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Abstract

Switched systems are a particular kind of hybrid systems described

by a combination of continuous/discrete subsystems and a logic-based

switching signal. Currently, switched systems are employed as useful

mathematical models for many physical systems displaying different

dynamic behavior in each mode. Among the challenging mathemat-

ical problems that have arisen in switched systems, stability is the

main issue. It is well known that switching can introduce instabil-

ity even when all the subsystems are stable while on the other hand

proper switching between unstable subsystems can lead to the stabil-

ity of the overall system. In the last few years, significant progress

has been made in establishing stability conditions for switched sys-

tems. While major advances have been made, a number of interesting

problems are left open, even in the case of switched linear systems.

With respect to some of these problems, we present some new results

in three chapters as follows:

In Chapter 2, we deal with the stability of switched systems under

arbitrary switching. Compared to Lyapunov-function methods which

have been widely used in the literature, a novel geometric approach is

proposed to develop an easily verifiable, necessary and sufficient sta-

bility condition for a pair of second-order linear time invariant (LTI)

systems under arbitrary switching. The condition is general since all

the possible combinations of subsystem dynamics are analyzed.

In Chapter 3, we apply the geometric approach to the problem of

stabilization by switching. Necessary and sufficient conditions for

regional asymptotic stabilizability are derived, thereby providing an



effective way to verify whether a switched system with two unstable

second-order LTI subsystems can be stabilized by switching.

In Chapter 4, we investigate the stability of switched systems under

restricted switching. We derive new frequency-domain conditions for

the L2-stability of feedback systems with periodically switched, lin-

ear/nonlinear feedback gains. These conditions, which can be checked

by a computational-graphic method, are applicable to higher-order

switched systems.

We conclude the thesis with a summary of the main contributions and

future direction of research in Chapter 5.
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Chapter 1

Introduction

1.1 Hybrid Systems and Switched Systems

A hybrid system is a dynamical system that contains interacting continuous and

discrete dynamics. Many systems encountered in practice are intrinsically hybrid

systems. For example, a valve or a power switch opening and closing; a thermostat

turning the heat on and off; and the dynamics of a car changing abruptly due to

wheels locking and unlocking.

Hybrid systems have attracted the attention of people with diverse back-

grounds due to their intrinsic interdisciplinary nature. One approach, favored by

researchers in computer science, is to concentrate on studying the discrete behav-

ior of the system, while the continuous dynamics are assumed to take a relative

simple form. Many researchers in systems and control theory, on the other hand,

tend to regard hybrid systems as continuous systems with switching, and place a

greater emphasis on properties of the continuous state.

This thesis is written from a control engineer’s perspective which adopts the

latter point of view. Thus, we are interested in continuous-time systems with

switching. We refer to such systems as switched systems. Specifically, a switched

system is a hybrid system that consists of a family of subsystems and a switching

law that orchestrates switching between these subsystems.

A typical switched system is a multi-controller system shown in Fig. 1.1. A

given plant is controlled by switching among a family of stabilizing controllers,

1



1.1 Hybrid Systems and Switched Systems

each of which is designed for a specific task. A high-level decision maker deter-

mines which controller is activated at each instant of time via a switching signal.

Figure 1.1: A multi-controller switched system.

Mathematically, a switched system can be described by a differential equation

of the form

ẋ(t) = fσ(x(t)), (1.1)

where x ∈ Rn is the continuous state of the system, fp : p ∈ P is a family

of functions from Rn to Rn that is parameterized by some index set P, and

σ : [0,∞) → P is a piecewise constant function of time t or state x(t), called a

switching signal.

In particular, if all individual systems are linear, we obtain a switched linear

system

ẋ(t) = Aσx(t), Aσ ∈ Rn×n. (1.2)

Switched systems have been studied for the past fifty years or so, in the

course of analysis and synthesis of engineering systems with relays and/or hys-

teresis. Due not only to their success in applications but also to their importance

in theory, the last decade has witnessed burgeoning research activities on their

stability [1, 2, 3], controllability [4], observability [5] etc., that aim at designing

switched systems with guaranteed stability and performance [6, 7, 8, 9]. Among

these research topics, stability and stabilization have attracted most attention.

2



1.2 Stability of Switched Systems

1.2 Stability of Switched Systems

Stability is a fundamental requirement in any control system, including switched

systems which give rise to interesting phenomena. For instance, even when all

the subsystems are asymptotically stable, the switched systems may not be stable

under all possible switching. Consider two second-order asymptotically stable

subsystems whose trajectories are sketched in Fig. 1.2. It is seen that the switched

system can be made unstable by a suitable synthesis of trajectories.

Figure 1.2: Switching between stable systems.

Figure 1.3: Switching between unstable systems.

Similarly, Fig. 1.3 illustrates the fact that, even when all the subsystems are

unstable, it is possible to stabilize the system by designing a suitable switching

signal.

Such phenomena prompt us to consider three basic problems concerning switched

systems.

Problem A: What are the conditions on the subsystems such that a switched

system is stable under arbitrary switching?

Problem B: If a switched system is not stable under arbitrary switching, how

to identify a class of switching signals under which the switched system is stable?

3



1.3 Literature Review on Stability under Arbitrary Switching

Problem C: How to design switching signals to stabilize a switched system with

unstable subsystems?

1.3 Literature Review on Stability under Arbi-

trary Switching

In this section, we review some important results in the literature of switched

systems, in particular, switched linear systems, under arbitrary switching. See

the papers [1, 10, 11] and recent books [12, 13] for an excellent survey.

Consider a switched linear system (1.2)

ẋ = Aσx, Aσ ∈ Rn×n.

Clearly, a necessary condition for the switched system to be asymptotically

stable under arbitrary switching is that all the subsystems must be asymptotically

stable. If one subsystem, say, the pth subsystem is not stable, then the switched

system is unstable for σ ≡ p. However, this condition is not sufficient for the

stability under arbitrary switching. Therefore, there is a need to determine the

additional conditions on the subsystems for the stability of the complete system.

A simple condition to guarantee stability under arbitrary switching is that the

matrices of the subsystems commute [14]. Let us take a switched system with two

linear time invariant (LTI) subsystems as an example. Now consider an arbitrary

switching signal σ and denote the time intervals on which σ = 1 and σ = 2 by

ti and τi respectively. The solution of the switched system under this switching

signal is

x(t) = · · · eA2τ2eA1t2eA2τ1eA1t1x(0). (1.3)

If A1A2 = A2A1, then we have eA1t1eA2τ1 = eA2τ1eA1t1 , as can be seen from the

definition of a matrix exponential via the series eAt = It+At+ A2

2!
t2 + A3

3!
t3 + · · · .

Hence, we can rewrite (1.3) as

x(t) = · · · eA2τ2eA2τ1 · · · eA1τ2eA1t1x(0) = eA2(τ1+τ2+...)eA1(t1+t2+...)x(0). (1.4)

Since both subsystems are stable, it follows that both eA2(τ1+τ2+...) and eA1(t1+t2+...)

are bounded, and the switched system is stable for all σ.

4



1.3 Literature Review on Stability under Arbitrary Switching

For the switched systems of the first-order, A1 and A2 become scalars, and

hence the commutativity condition is always satisfied. However, for higher-order

switched systems, the commutativity condition is too restrictive to be satisfied

in general. Therefore, more general conditions need to be found.

It is well known that if there exists a common Lyapunov function (CLF) for all

subsystems, then the stability of the switched system under arbitrary switching is

guaranteed. This has provided, in fact, the motivation to explore the application

of quadratic Lyapunov functions (CQLFs) for switched linear systems, as found

in [10, 15, 16].

1.3.1 Common Quadratic Lyapunov Functions

Consider switched linear systems (1.2). If there exists a positive definite symmet-

ric matrix P satisfying

AT
p P + PAp < 0 ∀p ∈ P, (1.5)

where the subscript T denotes transpose, then all subsystems admit a CQLF of

the form,

V (x) = xT Px, (1.6)

and the switched system is stable under arbitrary switching.

Remark 1.1. The geometrical meaning of the existence of a CQLF is that, in

the domain of linearly transformed coordinates, the squared magnitudes of the

states of all subsystems decay exponentially.

1.3.1.1 Algebraic Conditions on the Existence of a CQLF

The CQLFs are attractive because the linear matrix inequalities (1.5) in P appear

to be numerically solvable. But linear matrix inequalities are inefficient, and offer

little insights to stability under arbitrary switching. Therefore, many attempts

have been made to derive algebraic conditions on the dynamics of subsystems for

the existence of a CQLF.

Shorten and Narendra [17] considered a second-order switched system with

two subsystems, and derived the following necessary and sufficient condition for
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the existence of a CQLF. Let the matrix pencil be denoted by γα(A1, A2) =

αA1 + (1− α)A2 for α ∈ [0, 1]. Then,

Theorem 1.1. [17] A necessary and sufficient condition for the dynamic systems

ΣA1 and ΣA2 to have a CQLF is that the pencils γα(A1, A2) and γα(A1, A
−1
2 ) are

both Hurwitz.

Theorem 1.1 helps to verify the existence of a CQLF based on the state matrix

directly, i.e., without the need for solving linear matrix inequalities. It has been

extended to switched systems consisting of (a) more than two LTI subsystems in

[15], and (b) two third-order as also higher-order subsystems in [18]. However, for

general higher-order switched systems and systems with more than two modes,

necessary and sufficient conditions for the existence of a CQLF for stability are

still not known.

In contrast, for switched systems, Liberzon, Hespanha and Morse [19] propose

a Lie algebraic condition, based on the solvability of the Lie algebra generated

by the subsystems’ state matrices.

Theorem 1.2. [19] If all the matrices Ap, p ∈ P are Hurwitz and the Lie alge-

bra {Ap, p ∈ PLA} is solvable, then there exists a common quadratic Lyapunov

function.

See [20] for an extension of the above theorem to the local stability of switched

nonlinear systems, based on Lyapunov’s first method; and [21] for a recent study

of global stability properties for switched nonlinear systems and for a Lie algebraic

global stability criterion, based on Lie brackets of the nonlinear vector fields.

Note that the systems satisfying Lie algebraic condition are a special case

of systems which share a CQLF. Therefore, the Lie algebraic condition is only

sufficient but not necessary for the existence of a CQLF (ensuring asymptotic

stability of the switched system under arbitrary switching). Further, it is not

easy to verify the Lie algebraic condition.

Remark 1.2. The existence of a CQLF is only sufficient for the stability of ar-

bitrary switching systems. See [22] for the counterexample of two (second-order)

subsystems which do not have a CQLF, but the switched system is asymptotically

stable under arbitrary switching.
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It has to be noted that the stability conditions for arbitrarily switched linear

systems, based on the existence of a common quadratic Lyapunov function, are

sufficient only, except for some special cases. In the next subsection, we discuss

these special cases for which (i) quadratic stability is equivalent to asymptotic

stability, and (ii) the stability of subsystems guarantees not only the existence of

a quadratic Lyapunov function but also the stability of the arbitrarily switched

system.

1.3.1.2 Some Special Cases

One special case is that of pairwise commutative subsystems [14], i.e., AiAj =

AjAi for all i, j. As mentioned before, a commutative switched system is stable

if and only if all its subsystems are stable. This can be established by a direct

inspection of the solution of the switched system, and invoking the commutativity

property of the matrices of the subsystems:

x(t) = · · · eA2τ2eA2τ1 · · · eA1τ2eA1t1x(0) = eA2(τ1+τ2+...)eA1(t1+t2+...)x(0).

These commutative subsystems share a common quadratic Lyapunov function,

which can be obtained by solving a collection of chained Lyapunov equations.

Theorem 1.3. [14] Let P1, · · · , PN be the unique symmetric positive definite

matrices that satisfy the Lyapunov equations

AT
1 P1 + P1A1 = −I,

AT
i Pi + PiAi = −Pi−1, i = 2, · · · , N

then the function V (x) = xT PNx is a CQLF for the subsystems.

The second special case is when all the subsystems are symmetric [23], i.e.,

AT
i = Ai. In this case, a common quadratic Lyapunov function can be chosen as

V (x) = xT x. Stability of Ai implies that AT
i + Ai < 0, which means that there

exists a P which can be chosen as I (the identity matrix) satisfying the inequality

AT
i P + PAi < 0.

The third special case is the normal system which is a switched LTI system

whose subsystem matrices satisfying AiA
T
i = AT

i Ai for every mode i. Notice that

the symmetric matrix is always normal. It is shown in [24] that V (x) = xT x also

serves as a CQLF for such a system.
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1.3.2 Converse Lyapunov Theorems

It is known that the existence of a common Lyapunov function implies asymp-

totic stability of the switched system (1.2) under arbitrary switching. Does the

converse hold? Molchanov and Pyatnitskiy [25] provide an affirmative answer to

it.

Theorem 1.4. [25] If the switched linear system is uniformly exponentially stable

under arbitrary switching, then it has a strictly convex, homogenous (of second

order) common Lyapunov function of a quasi-quadratic form

V (x) = xT L(x)x,

where L(x) = LT (x) = L(τx) for all nonzero x ∈ Rn and τ ∈ R.

See [22] for a converse theorem concerning the globally uniformly asymp-

totically stable and locally uniformly exponentially stable (1.2) with arbitrary

switching. It is also shown that such a system admits a common Lyapunov func-

tion.

Theorem 1.5. [22] If the switched system is globally uniformly asymptotically

stable and in addition uniformly exponentially stable, the family has a common

Lyapunov function.

Even though converse Lyapunov theorems support the use of CQLF for es-

tablishing stability conditions for switched systems (1.2), it is evident that a

common Lyapunov function need not be quadratic, although most of the avail-

able results are on the CQLF. Recently, non-quadratic Lyapunov functions, in

particular polyhedral Lyapunov functions, have been explored.

1.3.3 Piecewise Lyapunov Functions

Several methods for automated construction of a common polyhedral (and hence

piecewise) Lyapunov function have been proposed. See [26] for the synthesis of a

balanced polyhedron satisfying some invariance properties, [25] for an alternative

approach in which algebraic stability conditions are derived based on weighted

infinity norms, and [27] for a linear programming-based method for deriving the
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stability conditions; and [28] for a numerical approach (to calculate polyhedral

Lyapunov functions) in which the state-space is uniformly gridded in ray direc-

tions. However, it has been found that a construction of such piecewise Lyapunov

functions is, in general, not simple.

1.3.4 Trajectory Optimization

Another approach to the analysis of stability under arbitrary switching is based

on identifying a switching scheme which results in a “most unstable” trajectory.

The basic idea is simple: if the worst case trajectory is stable, then the whole

system should be stable as well for all the switching schemes. Filippov [29]

derives a necessary and sufficient stability condition for a switched system having

trajectories rotating around the origin. Pyatnitskiy and Rapoport [30] identify

the most unstable nonlinearity using variational calculus and derive a necessary

and sufficient condition for absolute stability of second- and third-order systems.

Unfortunately, this condition is computationally challenging because it requires

the solution of a nonlinear equation with three unknowns. In more recent pursuit

along this line, Margaliot and Langholz [31], Margaliot and Gitizadeh [32] reduce

the number of unknowns of the nonlinear equation from three to one, and derive

a verifiable, necessary and sufficient condition for the absolute stability of second-

order systems, which is extended to third-order systems in [33]. However, there

is still a need to solve a nonlinear equation numerically. Recently, in [34], the

relationships between the eigenvectors and eigenvalues of the two subsystems have

been exploited to deal with the worst trajectory (which may be chattering) and

to derive an easily verifiable, necessary and sufficient condition. However, the

stability conditions in the above references are ad hoc, and offer little insight into

the actual stability mechanism of switched systems.

1.4 Literature Review on Switching Stabiliza-

tion

In this section, we review the literature on switching stabilization which is of two

types.
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1. Feedback stabilization in which the switching signals are assumed to be

given or restricted. The problem is to design appropriate feedback control

laws, in the form of state or output feedback, to achieve closed-loop system

stability [35].

Several classes of switching signals are considered in the literature, for ex-

ample arbitrary switching [36], slow switching [37] and restricted switching

induced by partitions of the state space [38, 39, 40].

2. Switching stabilization in which it is assumed that there is no external input

to the system. The problem is to design a sequence for switching between

the two subsystems to achieve system stability.

We consider only the latter mode of stabilizing switched systems.

1.4.1 Quadratic Switching Stabilization

Early research is concerned with quadratic stabilization for certain classes of

systems. From the results of the literature [41, 42], it is known that the exis-

tence of a stable convex combination state matrix is necessary and sufficient for

the quadratic stabilizability of two-mode switched Linear-time-invariant (LTI)

systems. However, it should be noted that the existence of a stable convex com-

bination matrix is only sufficient for switched LTI systems with more than two

modes. In fact, there are systems for which no stable convex combination state

matrix exists, but are quadratic-stabilizable.

Moreover, all the methods that guarantee stability by using a CQLF are con-

servative in the sense that there are switched systems that can be asymptotically

(or exponentially) stabilized without using a CQLF [43].

More recent efforts were based on multiple Lyapunov functions [44], especially

piecewise Lyapunov functions [45, 46, 47], to construct stabilizing switching sig-

nals. In [46], a probabilistic algorithm was proposed for the synthesis of an

asymptotically stabilizing switching law for switched LTI systems along with a

piecewise quadratic Lyapunov function.
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1.4.2 Switching Stabilizability

Note that the existing stabilizability conditions, which may be expressed as cer-

tain linear matrix inequalities and bilinear matrix inequalities, are basically suf-

ficient only, except for certain cases of quadratic stabilization. The more elu-

sive problem is the necessity part. In [48], it is shown that if there exists an

asymptotically stabilizing switching signal among a finite number of LTI systems

ẋ(t) = Aix(t), where i = 1, 2, · · · , N , then there exists a subsystem, say Ak, such

that at least one of the eigenvalues of Ak + AT
k is a negative real number.

An algebraic necessary and sufficient condition for asymptotic stabilizability

of second-order switched LTI systems was derived in [49] by detailed vector field

analysis. For more recent results, see [50, 51]. However, the stabilization condi-

tions of the above papers are not general since not all the possible combinations

of subsystem dynamics are considered. Recently, Lin and Antsaklis [52] derived a

necessary and sufficient condition for the stabilizability of switched linear system

affected by parameter variations. However, verification of the necessity of the

stabilization condition is not easy in general. This motivates us to derive easily

verifiable, necessary and sufficient conditions for the switching stabilizability of

switched linear systems.

1.5 Literature Review on Stability under Re-

stricted Switching

Switched systems, which fail to preserve stability under arbitrary switching, may

be stable under restricted switching. One may have some knowledge about pos-

sible switching signals for a switched system, e.g., certain bound on the time

interval between two successive switchings. With a prior knowledge about the

switching signals, we can derive a stronger stability condition for a given switched

system than the arbitrary switching case which is, by its very nature, the worst

case. This knowledge imply restrictions on the switching signals, which may be

either time domain restrictions (e.g., dwell-time, average dwell-time, and switch-

ing frequency) or state space restrictions (e.g., the state may be trapped in some

partitions of the state space). It is shown in [53] that the distinction between
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time-dependent switching signals and trajectory-dependent switching signals is

significant.

Now we proceed to review some important results on two classes of time-

dependent constraints: slow switching and periodic switching.

1.5.1 Slow Switching

By studying the divergent trajectory in Fig. 1.2, one may notice that the insta-

bility is introduced by the failure to absorb the energy increase caused by the

switching. Intuitively, if the switching is sufficiently slow, so as to allow the tran-

sient effects to dissipate after each switch, it is possible to attain stability. These

ideas are proved to be reasonable and are captured by concepts like dwell time

and average dwell time switching in the literature, see for example [54, 53].

Definition 1.1. τd is called the dwell time if the time interval between any two

consecutive switchings is no smaller than τd.

Theorem 1.6. [54] Assume that all subsystems in the switched linear systems

are exponentially stable. Then, there exists a scalar τd > 0 such that the switched

system is exponentially stable if the dwell time is larger than τd.

Definition 1.2. A positive constant τa is called the average dwell time if Nσ(t) ≤
N0 + t

τa
holds for all t > 0 and some scalar N0 ≥ 0, where Nσ(t) denotes the

number of discontinuities of a given switching signal σ over [0, t).

Here the constant τa is called the average dwell time and N0 the chatter bound.

The reason to call a class of switching signal satisfy Nσ(t) ≤ N0 + t
τa

have an

average dwell time no less than τa is that

Nσ(t) ≤ N0 +
t

τa

⇔ t

Nσ(t)−N0

≥ τa,

which means that on average the “dwell time” between any two consecutive

switchings is no smaller than τa.

Theorem 1.7. [53] Assume that all subsystems in the switched linear systems are

exponentially stable. There exists a scalar τa > 0 such that the switched system

is exponentially stable if the average dwell time is larger than τa.
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The stability results for slow switching can be extended to switched systems

consisting of both stable and unstable subsystems. When unstable dynamics is

considered, slow switching (like long enough dwell/average dwell time) is not suf-

ficient for stability. It has to make sure that the switched system does not spend

too much time on the unstable subsystems. We need to consider unstable sub-

systems in switched systems because there are cases where switching to unstable

subsystems is unavoidable once failure occurs. It is interesting to identify con-

ditions under which the stability of the switched systems is still preserved. See

[55, 56, 57] for details.

1.5.2 Periodic Switching

Another important class of switched systems is periodically switched systems.

For periodically switched linear systems, necessary and sufficient conditions are

available from Floquet theory [58, 59]. Since any general system may be thought

as a periodic system with an infinite period, it is natural to question as follows.

Consider the system ẋ = A(t)x,A(t) ∈ {A1, · · · , Am}. Suppose the switching

system is exponentially stable for all periodic switching signals σ. Does this imply

that the system is exponentially stable for arbitrary switching signals?

The above question has been studied extensively for both discrete- and con-

tinuous time switched systems. See [60, 61] and the references therein.

Theorem 1.8. [10] The switched linear system is asymptotically stable under

arbitrary switching if and only if there exists an ε > 0 such that r(Φ, σ(T, 0)) <

1− ε for all periodic switching signals σ.

It is shown that if the switched system is periodically stable with some finite

robustness margin ε, then it is exponentially stable for arbitrary switching signals.

In principle, Theorem 1.8 gives a practical method for testing the stability of any

given switching system.

In addition, the worst case switching signal of a switched linear system with

two second-order LTI subsystems is periodic based on our analysis in Chapter 2.

The switching period T = TA + TB, where TA (2.46) and TB (2.47) are the time

on the subsystems A and B respectively, associated with the worst case switching
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signal (2.62). We believe that it is true even for higher-order switched systems

with more than two subsystems.

In practice, many real-world systems can be modeled as periodically switched

systems, e.g., the Buck converter in Fig. 1.4. The Buck converter is widely used

in computer power supplies, which converts 12V direct current (DC) voltage to

a lower voltage (around 1V) for central processing unit (CPU).

Figure 1.4: A practical example of periodically switched systems - a Buck con-
verter.

Fig. 1.4(a) is the circuit of a Buck converter, where SW1 is switching at a

fixed frequency (e.g., 100MHz). When SW1 is on, the equivalent circuit is as Fig.

1.4(b), and when SW1 is off, the equivalent circuit is Fig. 1.4(c).

1.6 Outline of the Thesis

The main aim of the thesis is to present easily verifiable new conditions for both

the stability and stabilizability of switched systems. To this end, the thesis is

organized as follows.

In Chapter 2, we deal with the stability of switched systems under arbitrary

switching. Compared to Lyapunov-function methods which have been widely
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used in the literature, a novel geometric approach is proposed to develop an easily

verifiable, necessary and sufficient stability condition for a pair of second-order

linear time invariant (LTI) systems under arbitrary switching. The condition is

general since all the possible combinations of subsystem dynamics are analyzed.

In Chapter 3, we apply the geometric approach to the problem of stabiliza-

tion by switching. Necessary and sufficient conditions for regional asymptotic

stabilizability are derived, thereby providing an effective way to verify whether a

switched system with two unstable second-order LTI subsystems can be stabilized

by switching.

In Chapter 4, we investigate the stability of switched systems under restricted

switching. We derive new frequency-domain conditions for the L2-stability of

feedback systems with periodically switched, linear/nonlinear feedback gains.

These conditions, which can be checked by a computational-graphic method,

are applicable to higher-order switched systems.

We conclude the thesis with a summary of the main contributions and future

direction of research in Chapter 5.
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Chapter 2

Stability Under Arbitrary

Switching

In this chapter, we consider the stability of switched systems under arbitrary

switching. This problem is important because the switching signal is either un-

known or too complicated for some switched systems. Moreover, once the stabil-

ity of a switched system under arbitrary switching is guaranteed, engineers have

more freedom to design a switching signal for better performance, unaffected by

stability considerations.

This chapter is organized as follows. In Section 2.1, we show the switched

systems, which will be analyzed in this chapter. In Section 2.2, we introduce

the concept of constants of integration, which plays a key role in developing

the new stability and stabilizability conditions of the thesis. In Section 2.3, we

characterize the worst-case switching signal (WCSS) based on the variations of

the subsystems’ constants of integration. In Section 2.4, we present the main

result of this chapter, which is an easily verifiable, necessary and sufficient con-

ditions, under reasonable assumptions, for the stability of switched systems with

two continuous-time, second-order linear time invariant (LTI) subsystems, under

arbitrary switching. All the possible combinations of the subsystems are ana-

lyzed under the WCSS such that no constraint is imposed on the dynamics of

the subsystems. Geometrical interpretations of the stability condition are dis-

cussed. Examples are given to show its superiority over the stability conditions

in the literature. In Section 2.5, we extend the main result to the stability of
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switched systems with marginally stable subsystems. In Section 2.6, we discuss

the relationship between the main result in this chapter and the conditions on

the existence of a common quadratic Lyapunov function (CQLF).

2.1 Problem Formulation

Motivated by the limitations of the existing results outlined in Chapter 1, our

goal is to derive new and easily verifiable necessary and sufficient stability cri-

terion for switched linear systems under arbitrary switching. In particular, we

consider the following switched system with two second-order continuous-time

LTI subsystems:

Sij : ẋ = σ(t)x, σ(t) ∈ {Ai, Bj}, (2.1)

where both Ai, Bj ∈ R2×2 are stable, and i, j ∈ {1, 2, 3} denote the types of A and

B. The matrix A ∈ R2×2 is classified into three types according to its eigenvalues

and eigenstructure as follows:

• Type 1: A has real eigenvalues and diagonalizable;

• Type 2: A has real eigenvalues but is undiagonalizable;

• Type 3: A has two complex eigenvalues.

In contrast with the existing results, the proposed stability condition has the

following features:

1. It is a necessary and sufficient condition for the stability of the switched

system (2.1) under arbitrary switching.

2. All combinations of the dynamics of subsystems (i.e. all the combinations

of i and j in Sij), are analyzed. There is no constraint on the subsystems.

3. It is easily verifiable (even by hand computation) in the sense that no nu-

merical solution of nonlinear equation is required.

4. It is compact, and provides more geometrical insights.
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The method to derive the necessary and sufficient condition follows the strat-

egy of finding the worst case trajectory: if the trajectory of (2.1) under the worst

case switching signal (WCSS) is stable, then the switched system is stable un-

der arbitrary switching. Distinct from the approaches used in [34, 31, 32], the

WCSS is characterized by the variations of the constants of integration of the

subsystems.

2.2 Constants of Integration

The concept of constants of integration is introduced by analyzing the phase dia-

grams of switched systems in polar coordinates (r−θ coordinates). The variation

of constants of integration facilitates the construction of an unstable trajectory

between two asymptotically stable subsystems. It is interesting that the mathe-

matical results presented in this section can also be applied to study the problem

of switching stabilizability in Chapter 3.

