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ABSTRACT

A common technique to perform distributed (or parallel) rendering of a single frame is 

to break up a 3D scene and share the rendering load across multiple machines (called 

the rendering agents). The rendered sub-images from each machine are then 

composited on a single machine (called the compositor) and displayed on the screen 

(or saved to a file). The end result is an overall improvement in per frame render 

times for large and complex 3D models. However, this technique suffers from 2 major 

performance bottlenecks. Firstly, communication between the rendering agents and 

the compositor is heavy since depth information is also transferred with the rendered 

sub-images for every frame. Secondly, composition of all the sub-images from every 

rendering agent is an expensive process as every pixel has to be subjected to depth 

comparison.

In this thesis, we propose a mesh partitioning algorithm (called Ellipsoidal Mesh 

Partition) and a mesh distribution algorithm (called Context Aware Mesh Partition) 

that eliminate the need for depth information for the compositing of the rendered sub- 

images. This reduces the compositing complexity. The key to both algorithms, is to 

break up a 3D mesh based on its unique features into smaller sub-meshes. If each sub-

mesh is rendered by  exactly one unique rendering agent, the composition of the 

rendered results will be equivalent to "piecing together a jigsaw puzzle". In other 

words, the compositing cost  using our distributed rendering algorithm is reduced 

tremendously. Despite a minor (negligible) degradation in the final composited image, 

our results show an overall 40% performance improvement. Thus, we recommend this 

solution for use in distributed polygonal rendering applications and systems.
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CHAPTER 1

1 |  INTRODUCTION

Physically based Rendering is the process of generating a 2D image from the abstract 

description of a 3D scene. The process of constructing a 2D image requires several 

phases such as modeling, setting materials and textures, placing the virtual light 

sources and rendering. Rendering algorithms take a definition of geometry, materials, 

textures, light sources and virtual camera as input and produce an image (or a 

sequence of images in the case of animations) as output. High-quality  photorealistic 

rendering of complex scenes is one of the key goals of computer graphics. 

Unfortunately, this process is computationally intensive and requires a lot of time to 

be done when the rendering process requires graphics shaders such as Global 

Illumination[33, 70, 71]. The problem further escalates when multiple of these 

shaders are used in a single rendering. Thus, depending on the rendering method and 

the scene characteristics, the generation of a single high quality image may take 

several hours (or even days). Therefore, the rendering phase is often considered to be 

a bottleneck in photorealistic projects in which one image may need some hours of 

rendering in a modern workstation.
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This thesis introduces our distributed rendering solution, the Ellipsoidal Collaborative 

Visualization Environment (ECOVE), to address the problems stated in following 

sections. ECOVE provides an implementation of distributed storage and computing to 

the problem of large-scale visualization. It shows how to distribute 3D mesh model 

for effective visualization throughout the devices in the network and form a 

communication framework to assemble the model at the required devices. In an effort 

to reduce the reliance on the client-server communication model, ECOVE employs 

P2P to discover computing resources for rendering of portions of a 3D mesh model or 

scene, and manage the rendering process. The following sections provide some 

background material for the thesis contributions described in Chapters 2 and 3.
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1.1 |  DISTRIBUTED RENDERING

A common method to reduce rendering time is to reduce the scene complexity but this 

might compromise the quality  of the final animation scene. Therefore, animation 

studios often have to find a balance between the quality of the scene and the 

production time. In recent years, animation studios were able to render highly 

complex 3D scenes using a cluster of high performance networked computers, also 

known as a render farm. The rendering task is distributed across all the computers in 

the network and thus, this method of rendering is called Distributed Rendering.

The basic task in polygon rendering is to calculate the effect of each primitive on each 

pixel and can be viewed as a problem of sorting primitives from their world 

coordinates to the screen [28]. To date, most distributed renderers (e.g., [66]) have 

been software-only (with the exception of specialized systems such as the PixelFlow 

Machine [58]) and can be categorized into three classes, sort-first, sort-middle, and 

sort-last, depending on whether the sorting process takes place during the geometric 

transformation phase, between the geometric transformation phase and the 

rasterization phase, or after the rasterization phase [59].

In sort-first [16] (see Figure 1.1) and sort-middle [66], the geometric transformation 

and rasterization of a polygon may be performed by different nodes, depending on the 

specific work assignment of each frame, possibly requiring the redistribution of a 

significant number of primitives. This redistribution is a fundamental problem in our 

targeted environment. First, this requires either recomputing the geometric 

transformation of primitives that must be distributed or accessing information that 

may be hidden inside a hardware graphics pipeline. Second, the bandwidth 
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requirement for these two classes directly depends on the complexity of the scene that 

is being rendered, violating one of our basic goals. Finally, because the mapping of 

primitives to screen coordinates change depending on the viewpoint, the amount of 

data that must be transmitted can change very unpredictably  from frame to frame. For 

example, in an assessment of the practicality of sort-first, Mueller gives 

communication measurements for three different scenes where the system must 

redistribute anywhere from 5% to 100% of the scene primitives [16]. It seems 

extremely difficult to achieve predictable real-time response in the face of such large 

variability in bandwidth requirement.

Figure 1.1: Shows the concept of sort-first distributed rendering of a 
scene by splitting the frame into tiles and rendering each tile in parallel 
on separate rendering nodes.
Image courtesy of http://www.equalizergraphics.com/.

Sort-last [59] (see Figure 1.2) corresponds to a data partitioning, where each node is 

assigned a subset  of the polygons in the scene, without any restrictions on the position 

of the polygons. For each frame (once every node has rendered the image 

corresponding to its assigned polygons), the pixels must be sorted, typically using Z-

buffering [36]. While compatible with our environment, sort-last is less than ideal for 

two reasons. First, because renderers generate pixels without regard to visibility 
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ordering across different nodes, they must send the depth information (Z-buffer) along 

with the pixel values for compositing of the final image. This approximately doubles 

the required bandwidth. Second, primitives are typically  assigned to renderers without 

regard to where they map to in screen space. In fact, sort-last renderers often 

distribute primitives randomly to load balance. This means that each renderer must 

typically send the entire image for each frame. This limits the scalability of sort-last 

as the required bandwidth is directly proportional to the number of nodes (P ! image-

size) instead of to the image size.

Figure 1.2: Shows the concept of sort-last distributed rendering of a 
scene by partitioning the scene into groups of polygons and rendering 
each group in parallel on separate rendering nodes.
Image courtesy of http://www.equalizergraphics.com/.

On one hand, a large-scale distributed 3D rendering environment needs to make sure 

that data replication is at a minimum across the network (as data transmission and 

storage can be expensive). On the other hand, every  rendering node needs to have 

knowledge of the structural information of the 3D mesh model. This is especially 
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important to graphics shaders (such as Global Illumination) that are needed in 

photorealistic rendering. Most often, these shaders only need an approximate 

description of the structure of the geometry. While sort-last ensures the former 

criterion, it  does not however, solve the latter problem. By distributing polygons 

randomly, structural information of the geometry is not known to the rendering nodes. 

Thus, it is not possible to implement graphic shaders effectively to perform 

distributed rendering with current implementation of sort-last algorithm.
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1.2 |  MESH SIMPLIFICATION

In [29], we presented a method for simplification of arbitrary  3D meshes. This 

technique has been adopted for mesh partitioning as discussed in Chapter 2 of this 

thesis. The work presented in this paper was motivated in two ways. We first 

developed a prototype system to perform distributed rendering (see Chapter 3) using 

Sort-Last technique [59]. The most difficult part of the task was to reduce the 

transmission times of 3D mesh models to the remote rendering agents. This 

eventually led us to exploring techniques to simplify the mesh before transmitting it to 

the rendering agents while preserving key  geometric features as much as possible. 

Based on the lessons learnt in this exercise, we built a novel technique to quantize the 

orientations of the polygons and identify regions of connected polygons that are 

similarly  oriented to each other. The curvature of the resulting regions is considerably 

lesser than the entire mesh. As such, flattening each region produces a simplified 

mesh while preserving key features of the mesh.

The technique is described to contain three stages. Firstly, a code-book that contains 

the unique directional vectors is generated using our Ellipsoidal Schema. Secondly, 

the polygons of the mesh are grouped into patches: based on the code-vectors and the 

locality information of the polygons. And the resulting patch is approximately a flat 

plane with its corresponding code-vector as its normal. In the last stage, our mesh 

simplification technique re-triangulates all patches, in which the algorithm only 

considers the vertices on the boundaries of the corresponding patches.

As discussed in Section 2.2.1.3, this technique will help to produce pseudo polygons 

(or fragment masks) that will be used by  every rendering agent to mask out the 
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regions of overlap. Thus producing sub-images that do not overlap with other sub-

images rendered by other rendering agents.
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1.3 |  COMMUNICATION FRAMEWORK

A pure P2P system does not require the existence of any centralized servers or 

resources to operate. In reality however, the data would usually  reside on a data 

server. With these considerations in mind, ECOVE is designed to be a system where 

peers will only contact the data server to download a portion of the model (and the 

simplified mesh fragments). Once the peers, each has a portion of the scene, they can 

redistribute the dispersed model amongst themselves. In other words, peers of 

ECOVE need not rely on any centralized servers to distribute and manage a 3D model 

during the rendering phase. This is achieved by  different peers offering to manage 

different portions of the model (i.e. sub-meshes) and thus leading to the concept of a 

distributed workload management. This means that the current day  practices of using 

a centralized job queue to which all the clients would subscribe to, does not  fit  the 

ECOVE model too well. Instead, the workload (i.e. the sub-meshes) is dynamically 

distributed across the peers of the system and each peer will advertise the sub-meshes 

that they are managing for other peers to access.

ECOVE includes the Ellipsoidal Mesh Partitioning (EMP) technique to partition a 3D 

mesh and the Context-Aware Mesh Partitioning (CAMP) technique to manage the 

workload distribution. Unlike traditional mesh partitioning techniques where the 

scene is chopped up into equal number of polygons, EMP subdivides the mesh based 

on orientation and locality properties of the polygons of a scene. CAMP, then, 

distributes the partitioned mesh to the available rendering nodes in the system. As 

discussed in Chapter 3, this latter technique is coupled with P2P technology to 

collaboratively manage the rendering process.
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1.4 |  CONTRIBUTIONS

The contributions of this thesis are organized into Chapters 2 and 3, and they are 

namely: 

Ellipsoidal Mesh Partitioning

1. It introduces the geometric model called Gaea-Sphere whose face normals are 

deterministic. The resolution of a Gaea-Sphere can be controlled parametrically. 

See Chapter 2 for more details.

2. It is a technique to partition a 3D mesh model based on orientation and locality  of 

the polygons. It uses two schemas that are based on the polygon normals of a 

Gaea-Sphere, to sample the orientations of a 3D mesh model. The polygons are 

then grouped based on their connectivity to their neighbors and their orientation. 

The resulting groups of polygons are a set of connected polygons with similar 

orientations.

3. It provides both simplified and extended techniques for controlling the 

distribution of polygons during the fragmentation of the mesh. The end result is 

for the polygons to be distributed as evenly  as possible for distributed rendering 

purposes.

4. It presents a method to automatically refine the fragmentation results to remove 

fragments that have low concentrations of polygons. Based on a set of user-

specified criteria, the method reclassifies the polygons of identified fragments to 

their neighboring fragments.
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Collaborative Rendering

5. It provides a technique to eliminate Z-buffer during transmission of the rendered 

sub-images from each rendering agent and during the composition of the sub-

images. It has been demonstrated that this technique provides substantial 

performance gain.

6. Using our Context Aware Mesh Partitioning algorithm, it shows how a 3D mesh 

model can be partitioned and distributed amongst a network of peers. The 

partitioning of the mesh can be controlled to even out the number of polygons 

rendered on each peer.

