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Summary 

West Nile virus (WNV) is a mosquito-borne flavivirus, which can cause fatal 

meningoencephalitis. Although studies have been done to examine virus life cycle, the 

mechanisms that regulate its assembly are unknown. This study aims to characterize the 

interaction between WNV viral RNA and the capsid (C) protein and also elucidate how 

the processes of nucleocapsid assembly are regulated.  

Initial in vitro C protein and viral RNA interaction studies showed that this 

interaction was not specific. This suggested the presence of a regulatory mechanism to 

regulate C protein and RNA interaction. There are 5 putative phosphorylation sites on C 

protein hence; functions of C protein could be regulated by phosphorylation. Western 

blot analysis with anti-phosphoserine antibodies confirmed that C protein was 

phosphorylated. Experiments using kinase inhibitors and activators identified protein 

kinase C to be one of the kinases responsible for the phosphorylation of C protein.  

Mutations were introduced into C protein to abolish phosphorylation. The effects 

of hypophosphorylation with regards to the nucleocapsid assembly processes like RNA 

binding; nuclear localisation and oligomerization were investigated. Phosphorylation of C 

protein attenuated RNA binding and this study showed that C protein was 

dephosphorylated later during infection to facilitate C protein and viral RNA interaction. 

It is also known that WNV C protein localises predominantly in nuclei of infected cells. 

Hypophosphorylation of C protein was shown to disrupt this process. Tracking of the 

cellular localisation of C protein during an infection showed that C protein localised in 

the nucleus during the early phase of infection but was found in the cytoplasm during late 

phase of infection. This correlated with the gradual dephosphorylation of C protein in 
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infected cells. Capsid protein also oligomerized to form the nucleocapsid but 

hypophosphorylation did not affect the formation of oligomers. However, the rate of 

oligomerization was retarded by phosphorylation. These data showed that 

hypophosphorylation favoured the processes of nucleocapsid assembly. 

The biological significance of these hypophosphorylated mutants was further 

investigated by introducing the same mutations into a WNV infectious clone. 

Characterization of the mutant viruses showed that mutant viruses produced a lower viral 

yield and also experience a lag in viral production compared to wild type virus. 

Complementing mutant virus infected cells with wild type C protein partially restored 

viral yield, however, the lag in virus production was still apparent. The lag in mutant 

virus replication was only abolished through the transfection of infectious viral RNA into 

cells. This suggested that phosphorylation was critical for the early events of viral 

replication linked to nuclear localisation. In addition, it was found that, while wild type 

virus packaged 10 times more positive-stranded viral RNA than negative-stranded viral 

RNA, mutant virus packaged only twice as much positive-stranded viral RNA to 

negative-stranded viral RNA.  

This study shows that WNV C functions as a phospho-protein and proposed the 

dynamics of phosphorylation and dephosphorylation of C protein prevents the premature 

assembly of the nucleocapsid. This allows assembly to occur during the late phase of an 

infection where large pools of positive-stranded virus RNA are present.
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1.0 LITERATURE REVIEW 

1.1 Introduction to West Nile virus 

West Nile virus (WNV) is a mosquito-borne virus that was first isolated and 

identified in 1937 from the blood of a febrile adult woman in the West Nile District of 

Uganda (Smithburn et al., 1940).  In an outbreak in 1957 in Israel, it became recognised 

as a cause of severe human meningoencephalitis in elderly patients. There was an 

increased interest in the virus when an outbreak, which began in New York City in 1999, 

spread to the rest of the United States of America, Canada, Mexico the Caribbean and 

Central America. Since then, it has become an important emerging disease globally.   

The virus is classified as a flavivirus within the Japanese encephalitis sero-

complex by a cross-neutralisation test (Calisher et al., 1989; Wengler & Rey, 1999). The 

flavivirus is a genus of the family flaviviridae. The flavivirus complex includes the 

Dengue virus, Tick-borne encephalitis virus, Japanese encephalitis virus and Yellow 

fever virus and other viruses.  Genetic analysis techniques such as in situ hybridization 

and real time polymerase chain reaction (PCR) are needed to unequivocally identify 

WNV as the causative agent in infections due to antigenic cross-reactivity (Briese et al., 

2002; Lanciotti et al., 2002). 

 

1.2 West Nile virus epidemiology 

WNV isolates are genetically grouped into Lineages 1 and 2 on the basis of 

signature amino acid substitutions or deletions in their envelope protein (Berthet et al., 

1997). Lineage 1 viruses are associated with human diseases while lineage 2 viruses are 

restricted to endemic enzoonotic infections (Jia et al., 1999; Lanciotti et al., 2002) 
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Until recently, WNV is an infectious disease endemic in Africa, Europe, the 

Middle East, Central Asia and Oceania (Brinton, 2002). There were brief epizoonotic 

outbreaks (Romania, Russia, Algeria, Madagascar France, Senegal and South Africa) and 

infrequent disease outbreaks in human. However, WNV was recently introduced to the 

American continent.  

