
COLLABORATIVE VISUALIZATION ENVIRONMENT USING

P2P TECHNOLOGY AND ELLIPSOIDAL MESH PARTITIONING

GANESAN SUBRAMANIAM

(B. Eng. (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2011

ACKNOWLEDGMENTS

To begin at the beginning, I am deeply indebted to my mother, Kalaymai. Where I am

today is in no small part due to her encouragement and support.

I also owe a lot to my supervisor, Professor Kenneth Ong. His assistance throughout

my years of study here has been invaluable. He was willingly subjected to several

early, very rough, versions of this dissertation, and his many comments and

suggestions have undoubtedly improved things.

I would also like to thank all those who have contributed to this work by providing

both data and results. Saravanan Silvarajoo provided the test 3D models and took time

out of his busy schedule to help me vet through this thesis. Both Bernard Yeo and

Kevin Parama Veragoo of Institute of High Performance Computing too helped me

out in ironing out the rough edges of this dissertation.

And finally, I would like to thank my wife, Megala who has helped me see this thesis

through to a completion with her encouragement and support.

2

TABLE OF CONTENTS

Abstract 5

List of Figures 6

List of Tables 11

Chapter 1 Introduction 12

1.1 Distributed Rendering 14

1.2 Mesh Simplification 18

1.3 Communication Framework 20

1.4 Contributions 21

1.5 Organization of Thesis 23

Chapter 2 Ellipsoidal Mesh Partitioning 24

2.1 Polygon Grouping 29

2.1.1 Grouping using the Orientation Attribute 30

2.1.2 Grouping using the Locality Attribute 34

2.1.3 Polygon Grouping Algorithm 36

2.2 Code-Book Generation 40

2.2.1 Schema 1: Uniform Ellipsoidal Schema 42

2.2.1.1 Gaea-Sphere Properties 45

2.2.1.2 Uniform Ellipsoidal Schema 48

2.2.1.3 Fragment Masks 49

2.2.2 Schema 2: Non-uniform Ellipsoidal Schema 51

2.2.3 Weeding Orphans 55

2.3 Summary 59

Chapter 3 Collaborative Rendering 60

3.1 Why ECOVE? 65

3

3.2 ECOVE Architecture 67

3.2.1 Rendering Time of a Fragment 68

3.2.2 Footprint of a Fragment 70

3.2.3 Context-Aware Mesh Partitioning Algorithm 72

3.2.3.1 Problem Definition 74

3.2.3.2 Work-Partitioning Solution 78

3.3 Distributed Rendering and Frame Composition 80

3.3.1 Dispatch Scene Settings 81

3.3.2 Render 82

3.3.3 Collect 83

3.3.4 Composition 84

3.3.5 Overall Performance 86

3.4 Discovering, Rendering and Monitoring 88

3.5 Summary 92

Chapter 4 Implementation and Results 93

4.1 Implementation 95

4.2 Results 98

4.2.1 Fragmentation 98

4.2.1.1 Density Distribution 98

4.2.1.2 Mesh Partitioning Performance 102

4.2.2 Performance Gain over Classical Sort-Last 104

4.2.3 Rendering Quality 105

Chapter 5 Conclusion and Future Work 107

Appendix A 3D Mesh Models 109

References 112

4

ABSTRACT

A common technique to perform distributed (or parallel) rendering of a single frame is

to break up a 3D scene and share the rendering load across multiple machines (called

the rendering agents). The rendered sub-images from each machine are then

composited on a single machine (called the compositor) and displayed on the screen

(or saved to a file). The end result is an overall improvement in per frame render

times for large and complex 3D models. However, this technique suffers from 2 major

performance bottlenecks. Firstly, communication between the rendering agents and

the compositor is heavy since depth information is also transferred with the rendered

sub-images for every frame. Secondly, composition of all the sub-images from every

rendering agent is an expensive process as every pixel has to be subjected to depth

comparison.

In this thesis, we propose a mesh partitioning algorithm (called Ellipsoidal Mesh

Partition) and a mesh distribution algorithm (called Context Aware Mesh Partition)

that eliminate the need for depth information for the compositing of the rendered sub-

images. This reduces the compositing complexity. The key to both algorithms, is to

break up a 3D mesh based on its unique features into smaller sub-meshes. If each sub-

mesh is rendered by exactly one unique rendering agent, the composition of the

rendered results will be equivalent to "piecing together a jigsaw puzzle". In other

words, the compositing cost using our distributed rendering algorithm is reduced

tremendously. Despite a minor (negligible) degradation in the final composited image,

our results show an overall 40% performance improvement. Thus, we recommend this

solution for use in distributed polygonal rendering applications and systems.

5

LIST OF FIGURES

Figure Description Page

Figure 1.1 Shows the concept of sort-first distributed rendering of a
scene by splitting the frame into tiles and rendering each tile
in parallel on separate rendering nodes.

15

Figure 1.2 Shows the concept of sort-last distributed rendering of a scene
by partitioning the scene into groups of polygons and
rendering each group in parallel on separate rendering nodes.

16

Figure 2.1 Shows the overall process of the Ellipsoidal Mesh
Partitioning technique. The process starts from the top with a
3D mesh as input to the Code-book Generation process.
Based on the intrinsic properties of the 3D mesh and the
Ellipsoidal Schema, a code-book is generated and passed to
the Polygon Grouping process. This process then breaks up
the input 3D data into sub-meshes.

27

Figure 2.2 Shows the 3D mesh model of a bunny as it goes through the
mesh partitioning process, Polygon Grouping. In (b), the
mesh has been partitioned and each partition is represented in
different colors. (c) highlights 3 sub-meshes (2 red regions
and 1 green region), each of which lie on a single flat plane.

29

Figure 2.3 A Voronoi diagram divides a set of points (black dots) into a
region around each site (yellow dots) such that the borders of
adjacent regions are equidistance from their corresponding
sites.

20

Figure 2.4 Shows a group of points on a unit sphere that are grouped to a
Voronoi Region corresponding to the site vector Sj. That is,
there exists a site vector S that can represent the general
direction of the highlighted points in the figure.

32

Figure 2.5 Shows a 3D mesh model positioned at the same origin as the
unit sphere in Figure 2.4. And just like the unit sphere, the
highlighted points are grouped to a Voronoi region that
corresponds to the vector S.

33

6

Figure Description Page

Figure 2.6 Shows 3 fragments (2 red regions and 1 green region) of a 3D
mesh model. The red regions have the similar orientation but
are disjoint. Thus, a fragment will be formed to represent each
of the fragments.

34

Figure 2.7 Shows the cross section view of a set of polygons that are
grouped together to form a fragment. This fragment, however,
cannot be approximated into a single flat plane without a lot
of loss in accuracy due to the curvature of the fragment.

41

Figure 2.8 Shows (a) a set of 6 vectors radiating from the origin along
the 6 major axes; (b) the polygon normal vectors of a unit
cube are another way to visualize the vectors in (a).

43

Figure 2.9 Shows the end result (b) after applying the Polygon Grouping
process on the 3D model in (a). Polygons are grouped based
on their orientations with respect to the 6 vectors introduced
in Figure 2.8.

43

Figure 2.10 Shows (a) a set of 54 distinct code-vectors radiating from the
origin; (b) an alternative way to visualize the set of 54 code-
vectors as a sphere.

44

Figure 2.11 Shows that as the vertices of the unit sphere is expanded
outwards to fit a cube’s profile, a sub-divided unit cube
results.

45

Figure 2.12 Shows geometric models of (a) Gaea-1; (b) Gaea-3 (c)
Gaea-7.

46

Figure 2.13 Shows an example of a hierarchy of code-vectors. Polygons
P1 and P2 are mapped to the intermediate code-vector V1
while Polygon P3 is mapped to the intermediate code-vector
V3. These code-vectors (V1 and V3) are in-turn mapped to
the code-vector V2 of the Gaea-1. This is a simple
demonstration of the multiple levels of Polygon Grouping for
a polygon can be achieved by mapping intermediate code-
vectors to the base code-vectors.

48

Figure 2.14 Shows a 3D mesh model (commonly known as the Stanford
Bunny) when subjected to Polygon Grouping using Gaea-3.
Colors for the fragments are based on the code-vectors.

49

7

Figure Description Page

Figure 2.15 Shows the effects of flattening fragments. The resultant mesh
in (a) has 64% polygon reduction; and (b) has 40% polygon
reduction.

50

Figure 2.16 Shows an illustration of how simplified fragments are used to
mask out overlapping regions in sub-images.

51

Figure 2.17 Shows a 3D mesh model (a low-resolution version of the
Stanford Bunny model from Figure 2.14) partitioned using
Gaea-1. Only the fragment with highest concentration is
highlighted.

