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Summary

Multipath fading, shadowing, path-loss and time-variation are important phenomena

in wireless communications. The technique of Orthogonal Frequency Division Multi-

plexing (OFDM) has been widely used to combat these detrimental effects in the past

decades. Orthogonal Frequency Division Multiple Access (OFDMA) is a multiuser ver-

sion of OFDM digital modulation, which is currently adopted in many international stan-

dards and is also a popular candidate for multiple access in future wireless systems.

OFDMA is capable of allowing different subcarriers to be individually assigned to dif-

ferent users so as to enable simultaneous low data-rate transmissions and to achieve di-

verse Quality-of-Service (QoS) requirements. In addition, OFDMA can exploit both fre-

quency domain and multiuser diversities to enhance the attainable system capacity. With

dynamic resource allocation designed for OFDMA systems, the spectrum efficiency is

expected to be further improved.

The main objective of this thesis is to devise efficient algorithms for OFDMA-

based resource allocation in wireless communication systems, with joint consideration

of system capacity, user fairness, low complexity and spectrum sharing, while trying to

achieve controllable tradeoff among these concerns.

Chapter 1 gives a brief introduction to wireless communication systems and pro-

vides the fundamental principle in OFDMA-based Radio Resource Allocation (RRA). In

Chapter 2, a typical downlink OFDMA system is presented first. Then, two sub-issues on

partial feedback Channel State Information (CSI) and adjustable QoS are discussed via

v



newly developed methods, which lead to significantly reduced CSI and satisfy diverse

QoS requirements, respectively.

In Chapter 3, different utility-based resource allocation schemes are investigated

for Multiple Input Multiple Output (MIMO) - OFDMA systems. The optimality of the

system is reviewed, and two bargaining solutions are utilized to formulate efficient algo-

rithms for flexibly controlling user fairness.

Chapter 4 jointly considers the direct and relaying paths in a relay-assisted OFDMA

cellular system. In this system, a novel implementation adopting full-duplex relaying is

proposed for relay-destination selection, subcarrier and power allocation. This imple-

mentation has significantly improved spectrum efficiency as compared to conventional

half-duplex relaying mode. In addition, it enables effective controllability on the tradeoff

between system capacity and user fairness.

In Chapter 5, we study two sub-issues for OFDMA-based Cognitive Radio (OCR)

systems. Firstly, a novel spectrum sharing model is proposed for OCR. This model can

dynamically allocate radio resources to secondary users with the cooperation of primary

users so that the capacity of secondary network is maximized and the co-channel interfer-

ence is minimized. The effect of Interference Temperature Limit (ITL) on the capacity of

secondary network is also investigated, which shows that a properly selected ITL value

can balance the performance between the primary and secondary networks. Secondly,

with a fairness concern, Accessible Interference Temperature (AIT) is exploited to for-

mulate an effective implementation for a simplified OCR model.

In the last Chapter, the contributions made in this thesis are summarized, and the

possible extensions and future research are briefly outlined.

vi
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Chapter 1

Introduction

In this chapter, a brief description of wireless communication systems and traditional

Radio Resource Allocation (RRA) techniques is first given, which is followed by the

fundamental principle of Orthogonal Frequency Division Multiple Access (OFDMA)

and the motivations of the studies in this thesis for OFDMA-based RRA.

1.1 Evolution of wireless communication systems

Due to the fast development of digital signal processing and very large scale integrated

circuits, wireless communication systems have been experiencing an explosive growth

in the past decades. Cellular systems and Wireless Local Area Network (WLAN) are the

most successful wireless applications nowadays, which are also important elements for

globally ubiquitous wireless connections.

The birth of the cellular concept was conceived in the 1970s at Bell laboratories.

The First Generation (1G) cellular system, known as Advanced Mobile Phone System

(AMPS), was deployed in the United States in the 1980s, adopting Frequency Modula-

tion (FM) technology with Frequency Division Multiple Access (FDMA). Following the

success of AMPS, the European Total Access Communication System (E-TACS) was
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then deployed in Europe. However, due to the capacity limitation of 1G cellular systems,

they were phased out by the Second Generation (2G) cellular systems in the early 1990s.

There exist three major 2G standards, Interim Standard (IS)-95, IS-136 in the United

States, and Global System for Mobile (GSM) in Europe. These standards are still widely

used nowadays to provide basic voice services. The enhanced versions of 2G standards

with higher data-rate are known as IS-95 High Data Rate for IS-95, IS-136 High Speed

for IS-136, and General Packet Radio Service (GPRS) and Enhanced Data rates for GSM

Evolution (EDGE) for GSM. These improved 2G cellular systems are usually referred to

as 2.5G systems [1].

In recent years, the Third Generation (3G) cellular systems have been deployed

globally, while beyond-3G systems adopting Multiple Input Multiple Output (MIMO)

- OFDMA physical layer are under development. Similar to 2G systems, 3G systems

consist of three global standards, which are Wideband Code Division Multiple Access

(WCDMA), CDMA2000, and Time Division - Synchronous CDMA (TD-SCDMA) [1].

Specifically, WCDMA Frequency Division Duplex (FDD) and Time Division Duplex

(TDD) standards have been adopted in Europe and China, respectively, while CDMA2000

has been deployed in Korean and America. Since 2009, TD-SCDMA system has been

launched in China, while its deployment in some European countries are being carried

out.

Another well-known wireless system follows the IEEE 802.11 standard for wire-

less local area networks, which was originally designed for 1-2 Mbps traffic in the 1990s,

and now has evolved to support 600 Mbps in 802.11n and is being considered as a high-

throughput (up to 1 Gbps) wireless interface for the nomadic scenarios in the next gener-

ation of wireless systems [2]. In general, WLAN has experienced four generations. The

first WLAN architecture adopts stand-alone access, where some access points are used

to deliver wireless signals between mobile devices and a wired network. The second

generation WLAN has a centralized architecture with the consideration of network scal-
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ability. Then, an optimized WLAN architecture is formulated to significantly increase

the physical transmission data-rate in 802.11n standard, which defines the third genera-

tion WLAN architecture. Since the wired and wireless networks are managed separately

in all the previous generations, a unified WLAN architecture is thus being developed to

truly merge both wired and wireless LANs together to formulate the fourth generation

WLAN systems.

Furthermore, the Long Term Evolution (LTE) towards the Fourth Generation (4G)

cellular systems is now under development globally. Also, exploiting advanced MIMO-

OFDMA techniques, Worldwide Inter-operability for Microwave Access (WiMAX) [3]

systems have been used in many countries to form metropolitan-wide broadband access.

In recent years, a new paradigm for universal spectrum sharing is established based on

using Cognitive Radio (CR) techniques. One current CR application is the Wireless

Reginal Area Network (WRAN), which corresponds to the IEEE 802.22 standard [4].

1.2 Basic techniques of radio resource allocation

Many conventional techniques have been exploited to achieve Radio Resource Alloca-

tion (RRA) in wireless communication systems. These techniques involve strategies and

algorithms for controlling transmit power, channel allocation, modulation scheme, and

error coding. The main objective is to make the best use of the limited radio resources to

increase spectrum efficiency as much as possible [5].

Multiple access method is one essential element in the implementation of RRA

schemes, which can be classified into several categories. Time Division Multiple Access

(TDMA) is a conventional technique that allows several users to share the same fre-

quency band via transmitting the signals over different time slots. Specifically, different

users can transmit in succession, one after the other, with each user using his own time

slots. Frequency Division Multiple Access (FDMA) is another fundamental multiple ac-
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cess technique via using channelization. In particular, FDMA assigns each user one or

several frequency bands or sub-channels for signal transmission [6].

Apart from TDMA and FDMA, Code Division Multiple Access (CDMA) enables

several transmitters to send information simultaneously over a single communication

channel. To properly multiplex different users, CDMA employs the spread-spectrum

technology and pseudo-random codes [5]. By exploiting multiple antennas, Space Di-

vision Multiple Access (SDMA) is able to offer significant performance improvement

as compared with single-antenna systems [6]. Meanwhile, SDMA can create parallel

spatial channels to improve system capacity via spatial multiplexing or diversity.

RRA can also be classified into static or dynamic allocation schemes [6]. To be

specific, static RRA such as FDMA and TDMA are fixed allocation schemes, which are

widely used in many traditional systems such as 1G or 2G cellular systems. On the other

hand, the dynamic RRA schemes can adaptively adjust system parameters, according

to the traffic load, user positions, and Quality-of-Service (QoS), so as to achieve better

spectrum utilization as compared with fixed allocation schemes.

It is also known that some RRA schemes are centralized, where the Base Stations

(BSs) and users are managed by a central controller. Meanwhile, some schemes are

formulated as distributed implementations, where autonomous algorithms are used in

mobile users and BSs with coordinated information exchange [7].

1.3 Fundamental principle of OFDMA

In typical OFDMA systems, different numbers of subcarriers can be assigned to differ-

ent users so as to achieve diverse QoS, which is equivalent to serving each user with the

requested radio resources [6]. This fundamental principle of OFDMA is illustrated in

Fig.1.1. Generally, as studied in [8], OFDMA can exploit both frequency-domain diver-

sity and multiuser diversity to improve the attainable system throughput and spectrum
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Fig. 1.1: Typical OFDMA structure and simplification for resource allocation.

efficiency.

In this thesis, the subcarriers used as pilots, as shown in the upper part of Fig.1.1,

are not considered for simplicity. This means that the RRA schemes proposed in this

thesis are only applied to the effective subcarriers that practically carry data, which is il-

lustrated by the lower part of Fig.1.1 for an interleaved OFDMA without pilots. With this

simplification, dynamic user-to-subcarrier assignment can enable better spectrum utiliza-

tion than fixed assignment, based on the feedback Channel State Information (CSI). Note

that, in our studies, the CSI means the set of channel gains of the transmission links in a

system.

As shown in Fig.1.21, multiuser diversity is the reason for the popularity of ex-

ploiting OFDMA resource allocation in wireless systems. To be specific, multiuser diver-

sity allows the overall system throughput to be optimized via allocating radio resources

to the users that can make the best use of these resources [6]. As demonstrated in Fig.1.2,

different users may have mutually independent channel attenuations over different sub-

1Note that this figure is cited from [7] (Fig.3 in this reference).
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Fig. 1.2: Principle of multiuser diversity and OFDMA.

carriers. For example, the dark and light dashed curves denote the channel gains of users

1 and 2, respectively. A deep fade may affect several subcarriers of one particular user.

However, it is quite unlikely for one subcarrier to be in a deep fade for all users. As a

result, OFDMA can avoid the subcarrier in a deep fade to be allocated to one user, which

can be easily observed from the bottom diagram in Fig.1.2 with interleaved subcarrier

allocation for the two users.

1.4 Motivations in OFDMA-based resource allocation

The main allocation issue in OFDMA-based resource allocation is to jointly optimize

subcarrier scheduling, power allocation over each subcarrier, user fairness2, and other

system design metrics such as Bit Error Rate (BER), minimum requested data-rate of

each user, and implementation complexity. This joint optimization can be either for

2This metric is usually expressed by a data-rate distribution of all users, which generally indicates the
user fairness in terms of data-rates of users in a system.
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downlink or uplink signal transmission in wireless networks, and the aforementioned

system design metrics are sometime conflicting in nature. In traditional OFDMA-based

resource allocation schemes, only one design metric, saying, system capacity or user

fairness, is emphasized without considering the other metrics at the same time. This ob-

servation motivates the studies in this thesis for various OFDMA-based wireless systems

with a more balanced performance over system capacity, user fairness, implementation

complexity as well as spectrum sharing. In the rest of this section, more specific motiva-

tions of our studies in this thesis are described with brief reviews of related works.

For Single Input Single Output (SISO) - OFDMA resource allocation, a large

number of schemes have been proposed in the past decade. The authors in [8] presented

a joint subcarrier, bit, and power allocation algorithm with the objective to minimize the

total transmit power at the BS subject to BER and data-rate constraints. This was ini-

tially discussed as a problem of dynamic OFDMA resource allocation in the downlink.

However, this pioneering study has one crucial limitation, that of heavy computational

complexity, which makes it not applicable to real-time implementations. Thus, in recent

years, many algorithms have been investigated to reduce the implementation complexity

[9], [10]. On the other hand, the problem of maximizing total system capacity with a

proportional fairness3 constraint was firstly studied in [11], which was later extended in

[9], [12]. A low complexity algorithm based on [11] has been proposed to obtain higher

spectrum efficiency in [13], where the relaxed fairness constraint is shown to be more fea-

sible than the algorithm in [11]. As further investigated in [9], a priority-based sequential

scheduling criteria was demonstrated to obtain even higher system capacity than those

achieved in [11], [13] at the cost of severely losing proportional fairness among users.

Nevertheless, all these traditional algorithms for downlink resource allocation either ad-

here to enhance user fairness or to enhance system capacity. In many applications, fair-

ness and capacity should be considered simultaneously. Hence, it may be possible to

3This proportional fairness allows each user to obtain a fraction of the overall system capacity, and its
definition is described in Page 40 in Chapter 3.
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formulate some algorithms to trade off between these two metrics for SISO-OFDMA

systems, which is also the motivation behind the studies in Chapter 2 [14], [15], [16].

Multiple Input Multiple Output (MIMO) techniques enable improvement in phys-

ical layer performance of modern wireless communication systems as compared with

single-antenna systems [17]. In MIMO systems, multiple antennas are used at both the

transmitter and receiver to utilize space diversity for enhanced spectrum efficiency. Com-

bined with OFDMA, MIMO-OFDMA has been demonstrated as the most promising

approach for high data-rate wireless networks and has been considered in many interna-

tional standards for broadband communications, including 802.16e [3] and 802.22 [4].

Although many dynamic resource allocation algorithms [7], [18] have been proposed

to adaptively allocate radio resources to users in MIMO-OFDMA systems, these algo-

rithms seldom consider user fairness or do not have a flexible control on the data-rate

distribution. As a result, we are motivated to formulate some low-complexity implemen-

tations for MIMO-OFDMA resource allocation in Chapter 3, with a balance between

user fairness and system capacity [19].

Recently, fixed or mobile relays are exploited in cellular systems to assist signal

transmission [20]. The signals are usually transmitted over multiple Relay Stations (RSs)

from the source node to the destination node, resulting in the so-called Mobile Multi-hop

Relay (MMR). This MMR technique can be used to extend network coverage and im-

prove system capacity at the same time [21]. The multi-hop feature of MMR enables

each destination node to combine the signals received from all the previous nodes to im-

prove system performance [22]. In conventional multi-hop relaying systems, the direct

path is usually ignored since it is assumed that the destination node is far away from the

source node [23]. However, in a cellular system with some RSs deployed, users may not

be always far from the BS, and the direct path may be strong enough to carry some data.

Therefore, the direct path should not be simply ignored in cellular systems. With inde-

pendent sub-channels over individual hops, the conventional relaying mode enables each
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RS to transmit signals in a full-duplex manner. The authors in [24] initially investigated a

joint direct and relaying path scenario for uplink OFDMA systems. Subsequently, many

studies for relay-assisted OFDMA systems have been presented [25]. For simplicity of

system implementation, each RS normally adopts a half-duplex transmission protocol to

avoid interference since the same subcarrier is used in two successive hops of the relaying

path [24]. A novel implementation is proposed in [26] to make the user node commu-

nicate with the BS either through direct path or half-duplex relaying path intelligently.

With these in mind, it might be worthwhile to formulate new system models that jointly

consider direct and relaying paths through using full-duplex RSs and dynamic channel

switching mechanisms. This is the motivation behind Chapter 4 [27], [28].

Spectrum sharing methods can be applied to significantly improve spectrum effi-

ciency in wireless systems, and stimulate a new system design paradigm via using Cog-

nitive Ratio (CR) techniques for the next generation of wireless networks. Spectrum un-

derlay and overlay techniques are two basic forms of Cognitive Radio Networks (CRNs)

[29]. In a typical CRN, Primary Users (PUs, or called licensed users) should be protected

when Secondary Users (SUs, or called unlicensed users) access the spectrum. Specifi-

cally, in spectrum underlay, the Interference Temperature Limit (ITL) is used to constrain

the received interference level at PUs as well as the transmitting power at SUs. On the

other hand, spectrum overlay allows SUs to opportunistically access the radio resources

owned by PUs if the corresponding frequency band is not being used. The transmission

opportunities are usually detected by spectrum sensing techniques [30], [31]. Recently,

Niyato presents a series of pioneering studies on market-equilibrium-based approaches

for understanding the economic behavior of users in CR systems [32], [33], [34]. How-

ever, dynamic spectrum sharing model with interference control has not been well stud-

ied in the literature. In addition, the practical application of applying ITL into CR-based

cellular systems still remains open. Thus, the practical implementations of OFDMA-

based Cognitive Radio (OCR) will be discussed in Chapter 5, where we are motivated to
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propose schemes for efficient OCR interference control with low complexity.

1.5 Objectives and significance

With the motivations given by the previous section, the main objective of this thesis can

be summarized as devising efficient algorithms for Orthogonal Frequency Division Mul-

tiple Access (OFDMA) - based resource allocation in wireless communication systems,

with joint consideration of system capacity, user fairness, low complexity and spectrum

sharing, while trying to achieve controllable tradeoff among these concerns.

The results that will be presented in this thesis may contribute to design efficient

algorithms for OFDMA-based resource allocation in systems such as Single Input Single

Output (SISO) - OFDMA, Multiple Input Multiple Output (MIMO) - OFDMA, OFDMA

relaying and OFDMA-based Cognitive Radio (OCR). To be specific, the significance of

this thesis is briefly described as follows:

• Propose a partial feedback Channel State Information (CSI) mechanism and present

a method to achieve adjustable Quality-of-Service (QoS) for SISO-OFDMA sys-

tems.

• Extend the SISO-OFDMA resource allocation to MIMO-OFDMA scenario via

using utility-based bargain solutions, which demonstrate flexible controllability on

user fairness via bargaining powers.

• Propose a full-duplex relaying model to enhance spectrum efficiency for OFDMA-

based relaying.

• Propose a novel spectrum sharing model for OCR, and formulate an effective im-

plementation via the introduced accessible interference temperature.

Note that the investigated problems in this thesis mainly focus on physical and

Media Access Control (MAC) layers in a vertically layered system profile, as, for ex-
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ample, given by the Open Systems Interconnection (OSI) seven-layer model [35]. As a

result, some relevant issues in the upper layers are beyond the scope of this thesis. In

addition, while per-subcarrier scheduling and power allocation over each subcarrier are

studied for OFDMA-based systems, we do not consider resource allocation via some

advanced antenna techniques such as Space Division Multiple Access (SDMA) or beam-

forming [5], [36]. It is also worthwhile to note that this thesis is organized in a topic-

based manner, with the above four points discussed in Chapters 2 to 5, respectively.
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Chapter 2

Resource allocation for SISO-OFDMA

In this chapter, the general principle of resource allocation in a typical Single Input Single

Output (SISO) - OFDMA system is presented in the first section. Then, two sub-issues

for partial feedback Channel State Information (CSI) and adjustable Quality-of-Service

(QoS) are studied via the proposed schemes.

2.1 Typical downlink system model

Fig. 2.1: Typical downlink OFDMA system model with K users.

Fig.2.1 shows the general principle of downlink OFDMA resource allocation for

K users, where k (k ∈ {1, 2, ..., K}) indicates one particular user. Specifically, the Base
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Station (BS) utilizes the instantaneous feedback Channel State Information (CSI) via

channel estimation to make resource allocation decisions. Then, these decisions are used

to perform a conventional OFDM modulation [6] for each user at the transmitter, which

corresponds to modulating the bit data of each user dk to be the symbol data Xk through a

subcarrier-power-bit allocation block, as given in Fig.2.1. After performing Inverse Fast

Fourier Transform (IFFT) and adding the cyclic prefix for OFDM symbols, a standard

OFDM signal transmission over different channel conditions, denoted as Hk, is carried

out. Then, the users decode the received data respectively after performing Fast Fourier

Transform (FFT).