It is unclear how WNV was first established in the American continent but 

phylogenic analysis of the envelope protein of the New York WNV outbreak isolated in 

1999 suggested that it was closely related to a goose isolate from Israel (Jia et al., 1999; 

Lanciotti et al., 2002). Hence, it seemed likely that ornithophilic mosquitoes that fed on 

infected migratory birds introduced WNV to the American continent (Rappole et al., 

2000). 

Wild bird species are the reservoir hosts in endemic regions and high levels of 

viremia have been detected in a number of wild birds. Viremic levels of WNV are 

sustained at a minimum level of 105 plaque forming units/ml (PFU/ml) of serum for 

several days to weeks (Bernard & Kramer, 2001). There are a number of mosquito 

species that have been infected with WNV and they include Culex, Aedes, Minomyia, 

Mansonia and Anopheles but the Culex species remain the most susceptible to infection 

(Ilkal et al., 1997). Natural vertical transmission of the virus in Culex mosquitoes have 

been reported in Africa and this is believed to enhance virus maintenance in nature 

(Miller et al., 2000). Humans, mammals and amphibians are incidental host and do not 

play a role in the transmission cycle because of the level of viremia is too low to infect 

mosquitoes (Anderson et al., 1999; Hubalek, 2000; Rappole et al., 2000). Although 
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alternate modes of human to human transmission is possible through blood transfusion, 

organ transplantation and ingestion of breast milk (Hayes & O'Leary, 2004).  

The WNV strain that caused the outbreak in New York city is characterized by a 

high avian death rate and an increase in human disease severity (Solomon et al., 2003). It 

has been hypothesized that it had acquired some changes to its neurovirulent properties 

(Ceccaldi et al., 2004). In 2002, there were 4156 human cases of WNV infection in the 

United States of America (O'Leary et al., 2004) and this continued to increase to 9862 

cases resulting in 264 deaths in 2003 (CDC, 2004). But the numbers of cases have begun 

to decline. As of 2009 there were 720 cases with 32 fatalities (CDC, 2009).  

Incubation period of a WNV infection in humans is typically 2 – 6 days usually 

accompanied with a fever. The course of the fever is sometimes biphasic and about 50% 

of the infected individuals report a maculopapula or pale roseolar rash (Petersen & 

Roehrig, 2001). Encephalitis, meningoencephalitis, pan-meningoencephalitis, (Omalu et 

al., 2003) myocarditis, pancreatitis or hepatitis have all been reported in severely infected 

individuals. Histopathatological studies in birds have revealed that WNV could be 

detected in all major organs and viral antigens were also found in 88% of the brains 

examined (Steele et al., 2000). Because WNV is neuroinvasive, it has caused fatalities in 

immunocompromised individuals (George et al., 1984) and also in older individuals aged 

60 and above (Chowers et al., 2001). The neurological manifestations of WNV are very 

similar to other flaviviruses such as the Japanese encephalitis virus and Murray Valley 

virus. The damage caused to the meninges, brain parenchyma and spinal cord had caused 

poliovirus-like flaccid paralysis in some infected patients (Sejvar et al., 2003).  
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1.3 Virus morphology 

Mature virion particles are ~50 nm in diameter spherical, enveloped (Fig. 1-1A) 

and have a buoyant density of ~1.2g/cm3. Their cores are about 25 – 30 nm in diameter 

and the projections on the envelope are about 5 – 10 nm long. The core is composed of 

multiple capsid (C) proteins encapsidating the viral RNA (Fig. 1-1B). A lipid bilayer, a 

lipid membrane (M) protein and a large envelope glycoprotein (E) surround the core (Fig. 

1-1C). In immature virions, the pre-membrane (prM) protein is cleaved away from the E 

protein to produce mature virions (Fig. 1-1D). The two viral surface proteins, M and E, 

are Type I integral membrane proteins with C-terminal membrane anchors 

(Mukhopadhyay et al., 2003) which form homodimers on the surface (Fig. 1-1D).     

The determination of the structure of the entire Dengue type 2 virion by cryo-

electron microscopy (Kuhn et al., 2002) and structure determination of the E glycoprotein 

of Tick-borne encephalitis virus by X-ray crystallography (Rey et al., 1995) have 

increased our understanding of the structure and function of the flavivirus virion. The E 

glycoprotein contains a fusion peptide responsible for fusing the viral lipid bilayer with 

that of the host. It is the principal antigenic site, which stimulates the production of 

neutralizing antibodies. 
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Figure 1-1. Structure of flavivirus. (A) A surface reconstruction of the Dengue type 2 
virus at 24 Å resolution by cyro-electron microscopy. The 5-fold and 3-fold icosohedral 
symmetry axes are labelled. (B) An electron density cross-section reconstruction of the 
virion. The dark blue layer is the envelope protein, light blue region is the membrane 
protein, green is the lipid bilayer, yellow is the capsid protein and red is the RNA.  (C) 
Stereo reconstruction of the capsid and RNA, yellow is the capsid while red is the RNA. 
(D) Homodimer of the envelope protein. The light blue represents the M protein which is 
cleaved in a matured virus and the arrows indicate the holes between the dimers where 
the M protein sits (Kuhn et al., 2002). 
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1.4 West Nile virus RNA genome organisation and viral proteins 