52

Figure 2.18 Shows an “orphan” fragment (highlighted in red color) of a
3D mesh, partitioned using Gaea-1.

55

Figure 3.1 Shows the overview of the ECOVE system. The Data Server
serves out the 3D polygons to the Rendering Nodes for
classification and partitioning of the mesh. The rendered sub-
images from each Rendering Node are sent for compositing at
the client machine and displayed on screen.

61

Figure 3.2 Shows the interaction between a Rendering node and the
Display node. In implementation of ECOVE, the Display
node that interacts with the user, also doubles up as the Data
Server, and the Compositor for the Rendering node.

67

Figure 3.3 Changes in the rendering time of a scene object with multiple
levels of detail: (a) the initial view, where the object is far
away from the viewpoint; (b) the final view, where the object
is close to the viewpoint; (c) plot of rendering time vs. frame
number as the viewer moves from (a) to (b).

69

Figure 3.4 Shows the method for calculating the footprint of a fragment. 71

Figure 3.5a The distributed rendering of each frame consists of 2
operations, a rendering phase that can be performed in
parallel and a communication phase that (typically) must be
performed sequentially (each horizontal line represents the
timeline of a rendering node).

73

8

Figure Description Page

Figure 3.5b We can increase the efficiency of distributed rendering by
overlapping the rendering operation of a frame with the
communication operation of the last frame.

73

Figure 3.6 Shows that the distributed rendering of a 3D mesh across 3
different rendering agents. The final composite image is
simply pieced together like a jigsaw puzzle, Thus, eliminating
the need for z-buffer for image composition.

85

Figure 3.7 Shows the process of how a rendering node interacts with the
Data Server and its peers to get the all the required fragment
sets.

89

Figure 3.8 Shows the process of how rendering nodes collaboratively
render a scene.

90

Figure 4.1 Shows the custom created OpenGL 3D viewer. This viewer
will be able to load PLY file formatted 3D models and render
them to display. The option “Partition Mesh” uses Ellipsoidal
Mesh Partitioning and distributes the mesh to a number of
rendering nodes.

95

Figure 4.2 Shows the Dihedral application that is used for the
fragmentation of a mesh

96

Figure 4.3 Shows deviation of the highest density from the average
density of all the 3D meshes for the schemas using Gaea 1.

100

Figure 4.4 Shows deviation of the lowest density from the average
density of all the 3D meshes under each schema.

101

Figure 4.5 Plot of Table 4.6 shows a linear increase in the time taken for
mesh partitioning with increasing schema resolution.

103

Figure 4.6 Graphical representation of the figures in Table 4.7. 104

Figure 4.7 Shows the frame times for rendering on a 3-node cluster using
our modified and the classical sort-last algorithms.

105

Figure 4.8 Shows the pixel to noise comparison between the bunny
model rendered on a single machine vs a the same model
rendered using our solution. The noise our results are
highlighted as white spots.

106

9

Figure Description Page

Figure A.1 Gaea-5 Sphere mesh partitioned using (a) Gaea-1 schema (b)
Gaea-3 schema (c) Gaea-4 schema.

109

Figure A.2 Stanford Bunny mesh partitioned using (a) Gaea-1 schema (b)
Gaea-3 schema (c) Gaea-3,2,4 schema (d) Gaea-4 schema.

110

Figure A.3 Fire Extinguisher mesh partitioned using (a) Gaea-1 schema
(b) Gaea-3 schema (c) Gaea-2,3,4 schema (d) Gaea-4 schema.

110

Figure A.4 Dragon mesh partitioned using (a) Gaea-1 schema (b) Gaea-3
schema (c) Gaea-4,3,2 schema (d) Gaea-4 schema.

111

Figure A.5 Blade mesh partitioned using (a) Gaea-1 schema (b) Gaea-3
schema (c) Gaea-4,3,2 schema (d) Gaea-4 schema.

111

10

LIST OF TABLES

Table Description Page

Table 4.1 Polygon counts of the 3D meshes used in the experiment. 98

Table 4.2 Shows the statistics for using Gaea-1 based Uniform
Ellipsoidal Schema.

98

Table 4.3 Shows the statistics for using Gaea-3 based Uniform
Ellipsoidal Schema.

99

Table 4.4 Shows the statistics for using Gaea-4 based Uniform
Ellipsoidal Schema.

99

Table 4.5 Shows the statistics for using Gaea-x,y,z based Uniform
Ellipsoidal Schema.

99

Table 4.6 Shows the number of milliseconds taken for mesh partitioning
using Uniform Ellipsoidal Schema with increasing resolution.

102

Table 4.7 Shows the resolution factors for the 3 models when subjected
to increasing code-book size.

103

11

CHAPTER 1

1 | INTRODUCTION

Physically based Rendering is the process of generating a 2D image from the abstract

description of a 3D scene. The process of constructing a 2D image requires several

phases such as modeling, setting materials and textures, placing the virtual light

sources and rendering. Rendering algorithms take a definition of geometry, materials,

textures, light sources and virtual camera as input and produce an image (or a

sequence of images in the case of animations) as output. High-quality photorealistic

rendering of complex scenes is one of the key goals of computer graphics.

Unfortunately, this process is computationally intensive and requires a lot of time to

be done when the rendering process requires graphics shaders such as Global

Illumination[33, 70, 71]. The problem further escalates when multiple of these

shaders are used in a single rendering. Thus, depending on the rendering method and

the scene characteristics, the generation of a single high quality image may take

several hours (or even days). Therefore, the rendering phase is often considered to be

a bottleneck in photorealistic projects in which one image may need some hours of

rendering in a modern workstation.

12

This thesis introduces our distributed rendering solution, the Ellipsoidal Collaborative

Visualization Environment (ECOVE), to address the problems stated in following

sections. ECOVE provides an implementation of distributed storage and computing to

the problem of large-scale visualization. It shows how to distribute 3D mesh model

for effective visualization throughout the devices in the network and form a

communication framework to assemble the model at the required devices. In an effort

to reduce the reliance on the client-server communication model, ECOVE employs

P2P to discover computing resources for rendering of portions of a 3D mesh model or

scene, and manage the rendering process. The following sections provide some

background material for the thesis contributions described in Chapters 2 and 3.

13

1.1 | DISTRIBUTED RENDERING

A common method to reduce rendering time is to reduce the scene complexity but this

might compromise the quality of the final animation scene. Therefore, animation

studios often have to find a balance between the quality of the scene and the

production time. In recent years, animation studios were able to render highly

complex 3D scenes using a cluster of high performance networked computers, also

known as a render farm. The rendering task is distributed across all the computers in

the network and thus, this method of rendering is called Distributed Rendering.

The basic task in polygon rendering is to calculate the effect of each primitive on each

pixel and can be viewed as a problem of sorting primitives from their world

coordinates to the screen [28]. To date, most distributed renderers (e.g., [66]) have

been software-only (with the exception of specialized systems such as the PixelFlow

Machine [58]) and can be categorized into three classes, sort-first, sort-middle, and

sort-last, depending on whether the sorting process takes place during the geometric

transformation phase, between the geometric transformation phase and the

rasterization phase, or after the rasterization phase [59].

In sort-first [16] (see Figure 1.1) and sort-middle [66], the geometric transformation

and rasterization of a polygon may be performed by different nodes, depending on the

specific work assignment of each frame, possibly requiring the redistribution of a

significant number of primitives. This redistribution is a fundamental problem in our

targeted environment. First, this requires either recomputing the geometric

transformation of primitives that must be distributed or accessing information that

may be hidden inside a hardware graphics pipeline. Second, the bandwidth

14

requirement for these two classes directly depends on the complexity of the scene that

is being rendered, violating one of our basic goals. Finally, because the mapping of

primitives to screen coordinates change depending on the viewpoint, the amount of

data that must be transmitted can change very unpredictably from frame to frame. For

example, in an assessment of the practicality of sort-first, Mueller gives

communication measurements for three different scenes where the system must

redistribute anywhere from 5% to 100% of the scene primitives [16]. It seems

extremely difficult to achieve predictable real-time response in the face of such large

variability in bandwidth requirement.

Figure 1.1: Shows the concept of sort-first distributed rendering of a
scene by splitting the frame into tiles and rendering each tile in parallel
on separate rendering nodes.
Image courtesy of http://www.equalizergraphics.com/.