For various resource allocation problems formulated from Fig.2.1, many solutions

have been proposed in the literature [6], [11], [37]. However, two issues have not been

well studied, one is to effectively reduce the maintained CSI at the BS and the other one

is to flexibly adjust data-rate distribution according to the specific requirement of each

user. As a result, this chapter provides two solutions with low complexity for these two

issues, respectively.

To simplify the system modeling, the following assumptions are adopted in the

following two sections: Each subcarrier for each user experiences independent fading;

The subcarriers are not shared by different users in current system setup1; The considered

system suffers a slowly time-varying frequency selective Rayleigh fading, which means

that the channel is constant during one symbol transmission; The BS collects full or

partial CSI2 via a dedicated feedback channel, while these channel estimates can be used

to make resource allocation decisions at the BS without delay.

1The spectrum sharing problem for such a system will be discussed in Chapter 5.
2Full CSI means the full set of channel gains, while partial CSI means a sub-set of full CSI.
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2.2 Partial feedback channel state information

The objective in this section is to maximize the total system capacity with constraints on

total available power, Bit Error Rate (BER) and Proportional Fairness (PF) while using a

novel partial feedback CSI mechanism.

2.2.1 Review and motivation

As given in [38], [39], it is usually assumed that each user perfectly knows his channel

conditions and there exists a reliable mechanism to feedback all the CSI to the BS so that

adaptive resource allocation can be performed. This full CSI feedback mechanism may

not be practically implementable since the maintained amount of CSI becomes consider-

able as the number of users increases. In addition, as observed in [11], only a few good

subcarriers with strong channel gains are actually allocated to one user even though full

CSI of that user is available at the BS, which is mainly due to the multiuser diversity.

This phenomenon motivates us to shrink the amount of feedback CSI of each user to a

small portion of full CSI with relatively strong channel gains, which is to ask each user

to merely feedback the CSI of some most preferable subcarriers having higher probabil-

ities to be allocated to that user at the BS. Although some studies have investigated how

to efficiently utilize partial CSI in the literature, however, these methods mainly focus

on non-accurate channel estimation [39] or average channel gain [40], which is different

from the mechanism proposed in this section. Recently, we find that the study [10] has

given a similar idea saying opportunistic feedback over downlink OFDMA networks,

nevertheless, the study [10] does not consider user fairness as our scheme in this section.

2.2.2 Problem formulation and opportunistic feedback example

Without loss of generality, the system is assumed to have K users and N subcarriers

(SCs), the channel gain of user k on subcarrier n is denoted as gkn, and pkn is the
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power on subcarrier n assigned to user k, where n ∈ Γ = {1, . . . , N} and k ∈ ∆ =

{1, . . . , K} . Also, the noise power spectral density is assumed to be z0 and the total

bandwidth of all subcarriers is B. Thus, each subcarrier occupies a spectrum W = B/N ,

the additive white noise power on each subcarrier is v0 = z0W with the associated re-

ceived Signal-to-Noise Ratio (SNR) being γkn = pkng2
kn/v0. When using M-ary Quadra-

ture Amplitude Modulation (MQAM) with Gray bit mapping [41], the Bit Error Rate

(BER) can be approximated as a function of the received SNR γkn, which is given by

BERMQAM(γkn) ≈ 0.2 exp[−1.5γkn/(2ckn − 1)], (2.1)

for γkn ≥ 4 and BER ≤ 10−3. Then,

ckn = log2 (1 + γkn/Ψ) = log2(1 + pknHkn), (2.2)

where Ψ = − ln(5BER)/1.5 is a constant SNR gap [41] and Hkn = g2
kn/(v0Ψ) is the

effective channel-to-noise gain of user k on subcarrier n with pknHkn being the effective

SNR. Note that Hkn serves as the CSI of user k on subcarrier n in this section, and the

matrix H (K ×N ) for making subcarrier allocation is as follows

H =




H11 H12 · · · H1N

H21 H22 · · · H2N

...
... . . . ...

HK1 HK2 · · · HKN




. (2.3)

The overall data-rate of user k is then given by

rk = W
N∑

n=1

ρknlog2(1 + pknHkn). (2.4)

Based on the problem studied in [11], the total system capacity with proportional

fairness can be formulated as

max
ρkn,pkn

W
K∑

k=1

N∑
n=1

ρknlog2(1 + pknHkn) (2.5)
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subject to
K∑

k=1

ρkn = 1 ∀n, with ρkn ∈ {0, 1} ∀k, n (2.6)

K∑

k=1

N∑
n=1

ρknpkn ≤ Ptot, with pkn ≥ 0 ∀k, n (2.7)

r1

rk

=
ϕ1

ϕk

, k = 2, 3, ..., K (2.8)

where ρkn is the subcarrier allocation indicator that means ρkn = 1 if and only if sub-

carrier n is assigned to user k, otherwise ρkn = 0. In addition, Ptot is the total power at

the BS and ϕk, k ∈ ∆ are some pre-determined positive values to ensure the proportion-

alities among users. Specifically, the subcarrier allocation constraint (2.6) ensures that

each subcarrier can only be assigned to one user, the power constraint (2.7) limits the

transmit power at the BS, and the proportional fairness constraint (2.8) gives the desired

normalized rate proportion3 of each user

αk = ϕk

/
K∑

k=1

ϕk. (2.9)

The optimization problem in (2.5) is known as a binary integer programming

problem, which is generally NP-hard and difficult to obtain the optimal solution [42].

As a result, some suboptimal solutions are proposed for this problem in [11] based on

the full knowledge of CSI at the BS. However, the amount of feedback CSI becomes

considerable and reduces the feasibility of these existing algorithms, especially when the

numbers of users and subcarriers increase. This is also a common and challenging issue

in centralized OFDMA resource allocation [38]. Note that, without considering the fair-

ness constraint (2.8), the optimal solution to the problem (2.5) is demonstrated in [43],

saying that the capacity of single-hop OFDMA system is maximized when subcarriers

are assigned to users with the highest channel gains and power is allocated to subcarri-

ers through water-filling algorithm [44]. In addition, the generalized weighted sum-rate
3In the simulation section, we set the value of each ϕk to be an integer value, while αk is defined to

express the desired fraction of the overall system capacity for user k.
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TABLE 2.1: Example for the feasibility of partial feedback CSI

SC 1 SC 2 SC 3 SC 4
user 1 0.196 0.185 0.258 0.102
user 2 0.327 0.411 0.239 0.098
user 3 0.189 0.272 0.135 0.193

problem with practical optimality is proposed in [45] through a low complexity imple-

mentation. With these in mind, this section focuses on designing an efficient mechanism

at low complexity to reduce the feedback CSI while maintaining the system performance.

Table 2.1 gives a set of typical channel states with each element being given as

v0Hkn = g2
kn/Ψ for a four-subcarrier and three-user case when adopting the same sim-

ulation settings as [11]. Note that v0H is used as the decision matrix in this example,

which does not change the optimal subcarrier allocation as using (2.3)4. According to

the aforementioned optimal allocation principle [43], the subcarrier allocation should be

that SC 1 and SC 2 are both allocated to user 2, SC 3 and SC 4 are allocated to user 1 and

user 3, respectively. If the BS only knows the best two subcarriers of each user as shown

in bold values, it can be easily observed that the optimal subcarrier allocation remains

the same. This observation motivates us to realize the fact that it may not be necessary to

feedback full CSI of each user to the BS in a multiuser OFDMA system, a portion of full

CSI associated with some best subcarriers can also produce an optimal or sub-optimal

allocation. In addition, it is worth noting that some subcarriers may not be used and a

sub-optimal allocation may be formulated when using this partial feedback mechanism.

For instance, if user 3 does not exist, the usage of SC 4 cannot be determined exactly.

Even though SC 4 could be randomly assigned to either user 1 or user 2, the accurate bit-

loading becomes difficult without any channel information. In the sequel, the adoption

of this partial feedback mechanism into the algorithm in [11] is given in detail.

4Multiply all the elements in the matrix H with the same value does not change the allocation rule,
since the location (in which row) of the maximum element in each column remains unchanged.
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2.2.3 Proposed scheme

In this sub-section, we propose a novel partial feedback CSI mechanism with its adoption

in the conventional algorithm in [11]. This proposed scheme consists of two steps, the

first step is to perform a subcarrier allocation with equal power distribution based on

partial feedback CSI and the second step is to carry out a power refinement to improve

the system capacity.

Firstly, we present the subcarrier allocation method with equal power distribution.

According to the optimal subcarrier allocation principle in [43], the selection criterion

without fairness concern is to select the maximum value in the nth column of H in (2.3)

for each n ∈ Γ. If the maximum value is in the kth row for the nth column, subcarrier

n should be allocated to user k. We follow this principle while considering proportional

fairness (2.8) in the algorithm design of subcarrier allocation.

Specifically, it is proposed to merely feedback partial values of the elements in

the decision matrix H to the BS. For user k, it feeds back some most highest values in

the kth row of H with the number of these values being given by

min (dξαkNe , N) , (2.10)

where ξ ≥ 1 is defined as the feedback index used to control the amount of feedback

CSI, αk is the normalized rate proportion of user k in (2.9) with
∑K

k=1 αk = 1 , and

dxe means rounding x to the smallest integer larger than or equal to x. Thus, the total

amount of feedback CSI can be reduced to be about ξN , which is approximately ξ/K

of the original feedback amount requiring all the elements of H. In addition, the un-

determined elements in the decision matrix H are filled as zero, which gives a modified

decision matrix Ĥ with each element being Ĥkn.

With the modified decision matrix based on partial feedback CSI, the proposed

subcarrier allocation algorithm is described in detail as follows. Note that the equal

power distribution now becomes allocating equal power to the CSI-available subcarriers
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that is less than N for some values of ξ, and some subcarriers named as Null subcarriers

(corresponding to the columns with all-zero elements in H) are allocated to users without

usage.

Initialization of parameters:

Let Nk = bαkNc be the total number of subcarriers for user k, and each of the

remaining Nun = N −∑K
k=1 Nk subcarriers be added to Nk with probability αk.

Initialize ρkn and rk as zero. Note that subcarrier and user indices are Γ = {1, · · · , N}
and ∆ = {1, · · · , K}, respectively, and αk can be pre-determined from (2.9).

Implementation of subcarrier allocation:

As shown in Table 2.2.

TABLE 2.2: Implementation of subcarrier allocation

WHILE Γ 6= ∅ DO
k = arg min

k∈∆
(rk/αk) ; (T2.2.1)

IF Nk > 0 DO
n = arg max

n∈Γ

(
Ĥkn

)
; (T2.2.2)

ρkn = 1; (T2.2.3)
Γ ← Γ\n; (T2.2.4)
Nk ← Nk − 1; (T2.2.5)

rk ← rk + W log2

(
1 + p̂Ĥkn

)
; (T2.2.6)

ELSE
∆ ← ∆\k; (T2.2.7)

END IF
END WHILE

In above algorithm, ← stands for updating the value of one specific parameter,

A = A\{e} is to eliminate the element e from the set A, bxc is to round x to the largest

integer smaller than or equal to x. Note that the unknown CSI associated with null

subcarriers is automatically treated as zero so that the equal power allocation becomes
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p̂ = Ptot/Ns, where Ns is the number of actually used subcarriers (the number of non-

all-zero columns) in Ĥ.

To be specific, one user k is selected firstly according to the targeting rate pro-

portion in (T2.2.1), if this user cannot accept more subcarriers, this user is excluded in

further iterations (T2.2.7). Otherwise, one subcarrier n with the highest channel gain is

selected for this user (T2.2.2) and actually allocated (T2.2.3−5), which is followed by

updating the instantaneously achieved data-rate (T2.2.6).

When the subcarrier allocation is obtained, a power refinement can be carried

out to further improve the system capacity. The optimal power allocation with known

subcarrier allocation is provided in Appendix A. Note that, as shown in many studies

[43], [46], [47], the system capacity is not sensitive to the power allocation at high SNR

condition due to the logarithmic calculation in the objective function (2.5). Thus, for

simplicity, the following simulations with a general high SNR system setup will utilize

the equal power allocation for a faster implementation5. Note that the average complexity

is the same as the scheme in [11] that is in the order of O (KN log2N), which mainly

depends on sorting the decision matrix H for each user as observed from Table 2.2.

Overall, in this sub-section, we only exemplify the idea on the basis of [11] to

propose the above algorithm with partial feedback CSI. To be used in other algorithms

for downlink OFDMA systems using full feedback CSI such as [8], [38], [43], [46], [47],

similar modifications might be made via the proposed partial feedback mechanism.

2.2.4 Simulation results

This sub-section simulates a typical WLAN scenario the same as that in [11] with the BS

located at the centre and several users uniformly distributed within one cell. Specifically,

the frequency-selective multipath channel is modeled as 6-tap Rayleigh fading with an

5For general SNR scenarios, the power refinement adopting the method in Appendix A should not be
omitted, which needs more computational complexity.
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Fig. 2.2: Achieved capacity percentage, and number of null subcarriers.

exponentially decaying profile. The total power at the BS is 1W with the total bandwidth

being B = 1MHz. The BER requirement is set as BER = 10−3 for each user. In

addition, users have independent channel statistics, and the desired rate proportion of

each user is calculated by (2.9) with each ϕk being assigned an integer value from the set

{1, 2, 4} with equal probability. We assume a general high SNR condition by setting the

noise power spectral density to be z0=−80dBW/Hz.

In the left part of Fig.2.2, the ratio of the system capacity with partial CSI to

that with full CSI, denoted as the achieved capacity percentage, is depicted versus the

feedback index ξ (2.10) for two settings of different subcarriers and users. It can be seen

that the capacity loss of using partial CSI becomes negligible as ξ increases. In the right

part, the number of null subcarriers (subcarriers without usage) is given. Similarly, the

number of null subcarriers approaches zero when ξ increases. From Fig.2.2, for larger

enough ξ (e.g., ξ = 4), the system capacity of using partial feedback CSI is shown to be

almost the same as that with full CSI even if few null subcarriers may exist. Alternatively

speaking, near-optimal resource allocation can be made only from a small portion of full

CSI due to the multiuser diversity discussed previously. Note that larger feedback index

ξ indicates larger amount of feedback CSI, which is approximately ξ/K of the full CSI

required (2.10).

After showing the system capacity and null subcarrier versus different values of



22

4 5 6 7 8
0.90

0.92

0.94

0.96

0.98

1.00

 

 

JF
I

Number of Users

 Full CSI
  = 4
  = 3

Fig. 2.3: Fairness comparison.

ξ, one question arises: what is the price to pay for maintaining almost the same system

capacity when limited CSI is available at the BS in our investigated system. The answer is

manifested in Figs.2.3−2.4, focusing on the cases of 64 subcarriers. Specifically, Fig.2.3

compares the fairness achieved by full CSI and the proposed partial CSI implementation

with ξ = 3 and 4, respectively. The well-known Jain’s Fairness Index (JFI) [48] is used

for fairness comparison, which is given by

JFI =

(
K∑

k=1

xk

)2/(
K

K∑

k=1

x2
k

)
, (2.11)

where xk = rk/αk is the ratio of practically achieved capacity to the desired rate pro-

portion for user k. Note that absolute fairness is achieved when JFI = 1. In Fig.2.3,

the use of partial feedback CSI results in certain fairness loss, and less feedback amount

gives worse fairness performance. Meanwhile, the overall system fairness decreases as

the number of users increases for both full and partial CSI implementations since more

users have increased uncertainty in overall fairness. Nevertheless, such degraded fairness
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still lead to the desirable data-rate distribution, which is further shown in Fig.2.4.

Figure 2.4 illustrates a normalized data-rate distribution for the case of N =

64, K = 8 and ξ = 3. In this case, user fairness is directly given by α1 = . . . =

α4 = 1/16, α5 = α6 = 1/8, and α7 = α8 = 1/4. As observed in this figure, the fairness

performance with partial CSI does not strictly follow the desired proportion as that using

full CSI. However, little fairness degradation is not a crucial issue in practical commu-

nications since effective data-rate of each user is still achieved. Together with Fig.2.3,

we can conclude that the price to pay for maintaining almost same system capacity is the

loss of certain proportional fairness among users. With these observations, the feedback

index ξ provides a leverage to tradeoff between system capacity and user fairness.
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2.3 Adjustable quality-of-service

This sub-section presents a simple implementation that can flexibly adjust system ca-

pacity and user fairness at low complexity via using the minimum requested data-rate of

each user in the system [15]. This scheme can achieve diverse Qualify-of-Service (QoS)

requirements of users [48], which is equivalent to properly assigning the requested data-

rate to each user in the system.

2.3.1 Problem formulation and motivation

The considered system model is the same as that in the previous section. Accordingly,

the objective function considered is the same as (2.5). Three constraints are used, the first

and second constraints are in line with (2.6) and (2.7), respectively. Instead of (2.8), the

third constraint becomes the minimum requested data-rate of each user, which is given

by

rk =
N∑

n=1

ρknlog2(1 + pknHkn) ≥ rmin
k ∀k. (2.12)

Note that rk is now defined in spectrum efficiency (bps/Hz) for user k requiring a min-

imum data-rate rmin
k . In most of existing studies, this minimum data-rates requested

by the users are usually pre-determined values. However, they becomes system design

variables in this section.

As aforementioned, when rmin
k = 0, the capacity optimality of the above modified

problem is to assign subcarriers to users with the highest effective SNRs (cf. (2.2)) and

to allocate power over subcarriers through the conventional water-filling algorithm [43].

However, this optimality may result in extremely unfair data-rate distribution among

users. Although the fairness issue has been discussed in [11], [49], these existing studies

normally have deterministic fairness as well as system capacity under certain settings

without a flexible factor that can adjust the performance in-between. Motivated by this

observation, we have developed a controllable capacity and fairness scheme in [12]. In
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which, the shortcoming is that it only fills the gap between [9] and [11] without providing

a mechanism to achieve the maximum available system capacity. Thus, in this section,

we further propose a simple scheme that can adjust system capacity and user fairness

through setting different levels of minimum requested data-rates of users.

2.3.2 Proposed scheme

Specifically, this new scheme consists of two steps. The first step is to allocate subcar-

riers to all users based on equal power distribution given by pkn = Ptot/N . Then, the

conventional water-filling (WF) algorithm [6], [43] is performed to further improve the

capacity on a per user basis. The proposed subcarrier allocation is described in detail

in Table 2.3. The notational conventions used here are the same as those for Table 2.2,

except that ∅ indicates the empty set.

To be specific, in Table 2.3, some parameters recording the allocation states are

initialized at the beginning. Then, in the first while loop, users are selected by the ratio

rk/r
min
k with fairness consideration, and then assigned with their best subcarriers indi-

cated by the highest available channel-to-noise gain Hkn. In the second while loop, each

remaining subcarrier is assigned to one user with the best contribution to the system

capacity. Note that each state parameter is updated once one subcarrier is allocated.

After carrying out the algorithm in Table 2.3, the allocated subcarriers of each

user are available in ρkn. Then, user k has a total allocated power pk = PtotNk/N , where

Nk is the number of subcarriers actually assigned to this user. Finally, the conventional

WF algorithm is utilized to refine user k’ s power pk over the allocated Nk subcarriers

to further improve the system capacity. As shown in [49], this performance improve-

ment of the system capacity is quite limited at high SNR condition since WF algorithm

approaches equal power allocation.

