithms are also able to generalize well to a variety of opponent

driving styles.

5.1 Introduction

Gaming is by definition an interactive experience [104]. It involves

interacting with both the game environment and non-player characters (NPC)

that are controlled by the game artificial intelligence (AI). In this chapter, the

interaction between the player and the game AI will be examined.

High quality game AI has become an important selling point of

computer games in recent years [49]. However, game players still prefer to

play against human controlled opponents (via network) rather than computer

controlled ones. Indeed, multi-player support and playing against human

opponents over the Internet has become the norm. This is because the gaming

community feels that the quality of game AI is still generally low [137].

Nevertheless, there exist situations where human game partners are

unavailable such as in the absence of a viable network connection (e.g. public

buses, commercial flights). In such situations, an entertaining game AI with

high replay value is still desirable.

A given game is played by a wide variety of audiences who play with

different gaming styles and employ different strategic approaches. Thus, a

static game AI is unlikely to be able to cater to the playing styles of all types

of players. An adaptive game AI, on the other hand, has the potential to create

a different game experience for different players, and thereby adding value

and replayability to a game. A study with human players conducted by

Hägelback & Johansson also demonstrated that players found it more

 88

enjoyable to play an even game against an opponent that adapts to the

performance of the player [60]. Hence, the objective of this chapter is to

develop an adaptive game AI that tries to entertain its opponent rather than to

defeat him.

Adaptive game AI refers to a dynamic computer controlled player that

adapts its game behaviour in response to its opponents, either during the game

playing session or in between sessions. In particular, dynamic game difficulty

scaling uses adaptive game AI to automatically adapt game parameters and

behaviours in real time according to the proficiency of the player in the game.

It has the potential to keep the player interested for a longer period of time and

improve the playing experience of the game [31]. As such, adaptive

mechanisms in games have been actively explored in recent years. Togelius et

al used evolutionary algorithms to evolve racing tracks that maximized the

entertainment value to particular human players [172] [176]. Spronck et al

introduced an adaptive algorithm that used an adaptive rulebase that can be

used with current scripting game AI [144] [145]. Hunicke & Chapman

controlled the game environment to make challenges easier or harder [73].

Olesen et al used rtNEAT (real time Neuro-Evolution of Augmenting

Topologies) to adjust the difficult of a real time strategy game [106]. Rani et al

kept the challenge at an optimal level using physiological feedback such as

pulse transition time and mean temperature [123]. Bergsma & Spronck

implemented ADAPTA (Allocation and Decomposition Architecture for

Performing Tactical AI) that can learn and defeat static opponents in combat

for a turn-based strategy game [17]. Bryant & Miikkulainen used

neuroevolution to evolve a team of adaptive agents that can learn and adopt

 89

strategies in a strategy game [23]. Stanley et al used rtNEAT to allow agents

in a game to adapt and improve during the game [152]. Yannakakis used

evolutionary machine learning to exploit cooperative behaviours that can

increase a player‟s interest while playing [194]. Yannakakis & Hallam

implemented an adaptive Bug-Smasher game that improved the satisfaction of

children that played it [196] [199]. Thue et al used an interactive storytelling

system that models a player automatically to dynamically select content to

create an interactive story [168]. Riedl & Stern developed an automated story

director that can adapt the plot of a story even when the player lands in an

unexpected scenario [127]. Barber & Kudenko proposed an adaptive narrative

engine that is able to automatically generate story events based on the

interactions and decisions made by the user [14]. Quek et al used co-

evolutionary learning as a means of adaptation to study agent interactions in a

public goods game that can be used in the genre of business simulation games

[120]. Tan et al experimented with adaptive rules for a minimax search tree to

adapt to its opponents in Gomoku [164]. Fogel et al proposed a platform

where intelligent and interactive adversarial game agents can be evolved [47].

Bellotti et al implemented an adaptive experience engine in the context of

serious games [16]. Sánchez-Ruiz et al proposed an adaptive planner for turn

based strategy game [132]. Bakkes et al demonstrated how domain knowledge

can be gathered and adapted to new situations [10] [12]. Ponsen & Spronck

used evolutionary algorithm to find new tactics to deal with opponents that

were better than itself [115]. Szita et al proposed a macro learning method that

can be used to generate new diverse behaviours or to adapt to its opponent

[160].

 90

Reinforcement learning [70] [156] [191] is concerned with how an

agent chooses an action or sequence of action in an environment (or state) to

maximize some form of long term reward. This is analogous to how a game

agent acts in a game world in an effort to become the eventual winner. As such,

reinforcement learning has been used to train the game AI in agent games.

Andrade et al used a reinforcement learning approach to quickly identify and

track the proficiency of a human player in a real time fighting game [4] [5].

Wang et al used a reinforcement learning algorithm to improve a team of bots

against its opponents in Unreal Tournament [190]. Tan used reinforcement

learning in a multi-agent predator prey game to train cooperative behaviours

[165].

This chapter focuses on the adaptation of the game AI during a game

session. In other words, the difficulty scaling is done in real time. The adaptive

game AI needs to be smart enough to make unpredictable but rational

decisions like human players do, but should not display obviously stupid

behaviour such as being stuck in an endless loop. The adaptive game AI

should also be able to profile its opponent efficiently during the early phase of

the game and adapts its own playing style to the proficiency of the player so

that the player feels entertained playing against the AI. This chapter presents

two adaptive algorithms that use ideas from reinforcement learning and

evolutionary computation to play adaptively during a game session in a real

time car racing simulator game to provide the opponent with a competitive and

entertaining experience. Two indicators, namely, mean score difference and

winning percentage difference, are proposed as a measure of entertainment

value. The proposed algorithm is significant because it does not require a

 91

training phase. This will allow the human player to immediately feel the

impact of adaptive behaviour from the first game played. This will also avoid

the frustration a human player may feel if he is required to conduct a training

phase with the game AI. This chapter also presents the first use of occurrence

distribution as a measure of the performance of an adaptive game AI to play

an even game.

5.2 Behaviour-based controller

The behaviour-based controller proposed in the previous chapter will

be used as the basis controller [163] to develop the adaptive controller in this

chapter. The various mechanisms of this controller will be briefly discussed in

this section as it forms the basis for the implementation of the proposed

adaptive controller.

The behaviour-based controller is inspired by behaviour-based AI [22],

commonly used in the field of robotics, consisted of four independent driving

behaviours that were aimed at improving the driving performance of the

controller and one tactical behaviour that seek to outplay the opponent in the

game. Each of the behaviour can be activated or deactivated to vary the

driving behaviour of the controller. Similar behaviour selection mechanisms

have also been shown to be useful in robotics [138].

Two additional tactical behaviours are introduced in this chapter to

take advantage of the dynamism of such a two player competitive game.

Driving behaviours ignore the existence of the opponent in the playing field,

leading to inferior performance. Conversely, tactical behaviours help the

controller to plan and decide which waypoint to head towards or even whether

to go for any waypoint. As such, driving behaviours can be viewed as lower

 92

level operational intelligence while tactical behaviours can be viewed as

higher level decision making intelligence [121]. More details about the driving

and tactical behaviours can also be found in [163].

An advantage of the behaviour-based system used in this controller is

its scalability. New behaviours can easily be added or removed from the

existing set of behaviours, be it complementary or conflicting. The adaptive

algorithm will automatically select a combination of behaviours suitable for its

opponent.

The following summarizes the basic behaviours inherited from the

previous chapter and describes in detail the newly added tactical behaviours. It

should be noted that the heading alignment behaviour has been omitted in this

experiment.

Driving behaviours are as follows:

1) Hyperbolic tangent speed regulator

The speed of the car is regulated by a hyperbolic tangent function of

the distance away from its destination. It provides cues to accelerate,

decelerate, cruise at constant velocity and stop depending on its distance from

the destination. This behaviour only acts in the forward direction.

2) Reversing

The angle to the destination was included to determine whether to

drive forwards or reverse in a given situation. If the angle is within a given

threshold, the speed function will be negated and the controller will reverse

the car towards the destination instead.

 93

3) Direction switching compensation

For instance, when the car is moving backwards and the destination is

in the forward right direction, steering right at this point will instead orientate

the car to the left, increasing the difference in heading. Instead, the controller

should steer left until the reversing car comes to a halt before steering right

and applying the accelerator. The same scenario applies when the car is

moving forwards and the destination is behind.

4) Tight angle turning

Occasionally, when the turning angle is too small, the controller gets

stuck in an orbit around the destination point and stays in that orbit. This is

partly due to the nature of the on-off controls used in the simulator. To

overcome this problem, a manual pulse width modulation technique is used to

lower the acceleration during tight turns to avoid being trapped.

Tactical behaviours are as follows:

5) Waypoint prediction

This is a predictive module that chooses which waypoint is more

advantageous for the controller to head towards. By observing the state of the

game area, this behaviour predicts which car will reach the current waypoint

first. In the event that the opponent is predicted to be faster to the current

waypoint, the controller should then direct the car towards the next waypoint

instead and vise versa.

6) Time wasting

In time constrained games such as soccer, the side in possession of the

ball may choose to pass the ball around in their half of the pitch and not

commence any attacks. This strategy is used especially when the side in

 94

possession of the ball is in the lead and wishes to preserve their lead. In the car

racing simulator, the controller may choose to stop in the proximity of the

current waypoint and not drive through it if the opponent is sufficiently far

away or is heading towards the next waypoint. This forces the opponent to

approach the current waypoint and lose the advantage of heading towards the

next waypoint.

7) Blocking

When both cars are headed towards the current waypoint, the

controller may choose to drive on the path between the opposing car and the

waypoint, hence blocking it from the opponent. In the event of a collision, the

controller receives a velocity boost towards the current waypoint, hence

increasing its chances of reaching the waypoint before its opponent does.

Furthermore, if the controller also activates the reversing behaviour, it may be

able to recover from a collision faster than the opponent.

5.3 Adaptive controllers

This section describes in detail the evaluation criteria used to evaluate

the performance of the adaptive controllers. Two adaptive controller

algorithms, the uni-chromosome adaptive controller (AUC) and the duo-

chromosome adaptive controller (ADC), will also be introduced and discussed

in detail.

5.3.1 Satisfying gameplay experience

A game experience is considered satisfying or entertaining when it is

difficult to defeat [27]. This may be applicable to advanced players but may

not necessarily apply for beginners or casual gamers. The elites, however,

 95

often only make up a small percentage of the demographics while the majority

of the population is made up of low–to–medium level gamers. For this group

of players, the game is most entertaining when it is challenging yet beatable

[140]. Malone also pointed to challenge as one of the categories that make

games fun [91]. That is, the game should neither be too easy nor too difficulty.

A study with human players conducted by Hägelback & Johansson also

demonstrated that players found it more enjoyable to play an even game

against an opponent that adapts to the performance of the player [60]. In other

words, in a two player competitive games, the player and his opponent should

be evenly matched and the win-loss margin in each game should be small.

Spronck et al used a top culling technique to train a game AI to play an even

game with its opponent [145]. However, their method required a training

period of 50 encounters. The adaptive algorithms proposed in this chapter

have the advantage of not requiring a training phase as the adaptation is

achieved during the game session.

In the context of the car racing simulator game, there can be three

possible outcomes, win, lose or draw. Therefore, in a set of n games, the

player is considered most satisfied if w = l = (n – d) / 2 where w is the number

of player wins, l is the number of player losses and d is the number of drawn

games. In this chapter, two indicators are introduced to measure the

satisfaction a player derives from the game.

1) |w – l| should be minimized and d should also be minimized. A

high number of drawn games is deemed as more frustrating than fun.

2) |s1 – s2| should be minimized and max(s1, s2) should be

maximized, where s1 and s2 are the average individual scores of player

 96

1 and player 2 over n games respectively. A small difference between

s1 and s2 indicate a similar proficiency of play and a high average score

indicates a competitive and fast paced game.

5.3.2 Artificial stupidity

A game is more entertaining when an opponent‟s mistakes are

intentional but plausible [84]. Artificial stupidity refers to the fine tuning of a

game AI such that it provides the player with an entertaining experience by

deliberately making mistakes. This also means that a game AI has to be over-

designed. That is, the game AI has to be able to defeat the player to begin with.

Only when such a condition is satisfied can there be potential of deliberate

handicapping.

The adaptive controllers proposed in this chapter adopt a similar

approach to the above analogy. An over-designed car racing simulator

controller with a good set of game behaviours is first developed. In the

behaviour-based AI, handicapping can be done by selectively activating or

deactivating specific behaviours. The adaptive controller then estimates the

ability of opposing player during the game and progressively selects a subset

of behaviours to use for the remainder of the game so as to provide an

engaging and satisfying game. This in turn makes the game more challenging

and fun for the opposing player who now stands a chance of winning.

5.3.3 Uni-chromosome adaptive controller (AUC)

The uni-chromosome or single chromosome adaptive controller (AUC)

does not need to be trained offline. The training and adaptation process occurs

in real time during the game. As its name suggests, AUC stores one

 97

chromosome which encodes 7 real numbers [0,1], one for each of the 7

behaviours as shown in Figure 5.1. Each real number represents the

probability of activating a behaviour module whenever a waypoint is passed.

The expected behaviour set encoded by this chromosome represents a

„winning‟ strategy. In a sense, the chromosome models the proficiency level

of the opponent by encoding a behaviour set that is expected to be „good

enough‟ to defeat him. It is assumed here, for simplicity, that the complement

of the expected behaviour set represents a „losing‟ strategy. The complement

of an activation probability is calculated using equation (5.1).

' 1i ip p  (5.1)

where pi is the probability of activation of behaviour i encoded in the

chromosome.

The chromosome is a one-dimensional array of seven real numbers [0,1]. Each position in

the chromosome corresponds to one behavioural module in the behaviour-based controller.

The real number represents the probability of activating a behaviour whenever a waypoint

is passed.

Figure 5.1 Representation of the chromosome used in AUC

The chromosome is randomly initialized at the start of each game.

When a waypoint is passed, the chromosome is updated by the follow rules:

1) If AUC win

for each behaviouri (i = 1 to 7)

if (rand() < myDist / (myDist + otherDist))

wini = (wini + sgn(behaviouri) × l) × m;

2) If AUC lose

for each behaviouri (i = 1 to 7)

if (rand() < otherDist / (myDist + otherDist))

wini = (wini - sgn(behaviouri) × l) × m;

where rand() is a random number [0,1), myDist is the distance from the

controller car to the destination at the previous update, otherDist is the

distance from the opponent car to the destination at the previous update, wini

 98

denotes the probability of activating the i-th behaviour in the win chromosome

for the next phase of the game, behaviouri is the binary state of the i-th

behaviour before the update, 1 for activated and -1 for deactivated, l is the

learning rate, and m is the mutation rate.

An important consideration here is the issue of credit assignment. For

the car racing simulator, the relative distance of each car from the current

waypoint determines the likelihood of reaching the waypoint first. For

example, if the controller car is nearer to the destination than its opponent,

then it is easier to win this waypoint even with a weaker set of behaviour by

virtue of the closer proximity. Hence, this set of behaviour should be inherited

by the chromosome with lower confidence. Conversely, if the controller car

wins the waypoint when it is initially further away from the destination, then

that set of behaviour is demonstrated to be a winning strategy against this

opponent and therefore it is inherited by the chromosome with higher

confidence. In summary, the activation probability encoded in the

chromosome is updated with the likelihood proportional to the relative

distances of the cars to the destination. Finally, a mutation operator in the form

of a Gaussian perturbation of mean zero is applied to each gene of the

chromosome to introduce some diversity.

Each real number in the chromosome denotes the probability of

activating the corresponding behaviour. Whenever a waypoint is passed, the

AUC checks the new game state and chooses a set of behaviour for the next

phase of the game according to the values encoded in its chromosome. Each

time step in a game is classified into 7 states based on the difference in score

at that time step. From the perspective of the adaptive controller, the 7 states

 99

are: losing by 3 points or more (g-3), losing by 2 points (g-2), losing by 1 point

(g-1), draw (g0), winning by 1 point (g1), winning by 2 point (g2) and winning

by 3 points or more (g3). If the game state is g-3, g-2, g-1 or g0, a strategy is

chosen based on the chromosome. This encourages the controller to try to win

the next point if it is either losing or drawn in score. In cases of draw, the

controller tries to go for a win so as to increase the tension in the game and to

challenge the player to outperform it. If the game state is g1, g2 or g3, the

chromosome is complemented before the strategy is chosen.

5.3.4 Duo-chromosome adaptive controller (ADC)

The duo-chromosome or double chromosome adaptive controller

(ADC) is similar to AUC except that it does not assume the complement of an

expected winning strategy to be a losing strategy. Instead, it maintains 2 sets

of chromosomes, one winning chromosome and one losing chromosome,

throughout the game. The update rules are modified as follows:

1) If ADC win

for each behaviouri (i = 1 to 7)

if (rand() < myDist / (myDist + otherDist))

wini = (wini + sgn(behaviouri) × l) × m;

2) If ADC lose

for each behaviouri (i = 1 to 7)

if (rand() < otherDist / (myDist + otherDist))

losei = (losei + sgn(behaviouri) × l) × m;

where rand() is a random number [0,1), myDist is the distance from the

controller car to the destination at the previous update, otherDist is the

distance from the opponent car to the destination at the previous update, wini

denotes the probability of activating the i-th behaviour in the win chromosome

for the next phase of the game, losei denotes the probability of activating the i-

th behaviour in the lose chromosome for the next phase of the game,

 100

behaviouri is the binary state of the i-th behaviour before the update, 1 for

activated and -1 for deactivated, l is the learning rate, and m is the mutation

rate. The mutation operator is also applied to both chromosomes after the

updating process. In this controller, whenever a waypoint is passed, ADC

checks the new game state. If the game state is g-3, g-2, g-1 or g0, the win

chromosome is used to generate the next behaviour set. If the game state is g1,

g2 or g3, the lose chromosome is used instead.

5.3.5 Static controllers

The adaptive controllers were tested against the following static

controllers of different driving characteristics used to simulate different player

with different styles of play. The purpose is to demonstrate that the adaptive

algorithm is able to adapt to opponents with varying styles and competency. It

should be noted that the objective of the adaptive algorithm is not to defeat its

opponent. Rather, it is to play an even game.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

Generation

M
e
a
n
 s

c
o
re

Heuristic Controller

(a)

 101

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

Generation

M
e
a
n
 s

c
o
re

Neural Network Controller

(b)

The training fitness shown here comes from the best evolved controller from 20 independent

trials of experiment.

Figure 5.2 Training fitness of (a) HC and (b) NNC

5.3.5.1 Heuristic controller (HC)

The heuristic controller (HC) makes use of simple rules to collect

waypoints in the game. It will steer in the direction of the current waypoint if

its difference in heading exceeds a threshold value. It will accelerate if its

speed is below its speed range or decelerate if above its speed range. The 3

parameters, speed limit, speed limit variance and angle threshold are

optimized by a plus-ES, population size of 50 and 200 generations by

maximizing the number of waypoints collects against a simple hand designed

heuristic controller. This controller does not have a predictive component so it

ignores the existence of its opponent and always heads towards the current

waypoint. The training fitness is shown in Figure 5.2 (a) is selected from the

best evolved HC from 20 independent trials.

 102

5.3.5.2 Neural network controller (NNC)

A neural network of 9 inputs, 6 hidden and 2 outputs is trained as a

controller. The inputs are its own orientation, opponent orientation, own speed,

angle to current waypoint, distance to current waypoint, angle to next

waypoint, distance to next waypoint, angle to opponent and distance to

opponent. The outputs are steering control and driving control. 3 additional

parameters encoding the threshold to convert the neural network outputs to on-

off controls are included in the training. The training conditions are identical

to that of the heuristic controller. The neural network representation is capable

of predictive properties but this was not seen in the best evolved candidate.

However, its driving capabilities are smoother and more refined than the HC.

The training fitness is shown in Figure 5.2 (b) is selected from the best

evolved NNC from 20 independent trials.

5.3.5.3 Reverse enabled controller (RC)

The reverse enabled controller (RC) is a simplification of the

behaviour-based controller described earlier. The hyperbolic tangent speed

regulator was deactivated and replaced with a hard speed limit of 5. Only the

reversing and direction switching compensation behaviour was activated while

all other driving and tactical behaviours were deactivated. This controller

ignores the opponent in the two player game but makes good use of its ability

to drive both forwards and backwards to earn points, and recovers quickly

from collisions.

 103

5.3.5.4 Predictive slow controller (PSC)

The predictive slow controller (PSC) is an extension of the HC with

the addition of the waypoint prediction component from the set of tactical

behaviours. The speed limit is set to 5 to simulate a relatively slower moving

car compared to the HC.

5.3.5.5 Predictive fast controller (PFC)

The predictive fast controller (PFC) is a variation of the PSC but with

the speed limit set to 8 instead, a car faster than the HC. To prevent the fast

moving car from getting trapped in orbit too frequently, a stopping mechanism

is implemented to decelerate the car when it is sufficient close to its

destination.

5.3.5.6 Solo game

The results of the solo run of the static controllers presented in Figure

5.3 gives an indication of the driving capabilities of the controller. Since there

were no opponent vehicles in this mode, PSC and PFC reduced to a variant of

the HC but with different speed limits in the solo case.

 104

Heuristic NeuralNetwork Reverse PredictiveSlow PredictiveFast

0

5

10

15

20

25
S

c
o
re

Solo game

An outlier at zero score indicates that the controller is stuck in orbit at the very first waypoint.

The results were obtained from n = 5000 games.

Figure 5.3 Comparative results of static controllers in solo games

It was observed that the controllers HC, NNC, RC and PSC exhibit

similar driving capabilities with controller NNC being slightly less consistent.

Controller PFC was the worst performing controller with a much lower

average score and was very inconsistent with a large standard deviation. The

reason was that its high speed limits often resulted in skidding during a turn

and hence it often overshot a waypoint, wasting valuable time. However,

controller PFC did not report any games with zero score outlier, unlike

controllers HC, NNC and RC. A zero score outlier indicated that the controller

was stuck in orbit at the very first waypoint. This showed that a low speed

limit (PSC) and a stopping mechanism (PFC) are effective in preventing

orbiting.

 105

5.4 Results and analysis

The following experiments were carried out to evaluate the

performance and effectiveness of the proposed adaptive algorithms. In all

experiments, the results were obtained over n = 5000 games and each game

lasted 1000 time steps.

5.4.1 Fully activated behaviours

The first step of the experiment was to establish the playing

proficiency of the basis behaviour-based controller to be used in the adaptive

algorithms. There was a need to verify whether or not the basis behaviour-

based controller was indeed an over-design and hence possessed the potential

to play even games against its opponents. The most competent controller was

one with all behaviours permanently activated and represented the adaptive

controller playing at full strength throughout each game. The full controller

(FC) was played against each of the five static controllers. The results are

presented in the form of a boxplot of the difference in score between the two

players (i.e. the score of the FC minus the score of its opponent) in Figure 5.4.

A positive score difference indicated that the FC won a particular game while

a negative score difference indicated that the opposing controller won the

game. A score difference of zero would indicate a drawn game. The winning

percentages from the perspective of the FC against each of its opponents are

presented in Figure 5.5. Each collection of three connected bars represents win,

lose and draw percentages from left to right.

 106

Heuristic NeuralNetwork Reverse PredictiveSlow PredictiveFast

-15

-10

-5

0

5

10

15

20

(F
u
ll

C
o
n
tr

o
lle

r
-

S
ta

ti
c
 C

o
n
tr

o
lle

r)
 s

c
o
re

Full Controller

The results are shown in terms of score differences between the FC and its opponent. A

positive score difference indicates that the FC won; while a negative score difference indicates

that the opponent won.