Sort-last [59] (see Figure 1.2) corresponds to a data partitioning, where each node is

assigned a subset of the polygons in the scene, without any restrictions on the position

of the polygons. For each frame (once every node has rendered the image

corresponding to its assigned polygons), the pixels must be sorted, typically using Z-

buffering [36]. While compatible with our environment, sort-last is less than ideal for

two reasons. First, because renderers generate pixels without regard to visibility

15

ordering across different nodes, they must send the depth information (Z-buffer) along

with the pixel values for compositing of the final image. This approximately doubles

the required bandwidth. Second, primitives are typically assigned to renderers without

regard to where they map to in screen space. In fact, sort-last renderers often

distribute primitives randomly to load balance. This means that each renderer must

typically send the entire image for each frame. This limits the scalability of sort-last

as the required bandwidth is directly proportional to the number of nodes (P ! image-

size) instead of to the image size.

Figure 1.2: Shows the concept of sort-last distributed rendering of a
scene by partitioning the scene into groups of polygons and rendering
each group in parallel on separate rendering nodes.
Image courtesy of http://www.equalizergraphics.com/.

On one hand, a large-scale distributed 3D rendering environment needs to make sure

that data replication is at a minimum across the network (as data transmission and

storage can be expensive). On the other hand, every rendering node needs to have

knowledge of the structural information of the 3D mesh model. This is especially

16

important to graphics shaders (such as Global Illumination) that are needed in

photorealistic rendering. Most often, these shaders only need an approximate

description of the structure of the geometry. While sort-last ensures the former

criterion, it does not however, solve the latter problem. By distributing polygons

randomly, structural information of the geometry is not known to the rendering nodes.

Thus, it is not possible to implement graphic shaders effectively to perform

distributed rendering with current implementation of sort-last algorithm.

17

1.2 | MESH SIMPLIFICATION

In [29], we presented a method for simplification of arbitrary 3D meshes. This

technique has been adopted for mesh partitioning as discussed in Chapter 2 of this

thesis. The work presented in this paper was motivated in two ways. We first

developed a prototype system to perform distributed rendering (see Chapter 3) using

Sort-Last technique [59]. The most difficult part of the task was to reduce the

transmission times of 3D mesh models to the remote rendering agents. This

eventually led us to exploring techniques to simplify the mesh before transmitting it to

the rendering agents while preserving key geometric features as much as possible.

Based on the lessons learnt in this exercise, we built a novel technique to quantize the

orientations of the polygons and identify regions of connected polygons that are

similarly oriented to each other. The curvature of the resulting regions is considerably

lesser than the entire mesh. As such, flattening each region produces a simplified

mesh while preserving key features of the mesh.

The technique is described to contain three stages. Firstly, a code-book that contains

the unique directional vectors is generated using our Ellipsoidal Schema. Secondly,

the polygons of the mesh are grouped into patches: based on the code-vectors and the

locality information of the polygons. And the resulting patch is approximately a flat

plane with its corresponding code-vector as its normal. In the last stage, our mesh

simplification technique re-triangulates all patches, in which the algorithm only

considers the vertices on the boundaries of the corresponding patches.

As discussed in Section 2.2.1.3, this technique will help to produce pseudo polygons

(or fragment masks) that will be used by every rendering agent to mask out the

18

regions of overlap. Thus producing sub-images that do not overlap with other sub-

images rendered by other rendering agents.

19

1.3 | COMMUNICATION FRAMEWORK

A pure P2P system does not require the existence of any centralized servers or

resources to operate. In reality however, the data would usually reside on a data

server. With these considerations in mind, ECOVE is designed to be a system where

peers will only contact the data server to download a portion of the model (and the

simplified mesh fragments). Once the peers, each has a portion of the scene, they can

redistribute the dispersed model amongst themselves. In other words, peers of

ECOVE need not rely on any centralized servers to distribute and manage a 3D model

during the rendering phase. This is achieved by different peers offering to manage

different portions of the model (i.e. sub-meshes) and thus leading to the concept of a

distributed workload management. This means that the current day practices of using

a centralized job queue to which all the clients would subscribe to, does not fit the

ECOVE model too well. Instead, the workload (i.e. the sub-meshes) is dynamically

distributed across the peers of the system and each peer will advertise the sub-meshes

that they are managing for other peers to access.

ECOVE includes the Ellipsoidal Mesh Partitioning (EMP) technique to partition a 3D

mesh and the Context-Aware Mesh Partitioning (CAMP) technique to manage the

workload distribution. Unlike traditional mesh partitioning techniques where the

scene is chopped up into equal number of polygons, EMP subdivides the mesh based

on orientation and locality properties of the polygons of a scene. CAMP, then,

distributes the partitioned mesh to the available rendering nodes in the system. As

discussed in Chapter 3, this latter technique is coupled with P2P technology to

collaboratively manage the rendering process.

20

1.4 | CONTRIBUTIONS

The contributions of this thesis are organized into Chapters 2 and 3, and they are

namely:

Ellipsoidal Mesh Partitioning

1. It introduces the geometric model called Gaea-Sphere whose face normals are

deterministic. The resolution of a Gaea-Sphere can be controlled parametrically.

See Chapter 2 for more details.

2. It is a technique to partition a 3D mesh model based on orientation and locality of

the polygons. It uses two schemas that are based on the polygon normals of a

Gaea-Sphere, to sample the orientations of a 3D mesh model. The polygons are

then grouped based on their connectivity to their neighbors and their orientation.

The resulting groups of polygons are a set of connected polygons with similar

orientations.

3. It provides both simplified and extended techniques for controlling the

distribution of polygons during the fragmentation of the mesh. The end result is

for the polygons to be distributed as evenly as possible for distributed rendering

purposes.

4. It presents a method to automatically refine the fragmentation results to remove

fragments that have low concentrations of polygons. Based on a set of user-

specified criteria, the method reclassifies the polygons of identified fragments to

their neighboring fragments.

21

Collaborative Rendering

5. It provides a technique to eliminate Z-buffer during transmission of the rendered

sub-images from each rendering agent and during the composition of the sub-

images. It has been demonstrated that this technique provides substantial

performance gain.

6. Using our Context Aware Mesh Partitioning algorithm, it shows how a 3D mesh

model can be partitioned and distributed amongst a network of peers. The

partitioning of the mesh can be controlled to even out the number of polygons

rendered on each peer.

7. It demonstrates how P2P technologies can be used to discover and setup a

network of devices to render a 3D mesh model collaboratively. The task of

monitoring for peers that drop out of the network is distributed amongst the peers

themselves.

22

1.5 | ORGANIZATION OF THESIS

The rest of this thesis is organized into three main chapters. Our Ellipsoidal Mesh

Partitioning technique is discussed in Chapter 2. Here some of our key contributions

to the field of Mesh Partitioning are highlighted and how they can be used for

Collaborative Visualization. Chapter 3 extends these contributions by describing in

detail the CAMP algorithm of the ECOVE system. The chapter also shows the

parametrization of the rendering pipeline and calculates the theoretical performance

gains for ECOVE over classical methods. Results of the experiments conducted on an

implementation of the ECOVE system are discussed in Chapter 4, “Implementation

and Results”. Finally in Chapter 5, we conclude the thesis by suggesting possible

future work to be done based on this thesis.

23

CHAPTER 2

2 | ELLIPSOIDAL MESH PARTITIONING

Mesh partitioning is motivated by the fact that domain decomposition provides a

natural route to parallelism. An automatic mesh decomposer should distribute the

mesh across the individual processors so that the computational load is evenly

balanced and the amount of inter-processor communication is minimized. However,

numerical experience [74] has shown that several other issues, such as the sub-domain

shape and connectivity, in addition to load balancing and communication costs, need

to be addressed. A considerable attention [6, 7, 13, 15, 26, 32, 48, 74] has been

focused on developing suitable techniques to solve the mesh partitioning problem and

several powerful methods have been devised. The greedy algorithm [15, 52] is based

on a successive expansion of a sub-domain, initially formed by one appropriately

chosen element, until it comprises a sufficiently large number of elements. The

expansion is usually driven by neighborhood search schemes using the depth-first or

breadth-first search. The basic disadvantage of this very fast technique resides in the

fact that the final partitioning is often very far from the “optimal” one. However, the

speed makes this technique very suitable for an initial decomposition subjected to

further optimization, based on, for example the relative gain concept [14] or simulated

annealing [62]. The recursive bisection methods [74, 62] utilize the spatial

24

distribution of a mesh. While the coordinate recursive bisection (Cartesian, polar, or

spherical) exploits only the dimensional properties of the mesh with respect to a given

coordinate system, the inertial recursive bisection accounts for principal inertial

properties of the mesh which are invariant with respect to the coordinate system. The

spectral recursive bisection [32, 62] is based on the finding that the second largest

eigenvalue of the Laplacian matrix of an undirected graph associated with a mesh

provides a good measure of the connectivity of the mesh and that the components of

the corresponding eigenvector can be conveniently used for the mesh bisection.

Although this approach provides decomposition of a high quality, computational

complexity makes its use problematic when large meshes are under consideration.