Together, the subcarrier allocation in Table 2.3 and further power refinement using

WF formulate our proposed scheme. In terms of computational complexity, the subcar-
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TABLE 2.3: Proposed algorithm for subcarrier allocation
∆ = {1, ..., K} = user indices;
Γ = {1, ..., N} = subcarrier indices;
Set rk = 0 and Nk= 0 for k ∈ ∆;
Set ρkn = 0 for k ∈ ∆, n ∈ Γ;
WHILE ∆ 6= ∅

k = arg min
k∈∆

(
rk/r

min
k

)
;

n = arg max
n∈Γ

(Hkn) ;

rk ← rk + qkn;
Γ ← Γ\n; Nk ← Nk + 1; ρkn = 1;
IF rk ≥ rmin

k THEN ∆ ← ∆\k;
IF Γ = ∅ THEN exits;

END WHILE
Reset ∆ = {1, ..., K};
WHILE Γ 6= ∅

Select one subcarrier n from Γ;
k = arg max

k∈∆
(Hkn) ;

rk ← rk + qkn;
Γ ← Γ\n; Nk ← Nk + 1; ρkn = 1;

END WHILE

rier allocation has the same worst complexity as [11], which is in a complexity order

of O (KN log2N) when no subcarrier is left for the second while loop. Note that this

worst-case complexity mainly depends on sorting Hkn for each user. On the other hand,

the least complexity is O(KN), which occurs when no minimum data-rate of each user

is set, corresponding to only using the second while loop. Note that rmin
k in the first

while loop can make a computational tradeoff inside the algorithm, which will be further

shown the ability in adjusting capacity and fairness in the following simulations .

2.3.3 Simulation results

The sub-section also simulates a single-cell scenario with one centered BS and several

users uniformly distributed in the cell. For comparison with existing algorithms, main



27

2 4 6 8 10 12 14 16
4.5

5

5.5

6

6.5

7

Number of users

C
ap

ac
ity

 (
bp

s/
H

z)

 

 
Optimality [6]
PSch (0)
PSch (0.05)
PSch (rand)
PSch (0.4)
PSch (1)
Scheme [9]
Scheme [11]

Fig. 2.5: System capacity versus number of users.

system parameters are set the same as [9], [11]. Briefly, the frequency selective multipath

channel is modeled as six-path Rayleigh fading channel with an exponentially decaying

profile. The total power at the BS is 1 watt, and the total bandwidth, B=1MHz, is occu-

pied by N=64 subcarriers. In addition, BER = 10−3 is assumed to be required by each

user, and the general high SNR condition is given by setting the noise power spectral

density as z0=−80dBW/Hz.

In Fig.2.5, the system capacity against the number of users is depicted. As seen in

this figure, two traditional algorithms [9], [11] with an emphasis on user fairness suffer

some loss in system capacity compared with the optimal allocation given in [6]. The

proposed scheme represented by PSch(x), where x indicates rmin
k (bps/Hz) for all users

and is used to generate different levels of rmin
k settings. Note that PSch(rand) means

each user randomly selects one rmin
k from the set {0.1, 0.2, 0.3} (bps/Hz) with equal

probability. Obviously, smaller rmin
k produces higher capacity since more subcarriers can

be used to enhance the system capacity. As observed from PSch(0.4) and PSch(1), when
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Fig. 2.6: Fairness comparison.

the minimum data-rate of each user cannot be satisfied, the proposed scheme tends to

allocate data-rate to users as equal as possible and finally converges to a performance

between [9] and [11] since no remaining subcarrier can be used to enhance capacity.

This also can explain the gradually decreasing feature of PSch(rand) when the data-

rates of users are allocated proportionally to their minimum requirements without being

satisfied. In addition, PSch(0) gives almost the maximum system capacity that achieved

by the optimality scheme. From this figure, it can be concluded that the proposed scheme

is able to provide a flexible factor, rmin
k , to adjust the achieved system capacity.

Figure 2.6 illustrates the fairness comparison among different schemes, where

JFI has been defined in (2.11) for comparing user fairness. To make all the investigated

algorithms comparable, each element xk in calculating JFI should be normalized first.

Specifically, xk = rk/αk for [9], [11], where αk is the desired proportionality [11], and

xk = rk/βk for the proposed scheme, where βk = rmin
k /(

∑K
k=1 rmin

k ). To tackle the

problem of being divided by zero, we use a small value 10−6 instead of rmin
k = 0 in such
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a normalization pre-processing, which can be interpreted as assigning an arbitrary small

data-rate to the user without data-rate requirement. For the optimality scheme, xk = rk

is the achieved capacity.

As can be seen in Fig.2.6, the two fairness-emphasized schemes [9], [11] have

near optimal fairness for all numbers of users while [9] has worse fairness due to more

emphasis on enhanced capacity. For the proposed scheme, the observed features well

comply with the system capacity shown in Fig.2.5. Specifically, from PSch(0.4) and

PSch(1), the proposed scheme gradually achieves near-optimal fairness when more users

request the same minimum data-rate but cannot be satisfied. Another observation is

that less rmin
k results in worse fairness, which is compensated by the capacity gain as in

Fig.2.5.

2.4 Conclusions

Two efficient schemes are proposed in this chapter for downlink OFDMA-based resource

allocation. Firstly, a multiuser diversity enabled partial feedback CSI mechanism is for-

mulated in Section 2.2. As observed from the simulation results, we find that it may not

be necessary to feedback full CSI from the users to the BS in terms of system capacity. A

small portion of full CSI can be utilized to make near-optimal resource allocation in mul-

tiuser OFDMA systems. For instance, exploiting 12.5% of full CSI can achieve almost

the same system capacity for the case of K = 32, ξ = 4. On the other hand, this partial

feedback mechanism may lead to a little fairness loss for users, which is normally ac-

ceptable in practical implementations. As a result, Section 2.2 provides an easy method

for achieving the tradeoff among system capacity, proportional fairness, and feedback

amount of CSI in downlink OFDMA systems. Secondly, Section 2.3 has demonstrated a

desirable property for diverse QoS control via properly setting different requested data-

rate rmin
k of each user. This rmin

k value is exploited as a system design variable to balance
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between system capacity, user fairness, and computational complexity. Overall, two effi-

cient techniques are presented to flexibly balance different system performance metrics,

which forms the main contributions in this chapter.
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Chapter 3

Resource allocation for

MIMO-OFDMA

In this chapter, we consider different utility-based resource allocation schemes for a

downlink Multiple Input Multiple Output (MIMO) - OFDMA system. The system op-

timality and some conventional optimization objectives are reviewed first. Then, two

bargaining solutions are utilized to formulate efficient algorithms for flexibly controlling

user fairness.

3.1 Review and motivation

Multiple Input Multiple Output (MIMO) is a promising technique that can significantly

improve the physical layer performance of wireless communication systems. Many

schemes have been proposed for MIMO resource allocation in multiuser environments

[17], [18]. In MIMO systems, multiple antennas are used at both transmitter and receiver

to exploit spatial diversity. With the need of additional antennas, MIMO transceivers

are generally more complex, and are sometimes combined with OFDM or OFDMA to

handle the problems induced by multipath fading channel more efficiently. Specifically,
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MIMO-OFDMA has been incorporated in the IEEE 802.16e standard [3] and MIMO-

OFDM has been recommended in the IEEE 802.11n standard [50].

In high data-rate wireless communication systems, the system utility should be

maximized. Meanwhile, fair data-rate distribution should be considered for users in that

diverse Qualify-of-Service (QoS) requirements with different pricing policies are usually

needed [51], which becomes a crucial issue recently in OFDMA-based resource alloca-

tion. In dynamic resource allocation, it is known that capacity enhancement, fairness

improvement and complexity reduction are usually conflicting in nature. As a result, ef-

ficient implementation with low complexity and good balance between system capacity

and user fairness is desired.

In the literature, game theoretic approaches have been exploited for resource

allocation in OFDMA systems in [52], [53]. In these studies, cooperative and non-

cooperative games have been discussed while the Nash equilibrium [54] usually serves

as one important algorithm design metric. As one type of cooperative game, bargaining

theory is adopted in resource allocation problems for OFDMA systems [55] and multi-

media communications [56], in which the bargaining solutions are used to design feasible

algorithms. Note that the novel scheme based on Nash Bargaining Solutions (NBS) with

equal bargaining powers studied in [55] opens the door for using bargaining theory in

OFDMA systems and also motivates the present work with more general considerations.

With these in mind, we will investigate the problem of downlink resource allocation for

generalized MIMO-OFDMA systems that includes SISO-OFDMA as a special case.

In this chapter, the use of two bargaining solutions, Generalized NBS (GNBS)

[54] and Kalai-Smorodinsky Bargaining Solution (KSBS) [57], for efficient MIMO-

OFDMA resource allocation will be discussed in detail, which is also the main con-

tribution. In addition, the criteria of utilitarian and egalitarian are briefly described. The

generalized bargaining strategies with different bargaining powers are considered, which

is different from the pioneering study [55], [56]. Specially, the bargaining powers can
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be used to adjust the data-rate distribution of users, which is named as GNBS/KSBS

fairness. Note that the introduced GNBS fairness is shown to include the traditional pro-

portional fairness used in [11] as a special case, which gives a more general algorithm

design metric. The investigated two bargaining solutions are shown to exhibit important

properties for achieving diverse QoS requirements of users.

3.2 MIMO-OFDMA system model

Based on the MIMO systems investigated in [6], [36], this chapter studies the system

model shown in Fig. 3.1, which corresponds to a typical downlink channel from the BS to

the mobile user k. In this figure, each functional block comply with OFDM transmission

[6]. In addition, this figure illustrates the procedure of resource allocation in downlink

MIMO-OFDMA, which is similar as in Fig.2.1. Firstly, the BS utilizes the instantaneous

feedback Channel State Information (CSI) to make resource allocation decisions. Then,

these decisions are used to adjust the transmitter at the BS for loading each user’s data

onto their allocated subcarriers as well for decoding the received signals at each user end.

Without loss of generality, the number of transmit and receive antennas are de-

noted as Mt and Mr, respectively, with the number of users being K and the number of

subcarriers being N. Also, we assume the total system bandwidth is B and the thermal

noise is v0 over each subcarrier. For convenience, let the user index set be ∆ = {1, ..., K}
with user k ∈ ∆ and the subcarrier index set be Γ = {1, ..., N} with subcarrier n ∈ Γ.

Some other notations used are given as follows: The bold lower case letter, e.g. v, in-

dicates a vector while the bold upper case letter, e.g. H, is a matrix; The normal matrix

transposition and conjugate transpose are represented by (·)T and (·)H , respectively.

As shown in Fig. 3.1, let the transmitted signal of user k on subcarrier n be

xkn = [xkn (1) , ..., xkn (Mt)]
T , (3.1)

where xkn (i) is the transmitted signal of user k on subcarrier n from the ith antenna.
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Fig. 3.1: Typical MIMO-OFDMA system model.

Then, the transmitted signal on subcarrier n can be represented as

K∑

k=1

xkn
√

pkn =

[
K∑

k=1

xkn (1)
√

pkn, ...,
K∑

k=1

xkn (Mt)
√

pkn

]T

. (3.2)

Let the received signal of user k on subcarrier n be

ykn = [ykn (1) , ..., ykn (Mr)]
T , (3.3)

the channel gain matrix be Hkn (Mr × Mt), and the Additive White Gaussian Noise

(AWGN) vector be zkn (Mr × 1). Each element ykn in (3.3) can be further expressed as

ykn =
K∑

k=1

√
pknHknxkn + zkn, (3.4)

with the following assumptions

E
(
xknx

H
kn

)
= I, (3.5)

E
(
xinx

H
jn

)
= 0, ifi 6= j, (3.6)

E
(
zknz

H
kn

)
= v0I, (3.7)

E
(
zknz

H
kn

)
= 0, ifi 6= j. (3.8)
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Note that I (Mr ×Mr) is the identity matrix. Then,

E
(
ykny

H
kn

)
= pnHknH

H
kn + v0I, (3.9)

where pn =
∑K

k=1 pkn is the total power on subcarrier n.

As demonstrated in [6] for MIMO-OFDMA systems, on particular subcarrier n,

only one user is allowed to transmit with all the power assigned on this subcarrier to

achieve optimality. Thus, the maximum capacity (bps/Hz) of user k on subcarrier n is

ckn = log2

[
det

(
I +

pnHknH
H
kn

v0

)]
. (3.10)

Note that Hkn can be decomposed via singular value decomposition given by

Hkn = UknΣknV
H
kn, (3.11)

where Σkn (Mr × Mt) is a diagonal matrix, Ukn (Mr × Mr) and Vkn (Mt × Mt) are

unitary matrices. Then,

HknH
H
kn = UknΛknU

H
kn, (3.12)

where Λkn = diag{λ(1)
kn , ..., λ

(Mkn)
kn } is the eigen-value diagonal matrix of HknH

H
kn and

Mkn = rank (Hkn). When Hkn is available at both transmitter and receiver, a trans-

mitting pre-coding filter of Vkn and a receiving shaping filter of UH
kn can be used to

decouple the MIMO channel of user k on subcarrier n into Mkn parallel SISO channels

[36]. Note that each λ
(i)
kn corresponds to one decoupled SISO channel. Thus, (3.10) can

be simplified

ckn =

Mkn∑
i=1

log2

(
1 +

λ
(i)
knpn

v0

)
. (3.13)

With consideration of the SNR gap [58], the total data-rate (bps) of user k can be ex-

pressed as

rk = W

N∑
n=1

Mkn∑
i=1

log2

(
1 + ρkn

λ
(i)
knpn

v0Ψ

)
, (3.14)

where W = B/N , and ρkn is the subcarrier allocation indicator, ρkn = 1 if subcarrier

n is allocated to user k, otherwise ρkn = 0. In addition, Ψ is the SNR gap between
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the theoretical value of channel capacity and the practically achieved one using some

coding-modulation methods. As stated in Chapter 2, Ψ = −ln(5BER)/1.5 that is a

function of the required BER when using adaptive MQAM modulation in OFDMA sys-

tems [58]. It is also assumed that all users perfectly know their CSI (3.12) and there

exists a mechanism to feedback full or partial CSI to the BS in order to make resource

allocation decisions. When the CSI is not available at the BS, the MIMO channel can-

not be decoupled into Mkn SISO channels and other advanced antenna techniques [36]

are required to achieve the capacity, which is beyond the scope of this chapter. Note

that, with equal power allocation (pn is a constant value), the capacity in (3.13) holds as

long as Mt ≤ Mr even without having CSI at the BS. This feature is used for subcarrier

allocation in the following section.

3.3 Utility-based resource allocation

In this section, the Dynamic Resource Allocation (DRA) problem of generalized MIMO-

OFDMA systems including SISO-OFDMA as a special case is studied. The use of two

bargaining solutions, Generalized NBS (GNBS) [54], [57] and Kalai-Smorodinsky Bar-

gaining Solution (KSBS) [59], for designing efficient MIMO-OFDMA resource alloca-

tion is discussed in detail. In addition, the criteria of utilitarian and egalitarian are briefly

described with their efficient DRA implementations.

3.3.1 Utility-based problem formulation

With the system considered in Fig. 3.1, if all the resources are allocated to a single user,

the associated optimization problem is given by

max
pn

rs = W

N∑
n=1

M∑
i=1

log2

(
1 +

λ
(i)
n pn

v0Ψ

)
(3.15)

s.t.
∑N

n=1
pn ≤ Ptot,
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where M = min (Mt,Mr), Ptot is the total power constraint at the BS. The partial La-

grangian of (3.15) is then as follows

Ls = W

N∑
n=1

M∑
i=1

log2

(
1 +

λ
(i)
n pn

v0Ψ

)
+ λs

(
Ptot −

N∑
n=1

pn

)
. (3.16)

Then, the following partial differential can be obtained

∂Ls

∂pn

=
W

ln 2

M∑
i=1

λ
(i)
n

v0Ψ + λ
(i)
n pn

− λs. (3.17)

When we set (3.17) equal to zero and assume
∑N

n=1 pn = Ptot is satisfied, (N+1) un-

known variables with (N+1) equations can be found. This set of non-linear equations

could be solved by some existing tools such as Newton-Raphson or quasi-Newton meth-

ods [42]. As a result, the optimal capacity in (3.15) can be obtained. In addition, at high

SNR, we have v0

/
λ

(i)
n ≈ 0, (3.17) then can be approximated as

WM

pn ln 2
− λs = 0. (3.18)

Thus, the power on each subcarrier is

pn =
WM

λs ln 2
=

Ptot

N
, (3.19)

and the single-user capacity can be approximated as

rs = W
N∑

n=1

M∑
i=1

log2

(
1 +

λ
(i)
n Ptot

v0ΨN

)
. (3.20)

For general SNR scenarios, the multi-dimensional water-filling algorithm [44] can be

applied to (3.17) so as to iteratively find the optimal power distribution. However, this

iterating process needs more computational complexity. For simplicity, we consider a

general high SNR system setup as that in [55].

In the sequel, efficient resource allocation in a multiuser scenario is our focus.

Specifically, the problem with multiple users can be formulated as

max
ρkn,pkn

U , s.t.





∑K
k=1 ρkn = 1, ∀n
rk ≥ rmin

k , ∀k
∑K

k=1

∑N
n=1 pkn ≤ Ptot

(3.21)
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Note that in (3.21), rmin
k is the minimum data-rate requirement of user k, Ptot

is the total power constraint at the BS. In particular, four utility-based objectives are

considered in (3.21). The first one is the Utilitarian objective that is U =
∑K

r=1 rk,

which corresponds to maximizing the sum-rate as much as possible when the minimum

data-rate of each user is satisfied [6]. The optimal solution to Utilitarian for rmin
k =

0 is provided in the Appendix B. The second one is the Egalitarian objective that is

U = min {r1, ..., rK} , which complies with equally distributing the capacity to users as

fairly as possible as the solution given in [55]. In addition, two generalized bargaining

objectives, GNBS and KSBS, are also adopted and will be discussed in detail in the next

section. Note that the first two criteria, Utilitarian and Egalitarian, have been often used

in the literature to enhance system capacity and user fairness, respectively. Meanwhile,

the GNBS and KSBS are two criteria that will be exploited in this chapter for trading off

between capacity and fairness.

The problem in (3.21) is a binary integer-programming problem, which is gen-

erally NP-hard [60] and usually needs an exhaustive search to find the optimal or one

local-optimal point, which does not suit real-time applications. Thus, low complexity

algorithms with efficient implementations are the focus of this section.

3.3.2 System optimality and bargaining solutions

The optimality of using Utilitarian criterion in (3.21) has been given in [6] when no

minimum data-rate is set for each user that is rmin
k = 0. This optimality is briefly given

in Appendix B. For convenience of the following description, we define the payoff set

as S = {(r1, ..., rK)} ⊂ <K , where rk is data-rate of user k. From the optimality given

in Appendix B, we can obtain the maximum achievable capacity rtot
op of the investigated

system. Thus, using other objective functions to evaluate U in (3.21) results in a resource

re-distribution with a suboptimal sum-rate strictly less than or equal to rtot
op , which gives

a closed and convex set S [55]. Furthermore, we assume the disagreement point as
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rmin =
{
(rmin

1 , ..., rmin
K )

} ∈ <K . Next, the Pareto optimality is introduced as follows

[56].

Definition 3.1 (Pareto Optimality): The resource allocation point (r1, ..., rK) ∈
S is Pareto optimal, if for each (r′1, ..., r

′
K) ∈ S and (r′1, ..., r

′
K) ≥ (r1, ..., rK), then

(r′1, ..., r
′
K) = (r1, ..., rK).