Figure 5.4 Boxplot of the results from playing the FC against the five static controllers

Heuristic NeuralNetwork Reverse PredictiveSlow PredictiveFast
0

10

20

30

40

50

60

70

80

90

100

Full Controller (Win-Lose-Draw)

%

For each static controller, the three histogram bars from left to right (blue, green and red)

represent the percentage of games that the FC won, lost and drew respectively.

Figure 5.5 Histogram of the results from playing the FC against the five static controllers

 107

It was observed that the FC was a very competent controller with

positive median score differences against all its opponents. The lower quartile

score differences were positive against four of its opponents and zero against

only the PSC. This could also be observed in Figure 5.5 where the FC

obtained the lowest winning percentage of 74.42% against the PSC. However,

it was clear that the FC was a very competent player against the static

controllers. This made the FC a suitable candidate to handicap itself during a

game and to adapt to its opponent. The objective is to match an opponent in

score (i.e. score difference should have a median value of zero) and also to

match it in winning and losing percentages.

5.4.2 Randomly activated behaviours

Besides having a suitable candidate for adaptation, it was also

important to know whether or not adaptation was a necessity. A simple

random algorithm was used in this experiment to demonstrate the need for

guided learning in an adaptive algorithm. The random controller (RDC)

operated by randomly picking a new set of behaviour to use every time a

waypoint was passed. The RDC was played against each of the five static

controllers and the results are presented in the form of a boxplot of the

difference in score between the two players (i.e. the score of the RDC minus

the score of its opponent) in Figure 5.6. A positive score difference indicated

that the RDC won a particular game and vice versa. A score difference of zero

would indicate a drawn game. The winning percentages presented in Figure

5.7 were from the perspective of the RDC. Each group of three connected bars

represents win, lose and draw percentages from left to right.

 108

Heuristic NeuralNetwork Reverse PredictiveSlow PredictiveFast

-15

-10

-5

0

5

10

15

(R
a
n
d
o
m

 C
o
n
tr

o
lle

r
-

S
ta

ti
c
 C

o
n
tr

o
lle

r)
 s

c
o
re

Random Controller

The results are shown in terms of score differences between the RDC and its opponent. A

positive score difference indicates that the RDC won; while a negative score difference

indicates that the opponent won.

Figure 5.6 Boxplot of the results from playing the RDC against the five static controllers

Heuristic NeuralNetwork Reverse PredictiveSlow PredictiveFast
0

10

20

30

40

50

60

70

Random Controller (Win-Lose-Draw)

%

For each static controller, the three histogram bars from left to right (blue, green and red)

represent the percentage of games that the RDC won, lost and drew respectively.

Figure 5.7 Histogram of the results from playing the RDC against the five static controllers

 109

It was observed from Figure 5.6 that the median of the score

differences were all negative. That is, the score of the RDC was lower than

that of its opponent. This could be confirmed in Figure 5.7 by observing that

the RDC had a higher losing percentage than winning percentage against all

five opponents. This implied that a competent player playing with random

behaviours was unable to consistently win against players of lower

competency. Hence, the random use of effective behaviours did not equate to a

good player. Furthermore, the choice of what behaviours to use to match an

opponent in a game needs to be guided.

5.4.3 Analysis of AUC

The AUC stores one chromosome which encodes 7 real numbers in the

range [0,1], one for each of the 7 behaviours. Each value represents the

probability of activating a behaviour for use. The expected behaviour set

encoded by this chromosome represents a „winning‟ strategy. Whenever a

waypoint is passed in the game, the chromosome is updated by the rules

described earlier in section 5.3.3 and a new set of behaviours will be generated

for use until the next waypoint is triggered. The proposed algorithm

introduced 2 variables, the learning rate and the mutation rate. The effects of

varying these variables will be discussed in this section.

5.4.3.1 Effects of varying learning rate

In this experiment, the mutation rate was set to zero and the learning

rate was varied from 0.1 to 1.0 in steps of 0.1. The results of the mean scores,

standard deviation and winning percentages over n = 5000 games are

summarized in Table 5.1.

 110

Table 5.1 Comparative results for AUC versus static controllers for varying learning rate and

fixed mutation rate

For each pair of results, the left column represents the AUC and the right represents the static

controller in that column. Winning percentages do not sum to 100%, the remainder are drawn

games. The best results are bolded for each static controller.
AUC
Mutation rate =

0

Learning rate Heuristic Neural network Reverse Predictive slow Predictive fast

0.1 Mean 14.10 14.10 14.00 14.00 14.46 14.44 14.72 14.71 14.55 14.54

 Std 2.37 2.67 2.45 2.55 2.29 2.88 2.62 3.12 2.58 2.89

 Win (%) 45.24 45.24 44.58 45.26 44.98 45.64 44.66 44.66 43.64 44.48
0.2 Mean 14.10 14.08 13.92 13.91 14.59 14.43 14.90 14.78 14.72 14.72

 Std 2.39 2.66 2.48 2.58 2.26 2.80 2.49 3.04 2.46 2.81

 Win (%) 45.52 45.20 44.72 45.34 44.14 46.42 43.98 46.22 44.50 45.12
0.3 Mean 14.15 14.13 14.07 14.06 14.68 14.08 15.04 14.66 14.82 14.83

 Std 2.37 2.56 2.46 2.55 2.24 2.67 2.48 2.89 2.42 2.70

 Win (%) 45.50 45.08 44.76 45.46 39.72 51.18 41.06 48.60 44.16 44.68

0.4 Mean 14.22 13.97 14.09 14.08 14.70 14.11 15.06 14.57 14.84 14.83

 Std 2.40 2.53 2.45 2.46 2.23 2.68 2.44 2.82 2.32 2.63

 Win (%) 42.50 48.52 45.22 45.82 39.92 50.90 39.44 50.74 44.42 44.84

0.5 Mean 14.20 14.02 14.22 14.11 14.75 14.00 15.05 14.60 14.92 14.85

 Std 2.39 2.48 2.39 2.37 2.24 2.68 2.45 2.78 2.31 2.60

 Win (%) 43.80 46.36 44.58 45.58 38.56 52.66 39.66 50.30 43.28 45.96
0.6 Mean 14.24 13.89 14.25 14.03 14.80 13.93 15.11 14.50 14.98 14.89

 Std 2.39 2.47 2.47 2.41 2.22 2.65 2.44 2.76 2.22 2.51

 Win (%) 42.88 47.56 42.92 47.36 36.82 53.50 38.50 51.36 43.32 45.56
0.7 Mean 14.26 13.82 14.15 14.00 14.81 13.94 15.12 14.38 14.99 14.77

 Std 2.36 2.40 2.39 2.35 2.23 2.61 2.50 2.80 2.26 2.53

 Win (%) 41.40 49.42 44.64 46.26 36.72 53.92 37.90 53.08 42.90 46.96
0.8 Mean 14.27 13.81 14.21 13.97 14.81 13.91 15.11 14.33 14.95 14.75

 Std 2.34 2.41 2.44 2.36 2.20 2.58 2.50 2.79 2.25 2.51

 Win (%) 41.44 49.32 42.52 47.52 36.94 53.94 36.84 52.94 41.98 46.88
0.9 Mean 14.30 13.79 14.26 13.98 14.86 13.88 15.17 14.38 14.94 14.71

 Std 2.40 2.42 2.42 2.34 2.16 2.51 2.47 2.80 2.31 2.48

 Win (%) 40.10 50.82 42.68 47.54 35.40 54.18 36.96 52.90 41.96 47.46
1.0 Mean 14.22 13.85 14.22 13.92 14.81 13.78 15.04 14.32 14.94 14.69

 Std 2.35 2.38 2.40 2.34 2.23 2.58 2.51 2.79 2.32 2.52

 Win (%) 42.50 47.96 42.56 47.72 35.74 54.86 37.80 52.82 41.82 47.92

The results were evaluated based on the two criteria described in

section 5.3.1. The difference in winning percentage |w – l| should be minimal

and the number of draws d should also be minimized. A high number of drawn

games was deemed as more frustrating than fun. The difference between the

mean scores |s1 – s2| should be minimal and the higher of the two scores

max(s1, s2) should be maximal. A high average score indicated a competitive

and fast paced game that was deemed to provide more satisfaction for the

player. The best results based on these criteria are highlighted in bold in Table

5.1.

It was observed from Table 5.1 that the general trend of increasing

learning rate was an increase in mean score differences and also an increase in

winning percentage difference. This was because a large learning rate will

 111

quickly saturate the chromosome values to either 0 or 1. The resulting

fluctuations in the chromosome values produce erratic behaviours that were

unable to adapt and track its opponent‟s progress during the game. At low

learning rates, the score differences and winning percentages were smaller and

the AUC was able to match its opponent in both criteria. A learning rate of 0.1

obtained the best result for 7 out of 10 evaluations (2 evaluation criteria for

each of 5 static controllers). It was also the dominant learning rate for 3 out of

5 static controllers, namely, HC, NNC and PSC. Although the learning rate of

0.1 did not obtain the best result for either evaluation criteria against the PFC,

the mean score difference of 0.01 and winning percentage difference of 0.84

were considered within acceptable range. Therefore, a learning rate of 0.1 was

chosen as a good general rule of thumb that could be used in situations where

opponents were varied and unknown. This value of learning rate will also be

used as default value in the experiment of varying mutation rate in the next

section.

It was also worth noting that in the lower half of Table 5.1 (i.e. l > 0.5),

the mean score of the adaptive controller was higher than that of the static

controllers but the winning percentages of the AUC is lower than that of the

static controllers. This was likely caused by the AUC losing frequently by

small margins but winning by large margins. This exemplified that higher

mean scores did not directly imply higher winning percentages.

5.4.3.2 Effects of varying mutation rate

In this experiment, the learning rate was set to 0.1 and the mutation

rate was varied from 0.1 to 1.0 in steps of 0.1. The mutation rate controlled the

size of the standard deviation in a Gaussian perturbation of zero mean. The

 112

mutations were applied independently to each chromosome value after the

learning rate was applied. The results of the mean scores, standard deviation

and winning percentages are summarized in Table 5.2.

Table 5.2 Comparative results for AUC versus static controllers for fixed learning rate and

varying mutation rate

For each pair of results, the left column represents the AUC and the right represents the static

controller in that column. Winning percentages do not sum to 100%, the remainder are drawn

games. The best results are bolded for each static controller.
AUC
Learning rate =

0.1

Mutation rate Heuristic Neural network Reverse Predictive slow Predictive fast

0.1 Mean 14.12 14.06 14.05 14.06 14.64 13.98 15.01 14.54 14.81 14.79

 Std 2.37 2.60 2.44 2.52 2.22 2.78 2.52 3.01 2.41 2.70

 Win (%) 44.08 46.68 44.74 45.42 39.50 51.52 40.70 49.48 40.90 47.52
0.2 Mean 14.10 13.92 14.13 14.04 14.72 13.84 15.05 14.40 14.94 14.88

 Std 2.37 2.50 2.42 2.41 2.25 2.64 2.52 2.83 2.27 2.53

 Win (%) 44.08 46.22 45.02 45.46 36.34 54.06 38.20 51.90 44.26 44.60

0.3 Mean 14.11 13.88 14.18 13.95 14.74 13.80 15.11 14.33 14.88 14.85

 Std 2.34 2.38 2.36 2.30 2.16 2.54 2.50 2.83 2.34 2.53

 Win (%) 42.58 47.38 43.48 46.88 36.14 53.74 37.18 53.44 43.96 45.26
0.4 Mean 14.18 13.82 14.17 13.96 14.70 13.85 15.13 14.28 14.95 14.87

 Std 2.27 2.31 2.38 2.27 2.16 2.50 2.48 2.75 2.24 2.46

 Win (%) 41.44 48.62 43.02 47.04 37.74 53.28 35.64 54.38 44.26 45.02
0.5 Mean 14.19 13.74 14.15 13.92 14.79 13.72 15.15 14.27 14.95 14.87

 Std 2.31 2.34 2.34 2.25 2.20 2.54 2.42 2.69 2.32 2.46

 Win (%) 41.24 48.56 42.76 47.04 33.92 55.70 36.14 53.86 43.02 45.16
0.6 Mean 14.26 13.71 14.24 13.87 14.76 13.71 15.09 14.28 14.91 14.82

 Std 2.32 2.30 2.40 2.22 2.14 2.42 2.43 2.64 2.25 2.43

 Win (%) 40.26 49.58 41.26 48.80 34.44 54.84 36.38 53.44 43.26 46.22

0.7 Mean 14.26 13.71 14.20 13.85 14.78 13.69 15.15 14.19 14.97 14.75

 Std 2.30 2.32 2.38 2.27 2.15 2.43 2.48 2.71 2.25 2.38

 Win (%) 40.36 49.98 41.72 47.90 34.23 56.22 35.08 54.86 43.20 46.30
0.8 Mean 14.24 13.72 14.25 13.79 14.82 13.60 15.06 14.14 14.98 14.72

 Std 2.36 2.32 2.37 2.22 2.18 2.53 2.57 2.76 2.25 2.40

 Win (%) 40.74 49.14 40.26 49.54 33.62 56.66 35.40 54.40 41.20 47.34
0.9 Mean 14.29 13.65 14.18 13.82 14.84 13.64 15.14 14.12 14.99 14.71

 Std 2.34 2.22 2.38 2.21 2.17 2.46 2.46 2.63 2.25 2.36

 Win (%) 39.08 50.76 41.20 48.82 34.34 56.24 34.38 54.80 41.02 47.32
1.0 Mean 14.26 13.68 14.27 13.83 14.88 13.59 15.10 14.06 14.98 14.74

 Std 2.34 2.25 2.37 2.21 2.18 2.47 2.54 2.74 2.26 2.43

 Win (%) 38.70 51.00 41.60 48.82 33.00 58.46 34.40 55.08 40.66 47.64

It was observed from Table 5.2 that higher mutation rates was more

likely to produce larger differences in mean score and winning percentage.

Similar to the case of high learning rate, high mutation rate produced large

fluctuations in the chromosome values, making the AUC overcompensate in

its behaviours. This was analogous to noise being amplified by the differential

component of a PID (proportional–integral–derivative) controller. The best

performing mutation rate was 0.1 with 7 out of 10 best evaluations. However,

this result must be interpreted against the earlier result from varying the

 113

learning rate (i.e. m = 0). By comparison, the best results from m = 0.1, were

worse (i.e. larger differences in mean score and winning percentage) compared

to those from m = 0. This implied that the additional mutation operation might

have introduced unnecessary divergence to the chromosome values, leading to

poorer results. Therefore, in general, the mutation rate should be 0 for the

AUC.

5.4.4 Analysis of ADC

In this section, the performance of the ADC will be assessed in terms

of varying learning rate and varying mutation rate. The ADC differs from the

AUC in that it does not make the assumption that the complement of a

„winning‟ chromosome is a „losing‟ chromosome. Instead, it maintains two

sets of chromosomes, each of which encodes 7 real number in the range [0,1].

One chromosome represents a „winning‟ behaviour set while the other

represents a „losing‟ behaviour set. Each chromosome is updated

independently when a waypoint is passed. However, the same learning rate

and mutation rate is applied to both chromosomes.

5.4.4.1 Effects of varying learning rate

In this experiment, the mutation rate was first set to zero and the

learning rate was varied from 0.1 to 1.0 in steps of 0.1. The same learning rate

was applied to both chromosomes of the ADC. The results of the mean scores,

standard deviation and winning percentages are summarized in Table 5.3. As

is the case in Table 5.1, the best results are highlighted in bold.

 114

Table 5.3 Comparative results for ADC versus static controllers for varying learning rate and

fixed mutation rate

For each pair of results, the left column represents the ADC and the right represents the static

controller in that column. Winning percentages do not sum to 100%, the remainder are drawn

games. The best results are bolded for each static controller.
ADC
Mutation rate =

0

Learning rate Heuristic Neural network Reverse Predictive slow Predictive fast

0.1 Mean 8.16 10.81 12.16 12.16 14.31 14.31 10.23 10.23 11.78 11.78

 Std 2.57 2.55 2.85 2.98 2.57 2.80 3.36 3.09 3.29 3.23

 Win (%) 73.00 18.48 44.74 43.10 43.38 43.80 43.98 41.48 41.16 40.22

0.2 Mean 11.12 13.10 13.99 13.25 14.24 13.60 15.22 14.54 9.29 10.01

 Std 2.00 1.95 2.34 1.80 2.20 2.33 2.38 2.31 2.23 2.10

 Win (%) 65.76 24.08 39.40 51.96 38.80 51.68 37.06 52.36 54.72 32.98
0.3 Mean 13.87 12.34 7.93 10.87 9.93 11.28 9.75 9.76 8.97 9.99

 Std 2.27 1.98 2.54 2.47 4.08 4.53 2.55 2.32 2.12 2.01

 Win (%) 29.70 60.42 76.28 16.38 58.18 27.16 44.68 41.78 57.40 29.52

0.4 Mean 8.81 13.35 12.42 13.45 12.14 16.19 9.43 9.46 14.67 15.98

 Std 2.58 2.90 2.30 1.93 1.91 2.17 2.40 2.16 2.39 2.27

 Win (%) 88.94 5.84 55.50 34.98 82.44 10.98 43.84 41.60 59.34 29.62
0.5 Mean 14.19 12.22 12.05 12.05 8.47 9.64 8.74 9.25 8.94 9.94

 Std 2.15 2.31 2.53 2.29 4.46 5.13 2.49 2.24 2.18 1.99

 Win (%) 26.70 63.98 44.86 44.38 55.64 27.46 51.72 35.24 57.78 30.14
0.6 Mean 13.13 11.04 14.29 11.97 12.13 12.13 8.92 9.44 14.42 13.44

 Std 2.20 1.92 2.26 1.81 4.36 4.37 2.45 2.17 2.30 2.61

 Win (%) 24.18 66.76 21.70 69.18 42.48 42.38 51.78 35.40 34.12 55.94
0.7 Mean 8.11 10.86 9.92 13.33 14.27 13.44 14.71 18.74 9.35 12.55

 Std 2.57 2.54 2.33 2.24 2.25 2.38 2.65 2.99 2.32 2.24

 Win (%) 74.10 17.72 79.84 13.36 37.06 53.24 85.06 9.28 81.60 11.00
0.8 Mean 13.08 11.17 9.40 13.72 11.45 14.78 9.43 9.44 9.37 12.51

 Std 2.20 1.91 2.28 2.28 1.74 1.91 2.34 2.13 2.28 2.27

 Win (%) 25.72 65.00 87.68 7.32 78.72 13.82 43.74 41.96 81.04 10.68
0.9 Mean 11.50 16.66 9.95 13.41 14.25 20.62 15.24 13.38 10.74 13.50

 Std 2.00 1.91 2.37 2.21 2.04 1.97 2.18 2.46 2.29 2.19

 Win (%) 93.00 3.36 79.68 13.64 96.04 2.02 27.04 63.94 79.98 11.64
1.0 Mean 10.24 13.07 13.97 13.26 12.63 13.58 13.40 13.39 9.29 9.98

 Std 2.44 2.10 2.37 1.80 2.16 2.54 2.87 3.05 2.14 2.04

 Win (%) 76.26 16.44 38.40 51.46 53.66 36.02 43.58 44.24 53.72 33.06

It was observed in Table 5.3 there were no trends with varying the

learning rate. This was likely caused by the reduction of the frequency of

update opportunities for each chromosome. The average number of updates

during each game was the sum of the mean scores of the two players. With the

ADC, only one chromosome was updated whenever a waypoint was passed

depending on whether the controller won or lost the point. This meant that, on

average, each chromosome in the ADC was updated half as frequently as the

chromosome in the AUC. The reduced updating frequency also reduced the

effectiveness of the ADC to match its opponent in mean score and winning

percentage. Nevertheless, a learning rate of 0.1 obtained the best result in 5 out

of 10 evaluations. Therefore, l = 0.1 will be used as the default value in the

experiment of varying mutation rate in the next section.

 115

5.4.4.2 Effects of varying mutation rate

In this experiment, the learning rate was set to 0.1 and the mutation

rate was varied from 0.1 to 1.0 in steps of 0.1. The mutation rate controlled the

size of the standard deviation in a Gaussian perturbation of zero mean. The

mutations were applied independently to each chromosome value after the

learning rate was applied. The same mutation rate was applied to both

chromosomes of the ADC. The results of the mean scores, standard deviation

and winning percentages are summarized in Table 5.4.

Table 5.4 Comparative results for ADC versus static controllers for fixed learning rate and

varying mutation rate

For each pair of results, the left column represents the ADC and the right represents the static

controller in that column. Winning percentages do not sum to 100%, the remainder are drawn

games. The best results are bolded for each static controller.
ADC
Learning rate =

0.1

Mutation rate Heuristic Neural network Reverse Predictive slow Predictive fast

0.1 Mean 13.89 13.88 13.97 13.96 14.43 14.38 14.93 14.71 14.27 14.26
 Std 2.45 2.86 2.52 2.84 2.28 3.03 2.51 3.20 2.74 3.13

 Win (%) 45.82 45.22 45.58 45.22 45.28 46.26 44.06 46.68 44.40 44.66

0.2 Mean 14.15 13.91 13.95 13.91 14.68 13.91 15.01 14.46 14.79 14.79

 Std 2.32 2.53 2.47 2.55 2.17 2.71 2.51 2.92 2.41 2.67

 Win (%) 42.68 47.04 45.42 45.02 37.96 52.10 39.42 51.18 44.18 44.90

0.3 Mean 14.17 13.89 14.07 14.01 14.71 13.90 15.01 14.44 14.90 14.89
 Std 2.30 2.43 2.41 2.38 2.20 2.61 2.42 2.79 2.34 2.54

 Win (%) 42.40 47.26 44.20 45.96 37.90 52.68 38.80 50.22 44.80 44.66

0.4 Mean 14.17 13.82 14.09 14.04 14.68 13.81 15.02 14.32 14.86 14.82
 Std 2.27 2.33 2.38 2.31 2.17 2.57 2.44 2.79 2.38 2.52

 Win (%) 41.62 48.20 44.62 45.52 36.46 53.92 37.50 51.94 43.82 45.36

0.5 Mean 14.19 13.80 14.14 13.92 14.66 13.78 15.06 14.29 15.02 14.94
 Std 2.34 2.34 2.39 2.31 2.19 2.54 2.51 2.76 2.30 2.40

 Win (%) 42.24 48.70 43.22 47.66 35.86 53.80 36.56 52.88 43.66 44.94

0.6 Mean 14.17 13.82 14.24 13.91 14.75 13.75 15.11 14.22 14.91 14.80
 Std 2.31 2.30 2.34 2.28 2.17 2.48 2.42 2.69 2.33 2.47

 Win (%) 41.74 48.30 42.54 48.00 34.74 55.56 35.32 53.66 43.30 45.88
0.7 Mean 14.26 13.66 14.16 13.93 14.71 13.77 15.14 14.20 14.97 14.88

 Std 2.34 2.30 2.33 2.24 2.17 2.47 2.49 2.67 2.23 2.43

 Win (%) 38.98 51.16 43.06 46.68 36.16 54.22 35.66 55.08 43.12 45.38

0.8 Mean 14.20 13.75 14.19 13.89 14.73 13.69 15.10 14.21 14.97 14.89

 Std 2.31 2.28 2.40 2.23 2.21 2.49 2.50 2.71 2.20 2.34

 Win (%) 40.94 48.96 43.08 46.70 34.70 55.62 36.76 53.46 42.94 45.90
0.9 Mean 14.24 13.67 14.23 13.86 14.86 13.61 15.12 14.09 14.98 14.77

 Std 2.33 2.29 2.36 2.21 2.14 2.42 2.46 2.68 2.27 2.41

 Win (%) 40.28 49.68 41.68 48.46 32.16 57.98 34.82 54.92 41.64 46.34
1.0 Mean 14.23 13.66 14.20 13.93 14.80 13.61 15.20 14.15 14.92 14.76

 Std 2.32 2.25 2.34 2.23 2.18 2.48 2.38 2.63 2.25 2.37

 Win (%) 39.78 49.46 42.24 47.44 33.52 57.24 33.66 56.06 42.54 46.06

It was observed in Table 5.4 that the mutation value of 0.1 obtained the

best result in 9 out of 10 evaluations. The only exception was for the case of

mean score difference against the PFC. However, their mean scores only

 116

differed by 0.01 and could be considered within acceptable range. The results

of the ADC improved greatly due to the introduction of the mutation operation

as the mutation operation offered more opportunities for the chromosome

values to adapt compared to using only the learning rate operation. The mean

scores and winning percentages were similar to those of the AUC.