7. It demonstrates how P2P technologies can be used to discover and setup a 

network of devices to render a 3D mesh model collaboratively. The task of 

monitoring for peers that drop  out of the network is distributed amongst the peers 

themselves.
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1.5 |  ORGANIZATION OF THESIS

The rest of this thesis is organized into three main chapters. Our Ellipsoidal Mesh 

Partitioning technique is discussed in Chapter 2. Here some of our key contributions 

to the field of Mesh Partitioning are highlighted and how they can be used for 

Collaborative Visualization. Chapter 3 extends these contributions by describing in 

detail the CAMP algorithm of the ECOVE system. The chapter also shows the 

parametrization of the rendering pipeline and calculates the theoretical performance 

gains for ECOVE over classical methods. Results of the experiments conducted on an 

implementation of the ECOVE system are discussed in Chapter 4, “Implementation 

and Results”. Finally in Chapter 5, we conclude the thesis by suggesting possible 

future work to be done based on this thesis.
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CHAPTER 2

2 |  ELLIPSOIDAL MESH PARTITIONING 

Mesh partitioning is motivated by  the fact that domain decomposition provides a 

natural route to parallelism. An automatic mesh decomposer should distribute the 

mesh across the individual processors so that the computational load is evenly 

balanced and the amount of inter-processor communication is minimized. However, 

numerical experience [74] has shown that several other issues, such as the sub-domain 

shape and connectivity, in addition to load balancing and communication costs, need 

to be addressed. A considerable attention [6, 7, 13, 15, 26, 32, 48, 74] has been 

focused on developing suitable techniques to solve the mesh partitioning problem and 

several powerful methods have been devised. The greedy algorithm [15, 52] is based 

on a successive expansion of a sub-domain, initially formed by one appropriately 

chosen element, until it comprises a sufficiently large number of elements. The 

expansion is usually driven by neighborhood search schemes using the depth-first or 

breadth-first search. The basic disadvantage of this very fast technique resides in the 

fact that the final partitioning is often very  far from the “optimal” one. However, the 

speed makes this technique very  suitable for an initial decomposition subjected to 

further optimization, based on, for example the relative gain concept [14] or simulated 

annealing [62]. The recursive bisection methods [74, 62] utilize the spatial 
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distribution of a mesh. While the coordinate recursive bisection (Cartesian, polar, or 

spherical) exploits only the dimensional properties of the mesh with respect to a given 

coordinate system, the inertial recursive bisection accounts for principal inertial 

properties of the mesh which are invariant with respect to the coordinate system. The 

spectral recursive bisection [32, 62] is based on the finding that the second largest 

eigenvalue of the Laplacian matrix of an undirected graph associated with a mesh 

provides a good measure of the connectivity of the mesh and that the components of 

the corresponding eigenvector can be conveniently used for the mesh bisection. 

Although this approach provides decomposition of a high quality, computational 

complexity makes its use problematic when large meshes are under consideration. 

This deficiency was partially  eliminated by a multilevel implementation of this 

technique [62].

However, we realized that the partitioned meshes of these techniques will not be ideal 

for the distributed rendering environment discussed in this thesis. A rendering cycle 

can consist of several graphical shaders such as Ambient Occlusion [47] and Mesh 

Deformation [43, 45]. These shaders require some or partial knowledge of the 

polygons in the other partitions. If each partition is distributed to a different peer, the 

rendering cycle will be burdened with the amount of communication that needs to 

take place between peers for each render of a frame. Thus, it is necessary for each 

peer to have all the necessary information about a scene to render a specific partition. 

Once the rendering cycle begins, there should be minimal communication between 

the peers to achieve a final rendered image. However, the partitioned meshes from the 

techniques discussed in the previous paragraphs, would not satisfy this criterion as the 

mesh partitions do not provide any information about the rest of the mesh. Thus, to 
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address this problem for distributed rendering, we have identified the following 

considerations that our mesh partitioning technique should exhibit:

1. View dependency

A view dependent partition consists of polygons orientated towards a general 

direction. This thus allows a partition to be approximated as a simple, flat plane. 

When a partition is distributed to a peer it will also receive the approximated 

representations of the other partitions. This partial information, albeit an 

approximated one, is useful for several graphical shaders.

2. Non-overlapping partitions

Taking into consideration the cost of storage and distribution of the polygons 

across the network, each partition should observe distinct separation of regions. 

That is, the partitions should not overlap  with each other. By eliminating polygon 

redundancy, each polygon is ensured to be rendered only  once during a rendering 

cycle.

3. Geometric feature preservation

For pre-processing tasks such as Mesh Simplification [31, 38], the features of a 

mesh need to be preserved as much as possible while the polygon count of the 

mesh is reduced. To adhere to this criterion, the mesh should be partitioned along 

major geometric features. This way, the final re-constructed 3D mesh will not lose 

its general geometric structure.

Adhering to these considerations, we present in this thesis our Ellipsoidal Mesh 

Partitioning technique. As depicted in Figure 2.1, the technique partitions a mesh into 
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sub-meshes via a series of processes called Code-Book Generation (see Section 2.2 on 

Code-Book Generation) and Polygon Grouping (see Section 2.1 on Polygon 

Grouping). The former process generates a code-book of orientations that will be used 

to quantize the 3D mesh’s polygon orientations in the Polygon Grouping process. The 

latter process further breaks down partitions by grouping polygons that are in the 

same partition and are adjacent to each other.

Figure 2.1: Shows the overall process of the Ellipsoidal Mesh 
Partitioning technique. The process starts from the top with a 3D mesh 
as input to the Code-book Generation process. Based on the intrinsic 
properties of the 3D mesh and the Ellipsoidal Schema, a code-book is 
generated and passed to the Polygon Grouping process. This process 
then breaks up the input 3D data into sub-meshes.

Generate 
Code-Book

Code-Book

Polygon 
Grouping

3D Mesh Model

Fragments / Groups of Polygons

Ellipsoidal 
Schemas
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Note that, although the Code-Book Generation process is performed before the 

Polygon Grouping process, the next section is dedicated to discussing the latter 

process as it will build the base for understanding what is required of the former 

process.

28



2.1 |  POLYGON GROUPING

The main aim of the Polygon Grouping process is to partition a mesh into groups of 

polygons with similar attributes. Adhering to the considerations outlined in the 

previous section, this thesis will focus on the Orientation and Locality  attributes of a 

polygon. By grouping polygons with similar orientations (i.e. polygons facing in the 

same general direction), we can satisfy the View-Dependency consideration. By 

considering the locality of each polygon, these groups can be broken down further by 

clustering polygons that have connected edges or vertices. The resulting groups of 

polygons will be non-overlapping sub-meshes1  that are partitioned along critical2 

geometric features and each will lie on a single flat plane (see Figure 2.2).

Figure 2.2: Shows the 3D mesh model of a bunny as it goes through 
the mesh partitioning process, Polygon Grouping. In (b), the mesh has 
been partitioned and each partition is represented in different colors. 
(c) highlights 3 sub-meshes (2 red regions and 1 green region), each of 
which lie on a single flat plane.

       (a)            (b)   (c)
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1 The difference between a sub-mesh and a group of polygons is that a sub-mesh must contain polygons 
that share at least one edge with another polygon from the same group. Whereas a group of polygons 
need not adhere to this criteria.

2 The criticalness of a geometric feature depends on the curvature of the geometry.



The following two sub-sections will cover the techniques of partitioning a mesh using 

the Orientation (see Section 2.1.1) and Locality (see Section 2.1.2) attributes 

respectively. In the sub-section 2.1.1, we will employ the concept of Voronoi 

Diagrams to explain how the Orientation attribute will work as perceived.

2.1.1 |  GROUPING USING THE ORIENTATION ATTRIBUTE

Without  loss of generality, suppose that a set of sites is given in the Euclidean plane 

(see Figure 2.3). The number of sites is assumed to be two or more. Given this site 

set, the problem is to assign every  point in the plane to the closest member in the site 

set. As a result, the set of points assigned to each member in the site set forms its 

region. These regions are mutually exclusive (i.e. non-overlapping) and adjacent 

regions have borders that are equidistant from the two sites corresponding to the two 

regions. This collection of regions forms a tessellation. This tessellation is known as a 

Voronoi Diagram, and the regions constituting the Voronoi Diagram are called 

Voronoi Regions.

Figure 2.3: A Voronoi diagram divides a set of points (black dots) into 

Points

Sites

Voronoi
Region
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a region around each site (yellow dots) such that the borders of 
adjacent regions are equidistance from their corresponding sites.

Suppose each site is a unit vector (in 3-dimensional space) that radiates from the 

center of a unit sphere. Then the problem statement can be rewritten as assigning 

every  point on the sphere’s surface to the closest member in the site set. Points on the 

sphere have unit normal vectors that  radiate from the center of the sphere (just like 

each unit vectors of the site set). Since these normals are orientated about the center 

of sphere, they represent the orientation of their respective points. Hence, the problem 

statement can be re-interpreted as assigning every point  on the sphere’s surface to a 

member in the site set that has the closest orientation. The metric to represent the 

distance between a point’s orientation (or the unit  normal vector) and a site vector can 

be stated as the dot product between the two vectors (see Equation 2.1).

where Ni is the unit normal vector of a point Pi on a unit sphere Psphere and Sj is a unit 

vector in the site set S.

Equation 2.1 calculates the angle of separation between a point’s normal vector and 

site vector. Hence, a point can be assigned to a site vector that yields the smallest 

angle of separation using Equation 2.1.

Consequently, we can define a Voronoi Region for the site vector as the region 

containing a set of points that yields the smallest angle of separation to that  site 

vector.

31



where VRj represents the Voronoi region (of the site vector Sj) containing all points 

(lying on the unit sphere Psphere) that  form the smallest angle of separation (dmin) with 

the site vector Sj.

A Voronoi Region, based on Equation 2.2, is a group of points that are orientated in 

the same direction as the site vector for the corresponding region (see Figure 2.4).

Figure 2.4: Shows a group of points on a unit sphere that  are grouped 
to a Voronoi Region corresponding to the site vector Sj. That is, there 
exists a site vector S that can represent the general direction of the 
highlighted points in the figure.

For the purposes of this thesis, we have extended the problem space from a unit 

sphere to a complex 3D mesh (see Figure 2.5). If the 3D mesh is positioned at  the 

same origin as the unit sphere (of the previous problem space), then we can represent 

each polygon as a point (corresponding to the center of the polygon) whose unit 

S
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normal vector radiates from the origin. Thus, Equation 2.1 and 2.2 will still hold true 

for the set of polygons in a 3D mesh.

Figure 2.5: Shows a 3D mesh model positioned at the same origin as 
the unit sphere in Figure 2.4. And just like the unit sphere, the 
highlighted points are grouped to a Voronoi region that corresponds to 
the vector S.

Each polygon of the 3D mesh is assigned exactly  to only one Voronoi Region. The 

resulting Voronoi Diagram is a set of Voronoi Regions, each containing a set of 

polygons that are orientated in the direction of their corresponding site vectors. 

However, at this stage, the Voronoi Regions sought to cluster the polygons based on 

their orientations only. Thus, in Euclidean space, the polygons of the same Voronoi 

Region can be spatially disjoint as shown in Figure 2.5. The sub-section 2.1.2 will 

discuss on why this discontinuity  amongst the polygons in a group is not desirable 

and how it can be overcome.

Note that the selection of the site vectors is crucial for this stage of the Polygon 

Grouping process as it will determine the distribution of the polygons across the 

S
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Voronoi Diagram and the number of Voronoi Regions created. This will be covered in 

the Section 2.2: Code-Book Generation.

2.1.2 |  GROUPING USING THE LOCALITY ATTRIBUTE

In the previous sub-section, we have seen how polygons of a 3D mesh can be grouped 

based on the orientation attribute of a 3D polygon. The resulting groups will contain 

polygons that have similar orientations. However, these polygons can be spatially 

disjoint and may not lie on a single flat plane (see Figure 2.6). Thus, these groups will 

be further broken down by separating the disjoint groups of polygons. The resulting 

sub-groups will be called “Fragments” for discussion purposes of this thesis.

Figure 2.6: Shows 3 fragments (2 red regions and 1 green region) of a 
3D mesh model. The red regions have the similar orientation but are 
disjoint. Thus, a fragment will be formed to represent each of the 
fragments.

By observation, the group  of polygons presented in Figure 2.6 can be broken down 

into 3 smaller groups (or fragments). Mathematically it is possible for us to employ 
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K-Means Clustering [3, 5, 12] to form these groups. However, an initial number of 

groups (i.e. the K in the K-Means Clustering) needs to be provided for the clustering 

to begin. Since there is no way  to know the number of groups initially, we abandoned 

the idea of using this technique, and looked at the connectivity information of the 

polygons and their vertices instead. Thus, we begin by defining a Fragment. 

A fragment is a set of polygons, made up of vertices such that every 

vertex is connected to another directly or indirectly.

In other words, every vertex in a fragment connects to another vertex in the same 

fragment by tracing along the edges of the polygons of the fragment. Given the 

following set of vertices, the path of connectivity  between the vertices can be 

expressed as Ti,k  = { Vi, Vj, Vk } where Ti,k denotes the path from vertex Vi to Vk 

through Vj. In this arrangement, Vi does not have a direct link to Vk. However, Vj is 

linked to both Vi and Vk. Thus, Vi can reach Vk only  via Vj. If the cost of connectivity 

of Vi to Vj is denoted as 1 unit, the cost of the path Ti,k can be expressed as:

where Ti,j denotes the path between Vi and Vj, and Tj,k denotes the path between Vj and 

Vk. A generalization of equation 2.3a is given in equation 2.3b.

where m is the number of paths needed to reach vertex Vn+m from vertex Vn. To 

normalize the cost information, the sum of the costs of all the paths taken is divided 
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by the number of paths taken. In other words, the cost of connectivity does not depend 

on the number of paths taken and evaluates to 1 for vertices within a fragment. Since 

vertices from different fragments are never connected, m is 0 and thus, the cost of 

connectivity across fragments will always be !.