Note that the equality or inequality between two vectors in this sub-section is

component-wise representation. As shown in [56], there might be an infinite number of

Pareto optimal points in a bargaining game with multiple users. As a result, other selec-

tion criteria are required to decide which Pareto optimal point is the best for a specific

system, which is equivalent to finding the corresponding bargaining solution. Subse-

quently, we adopt two bargaining strategies to analyze the resource allocation with the

consideration of Pareto optimality and user fairness.

3.3.2.1 Generalized Nash bargaining solution (GNBS)

Nash bargaining solution has been well studied in cooperative games [54] and can be

defined as a unique optimal point that satisfies some axioms. These axioms are known

as rationality, feasibility, Pareto optimality, independence of irrelevant alternatives, inde-

pendence of linear transformations, and symmetry [55]. The first three axioms confine

the bargaining set while the others emphasize on fairness. With the violation of sym-

metry, GNBS has been studied in [56], [57]. This GNBS is used to design the resource

allocation in this sub-section since it provides an adjustable fairness for capacity distri-

bution.

Assuming the maximum achievable capacity is rtot
GN in this case, the GNBS utility

optimization can be formulated as

max
rk

U =
K∏

k=1

(
rk − rmin

k

)αk (3.22)

s.t.
K∑

k=1

rk ≤ rtot
GN , and rk ≥ rmin

k .
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Note that αk is the generalized bargaining power of user k with their sum being
∑K

k=1 αk =

A, and the objective U in (3.22) gives the Generalized Nash Product (GNP). Let the

GNBS solution be fGN

(
S, rmin

)
=

{(
rGN
1 , ..., rGN

K

)}
, then it can be easily shown that

each element rGN
k in this set satisfies [54]

rGN
k = rmin

k +
αk

A

(
rtot
GN −

K∑
j=1

rmin
j

)
, (3.23)

when
∑K

k=1 rk = rtot
GN . The physical understanding of (3.23) is to allocate the remaining

system capacity to users according to their normalized bargaining powers after satisfying

each user’s minimum data-rate. Based on (3.23), each user in intermediate bargaining

stage with instantaneous data-rate, defined as rin
k , should target an equal value given by

(
rin
k − rmin

k

)/
αk to achieve GNBS point, which will be used as the algorithm design

criterion in the next section.

Note that (3.23) indicates that the bargaining power of each user can serve as a

leverage to adjust the data-rate distribution of users, which is a desired property in diverse

QoS systems [48]. In addition, this type of adjustment has been initially discussed in [11]

via the Proportional Fairness (PF) defined as follows.

Definition 3.2 (Proportional Fairness): The proportional fairness1 is defined as

that the total system capacity rtot is distributed among users according to their normal-

ized desired proportions given by γ1, . . . , γK with
∑K

k=1 γk = 1. Specifically, user k is

allocated the capacity of γkrtot.

The data-rate distribution in (3.23) is named as Generalized NBS (GNBS) fair-

ness, which can be shown to include the above Proportional Fairness (PF) as a special

case. Specifically, the GNBS fairness is the same as the PF when rmin = 0, which can

be easily observed from (3.23) and the PF definition with γk = αk/A when rmin = 0.

In addition, the GNBS fairness with consideration of the minimum data-rate of each

user is more reasonable than PF with the data-rate distribution strictly according to some
1There may exist some alternative definitions of proportional fairness as given in [61]. In this section,

the definition in [11] is used.
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pre-determined proportions since the minimum data-rate of one user usually should be

satisfied with high priority in practical systems.

3.3.2.2 Kalai-Smorodinsky bargaining solution (KSBS)

Since GNBS only considers the data-rate distribution from a systematic point of view,

KSBS is used to give another designing metric in this sub-section. Specifically, KSBS

takes the overall channel condition of each user into account and can enhance efficiency

of radio resource utilization [56]. We the use the KSBS to design efficient algorithm,

more theoretical details about KSBS can be found in [54], [59]. Note that the most

important feature of KSBS is individual monotonicity, which states that one user always

benefits from increasing the size of bargaining set in a direction preferable for this user.

Let the KSBS result be fKS

(
S, rmin

)
=

{(
rKS
1 , ..., rKS

K

)}
while assuming the

maximum achievable capacity being rtot
KS , each element rKS

k can be found by the inter-

section point of the bargaining set S and the following set [54], [56]

L =





r

∣∣∣∣∣∣∣

r1−rmin
1

α1(rmax
1 −rmin

1 )
= . . . =

rK−rmin
K

αK(rmax
K −rmin

K )
,

r ≥ rmin,
K∑

k=1

αk = A, for k ∈ Ω





, (3.24)

where r = (r1, ..., rK) is the set of data-rate distribution of users and αk is the generalized

bargaining power of user k. When
∑K

k=1 rk = rtot
KS , the KSBS of user k is given by

rKS
k = rmin

k +

(
rtot
KS −

K∑
k=1

rmin
k

)
αk

(
rmax
k − rmin

k

)

K∑
k=1

αk (rmax
k − rmin

k )

. (3.25)

From (3.25), each user in intermediate bargaining stage with instantaneous data-rate rin
k

should target an equal value given by
(
rin
k − rmin

k

)/[
αk

(
rmax
k − rmin

k

)]
, which is similar

as the designing criterion of GNBS in (3.23). The difference is that KSBS considers

both rmax
k and rmin

k while GNBS only considers rmin
k . This user fairness given by (3.25)

is named as KSBS fairness in this sub-section. It is also worth noting that the bargaining
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power can be easily used to adjust data-rate distribution of users as shown in both (3.23)

and (3.25). In addition, rmax
k can be obtained from (3.15) and approximated by (3.20) at

high SNR.

For better understanding of these two bargaining solutions, some simple bargain-

ing examples are provided in [54], [55], [56], [62]. After briefly introducing the bargain-

ing results of GNBS and KSBS, efficient implementations of resource allocation will be

proposed subsequently.

3.3.3 Implementations of utility-based allocation

In this section, the real-time implementations for the aforementioned four utility-based

objectives will be discussed. Note that the maximum system capacity can be achieved

by the two conditions summarized in Appendix B, however, it requires high computa-

tional complexity. Similar as the study [11], we also separate the subcarrier and power

allocation as two independent stages. Specifically, the subcarrier allocation adopts the

following sub-optimal selection criterion

kn = arg max
k

Mkn∏
i=1

(
1 +

λ
(i)
knPtot

v0N

)
, (3.26)

where kn is the allocated user index on subcarrier n that is equivalent to ρkn = 1. This

selection criterion corresponds to using equal power allocation in (B.3), which is shown

to be near-optimal in Appendix B.

Based on (3.26), the following matrix D (K × N ) can be formulated to make

subcarrier allocation

D =




d11 d12 · · · d1N

d21 d22 · · · d2N

...
... . . . ...

dK1 dK2 · · · dKN




, (3.27)
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where

dkn =

Mkn∏
i=1

(
1 +

λ
(i)
knPtot

v0N

)
. (3.28)

According to (3.26), the optimal selection criterion for (3.27) is to select the maximum

value in the nth column of D for each n ∈ Γ. If the maximum value is in the kth row

for the nth column, subcarrier n is then assigned to user k. Once the subcarrier allocation

is available, multi-dimensional water-filling can be used to refine the power allocation

for further improved capacity [6]. Note that the above processing can be used as a tight

approximation of the system optimality and will be used as the capacity upper bound.

Furthermore, we discuss efficient implementations for the aforementioned four

utility-based objectives, Egalitarian, Utilitarian, GNBS, and KSBS. Specifically, to ef-

ficiently carry out Egalitarian resource allocation, a modified algorithm based on [11]

is used. In [11], the authors are concerned with allocating data-rate to users accord-

ing to some strictly desired proportions. However, this algorithm is designed for a

SISO-OFDMA system and must be modified to be suitable for our investigated general

SISO/MIMO-OFDMA system. Thus, the channel-to-noise gain matrix used in [11] is re-

placed by the decision matrix in (3.27). Then, multi-dimensional water-filling algorithm

is used to improve the system capacity. We denote this modified algorithm as Egalitar-

ian implementation when using equal fairness, otherwise this modified algorithm with

proportional fairness as in Definition 3.2 is referred to as PF implementation. Note that

this modified algorithm becomes the same as that in [11] when Mr = Mt = 1 and has

an asymptotic complexity of O(KN log2N).

For the Utilitarian implementation, the minimum data-rate requirement of each

user should be satisfied with top priority. Thus, the associated low complexity imple-

mentation is proposed as the following two steps. Firstly, users take turns to select one

best subcarrier at one time until all users have gained their minimum data-rates. Specif-

ically, one subcarrier is selected by n = arg maxn∈Γav (dkn) for user k, where n is in

the set of currently available subcarriers given by Γav. Note that users who have gained
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TABLE 3.1: GNBS/KSBS implementation of resource allocation
∆ = {1, ..., K} = user indices;
Γ = {1, ..., N} = subcarrier indices;
Set rk = 0 for k ∈ ∆ and rmin = (rmin

1 , ..., rmin
K );

Set ρkn = 0 for k ∈ ∆, n ∈ Γ;
WHILE ∆ 6= ∅

k = arg min
k∈∆

(rk) ; (T3.1.1)

n = arg max
n∈Γ

(dkn) ; (T3.1.2)

rk ← rk + W
Mkn∑
i=1

log2

(
1 +

λ
(i)
knp

v0Ψ

)
; (T3.1.3)

IF rk ≥ rmin
k THEN ∆ ← ∆\k; (T3.1.4)

Γ ← Γ\n; ρkn = 1; (T3.1.5)
IF Γ = ∅ THEN exits; (T3.1.6)

END WHILE
Reset ∆ = {1, ..., K};
WHILE Γ 6= ∅

k = arg min
k∈∆

(
rk−rmin

k

αk

)
GN

or arg min
k∈∆

[
rk−rmin

k

αk(rmax
k −rmin

k )

]

KS

; (T3.1.7)

n = arg max
n∈Γ

(dkn) ; (T3.1.8)

rk ← rk + W
Mkn∑
i=1

log2

(
1 +

λ
(i)
knp

v0Ψ

)
; (T3.1.9)

Γ ← Γ\n; ρkn = 1; (T3.1.10)
END WHILE

their minimum data-rates is excluded in further allocation of this step. Secondly, allocate

the rest of the subcarriers according to (3.26) to increase the system capacity as much as

possible.

Based on the above implementations, the resource allocation with GNBS/KSBS

fairness is proposed in Table 3.1 in detail. Note that ∅ represents the empty set, Γ\n
means deleting the element n from the set Γ while a ← b stands for updating the value

of a by b. To be specific, some parameters are initialized first including the user and

subcarrier indices, instantaneously achieved data-rate rk, minimum data-rate of each user
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rmin
k , and the allocation indicator ρkn. In addition, equal power allocation, p = Ptot/N is

used and Ψ = −ln(5BER)/1.5 can be pre-calculated for one particular BER level [58].

The first while loop is to roughly ensure the minimum data-rate of each user,

corresponding to the first step of Utilitarian. In this loop, the user with the minimum

instantaneous data-rate (T3.1.1) is allocated with the best available subcarrier (T3.1.2)

according to (3.26), this user’s instantaneous data-rate is then updated (T3.1.3). Once

user k has reached rmin
k , this user is excluded in further operation (T3.1.4). Also, each

allocated subcarrier is removed from Γ with ρkn updated (T3.1.5). When all subcarriers

run out, this loop breaks and the whole algorithm stops (T3.1.6). In this loop, it functions

as allocating data-rate to each user proportional to rmin
k . In the second while loop, bar-

gaining fairness is emphasized while each user targets the GNBS/KSBS point (T3.1.7),

the adopted two selection criteria have been discussed in the previous section. Then, the

best available subcarrier of this user is chosen (T3.1.8) with the instantaneous data-rate

being updated (T3.1.9).

The proposed algorithm in Table 3.1 corresponds to emphasizing GNBS/KSBS

fairness as given by in (3.23) and (3.25). The complexity of this algorithm is dominated

by the sorting process (T3.1.2) or (T3.1.8) within each iteration, and can be further re-

duced by pre-sorting the decision matrix (3.27) for each row (or for each user). This

pre-sorting needs a total complexity order of O(KN log2N) by using some conventional

sorting methods such as heap sort or merge sort [60].

In above proposed implementations, the equal power allocation is assumed, which

only demonstrates near-optimal power allocation in high SNR scenarios. For general

SNR cases, a power refinement after implementing the algorithm in Table 3.1 should be

further followed to improve the system capacity. We have shown this power refinement

method in [63] as an extension of [11], which bears the similar feature as the optimal

power distribution given in Appendix A. Since a general high SNR system setup is used

in the simulation section, this power refinement is not exploited in current chapter for a
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faster implementation. Interesting readers may refer to our work in [63] for more details.

In addition, it can be observed that all four utility objectives will converge to almost

the same performance when the system becomes infeasible (cannot satisfy the minimum

data-rate requirements of all the users). This case makes the system allocate data-rates

to users proportional to their minimum data-rate requirements, which complies with the

proportional fairness [11].

Note that the decision matrix (3.27) should be available at the BS in advance to

perform dynamic resource allocation, which requires all the users to feedback their CSI

to the BS. However, the amount of feedback CSI becomes considerable and reduces the

feasibility of our proposed implementations when the number of users increases. Thus,

an efficient mechanism is required to reduce the feedback CSI without severe perfor-

mance loss. Note that in Chapter 2 [64], we have presented the idea of reducing feedback

CSI via opportunistic feedback since only a small number of subcarriers with relatively

strong channel gains are actually used by each user under independent multiuser fading

environment. This technique can also be exploited here for CSI reduction.

3.3.4 Simulation results

Based on the physical layer setup in [3], we simulate one single cell with radius being

1.6 kilometers. In this cell, a total bandwidth of 5MHz divided into 512 subcarriers is

considered. In addition, each user has slow mobility that is 30Hz Doppler frequency,

and the total power constraint at the BS is set to be 43.1dBm. We also assume enough

separation between antennas so that the fading for transmit and receive antenna pairs are

independent.

For other system settings, the large-scale propagation loss factor is assumed as

three [55] and the log-normal shadowing is zero mean with standard deviation of 8 dB. In

addition, the multi-path channel is modeled as 6-tap Rayleigh fading with an exponential

decaying profile [36] while each user experiences an independent channel statistics. The
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Fig. 3.2: System capacity versus average SNR.

SNR gap in (3.14) is calculated by setting BER = 10−3, and adaptive modulation based

on MQAM in [58] is used. Note that the thermal noise v0 on each subcarrier is set

according to the average SNR measured at the half radius of the cell in the following

simulation results. Unless otherwise stated, these results are averaged over 103 channel

realizations with users randomly located within the cell for each channel realization. The

generalized bargaining power, αk in (3.23) and (3.25), of user k is assigned with a value

from the set {1, 2, 4} with equal probability.

Figure 3.2 shows the system capacity against the average SNR for different imple-

mentations when K=10 users are in the system. Both MIMO (Mt = Mr = 2) and SISO

(Mt = Mr = 1) cases are considered, each user’s rmin
k = 0.5bps/Hz for the MIMO case

and rmin
k = 0.25bps/Hz for the SISO case. This figure also presents the generalization of

the proposed and modified algorithms for SISO- and MIMO-OFDMA. To be specific, in

the MIMO case, it can be observed that the implementations of Egalitarian and GNBS

have almost the same performance. When average SNR is larger than 15dB, KSBS shows
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little advantage than both Egalitarian and GNBS, while Utilitarian gradually approaches

the Optimality. Note that the four utility-based implementations converge when at mod-

erate SNR region (10−15dB) since the system cannot satisfy rmin
k of each user and is

implemented in an equal fairness manner. This convergence complies with our analysis

in the previous sub-section (Page 46), which happens when the system becomes infeasi-

ble. Moreover, similar observations can be obtained in the SISO case. To illustrate other

features of the proposed implementations, the MIMO case, Mt = Mr = 2, is focused in

the following results.

Figure 3.3 illustrates the system capacity versus the number of users for the aver-

age SNR=30dB, while the minimum data-rate of each user is fixed at 0.5bps/Hz. Specifi-

cally, most algorithms have a performance increasing with the increased number of users

due to the multiuser diversity except for Utilitarian. In the implementation of Utilitarian,

the system capacity increases first then gradually goes down for continuously increased

number of users until converges to almost the same performance as GNBS and KSBS.
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This is because the system gradually becomes infeasible and cannot satisfy rmin
k of each

user when more users request the same minimum data-rate. On the other hand, the Op-

timality implementation shows the highest performance, especially when more users are

existing. However, this optimal implementation can lead to extremely unfair data-rate

distribution, which is to concentrate the system capacity to a small number of users with

relatively better channel conditions regardless of other users [6]. Fig.3.3 demonstrates

that all four utility-based implementations give a little better capacity than the modified

PF algorithm, which also shows the disadvantage of imposing strict proportional fair-

ness as [11] in terms of system capacity. This observation verifies the significance of

introducing other fairness criteria in the studied system. From Figs.3.2 and 3.3, it can

be concluded that spectrum allocation is more dominant in system capacity than power

allocation since equal power allocation is used in GNBS and KSBS without further re-

finement, which is in line with the observations in [49]. In addition, it can be seen that

capacity and fairness are conflicting in nature since imposing fairness degrades system

capacity to some extent, especially for a large number of users.

In Fig.3.4, the data-rate distribution of 8 users is plotted for one channel real-

ization with relatively fixed user-locations given by the average distances from the BS

as 1.30, 1.23, 1.06, 0.38, 0.24, 0.87, 0.33, 0.59 kilometers, respectively. In addition,

we set rmin
k = 1bps/Hz and the generalized bargaining powers of these 8 users to be

α1 = α2 = 1, α3 = α4 = 2, α5 = α6 = 4, α7 = α8 = 8. In this figure, it can be

observed that Optimality results in a few users (indices 4, 5, 7) with better channel con-

ditions occupy most of the radio resources without any consideration of user fairness.

This unfair allocation is usually dominated by the relative distance from users to the BS.

When some users always have worse channel conditions than other users over all subcar-

riers, the Optimality implementation leads to zero data-rate for these users (indices 1, 2)

as shown in Fig.3.4. In contrast, the PF implementation according to [11] gives almost

ideal fairness as the ratios of the bargaining powers. However, this algorithm does not
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Fig. 3.4: Data-rate distribution for 8 users.

consider the minimum data-rate requirement of each user and results in half number of

the users without satisfying their minimum required data-rates.

On the other hand, all the four utility-based implementations can ensure each

user’s rmin
k in Fig.3.4, which should be considered with high priority in practical systems.

In addition, Egalitarian provides almost the same data-rate for each user, and Utilitarian

allocates the resources to users with better channel conditions to increase the system

capacity after satisfying rmin
k of each user. The GNBS demonstrates that the remaining

system capacity is distributed proportionally according to the bargaining powers when

the minimum data-rate of each user is achieved. Note that KSBS can give a little better

capacity gain than GNBS over all the users since it considers the overall channel condition

of each user.