2.2.1 Single Second-order LTI System in Polar Coordi-

nates

Consider the second-order LTI system,

ẋ = Ax =

[
a11 a12

a21 a22

]
x. (2.2)

Let x1 = r cos θ and x2 = r sin θ. Then (2.2) assumes the form

dr

dt
= r[a11 cos2 θ + a22 sin2 θ + (a12 + a21) sin θ cos θ], (2.3)

dθ

dt
= a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ. (2.4)

When dθ
dt

= 0, it corresponds to the real eigenvector of A. The solutions on

the real eigenvectors are

r = r0e
λmt, (2.5)

where r0 is the magnitude of the initial state and λm is the corresponding eigen-

value of the real eigenvector.

18



2.2 Constants of Integration

Since the worst case switching signal is straightforward on the eigenvectors,

we focus on the trajectories not on the eigenvectors.

When dθ
dt
6= 0,

dr

dθ
= r

a11 cos2 θ + a22 sin2 θ + (a12 + a21) sin θ cos θ

a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ
. (2.6)

It follows that
1

r
dr = f(θ)dθ, (2.7)

where

f(θ) =
a11 cos2 θ + a22 sin2 θ + (a12 + a21) sin θ cos θ

a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ
. (2.8)

2.2.2 Constant of Integration for A Single Subsystem

Lemma 2.1. The trajectories of the LTI system (2.2) in r-θ coordinates, except

the ones along the eigenvectors, can be expressed as

r(θ) = Cg(θ), (2.9)

where g(θ(t)) = e
∫ θ(t)

θ∗ f(τ)dτ is positive, and C, the constant of integration, is

a positive constant depending on the initial state (r0, θ0). Note that θ∗ can be

chosen as any value except the angle of any real eigenvector of A.

Proof. By integrating both sides of (2.7), we have

∫ r

r0

1

r
dr =

∫ θ

θ0

f(τ)dτ =⇒ ln r =

∫ θ

θ0

f(τ)dτ + ln r0 =⇒ r(θ) = r0e
∫ θ

θ0
f(τ)dτ

.

(2.10)

Equation (2.10) can be rewritten as (2.11) by splitting the integral interval,

r(θ) = r0e
∫ θ

θ0
f(τ)dτ

= r0e
∫ θ∗

θ0
f(τ)dτ

e
∫ θ

θ∗ f(τ)dτ . (2.11)

Denote the angle of the eigenvector of A as θe. Since θ∗ 6= θe, θ 6= θe, the

integrals
∫ θ∗

θ0
f(τ)dτ and

∫ θ

θ∗ f(τ)dτ are bounded 1, and (2.11) can be further

1If θe ∈ (θ∗, θ), the Cauchy principal value (P.V.) of the improper integral is
P.V.

∫ θ

θ∗ f(τ)dτ = lim
ε→0+

(∫ θe−ε

θ∗ f(τ)dτ +
∫ θ

θe+ε
f(τ)dτ

)
, which is also bounded because

lim
ε→0+

∫ θe+ε

θe−ε
f(τ)dτ = 0.
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reduced to (2.9). It can be readily seen that C = r0e
∫ θ∗

θ0
f(τ)dτ

is a constant

determined by the initial state (r0, θ0).

Typical phase trajectories of planar LTI systems in polar coordinates are

shown in Fig. 2.1. It can been seen that f(θ) = 1
r

dr
dθ

, the slope of the trajectories

normalized by the magnitude, is a periodic function with a period of π, for both

real and complex eigenvalue cases.
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Figure 2.1: The phase diagrams of second-order LTI systems in polar coordinates.

Remark 2.1. It follows from (2.10) that

r(θ + π)

r(θ)
=

r0e
∫ θ+π

θ0
f(τ)dτ

r0e
∫ θ

θ0
f(τ)dτ

= e
∫ π
0 f(τ)dτ (2.12)

which is a constant since f(θ) is a periodic function with a period of π. Therefore,

it is sufficient to analyze the stability of the system (2.2), regardless of the types

of A, in an interval of θ with the length of π. Without loss of generality, this

interval is chosen to be θ ∈ [−π
2
, π

2
).

Definition 2.1. The line θ = θa is said to be an asymptote of A in r − θ co-

ordinates if the angle of the trajectory of ẋ = Ax approaches to θa as the time

t → +∞. Similarly, the line θ = θna is said to be a non-asymptote of A if the

angle of the trajectory of ẋ = Ax approaches θna as the time t → −∞.

For a given A ∈ R2×2 with real eigenvalues, the asymptote θa is the angle

of the real eigenvector corresponding to a larger eigenvalue of A. Definition 2.1
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is applicable to all matrices A ∈ R2×2 with real eigenvalues regardless of the

dynamics of A (stable/unstable node, saddle point).

If A is a degenerate node (has only one eigenvector with an angle θr), θa and

θna are chosen from θ+
r or θ−r based on the trajectory direction of A.

If A is a counter clockwise/clockwise focus, the asymptote of A in r − θ

coordinates is actually θa = +∞/−∞.

Remark 2.2. Note that the constant of integration C depends on the initial state.

It remains invariant to r(t) and θ(t) for the whole trajectory. Geometrically, a

larger C indicates an outer layer trajectory, as shown in Fig. 2.1, where C1 <

C2 < C3 · · · < Cn. Note that r(θ(t)) converges to zero since g(θ) converges to

zero as θ approaches the asymptote of the system associated with a Hurwitz A.

2.2.3 Variation of Constants of Integration for A Switched

System

We analyze the switched system with two asymptotically stable subsystems. Us-

ing the variations of constants, we show how to construct an unstable trajectory

by switching between two asymptotically stable subsystems.

Let the two subsystems be defined by:

ΣA : ẋ = Ax =

[
a11 a12

a21 a22

]
x,

ΣB : ẋ = Bx =

[
b11 b12

b21 b22

]
x. (2.13)

To simplify the analysis, two classes of special cases are excluded by the

following assumptions. These two special cases will be discussed separately in

Section 2.4.1 (and Section 3.3.1 for switching stabilizability problem).

Assumption 2.1. A 6= cB, where c ∈ R.

Assumption 2.2. A and B do not share any real eigenvector.

Following the definition of f(θ) in equation (2.8), we define fA(θ) and fB(θ)

for subsystems A and B respectively

fA(θ) =
a11 cos2 θ + a22 sin2 θ + (a12 + a21) sin θ cos θ

a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ
, (2.14)
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2.2 Constants of Integration

fB(θ) =
b11 cos2 θ + b22 sin2 θ + (b12 + b21) sin θ cos θ

b21 cos2 θ − b12 sin2 θ + (b22 − b11) sin θ cos θ
. (2.15)

It follows from Lemma 2.1 that

rA(t) = CAgA(θ(t)), (2.16)

rB(t) = CBgB(θ(t)). (2.17)

A piecewise solution is obtained by combining (2.16) and (2.17).

r(t) =

{
CA(t)gA(θ(t)), when σ(t) = A

CB(t)gB(θ(t)), when σ(t) = B
, (2.18)

where CA(t) and CB(t) are invariant during the period when the states move

along their own phase trajectories.

dCA(t)

dt

∣∣∣∣
σ(t)=A

= 0,
dCB(t)

dt

∣∣∣∣
σ(t)=B

= 0. (2.19)

From (2.18), a compact solution of the switched system, except the ones along

the eigenvectors, can be obtained as

r(t) = hA(θ(t))gA(θ(t)), (2.20)

where

hA(θ(t)) =

{
CA(t), σ(t) = A

CB(t)gB(θ(t))
gA(θ(t))

, σ(t) = B
, (2.21)

or similarly

r(t) = hB(θ(t))gB(θ(t)), (2.22)

where

hB(θ(t)) =

{
CA(t) gA(θ(t))

gB(θ(t))
, σ(t) = A

CB(t), σ(t) = B
. (2.23)

For convenience, we denote

HA(θ(t)) , dhA(θ(t))

dt

∣∣∣∣
σ(t)=B

, HB(θ(t)) , dhB(θ(t))

dt

∣∣∣∣
σ(t)=A

. (2.24)

Equation (2.20) indicates that even when the actual trajectory follows ΣB,

it can still be described by the same form as that of the solution of ΣA with a
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2.3 Worst Case Analysis

Figure 2.2: The variation of hA under switching.

varying hA. Then, we can use the variation of hA to describe the behavior of the

switched system (2.13), as shown in Fig. 2.2.

Geometrically, the positive HA(θ), or equivalently the increase of hA(θ), means

that the vector field of ΣB points outwards relative to ΣA. Intuitively, if the

increase of hA can compensate the convergence of gA for a long term, or in a

period of θ(t), then it is possible to make the switched system unstable. Although

the existence of a positive HA(θ) or HB(θ) is considered to be necessary, it is not

sufficient to make the switched system (2.13) unstable. Therefore, there is a need

for a comprehensive worst case analysis, which will be given in Section 2.3.

2.3 Worst Case Analysis

In this section, we identify the worst case switching signal (WCSS) for a given

switched system, thereby converting the stability problem under arbitrary switch-

ing to the stability problem under the WCSS.

2.3.1 Mathematical Preliminaries

To find the WCSS, we need to know which subsystem is more “unstable” for

every θ and how θ varies with time t. The former is determined through the signs

of HA(θ) and HB(θ), while the latter is based on the signs of QA(θ) and QB(θ)
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2.3 Worst Case Analysis

which are defined as

QA(θ(t)) , dθ(t)

dt

∣∣∣∣
σ(t)=A

, QB(θ(t)) , dθ(t)

dt

∣∣∣∣
σ(t)=B

. (2.25)

It follows from equations (2.21) and (2.24) that

HA(θ(t) =
dhA(t)

dt

∣∣∣∣
σ(t)=B

= CB(t)

(
gB(θ(t))

gA(θ(t))

)′

= −CB(t)
gB(θ(t))

gA(θ(t))
[fA(θ(t))− fB(θ(t))]

dθ(t)

dt

∣∣∣∣
σ(t)=B

,

(2.26)

where CB(t) is a constant since σ(t) = B in (2.26). Similarly, we have

HB(θ(t)) = CA(t)
gA(θ(t))

gB(θ(t))
[fA(θ(t))− fB(θ(t))]

dθ(t)

dt

∣∣∣∣
σ(t)=A

. (2.27)

Equations (2.26) and (2.27) can be rewritten as

HA(θ(t)) = −KB(θ(t))G(θ(t))QB(θ(t)), (2.28)

HB(θ(t)) = KA(θ(t))G(θ(t))QA(θ(t)), (2.29)

where KA(θ(t)) = CA(t) gA(θ(t))
gB(θ(t))

, KB(θ(t)) = CB(t)gB(θ(t))
gA(θ(t))

and

G(θ) = fA(θ)− fB(θ). (2.30)

Remark 2.3. In (2.28) and (2.29), both KA(θ) and KB(θ) are positive, G(θ) is

the common part, and it can be readily shown that

• If the signs of QA(θ) and QB(θ) are the same, then the signs of HA(θ) and

HB(θ) are opposite.

• If the signs of QA(θ) and QB(θ) are opposite, then the signs of HA(θ) and

HB(θ) are the same.

The geometrical meaning of the signs of QA(θ) and QB(θ) is the trajectory

direction. A positive QA(θ) implies a counter clockwise trajectory of ΣA in x− y

coordinates.
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Since the interesting interval of θ is [−π
2
, π

2
), all the functions of θ could be

transformed to the functions of k by denoting k = tan θ. Straightforward alge-

braic manipulation yields

HA(k) = KB(k)
N(k)

DB(k)
, (2.31)

HB(k) = −KA(k)
N(k)

DA(k)
, (2.32)

QA(k) = − 1

k2 + 1
DA(k), (2.33)

QB(k) = − 1

k2 + 1
DB(k), (2.34)

where

DA(k) = a12k
2 + (a11 − a22)k − a21, (2.35)

DB(k) = b12k
2 + (b11 − b22)k − b21, (2.36)

and

N(k) = p2k
2 + p1k + p0, (2.37)

where p2 = a12b22 − a22b12, p1 = a12b21 + a11b22 − a21b12 − a22b11, and p0 =

a11b21 − a21b11.

Denote the two distinct real roots of N(k), if exist, by k1 and k2, and assume

k2 < k1. Notice that the signs of equations (2.31)-(2.34) depend on the signs of

DA(k), DB(k) and N(k).

Lemma 2.2. If A and B do not share any real eigenvector, which was guaranteed

by Assumption 2.2, the real roots of N(k) do not overlap the real roots of DA(k)

or DB(k) when A and B are not singular.

The proof of Lemma 2.2 is presented in Appendix A.1.

Definition 2.2. A region of k is a continuous interval where the signs of (2.31)-

(2.34) preserve for all k in this interval.

Remark 2.4. The boundaries of the regions of k, if exist, are the lines whose

angles satisfy DA(k) = 0, DB(k) = 0 or N(k) = 0.

• If DA(k) = 0, then dθ
dt

∣∣∣
σ=A

= 0, they are the real eigenvectors of A.
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• If DB(k) = 0, then dθ
dt

∣∣∣
σ=B

= 0, they are the real eigenvectors of B.

• Since the real eigenvectors are only located on the boundaries, the solution

expressions of (2.20) and (2.22) are always valid inside the regions of k.

• If N(k) = 0, then G(θ) = fA(θ) − fB(θ) = 0, which indicates dr
dθ

∣∣∣
σ=A

=

dr
dθ

∣∣∣
σ=B

with reference to (2.6)-(2.8). They are the lines where the trajec-

tories of the subsystems are tangent to each other.

• If N(k) = (k−km)2, in the two regions that share the boundary k = km, the

signs of (2.31)-(2.34) are invariant, so the WCSS in these two regions are

the same. In addition, the trajectories on the boundary k = km are tangent

to each other and none of them can stay on this boundary based on Lemma

2.2. As a result, the two regions can be merged to one, which means that

the system behavior when N(k) has two multiple roots is entirely similar

to the one when N(k) does not have real roots. Therefore, the case when

N(k) has two multiple roots will be ignored.

• With reference to Eqn. (2.31)-(2.34), when trajectories cross the boundary

k1 or k2, the trajectory directions remain unchanged while the signs of

HA(k) and HB(k) change simultaneously.

These boundaries divide the x− y plane to several conic sectors, i.e., regions

of k.

2.3.2 Characterization of the Worst Case Switching Sig-

nal (WCSS)

Now we proceed to establish criteria to determine the WCSS for every θ, or k

equivalently, based on the signs of HA and HB.

1) Both HA and HB are positive

Lemma 2.3. The switched system (2.13) is not stable under arbitrary switching

if there is a region of k, [kl, ku], where both HA and HB are positive.
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2.3 Worst Case Analysis

Figure 2.3: The region where both HA and HB are positive.

With reference to Fig. 2.3, an unstable trajectory can be easily constructed

by switching inside this region. The proof of Lemma 2.3 is given in Appendix

A.2.

Figure 2.4: The region where HA is positive and HB is negative.

2) HA is positive and HB is negative

The WCSS is ΣB. In this case, the trajectories of two subsystems have the same

direction, as shown in Remark 2.3. With reference to Fig. 2.4, consider an initial

state with an angle θ0 at t0. Let rB(θ) be the trajectory along ΣB, and rA(θ)

be the trajectory along ΣA. Comparing the magnitudes of the trajectories along
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2.3 Worst Case Analysis

different subsystems, we have

rB(θ)− rA(θ) = hA(θ)gA(θ)− CAgA(θ) = gA(θ)

∫ t

t0

HA(θ(t))dt > 0 (2.38)

which shows that the trajectory of ΣB always has a larger magnitude than the

corresponding one of ΣA for all θ in this region.

3) HA is negative and HB is positive

Similarly, the WCSS is ΣA.

4) Both HA and HB are negative

First, we show that the switched system is stable in this region if its trajectory

does not move out of this region. It follows from Assumption 2.2 that at least

one of gA(θ) and gB(θ) is bounded for any given θ. Since both HA and HB are

negative, we have hA(t) ≤ hA(t0) and hB(t) ≤ hB(t0). With reference to (2.20)

and (2.22), the magnitude of trajectories r is bounded in this region. Hence the

stability of the switched system is determined by other regions.

Next we will discuss the scenarios when the trajectory may move out.

(1) If only the trajectory of one subsystem, assumed to be ΣA, can go out of

this region, then the WCSS in this region is ΣA. Let rσ∗ be the trajectory along

ΣA and let rσ be the trajectory under any other switching signal. Comparing the

magnitudes of the states on the boundary (θ = θbn) where the trajectories move

out, it can be shown that any switching other than ΣA in this region will make

the switched system more stable since

rσ∗(θbn) = hA(t0)gA(θbn) > rσ = hA(t)gA(θbn). (2.39)

(2) If the trajectories of both subsystems can go out and neither can come

back, then no matter which subsystem is chosen, the trajectory will leave this

region and the stability of the switched system is determined by other regions.

(3) If the trajectories of both subsystems can go out and at least one of

them can come back, then at least one of the boundaries of this region is k1 or

k2. It was mentioned in Remark 2.4 that HA(k) and HB(k) change their signs

simultaneously when trajectories cross the boundary k1 or k2. In such a case,
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there must exist an unstable region, where both HA and HB are positive, next to

this region. Therefore, the switched system is not stable under arbitrary switching

from Lemma 2.3.

5) One of HA and HB is zero

If one of HA and HB is zero, then it implies that N(k) = 0, then both of them

are zero. (The case that N(k) has two multiple real roots is ignored based on

Remark 2.4.)

(1) If the trajectories of the subsystems cross the line in the same direction,

we can choose either subsystem as the WCSS since the trajectories are tangent

to each other on this line.

(2) If the trajectories of the subsystems cross the line in the opposite direction,

it follows from Remark 2.4 that there exists an unstable region near the line where

N(k) = 0. Hence the switched system is not stable under arbitrary switching from

Lemma 2.3.

6) On real eigenvectors

It can be readily shown that the WCSS is ΣA on the eigenvectors of B, and vice

versa.

We have characterized the WCSS based on the signs of HA(k), HB(k), QA(k)

and QB(k), for which we can determine the stability of the switched systems

(2.13) under arbitrary switching by the following procedure.

1. Determine all the boundaries: the real eigenvectors of two subsystems and

the distinct real roots of N(k). All the boundaries are known since all the

entries of the subsystems are known.

2. Determine the signs of HA(k), HB(k), QA(k) and QB(k) for every region of

k.

3. Determine the WCSS for every region based on 2 and obtain the WCSS for

the given switched system.

4. Determine the stability of the switched system based on the WCSS.
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2.4 Necessary and Sufficient Stability Conditions

2.4 Necessary and Sufficient Stability Conditions

We now apply the worst case analysis to derive an easily verifiable, necessary and

sufficient stability condition for the stability of switched system

Sij : ẋ = σ(t)x, σ(t) ∈ {Ai, Bj}, (2.40)

where both Ai and Bj ∈ R2×2 are Hurwitz, and i, j ∈ {1, 2, 3} denote the types of

A and B respectively. A matrix A ∈ R2×2 is classified into three types according

to its eigenvalues and eigenstructure as defined in Section 2.1.

• Type 1: A has real eigenvalues and diagonalizable;

• Type 2: A has real eigenvalues but is undiagonalizable;

• Type 3: A has two complex eigenvalues.

The types of the equilibrium of Type 1-3 are stable nodes, stable degenerate

nodes, and stable foci, respectively.

2.4.1 Assumptions

In this subsection, we make some assumptions that are useful for the main results

of this chapter. First of all, we recall the two assumptions made in Section 2.2

for the switched system (2.40) and discuss the stability of the special cases when

the two assumptions are violated.

Assumption 2.1. Ai 6= cBj, where c ≥ 0.

When Assumption 2.1 is violated, it is trivial to show that Ai is just scaled

Bj, then the switched system is stable under arbitrary switching.

Assumption 2.2. Ai and Bj do not share any real eigenvector.

When Assumption 2.2 is violated, Ai and Bj are simultaneously similar to

upper triangular matrices that share a common quadratic Lyapunov function

(CQLF) as shown in [62]. In this case, the switched system is stable under

arbitrary switching.

In order to reduce the degrees of freedom, we need to employ certain standard

forms and standard transformation matrices, as defined below, for different types

of second-order matrices.
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2.4.1.1 Standard Forms

Without loss of generality, the standard forms (real Jordan forms) for different

types of second-order matrices are defined as follows

J1 =

[
λ1 0

0 λ2

]
, J2 =

[
λ 0

1 λ

]
, J3 =

[
µ −ω

ω µ

]
. (2.41)

Since the subsystems in (2.40) are Hurwitz, we have

λ2 ≤ λ1 < 0, λ < 0, µ < 0, ω > 0. (2.42)

Assumption 2.3. One subsystem of the switched system (2.40) is in its standard

form as defined in (2.41), i.e., Ai = Ji.

Note that it is always possible to guarantee one subsystem in its standard

form by linear transformation under which the stability of the switched system

is preserved.

2.4.1.2 Standard Transformation Matrices

Since one subsystem is in its standard form, the other subsystem can be expressed

as Bj = PjJjP
−1
j with i ≤ j, where Jj is the standard form of Bj, and Pj is the

transformation matrix defined in (2.43).

The standard transformation matrices are defined for different types of Bj as

follows.

P1 =

[
1 1

α β

]
, P2 =

[
0 1

β α

]
, P3 =

[
0 1

β α

]
(2.43)

For any given Bj with its standard form Jj, Pj can be derived from the

eigenvectors of Bj.

1. α and β in P1 can be obtained by calculating the real eigenvectors of B1.

Make sure that the eigenvector [1, α]T corresponds to λ1.

2. α in P2 can be derived by calculating the eigenvector of B2. And then β

can be uniquely determined by the equation B2 = P2J2P
−1
2 .

3. α and β in P3 can be derived from the eigenvector of B3. If the eigen-

vector corresponding to the eigenvalue µ + jω, is v =

[
p11 + p12i

p21 + p22i

]
, then
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P3 =

[
p11 p12

p21 p22

]
. It is always possible to ensure p11 = 0 and p12 = 1 by

multiplying v with a factor of (p11 − p12i)i/(p
2
11 + p2

12).

2.4.1.3 Assumptions on Various Combinations of Sij

In order to further reduce the degrees of freedom such that the final result can

be presented in a compact form, certain assumptions have to be made concerning

the various parameters in the standard transformation matrices Pj and in the

important equation (2.37) N(k) = p2k
2 + p1k + p0, where p2 = a12b22 − a22b12,

p1 = a12b21 +a11b22−a21b12−a22b11, and p0 = a11b21−a21b11. These assumptions

are listed below.

Assumption 2.4. 1. if Sij = S11, β < 0;

2. if Sij = S12, α < 0;

3. if Sij = S13, k2 < 0, where k2 is the smaller root of N(k);

4. if Sij = S33, p2 6= 0, where p2 is the leading coefficient of N(k);

5. if Sij = S33, p2 < 0 (if N(k) (2.37) has two distinct real roots).

Please note that these assumptions do not impose any constraint on the sub-

systems Ai and Bj as shown by the following lemma.

Lemma 2.4. Any given switched linear system (2.40) subject to Assumptions 2.1

and 2.2 can be transformed to satisfy Assumption 2.4 by similarity transforma-

tions.

The proof of Lemma 2.4 is given in Appendix A.3.

2.4.2 A Necessary and Sufficient Stability Condition

The principal result of the chapter is the following theorem.

Theorem 2.1. The switched system (2.40), subject to Assumptions 2.1-2.4, is

not stable under arbitrary switching if and only if there exist two independent

real-valued vectors w1, w2, satisfying the collinear condition

det([Aiw1, Bjw1]) = 0, det([Aiw2, Bjw2]) = 0,
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and the slopes of w1 and w2, denoted as k1 and k2 with k2 < k1, satisfy the

following inequality:

{
L < k2 < k1 < M if det(Pj) < 0

‖exp(BjTB) exp(AiTA)w2‖2 > ‖w2‖2 if det(Pj) > 0
, (2.44)

where M and L correspond to the slopes of the asymptotes (Definition 2.1) of Ai

and Bj respectively1, such that

M =





0, i = 1

+∞, i = 2

+∞, i = 3

, L =





α, j = 1

α, j = 2

−∞ j = 3

, (2.45)

and

TA =

∫ θ1

θ2

1

QA(θ)
dθ =

∫ θ1

θ2

1

a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ
dθ,

(2.46)

TB =

∫ θ1

θ2

1

QB(θ)
dθ =

∫ θ2+π

θ1

1

b21 cos2 θ − b12 sin2 θ + (b22 − b11) sin θ cos θ
dθ,

(2.47)

where θ1 = tan−1 k1, θ2 = tan−1 k2.

It can be readily seen from above theorem that there are two classes of

switched systems (2.40), which are categorized by the sign of det(Pj) that in

some sense indicates the relative trajectory direction of two subsystems, i.e., a

negative det(Pj) implies opposite trajectory direction in certain region. Each

class corresponds to a possible instability mechanism as follows.

Class I (det(Pj) < 0): Unstable chattering (sliding or sliding-like motion), i.e.,

when system trajectories can be driven into a conic region where both HA(k) and

HB(k) are positive. There exists a switching sequence that switches back and

forth inside this region to make the system trajectories unstable.

Class II (det(Pj) > 0): Unstable spiralling, i.e., when the system trajectory is

a spiral around the origin and there exists a switching action to make it unstable.

The above classification is similar to the one in [49] which deals with the

stabilization problem.

1There is no asymptote for A3 and B3. In this case, L is chosen as −∞, and M is chosen
as +∞ based on the directions of the subsystems.

33



2.4 Necessary and Sufficient Stability Conditions

Remark 2.5. Theorem 2.1 shows that the existence of two independent vectors

w1, w2, along which the trajectories of the two subsystems are collinear, is a

necessary condition for the switched system (2.40) to be unstable.

Remark 2.6. One of the improvements of Theorem 2.1 compared with the con-

dition proposed in [31] is that the case of det(Pj) < 0 is included. The basic idea

in [31] is to find the maximum value of the feedback gain k∗ that corresponds to

a closed trajectory in phase plane under the WCSS. If k > k∗, the worse case

trajectory is an unstable spiral; if k < k∗, the worse case trajectory is an asymp-

totically stable spiral. However, it is not clear how this idea can be applied to the

case when det(Pj) < 0, where the stability of switched systems depends on the

existence of an unstable region rather than the existence of a closed trajectory

under the WCSS.

2.4.2.1 Proof of Theorem 2.1 when Sij=S11

Theorem 2.1 is proved in the following fashion. For every possible combination of

the subsystems Sij, it will be shown that if the condition (2.44) is satisfied, then

there exist switching signals such that the switched system (2.40) is unstable,

which constitutes the proof for the sufficiency. It will also be demonstrated that

for all the cases when this condition is violated, the switched system is always

stable regardless of switching signals, which would establish the necessity.

We prove Theorem 2.1 for the case Sij = S11 in the following as an example

to show the main idea and process of the proof of Theorem 2.1. The proofs of

other cases of Sij are provided in Appendix A.4.

Proof: In the case of Sij = S11,

A1 =

[
λ1a 0

0 λ2a

]
, B1 = P1J1P

−1
1 =

1

β − α

[
βλ1b − αλ2b λ2b − λ1b

αβ(λ1b − λ2b) βλ2b − αλ1b

]
.