Based on this property, we can form fragments by iteratively looping through all the 

polygons (and their vertices) of a group (the result of the previous sub-section). In 

each iteration, a polygon is added to a fragment if any one of its vertices has a cost of 

1 when connecting to the other vertices in the fragment.

At the end of this stage of the Polygon Grouping process, we will have fragments 

with polygons that are orientated towards a general direction. Thus, a fragment can be 

represented as a single flat plane. For some sub-processes in the rendering pipeline 

(where accuracy of the geometry is not crucial), a fragment can be approximated to be 

an n-sided polygon, orientated towards the normal of the fragment.

2.1.3 |  POLYGON GROUPING ALGORITHM

Polygon grouping is a process that  groups connected polygons with similar 

orientations together. While this process is presented in two distinct sections (Section 

2.1.1 and 2.1.2) and thus suggesting two separate sub-processes, they can however, be 

implemented as a single process. The following shows the code listing for the 

polygon grouping algorithm for a given set of M polygons p and a set of S voronoi 

site vectors µ.
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Algorithm 2.1: Polygon Grouping

1 begin initialize M, p1, p2, ..., pM, S, µ1, µ2, ..., µS

2  for every pi that is not assigned to a fragment

3   create a new fragment fy

4   add pi to fragment fy

5   classify pi to site vector µj 

6   push neighbors of pi onto queue Q

7   pop next npk polygon from Q

8    classify npk to site vector µw

9    if µw is the same as µj then

10     add npk to fragment fy

11     add neighbors of npk to queue Q

12    end if

13   until Q is empty

14  next pi

15 end

Algorithm 2.1 starts by looping through all the polygons in set M. However not all 

polygons will be selected to proceed. Only polygons that are not already assigned to a 

fragment, will be allowed to proceed. The objective of each successive entry into the 

loop in line 2 of the code listing above, is to identify  all the polygons that are 

similarly  oriented and connected together directly or indirectly (see Equation 2.3). So 

when a polygon pi is allowed to proceed beyond line 2 of the code-listing, it will seed 

the creation of a new fragment fy (line 3). 
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The classify operation in line 5 (and in line 8) refers to the classification of a 

polygon’s orientation to a site vector. This requires a dot product (see Equation 2.1) 

between the polygon’s direction vector and all the site vectors of the set S to find for a 

closest match. As such, for a larger set of S site vectors, the complexity of this process 

should increase linearly  and thus, the complexity  involved for this part of the 

algorithm is O(S). Due to this cost, the classification result of a polygon is stored once 

it is subjected to the classify operation, thus ensuring that this cost is incurred only 

once per polygon.

To speed up the search for the closest  site vector in the classify operation, the 

hierarchical nature of the site vectors can be utilized. As will be discussed in Section 

2.2.1, every  set of site vectors used will have 6 distinct key site-vectors. The rest of 

the vectors will be uniquely grouped to one of these key  vectors. Therefore, the 

classify operation can be implemented in two passes. The first pass will be to 

determine with key site-vector that the polygon belongs to. Then in the second pass, a 

more refined search can be done within the list of site vectors corresponding to the 

key site vector found in the first pass. This implementation would speed up  the 

classify operation. However for discussion purposes in this thesis, we will assume that 

the classify operation is implemented as a single pass.

To find all the other similarly-oriented and connected polygons for the fragment fy, 

Algorithm 2.1 employs a queue to hold a list of polygons npk identified to be the 

neighbors of the polygon pi. As each polygon npk is popped off the queue, it will be 

classified to a site vector (in line 8), if not already classified. Then the algorithm 

determines if this polygon npk has a similar orientation classification as the polygon 
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pi. If so polygon npk is assigned to the fragment fy (that  also contains pi). 

Subsequently, neighbors of polygon npk are also added to the queue. At the end of 

each loop (in line 2) for polygon pi, all the polygons for a fragment fy would have 

been identified.

The loops in line 2 for pi and in line 7 for npk, will always skip to the polygon that  has 

not been already assigned to a fragment. As such, each polygon is subjected to the 

classify operation only once during the run of the algorithm. In other words, for each 

run of the loop for polygon pi, all the polygons for the fragment fy, are identified and 

these polygons will not be subjected to the classify operation again. Since the 

complexity for rest of the operations in comparison to the classify operation is 

negligible, the complexity  of Algorithm 2.1 is dependent on the classify operation for 

every  polygon in the set M. Also since the two loops in line 2 and line 7 are mutually 

exclusive (i.e. once a polygon is processed in one of the loops, it  is excluded from 

processing in the other loop), the algorithm is O(MS). That is the cost of the algorithm 

is directly dependent on the number of polygons and number of site vectors.

39



2.2 |  CODE-BOOK GENERATION

The Polygon Grouping process, as discussed in the previous section, consists of two 

stages. Based on a set of site vectors, the first stage groups polygons that have similar 

orientations to the sites vectors, into Voronoi Regions around each site vector. The 

second stage breaks down these groups into fragments that contain polygons that are 

connected to at least  one other polygon in the fragment by at least one vertex. These 

two stages have been covered in detail in the previous section, except for the selection 

of the unit vectors for the sites set. From here on, a set of site vectors will be referred 

to as a Code-Book and a site vector will be called a Code-Vector.

A code-book will determine the number of fragments produced and the distribution of 

the polygons throughout these fragments. If the number of fragments is too large, the 

performance of the rendering pipeline might be adversely affected. For example, the 

performance of Ambient Occlusion [47, 49] operation decreases with increasing 

number of polygons. Since we can use a fragment to approximate a group of polygons 

as one large polygon, the performance of the Ambient Occlusion calculation will only 

improve by decreasing the number of fragments. However, if the number of fragments 

is too small, approximation of a fragment to single flat plane might not be desirable 

(see Figure 2.7).
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Figure 2.7: Shows the cross section view of a set of polygons that are 
grouped together to form a fragment. This fragment, however, cannot 
be approximated into a single flat plane without a lot of loss in 
accuracy due to the curvature of the fragment.

Approximating the fragment, shown in Figure 2.7, as a single flat  plane will affect the 

accuracy  of the results of operations such as Mesh Deformation (that  depends on the 

accuracy  of geometric features of a 3D mesh). Thus, finding the balance between the 

number of fragments and the distribution of polygons for a given 3D mesh is essential 

to the rendering pipeline’s performance and quality of render.

To achieve this balance, the Code-Book Generation process needs to provide the 

flexibility to adjust the number of code-vectors and their distribution about the center 

of a unit sphere (for explanation of using a unit sphere, see Section 2.1.1: Grouping 

using the Orientation Attribute). The following three sub-sections are devoted to 

discussing the various schemas to generate a code-book that will conform to the 

orientations of the polygons of a 3D mesh model. The first two sub-sections will 

introduce schemas that can create a generic code-book and map  the orientations of the 

Flat Plane

Fragment
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polygons in a set to the code-vectors. The first schema is a quick-and-dirty method to 

creating a code-book and does not take the dimensions of a 3D mesh model into 

account. The second schema, expands on the first  one by selectively increasing code-

vectors along certain axes. In the third sub-section, further refinements this process 

will be introduced.

2.2.1 |  SCHEMA 1: UNIFORM ELLIPSOIDAL SCHEMA

The aim of the first schema is to create a generic code-book whose code-vectors are 

distributed evenly  throughout the code-book. In other words, each code-vector should 

point in a distinct direction and should have the same angle of separation between its 

neighboring code-vectors. In this sub-section, we will look at how to generate a code-

book based on these two considerations.

In Section 2.1.1, Grouping using the Orientation Attribute, a site vector from a sites 

set is described as a unit vector that radiates from the center of a unit sphere 

positioned at the origin of a 3D scene. Also, each site vector is orientated about the 

center of the sphere. Thus, site vectors, distributed about the unit sphere, will point in 

distinct directions.

Figure 2.8(a) shows vectors radiating from a point in 3D space, along each of the six 

major axes (X, Y, Z, -X, -Y, and -Z). These six vectors point in six distinct directions 

and have a separation angle of 90 degrees from their neighbors. Another way to 

visualize these vectors would be as depicted in Figure 2.8(b).
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Figure 2.8: Shows (a) a set of 6 vectors radiating from the origin along 
the 6 major axes; (b) the polygon normal vectors of a unit cube are 
another way to visualize the vectors in (a).

Each polygon of the unit cube, in Figure 2.8(b), has a normal (expressed as a vector) 

that radiates from the center of the unit cube. These normal vectors corresponds to the 

vectors shown in Figure 2.8(a). Thus, these normal vectors are used to form the code-

vectors that are used in the Polygon Grouping process. The following figure is an 

example of using these six vectors to partition a 3D mesh model.

Figure 2.9: Shows the end result (b) after applying the Polygon 
Grouping process on the 3D model in (a). Polygons are grouped based 
on their orientations with respect to the 6 vectors introduced in Figure 
2.8.
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In Figure 2.9, the polygons of the sphere are grouped into 6 fragments. Each of these 

fragments has a normal that corresponds to the normal vectors of the unit cube in 

Figure 2.8(b).

In the beginning of this section (Code-Book Generation), the flexibility  to control the 

number of fragments and the distribution of the polygons throughout these fragments 

was stated as an essential consideration. And in this sub-section, one of the goals for 

the first schema is to create a code-book of vectors that have equal separation angles 

from their neighbors. So, for example, in order to increase the number of fragments, 

the number of distinct code-vectors can be increased as shown in Figure 2.10.

Figure 2.10: Shows (a) a set of 54 distinct code-vectors radiating from 
the origin; (b) an alternative way to visualize the set of 54 code-vectors 
as a sphere.

There are 54 distinct code-vectors shown in Figure 2.10(a). The angle separation 

between any  two neighboring vectors is 30 degrees. The alternate method to visualize 

these vectors is shown in Figure 2.10(b) where the normals of the polygons of the unit 

sphere correspond to the vectors of the Figure 2.10(a). Incidentally  if the vertices of 

(a) (b)
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the unit sphere in Figure 2.10(b) is expanded to fit the unit cube’s profile, it will look 

like as follows:

Figure 2.11: Shows that as the vertices of the unit sphere is expanded 
outwards to fit a cube’s profile, a sub-divided unit cube results.

The resulting geometry  is also a unit cube. In this case, the unit sphere is transformed 

into a unit cube with 3 sub-divisions along each of its sides. Reversing the 

transformation process will recover the unit sphere whose polygon normals will 

provide the code-vectors as shown in Figure 2.10. Thus, it is possible to use a unit 

cube with arbitrary  number of sub-divisions to create a code-book with distinct unit 

vectors that are uniformly distributed about the center of the cube (or sphere). For 

discussion purposes the intermediate unit sphere of this process will be referred to as 

a Gaea-Sphere throughout this thesis.

2.2.1.1 |  GAEA SPHERE PROPERTIES

This sub-section will look at some of the notable properties of a Gaea-Sphere.

๏ Naming Convention: A Gaea-Sphere is a 3D geometric model whose polygon 

normals are uniformly distributed about the model’s center. As shown in Figures 

2.8 through 2.11, a Gaea-Sphere can be derived from a unit cube with equal 
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number of sub-divisions along each side of the cube. The number of sub-divisions 

will determine the number of polygon normals that the Gaea-Sphere will yield. 

For discussion purposes, a Gaea-Sphere whose corresponding unit cube has N 

sub-divisions, will be referred to as Gaea-N where N is greater than or equal to 1. 

That is, the number of sub-divisions will be reflected in the name of the sphere. 

Figure 2.12 shows examples of using this naming convention to refer to Gaea-

Spheres.

Figure 2.12: Shows geometric models of (a) Gaea-1; (b) Gaea-3 (c) 
Gaea-7.

๏ One Subdivision: The model shown in Figure 2.12(a) is referred to as Gaea-1. 

This model is essentially  a unit cube with 1 sub-division along each of its axes. 

Despite its appearance, it  will be referred to as a Gaea-Sphere in this thesis. This 

sphere will yield six distinct code-vectors, one along each axis (i.e. X, Y, Z, -X, -

Y, and -Z). Since the minimum number of sub-divisions allowed on a unit cube is 

one, Gaea-1 creates the smallest code-book possible for this schema. In other 

words, a Gaea-Sphere will create a code-book of at least six code-vectors.