Additionally, the ADC (l = 0.1, m = 0.1, 9 of 10 evaluations) was able to

produce more consistent results compared to the AUC (l = 0.1, m = 0, 7 of 10

evaluations) in response to varied and unknown opponents. The disadvantage

was that the ADC requires more memory and more computation.

5.4.5 Score difference distribution

Both the AUC and ADC, using the optimized parameters, were

demonstrated to be effective in matching its opponent in terms of mean score

difference and winning percentage difference. In this section, the distribution

of the difference in score in each of the n = 5000 games will be further

analyzed. The following analysis will be divided into two sections, namely,

the overall distribution of score differences and the distribution of the

occurrence of the score differences.

5.4.5.1 Distribution of score difference

The significance of analyzing the distribution of score differences is to

investigate the effects of the adaptive controllers on the game experience of its

opponents. A game experience is considered satisfying or entertaining when it

is difficult to defeat. This idea can also be extended to say that a game

experience is considered satisfying or entertaining when it is won or lost by a

small margin. In the context of the car racing simulator game, this can be

 117

interpreted as a small score difference between the two competing players.

From real world user experience, a game was subconsciously considered won

or lost by a player when a score difference of more than 5 was observed

during the game. The typical score of a player for one game was around 13 to

15 points. Therefore, if the end game score difference is 4 or less, it is said that

the player is entertained during the game.

The histograms of the score difference are presented in Figure 5.8. The

boxplot of the score difference of the AUC and the ADC with optimized

parameters against the five static opponents are presented in Figure 5.9 and

Figure 5.10 respectively. The number of game results that fall within a specific

score difference is summarized in Table 5.5 as a percentage of total games

played.

-15 -10 -5 0 5 10 15
0

100

200

300

400

500

600

F
re

q
u
e
n
c
y

(Adaptive Controller - Heuristic Controller) Score

AUC

ADC

(a)

 118

-15 -10 -5 0 5 10 15
0

100

200

300

400

500

600

F
re

q
u
e
n
c
y

(Adaptive Controller - Neural network Controller) Score

AUC

ADC

(b)

-15 -10 -5 0 5 10 15
0

100

200

300

400

500

600

F
re

q
u
e
n
c
y

(Adaptive Controller - Reverse Controller) Score

AUC

ADC

(c)

 119

-15 -10 -5 0 5 10 15
0

100

200

300

400

500

600

F
re

q
u
e
n
c
y

(Adaptive Controller - Predictive slow Controller) Score

AUC

ADC

(d)

-15 -10 -5 0 5 10 15
0

100

200

300

400

500

600

F
re

q
u
e
n
c
y

(Adaptive Controller - Predictive fast Controller) Score

AUC

ADC

(e)

A positive score difference indicates that the adaptive controller won; while a negative score

difference indicates that the static controller won.

Figure 5.8 Histogram of the score difference of the adaptive controllers against the (a) HC (b)

NNC (c) RC (d) PSC and (e) PFC

 120

Heuristic NeuralNetwork Reverse PredictiveSlow PredictiveFast
-20

-15

-10

-5

0

5

10

15

20

(A
U

C
 -

 S
ta

ti
c
 C

o
n
tr

o
lle

r)
 S

c
o
re

The results are shown in terms of score differences between the AUC and its opponent. A

positive score difference indicates that the AUC won; while a negative score difference

indicates that the opponent won.

Figure 5.9 Boxplot of the results from playing the AUC against the five static controllers

Heuristic NeuralNetwork Reverse PredictiveSlow PredictiveFast
-20

-15

-10

-5

0

5

10

15

20

(A
D

C
 -

 S
ta

ti
c
 C

o
n
tr

o
lle

r)
 S

c
o
re

The results are shown in terms of score differences between the ADC and its opponent. A

positive score difference indicates that the ADC won; while a negative score difference

indicates that the opponent won.

Figure 5.10 Boxplot of the results from playing the ADC against the five static controllers

 121

Table 5.5 Cumulative percentages of games according to score difference

Score
diff

AUC ADC

Heuristic
Neural

network
Reverse

Predictive

slow

Predictive

fast
Heuristic

Neural

network
Reverse

Predictive

slow

Predictive

fast

0 0.0952 0.1016 0.0938 0.1068 0.1188 0.0896 0.0920 0.0846 0.0926 0.1094

≤1 0.2932 0.3078 0.2834 0.3106 0.3416 0.2586 0.2718 0.2596 0.2764 0.3168

≤2 0.4584 0.4826 0.4500 0.4792 0.5358 0.4322 0.4352 0.4362 0.4464 0.5050

≤3 0.6120 0.6278 0.5908 0.6272 0.6880 0.5838 0.5802 0.5806 0.5890 0.6540

≤4 0.7318 0.7422 0.7082 0.7404 0.8040 0.7038 0.7022 0.7024 0.7114 0.7808

≤5 0.8224 0.8336 0.8012 0.8286 0.8814 0.8010 0.7968 0.7938 0.8080 0.8634

It was observed in Figure 5.9 and Figure 5.10 that the median values of

both AUC and ADC against all their opponents were zero. It was also

observed from Figure 5.8 that, by the near symmetry of the histogram, their

mean values were very close to zero. These implied that both adaptive

controllers were able to match their opponents in terms of mean score

difference and winning percentage difference. The upper and lower quartiles

of both adaptive controllers were 3 and -3 respectively for HC, NNC, RC and

PSC. It was 2 and -2 respectively for the PFC. In addition, it was observed

from Table 5.5 that a minimum of 70.22% of the game results between the

adaptive and static controllers had a score difference of 4 or less. This

indicated that the opponent was entertained in at least 70.22% of the games

played.

It was observed from Figure 5.8 that the ADC was likely to have a

lower number of drawn games compared to the AUC. Having a lower number

of drawn games was a desirable effect as drawn games were deemed to be

more frustrating than fun. Hence, the ADC had the advantage of being able to

consistently produce a low frequency of drawn games against varied and

unknown opponents.

 122

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-20

-15

-10

-5

0

5

10

15

20

-th game

(A
U

C
 -

 H
e
u
ri
s
ti
c
 C

o
n
tr

o
lle

r)
 S

c
o
re

The dots represent an scattered data points of the score difference plotted against the game

count. The line represents the mean occurrence of the score difference.

Figure 5.11 A sample diagram of 5000 games between the AUC and HC

5.4.5.2 Distribution of the occurrence of the score difference

The purpose of investigating the distribution of the occurrence of the

score difference is to verify that each score difference is evenly distributed

over the n = 5000 games. That is, the adaptive controller should win by 2

points as well as lose by 2 points regularly and uniformly over the 5000

sequential games. As an extreme example, the opposite would be to win the

first 2500 games by 2 points and lose the last 2500 games by 2 points. In this

example, the mean score difference and winning percentage difference is zero

but the opposing player will feel dissatisfied by losing the first 2500 games. A

sample diagram of the 5000 games between the AUC and HC is shown in

Figure 5.11.

 123

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-20

-15

-10

-5

0

5

10

15

20

-th game

(A
U

C
 -

 S
ta

ti
c
 C

o
n
tr

o
lle

r)
 S

c
o
re

Heuristic

Neural network

Reverse

Predictive slow

Predictive fast

The lines represent the mean occurrence of the score difference against the static controllers.

Mean occurrences near the 2500
th

 game indicate that the score difference represented in the

vertical axis is evenly distributed across the total number of games played.

Figure 5.12 Plot of the score difference between the AUC and the static controllers

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-20

-15

-10

-5

0

5

10

15

20

-th game

(A
D

C
 -

 S
ta

ti
c
 C

o
n
tr

o
lle

r)
 S

c
o
re

Heuristic

Neural network

Reverse

Predictive slow

Predictive fast

The lines represent the mean occurrence of the score difference against the static controllers.

Mean occurrences near the 2500
th

 game indicate that the score difference represented in the

vertical axis is evenly distributed across the total number of games played.

Figure 5.13 Plot of the score difference between the ADC and the static controllers

 124

The horizontal axis represents the game count while the vertical axis

represents the score difference. Each dot represents the outcome of the game

while the line represents the mean occurrence of the score difference on the

vertical axis. It is desirable that the mean occurrence of each score difference

is around the 2500th game (i.e. vertically along the centre line). This would

imply that the particular score difference is evenly distributed. It was observed

from Figure 5.11 that the mean occurrence values for score differences of

more than 5 tend to diverge away from the centre line. This is due to a low

frequency of these score differences as 82.24% of the games occur with a

score difference of 5 and less. As such, only score differences of 5 and less

will be considered for this analysis.

The results of all the games for the AUC against the five static

controllers are plotted together in Figure 5.12. The individual game outcomes

are left out to make the diagram more reader friendly. Only the mean value

lines are plotted. The results for ADC are shown in Figure 5.13. It was

observed that both adaptive controllers had consistent and near zero mean

occurrences for score differences in the range of -5 to 5. This indicated that

both adaptive controllers were able to evenly distribute varying score

differences across a long run of sequential games. This helped to keep the

opposing player interested in the game by uniformly winning and losing.

5.4.6 Behaviour activation probability distribution

In this section, the final values of the behaviour activation probability

that is encoded in the chromosomes of the adaptive controllers will be

discussed. The objective of this discussion is to identify any general trends or

 125

preferences in behaviours when the adaptive controllers are playing against

varied opponents.

5.4.6.1 Analysis of AUC

The AUC contains one chromosome which encodes 7 real numbers,

one for each of the 7 behaviours. Each value represents the probability of

activating a specific behaviour. The expected behaviour set encoded by this

chromosome represents a „winning‟ strategy while its complement is assumed

to be a losing strategy. The boxplots and histograms of each of the 7

behaviours plotted against the five static opponents are presented in Figure

5.14. The line plotted across the boxplots connects the mean values of each

behaviour component. The histogram consists of 10 bins with an interval of

0.1 from 0 to 1. For each bin, the frequency of each behaviour component is

represented by a different colour bar.

It was observed from Figure 5.14 that there were some general trends

in the chromosome values encoded by the AUC at the end of each game. The

reversing and direction switching behaviours were selected with high

probabilities against all its opponents, indicating that these two behaviours

were important behaviours to choose if the AUC wanted to express a winning

strategy. The tight angle turning and time wasting behaviours had means and

medians of around 0.5 against all opponents. This implied that these two

behaviours were not as significant in deciding whether or not a strategy was a

winning one.

 126

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

vs Heuristic

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

vs Neural Network

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

(a) (b)

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

vs Reverse

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

vs Predictive Slow

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

(c) (d)

 127

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

vs Predictive Fast

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

0 0.5 1

2

4

6

1

3

5

7

Legend

0 0.5 1
0

500

1000

1500

Hyperbolic tangent

Reversing

Direction switching

Tight angle turning

Waypoint prediction

Time wasting

Blocking

Skill number - name:

7 - Blocking

6 - Time wasting

5 - Waypoint prediction

4 - Tight angle turning

3 - Direction switching

2 - Reversing

1 - Hyperbolic tangent speed

(e) (f)

The vertical axis of the boxplot represents the behaviour modules; while the horizontal axis

represents the chromosome values in the range [0,1]. The green line connects the mean value

of each behaviour modules. The histogram consists of ten bins; the legend for the histogram is

shown in (f).

Figure 5.14 Boxplot and histogram of ending chromosome values of the AUC against the (a)

HC (b) NNC (c) RC (d) PSC and (e) PFC

The blocking behaviour was selected with the lowest probability

amongst the other behaviours. This was because blocking an opponent during

a game was a defensive behaviour used to prevent the opponent from getting a

point rather than to gain a point for itself. Hence, the AUC generally assigned

a lower probability of activation for this behaviour in its chromosome which

encoded a winning strategy. This also helped to demonstrate an advantage of

the proposed adaptive algorithm in that it was able to select a suitable subset

of behaviours automatically via its chromosome. Conflicting behaviours were

selected with lower probabilities while complementary behaviours were

selected with higher probabilities.

 128

5.4.6.2 Analysis of ADC

The ADC consists of two chromosomes instead of one, each encodes 7

real numbers. One of the chromosomes represents a „winning‟ strategy while

the other represents a „losing‟ strategy. The boxplots and histograms of each

of the final value of each of the chromosomes are presented in Figure 5.15 to

Figure 5.19.

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Winning

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Losing

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

The winning and losing chromosome are shown on the left and right column respectively. The

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis

represents the chromosome values in the range [0,1]. The histogram consists of ten bins.

Figure 5.15 Boxplot and histogram of ending chromosome values of the ADC against the HC

 129

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Winning

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Losing

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

The winning and losing chromosome are shown on the left and right column respectively. The

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis

represents the chromosome values in the range [0,1]. The histogram consists of ten bins.

Figure 5.16 Boxplot and histogram of ending chromosome values of the ADC against the

NNC

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Winning

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Losing

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

The winning and losing chromosome are shown on the left and right column respectively. The

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis

represents the chromosome values in the range [0,1]. The histogram consists of ten bins.

Figure 5.17 Boxplot and histogram of ending chromosome values of the ADC against the RC

 130

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Winning

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Losing

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

The winning and losing chromosome are shown on the left and right column respectively. The

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis

represents the chromosome values in the range [0,1]. The histogram consists of ten bins.

Figure 5.18 Boxplot and histogram of ending chromosome values of the ADC against the PSC

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Winning

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

0 0.5 1

1

2

3

4

5

6

7

B
e
h
a
v
io

u
r

Losing

0 0.5 1
0

500

1000

1500

Chromosome values

F
re

q
u
e
n
c
y

The winning and losing chromosome are shown on the left and right column respectively. The

vertical axis of the boxplot represents the behaviour modules; while the horizontal axis

represents the chromosome values in the range [0,1]. The histogram consists of ten bins.

Figure 5.19 Boxplot and histogram of ending chromosome values of the ADC against the PFC

 131

It was observed from the histogram in Figure 5.15 to Figure 5.19 that

both winning and losing chromosomes was likely to produce high frequencies

for the two bin values nearest to 0 and 1. This was likely due to the positive

reinforcement nature of the update rules used in the ADC. Behaviours that

resulted in winning a waypoint was updated only to the winning chromosome

while behaviours that resulted in losing a waypoint was updated only to the

losing chromosome. This resulted in a high frequency of chromosomes taking

values at the extremities. The shape of the boxplot of the winning

chromosome resembled that of the chromosome from the AUC. This was

expected as the single chromosome from the AUC encodes a winning strategy

as well. There were no observable trends in the losing chromosome. This

might indicate that there were many possible combinations of losing

behaviours and that the algorithm learnt a different one each time.

5.5 Summary

Two adaptive algorithms were introduced in this chapter to enhance

player satisfaction, namely, AUC and ADC. The effects of varying the

learning rate and mutation rate were investigated for both algorithms and a

general rule of thumb for the selection of these two parameters was put

forward. The distribution of the score difference was examined and both

algorithms were able to achieve a score difference of 4 or less for a minimum

70.22% of the games. The occurrence of wins and losses was also well

distributed over the sequence of consecutive games. It was also observed that

while the AUC was more computationally efficient, the ADC was able to

maintain a lesser number of drawn games which may help to reduce player

frustration. In the examination of the ending values of the chromosomes, it

 132

was found that the adaptive algorithms select different combinations of

behaviours to cope with different opponents although the reversing and

direction switching behaviours were observed to be more prominent in

winning chromosomes. Both proposed adaptive algorithms were able to

automatically learn suitable sets of behaviours to match the different

opponents in terms of mean score and winning percentage. Also, both

proposed adaptive algorithms were able to generalize well to a variety of

opponent driving styles.

 133

Chapter Six

6 Evolving believable behaviour in games using

sensor noise and action histograms

A believable game AI can help players to immerse in the game world

and maintain the suspension of disbelief, thereby making the game more

enjoyable and satisfying. This chapter explores the use of two main ideas to

acquire believable behaviours. First, sensor noise is introduced to simulate

errors in human judgment and its associated parameters are evolved together

with the game controller. Second, indirect modeling of human behavioural

tendencies is achieved by using output action histograms as optimization

objectives. Two types of histograms will be explored, the action histogram and

the action sequence histogram. The proposed approach differs from

conventional approaches by focusing on imitating actions within a small

window size instead of imitating the entire action sequence. The resulting

controllers with evolved sensor noise are able to achieve both objectives of

performance and believability in training, and demonstrate good

generalization capability on 4 other previously unseen test tracks. In a study

involving 58 respondents, the same controllers are also evaluated as more

believable compared to one evolved for performance alone.

 134

6.1 Introduction

Computational intelligence design methodology has seen an increase in

its application to games in the recent decade. Techniques such as neural

networks, fuzzy logic and evolutionary computation have been applied to

design and develop game artificial intelligence (AI) for game characters. Often,

these game characters are adversarial in nature and seek to outplay and defeat

its opponent in a game. As such, research involving computational intelligence

and games is traditionally concerned with playing a game as well as possible.

Most often the objectives are to get the highest score, fastest time or to defeat

the opponent. A few examples are given as follows. Chellapilla & Fogel

evolved neural networks to play checkers and was able to defeat two expert

level players on an internet game room ‎[32]. Stanley et al used the real time

NeuroEvolution of Augmenting Topologies method to evolve a team of robots

to defeat opposing robot teams [152]. Spronck and Spronck et al used the

dynamic scripting algorithm to adaptively optimize the game performance of

opponents in a role playing game [147] ‎[148]. Togelius & Lucas evolved

controllers that were able to exhibit good racing behaviour in a car racing

simulator [171].

Indeed, a competent game AI is an important factor in enhancing the

gaming experience of the player [49], but it is not the only factor. Game

designers also want their players to immerse in the game world and suspend

disbelief [158], thereby making the game more enjoyable and satisfying. As

such, the field of computational intelligence in games has seen the emergence

of more player centric works in the recent years that focused on improving a

human player‟s experience ‎[164]. Togelius et al evolved personalized racing

 135

tracks that catered to the driving styles of different human players ‎[172] [176].

Tan et al implemented online driving adaptation to match the proficiency level

of its opponents ‎[161]. Spronck et al adapted the dynamic scripting algorithm

to play even games against its opponents [145]. van Lankveld et al introduced

incongruity as a potential measure for entertainment [188] [189]. Yannakakis

used evolutionary machine learning to exploit cooperative behaviours that can

increase a player‟s interest while playing [194]. Yannakakis et al also

implemented an adaptive Bug-Smasher game that improved the satisfaction of

children who played the game [198] ‎[199]. Thue et al used an interactive

storytelling system that models a player automatically to dynamically select

content to create an interactive story ‎[168] [169]. Pedersen et al optimized the

level design of platform games for improving player experience [109] ‎[110]

[111] using Super Mario Bros [181]. Choi et al and Langley et al outlined an

approach to constructing believable game players games using a cognitive

architecture [34] [82]. Sweetser & Wiles developed game agents that were

able to respond believably to the environment [159]. Miles & Tashakkori

evolved a more believable game agent using genetic algorithms compared to

using traditional finite state machines [95].

An important area of player centric research deals with the creation of

believable game agents. Game agents that are believable can help to maintain

the suspension of disbelief and build a more immersive game world that can

improve the player‟s satisfaction in a game [19]. For example, Rizzo et al

implemented a personality model for agents to perform personality driven

behaviours [129]. Computational intelligence techniques can also be used to

acquire such believable game behaviours. Bryant & Miikkulainen evolved

 136

neural networks to induce game agents with human similarity in a turn based

strategy game [25]. Thurau et al applied imitation learning for a first person

shooting game to learn strategic, tactical and reactive behaviours [170]. van

Hoorn et al evolved humanlike driving behaviours in the TORCS game by

imitating steering and acceleration data from human players [187].

Yannakakis provided a review on several approaches used to model player

satisfaction [197].

Imitation learning has indeed been demonstrated as a powerful tool for

learning many types of complex behaviours [9] including game behaviours.

Cardamone et al developed an approach to imitate high level actions in

TORCS to improve driving performance [29]. Muñoz et al used artificial

neural networks to train controllers that imitate humans and other AI ‎[98].

Priesterjahn & Eberling used imitation and social learning to quickly generate

competitive game agents [117]. Aler et al used imitation learning to train game

agents for Robosoccer [3]. So far, the works in literature shared a common

approach in imitation learning. Data collected from human players is used as

training data in the form of state-action pairs. That is, the learning agent is

trained to imitate the decision (i.e. in-game output action) of the human player

for a given situation (i.e. game state or sensor readings). The learnt agent thus

exhibits humanlike-ness because it reacts in the same way as the human player

for a given situation. In this chapter, a different approach will be introduced.

Using the same idea of imitation learning, instead of imitating state-

action pairs, the imitation of human behavioural tendencies will be considered

as a means to induce humanlike-ness in generic agents. As a metaphoric

example, instead of learning how to reply questions, the game agent learns

 137

how to blink his eyes in a believable manner while replying. Believability is

achieved through the learning of such low level human tendencies or

idiosyncrasies. This chapter focuses on the evolution of believable behaviours

in games using a combination of sensor noise and action histograms. Two

main ideas will be explored in this chapter. First, some noise is introduced to

the sensors of the game AI in order to imitate errors in human judgment. The

parameters associated with the noise are evolved simultaneously with the

game AI to allow the evolution process to discover what values are suitable to

induce believable behaviours. Second, the output action histograms and output

action sequence histograms are introduced as a means to capture low level

behavioural tendencies of the game agent. This is motivated by the

observation that previously evolved car controllers [166], which drove in

unconvincing manners, have very different histograms when compared to the

histograms collected from human driving. Hence, the car controllers will be

trained to indirectly model human driving in terms of histogram instead of

directly modeling state-action pairs in the game. Concurrently learning of both

performance and believability requires the use of multi-objective evolution.

Multi-objective evolution has been successfully applied to games to introduce

other desirable objectives in addition to basic performance. van Hoorn et al

evolved performance while imitating human drivers ‎[187], Gomez et al

evolved performance with behavioural complexity ‎[56], and Agapitos et al

used multi-objective optimization to evolve car drivers with different driving

style [2]. The multi-objective evolution framework will be used in this work to

balance the two incomparable and partially conflicting objectives of

performance and believability via action histograms. Although the proposed

 138

training methodology is demonstrated in a car racing simulator game, the

framework can be easily extended to games of similar control schemes such as

platform games (i.e. Super Mario, Rayman, etc) and arcade shooters (i.e.

Asteroids, Space Invaders, etc). This is the first work to explore the use of

action histograms and evolvable sensor noise as a means to develop believable

behaviours.

6.1.1 Modifications to simulator

The discrete control scheme that is used in the car racing simulator

provided a suitable test bed for capturing low level behaviours using the

proposed action histograms. Nevertheless, the ideas introduced in this chapter

can be extended to similar discrete control games such as platform games and

arcade shooters.

For the purpose of this experiment, a few changes are made to the car

racing simulator. The car racing simulator is modified to be played by only 1

player and only the current waypoint will be visible to the player. This is so as

to focus on basic driving behaviours instead of predictive and planning

abilities. The same simulator will be played by human testers in this

experiment.