 Flaviviruses are single positive-stranded RNA virus. The WNV genome is 

approximately 11, 029 bases in length and it contains a single open reading frame (ORF) 

of about 10,301 bases. The 5’ untranslated region (UTR) and the 3’ UTR are 96 and 631 

bases in length, respectively. The conserved repeated sequences on the 3’ UTR in 

flaviviruses are believed to form a pseudo-knot structure necessary for RNA cyclization 

(Hahn et al., 1987; Shi et al., 1996).  Since the genomic RNA is positive-stranded, it is 

infectious (Ada & Anderson, 1959). However unlike mammalian mRNA, the genomic 

RNA of mosquito-borne flaviviruses lack the 3’ terminal polyadenine tract (Brinton et 

al., 1986; Westaway et al., 1997) instead terminates with the conserved dinucleotide 

CUOH.  

 The ORF encodes for 3 structural proteins, the Capsid (C), 

premembrane/membrane (prM/M) and envelope  (E) and 7 non-structural (NS) protein, 

NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5. The translation of viral proteins is 

initiated at the 5’ end of the genome. Each viral protein is believed to be cleaved from the 

precursor polyprotein during or after translation (Castle et al., 1985; Wengler et al., 

1985).  

 

1.4.1 Structural proteins 

The structural proteins are responsible for the assembly of the virus. The first 

structural protein to be translated is the C protein. Details of the C protein will be dealt 

with in Section 1.6. The second protein is the prM/M protein. It is a relatively small 

protein of about 18-19 kDa. This protein is a glycoprotein precursor of the 
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unglycosylated structural M protein  (Mr of 8 kDa). The prM protein is present on the 

intracellular immature virion and the hydrophilic amino-terminal portion of the protein is 

cleaved in the trans-Golgi network by cellular furin or related protease to produce mature 

virions with M protein (Stadler et al., 1997). It has been proposed that the function of 

prM protein is to chaperone the E protein so that it does not undergo irreversible 

conformational changes in the acidic compartments of the secretory pathway (Heinz & 

Allison, 2000). The prM and E interaction are hypothesized to maintain the E protein in a 

stable, fusion-active conformation during assembly and exocytosis mature virions.  

 The E protein is the largest structural protein of WNV (50-60 kDa). The E 

protein is present on the surface of the virus as club-like projections (Westaway, 1987).  

It is a type I integral membrane protein where the amino-terminal is exposed on the 

surface and the hydrophobic carboxyl-terminal is buried within the membrane bilayer 

(Chambers et al., 1990).  The cysteine residues in the E protein are highly conserved 

amongst the flaviviruses since they are crucial for the formation of intracellular 

disulphide bonds (Nowak & Wengler, 1987).  

Crystallography data revealed that the E protein of the Tick-borne encephalitis 

virus formed homodimers arranged in a head-to-tail orientation (Rey et al., 1995). The E 

protein can be divided into three domains - a central domain, designated as domain I, an 

elongated dimerization region designated as domain II and an immunoglobulin-like 

module designated as domain III (Rey et al., 1995). Based on the structure of Dengue 

virus, the E protein dimers are closely packed on the surface of the virus making fusion 

impossible at neutral pH. However, it has been proposed that conformational changes of 

the E proteins occurred at reduced pH environment (Modis et al., 2004). The reduced pH 
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in the endocytic vesicles causes the E protein dimers on the virion surface to dissociate so 

that the fusion peptide in domain II is exposed. This allows domain II to insert its fusion 

peptide into the target cell membrane. Subsequently, the interactions of the E protein with 

the endocytic vesicle membrane form hemifusion pores through which the viral 

nucleocapsid is released.  

 

1.5 Virus cellular life cycle 

 The WNV can replicate in a wide variety of cell cultures from primary chicken, 

duck and mouse embryo cell cultures and secondary cell lines derived from human, 

monkeys, pigs rodents, amphibians and insects, however, it does not cause any apparent 

cytopathology in many of these cell lines (Brinton, 1986). The receptor utilized by the 

WNV is likely to be conserved since it is transmitted between an insect and a vertebrate 

host (Brinton, 2002). This notion is reinforced by evidence that the receptor utilized by 

the WNV in Vero and murine neuroblastoma 2A cells is a 105-kDa protease sensitive, N-

linked glycoprotein (Chu & Ng, 2003). This was later identified as the alpha v beta 3 

integrin receptor (Chu & Ng, 2004) 

 Viral entry into host cell is facilitated by clathrin-mediated endocytosis pathway 

(Marsh & McMahon, 1999). This event is followed by low-pH fusion of the viral 

membrane with the lysosomal vesicle membrane (Heinz & Allison, 2000).  The low pH 

causes a conformational change in the E proteins, which allow for the interaction between 

the E proteins and the lysosomal membrane to form hemifusion pores for the release of 

viral nucleocapsid into the cytoplasm (Modis et al., 2004). 
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 The nucleocapsid is believed to be uncoated and the viral RNA released into the 

cytoplasm. Viral RNA is transported to the endoplasmic reticulum (ER), where WNV 

protein translation and RNA replication occur (Mackenzie et al., 1996) 

Host protease and the NS2B-NS3 viral serine proteases cleave the translated 

polyprotein at multiple sites to generate mature viral proteins (Chambers et al., 1990). 