To illustrate the effect of bargaining power, the bargaining results of two users lo-

cated at half distance of cell radius under the average SNR of 20dB and 30dB are depicted

in Fig.3.5. The minimum data-rates of these two users are set as rmin = (rmin
1 , rmin

2 ) =
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(2, 1)bps/Hz. With current system realization, the maximum achievable data-rates of

these two users are (rmax
1 , rmax

2 ) = (6.84, 7.12)bps/Hz for 20dB SNR scenario, and

(rmax
1 , rmax

2 ) = (11.68, 12.02)bps/Hz for 30dB SNR case. The bargaining powers of

user 1 and user 2 are given in vector form as (α1, α2) in Fig.3.5, with α1 + α2 = 8 for

simplicity. As observed, these two users can bargain for the rest of the system capacity

according to their bargaining powers when their minimum data-rates are achieved. Un-

der one specific setting of SNR and bargaining powers, it can be seen that the GNBS and

KSBS are two close points and KSBS tends to allocate more data-rate to user 2 with better

overall channel conditions than user 1. This data-rate adjustment feature is well-suited

for diverse QoS systems.
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3.4 Conclusions

In this chapter, we have discussed the general resource allocation problems in down-

link MIMO-OFDMA multiuser cellular systems with various system optimization con-

straints. Four utility-based objectives are studied that are Egalitarian, Utilitarian, and

two bargaining solutions, GNBS and KSBS. Based on the system optimality, we propose

some efficient algorithms with low complexity in polynomial time for implementing dy-

namic resource allocation. Furthermore, the generalized bargaining power is shown the

ability in adjusting the data-rate distribution of users, which is referred to as GNBS/KSBS

fairness. Thus, the proposed algorithms are well suited for satisfying diverse QoS re-

quirements and have a general applicability to downlink SISO/MIMO-OFDMA systems.
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Chapter 4

OFDMA-based relaying

This chapter studies a relay-assisted OFDMA cellular system with joint consideration of

the direct and relaying paths. In this system, a novel implementation adopting full-duplex

relaying is proposed for joint relay-destination selection, subcarrier and power allocation.

This new implementation can be shown to significantly improve the system spectrum

efficiency compared with the conventional half-duplex relaying mode. In addition, the

proposed scheme enables flexible controllability on the tradeoff between system capacity

and user fairness.

4.1 Review and motivation

Fixed or mobile Relay Station (RS) is used in Mobile Multi-hop Relay (MMR) systems

to extend the network coverage and improve system capacity [24], [65]. Specifically, in

MMR systems, each destination node have the ability to combine the signals received

from all the previous nodes for better signal detection [22], [66]. As shown in [20],

Amplify-and-Forward (AF) and Decode-and-Forward (DF) are two relaying strategies

that are often exploited in practical systems. In AF relaying, the relay amplifies the

received signal and transmits the amplified signal directly to the destination node. In DF
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relaying, the received signal is decoded first and then forwarded to the destination node.

As shown in the previous chapters, OFDMA has an inherent capability of exploit-

ing frequency selectivity enabled multiuser diversity to improve system capacity. The

basic principle behind OFDMA-based relaying is thus to utilize the benefits of both mul-

tiuser diversity in OFDMA systems and cooperative diversity in relaying systems. In

particular, many schemes have been proposed for cellular systems exploiting OFDMA-

based relaying [24], [67], which usually models a relay-assisted OFDMA system as an

optimization problem with various constraints.

In conventional multi-hop relaying systems, the direct path is usually ignored

with the assumption that the destination node is far away from the source node [23].

This conventional relaying mode can make each RS transmit signals in a full-duplex

manner via independent sub-channel over individual hops. However, in a relay-assisted

cellular system, users may not be always far away from the Base Station (BS) so that

the direct path may be strong enough to carry information. As a result, the direct path

should not be simply ignored in cellular systems. The authors in [24] initially investigate

a joint scenario of direct and relaying paths for uplink OFDMA. Based on [24], many

studies for such type of relay-assisted OFDMA systems have been presented [25], [68].

Nevertheless, for simplicity, these studies usually assume that each RS adopts a half-

duplex transmission protocol to avoid interference since the same subcarrier is used in

successive two hops of the relaying path. In addition, the authors in [26] recently show

a novel implementation model, in which the user node can communicate with the BS

either through direct path or half-duplex relaying path intelligently. With these in mind,

in this chapter, a new system model with joint consideration of direct path and relaying

path via using full-duplex RSs is studied so as to fill the gap in the literature.

To be specific, a downlink relay-assisted OFDMA cellular system consisting of

one BS, several fixed RSs and a number of user nodes is investigated. In this system, each
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RS adopts AF relaying and full-duplex transmission1 while assuming that direct paths

exist between user nodes and the BS. The joint optimization of relay-destination selection

and subcarrier pairing in two hops is emphasized. Meanwhile, the power allocation

over each subcarrier and fair data-rate distribution of users are considered jointly. Note

that, in this new model, the relaying path is always utilized to enhance the direct path,

which differs from existing studies either without considering direct path or adopting

half-duplex RS.

4.2 System model and problem formulation

Fig. 4.1: Basic transmission paths in a relay-assisted OFDMA cellular system.

A typical cellular system is considered within a single cell, which has total band-

width B, one centered BS, R fixed RSs and U users in this section. The basic transmis-

sion paths from the BS to user u with the help of RS r in such a relay-assisted OFDMA

cellular system are illustrated in Fig. 4.1. As shown by the solid lines, the BS transmits

signals to both RS and user nodes. Also, as indicated by the dotted line, RS relays the

signal received from the BS to the user node via AF relaying. Note that the BS-RS and

RS-User paths adopt different subcarriers, given by n and m, in this model. Thus, each

RS can work in a full-duplex manner. For simplicity, the delay between the direct path

and the relaying path is assumed to be negligible2 compared with symbol duration so

1One possible method for subcarrier switching via AF in this full-duplex model is given in [69].
2The radio transmission delay in each path is negligible compared with symbol duration. However,

each RS may have a processing delay. For simplicity, the adopted AF relaying at each RS is assumed to
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that each user node can combine the received signals from both paths for a joint detec-

tion. Since the relaying path strictly uses two different subcarriers and the direct path

shares the same subcarrier with the first hop of relaying path, the implementation of this

novel model is inter-node-interference free once the orthogonalities of subcarriers are

maintained [24].

In Fig. 4.1, the channel fading gain from the BS to RS r on subcarrier n is

assumed to be an
r . The gains from the BS to user u on subcarrier n and from RS r to user

u on subcarrier m are bn
u and dm

ru, respectively. Essentially, subcarriers n and m could

form one subcarrier pair, (n,m), with each value selected from the set Γ = {1, · · · , N}
and n 6= m. Similarly, u and r range from 1 to U and 1 to R, respectively. Then, we use

(r, u, n,m) to represent one particular subcarrier allocation. Given these parameters, the

relayed and received signals at each RS and each user are given by

yn
ru = an

r x
n
u + vn

r , (4.1)

yn
uI

= bn
ux

n
u + vn

I , (4.2)

x̂m
ru = µm

ruy
n
ru , (4.3)

ym
ruII

= dm
rux̂

m
ru + vm

II . (4.4)

Specifically, in (4.1)−(4.4), xn
u is the signal transmitted to user u on subcarrier

n from the BS with power E{‖xn
u‖2} = pn

u, x̂m
ru is the signal transmitted to user u on

subcarrier m from RS r with power E{‖x̂m
ru‖2} = pm

ru. Note that yn
ru is the signal received

at RS r, yn
uI

and ym
ruII

are the signals received by user u in direct path and relaying path,

respectively. In addition, vn
r , vn

I , and vm
II are the corresponding noises, and µm

ru is the

amplification factor at RS r for user u on subcarrier m. As a result, with RS r assisting

signal transmission for user u on the allocated subcarrier pair (n,m), the capacity (bps)

be fast enough to load the received signals onto another subcarrier meanwhile sending these signals to the
destination users [69], [70].
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via using AF relaying is3

C
(n,m)
AF(r,u) = W log2f(r, u, n,m), (4.5)

where

f(r, u, n,m) = 1 +
pn

u‖bn
u‖2

v0

+
pn

up
m
ru‖an

r ‖2‖dm
ru‖2

v0
2 + v0‖an

r ‖2pn
u + v0‖dm

ru‖2pm
ru

, (4.6)

with v0 = z0W being the noise power on each subcarrier, and W = B/N being the

bandwidth of one subcarrier. Note that z0 is the power spectrum density of thermal

noise. For simplicity4, f(r, u, n,m) is used as a notation to represent the right-hand-side

of (4.6), which is actually a function of channel gains and allocated powers.

Based on (4.5), the objective function of maximizing the total system capacity

can be formulated as

max
U∑

u=1

R∑
r=1

N∑
n=1

N∑
m=1

ρnm
ru C

(n,m)
AF(r,u) (4.7)

subject to

ρnm
ru = {0, 1}, ∀r, u, n,m, (4.8)
N∑

n=1

R∑
r=1

U∑
u=1

ρnm
ru = 1, ∀m, (4.9)

N∑
m=1

R∑
r=1

U∑
u=1

ρnm
ru = 1, ∀n, (4.10)

U∑
u=1

N∑
n=1

pn
u ≤ PBS with pn

u ≥ 0, (4.11)

U∑
u=1

N∑
m=1

pm
ru ≤ PFR with pm

ru ≥ 0, ∀r . (4.12)

For the objective function (4.7), the conditions in (4.8)−(4.10) correspond to subcarrier

allocation constraints, and (4.11)−(4.12) correspond to independent power constraints

at the BS and each fixed RS respectively. Note that each allocated power should be
3To prove this capacity, we can refer to a similar derivation for uplink OFDMA via half-duplex RS in

[24]. For completeness, we provide such a proof in Appendix C.
4This type of simplification is also applied later in (4.13) for L(r, u, n, m).
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non-negative, and n 6= m with each value ranging from 1 to N . In (4.8), ρnm
ru is the

subcarrier pair allocation indicator, ρnm
ru = 1 if and only if the subcarrier pair (n,m) is

allocated to one particular RS-User pair (r, u). Since each subcarrier cannot be shared,

the conditions (4.9)−(4.10) are used to ensure that one subcarrier pair (n,m) can only

be associated with one particular RS-User pair (r, u) once. However, these constraints

result in a mixed integer programming problem that is usually NP-hard [60].

Based on the formulated problem, two key questions can now be posed more

explicitly. The first one is how to form relay-user and subcarrier pair, (r, u, n,m), so

that each RS can best assist in the signal transmission. The second one is how to allo-

cate transmission power over each subcarrier. These two sub-issues are discussed in the

following section.

4.3 System analysis and proposed scheme

For mathematical tractability of the problem (4.7), the constraint (4.8) could be relaxed

to be a continuous value between 0 and 1 as the technique used in [71]. With this simpli-

fication and using Lagrangian method, the objective function in (4.7) can be transformed

into

L (r, u, n,m) = W
U∑

u=1

R∑
r=1

N∑
n=1

N∑
m=1

ρnm
ru log2f(r, u, n,m)

−
N∑

n=1

µn

(
N∑

m=1

R∑
r=1

U∑
u=1

ρnm
ru − 1

)
−

N∑
m=1

λm

(
N∑

n=1

R∑
r=1

U∑
u=1

ρnm
ru − 1

)

− ξ

(
U∑

u=1

N∑
n=1

pn
u − PBS

)
−

R∑
r=1

ηr

(
U∑

u=1

N∑
m=1

pm
ru − PFR

)
,

(4.13)
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where µn, λm, ηr, ξ are non-negative Lagrangian multipliers. The solution to (4.7) should

satisfy Karush-Kuhn-Tucker (KKT) conditions5, two of which are given as follows

∂L (r, u, n,m)

∂ρnm
ru

= W log2f(r, u, n,m)− µn − λm ≤ 0, (4.14)

ρnm
ru [W log2f(r, u, n,m)− µn − λm] = 0, (4.15)

If one particular allocation, (r, u, n,m), is determined, ρnm
ru > 0 should be satis-

fied. In this case, the following equation can be obtained from (4.15)

W log2f(r, u, n,m) = µn + λm. (4.16)

On the other hand, if such allocation does not exist (ρnm
ru = 0), it has

W log2f(r, u, n,m) ≤ µn + λm, (4.17)

which can be observed from (4.14) and (4.15). These two conditions given in (4.16)

and (4.17) imply that one particular subcarrier allocation should maximize the left-hand-

side of (4.16). Thus, we can conclude that the subcarrier allocation should be selected

according to

arg max [W log2f(r, u, n,m)] = arg max f(r, u, n,m). (4.18)

Alternatively, the maximum or one of the maximum f(r, u, n,m) values could be used to

guide the assignment of subcarriers and RS-User pairs with an additional consideration

n 6= m for full-duplex RS implementation.

When the subcarrier allocation for each RS-User pair is determined, several power

allocation methods can be adopted, in which, the simplest method is to use equal power

allocation at the BS and each RS. The most complicated method is to solve a set of

non-linear equations derived from KKT conditions, however the convergence cannot be

5Note that only necessary KKT conditions are presented here, it can refer to [72] to easily derive a full
set of KKT conditions. The method of deriving KKT conditions is briefly included in Appendix D.
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guaranteed due to the non-convexity6 of (4.7). Thus, an efficient power allocation is

proposed subsequently.

In the sequel, a high SNR condition is assumed so that the channel gains in Fig.

4.1 and the allocated powers pn
u, pm

ru are far more than the noise power v0. Under this

condition, let ∂L (r, u, n,m)/∂pn
u = 0 and ∂L (r, u, n,m)

/
∂p

(m)
r,u = 0 based on (4.13),

the following suboptimal power allocation can be derived when ignoring the high-order

items of noise power v2
0 . To be specific, the power allocation for user u on subcarrier n

should follow

pn
u = ∆BS

(
1− 1

gn
u

)
, (4.19)

where

gn
u =

‖bn
u‖2

‖dm
ru‖2

(
pn

u

pm
ru

)
+

(
‖bn

u‖2‖dm
ru‖2

‖an
r ‖4 +

‖dm
ru‖2

‖an
r ‖2

)(
pm

ru

pn
u

)
+

2‖bn
u‖2

‖an
r ‖2 + 1. (4.20)

Since the total power at the BS is constrained by

U∑
u=1

N∑
n=1

pn
u = PBS, (4.21)

substituting (4.19) into (4.21) and simplifying the results will lead to ∆BS given by

∆BS =
PBS

N − ∑
(n,u)∈Ωnu

1
gn

u

, (4.22)

where Ωnu is the set of users with their allocated subcarriers in the direct paths. Note

that gn
u is larger than one since all the parameters in (4.20) are non-negative. From this

observation, it is easy to see that the power allocation in (4.19) always give a positive

power pn
u allocated to user u on subcarrier n.

Similarly, the power distribution of user u on subcarrier m via RS r can be shown

as follows

pm
ru = ∆r

(
1

qm
ru

− 1

gm
ru

)
, (4.23)

6This can be easily shown through Jacobian and Hessian of (4.7) with the relaxed constraint (4.8) being
a continuous value.
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where

qm
ru =

‖bn
u‖2

‖dm
ru‖2

(
pn

u

pm
ru

)
+
‖bn

u‖2

‖an
r ‖2 + 1, (4.24)

gm
ru =

‖an
r ‖2‖bn

u‖2

‖dm
ru‖4

(
pn

u

pm
ru

)2

+

(
‖bn

u‖2

‖dm
ru‖2 +

‖an
r ‖2

‖dm
ru‖2

)(
pn

u

pm
ru

)
+ qm

ru, (4.25)

and

∆r =
PFR∑

(m,u)∈Ωrmu

(
1

qm
ru
− 1

gm
ru

) . (4.26)

At high SNR, (4.19) and (4.23) show the optimization of power distribution over

subcarriers with joint consideration of channel conditions in both hops. The main diffi-

culty is that these power allocation equations depend on the parameters gn
u , qm

ru and gm
ru

that are in turn dependent on the power allocation itself and the channel conditions an
r ,

bn
u and dm

ru. As seen in the non-linear relationships in (4.20), (4.24) and (4.25), it is not

possible to obtain an explicit expression for the power allocation on each subcarrier in

general. Nevertheless, it can be observed that once the set of ratios γnm
ru = pn

u/p
m
ru is

available, the power allocation in (4.19) and (4.23) can be easily obtained. This obser-

vation motivates us to design an iterative algorithm so that the power allocation can be

refined in an iterative manner with the initial ratios given by

γnm
ru =

pn
u

pm
ru

=
PBS

RPFR

, (4.27)

which corresponds to an equal power allocation at the BS and each RS with balanced

relaying7. Specifically, this equal power allocation is given by pn
u = 2PBS/N and pm

ru =

PFR/Nr with Nr being the number of subcarrier pairs assisted by RS r. Note that in

(4.25), Nr = N/(2R) is assumed since the same number of subcarrier pairs should be

assisted at each RS in an ideally balanced relaying [24].

Based on the selection criterion given in (4.18), a subcarrier allocation algorithm

is then proposed with flexible user fairness control, which may be suited for diverse QoS

7This feature requires each RS to relay roughly the same number of subcarrier pairs.
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requirements [46], [73]. In this proposed algorithm, balanced relaying is considered as

aforementioned. However, the number of subcarrier pairs must be an integer in practical

implementation, approximated values are then adopted. In addition, we assume that

any subcarrier pair (n,m) itself indicates n 6= m, and that each f(r, u, n,m) used for

subcarrier pair allocation is pre-calculated based on instantaneous channel conditions.

Once having the subcarrier allocation, power refinement could be carried out according

to (4.19) and (4.23), where the initial power distribution is given in (4.27). The details of

this algorithm are described as below.

Initialization of parameters:

Let the number of assisted subcarrier pairs at each RS be Nr = bN/(2R)c , with the

remaining Nun = bN/2c −∑R
r=1 Nr pairs being randomly used by some RSs having

more users nearby, where bxc means rounding x to the largest integer less than or equal

to x. Set the minimum number of subcarrier pairs must be satisfied for each user as Nu,

where Nu ≥ β with β being an integer between 0 and N/(2U). In addition, initialize

each allocation indicator as ρnm
ru = 0, and denote the RS, user and subcarrier indices as

∆ = {1, · · · , R}, Λ = {1, · · · , U} and Γ = {1, · · · , N}, respectively.

Implementation of subcarrier allocation:

As shown in Table 4.1.

In above proposed subcarrier allocation, some parameters are initialized first such

as Nr, Nu and the index sets. Then, the implementation of subcarrier assignment is car-

ried out via two steps, where equal power allocation is used whenever needed. Specif-

ically, Step I tries to satisfy each user with their minimum desired subcarrier pairs, and

Step II tends to increase the total system capacity as much as possible using the remain-

ing subcarrier pairs according to (4.18). Note that, in this allocation, the value β can be

used to control user fairness. Larger β gives stricter fairness due to less freedom in diver-

sity gain of selecting users. In addition, some other notations used in this algorithm are:
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TABLE 4.1: Implementation of subcarrier allocation

Step I - Satisfy the minimum number of required subcarrier pairs for each user
FOR i = 1...β DO

u = 1;
WHILE u ≤ U DO

(r, n, m) = arg max
r∈∆,{n,m}∈Γ

f(r, u, n,m); (T4.1.1)

IF Nr = 0 THEN
∆ ← ∆\{r}; (T4.1.2)

ELSE
ρnm

ru = 1; Nr ← Nr − 1; Γ ← Γ\{n,m}; u ← u + 1; (T4.1.3)
END IF

END WHILE
END FOR

Step II - Use the remaining subcarrier pairs to improve system capacity
calculate Nre = bN/2c − Uβ;
WHILE Nre > 0 DO

(r, u, n,m) = arg max
r∈∆,u∈Λ,{n,m}∈Γ

f(r, u, n,m); (T4.1.4)

IF Nr = 0 THEN
∆ ← ∆\{r}; (T4.1.5)

ELSE
ρnm

ru = 1; Nre ← Nre − 1; Γ ← Γ\{n,m}; (T4.1.6)
END IF

END WHILE

← means updating one particular parameter; Γ\{n,m} stands for deleting subcarrier n

and m from the set Γ; Nre is the remaining subcarrier pairs that can be practically used

in Step II.