(2.48)

Denote λ1a = kAλ2a, λ1b = kBλ2b, we have 0 < kA, kB < 11, α 6= 0 by

Assumption 2.2 and β < 0 by Assumption 2.4.1. Substituting (2.48) into (2.31)-

1If kA=1, then any vector in the phase plane is the eigenvector of A, which contradicts
Assumption 2.2. This is because B have two real eigenvectors.
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(2.37), it follows that

N(k) =
λ2aλ2b(kA − 1)

β − α
N̄(k), (2.49)

where

N̄(k) = k2 +
(kA − kB)β + (1− kAkB)α

kB − 1
k + αβkA, (2.50)

is a monic polynomial with the same roots as N(k) and

HA(k) = KB(k)λ2b
−N̄(k)

(α− β)k
, (2.51)

HB(k) = KA(k)
λ2a(1− kA)N̄(k)

(1− kB)(k − α)(k − β)
, (2.52)

QA(k) = − 1

1 + k2
λ2a(kA − 1)k, (2.53)

QB(k) =
λ2b(1− kB)

1 + k2

(k − α)(k − β)

α− β
. (2.54)

It can be readily shown that

sgn(HA(k)) = sgn(α− β) sgn(N̄(k)) sgn(k), (2.55)

sgn(HB(k)) = − sgn(N̄(k)) sgn(k − α) sgn(k − β), (2.56)

sgn(QA(k)) = − sgn(k), (2.57)

sgn(QB(k)) = − sgn(α− β) sgn(k − α) sgn(k − β). (2.58)

In order to determine the signs of the equations (2.55)-(2.58) in every region

of k, we need the relative position of the boundaries including (i) two eigenvectors

of A1 which are k = 0 and k = ∞ in S11; (ii) two eigenvectors of B1 which are

k = α and k = β; and (iii) the two distinct real roots of N(k), which are defined

as k1 and k2. We analyze all possible sequences of these boundaries with respect

to the following three exclusive and exhaustive cases.

Case 1. N̄(k) does not have two distinct real roots.

There are three possibilities: 1) two complex roots; 2) two identical real roots;

3) one root, which are discussed as follows.
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1.1) N(k) has two complex roots. Since the complex roots of N(k), denoted

as c1 and c2, are conjugate, the equation (2.59) below should be positive for any

α.

(α− c1)(α− c2) =
(1− kA)kBα(α− β)

kB − 1
. (2.59)

As a result, the only possible sequence of these boundaries is β < α < 0. Then

the signs of (2.55)-(2.58) could be determined for every region of k, as shown in

Fig. 2.5.

Figure 2.5: S11: N(k) does not have two distinct real roots, the switched system
is stable.

Fig. 2.5 is the crucial diagram exhibiting the conditions for the stability of

switched systems (2.40). It shows the signs of HA(k), HB(k), QA(k) and QB(k)

versus k ∈ (−∞, +∞), corresponding to θ ∈ [−π
2
, π

2
). The dashed vertical lines

are the boundaries of the regions of k. The horizontal lines represent the signs of

HA(k) (the solid) and HB(k) (the dashed) while the arrows represent the signs

of QA(k) and QB(k) in different regions. If HA(k) is positive, then the solid line

is above the horizontal axis. If QA(k) is positive, the arrow on the dashed line

points to the right (counter clockwise in x− y plane).

With reference to Fig. 2.5, Regions I and III are stable since both HA(k) and

HB(k) are negative in these regions. Furthermore, Region III is a special region,

where none of the trajectories can go out. Consider all possible initial states in

different regions as follows.

1. If the initial state is in Region III, it can not go out of this region.

2. If the initial state is in Region II or IV, it will be brought into Region III

by the WCSS, which is ΣA (HB is positive and HA is negative) in Region

II and ΣB in Region IV respectively.
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2.4 Necessary and Sufficient Stability Conditions

3. If the initial state is in Region I, it must be brought out because Region I

is stable. Then the trajectory will go to Region II or Region IV, and go to

Region III eventually.

Therefore, when N(k) has two complex roots, the switched system is stable

under arbitrary switching.

1.2) N(k) has two identical real roots. Unlike properties of the boundary k1

or k2 stated in Remark 2.4, all the signs of (2.31)-(2.34) do not change when

system trajectories cross km, the identical real root of N(k), because the sign of

N(k) does not change. The two regions next to km can be merged into one since

the signs of HA(θ), HB(θ), QA(θ), and QB(θ) (2.31)-(2.34) keep the same, and

trajectories of both subsystems can cross km with the same directions as those in

these two regions. It follows that the worst case analysis for this case is similar to

the one for Fig. 2.5 regardless of the position of km. Since this is true for all Sij,

the analysis for the case that N(k) has two identical real roots will be omitted in

all other cases.

1.3) N(k) has only one root. In this case, the leading coefficient of N(k),

p2 = a12b22 − a22b12 = 0 based upon (2.37). With reference to (2.48), we have

a12 = 0 and a22 6= 0. So p2 = 0 results in b12 = 0, which implies that B1 shares a

real eigenvector (the y axis) with A1, which violates Assumption 2.2. Therefore,

this case can not happen for S11. It can be readily shown that this is true for

all other cases of S1j and S2j. In S33, p2 = 0 was excluded by Assumption 2.4.4.

Hence, we will omit the case that N(k) has only one root in the rest of the proof

of Theorem 2.1.

Case 2. N̄(k) has two distinct real roots and det(P1) < 0.

det (P1) = β − α < 0. (2.60)

So we have α > β in this case. Since β < 0 is guaranteed by Assumption

2.4.1, there are two possibilities: β < α < 0 and β < 0 < α. Then we need

to insert k1 and k2 into the two possible sequences. Equation (2.61) is useful to

determine the relative position between k1, k2 and α:

(α− k1)(α− k2) =
(1− kA)kBα(α− β)

kB − 1
. (2.61)
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2.4 Necessary and Sufficient Stability Conditions

With reference to equations (2.50) and (2.61), there are only four possible

sequences for all the boundaries in this case:

2.1) β < α < k2 < k1 < 0. With reference to Fig. 2.6, both HA(k) and HB(k)

are positive when k ∈ (k2, k1), the switched system is not stable under arbitrary

switching from Lemma 2.3.

Figure 2.6: S11: det(P1) < 0, β < α < k2 < k1 < 0, the switched system is not
stable for arbitrary switching.

2.2) β < k2 < k1 < α < 0. With reference to Fig. 2.7, the switched system is

stable by the similar argument as that for Fig 2.5.

Figure 2.7: S11: det(P1) < 0, β < k2 < k1 < α < 0, the switched system is
stable.

2.3) β < α < 0 < k2 < k1. With reference to Fig. 2.8, the switched system is

stable by the similar argument as that for Fig. 2.5.

2.4) β < k2 < 0 < α < k1. With reference to Fig. 2.9, the switched system is

stable by the similar argument as that for Fig. 2.5.

In summary, it can be concluded that α < k2 < k1 < 0 is necessary and

sufficient for instability in this case.

Case 3. N̄(k) has two distinct real roots and det(P1) > 0.
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2.4 Necessary and Sufficient Stability Conditions

Figure 2.8: S11: det(P1) < 0, β < α < 0 < k2 < k1, the switched system is
stable.

Figure 2.9: S11: det(P1) < 0, β < k2 < 0 < α < k1, the switched system is
stable.

In this case, α < β from (2.60). It follows from the equations (2.50) and (2.61)

that the only possible sequence of the boundaries is : k2 < α < β < k1 < 0.

Figure 2.10: S11: det(P1) > 0, the worst case trajectory rotates around the origin
counter clockwise.

With reference to Fig. 2.10, it is straightforward that the WCSS is ΣB in

Regions I and V where HA is positive and HB are negative. Similarly, the WCSS

is ΣA in Region II and IV where HA is positive and HB is negative. In Region

III, both HA and HB is negative, but ΣA is the only subsystem whose trajectory

can go out of Region III because the boundaries of Region III, α and β, are the

two real eigenvectors of ΣB. Similarly, the WCSS is ΣB in Region VI. On k1 and

k2, the trajectory directions of the two subsystems are the same. Without loss of

generality, we choose ΣB as the WCSS. Based on above analysis, it is concluded
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2.4 Necessary and Sufficient Stability Conditions

that the WCSS σ∗ in the whole interval of k is

σ∗ =





A k2 < k < k1,

B otherwise.
(2.62)

In this case, the trajectory under the WCSS rotates around the origin counter

clockwise. The simplest way to determine stability of the system is to follow a

trajectory under the WCSS originating from a line l until it returns to l again,

and evaluate its expansion or contraction in the radial direction. Without loss of

generality, let w2 = [1, k2]
T , the switched system is not stable under the WCSS

σ∗ if and only if ‖exp(B1TB) exp(A1TA)w2‖2 > ‖w2‖2, where TA and TB are the

time duration on ΣA and ΣB, respectively, which could be calculated by

TA =

∫ θ1

θ2

dt

dθ

∣∣∣∣
σ=A

dθ =

∫ θ1

θ2

1

QA(θ)
dθ, (2.63)

TB =

∫ θ2+π

θ1

dt

dθ

∣∣∣∣
σ=B

dθ =

∫ θ2+π

θ1

1

QB(θ)
dθ, (2.64)

where θ1 = tan−1 k1 and θ2 = tan−1 k2. It corresponds to the second inequality

of Theorem 2.1. Hence, the theorem is proved.

2.4.2.2 Application of Theorem 2.1

The condition in Theorem 2.1 can be easily verified by the following procedure:

1. Calculate the eigenvalues and the eigenvectors of two subsystems, and check

the following

a) If one of the subsystems is unstable, the switched system (2.40) is not stable

under arbitrary switching.

b) If either Assumption 2.1 or 2.2 is violated, the switched system (2.40) is

stable under arbitrary switching.

2. Determine Sij with i ≤ j, where subscript i and j denote the type of Ai and

Bj respectively.

3. Check whether Ai is in its standard form Ji. Do similarity transformation for

the two subsystems simultaneously to guarantee Ai = Ji if necessary.

4. Calculate Pj, k1, k2, and check Assumption 2.4.
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2.4 Necessary and Sufficient Stability Conditions

a) If Assumption 2.4 is satisfied, go to step 5.

b) Otherwise, do similarity transformation, as stated previously, for two sub-

systems simultaneously such that Assumption 2.4 is satisfied. Recalculate

Pj, k1 and k2.

5. If the real roots k1 6= k2, go to the next step, otherwise the switched system is

stable under arbitrary switching.

6. Calculate det(Pj).

a) If det(Pj) < 0, determine the values of L and M with reference to (2.45),

and check the first inequality of Theorem 2.1.

b) If det(Pj) > 0, calculate the values of TA and TB using equations (2.46) and

(2.47), which can be easily integrated by changing variable k = tan θ, and

check the second inequality of Theorem 2.1.

We now apply Theorem 2.1 to some examples below.

Example 2.1

Consider a switched linear system with two LTI planar systems

A =

[
−1 −1

1 −1

]
, B =

[
−1 −10

1/10 −1

]
. (2.65)

It has been shown in [22] that the switched system (2.65) does not have a

common quadratic Lyapunov function, but is exponentially stable under arbitrary

switching. Now we check it using the procedure described in Section 2.4.2.2, based

on Theorem 2.1.

1. Both A and B are Hurwitz with a pair of complex eigenvalues: −1 ± i.

And Assumptions 2.1 and 2.2 are satisfied. It is the case S33 since both

subsystems have complex eigenvalues.

2. A3 is already in its standard form J3.

3. The eigenvector of B3 corresponding to the eigenvalue 1+i is [1, 1/10i]T , de-

noted by v1. Then P3 =

[
0 1

−1/10 0

]
is derived from v1∗i =

[
0 + 1i

−1/10 + 0i

]
.
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Figure 2.11: The trajectory of the switched system (2.65) under the WCSS.

Substituting the entries of (2.65) into N(k) (2.37), we have k1 = 1.184, k2 =

−0.084. Assumptions 2.4.4-2.4.5 for S33 are satisfied due to p2 = a12b22 −
b12a22 = −9 < 0. Hence no further transformation is needed.

4. It follows from det(P3) = 1/10 > 0 that the second inequality of Theorem

2.1 should be checked. Substituting the entries of (2.65) to equations (2.46)

and (2.47), it results in TA = TB = 0.9539. It follows that

‖exp(BTB) exp(ATA)w2‖2 = 0.8758 < ‖w2‖2 = 1.0036.

By Theorem 2.1, the switched system (2.65), with its two subsystems not

sharing a CQLF, is stable under arbitrary switching, matching the conclusion of

[22]. The trajectory under the WCSS is shown in Fig. 2.11.

Example 2.2

A =

[
−1 0

0 −3

]
, B =

[
9 −5

20 −11

]
. (2.66)

1. Simply checking yields that A has two distinct real eigenvalues: λ1a = −1

and λ2a = −3 with corresponding eigenvectors: [1, 0]T and [0, 1]T , respec-

tively. B has two multiple eigenvalues λb = −1 with a single eigenvector

42



2.5 Extension to the Marginally Stable Case

[1, 2]T , which is undiagonalizable. It is the case S12 with Hurwitz A1 and

B2. And it follows that Assumptions 2.1 and 2.2 are satisfied.

2. A1 is already in its standard form J1.

3. P2 =

[
0 1

−0.2 2

]
is derived from B2 = P2J2P

−1
2 . It follows that α = 2,

which violates Assumption 2.4.2. Therefore, we need to transform A1 and

B2 simultaneously. By denoting x̄1 = −x1, we obtain a new switched system

Ā =

[
−1 0

0 −3

]
, B̄ =

[
9 5

−20 −11

]
, (2.67)

which has the same stability property as the switched system (2.66). Re-

calculate P̄2 =

[
0 1

0.2 −2

]
, where α = −2 satisfies Assumption 2.4.2. We

have k1 = −0.7460, k2 = −1.7873.

4. The first inequality of Theorem 2.1 should be checked because det(P̄2) =

−0.2 < 0. With reference to (2.45), we have L = α = −2 and M = 0 for

S12, hence the inequality L < k2 < k1 < M is satisfied.

It can be concluded that the switched system (2.67), or equivalently the

switched system (2.66), is not stable under arbitrary switching. An unstable

trajectory of the switched system (2.67) is shown in Fig. 2.12. It is to be noted

that the stability condition of [31] can not be applied to this example since its

worst case trajectory is chattering rather than spiralling.

2.5 Extension to the Marginally Stable Case

The stability criterion can be extended to the switched system that consists of

marginally stable subsystems:

Sij : ẋ = σx, σ ∈ {Ai, Bj}, (2.68)

where Ai, Bj ∈ R2×2 are either Hurwitz or marginally stable. The corresponding

stability condition for (2.68) is formulated as Theorem 2.2 below.
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Figure 2.12: A typical unstable trajectory of the switched system (2.67).

Theorem 2.2. The switched system (2.68), subject to Assumptions 2.1-2.4, is

not stable under arbitrary switching if and only if there exist two independent

real-valued vectors w1, w2, satisfying the collinear condition

det([Aiw1, Bjw1]) = 0, det([Aiw2, Bjw2]) = 0,

and the slopes of w1 and w2, denoted as k1 and k2 with k2 < k1, satisfy the

following inequality:

{
L ≤ k2 < k1 ≤ M if det(Pj) < 0

‖exp(BjTB) exp(AiTA)w2‖2 > ‖w2‖2 if det(Pj) > 0
, (2.69)

where M , L, TA, TB, and w are the same as those defined in Theorem 2.1.

Remark 2.7. The only issue caused by the marginally stable subsystem is that

the collinear vectors may overlap with an eigenvector of the subsystem. As a

result, it takes infinite time for the worst case switching signal σ∗(θ(t)), which

is state-dependent, to bring the trajectory to its eigenvector. However, Theo-

rem 2.2 is still valid by introducing a less worse switching signal σ(θ(t)), under

which the trajectory is close to the worst case trajectory, but associated with a
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Figure 2.13: A typical unstable trajectory of the switched system (2.70).

finite time. Similar comment applies to the stabilizability condition for marginal

unstable cases in Chapter 3.

The proof of Theorem 2.2 is similar to that of Theorem 2.1, and hence is

omitted here.

Example 2.3

A =

[
−1 0

0 −10

]
, B =

[
2 1

−5 −2

]
. (2.70)

Simple checking yields that A has two distinct eigenvalues λ1 = −1, λ2 =

−10 and B has two complex eigenvalues ±i. So it is the case S13, and ΣB is

marginally stable. Following the steps similar to those of Example 2.2, we find

that L = −∞ < k2 = −1.9426 < k1 = −0.2574 < M = 0. Therefore, the

switched system (2.70) is not stable under arbitrary switching. See Fig. 2.13 for

its unstable trajectory.
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2.6 The connection between Theorem 2.1 and

CQLF

In this section, we discuss the relationship between Theorem 2.1 and the existence

of a common quadratic Lyapunov function (CQLF). We prove the following result:

Theorem 2.3. If there do not exist two independent real-valued vectors w1, w2,

satisfying the collinear condition det([Aw1, Bw1]) = 0, det([Aw2, Bw2]) = 0, or

equivalently Q = A−1B has two complex eigenvalues, then A and B share a

CQLF.

Proof: Without loss of generality, it is assumed that the matrix Q with two

complex eigenvalues µ± iω is in its standard form

Q =

[
µ −ω

ω µ

]
.

Denote

A =

[
a11 a12

a21 a22

]
.

We have

B = AQ =

[
µa11 + ωa12 −ωa11 + µa12

µa21 + ωa22 −ωa21 + µa22

]
.

The characteristic polynomial of A is given by

det(λI − A) = λ2 − (a11 + a22)λ + a11a22 − a12a21.

Since A is Hurwitz, we have the conditions

a11 + a22 < 0, a11a22 − a12a21 > 0. (2.71)

Similarly,

det(λI −B) = λ2 − [µ(a11 + a22) + ω(a12 − a21)]λ

+(µ2 + ω2)(a11a22 − a12a21).

Since B is also Hurwitz, we obtain another condition

µ(a11 + a22) + ω(a12 − a21) < 0. (2.72)
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2.6 The connection between Theorem 2.1 and CQLF

We use the matrix pencil condition proposed in [17] to show that A and B

share a CQLF.

Let Mγ(A,B) = B + γA,Nγ(A,B) = B + γA−1, γ > 0, from which we get

det(λI −Mγ) = m2λ
2 + m1λ + m0,

where m2 = 1, m1 = −[µ(a11 + a22) + ω(a12 − a21) + γ(a11 − a22)], m2 = [(µ +

γ)2 + ω2](a11a22 − a12a21), and

det(λI −Nγ) = n2λ
2 + n1λ + n0,

where n2 = 1, n1 = γ(a11 + a22)[µ(a11 + a22) + ω(a12− a21)] + γ2(a11a22− a12a21),

n2 = γ(a11 + a22)[µ(a11 + a22) + ω(a12 − a21)] + [ω2 + (µ− γ)2](a11a22 − a12a21).

It follows from Conditions (2.71) and (2.72) that m1 > 0,m0 > 0, n1 > 0, n0 >

0, which implies that both Mγ(A,B) and Nγ(A,B) are Hurwitz for all γ > 0.

Therefore, A and B have a CQLF when Q = A−1B has a pair of complex eigen-

values.

It is concluded from the detailed analysis on each individual case that when

the first inequality of Theorem 2.1 is satisfied, the trajectory directions on the

collinear vectors are always opposite, which implies that Q = A−1B has two

negative eigenvalues. We have known from Theorem 2.1 that the switched system

is not stable under arbitrary switching in this case. Here we show that there is

no CQLF for A and B is this case.

The case of Q = A−1B having two negative eigenvalues is equivalent to the

existence of two real eigenvector x1 and x2 with Ax1 = λ1Bx1 and Ax2 = λ2Bx2

with λ1 < 0, λ2 < 0.

For any symmetric positive definite P satisfying

xT (AT P + PA)x < 0,∀x ∈ R2/{0},

we have xT
1 (AT P + PA)x1 < 0. It follows that [xT

1 (BT P + PB)x1]λ1 < 0 or

[xT
1 (BT P + PB)x1] > 0. Therefore, none of the quadratic Lyapunov functions of

A is valid for B, thereby implying that A and B do not share a CQLF.
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2.7 Summary

2.7 Summary

In this chapter, a necessary and sufficient condition (Theorem 2.1) for the sta-

bility of a pair of planar LTI system (2.40) has been derived. The condition is

easily verified, even by hand calculation. In contrast with the stability conditions

proposed in the literature [31], Theorem 2.1 takes into account all possible combi-

nations of the subsystem dynamics. Moreover, it has been shown (Theorem 2.2)

that the result can be generalized to the switched system (2.68) which is made

up of marginally stable subsystems. Furthermore, we discussed the relationship

between Theorem 2.1 and the existence of a CQLF.
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Chapter 3

Switching Stabilizability

In this chapter, we deal with the problem of stabilizability of second-order switched

systems with unstable subsystems. In contrast with the earlier use of worst case

analysis, we now invoke the idea of best case analysis in order to discover whether

the system can be stabilized by switching between the unstable subsystems, and

also, at the time, determine the switching sequence for stabilization.

This chapter is organized as follows. Section 3.1 formulates the switching

stabilizability problem and defines global asymptotic stabilizability and regional

asymptotic stabilizability. Section 3.2 identifies the best-case switching signal

(BCSS) to obtain easily verifiable, necessary and sufficient conditions for regional

asymptotic stabilizability of switched systems. Section 3.3 presents these con-

ditions for the case of two unstable second-order LTI subsystems. Section 3.4

discusses the connections among the stabilizability conditions in this chapter, the

stability condition in Chapter 2, and related results in the literature. Section 3.5

summaries this chapter.

3.1 Problem Formulation

We consider the following switched system with a pair of second-order continuous-

time LTI subsystems

Sij : ẋ = σx, σ = {Ai, Bj}, (3.1)

where Ai and Bj ∈ R2×2 are not asymptotically stable, and i, j ∈ {1, 2, 3} denote

the types of A and B, respectively.
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3.2 Best Case Analysis

For clarity, we define two types of asymptotic stabilizability employed in the

derivation of our results.

Definition 3.1. The switched system (3.1) is said to be globally asymptotically

stabilizable (GAS), if for any non-zero initial state, there exists a switching signal

under which the trajectory will asymptotically converge to zero.

Definition 3.2. The switched system (3.1) is said to be regionally asymptotically

stabilizable (RAS), if there exists at least one region (non-empty, open set) such

that for any initial state in that region, there exists a switching signal under which

the trajectory will asymptotically converge to zero.

In addition to global asymptotic stabilizability (GAS), which is the focus of

the most of the research in the literature, regional asymptotic stabilizability will

also be considered in this thesis. It is due to the fact that there exists a class

of switched systems which are not GAS, but still can be stabilized if the initial

state is within certain regions. Those switched systems can be stabilized in stark

contrast with those that cannot be stabilized irrespective of the initial state.

In practice, however, it is likely that the initial state lies inside the stabilizable

region.

Note that Ai or Bj in (3.1) can be unstable node, saddle point or even

marginally stable subsystem. It is because the existence of a marginally sta-

ble Ai or Bj does not guarantee the regional asymptotic stabilizability (RAS) of

the switched system (3.1) with reference to Definitions 3.1 and 3.2.

The main technique for stabilizability analysis is based on the characterization

of the best case switching signal (BCSS).

3.2 Best Case Analysis

We characterize the best case switching signal (BCSS) for a given switched system

with a pair of unstable subsystems, thereby converting the switching stabilizabil-

ity problem to the stability problem under the BCSS.
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3.2 Best Case Analysis

3.2.1 Mathematical Preliminaries

First of all, we list some equations, which are useful for the characterization of

the BCSS, as follows.

HA(θ(t)) , dhA(θ(t))

dt

∣∣∣∣
σ(t)=B

, HB(θ(t)) , dhB(θ(t))

dt

∣∣∣∣
σ(t)=A

, (3.2)

and

QA(θ(t)) , dθ

dt

∣∣∣∣
σ=A

, QB(θ(t)) , dθ

dt

∣∣∣∣
σ=B

. (3.3)

Similar to the worse case analysis in Chapter 2, with k = tan θ, we have

HA(k) = KB(k)
N(k)

DB(k)
, (3.4)

HB(k) = −KA(k)
N(k)

DA(k)
, (3.5)

QA(k) = − 1

k2 + 1
DA(k), (3.6)

QB(k) = − 1

k2 + 1
DB(k), (3.7)

where

DA(k) = a12k
2 + (a11 − a22)k − a21, (3.8)

DB(k) = b12k
2 + (b11 − b22)k − b21, (3.9)

and

N(k) = p2k
2 + p1k + p0, (3.10)

where p2 = a12b22 − a22b12, p1 = a12b21 + a11b22 − a21b12 − a22b11, and p0 =

a11b21 − a21b11.

Let the two distinct real roots of N(k), if they exist, denoted by k1 and k2,

and assume k2 < k1. The signs of equations (3.4)-(3.7) depend on the signs of

DA(k), DB(k), and N(k).

With reference to Definition 2.2, a region of k is a continuous interval where

the signs of (3.4)-(3.7) are preserved for all k in this interval.

The boundaries of the regions of k, if they exist, are the lines whose angles

satisfy DA(k) = 0, DB(k) = 0, or N(k) = 0. These boundaries divide the x − y
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plane to several conic sectors, i.e., regions of k. Now we proceed to establish

criteria to determine the BCSS for every θ, or equivalently k, based on the signs

of HA and HB.

3.2.2 Characterization of the Best Case Switching Signal

(BCSS)

1) Both HA and HB are negative

Lemma 3.1. The switched system (3.1) is regionally asymptotically stabilizable

(RAS) if there is a region of k, [kl, ku], where both HA(k) and HB(k) are negative.

Figure 3.1: The region where both HA and HB are negative

With reference to Fig.3.1, a stable trajectory can be easily constructed by

switching inside this region. The proof of Lemma 3.1 is similar to the one for

Lemma 2.3, hence is omitted here.

2) HA is positive and HB is negative

The BCSS is ΣA. In this case, the trajectories of two subsystems have the same

direction based on Remark 2.3. With reference to Fig. 3.2, consider an initial

state with an angle θ0 at t0. Let rB(θ) be the trajectory along ΣB and let rA(θ)

be the trajectory along ΣA. Comparing the magnitudes of the trajectories along
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different subsystems, we have

rB(θ)− rA(θ) = hA(θ)gA(θ)− CAgA(θ) = gA(θ)

∫ t

t0

HA(θ(t))dt > 0, (3.11)

which shows that the trajectory of ΣA always has a smaller magnitude than the

corresponding one of ΣB for all θ in this region.

Figure 3.2: The region where HA is negative and HB are positive

3) HA is negative and HB is positive

Similarly, the BCSS is ΣB in this case.

4) Both HA and HB are positive

First, we will show that the switched system can not be stabilized in this region

if its trajectory does not move out. It follows from Assumption 2.2 that at least

one of gA(θ) and gB(θ) is lower-bounded for any given θ. Since both HA and

HB are positive, we have hA(t) ≥ hA(t0) and hB(t) ≥ hB(t0). With reference to

(2.20) and (2.22), the magnitude r is lower-bounded in this region. Hence the

asymptotic stabilizability of the switched system is determined by other regions.

Next we will discuss the scenarios when the trajectory may move out.

1) If only the trajectory of one subsystem, say ΣA, can go out of this region,

then the BCSS in this region is ΣA. Let rσ∗ be the trajectory along ΣA and let rσ

be the trajectory under any other switching signal. Comparing the magnitudes

of the trajectories under different switching on the boundary (θ = θbn) where the
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trajectories move out, it can be shown that any switching other than ΣA in this

region will make the switched system more unstable since

rσ∗(θbn) = hA(t0)gA(θbn) < rσ = hA(t)gA(θbn). (3.12)

2) If the trajectories of both subsystems can go out and neither can come back,

then no matter which subsystem is chosen, the trajectory will leave this region

and the stabilizability of the switched system is determined by other regions.

3) If the trajectories of both subsystems can go out and at least one of them

can come back, then at least one of the boundaries of this region is k1 or k2, the

root of N(k). It was mentioned in Remark 2.4 that HA(k) and HB(k) change

their signs simultaneously when trajectories cross the boundary k1 or k2, then

there must exist a stabilizable region, where both HA and HB are negative, next

to this region. Therefore, the switched system (3.1) is RAS based on Lemma 3.1.

5) One of HA and HB is zero

If one of HA(k) and HB(k) is zero, it implies N(k) = 0, then both of them are

zero at the line k.

1) If the trajectories of the subsystems cross the line with the same direction,

we can choose either subsystem as the BCSS since the trajectories are tangent to

each other on this line.