At any time, only one waypoint is visible on the competition field, the

current waypoint. The player must drive through this waypoint in order to

score a point. Whenever the current waypoint is passed, 1 point will be added

to the total score and a new waypoint will be generated. The position of each

waypoint is randomly generated anywhere within the boundaries of the game

area. The random number generator can also be seeded with a fixed integer in

 139

order to generate a fixed sequence of waypoints which can be used to define a

repeatable race track.

6.2 Controller design

The design of the car racing controller will be described in this section.

The controller consists of 2 sub-modules, one for controlling the accelerating

and reversing behaviour of the car while the other controls the steering

behaviour of the car. Both sub-modules use the same hyperbolic tangent

function as a basis function.

6.2.1 Hyperbolic tangent driving

The hyperbolic tangent driving function is the first of 2 sub-modules

that controls the behaviour of the car. As the name suggests, this sub-module

controls the speed of the car by issuing an accelerate command, a brake

command, or a neutral command. It decides which command is issued at every

time step by comparing the instantaneous speed of the car to the desired speed

of the car which is defined by the equation for the hyperbolic tangent driving

function in (6.1).

     1tanhv r a b r rZ c d      (6.1)

where r is the Euclidean distance to the current waypoint, a, b, c and d

are real value parameters characterizing the hyperbolic tangent function, v is

the desired scalar speed at a given Euclidean distance r, and Z1 is a noise

variable. The 4 parameters a, b, c and d will be optimized by evolution. The

hyperbolic tangent function is chosen because of its general shape. The

tapering of its outputs at high values of r is analogous to the notion that the car

should cruise at a constant speed at far distances from its destination (i.e. the

 140

cruising speed should not increase indefinitely with distance). Additionally,

the steep gradient around the origin is analogous to deceleration when it is

near the destination. The values a, b, c and d serve to shape the hyperbolic

tangent function to one most desirable for this car racing simulation. There are

no constraints that the function; e.g. it does not need to pass through the origin

or that it should be positive or negative.

At each time step, the controller will calculate the desired speed of the

car using the hyperbolic tangent driving function, and compare it to its

instantaneous speed. The command to accelerate, reverse or remain neutral

will then be decided based on the rules in (6.2).

 

 

 

2

2

1 ,

1 ,

.

i i d

d i i i d

if v v Z n vaccelerate

O v brake if v v Z n v

neutral otherwise

  


   



 (6.2)

where Od is the output of the driving module, vi is the instantaneous

speed of the car, v is the desired speed, nd is a real number, and Z2 is a noise

variable. The purpose of nd is to provide a margin of allowable difference

between Od and vi within which the instantaneous speed is considered to be

desirable and a neutral command is issued. The parameter nd will be optimized

by evolution and it is also unconstrained.

6.2.2 Hyperbolic tangent steering

The hyperbolic tangent steering function is the second of 2 sub-

modules that controls the behaviour of the car. This sub-module determines

the heading of the car by issuing a steer left, steer right or neutral command. It

decides which command is issued at every time step by comparing the

instantaneous angular speed of the car to the desired angular speed of the car

 141

which is defined by the equation for the hyperbolic tangent steering function

in (6.3).

    3tanhe f rZ g h        (6.3)

where θ is the angular distance to the current waypoint, e, f, g and h are

real value parameters characterizing the hyperbolic tangent function, ω is the

desired angular speed at a given angular distance θ, and Z3 is a noise variable

The 4 parameters e, f, g and h will be optimized by evolution. The design of

the steering function is similar to that of the accelerating-braking function

except that the input is replaced by an angular distance and the output gives

the desired angular speed. In a similar vein, the hyperbolic tangent function is

chosen because it is natural for the car to be steering strongly when it is not

aligned with its destination (i.e. large angular distance to the current waypoint),

and also to reduce its steering action as it aligns with its destination. The

function should pass through the origin as the desired angular speed should be

zero (i.e. straight) when the angular distance is zero (i.e. exactly aligned to its

destination). However, no constraints are placed on the parameters e, f, g and

h as the evolution process is expected to find such a solution as an optimum

solution.

At each time step, the controller will calculate the desired angular

speed of the car using the hyperbolic tangent steering function and compare it

to its instantaneous angular speed. The command to turn left, right or remain

neutral will then be decided based on the rules in (6.4).

 

 

 

4

4

1 ,

1 ,

.

i i s

s i i i s

if v Z nleft

O right if v Z n

neutral otherwise

 

  

  


   



 (6.4)

 142

where Os is the output of the steering module, ωi is the instantaneous

angular speed of the car, ω is the desired angular speed, ns is a real number,

and Z4 is a noise variable. Similar to that of the driving module, the purpose of

ns is to provide a margin of allowable difference between Os and ωi within

which the instantaneous angular speed is considered to be desirable and a

neutral command is issued. Similarly, the parameter ns will be optimized by

evolution and it is also unconstrained.

6.2.3 Introducing sensor noise

The car racing simulator model is a fully deterministic model. That is,

a controller will output the same sequence of driving and steering commands

and trace exactly the same trajectory as long as the positions of the sequence

of waypoint remain the same. This is both uninteresting and unrealistic. In a

realistic simulation, for example, humans tend to be able to judge distances

better when the subject is in close proximity. When the subject is far away, the

error in judgment also becomes larger.

As such, noise is introduced to the sensors of the vehicles in the car

racing simulator model to make the simulation more stochastic and realistic.

The sensor noise being introduced to the system takes the form of additive

Gaussian noise, Z, with mean, μ, and standard deviation, σ, which follows the

normal distribution given in (6.5).

 2~ ,Z N   (6.5)

The mean and standard deviations of the Gaussian noise is not

specified by design. Instead, these values are evolved together with the

controller by evolution strategies. The idea is to allow the evolution process to

 143

discover what combinations of sensor noises will result in humanlike

behaviours.

The choice of using Gaussian noise in the noise model is inspired by

the study of measurement uncertainty. Measurement errors made by humans

are divided into two components, systematic error and random error. A basic

type of systematic error is caused by the incorrect calibration of the measuring

instrument. This error is constant and always present in separate

measurements. The mean of the Gaussian noise introduced to the controller is

analogous to systematic errors. On the other hand, random errors are

inconsistent in repeated measures and tend to be scattered about the true value.

Random errors can be caused by imprecise instruments or subjective

interpretation of the instrument reading by the user, and this is analogous to

the standard deviation of the Gaussian noise introduced to the controller.

Therefore, these reasons make Gaussian noise a suitable choice to imitate

errors in human judgment.

Sensor noise is introduced to the four sensors that are used in the

driving and steering sub-modules. They are the Euclidean distance to the

current waypoint, the instantaneous speed of the car, the angular distance to

the current waypoint, and the instantaneous angular speed of the car. The

addition of these sensor noises modifies the behaviour of the hyperbolic

tangent driving and hyperbolic tangent steering components.

 2~ , {1,2,3,4}j j jZ N for j   (6.6)

The additive Gaussian noise variables Z1, Z2, Z3 and Z4 shown in

equation (6.6) are added to the sensor values shown in equations (6.1), (6.2),

(6.3) and (6.4) respectively. These noise variables are also modified by a

 144

corresponding coefficient depending on the state of the car in the game. Noise

variables Z1 and Z3, which affects the sensing of the distance and angular

distance respectively, are modified by the real distance between the car and

the next waypoint. That is, more noise is added when the car is far away from

the next waypoint; and less noise is added when the car is near its next

waypoint. In other words, the amount of noise decays with decreasing distance.

It should be noted that modern hardware sensors, such as those used in

robotics, do not behave in this way. The noise decay is introduced in the noise

model to imitate human judgment in a gaming environment. This is in line

with the result that the error in judging distances in a virtual environment

increases with distance ‎[20]. In the model, the relationship is assumed to be

linear for simplicity. This concept is also extended to speeds and judging

speeds. Similarly, noise variables Z2 and Z4, which affects the sensing of

speed and angular speed, are modified by the real instantaneous speed of the

car. That is, more noise is added when the car is moving quickly and less noise

is added when the car is moving slowly. For simplicity, the relationship is also

assumed to be linear.

In this chapter, the use of evolvable sensor noise will be explored as a

means to simulate human judgment errors in order to improve the believability

of the evolved controllers. The parameters that are used to define the sensor

noise are evolved alongside the parameters that define the driving and steering

components of the controller so as to allow the evolution process to discover

the optimal amount of noise required to improve believability.

 145

6.3 Action histograms

In earlier experiments with developing a controller for the car racing

simulator, the controllers were evolved using a single objective approach with

the fitness function defined by the number of waypoints passed within a given

number of time steps. The resulting controllers were able to competently drive

around the race area collecting waypoints and also react to situations that were

unseen during the training phase. It could be said that the evolved controllers

were robust and were able to generalize well. However, the visually observed

behaviour of these controllers was unnatural and unrealistic.

In order to investigate the differences in observed behaviours, the

output actions of the Evolved Heuristic controller (EH) ‎[166], Evolved Neural

Network (ENN) controller [166] and Human (Hu) are quantitatively and

qualitatively analyzed in this section. During each time step in the simulation,

each controller is required to output one of the nine possible actions presented

in Table 6.1. The set of output actions used by each controller on the same

given track is collected and presented in the form of histograms. In effect, this

measures the frequency with which a keystroke is being used when driving

around a given track.

This section will introduce and discuss two types of histograms. They

are the action histogram and the action sequence histogram. The experimental

procedure for data collection and the types of tracks used will also be

discussed and analyzed. Finally, the motivations for using histograms of small

window sizes will be presented.

 146

Table 6.1 List of all possible output actions at each time step in the car racing simulator

Action Description

1 Reverse Left

2 Reverse

3 Reverse Right

4 Left

5 Neutral

6 Right

7 Forward Left

8 Forward

9 Forward Right

6.3.1 Action histogram (Histo1)

The action histogram is the histogram of the set of n output actions

used by a controller during a simulation of n time steps. There are 9 possible

output actions during each time step. Hence, the action histogram contains 9

bins, as given in equation (6.7).

9

1

i

i

m n


 (6.7)

where n is the total number of observations, in this case n = 1000, and

mi is the number of observations that fall into bin i. The action histogram can

be thought of as a histogram of the output actions with window size one.

6.3.2 Action sequence histogram (Histo2)

The action sequence histogram is the histogram of the set of n-1

transitions of sequential output actions used by a controller during a

simulation of n time steps. That is, the action sequence histogram can be

thought of as a histogram of output actions with window size two. For a set of

9 possible output actions, there are 81 possible transitions of output actions.

Hence, the action sequence histogram contains 81 bins, as given in equation

(6.8).

 147

81

1

1i

i

m n


  (6.8)

where n is the total number of observations, in this case n = 1000, and

mi is the number of observations that fall into bin i. Action sequence a-b falls

into bin (9a-9+b). The action histogram can be thought of as a histogram of

the output actions with window size two.

6.3.3 Data collection

The first task of this experiment was to collect human driving data in

order to build the training data to be used in the evolution process. The human

player was asked to play the solo version of the car racing simulator game

several times to be familiarized with its control mechanisms and game physics.

The initial trial runs were conducted on randomly generated tracks and were

not recorded.

Next, the human player was asked to drive on a predefined track. At

each time step in the simulation, the state of the game was recorded together

with the output action from the human player. Each simulation lasted 1000

time steps. The experiment was then repeat 4 more times for a total of 5 sets of

data on the same race track. It was necessary to restrict the data collection to 5

trials per track because the human player was able to learn from experience

and memorize the position of the next waypoint on a track after a few trials.

The entire experiment was then repeated for 4 other predefined tracks for a

total of 5 tracks.

The sets of human driving data for each track were then converted to

action histograms Histo1 and action sequence histogram Histo2. For each

track, the averages were obtained from the 5 sets of collected data.

 148

Table 6.2 Number of waypoints passed by human collected over 5 trials

Human
Score

Mean Std

Track 1 17.8 0.45

Track 2 15 0

Track 3 15.8 0.45

Track 4 16 0

Track 5 17.8 0.84

 100

 200

 300

30

-150

60

-120

90

-90

120

-60

150

-30

180 0

Track 1

 100

 200

 300

 400

30

-150

60

-120

90

-90

120

-60

150

-30

180 0

Track 2

(a) (b)

 100

 200

 300

30

-150

60

-120

90

-90

120

-60

150

-30

180 0

Track 3

 50

 100

 150

 200

 250

30

-150

60

-120

90

-90

120

-60

150

-30

180 0

Track 4

(c) (d)

 100

 200

 300

30

-150

60

-120

90

-90

120

-60

150

-30

180 0

Track 5

(e)

Each point on the polar diagram represents the distance and heading of the current waypoint

with respect to the last waypoint.

Figure 6.1 Polar diagram of the waypoints of (a) track 1 (b) track 2 (c) track 3 (d) track 4 and

(e) track 5

 149

Table 6.3 Action histograms and action sequence histograms by human collected over 5 trials

Track 1

Histo1

215.6 215.6 73.4

82.8 359.8 52.8

0 0 0

Histo2

188.6 15.4 0 11.4 161.4 5.8 0.2 7.6 56.8

5.2 6 0 1 35 0.6 0 2.8 6

0 0 0 0 0 0 0 0 0

13.6 0.2 0 1.8 30.2 1.4 0 0.8 9.4

57 11.8 0 19.6 292.4 14.4 0 10.8 31.8

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Track 2

Histo1

222 255.6 37

58.6 399 27.8

0 0 0

Histo2

198.6 16.8 0 9.4 199.4 3.4 0 3.6 31.2

0.8 5.8 0 0.4 42.6 0.2 0 1.8 0.2

0 0 0 0 0 0 0 0 0

13 0.4 0 1 35.2 0.2 0 0.2 2.2

36 9.2 0 21.4 330.2 10.8 0 8.4 16.6

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Track 3

Histo1

140.8 204.4 168.4

29.8 396.2 60.4

0 0 0

Histo2

128.6 8.2 0 4.6 159.8 3.6 0 10.2 150.2

0.2 3.4 0 0 35.6 0.6 0 4 4

0 0 0 0 0 0 0 0 0

6.6 0.2 0 1 26 0.8 0 0 13.8

17.4 5.6 0 12.2 339.4 16.4 0 7.2 39.4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Track 4

Histo1

107.2 197 185.2

27.6 448.6 34.4

0 0 0

Histo2

96.8 8.6 0 2.8 159.4 3 0 9.6 173

0.2 1.6 0 0.4 31 0.4 0 1.2 0.8

0 0 0 0 0 0 0 0 0

5.6 0.4 0 2 18.8 0.2 0 0.2 9

14.6 6.8 0 12.4 402 13 0 5 20.2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Track 5

Histo1

109.2 240.2 157

65 376 52.6

0 0 0

Histo2

93.8 8.8 0 2.8 195.8 5.8 0 13.2 141.2

4.8 1.6 0 0.4 35.2 0.2 0 1.6 1

0 0 0 0 0 0 0 0 0

11.4 0.4 0 1.2 21.4 0.2 0 0.6 9.8

44.2 8.8 0 15.6 322.4 14.6 0 5.4 36.8

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

 150

The 5 tracks used in this experiment were randomly generated in a

boundary free area. Hence, many portions of each track were overlapping and

difficult to visualize even if the routes were plotted. As such, the

characteristics of each track are summarized in the form of a polar diagram in

Figure 6.1. Each waypoint on a track is characterized by its bearing and

distance from the last waypoint. A waypoint that is very near and yet at a large

bearing from the previous waypoint will require the car to make a sharp turn to

reach it while a waypoint that is very far and have a small bearing offers a

chance for the car to accelerate to higher speeds. Therefore, the difficulty of a

given track can be characterized by the distribution of its waypoints on the

polar diagram. This approach is not as effective as seeing the real layout of a

track, but it works as a good compromise given the overlapping nature of the

driving routes.

The waypoint scores are presented in Table 6.2 while the histograms

Histo1 and Histo2 are presented in table form in Table 6.3. It was observed

that human driving used only the actions 4 (Left), 5 (Neutral), 6 (Right), 7

(Forward Left), 8 (Forward) and 9 (Forward Right) for all the 5 tracks. The

reversing actions, 1 (Reverse Left), 2 (Reverse) and 3 (Reverse Right) were

not used. Human driving data also showed a high percentage of the time spent

doing nothing (i.e. action 5) on all tracks. In Histo2, the dominant action

sequence was also doing nothing (i.e. 5-5). This was to allow the car to slow

down due to friction and also to observe feedback of the effects of its actions

during previous time steps before making the next action. The next dominating

action sequence was forward acceleration (i.e. 8-8) which was used to drive

forward in a straight line.

 151

Only the data from track 1 will be used for training purposes. The

remaining tracks will be reserved for testing the generalization capability of

the evolved controllers.

6.3.4 Case study

This section presents an analysis, using histograms, of the differences

in behaviour between the Human (Hu), Evolved Heuristic (EH) and Evolved

Neural Network (ENN) controller. Figure 6.4, Figure 6.5 and Figure 6.6 show

the normalized histogram of the output actions of the controllers EH, ENN and

Hu respectively. In each figure, high colour intensity (white) indicates a low

frequency of usage of the output action while low colour intensity (black)

indicates a high frequency of usage.

D
ri

v
in

g

7

Forward-Left

8

Forward

9

Forward-Right

4

Left

5

Neutral

6

Right

1

Reverse-Left

2

Reverse

3

Reverse-Right

 Steering

Figure 6.2 Graphical representation of the action histogram to mimic the layout of arrow keys

on the keyboard

Figure 6.4 (a), Figure 6.5 (a) and Figure 6.6 (a) show the simple

histogram of the actions taken by the controllers during a game. Figure 6.2

shows how the positions of the squares in the action histograms are interpreted.

Figure 6.4 (b), Figure 6.5 (b) and Figure 6.6 (b) show the histogram of the

 152

change in sequential actions during a game. Figure 6.3 shows how the

positions of the squares in the action sequence histograms are interpreted. For

example, if the output action of a controller in the previous time step is 8

(forward) and the output action in this time step is 9 (forward right), then the

frequency of the change in action from 8 to 9 is incremented by one. In a

sequence histogram, this is represented in Figure 6.3 as the square in the first

row from the top, sixth column from the left and labeled “8-9”. In a game of

1000 time steps, there are 999 changes in sequential actions.

D
ri

v
in

g

7-7 7-8 7-9 8-7 8-8 8-9 9-7 9-8 9-9

7-4 7-5 7-6 8-4 8-5 8-6 9-4 9-5 9-6

7-1 7-2 7-3 8-1 8-2 8-3 9-1 9-2 9-3

4-7 4-8 4-9 5-7 5-8 5-9 6-7 6-8 6-9

4-4 4-5 4-6 5-4 5-5 5-6 6-4 6-5 6-6

4-1 4-2 4-3 5-1 5-2 5-3 6-1 6-2 6-3

1-7 1-8 1-9 2-7 2-8 2-9 3-7 3-8 3-9

1-4 1-5 1-6 2-4 2-5 2-6 3-4 3-5 3-6

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3

 Steering

For example, the sequence 8-8 (Forward-Forward) is obtained by pressing the Up arrow

key twice, hence the „8‟ position of the large grid (single solid line) followed by the „8‟

position of the small grid (single dotted line).

Figure 6.3 Graphical representation of the action sequence histogram based on the layout in

Figure 6.2

The comparative action histograms and action sequence histograms for

tracks 1, 2, 3, 4 and 5 are plotted in Figure 6.7, Figure 6.8, Figure 6.9, Figure

6.10 and Figure 6.11 respectively. First, the histogram of actions of the

controllers will be examined for unnatural behaviours. It was observed from

Figure 6.4 (a) that EH used only the actions 4 (Left), 6 (Right), 7 (Forward

Left) and 9 (Forward Right), and predominantly actions 7 and 9. This meant

that in terms of steering, EH was constantly steering either left or right but

 153

never neutral. This was counterintuitive as the controllers were expected to

naturally drive straight once it had aligned itself to the waypoint.

Steering

D
ri
v
in

g

Steering

D
ri
v
in

g

(a) (b)

Values are normalized. High colour intensity (white) indicates a low frequency of usage while

low colour intensity (black) indicates a high frequency of usage.

Figure 6.4 Histogram of the (a) output actions and (b) output action sequences of the EH on

track 1

Steering

D
ri
v
in

g

Steering

D
ri
v
in

g

(a) (b)

Values are normalized. High colour intensity (white) indicates a low frequency of usage while

low colour intensity (black) indicates a high frequency of usage.

Figure 6.5 Histogram of the (a) output actions and (b) output action sequences of the ENN on

track 1

Steering

D
ri
v
in

g

Steering

D
ri
v
in

g

(a) (b)

Values are normalized. High colour intensity (white) indicates a low frequency of usage while

low colour intensity (black) indicates a high frequency of usage.

Figure 6.6 Histogram of the (a) output actions and (b) output action sequences of the Hu on

track 1

 154

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

Actions

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(a)

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

Action sequence

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(b)

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits

from action a to action b.

Figure 6.7 Comparative (a) action histograms and (b) action sequence histograms of human

driving data, heuristic evolved controller, and neural network evolved controller on track 1

 155

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

Actions

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(a)

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

Actions

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(b)

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits

from action a to action b.

Figure 6.8 Comparative (a) action histograms and (b) action sequence histograms of human

driving data, heuristic evolved controller, and neural network evolved controller on track 2

 156

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

Actions

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(a)

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

Actions

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(b)

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits

from action a to action b.

Figure 6.9 Comparative (a) action histograms and (b) action sequence histograms of human

driving data, heuristic evolved controller, and neural network evolved controller on track 3

 157

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

Actions

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(a)

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

Actions

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(b)

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits

from action a to action b.

Figure 6.10 Comparative (a) action histograms and (b) action sequence histograms of human

driving data, heuristic evolved controller, and neural network evolved controller on track 4

 158

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

Actions

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(a)

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

Actions

F
re

q
u
e
n
c
y

Human

Heuristic Evolved

Neural Network Evolved

(b)

Action labeled on the horizontal axis (a) follows that in Table 6.1. Action sequence labeled on

the horizontal axis (b) is derived from the equation 9a-9+b where an action sequence transits

from action a to action b.

Figure 6.11 Comparative (a) action histograms and (b) action sequence histograms of human

driving data, heuristic evolved controller, and neural network evolved controller on track 5

 159

In the case of ENN, it was observed in Figure 6.5 (a) that the controller

used only the actions 1 (Reverse Left) and 3 (Reverse Right). This meant that

ENN was driving in reverse throughout the simulation. ENN found this as a

better solution than driving forwards because the acceleration associated with

reverse driving is smaller in magnitude compared to the acceleration for

forward driving. The result of this was that ENN can better manipulate the

driving trajectory of the car and avoid being trapped in orbits around

waypoints due to large minimum turning radius. However, it was highly

unnatural for a human player to drive a vehicle in reverse throughout the entire

game. Moreover, ENN suffers the same constant steering but never neutral

problem as EH.

The action histogram of Hu is shown in Figure 6.6 (a). It was observed

that Hu used the actions 4 (Left), 5 (Neutral), 6 (Right), 7 (Forward Left), 8

(Forward) and 9 (Forward Right), and predominantly action 5. Hu did not

drive in reverse because forward driving was more intuitive. Hu also spent a

high percentage of the time doing nothing (i.e. action 5). This was to allow the

car to slow down due to friction and also to observe feedback of the effects of

its actions during previous time steps before making the next action.

Additionally, action 8 (i.e. Forward only and neutral steering) was frequently

used once Hu had aligned the car to the waypoint.