This deficiency was partially eliminated by a multilevel implementation of this

technique [62].

However, we realized that the partitioned meshes of these techniques will not be ideal

for the distributed rendering environment discussed in this thesis. A rendering cycle

can consist of several graphical shaders such as Ambient Occlusion [47] and Mesh

Deformation [43, 45]. These shaders require some or partial knowledge of the

polygons in the other partitions. If each partition is distributed to a different peer, the

rendering cycle will be burdened with the amount of communication that needs to

take place between peers for each render of a frame. Thus, it is necessary for each

peer to have all the necessary information about a scene to render a specific partition.

Once the rendering cycle begins, there should be minimal communication between

the peers to achieve a final rendered image. However, the partitioned meshes from the

techniques discussed in the previous paragraphs, would not satisfy this criterion as the

mesh partitions do not provide any information about the rest of the mesh. Thus, to

25

address this problem for distributed rendering, we have identified the following

considerations that our mesh partitioning technique should exhibit:

1. View dependency

A view dependent partition consists of polygons orientated towards a general

direction. This thus allows a partition to be approximated as a simple, flat plane.

When a partition is distributed to a peer it will also receive the approximated

representations of the other partitions. This partial information, albeit an

approximated one, is useful for several graphical shaders.

2. Non-overlapping partitions

Taking into consideration the cost of storage and distribution of the polygons

across the network, each partition should observe distinct separation of regions.

That is, the partitions should not overlap with each other. By eliminating polygon

redundancy, each polygon is ensured to be rendered only once during a rendering

cycle.

3. Geometric feature preservation

For pre-processing tasks such as Mesh Simplification [31, 38], the features of a

mesh need to be preserved as much as possible while the polygon count of the

mesh is reduced. To adhere to this criterion, the mesh should be partitioned along

major geometric features. This way, the final re-constructed 3D mesh will not lose

its general geometric structure.

Adhering to these considerations, we present in this thesis our Ellipsoidal Mesh

Partitioning technique. As depicted in Figure 2.1, the technique partitions a mesh into

26

sub-meshes via a series of processes called Code-Book Generation (see Section 2.2 on

Code-Book Generation) and Polygon Grouping (see Section 2.1 on Polygon

Grouping). The former process generates a code-book of orientations that will be used

to quantize the 3D mesh’s polygon orientations in the Polygon Grouping process. The

latter process further breaks down partitions by grouping polygons that are in the

same partition and are adjacent to each other.

Figure 2.1: Shows the overall process of the Ellipsoidal Mesh
Partitioning technique. The process starts from the top with a 3D mesh
as input to the Code-book Generation process. Based on the intrinsic
properties of the 3D mesh and the Ellipsoidal Schema, a code-book is
generated and passed to the Polygon Grouping process. This process
then breaks up the input 3D data into sub-meshes.

Generate
Code-Book

Code-Book

Polygon
Grouping

3D Mesh Model

Fragments / Groups of Polygons

Ellipsoidal
Schemas

27

Note that, although the Code-Book Generation process is performed before the

Polygon Grouping process, the next section is dedicated to discussing the latter

process as it will build the base for understanding what is required of the former

process.

28

2.1 | POLYGON GROUPING

The main aim of the Polygon Grouping process is to partition a mesh into groups of

polygons with similar attributes. Adhering to the considerations outlined in the

previous section, this thesis will focus on the Orientation and Locality attributes of a

polygon. By grouping polygons with similar orientations (i.e. polygons facing in the

same general direction), we can satisfy the View-Dependency consideration. By

considering the locality of each polygon, these groups can be broken down further by

clustering polygons that have connected edges or vertices. The resulting groups of

polygons will be non-overlapping sub-meshes1 that are partitioned along critical2

geometric features and each will lie on a single flat plane (see Figure 2.2).

Figure 2.2: Shows the 3D mesh model of a bunny as it goes through
the mesh partitioning process, Polygon Grouping. In (b), the mesh has
been partitioned and each partition is represented in different colors.
(c) highlights 3 sub-meshes (2 red regions and 1 green region), each of
which lie on a single flat plane.

 (a) (b) (c)

29

1 The difference between a sub-mesh and a group of polygons is that a sub-mesh must contain polygons
that share at least one edge with another polygon from the same group. Whereas a group of polygons
need not adhere to this criteria.

2 The criticalness of a geometric feature depends on the curvature of the geometry.

The following two sub-sections will cover the techniques of partitioning a mesh using

the Orientation (see Section 2.1.1) and Locality (see Section 2.1.2) attributes

respectively. In the sub-section 2.1.1, we will employ the concept of Voronoi

Diagrams to explain how the Orientation attribute will work as perceived.

2.1.1 | GROUPING USING THE ORIENTATION ATTRIBUTE

Without loss of generality, suppose that a set of sites is given in the Euclidean plane

(see Figure 2.3). The number of sites is assumed to be two or more. Given this site

set, the problem is to assign every point in the plane to the closest member in the site

set. As a result, the set of points assigned to each member in the site set forms its

region. These regions are mutually exclusive (i.e. non-overlapping) and adjacent

regions have borders that are equidistant from the two sites corresponding to the two

regions. This collection of regions forms a tessellation. This tessellation is known as a

Voronoi Diagram, and the regions constituting the Voronoi Diagram are called

Voronoi Regions.

Figure 2.3: A Voronoi diagram divides a set of points (black dots) into

Points

Sites

Voronoi
Region

30

a region around each site (yellow dots) such that the borders of
adjacent regions are equidistance from their corresponding sites.

Suppose each site is a unit vector (in 3-dimensional space) that radiates from the

center of a unit sphere. Then the problem statement can be rewritten as assigning

every point on the sphere’s surface to the closest member in the site set. Points on the

sphere have unit normal vectors that radiate from the center of the sphere (just like

each unit vectors of the site set). Since these normals are orientated about the center

of sphere, they represent the orientation of their respective points. Hence, the problem

statement can be re-interpreted as assigning every point on the sphere’s surface to a

member in the site set that has the closest orientation. The metric to represent the

distance between a point’s orientation (or the unit normal vector) and a site vector can

be stated as the dot product between the two vectors (see Equation 2.1).

where Ni is the unit normal vector of a point Pi on a unit sphere Psphere and Sj is a unit

vector in the site set S.

Equation 2.1 calculates the angle of separation between a point’s normal vector and

site vector. Hence, a point can be assigned to a site vector that yields the smallest

angle of separation using Equation 2.1.

Consequently, we can define a Voronoi Region for the site vector as the region

containing a set of points that yields the smallest angle of separation to that site

vector.

31

where VRj represents the Voronoi region (of the site vector Sj) containing all points

(lying on the unit sphere Psphere) that form the smallest angle of separation (dmin) with

the site vector Sj.

A Voronoi Region, based on Equation 2.2, is a group of points that are orientated in

the same direction as the site vector for the corresponding region (see Figure 2.4).

Figure 2.4: Shows a group of points on a unit sphere that are grouped
to a Voronoi Region corresponding to the site vector Sj. That is, there
exists a site vector S that can represent the general direction of the
highlighted points in the figure.

For the purposes of this thesis, we have extended the problem space from a unit

sphere to a complex 3D mesh (see Figure 2.5). If the 3D mesh is positioned at the

same origin as the unit sphere (of the previous problem space), then we can represent

each polygon as a point (corresponding to the center of the polygon) whose unit

S

32

normal vector radiates from the origin. Thus, Equation 2.1 and 2.2 will still hold true

for the set of polygons in a 3D mesh.

Figure 2.5: Shows a 3D mesh model positioned at the same origin as
the unit sphere in Figure 2.4. And just like the unit sphere, the
highlighted points are grouped to a Voronoi region that corresponds to
the vector S.

Each polygon of the 3D mesh is assigned exactly to only one Voronoi Region. The

resulting Voronoi Diagram is a set of Voronoi Regions, each containing a set of

polygons that are orientated in the direction of their corresponding site vectors.

However, at this stage, the Voronoi Regions sought to cluster the polygons based on

their orientations only. Thus, in Euclidean space, the polygons of the same Voronoi

Region can be spatially disjoint as shown in Figure 2.5. The sub-section 2.1.2 will

discuss on why this discontinuity amongst the polygons in a group is not desirable

and how it can be overcome.

Note that the selection of the site vectors is crucial for this stage of the Polygon

Grouping process as it will determine the distribution of the polygons across the

S

33

Voronoi Diagram and the number of Voronoi Regions created. This will be covered in

the Section 2.2: Code-Book Generation.