2) If the trajectories of the subsystems cross the line with opposite direction,

it follows from Remark 2.4 that there exists a stabilizable region near the line

where N(k) = 0. Hence the switched system is RAS from Lemma 3.1.

6) On real eigenvectors

It can be readily shown that the BCSS is ΣA on the eigenvectors of B, and vice

versa.

In summary, the BCSS is identified based on the signs of HA(k), HB(k),

QA(k), and QB(k), which provides an effective way to analyze the problem of

regional asymptotical stabilizability of switched systems.
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3.3 Necessary and Sufficient Stabilizability Con-

ditions

In this section, we focus on deriving necessary and sufficient conditions for the

switched system

Sij : ẋ = σx, σ = {Ai, Bj}, Ai, Bj ∈ R2×2, Re{λAi
} > 0, Re{λBj

} > 0, (3.13)

where Re{λAi
} denotes the real parts of the eigenvalues of Ai.

The condition will be extended to the switched system

Sij : ẋ = σx, σ = {Ai, Bj}, Ai, Bj ∈ R2×2, Re{λAi
} ≥ 0, Re{λBj

} ≥ 0 (3.14)

in Subsection 3.3.3.

In Subsection 3.3.4, the condition is further extended to the switched system

consisting of at least one subsystem (assumed to be A1) having a negative real

eigenvalue

Sij : ẋ = σx, σ = {A1, Bj}, A1, Bj ∈ R2×2, (3.15)

where λ1Aλ2A ≤ 0 and Bj is not asymptotically stable. When λ1Aλ2A < 0, A1 is

a saddle point. When λ1Aλ2A = 0, A1 is marginally stable but not asymptotically

stable.

3.3.1 Assumptions

We need to settle some preliminaries to arrive at the main stabilization results.

To this end, we rewrite the two assumptions in Section 2.2 for the switched system

(3.1) and discuss the regional asymptotic stabilizability of the special cases when

they are violated.

Assumption 3.1. Ai 6= cBj, where c ∈ R.

When Assumption 3.1 is violated, it is trivial to show that Ai is just scaled Bj,

and hence the switched system (3.1) is not regionally asymptotically stabilizable

(RAS). One difference between Assumption 3.1 and Assumption 2.1 is that the

case c < 0 is included in Assumption 3.1. This case is possible when both Ai and

Bj are saddle points and Ai = cBj, c < 0, where the switched system is not RAS

due to Definitions 3.1 and 3.2.
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Note that the cases when Bj has two positive real eigenvalues and Ai =

cBj, c < 0 is asymptotically stable contradict the condition that neither subsys-

tem of (3.1) is asymptotically stable, hence will not be considered here.

Assumption 3.2. Ai and Bj do not share any real eigenvector.

The special cases when Assumption 3.2 is violated will be discussed in Ap-

pendix B.1 since they are more complicated than the ones for Assumption 2.2

due to the complexity of the subsystems in (3.1).

3.3.1.1 Standard Forms

Assumption 3.3. One subsystem of (3.1) is in its standard form as defined in

(2.41), i.e., Ai = Ji,

where the standard forms (real Jordan forms) Ji are defined as

J1 =

[
λ1 0

0 λ2

]
, J2 =

[
λ 0

1 λ

]
, J3 =

[
µ −ω

ω µ

]
. (3.16)

When the switched system (3.13) is considered, we have

λ2 ≥ λ1 > 0; λ > 0; µ > 0, ω < 0. (3.17)

Note that it is always possible to guarantee one subsystem in its standard

form by linear transformation under which stability of the switched system is

preserved.

3.3.1.2 Standard Transformation Matrices

Since one subsystem is in its standard form, the other subsystem can be expressed

as Bj = PjJjP
−1
j with i ≤ j, where Jj is the standard form of Bj and Pj is the

transformation matrix defined as

P1 =

[
1 1

α β

]
, P2 =

[
0 1

β α

]
, P3 =

[
0 1

β α

]
. (3.18)

For any given Bj with its standard form Jj, Pj can be derived from the

eigenvectors of Bj, which is the same as discussed in Section 2.4.
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3.3.1.3 Assumptions on Different Combinations of Sij

In order to further reduce the degrees of freedom, we make the following assump-

tions concerning the various parameters in the standard transformation matrices

Pj and N(k) of (3.10). These assumptions are listed below.

Assumption 3.4. 1. if Sij = S11, β < 0;

2. if Sij = S12, α < 0;

3. if Sij = S13, k2 < 0, where k2 is the smaller root of N(k);

4. if Sij = S33, p2 6= 0, where p2 is the leading coefficient of N(k);

5. if Sij = S33, p2 < 0 (if N(k) (3.10) has two distinct real roots).

Please note that Assumptions 3.4 is the same as Assumptions 2.4, thus do not

impose any constraint on the subsystems Ai and Bj, as supported by Lemma 2.4.

3.3.2 A Necessary and Sufficient Stabilizability Condition

for the Switched System (3.13)

The main result is as follows.

Theorem 3.1. The switched system (3.13), subject to Assumptions 3.1-3.4, is

regionally asymptotically stabilizable if and only if there exist two independent

real-valued vectors w1, w2, satisfying the collinear condition

det([Aiw1, Bjw1]) = 0, det([Aiw2, Bjw2]) = 0, (3.19)

and the slopes of w1 and w2, denoted as k1 and k2 with k2 < k1, satisfy the

following inequality

{
L < k2 < k1 < M if det(Pj) < 0

‖exp(BjTB) exp(AiTA)w1‖2 < ‖w1‖2 if det(Pj) > 0
, (3.20)

where M and L correspond to the slopes of the non-asymptotes of Ai and Bj
1

1with reference to Definition 2.1
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respectively such that

M =





0, i = 1

+∞, i = 2

+∞, i = 3

, L =





α, j = 1

α, j = 2

−∞ j = 3

, (3.21)

and

TA =

∫ θ1

θ2

1

QA(θ)
dθ =

∫ θ1

θ2

1

a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ
dθ,

(3.22)

TB =

∫ θ2+π

θ1

1

QB(θ)
dθ =

∫ θ2+π

θ1

1

b21 cos2 θ − b12 sin2 θ + (b22 − b11) sin θ cos θ
dθ,

(3.23)

where θ1 = tan−1 k1 and θ2 = tan−1 k2.

Theorem 3.1 shows that the existence of two independent vectors w1 and w2,

along which the trajectories of the two subsystems are collinear, is a necessary

condition for the switched system (3.13) to be stabilizable. It also indicates

that there are two classes of switched systems (3.13) categorized by the sign

of det(Pj), which implies the relative trajectory direction of two subsystems in

certain regions. For example, when both Ai and Bj are with complex eigenvalues,

the positive/negative det(Pj) implies that the trajectory directions of the two

subsystems are the same/opposite for the whole phase plane.

The possible stabilization mechanisms corresponding to the two classes men-

tioned above are totally different as detailed below.

Class I (det(Pj) < 0): stable chattering (sliding or sliding-like motion), i.e.,

when system trajectories can be driven into a conic region where both HA(k)

and HB(k) are negative, there exists a switching sequence to stabilize the system

inside this region. In Class I, the switched systems are only RAS in the region

(L,M), but not GAS unless one of the subsystem is with spiral, which can bring

any initial state into the stabilizable region.

Class II (det(Pj) > 0): stable spiralling, i.e., when the system trajectory is a

spiral around the origin and there exists a switching action to make the magnitude

decrease after one or half circle. In Class II, if the condition (3.20) is satisfied,

the switched systems are not only RAS, but also GAS.
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Remark 3.1. The existence of two distinct stabilization mechanisms was also

discussed by [49]. However, no simple algebraic index has been reported in the

literature to classify given switched system (3.13) into these two classes. It was

shown above that this can be readily done by checking the sign of det(Pj).

3.3.2.1 Proof of Theorem 3.1 when Sij = S11

Theorem 3.1 is proved in the following fashion. For every possible combination of

the subsystems Sij, it will be shown that if the condition (3.20) is satisfied, then

there exists a switching signal to stabilize the switched system (3.13) if its initial

states are in some regions of k, which constitutes the proof for the sufficiency. It

will also be demonstrated that for all the cases when this condition is violated,

the switched system can not be stabilized by any possible switching, which would

establish the necessity.

We prove Theorem 3.1 for the case Sij = S11 in the following as an example

to show the main idea and process of the proof of Theorem 3.1. The proofs of

other combinations of Sij are given in Appendix B.2.

Proof: In the case of Sij = S11,

A1 =

[
λ1a 0

0 λ2a

]
, B1 = P2J2P

−1
2 =

1

β − α

[
βλ1b − αλ2b λ2b − λ1b

αβ(λ1b − λ2b) βλ2b − αλ1b

]
.

(3.24)

Let

λ1a = kAλ2a, λ1b = kAλ2b. (3.25)

Then, we have 0 < kA, kB < 11, α 6= 0 by Assumption 3.2 and β < 0 by

Assumption 3.4.1. Substituting A1 and B1 into (3.4)-(3.10), it follows that

N(k) =
λ2aλ2b(kA − 1)

β − α
N̄(k), (3.26)

where

N̄(k) = k2 +
(kA − kB)β + (1− kAkB)α

kB − 1
k + αβkA, (3.27)

is a monic polynomial with the same roots as N(k) and

1If kA=1, any vector in the phase plane is the eigenvector of A, which contradicts Assump-
tion 3.2 since B has two real eigenvectors.
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HA(k) = KB(k)λ2b
−N̄(k)

(α− β)k
, (3.28)

HB(k) = KA(k)
λ2a(1− kA)N̄(k)

(1− kB)(k − α)(k − β)
, (3.29)

QA(k) = − 1

1 + k2
λ2a(kA − 1)k, (3.30)

QB(k) =
λ2b(1− kB)

1 + k2

(k − α)(k − β)

α− β
. (3.31)

It can be readily shown that

sgn(HA(k)) = − sgn(α− β) sgn(N̄(k)) sgn(k), (3.32)

sgn(HB(k)) = sgn(N̄(k)) sgn(k − α) sgn(k − β), (3.33)

sgn(QA(k)) = sgn(k), (3.34)

sgn(QB(k)) = sgn(α− β) sgn(k − α) sgn(k − β). (3.35)

In order to determine the signs of the equations (3.32)-(3.35) in every region of

k, we require the relative position of the boundaries including (i) two eigenvectors

of A1, which are k = 0 and k = ∞ in S11; (ii) two eigenvectors of B1, which are

k = α and k = β; and (iii) the two distinct real roots of N(k) which are defined as

k1 and k2. We analyze all possible sequences of these boundaries with respect to

the following three exclusive and exhaustive cases. Note that the root condition

of N̄(k), or N(k), is essentially the same as the one for det(Aw,Bw) by denoting

k as the slope of w. For simplicity, we use the root condition of N̄(k) in the

following analysis.

Case 1. N̄(k) does not have two distinct real roots.

There are three possibilities: 1) two complex roots; 2) two identical real roots;

3) one root, which are discussed as follows.

1.1) N̄(k) has two complex roots. Since the complex roots of N(k), denoted

as c1 and c2, are conjugate, the equation (3.36) below should be positive for any

α.

(α− c1)(α− c2) =
(1− kA)kBα(α− β)

kB − 1
. (3.36)
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Figure 3.3: S11: N(k) has two complex real roots, the switched system is not
RAS.

As a result, the only possible sequence of these boundaries is β < α < 0. Then

the signs of (3.32)-(3.35) could be determined for every region of k, as shown in

Fig. 3.3

Fig. 3.3 is the crucial diagram exhibiting the conditions for the stabilizability

of switched systems (3.13), as well as switched systems (3.1). It shows the signs

of HA(k), HB(k), QA(k), and QB(k) versus k ∈ (−∞, +∞), corresponding to

θ ∈ [−π
2
, π

2
). The dashed vertical lines are the boundaries of the regions of k.

The horizontal lines represent the signs of HA(k) (the solid) and HB(k) (the

dashed) while the arrows represent the signs of QA(k) and QB(k) in different

regions. If HA(k) is positive, then the solid line is above the horizontal axis.

If QA(k) is positive, the arrow on the dashed line points to the right (counter

clockwise in x− y plane).

With reference to Fig. 3.3, Region I and III are unstabilizable since both

HA(k) and HB(k) are positive in these regions. Region I is a special region,

where none of the trajectories can go out. Consider all possible initial states in

different regions as follows.

• If the initial state is in Region I, it can not go out of this region.

• If the initial state is in Region II or IV, it will be brought into Region I by

the best case switching signal, which is ΣA in Region II (HA is positive and

HB is negative) and ΣB in Region IV.

• If the initial state is in Region III, it must be brought out because region

III is unstabilizable. Then the trajectory will go to Region II or Region IV,
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and goes to Region I eventually.

Therefore, when N̄(k) has two complex roots, the switched system (3.13) is

not RAS.

1.2) N̄(k) has two identical real roots. Based on Remark 2.4, the best case

analysis for this case is similar to the one for Fig. 3.3 regardless of the position

of the multiple roots. Since this is true for all Sij, the analysis for the case that

N̄(k) having two identical real roots will be omitted in all other cases.

1.3) N̄(k) has only one root. In this case, the leading coefficient of N(k),

p2 = a12b22 − a22b12 = 0 based upon (3.10). With reference to (3.24), we have

a12 = 0 and a22 6= 0. So p2 = 0 results in b12 = 0, which implies that B1 shares a

real eigenvector (the y axis) with A1, which violates Assumption 3.2. Therefore,

this case can not happen for S11. It can be readily shown that this is also true

for all other cases of S1j and S2j. In S33, p2 = 0 was excluded by Assumption

3.4.4. Hence, we will omit the case that N(k) has only one root in the rest of the

proof of Theorem 3.1.

Case 2. N̄(k) has two distinct real roots and det(P1) < 0

α > β, with reference to (3.27) and (3.36), there are totally four possibilities:

2.1) β < α < k2 < k1 < 0

Figure 3.4: S11: det(P1) < 0, β < α < k2 < k1 < 0, the switched system is RAS.

With reference to Fig. 3.4, if the initial state is in the region of k ∈ (−∞, α]

or k ∈ [0,∞), the trajectory will be driven into the unstabilizable Region I and

can not move out no matter which subsystem is chosen. However, if the initial

state is in (α, 0), the trajectory can be brought into Region IV, where both HA(k)

and HB(k) are negative, then the system can be stabilized by switching inside
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Figure 3.5: S11: det(P1) < 0, β < k2 < k1 < α < 0, the switched system is not
RAS.

Figure 3.6: S11: det(P1) < 0, β < α < 0 < k2 < k1, the switched system is not
RAS.

the stabilizable Region IV. Therefore, in this case, the switched system is RAS.

The stabilizable region is (α, 0).

2.2) β < k2 < k1 < α < 0

The switched system is not RAS with reference to Fig. 3.5.

2.3) β < α < 0 < k2 < k1

The switched system is not RAS with reference to Fig. 3.6.

2.4) β < k2 < 0 < α < k1

The switched system is not RAS with reference to Fig. 3.7.

Case 3. N̄(k) has two distinct real roots and det(P1) > 0.

α < β, it follows from (3.27) and (3.36) that k2 < α < β < k1 < 0.

With reference to Fig. 3.8, it is straightforward that the best case switching

signal is ΣB in region I and V because HA is negative and HB are positive.

Similarly, the BCSS is ΣA in region II and IV because HA is positive and HB

are negative. In region III, both of HA and HB are positive, but ΣA is the only

subsystem whose trajectory can go out of region III because the boundaries of
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Figure 3.7: S11: det(P1) < 0, β < k2 < 0 < α < k1, the switched system is not
RAS.

Figure 3.8: S11: det(P1) > 0, the trajectory under the BCSS rotates around the
origin.

region III are α and β that correspond to the eigenvectors of B. Similarly, the

BCSS is ΣB in region VI. On k1 and k2, without loss of generality, we choose ΣB

as the BCSS since both HA and HB are zeros. It is concluded that the BCSS in

the whole interval of k is




σ = A k2 < k < k1,

σ = B otherwise.
(3.37)

In this case, the trajectory under the BCSS rotates around the origin clock-

wise. The simplest way to determine stabilizability of the system is to follow a tra-

jectory under the BCSS originating from a line l until it returns to l again and eval-

uate its expansion or contraction in the radial direction. Without loss of general-

ity, let w1 = [1, k1], the system is GAS if and only if ‖exp(B1TB) exp(A1TA)w1‖2 <

‖w1‖2. TA and TB are the time on ΣA and ΣB respectively, which could be cal-

culated by

TA =

∫ θ1

θ2

dt

dθ

∣∣∣∣
σ=A

dθ =

∫ θ1

θ2

1

QA(θ)
dθ, (3.38)
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TB =

∫ θ2+π

θ1

dt

dθ

∣∣∣∣
σ=B

dθ =

∫ θ2+π

θ1

1

QB(θ)
dθ, (3.39)

where θ1 = tan−1 k1 and θ2 = tan−1 k2. Hence the theorem is proven.

3.3.2.2 Application of Theorem 3.1

Example 3.1

A =

[
1 0

0 3

]
, B =

[
−9 5

−20 11

]
. (3.40)

1. Simply checking shows that A has two distinct real eigenvalues λ1a = 1 and

λ2a = 3 with corresponding eigenvectors [1, 0]T and [0, 1]T , respectively. B

has two multiple eigenvalues λb = 1 with a single eigenvector [1, 2]T which

is undiagonalizable. It is the case S12. It follows that Assumptions 3.1 and

3.2 are satisfied.

2. A is already in its standard form J1.

3. P2 =

[
0 1

−0.2 2

]
is derived from B = P2J2P

−1
2 . It follows that α = 2,

which violates Assumption 3.4.2. Therefore, we need to transform A and B

simultaneously. By denoting x̄1 = −x1, we obtain a new switched system

Ā =

[
1 0

0 3

]
, B̄ =

[
−9 −5

20 11

]
(3.41)

which has the same stabilizability property as the switched system (3.40).

Recalculate P̄2 =

[
0 1

0.2 −2

]
, where α = −1 satisfies Assumption 3.4.2.

And we have k1 = −0.7460, k2 = −1.7873.

4. The first inequality of Theorem 3.1 should be checked because det(P̄2) =

−0.2 < 0. With reference to (3.21), we have L = α = −2 and M = 0 for

S12, hence the inequality L < k2 < k1 < M is satisfied.

It can be concluded that the switched system (3.41), or equivalently, the

switched system (3.40), is regionally asymptotically stabilizable. A typical stabi-

lizing trajectory of the switched system (3.41) is shown in Fig. 3.9.

65



3.3 Necessary and Sufficient Stabilizability Conditions

Note that this example corresponds to a class of switched systems which was

not considered in [49], [50], or [51].
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Figure 3.9: A typical stabilizing trajectory of the switched system (3.41).

3.3.3 Extension to the Switched System (3.14)

We now extend Theorem 3.1 to the switched system (3.14), where the real part

of the subsystem’s state matrix is allowed to be zero here. The standard forms

and standard transformation matrices of the switched system (3.14) are the same

as those for the switched system (3.13) in (2.41) and (2.43), except that (3.17) is

revised as

λ2 ≥ λ1 ≥ 0; λ ≥ 0; µ ≥ 0, ω < 0. (3.42)

Theorem 3.2. The switched system (3.14), subject to Assumptions 3.1-3.4, is

regionally asymptotically stabilizable if and only if there exist two independent

real-valued vectors w1, w2, satisfying the collinear condition

det([Aiw1, Bjw1]) = 0, det([Aiw2, Bjw2]) = 0, (3.43)

and the slopes of w1 and w2, denoted as k1 and k2 with k2 < k1, satisfy the
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following inequality

{
L ≤ k2 < k1 ≤ M if det(Pj) < 0

‖exp(BjTB) exp(AiTA)w1‖2 < ‖w1‖2 if det(Pj) > 0
, (3.44)

where M , L, TA, and TB are the same as those defined in Theorem 3.1.

The proof of Theorem 3.2 is similar to that of Theorem 3.1 by considering

the special cases when kA = 0, kB = 0 (3.25), or µ = 0 (3.17). Therefore, it is

omitted here.

3.3.4 Extension to the Switched System (3.15)

In this subsection, we analyze the regional asymptotic stabilizability of the switched

system (3.15), where at least one of the subsystems has a negative eigenvalue.

It is worth noting that the trajectory staying on the eigenvector with a neg-

ative eigenvalue will not be considered as a valid stabilizing trajectory, because

it is not possible to bring the trajectory to this eigenvector exactly in practical.

Furthermore a small disturbance will divert the trajectory from the eigenvector

even if the initial state is on the eigenvector.

Theorem 3.3. The switched system (3.15) subjected to Assumptions 3.1 and 3.2

is always regionally asymptotically stabilizable.

Since the proof for Theorem 3.3 is similar to that of Theorem 3.1 by analyzing

the cases when kA and/or kB are negative, it is omitted here.

Remark 3.2. The switched system (3.15) which is RAS can also be said to GAS

• if Sij = S13. In this case, there exists a subsystem along which the tra-

jectories can be driven into the stabilizable region regardless of the initial

state.

• if the switched system (3.15) is subject to Assumption 3.1-3.4 and satisfies

the condition det(Pj) > 0. In this case, there always exists a trajectory

that can rotate around the origin regardless of the type of subsystems.
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3.4 Discussion

Now we discuss the connections among (i) the stabilizability conditions of the

present chapter, (ii) the stability conditions in Chapter 2, and (iii) related results

in literature [49], [34], and [63].

In [49], necessary and sufficient stabilizability conditions for the switched sys-

tem (3.1) are established first for the cases when both A and B are unstable

nodes, unstable spirals, and saddle points.

The stabilizability conditions derived in this chapter extend those found in

[49], and have shown to be 1) more general in the sense that all the possible com-

binations of subsystem dynamics (node, saddle point and focus) and marginally

unstable subsystems are taken into account, 2) easily verifiable since the checking

algorithm is easy to follow and all the calculations can be done by hand, and 3)

in a compact form that facilitates more geometric insights.

In Chapter 2, we analyzed the stability of the switched system (2.40) under

arbitrary switching and derived a necessary and sufficient condition (Theorem

2.1) by finding the worst-case switching signals. In the present chapter, we in-

vestigated the regional asymptotical stabilizability of the switched system (3.13)

and derived necessary and sufficient stabilizability condition (Theorem 3.1), based

upon the best-case switching signals. It is interesting to note that, by reversing

time, Theorem 3.1 is equivalent to Theorem 2.1. In simpler term, if a switched

system (3.13) with a pair of Ai and Bj is not regionally asymptotically stabiliz-

able (RAS), then the corresponding switched system with −Ai and −Bj is stable

under arbitrary switching. Similarly, if a switched system (3.13) with Ai and Bj

is RAS, then the corresponding switched system with −Ai and −Bj is not stable

under arbitrary switching. The equivalence is obvious by comparing of Example

2.2 to Example 3.1.

It is to be noted that the analysis of regional asymptotical stabilizability as

proposed in the chapter is non-trivial, although Theorem 3.1 and Theorem 2.1

are found to be equivalent by reversing time. The reasons are listed below

1. When the stabilizability problem is considered, we need to know i) when

a switched system is globally asymptotically stabilizable, and ii) where the

stabilizable region is if a switched system is only regionally asymptotically

stabilizable. In Example 2.1, the initial state has to be inside the region
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of k bounded by (L,M) such that its trajectory can go into the stabiliz-

able region (k2, k1) where HA(k) and HB(k) are negative. The situation

is different for the problem of the stability under arbitrary switching. If

there exists an unstable region, then the trajectory can be driven into this

region regardless of its initial state. This difference can be easily seen by

comparing Fig. 2.6 and Fig. 3.4.

2. In Theorem 3.3, the cases when subsystems have eigenvalues with a negative

eigenvalue are considered. No corresponding result can be found in the

papers by [34, 63].

3. In addition to regional asymptotic stabilizability (RAS), global asymptotic

stabilizability (GAS) can also be obtained by similar analysis. The equiva-

lence does not exist anymore when GAS is considered.

3.5 Summary

In this chapter, a necessary and sufficient condition (Theorem 2.1) for regional

asymptotic stabilizability of the switched system (3.13) is derived, based on de-

tailed best-case analysis. The condition is easily verifiable without relying on

any numerical solution. Furthermore, this stabilizability condition is extended to

switched systems (3.14) and (3.15) such that all possible dynamics of the subsys-

tems of (3.1) are covered.
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Chapter 4

Stability of Periodically Switched

Systems

In this chapter, we investigate the stability of switched systems under periodic

switching due to its importance of periodically switched systems in theory and

practice. We present frequency-domain L2− stability conditions for feedback sys-

tems with a linear system in the forward path and periodically switched linear

and nonlinear gains in the feedback path. These conditions can be easy verified

by a computational-graphic method. An interesting phenomenon of the switch-

ing feedback systems is discovered: fast switching leading to stability, which is

confirmed by our simulation.

This chapter is organized as follows. In Section 4.1, we formulate the problem

of L2-stability of SISO and MIMO systems with a linear/nonlinear, periodically

switched single-/matrix-gain described by integral equations. We also introduce

the multiplier-function type of stability conditions. In Section 4.2, we present the

main results (with proofs) of this chapter, which are frequency-domain stability

conditions for single-input-single-output (SISO) systems, and use examples from

literature to demonstrate the novelty of the new stability conditions. Moreover,

we outline a procedure for synthesizing a multiplier function for linear and a

class of nonlinear systems. In Section 4.3, we consider the effect of dwell-time

on stability, while in Section 4.4, we derive stability conditions for multi-input-

multi-output (MIMO) systems, and illustrate them with an example. In Section

4.5, we compare our results with those found in the recent reference [64]. Section
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4.1 Problem Formulation

4.6 summarizes this chapter. Appendix C contains the proofs of some lemmas

used in the main theorems.

4.1 Problem Formulation

Concerning SISO systems, we deal with two stability problems (1) L2-stability of a

linear system with a single periodically switching parameter with values in [0, K)
1, and (2) L2-stability of a nonlinear system with a nonlinearity in association

with a single periodically switching gain, having together a finite gain with values

in [0, K). We also consider the corresponding counterparts for MIMO systems.

It is known that, in general, the standard differential equation description of

a system can be converted to an integral form. Conversely, the stability results

obtained for integral equations can be specialized to be applicable to differential

equations.

4.1.1 SISO Linear Systems

The following nth−order differential equation represents the dynamics of a linear

system, having y as the dependent variable

p(D)y + k(t)q(D)y = f(t), t ∈ [0,∞), (4.1)

where p(D) = Dn+pn−1D
n−1+· · ·+p0 and q(D) = qmDm+qm−1D

m−1+· · ·+q0

are constant coefficient differential operators with the order n of p(D) at least

one higher than the order m of q(D).

Let y = x1, x2 = dx1/dt, · · · , xn = dxn−1/dt, and x = [x1, x2, · · · , xn]′, with ′

denoting transpose. Then (4.1) can be converted to vector differential equation

dx
dt

= Ax + b(f(t)− k(t)y(t)),

y(t) = c′x,
(4.2)

where A is a phase-variable canonical form [65] stable matrix with the last row

given by [−p0,−p1, · · · ,−pn−1], b = [0, 0, · · · , 1]′, and c = [−q0,−q1, · · · ,−qm, · · · ,

0]′. The gain k(·) is a piece-wise continuous switching parameter, assuming values

1Applicable to a more general range [K, K), where K ≥ 0
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in [0, K), and having the fundamental switching period P, f(·) is the reference

input to the system, v(·) is the error signal, and y(·), in the terminology of system

theory, the output of the system.

For simplicity in the proof of stability theorems, it is helpful to enlarge the

range [0, K) to [0,∞). A conversion scheme, which is standard in the stability

theory of feedback systems [66], can be applied in order to arrive at an equivalent

system with the gain in [0,∞). See Fig. 4.1.