Next, the histogram of the action sequence of the controllers will be

examined. It was observed in Figure 6.4 (b) that EH frequently used the

sequences 7-7 (Forward Left-Forward Left), 7-9 (Forward Left-Forward

Right), 9-7 (Forward Right-Forward Left) and 9-9 (Forward Right-Forward

Right). The sequences 7-7 and 9-9 were natural as it implied that the controller

 160

needed to make a hard left turn (7-7) or hard right turn (9-9) and so it used the

same action sequentially. However, it was unnaturally to frequently switch

between right and left (7-9 and 9-7). During visual observations, EH could be

seen oscillating its heading left and right about the straight line from its

current position to the waypoint. This constant „fidgeting‟ made its driving

behaviour unnatural to the human observer.

The action sequence histogram of ENN is shown in Figure 6.5 (b). It

was observed that ENN used only the sequences 1-1 (Reverse Left-Reverse

Left), 1-3 (Reverse Left-Reverse Right), 3-1 (Reverse Right-Reverse Left) and

3-3 (Reverse Right-Reverse Right). Similar to that of EH, the sequences 1-1

and 3-3 were natural driving behaviours. However, ENN also had the same

unnatural driving behaviour as with EH. It also oscillated its heading about the

straight line from its current position to the waypoint, only this time in the

reverse direction.

For Hu, it was observed from Figure 6.6 (b) that the more prominent

sequences used were 4-4 (Left-Left), 5-5 (Neutral-Neutral), 6-6 (Right-Right),

7-7 (Forward Left-Forward Left), 8-8 (Forward-Forward) and 9-9 (Forward

Right-Forward Right). In effect, Hu frequently repeated its actions and seldom

switched to other actions. In contrast to EH and ENN, Hu did not frequently

use left to right or right to left switching. The result was a more believable

driving behaviour.

The discussion above can easily be generalized to other tracks as

demonstrated by the similarity of the histograms in Figure 6.7, Figure 6.8,

Figure 6.9, Figure 6.10 and Figure 6.11. The lack of neutral commands was

 161

evident in all tracks and the differences in frequencies of left and right

commands was a result of the track profile.

From the observations above, the advantages and the disadvantages of

evolutionary computation were demonstrated. The evolved controllers were

able to exploit the fitness function to find good driving controllers that

maximize the number of waypoints passed. They were also able to find

unexpected solutions that satisfied the fitness function just as well. However,

unexpected solutions can be a double edged sword. In data mining problems,

unexpected solutions can lead to the discovery of novel relationships amongst

large data sets. But in application to gaming, unexpected solutions can ruin the

suspension of disbelief for the user, thereby reducing their satisfaction in the

game. As shown in this case study, the evolved controllers produced

unexpected and also unnatural driving behaviours.

In this section, the action histograms and action sequence histograms

of previously evolved controllers were quantitatively and qualitatively

analyzed and associated to some of the unnatural and unrealistic driving

behaviours that were visually observed. It could be seen that the differences in

driving behaviours between the evolved controllers and the human player

could be traced to the types of actions and sequence of actions used during the

simulation.

As such, the use of action histograms and action sequence histograms

is proposed as a form of guided training so as to evolve believable controllers

that appear more natural to human players by imitating the low level

behavioural tendencies of human players. That is, if the evolved controller is

able to learn the histograms of the data collected from human driving, then the

 162

evolved controller will drive in a more believable manner. As driving

competency and driving believability are not directly related, the basic single

objective evolutionary framework will be unable to optimize both these

criteria at the same time. Therefore, the multi-objective evolutionary

framework needs to be introduced to cope with the addition of believability as

a second objective.

6.3.5 Histograms of small window sizes

Following the above discussion, it can be seen that histograms of larger

window sizes up to n is possible. The number of input samples in a histogram

is related to the window size by equation (6.9).

 1k n w   (6.9)

where k is the number of input samples in a histogram of window size

w, and n is the total number of observations. In the case where n = w, there

would only be one input to the histogram.

The size of a histogram (i.e. the number of frequency bins) of window

size w is given by 9
w
. It was observed that with increasing window size, the

number of input samples decreased linearly while the number of frequency

bins in the corresponding histogram increased exponentially. This would result

in many unfilled frequency bins. Unfilled bins are undesirable because an

evolutionary algorithm will not be able to distinguish one unfilled bin from

another. That is, unfilled bins do not provide useful information to guide the

evolution. Therefore, increasing the window size will make the fitness

landscape increasingly complex and difficult. To illustrate, if a histogram of

window size n (i.e. n = w = 1000) is used, then only one bin will be filled

 163

while all the other 9
w
 – 1 bins will be unfilled. This encourages the evolution

process to find a solution that will imitate the training data exactly. Not only is

this problem difficult, it will also likely produce a solution that will not be able

to generalize well to other unseen situations. This makes histograms of larger

window sizes not suitable as candidates for fitness functions.

The choice of using histograms of small window sizes as fitness

functions serves yet another objective. The objective of this experiment is not

to imitate human behaviours. Rather, the aim is to induce non-player

characters (NPC) in a game with humanlike characteristics through evolution.

That is, the window sizes of the histograms are deliberately made small in

order to capture low level reactionary behavioural tendencies in humans rather

than high level strategic planning. Strategies are problem dependent (i.e. track

dependent) but reactionary behaviours tend to be consistent. For instance,

characters may choose to smile or frown depending on who they are talking to,

but they will always blink their eyes. Hence, the goal is to improve the

believability of an NPC through the induction of such behavioural tendencies

(i.e. learning how to blink our eyes). Additionally, the use of histograms of

small window sizes discourages the learning of long action sequence chains

during training so that the evolved solution is more likely to generalize better

to situations other than the ones in training. The proposed action histograms

framework is designed to work with other games of similar discrete control

schemes such as platform games (i.e. Super Mario, Rayman) and arcade

shooters (i.e. Asteroids, Space Invaders).

 164

6.4 Fitness functions

The controller needs to drive well on a given track and at the same

time drive in a believable manner. Hence, the fitness functions to use for

evolution must be able to guide the evolution of the controller towards a

balance of these incomparable objectives.

6.4.1 Waypoints

The number of waypoints is used as an objective to evolve driving

performance. How well a controller drives on a given track can be directly

measure by the distance covered by the car within a stipulated time. In the

experiments, the time of each game is fixed at 1000 time steps. Each track is

defined by the sequential order of its waypoints within a square, obstacle-free

game area. From one waypoint to the next, a controller is not confined to any

particular path. In practice, the controller may choose to drive around a large

circular path or simply a straight line towards the next waypoint. Hence,

directly measuring the distance covered by the car may not be a good indicator

of the driving ability of a controller in a track. Instead, the number of

waypoints passed by a car is used as a measure of the racing ability of a

controller. That is, the more waypoints passed the more effective the controller

is in driving towards its destination. Therefore, the objective is to maximize

the number of waypoints passed.

6.4.2 Histo1 (Action histogram)

The action histogram is the first of two fitness functions used as an

objective to evolve believability. An evolved controller is considered to be

believable if it is able to drive around a given training track using a set of

 165

actions similar to that of a human player driving on the same track. For a given

training track, the objective is to minimize the sum of squared difference

between the action histogram of the evolved controller and that of the human

player, as given in equation (6.10).

 
9

2

1

1

min i i

i

f H m


  (6.10)

where Hi is the number of observations that fall into bin i for the

human player and mi is the number of observations that fall into bin i for the

evolved controller.

6.4.3 Histo2 (Action sequence histogram)

The action sequence histogram is the second function used as an

objective to evolve believability. The effectiveness of both the action

histogram and the action sequence histogram will be compared in subsequent

experiments. An evolved controller is considered to be believable if it is able

to drive around a given training track using a set of actions transitions similar

to that of a human player driving on the same track. For a given training track,

the objective is to minimize the sum of squared difference between the action

sequence histogram of the evolved controller and that of the human player, as

given in (6.11).

 
81

2

2

1

min i i

i

f H m


  (6.11)

where Hi is the number of observations that fall into bin i for the

human player and mi is the number of observations that fall into bin i for the

evolved controller.

 166

6.5 Single objective evolution

The purpose of the single objective experiments is to demonstrate the

incomparable nature of the good driving and believable driving. In addition,

the effects of introducing sensor noise will also be discussed. In the single

objective experiments, a (40+40) ES ‎[124], running for 200 generations was

used as a training method. Self adaptive learning was not applied. The

mutation operator was a Gaussian perturbation with a step size of 0.1 and a

probability of 0.9. Tournament selection was used and elitism was set to 10%.

Each individual was evaluated on its own (i.e. solo game) and the results were

averaged over 10 evaluations. Two fitness functions were compared, the

number of waypoints and the sum of squared errors (SSE) of Histo1. Each set

of experiments was repeated with sensor noise and without sensor noise. In the

case without sensor noise, each individual was encoded with 10 real value

variables. In the case with sensor noise, each individual was encoded with 18

real value variables. The track used for training was track 1.

6.5.1 Number of waypoints

The objective was to maximize the number of waypoints passed. The

experiment was conducted for 2 cases, without sensor noise and with sensor

noise. For each experiment, both the number of waypoints and the SSE of

Histo1 are presented for discussion although only the number of waypoints

was used as the fitness function.

 167

6.5.1.1 Without noise

The training fitness for the case without sensor noise is presented in

Figure 6.12 and Figure 6.13. The figures were obtained by plotting the boxplot

of the fitness of the best individual at each generation of 10 independent runs.

It was observed from Figure 6.12 that the fitness of independent runs

converged to a score of 21 waypoints at 92 generations. The score of 21

waypoints was also significantly higher than the 17.8 waypoints for human

driving. Next, the values of the SSE of Histo1 over the generations were

examined to see if there were observable relationships to the number of

waypoints. It was observed from Figure 6.13 that the SSE steadily decreased

over the first 60 generations. This result was expected as the controllers

evolved from random actions to directed actions that drove towards the

waypoints.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

S
c
o
re

Generations

Boxplot of the number of waypoints at every generation up to 200 generations.

Figure 6.12 Boxplot of the number of waypoints for single objective optimization to maximize

number of waypoints, without sensor noise

 168

0 20 40 60 80 100 120 140 160 180 200
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x 10
5

S
S

E

Generations

Boxplot of the sum of square errors of Histo1 (actions) at every generation up to 200

generations. Final mean value is 2.790×10
5
.

Figure 6.13 Boxplot of the sum of square errors of Histo1 for single objective optimization to

maximize number of waypoints, without sensor noise

However, the SSE of Histo1 stagnated after 60 generations to a mean

of 2.790×10
5
 even as the number of waypoints continued to increase. Visual

observations of the evolved controllers revealed that the evolved behaviour

was identical to that of the Evolved Heuristic Controller. This indicated that

the number of waypoints scored and SSE of Histo1 were not directly related.

6.5.1.2 With noise

Next, sensor noise was introduced to the controller to investigate if the

use of noisy sensors to imitate errors in human judgments would improve the

believability of the evolved controllers. The training fitness for the case with

sensor noise is presented in Figure 6.14 and Figure 6.15.

In Figure 6.14, it was observed that the population converged to the

same optimal waypoint score of 21, similar to the case without the

 169

introduction of sensor noise. Therefore, it could be said that the introduction of

sensor noise did not degrade the driving performance of the evolved controller,

and that evolving the sensor noise parameters and the controller parameters

together was feasible. However, it did delay the rate of convergence as the

population converged after about 120 generations compared to 92 generations

without noise. This result was expected as there were more variables to evolve

in the case with noise. Furthermore, the stochastic nature of the sensors made

the search space more complicated.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

S
c
o
re

Generations

Boxplot of the number of waypoints at every generation up to 200 generations.

Figure 6.14 Boxplot of the number of waypoints for single objective optimization to maximize

number of waypoints, with sensor noise

 170

0 20 40 60 80 100 120 140 160 180 200

0

2

4

6

8

10

12

x 10
5

S
S

E

Generations

Boxplot of the sum of square errors of Histo1 (actions) at every generation up to 200

generations. Final mean value is 1.381×10
5
.

Figure 6.15 Boxplot of the sum of square errors of Histo1 for single objective optimization to

maximize number of waypoints, with sensor noise

It was observed from Figure 6.15 that the SSE of Histo1 was

decreasing throughout the evolution, even after the waypoint score converged

to a mean of 1.381×10
5
 after 120 generations. The value of the SSE was also

lower than the case without noise (i.e. 2.790×10
5
). Firstly, this showed that for

the same performance in waypoint score, the SSE of Histo1 had the potential

to be further reduced. Secondly, the introduction of sensor noise to the evolved

controllers had the potential to be effective in improving the believability of

the evolved controllers (i.e. reduce SSE of Histo1).

6.5.2 Action histogram (Histo1)

In this section, the objective was changed to minimize the SSE of the

Histo1. The training track and data used was track 1. The experiment was

conducted for 2 cases, without sensor noise and with sensor noise. For each

 171

experiment, both the number of waypoints passed and the SSE of Histo1 are

presented for discussion although only the SSE of Histo1 was used as the

fitness function.

6.5.2.1 Without noise

The training fitness for the case without sensor noise is presented in

Figure 6.16 and Figure 6.17. The figures were obtained by plotting the

respective boxplot of the fitness of the best individual at each generation of 10

independent runs.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
c
o
re

Generation

Boxplot of the number of waypoints at every generation up to 200 generations.

Figure 6.16 Boxplot of the number of waypoints for single objective optimization to minimize

the sum of squared errors of Histo1, without sensor noise

 172

0 20 40 60 80 100 120 140 160 180 200

0.5

1

1.5

2

2.5

3

3.5

4

x 10
5

S
S

E

Generations

Boxplot of the sum of squared errors of Histo1 (actions) at every generation up to 200

generations. Final mean value is 7.165×10
4
.

Figure 6.17 Boxplot of the sum of squared errors of Histo1 for single objective optimization to

minimize the sum of squared errors of Histo1, without sensor noise

It was observed from Figure 6.16 that the waypoint score rose to as

high as 5 points, albeit only an outlier, in the first 30 generations although it

was not used as a fitness function. This was likely due to the random

movement of the evolved controller that coincidentally passed through some

waypoints. For the remaining of the generations, the waypoint score remained

at zero.

In Figure 6.17, it was observed that the SSE of Histo1 decreased

rapidly for the first 30 generations. In the remaining generations, only

incremental improvements were observed. The final value of the SSE of

Histo1 had a mean of 7.165×10
4
 which was lower than the case of optimizing

only waypoint score with sensor noise (i.e. 1.381×10
5
). This implied that the

SSE could still be further reduced.

 173

Taking both Figure 6.16 and Figure 6.17 as a whole, it was observed

that optimizing Histo1 alone did not improve driving performance. This result

further reinforced that the number of waypoints scored and the SSE of Histo1

were not directly related. Hence, a multi-objective framework was necessary

to optimize both objectives simultaneously.

6.5.2.2 With noise

Next, sensor noise was introduced to the controllers and evolved using

the SSE of Histo1 as the fitness function. The training fitness for the case with

sensor noise is presented in Figure 6.18 and Figure 6.19.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

S
c
o
re

Generations

Boxplot of the number of waypoints at every generation up to 200 generations.

Figure 6.18 Boxplot of the number of waypoints for single objective optimization to minimize

the sum of squared errors of Histo1, with sensor noise

 174

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

S
S

E

Generations

Boxplot of the sum of squared errors of Histo1 (actions) at every generation up to 200

generations. Final mean value is 5.486×10
3
.

Figure 6.19 Boxplot of the sum of squared errors of Histo1 for single objective optimization to

minimize the sum of squared errors of Histo1, with sensor noise

It was observed in Figure 6.18 that the waypoint scores between

independent runs during training had a higher standard deviation compared to

the case without sensor noise. This was due to the stochastic nature of the

noise in the sensors which resulted in more coincidental passing through of

waypoints. However, the scores were still close to zero and no upward trend

was observed.

From Figure 6.19, it was observed that the SSE of Histo1 reduced

rapidly for the first 70 generations before converging. The mean value of the

converged SSE of Histo1 was 5.486×10
3
, significantly lower than 7.165×10

4

in the case of optimizing the SSE of Histo1 without noise, 1.381×10
5
 in the

case of optimizing waypoint score with noise, and 2.790×10
5
 in the case of

optimizing waypoint score without noise. This meant that there was, on

average, an error of 24.69 actions per bin in Histo1 for optimizing the SSE of

 175

Histo1 with noise compared to an average of 176.1 error actions per bin in the

case of optimizing waypoints without noise. This result was significant

because it demonstrated that evolving controllers to imitate human behaviours

using action histograms as the fitness function was feasible. The range of

acceptable values for the SSE of Histo1 should be in the magnitude of 10
3
.

The next step would involve evolving controllers that were able to drive well

and believably at the same time using the multi-objective framework.

6.6 Multi-objective evolution

In the previous section, it was demonstrated that the objectives of

driving well (i.e. number of waypoints) and driving believably (i.e. SSE of

Histo1) were not directly related. In the single objective experiments, either

one of the objectives could be optimized but not both simultaneously. It was

also demonstrated that the inclusion of sensor noise that evolved together with

the controllers was feasible and could improve the SSE of Histo1 without

degrading the driving performance of the controller. In this section, both

driving performance and driving believability will be optimized together using

the multi-objective (MO) evolutionary framework. Multi-objective

optimization is introduced in this work to find a balance between two

incomparable objectives, driving performance and driving believability. That

is, the controller needs to be able to drive well on a given track and at the same

time drive in a believable manner.

The experiments conducted in this section will be discussed in four

parts. The training results are discussed first. Next, the effects of the evolved

sensor noise are examined. The generalization capability of the evolved

 176

controllers is covered in the third section. Finally, a user study is conducted

and its results are analyzed.

In order to be more concise, the controllers of interest evolved during

training will be abbreviated according to the list given in Table 6.4. Other

frequently used controllers are also abbreviated.

Table 6.4 Abbreviated list of controllers that are frequently used in text

Controller name Objective 1 Objective 2 Remarks

H1H
Waypoints Histo1

High score

H1L Low SSE

H2H
Waypoints Histo2

High score

H2L Low SSE

Hu - - Human

EH Waypoints - Heuristic [166]

ENN Waypoints - Neural network [166]

6.6.1 Training

In this section, both driving performance and driving believability will

be optimized simultaneously using the MO evolutionary framework. The

parameters used in the MO experiments were identical to that of the single

objective experiments. A (40+40) ES, running for 200 generations was used as

a training method. Self adaptive learning was not applied. The mutation

operator was a Gaussian perturbation with a step size of 0.1 and a probability

of 0.9. Each individual was evaluated on its own (i.e. solo game) and the

results averaged over 10 evaluations. Two combinations of fitness functions

were considered; first, maximize number of waypoints and minimize the SSE

of Histo1, and second, maximize the number of waypoints and minimize the

SSE of Histo2. At each generation, the individuals were ranked in terms of

Pareto optimality, tournament selection was used. The objective was to

compare the differences and effectiveness of using Histo1 or Histo2 to evolve

believable behaviours. Each set of experiments was repeated without sensor

 177

noise and with sensor noise. In the case without sensor noise, each individual

was encoded with 10 real value variables. In the case with sensor noise, each

individual was encoded with 18 real value variables. The track used for

training was track 1. Note that because Histo1 consists of 9 frequency bins

while Histo2 consists of 81 frequency bins, and Histo1 is populated by 1000

actions samples while Histo2 is populated by 999 action sequences samples,

the SSE values of Histo1 and Histo2 cannot be directly compared.

6.6.1.1 Waypoints and Histo1 (action histogram)

In this experiment, the objective was to maximize the number of

waypoints scored and minimize the SSE of Histo1. The experiment was

repeated without sensor noise and with sensor noise. The results were obtained

from 10 independent runs and the non-dominated controllers are plotted in

Figure 6.20.

For both experiments, without and with noise, a clear Pareto front can

be observed. These indicated that there existed a tradeoff between the number

of waypoints scored and the SSE of Histo1. A high waypoint score could only

be achieved by driving less humanlike, while a more humanlike driving

behaviour would result in a lower waypoint score.

It was also observed that the Pareto front of the case with sensor noise

dominated the Pareto front of the case without sensor noise. It showed that

introducing sensor noise to simulate realistic human judgment errors was

necessary and had the effect of evolving controllers that drive more believably

without degrading its driving performance. More details about the effects of

sensor noise will be discussed in the next section.

 178

0 0.5 1 1.5 2 2.5 3

x 10
5

0

2

4

6

8

10

12

14

16

18

20

22

SSE

S
c
o
re

With noise

Without noise

Results are plotted at the end of 200 generations for experiments with and without sensor

noise. With noise, the data ranged from (502.9, 18) to (5.55×10
4
, 20.8). Without noise, the

data ranged from (2.215×10
4
, 3) to (2.722×10

5
, 21).

Figure 6.20 Multi-objective optimization to maximize the number of waypoints and minimize

the sum of squared errors of Histo1

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

Action

F
re

q
u
e
n
c
y

Hu

H1L

HE

Action labeled on the horizontal axis follows that in Table 6.1.

Figure 6.21 Comparative action histograms of Hu, H1L, and EH (left to right)

 179

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

Action sequence

F
re

q
u
e
n
c
y

Hu

H1L

EH

Action sequence labeled on the horizontal axis is derived from the equation 9a-9+b where an

action sequence transits from action a to action b.

Figure 6.22 Comparative action sequence histograms of Hu, H1L, and EH (left to right)

The next consideration for designers was to select the most suitable

controller from the set of candidate solutions in the Pareto front. In this study,

two ways of choosing the solution controller will be recommended. First,

choose the controller with the lowest SSE because it had an action histogram

that most resemble human driving data. Or second, choose the controller with

a waypoint score that best match the human driving score. This will provide a

good tradeoff of driving performance and believability. The solution with the

lowest SSE (H1L) was selected for the purpose of comparison. The histograms

from Hu, H1L, and EH are presented in bar chart form in Figure 6.21 and

Figure 6.22.

It was observed from Figure 6.21 that H1L was able to drive using

actions similar to Hu terms of Histo1. There was a significant reduction in

actions 7 and 9 compared to EH. Also, H1L made frequent use of actions 5

 180

and 8 which were used in Hu but were not used by EH. In Figure 6.22, it was

observed that H1L was also able to match Hu better than EH in terms of

Histo2.

6.6.1.2 Waypoints and Histo2 (action sequence histogram)

In this experiment, the objective was to maximize the number of

waypoints score and minimize the SSE of Histo2. This experiment was also

repeated for cases without and with sensor noise. The results were obtained

from 10 independent runs and the non-dominated controllers are plotted in

Figure 6.23.

0 2 4 6 8 10 12 14

x 10
4

0

2

4

6

8

10

12

14

16

18

20

22

SSE

S
c
o
re

With noise

Without noise

Results are plotted at the end of 200 generations for experiments with and without sensor

noise. With noise, the data ranged from (1.432×10
4
, 16.2) to (4.335×10

4
, 20.4). Without noise,

the data ranged from (8.673×10
4
, 14) to (1.293×10

5
, 21).

Figure 6.23 Multi-objective optimization to maximize the number of waypoints and minimize

the sum of squared errors of Histo2

 181

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

Action

F
re

q
u
e
n
c
y

Hu

H1L

EH

Action labeled on the horizontal axis follows that in Table 6.1.

Figure 6.24 Comparative action histograms of Hu, H2L, and EH (left to right)

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

Action sequence

F
re

q
u
e
n
c
y

Hu

H1L

EH

Action sequence labeled on the horizontal axis is derived from the equation 9a-9+b where an

action sequence transits from action a to action b.

Figure 6.25 Comparative action sequence histograms of Hu, H2L, and EH (left to right)

A point to note here was that the SSE of Histo1 and the SSE of Histo2

were not directly comparable and should not be viewed as such. This was

 182

because of the difference in histogram space. There were only 9 bins in Histo1

compared to 81 bins in Histo2. For example, assuming the 1000 actions to be

evenly distributed in the 9 bins of Histo1, the SSE for track 1 would be

195397.6. Assuming the 999 action sequences to be evenly distributed in the

81 bins in Histo2, the SSE for track 1 would be 570787.3. Therefore, it was

expected that the optimized values of SSE of Histo1 would be usually lower

than the optimized values of SSE of Histo2 because there was a lesser number

of frequency bins in Histo1.