2.1.2 | GROUPING USING THE LOCALITY ATTRIBUTE

In the previous sub-section, we have seen how polygons of a 3D mesh can be grouped

based on the orientation attribute of a 3D polygon. The resulting groups will contain

polygons that have similar orientations. However, these polygons can be spatially

disjoint and may not lie on a single flat plane (see Figure 2.6). Thus, these groups will

be further broken down by separating the disjoint groups of polygons. The resulting

sub-groups will be called “Fragments” for discussion purposes of this thesis.

Figure 2.6: Shows 3 fragments (2 red regions and 1 green region) of a
3D mesh model. The red regions have the similar orientation but are
disjoint. Thus, a fragment will be formed to represent each of the
fragments.

By observation, the group of polygons presented in Figure 2.6 can be broken down

into 3 smaller groups (or fragments). Mathematically it is possible for us to employ

34

K-Means Clustering [3, 5, 12] to form these groups. However, an initial number of

groups (i.e. the K in the K-Means Clustering) needs to be provided for the clustering

to begin. Since there is no way to know the number of groups initially, we abandoned

the idea of using this technique, and looked at the connectivity information of the

polygons and their vertices instead. Thus, we begin by defining a Fragment.

A fragment is a set of polygons, made up of vertices such that every

vertex is connected to another directly or indirectly.

In other words, every vertex in a fragment connects to another vertex in the same

fragment by tracing along the edges of the polygons of the fragment. Given the

following set of vertices, the path of connectivity between the vertices can be

expressed as Ti,k = { Vi, Vj, Vk } where Ti,k denotes the path from vertex Vi to Vk

through Vj. In this arrangement, Vi does not have a direct link to Vk. However, Vj is

linked to both Vi and Vk. Thus, Vi can reach Vk only via Vj. If the cost of connectivity

of Vi to Vj is denoted as 1 unit, the cost of the path Ti,k can be expressed as:

where Ti,j denotes the path between Vi and Vj, and Tj,k denotes the path between Vj and

Vk. A generalization of equation 2.3a is given in equation 2.3b.

where m is the number of paths needed to reach vertex Vn+m from vertex Vn. To

normalize the cost information, the sum of the costs of all the paths taken is divided

35

by the number of paths taken. In other words, the cost of connectivity does not depend

on the number of paths taken and evaluates to 1 for vertices within a fragment. Since

vertices from different fragments are never connected, m is 0 and thus, the cost of

connectivity across fragments will always be !.

Based on this property, we can form fragments by iteratively looping through all the

polygons (and their vertices) of a group (the result of the previous sub-section). In

each iteration, a polygon is added to a fragment if any one of its vertices has a cost of

1 when connecting to the other vertices in the fragment.

At the end of this stage of the Polygon Grouping process, we will have fragments

with polygons that are orientated towards a general direction. Thus, a fragment can be

represented as a single flat plane. For some sub-processes in the rendering pipeline

(where accuracy of the geometry is not crucial), a fragment can be approximated to be

an n-sided polygon, orientated towards the normal of the fragment.

2.1.3 | POLYGON GROUPING ALGORITHM

Polygon grouping is a process that groups connected polygons with similar

orientations together. While this process is presented in two distinct sections (Section

2.1.1 and 2.1.2) and thus suggesting two separate sub-processes, they can however, be

implemented as a single process. The following shows the code listing for the

polygon grouping algorithm for a given set of M polygons p and a set of S voronoi

site vectors µ.

36

Algorithm 2.1: Polygon Grouping

1 begin initialize M, p1, p2, ..., pM, S, µ1, µ2, ..., µS

2 for every pi that is not assigned to a fragment

3 create a new fragment fy

4 add pi to fragment fy

5 classify pi to site vector µj

6 push neighbors of pi onto queue Q

7 pop next npk polygon from Q

8 classify npk to site vector µw

9 if µw is the same as µj then

10 add npk to fragment fy

11 add neighbors of npk to queue Q

12 end if

13 until Q is empty

14 next pi

15 end

Algorithm 2.1 starts by looping through all the polygons in set M. However not all

polygons will be selected to proceed. Only polygons that are not already assigned to a

fragment, will be allowed to proceed. The objective of each successive entry into the

loop in line 2 of the code listing above, is to identify all the polygons that are

similarly oriented and connected together directly or indirectly (see Equation 2.3). So

when a polygon pi is allowed to proceed beyond line 2 of the code-listing, it will seed

the creation of a new fragment fy (line 3).

37

The classify operation in line 5 (and in line 8) refers to the classification of a

polygon’s orientation to a site vector. This requires a dot product (see Equation 2.1)

between the polygon’s direction vector and all the site vectors of the set S to find for a

closest match. As such, for a larger set of S site vectors, the complexity of this process

should increase linearly and thus, the complexity involved for this part of the

algorithm is O(S). Due to this cost, the classification result of a polygon is stored once

it is subjected to the classify operation, thus ensuring that this cost is incurred only

once per polygon.

To speed up the search for the closest site vector in the classify operation, the

hierarchical nature of the site vectors can be utilized. As will be discussed in Section

2.2.1, every set of site vectors used will have 6 distinct key site-vectors. The rest of

the vectors will be uniquely grouped to one of these key vectors. Therefore, the

classify operation can be implemented in two passes. The first pass will be to

determine with key site-vector that the polygon belongs to. Then in the second pass, a

more refined search can be done within the list of site vectors corresponding to the

key site vector found in the first pass. This implementation would speed up the

classify operation. However for discussion purposes in this thesis, we will assume that

the classify operation is implemented as a single pass.

To find all the other similarly-oriented and connected polygons for the fragment fy,

Algorithm 2.1 employs a queue to hold a list of polygons npk identified to be the

neighbors of the polygon pi. As each polygon npk is popped off the queue, it will be

classified to a site vector (in line 8), if not already classified. Then the algorithm

determines if this polygon npk has a similar orientation classification as the polygon

38

pi. If so polygon npk is assigned to the fragment fy (that also contains pi).

Subsequently, neighbors of polygon npk are also added to the queue. At the end of

each loop (in line 2) for polygon pi, all the polygons for a fragment fy would have

been identified.

The loops in line 2 for pi and in line 7 for npk, will always skip to the polygon that has

not been already assigned to a fragment. As such, each polygon is subjected to the

classify operation only once during the run of the algorithm. In other words, for each

run of the loop for polygon pi, all the polygons for the fragment fy, are identified and

these polygons will not be subjected to the classify operation again. Since the

complexity for rest of the operations in comparison to the classify operation is

negligible, the complexity of Algorithm 2.1 is dependent on the classify operation for

every polygon in the set M. Also since the two loops in line 2 and line 7 are mutually

exclusive (i.e. once a polygon is processed in one of the loops, it is excluded from

processing in the other loop), the algorithm is O(MS). That is the cost of the algorithm

is directly dependent on the number of polygons and number of site vectors.

39

2.2 | CODE-BOOK GENERATION

The Polygon Grouping process, as discussed in the previous section, consists of two

stages. Based on a set of site vectors, the first stage groups polygons that have similar

orientations to the sites vectors, into Voronoi Regions around each site vector. The

second stage breaks down these groups into fragments that contain polygons that are

connected to at least one other polygon in the fragment by at least one vertex. These

two stages have been covered in detail in the previous section, except for the selection

of the unit vectors for the sites set. From here on, a set of site vectors will be referred

to as a Code-Book and a site vector will be called a Code-Vector.

A code-book will determine the number of fragments produced and the distribution of

the polygons throughout these fragments. If the number of fragments is too large, the

performance of the rendering pipeline might be adversely affected. For example, the

performance of Ambient Occlusion [47, 49] operation decreases with increasing

number of polygons. Since we can use a fragment to approximate a group of polygons

as one large polygon, the performance of the Ambient Occlusion calculation will only

improve by decreasing the number of fragments. However, if the number of fragments

is too small, approximation of a fragment to single flat plane might not be desirable

(see Figure 2.7).

40

Figure 2.7: Shows the cross section view of a set of polygons that are
grouped together to form a fragment. This fragment, however, cannot
be approximated into a single flat plane without a lot of loss in
accuracy due to the curvature of the fragment.

Approximating the fragment, shown in Figure 2.7, as a single flat plane will affect the

accuracy of the results of operations such as Mesh Deformation (that depends on the

accuracy of geometric features of a 3D mesh). Thus, finding the balance between the

number of fragments and the distribution of polygons for a given 3D mesh is essential

to the rendering pipeline’s performance and quality of render.

To achieve this balance, the Code-Book Generation process needs to provide the

flexibility to adjust the number of code-vectors and their distribution about the center

of a unit sphere (for explanation of using a unit sphere, see Section 2.1.1: Grouping

using the Orientation Attribute). The following three sub-sections are devoted to

discussing the various schemas to generate a code-book that will conform to the

orientations of the polygons of a 3D mesh model. The first two sub-sections will

introduce schemas that can create a generic code-book and map the orientations of the

Flat Plane

Fragment

41

polygons in a set to the code-vectors. The first schema is a quick-and-dirty method to

creating a code-book and does not take the dimensions of a 3D mesh model into

account. The second schema, expands on the first one by selectively increasing code-

vectors along certain axes. In the third sub-section, further refinements this process

will be introduced.