Figure 4.1: Conversion of feedback gain from finite range to infinite range.

Further, (4.2) can be converted to an integral equation which, in a generalized

version, assumes the following form

v(t) = f(t)− k1(t)σ(t),

σ(t) =
∑∞

m=1 g1m v(t− τm) +
∫∞

0
g1(τ)v(t− τ)dτ, t ≥ 0,

(4.3)

where f(·) and v(·) are defined as before, σ(·) is the output of the gain-enlargement

system, {g1m}, {τm}1 are constant real sequences, with τm ≥ 0, ∀m, k1(t) =
Kk(t)

K−k(t)
, and assumes values in [0,∞). Such a gain-enlargement is also applicable,

with changes when necessary, to nonlinear systems considered below. See [66] for

details as applied to certain classes of feedback systems.

1to describe discontinuities.
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Let G1(jω) be the Fourier transform of g1(t), the gain-scaled impulse response

of the linear part, and G(jω) the Fourier transform of {∑∞
m=1 g1m δ(t−τm)+g(t)}.

Then G1(jω) = G(jω) + 1/K. In this chapter, the input-output stability of (4.3)

is analyzed, which can be shown to be equivalent to the Lyapunov-stability under

suitable conditions [67].

4.1.2 SISO Nonlinear Systems

The corresponding nonlinear system in differential is described by

dx
dt

= Ax + b(f(t)− k(t)ϕ(y(t))),

y = c′x,

or equivalently,

v(t) = f(t)− k1(t)ϕ(σ(t)),

σ(t) =
∑∞

m=1 g1m v(t− τm) +
∫∞
0

g1(τ)v(t− τ)dτ,
(4.4)

where the switching functions k(·) and k1(·), and constant real sequences {g1m},
and {τm} are the same as before. ϕ(·), a real-valued function on (−∞,∞) is a

memoryless, first-and-third-quadrant nonlinearity. It satisfies the following basic

properties (1) ϕ(0) = 0, (2) there exist positive constants q1 and q2 with q1 < q2

such that q1σ
2 ≤ ϕ(σ)σ ≤ q2σ

2, σ 6= 0, and (3) it is monotone, odd-monotone

or power-law with additional properties defined in Sec. 4.1.4. When combined

with the switching parameter, k(·), the nonlinear gain assumes values in [0, Kq2).

In this case, with Kq2 = K∗, the scaled transfer function is given by G1(jω) =

G(jω) + 1/K∗.

Concerning the systems (4.3) and (4.4), let L2[0,∞) be the linear space of

real valued functions x(·) on [0,∞) with the property that
∫∞

0
|x(t)|2dt < ∞,

and equipped with the norm, ‖x(·)‖ = (
∫∞

0
|x(t)|2dt)

1
2 .

Definition 4.1. The linear system described by (4.3) and the nonlinear system

described by (4.4) are L2-stable if v ∈ L2[0,∞) for f ∈ L2[0,∞), and an inequality

of the type ‖v‖ ≤ C‖f‖ holds where C is a constant.
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4.1.3 MIMO Systems

A generalization of (4.4) is the MIMO system with a switching matrix K(t) of

dimension r × r, with a common fundamental period P for all the elements of

K(t), i.e., K(t −mP) = K(t) for m = · · · ,−2,−1, 0, 1, 2, · · · and for all t. The

elements kmn(t) of K(t) assume values in [0, kmn) and the upper-bound matrix of

K(t) is given by K. The corresponding system has vector inputs and outputs:

dx
dt

= Ax + B(f(t)−K(t)ϕ(y(t))),

y = Cx,

or equivalently,

v(t) = f(t)−K1(t)ϕ(σ(t)),

σ(t) =
∑∞

m=1 S1m Diag [δ(t− τm) · · · δ(t− τm)] +
∫∞
0

S1(τ)v(t− τ)dτ,

(4.5)

where all the vectors of reference input f , error v, nonlinear gain ϕ and output

σ have a dimension of r; {S1m} is a constant real matrix sequence, and {τm} is

a real sequence with τm ≥ 0 ∀ m.

The linear time-invariant block is described by the matrix impulse response∑∞
m=1 S1m Diag [δ(t−τm) · · · δ(t−τm)] +S1(t) of size r×r. Its Fourier transform

Γ1(jω) of is given by Γ1(jω) = I + KΓ(jω), where I is a unit matrix, and Γ(jω)

is the Fourier transform of the unscaled linear forward-block impulse response

matrix
∑∞

m=1 Sm Diag [δ(t− τm) · · · δ(t− τm)] + S(t), in the special case of the

elements of the constant gain matrix K, assuming values in [0,K).

Let x(·) denote a real-valued vector function, having elements x1, x2, · · · , xr.

If each element of the vector x(·) is in L2, the vector itself is said to be in L2.

Then its L2-norm is defined by

‖x(·)‖ =

{
r∑

i=1

∫ ∞

0

|xi(t)|2dt

} 1
2

.

Definition 4.2. The system described by (4.5) is said to be L2-stable if v ∈
L2[0,∞) for f ∈ L2[0,∞), and an inequality of the type ‖v‖ ≤ C‖f‖ holds where

C is a constant.
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4.1.4 Classes of Nonlinearity

4.1.4.1 Odd-monotone Nonlinearity

The real-valued function ϕ(σ) is monotone nondecreasing, i.e., ϕ(·) ∈ M, if

(σ1 − σ2)(ϕ(σ1)− ϕ(σ2)) ≥ 0, ∀σ1 and σ2. (4.6)

If ϕ(·) ∈ M, then for all σ1 and σ2, the following inequality holds [68]:

(σ1 − σ2)ϕ(σ1) ≥
∫ σ1

σ2

ϕ(σ) dσ. (4.7)

Further, if ϕ(σ) is odd-monotone nondecreasing, then ϕ(·) ∈ Mo, and has follow-

ing properties of 1) ϕ(·) ∈ M, and 2) ϕ(σ) = −ϕ(−σ).

When the L2-stability result derived for the odd-monotone nonlinear system

is reduced to the special case of the linear system, there is a stability bound gap

between the linear system and the odd-monotone nonlinear system. Therefore,

in order to facilitate a smooth transition from the stability results for the odd-

monotone nonlinear system to those for the linear system, there is a need to

introduce the class E of power-law nonlinearities as follows.

4.1.4.2 Power-law Nonlinearity

A real-valued function ϕ(σ) is a power-law, i.e., ϕ(·) ∈ E, if its rate of growth is

bounded by
1

µ
≤ d

dσ
{log ϕ(σ)} ≤ µ, σ > 0, (4.8)

where µ > 0 is a constant characterizing the power-law behavior [69, 70].

When µ = ∞, the power-law nonlinearity belongs to class Mo [70]; and when

µ = 1, it becomes a linear function. For the class E of nonlinearities, the governing

inequality is

σ1 ϕ(σ2)− σ2 ϕ(σ1) ≤ ν {σ1 ϕ(σ1) + σ2 ϕ(σ2)}, ∀σ1 and σ2, (4.9)

where ν > 0 is associated with the constant µ of the class E as defined in (4.8),

and is given by the following equation [70]

ν = max
0<θ<∞

∣∣∣∣
(θµ − θ)

(θµ+1 + 1)

∣∣∣∣ (4.10)
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where θ = σ1

σ2
. When µ = ∞, the nonlinearity is odd-monotone with ν = 1, but

when µ = 1, the nonlinearity reduces to linearity with ν = 0. For a few of the

other values of µ, the corresponding values of ν, as found in [70], are as follows:

µ = 4, ν = 0.438; µ = 3, ν = 0.354; and µ = 2, ν = 0.227.

4.1.4.3 Relaxed Monotone Nonlinearity

The inequality (4.7) enables us to define a new class Mq of real-valued functions

ϕ(·) with the property of a “relaxed” monotonicity condition. To this end, let

Q(σ1, σ2) be a non-negative definite quadratic form in σ1 and σ2, as defined below:

Q(σ1, σ2) = q11σ
2
1 + q12σ1σ2 + q22σ

2
2. (4.11)

Then ϕ(·) ∈ Mq, if

(σ1 − σ2)ϕ(σ1) ≥
∫ σ1

σ2

ϕ(σ) dσ + Q(σ2, ϕ(σ2)) − Q(σ1, ϕ(σ1)). (4.12)

Note that the actual quadratic form in (4.12) is rather non-standard because

the cross-coupling terms σ1ϕ(σ1) and σ2ϕ(σ2) are both always positive for σ1 6= 0

and σ2 6= 0. Further, since φ(σ)σ > 0 for σ 6= 0 and σ = σ1 or σ2, inequality

(4.12) is distinct from the following inequality found in [71] and employed in [64]

(σ1 − σ2)ϕ(σ1) ≥
∫ σ1

σ2

ϕ(σ) dσ − Q(σ2, ϕ(σ2)) − Q(σ1, ϕ(σ1)). (4.13)

We denote the class of nonlinear functions ϕ(·), satisfying (4.13) as found in

[71] and used in [64] by Mb.

For later use in the stability theorems, we define a few characteristic constants

of the nonlinear functions belonging to classes M, Mo,Mq, and Mb. These con-

stants refer to the upper and lower rates of variation of (i) the nonlinearity ϕ(·),
and (ii) the quadratic form that relaxes the restriction of monotonicity on ϕ(·).

1. Classes M and Mo:

Let Φ(σ) =
∫ σ

0
ϕ(τ) dτ. Then

νs = sup
σ 6=0

(
Φ(σ)

ϕ(σ)σ

)
, νi = inf

σ 6=0

(
Φ(σ)

ϕ(σ)σ

)
. (4.14)
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2. Classes Mq and Mb:

ζi = inf
σ 6=0

(
ϕ(σ)

σ

)
, ζs = sup

σ 6=0

(
ϕ(σ)

σ

)
, ν ′s =

(
q11

ζi

+ q22ζs + q12

)
.

(4.15)

Note that

ζi = sup
φ(σ)6=0

(
σ

ϕ(σ)

)
, ζs = inf

ϕ(σ)6=0

(
σ

φ(σ)

)
.

Assumption 4.1. 1. Linear system (4.3): The system is asymptotically sta-

ble for all positive constant gains. (Equivalently, the linear system (4.2)

or its corresponding integral equation form is asymptotically stable for all

constant gains in [0, K).)

2. Nonlinear system (4.4): The linear system that is obtained from (4.4), by

replacing the nonlinearity ϕ(σ) by q2σ, is asymptotically stable for all posi-

tive constant gains.

3. Nonlinear matrix gain system (4.5): The system is asymptotically stable

for a constant gain-matrix, K, which is the matrix K(t) with its elements

kmn(t) replaced by the constants with values in [0, kmn) and for which the

zeros of | I + K Γ(s) | lie strictly in the left-half (Re s < −δ ≤ 0) of the

complex plane. The assumptions on ϕ will be indicated in Section 4.4.

4.1.5 Objectives and Methodologies

The objectives of this chapter are to find conditions for L2-stability of the switched

feedback systems described by (4.3), (4.4), and (4.5) subject to Assumption 4.1.

The approach for the present results comes from the “multiplier-function”

form of the Nyquist criterion for linear time-invariant (feedback) systems [69].

More explicitly, the Nyquist criterion can be rewritten in terms of a multiplier

function whose phase angle when added to the phase angle of G1(jω) = G(jω) +

1/K gives us a composite function with the phase lying in the band (−π/2, π/2),

as follows [74, Theorem 2, page 726]:

The system is asymptotically stable for all constant gains K ∈ [0, K) if there

exists a frequency function, Z(jω) such that −π/2 ≤ arg{(Z(jω)} ≤ π/2 and
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−π/2 < arg{Z(jω)G1(jω)} < π/2, where “arg” denotes “the phase angle of”. Al-

ternatively, Re [Z(jω)] ≥ 0, and Re[Z(jω)G1(jω)] > 0, ω ∈ (−∞,∞), where “Re”

denotes “the real part of”. For simplicity, we call them “Real-Part” conditions.

4.2 Stability Conditions for SISO Systems

Frequency-domain stability conditions for both the linear and nonlinear systems,

which are described in an integral equation form, are directly obtained by employ-

ing a combination of the Parseval theorem (in Fourier transforms) and certain

integral inequalities, originally found in [72, 73], and as developed in a modified

form in [74]. The stability conditions involve constraints:

1. In the case of the linear system, the constraints are on (i) the period P

and/or the upper bound K of the switching gain k(t), and (ii) G1(jω).

2. In the case of the nonlinear system with monotone, odd-monotone, “re-

laxed” monotone or power-law function as a gain, the above constraints

along with certain additional ones are required.

In order to establish the mathematical result, we need a few more definitions.

For any real valued function x(·) on [0,∞) and any T ≥ 0, the truncated function

xT (·) is defined by:

xT =

{
x(t) for 0 ≤ t ≤ T

0 for t < 0 and t > T
.

Further, let L2e be the space of those real-valued functions x(·) on [0,∞) whose

truncations xT (·) belong to L2[0,∞) for all T ≥ 0. Essentially, by assuming

infinite escape time for the solution of the system with f ∈ L2, the solution

belongs to L2e. Then, it is shown that, under certain conditions on k(t) and on

G1(jω), the solution actually belongs to L2[0,∞).

We require an operator that generates positive operators in combination with

the forward block operator G1(·) which in turn is in cascade with the periodic

switching gain and the linear/nonlinear gain. In effect, we are looking for an

operator Z whose Fourier transform is such that the Real-Part conditions are

satisfied. For the present periodic-switching stability problem, the following linear
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operator has been found to be appropriate: for given real sequences {zm} and

{z′m} in `1, i.e.,
∑∞

m=1 | zm |< ∞ and
∑∞

m=1 | z′m |< ∞,

Z{σ(t)} = σ(t) +
∞∑

m=1

zm σ(t−mP) +
∞∑

m=1

z′m σ(t + mP)). (4.16)

Its Fourier transform Z(jω) and phase angle φ(ω) are given by

Z(jω) = 1 +
∞∑

m=1

zm(e−jmPω) +
∞∑

m=1

z′m (ejmPω)

and

tan φ(ω) =

∑∞
m=1 (−zm + z′m) sin (mPω)

1 +
∑∞

m=1 (zm + z′m) cos (mPω)
. (4.17)

With the preliminaries settled, we can now state the main results as follows

4.2.1 Stability Conditions for linear and monotone non-

linear systems

Theorem 4.1. The linear feedback system (4.3) with a periodic switching gain

of period P is L2-stable if there exists a multiplier function Z(jω) of the form

(4.17), with zm = −z′m,m ∈ [1,∞], such that

1) Re [Z(jω)] ≥ 0, and

2) Re [Z(jω)G1(jω)] ≥ δ > 0, ω ∈ (−∞,∞) for some positive constant δ.

Theorem 4.2. The nonlinear system (4.4) with ϕ(·) ∈ M , and a periodic

switching gain of period P is L2-stable if there exists a multiplier function Z(jω)

of the form (4.17) with zm < 0, and z′m < 0,m ∈ [1,∞] such that

1) Re [Z(jω)] ≥ 0, with
∑∞

m=1(|zm|+ |z′m|) < 1, and

2) Re [Z(jω)G1(jω)] ≥ δ > 0, ω ∈ (−∞,∞) for some positive constant δ.

Corollary 4.1. Theorem 4.2 is valid for the nonlinear system (4.4), with ϕ(·) ∈
Mo, and a periodic switching gain of period P, with the removal of the constraint

of negativity on zm and z′m for all m.

Corollary 4.2. Theorem 4.2 is valid for the nonlinear system (4.4) with ϕ(·) ∈
E , and a periodic switching gain of period P, if we set zm = −z′m and

∑∞
m=1 |zm| <

1
2ν

, where ν ∈ [0, 1] is given by (4.10).

79



4.2 Stability Conditions for SISO Systems

4.2.2 Stability Conditions for Systems with Relaxed Mono-

tonic Nonlinear Functions

For the new class of relaxed monotone functions Mq defined by (4.12), we can

state the new stability conditions similar to the above in terms of parameters of

the quadratic form (4.11) and the constants related to it and ϕ(·), as defined in

(4.15).

Theorem 4.3. The nonlinear system (4.4) with ϕ(·) ∈ Mq , and a periodic

switching gain of period P is L2-stable if there exists a multiplier function Z(jω)

of the form (4.17) with zm < 0, and z′m < 0, for all m ∈ [1,∞] such that

1) Re [Z(jω)] ≥ 0, with
∑∞

m=1(|zm|+ |z′m|) < 1 , and

2) Re [Z(jω)G1(jω)] ≥ δ > 0, ω ∈ (−∞,∞) for some positive constant δ.

Corollary 4.3. Theorem 4.3 is valid for the nonlinear system (4.4) with an odd

ϕ(·) ∈ Mq after removing the negativity restriction on zm and z′m.

For the class Mb of monotone functions, Theorem 4.3 and Corollary 4.3 need to

be modified only with respect to the second part of condition (1) in Theorem 4.3.

That is, replace inequality
∑∞

m=1(|zm|+ |z′m|) < 1 by
∑∞

m=1(|zm|+ |z′m|) < ( 1
1+2ν′s

)

Then, Theorem 4.3 and Corollary 4.3 become the counterparts of Theorems 4.2

and 4.3 in [64] for ϕ(·) ∈ Mb.

Theorems 4.2 and 4.3 can be generalized to include slope-restricted nonlin-

earities by a simple transformation of the G(jω) of the function, in the manner

of Zames and Falb [68].

4.2.3 Proofs of the Theorems

The proofs of the L2-stability theorems for the linear system (4.3) and the nonlin-

ear system (4.4) depend on the application of the Parseval theorem (in the theory

of Fourier transforms) and establishing positivity conditions for two blocks in cas-

cade. In the case of the linear system (4.3), one block is linear having Z(jω),

given by (4.17), as its transfer function, and the other is the linear switching gain

k(t). In the case of the nonlinear system of (4.4), the first block is linear with

the transfer function Z(jω) but the second is the linear switching gain k(t) along
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4.2 Stability Conditions for SISO Systems

with the nonlinearity ϕ(σ) ∈ M, Mo, E, Mq, or Mb.

Parseval’s Theorem. Suppose f1(·) and f2(·) are real-valued functions defined

on [0,∞) and belong to the class of L1 ∩ L2 functions, then

∫ ∞

0

f1(t)f2(t)dt = (1/2π)

∫ ∞

−∞
F1(jω)F2(−jω)dω.

where F1 and F2 are Fourier transforms of f1(t) and f2(t), respectively.

Lemmas 4.1-4.4 and their corollaries below are concerned with the non-negativity

of one of the following integrals in which the operator Z is the same as the one

defined in (4.16).

λ1(T )
def
=

∫ T

0

Z{σT (t)}k1(t)σT (t)dt or λ2(T)
def
=

∫ T

0

Z{σT(t)}k1(t)ϕ(σT(t))dt.

(4.18)

Lemma 4.1. If the operator Z is constrained by zm = −z′m for all m ∈ [1,∞],

then λ1(T ) of (4.18) is non-negative for all σT in the domain of Z and for all

T ≥ 0.

Lemma 4.2. With the nonlinearity ϕ(·) ∈ M , if the operator Z is constrained

by (i) zm < 0 and z′m < 0 for all m ∈ [1,∞] and
∑∞

m=1(|zm| + |z′m|) < 1, then

λ2(T ) of (4.18) is non-negative for all σT in the domain of Z and for all T ≥ 0.

Corollary 4.4. Lemma 4.2 is valid for an nonlinearity ϕ(·) ∈ Mo, with the

negativity restriction on zm and z′m removed.

Lemma 4.3. With the nonlinearity ϕ(·) ∈ E, if the operator Z is constrained

by zm = −z′m for all m ∈ [1,∞], and
∑∞

m=1 | zm |< 1
2 ν

, where ν is given by

(4.10), then λ2(T ) of (4.18) is non-negative for all σT in the domain of Z and

for all T ≥ 0.

Lemma 4.4. With the nonlinearity ϕ(·) ∈ Mq, if the operator Z is constrained

by zm < 0 and z′m < 0 for all m ∈ [1,∞] and
∑∞

m=1(|zm| + |z′m|) < 1, then

λ2(T ) of (4.18) is non-negative for all σT in the domain of Z and for all T ≥ 0.

Corollary 4.5. Lemma 4.4 is valid for an odd nonlinearity ϕ(·) ∈ Mq, with the

restriction of negativity on zm and z′m removed.
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4.2 Stability Conditions for SISO Systems

Corollary 4.6. Lemma 4.4 is valid for a nonlinearity ϕ(·) ∈ Mb, if the right

hand side of the inequality
∑∞

m=1(|zm|+ |z′m|) < 1 is replaced by 1
(1+2ν′s)

.

For proofs of Lemmas 4.1, 4.2 and 4.4, and of Corollary 4.4, see Appendix

C.1 and C.2. The proofs of the rest of the corollaries is similar to the proof of

Corollary 4.4. The proof of Lemma 4.3 is based on (4.8) in Appendix C.1, see

also [70].

The proof of Theorem 4.1 given below is based on Lemma 4.1, and is on the

lines of the proof strategy developed in [74].

Proof of Theorem 4.1: Consider the integral, for any T > 0,

ρ(T ) =

∫ T

0

fT (t)Z{G1{vT (t)}}dt (4.19)

where G1{vT (t)} =
∫ t

0
g1(τ)vT (t− τ)dτ . It follows from fT (t) = vT (t)+k1(t)σT (t)

in (4.3) that

ρ(T ) =

∫ T

0

vT (t)Z{G1{vT (t)}}dt +

∫ T

0

k1(t)σT (t)Z{σT (t)}dt (4.20)

Let VT (jω) denote the Fourier transform of vT (t). Applying the Parseval

theorem to the first integral on the right hand side of (4.20), we have

∫ T

0

vT (t)Z{G1{vT (t)}}dt =
1

2π

∫ ∞

−∞
VT (−jω)Z(jω)G1(jω)VT (jω)dω. (4.21)

Invoking the condition (2) in Theorem 4.1, Re [Z(jω)G1(jω)] ≥ δ > 0 for some

δ > 0, the following inequality holds

∫ T

0

vT (t)Z{G1{vT (t)}}dt =
1

2π

∫ ∞

−∞
Z(jω)G1(jω) | VT (jω) |2 dω ≥ δ

2π
‖vT‖2.

(4.22)

The second integral on the right hand side of (4.20) is non-negative by virtue

of Lemma 4.1. By applying the Parseval theorem to (4.19), and combining the

result with (4.21), we get

δ‖vT‖2 ≤ 2π

∫ T

0

fT (t)Z{G1{vT (t)}}dt =

∫ ∞

−∞
FT (−jω)Z(jω)G1(jω)VT (jω) dω.

(4.23)
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Using Cauchy-Schwarz inequality in (4.23), we get

∫ ∞

−∞
FT (−jω)Z(jω)G1(jω)VT (jω) dω ≤ sup

−∞<ω<∞
|Z(jω)G1(jω)| ‖fT‖‖vT‖.

(4.24)

Note that sup−∞<ω<∞ |Z(jω)G1(jω)| is finite by virtue of the assumptions on

Z(·) and G1(·). Let C = sup−∞<ω<∞ | Z(jω)G1(jω) |. Then, from (4.23) and

(4.24), we get the inequality δ‖vT‖ ≤ C‖fT‖ which is valid for all T > 0. The

theorem is proven.

The proofs Theorems 4.2 and 4.3, and their corollaries, are similar to the proof

of Theorem 4.1 except that we now invoke Lemmas 4.2, 4.3 and 4.4, and their

corollaries.

4.2.4 Synthesis of a Multiplier Function

For the linear system (4.3), we choose the value of K to be greater than the limit

obtained from the circle criterion. On the other hand, for the nonlinear system

(4.4), this K is replaced by K∗ = Kq2. Plot the graph of arg G1(jω) and define

the following functions

φ1(ω) =

{
−π

2
− arg{G1(jω)} if arg{G1(jω)} < 0

−π
2

if arg{G1(jω)} ≥ 0
,

φ2(ω) =

{
π
2

if arg{G1(jω)} < 0
π
2
− arg{G1(jω)} if arg{G1(jω)} ≥ 0

.

(4.25)

We are now looking for a multiplier function Z(jω) = 1+j tan φ(ω) with the

phase angle φ(ω) that lies within the band, (φ1(ω), φ2(ω)), and is periodic with

a fundamental period Ω. By expanding tan φ(ω), which is an odd function of ω,

in Fourier series, we get the following representation for the multiplier function

Z(jω) = 1 + j

∞∑

n=−∞,n6=0

znejn 2π
Ω

ω, (4.26)

where

zn =
1

Ω

∫ Ω

0

tan φ(ω) e−jn 2π
Ω

ω dω.
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The corresponding multiplier operator Z is given by

Z{σ(t)} = σ(t) + j

∞∑

n=−∞,n6=0

zn σ(t + n
2π

Ω
), (4.27)

where the coefficient zn is given by (4.26). For the linear system or for the non-

linear system with odd-monotone (or power-law) nonlinearity, comparing (4.27)

with (4.16) constrained by zm = −z′m for all m ∈ [1,∞], we have 2π
Ω

= P. It

indicates that the period Ω of the phase angle φ(jω) is the switching frequency of

the gain k(t) for the linear system or for the nonlinear system with odd-monotone

(or power-law) nonlinearity.

Remark 4.1. If there exists a periodic frequency function φ(ω) in the band

(φ1(ω), φ2(ω)), defined by (4.25), and Z(jω) = 1 + j tan φ(ω) has the Fourier

series representation given by (4.26), then the theorems and their corollaries can

be cast (at least partly) in terms of the graph of arg{G1(jω)}.

4.2.5 Examples

For illustrating the application of Theorems 4.1-4.3, we present a few examples

in which the linear forward block is governed by differential equations starting

from second order to fifth. For all the examples, the multiplier function has, for

simplicity, only one term corresponding to m = 1.

Example 4.1. The linear block has the transfer function, G(s) = 1
(s2+s+2)

.

The corresponding gain-scaled transfer function, G1(s) = G(s) + (1/K). Pyat-

nitskiy and Skorodinskiy [75] employ a common quadratic Lyapunov function to

derive the sufficient condition K < 3.82 for stability. Zelentsovsky [76] improves

this bound, by employing a nonlinear transformation, to K < 5.47. Xie et al.

[77] use a piecewise quadratic Lyapunov function to derive the sufficient stability

condition K < 5.9. On the other hand, Margaliot and Langholz [31] apply trajec-

tory optimization to arrive at the necessary and sufficient condition K < 6.89513

for stability.

By way of applying the present results, with a multiplier function chosen as

Z(jω) = 1−j2
∑∞

m=1 zm sin (mPω), the conditions to be verified for L2-stability

of the system are 1) Re [Z(jω)] ≥ 0, and 2) Re [Z(jω)G1(jω)] > ε > 0, ω ∈
(−∞,∞). The former condition is satisfied by the chosen multiplier function. As
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Table 4.1: Computational results for the second-order system of Example 4.1.

No. K Pmax z1 Class of ϕ Pb Pb/Pmax − 1

1 8 1.0650 −0.746 E 1.2567 18%

2 10 0.953 −1.499 E 1.0864 14%

3 12 0.8759 −0.898 E 0.9634 10%

4 15 0.7886 −1.095 E 0.8517 8%

5 20 0.6872 −1.327 E 0.7284 6%

6 40 0.4909 −1.936 E 0.5105 4%

far as the latter condition is concerned, it can be shown, by standard calculation,

to be equivalent to the verification of the following inequality

ω4 − (K + 3)ω2 + (2K + 4)− 2K ω

{∑
m

zm sin (mPω)

}
> 0, ω ∈ (−∞,∞).