It was observed that a clear Pareto front was created for both without

and with sensor noise. This indicated that there existed a tradeoff between the

number of waypoints scored and the SSE of Histo2. It was also noted that the

controllers with sensor noise were able to form a Pareto front that dominated

the one formed by the controllers without sensor noise. This reinforced the

findings that introducing sensor noise to simulate human judgment errors had

the effect of evolving controllers that drove more believably without

degrading driving performance.

In this experiment, the controller with the lowest SSE of Histo2 (H2L)

was selected for comparison with the data from controllers Hu and EH. The

histograms of these controllers are presented in bar chart form in Figure 6.24

and Figure 6.25.

From Figure 6.25, it was observed that H2L matched well with Hu in

Histo2 since the SSE of Histo2 was used as the fitness function in this

experiment. Although Histo1 was not used as a fitness function, H2L also

managed to obtain Histo1 results that were similar to Hu. This was because the

action sequences in Histo2 were derived from Histo1. Therefore, a controller

 183

that was evolved to match the action sequences in Histo2 will also match the

actions in Histo1 as a side effect. The computation time required to evaluate

the fitness function was also increased.

6.6.2 Effects of noise

In this section, the effects of introducing sensor noise to the controller

will be investigated. The Gaussian sensor noise introduced to the controller

could be divided into three components, the mean, the standard deviation, and

the decay. Since the noise was introduced to the sensors to imitate errors in

human judgment, it will be analyzed in terms of measurement errors in

observation.

Measurement errors are divided into two components, systematic error

and random error. A basic type of systematic error is caused by the incorrect

calibration of the measuring instrument. This error is constant and is always

present even in separate measurements. The mean of the Gaussian noise

introduced to the controller is analogous to systematic errors. On the other

hand, random errors are inconsistent in repeated measures and tend to be

scattered about the true value. Random errors can be caused by imprecise

instruments or subjective interpretation of the instrument reading by the user

such as parallax errors. This is analogous to the standard deviation of the

Gaussian noise introduced to the controller. Finally, the error in judging

distances in a virtual environment increases with distance ‎[20]. This is

represented by making the noise a function of the distance to the object. That

is, more noise is introduced when observing a distant object and less noise for

a nearby object.

 184

It may be interesting to analyze the controller parameters and the noise

parameters separately to see how much „noise‟ is optimal. However, this was

not possible in practice. This was because while the controller and the noise

components were designed as separate entities, the evolutionary algorithm saw

the problem as a whole. In addition, evolutionary optimization algorithms

were known to exploit the dynamics in the inputs and the fitness functions to

produce good and unexpected results. Due to this limitation, it was not

possible to isolate the noise component from the controller. Consequently,

simply looking at the final evolved values of the mean and standard deviations

were not meaningful either. As such, each noise component was introduced

modularly and its effects analyzed using a black box approach.

0 1 2 3 4 5 6 7

x 10
5

0

5

10

15

20

SSE

S
c
o
re

no noise

mean only

sd only

mean+sd

mean+sd+decay

front 3
front 2

front 1

Results are plotted at the end of 200 generations for various combinations of sensor noise.

Figure 6.26 Pareto diagram of solutions evolved using waypoints and Histo1 as objectives

 185

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

5

10

15

20

SSE

S
c
o
re

no noise

mean only

sd only

mean+sd

mean+sd+decay

front 3 front 2
front 1

Results are plotted at the end of 200 generations for various combinations of sensor noise.

Figure 6.27 Pareto diagram of solutions evolved using waypoints and Histo2 as objectives

The three components of the noise were introduced to the controller in

a modular way and the results of the training were summarized in the form of

a Pareto diagram. The results for using Histo1 and Histo2 as the fitness

function are shown in Figure 6.26 and Figure 6.27 respectively. Each figure

has three Pareto fronts labeled front 1, front 2, and front 3 respectively. Front

3 dominants front 2 which dominants front 1.

The effect of evolving only the mean component of the Gaussian noise

(systematic error) was first considered. For Histo1, it was observed that

evolving mean noise degraded the performance of the controller. That is, the

solutions with mean noise (front 1) were completely dominated by the

solutions without noise at all (front 2). The result was similar in the case of

Histo2 except that the solutions without noise was more scattered (front 1 and

2) and did not consistently converge to an obvious Pareto front. These results

suggested that adding only mean noise or simply a constant bias to the sensors

 186

did not improve the performance of the controller. This can be appreciated

intuitively as using an improperly calibrated instrument in an experiment will

do more harm than good.

Next, the effect of evolving the standard deviation component of the

Gaussian noise (random error) was considered. In Histo1, evolving only

standard deviation resulted in the formation of two Pareto fronts, one of which

(front 2) is the same front as that of no noise added and one other (front 1) was

the same as that with evolved mean noise. This implied that evolving the

standard deviations increased the dimension of the search space and made the

fitness landscape more complex such that some solutions became trapped in

local optima. However, during good runs, the solutions with evolved standard

deviation were as good as those without noise at all. Next, the case of evolving

only mean against evolving both mean and standard deviation will be

considered. It was observed in Figure 6.26 that evolving both mean and

standard deviation produced two Pareto fronts, one (front 1) identical to that

evolved with mean only, and a dominant one (front 3) better than that without

noise (front 2). This suggested that evolving both mean and standard deviation

produced better solutions than the case without noise. This result was also

observed in the case of using Histo2 as the fitness function in Figure 6.27.

To better appreciate the reasons for this improvement, the decision

regions of the speed regulating component of the controller is plotted in Figure

6.28. For each controller, two lines were plotted. If the instantaneous speed

was above both lines, then a brake action was asserted. If the speed was below

both lines, an accelerate action was asserted. If the speed was between the

lines, a neutral action was asserted. It was observed that for the no noise

 187

controller, the two lines were very close together. This meant that either the

accelerate action or brake action would be asserted a large percentage of the

time while the neutral action would rarely be asserted. For the controller with

evolved standard deviation, the two lines were further apart and hence the

neutral action was asserted more frequently. Recall that Hu used the neutral

action more often than any other actions. Therefore, a controller that asserts

the neutral action more frequently (i.e. controller with evolved standard

deviation) would obtain a lower SSE and hence was a fitter solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Distance (normalized)

S
p
e
e
d

no noise

sd only

If the instantaneous speed is above both lines, then accelerate; below both lines, then brake;

otherwise, neutral.

Figure 6.28 Evolved decision space of hyperbolic tangent driving function for the case of no

noise and standard deviation only

To further appreciate how such a solution was evolved, the decision

space of the controller was examined. Suppose the two decision lines were

close together and random noise (i.e. standard deviation) was present. Then for

multiple similar situations, the observed sensor measurements would be

different every time, both above and below the decision lines. This would

 188

result in different actions asserted for the similar situations and hence

inconsistent fitness values. As a result, the decision lines were evolved to have

a large margin to minimize the difference in asserted actions for similar

situations and hence more consistent results. As a side effect, the larger neutral

region in the decision space produced lower SSE which further improved the

fitness of the solution. This led to the better solutions (front 3) observed in

Figure 6.26 and Figure 6.27.

Next, the effect of adding the decay function to the noise was

considered. It was observed in both Figure 6.26 and Figure 6.27 that adding

the decay function resulted in slightly better solution fronts along front 3

compared to the case without decay (i.e. evolved mean and standard deviation

only). It could be said that the best solutions with decay dominates the best

solutions without decay in both Histo1 and Histo2. Furthermore, the results for

the case with the decay function were more consistent with nearly all its

solutions in front 3 compared to the case without decay where only a handful

of solutions were located in front 3. In the case of evolved mean and standard

deviation without any decay mechanisms, there were soft constraints on both

parameters. That is, if the mean (systematic error) or standard deviation

(random error) were always present and too large in magnitude, the controller

would be unable to score any points because it would not be able to arrive at

its desired destination (i.e. the waypoint). The introduction of the decay

function ensured that the effects of sensor errors be reduced when the

destination was near so that the controller would eventually reach its

destination to score a point. In effect, this removed the constraints on the noise

 189

parameters and made the fitness landscape less complex, resulting in the better

rate of convergence and better solutions.

6.6.3 Generalization

It is important that the evolved controllers not only perform well in

training, but they must also be able to perform well in new and unseen

situations. As such, it is important to consider the generalization capability of

the evolved controllers. Human driving data was collected for 5 different

tracks. Only track 1 was used in the training process, the other tracks 2, 3, 4

and 5 were reserved to test the generalization capability of the evolved

controllers.

Six controllers were evaluated on all 5 tracks. The six chosen

controllers were Hu, H1L, H1H, H2L, H2H, and EH. The comparative results

are presented in Table 6.5. The results with the lowest difference in score

compared to the human, the lowest mean and standard deviation of SSE of

Histo1, and the lowest mean and standard deviation of SSE of Histo2 are

highlighted in bold.

It was observed from Table 6.5 that some controllers had waypoint

scores of 1 or 0. This meant that these controllers were able to pass through

only 1 waypoint or no waypoint at all on the test tracks. This implied that the

driving behaviours learnt in the training were not able to generalize well to

previously unseen tracks. In this respect, the controllers EH and H2H failed on

track 3.

The controllers of more interest to us were the ones with high

believability (i.e. low SSE). It was observed that the controllers H1L and H2L

were able to obtain waypoint scores that were similar to the human in all 4 test

 190

tracks. These controllers were also able to maintain low mean values of SSE in

both Histo1 (magnitude of 10
4
 or less) and Histo2 (magnitude of 10

5
 or less)

on all 4 test tracks. Hence, it can be said that both controllers H1L and H2L

were able to generalize well to previous unseen tracks. That is, both

controllers were able to transfer the knowledge learnt on the training track

onto previously unseen tracks.

Comparing only H1L and H2L on each test track, H1L obtained a

lower SSE in both Histo1 and Histo2 on test track 2 while H2L obtained a

lower SSE in both Histo1 and Histo2 on test tracks 3, 4, and 5. It was also

observed that H2L achieved lower standard deviations on all 4 test tracks.

That is, on test tracks 3, 4, and 5, H2L which was evolved using Histo2 as its

fitness function, obtained a lower SSE in Histo1 compared to H1L despite the

fact that H1L was evolved using Histo1 as its fitness function. This implied

that controllers evolved using Histo2 as the fitness function produced more

robust and consistent controllers. This was because Histo2 was derived from

Histo1. Hence, a controller optimized on Histo2 will inadvertently be

optimized on Histo1 as well. The reverse was not true. From another

perspective, Histo2 contained more information about the human than Histo1.

This effect was evident on test tracks 3, 4, and 5 where H2L, which was

evolved using Histo2, obtained lower SSE in Histo1 compared to H1L, despite

the latter being evolved using Histo1 directly. However, the disadvantage was

that the search space was more complicated and the computation time required

was longer.

 191

Table 6.5 Comparative results of human driving data, multi-objective controllers, and single

objective controllers on training track 1 and testing tracks 2, 3, 4 and 5

All controllers have sensor noise. For waypoint score, the controller with the smallest score

difference when compared to the human driving data is highlighted in bold. For sum of

square errors (SSE), the controller with the small mean value and the controller with the

smallest standard deviation are highlighted in bold. Zero mean scores really mean the

controllers scored zero points as they were stucked in an orbit around the first waypoint.

Controller
Score SSE of Histo1 SSE of Histo2

Mean Std Mean Std Mean Std

Track 1 (Training data)

Hu 17.80 0.45 - - - -

H1L 18.00 0.47 3923.76 1772.01 29208.36 3140.55

H2L 17.40 0.52 5819.96 1664.82 28026.60 1688.36

H1H 20.60 0.70 103420.96 6970.23 95822.40 4884.56

H2H 20.70 0.48 204439.12 1228.00 129596.06 2079.94

EH 21.00 0.00 120746.36 4401.44 109730.56 2239.79

Track 2

Hu 15.00 0.00 - - - -

H1L 14.20 0.42 7534.56 2586.61 40353.76 2922.87

H2L 14.00 0.00 16034.44 1626.80 45882.48 2785.06

H1H 18.00 0.00 123563.40 11366.20 128920.44 7515.93

H2H 19.00 0.00 240383.52 3440.06 149929.00 1745.29

EH 16.70 0.95 93029.92 6501.68 113711.60 6256.08

Track 3

Hu 15.80 0.45 - - - -

H1L 15.60 0.84 19205.80 12603.20 45645.08 10211.57

H2L 16.00 0.00 5053.76 3809.68 33820.44 3690.19

H1H 14.40 0.82 151808.56 31062.31 132936.44 19992.38

H2H 1.00 0.00 819612.80 999.75 782722.80 573.66

EH 0.00 0.00 942713.60 0.00 884091.92 0.00

Track 4

Hu 16.00 0.00 - - - -

H1L 15.40 0.70 32426.36 16830.25 76525.64 13164.82

H2L 16.60 0.52 1532.40 513.21 45084.64 2480.23

H1H 16.30 0.48 237105.92 17236.08 240092.20 18210.00

H2H 17.60 0.97 402390.16 10066.62 292699.68 7587.26

EH 13.60 2.55 293268.96 68006.90 292117.40 53485.97

Track 5

Hu 17.80 0.84 - - - -

H1L 16.70 0.67 7886.04 4766.16 41251.52 5917.33

H2L 16.20 0.42 5807.20 1596.58 38763.72 3211.29

H1H 17.90 0.57 113853.44 17007.15 114904.20 7083.31

H2H 18.00 0.67 209914.72 8020.79 140758.96 3502.97

EH 18.90 0.32 91323.16 10562.67 108883.88 3684.35

 192

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

EH

H1L

H2L

Figure 6.29 Sample trajectories and headings of controllers EH, H1L, and H2L in the first 300

time steps on track 1

It was also useful to subjectively discuss the believability of the

evolved controllers by visual observation. The two controllers H1L and H2L

were visually observed and compared to controller EH on all 4 test tracks.

Sample trajectories and headings of the controllers EH, H1L and H2L in the

first 300 time steps are plotted in Figure 6.29 for illustration.

Both controllers learnt to drive in the forward direction unlike the

controller ENN that drove in reverse. Both controllers were also able to drive

smoothly around the track without the oscillatory behaviour that was observed

with the EH and ENN. The oscillatory trajectory of EH can be seen at the

regions pointed by arrows in Figure 6.29; the trajectories of H1L and H2L

could be observed as smoother in the same regions. The smoother driving

behaviour of H1L and H2L could be attributed to the larger distance between

the driving and steering decision lines similar to those seen in Figure 6.28.

Controllers H1L and H2L were also observed to speed up when they were far

 193

away from the waypoint and slow down when approaching the waypoint.

Often, when the controllers were near the waypoint, they would output action

5 (neutral) and glided towards the waypoint with its residual momentum. This

sometimes gave the impression that the controller was thinking or considering

its next move. However, some unnatural behaviour still remained. For instance,

the controllers tend to drive in a near perfect circular arc when making turns

which seemed too precise to be humanlike. This circular trajectory could also

be observed in Figure 6.29. For a more objective measure, a user study

conducted to quantify the believability of the evolved controllers will be

presented in the next section.

6.6.4 User study

A user study was conducted to objectively quantify the believability of

the evolved controllers. Two research questions will be investigated in this

study. First, whether the evolved controllers proposed in this chapter are

distinguishable as more believable compared to one evolved for performance

alone. Second, whether Histo1 or Histo2 as the fitness function evolve the

more believable controller.

An objective evaluation of believability is necessary for this study.

Riedl & Young proposed an evaluation procedure for multi-agent story

generation systems [128] but it is not suitable for evaluating the movement

behaviours of game agents. Instead, the believability index proposed in ‎[57]

will be used as an objective measure of believability in this study. The detailed

procedure and discussion can be found in ‎[57]. Users were asked to watch

recorded videos of four controllers. They are the controllers EH, Hu, H1L, and

H2L. Each user was first given some time to play the game to familiarize

 194

themselves with the workings of the game. Next, the user was asked to

estimate their experience with this type of driving game based on the ratings

given in Table 6.6. The experience level of the person will be used to weigh

his ratings in the overall believability index as well as to calculate the

confidence index of the entire study. Next, the user was showed two videos

simultaneously, each 51.5 seconds long equivalent to 1000 simulation time

steps. The user was specifically instructed that the videos may depict any

combination of human and artificial players. The user was then asked to give a

rating as shown in Table 6.7 for each video. Each user was shown three pairs

of videos of non repeated combinations. A total of 58 people participated in

the study and a total of 348 video ratings were collected, of which 1 person‟s

results (i.e. 6 video ratings) was discarded because it was discovered that he

misunderstood the instructions. The results are presented in Table 6.8.

Table 6.6 Description of experience level rating of the respondents in the user study

Rating Description

1 Never play

2 Some passing familiarity

3 Played once monthly

4 Played once weekly

5 Played three times weekly

Table 6.7 Description of human-ness rating of the controllers in the user study

Rating Description

1 Human

2 Probably human

3 Don‟t know

4 Probably computer

5 Computer

Table 6.8 Believability index of controllers in the user study

Believability index ranges from 0 (least believable) to 1 (most believable). Confidence level

of the user study is calculated based on the experience level of the respondents.

Controller Believability index Confidence level

EH 0.5178

0.8034
Hu 0.8906

H1L 0.6311

H2L 0.5833

 195

H1L H2L H1L - H2L

-4

-3

-2

-1

0

1

2

3

4

5

R
a
ti
n
g

The difference in each pair of ratings was also plotted. A negative rating implied that H2L was

more believable than H1L.

Figure 6.30 Boxplot of ratings where H1L and H2L were shown as pairs

It was observed in Table 6.8 that the believability index for controllers

EH, Hu, H1L and H2L were 0.5178, 0.8906, 0.6311, and 0.5833 respectively.

That is, the controller Hu was correctly identified as human 89.06% of the

time while the controller EH was misidentified as human 51.78% of the time.

This showed that the users were able to discern between the human and the

artificial controller EH. The controllers H1L and H2L were misidentified as

human 63.11% and 58.33% of the time respectively. These results were an

improvement over the controller EH, implying that the users perceived H1L

and H2L as more believable compared to EH. This result provided evidence

that the proposed method of using histograms and sensor noise to learn the

behavioural tendencies of humans was feasible and that it improved the

believability of the controller. However, the results were still some distance

from that of an actual human of 89.06%.

 196

Next, the two fitness functions, Histo1 or Histo2, were compared to

find out which one evolved the more believable controller. To do this, the

results of the user study where controllers H1L and H2L were shown as pairs

to the user were examined. There were 28 instances of such a pairing. The

distributions of the ratings are presented as a boxplot in Figure 6.30. For

conciseness, the difference in each pair of ratings was also plotted in the same

diagram. A one tailed paired t-test was performed on the results at the 5%

significance level. The p-value did not give sufficient evidence to reject the

null hypotheses at this level of significance. Hence, the user study did not

reject that the controllers evolved using Histo1 and Histo2 were indifferent.

The median and mode of the difference in ratings were both zero, also

suggesting that the two controllers were indifferent. Still, some insights on the

differences between these two controllers could be inferred from the

comments given by the users. Several users commented that they rated Histo2

as more believable than Histo1 because the former traveled at a slower speed.

This suggested that the speed profile of a NPC might have effects on its

believability. It would be interesting to investigate how the speed profile could

be modeled and applied to evolve more believable behaviours.

6.7 Summary

Two main ideas were examined in this chapter. First, sensor noise was

introduced to imitate errors in human judgment. The parameters associated

with the sensor noise were evolved together with the car controller. This was

demonstrated to be feasible and that the introduction of sensor noise can

improve the believability of the controller without degrading the driving

performance. Each component of the sensor noise was analyzed and the

 197

combination of mean, standard deviation and decay was found to produce the

best results. Second, the action histogram and action sequence histogram were

quantitatively and qualitatively analyzed and associated to some of the

unnatural and unrealistic driving behaviours in controllers evolved for

performance alone. Hence, it was proposed that the evolved controller can

learn to drive more believably by imitating the human driving histogram to

learn low level behavioural tendencies of humans. The multi-objective

evolution framework was applied to maximize the waypoint score and to

minimize the sum of squared errors of the proposed histograms. The

controllers were trained using only 1 track and tested on 4 other previously

unseen tracks. The controllers selected based on low SSE from the set of

Pareto optimal solutions were able to generalize well on all the testing tracks.

A user study involving 58 respondents was conducted to objectively quantify

the believability of the evolved controllers. The evolved controllers were

evaluated as being more believable compared to the controller evolved for

performance alone. The proposed action histograms framework was

compatible with games using discrete control schemes. Games in this genre

included platform games (i.e. Super Mario) and arcade shooters (i.e.

Asteroids).

 198

Chapter Seven

7 Conclusion

Enhancing the player experience is an important aspect of developing

computer games. This thesis has explored and conducted successful

experiments on two key issues affecting the player experience in computer

games, namely adaptability and believability, by applying concepts from

computational intelligence. This chapter provides a high level summary of the

work documented in this thesis and some open directions for future research.

7.1 Summary of experiments

The primary aim of this thesis was to present an investigation on using

the computational intelligence approach to enhance the player experience in

computer games. A real time car racing simulator game was used as the test

bed in the experiments. The real time nature of the test bed required that the

game AI be computationally efficiency in addition to traditional performance

competency.

Chapter 4 proposed a framework for designing a computationally

efficient game AI suitable for implementation in real time games based on a

hybrid evolutionary behaviour-based methodology. Genetic algorithm was

employed to complement and automate the process of hand designed

components required in the behaviour-based methodology. The resulting AI

was compared against the popular paradigm of evolutionary neural network

 199

and the former was shown to have better performance as well as being more

efficient. Genetic algorithm was shown to have successfully exploited some

collaboration between the different behaviour components which might have

gone unnoticed if it was designed by hand. By benchmarking against the top 5

controllers from the IEEE CEC 2007 Simulated Car Racing competition, the

proposed AI was also demonstrated to have good generalization performance.

The proposed AI scored the second highest in benchmark performance but

was 482 times faster than the top scoring AI. In the subsequent round robin

tournament, the proposed AI was able to demonstrate its better generalization

capability and outperformed all the other 5 controllers. The advantages of

better computational efficiency and generalization performance made the

proposed evolutionary behaviour-based framework a suitable candidate for

implementation in real time games and laid the groundwork for investigations

into adaptability and believability.

Two adaptive algorithms, built upon the proposed framework, were

introduced in chapter 5 to address the issue of adaptability in game AI. The

adaptive algorithms drew inspirations from reinforcement learning and

evolutionary algorithms to improve player satisfaction by scaling the difficulty

of the game AI while the game was being played. The advantage was that

adaptation was done during the game session itself and no offline training was

required. The proposed algorithms also had the advantage of being easily

scalable. Two new parameters, learning rate and mutation rate, were

introduced by the proposed algorithms. Both parameters were thoroughly

investigated and a general rule of thumb for the selection of these two

parameters was put forward. Two indicators were also proposed as a measure

 200

of an even game between the two players. An analysis of the respective score

distributions showed that both algorithms were robust, consistent, and able to

generalize well across different types of opponents. The single chromosome

variant was shown to be more computationally efficient while the double

chromosome variant was more useful in lessening player frustration. Both

proposed adaptive algorithms were shown to automatically learn suitable sets

of behaviours to adapt to the competency of different opponents, hence

keeping the player engaged by continually providing sufficient challenge

during the game.

Chapter 6 presented two ideas to induce believable movement

behaviours in game agents. First, evolvable sensor noise was used to imitate

systematic errors and random errors made by humans. Second, the action

histogram and action sequence histogram were proposed as a means to analyze

the differences between the unnatural behaviours observed in performance

optimized game AI and the behaviours of human players. Subsequently, the

histograms were used as fitness functions to induce believable movement

behaviours in the game AI by imitating low level behavioural tendencies of

human players. It was also demonstrated that performance and believability

were conflicting metrics and a multi-objective evolutionary approach was used

to improve the believability of the game AI without degrading its performance.