๏ Number of Polygons: The model shown in Figure 2.12(b) is a Gaea-3. This 

sphere has 54 polygons (i.e. it  creates a code-book of 54 distinct code-vectors). 

(a) (b) (c)
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The model shown in Figure 2.12(c) is a Gaea-7 and it has 294 polygons. Thus, the 

relationship  between the number of sub-divisions and the number of polygons of a 

Gaea-Sphere can be expressed as:

where V(n) is the number of polygons of Gaea-n and V(1) is the number of 

polygons in Gaea-1, which is six polygons.

Using Equation 2.4, the number of polygons (i.e. the number of code-vectors 

yielded) for a Gaea-Sphere is calculated as the product between the number of 

polygons in Gaea-1 and the squared number of sub-divisions of the Gaea-Sphere. 

Thus, it can be deduced that all Gaea-Spheres will create a minimum of six 

distinct code-vectors.

๏ Hierarchy of Code Vectors: Another deduction from Equation 2.4 is that as n, 

the number of sub-divisions, decreases, the Gaea-Sphere converges to a Gaea-1. 

In other words, as n is decreased to (n-1), the code-vectors of Gaea-n are 

collapsed into Gaea-(n-1). Once a code-vector of the Gaea-n is collapsed into the 

Gaea-(n-1), that code-vector will be replaced with the corresponding code-vector 

of Gaea-(n-1). This will continue till all the code-vectors are collapsed into one of 

the 6 code-vectors of Gaea-1 (see Figure 2.13).
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Figure 2.13: Shows an example of a hierarchy of code-vectors. 
Polygons P1 and P2 are mapped to the intermediate code-vector V1 
while Polygon P3 is mapped to the intermediate code-vector V3. These 
code-vectors (V1 and V3) are in-turn mapped to the code-vector V2 of 
the Gaea-1. This is a simple demonstration of the multiple levels of 
Polygon Grouping for a polygon can be achieved by mapping 
intermediate code-vectors to the base code-vectors.

This hierarchical nature the Gaea-Spheres leads to dynamic reduction in the 

number of fragments created from the Polygon Grouping process, as each code-

vector has a hierarchical path. As n is decreased, the Polygon Grouping process 

can follow the hierarchy of the code-vector upwards and determine which 

fragments will be merged.

2.2.1.2 |  UNIFORM ELLIPSOIDAL SCHEMA

The schema discussed in this section requires the code-vectors to be uniformly 

distributed such that the angle of separation between neighboring vectors are equal. 

Using Gaea-Spheres, a code-book (whose size can be determined using Equation 2.4), 

that satisfies this condition, can be created. Since the resulting vectors are uniformly 

distributed about the center of the sphere, this schema is called Uniform Ellipsoidal 
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V1 V2 V3 VM. . .

V1 V2 V3 V4 V5 V6
Gaea-1 

Code-Vectors

Intermediate
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Schema. Figure 2.14 shows the result of applying this schema to the Polygon 

Grouping process on a 3D mesh model.

Figure 2.14: Shows a 3D mesh model (commonly known as the 
Stanford Bunny) when subjected to Polygon Grouping using Gaea-3. 
Colors for the fragments are based on the code-vectors.

2.2.1.3 |  FRAGMENT MASKS

In Figure 2.14, a Gaea-3 is applied to the 3D mesh model that  has a polygon count of 

69,451. This resulted in creating 5,076 number of fragments. These fragments (as 

discussed in Chapter 3) will be distributed to various machines to render and the 

resulting sub-images will be composited to form the complete rendered image of the 

scene. An important goal as stated in Chapter 3 is to eliminate the need for depth 

buffer during the composition of the sub-images. In other words, each sub-image 

should not have any overlapping regions with other sub-images.

To achieve non-overlapping sub-images, we would need to mask out the regions 

occupied by fragments rendered in other machines. Masking out these regions would 

require information about all the fragments distributed to every rendering machine. 

(a) (b)
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Replicating a 3D model or scene to every machine can be an expensive process, and 

thus we propose transferring the simplified fragments information only.

This problem was tackled in [29] as described in Section 1.2. Since the set of 

connected polygons in these fragments are similarly orientated, the curvatures of 

these fragments become negligible as the resolution of the code-book is increased. 

Thus it is possible to flatten a fragment by  removing the finer details of the fragment. 

When a fragment is flattened, only the boundary  vertices of the fragment are retained 

and re-triangulated.

Figure 2.15: Shows the effects of flattening fragments. The resultant 
mesh in (a) has 64% polygon reduction; and (b) has 40% polygon 
reduction.

These flattened fragments shall serve as masks. When a machine is assigned a 

fragment to render, it  is also provided with the flattened information of all other 
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fragments. The fragment masks will be rendered together with the assigned detailed 

fragment (see Figure 2.16). 

Figure 2.16: Shows an illustration of how simplified fragments are 
used to mask out overlapping regions in sub-images. 

Unlike the detailed fragments, the flattened fragments will be rendered without 

texture and lighting effects. Non-overlapping regions occupied by the flattened 

fragments are set as transparent in the final sub-image before it is transmitted for 

composition with other sub-images.

2.2.2 |  SCHEMA 2: NON-UNIFORM ELLIPSOIDAL SCHEMA

The role of the code-vectors can be viewed as the sampling of a 3D mesh model’s 

polygon orientations. Thus, it is important for the code-vectors to represent key 

geometric features of the model. That is prominent polygon orientation information 

need to be captured in the code-book.

Fragment Mask

Detailed Fragments 
Rendered by 
Rendering Agent
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The previous sub-section dealt with how to design a code-book with code-vectors 

distributed uniformly. This code-book provides a generic solution for various 3D 

mesh models, regardless of their dimensions. By disregarding the dimensions of a 3D 

mesh model, some of the geometric information is lost3  in the process of Polygon 

Grouping. This problem is illustrated in Figure 2.17.

Figure 2.17: Shows a 3D mesh model (a low-resolution version of the 
Stanford Bunny model from Figure 2.14) partitioned using Gaea-1. 
Only the fragment with highest concentration is highlighted.

In Figure 2.17, partitioning the 3D mesh model (contains 1443 polygons) with Gaea-1 

produces 116 fragments. On average, there are 12 polygons packed into a fragment. 

However, largest concentration of polygons found in a fragment is 254. That is about 

18% of the polygons of the 3D mesh model has been grouped into that one fragment. 

The possibility that some these polygons will have critical geometric features is very 

high. The same 3D mesh model when subjected to mesh partitioning using Gaea-2 
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yields 462 fragments. On average, there are 3 polygons packed into a fragment and 

the largest concentration of polygons found in a fragment is 34. That is only 2.4% of 

the polygons of the 3D mesh model has been grouped into that one fragment. Thus, 

the chances of losing a critical feature in that fragment is much lesser than the one 

from the previous mesh partitioning process. However, the number of fragments has 

increased four fold with the increase in the number of sub-divisions of the Gaea-

Sphere for mesh partitioning. 

The schema, proposed in this sub-section, solves this problem by  creating a code-

book that has varying number of code-vectors along the axes. In other words, the 

number of sub-divisions of the corresponding Gaea-Sphere will be different along the 

each axis. Thus, unlike the Uniform Ellipsoidal Schema, the current schema will not 

have a uniformly distributed set of code-vectors and hence, this schema is called Non-

uniform Ellipsoidal Schema.

To realize such a schema, we employ an iterative process where the number of sub-

division of the Gaea-Sphere is increased till the largest concentration of polygons in a 

fragment is below a certain threshold value. The process starts off by using Gaea-1 to 

partition a 3D mesh model. At  the end of an iteration, the number of sub-divisions 

along the axis of the fragment that has the highest concentration of polygons, is 

increased. This, however, results in a Gaea-Sphere that does not use the same naming 

convention as that used in the Uniform Ellipsoidal Schema. To reflect the varying 

number of sub-division in each axis, the new naming convention for the Gaea-Spheres 

is Gaea-Nx,Ny,Nz. For example a Gaea-Sphere with 1 sub-division along the X axis, 4 

sub-divisions along the Y axis, and 3 sub-divisions along the Z axis, is referred to as 
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Gaea-1,4,3. Since the number of divisions are different for each axis, Equation 2.4 is 

replaced with Equation 2.5 for finding the number of polygons (or code-vectors) for a 

Gaea-Nx,Ny,Nz.

where V(nx, ny, nz) represents the number of polygons of a Gaea-Nx,Ny,Nz, nx 

represents the number of sub-divisions along the X axis, ny represents the number of 

sub-divisions along the Y axis, and nz represents the number of sub-divisions along 

the Z axis. When the nx, ny, nz are set to be the same, Equation 2.5 will reduce to 

Equation 2.4 as follows:

As mentioned in Section 2.2.1.1, V(1) is the smallest Gaea-Sphere that can be created 

and can yield 6 polygons. Thus replacing the value 6 with V(1) without loss of 

generality in the above derivation, shows that Equation 2.5 reduces to Equation 2.4 

when the sub-divisions of a Gaea-Nx,Ny,Nz are the same.

Subjecting the 3D mesh model, shown in Figure 2.17, to the Non-uniform Ellipsoidal 

Schema, yields a fragment count of 9181 and the highest concentration of polygon 

count in a fragment is 255. Starting with Gaea-1, the iteration process was stopped at  

an upper limit of 256 code-vectors, resulting in Gaea-4,7,3. Thus, this schema 

provides a better distribution of polygons across the fragments while keeping the 

code-book size to a minimum as compared to the Uniform Ellipsoidal Schema.
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2.2.3 |  WEEDING ORPHANS

In the previous section, a non-uniform distribution of code-vectors proofed to 

represent the geometric structure of a 3D mesh model better than a uniformly 

distributed set of code-vectors. This was achieved by sub-dividing a Gaea-Sphere 

along the axis that  has the highest concentration of polygons in a fragment. However, 

this schema is not without its problems. As shown in Figure 2.18, applying the Non-

uniform Ellipsoidal Schema to a 3D mesh model can sometimes create fragments 

with only one polygon in them. These fragments are called orphans.

Figure 2.18: Shows an “orphan” fragment (highlighted in red color) of 
a 3D mesh, partitioned using Gaea-1.

Storing only  one polygon in a fragment is not cost efficient in terms of both storage 

and computation. An orphan requires space for the polygon information as well as the 

fragment information. Thus, essentially the cost of storing too many orphans will 
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exceed the cost of storing just the polygons, without the fragments information. Also 

processing too many orphans does not  provide computation cost savings for 

operations such as Ambient Occlusion as the processing time for an orphan will be the 

same as that of its corresponding polygon. The 3D mesh model in Figure 2.18 yielded 

120 number of orphans. That is 46% of the fragments created are orphans. In this 

subsection, a method called Orphan Weeding is introduced to reduce the number of 

orphans after subjecting a 3D mesh to polygon grouping.

The idea for this method is adopted from the Popularity Algorithm commonly  used 

for color quantization in the reduction of 2D image resolution or for 2D image 

compression. The color quantization algorithm finds the more frequently occurring 

colors and includes them in its code-book. Then based on this code-book, the image is 

quantized (i.e. the original color pixels are replaced with the closest color values from 

the code-book). Likewise, the Orphan Weeding method seeks to retain the “popular” 

fragments (or the fragments with high polygon concentration) for a given 3D mesh. 

The “popularity” of a fragment is weighed against that of the other fragments and the 

less “popular” ones are weeded. These weeded fragments will be subjected to 

Polygon Grouping again but this time based on a code-book consisting of only the 

code-vectors of the neighboring fragments.

The “popularity” of a fragment is the weighted sum of two of its attributes and they 

are namely, 

1. Strength: In the color quantization, popular colors are the ones that are recurring 

most often. Likewise the strength attribute of a fragment is defined as the number 
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of polygons that are associated with it verses the total number of polygons in a 3D 

mesh model. The following equation represents this attribute mathematically.

where Fj refers to a fragment j of a mesh model M and PFj is the set of polygons 

of the fragment j. Attributing a cost of 1 to each polygon in the mesh M, the 

strength attribute of a fragment is expressed as the percentage of polygons of 

mesh M found in fragment j. This equation will hold true if and only if the 

polygon grouping process guarantees that every polygon is uniquely grouped to 

only one fragment.