Given the subcarrier allocation, power distribution can be iteratively refined from

the initial equal power allocation according to (4.19) and (4.23). This iterative process

continues until there is no significant improvement8 in system capacity. Eventually, the

subcarrier allocation and power refinement form the proposed scheme.

The computational complexity of the proposed resource allocation scheme is

8The stop condition of practical implementation is normally controlled by a small tolerance value.
When the capacity improvement of one iteration is below this tolerance value, the whole implementation
stops. Generally, a smaller tolerance value results in longer iterations.
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TABLE 4.2: Basic system settings

Parameters Values
Cell radius 1.6 km

System bandwidth 5 MHz
FFT size 512

Doppler frequency 30 Hz
Total power at the BS 43.1 dBm

Total power at each RS 35.3 dBm
Large-scale propagation 128.1+37.6logD dB
Thermal noise density -174 dBm/Hz

dominated by the searching step of finding the maximum value of f(r, u, n,m) in the

subcarrier allocation stage, which makes the whole algorithm have a complexity order of

O(RUN2). In addition, the power refinement method has a complexity proportional to

the number of subcarriers N and the number of iterations. Note that when there exist a

large number of users, the maintained CSI at the BS may be enormous so as to prevent

the feasibility of the proposed scheme. In this case, some well-studied CSI reduction

techniques [74] may be utilized to facilitate our implementation.

4.4 Simulation results and conclusion

The performance of the proposed scheme is further studied through some simulation

results in this section. The physical channels are modeled according to [75], which is

partially compatible with 802.16 standard. Some system settings are given in Table 4.2,

where D in kilometers (km) is the length of one particular link for calculating large-scale

propagation path loss. For other settings used, the log-normal shadowing is set as zero

mean with standard deviation of 8dB for BS-User and RS-User paths9 , and the multipath

channel is modeled as 6-tap Rayleigh fading with an exponential decaying profile. As

illustrated in Fig. 4.2 , it is assumed that 6 RSs are uniformly located in a circle 0.6km

9It assumes no log-normal shadowing in BS-RS paths.
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BS

RS

User

Fig. 4.2: Example for illustrating geo-locations of the BS, 6 RSs, and 20 users.

away from the BS, and each RS has a total power approximately 1/6 of that of the BS.

Note that all 512 subcarriers are utilized in the proposed resource allocation scheme

regardless of the fact that some subcarriers may be reserved for signaling purposes in

practice. In addition, in each channel realization10, users generated in the following

simulations are assumed to have a probability of 20% to be randomly located within the

0.6km RS-circle. Otherwise, users are randomly located between the RS-circle and the

cell-border as in Fig. 4.2.

In Fig. 4.3, the use of iterative power refinement, as given in (4.19) and (4.23), to

improve system capacity is presented for the case of 16 users. Specifically, the proposed

scheme adopts three levels of fairness control as follows: the maximum fairness (Max

Fair) sets β = bN/(2U)c, the medium fairness (Med Fair) sets β = bN/(4U)c, and the

minimum fairness (Min Fair) sets β = 1. As seen in this figure, the proposed power

10For smooth presentations, all simulation results are averaged over 1000 channel realizations.
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Fig. 4.3: Iterative power refinement for improving system capacity.

allocation has a fast convergence and the most significant performance improvement oc-

curs in the first two iterations. After which, the capacity improvement is negligible. For

instance, the capacity increases 0.0097bps/Hz from the 4th iteration to the 5th iteration

when adopting medium fairness level, which is undistinguishable in Fig. 4.3. Note that

iteration 0 indicates equal power allocation initially used for one particular subcarrier

allocation, which also shows that the system performance without power refinement is

degraded to some extent. In the following two results, 6 iterations of power refinement

are adopted for individual subcarrier allocation.

Fig. 4.4 shows the system capacity against the number of users ranging from 8

to 20. The half-duplex scheme represents using the conventional implementation with

half-duplex RS in [24]. The optimal11 case is obtained without considering the minimum

subcarrier pairs of each user, which corresponds to merely utilizing (4.18) to enhance

11This is not the optimality of the original problem (4.7), however, it is the maximum achievable capacity
under the mentioned two constraints. Thus, the optimal means the performance limit of the proposed
suboptimal resource allocation scheme.
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Fig. 4.4: System capacity versus number of users.

system capacity as much as possible under the two constraints of balanced relaying and

full-duplex RS. In Fig. 4.4, it can be observed that the proposed scheme with full-duplex

RS can outperform the conventional implementation with half-duplex RS. Note that the

capacity of Max Fair tends to reduce when exceeding 16 users, which indicates that

imposing strict fairness over larger number of users may decrease the system capacity

without further exploiting multiuser diversity.

In Fig. 4.5, Jain’s Fairness Index (JFI) is used to compare the fairness of data-rate

distribution among users for different schemes as done in previous chapters. This JFI

is similarly defined as JFI =
(∑U

u=1 ru

)2
/(

U
∑U

u=1 r2
u

)
, where ru is the practically

achieved capacity of user u. This figure demonstrates that the capacity loss shown in

Fig. 4.4 can be compensated by the fairness gain, which complies with the observation

in [46]. Note that the maximum fairness level achieves almost the same performance

as Half-duplex with balanced relaying, and the optimal capacity method leads to the

most unfair resource allocation since it does not consider user fairness. In addition, the
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Fig. 4.5: Fairness comparison.

proposed scheme with different levels of fairness tends to have the same decreasing trend

when more users existing in the system, which may be attributed to increased channel

variability. Essentially, as shown in this figure, the proposed scheme is able to flexibly

adjust user fairness via the introduced system design parameter β, which is the desired

property of satisfying diverse quality-of-service requirements in OFDMA relaying.

4.5 Conclusions

In this chapter, we jointly consider direct and relaying paths in a relay-assisted OFDMA

cellular system, with full-duplex RS being exploited to enhance the system performance.

To formulate efficient system implementation, the optimal subcarrier allocation is de-

rived first, and a suboptimal power allocation with fast convergence is proposed. Mean-

while, we introduce a system design variable to enables flexible controllability on the
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tradeoff between system capacity and user fairness. Overall, this new implementation

model can significantly improve the system spectrum efficiency as compared with the

conventional half-duplex relaying mode.



70

Chapter 5

OFDMA-based cognitive radio

In this chapter, two issues are investigated for OFDMA-based Cognitive Radio (OCR)

systems. Firstly, a novel spectrum sharing model is proposed to implement OCR in a

conventional downlink OFDMA system. We analyze this model based on duality theory

and present some efficient resource allocation schemes. Secondly, the method of exploit-

ing Accessible Interference Temperature (AIT) is introduced to effectively implement a

simplified OCR model with extremely low complexity.

5.1 Spectrum sharing in OFDMA-based cognitive radio

As studied in [76], a Cognitive Radio (CR) network architecture has two groups, which

are the the primary network (or licensed network) and the secondary network (also called

CR network, dynamic spectrum access network, or unlicensed network). Specifically, the

primary network is referred to as an existing network, where the primary users have a

license to operate in a certain frequency band. The secondary network does not have a

license to operate in a desired band. Hence, additional functionality is required for CR

users in secondary netwrok to share the licensed frequency band.

In this section, we mainly study the OFDMA-based cognitive radio network. The
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secondary network is assumed to be underlaid in a Conventional Downlink OFDMA Sys-

tem (CDOS), which formulates an implementation of cognitive radio without modifying

existing OFDMA system architecture [77], [78]. This implementation is applied to the

scenario when the number of active users is larger than the number of subcarriers, which

usually cannot be achieved in traditional OFDMA systems. To properly allocate radio

resources, some solutions are proposed based on duality theory. The proposed solutions

are partially distributed implementations that can dynamically allocate radio resources

to the Secondary Users (SUs) (users in the secondary network) with the cooperation of

Primary Users (PUs) (users in the primary network) so that the capacity of secondary

network can be maximized and the co-channel interference can be minimized. In addi-

tion, the effect of interference temperature limit on the capacity of secondary network is

studied, which may serve as a leverage to balance the performance between the primary

users and the secondary network.

5.1.1 Review and motivation

Due to the reported low spectrum utilization in traditional fixed spectrum allocation [79],

Cognitive Radio (CR) has emerged as a new paradigm for spectrum sharing in modern

wireless communications [80]. In the past decade, many fundamental researches have

been performed to promote the realization of CR so that high spectrum efficiency can be

achieved [76].

Spectrum underlay and overlay techniques are the basis of designing Cognitive

Radio Networks (CRNs) [29]. In a typical CRN, PUs should be protected when SUs

access the same spectrum. In the case of spectrum underlay, the Interference Temperature

Limit (ITL) is used to constrain the received interference level at the end of PUs as well as

the transmitting power at the end of SUs. On the other hand, spectrum overlay allows SUs

to opportunistically access the radio resources owned by PUs if these frequency bands

are not being used. The transmission opportunities are usually detected by spectrum
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sensing techniques [30], [31].

In recent years, OFDMA has been adopted to facilitate the implementations of

CR systems, resulting in OFDMA-based CR (OCR) [81], [82], [83]. Note that traditional

OFDMA systems normally do not allow spectrum sharing within its communication re-

gion, however, OCR makes conditional spectrum sharing possible if the communication

qualities of PUs are not affected.

In this section, an underlay network known as secondary network is added into

a CDOS. Spectrum sharing is enabled in this new system model, which is expected to

increase the overall spectrum utilization [84]. In the literature, it is known that the studies

about CDOS tend to avoid co-channel interference [6]. However, our study will show

that if all co-channel transmissions are regarded as noises and powers over subcarriers

are properly distributed, system performance of secondary network can be significantly

improved via dynamic spectrum sharing under CR paradigm. Thus, designing efficient

resource allocation algorithms for this new system model is our focus in this chapter.

Note that the MAC and higher layer issues are beyond the scope of this section, which

may refer to [82], [84] for some potential solutions.

The main contributions of this section are summarized as follows. A new model is

presented to implement OCR without changing the fundamental CDOS structure. Based

on duality theory, some algorithms are proposed to be applicable to the scenario when

the number of active users is larger than the number of subcarriers, which usually cannot

be achieved in traditional OFDMA systems. In addition, the proposed algorithms are

partially distributed implementations that can dynamically allocate radio resources to

SUs via PUs’ cooperation, and the effect of ITL values on the achieved capacity of

secondary network is demonstrated for OCR exploiting dynamic spectrum sharing.



73

Fig. 5.1: System model for two PUs and two SUs.

5.1.2 Dynamic spectrum sharing model

We consider a Conventional Downlink OFDMA System (CDOS) with one centered Base

Station (BS) and several surrounding PUs, where a secondary network having some SUs

is co-located. To better illustrate this system, Fig. 5.1 shows a simplified model with two

PUs and two SUs.

Without loss of generality, the numbers of PUs, SUs and subcarriers in this system

are assumed to be U , K and N , respectively. For convenience, PU, SU and subcarrier

are indexed by the following sets: u ∈ Λ= {1, 2, ..., U}, k ∈ ∆= {1, 2, ..., K} and

n ∈ Γ= {1, 2, ..., N}. Note that each SU1 pair has one transmitter (Tx) and one receiver

(Rx), which are represented by SUTx
k and SURx

k for kth SU as shown in Fig. 5.1. Also,

we assume that each subcarrier can be shared by multiple SUs as long as the ITL of

each PU is not violated, which makes our system model different from current studies of

OCR that normally assume exclusive spectrum occupation by SUs without considering

a CDOS infrastructure. Note that this spectrum sharing feature makes our system model

applicable to the scenario when the number of active users is larger than the number of

1Unless specifically stated, one SU indicates both SU-Tx and SU-Rx in the rest of this chapter.
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subcarriers.

In addition, the total system bandwidth and the noise power spectral density are

assumed to be B and z0, respectively. Hence, the spectrum of individual subcarrier

is W = B/N and the noise power on each subcarrier is v0 = z0W . Following the

system modelling in [81], [84], the channel gains of SU-Tx to SU-Rx, BS to SU-Rx and

SU-Tx to PU are denoted by gn
kk, hn

k , and qn
ku, respectively2, which are also assumed

to be available for dynamic resource allocation discussed in this section. Note that the

estimation of these channel state information (CSI) is beyond our scope, which may refer

to some well-documented techniques [85]. Since the maintained CSI may become huge

when large number of users exist, some CSI reduction techniques could be adopted [74].

Furthermore, the achieved capacity in bit-per-second (bps) is used to measure the utilities

of data-rates by PUs or SUs over each subcarrier.

Existing studies usually assume that OCR transmissions in secondary network do

not interference with each other since only one SU is allowed to operate over one given

sub-channel. If SUs cannot share the same subcarriers, our model becomes similar to the

problem studied in [81]. However, spectrum sharing among SUs is allowed in present

system, which may enable boosted spectrum reuse for higher capacity in secondary net-

work with the possible cost of increased complexity. A similar type of spectrum sharing

has been studied in [84] for a model without considering the CDOS infrastructure. How-

ever, the algorithms shown in [84] cannot be directly applicable to our system, and a

possible transformation will be discussed in the next section.

In traditional downlink OFDMA systems, optimal resource allocation schemes

can be used to assign subcarriers and powers to PUs [43], [86]. For simplicity, we as-

sume that the resource allocation for PUs is fixed and available for SUs. As shown in

[32], [87], this type of cooperation could facilitate the resource allocation in secondary

network for better utilities. Specifically, the subcarrier allocation of PUs is denoted as

2For simplicity, the channel gains used in chapter are amplitude square.
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Ω= {(u, n) |pn
u > 0, u ∈ Λ,n ∈ Γ}, where pn

u is an allocated positive power for uth PU

on nth subcarrier. Thus, the total power at the BS is PBS =
∑U

u=1

∑N
n=1 pn

u. Similarly,

it is assumed that the allocated non-negative power for kth SU on nth subcarrier is pn
k . If

pn
k > 0, it means nth subcarrier is being used by kth SU, otherwise, not being used. As

a result, for any values of k ∈ ∆ and n ∈ Γ, the Signal-to-Interference-plus-Noise-ratio

(SINR) is

SINRn
k =

gn
kkp

n
k

Mn
k +

∑
j∈∆,j 6=k

gn
jkp

n
j + v0

, (5.1)

where Mn
k = hn

kpn and
∑

j∈∆,j 6=k

gn
jkp

n
j are PU-to-SU and SU-to-SU interferences, which

are assumed to be capable of being detected by each SU [84]. Note that pn =
∑U

u=1 pn
u

is the allocated power on nth subcarrier since each PU has an exclusive subcarrier allo-

cation. The overall capacity of kth SU is then given by

Rk =
N∑

n=1

rn
k =

N∑
n=1

W log2

(
1 +

gn
kkp

n
k

ηn
k

)
, (5.2)

where rn
k = W log2 (1 + SINRn

k) is the achieved capacity of kth SU on nth subcarrier,

and ηn
k = Mn

k +
∑

j∈∆,j 6=k

gn
jkp

n
j + v0.

With above discussions, two generalized optimization problems for any numbers

of SUs, PUs and subcarriers can be formulated for the secondary network. The first

problem is to simultaneously maximize the utility of individual SU, which is given by

max {Rk} , for any k ∈ ∆. (5.3)

Another problem is to maximize a generalized weighted-sum-rate utility function, which

is given by

max

{
K∑

k=1

wkRk

}
. (5.4)

Given above two convex objectives3, the following three constraints are used to formulate
3As defined in (5.2), rn

k can be easily shown to be convex via checking its first and second derivatives
[72]. These two objectives are the linear combinations of rn

k , thus being convex.
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the individual and global optimization problems.

pn
k ≥ 0, for any k ∈ ∆, n ∈ Γ, (5.5)

which is the individually allocated power for SU k on subcarrier n.

N∑
n=1

pn
k ≤ Pmax

k , for any k ∈ ∆, (5.6)

which is the total power constraint of each SU, where Pmax
k is the power constraint of

kth SU.
K∑

k=1

qn
kup

n
k

W
≤ T n

u , for any (u, n) ∈ Ω, (5.7)

which is the ITL constraint at each PU end, where T n
u is one specific ITL value. As

a result, the objective function in (5.3) with the constraints (5.5)−(5.7) is referred to

as the individual optimization problem, while the objective function in (5.4) with the

constraints (5.5)−(5.7) is a global optimization.

Besides the constraints given in (5.5)−(5.7), a minimum SINRn
k should be con-

sidered to ensure effective data-rate over each subcarrier for each SU. However, numer-

ically including this condition makes the investigated problem extremely intractable, we

use a minimum allocated power instead to limit the usability of each subcarrier4. In

(5.6), Pmax
k should be technically different for SUs in a general case, we adopt the same

value in the simulation section for simplicity. Note that the unknown variables, pn
k , also

indicate the subcarrier sharing feature in above two optimization problems. For instance,

if pn
k > 0, kth SU uses the nth subcarrier. For the individual and global optimization

objectives in (5.3) and (5.4), both optimal and suboptimal solutions are analyzed in the

following section.

4Calculating the instantaneous SINR to determine the usability of any subcarrier for any SU is a waste
of computational capability. Since the effective signals and the mutual interferences are normally in the
same scale (5.1), thus it is reasonable to assume a minimum allocated power to limit subcarrier usability.
In other words, for simplicity, the subcarrier allocated a power less than such a minimum amount is not
used.
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5.1.3 System analysis and solutions

The objective (5.3) is to individually maximize the capacity of each SU, however, the

overall capacity achieved by (5.3) would be worse than the optimal solution of the global

optimization (5.4) in practice5. As shown in [84], the technique of applying pricing

function can be used to force the solution of (5.3) to get closer to that of (5.4), where

the linear pricing function is the simplest form with easy implementation [88]. When

adopting a linear pricing function into the objective (5.3), the overall capacity of each

SU becomes

R̃k =
N∑

n=1

(rn
k − λn

kp
n
k), (5.8)

As a result, (5.3) is equivalent to

max
{

R̃k

}
, for any k ∈ ∆. (5.9)

For kth SU in (5.9) with the constraints (5.5)−(5.7), for any k ∈ ∆, the Lagrangian

function can be expressed as

Lk = wkR̃k +
N∑

n=1

αn
kpn

k − βk

(
N∑

n=1

pn
k − Pmax

k

)

−
∑

(u,n)∈Ω

γn
u

(
K∑

k=1

qn
kup

n
k −WT n

u

)
,

(5.10)

where wk, αn
k , βk, γn

u are dual variables. Similarly, the Lagrangian function of the

global optimization (5.4) associated with the constraints (5.5)−(5.7) is given by

Lg =
K∑

k=1

wkRk +
K∑

k=1

N∑
n=1

αn
kpn

k −
K∑

k=1

βk

(
N∑

n=1

pn
k − Pmax

k

)

−
∑

(u,n)∈Ω

γn
u

(
K∑

k=1

qn
kup

n
k −WT n

u

)
,

(5.11)

5The individual and global solutions are usually denoted as Nash equilibrium (NE) and Pareto optimal-
ity in the literature. It is known that NE is strictly less than or equal to Pareto optimality [32].
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Based on (5.10) and (5.11), we can simply compare the results of ∂Lk/∂pn
k and

∂Lg/∂pn
k so as to find the following optimal linear pricing function6

λn
k = − 1

wk

∑

j∈∆,j 6=k

wj

∂rn
j

∂pn
k

=
W

ln 2

∑

j∈∆,j 6=k

wj

wk

[
gn

jjg
n
kjp

n
j

ηn
j

(
ηn

j + gn
jjp

n
j

)
]
, (5.12)

where ηn
j = Mn

j +
∑

i∈∆,i6=j

gn
ijp

n
i + v0. Note that (5.12) can be used to individually adjust

resource allocation for better utilities of SUs in (5.9).