2.2.1 | SCHEMA 1: UNIFORM ELLIPSOIDAL SCHEMA

The aim of the first schema is to create a generic code-book whose code-vectors are

distributed evenly throughout the code-book. In other words, each code-vector should

point in a distinct direction and should have the same angle of separation between its

neighboring code-vectors. In this sub-section, we will look at how to generate a code-

book based on these two considerations.

In Section 2.1.1, Grouping using the Orientation Attribute, a site vector from a sites

set is described as a unit vector that radiates from the center of a unit sphere

positioned at the origin of a 3D scene. Also, each site vector is orientated about the

center of the sphere. Thus, site vectors, distributed about the unit sphere, will point in

distinct directions.

Figure 2.8(a) shows vectors radiating from a point in 3D space, along each of the six

major axes (X, Y, Z, -X, -Y, and -Z). These six vectors point in six distinct directions

and have a separation angle of 90 degrees from their neighbors. Another way to

visualize these vectors would be as depicted in Figure 2.8(b).

42

Figure 2.8: Shows (a) a set of 6 vectors radiating from the origin along
the 6 major axes; (b) the polygon normal vectors of a unit cube are
another way to visualize the vectors in (a).

Each polygon of the unit cube, in Figure 2.8(b), has a normal (expressed as a vector)

that radiates from the center of the unit cube. These normal vectors corresponds to the

vectors shown in Figure 2.8(a). Thus, these normal vectors are used to form the code-

vectors that are used in the Polygon Grouping process. The following figure is an

example of using these six vectors to partition a 3D mesh model.

Figure 2.9: Shows the end result (b) after applying the Polygon
Grouping process on the 3D model in (a). Polygons are grouped based
on their orientations with respect to the 6 vectors introduced in Figure
2.8.

(a) (b)

+Y axis

-Y axis

-X axis

+X axis

-Z axis

+Z axis

+Y axis

-Y axis

-X axis

+X axis

-Z axis

+Z axis

(a) (b)

43

In Figure 2.9, the polygons of the sphere are grouped into 6 fragments. Each of these

fragments has a normal that corresponds to the normal vectors of the unit cube in

Figure 2.8(b).

In the beginning of this section (Code-Book Generation), the flexibility to control the

number of fragments and the distribution of the polygons throughout these fragments

was stated as an essential consideration. And in this sub-section, one of the goals for

the first schema is to create a code-book of vectors that have equal separation angles

from their neighbors. So, for example, in order to increase the number of fragments,

the number of distinct code-vectors can be increased as shown in Figure 2.10.

Figure 2.10: Shows (a) a set of 54 distinct code-vectors radiating from
the origin; (b) an alternative way to visualize the set of 54 code-vectors
as a sphere.

There are 54 distinct code-vectors shown in Figure 2.10(a). The angle separation

between any two neighboring vectors is 30 degrees. The alternate method to visualize

these vectors is shown in Figure 2.10(b) where the normals of the polygons of the unit

sphere correspond to the vectors of the Figure 2.10(a). Incidentally if the vertices of

(a) (b)

44

the unit sphere in Figure 2.10(b) is expanded to fit the unit cube’s profile, it will look

like as follows:

Figure 2.11: Shows that as the vertices of the unit sphere is expanded
outwards to fit a cube’s profile, a sub-divided unit cube results.

The resulting geometry is also a unit cube. In this case, the unit sphere is transformed

into a unit cube with 3 sub-divisions along each of its sides. Reversing the

transformation process will recover the unit sphere whose polygon normals will

provide the code-vectors as shown in Figure 2.10. Thus, it is possible to use a unit

cube with arbitrary number of sub-divisions to create a code-book with distinct unit

vectors that are uniformly distributed about the center of the cube (or sphere). For

discussion purposes the intermediate unit sphere of this process will be referred to as

a Gaea-Sphere throughout this thesis.

2.2.1.1 | GAEA SPHERE PROPERTIES

This sub-section will look at some of the notable properties of a Gaea-Sphere.

๏ Naming Convention: A Gaea-Sphere is a 3D geometric model whose polygon

normals are uniformly distributed about the model’s center. As shown in Figures

2.8 through 2.11, a Gaea-Sphere can be derived from a unit cube with equal

45

number of sub-divisions along each side of the cube. The number of sub-divisions

will determine the number of polygon normals that the Gaea-Sphere will yield.

For discussion purposes, a Gaea-Sphere whose corresponding unit cube has N

sub-divisions, will be referred to as Gaea-N where N is greater than or equal to 1.

That is, the number of sub-divisions will be reflected in the name of the sphere.

Figure 2.12 shows examples of using this naming convention to refer to Gaea-

Spheres.

Figure 2.12: Shows geometric models of (a) Gaea-1; (b) Gaea-3 (c)
Gaea-7.

๏ One Subdivision: The model shown in Figure 2.12(a) is referred to as Gaea-1.

This model is essentially a unit cube with 1 sub-division along each of its axes.

Despite its appearance, it will be referred to as a Gaea-Sphere in this thesis. This

sphere will yield six distinct code-vectors, one along each axis (i.e. X, Y, Z, -X, -

Y, and -Z). Since the minimum number of sub-divisions allowed on a unit cube is

one, Gaea-1 creates the smallest code-book possible for this schema. In other

words, a Gaea-Sphere will create a code-book of at least six code-vectors.

๏ Number of Polygons: The model shown in Figure 2.12(b) is a Gaea-3. This

sphere has 54 polygons (i.e. it creates a code-book of 54 distinct code-vectors).

(a) (b) (c)

46

The model shown in Figure 2.12(c) is a Gaea-7 and it has 294 polygons. Thus, the

relationship between the number of sub-divisions and the number of polygons of a

Gaea-Sphere can be expressed as:

where V(n) is the number of polygons of Gaea-n and V(1) is the number of

polygons in Gaea-1, which is six polygons.

Using Equation 2.4, the number of polygons (i.e. the number of code-vectors

yielded) for a Gaea-Sphere is calculated as the product between the number of

polygons in Gaea-1 and the squared number of sub-divisions of the Gaea-Sphere.

Thus, it can be deduced that all Gaea-Spheres will create a minimum of six

distinct code-vectors.

๏ Hierarchy of Code Vectors: Another deduction from Equation 2.4 is that as n,

the number of sub-divisions, decreases, the Gaea-Sphere converges to a Gaea-1.

In other words, as n is decreased to (n-1), the code-vectors of Gaea-n are

collapsed into Gaea-(n-1). Once a code-vector of the Gaea-n is collapsed into the

Gaea-(n-1), that code-vector will be replaced with the corresponding code-vector

of Gaea-(n-1). This will continue till all the code-vectors are collapsed into one of

the 6 code-vectors of Gaea-1 (see Figure 2.13).

47

Figure 2.13: Shows an example of a hierarchy of code-vectors.
Polygons P1 and P2 are mapped to the intermediate code-vector V1
while Polygon P3 is mapped to the intermediate code-vector V3. These
code-vectors (V1 and V3) are in-turn mapped to the code-vector V2 of
the Gaea-1. This is a simple demonstration of the multiple levels of
Polygon Grouping for a polygon can be achieved by mapping
intermediate code-vectors to the base code-vectors.

This hierarchical nature the Gaea-Spheres leads to dynamic reduction in the

number of fragments created from the Polygon Grouping process, as each code-

vector has a hierarchical path. As n is decreased, the Polygon Grouping process

can follow the hierarchy of the code-vector upwards and determine which

fragments will be merged.

2.2.1.2 | UNIFORM ELLIPSOIDAL SCHEMA

The schema discussed in this section requires the code-vectors to be uniformly

distributed such that the angle of separation between neighboring vectors are equal.

Using Gaea-Spheres, a code-book (whose size can be determined using Equation 2.4),

that satisfies this condition, can be created. Since the resulting vectors are uniformly

distributed about the center of the sphere, this schema is called Uniform Ellipsoidal

P1 P2 P3 PN. . .

V1 V2 V3 VM. . .

V1 V2 V3 V4 V5 V6
Gaea-1

Code-Vectors

Intermediate
Code-Vectors

Polygons

Collapse into V2

48

Schema. Figure 2.14 shows the result of applying this schema to the Polygon

Grouping process on a 3D mesh model.

Figure 2.14: Shows a 3D mesh model (commonly known as the
Stanford Bunny) when subjected to Polygon Grouping using Gaea-3.
Colors for the fragments are based on the code-vectors.