Results also showed that the evolution of sensor noise was necessary to

encourage humanlike behaviours. A user study involving 58 respondents was

conducted to objectively quantify the believability of the evolved game AI and

the results verified that the evolved game AI was seen by human players as

being more believable.

 201

7.2 Future works

Although computational intelligence techniques have been successfully

applied to enhance some aspects of player experience in games, the series of

works presented in this thesis barely scratched the surface of what is

potentially left to be addressed.

In the experiments involving adaptability, the capacity to match the

competency of an opponent necessitates that the game AI be stronger than its

opponent. However, human players are good learners and will likely discover

ways of defeating the game AI eventually through repeated plays and

accumulated experience with the game. In other words, a non-learning game

AI places an upper limit on its own level of competency. It also implies that a

human player that has learnt to defeat the game AI at its most difficult setting

will not be able to benefit from the adaptive game AI. Therefore, a game AI

that is able to continually learn and improve together with the human player is

desirable. A game AI framework using evolvable fuzzy logic elements is

currently being investigated as a possible candidate for such self learning

paradigms.

Some direction for future work was obtained from the comments of the

user studies in chapter 6. A number of users noticed that the computer players

were too fast to react when a new waypoint appeared and hence correctly

identified the human player by noticing the delay in reaction times. Loyall

defined that the responsiveness of a believable agent must be within the ranges

people were willing to accept as believable [86]. Laird and Duchi also

determined decision time as a factor affecting human-likeness [81]. It will be

an interesting extension to add time delays as a form of both sensor noise and

 202

actuator noise to the evolved controllers. Investigations will include the use of

static or dynamic time delays, whether delays lead to more believable

controllers, and the thresholds of delays that can be added before the controller

becomes unstable or uncontrollable. The parameters that characterize the time

delays can also be optimized by evolutionary algorithms.

The scenarios explored so far in this thesis involved strictly two player

games. However, there are other genres of games in which the human player is

competing against numerous opponents in the game. With a greater number of

AI controlled opponents, there is greater potential to create a more immersive

game experience. For instance, in a three player car racing simulator game, the

two AI opponents can collaborate by accidentally colliding into each other,

hence giving the human player a better opportunity to reach the current

waypoint first. However, care needs to be taken to ensure that such efforts by

the game AI do not appear intentional. Otherwise, it may ruin the sense of

achievement experienced by the human player.

Game AI does not necessarily imply a computer controlled opponent

that plays against a human player in a competitive environment. That is, game

AI need not be adversarial in nature. Game AI can also be used to control

game characters that play on the human player‟s side or are just neutral NPCs.

For example, in the context of real time strategy games, a friendly game AI

can be used to control a human player‟s individual units on the battle ground.

This might mean that individual units can automatically and intelligently take

cover when under fire, change formations according to combat situations, and

retreat when being outnumbered. This will free the human player from the,

sometimes mundane, task of having to micro manage every unit on the

 203

battlefield and allow the player to make high level strategic decisions in order

to defeat his opponent.

 204

Bibliography

[1] Agapitos, A., Togelius, J. and Lucas, S. M., “Evolving Controllers for

Simulated Car Racing using Object Oriented Genetic Programming”,

Proceedings of the ninth Annual Conference on Genetic and

Evolutionary Computation, pp. 1543-1550, 2007.

[2] Agapitos, A., Togelius, J., Lucas, S. M., Schmidhuber, J. and

Konstantinidis, A., “Generating Diverse Opponents with Multiobjective

Evolution”, Proceedings of IEEE Symposium on Computational

Intelligence and Games, pp. 135-142, 2008.

[3] Aler, R., Valls, J. M., Camacho, D. and Lopez, A., “Programming

Robosoccer agents be modeling human behavior”, Expert Systems with

Applications, vol. 36, pp. 1850-1859, 2009.

[4] Andrade, G., Ramalho, G., Santana, H. and Corruble, V., “Automatic

computer game balancing: a reinforcement learning approach”,

Proceedings of the fourth International Conference on Autonomous

Agents and Multiagent Systems, pp. 1111-1112, 2005.

[5] Andrade, G., Ramalho, G., Santana, H. and Corruble, V., “Challenge-

Sensitive Action Selection: an Application to Game Balancing”,

Proceedings of IEEE International Conference on Intelligent Agent

Technology, pp. 194-200, 2005.

[6] Angeline, P. J., Saunders, G. M. and Pollack, J. B., “An Evolutionary

Algorithm that Constructs Recurrent Neural Networks”, IEEE

Transactions on Neural Networks, vol. 5, no. 1, pp. 54-65, 1994.

[7] Avery, P. M., Greenwood, G. W. and Michalewicz, Z., “Coevolving

Strategic Intelligence”, Proceedings of IEEE Congress on Evolutionary

Computation, pp. 3523-3530, 2008.

[8] Bäck, T., “Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms”, Oxford

University Press, 1996.

[9] Bain, M. and Sammut, C., “A Framework for Behavioural Cloning”,

Machine Intelligence 15, Oxford University Press, pp. 103-129, 1999.

[10] Bakkes, S. and Spronck, P., “Gathering and Utilising Domain

Knowledge in Commercial Computer Games”, Proceedings of the

Belgium-Netherlands Conference on Artificial Intelligence, pp. 35-42,

2006.

[11] Bakkes, S., Kerbusch, P., Spronck, P. and van den Herik, J.,

“Automatically Evaluating the Status of an RTS game”, Proceedings of

the Annual Belgian-Dutch Machine Learning Conference, pp. 143-144,

2007.

 205

[12] Bakkes, S., Spronck, P. and van den Herik, J., “Rapid Adaptation of

Video Game AI”, Proceedings of IEEE Symposium on Computational

Intelligence and Games, pp 79-86, 2008.

[13] Baluja, S., “Evolution of an Artificial Neural Network Based

Autonomous Land Vehicle Controller”, IEEE Transactions on Systems,

Man, and Cybernetics – Part B: Cybernetics, vol. 26, no. 3, pp. 450-463,

1996.

[14] Barber, H. and Kudenko, D., “Generation of Adaptive Dilemma-Based

Interactive Narratives”, IEEE Transactions on Computational

Intelligence and AI in Games, vol. 1, no. 4, pp. 309-326, 2009.

[15] Batavia, P. H., Pomerleau, D. A. and Thorpe, C. E., “Applying

Advanced Learning Algorithms to ALVINN”, technical report CMU-RI-

TR-96-31, Robotics Institute, Carnegie Mellon University, 1996.

[16] Bellotti, R., Berta, R., De Gloria, A. and Primavera, L., “Adaptive

Experience Engine for Serious Games”, IEEE Transactions on

Computational Intelligence and AI in Games, vol. 1, no. 4, pp. 264-280,

2009.

[17] Bergsma, M. and Spronck, P., “Adaptive Intelligence for Turn-based

Strategy Games”, Proceedings of the Belgian-Dutch Artificial

Intelligence Conference, pp. 17-24, 2008.

[18] Beume, N., Danielsiek, H., Eichhorn, C., Naujoks, B., Preuss, M., Stiller,

K. and Wessing, S., “Measuring Flow as Concept for Detecting Game

Fun in the Pac-Man Game”, Proceedings of IEEE Congress on

Evolutionary Computation, pp. 3447-3454, 2008.

[19] Bhatt, K., “Believability in Computer Games”, Proceedings of the first

Australian Workshop on Interactive Entertainment, pp.81-84, 2004.

[20] Bodenheimer, B., Meng, J., Wu, H., Narasimham, G., Rump, B.,

McNamara, T. P., Carr, T. H. and Rieser, J. J., “Distance Estimation in

Virtual and Real Environments using Bisection”, Proceedings of the

Fourth Symposium on Applied Perception in Graphics and Visualization,

pp. 35-40, 2007.

[21] Braathen, S. and Sendstad, O. J., “A Hybrid Fuzzy Logic/Constraint

Satisfaction Problem Approach to Automatic Decision Making in

Simulated Game Models”, IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 34, no. 4, pp. 1786-1797, 2004.

[22] Brooks, R. A., “A Robust Layered Control System for a Mobile Robot”,

IEEE Journal of Robotics and Automation, vol. 2, no. 1, pp. 14-23, 1986.

[23] Bryant, B. D. and Miikkulainen, R., “Neuroevolution for Adaptive

Teams”, Proceedings of IEEE Congress on Evolutionary Computation,

vol. 3, pp. 2194-2201, 2003.

 206

[24] Bryant, B. D., “Evolving Visibly Intelligent Behavior for Embedded

Game Agents”, Ph.D. thesis, Department of Computer Sciences,

University of Texas, Austin, TX, 2006.

[25] Bryant, B. D. and Miikkulainen, R., “Acquiring Visibly Intelligent

Behavior with Example-Guided Neuroevolution”, Proceedings of the

Twenty-Second National Conference on Artificial Intelligence, pp. 801-

808, 2007.

[26] Bryson, J. J, “The Behavior-Oriented Design of Modular Agent

Intelligence”, Agent Technologies, Infrastructures, Tools, and

Applications for E-Services, pp. 61-76, 2002.

[27] Buro, M. and Furtak, T., “RTS Games as Test-Bed for Real-Time AI

Research”, Proceedings of the Seventh Joint Conference on Information

Science, pp. 481-484, 2003.

[28] Buro, M., “Call for AI Research in RTS Games”, Proceedings of the

Association for the Advancement of Artificial Intelligence Workshop on

AI in Games, pp. 139-142, 2004.

[29] Cardamone, L., Loracono, D. and Lanzi, P. L., “Learning Drivers for

TORCS through Imitation Using Supervised Methods”, IEEE

Symposium on Computational Intelligence and Games, pp. 148-155,

2009.

[30] Chaperot, B. and Fyfe, C., “Advanced artificial intelligence techniques

applied to a motocross game”, Computing and Information Systems, vol.

10, no. 2, pp. 27-31, 2006.

[31] Charles, D., McNeill, M., McAlister, M., Black, M., Moore, A., Stringer,

K., Kücklich, J. and Kerr, A., “Player-Centred Game Design: Player

Modelling and Adaptive Digital Games”, Digital Games Research

Conference, pp. 285-298, 2005.

[32] Chellapilla, K. and Fogel, D. B., “Evolving Neural Networks to Play

Checkers Without Relying on Expert Knowledge”, IEEE Transactions

on Neural Networks, vol. 10, no. 6, pp. 1382-1391, 1999.

[33] Chellapilla, K. and Fogel, D. B., “Evolving an expert checkers playing

program without using human expertise”, IEEE Transaction of

Evolutionary Computation, vol. 4, pp. 422-428, 2001.

[34] Choi, D., Konik, T., Nejati, N., Park, C. and Langley, P., “A Believable

Agent for First-Person Shooter Games”, Proceedings of the third

Artificial Intelligence and Interactive Digital Entertainment International

Conference, pp. 71-73, 2007.

[35] Chong, S. Y., Tiño, P. and Yao, X., “Measuring Generalization

Performance in Co-evolutionary Learning”, IEEE Transactions on

Evolutionary Computation, vol. 12, no. 4, pp. 479-505, 2008.

 207

[36] Coello Coello, C. A., “A Short Tutorial on Evolutionary Multiobjective

Optimization”, Proceedings of the first International Conference on

Evolutionary Multi-Criterion Optimization, pp. 21-40, 2001.

[37] Cole, N., Louis, S. J. and Miles, C., “Using a genetic algorithm to tune

first-person shooter bots”, Proceedings of IEEE Congress on

Evolutionary Computation, pp. 139-145, 2004.

[38] Csikszentmihályi, M., “Flow: The Psychology of Optimal Experience”,

New York: HaperCollins, 1990.

[39] De Jong, K. A., “An Analysis of the Behavior of a Class of Genetic

Adaptive Systems”, Ph.D. thesis, University of Michigan, Ann Arbor,

Mich, 1975.

[40] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., “A Fast and Elitist

Multiobjective Genetic Algorithm: NSGAII,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

[41] Dezinger, J. and Kordt, M., “Evolutionary On-line Learning of

Cooperative Behavior with Situation-Action-Pairs”, Proceedings of the

fourth International Conference on MultiAgent Systems, pp. 103-110,

2000.

[42] DeSouza, G. N. and Kak, A. C., “A Subsumptive, Hierarchical, and

Distributed Vision-Based Architecture for Smart Robotics”, IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

vol. 34, no. 5, pp. 1988-2002, 2004.

[43] Duro, J. A. and de Oliveira, J. V., “Particle Swarm Optimization

Applied to the Chess Games”, Proceedings of IEEE Congress on

Evolutionary Computation, pp. 3702-3709, 2008.

[44] Entertainment Software Association, Industry Facts, Economic Data,

http://www.theesa.com/facts/econdata.asp, retrieved on 26 May 2010.

[45] Fernández, A. J. and González, J. J., “Action Games: Evolutive

Experiences”, Computational Intelligence, Theory and Applications, vol.

33, pp. 487-501, 2005.

[46] Fernlund, H. K. G., Gonzalez, A. J., Georgiopoulos, M. and DeMara, R.

F., “Learning Tactical Human Behavior Through Observation of Human

Performance”, IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 36, no. 1, pp. 128-140, 2006.

[47] Fogel, D. B., Hays, T. J., and Johnson, D. R., “A platform for evolving

intelligently interactive adversaries”, Biosystems, vol. 85, no. 1, pp. 72-

83, 2006.

[48] Fonseca, C. M. and Fleming, P. J., “Genetic algorithm for multiobjective

optimization, formulation, discussion and generalization”, Proceedings

 208

of the fifth International Conference on Genetic Algorithms, pp. 416-

423, 1993.

[49] Forbus, K. and Laird, J., “AI and the entertainment industry”, IEEE

Intelligent Systems, vol. 17, no. 4, pp. 15-16, 2002.

[50] Fujii, S., Nakashima, T. and Ishibuchi, H., “A Study on Constructing

Fuzzy Systems for High-Level Decision Making in a Car Racing Game”,

Proceedings of IEEE Congress on Evolutionary Computation, pp. 3626-

3633, 2008.

[51] Ghoneim, A., Abbass, H. and Barlow, M., “Characterizing Game

Dynamics in Two-Player Strategy Games Using Network Motifs”, IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

vol. 38, no. 3, pp 682-690, 2008.

[52] Goh, C. K., “Evolutionary multi-objective optimization in uncertain

environments”, Ph.D. thesis, Department of Electrical & Computer

Engineering, National University of Singapore, 2007.

[53] Goh, C. K., Tan, K. C. and Tay, A., “A Competitive-Cooperation

Coevolutionary Paradigm for Multi-objective Optimization”,

Proceedings of IEEE International Symposium on Intelligent Control, pp.

255-260, 2007.

[54] Goh, C. K., Teoh, E. J. and Tan, K. C., “Hybrid multiobjective

evolutionary design for artificial neural networks”, IEEE Transactions

on Neural Networks, vol. 19, no. 9, pp. 1531-1548, 2008.

[55] Gomez, F., Schmidhuber, J. and Miikkulainen, R., “Efficient Non-

Linear Control through Neuroevolution”, Proceedings of the European

Conference on Machine Learning, pp. 654-662, 2006.

[56] Gomez, F. J., Togelius, J. and Schmidhuber, J., “Measuring and

Optimizing Behavioural Complexity for Evolutionary Reinforcement

Learning”, Proceedings of the International Conference on Artificial

Neural Networks, pp. 765-774, 2009.

[57] Gorman, B., Thurau, C., Bauckhage, C. and Humphrys, M.,

“Believability Testing and Bayesian Imitation in Interactive Computer

Games”, From Animals to Animats 9, vol. 4095, pp. 655-666, 2006.

[58] Guesgen, H. W. and Shi, X. D., “An Artificial Neural Network for a

Tank Targeting System”, Proceedings of the International FLAIRS

Conference, pp. 463-464, 2006.

[59] Gwiazda, T. D., “Genetic Algorithms Reference Vol. 1 Crossover for

single-objective numerical optimization problems”, Tomasz Gwiazda,

Lomianki, 2006.

[60] Hagelbäck, J. and Johansson, S. J., “Measuring player experience on

runtime dynamic difficulty scaling in an RTS game”, Proceedings of the

 209

fifth International Conference on Computational Intelligence and Games,

pp. 46-52, 2009.

[61] Hastings, E. J., Guha, R. K. and Stanley, K. O., “Evolving content in the

galactic arms race video game”, Proceedings of IEEE Symposium on

Computational Intelligence and Games, pp. 241-248, 2009.

[62] Hastings, E. J., Guha, R. K. and Stanley, K. O., “Automatic Content

Generation in the Galactic Arms Race Video Game”, IEEE Transactions

on Computational Intelligence and AI in Games, vol. 1, no. 4, pp. 245-

263, 2009.

[63] Haykins, S., Neural Networks: A Comprehensive Foundation New York:

MacMillan, 1994.

[64] Hillis, W. D., “Co-evolving parasites improve simulated evolution as an

optimization procedure”, Proceedings of the ninth annual International

Conference of the Center for Nonlinear Studies on Self-organizing,

Collective, and Cooperative Phenomena in Natural and Artificial

Computing Networks on Emergent Computation, pp. 228-234, 1990.

[65] Ho, D. T. and Garibaldi, J. M., “A Fuzzy Approach for the 2007 CIG

Simulated Car Racing Competition”, Proceedings of IEEE Symposium

on Computational Intelligence and Games, pp. 127-134, 2008.

[66] Ho, D. T. and Garibaldi, J. M., “A Novel Fuzzy Inferencing

Methodology for Simulated Car Racing”, Proceedings of IEEE

International Conference on Fuzzy Systems, pp. 1909-1916, 2008.

[67] Holland, J. H., “Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control, and

Artificial Intelligence”, MIT Press, 1992.

[68] Hong, T. P., Huang, K. Y. and Lin, W. Y., “A Genetic Search Method

for Multi-Player Game Playing”, Proceedings of IEEE International

Conference on Systems, Man, and Cybernetics, vol. 5, pp. 3858-3861,

2000.

[69] Horswill, I. D. and Zubek, R., “Robot Architectures for Believable

Game Agents”, Proceedings of AAAI Spring Symposium on Artificial

Intelligence and Computer Games, Technical Report SS-99-02, 1999.

[70] Hoshino, Y. and Kamei, K., “A proposal of reinforcement learning

system to use knowledge effectively”, Proceedings of SICE Annual

Conference, vol. 2, pp. 1582-1585, 2003.

[71] Huang, B. Q., Cao, G. Y. and Guo, M., “Reinforcement learning neural

network to the problem of autonomous mobile robot obstacle

avoidance”, Proceedings of the fourth International Conference on

Machine Learning and Cybernetics, pp. 85-89, 2005.

 210

[72] Hughes, E. J., “Checkers using a Co-evolutionary On-Line Evolutionary

Algorithm”, Proceedings of IEEE Congress on Evolutionary

Computation, pp. 1899-1905, 2005.

[73] Hunicke, R. and Chapman, V., “AI for Dynamic Difficulty Adjustment

in Games”, Challenges in Game Artificial Intelligence AAAI Workshop,

pp. 91-96, 2004.

[74] IBM Research, Deep Blue, http://www.research.ibm.com/deepblue/,

retrieved on 15 May 2007.

[75] Ishibuchi, H., Nakashima, T. and Kuroda, T., “A Hybrid Fuzzy

Genetics-based Machine Learning Algorithm: Hybridization of

Michigan Approach and Pittsburg Approach”, Proceedings of IEEE

International Conference on Systems, Man, and Cybernetics, vol. 1, pp.

296-301, 1999.

[76] Isla, D. and Blumberg, B., “New Challenges for Character-Based AI for

Games”, Proceedings of AAAI Spring Symposium on AI and Interactive

Entertainment, pp. 41-45, 2002.

[77] Juang, C. F. and Lu, C. F., “Fuzzy Controller Design by Hybrid

Evolutionary Learning Algorithms”, Proceedings of IEEE International

Conference on Fuzzy Systems, pp. 525-529, 2005.

[78] Knowles, J. D. and Corne, D. W., “Approximating the non-dominated

front using the Pareto archived evolution strategy,” Evolutionary

Computation, vol. 8, no. 2, pp. 149-172, 2000.

[79] Koster, R., “A theory of fun for game design”, Paraglyph press, 2005.

[80] Laird, J. E. and van Lent, M., “Human-Level AI‟s Killer Application:

Interactive Computer Games”, Proceedings of the seventeenth Nation

Conference on Artificial Intelligence and twelfth Conference on

Innovative Applications of Artificial Intelligence, pp. 1171-1178, 2000.

[81] Laird, J. E. and Duchi J. C., “Creating Human-like Synthetic Characters

with Multiple Skill Levels: A Case Study using the Soar Quakebot”, in

AAAI Fall Symposium Series on Simulating Human Agents, pp. 54-58,

2000.

[82] Langley, P., Laird, J. E. and Rogers, S., “Cognitive architectures:

Research issues and challenges”, Cognitive Systems Research, vol. 10,

no. 2, pp. 141-160, 2009.

[83] Li, S. T. and Chen, S. C., “Function Approximation using Robust

Wavelet Neural Networks”, Proceedings of IEEE International

Conference on Tools with Artificial Intelligence, pp. 483-488, 2002.

[84] Lidén, L., “Artificial Stupidity: The Art of Intentional Mistakes”, AI

Game Programming Wisdom 2, Charles River Media, 2004.

 211

[85] Livingstone, D., “Turing‟s test and believable AI in games”, Computers

in Entertainment, vol. 4, no. 1, 2006.

[86] Loyall, A. B., “Believable Agents: Building Interactive Personalities”,

Ph.D. thesis, School of Computer Science, Computer Science

Department, Carnegie Mellon University, Pittsburg, 1997.

[87] Lubberts, A. and Miikkulainen, R., “Co-Evolving a Go-Playing Neural

Network”, Genetic and Evolutionary Computation Conference

Workshop, pp. 14-19, 2001.

[88] Lucas, S. M., “Evolving a Neural Network Location Evaluator to Play

Ms. Pac-Man”, Proceedings of IEEE Symposium on Computational

Intelligence and Games, pp. 203-210, 2005.

[89] Lucas, S. M. and Kendall, G., “Evolutionary Computation and Games”,

IEEE Computational Intelligence Magazine, pp. 10-18, 2006.

[90] Magoulas, G. D., Plagianakos, V. P. and Vrahatis, M. N., “Hybrid

Methods Using Evolutionary Algorithms for On-line Training”,

Proceedings of IEEE International Conference on Neural Networks, pp.

2218-2223, 2001.

[91] Malone, T. W., “What makes things fun to learn? Heuristics for

designing instructional computer games”, Proceedings of the third ACM

SIGSMALL Symposium and the 1st SIGPC Symposium on Small

Systems, pp. 162-169, 1980.

[92] Mantere, T. and Koljonen, J., “Solving and analyzing Sudokus with

cultural algorithms”, Proceedings of IEEE Congress on Evolutionary

Computation, pp. 4053-4060, 2008.

[93] Mateas, M., “An Oz-Centric Review of Interactive Drama and

Believable Agents”, Technical Report CMU-CS-97-156, School of

Computer Science, Carnegie Mellon University, Pittsburg, United States,

1997.

[94] Miikkulainen, R., Bryant, B. D., Cornelius, R., Karpov, I. V., Stanley, K.

O. and Yong, C. H., “Computational Intelligence in Games”,

Computational Intelligence: Principles and Practice, IEEE

Computational Intelligence Society, pp. 155-191, 2006.