2. Influence: An orphan can sometimes contain a polygon whose area of influence 

in the 3D mesh model is quite significant. Weeding the orphan can lead to the loss 

of geometric structure of the fragments. Thus, a influence attribute is considered 

and is defined as the amount of accumulated area covered by the polygons that are 

associated with a particular fragment. The following equation represents this 

attribute mathematically.

where A denotes the surface area of a group of polygons in a fragment or mesh

Equation 2.7 calculates the influence of the fragment Fj, as the area of all the 

polygons associated with that fragment against the total surface area of the 3D 

mesh model, M.
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The popularity of a fragment is determined as the weighted sum of the strength and 

influence attributes of the fragment. As a rule of thumb, the weights are set to 0.5 for 

both the attributes. This thus emphasizes both the attributes equally  in identifying 

orphans. The weeding process removes the fragments from the bottom of the list (i.e. 

the least popular ones first) and stops when a terminating condition is reached (e.g. 

number of fragments). At the end of the process, a minimal set of fragments that 

represents the critical features of the 3D mesh model is created.
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2.3 |  SUMMARY

Our development of the Ellipsoidal Mesh Partitioning technique was motivated by 

three main considerations: algorithmic approach, geometric feature preservation, and 

balanced distribution of polygons across all fragments. By  using both the Uniform 

and Non-uniform Ellipsoidal Schemas that are modeled after the geometric shape 

called Gaea-Sphere, a code-book for the mesh partitioning technique can be created 

algorithmically. Since a Gaea-Sphere guarantees that each code-vector is distinct and 

covers all 6 orthogonal axes, polygons with similar orientations to the code-vectors 

can be grouped together, thus preserving geometric features. The resulting fragments 

that consist of connect polygons that are similarly oriented can be approximated into 

flat or simplified polygons. By controlling the resolution of the code-book, we have 

shown how to balance the distribution of the polygons amongst the various fragments.
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CHAPTER 3

3 |  COLLABORATIVE RENDERING

Collaborative Rendering is a form of Distributed Rendering whereby several 

computers come together to render a 3D scene. Unlike distributed rendering, 

collaborative rendering, has minimal reliance on a dedicated server to manage part of 

(or even the entire) process. That is, the computers involved in the rendering process, 

are aware of their peers on the network and communicate with each other to render a 

scene or a frame. Thus, issues such as server bottlenecks and scalability limitations of 

a distributed rendering environment are not present in a collaborative rendering 

environment that uses P2P technology.

This chapter introduces our collaborative rendering system called the Ellipsoidal 

Collaborative Visualization Environment (ECOVE). This system adopts the 

conventional graphics pipeline for distributed rendering, partitions a 3D mesh using 

Ellipsoidal Mesh Partitioning technique for distribution, and uses P2P to 

collaboratively manage the rendering process (see Figure 3.1).
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Figure 3.1: Shows the overview of the ECOVE system. The Data 
Server serves out fragments of a 3D mesh to the Rendering Nodes. The 
rendered sub-images from each Rendering Node are sent for 
compositing at the client machine and displayed on screen.
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In particular, ECOVE is structured to:

1. Use the multiple hardware graphics accelerators available on the network to 

increase rendering performance over what is achievable by  a sequential renderer 

that uses a single accelerator.

2. Decouple communication bandwidth requirements from the complexity  of the 

scene and the number of rendering nodes.

3. Avoid and/or minimize load imbalances with minimal reliance on a centralized 

server.

Chapter 2 looked at how to partition a mesh into groups of polygons called fragments 

(see Section 2.1.2 for definition of a fragment). The problem posed was to break up 

the polygons of a mesh into fragments based on their orientation and locality. Another 

constraint introduced was to ensure the distribution of the polygons throughout the 

fragments is even. However this problem was approached without regard to work 

partitioning and assignment. Thus, this chapter considers the questions of how to 

partition the overall rendering work in each frame into individual tasks and how to 

perform initial assignment of these tasks in a load-balanced manner. While work 

partitioning and assignment is a fundamental problem for all distributed/parallel 

applications, the rendering domain poses two additional challenges when coupled 

with the above structural requirements:

4. To make use of hardware-assisted rendering, the rendering work must be 

partitioned in a way that does not require accessing information generated and 

maintained internally to the hardware accelerators.
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5. Because of the need for visibility culling and sorting, the partitioning strategy 

used can have a considerable effect on the total amount of rendering computation 

and the size of the partial images that must be communicated [67].

ECOVE provides a novel approach to the partitioning problem called Context Aware 

Mesh Partitioning (CAMP) to help  meet these challenges. CAMP extends on the 

Ellipsoidal Mesh Partitioning (EMP) technique to consider workload partitioning and 

assignment. Given a set of meshes in a 3D scene to be rendered, the basic idea behind 

CAMP is to assign two subsets of fragments to every rendering node in such a way 

that:

๏ the first subset, called the owner set, will have fragments with similar locality, and

๏ the second subset, called the buddy  set, will be a copy of the another node’s owner 

set.

All nodes will focus on rendering just the owner set. In the event that a rendering 

node drops out of the network or quits the rendering environment, the node holding 

the abandoned workload as its buddy set will take on the additional responsibility 

until the Data Server re-partitions the workload. At the end of the frame, the partial 

images generated by different rendering nodes are composited together to form the 

final image.

More specifically, ECOVE as a system proposes to:

1. partition a 3D mesh using EMP technique into fragments,

2. for a system of P nodes, create P work partitions (or owner sets) such that:
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๏ the fragments in the each owner set will have similar locality, 

๏ the expected rendering plus transmission time of each owner set is load 

balanced, and

๏ total amount of data pixels that must be communicated is minimal.

3. assign an owner set to every node, and

4. assign each node to monitor another node (called buddy node) for presence.

Each node will additionally receive a pseudo mesh (see Section 2.3). Such an 

approximated mesh representation is particularly useful in advanced hardware 

rendering techniques such as Shaders. For example, an Ambient Occlusion Shader 

need not know the detailed structure of the entire mesh but only the general size and 

position of the polygons with reference to the point at which the shadow is calculated.

The remainder of this chapter will look into ECOVE in more detail, describing the 

CAMP algorithm’s ability to perform initial work partitioning in a load-balanced 

manner while observing the necessary 3D mesh partitioning constraints. The final 

section of this chapter will look at how P2P is used to manage the rendering process 

collaboratively.
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3.1 |  WHY ECOVE?

Recall from Section 1.1 that distributed rendering systems can typically be classified 

as one of sort-first, sort-middle, or sort-last. In sort-first, work is distributed based on 

an image partitioning, where each node in the system is assigned responsibility for 

calculating the effect of all primitives on the pixels in a portion of the final image. In 

sort-middle, the geometric transformation and rasterization phases are distributed 

independently across the system. In sort-last, each node is assigned a subset of the 

polygons in the scene, without restrictions on the position of the polygons. At the end 

of each frame, once each node has rendered the image corresponding to its assigned 

polygons, the pixels must be sorted, typically using Z-buffering.

In sort-first and sort-middle, the required redistribution of primitives is a fundamental 

problem in our targeted environment. This requires either recomputing the geometric 

transformation of primitives that must be redistributed or accessing information that 

may be hidden inside a hardware graphics pipeline. Second, the bandwidth 

requirement for these two classes directly depends on the complexity of the scene that 

is being rendered, violating one of our basic goals (see previous section). Finally, 

because the mapping of primitives to image space changes depending on the 

viewpoint, the amount of data that must be transmitted can change very unpredictably 

from frame to frame. For example, in an assessment of the practicality of sort-first, 

Mueller [16] gives communication measurements for three different scenes. For each 

of these scenes (and the particular path taken through the scene), the number of 

primitives that a sort-first system would need to redistribute can vary widely from 

frame to frame, ranging from 5% to 100% of the scene. It seems extremely difficult to 
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achieve predictable real-time response in the face of such large variability in 

bandwidth requirement.

Sort-last, on the other hand, is compatible with hardware-assisted rendering because 

in each frame, the rendering nodes render their assigned work independently. Thus, 

the problem of generating each partial image looks exactly as if it were an 

independent rendering problem, allowing the rendering nodes to employ  hardware-

assisted rendering.

ECOVE is similar to sort-last in that rendering nodes generate images independently, 

and so is compatible with hardware-assisted rendering. However unlike sort-last, 

primitives in ECOVE, are typically assigned to renderers with regard to their 

orientation and locality. This means that each renderer does not  need to send the entire 

image for each frame. Also, for certain hardware-assisted rendering techniques such 

as Graphics Shaders, the complete geometric structure needs to be provided to each 

renderer. Thus many  sort-last implementations resort to replicating the entire 3D 

scene on all the nodes. ECOVE, however, only sends the portion of the mesh assigned 

to the corresponding renderer and a simplified representation of all the fragments (see 

Section 2.2.1.3). Shaders can also significantly benefit in terms of speed due to the 

reduced number polygons that they have to include in their calculations by using the 

simplified fragments.
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3.2 |  ECOVE ARCHITECTURE

Figure 3.1 shows a possible architecture for ECOVE. In this diagram, there are four 

types of nodes and they  are namely, Data Server, Rendering Nodes, Compositor, and 

Display. For ease of implementation, the Data Server, the Compositor and the Display 

can be implemented as the same node (see Figure 3.2). That is, functionally  this node 

is responsible for:

๏ partitioning the 3D scene meshes,

๏ assigning work partitions to the rendering nodes,

๏ computing the current viewpoint at the beginning of every frame,

๏ composite sub-image layers from the rendering nodes, and

๏ display final image at the end of every frame.

It is also responsible for re-partitioning and re-assigning the workload in the event a 

rendering node drops out the network.

Figure 3.2: Shows the interaction between a Rendering node and the 
Display node. In implementation of ECOVE, the Display node that 
interacts with the user, also doubles up as the Data Server, and the 
Compositor for the Rendering node.
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In each frame, every rendering node receives a new viewpoint, renders the fragments 

it is assigned, and sends the generated image back to the display node. The rendered  

(partial) image generated at each rendering node is referred to as a sub-image layer 

(since the final image is a composite of the generated images).

In this section, three essential components of ECOVE, with respect to the architecture 

shown in Figure 3.2, will be described: 

1. A method for estimating the rendering time of each fragment.

2. A method for estimating the footprint of each fragment.

3. The CAMP algorithm with regards to rendering and communication costs.

3.2.1 |  RENDERING TIME OF A FRAGMENT

In order to partition the overall rendering work in a load-balanced manner, we must 

be able to estimate the rendering loads of scene objects (since the rendering of each 

fragment corresponds to a task that  must be assigned to some node). One possible 

basis for such an estimation is the number of primitives in each fragment. Estimation 

methods based on primitive count can be very inaccurate, however, because the time 

required to render a set of polygons can vary widely  depending on the viewpoint. 

Thus, we take a different approach that leverages the fact that our targeted application 

domain involves interactive rendering, such as that performed by an OpenGL 3D 

mesh viewer.

In an interactive application such as an OpenGL viewer, the viewpoint  typically does 

not change significantly from frame to frame because the user is navigating through 
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the scene in real-time. This implies that each 3D mesh object’s rendering time in one 

frame will be about equal to its rendering time during the previous frame. (Exceptions 

to this include abrupt jumps to predefined viewpoints, mesh objects coming into or 

going out of visibility, and crossings of level-of-detail thresholds.) For example, 

Figure 3.3(c) plots the rendering time of a 3D mesh object as the viewer “walks” from 

the viewpoint shown in Figure 3.3(a) to that shown in Figure 3.3(b). Note that while 

the rendering times of the object at (a) and (b) are quite different4, they are (almost 

always) very similar in adjacent frames.

Figure 3.3: Changes in the rendering time of a scene object with 
multiple levels of detail: (a) the initial view, where the object  is far 
away from the viewpoint; (b) the final view, where the object is close 
to the viewpoint; (c) plot of rendering time vs. frame number as the 
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viewer moves from (a) to (b). This measurement was taken using an 
OpenGL viewer running on a 2.16 GHz Intel machine with Intel GMA 
950 Graphics Chipset.

Based on this observation, the rendering time of a fragment in the last frame can be 

measured as the predictor of its rendering time in the current frame. On most current 

processors, the rendering time of a fragment is measured with very little overhead by 

reading a free running counter in the processor.

3.2.2 |  FOOTPRINT OF A FRAGMENT

Estimating fragments’ footprints in the final image of a frame is important for two 

reasons:

1. The transmission time of an image layer may comprise a substantial portion of the 

load on a rendering node and so must be taken into account by the CAMP 

algorithm. This required transmission time can be estimated if the (approximate) 

aggregated footprint of the fragments assigned to each node and the achievable 

bandwidth is known.