The function of most of the non-structural proteins in replication is ill-defined, except for 

NS3 and NS5, which are the most conserved of the flavivirus protein. The C-terminal 

portion of the NS5 protein contains a motif characteristic of an RNA-dependent RNA 

polymerase (RdRps). It has also been suggested that NS1 and NS4A proteins are 

necessary for viral RNA synthesis too (Lindenbach & Rice, 1999). Flavivirus replication 

was thought to occur exclusively in the cytoplasm (Grun & Brinton, 1988; Takegami & 

Hotta, 1990; Westaway et al., 1997) however, recent evidence suggests that as much as 

the 20 % of the replication complexes are localized in the nucleus (Uchil et al., 2006). 

Nuclear localisation  factors of these complexes are unknown.  

In the replication complex, the RdRps, NS5 protein together with other viral non-

structural and possibly host proteins begin to use the positive strand RNA to make a 

complementary strand RNA. In turn these negative sense RNA serve as a template for the 

positive strand genomic RNA which will be incorporated into the nucleocapsid later 

(Brinton, 2002).  

During WNV infection, it is observed that there are extensive reorganisation and 

proliferation of the smooth and rough endoplasmic reticula (Lindenbach & Rice, 1999; 

Westaway & Ng, 1980). Membranous structures are also induced but their function 

remains unknown (Westaway et al., 2002). One of these structures seen in both vertebrate 
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and invertebrate cells is the formation of vesicles packets that contain bi-layered 

membrane vesicles of 50-100nm in size. Within these structures are single- or double-

stranded “thread-like” structures (Ng, 1987). 

There is at present very little information on the assembly and packaging of the 

nucleocapsid and this will be discussed in a later section. Nucleocapsid assembly with the 

E and prM protein occurs in association with the endoplasmic reticulum membrane. It has 

been observed that the intracellular immature virions accumulated in vesicles, which 

were then transported through the host secretory pathway (Heinz et al., 1994; Wengler, 

1989).  Matured virions are generated when the glycosylated and hydrophilic amino-

terminal portion of the prM is cleaved in the trans-Golgi network by cellular furin and 

other host proteases (Stadler et al., 1997) while the carboxyl terminal remains inserted in 

the envelope of mature virus (Murray et al., 1993). This process is essential for the 

infectivity of some flaviviruses (Elshuber et al., 2003) but not Dengue (Murray et al., 

1993). The mature virions were observed by electron microscopy to reside within the 

lumen of the endoplasmic reticulum (Hase et al., 1989; Matsumura et al., 1977; Ng, 

1987; Sriurairatna & Bhamarapravati, 1977) at the perinuclear area of the cytoplasm 

(Westaway & Ng, 1980). 

However, the Sarafend strain of WNV has a slightly different process of assembly 

as described above. Instead of associating with the endoplasmic reticulum, the 

nucleocapsid was observed by cryo-immunoelectron microscopy to associate with the E 

proteins at the host cell’s plasma membrane (Ng et al., 2001). Unlike the rest of the 

flaviviruses, which have a trans-mode of maturation where the mature virion particles are 

release by exocytosis, Sarafend strain of the WNV matures cis-mode at the plasma 
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membrane (Mason, 1989; Nowak et al., 1989). The egress of the WNV (Sarafend) was 

observed to occur primarily at the apical surface of polarized Vero cells, this suggested 

that a microtubule-dependent polarized sorting mechanism exists for WNV proteins (Chu 

& Ng, 2002b). A later study demonstrated that both the E and C proteins associated 

strongly with microtubules and were transported to the plasma membrane for assembly 

(Chu & Ng, 2002a). This interaction between the WNV proteins and the microtubule was 

suggested to be ionic in nature since the interaction was sensitive to high salt extraction 

but resistant to Triton X-100 and octyl glycoside extraction (Chu & Ng, 2002b).  

A phenomenon observed with viruses in the flaviviridae family is that virion-like 

particles (VLPs) were found in infected sera (Kaito et al., 1994; Mizuno et al., 1995; 

Shimizu et al., 1996). These VLPs are made up of the E and M proteins embedded in the 

lipid bilayer but it does not have a nucleocapsid core and thus non-infectious. Such 

observations point out that nucleocapsid assembly of the C protein and the budding of the 

E and M protein in the lipid bilayer are two processes independent of each other.   