[95] Miles, J. D. and Tashakkori, R., “Improving the Believability of Non-

Player Characters in Simulations”, Proceedings of the second

Conference on Artificial General Intelligence, pp. 1-2, 2009.

[96] Miller, B. L. and Goldberg, D. E., “Genetic Algorithms, Selection

Schemes, and the varying Effects of Noise”, Evolutionary Computation,

vol. 4, no. 2, pp. 113-131, 1996.

 212

[97] Moraglio, A. and Togelius, J., “Geometric Particle Swarm Optimization

for the Sudoku Puzzle”, Proceedings of the Annual Conference on

Genetic and Evolutionary Computation, pp. 118-125, 2007.

[98] Muñoz, J., Gutierrez, G. and Sanchis, A., “Controller for TORCS

created by imitation”, IEEE Symposium on Computational Intelligence

and Games, pp. 271-278, 2009.

[99] Murray, J. H., “Hamlet on the Holodeck”, The Free Press, New York,

United States, 1997.

[100] Musliner, D. J., Hendler, J. A., Agrawala, A. K., Durfee, E. H.,

Strosnider, J. K. and Paul. C. J., “The Challenges of Real-Time AI”,

IEEE Computer, vol. 28, pp. 58-66, 1995.

[101] Nakashima, T., Takatani, M., Udo, M. and Ishibuchi, H., “An

evolutionary approach for strategy learning in robocup soccer”, IEEE

International Conference on Systems, Man and Cybernetics, vol. 2, pp.

2023-2028, 2004.

[102] Nakashima, T., Udo, M. and Ishibuchi, H., “A fuzzy reinforcement

learning for a ball interception problem”, Lecture Notes in Computer

Science, RoboCup 2003: Robot Soccer World Cup VII, vol. 3020, pp.

559-567, 2004.

[103] Nakashima, T., Yokota, Y., Shoji, Y. and Ishibuchi, H., “A genetic

approach to the design of autonomous agents for futures trading”,

Artificial Life and Robotics, vol. 11, no. 2, pp.145-148, 2007.

[104] Nareyek, A., “Game AI is Dead. Long Live Game AI!”, IEEE Intelligent

Systems, vol. 22, no. 1, pp. 9-11, 2007.

[105] Nitschke, G., “Co-evolution of cooperation in a Pursuit Evasion Game”,

Proceedings of IEEE Conference on Intelligent Robots and Systems, pp.

2037-2042, 2003.

[106] Olesen, J. K., Yannakakis, G. N. and Hallam, J., “Real-time challenge

balance in an RTS game using rtNEAT”, Proceedings of IEEE

Symposium on Computational Intelligence and Games, pp. 87-94, 2008.

[107] Ong. C. S., Quek, H. Y., Tan, K. C. and Tay, A., “Discovering Chinese

Chess strategies through co-evolutionary approaches”, Proceedings of

IEEE Symposium on Computational Intelligence and Games, pp. 360-

367, 2007.

[108] Parker, G. B. and Parker, M., “Evolving Parameters for Xpilot Combat

Agents”, Proceedings of IEEE Symposium on Computational

Intelligence and Games, pp. 238-243, 2007.

[109] Pedersen, C., Togelius, J. and Yannakakis, G. N., “Modeling Player

Experience in Super Mario Bros”, Proceedings on IEEE Symposium on

Computational Intelligence and Games, pp. 132-139, 2009.

 213

[110] Pedersen, C., Togelius, J. and Yannakakis, G. N., “Optimizing of

platform game levels for player experience”, Proceedings of Artificial

Intelligence and Interactive Digital Entertainment (AIIDE‟09), 2009.

[111] Pedersen, C., Togelius, J. and Yannakakis, G. N., “Modeling Player

Experience for Content Creation”, IEEE Transactions on Computational

Intelligence and AI in Games, vol. 2, no. 1, pp. 54-67, 2010.

[112] Perez, D., Recio, G., Saez, Y. and Isasi, P., “Evolving a Fuzzy

Controller for a Car Racing Competition”, Proceedings of IEEE

Symposium on Computational Intelligence and Games, pp. 263-270,

2009.

[113] Plant, W. R., Schaefer, G. and Nakashima, T., “An Overview of Genetic

Algorithms in Simulation Soccer”, Proceedings of IEEE Congress on

Evolutionary Computation, pp. 3897-3904, 2008.

[114] Ponsen, M., Muñoz-Avila, H., Spronck, P. and Aha, D. W.,

“Automatically Generating Game Tactics via Evolutionary Learning”,

AI Magazine, vol. 27, no. 3, pp. 75-84, 2006.

[115] Ponsen, M. and Spronck, P., “Improving Adaptive Game AI with

Evolutionary Learning”, Proceedings of Computer Games: Artificial

Intelligence, Design and Education, pp. 389-396, 2004.

[116] Priesterjahn, S., Kramer, O., Weimer, A. and Goebels, A., “Evolution of

Human-Competitive Agents in Modern Computer Games”, Proceedings

of IEEE Congress of Evolutionary Computation, pp. 777-784, 2006.

[117] Priesterjahn, S. and Eberling, M., “Imitation Learning in Uncertain

Environments”, Proceedings of the tenth International Conference on

Parallel Problem Solving from Nature, pp. 950-960, 2008.

[118] Prieto, C. E., Nino, F. and Quintana, D., “A goalkeeper strategy in robot

soccer based on Danger Theory”, Proceedings of IEEE Congress on

Evolutionary Computation, pp. 3443-3447, 2008.

[119] Quek, H. Y. and Goh, C. K., “Adaptation of Iterated Prisoners Dilemma

Strategies by Evolution and Learning”, Proceedings of IEEE

Symposium on Computational Intelligence and Games, pp. 40-47, 2007.

[120] Quek, H. Y., Tan, K. C., and Tay, A., “Public Goods Provision: An

Evolutionary Game Theoretic Study under Asymmetric Information”,

IEEE Transactions on Computational Intelligence and AI in Games, vol.

1, no. 2, pp. 105-120, 2009.

[121] Ramsey, M., “Designing a Multi-Tier AI Framework”, AI Game

Programming Wisdom 2, Charles River Media, 2003.

[122] Ranganathan, A. and Koenig, S., “A Reactive Robot Architecture with

Planning on Demand”, Proceedings of IEEE International Conference

on Intelligent Robots and Systems, pp. 1462-1468, 2003.

 214

[123] Rani, P., Sarkar, N. and Liu, C., “Maintaining Optimal Challenge in

Computer Games Through Real-Time Physiological Feedback”,

Proceedings of the eleventh International Conference on Human

Computer Interaction, pp. 184-192, 2005.

[124] Rechenberg, I., Evolutionsstrategie ‟94 Stuttgart, Germany: Frommann-

Holzboog, 1994.

[125] Ren, J., McIsaac, K. A., Patel, R. V. and Peters, T. M., “A Potential

Field Model Using Generalized Sigmoid Functions”, IEEE Transactions

on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 2,

pp. 477-484, 2007.

[126] Richards, N., Moriarty, D. E. and Miikkulainen, R., “Evolving Neural

Networks to Play Go”, Proceedings of the seventh International

Conference on Genetic Algorithms, pp. 768-775, 1998.

[127] Riedl, M. O. and Stern, A., “Believable Agents and Intelligent Story

Adaptation for Interactive Storytelling”, Proceedings of the third

International Conference on Technologies for Interactive Digital

Storytelling and Entertainment, 2006.

[128] Riedl, M. O. and Young, R. Y., “An objective character believability

evaluation procedure for multi-agent story generation systems”,

Proceedings of the fifth International Working Conference on

Intelligence Virtual Agents, pp. 278-291, 2005.

[129] Rizzo, P., Veloso, M., Miceli, M. and Cesta, A., “Goal-Based

Personalities and Social Behaviors in Believable Agents”, Applied

Artificial Intelligence, vol. 13, pp. 239-272, 1999.

[130] Rosin, C. D. and Belew, R. K., “New methods for competitive

coevolution”, Evolutionary Computation, vol. 5, no. 1, pp. 1-29, 1997.

[131] Runarsson, T. P. and Lucas, S. M., “Coevolution Versus Self-Play

Temporal Difference Learning for Acquiring Position Evaluation in

Small-Board Go”, IEEE Transactions on Evolutionary Computation, vol.

9, no. 6, pp. 628-640, 2005.

[132] Sánchez-Ruiz, A., Lee-Urban, S., Muñoz-Avila, H., Díaz-Agudo, B. and

González-Calero, P., “Game AI for a Turn-based Strategy Game with

Plan Adaptation and Ontology-based retrieval”, Proceedings of the

ICAPS Workshop on Planning in Games, 2007.

[133] Sato, Y. and Kanno, R., “Event-driven Hybrid Learning Classifier

Systems for Online Soccer Games”, Proceedings of IEEE Congress on

Evolutionary Computation, vol. 3, pp. 2091-2098, 2005.

[134] Sato, Y., Suzuki, R. and Akatsuka, Y., “Formation Dependency in

Event-driven Hybrid Learning Classifier Systems for Soccer Video

 215

Games”, Proceedings of IEEE Congress on Evolutionary Computation,

pp. 1831-1838, 2008.

[135] Schadd, F., Bakkes, S. and Spronck, P., “Opponent Modeling in Real-

Time Strategy Games”, Proceedings of the eighth International

Conference on Intelligent Games and Simulation, pp. 61-68, 2007.

[136] Schaeffer, J., “One Jump Ahead: Challenging Human Supremacy in

Checkers”, Springer-Verlag, 1997.

[137] Schaeffer, J., “A gamut of games”, Artificial Intelligence Magazine, vol.

22, no. 3, pp. 29-46, 2001.

[138] Scheutz, M. and Andronache, V., “Architecture Mechanisms for

Dynamic Changes of Behavior Selection Strategies in Behavior-Based

Systems”, IEEE Transactions on Systems, Man, and Cybernetics – Part

B: Cybernetics, vol. 34, no. 6, pp. 2377-2395, 2004.

[139] Schrum, J. and Miikkulainen, R., “Evolving multi-model behavior in

NPCs”, Proceedings of Symposium on Computational Intelligence and

Games, pp. 325-332, 2009.

[140] Scott, B., “The Illusion of Intelligence”, AI Game Programming

Wisdom, Charles River Media, pp. 16-20, 2002.

[141] Sengers, P., “Do the thing right: An architecture for action expression”,

Proceedings of the Second International Conference on Autonomous

Agents, pp. 24-31, 1998.

[142] Sharabi, S. and Sipper, M., “GP-Sumo: Using genetic programming to

evolve sumobots”, Genetic Programming and Evolvable Machines, vol.

7, no. 3, pp. 211-230, 2006.

[143] Sinclair, M. C., “Evolutionary Algorithms for Optical Network Design:

A Genetic-algorithm/heuristic hybrid approach”, Ph.D. thesis,

University of Essex, 2001.

[144] Spronck, P., Sprinkhuizen-Kuyper, I. and Postma, E., “Online

Adaptation of Game Opponent AI in Simulation and in Practice”,

Proceedings of the fourth International Conference on Intelligence

Games and Simulation, pp. 93-100, 2003.

[145] Spronck, P., Sprinkhuizen-Kuyper, I. and Postma, E., “Difficulty scaling

of Game AI”, 5th International Conference Intelligent Games and

Simulation, pp. 33-37, 2004.

[146] Spronck, P., “A Model for Reliable Adaptive Game Intelligence”,

Proceedings of International Joint Conferences on Artificial Intelligence

Workshop on Reasoning, Representation, and Learning in Computer

Games, pp. 95-100, 2005.

 216

[147] Spronck, P., “Adaptive Game AI”, Ph.D. thesis, Maastricht University

Press, 2005.

[148] Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I. and Postma, E.,

“Adaptive game AI with dynamic scripting”, Machine Learning, vol. 63,

no. 3, pp. 217-248, 2006.

[149] Stanley, K. O. and Miikkulainen, R., “Efficient Reinforcement Learning

through Evolving Neural Network Topologies”, Proceedings of the

Genetic and Evolutionary Computation Conference, pp. 569-577, 2002.

[150] Stanley, K. O. and Miikkulainen, R., “Evolving neural networks through

augmenting topologies”, Evolutionary Computation, vol. 10, no. 2, pp.

99-127, 2002.

[151] Stanley, K. O., “Efficient evolution of neural networks through

complexification”, Ph.D. thesis, Department of Computer Sciences,

University of Texas, Austin, TX, 2004.

[152] Stanley, K. O., Bryant B. D. and Miikkulainen, R., “Real-time

neuroevolution in the NERO video game”, IEEE Transactions on

Evolutionary Computation, vol. 9, no. 6, pp. 653-668, 2005.

[153] Stanley, K. O., Bryant, B. D., Karpov I. and Miikkulainen, R., “Real-

Time Evolution of Neural Networks in the NERO Video Game”,

Proceedings of the Twenty-First National Conference in Artificial

Intelligence, pp. 1671-1674, 2006.

[154] Stone, P., Sutton, R. S. and Kuhlmann, G., “Reinforcement learning for

RoboCup-soccer keepaway”, Adaptive Behaviour, vol. 13, no. 3, pp.

165-188, 2005.

[155] Sturtevant, N., “A Comparison of Algorithms for Multi-player Games”,

Proceedings of the third International Conference on Computers and

Games, pp. 108-122, 2003.

[156] Sutton, R. S., McAllester, D., Singh, S. and Mansour, Y., “Policy

Gradient Methods for Reinforcement Learning with Function

Approximation”, Advances in Neural Information Processing Systems,

vol. 12, pp. 1057-1063, 2000.

[157] Sweetser, P., Johnson, D., Sweetser, J. and Wiles, J., “Creating engaging

artificial characters for games”, Proceedings of the second International

Conference on Entertainment Computing, pp. 1-8, 2003.

[158] Sweetser, P. and Johnson, D., “Player-Centered Game Environments:

Assessing Player Opinions, Experiences and Issues”, Entertainment

Computing, pp. 305-336, 2004.

[159] Sweetser, P. and Wiles, J., “Combining Influence Maps and Cellular

Automata for Reactive Game Agents”, Proceedings of Intelligent Data

Engineering and Automated Learning, pp. 524-531, 2005.

 217

[160] Szita, I., Ponsen, M. and Spronck, P., “Keeping Adaptive Game AI

interesting”, Proceedings of CGAMES, pp. 70-74, 2008.

[161] Tan, C. H., Ang, J. H., Tan, K. C. and Tay, A., “Online Adaptive

Controller for Simulated Car Racing”, Proceedings of IEEE Congress on

Evolutionary Computation, pp. 3635-3642, 2008.

[162] Tan, C. H., Ramanathan, K., Guan, S. U. and Bao, C., “Recursive

Hybrid Decomposition with Reduced Pattern Training”, International

Journal of Hybrid Intelligent Systems, vol. 6, no. 3, pp. 135-146, 2009.

[163] Tan, C. H., Tan, K. C. and Tay, A., “Computationally Efficient

Behaviour Based Controller for Real Time Car Racing Simulation”,

Expert Systems with Applications, vol. 37, no. 7, pp. 4850-4859, 2010.

[164] Tan, K. L, Tan, C. H., Tan, K. C. and Tay, A., “Adaptive Game AI for

Gomoku”, Proceedings of the Fourth International Conference on

Autonomous Robots and Agents, pp. 507-512, 2009.

[165] Tan, M., “Multi-agent reinforcement learning: independent vs.

cooperative agents”, Proceedings of the tenth International Conference

on Machine Learning, pp. 330-337, 1997.

[166] Tang, H., Tan, C. H., Tan, K. C. and Tay, A., “Neural Network versus

Behavior Based Approach in Simulated Car Racing Game”, Proceedings

of IEEE Workshop on Evolving and Self-Developing Intelligent

Systems, pp. 58-65, 2009.

[167] Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A.,

Diebel, J.,Fong, P., Gale, J., Halpenny, M.,Hoffmann, G.,Lau, K.,

Oakley, C.,Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C.,

Jendrossek, L. E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J.,

Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S.,

Kaehler, A., Nefian, A. and Mahoney, P., “Stanley: The Robot that Won

the DARPA Grand Challenge”, Journal of Field Robotics, vol. 23, no. 9,

pp. 661-692, 2006.

[168] Thue, D., Bulitko, V., Spetch, M. and Wasylishen, E., “Interactive

Storytelling: A Player Modelling Approach”, Proceedings of the

Artificial Intelligence and Interactive Digital Entertainment, pp. 43-48,

2007.

[169] Thue, D., Bulitko, V., Spetch, M. and Wasylishen, E., “Learning Player

Preferences to Inform Delayed Authoring”, Proceedings from AAAI

Symposium on Intelligence Narrative Technologies, pp. 158-161, 2007.

[170] Thurau, C., Sagerer, G. and Bauckhage, C., “Imitation learning at all

levels of Game-AI”, Proceedings of the International Conference on

Computer Games, Artificial Intelligence, Design and Education, pp.

402-408, 2004.

 218

[171] Togelius, J. and Lucas, S. M., “Evolving Controllers for Simulated Car

Racing”, Proceedings of IEEE Congress on Evolutionary Computation,

vol. 2, pp. 1906-1913, 2005.

[172] Togelius, J., De Nardi, R. and Lucas, S. M., “Making racing fun through

player modeling and track evolution”, Proceedings of the SAB

Workshop on Adaptive Approaches for Optimizing Player Satisfaction

in Computer and Physical Games, 2006.

[173] Togelius, J. and Lucas, S. M., “Arms races and car races”, Lecture Notes

in Computer Science, Parallel Problem Solving from Nature, vol. 4193,

pp. 613-622, 2006.

[174] Togelius, J. and Lucas, S. M., “Evolving robust and specialized car

racing skills”, Proceedings of the IEEE Congress on Evolutionary

Computation, pp. 1187-1194, 2006.

[175] Togelius, J., “Optimization, Imitation and Innovation: Computational

Intelligence and Games”, Ph.D. thesis, Department of Computing and

Electronic Systems, University of Essex, UK, 2007.

[176] Togelius, J., De Nardi, R. and Lucas, S. M., “Towards automatic

personalized content creation for racing games”, IEEE Symposium on

Computational Intelligence and Games, pp. 252-259, 2007.

[177] Togelius, J., Lucas, S. M. and De Nardi, R., “Computational Intelligence

in Racing Games”, Advanced Intelligent Paradigms in Computer Games,

vol. 71, pp. 39-69, 2007.

[178] Togelius, J. and Schmidhuber, J., “An Experiment in Automatic Game

Design”, Proceedings of IEEE Symposium on Computational

Intelligence and Games, pp. 111-118, 2008.

[179] Togelius, J. and Lucas, S. M., IEEE CEC 2007 Car Racing Competition,

http://julian.togelius.com/cec2007competition/, retrieved on 18 August

2008.

[180] Togelius, J., Lucas, S., Ho, D. T., Garibaldi, J. M., Nakashima, T., Tan,

C. H., Elhanany, I., Berant, S., Hingston, P., MacCallum, R. M.,

Haferlach, T., Gowrisankar, A. and Burrow, P., “The 2007 IEEE CEC

simulated car racing competition”, Genetic Programming and Evolvable

Machines, vol. 9, no. 4, pp. 295-329, 2008.

[181] Togelius, J., Karakovskiy, S. and Koutnik, J., “Super Mario Evolution”,

Proceedings of IEEE Symposium on Computational Intelligence and

Games, pp. 156-161, 2009.

[182] Tozour, P., “The evolution of game AI”, AI Game Programming

Wisdom, pp. 3-15, Charles River Media, Inc, 2002.

[183] Turing, A., “Computing Machinery and Intelligence”, Mind, vol. 59, no.

236, pp. 433-460, 1950.

 219

[184] Vaccaro, J. and Guest, C., “Automated Dynamic Planning and

Execution for a Partially Observable Game Model: Tsunami City Search

and Rescue”, Proceedings of IEEE Congress on Evolutionary

Computation, pp. 3686-3695, 2008.

[185] van der Werf, E. C. D., Winands, M. H. M., van den Herik, H. J. and

Uiterwijk, J. W. H. M., “Learning to predict life and death from Go

game records”, International Journal of Information Sciences, vol. 175,

no. 4, pp. 258-272, 2005.

[186] van Hoorn, N., Togelius, J. And Schmidhuber, J., “Hierarchical

controller learning in a first-person shooter”, Proceedings of IEEE

Symposium on Computational Intelligence and Games, pp. 294-301,

2009.

[187] van Hoorn, N., Togelius, J., Wierstra, D. and Schmidhuber, J., “Robust

player imitation using multiobjective evolution”, Proceedings of the

Congress on Evolutionary Computation, pp. 652-659, 2009.

[188] van Lankveld, G., Spronck, P. and Rauterberg, M., “Difficulty Scaling

through Incongruity”, Proceedings of the fourth International Artificial

Intelligence and Interactive Digital Entertainment Conference, AAAI

Press, pp. 228-229, 2008.

[189] van Lankveld, G., Spronck, P., van den Herik, H. J. And Rauterberg, M.,

“Incongruity-Based Adaptive Game Balancing”, Advances in Computer

Games, pp. 208-220, 2010.

[190] Wang, H., Gao, Y. and Chen, X., “RL-DOT: A Reinforcement Learning

NPC Team for Playing Domination Games”, IEEE Transactions on

Computational Intelligence and AI in Games, vol. 2, no. 1, pp. 17-26,

2010.

[191] Williams, R. J., “Simple Statistical Gradient-Following Algorithms for

Connectionist Reinforcement Learning”, Machine Learning, vol. 8, pp.

229-256, 1992.

[192] Xu, S. and Zhang, M., “Data Mining - An Adaptive Neural Network

Model for Financial Analysis”, Proceedings of the third International

Conference on Information Technology and Applications, pp. 336-340,

2005.

[193] Yannakakis, G. N. and Hallam, J., “Evolving Opponents for Interesting

Interactive Computer Games”, Proceedings of eighth International

Conference on the Simulation of Adaptive Behavior, pp. 499-508, 2004.

[194] Yannakakis, G. N., “AI in Computer Games: Generating Interesting

Interactive Opponents by the use of Evolutionary Computation”, Ph.D.

thesis, University of Edinburg, 2005.

 220

[195] Yannakakis, G. N. and Hallam, J., “A Generic Approach for Generating

Interesting Interactive Pac-Man Opponents”, Proceedings of IEEE

Symposium on Computational Intelligence and Games, pp. 94-101,

2005.

[196] Yannakakis, G. N. and Hallam, J., “Capturing Player Enjoyment in

Computer Games”, Studies in Computational Intelligence, vol. 71, pp.

175-201, 2007.

[197] Yannakakis, G. N., “How to Model and Augment Player Satisfaction: A

Review”, Proceedings of the first Workshop on Child, Computer and

Interaction, 2008.

[198] Yannakakis, G. N., Hallam, J. and Lund, H. H., “Entertainment capture

through heart activity in physical interactive playgrounds”, User

Modeling and User-Adapted Interaction, vol. 18, pp. 207-243, 2008.

[199] Yannakakis, G. N. and Hallam, J., “Real-time Game Adaptation for

Optimizing Player Satisfaction”, IEEE Transactions on Computational

Intelligence and AI in Games, vol. 1, no. 2, pp. 121-133, 2009.

[200] Yao., X., “Evolving artificial neural networks”, Proceedings of the IEEE,

vol. 87, no. 9, pp. 1423-1447, 1999.

[201] Yong, C. H. and Miikkulainen, R., “Coevolution of Role-Based

Cooperation in Multi-Agent Systems”, Technical Report AI07-338,

Department of Computer Science, University of Texas, Austin, 2007.

[202] Zitzler, E., Laumanns, M. and Thiele, L., “SPEA2: improving the

strength Pareto evolutionary algorithm,” Technical Report 103,

Computer Engineering and Networks Laboratory (TIK), Swiss Federal

Institute of Technology (ETH) Zurich, Switzerland, 2001.