2. Figure 3.1 shows that, at  the end of each frame, all rendering nodes send their 

image layers to the display  node. Typically, this many-to-one communication must 

be performed sequentially  because it is assumed that the display node has only 

one network connection and receiving is typically more expensive than sending 

(hence multiplexing sends from multiple senders would only degrade 

performance). This serialization implies that it is important to minimize the total 

amount of per-frame communication for ECOVE to scale. This in turn implies 

that CAMP should strive to assign fragments that are clustered together and have 
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similar orientations. This critical optimization is only possible if we can estimate 

fragments’ footprints.

Figure 3.4: Shows the method for calculating the footprint  of a 
fragment.

The most accurate way to compute the footprint of a fragment is to determine exactly 

the set of pixels it paints when it is facing the camera directly. This approach implies 

distribution overhead that is proportional to the scene complexity though, and so is 

too expensive for our purposes. Instead, a coarser, scene-independent approach is 

used, as follows (see Figure 3.4). The viewport is divided into a grid of cells W " H, 

where each cell corresponds to a block of pixels5. Each frame, the tight rectangular 

bounding volume of the fragments, is projected onto the 2D grid. The footprint is then 

estimated as the set of grid cells that the projection overlaps.

Note that calculating the footprint of a fragment is itself a simple rendering problem. 

The hardware graphics accelerator on any Data Server node or Rendering node can be 

used to compute these projections efficiently.
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3.2.3 |  CONTEXT AWARE MESH PARTITIONING ALGORITHM

Context Aware Mesh Partitioning (CAMP) is an algorithm, employed by  ECOVE to 

aggregate a scene’s fragments into groups called work partitions. Note that CAMP has 

not been been fully implemented for the experiments conducted in Chapter 4. As such 

this thesis does not provide a proof of the algorithm discussed in this section and will 

be left for future work instead. At the beginning of the first frame, CAMP can be used 

by the Data Server to do an initial assignment of fragments to the rendering nodes. 

When a rendering node becomes unavailable for rendering, its corresponding buddy 

node takes over the rendering workload (see Section 3.4) causing an imbalance in the 

workload. CAMP, once again, is used by the Data Server to rectify the load 

imbalance.

Before describing CAMP more precisely  and devising a solution, we first consider an 

essential characteristic of the expected system architecture. As already discussed in 

Section 3.2.2, the many-to-one communication required at the end of each frame must 

typically be serialized. Figure 3.5(a) shows that this serialization can cause significant 

idle time if the transmission time of each image layer is non-trivial compared to the 

distributed rendering time. To avoid this costly idleness, the communication phase of 

a frame need to be overlapped with the rendering of the next frame. Figure 3.5(b) 

shows this overlapping and the resulting performance increase. This overlapping is 

supported by most hardware accelerators via double buffering (and so is compatible 

with ECOVE’s goal of using hardware graphics accelerators).
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Figure 3.5(a): The distributed rendering of each frame consists of 2 
operations, a rendering phase that  can be performed in parallel and a 
communication phase that (typically) must be performed sequentially 
(each horizontal line represents the timeline of a rendering node).

Figure 3.5(b): We can increase the efficiency of distributed rendering 
by overlapping the rendering operation of a frame with the 
communication operation of the last frame.

While critical to performance, overlapping communication and computation 

introduces an additional complexity to the partitioning and assignment problem. At 

the beginning of each frame, each rendering node is already  loaded with the time 

required to transmit the image layer it generated for the last frame. The total 

(expected) load on each node for each frame is this transmission time plus the 
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rendering times of its assigned fragments6. In addition, the minimum frame time is 

determined by the larger of the maximum load and the sum of the transmission times 

for the last frame, where the frame time can now be defined as the time from when 

the rendering of a frame is initiated until the time when the rendering nodes are ready 

to transmit the corresponding sub-image layers to the display node. Thus, a Context 

Aware Mesh Partitioning corresponds to a dual optimization problem: minimize both 

the load imbalance and the total transmission time.

3.2.3.1 |  PROBLEM DEFINITION

The CAMP problem for a frame is stated more precisely as follows. Given: 

๏ an ECOVE system ES with P rendering nodes, p0, p1, p2, ..., pP-1,

๏ a scene M with N fragments, o0, o1, o2, ..., oN-1,

๏ "(oi), the locality of fragment i (i.e. centroid of the fragment),

๏ parameters W and H used to logically  partition the viewport into a coarse W " H 

2D grid,

๏ CT, the cost to transmit the pixels in one grid cell,

๏ RT(o,v), the expected rendering time of each fragment o in M when viewed from 

viewpoint v,

๏ a fragment to grid cells mapping
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Let S denote a subset of M with Q fragments and define:

๏ the locality of S as:

๏ the expected rendering time of S as:

๏ the mapping of S to grid cells as:

and

๏ the size of S’s footprint:
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Finally, let PartP = {S0, S1, ..., SP-1} be a P-way partition of M. Define:

๏ the load corresponding to Si as

 

and

๏ a cost function for PartP as

The problem then is to find a partition, PartP,best = {S0,best, S1,best, ..., SP-1,best}, of M 

such that

๏ Locality Criterion: there does not exist ox ! Si,best where 

and
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๏ Optimization Criterion: Cost(PartP,best) # Cost(PartP) for all partitions that PartP 

satisfy the locality criterion.

The locality criteria ensure that the fragments of the chosen partition are clustered 

together. This is required for estimating the footprint of the partition (see Section 

3.2.2). The optimization criterion attempts to minimize the larger of the maximum 

load placed on any node (the first component of Cost(PartP)) and the total 

transmission time (the second component of Cost(PartP)), which affects the 

completion time of the next frame. The intuition for including the latter component is 

that, while CAMP attempts to minimize the completion time of the first frame after it 

has distributed the work partitions, it should not do it at the expense of the completion 

time of the subsequent frames (by pre-loading the nodes with overly  large 

transmission times).

Thus based on Equation 3.1, the cost  of a chosen partitioning for frame f is not 

necessarily equal to the frame time. Rather, the frame time Tf for frame f is given by

where the second component  of Tf is the sum of the transmission time for the previous 

frame (frame f - 1). This component is not included in the cost function because there 

is nothing that CAMP can do in frame f to lessen the transmission cost arising from 

frame f - 1.
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3.2.3.2 |  WORK PARTITIONING SOLUTION

CAMP is implemented as a two-part algorithm. The first part finds a set of vectors 

(i.e. cluster centers) using the k-means clustering technique [3, 5, 12] and locality of 

all the fragments. This is to allow each rendering node to be assigned to some initial 

set of fragments. k-means clustering also ensures that each fragment will be classified 

to only  one rendering node, and thus will be rendered only  once. The second part 

makes corrections in the workload distribution where k-means algorithm either 

overloaded or under-loaded individual sets.

For a system of P rendering nodes, P number of cluster centers, µ1, µ2, ..., µP, are 

randomly selected from the set of fragments in the scene as the initial set of cluster 

centers (or vectors). The Locality Criterion, presented in the previous section, 

determines how to refine these cluster centers. The algorithm for this phase is given as 

follows:

Algorithm 3.1: k-means Clustering for first part of Work Partitioning

 begin initialize n, P, µ1, µ2, ..., µP

  do classify n fragments according to nearest µi

   recompute µi

  until no change in µi

  return µ1, µ2, ..., µP

 end

Given the partition, PartP,LC = {S0,LC, S1,LC, ..., SP,LC}, produced by using the Locality 

Criterion, CAMP will make a second pass if the cost is determined by the load 
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component - that is, if Cost(PartP,LC) = max0#i<P L(Si,LC). To correct this imbalance, 

CAMP employs an iterative approach. As outlined in the listing for Algorithm 3.2 

below, each iteration attempts to re-classify a fragment to the next nearest cluster 

center. This re-classification is an exhaustive search process whereby the distances of 

every  fragment in the partition with respect to the rest of the cluster centers, is 

calculated. The fragment with the shortest distance with a cluster center (or partition) 

is moved to new corresponding partition. This iteration process is aborted if the 

Optimization Criterion is violated.

Algorithm 3.2: Re-classifying a Fragment.

 begin {o1, o2, ..., oN}, {µ1, µ2, ..., µP}

  do find shortest distance from every o to every µ

   set shortest distance pair oi - µj

  do find shortest distance pair in all oi - µj

  do classify oi to µj

 end
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3.3 | DISTRIBUTED RENDERING AND FRAME COMPOSITION

The rendering pipeline in ECOVE (modeled after the Sort-Last distributed rendering 

technique) begins with the decomposition of a 3D scene or mesh into sub-meshes. 

These sub-meshes are then distributed across the various Rendering Agents in the 

network (see Section 3.2.3). For every frame, each rendering agent renders a complete 

image of the data it  has been assigned to, using its local GPU. Then it reads back the 

contents of the frame buffer from the GPU to main memory as a sub-image. This sub-

image is sent to a compositor node where a parallel image compositing step is 

performed to blend all the full resolution sub-images into the final frame image; this 

step intensively uses the interconnection network to transfer pixel data from the 

rendering agents to the compositor. Finally, the composite image is written to the 

frame buffer of the GPU on the intended machine. We propose the rendering pipeline 

performance, PF, to be expressed as follows:

PF = DS + RT + CLT + CMP                               (eq 3.3)

where DS is the time required to dispatch scene settings (or animation information) to 

all the rendering agents; RT is the time required to render a portion of the scene by a 

rendering agent, and read back the color and depth information of the rendered sub-

image; CLT is the time required to collect n sub-images to compose the final image; 

and CMP is the time required to merge all the sub-images together to form the final 

image for display or storage to disk.
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3.3.1 |  DISPATCH SCENE SETTINGS

To render an animation sequence, the data server (see Figure 3.2) needs to broadcast 

the animation information about the 3D mesh to all the rendering agents. This 

information can be in the form of the angle of rotation or the entire transformation 

matrix. If it is assumed that multicast is not  used to broadcast the animation 

information, then the time required to dispatch this information to n rendering agents 

can be expressed as:

where lsi is the network latency between the data server and the rendering agent i; $ is 

the size of the transformation matrix in terms of bytes; and bneti is the network 

bandwidth for transferring information over the network from the data server to the 

rendering agent i. 

For discussion purposes, if we assume that the latency ls is negligible and the bnet is 

the same for all rendering agents, then equation 3.4 can be simplified as follows:

In other words, the time required to dispatch the animation information for each frame 

is directly dependent on the number of rendering agents and the amount of 

information transferred to each of the agents.

(eq 3.4)

(eq 3.5)

81



3.3.2 |  RENDER

We define the term RT as the time required for both rendering a scene and reading it 

from the frame buffer to main memory. If rendering of a scene is measured as the 

number of frames per second, fps, at a given resolution of x by y pixels, then the 

rendering performance can be expressed as:

where lr refers to the latency in terms of reading either the color information or the 

depth information (i.e. the z-buffer) from the frame buffer; bppc and bppz refers to the 

bits per pixel of color and depth information respectively; and br is the bandwidth in 

bits per second of the GPU operation. The first component of the equation refers to 

the time taken to render each frame on a rendering agent. The second and third 

components formulates the time required to read the color and depth information from 

the graphics card, respectively.

For most parts, equation 3.6 holds true for our proposed solution, except that  our 

solution does not need to read back the z-buffer information. As such the third 

component of equation 3.6 can be eliminated (see Equation 3.7). This shows that the 

performance of the rendering agents in our solution is dependent on the time required 

to read only the color information from the frame buffer. 

Equation 3.7 assumes that the latency lr is negligible when reading large buffers. 

Suppose for a target frame rate of 25 fps, the sub-image resolution xy is set  at 1024 by 

(eq 3.6)

(eq 3.7)
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768 pixels with 32-bit color information and 32-bit z-buffer; the bandwidth brc for the 

reading of color information is about 6.9G/s; and the bandwidth brz for the reading of 

depth information is about 2.4G/s [72]. With this setup, a rendering agent in a 

classical sort-last system would yield a RT of 0.054 secs while a rendering agent in 

our solution would yield a RT of 0.044 secs. As such it is possible to achieve about 

20% performance improvement at this stage.

3.3.3 |  COLLECT

We define the term CLT (in equation 3.3) as the time required for all sub-images to be 

sent across the network to the compositor. This also takes into account the time 

required to compress the sub-image at the rendering agent and uncompress it at 

compositor. Thus, CLT of a classical sort-last system can be expressed as follows:

where lcpr and ldcpr refer to the latency in the compression and decompression of a 

sub-image respectively; bcpr and bdcpr refer to the bandwidth in bits per second to 

compress and decompress the sub-image respectively; bnet is the network bandwidth; 

lsi refers to the latency incurred by a rendering agent i when sending (or receiving) the 

sub-image across the network to a compositor; and "i is the size of the compressed 

sub-image from a rendering agent i. Here we are assuming that only the color 

information of sub-image can be compressed using convectional techniques like RLE 

compression. Thus, the first component of the equation is the time required for 

compression of the color information of a sub-image. Unlike the compression process 

that can be done in parallel on all the rendering agents, the transferring of the sub-

(eq 3.8)
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images (second component of Equation 3.8) and uncompressing them (third 

component of Equation 3.8) can only be done serially on the compositor node. 