2.2.1.3 | FRAGMENT MASKS

In Figure 2.14, a Gaea-3 is applied to the 3D mesh model that has a polygon count of

69,451. This resulted in creating 5,076 number of fragments. These fragments (as

discussed in Chapter 3) will be distributed to various machines to render and the

resulting sub-images will be composited to form the complete rendered image of the

scene. An important goal as stated in Chapter 3 is to eliminate the need for depth

buffer during the composition of the sub-images. In other words, each sub-image

should not have any overlapping regions with other sub-images.

To achieve non-overlapping sub-images, we would need to mask out the regions

occupied by fragments rendered in other machines. Masking out these regions would

require information about all the fragments distributed to every rendering machine.

(a) (b)

49

Replicating a 3D model or scene to every machine can be an expensive process, and

thus we propose transferring the simplified fragments information only.

This problem was tackled in [29] as described in Section 1.2. Since the set of

connected polygons in these fragments are similarly orientated, the curvatures of

these fragments become negligible as the resolution of the code-book is increased.

Thus it is possible to flatten a fragment by removing the finer details of the fragment.

When a fragment is flattened, only the boundary vertices of the fragment are retained

and re-triangulated.

Figure 2.15: Shows the effects of flattening fragments. The resultant
mesh in (a) has 64% polygon reduction; and (b) has 40% polygon
reduction.

These flattened fragments shall serve as masks. When a machine is assigned a

fragment to render, it is also provided with the flattened information of all other

50

fragments. The fragment masks will be rendered together with the assigned detailed

fragment (see Figure 2.16).

Figure 2.16: Shows an illustration of how simplified fragments are
used to mask out overlapping regions in sub-images.

Unlike the detailed fragments, the flattened fragments will be rendered without

texture and lighting effects. Non-overlapping regions occupied by the flattened

fragments are set as transparent in the final sub-image before it is transmitted for

composition with other sub-images.

2.2.2 | SCHEMA 2: NON-UNIFORM ELLIPSOIDAL SCHEMA

The role of the code-vectors can be viewed as the sampling of a 3D mesh model’s

polygon orientations. Thus, it is important for the code-vectors to represent key

geometric features of the model. That is prominent polygon orientation information

need to be captured in the code-book.

Fragment Mask

Detailed Fragments
Rendered by
Rendering Agent

51

The previous sub-section dealt with how to design a code-book with code-vectors

distributed uniformly. This code-book provides a generic solution for various 3D

mesh models, regardless of their dimensions. By disregarding the dimensions of a 3D

mesh model, some of the geometric information is lost3 in the process of Polygon

Grouping. This problem is illustrated in Figure 2.17.

Figure 2.17: Shows a 3D mesh model (a low-resolution version of the
Stanford Bunny model from Figure 2.14) partitioned using Gaea-1.
Only the fragment with highest concentration is highlighted.

In Figure 2.17, partitioning the 3D mesh model (contains 1443 polygons) with Gaea-1

produces 116 fragments. On average, there are 12 polygons packed into a fragment.

However, largest concentration of polygons found in a fragment is 254. That is about

18% of the polygons of the 3D mesh model has been grouped into that one fragment.

The possibility that some these polygons will have critical geometric features is very

high. The same 3D mesh model when subjected to mesh partitioning using Gaea-2

52

3 The geometric information is not technically “lost” because the polygon orientations are still
preserved within each fragment. Instead the distribution of the polygons and the orientation of
fragments are not representative of the geometric features of the 3D mesh model.

yields 462 fragments. On average, there are 3 polygons packed into a fragment and

the largest concentration of polygons found in a fragment is 34. That is only 2.4% of

the polygons of the 3D mesh model has been grouped into that one fragment. Thus,

the chances of losing a critical feature in that fragment is much lesser than the one

from the previous mesh partitioning process. However, the number of fragments has

increased four fold with the increase in the number of sub-divisions of the Gaea-

Sphere for mesh partitioning.

The schema, proposed in this sub-section, solves this problem by creating a code-

book that has varying number of code-vectors along the axes. In other words, the

number of sub-divisions of the corresponding Gaea-Sphere will be different along the

each axis. Thus, unlike the Uniform Ellipsoidal Schema, the current schema will not

have a uniformly distributed set of code-vectors and hence, this schema is called Non-

uniform Ellipsoidal Schema.

To realize such a schema, we employ an iterative process where the number of sub-

division of the Gaea-Sphere is increased till the largest concentration of polygons in a

fragment is below a certain threshold value. The process starts off by using Gaea-1 to

partition a 3D mesh model. At the end of an iteration, the number of sub-divisions

along the axis of the fragment that has the highest concentration of polygons, is

increased. This, however, results in a Gaea-Sphere that does not use the same naming

convention as that used in the Uniform Ellipsoidal Schema. To reflect the varying

number of sub-division in each axis, the new naming convention for the Gaea-Spheres

is Gaea-Nx,Ny,Nz. For example a Gaea-Sphere with 1 sub-division along the X axis, 4

sub-divisions along the Y axis, and 3 sub-divisions along the Z axis, is referred to as

53

Gaea-1,4,3. Since the number of divisions are different for each axis, Equation 2.4 is

replaced with Equation 2.5 for finding the number of polygons (or code-vectors) for a

Gaea-Nx,Ny,Nz.

where V(nx, ny, nz) represents the number of polygons of a Gaea-Nx,Ny,Nz, nx

represents the number of sub-divisions along the X axis, ny represents the number of

sub-divisions along the Y axis, and nz represents the number of sub-divisions along

the Z axis. When the nx, ny, nz are set to be the same, Equation 2.5 will reduce to

Equation 2.4 as follows:

As mentioned in Section 2.2.1.1, V(1) is the smallest Gaea-Sphere that can be created

and can yield 6 polygons. Thus replacing the value 6 with V(1) without loss of

generality in the above derivation, shows that Equation 2.5 reduces to Equation 2.4

when the sub-divisions of a Gaea-Nx,Ny,Nz are the same.

Subjecting the 3D mesh model, shown in Figure 2.17, to the Non-uniform Ellipsoidal

Schema, yields a fragment count of 9181 and the highest concentration of polygon

count in a fragment is 255. Starting with Gaea-1, the iteration process was stopped at

an upper limit of 256 code-vectors, resulting in Gaea-4,7,3. Thus, this schema

provides a better distribution of polygons across the fragments while keeping the

code-book size to a minimum as compared to the Uniform Ellipsoidal Schema.

54

2.2.3 | WEEDING ORPHANS

In the previous section, a non-uniform distribution of code-vectors proofed to

represent the geometric structure of a 3D mesh model better than a uniformly

distributed set of code-vectors. This was achieved by sub-dividing a Gaea-Sphere

along the axis that has the highest concentration of polygons in a fragment. However,

this schema is not without its problems. As shown in Figure 2.18, applying the Non-

uniform Ellipsoidal Schema to a 3D mesh model can sometimes create fragments

with only one polygon in them. These fragments are called orphans.

Figure 2.18: Shows an “orphan” fragment (highlighted in red color) of
a 3D mesh, partitioned using Gaea-1.

Storing only one polygon in a fragment is not cost efficient in terms of both storage

and computation. An orphan requires space for the polygon information as well as the

fragment information. Thus, essentially the cost of storing too many orphans will

55

exceed the cost of storing just the polygons, without the fragments information. Also

processing too many orphans does not provide computation cost savings for

operations such as Ambient Occlusion as the processing time for an orphan will be the

same as that of its corresponding polygon. The 3D mesh model in Figure 2.18 yielded

120 number of orphans. That is 46% of the fragments created are orphans. In this

subsection, a method called Orphan Weeding is introduced to reduce the number of

orphans after subjecting a 3D mesh to polygon grouping.

The idea for this method is adopted from the Popularity Algorithm commonly used

for color quantization in the reduction of 2D image resolution or for 2D image

compression. The color quantization algorithm finds the more frequently occurring

colors and includes them in its code-book. Then based on this code-book, the image is

quantized (i.e. the original color pixels are replaced with the closest color values from

the code-book). Likewise, the Orphan Weeding method seeks to retain the “popular”

fragments (or the fragments with high polygon concentration) for a given 3D mesh.

The “popularity” of a fragment is weighed against that of the other fragments and the

less “popular” ones are weeded. These weeded fragments will be subjected to

Polygon Grouping again but this time based on a code-book consisting of only the

code-vectors of the neighboring fragments.