In the rest of this section, Lagrangian duality theory [72] is adopted to derive

power allocation solutions for the studied two objectives. If only consider the constraint

(5.6) for the revised individual objective (5.9), the following partial Lagrangian can be

obtained
_

Lk = wk

N∑
n=1

(rn
k − λn

kp
n
k)− βk

(
N∑

n=1

pn
k − Pmax

k

)
, (5.13)

where βk is the dual variable associated with (5.6). For kth SU, the dual problem is then

given by

min
βk≥0

(
max
pn

k≥0

_

Lk

)
. (5.14)

With fixed dual variable βk, the dual problem (5.14) can be simplified as

max
pn

k≥0

_

Lk. (5.15)

Let the derivative of (5.13) w.r.t pn
k be zero, which leads to

∂
_

Lk

∂pn
k

= wk
∂rn

k

∂pn
k

− wkλ
n
k − βk = 0. (5.16)

From (5.2), it can derive
∂rn

k

∂pn
k

=
Wgn

kk

ln 2× (ηn
k + gn

kkp
n
k)

. (5.17)

Then, substitute (5.17) into (5.16), pn
k can be shown as follows

pn
k =

(
Wwk

ln 2× (βk + wkλn
k)
− ηn

k

gn
kk

)+

. (5.18)

6A similar derivation of calculating the linear pricing function is given in [84].
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As observed in (5.18), βk could be iteratively adjusted to find a set of non-negative

pn
k over all subcarriers of kth SU. For each SU, this iterative processing can be achieved

by the traditional subgradient-based (e.g., bi-section) methods [44] and the whole pro-

cessing should stop when the conditions of non-negative pn
k and the largest possible total

power constrained by Pmax
k are both satisfied. Afterwards, the ITL of each PU should be

ensured, which is achieved by the following proposed methods.

The power mask constraint is used in [84] to restrict the transmission power of

kth SU over nth subcarrier, which is defined as pn
k ≤ Pmask

kn . In [84], these power mask

constraints Pmask
kn , k ∈ ∆, n ∈ Γ are given as pre-determined values without considering

the specific channel conditions. We propose to transfer the ITL constraint (5.7) into the

power mask constraints via an explicit relation with channel conditions. Specifically, we

set qn
kup

n
k ≤ WT n

u /K for kth SU sharing nth subcarrier based on the ITL constraint (5.7).

The associated power masks then become

Pmask
kn =

WT n
u

Kqn
ku

, for any k ∈ ∆, n ∈ Γ. (5.19)

With the power masks given in (5.19), the first method is to adopt the algorithm7

in [84] to ensure the ITL of each PU, while the individual optimization (5.9) is achieved.

This method gives a suboptimal distributed implementation. Note that the values in

(5.19) can be interpreted as restricting the generated interference from SU to PU to be

below the same level.

The second method is formulated based on the possible cooperation between PUs

and SUs as studied in [87]. Specifically, it is assumed that PUs could feedback some

indices about ITL violation on each subcarrier to SUs given by

V n
u = T̂ n

u

/
T n

u , (5.20)

where T̂ n
u is the instantaneously measured ITL at PUs and T n

u is the maximum allowable

values. Then, based on these ITL violation feedbacks, SUs can adjust their transmitting
7For completeness, the details of this algorithm is given in Appendix E.
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powers simply by a normalization process as follows

_
p

n

k = pn
k/V n

u . (5.21)

Since Pmax
k has been satisfied via adjusting βk in (5.18), either using the first or

second method could determine the final power allocation. For the rest of this section,

these two methods of ensuring ITL at PUs are named as Pmask (5.19) and Violation

Feedback Index (VFI) (5.21), respectively. Note that Pmask is purely distributed imple-

mentation while VFI is partially distributed with the cooperation of PUs.

After presenting the power allocation based on the individual objective (5.3), we

proceed to discuss the allocation strategies for the global objective (5.4). When consider-

ing both constraints (5.6) and (5.7), the partial Lagrangian in this case can be expressed

as
_

Lg =
K∑

k=1

wk

N∑
n=1

rn
k −

K∑
k=1

βk

(
N∑

n=1

pn
k − Pmax

k

)
− ∑

(u,n)∈Ω

γn
u

(
K∑

k=1

qn
kup

n
k −WT n

u

)

=
K∑

k=1

N∑
n=1

(wkr
n
k − βkp

n
k − γn

uqn
kup

n
k) +

K∑
k=1

βkP
max
k + W

N∑
n=1

γn
uT n

u .

(5.22)

As observed in (5.22), different per-subcarrier-per-user Lagrangian functions,

lnk = wkr
n
k − βkp

n
k − γn

uqn
kup

n
k , for any k ∈ ∆, n ∈ Γ (5.23)

can be obtained and independent with each other. Therefore, the original global op-

timization could be decoupled into KN sub-problems maximizing (5.23). Taking the

derivatives of (5.23) w.r.t to pn
k and let them be zero, we have

∂lnk
∂pn

k

= wk
∂rn

k

∂pn
k

− βk − γn
uqn

ku = 0, for any k ∈ ∆, n ∈ Γ. (5.24)

Then, pn
k can be derived as below by substituting (5.17) into (5.24)

pn
k =

(
Wwk

ln 2× (βk + γn
uqn

ku)
− ηn

k

gn
kk

)+

. (5.25)

When βk 6= 0, the dual variables βk, γ
n
u in (5.25) should be properly adjusted so

as to find the optimal power allocation, which can be regarded as the benchmark for other
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algorithms proposed in this section. Essentially, this power adjustment can be efficiently

achieved via some subgradient-based methods (e.g., Ellipsoid method) [44].

On the other hand, when βk = 0 that is equivalent to only considering the con-

straint (5.7), (5.25) thus becomes

pn
k =

(
W

ln 2

wk

γn
uqn

ku

− ηn
k

gn
kk

)+

. (5.26)

Based on (5.26), another iterative algorithm can be designed via adjusting γn
u gradually

as does in (5.18). Note that if the equality is satisfied in (5.7), we have

K∑

k=1

qn
kup

n
k = WT n

u . (5.27)

Substitute (5.26) into (5.27) will lead to γn
u given by

γn
u =

W
K∑

k=1

wk

ln 2×
[

K∑
k=1

(
qn
ku

ηn
k

gn
kk

)
+ WT n

u

] . (5.28)

As observed in (5.26) and (5.28), these two equations are intertwined, pn
k can be

derived once γn
u are available while γn

u requires deterministic pn
k for measuring mutual

interferences. Based on this observation, a heuristic suboptimal power allocation having

four steps is proposed as follows:

• (a) Each SU equally distributes his/her total power Pmax
k over all subcarriers, then

the co-channel interference can be detected by each SU to calculate γn
u .

• (b) Adjust the power allocation according to (5.26) via using γn
u for each SU.

• (c) Use VFI method to refine the power allocation so that the ITL of each PU is

satisfied.

• (d) Assume current total power of kth SU is P tot
k after (a)−(c), each SU then per-

forms a self-check for the power constraint Pmax
k . Specifically, if P tot

k ≤ Pmax
k ,
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the whole processing stops. Otherwise, normalize the powers pn
k over all subcar-

riers of each SU to have a sum-power being Pmax
k , which corresponds to ^

p
n

k =

pn
kP

max
k /P tot

k .

The above four-step processing gives an initial power for all subcarrier of each

SU first, then calculate γn
u based on (5.28) followed by using (5.26) to compute each pn

k .

Finally, far-end ITL and local total power constraints are examined.

In this section, suboptimal and optimal solutions are discussed based on duality

theory [72]. To briefly refer to these solutions, the resource allocation via (5.18) us-

ing VFI adjustment is denoted as P1, while using Pmask is referred to as Fan08 [84].

The four-step power allocation method based on (5.26)−(5.28) are named as P2, and

the solution given by (5.25) through Ellipsoid method [44] is regarded as the Optimal

solution. In addition, when instantaneous Pmask
kn are known, the simplest power alloca-

tion is to equally distribute power over the subcarriers of each SU under ITL constraint,

pn
k = min

(
p̄k, P

mask
kn

)
, where p̄k = Pmax

k /N , which is an equal power (EP) method that

may serve as another benchmark in our system. Note that the proposed two algorithms,

P1 and P2, are both partially distributed implementations.

5.1.4 Simulation results

In this sub-section, a few simulation results are presented to verify previously discussed

resource allocation algorithms. Based on the system modelling for downlink OFDMA

in [75], the basic system settings are: total bandwidth considered is 5MHz divided into

512 subcarriers; cell radius is 1.6 kilometers; the noise power spectral density z0 is -174

dBm/Hz; each SU-Tx has the same total power constraint that is Pmax
k = 1 watt, and

the power limit of subcarrier usability is 0.001 mW. To model the fading channels, the

large-scale fading factor is assumed to be 4 as used in [84] while the multipath small-

scale fading uses a 6-tap Rayleigh fading with an exponential decaying profile as used

in [11]. For evenly generating the SUs, the cell is separated into six sectors, and each
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BS
PU
SU−Tx
SU−Rx

Fig. 5.2: Geo-location snapshot of the system.

SU is assumed to be generated in each sector with equal probability. When one SU is

generated, its Tx and Rx ends will suffer a slow mobility with a Doppler frequency being

30Hz. In addition, six fixed PUs are assumed to be located uniformly at a circle 600

meters away from the BS. One example for the geo-locations of BS, PUs and SUs is

illustrated in Fig.5.2, which is actually a snapshot of the simulated system. Note that all

512 subcarriers are used to carry signals, regardless the fact that some subcarriers might

be reserved for signaling purpose. Also, the ITL of PUs is normalized by Boltzman

constant k̄ = 1.38 × 10−23, which corresponds to dividing each T n
u by k̄ to formulate

the values used in the following simulations. Unless otherwise stated, these simulation

results are averaged over 1000 channel realizations.

With the assumption that the same ITL value equal to 103 is applied to each PU,

Fig. 5.3 illustrates the total capacity of SUs against the number of SUs. As observed in

this figure, P2 gives a performance close to the optimality and higher than other imple-
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Fig. 5.3: Total capacity of secondary users.

mentations. P1 shows an advantage over Fan08 algorithm since the cooperation between

SUs and PUs is utilized in our system model while Fan08 does not have this feature. Ex-

cept for the simplest EP method, all other algorithms present improved capacities as the

number of users increases, which demonstrates that multiuser diversity still exists even

in a constrained underlay environment. The decreasing property of EP may be attributed

to the fact that increased mutual interference in (5.1) becomes severe when more SUs are

active in the system without adaptive power control.

Fig. 5.4 shows the total capacity of SUs against different values of ITL for 12 SUs.

This figure demonstrates similar performance relations of the investigated algorithms as

shown in Fig. 5.3. In this figure, all algorithms tend to have higher total capacities for

larger ITL values, which could be regarded as a leverage to balance the performance

between PUs and SUs. When PUs are relatively idle, they can provide larger ITL for

SUs to allow higher capacity in secondary network, otherwise, PUs can lower down ITL
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Fig. 5.4: Effect of interference temperature limit.

to restrict the activity of SUs.

To numerically express the spectrum sharing feature of different algorithms, a

subcarrier sharing index is introduced as SSI =
(∑K

k=1 Nk

)/
N , where Nk is the ac-

tually used subcarriers of kth SU. Obviously, SSI can indicate an averaged degree of

subcarrier sharing, which is given in Fig. 5.5. As seen in this figure, more SUs leads to

higher spectrum sharing that may be the reason besides multiuser diversity for improved

performance. In addition, it is worth mentioning that the SSI of EP has the same value as

the number of SUs, which is the highest possible subcarrier sharing index that is equiv-

alent to using all the subcarriers. However, EP gives the lowest capacity performance as

shown in the previous two figures. The reason might be severe mutual interference and

lack of adaptive power control. Regarding EP as a benchmark, all other algorithms have

smaller SSI values, which demonstrates that a proper spectrum sharing should be ac-

companied by an appropriate power control. Based on this observation, higher spectrum
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Fig. 5.5: Subcarrier sharing index.

sharing does not definitely lead to higher utilities and some subcarriers without usage

are necessary to lower down mutual interference via dynamic power control, which also

can be further verified from the Optimal and P2 algorithms that have the least spectrum

sharing.

5.2 OCR implementation via accessible interference tem-

perature

As aforementioned, in the case of spectrum underlay, Interference Temperature Limit

(ITL) can be utilized to constrain the received interference at the Primary Users (PUs) so

that these PUs could be protected from sharing their spectra with some Secondary Users

(SUs). In this section, we consider a simplified OFDMA-based Cognitive Radio (OCR)

model compared with that studied in the previous section, where one particular subcarrier
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Fig. 5.6: System model with two PUs and two SUs.

of PU is restricted to be used by only one SU. This simplification makes the interference

control more convenient and is suitable for extremely low complexity implementation

(the proposed algorithm is with the complexity order of O (1)). In addition, the concept

of Accessible Interference Temperature (AIT) is introduced to implement this simplified

OCR without modifying the conventional infrastructure of downlink OFDMA [89].

5.2.1 Accessible interference temperature and proposed implemen-

tation

We consider a simplified model compared with that shown in Fig. 5.1, with basic system

settings being the same as those in the previous section. To be specific, Fig. 5.6 illustrates

this simplified model with two PUs and two SUs, where PU1 and SU1 share nth SC, PU2

and SU2 share mth subcarrier (SC), with n,m ∈ Γ = {1, 2, ..., N} and n 6= m. Note

that kth SU consists of one transmitter (Tx) and one receiver (Rx) denoted by SUTx
k and

SURx
k , and for simplicity, one SU indicates both SU-Tx and SU-Rx unless otherwise
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stated. To avoid mutual interferences among SUs, it is also assumed that each SC of PUs

could be shared by only one SU as long as the interference temperature of PUs is not

violated. As shown in Fig. 5.6, the channel gain from the BS to uth PU on nth SC is

assumed to be ηn
u , while the gains from kth SU-Tx to SU-Rx, from the BS to kth SU-Rx

and from kth SU-Tx to uth PU are represented by gn
kk, hn

k and qn
ku, respectively.

In traditional downlink OFDMA systems, optimal resource allocation schemes

can be used to assign SCs and powers to PUs [11]. For simplicity, we assume that the

resource allocation for PUs is pre-determined and expressed by

Ω= {(u, n) |pn
u > 0, u ∈ Λ,n ∈ Γ} , (5.29)

where pn
u is the allocated power for uth PU on nth SC. Thus, the total power at the BS

is PBS =
∑U

u=1

∑N
n=1 pn

u. In addition, pn
k is used to denote the allocated non-negative

power for kth SU on nth SC. When pn
k > 0, nth SC is being used by kth SU. As a result,

the Signal-to-Interference-plus-Noise Ratio (SINR) for kth SU on nth SC in present case

is

SINRn
k =

gn
kkp

n
k

Mn
k + v0

, (5.30)

where Mn
k = hn

kpn is the PU-to-SU interference (from the BS to kth SU on nth SC),

which is assumed to be capable of being detected by each SU. Note that pn =
∑U

u=1 pn
u

is the overall allocated power on nth subcarrier. Then, the total capacity of kth SU is

given by

Rk =
N∑

n=1

rn
k = W

N∑
n=1

log2 (1 + SINRn
k), (5.31)

where rn
k = W log2 (1 + SINRn

k) is the achievable capacity of kth SU on nth SC.

Similarly, the SINR for uth PU on nth SU is

SINRn
u =

ηn
upn

u

In
u + v0

(5.32)

where In
u =

∑K
k=1 qn

kup
n
k is the aggregate interference to uth PU on nth SC from all the

SUs. When In
u = 0, (5.32) becomes the traditional Signal-to-Noise Ratio (SNR) given
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by

SNRn
u = ηn

upn
u/v0. (5.33)

However, a minimum SINR value in (5.32) should be maintained for the usability of one

particular SC at each PU, which is given by

SINRmin
un =

ηn
upn

u

Imax
un + v0

, (5.34)

where Imax
un corresponds to the maximum allowable interference to uth PU on nth SC.

Comparing (5.33) and (5.34) will lead to

SNRn
u

SINRmin
un

=
Imax
un + v0

v0

. (5.35)

Thus, Imax
un can be expressed as

Imax
un = v0

(
SNRn

u

SINRmin
un

− 1

)
, (5.36)

which is defined as Accessible Interference Temperature (AIT) that functions as an inter-

ference gap. This gap indicates the maximum SNR degradation for PUs due to spectrum

sharing with SUs8. Note that this relationship has not been explicitly utilized for resource

allocation in the literature.

The values in (5.36) can be generated by PUs according to their channel qualities

over SCs, which can be further used to constrain the activities of SUs in the system.

Specifically, kth SU using nth SC must satisfy
∑K

k=1
qn
kup

n
k ≤ Imax

un . (5.37)

As aforementioned, for simplicity, nth SC is assumed to be shared by one SU, which

gives that only one element in the set {pn
1 , p

n
2 , ..., p

n
K} is positive with others being zero.

Given pn
k > 0, (5.37) can be further simplified, the transmission power constraint for kth

SU-Tx on nth SC then becomes

pn
k ≤ _

p
n

k = Imax
un

/
qn
ku. (5.38)

8When the SINRmin
un is set to be larger than SNRn

u , Imax
un is assumed to be zero, which indicates the

nth subcarrier of uth PU cannot be shared.
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TABLE 5.1: AIT values
SC 1 SC 2 SC 3 SC 4 SC 5 SC 6

PU 1 i11 0 i13 0 i15 0
PU 2 0 i22 0 i24 0 i26

Based on Imax
un defined in (5.36), a constraint table named as AIT table can be formulated,

which is actually a U -by-N matrix used to limit the allowable interference introduced by

SUs through (5.38). An example for 2 PUs with 6 SCs is given in Table 5.1, where the

first PU occupies SCs 1, 3, 5, and the second PU has SCs 2, 4, 6. In this table, iun

represents Imax
un for short, and 0 means one particular SC is not assigned to one PU.

The AIT table is assumed to be maintained and updated by a central referee such

as the BS, and is utilized to allocate resources to SUs. When one SU attempts to access

into the system, this SU could apply for some SCs based on the AIT table. To fast

implement the allocation, one SU randomly selects β SCs, where β is an integer between

0 and bN/Kc. Without considering the reserved SCs for signalling purpose, we set

β = bN/Kc by default for the rest of this section.

To be specific, the studied OCR model can be conveniently implemented via the

introduced AIT by the following two steps:

• (Step 1) - PUs calculate the maximum allowable AIT values on their occupied SCs

(5.36) and formulate a U -by-N matrix as in Table 5.1.

• (Step 2) - SUs apply for some SCs from the central referee, where each SU tends to

attain β SCs at most. Based on the AIT table, the central referee randomly assigns

available SCs to SUs while informing them the transmission power constraints _
p

n

k

(5.38). With these assigned SCs, each SU performs a conventional water-filling al-

gorithm [11] to distribute the total power at SU-Tx over their assigned SCs, which

results in the power for kth SU-Tx on nth SC being p̄n
k . Then, kth SU starts us-

ing the allocated SCs to transmit signals until a pre-determined timeout, where the

transmission power is constrained by min
(

_
p

n

k , p̄
n
k

)
.
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Note that the above two steps needs a centrally maintained AIT table, and the

activities between PUs and SUs are mutually independent, which enables the extremely

fast implementation of this proposed algorithm with an order of O (1) in one particular

allocation slot.

5.2.2 Simulation results

In this sub-section, one simple set of simulation results is presented for OCR resource

allocation via AIT table. The system settings used are the same as that in Section 5.1.4.