 

1.6 The capsid (C) protein  

 The WNV C protein is the first structural protein found in the ORF and has a 

molecular weight of approximately 12-15 kDa. The C protein is the basic building block 

of the nucleocapsid which encapsidates viral RNA. It is assumed that C protein has RNA 

binding properties and this was elucidated by Khromykh and Westaway in 1996. A 

precursor of the C protein is 123 amino acids long and it contains a hydrophobic region at 

the carboxyl terminal, which anchors the protein to the membrane of ER. This region is 

cleaved off to generate a mature 105 amino acid C protein by viral protease NS2B-NS3 
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(Chambers et al., 1990; Wengler & Gross, 1978). The sequences of the C proteins are 

poorly conserved among flaviviruses however it is biochemically and structurally similar 

(Fig. 1-2).   The flavivirus C protein is rich in basic residues and it has a distinct 

hydrophobic segment in the middle (Markoff et al., 1997). 

 Although the C protein is thought to primarily package the viral genome, a 

functional nuclear localisation signal characterized on the WNV, Dengue virus and 

Japanese encephalitis virus C protein has called into question its function in the nucleus 

(Bhuvanakantham et al., 2009; Mori et al., 2005; Wang et al., 2002). Studies on the 

Hepatitis C virus (a member of the Flaviviridae under the genus Hepacivirus) C protein 

suggested that the C protein is multifunctional. It has been implicated in cell 

transformation, lipid metabolism, transcription, immune presentation and regulation of 

apoptosis (McLauchlan, 2000). 
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Figure 1-2. Multiple sequence alignment of flavivirus C protein.  The 4 alpha-helices are 
indicated at the top and colour coded. The colours correspond to the 3 dimensional 
structure of the C protein in Fig 1-3. The conserved regions are shaded grey. Residues 
with similarity greater than 50 % are in red while conserved residues are highlighted in 
red. DEN2, Dengue type 2; DEN1, Dengue type 1; DEN3, Dengue type 3, DEN4, 
Dengue type 4; KUN, Kunjin; WNV, West Nile virus; MVE, Murray Valley encephalitis; 
JEV, Japanese encephalitis; SLE, St. Louis encephalitis; YFV, yellow fever; TBE; LIV, 
louping ill; LAN, Langat; POW, Powassan virus (Ma et al., 2004). 
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1.6.1 Structure of capsid (C) protein 

 Cryo-electron microscopy analyses of both the WNV and Dengue viruses showed 

that E protein on the surface is well-ordered but indicated that the C protein had no 

ordered density (Kuhn et al., 2002; Mukhopadhyay et al., 2003) This suggests that C 

protein does not share the organization of E proteins on the surface.  

 Structural studies done on Yellow Fever and Dengue Virus C protein revealed 

that flavivirus C is a dimeric alpha-helical protein (Jones et al., 2003). It was 

demonstrated that the flavivirus C protein has a novel fold and the monomer comprises of 

3 helices, alpha-1 to 3 and a fourth helix, alpha-4 extending away from the protein and 

can form tetramers [(Fig. 1-3) (Ma et al., 2004)]. Ma and colleagues (2004) proposed that 

the positively charged regions would extend into the centre to interact with viral RNA 

while the hydrophobic region would interact with the membrane of endoplasmic 

reticulum (Fig. 1-4). The dimeric structure of the Dengue virus C protein was confirmed 

by the crystal structure of the C protein from the Kunjin strain of WNV (Dokland et al., 

2004). The crystal structure revealed the alpha-1 helix, which corresponded to the amino 

acid terminal, was flexible. It was proposed that this flexibility allowed for a 

conformation switch so that amino- and carboxyl-terminal of C protein could be brought 

together. This is significant since the RNA binding region on Kunjin C protein was found 

on both the amino and carboxyl terminals (Khromykh & Westaway, 1996). In addition, it 

was revealed that the dimers formed tetramers in the crystal structure (Dokland et al., 

2004). The authors proposed that this tetrameric structure actually shielded the 

hydrophobic region, creating a positively charged surface for RNA binding.   
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Figure 1-3. Ribbon representation of the capsid protein from Kunjin strain of WNV. 
Each monomer of capsid protein is given one colour. (A) A ribbon representation of a 
capsid dimer. (B) A ribbon representation of a capsid tetramer showing the formation of a 
tunnel between the two dimers (Ma et al., 2004). 
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1.6.2 Nucleocapsid dimerization and viral assembly 

 Nucleocapsid assembly in general involves C-C and C-nuclei acid interactions. 