For discussion purposes, we would like to keep the network load a constant by not 

implementing compression and assuming that on a high speed network where the 

network latency, lsi is assumed to be negligible, we can simplify Equation 3.8 as 

follows:

For a 32-bit bppc and bppz, Equation 3.9 shows that our solution can achieve up to 

50% performance improvement over the classical sort-last algorithm since there will 

no z-buffer information transferred between the rendering agents and the compositor 

node. That is, it only  takes half the time required to collect n sub-images from n 

rendering agents.

3.3.4 |  COMPOSITION

The CMP term in equation 3.3 refers to image composition operation. Once all the 

sub-images are collected as specified in the previous section, the composite image is 

determined by sorting the pixel depths. A common technique is to fill a pixel on the 

composite image with the pixel on a sub-image that is closest to the screen (i.e. least 

in depth). The following equation shows cost of sorting the depth information for 

each pixel.

(eq 3.9)

(eq 3.10)
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where lcmp is the latency  incurred during composition operation; bcmp is the 

bandwidth required for blending of a source pixel over a target pixel. Typically the 

image blending option “over” is used to blend a new sub-image on top of the final 

composite image.

Figure 3.6: Shows that the distributed rendering of a 3D mesh across 3 
different rendering agents. The final composite image is simply pieced 
together like a jigsaw puzzle, Thus, eliminating the need for z-buffer 
for image composition

Unlike the classical sort-last algorithm, our proposed solution would consider bppz to 

be 0 since there is no need for z-buffer comparison. This is because each sub-image is 

rendered by  a rendering agent whose polygon set has similar orientations. Also the 

fragment masks (see Section 2.2.1.3) removes regions from the sub-image that would 

overlap with fragments from other sub-images. Therefore, there is no need to compare 

depth information between sub-images. Instead, the sub-images fit onto the final 

composite image like a “jigsaw puzzle” (see Figure 3.6). 

(eq 3.11)
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If lcmp is assumed to be negligible, then Equation 3.10 can be simplified as above. 

Equation 3.11 shows that cost of composition for our solution depends only on the 

cost of writing a pixel from a sub-image to the composite image. This gives us up to 

50% performance gain over the classical sort-last algorithm.

3.3.5 |  OVERALL PERFORMANCE

To illustrate a theoretical performance comparison between our solution and the 

classical sort-last algorithm, we will assume the running of a rendering application on 

an ideal Commodity Off-The-Shelf (COTS) cluster with no latencies. Then the time 

to render an image of x " y pixels from Equation 3.6 can be re-expressed as follows 

based on Equations 3.4, 3.6, 3.8 and 3.10:

Likewise by eliminating the z-buffer components of Equation 3.12, we obtain a 

simplified equation for our solution as shown below, which is consistent with 

Equations 3.5, 3.7, 3.9 and 3.11:

An ideal COTS cluster will be equipped with 3 GHz processors (provides a bcmp of 4 

G/s [72]), full duplex Gigabit Ethernet with infinite aggregate bandwidth, and AGP x8 

graphics. Let us assume only  the angle of rotation is broadcast for each frame (8 

bytes). Then for a target frame rate of 25 fps on a 6 node cluster with a 32-bit RGBA 

(eq 3.12)

(eq 3.13)
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pixel format and 32-bit  z-buffer, the our modified sort-last  algorithm should yield a 

theoretical 20% rendering performance gain over the classical sort-last algorithm.

In typical parallel rendering systems, the rendering times overlap with the dispatching 

of the animation information and the collection of rendered partial images (see Figure 

3.5). Assuming that  rendering times for each frame on each rendering agent is 

removed from Equations 3.12 and 3.13, we obtain a theoretical, maximum 

performance gain of 50%.
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3.4 |  DISCOVERING, RENDERING AND MONITORING

As mentioned in the beginning of this chapter, ECOVE adopts the conventional 

distributed rendering pipeline: load a 3D scene; create work partitions, distribute the 

workloads to various rendering nodes; and finally  compositing the sub-image layers 

from these nodes for display. One of the goals of ECOVE, however, is to reduce the 

reliance on a centralized server and thus, P2P technology is used to take some of load 

of the Data Server node.

P2P is particularly used for discovering and monitoring of rendering nodes, and 

collaboratively rendering a 3D scene.

1. Discovery

Using the P2P technology called Zero Configuration Networking (see Appendix 

A), discovery  of the services of individual nodes can be dynamic. For example, 

rather than keeping a static list of the IP addresses of all the rendering nodes, 

ECOVE can generate a dynamic list of all the available rendering nodes. The Data 

Server advertises itself for the available Rendering Nodes to contact it. This thus, 

promotes dynamism and event based processing.

Upon initial contact, the Data Server sends the node a Peer ID. This is a unique 

number for the node throughout the system and is in running order. That is, the 

first node will be tagged as 1 and the second node as 2 and so on.

At the same time, the Data Server issues the node with its owner set  (i.e. the set of 

fragments that the node will be responsible for rendering). The node will also 

receive a copy of the simplified fragments of the 3D scene’s mesh objects.
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2. Assignment of Buddy

Every  node in ECOVE will have a buddy node that it  needs to monitor for 

presence. This assignment is issued by the Data Server after a node has received 

its owner set and pseudo meshes. The Data Server adopts a cyclic assignment 

method. For example, a node with Peer ID 2 will be assigned a buddy node with 

Peer ID 3. As such the last node in the list  will be assigned to monitor the node 

with Peer ID 1.

Figure 3.7: Shows the process of how a rendering node interacts with 
the Data Server and its peers to get the all the required fragment sets.

Once a node has been assigned its buddy node, it advertises it Peer ID and waits 

for its buddy node to advertise itself. Upon noticing the advertisement of the 

buddy node, it requests the buddy node to send its owner set and store the set as 

Rendering Node 2 Rendering Node 1 Data Server

Request for Work

Peer ID

Owner Set & 
Pseudo Mesh

Buddy ID

Advertise as Data Server

Advertise as Peer 2

Advertise as Peer 1

Peer 2's Owner Set

Request for Buddy Set
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the buddy  set. Rendering of the first frame can begin once the first  node (i.e. the 

node with Peer ID 1) has updated the last node of its owner set.

3. Collaborative Rendering

At the start of each frame, the first node will receive the viewpoint settings from 

the Data Server. Once the node has finished rendering the frame, it will inform its 

buddy node to start rendering while the first node sends its rendered sub-image 

layer to the Compositor. This continues as a chain-reaction till the last node has 

rendered the frame and prompts the first node to start rendering the next frame. 

This works in accordance to the solution depicted in Figure 3.5(b) where the 

rendering process of one node is overlapped with transmission of the sub-image 

layer of another node.

Figure 3.8: Shows the process of how rendering nodes collaboratively 
render a scene.
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4. Monitoring

In the event a rendering node drops out of the network, there will not be anymore 

advertisements with that node’s Peer ID. As a result, the node monitoring for these 

advertisements will realize that its buddy  node is down. It  will first inform the 

Data Server of the change in the number of the rendering nodes and then include 

the buddy set of fragments into its workload. This results in an imbalance in 

workload and thus, the Data Server uses the CAMP algorithm once again to 

redistribute the workload to the rendering nodes.
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3.5 |  SUMMARY

The three key focuses of ECOVE’s architecture were presented in this chapter and 

they  are namely: CAMP, Rendering Performance, and P2P based discovery and 

runtime monitoring. CAMP treats each fragment (obtained from Chapter 2) as a unit 

of work and looks at how to optimally group them based on the available number of 

rendering nodes (or agents).

Once the groups of fragments are distributed, we analyze the rendering performance 

of ECOVE against a classical sort-last rendering system. The analysis showed that by 

eliminating the need for depth information throughout the rendering pipeline, we 

should be able to obtain about 20 to 50% performance gain. These results will be 

compared with the experimental results obtained in Chapter 4. 

Finally this chapter looks at how P2P could be used to discover rendering nodes for 

distribution of mesh and for monitoring the availability of each rendering node. The 

latter is essential for continuity of a rendering cycle in the event a rendering node 

drops out of the network.
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CHAPTER 4

4 |  IMPLEMENTATION AND RESULTS

ParaView [53] is an open-source, multi-platform parallel visualization application. 

This application is designed to visualize data sets of size varying from small to very 

large. ParaView runs on distributed and shared memory parallel as well as single 

processor systems. For distributed rendering, ParaView employs a sort-last approach.

While both ECOVE and ParaView are both implementing the sort-last method, the 

difference, however, is in the way ECOVE partitions its 3D scene’s mesh objects. 

Using Ellipsoidal Mesh Partitioning technique (see Chapter 2), ECOVE breaks up  a 

3D mesh model into fragments that have similarly  orientated and connected polygons. 

Thus, each fragment is generally featureless and can be simplified without too much 

loss of detail. Context Aware Mesh Partitioning (see Chapter 3) is employed to group 

these fragments into work partitions taking into account the number of available 

rendering nodes and the locality  of each fragment. ParaView, on the other hand, 

partitions the mesh model on a First-Come-First-Serve basis. That is, if there are n 

rendering nodes, ParaView divides the list of polygons into n equal partitions. Each 

partition might contain polygons from various parts of the mesh. These partitions are 

not broken along the geometric features of the mesh model. Also just  as in a typical 
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sort-last implementation, ParaView sends the entire rendered image with its depth 

buffer. ECOVE on the other hand, attempts to reduce the communication overheads 

by only transmitting the foot-print of the rendered polygons (see Section 3.2.2).

The next section looks at how both the ECOVE and a sort-last implementation 

(similar to ParaView’s mesh partitioning technique), are implemented to render 

several 3D mesh models. The section following that will compare the results from the 

implementation to evaluate ECOVE’s performance.
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4.1 |  IMPLEMENTATION

To assess ECOVE’s performance, we measure its ability to: 

1. achieve faster overall rendering pipeline performance over classical sort-last 

algorithm, and

2. limit the growth in bandwidth as the number of nodes in the system grows. 

Thus to evaluate ECOVE, we have implemented both the classical and our modified 

sort-last algorithm as the software application shown in Figure 4.1.

Figure 4.1: Shows the custom created application called Distributed 
Rendering Server. 

This application called Distributed Rendering Server is implemented using the 

Visualization Toolkit [20] framework and provides information such as the achieved 

frame times for a number of traces. We ran our tests on a 9-node (2.26GHz Intel Core 

2 Duo, NVIDIA GeForce 9400M) cluster with Gigabit Ethernet interconnect.
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The 3D mesh models used in this experiment are fragmented with various Ellipsoidal 

schemas using an offline application as shown in Figure 4.2. This application called 

Dihedral accepts 3D mesh models either in PLY or OBJ file formats. It provides 

options to manipulate the resolution of a schema and apply the schema to a 3D model 

for mesh partitioning. The results are displayed with distinct colors for each code-

vector. Other statistics such as the code-book size used, number of fragments 

generated and the performance of a mesh partitioning operation are also captured by 

Dihedral. The application also provides an option to export the fragmented mesh 

together with the simplified one to file for use by the Distributed Renderer.

Figure 4.2: Shows the Dihedral application that  is used for the 
fragmentation of a mesh.

When the Distributed Rendering Server application (see Figure 4.1) is launched, it 

assumes the role of a data server. A user can then begin by selecting a file containing 

all the fragments of a 3D mesh. The application then begins to search for a list of 
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rendering agents. These rendering agents will run the Distributed Rendering Client 

application, which can communicate with a data server and amongst other rendering 

agents. A user can artificially control the number of rendering agents to focus on. If 

not, the application will default the maximum number of available rendering agents. 

As each rendering agent renders and sends the sub-images to the Distributed 

Rendering Server, the server application assumes the role of an image compositor. 

The application displays all the sub-images (maximum of 9) and composited images. 

An animate button is provided to add additional complexity. The parameters for the 

animation are sent by the server application to the clients.
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4.2 |  RESULTS

4.2.1 |  FRAGMENTATION

We have performed several runs of distributed polygonal rendering using both the 

classical sort-last algorithm and our modified sort-last  algorithm. For these runs, we 

have used five unique 3D meshes (see Appendix B) that were subjected to our mesh 

partition algorithm. Table 4.1 shows the polygon count for each of these meshes. 