(4.28)

If we are given any K > 3.828 (which is the value obtained from the circle

criterion), we need to compute the values of P and zm, if any, for which (4.28)

is satisfied. Or, we can treat the solution to (4.28) as one involving all the

parameters, K, P, and zm, and arrive at desired tradeoffs to obey (4.28). In fact,

we can cast the L2-stability problem as an optimization problem1 for both linear

and nonlinear system stability: a) Linear System Stability: Find the maximum

value of K such that inequality (4.28) is satisfied, for some values of zm, subject

to the constraint that Pmin < P < Pmax, where Pmin and Pmax are pre-specified

limits for P. b) Nonlinear System Stability: Find the maximum value of K such

that inequality (4.28) is satisfied subject to the constraints (i)
∑

m | zm |< 1
2
,

and (ii) Pmin < P < Pmax, where Pmin and Pmax are as defined above in item 1.

For the case of K = 8, see Fig. 4.2(a) for the phase plot G(jω) and G1(jω), and

Fig. 4.2(b) for the multiplier phase angle plot. For computational results of the

trade-off between K and P, see Table 4.1, where Pb is the necessary and sufficient

boundary of the switching period of k(t) as obtained by simulation.

1A similar formulation is applicable to other examples below.
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Figure 4.2: (a) Phase angle plots of G(jω) and G1(jω) for K = 8 (b) a multiplier
function of Example 4.1 for K = 8

Remark 4.2. With reference to Fig. 4.2(b), it is always possible to find other

multiplier functions with P < Pmax = 1.065 which satisfy Theorem 4.1. It implies

that the linear feedback system of Example 4.1 is stable for any k(t) ∈ [0, K) if

k(t) switches fast enough (small P), which is also evident from Fig. 4.3 and

Table 4.1. The simulation shows that when P < Pb, the system is stable for all

k(t) ∈ [0, K), k(t + P) = k(t). On the other hand, when P > Pb, there always

exists a switching feedback gain k(t) ∈ [0, K), k(t+P) = k(t) to make the system

unstable. A similar observation is applicable to the other examples below.

Remark 4.3. The above-observed phenomenon that fast switching leads to sta-

bility appears to be counter-intuitive in view of the well known standard result

that sufficiently slow switching can preserve the stability of the original time-

invariant system. A plausible interpretation of the above phenomenon is that the

behavior of a periodically switched system is close to that of its average model if

the switching is fast enough. This is also supported by the general results of [78],

as well as by applications related to the modeling and control of switched mode

power supplies.1 On the other hand and in contrast, the mathematical fact that

fast switching leads to stability is only valid for the switching feedback system

governed by (4.1), for which the stability of all possible average models (convex

1where a system with high frequency parametric perturbations is modeled and controlled
as its average model.
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Figure 4.3: Stability Regions of Example 4.1 with respect to K and switching
frequency Ω

combination) can be guaranteed. It is not generally true for switched systems

with a possible unstable average system. In this case, there exists unstable conic

sectors (in the case of planar systems, for example), where a divergent trajectory

can be constructed by switching back and forth inside those sectors [79].

Remark 4.4. In Tables 4.1 and 4.2, Pb/Pmax − 1 (shown in percentage) is a

parameter which indicates how close the sufficient-only boundary Pmax obtained

by Theorem 4.1, is to the actual necessary and sufficient boundary Pb. The

simulation result shows that Pmax and Pb are quite close for the general case of

K. It also shows that the difference between Pmax and Pb decreases as K increases

(when K > 6.982).

Remark 4.5. When K approaches the necessary and sufficient boundary of the

switching gain K∗ for absolute stability (6.982 for Example 4.1 by Margaliot

[31]), the difference between Pmax and Pb will go to infinity. It is because when

K is close to K∗, Pb goes to infinity, while Pmax obtained from our phase plot

does not change dramatically. Nevertheless, as long as there is a reasonable gap

between K and K∗, the boundary obtained by Theorem 4.1 is considered to be

satisfactory. In Example 4.1, when K = 8, which is quite close to K∗ = 6.982,

the difference is only 18%. In Example 4.2 when K = 5 (which is not far away
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Figure 4.4: (a) Multiplier phase angle plot for Example 4.2 for K = 3.82; and
(b) Multiplier phase angle plot for Example 4.3 for K = 10

from K∗ = 3.82), the difference is only 12.6%.

Remark 4.6. Fig. 4.3 shows that the stability boundary on K from Theorem

4.1 is less conservative than the one given by the circle criterion for all Ω because

the latter is a special case when the multiplier function is chosen to be merely

unity. Fig. 4.3 also shows that the stability bound on K from Theorem 4.1 is a

tradeoff between K and Ω, which is more conservative at low frequencies when

compared with the necessary and sufficient condition in [31] but less conservative

at high frequencies. More significantly, Theorem 4.1 is applicable to higher-order

systems also.

Remark 4.7. It is possible to obtain better (larger) values of P than the ones

listed in Table 4.1 by choosing m > 1, especially for a large K. It is found that

when K is large, the peak value of φ1(ω) is close to φ2(ω). In this case, a multiplier

with m = 1 may not give an optimal P, whereas a multiplier with m > 1 may.

Example 4.2: In [33], the authors employ an optimization technique to arrive

at stability boundaries essentially for a linear third-order system with the linear

time-invariant forward block given by G(s) = (s+1)
(s3+1.5s2+3s+2)

. For lack of space,

we summarize the L2-stability conditions for both linear and nonlinear periodic

coefficient system in Table 4.2.

Example 4.3. For the fifth-order system with the transfer function
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Table 4.2: Computational results for the third-order system of Example 4.2.

No. K Pmax z1 Class of ϕ Pb Pb/Pmax − 1

1 2 ∞ 0 Linear and Nonlinear ∞ ∞
2 3.82 3.959 −0.33 Mo ∞ ∞
3 4 3.89 −0.34 Mo Large Large

4 5 1.191 −1.17 E 1.34 12.6%

5 7 1.045 −1.54 E 1.097 5%

6 9 0.943 −1.70 E 0.9807 4%

7 10 0.903 −1.87 E 0.9391 4%

Table 4.3: Computational results for the fifth-order system of Example 4.3.

No. K Pmax z1 Class of ϕ

1 2 72.97 −0.19 Mo

2 5 19.54 −0.31 Mo

3 10 8.23 −0.36 Mo

4 15 5.01 −0.38 Mo

5 20 3.41 −0.40 Mo

6 25 2.61 −0.41 Mo

s(s2+3s+1)
(s+14)(s2+0.5s+1)(s2+0.01s+60)

, there seems no comparable result in the literature for

the (Lyapunov- or) L2-stability of the corresponding periodic coefficient mono-

tonic nonlinear feedback system. See Table 4.3 for the stability bounds on K and

P.

89



4.3 Dwell-Time and L2-Stability

4.3 Dwell-Time and L2-Stability

It is known that in general, a switched system is stable if the switching between

stable subsystems takes place sufficiently slowly1 [53]. The problem analyzed in

this section can be stated as follows. Suppose k(t) is periodic with P, what con-

straints on the rate of variation of k(t) and on the switching discontinuities in an

interval of duration P are to be satisfied for stability? On the other hand, is it

possible to improve the stability regions with respect to K and P derived from

Theorem 4.1-4.3 by imposing constraints on k(t) in each period P? When k(t)

is not periodic, the same constraints are to be satisfied for the whole (infinite)

interval. We consider first the case of the periodic switching gain k(t), and in-

voke the stability theorem of [74] for which we need the following notation and

definitions

Let C be the class of absolutely continuous [80] functions k(·) on [0,∞) with

0 < k ≤ k(t) ≤ k, t ≥ 0. An implication is that k(·) is a continuous function

of bounded variation whose derivatives are infinite only over a denumerable point

set. (This class includes piecewise continuous functions also.)

We now enlarge the class of multiplier functions by considering class of oper-

ators satisfying an equation of the type

Z′{σ(t)} = σ(t) +
∞∑

m=1

zmσ(t− τm) +
∞∑

m=1

z′mσ(t + τ ′m) +

∫ ∞

−∞
z(τ) σ(t− τ) dτ,

(4.29)

where the sequences {zm} and {z′m} ∈ `1, i.e.,
∑∞

m=1 (|zm|+ |z′m| < ∞, τm, τ ′m ∈
(0,∞), and z(·) is a real-valued function on (−∞,∞) and is in L1(−∞,∞). Its

Fourier transform is given by

Z ′(jω) = 1 +
∞∑

m=1

(zm e+jωτm + z′m e−jωτ ′m) +

∫ ∞

−∞
z(τ) e−jωτdτ. (4.30)

Assuming that the switching gain, k(t), is made up of the continuous part,

k0(t), and first-order (jump-) discontinuities at instants tm, m = 1, 2, · · · , with

instants tm+ corresponding to positive jumps α+
m, and instants tm− corresponding

1A large switching period P does not necessarily mean slow switching. It is possible that a
feedback gain k(t) switches frequently in its large period.
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to negative jumps α−m. The derivative of k(t) is given by

dk

dt
=

dk0

dt
+

∑
m

(α+
mδ(t− τm+) + α−mδ(t− τm−)).

Denote ϑ(t) = dk
dt

/k(t), and ϑ0(t) = dk0

dt
/k0(t). At the positive discontinuities

tm+ of k(t), the value of k(t) is, by convention, taken as k(t−m+), where t−m+ is the

instant just to the left of tm+. Similarly, at the negative discontinuities tm− of k(t),

the value of k(t) is taken as k(t−m−), where t−m− is the instant just to the left of tm−.

Note that based on the assumptions on k(t), k(t−m−) 6= 0, and k(t−m+) 6= 0, t ≥ 0.

Further, let ϑ+(t) = ϑ(t), for ϑ(t) > 0, ϑ+(t) = 0, for ϑ(t) ≤ 0; and ϑ−(t) =

ϑ(t), for ϑ(t) < 0, ϑ−(t) = 0, for ϑ(t) ≥ 0. We have ϑ(t) = ϑ+(t) + ϑ−(t),

where

ϑ+(t) = ϑ+
0 (t) +

∑
m

α+
m

k(t−m+)
δ(t− τm+), ϑ−(t) = ϑ−0 (t) +

∑
m

α−m
k(t−m−)

δ(t− τm−).

(4.31)

Theorems 4.4 and 4.5 are generalizations of Theorems 4.1 and 4.2, and can be

obtained as corollaries of Theorem 1 of [74]. Note that in these generalizations,

ϑ(t) is not restricted because 1) the switching feedback gain, k(t), is assumed to

be periodic with period P and 2) there is a symmetric time-domain condition on

the impulse response of the multiplier function Z ′(jω).

Theorem 4.4. The linear feedback system described by the pair (4.3), with a pe-

riodic switching gain of period P, is L2-stable, if there exists a frequency function

Z ′(jω) as defined in (4.30), with zm = −z′m, τm = τ ′m, and τm = mP, m =

1, 2, · · · , such that

(a) for some positive constant ξ,

2
∞∑
m

| zm | eξτm +

∫ ∞

0

| z(τ) | eξτdτ +

∫ 0

−∞
| z(τ) | e−ξτdτ < ∞, and

(4.32)

(b) Re [Z ′(jω)G1(jω)] ≥ δ > 0, ω ∈ (−∞,∞).

Theorem 4.5. The nonlinear feedback system described by the pair (4.4) with

ϕ(·) ∈ Mo, a periodic switching gain of period P, and with νs and νi defined

by (4.14), is L2-stable, if there exists a frequency function Z ′(jω) as defined in

(4.30), with zm = −z′m, τm = τ ′m, and τm = mP, m = 1, 2, · · · , such that
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(a) for some positive constant ξ,

2
∞∑
m

|zm|eξτm +

∫ ∞

0

|z(τ)|eξτdτ +

∫ 0

−∞
|z(τ)|e−ξτdτ <

1

1 + νs − νi

, and

(4.33)

(b) Re [Z ′(jω)G1(jω)] ≥ δ > 0, ω ∈ (−∞,∞).

In case (4.33) is not satisfied, a more general result involves a constraint on

ϑ(t) as made explicit in the following theorem:

Theorem 4.6. The nonlinear feedback system described by the pair (4.4) with

ϕ(·) ∈ Mo, a periodic switching gain of period P, and with νs and νi defined

by (4.14), is L2-stable, if there exists a frequency function Z(jω) as defined in

(4.30), with zm ≤ 0, and z′m ≤ 0, for all m = 1, 2, · · · , and τm and τ ′m ∈ (0,∞)

such that

(a) for some positive constants ξ and ζ

∞∑
m

{|z′m|eξτ ′m+|zm|eζτm}+
∫ ∞

0

|z(τ)|eξτdτ+

∫ 0

−∞
|z(τ)|e−ζτdτ <

1

(1 + νs − νi)
,

(4.34)

(b) Re [Z ′(jω)G1(jω)] ≥ δ > 0, ω ∈ (−∞,∞), and

(c)
1

P

∫ P

0

ϑ−(t) dt ≥ −ζ,
1

P

∫ P

0

ϑ+(t) dt ≤ ξ, (4.35)

where ϑ+(t), and ϑ−(t) are given by (4.31).

When k(t) is piecewise constant (with respect to time) except at the jump

discontinuities, i.e., ϑ0(t) is identically zero, (4.35) simplifies to

1

P

∑
m

α−m
k(τ−m−)

≥ −ζ,
1

P

∑
m

α+
m

k(τ−m+)
≤ ξ, (4.36)

where the summation over the index m applies only to those instants τm+, and

τm− in the semi-closed interval (0, P]. (This is because a jump can theoretically

take place on the boundary of the interval in one period.)
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4.3 Dwell-Time and L2-Stability

Remark 4.8. When the periodic k(t) is piecewise constant, (4.36) shows that

the system is stable as long as the average of the normalized negative and positive

switching jumps in the gain at the switching instants, over a period, satisfies a

lower and an upper bound, respectively. This is in stark contrast with the results

of [81] for switched linear systems in which (1) a minimum dwell time is obtained

(by a slight modification of the standard argument of negative definiteness) us-

ing a family of quadratic Lyapunov functions, and (2) a stability condition on

chattering is expressed by invoking Lyapunov-Metzler inequalities.

It appears, therefore, that the stability results of the literature expressed

in terms parameters like the dwell time, average dwell time [53], and chatter

bound are conservative. In this context, it can be conjectured that stability in

a periodically switched system is not governed by such parameters but by the

average of the negative and positive normalized jumps in the gain that take place

at the switching instants.

Example 4.4: We apply Theorems 4.4-4.6 to the system considered in Ex-

ample 4.2. Using these theorems, we can improve the upper-bound of the period

P for given K by imposing constraints on the variation of the feedback gain k(t)

in its period P for both linear and odd-monotone nonlinear feedback systems.

For illustration, we choose K = 4. In this case, P = 3.89 for a multiplier defined

in (4.17), with zm = −z′m, m ∈ [1,∞]. Then with the multiplier function,

Z ′(jω) = 1− j2z1 sin (Pω)+α/(β− jω), where β > 0, and the added function

α/(β − jω) is defined as the Fourier transform of an impulse response function

αeβt for t ≤ 0 and zero for t > 0. We need to find for the L2-stability of the

system of Example 4.2, the values, if any, of z1, P, α, and β such that for all

ω ∈ (−∞,∞) the following inequality is satisfied

(ω6−7.75ω4+9ω2+12) (1+
αβ

ω2 + β2
) − 2z1 ω (ω2+2) sin (Pω)+

αω2(ω2 + 2)

ω2 + β2
> 0.

(4.37)

One possible solution to (4.37) is: P = 100, z1 = −0.3, α = 3, β = 0.01. With

reference to (4.32), Theorem 4.4 is satisfied if there exists a positive ξ < β =

0.01, which implies that, for the linear system, P can be improved dramatically

by imposing a constraint on ξ, which relates to the permitted variation of the

switching k(t) in a period. However, for the nonlinear system, P cannot be

improved as much as for the linear system: when we invoke Theorem 4.6, another
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4.4 Extension to MIMO Systems

possible solution to (4.37) is found to be {P = 4, z1 = −0.24, α = 0.77, β =

1.71}. The time-domain inequality (4.34) simplifies to

2 | z1 | eζP +

∫ 0

−∞
| z(τ) | e−ζτdτ <

1

1 + νs − νi

, (4.38)

where ζ < β, νs, and νi are defined by (4.14). For demonstrating the existence

of a meaningful solution to the problem under consideration, we can choose a)

ζ = 0.02, and b) a sub-class of odd-monotone functions having values of νs and νi

such that (4.38) is satisfied. Then, the nonlinear system is L2-stable if with

ξ = ∞ and ζ = 0.02, either inequality (4.35) or (4.36) is satisfied, depending

on the nature of the (time-varying) switching gain, k(t), and ϕ(·) belongs to a

subclass of Mo with νs − νi = 0.03.

4.4 Extension to MIMO Systems

In this section, we extend the frequency-domain stability result to the MIMO

switched feedback systems. First of all, we consider the special, limiting cases

of the nonlinear MIMO system of (4.5) - the linear constant matrix gain MIMO

system:

v(t) = f(t)−K0σ(t),

σ(t) =
∑∞

m=1 S1mDiag[δ(t− τm) · · · δ(t− τm)] +
∫∞

0
S1(τ)v(t− τ)dτ,

(4.39)

and the linear periodic matrix-gain MIMO system,

v(t) = f(t)−K1(t)σ(t),

σ(t) =
∑∞

m=1 S1mDiag[δ(t− τm) · · · δ(t− τm)] +
∫∞

0
S1(τ)v(t− τ)dτ.

(4.40)

As far as the vector nonlinearity of (4.5) is concerned, we make the following

assumptions which together constitute a generalization of the assumption (of

first-third quadrant function) on the scalar nonlinear gain of (4.4)1

0 ≤ ϕ′(σ) K′(t) σ ≤ σ′ K∗′(t) σ, (4.41)

1Compare with the different bound on the time-invariant vector nonlinearity in [82] which
is a special case of the present one.
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where the elements k∗mn(t) of K∗(t) are each bounded by [0, k∗mn). As its extension,

we need another inequality to facilitate establishing a stability condition for (4.5).

For an arbitrary, bounded constant matrix Y ,

0 ≤ ϕ′(σ) K′(t) Y σ ≤ ‖Y ‖ σ′ K∗′(t) σ, (4.42)

where ‖Y ‖ is the matrix norm1 of Y .

To generalize the class M of single variable monotone functions, we define the

basic class of monotone vector functions as ϕ(σ), for the vector variable σ,

which satisfy the following inequality

(σ1 − σ2)
′ϕ(σ1) ≥

∫ σ1

σ2

ϕ′(σ) dσ. (4.43)

A slight modification of this class (which is needed in proving stability theo-

rems for the systems under consideration), has functions satisfying the following

inequality

(σ1 − σ2)
′ K ϕ(σ1) ≥

∫ σ1

σ2

(K ϕ(σ))′ dσ. (4.44)

If ϕ(−σ) = − ϕ(σ), then the vector nonlinearity is said to be odd. Further,

a class of relaxed monotone vector functions can be defined by introducing the

quadratic form (4.11) (which will now be in terms of vectors σ and ϕ(σ)), on the

right hand side of (4.43), as was done in (4.12). This can also be extended to

(4.44).

With the upper bound matrix of K∗(t) defined by K∗, the modified (matrix)

transfer function of the linear block is given by Γ1(jω) = I + K∗ Γ(jω). The

system described by (4.5) is said to be L2-stable if v ∈ L2[0,∞) for f ∈ L2[0,∞),

and an inequality of the type ‖v‖ ≤ C‖f‖ holds where C is a constant. As in the

scalar case, the problem is to find conditions for the L2-stability of the feedback

system (4.5).

In the literature, the Nyquist criterion for the linear, time-invariant, con-

stant gain-matrix system of (4.39) does not seem to have been formulated in

terms of “multiplier” matrix functions and the phase angle characteristics of the

Fourier transform Γ1(jω) of S1(t). However, for a generalization of the standard

encirclement-type of condition, see, for instance, [83, 84].

1The matrix norm of Y could be, for instance, maxσ∈Rn

‖Y σ‖
‖σ‖ .
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4.4 Extension to MIMO Systems

For our present purposes, we need a matrix operator Y that has elements

which belong to the class of L1 ∩ L2. It turns out that it is possible to formulate

the stability condition in terms of the positive definiteness of the real part of the

matrix-product of Y (jω) and Γ1(jω) not only for the linear constant coefficient

system of (4.39) but also for (4.40) and (4.5), with additional constraints on

Y (jω). Note that the constraint on Y (jω) is different to positive realness, which

is typically the assumption in the literature on results linking Lyapunov-based

stability conditions with the frequency domain matrix inequalities (called in the

literature as Kalman-Yakubovic-Popov Lemma). See Remark 4.10.

Here we merely state matrix-multiplier conditions that guarantee the L2-

stability of (4.39) for all constant gain matrices K0 whose elements have values in

[0, kmn). But it is found that the method of its proof does not guarantee neces-

sity of this condition.1 This result is then extended to cover (4.5). The multiplier

(matrix) frequency function Y (jω) used in these theorems takes specific forms

depending on the system under consideration, and obeys certain constraints. For

the linear, constant coefficient system (4.39), the form of the matrix multiplier

operator, Y(l), with its Fourier transform Y (l)(jω), is general but obeys some

(mild) constraints. Whereas for the linear, periodic coefficient system (4.40), the

multiplier operator Y(p) has a specific form, and is defined by

Y(p){σ(t)} = σ(t) +
∞∑

m=1

{Y (p)
m,1 σ(t−mP) + Y

(p)
m,2 σ(t + mP)}, (4.45)

where {Y (p)
m,1}, {Y (p)

m,2}, m = 1, 2, · · · , are sequences of constant matrices, Ym,1 and

Ym,2, such that
∑∞

m=1{| Y (p)
m,1 | + | Y (p)

m,2 |} (where | · | implies that each element of

the pair Y
(p)
m,1, Y

(p)
m,2 is replaced by its magnitude) is a bounded matrix. Its Fourier

transform is given by

Y (p)(jω) = I +
∞∑

m=1

{e−jmωPY
(p)
m,1 + e+jmωP Y

(p)
m,2}. (4.46)

However, for the nonlinear system of (4.5), the Fourier transform of the multi-

plier operator Y(np) has the same form as (4.45), but it has to obey additional con-

straints as indicated later in the corresponding stability theorem. Note that for a

1It would be interesting and valuable to study the relationship between this condition and
those found in the literature on multi-variable systems [83, 84].
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matrix B, an inequality of the type B ≥ 0 means that B is positive semi-definite;

and B > 0 means that B is positive definite. With the above preliminaries, we

derive the stability conditions for MIMO systems with a periodic feedback gain

as the following theorems.

Theorem 4.7. The linear constant matrix-gain system described by (4.39) is L2-

stable if there exists a multiplier matrix-operator Y(l) with the Fourier transform

Y (l)(jω) such that

1) Re [K′
0Y

(l)(jω)] > 0, ω ∈ (−∞,∞),

2) sup−∞<ω<∞ ‖Y (l)(jω) · Γ1(jω)‖ < ∞, and

3) Re [Y(l)(jω)Γ1(jω)] > 0, ω ∈ (−∞,∞).

Theorem 4.8. The linear periodic matrix-gain system described by (4.40) is

L2-stable if there exists a multiplier matrix-operator Y(p) defined by (4.45), with

{Y (p)
m,1} = −{Y (p)

m,2}, m = 1, 2, · · · , such that

1) K1(t) is positive definite for all t ∈ [0,∞),

2) K′
1(t)Y

(p)
m = Y

(p)′
m K1(t), t ∈ [0,∞),m = 1, 2, · · · ,

3) sup−∞<ω<∞ ‖Y (p)(jω)Γ1(jω)‖ < ∞, and

4) Re [Y(p)(jω)Γ1(jω)] > 0, ω ∈ (−∞,∞).

Theorem 4.9. The periodic matrix-gain system (4.5) with monotone vector non-

linearity is L2-stable, if there exists a multiplier matrix-operator Y(p), defined by

(4.45) and with Y
(p)
m,1, Y

(p)
m,2,m = 1, 2, · · · , negative definite, such that

1) K(t) ϕ(σ) satisfies the assumptions (4.41), (4.42) and (4.44),

2)
∑∞

m=1 ‖Y p
m,1‖+ ‖Y p

m,2‖ < 1

3) sup−∞<ω<∞ ‖Y (p)(jω)Γ1(jω)‖ < ∞, and

4) Re [Y(p)(jω)Γ1(jω)] > 0, ω ∈ (−∞,∞).

For odd-monotone vector nonlinearity in the system (4.5), we need to remove

the negative definiteness restriction on Y
(p)
m,1, Y

(p)
m,2, m = 1, 2, · · · , and set Y

(p)
m,1 =

− Y
(p)
m,2, m = 1, 2, · · · .
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Remark 4.9. It is interesting to compare Theorem 4.7 with the result of Davis

[85] (Theorem 2, pages 2-3) meant for the linear (continuous-time) constant coef-

ficient MIMO system. In [85], necessary and sufficient (bounded-input bounded-

output) stability conditions (obtained from the spectral theory of linear opera-

tors) are stated in terms of the Nyquist locus of |Γ1(s)| (including the constraint

|Γ1(s)|s=jω 6= 0) or, equivalently, in terms of its zeros in Re [s] ≥ 0. But its

proof in [85] cannot be extended to continuous-time linear and nonlinear periodic

coefficient MIMO systems. In contrast, Theorem 4.7 (though sufficient for the

L2-stability of a linear, constant coefficient MIMO system), seems to be of interest

in its own right. One of the reasons is that it is obtained from a general approach

applicable to both linear and nonlinear periodic coefficient MIMO systems. The

open question is whether Theorem 4.7 is also necessary for the L2-stability of the

linear constant coefficient MIMO system.

Remark 4.10. Note that the constraint on the multiplier matrix Y (l)(s) is differ-

ent to the positive realness condition, which is frequently used in deriving Kalman-

Yakubovic-Popov Lemma. A rational function f(s) of the complex variable s is

said to be positive real if 1) f(s) real for s real, and 2) Re [f(s)] ≥ 0 ∀ Re [s] ≥ 0.

See [86] and the references quoted therein. In the condition 1) of Theorem 4.7,

the real part of Y (l)(s) is required to be positive. However, Y (l)(s) need not be a

positive real matrix (in the network-theoretical sense). With reference to (4.46),

Y (l)(s) can be complex even when s = 0. Moreover, its elements need not be

rational functions of the complex variable s.

Remark 4.11. The condition 2) of Theorem 4.8, which is needed in order to

avoid imposition of a restriction on the rate of variation of the elements of K1(t),

is quite severe. In the special case of a diagonal K1(t), the multiplier matrices Ym

can also be chosen to be diagonal to satisfy the condition 2). However, for general

K1(t), the choice of Ym for satisfying the condition 2) seems to be impossible since

an implication of the condition 2) is that the elements of Yr, r = 1, 2, · · · , are to

be so chosen that
∑

m

∑
n αmnkmn(t) = 0, where αmn are linear functions of the

elements of Yr for each value of r, and kmn(t) are the elements of K1(t).

Remark 4.12. The elements of K1(t) can have different fundamental periods,

in which case the value of P, in the multiplier matrix-operator Y(p) defined by
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(4.45), is the least common multiple of the individual periods of the elements of

K1(t).

The proofs of Theorems 4.7-4.9 can be established on lines similar to those

for the single variable case. Due to the lack of space, they are omitted here.

Example 4.5: Since it has turned out to be difficult to illustrate the appli-

cation of Theorems 4.8 and 4.9 for a general K(t), we consider only the special

case of a diagonal 2× 2 matrix K(t). Let the forward time-invariant linear block

transfer function be given by

Γ(s) =

[
1

(s2+2s+0.01)
(s+1)
(s+20)

1
(s+100)

(s+1)
(s3+1.5s2+3s+2)

]
, (4.47)

and the switching matrix by

K(t) =

[
k11(t) 0

0 k22(t)

]
.