Nucleocapsid assembly models of other spherical viruses suggest that when interaction 

between monomeric C proteins is weak, a nucleic acid scaffold, dimerization and/or 

oligomerization of C protein could enhance C-C interaction and hence provide the 

stability to induce assembly (Zlotnick, 2003). The mechanism suggested during nuclei 

acid-induced assembly is its binding to C protein would elevate local C protein 

concentration and correctly orientate the protein for dimerization. Mathematical models 

of assembly based on Hepatitis B virus also show that in vitro dimerization of C protein 

subunits is expected to favour assembly regardless of the role of dimers in vivo (Ceres & 

Figure 1-4. Proposed model of 
flavivirus C protein interaction with 
the lipid bilayer and viral RNA. The 
dimerized C protein is shown in 
between the lipid bilayer membrane 
and viral RNA (vRNA). The 
hydrophobic face of the C dimer is 
facing the membrane while the 
positively charged surface is facing 
the RNA.  (Ma et al., 2004) 
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Zlotnick, 2002). To understand the effect of dimerization on assembly, analysis of the 

geometry each subunit of the nucleocapsid is necessary. In general, the more contact 

points a subunit makes, the more stable the resulting capsid is (Zlotnick, 2003). These 

models can be extended to the assembly of flavivirus C protein but since structural 

studies revealed that flavivirus nucleocapsid did not have an ordered density, geometric 

analysis of the flavivirus nucleocapsid might be irrelevant. Nonetheless, weak 

interactions between C proteins reduce the likelihood of the formation of kinetic traps but 

allow for other factors such as nucleation to enhance assembly. This characteristic might 

be important for viruses where dissociation is part of its life cycle. 

A functional study identified the critical residue, Trp69, for C-C self-association. 

Mutation to this residue abolished or greatly attenuated dimerization of C protein 

(Bhuvanakantham & Ng, 2005). Evidence suggested that the basic building block of 

flavivirus nucleocapsid is the dimeric form of the C protein (Kunkel et al., 2001; Patkar 

et al., 2007). This corroborated with the NMR and crystal structure of the C protein. The 

importance of a dimeric C proteins in virion morphogenesis is unclear although 

nucleocapsid-like particles assembled from purified Tick-borne encephalitis virus C 

protein suggested that C dimers functioned as the building block of nucleocapsid 

assembly (Kiermayr et al., 2004) 

 Though it was demonstrated that the amino- and carboxyl- terminal of Kunjin 

virus is responsible for RNA binding, mutational and deletion studies with Yellow fever, 

Tick-borne encephalitis and Hepatitis C viruses C proteins suggested that the positively- 

charged clusters of amino acid residues at the amino- and carboxyl-terminal interacted 

with nucleic acids cooperatively because they are functionally redundant.  Conversely, it 
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was demonstrated that deletions or mutations to the internal hydrophobic region of C 

protein was tolerated to a lesser extent (Kofler et al., 2002; Patkar et al., 2007). This is 

consistent with the notion that hydrophobic interactions between C protein and the lipid 

membrane is important for assembly of mature virus since the cytoplasmic domains of 

both M and E proteins are very short, thus they are not likely to provide the necessary 

interactions for association with the nucleocapsid (Markoff et al., 1997).  In any case, the 

mechanism pertaining to the envelopment of the nucleocapsid is still unclear.  

 Studies from in vitro nucleocapsid assembly of Hepatitis C virus and Tick-borne 

encephalitis virus C proteins suggested that C-C self-association and the eventual 

formation of a nucleocapsid was a spontaneous process in the presence of nucleic acid 

(Kiermayr et al., 2004; Kunkel et al., 2001). It is proposed that nuclei acids form 

nucleation points for the subsequent oligomerization of the C protein. Indeed in vitro 

study on the assembly of the alphaviruses, a genus of the Togaviridae, was also 

consistent with this idea (Tellinghuisen et al., 1999). In these in vitro systems, either viral 

RNA or short DNA oligonucleotides were sufficient to assemble nucleocapsid-like 

particles, suggesting that encapsidation may not be specific.  

 

1.6.3   Flavivirus capsid  (C) nuclear localisation  

Many flavivirus as well as Hepatitis C virus C proteins have been demonstrated to 

localize in the nucleus of many infected cells (Falcon et al., 2003; Falcon et al., 2005; 

Mori et al., 2005; Sangiambut et al., 2008; Suzuki et al., 1995; Suzuki et al., 2005; Wang 

et al., 2002; Westaway et al., 1997). However, the functions of C protein in the nucleus 

are unclear since positive-stranded RNA viruses are thought to utilize cellular 
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components in the cytoplasm for replication. Nuclear localisation of C protein for 

positive-stranded RNA virus is not unusual though. The C protein of coronavirus, another 

group of positive-stranded RNA viruses, was also reported to localize in the nuclei of 

infected cells and interacted with nucleolin protein (Chen et al., 2002). Nucleolin is a 

multifunctional protein involved in activities such as cytokinesis, cell proliferation, 

ribosome biogenesis, chromatin decondensation and transcription regulation (Tuteja & 

Tuteja, 1998). This suggested that coronavirus C protein could be involved in any of the 

above-mentioned functions by interacting with nucleolin protein. 

 More recently, it has been suggested that coronavirus C protein was involved in 

cycle arrest during an infection through its interaction with cyclin-cyclin dependent 

kinase complex (Li et al., 2007; Surjit et al., 2006). Hence, flavivirus C protein could 

have similar roles in the nucleus during an infection. In addition, flavivirus C protein may 

also play an important role in transcriptional and translational regulation of host proteins 

since Dengue virus C protein was reported to interact with the heterogeneous nuclear 

ribonucleoprotein K (Chang et al., 2001).  