Note that one example of the geo-location snapshot has been illustrated in Fig. 5.2.
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Fig. 5.7: Performance of secondary network.

Fig. 5.7 includes two sub-figures to show the performance of the secondary net-

work. The upper figure gives the total capacity (Mbps) versus the number of SUs under

different minimum SINR values, SINRmin
un . As given in (5.34), these minimum SINRs

are used to maintain the usability of each SC for PUs. Specifically, the upper figure
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demonstrates the fact that higher SINR requirements of PUs over each SC results in

lower performance of SUs due to stricter interference constraint as indicated by Imax
un in

(5.37). Note that the multiuser diversity may not be available in this simplified model as

that in conventional OFDMA systems or in the multiple sharing model in Section 5.1,

which may be attributed to random SC selection for SUs without optimized subcarrier

scheduling. However, it is computationally efficient and only has a little performance

degradation as the number of users increases In addition, the lower figure presents a

sampled data-rate distribution of 12 SUs for one channel realization with SINR being

30 dB. From this figure, it can be seen that SUs achieve relatively fair capacities, which

could be regarded as a fairness control by limiting each SU to request the same number

of SCs.

5.3 Conclusions

In this chapter, a new system model is first presented to implement OFDMA-based

cognitive radio without modifying the fundamental structure of conventional downlink

OFDMA systems in Section 5.1. Some solutions are discussed for this new system based

on duality theory. With proper spectrum sharing, the proposed algorithms can be applied

to the scenario when the number of active users is larger than the number of subcarriers

in the system. These proposed algorithms are formulated as partially distributed imple-

mentations, which can dynamically allocate radio resources to Secondary Users (SUs)

with the cooperation of Primary Users (PUs). In addition, the effect of Interference Tem-

perature Limit (ITL) on the achieved capacity of secondary network is demonstrated,

which reveals that a properly selected ITL value may serve as a leverage to balance the

performance between PUs and SUs. Generally, Section 5.1 shows that if all co-channel

interfering transmissions are regarded as noises and powers over subcarriers are appro-

priately distributed, the system performance of secondary network can be significantly
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improved via dynamic spectrum sharing.

In Section 5.2, the Accessible Interference Temperature (AIT) is introduced to

rapidly implement a simplified OCR model as compared with the model used in Section

5.1. In this simplified model, the activities between PUs and SUs are mutually inde-

pendent. When AIT constraints are guaranteed in the secondary network, each SU can

flexibly access the available frequency bands without introducing deleterious interfer-

ences to PUs.
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Chapter 6

Conclusions

6.1 Summary of contributions

This thesis may contribute to design efficient algorithms for Orthogonal Frequency Divi-

sion Multiple Access (OFDMA) - based resource allocation in wireless communication

systems such as Single Input Single Output (SISO) - OFDMA, Multiple Input Multi-

ple Output (MIMO) - OFDMA, OFDMA relaying and OFDMA-based Cognitive Radio

(OCR). More specifically, the main contributions made in each chapter are summarized

as follows:

• In Chapter 2, two low-complexity methods are proposed for downlink SISO -

OFDMA resource allocation, with a flexible balance of different system perfor-

mance metrics. Specifically, a multiuser diversity enabled partial feedback Chan-

nel State Information (CSI) mechanism is formulated in Section 2.2. We have

shown that it may not be necessary to feedback full CSI of each user in terms of

system capacity. Alternatively, a small portion of full CSI can be utilized to gen-

erate near-optimal resource allocation in multiuser OFDMA systems. This partial

feedback mechanism may lead to a little fairness loss for users, which is normally

acceptable in practical implementations. This section provides an easy method
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to achieve the tradeoff over system capacity, proportional fairness, and feedback

amount of CSI in OFDMA systems. Furthermore, in Section 2.3, we have demon-

strated another method for satisfying diverse Qualify-of-Service (QoS) require-

ments via exploiting the minimum requested data-rate of each user as a system

design variable. The method in Section 2.3 also can easily trade off over system

capacity, user fairness and computational complexity in OFDMA systems. Note

that the above two methods both require accurate channel estimations for CSI,

which may limit their applications in scenarios without accurate CSI.

• In Chapter 3, the general resource allocation problems in multiuser downlink MIMO

- OFDMA cellular systems are investigated. Specifically, four utility-based objec-

tives are studied, Egalitarian, Utilitarian, and two bargaining solutions, General-

ized Nash Bargaining Solution (GNBS) and Kalai-Smorodinsky Bargaining So-

lution (KSBS). Based on the system optimality given in Appendix B, we have

presented some low-complexity algorithms, which can be implemented in polyno-

mial time for dynamic resource allocation. Furthermore, the generalized bargain-

ing power is demonstrated to be able to flexibly control the data-rate distribution of

users, which formulates the introduced GNBS/KSBS fairness. As observed from

the simulation section, one disadvantage of applying these two fairness criteria is

to cause certain loss in overall system capacity. In brief, the proposed algorithms

in this chapter are well suited for satisfying diverse QoS requirements and have a

general applicability to downlink SISO/MIMO-OFDMA systems.

• In Chapter 4, we study a relay-assisted OFDMA cellular system with joint con-

sideration of the direct and relaying paths. A novel implementation adopting full-

duplex relaying is proposed for relay-destination selection, subcarrier and power

allocation. This implementation can achieve higher spectrum efficiency than the

conventional half-duplex relaying mode. Meanwhile, it has effective controllabil-

ity on the tradeoff between system capacity and user fairness. One limitation of
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this work might be the high deployment complexity of full-duplex relaying, which

requires a demanding condition for subcarrier switching at each relaying station.

• In Chapter 5, OFDMA-based Cognitive Radio (OCR) systems are investigated.

Firstly, a novel spectrum sharing model is proposed to implement OCR in a con-

ventional downlink OFDMA system in Section 5.1. This model can dynamically

allocate radio resources to the Secondary Users (SUs) with the cooperation of Pri-

mary Users (PUs) so that the capacity of secondary network is maximized and

the co-channel interference is minimized. In addition, the effect of Interference

Temperature Limit (ITL) on the overall capacity of the secondary network is illus-

trated, which demonstrates that properly selecting different ITL values can balance

the performance between the primary and secondary networks. This feature may

be exploited to flexibly control the activities of the secondary network according to

the instantaneous data transmission requirements of PUs. Secondly, in Section 5.2,

the Accessible Interference Temperature (AIT) is introduced for fast implementa-

tion of a simplified OCR model. In this simplified model, the activities between

PUs and SUs are mutually independent. When AIT constraints are guaranteed

in the secondary network, each SU could rapidly access the available frequency

bands without introducing deleterious interferences to PUs.

6.2 Future research

In this section, some possible extensions and future researches are outlined. In our

studies, the proposed schemes generally assume accurate channel estimations for CSI.

However, there may exist some CSI estimation errors. Thus, it is worthwhile to further

investigate the sensitivities of the proposed schemes in this thesis to CSI estimation er-

rors in the future. Furthermore, as given in Chapter 4, the Amplify-and-Forward (AF)

relaying mode is discussed via adopting full-duplex relaying. However, in the Decode-
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and-Forward (DF) relaying mode, each Relay Station (RS) should take some time to

decode the received signals before relaying these signals to the destination users. There-

fore, the time delay must be considered and may make the system implementation more

complicated. As a result, it is worth developing a new model to deal with this delay for

the full-duplex DF relaying mode. We have conceived a way to realize this implementa-

tion. Specifically, the BS transmits the signals to each RS in the first hop of the relaying

path1. Meanwhile, each RS transmits the signals received from the BS in the previous

time-slot to its destination users on different subcarriers in the second hop of the relay-

ing path. Finally, each destination user combines the signals directly received from the

BS in the previous time-slot with the relayed signals received in the current time-slot to

make joint signal detection. This implementation needs an additional buffering function

at each destination user and could enable full-duplex DF relaying.

In recent years, many efforts have been made to realize OFDMA-based Cognitive

Radio (OCR) systems [83]. This OCR technique has high potential to be practically used

in future wireless communication systems since it has a low implementation complex-

ity and can be easily deployed in conventional OFDMA systems. We have shown some

methods to effectively implement spectrum sharing in OCR systems in Chapter 5. Nev-

ertheless, many crucial issues, such as spectrum sensing, spectrum decision, spectrum

handoff, and primary user protection, are open for investigations. In addition, fairness

should be considered in OCR systems so that the shared spectrum can be fairly used in

the secondary network. Furthermore, interference control is another concern that should

be taken into account with dynamic power allocation.

In the sense of ergodic capacity, the interference diversity in cognitive radio sys-

tems is recently revealed in [90], which may motivate us to study a two-dimensional

interference diversity for OCR systems in both time and frequency domains. In addition,

the multiuser interference diversity should be exploited for OCR systems in multiuser

1Fig. 4.1 has an illustration of this relaying path.



98

scenarios, which are more complicated than the single narrow-band case studied in [91].

In the near future, the OCR technique is expected to be adopted in conventional cellu-

lar systems. Thus, the cooperative interference control2 among different cells should be

further investigated.

In summary, the development of OCR applications compatible with the current

network architectures will be our future research focus, which may include the following

aspects:

• Agile spectrum handoff mechanisms.

• Spectrum sharing via dynamic power control and interference avoidance.

• Distributed OCR implementations.

• Joint spectrum sensing and radio resource management via cross-layer design.

• Two-dimensional interference diversity in both time and frequency domains.

• Cooperation between the primary and secondary users for mutual benefits.

• Cooperative interference control and multiuser interference diversity in multi-cell

OCR systems.

2This work has been finished in [92] before the final submission of this thesis.
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Appendix A

Optimal power allocation to Problem

(2.5)

If the subcarrier allocation for user k is given by the set Γk, where the number of el-

ements in Γk is Nk i.e., the practically allocated number of subcarriers to user k, the

optimal power allocation solution to Problem (2.5) is given by solving the following set

of equations [11]:

1
α1

N1

N

(
log2

(
1 + H11

P1,tot−V1

N1

)
+ log2W1

)

= 1
αk

Nk

N

(
log2

(
1 + Hk1

Pk,tot−Vk

Nk

)
+ log2Wk

)
, k = 2, 3, ..., K,

(A.1)

and
K∑

k=1

Pk,tot = Ptot, (A.2)

where Pk,tot is the total allocated power of each user, and

Vk =

Nk∑
n=2

Hkn −Hk1

HknHk1

, (A.3)

Wk =

(
Nk∏
n=2

Hkn

Hk1

) 1
Nk

. (A.4)



108

Note that in (A.1) and (A.2), there are K variables i.e., Pk,tot, k ∈ ∆ with K equations,

some iterative methods such as Newton-Raphson or quasi-Newton methods [44] can be

used to find the solutions efficiently.

Once Pk,tot, k ∈ ∆ are known, we can use the following two equations to easily

derive the optimal power allocation across the assigned subcarriers of user k:

Nk∑
n=1

pkn = Pk,tot, (A.5)

pkn = pk1 +
Hkn −Hk1

HknHk1

, n = 2, ..., Nk. (A.6)
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Appendix B

MIMO-OFDMA optimality

For the investigated MIMO-OFDMA system, the total system capacity is maximized

when the following conditions are satisfied [6].

Condition 1: The user assigned to subcarrier n has the highest value of
Mkn∏
i=1

(
1 +

λ
(i)
knp∗n
µ

)

over all k, i.e.,

kn = arg max
k

Mkn∏
i=1

(
1 +

λ
(i)
knp∗n
µ

)
, (B.1)

where kn is the allocated user index on subcarrier n, Mkn is the rank of Hkn, and

λ
(1)
kn , ..., λ

(Mkn)
kn are the eigen-values of HknH

H
kn and p∗n is the optimal power assigned

to subcarrier n that satisfies the following condition.

Condition 2: The power distribution over subcarriers is p∗n = max (0, pn) , where

pn is the root of the following equations,

Mknn∑
i=1

λ
(i)
knn

λ
(i)
knnpn + µ

+ β = 0, n = 1, ..., N, (B.2)

where β complies with
∑N

n=1 p∗n = Ptot.

Proposition 1: Under high SNR condition, the allocation of equal power over all

subcarriers is a near-optimal power allocation method.

Proof : Each λ
(i)
knn in (B.2) will be much larger than µ i.e., µ

/
λ

(i)
knn ≈ 0 under the
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condition of high SNR. Thus, (B.2) can be approximated as

Mknn

pn

+ β = 0, n = 1, ..., N. (B.3)

Then, it has pi = pj for i 6= j, which gives the allocated power of each subcarrier is equal

in this case.
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Appendix C

Proof of achievable capacity in equation

(4.5)

Based on the equations in (4.1)−(4.4), the received signal of user k in two hops are

yn
uI

= bn
ux

n
u + vn

I , (C.1)

and

ym
ruII

= µm
rua

n
r d

m
rux

n
u + µm

rud
m
ruv

n
r + vm

II , (C.2)

respectively. When joint estimation is adopted at each user via relaying path, (C.1) and

(C.2) are equivalent to the following representation are equivalent to the following rep-

resentation

y(n,m) =


 yn

uI

ym
ruII


 = Ax + Bv, (C.3)

where

A =


 bn

u

µm
rua

n
r d

m
ru


 , (C.4)

x = [xn
u] , (C.5)

B =


 1 0 0

0 1 µm
rud

m
ru


 , (C.6)
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v =




vn
I

vm
II

vn
r


 . (C.7)

Then, the achieved capacity (bps/Hz) can be calculated [93]

Cnm
ru = I

(
y(n,m);x

)
= log2 det

[
I +

AE(xxH)AH

BE(vvH)BH

]

= log2

[
1 +

pn
u‖bn

u‖2

v0

+
pn

k‖an
r ‖2‖dm

ru‖2‖µm
ru‖2

v0

(
1 + ‖dm

ru‖2‖µm
ru‖2)

]
.

(C.8)

where

‖µm
ru‖2 =

pm
ru

‖an
r ‖2pn

u + v0

, (C.9)

is the amplification factor at rth RS for user k on subcarrier m. Then, substitute (C.9)

into (C.8) while considering the full-duplex relaying and multiplying the bandwidth W

of each subcarrier will lead to the achievable capacity (bps) given as in (4.5).
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Appendix D

Lagrangian duality and

Karush-Kuhn-Tucker conditions

In this appendix, Lagrangian duality and Karush-Kuhn-Tucker condition are introduced,

which are selected from [72]. More details and examples about these two concepts can

further refer to [42].

Specifically, consider the following (not necessarily convex) optimization prob-

lem:
min f0 (x)

s.t. fi (x) ≤ 0, i = 1, 2, ..., m,

hj (x) = 0, j = 1, 2, ..., r,

x ∈ S.

(D.1)

Let p∗ denote the global minimum value of (D.1). For symmetry reason, we will call

(D.1) the primal optimization problem, and call x the primal vector. Introducing dual

variables λ ∈ <m and v ∈ <r, we can form the Lagrangian function

L (x, λ, v) := f0 (x) +
m∑

i=1

λifi (x) +
r∑

j=1

vjhj (x). (D.2)
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The so-called dual function g (λ, v) associated with (D.1) is defined as

g (λ, v) := min
x∈S

L (x, λ, v) . (D.3)

Notice that, as a pointwise minimum of a family of linear functions (in (λ, v)), the dual

function g (λ, v) is always concave. We will say (λ, v) is dual feasible if λ ≥ 0 and

g (λ, v) is finite. The well-known weak duality result says the following.

Proposition 1: For any primal feasible vector and any dual feasible vector (λ, v),

there holds

f0 (x) ≥ g (λ, v) . (D.4)

In other words, for any dual feasible vector (λ, v), the dual function value g (λ, v) always

serves as a lower bound on the primal objective value f0 (x). Note that x and (λ, v)

are chosen independent from each other (so long as they are both feasible). Thus, p∗ ≥
g (λ, v) for all dual feasible vector (λ, v). The largest lower bound for p∗ can be found

by solving the following dual optimization problem:

max g (λ, v)

s.t. λ ≥ 0, v ∈ <r.
(D.5)

Notice that the dual problem (D.5) is always convex regardless of the convexity of the

primal problem (D.1), since g (λ, v) is concave. Let us denote the maximum value of

(D.5) by d∗. Then, we have p∗ ≥ d∗. For most convex optimization problems (satisfying

some mild constraint qualification conditions, such as the existence of a strict interior

point), we actually have p∗ = d∗, which is called strong duality.

Next, we present a local optimality condition for the optimization problem (D.1).

For ease of exposition, let us assume S = < . Then, a necessary condition for x∗ to be a

local optimal solution of (D.1) is that there exists some (λ∗, v∗) such that

fi (x
∗) ≤ 0, ∀i = 1, 2, ..., m, (D.6)

hj (x∗) = 0, ∀j = 1, 2, ..., r, (D.7)
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λ∗ ≥ 0, (D.8)

λ∗i fi (x
∗) = 0, ∀i = 1, 2, ..., m, (D.9)

and

∇f0 (x∗) +
m∑

i=1

λ∗i∇fi (x
∗) +

r∑
j=1

v∗j∇hj (x∗) = 0. (D.10)

The conditions (D.6) - (D.10) are called the Karush-Kuhn-Tucker (KKT) condition for

optimality. Notice that the first two conditions (D.6) and (D.7) represent primal fea-

sibility of x∗, condition (D.8) represents dual feasibility, condition (D.9) signifies the

complementary slackness for the primal and dual inequality constraint pairs: fi (x) ≤ 0

and λi ≥ 0, while the last condition (D.10) is equivalent to ∇xL (x∗, λ∗, v∗) = 0.
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Appendix E

Algorithm in [84]

Treating other users’ transmissions as interference, the best response of user i is given by

Pi = BRi (P−i) = [BRi (P−i) (f1) , ..., BRi (P−i) (fK)] , (E.1)

where

BRi (P−i) (fk) =

[
1

β + λi (fk)
− Mk (fk)

hii (fk)

]Pmask(fk)

0

. (E.2)

Note that [x]ba with b > a denotes the Euclidean projection of x onto the interval [a, b]

i.e., [x]ba = a if x < a, [x]ba = x if a ≤ x ≤ b, [x]ba = b if x > b.

If secondary users are to make their best-response decisions sequentially accord-

ing to a fixed order, the associated algorithm is generalized in Table E.1 in the next page.

In this algorithm, ε is set to a small value such as 5% in [84] to serve as the stop condition.

If this condition is not satisfied after Lmax iterations, the algorithm terminates.

Note that, the notation conventions are defined differently in [84] as compared to

those used in this thesis. Specifically, in this algorithm, K means the number of sub-

carriers, N is the number of users, Pi(fk) is the power allocated for user i on subcarrier

k, and Mi(fk) corresponds to interference plus noise i.e., µn
k in Chapter 5. In addition,

λi(fk) adopts the derived result in (5.12), and Pmask (fk) uses the value given by (5.19).
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TABLE E.1: Sequential price-based iterative water-filling algorithm in [84]

0: Initialize Pi(fk) = 0,∀i ∈ ΩN and k ∈ ΩK ; initialize iteration count l = 0.
1: Repeat iterations:
2: l = l + 1;
3: for i = 1 to N users do
4: for k = 1 to K channels do
5: Estimate the total interference plus noise level Mi(fk);
6: Compute the pricing factor λi(fk);
7: Estimate the channel gain hii(fk);
8: end for
9: P

(l)
i = BRi

(
P

(l)
1 , ...,P

(l)
i−1,P

(l−1)
i+1 , ...,P

(l−1)
N

)
;

10: Transmit on selected channels using P
(l)
i .

11: end for
12: until l > Lmax or

(∥∥∥P
(l)
i −P

(l−1)
i

∥∥∥
/∥∥∥P

(l−1)
i

∥∥∥
)
≤ ε.
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