We first need to find the Routh-Hurwitz limits for a constant gain-matrix,

K, i.e., the values of k11 and k22 for which the zeros of |I + K Γ(s)| lie strictly

in the left-half (Re [s] < −δ ≤ 0) of the complex plane, where the K has the

diagonal elements of K(t) replaced by constants, k11 and k22. This leads to

finding k11 and k22 for which the following algebraic equation has zeros in the

left-half of the complex plane

s5 + 3.5s4 + (6.01 + k11 + k22)s
3 + (6.015 + 2.5k11 + 3k22)s

2

+(0.03 + 5k11 + 2.01k22 + k11k22)s + (0.01k11 + 0.01k22 + k11
2
+ k11k22) = 0.

(4.48)

Pairs of two possible solutions of (4.48) are: k11 = 4, k22 > −6.29, and

k11 = 8, k22 > −47. Further, with

Kex1 =

[
4 0

0 10

]
, (4.49)

it is found that

Re [I + Kex1 Γ(jω)] =

[
(0.0401−0.02ω2+ω4)
(0.0001+3.98ω2+ω4)

(80+4ω2)
(400+ω2)

1000
(10000+ω2)

(24+18ω2−13.75ω4+ω6)
(4+3ω2−3.75ω4+ω6)

]
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is strictly positive definite for all ω ∈ (−∞,∞), i.e., the symmetric part of

the 2 × 2 matrix, Re [I + Kex1Γ(jω)], is positive definite, by checking on the

positivity of its first element, and the determinant of its symmetric part, for all

ω ∈ (−∞,∞). The implication is that the switching feedback system is L2-stable

for any switching (periodic or otherwise) feedback linear gain-matrix bounded by

(4.49). It is also L2-stable for any switching (periodic or otherwise) feedback

nonlinear gain-matrix satisfying the inequality 0 ≤ ϕ′(σ) K′(t) σ ≤ σ′Kex1σ.

On the other hand, for a switching gain-matrix bounded by

Kex2 =

[
7 0

0 3

]
, (4.50)

Re [I + Kex2 Γ(jω)] is not positive definite for all ω ∈ (−∞,∞).

Therefore, we need to check the existence of a multiplier matrix-function of

the form (4.46) such that conditions 2) - 4) of Theorem 4.8 for linear system,

and Theorem 4.9 for nonlinear system L2-stability are satisfied. To this end, we

explore the following multiplier function: Y
(p)
ex2(jω) = I−j 2 sin (Pω) Y

(p)
1 , where

Y
(p)
1 is diagonal with unknown elements, y11 and y22, which are to be so chosen

that Re [Y
(p)
ex2(jω) Γ1(jω)] is strictly positive definite for all ω ∈ (−∞,∞). One

solution has been found to be P = 1.2, y11 = −0.1, and y22 = −0.3.

Therefore, the L2-stability of the system considered in Example 4.5 is as

follows:

1) The system with the linear time-invariant block described by (4.47) with a

periodically switching gain matrix bounded by (4.50) of period P = 1.2, is

L2-stable.

2) The system with a) the linear time-invariant block described by (4.47), b)

odd-monotone nonlinear matrix gain associated with a periodically switch-

ing matrix bounded by (4.50) of period P = 1.2 , and c) with K∗ replaced

by Kex2, the nonlinear matrix gain, K(t) ϕ(σ), satisfying the assumptions

(4.41) - (4.44) in addition to ϕ(σ) being odd, is also L2-stable, since the

norm of Y
(p)
1 is also bounded by 1

2
.
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4.5 Discussion

As mentioned earlier , Altshuller [64] has also derived some interesting conditions

for the absolute stability of SISO and MIMO systems with periodic linear and

nonlinear feedback gain. However, there exist differences between the L2-stability

conditions presented here and the ones in [64], with respect to the assumptions,

definitions, and techniques employed, as explained below.

1. According to [64], the magnitude of the impulse response of the linear block

(or its norm in the matrix case) is exponentially bounded. Here we assume

that the impulse response of the linear block is in L1 ∩ L2, which is less

restrictive.

2. The class Mq of nonlinear gains defined in (4.12) is distinct from the class

Mb of nonlinear gains (4.13), as found in [71] and employed in [64]. The

class Mb seems to lack symmetry properties. When σ1 = σ2, the left hand

side of (4.13) is zero and the right hand side is non-positive, the inequality

(4.13) being then trivial. And for σ1 6= σ2, the additional terms on right-

hand side of (4.13) contribute only negative values. In contrast, in the case

of the class Mq, both the left hand and the right hand sides of (4.12) are

zero for σ1 = σ2. For σ1 6= σ2, the additional terms on right-hand side

of (4.12) contribute both positive and negative values. Therefore, (4.12)

appears to define a larger class of relaxed monotone nonlinearities.

3. The new stability conditions for (i) ϕ(·) ∈ Mq and (ii) ϕ(·) ∈ Mb, do

not have, in the “Real-Part” condition, the frequency term involving the

quadratic form Q(·, ·) in contrast with Theorems 4.2 and 4.3 of [64] where

the quadratic form is denoted by B(·, ·). Note further that, in the left

hand side of the frequency domain condition (4.3) of [64], we find the term

−2B(W (iω)), which is a consequence of the double negative signs in the

quadratic forms of the Definition 4.2 in [64], i.e., class of nonlinear functions

Mb defined above.

4. In [64], there is no results concerning the dwell-time problem. We derive an

explicit bound on the sum of the magnitudes of switching discontinuities in

a period to guarantee L2-stability for SISO systems.
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5. Our simulation results reveal an interesting phenomenon that fast switching

can lead to stability. These can be interpreted as complementing stabiliza-

tion using vibrational control.

4.6 Summary

In this chapter, we derived frequency-domain stability conditions for two classes

of systems: (1) Single-input-single-output (SISO) systems consisting of an LTI

part and a periodically switching linear/nonlinear gain. (2) Multi-input-multi-

output (MIMO) systems also consisting of an LTI part but with a periodically

switching linear/nonlinear matrix gain. The stability conditions are expressed in

terms of the magnitude and the period of the gain, and the frequency domain

characteristics of the LTI part. With these conditions, we can determine (1) the

magnitude boundaries of the gain if the period is fixed or (2) the constraints on

the switching period if the magnitude range of the gain is known. These results

are believed to be more general than those of the literature on periodic coefficient

systems in the sense of their applicability to (a) higher order SISO systems with

monotone, odd-monotone and relaxed monotone nonlinearities1 and (b) MIMO

systems with vector nonlinearities with similar properties as in the SISO case. For

SISO systems with a class of nonlinear gains, the stability conditions can be easily

verified because they can be cast in terms of the phase plot of the transfer function

of the LTI part. More importantly, we discovered an interesting phenomenon of

the switching feedback systems: fast switching leading to stability, and confirmed

it by simulation.

1When the nonlinearity is odd, it can be treated as a special case of power-law nonlinearities.
By adopting such a strategy, we arrive at stability conditions for the linear system as a limiting
case, which are the same as those obtained from treating the linear system separately.
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Chapter 5

Conclusions

Switched systems are dynamical systems that consist of a number of subsystems

and a logical rule that orchestrates switching between these subsystems. Switched

systems have numerous applications in control of mechanical systems, chemical

processes, switching power converters, and many other fields. Due to the im-

portance of switched systems in theory and practice, there have been increasing

research activities in this field during the last two decades. Among various topics,

the stability issue has attracted most of attention. Interestingly, even when all

the subsystems are stable, the switched system may not be stable under arbitrary

switching. On the other hand, it is possible to stabilize a switched system with

unstable subsystems by an appropriate synthesis of the switching signal. These

phenomena lead to three basic problems of switched systems. They are (i) sta-

bility under arbitrary switching, (ii) stability under restricted switching, and (iii)

switching stabilizability. While many valuable results have been obtained related

to these three problems, a number of challenging problems are still open.

Concerning some of them, the thesis proposes new and easily verifiable sta-

bility and stabilizability results, which are summarized below.

5.1 A Summary of Contributions

In Chapter 2, we deal with the problem of finding easily verifiable, necessary and

sufficient stability criterion for switched systems under arbitrary switching. In

contrast with the method of common Lyapunov functions found in the literature,
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a geometric approach is proposed to attack this problem. The basic idea is that

if the trajectory under the worst case switching signal (WCSS) is stable, then the

switched system is stable under arbitrary switching.

To facilitate the worst case analysis, the concept of the constant of integra-

tion is introduced by analyzing the phase diagrams of switched systems in polar

coordinates in Section 2.2. As a result, we are able to use the variations of

these constants of integration of subsystems, namely HA(k) and HB(k), as the

indicators of the “goodness” or “badness” of a trajectory. The worst case switch-

ing signals are characterized based on the signs of these indicators, HA(k) and

HB(k), associated with the signs of the trajectory directions, namely QA(k) and

QB(k). The main result is a necessary and sufficient condition (Theorem 2.1)

for the stability of a pair of planar LTI system (2.40) under arbitrary switching.

This condition can be easily verified in the sense that it can be checked by hand

without the need for any numerical solution. Its generalization is Theorem 2.2 as

applied to the switched system (2.68) consisting of marginally stable subsystems.

Compared to the condition obtained by Margaliot and Langholz [31], The-

orem 2.1 is more general since it can deal with both chattering and spiralling

cases. Furthermore, unlike the conditions derived by Boscain and Balde [34, 63],

which are cast case by case, Theorem 2.1 is expressed in a compact form by nec-

essary assumptions, which is believed to offer more geometric insights of switched

systems.

It is shown in Theorem 2.1 that the existence of two independent vectors

w1 and w2, along which the trajectories of the two subsystems are collinear,

plays a key role on the stability of switched systems. If the two collinear vectors

do not exist, then the subsystems admit a CQLF, and the switched system is

asymptotically stable. When the two collinear vectors exist, there are two classes

of unstable mechanism. One is unstable chattering, when system trajectories can

be driven into a conic region where both HA(k) and HB(k) are positive. There

exists a switching sequence that switches back and forth inside this region to

make the system trajectories unstable. In this case, the collinear vectors are the

boundaries of the unstable region. The other mechanism is unstable spiralling,

when the system trajectory is a spiral around the origin, and the stability of the

switched system depends on the magnitude change of the trajectory under the

WCSS. In this case, the collinear vectors act as the switching lines of the WCSS.
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5.1 A Summary of Contributions

In Chapter 3, the problem of switching stabilizability is investigated. In addi-

tion to the global asymptotic stabilizability (GAS), which is the focus of the most

of the research in the literature, regional asymptotic stabilizability (RAS) is also

considered. It is due to the fact that there exists a class of switched systems which

are not GAS, but still can be stabilized if the initial state is within certain regions.

Similar to the characterization of the worst case switching signals, the best case

switching signals (BCSS) are identified based on the signs of the variations of

the constant of integration and trajectory directions. We derive easily verifiable,

necessary and sufficient conditions for the regional asymptotical stabilizability of

switched systems with two second-order LTI systems. These condition are gen-

eral since all possible combinations of the dynamics of subsystems are taken into

account under the assumption that no subsystem is asymptotically stable.

It is worth noting that by reversing time, Theorem 3.1 is equivalent to The-

orem 2.1. Simply speaking, if a switched system (3.13) with a pair of Ai and

Bj is not regionally asymptotically stabilizable (RAS), then the corresponding

switched system with −Ai and −Bj is stable under arbitrary switching. On the

contrary, if a switched system (3.13) with Ai and Bj is RAS, then the correspond-

ing switched system with −Ai and −Bj is not stable under arbitrary switching.

Therefore, it is the problem of regional asymptotical stabilizability, not the one

of global asymptotical stabilizability, that is the dual problem of stability under

arbitrary switching.

In Chapter 4, we are concerned with the problem of stability under periodic

switching. A non-Lyapunov framework is employed to analyze the L2-stability of

feedback systems with a LTI transfer function in their forward path and a period-

ically switched linear/nonlinear feedback gain. The new stability conditions are

derived based on the construction of multiplier functions in frequency domain.

Although these frequency domain stability conditions are sufficient only, they are

easily verifiable based on the phase plot of the transfer function G(jω) and the

upper bound K.

In distinct contrast with the generally conservative stability conditions on

common quadratic Lyapunov-function candidates, the frequency domain L2-stability

conditions derived in Chapter 4 are believed to be more general due to their appli-

cability to a) higher (than two) order systems with linear and also with different

classes of nonlinear gains, and b) multi-input-multi-output (MIMO) systems with
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a matrix of periodically switched linear and nonlinear gains. Compared to the

recent results in [64], more general classes of nonlinearities are considered. In

addition, an explicit bound on the sum of the magnitudes of switching disconti-

nuities in a period is derived to guarantee L2-stability of the SISO system.

Furthermore, it is found that fast switching can lead to stability for a class of

switched feedback systems. This observation, which seems to be counter-intuitive,

has not been proposed in the literature of switched systems. Our simulation has

confirmed the phenomenon and also shown that the maximum switching period

obtained from our frequency conditions is very close to its necessary and sufficient

boundary in general cases.

5.2 Future Research Directions

In this section, we list several future research directions that are related to our

work.

Easily verifiable, even sufficient, conditions for the stability of switch linear

systems of higher (than two) order are sparse. In fact, the conditions found

in the literature are for special classes subsystems (commutative, symmetric or

normal), as discussed in Section 1.3.1.2. As a starting point, it is desirable to

derive an easily verifiable sufficient stability condition for switched systems with

two third-order subsystems. The conjecture is that the switched system are stable

under arbitrary switching if AB−1 has a pair of complex eigenvalues. The proof

is based on finding a common quadratic Lyapunov function for A and B. A

necessary and sufficient condition for the existence of a CQLF for a switched

system with two third-order systems is derived in [18]. This condition is not

easy to verify. However, it is conjectured that the case when AB−1 has a pair of

complex eigenvalues satisfies the sufficient part of this condition.

In Chapter 3, the best case analysis is applied to derive necessary and sufficient

conditions for switching stabilizability, which provide a way to verify whether a

switched system with unstable subsystems can be stabilized by switching. It is

promising to use this idea to design the switching signals to stabilize the switched

system. Moreover, for switched systems with external input, it is also possible to

apply this idea to design appropriate feedback control laws to achieve closed-loop

system stability.
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5.2 Future Research Directions

In Chapter 4, we derived frequency-domain stability condition for the L2-

stability of feedback systems with periodical switched linear and nonlinear gain.

It is not known how to arrive at instability counterparts for these conditions. Fur-

thermore, it seems to be quite challenging to find stabilization conditions in the

frequency-domain for a composite system with stable and unstable subsystems,

including linear and nonlinear feedback gains.

In conclusion, the stability of switched systems is importance because switched

systems have been employed as useful mathematical models for many practical

systems. Easily checkable conditions are needed to verify the stability of switched

systems. This thesis represents a further step in that direction.

107



Appendix A

Appendix of Chapter 2

A.1 Proof of Lemma 2.2

It follows from (2.14), (2.15), and k = tan θ that

fA(θ)− fB(θ) =
(k2 + 1)N(k)

DA(k)DB(k)
. (A.1)

With reference to (2.6) and (2.7), we have

fA(θ)− fB(θ) =
1

r

(
dr

dθ

∣∣∣∣
σ=A

− dr

dθ

∣∣∣∣
σ=B

)
(A.2)

Combining (A.1) and (A.2), it yields that

N(k) =
1

r(k2 + 1)

{
dr

dθ

∣∣∣∣
σ=A

DA(k)DB(k)− dr

dθ

∣∣∣∣
σ=B

DA(k)DB(k)

}
(A.3)

It follows from (2.25), (2.33) and (2.34) that

N(k) =
1

r

{
dr

dt

∣∣∣∣
σ=A

(k)DB(k)− dr

dt

∣∣∣∣
σ=B

(k)DA(k)

}
(A.4)

Let k̄ be a real root of DA(k), then k̄ is an eigenvector of A, it follows from

Assumption 2.2 that DB(k̄) 6= 0. So N(k̄) = 0 only if dr
dt

∣∣∣
σ=A

(k̄) = 0, which

implies that the eigenvalue, corresponding to the eigenvector k = k̄, is zero. It

contradicts the condition that A is Hurwitz.
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A.2 Proof of Lemma 2.3

A.2 Proof of Lemma 2.3

Since HA(k) and HB(k) are both positive, the trajectories of two subsystems have

opposite directions in this region. With reference to Fig. 2.3, define l1 and l2 as

the lines where x2 = kux1 and x2 = klx1. Consider an initial state on l2 at t0, let

trajectory follow ΣA until it hits l1 at t1 and switch to ΣB until it returns to the

line l2 again at t2. Define the states at t0, t1 and t2 as (r0, θ0), (r1, θ1) and (r2, θ0)

respectively, it yields that

r0 = CA0gA(θ0) = CB0gB(θ0),

r1 = CA0gA(θ1) = CB1gB(θ1),

r2 = CA1gA(θ0) = CB1gB(θ0).

(A.5)

It follows from (2.26) that CA1 = CA0(1 + ∆), where

∆ =
1

CA0

∫ t2

t1

HA(θ(t))dt =
gA(θ1)

gB(θ1)

∫ θ0

θ1

gB(θ)

gA(θ)
[fB(θ)− fA(θ)]dθ

is a positive constant that depends on the known parameters kl, ku, and the entries

of A and B. An unstable trajectory can be easily constructed by repeating the

switching from t0 to t2

lim
n→∞

r(t0 + nT ) = lim
n→∞

CA0(1 + ∆)ng(θ0) →∞,

where T = t2 − t0 =
∫ θ1

θ0

1
QA(θ)

dθ +
∫ θ0

θ1

1
QB(θ)

dθ and n is the number of switching

periods.

A.3 Proof of Lemma 2.4

Assumptions 2.4.1-2.4.3 can be satisfied by the transformation x̄1 = −x1 when

necessary. When Sij = S1j, A1 equals J1, which is invariant under the transforma-

tion x̄1 = −x1. Therefore, it is reasonable to transform A1 and Bj simultaneously

by x̄1 = −x1 while the stability of the switched systems S1j preserves. It is as-

sumed that one of the eigenvectors of B is in the fourth quadrant in S11 and S12

1. Similarly, it is assumed that the vector [1, k2]
T is in the fourth quadrant in S13.

1Note that β = 0 in S11 and α = 0 in S12 have been excluded by Assumption 2.2.
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A.3 Proof of Lemma 2.4

Assumptions 2.4.4-2.4.5 can be satisfied by similarity transformation with a

unitary matrix W =

[
γ −η

η γ

]
when necessary, where det(W ) =

√
γ2 + η2 =

1. Geometrically, transformation with W is a coordinate rotation. The phase

diagram of A3 = J3 is a spiral that is invariant under the rotation. Therefore,

it is possible to rotate the original coordinate to satisfy Assumptions 2.4.4-2.4.5

while the stability property preserves.

Since W is unitary and real, W−1 = W T . In addition, A3 is in its standard

form J3. It follows that

Ā3 = W−1A3W = W T A3W = W T J3W

=

[
γ η

−η γ

] [
µ −ω

ω µ

][
γ −η

η γ

]

=

[
µγ2 − (−ω + ω)γη + µη2 −ωγ2 + (µ− µ)γη − ωη2

ωγ2 + (µ− µ)γη − (−ω)η2 µγ2 + (−ω + ω)γη + µη2

]

= J3

Similarly,

B̄3 ,
[

b̄11 b̄12

b̄21 b̄22

]
= W−1B3W = W T B3W

=

[
b11γ

2 − (b12 + b21)γη + b22η
2 b12γ

2 + (b11 − b22)γη − b21η
2

b21γ
2 + (b11 − b22)γη − b12η

2 b22γ
2 + (b12 + b21)γη + b11η

2

]

It follows that

p̄2 = ā12b̄22 − b̄12ā22 = a12b̄22 − b̄12a22 = η2

[
p2

(
γ

η

)2

+ p1
γ

η
+ p0

]
(A.6)

The polynomial inside the bracket in (A.6) has the same coefficients as N(k).

If p2 > 0 and N(k) has two roots k2 < k1, it is always possible to get a negative

p̄2 by a pair of (γ, η) satisfying k2 < γ
η

< k1.

Similarly, if p2 = 0 and p2
2 + p2

1 + p2
0 6= 0 that was guaranteed by Assumption

2.1, it is always possible to find a pair of (γ, η) to guarantee p̄2 6= 0.
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A.4 Proof of Theorem 2.1

A.4 Proof of Theorem 2.1

Proof of Sij = S12

A1 =

[
λ1a 0

0 λ2a

]
, B2 =

1

β

[
βλb − α 1

−α2 βλb + α

]
. (A.7)

Denoting λ1a = kAλ2a, similarly, we have 0 < kA < 1 and α < 0 by Assump-

tion 2.4.2. Substituting (A.7) into (2.31)-(2.37), it follows that N(k) = −λ2a

β
N̄(k),

where

N̄(k) = k2 − [(kA − 1)βλb + (kA + 1)α]k + kAα2 (A.8)

It can be readily shown that

sgn(HA(k)) = sgn(β) sgn(N̄(k)) sgn(k), (A.9)

sgn(HB(k) = − sgn(N̄(k)), (A.10)

sgn(QA(k)) = − sgn(k), (A.11)

sgn(QB(k)) = − sgn(β). (A.12)

Similar with the proof for S11, we go through all possible sequences of the

boundaries with respect to the following three catalogs

Case 1. N̄(k) does not have two distinct real roots

1.1) β < 0. It follows that the discriminant of equation (A.8)

∆12 = β2λ2
b(kA − 1)2 + (kA + 1)2α2 + 2αβλb(kA − 1)(kA + 1)− 4kAα2

= β2λ2
b(kA − 1)2 + 2αβλb(kA − 1)(kA + 1) + (kA − 1)2α2

= βλb(kA − 1)[βλb(kA − 1) + 2α(kA + 1)] + (kA − 1)2α2 > 0

which contradicts the condition that N(k) does not have two distinct real roots.

So β < 0 is impossible in this case.

1.2) β > 0. With reference to Fig. A.1 and following the similar argument as

that for Fig. 2.5, it can be concluded that the switched system is stable.
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A.4 Proof of Theorem 2.1

Figure A.1: S12: N(k) does not have two distinct real roots, the switched system
is stable.

Figure A.2: S12: det(P2) < 0, α < 0 < k2 < k1, the switched system is stable.

Case 2. N̄(k) has two distinct real roots and det(P2) < 0

In this case, det(P2) = −β < 0 leads to β > 0. It follows from β > 0 and α < 0

(Assumption 2.4.2) that equation (A.13) is positive. Thus k1 and k2 are in the

same side of α. In addition, |k1k2| = kAα2 < α2. It results in α < k2 < k1 < 0 or

α < 0 < k2 < k1.

(α−k1)(α−k2) = α2−αβ(kA−1)λb−(kA+1)α2+kAα2 = −αβ(kA−1)λb (A.13)

1.1) α < k2 < k1 < 0. Both (A.9) and (A.10) are positive when k ∈ (k2, k1).

Therefore, the switched system is not stable under arbitrary switching based on

Lemma 2.3.

1.2) α < 0 < k2 < k1. With reference to Fig. A.2, the switched system is stable

by similar argument as that for Fig. 2.5.

It can be concluded that α < k2 < k1 < 0 is necessary and sufficient for

instability in this case.
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A.4 Proof of Theorem 2.1

Figure A.3: S12: det(P2) > 0, the worst case trajectory rotates around the origin
counter clockwise.

Case 3. N̄(k) has two distinct real roots and det(P2) > 0

It follows from det(P2) > 0 that β < 0. With reference to (A.8) and (A.13), the

only possible sequence is k2 < α < k1 < 0 in this case. With reference to Fig.

A.3, the WCSS σ∗ can be obtained as follows by similar argument as that for

Fig. 2.10.

σ∗ =





A k2 < k < k1,

B otherwise.
(A.14)

which is the same as (2.62).

It shows that the second inequality of Theorem 2.1 is necessary and sufficient

for instability in this case.

Proof of Sij = S13

A1 =

[
λ1a 0

0 λ2a

]
, B3 =

ω

β

[
βξ − α 1

−(α2 + β2) βξ + α

]
, (A.15)

where ξ =
µ
ω < 0. Following the similar process, we have N(k) = −λ2aω

β
N̄(k),

where

N̄(k) = k2 − [(kA − 1)βξ + (kA + 1)α]k + kA(α2 + β2), (A.16)

and

sgn(HA(k)) = sgn(β) sgn(N̄(k)) sgn(k), (A.17)

sgn(HB(k)) = − sgn(N̄(k)), (A.18)

sgn(QA(k)) = − sgn(k), (A.19)

sgn(QB(k)) = − sgn(β). (A.20)
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A.4 Proof of Theorem 2.1

Case 1. N̄(k) does not have two distinct real roots

Fig. A.4 shows that the WCSS is ΣB for all k regardless of the sign of det(P3).

Hence the switched system is stable under arbitrary switching.

(a) det(P3) < 0. (b) det(P3) > 0.

Figure A.4: S13: N(k) does not have two distinct real roots, the switched system
is stable.

Case 2. N̄(k) has two distinct real roots and det(P3) < 0

In this case, β > 0 is obtained from det(P3) = −β < 0. It follows from k2 < 0

(Assumption 2.4.3) and k1k2 = kA(α2 + β2) > 0 that k2 < k1 < 0. Hence HA(k)

and HB(k) are positive when k ∈ (k2, k1), the switched system is not stable under

arbitrary switching based on Lemma 2.3.

Case 3. N̄(k) has two distinct real roots and det(P3) > 0

In this case, β < 0. Similarly, we obtain the WCSS as (2.62) with reference to

Fig. A.5.

Proof of Sij = S22

A2 =

[
λa 0

1 λa

]
, B2 =

1

β

[
βλb − α 1

−α2 βλb + α

]
, (A.21)
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A.4 Proof of Theorem 2.1

Figure A.5: S13: det(P3) > 0, the worst case trajectory rotates around the origin
counter clockwise.

where λa, λb < 0. Similarly, we have N(k) = −λa

β
N̄(k), where

N̄(k) = k2 − 2λaα− 1

λa

k +
λaα

2 + (βλb − α)

λa

(A.22)

and

sgn(HA(k)) = − sgn(β) sgn(N̄(k)), (A.23)

sgn(HB(k)) = − sgn(N̄(k)), (A.24)

sgn(QA(k)) = 1, (A.25)

sgn(QB(k)) = − sgn(β). (A.26)

Case 1. N̄(k) does not have two distinct real roots

1.1) β < 0. It follows that

∆22 =

(
2λaα− 1

λa

)2

− 4
λaα

2 + (βλb − α)

λa

, =
1− 4βλaλb

λ2
a

> 0 (A.27)

which contradicts the condition that N(k) does not have two distinct real roots.

So β < 0 is impossible in this case.

1.2) β > 0. With reference to Fig. A.6, the switched system is stable under

arbitrary switching.
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A.4 Proof of Theorem 2.1

Figure A.6: S22: N(k) does not have two distinct real roots, the switched system
is stable.

Figure A.7: S22: det(P2) > 0, the worst case trajectory rotates around the origin
counter clockwise.

Case 2. N̄(k) has two distinct real roots and det(P2) < 0

In this case, β > 0 is obtained from det(P2) = −β < 0. Then both (A.23) and

(A.24) are positive when k ∈ (k2, k1). Based on Lemma 2.3, the switched system

is not stable under arbitrary switching as long as k1 and k2 exist. In addition,

it can be shown that the existence of k1 and k2 implies α < k2 < k1 in S22 as

follows.

k2 − α =
2λaα−1

λa
−√∆22

2
− α =

−1−√1− 4βλaλb

2λa

> 0. (A.28)

Hence, it can be concluded that α < k2 < k1 is necessary and sufficient for

instability in this case.