 Nuclear localisation  of C protein is mediated by the nuclear localizing signal 

(NLS) motif on the protein. The NLS motif is a region on a protein that is rich in basic 

residues, like lysine and arginine. There are two types of NLS motifs – monopartite NLS, 

namely one short region of about four to five basic residues, and bipartite NLS which 

consists of two regions of basic residues separated by 10 to 12 random residues sequence 

(Dingwall & Laskey, 1991). Thus far, the nuclear localisation signal has been identified 

on Dengue, West Nile and Hepatitis C viruses C protein (Falcon et al., 2003; Wang et al., 

2002).  The NLS motif on a protein has been widely demonstrated to interact with 
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importin-α/β to mediate nuclear localisation of the protein (Friedrich et al., 2006; Reguly 

& Wrana, 2003; Whittaker & Helenius, 1998).  The mechanism of nuclear translocation 

necessitates the binding of importin-α to the NLS motif. Importin-α then acts as an 

adaptor for the binding of importin-β. Subsequently, importin-β docks the entire complex 

of the NLS-bearing protein and importin- α/β complex at the nuclear pore complex for 

translocation (Gorlich & Mattaj, 1996). Thus far it has been shown that the NLS motif of 

C protein of Hepatitis C, Dengue and West Nile viruses interacted directly with importin- 

α to mediate nuclear localisation  (Bhuvanakantham et al., 2009; Suzuki et al., 2005) The 

disruption of nuclear localisation  has been shown to be detrimental for viral replication, 

suggesting that this phase of the viral life cycle is important for viral replication 

(Bhuvanakantham et al., 2009). 

 

1.6.4   Capsid  (C) protein and RNA interaction 

 The RNA binding properties of the flavivirus C protein was first demonstrated 

with the Kunjin strain of WNV (Khromykh & Westaway, 1996). Similar reports of C 

protein RNA binding property were also reported in Hepatitis C virus (Santolini et al., 

1994). All these report indicated that the positively charged clusters of the C protein at 

the amino- and carboxyl- terminals were involved in RNA binding. This property can be 

extended to all flavivirus C proteins since they all have positively charged clusters.  

 Although the region on C protein involved in RNA binding was defined in Kunjin 

virus, the encapsidation signal of the RNA was never defined. However, it was 

demonstrated that the 5’UTR and 3’UTR of the Kunjin genomic RNA bind to Kunjin C 

protein (Khromykh and Westaway, 1996). In contrast, encapsidation for Sindbis and 
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Rubella viruses, both of which belong to the family of Togaviridae, were defined 

(Geigenmuller-Gnirke et al., 1993; Liu et al., 1996). In the Sindbis virus nucleocapsid 

assembly model, it was proposed that binding of C protein to the virus RNA 

encapsidation signal, promoted a conformational change in the RNA and this resulted in 

the dimerization of the capsid protein (Geigenmuller-Gnirke et al., 1993). In addition, 

encapsidation signal were also found for many other animal viruses like the Retroviridae 

(Banks & Linial, 2000; Beasley & Hu, 2002; McBride & Panganiban, 1996), 

Coronaviridae (Cologna et al., 2000; Narayanan & Makino, 2001), Bunyaviridae (Ng, 

1987; Severson et al., 2001; Xu et al., 2002) and Orthomyxoviridae (Tchatalbachev et al., 

2001).  

 In all these examples, RNA encapsidation signal contains complex secondary 

confirmation such as stem loops and bulges.  Analysis of 5’ and 3’UTR of flavivirus 

genome also reveal such structures. However, the difference between flavivirus genome 

and the rest of the animal viruses genomes listed above is that flavivirus genome 

undergoes cyclization whereby the conserved regions on the 5’ and 3’UTR are paired 

(Khromykh et al., 2001). It is therefore, not surprising that the 5’ and 3’ UTR of Kunjin 

virus displays C protein binding properties. It is however unknown if other regions of the 

flavivirus RNA has specific C protein binding properties as well. 

In addition to packaging of the RNA, it was recently proposed that the flavivirus C 

protein acted as an RNA chaperone to assist in the correct folding of RNA molecules 

(Ivanyi-Nagy et al., 2008).  The authors suggested that the intrinsically disordered 

segments of the C protein induce RNA structural rearrangements and this could have 

implications for RNA encapsidation and replication.  
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1.6.5 Phosphorylation of capsid (C) protein and its effects 

 Phosphorylation of C protein in many plant and animal viruses has been 

demonstrated to be an integral and important process for viral replication. The disruption 

of this process is detrimental to viral replication. For example, prevention of 

phosphorylation of C protein of the Cauliflower Mosaic virus resulted in reduced levels 

of virus accumulation (Leclerc et al., 1999). Similarly, when C protein of rabies virus 

was not phosphorylated, both replication and transcription were reduced (Wu et al., 

2002). In another study, phosphorylation of C protein of the Potato X virus induced co-

translational virion disassembly (Atabekov et al., 2001). In general, the direct effects of 

phosphorylation on a viral C protein function can be broadly divided into three categories 

– i) RNA binding, ii) protein-protein interaction including iii) self-oligomerization and 

iv) nuclear localisation.  