Table 4.1: Polygon counts of the 3D meshes used in the experiment

Gaea-5 Bunny Extinguisher Dragon Blade

300 69,451 300,572 871,414 1,765,388

4.2.1.1 |  DENSITY DISTRIBUTION

As shown in Tables 4.2 through 4.5, these meshes were fragmented using three 

different Uniform Ellipsoidal Schemas and one Non-uniform Ellipsoidal Schema. For 

each fragmentation of the meshes, the highest, the lowest and the average densities 

(i.e. the concentration of polygons in one fragment) are shown in these tables.

Table 4.2: Shows the fragment densities using Gaea-1 based Uniform 
Ellipsoidal Schema

Gaea-5 Bunny Exting. Dragon Blade

Code-Book Size 6 6 6 6 6

Highest Density (%) 16.67 21.05 21.73 21.21 20.57

Lowest Density (%) 16.67 13.84 14.78 13.83 11.13

Average Density (%) 16.67 16.67 16.67 16.67 16.67
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Table 4.3: Shows the fragment densities using Gaea-3 based Uniform 
Ellipsoidal Schema

Gaea-5 Bunny Exting. Dragon Blade

Code-Book Size 54 54 54 54 54

Highest Density (%) 2.67 6.89 11.49 3.25 10.10

Lowest Density (%) 0.67 0.58 0.55 0.76 0.22

Average Density (%) 1.85 1.85 1.85 1.85 1.85

Table 4.4: Shows the fragment densities using Gaea-4 based Uniform 
Ellipsoidal Schema

Gaea-5 Bunny Exting. Dragon Blade

Code-Book Size 96 96 96 96 96

Highest Density (%) 2.67 3.14 4.14 2.58 6.75

Lowest Density (%) 0.67 0.20 0.26 0.42 0.09

Average Density (%) 1.04 1.04 1.04 1.04 1.04

Table 4.5: Shows the fragment densities using Gaea-x,y,z based 
Uniform Ellipsoidal Schema

Gaea-5 Bunny Exting. Dragon Blade

GAEA-X,Y,Z G-3,3,3 G-3,2,4 G-2,3,4 G-4,3,2 G-2,2,5

Code-Book Size 54 52 52 52 48

Highest Density (%) 2.67 4.66 5.03 3.42 8.07

Lowest Density (%) 0.67 0.51 0.59 1.10 0.48

Average Density (%) 1.85 1.92 1.92 1.92 2.08

Based on the results of the fragmentation provided in Tables 4.2 through 4.5, Figures 

4.3 and 4.4 show the density distribution graph for the different models used. The 

graph in Figure 4.3 shows the deviation of the highest density  from the average 
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density  for each fragmentation schema while the one in Figure 4.4 shows the 

deviation of the lowest density from the average density.

G1 G3 G4 GXYZ

0

2.5

5.0

7.5

10.0

GAEA-5 Sphere Bunny Extinguisher Dragon Blade

Hi-Ave Density Distribution %

Figure 4.3: Shows deviation of the highest density from the average 
density  of all the 3D meshes for the schemas using Gaea 1. The lower 
the value 

For Gaea-5 Sphere, the deviation of the highest (and even the lowest - see Figure 4.4) 

density  from the average density for Gaea-1 based schema (G1) is actually  0. This 

means that all the polygons are evenly spread across all the fragments. Thus this is the 

best partitioning strategy for this model.
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Figure 4.4: Shows deviation of the lowest density from the average 
density of all the 3D meshes under each schema.

Though G1 uses a smaller code-book than the other schemas, it does not  necessarily 

produce the best polygon distribution. In fact, G4 and GXYZ (the Non-uniform 

Ellipsoidal Schema) generally  produces lower density deviations as compared to G1 

for models Bunny, Extinguisher and Dragon. Of the 4 schemas, G3 seems to produce 

relatively poor polygon distribution, especially for models Bunny, Extinguisher and 

Blade. While generally the lowest densities are not far off from the average densities 

for G3, large deviations of the highest densities from the average densities are 

observed. This shows that  more code-vectors need to be introduced to distribute the 

concentration of polygons.

One option as discussed in Chapter 2, is to increase the resolution of the schema. The 

results produced by G4 are relatively better. However this is done at the expense of a 

larger code-book than a G3. The other option is to use a Non-uniform Ellipsoidal 

Schema like GXYZ. As shown in Figures 4.3 and 4.4, this latter schema has produces 
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results that are comparable to G4’s polygon distribution while maintaining a code-

book similar to that of G3’s. This thus shows that a Non-uniform Ellipsoidal Schema 

can general produce better polygon distribution for mesh partitioning than an 

equivalent Uniform Ellipsoidal Schema.

4.2.1.2 |  MESH PARTITIONING PERFORMANCE

Section 2.1.3 discussed about the time complexity to perform a mesh partition using 

EMP. The conclusion of the analysis was that the algorithm is O(MS). That is the 

algorithm’s performance is dependent on the number of polygons and the size of the 

code-book. Thus in order to ascertain this analysis, Bunny, Extinguisher and Dragon 

models were subjected to mesh partitioning using Ellipsoidal Schemas based on 

Gaea-3, Gaea-4, Gaea-5, Gaea-6, Gaea-7 and Gaea-8. This would let us analyze the 

effects of increasing the code-book size on a 3D model.

Table 4.6: Shows the number of milliseconds taken for mesh 
partitioning using Uniform Ellipsoidal Schema with increasing 

resolution.

G3 G4 G5 G6 G7 G8

Bunny

Extinguisher

Dragon

1,087 1,382 1,837 2,319 2,870 3,486

8,757 9,999 11,411 13,093 15,277 17,286

13,972 16,528 20,950 26,611 32,943 40,260

When the values in Table 4.6 are plotted, Figure 4.5 reveals a linear increase in the 

time taken to partition a mesh with increasing schema resolution. However linearity is 

not observed when it was subjected to Gaea-3 and Gaea-4. This trend is more 

apparent for the Dragon model that contains the largest  number of polygons (about 

871,000 polygons) than that of the other 2 models. 
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Figure 4.5: Plot of Table 4.6 shows a linear increase in the time taken 
for mesh partitioning with increasing schema resolution.

Based on observations in Figure 4.5, it  would seem that there is a co-relation between 

the code-book size and the number of polygons in a mesh. To study this co-relation,   

we look at the situation where all the polygons are equally  divided amongst the 

number of code-vectors in the code-book. As such, we define R as the resolution 

factor that is defined as the ratio of the number of polygons in the mesh to the size of 

the code-book. Table 4.7 shows R for all the models when subjected to the increasing 

code-book size.

Table 4.7: Shows the resolution factors for the 3 models when 
subjected to increasing code-book size.

G3 G4 G5 G6 G7 G8

Bunny

Extinguisher

Dragon

1E+03 7E+02 5E+02 3E+02 2E+02 2E+02

6E+03 3E+03 2E+03 1E+03 1E+03 8E+02

2E+04 9E+03 6E+03 4E+03 3E+03 2E+03
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Figure 4.6: Graphical representation of the figures in Table 4.7.

Figure 4.6 shows that the smaller the code-book size, the larger the resolution factor R 

for a model. This is more prominent for the Dragon model when subjected to the 

Gaea-3 based code-book. Thus when studied with reference to the results in Figure 

4.5, it is evident that the performance of Algorithm 2.1 is dependent on the resolution 

factor, R. That is, as R for a model tends to 0, the performance of Algorithm 2.1 

exhibits linearity.

4.2.2 |  PERFORMANCE GAIN OVER CLASSICAL SORT-LAST 

All the 3D models were rendered using the classical sort-last algorithm. For classical 

sort-last, the meshes was partitioned by randomly assigning polygons to the required 

number of work units (i.e. the number of rendering agents). The time taken to render 

100 frames using 3 Rendering Agents was recorded. These results were compared 

against the time taken to render 100 frames using our modified method as shown 

below in Figure 4.7.
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Figure 4.7: Shows the frame times for rendering on a 3-node cluster 
using our modified and the classical sort-last algorithms

The results are clearly better for our solution, because much less data has to be 

transferred over the network. The elimination of Z-buffer during the transmission and 

composition, has improved per frame rendering times. On average we are able to 

obtain a performance gain of about 40% performance increase by using our modified 

sort-last algorithm. This result is in accordance to our theoretical performance gain of 

between 20% to 50% as calculated in Chapter 3. Due to latencies in network 

transmission of the sub-images, the performance of the system might  be capped at 

40% gain.

4.2.3 |  RENDERING QUALITY

Besides the assessing the performance gain our solution, we have also subjected the 

quality assessment of the final render image. To perform this analysis, the rendered 

image produced from the compositor of our solution was compared with the rendered 

image produced from a standalone renderer. The difference in the analysis is shown in 

Figure 4.8 below.
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Figure 4.8: Shows the pixel to noise comparison between the bunny 
model rendered on a single machine vs a the same model rendered 
using our solution. The noise our results are highlighted as white spots.

The model in Figure 4.8 was subjected to fragmentation using Gaea-3,2,4 and was 

rendered on a 9 node cluster. The resulting rendered image was compared against a 

standalone renderer’s output and the results of our solution shows high accuracy. The 

noise as seen in the figure is introduced by fragment masks that are over-flattened. As 

a result, the final image is masked out at unintended regions. These errors are but far 

and few. An the areas of unintended masking was is very small. As such the overall of 

the quality of the image is not impacted.

106



CHAPTER 5

5 |  CONCLUSION AND FUTURE WORK

In this thesis, we have presented techniques to build a collaborative visualization 

environment called ECOVE that partitions a 3D mesh model to balance the rendering 

load across all the peers of a P2P network. The basis for ECOVE is our mesh 

partitioning technique called Ellipsoidal Mesh Partitioning (EMP). This technique 

partitions a mesh in such a way that the geometric features are preserved. We have 

shown that this technique can parallelized (i.e. run using a cluster of computers in a 

P2P network). It  has also been demonstrated that the system can be expected to 

outperform another that uses sort-last, a commonly used partitioning technique, for 

our targeted environment. Using Context Aware Mesh Partitioning (CAMP), we have 

shown how to efficiently  distribute the rendering load across all the peers of a P2P 

network.

Implementation of pseudo polygons (or fragment masks) for use in graphics shaders 

has been left out for this thesis although it has been used for discussion purposes of 

this thesis. However, ECOVE is being considered as a viable solution for distributed 

application of graphics shaders such Ambient Occlusion, in the industry at the time of 

this writing. A full distributed rendering system is being left for future work as there 
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has yet to be system that tackles the issues of applying graphics shaders on distributed 

3D mesh models for comparison.

While ECOVE as it is in its present state, has fulfilled its current objectives. However, 

there is still room for improvement. Currently only static models are supported by 

ECOVE. That is once the models are loaded and partitioned, they are not modified or 

morphed to another model. These forms of transformations are common in interactive 

applications such as games, where a 3D avatar goes through many different 

transformations. These changes to the model cause the code-book to become invalid. 

Thus, we need to develop a method to allow code-books to dynamically adapt to 

changing orientations of the polygons of a 3D mesh.

Also another possibility  for future work would be to consider supporting volumetric 

data models in ECOVE. This domain is becoming increasingly challenging as the 

amount of data generated by scientific simulations is increasing exponentially. While 

volumetric data models are significantly different  from polygonal models, we believe 

the concept of Ellipsoidal Mesh Partitioning can help to reduce the complexity of the 

data models by decomposing them into simpler structures.
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APPENDIX A

A |  3D MESH MODELS

The following figures show the results of subjecting several 3D mesh models 

(obtained from http://www.cc.gatech.edu/projects/large_models/) to Ellipsoidal Mesh 

Partitioning. Each fragment is highlighted using distinct colors.

Figure A.1: Gaea-5 Sphere mesh partitioned using (a) Gaea-1 schema 
(b) Gaea-3 schema (c) Gaea-4 schema.

(a) (b)

(c)
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Figure A.2: Stanford Bunny mesh partitioned using (a) Gaea-1 schema 
(b) Gaea-3 schema (c) Gaea-3,2,4 schema (d) Gaea-4 schema.

Figure A.3: Fire Extinguisher mesh partitioned using (a) Gaea-1 
schema (b) Gaea-3 schema (c) Gaea-2,3,4 schema (d) Gaea-4 schema.

(b)(a)

(c) (d)

(a) (b)

(c) (d)
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Figure A.4: Dragon mesh partitioned using (a) Gaea-1 schema (b) 
Gaea-3 schema (c) Gaea-4,3,2 schema (d) Gaea-4 schema.

Figure A.5: Blade mesh partitioned using (a) Gaea-1 schema (b) 
Gaea-3 schema (c) Gaea-4,3,2 schema (d) Gaea-4 schema.

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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