Case 3. N̄(k) has two distinct real roots and det(P2) > 0

It follows that β < 0. Similarly, we have the WCSS as (2.62) with reference to

Fig. A.7.
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A.4 Proof of Theorem 2.1

Proof of Sij = S23

A2 =

[
λa 0

1 λa

]
, B3 =

ω

β

[
βξ − α 1

−(α2 + β2) βξ + α

]
, (A.29)

where ξ =
µ
ω < 0. Similarly, we have N(k) = −λaω

β
N̄(k), where

N̄(k) = k2 − 2λaα− 1

λa

k +
λa(α

2 + β2) + (βξ − α)

λa

, (A.30)

and

sgn(HA(k)) = − sgn(β) sgn(N̄(k)), (A.31)

sgn(HB(k)) = − sgn(N̄(k)), (A.32)

sgn(QA(k)) = 1, (A.33)

sgn(QB(k)) = − sgn(β). (A.34)

Case 1. N̄(k) does not have two distinct real roots

1.1) β < 0. (A.31) is positive and (A.32) is negative for all regions. Therefore,

ΣB is the WCSS for all regions. Considering the boundary, which is the eigenvec-

tor of σA, the WCSS is still ΣB. Therefore ΣB is the WCSS for the whole phase

plane and the switched system is stable.

1.2) β > 0. Both (A.31) and (A.32) are negative, since the only boundary is

the real eigenvector of A, the trajectory alone A goes to its real eigenvector and

can not go out of this region. Hence ΣB is the WCSS for the whole phase plane

and the switched system is stable.

Case 2. N̄(k) has two distinct real roots and det(P3) < 0

It follows from det(P3) = −β < 0 that β > 0. Both (A.31) and (A.32) are

positive when k ∈ (k2, k1), thus the switched system is not stable under arbitrary

switching as long as k2 < k1 exists, which proves the first inequality of Theorem

2.1 since M = +∞ and L = −∞ for S23 with reference to (2.45).
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A.4 Proof of Theorem 2.1

Figure A.8: S23: det(P3) > 0, the worst case trajectory rotates around the origin
counter clockwise.

Case 3. N̄(k) has two distinct real roots and det(P3) > 0

In this case, β < 0 is derived from det(P3) > 0. Similarly, we obtain the WCSS

that is the same as (2.62) with reference to Fig. A.8.

Proof of Sij = S33

A3 =

[
µa −ωa

ωa µa

]
, B3 =

ωb

β

[
βξ − α 1

−(α2 + β2) βξ + α

]
, (A.35)

where ωa = 1 is assumed1 and ξ =
µb
ωb

< 0. Similarly, we have

sgn(HA(k)) = − sgn(N(k)), (A.36)

sgn(HB(k)) = − sgn(β) sgn(N(k)), (A.37)

sgn(QA(k)) = 1, (A.38)

sgn(QB(k)) = − sgn(β), (A.39)

where

N(k) = −ωb

β
{[(βξ + α) + µa]k

2 − [(α2 + β2) + 2µaα− 1]k + µa(α
2 + β2) + (βξ − α)}

, p2k
2 + p1k + p0

(A.40)

1It can be always satisfied by dividing A3 and B3 by ωa (time scaling) when necessary.
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A.4 Proof of Theorem 2.1

Case 1. N(k) does not have two distinct real roots

1.1) β < 0. One of (A.36) and (A.37) is negative, and the other one is positive

for all k. The WCSS is one of the subsystems for the whole phase plane. So the

switched system is stable.

1.2) β > 0 and p2 is positive. Both (A.36) and (A.37) are negative for the

whole phase plane, then switched system (A.35) is stable under arbitrary switch-

ing.

1.3) β > 0 and p2 is negative. With reference to (A.40), we have p2 =

−ωb

β
[(βξ + α) + µa] and p0 = −ωb

β
[µa(α

2 + β2) + (βξ − α)]. If p2 < 0, it follows

from β > 0, µa < 0 and ξ < 0 that α > 0, which leads to p0 > 0, which contradicts

the condition that N(k) does not have two distinct real roots. So this case will

not happen.

Case 2. N(k) has two distinct real roots and det(P3) < 0

Note that the sign of N(k) is positive when k ∈ (k2, k1) because p2, the leading

coefficient of N(k), was assumed to be negative by Assumption 2.4.5. It follows

from det(P3) = −β < 0 that β > 0. Both (A.36) and (A.37) are positive when

k ∈ (k2, k1), thus the switched system is not stable under arbitrary switching as

long as the two roots k2 < k1 exist, which is equivalent to the first inequality of

Theorem 2.1.

Case 3. N(k) has two distinct real roots and det(P3) > 0

In this case, we have β < 0. With reference to Fig. A.9, the WCSS can be derived

that is the same as (2.62).

The Theorem 2.1 is proven.
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A.4 Proof of Theorem 2.1

Figure A.9: S33: det(P3) > 0, the worst case trajectory rotates around the origin
counter clockwise.
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Appendix B

Appendix of Chapter 3

B.1 Analysis of the special cases when Assump-

tion 3.2 is violated

Case 1) A and B have only one common eigenvector. Without loss of generality,

we assume that the eigenvalues of A and B correspond to the common eigenvector

are λ2A and λ2B, and the common eigenvector is [0, 1]T , then we have

A =

[
λ1A 0

a21 λ2A

]
, B =

[
λ1B 0

b21 λ2B

]
,

where at least one of a21 and b21 is not zero. Thus, the dynamic of the switched

system can be described as

ẋ =

[
σ11(t) 0

σ21(t) σ22(t)

]
x,

where σ11(t) ∈ {λ1A, λ1B}, σ21(t) ∈ {a21, b21}, and σ22(t) ∈ {λ2A, λ2B}.
For the switched systems (3.13) and (3.14), σ11(t) is non-negative because

all the eigenvalues of A and B are non-negative. It follows that |x1(t)| =

e
∫ t
0 σ11(τ)dτ |x1(0)| is lower-bounded by |x1(0)| , so the switched system (3.13) or

(3.14) is not RAS in this case.

For the switched system (3.15) (if both λ1A and λ1B are non-negative), sim-

ilarly |x1(t)| is lower-bounded by |x1(0)| and the switched system (3.15) is not
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B.1 Analysis of the special cases when Assumption 3.2 is violated

RAS. If one of λ1A and λ1B is negative, the switched system (3.15) is RAS, which

is proven as follows:

Consider a periodical switching signal σT (t) with a period of T = tA + tB

σT (t) =

{
A if 0 < t < tA

B if tA < t < T
.

It follows that

x(T ) = eBtBeAtAx(0) , Γx(0) =

[
Γ11 0

Γ21 Γ22

]
x(0),

where Γ11 = eλ1AtA+λ1BtB , Γ22 = eλ2AtA+λ2BtB , and Γ21 = a21

(λ1A − λ2A)

(
eλ1AtA − eλ2AtA

)
eλ1BtB+

b21

(λ1B − λ2B)

(
eλ1BtB − eλ2BtB

)
eλ2AtA .

Let x(0) be on the eigenvector corresponding to the eigenvalue Γ11, i.e. x(0) =[
1, Γ21

(Γ11 − Γ22)

]T

. We have x(T ) = Γ11x(0). If one of λ1A and λ1B is negative,

for every pair (tA, tB) satisfying λ1AtA + λ1BtB < 0, there exists a corresponding

vector such that the trajectory starting from this vector is asymptotically stable

under the switching signal σT (t). Since one of a21 and b21 is nonzero, the collection

of these vectors, corresponding to the different pairs (tA, tB) with 0 < Γ11 < 1,

is a region instead of a single line. Based on Definition 3.2, the switched system

(3.15) is RAS.

Case 2) A and B have two common eigenvectors. In this case, we have

ẋ =

[
σ11(t) 0

0 σ22(t)

]
x.

Similarly, the switched system (3.13) or (3.14) is not RAS since both σ11(t)

and σ22(t) are non-negative.

In this case, the switched system (3.15) is RAS if and only if a) one of λ1A and

λ1B is negative, b) one of λ2A and λ2B is negative, and c) the product of the two

negative eigenvectors is greater than the product of the other two non-negative

eigenvectors. These conditions are equivalent to the existence of a pair (tA, tB)

such that both λ1AtA + λ1BtB and λ2AtA + λ2BtB are negative.

Note that the special cases that Assumption 3.2 is violated can also be solved

by direct inspection. They are discussed here just for the completeness of the

results.
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B.2 Proof of Theorem 3.1

B.2 Proof of Theorem 3.1

Proof of Sij = S12

In this case, the two subsystems are expressed as

A1 =

[
λ1a 0

0 λ2a

]
, B2 =

1

β

[
βλb + α −1

α2 βλb − α

]
, (B.1)

where α < 0 by Assumption 3.2, λ2a > λ1a > 0, and λb > 0. Denote λ1a = kAλ2a,

then kA ∈ (0, 1). Substituting the entries of A1 and B2 into (3.4)-(3.7), it follows

that

sgn(HA(k) = − sgn(β) sgn(N̄(k)) sgn(k), (B.2)

sgn(HB(k) = sgn(N̄(k)), (B.3)

sgn(QA(k)) = sgn(k), (B.4)

sgn(QB(k)) = sgn(β) (B.5)

, where

N̄(k) = k2 + [(kA − 1)βλb − (kA + 1)α]k + kAα2. (B.6)

Similar to the case Sij = S11, we need to know the locations of k1, k2 relative

to α, which is based on

sgn((α− k1)(α− k2)) = sgn(β). (B.7)

Case 1. N̄(k) does not have two distinct real roots.

1.1) β < 0: It follows that the discriminant of equation (B.6)

∆12 = β2λ2
b(kA − 1)2 + (kA + 1)2α2 − 2αβλb(kA − 1)(kA + 1)− 4kAα2

= βλb(kA − 1)[βλb(kA − 1)− 2α(kA + 1)] + (kA − 1)2α2 > 0

which contradicts the condition that N(k) does not have two distinct real roots.

So β < 0 is impossible in this case.

1.2) β > 0. With reference to Fig. B.1 and following the similar argument as

that for Fig. 3.3, it can be concluded that the switched system is unstabilizable.
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B.2 Proof of Theorem 3.1

Figure B.1: S12: N(k) does not have two distinct real roots, the switched system
is unstabilizable.

Figure B.2: S12: det(P2) < 0, α < 0 < k2 < k1, the switched system is unstabi-
lizable.

Case 2. N̄(k) has two distinct real roots and det(P2) < 0.

det(P2) = −β < 0 leads to β > 0. It follows from β > 0 and α < 0

(Assumption 3.2) that Eqn (B.7) is positive. Thus k1 and k2 are in the same

side of α. In addition, |k1k2| = kAα2 < α2. It results in α < k2 < k1 < 0 or

α < 0 < k2 < k1.

2.1) α < k2 < k1 < 0. Both (B.2) and (B.3) are negative when k ∈ (k2, k1).

Therefore, the switched system is regionally stabilizable based on Lemma 3.

2.2) α < 0 < k2 < k1. With reference to Fig. B.2, the switched system

is stable by similar argument as that for Fig. 3.3. It can be concluded that

α < k2 < k1 < 0 is necessary and sufficient for the stabilizability in Case 2.

Case 3. N̄(k) has two distinct real roots and det(P2) > 0.

It follows from det(P2) > 0 that β < 0. With reference to (B.6) and (B.7),

the only possible sequence is k2 < α < k1 < 0 in this case. With reference to Fig.

B.3, the BCSS σ∗ for this case is the same as (3.37) by similar argument as that

for Fig. 3.8.
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B.2 Proof of Theorem 3.1

Figure B.3: S12: det(P2) > 0, the best case trajectory rotates around the origin
clockwise.

Proof of Sij = S13

A1 =

[
λ1a 0

0 λ2a

]
, B3 =

ω

β

[
βξ − α 1

−(α2 + β2) βξ + α

]
, (B.8)

where µ > 0, ω < 0, and ξ =
µ
ω < 0. Substituting A1 and B3 into (3.4)-

(3.7), it follows that sgn(HA(k)) = − sgn(β) sgn(N̄(k)) sgn(k), sgn(HB(k)) =

sgn(N̄(k)), sgn(QA(k)) = sgn(k), and sgn(QB(k)) = sgn(β), where

N̄(k) = k2 − [(kA − 1)βξ + (kA + 1)α]k + kA(α2 + β2). (B.9)

Case 1. N̄(k) does not have two distinct real roots.

Fig.B.4 shows that the BCSS is ΣB for all k regardless of the sign of det(P3).

Hence the switched system is unstabilizable.

(a) det(P3) < 0. (b) det(P3) > 0.

Figure B.4: S13: N(k) does not have two distinct real roots, the switched system
is unstabilizable.
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B.2 Proof of Theorem 3.1

Figure B.5: S13: det(P3) > 0, the best case trajectory rotates around the origin
clockwise.

Case 2. N̄(k) has two distinct real roots and det(P3) < 0.

In this case, β > 0. It follows from k2 < 0 (Assumption 3.3) and k1k2 =

kA(α2 + β2) > 0 that k2 < k1 < 0. Hence HA(k) and HB(k) are negative when

k ∈ (k2, k1), the switched system is regionally stabilizable based on Lemma 3.

Case 3. N̄(k) has two distinct real roots and det(P3) > 0.

In this case, we have β < 0, Similarly, we obtain the BCSS as (3.37) with

reference to Fig. B.5.

Proof of Sij = S22

A2 =

[
λa 0

−1 λa

]
, B2 =

1

β

[
βλb + α −1

α2 βλb − α

]
, (B.10)

where λa, λb > 0. Substituting A2 and B2 into (3.4)-(3.7), it follows that sgn(HA(k)) =

sgn(β) sgn(N̄(k)), sgn(HB(k)) = sgn(N̄(k)), sgn(QA(k)) = −1, and sgn(QB(k)) =

sgn(β), where

N̄(k) = k2 − 2λaα + 1

λa

k +
λaα

2 + (βλb + α)

λa

. (B.11)

Case 1. N̄(k) does not have two distinct real roots.

1.1) β < 0: It follows that

∆22 =

(
2λaα + 1

λa

)2

− 4
λaα

2 + (βλb + α)

λa

=
1− 4βλaλb

λ2
a

> 0. (B.12)

which contradicts the condition that N(k) does not have two distinct real roots.

So β < 0 is impossible in this case.
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B.2 Proof of Theorem 3.1

Figure B.6: S22: N(k) does not have two distinct real roots, the switched system
is unstabilizable.

1.2) β > 0: With reference to Fig. B.6, the switched system is unstabilizable.

Case 2. N̄(k) has two distinct real roots and det(P2) < 0.

In this case ,we have β > 0. Then both HA(k) and HB(k) are negative when

k ∈ (k2, k1). Based on Lemma 3, the switched system is regionally stabilizable as

long as k1 and k2 exist. In addition, it can be shown that the existence of k1 and

k2 implies α < k2 < k1 in S22 as follows.

k2 − α =
2λaα+1

λa
−√∆22

2
− α =

1−√1− 4βλaλb

2λa

> 0 (B.13)

Hence, it can be concluded that α < k2 < k1 is necessary and sufficient for the

stabilizability in Case 2.

Case 3. N̄(k) has two distinct real roots and det(P2) > 0.

β < 0, Similarly, we have the BCSS as (3.37) with reference to Fig. B.7.

Proof of Sij = S23

A2 =

[
λa 0

−1 λa

]
, B3 =

ω

β

[
βξ − α 1

−(α2 + β2) βξ + α

]
, (B.14)

where µ > 0, ω < 0, and ξ =
µ
ω < 0. So we have sgn(HA(k)) = sgn(β) sgn(N̄(k)),

sgn(HB(k)) = sgn(N̄(k)), sgn(QA(k)) = −1, and sgn(QB(k)) = sgn(β), where

N̄(k) = k2 − 2λaα+1
λa

k + λa(α2+β2)−(βξ−α)
λa

.
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B.2 Proof of Theorem 3.1

Figure B.7: S22: det(P2) > 0, the best case trajectory rotates around the origin
clockwise.

Case 1. N̄(k) does not have two distinct real roots.

1.1) β < 0. HA(k) is negative and HB(k) is positive for all regions, then ΣB

is the BCSS for all regions. On the boundary, which is the eigenvector of σA, the

BCSS is still ΣB. Therefore, ΣB is the BCSS for the whole phase plane and it is

trivial to show that the switched system is unstabilizable.

1.2) β > 0. Both HA(k) and HB(k) are positive, since the only boundary is

the real eigenvector of A. The trajectory alone A goes to its real eigenvector and

can not go out of this region. Hence, ΣB is the BCSS for the whole phase plane

and the switched system is unstabilizable.

Case 2. N̄(k) has two distinct real roots and det(P3) < 0.

It follows from det(P3) = −β < 0 that β > 0. Both HA(k) and HB(k) are

negative when k ∈ (k2, k1), thus the switched system is regionally stabilizable

as long as k2 < k1 exists. It proves the first inequality of Theorem 3.1 because

M = +∞ and L = −∞ for S23 with reference to (3.21).

Case 3. N̄(k) has two distinct real roots and det(P3) > 0.

In this case, β < 0. Similarly, the BCSS is the same as (3.37) with reference

to Fig. B.8.

Proof of Sij = S33

A3 =

[
µa 1

−1 µa

]
, B3 =

ωb

β

[
βξ − α 1

−(α2 + β2) βξ + α

]
,

where µa, µb > 0, ωb < 0 and ξ =
µb
ωb

< 0. Similarly, we have sgn(HA(k)) =

128



B.2 Proof of Theorem 3.1

Figure B.8: S23: det(P3) > 0, the best case trajectory rotates around the origin
clockwise.

sgn(N(k)), sgn(HB(k)) = sgn(β) sgn(N(k)), sgn(QA(k)) = −1, and sgn(QB(k)) =

sgn(β), where

N(k) = ωb

β
{[(βξ + α)− µa]k

2 + [1 + 2µaα− (α2 + β2)]k + (βξ − α)− µa(α
2 + β2)}

, p2k
2 + p1k + p0.

(B.15)

Case 1. N(k) does not have two distinct real roots.

1.1) β < 0. One of HA(k) and HB(k) is negative, and the other one is positive

for all k. The BCSS is one of the subsystems for the whole phase plane. So the

switched system is unstabilizable.

1.2) β > 0 and p2 > 0. Both HA(k) and HB(k) are positive for the whole

phase plane, then switched system is unstabilizable.

1.3) β > 0 and p2 < 0. With reference to (B.15), we have p2 = ωb

β
[(βξ+α)−µa]

and p0 = ωb

β
[(βξ − α) − µa(α

2 + β2)]. If p2 < 0, it follows from β > 0, µa < 0

and ξ < 0 that α > 0, which leads to p0 > 0. This contradicts the condition that

N(k) does not have two distinct real roots. So this case will not happen.

1.4) β > 0 and p2 = 0. The case p2 = 0 has been excluded by Assumption

3.4.

Case 2. N(k) has two distinct real roots and det(P3) < 0.

Note that the sign of N(k) is positive when k ∈ (k2, k1) because p2 (the lead-

ing coefficient of N(k)) was assumed to be negative by Assumption 3.5. It follows

from det(P3) = −β < 0 that β > 0. Both HA(k) and HB(k) are negative when

129



B.2 Proof of Theorem 3.1

Figure B.9: S33: det(P3) > 0, the best case trajectory rotates around the origin
clockwise.

k ∈ (k2, k1), thus the switched system is regionally stabilizable as long as the two

roots k2 < k1 exists, which is equivalent to the first inequality of Theorem 3.1.

Case 3. N(k) has two distinct real roots and det(P3) > 0.

In this case, β < 0. With reference to Fig. B.9, the BCSS can be derived that

is the same as (3.37).

The Theorem 3.1 is proven.
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Appendix C

Appendix of Chapter 4

C.1 Proof of Lemma 4.1

The integral λ1(T ) of (4.18) can be rewritten as

∫ T

0

Z{σT (t)}k1(t)σT (t)dt =

∫ T

0

{σT (t)+
∞∑

m=1

zm(σT (t−mP)−σT (t+mP))}k1(t)σT (t)dt,

(C.1)

for all σT in the domain of Z and for all T ≥ 0. When the switching gain is actually

constant, (C.1) should also be non-negative. This implies, by an application of

the Parseval theorem to the left hand side of (C.1), that Re [Z(jω)] ≥ 0. For a

periodic switching gain, the integral on the right hand side of (C.1) with the first

summation can be simplified by a change of variable. To this end, let t+mP = τ .

Then∫ T

0

σT (t + mP)k1(t)σT (t) dt =

∫ T+mP

mP

σT (τ)k1(τ −mP)σT (τ −mP) dτ. (C.2)

Since σT (τ) = 0 for τ < 0, and for τ > T , and k1(τ −mP) = k1(τ), (C.2) can

be reduced to a simpler form
∫ T

0

σT (t + mP)k1(t)σT (t)dt =

∫ T

0

σT (τ)k1(τ)σT (τ −mP)dτ. (C.3)

Combining (C.3) and the integral with the first summation in (C.1), we ob-

serve that the resulting integrands with the coefficient zm cancel out. Therefore,
∫ T

0

Z{σT (t)}k1(t)σT (t)dt =

∫ T

0

σ2
T (t)k1(t)dt, (C.4)
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C.2 Proof of Lemma 4.2

which is non-negative for all T ≥ 0 by virtue of the assumption on k1(·). The

lemma is proven.

C.2 Proof of Lemma 4.2

The integral of λ2(T ) of (4.18) can be rewritten as

∫ T

0

{σT (t) +
∞∑

m=1

(zm σT (t−mP) + z′m σT (t + mP))}k1(t)ϕ(σT (t))dt (C.5)

for all σT in the domain of Z and for all T ≥ 0.

Now we establish a couple of inequalities based on the property (4.7) of mono-

tone functions. We have
∫ T

0

k1(t){σT (t)−σT (t−mP)}ϕ(σT (t))dt ≥
∫ T

0

k1(t)Φ(σT (t))dt−
∫ T

0

k1(t)Φ(σT (t−mP))dt,

(C.6)

where Φ(σ) =
∫ σ

0
ϕ(τ) dτ.

The second integral on the right hand side of (C.6) can be simplified by a

change of variable. To this end, let (t−mP) = τ . Then, invoking the periodicity

of k1(t) and the properties of the integrands with truncation, it can be shown

that ∫ T

0

k1(t)Φ(σT (t−mP))dt =

∫ T

0

k1(t)Φ(σT (t))dt. (C.7)

Therefore, from (C.6) and (C.7), we get the inequality

∫ T

0

k1(t) σT (t−mP)ϕ(σT (t))dt ≤
∫ T

0

k1(t)σT (t)ϕ(σT (t)) dt. (C.8)

On similar lines, we can establish the following inequality

∫ T

0

k1(t) σT (t + mP)ϕ(σT (t))dt ≤
∫ T

0

k1(t)σT (t)ϕ(σT (t)) dt. (C.9)

Combining (C.8) and (C.9), and assuming an interchange of summation and

integration to be valid, we conclude that

∫ T

0

{
∞∑

m=1

(zm σT (t−mP)+z′m σT (t+mP))}k1(t)ϕ(σT (t))dt ≤
∫ T

0

σT (t)k1(t)ϕ(σT (t))dt,

(C.10)
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C.3 Proof of Lemma 4.4

if (i) zm < 0, z′m < 0, m = 1, 2, · · · , and (ii)
∑∞

m=1 (| zm | + | z′m |) < 1, from

which we conclude λ2(T ) of (4.18) is nonnegative. Lemma 4.2 is proven.

For the proof of Corollary 4.4, note that when ϕ(·) is odd, Φ(·) is even. We

have
∫ T

0

k1(t)σT (t)ϕ(σT (t))dt +

∫ T

0

k1(t)σT (t−mP)ϕ(σT (t))dt =

∫ T

0

k1(t)σT (t)ϕ(σT (t))dt −
∫ T

0

k1(t)(−σT (t−mP))ϕ(σT (t))dt ≥
∫ T

0

k1(t)Φ(σT (t))dt −
∫ T

0

k1(t)Φ(−σT (t−mP))dt ≥ 0. (C.11)

Therefore
∣∣∣∣
∫ T

0

k1(t)σT (t−mP)ϕ(σT (t))dt

∣∣∣∣ ≤
∫ T

0

k1(t)σT (t)ϕ(σT (t))dt.

from which, by repeating the remaining part of the proof of Lemma 4.2, Corollary

4.4 follows.

C.3 Proof of Lemma 4.4

For ϕ(·) ∈ Mq, the defining property is (4.12). In the manner of the proof of

Lemma 2, we can establish a couple of inequalities based on (4.12). We have

∫ T

0

k1(t){σT (t)− σT (t−mP)}ϕ(σT (t))dt ≥
∫ T

0

k1(t)Φ(σT (t))dt −
∫ T

0

k1(t)Φ(σT (t−mP))dt+

∫ T

0

k1(t){q11σ
2
T (t−mP)+q12σT (t−mP)ϕ(σT (t−mP))+

q22ϕ
2(σT (t−mP))− q11σ

2
T (t) − q12σT (t)ϕ(σT (t)) − q22ϕ

2(σT (t))}dt. (C.12)

In the right hand side of (C.12), by changing the variable of integration from

(t−mP) to τ , using the periodicity property of k(t) and the truncation proper-

ties of the other integrands (and making the necessary changes in the limits of

integration), it can shown that the third integral vanishes in the same manner as

the first two integrals. As a consequence, (C.8) is valid in this case, too. The rest

of the proof of Lemma 4.2 can be applied to complete the proof of the present

lemma.
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C.3 Proof of Lemma 4.4

Corollary 4.5 for monotone Mq can be proved in the same manner as Corollary

4.4.

On the other hand when ϕ(·) ∈ Mb, the following steps which are a slight

modification of the proof of Lemma 4.4 are required.

In the place of (C.12), we now have

∫ T

0
k1(t){σT (t)− σT (t−mP)}ϕ(σT (t))dt ≥∫ T

0
k1(t)Φ(σT (t))dt− ∫ T

0
k1(t)Φ(σT (t−mP))dt

− ∫ T

0
k1(t){q11σ

2
T (t−mP) + q12σT (t−mP)ϕ(σT (t−mP))

+q22ϕ
2(σT (t−mP)) + q11σ

2
T (t) + q12σT (t)ϕ(σT (t)) + q22ϕ

2(σT (t))}dt.

(C.13)

In the right hand side of (C.13), by changing the variable of integration from

(t − mP) to τ , it can be shown, as before, that the first two integrals vanish.

Therefore, we now have
∫ T

0
k1(t){σT (t)− σT (t−mP)}ϕ(σT (t))dt ≥

− ∫ T

0
k1(t){q11σ

2
T (t−mP) + q12σT (t−mP)ϕ(σT (t−mP))

+q22ϕ
2(σT (t−mP)) + q11σ

2
T (t) + q12σT (t)ϕ(σT (t)) + q22ϕ

2(σT (t))}dt,

(C.14)

which, using the characteristic quantities (4.15) of ϕ(·), can be reduced to the

following inequality

∫ T

0

k1(t){σT (t)− σT (t−mP)}ϕ(σT (t))dt ≥ −2

∫ T

0

k1(t)ν
′
sϕ(σT (t))σT (t)dt.

(C.15)

where ν ′s = ( q11

ζmin
+ q22ζmax + q12). We conclude that

∫ T

0

k1(t)σT (t−mP)ϕ(σT (t))dt ≤ (1 + 2ν ′s)
∫ T

0

k1(t)ϕ(σT (t))σT (t) dt. (C.16)

A similar inequality is valid for
∫ T

0
σT (t + mP)ϕ(σT (t))dt. Combining these

two, we get

∫ T

0

{
∞∑

m=1

(zmσT (t−mP)+z′mσT (t+mP))}k1(t)ϕ(σT (t))dt ≤
∫ T

0

σT (t)k1(t)ϕ(σT (t))dt,

(C.17)

if (i) zm < 0, z′m < 0, m = 1, 2, · · · , and (ii)
∑∞

m=1 (| zm | + | z′m |) < 1
(1+2νs)

.
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