Studies from both animal and plant viruses provided evidence that 

phosphorylation affect the RNA binding ability of C protein. In the case of Hepatitis B 

and Rubella virus, it was shown that phosphorylation of the C protein attenuated its 

binding to viral genomic RNA (Gazina et al., 2000; Law et al., 2003). In addition, studies 

on the potivirus, Potato virus A corroborated with earlier results from the Hepatitis B and 

Rubella virus whereby phosphorylation of C protein also attenuated its binding to viral 

RNA (Ivanov et al., 2001). These are not a surprising finding since phosphorylation of a 

nucleic binding protein would neutralize the positive charges on the protein, thus 

reducing its affinity for the negatively charged nucleic acids. Besides modulating the 

charge on the protein, there exists the possibility that phosphorylation might effect a 
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conformational change in the protein which attenuates its RNA binding (Yu & Summers, 

1994).  

Conversely, it should also be noted that phosphorylation of some proteins can 

enhance its RNA binding ability. For example, in Human T-cell leukemia virus type 2, 

phosphorylation of the Rex protein enhanced RNA binding activity (Green et al., 1992). 

Evidence also suggested that the RNA binding activity of C protein of the Mouse 

hepatitis virus, a member of the Coronaviridae, was also enhanced by phosphorylation 

because dephosphorylation is required for the disassembly and release of the viral RNA 

(Kalicharran et al., 1996).  Thus it can be surmised that phosphorylation plays a 

modulating role in a protein’s RNA binding activity.  

Protein-protein interaction, including dimerization, can also be affected by 

phosphorylation and this was demonstrated by studies from various viruses. For example, 

in the Herpes simplex virus type 1, phosphorylation of its structural proteins promoted 

tegument dissociation (Morrison et al., 1998). A mutation at the phosphorylation site of 

the capsid protein, VP1 in polyomavirus was associated with a defect in virion assembly 

(Li & Garcea, 1994). It has also been proposed that phosphorylation of Cap24 structural 

protein of Human immunodeficiency virus type 1 is necessary for the disassembly of the 

virus (Cartier et al., 1999). All these suggested that phosphorylation affect protein-protein 

interaction and therefore the oligomerization and assembly/disassembly C protein.  

 Finally, phosphorylation can also affect nuclear localisation of phosphorylated 

protein. It has been reported that phosphorylation of residues around the NLS motif 

enhanced nuclear localisation of a protein as is the case for the Simian-Virus-40 large T-

antigen (Fontes et al., 2003). Evidence from mutational analyses of the phosphorylation 
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sites on Hepatitis C virus C protein also showed enhancement of nuclear localisation  (Lu 

& Ou, 2002).   

 Certainly, it is not only the properties of C protein that could be modulated by 

phosphorylation. Recent studies with the Hepatitis C virus C protein revealed that 

phosphorylation targeted the protein for degradation. Hence phosphorylation acts as a 

modulator of C protein level in infected cells (Majeau et al., 2007). 

Therefore, it can be surmised from the above studies that phosphorylation of the C 

protein plays an important role in modulating its function. Since phosphorylation of the C 

protein occurs across a variety of viruses, it is possible that this mechanism is conserved 

for regulating virion assembly and viral replication. 

Thus far, there are currently no direct evidence that the flavivirus C is a 

phosphoprotein although it has been shown that the Hepatitis C virus C protein is a 

phosphoprotein (Lu & Ou, 2002). Consequently, it is likely that the WNV C protein is 

functions as phosphoprotein and that its activities such as RNA binding, oligomerization 

and nuclear localisation are modulated by phosphorylation. 
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1.7 Objectives 

Encapsidation of viral RNA is a critical process in WNV assembly. 

Characterization of the C protein and RNA interaction would give an insight on how 

encapsidation might occur. In addition, mounting evidence from other viruses suggests 

that viral assembly is a regulated process involving host factors. Phosphorylation has 

often been cited to regulate protein functions. Therefore this study aims to elucidate how 

phosphorylation might modulate the functions of the C protein, with regards to the 

processes of nucleocapsid assembly and ultimately viral replication. 

Since nucleocapsid assembly would involve the interaction between viral RNA and C 

protein, the specific objectives of this study are as follows:  

(a) To develop assays to study WNV C protein-RNA interaction. 

(b) Determine if C protein is a phosphoprotein. 

(c) Characterize C protein and RNA interaction and determine how phosphorylation 

affects this interaction. 

(d) Determine how phosphorylation might affect other functions of the C protein with 

regards to nucleocapsid assemnbly and ultimately viral replication. 

 

 

 