The “popularity” of a fragment is the weighted sum of two of its attributes and they

are namely,

1. Strength: In the color quantization, popular colors are the ones that are recurring

most often. Likewise the strength attribute of a fragment is defined as the number

56

of polygons that are associated with it verses the total number of polygons in a 3D

mesh model. The following equation represents this attribute mathematically.

where Fj refers to a fragment j of a mesh model M and PFj is the set of polygons

of the fragment j. Attributing a cost of 1 to each polygon in the mesh M, the

strength attribute of a fragment is expressed as the percentage of polygons of

mesh M found in fragment j. This equation will hold true if and only if the

polygon grouping process guarantees that every polygon is uniquely grouped to

only one fragment.

2. Influence: An orphan can sometimes contain a polygon whose area of influence

in the 3D mesh model is quite significant. Weeding the orphan can lead to the loss

of geometric structure of the fragments. Thus, a influence attribute is considered

and is defined as the amount of accumulated area covered by the polygons that are

associated with a particular fragment. The following equation represents this

attribute mathematically.

where A denotes the surface area of a group of polygons in a fragment or mesh

Equation 2.7 calculates the influence of the fragment Fj, as the area of all the

polygons associated with that fragment against the total surface area of the 3D

mesh model, M.

57

The popularity of a fragment is determined as the weighted sum of the strength and

influence attributes of the fragment. As a rule of thumb, the weights are set to 0.5 for

both the attributes. This thus emphasizes both the attributes equally in identifying

orphans. The weeding process removes the fragments from the bottom of the list (i.e.

the least popular ones first) and stops when a terminating condition is reached (e.g.

number of fragments). At the end of the process, a minimal set of fragments that

represents the critical features of the 3D mesh model is created.

58

2.3 | SUMMARY

Our development of the Ellipsoidal Mesh Partitioning technique was motivated by

three main considerations: algorithmic approach, geometric feature preservation, and

balanced distribution of polygons across all fragments. By using both the Uniform

and Non-uniform Ellipsoidal Schemas that are modeled after the geometric shape

called Gaea-Sphere, a code-book for the mesh partitioning technique can be created

algorithmically. Since a Gaea-Sphere guarantees that each code-vector is distinct and

covers all 6 orthogonal axes, polygons with similar orientations to the code-vectors

can be grouped together, thus preserving geometric features. The resulting fragments

that consist of connect polygons that are similarly oriented can be approximated into

flat or simplified polygons. By controlling the resolution of the code-book, we have

shown how to balance the distribution of the polygons amongst the various fragments.

59

CHAPTER 3

3 | COLLABORATIVE RENDERING

Collaborative Rendering is a form of Distributed Rendering whereby several

computers come together to render a 3D scene. Unlike distributed rendering,

collaborative rendering, has minimal reliance on a dedicated server to manage part of

(or even the entire) process. That is, the computers involved in the rendering process,

are aware of their peers on the network and communicate with each other to render a

scene or a frame. Thus, issues such as server bottlenecks and scalability limitations of

a distributed rendering environment are not present in a collaborative rendering

environment that uses P2P technology.

This chapter introduces our collaborative rendering system called the Ellipsoidal

Collaborative Visualization Environment (ECOVE). This system adopts the

conventional graphics pipeline for distributed rendering, partitions a 3D mesh using

Ellipsoidal Mesh Partitioning technique for distribution, and uses P2P to

collaboratively manage the rendering process (see Figure 3.1).

60

Figure 3.1: Shows the overview of the ECOVE system. The Data
Server serves out fragments of a 3D mesh to the Rendering Nodes. The
rendered sub-images from each Rendering Node are sent for
compositing at the client machine and displayed on screen.

Data Server

Rendering

Node

Rendering

Node

Rendering

Node

Sub-Image

Layer

Sub-Image

Layer

Sub-Image

Layer

Compositor

Final Image

Buffer 1

Final Image

Buffer 2

Partition 3D Mesh and

Create Work Packages

R
e

n
d

e
r

3
D

 s
c

e
n

e
 s

u
b

s
e

ts
 a

n
d

S
u

b
m

it
 i

m
a

g
e

 l
a

y
e

rs
 t

o
 C

o
m

p
o

s
it

o
r

Monitor other nodes

for Presence and

Perfomance

Composite

Sub-Image Layers

Monitor other nodes

for Presence and

Perfomance

Double-Buffered

Frame Buffer

Display

61

In particular, ECOVE is structured to:

1. Use the multiple hardware graphics accelerators available on the network to

increase rendering performance over what is achievable by a sequential renderer

that uses a single accelerator.

2. Decouple communication bandwidth requirements from the complexity of the

scene and the number of rendering nodes.

3. Avoid and/or minimize load imbalances with minimal reliance on a centralized

server.

Chapter 2 looked at how to partition a mesh into groups of polygons called fragments

(see Section 2.1.2 for definition of a fragment). The problem posed was to break up

the polygons of a mesh into fragments based on their orientation and locality. Another

constraint introduced was to ensure the distribution of the polygons throughout the

fragments is even. However this problem was approached without regard to work

partitioning and assignment. Thus, this chapter considers the questions of how to

partition the overall rendering work in each frame into individual tasks and how to

perform initial assignment of these tasks in a load-balanced manner. While work

partitioning and assignment is a fundamental problem for all distributed/parallel

applications, the rendering domain poses two additional challenges when coupled

with the above structural requirements:

4. To make use of hardware-assisted rendering, the rendering work must be

partitioned in a way that does not require accessing information generated and

maintained internally to the hardware accelerators.

62

5. Because of the need for visibility culling and sorting, the partitioning strategy

used can have a considerable effect on the total amount of rendering computation

and the size of the partial images that must be communicated [67].

ECOVE provides a novel approach to the partitioning problem called Context Aware

Mesh Partitioning (CAMP) to help meet these challenges. CAMP extends on the

Ellipsoidal Mesh Partitioning (EMP) technique to consider workload partitioning and

assignment. Given a set of meshes in a 3D scene to be rendered, the basic idea behind

CAMP is to assign two subsets of fragments to every rendering node in such a way

that:

๏ the first subset, called the owner set, will have fragments with similar locality, and

๏ the second subset, called the buddy set, will be a copy of the another node’s owner

set.

All nodes will focus on rendering just the owner set. In the event that a rendering

node drops out of the network or quits the rendering environment, the node holding

the abandoned workload as its buddy set will take on the additional responsibility

until the Data Server re-partitions the workload. At the end of the frame, the partial

images generated by different rendering nodes are composited together to form the

final image.

More specifically, ECOVE as a system proposes to:

1. partition a 3D mesh using EMP technique into fragments,

2. for a system of P nodes, create P work partitions (or owner sets) such that:

63

๏ the fragments in the each owner set will have similar locality,

๏ the expected rendering plus transmission time of each owner set is load

balanced, and

๏ total amount of data pixels that must be communicated is minimal.

3. assign an owner set to every node, and

4. assign each node to monitor another node (called buddy node) for presence.

Each node will additionally receive a pseudo mesh (see Section 2.3). Such an

approximated mesh representation is particularly useful in advanced hardware

rendering techniques such as Shaders. For example, an Ambient Occlusion Shader

need not know the detailed structure of the entire mesh but only the general size and

position of the polygons with reference to the point at which the shadow is calculated.

The remainder of this chapter will look into ECOVE in more detail, describing the

CAMP algorithm’s ability to perform initial work partitioning in a load-balanced

manner while observing the necessary 3D mesh partitioning constraints. The final

section of this chapter will look at how P2P is used to manage the rendering process

collaboratively.

64

3.1 | WHY ECOVE?

Recall from Section 1.1 that distributed rendering systems can typically be classified

as one of sort-first, sort-middle, or sort-last. In sort-first, work is distributed based on

an image partitioning, where each node in the system is assigned responsibility for

calculating the effect of all primitives on the pixels in a portion of the final image. In

sort-middle, the geometric transformation and rasterization phases are distributed

independently across the system. In sort-last, each node is assigned a subset of the

polygons in the scene, without restrictions on the position of the polygons. At the end

of each frame, once each node has rendered the image corresponding to its assigned

polygons, the pixels must be sorted, typically using Z-buffering.

In sort-first and sort-middle, the required redistribution of primitives is a fundamental

problem in our targeted environment. This requires either recomputing the geometric

transformation of primitives that must be redistributed or accessing information that

may be hidden inside a hardware graphics pipeline. Second, the bandwidth

requirement for these two classes directly depends on the complexity of the scene that

is being rendered, violating one of our basic goals (see previous section). Finally,

because the mapping of primitives to image space changes depending on the

viewpoint, the amount of data that must be transmitted can change very unpredictably

from frame to frame. For example, in an assessment of the practicality of sort-first,

Mueller [16] gives communication measurements for three different scenes. For each

of these scenes (and the particular path taken through the scene), the number of

primitives that a sort-first system would need to redistribute can vary widely from

frame to frame, ranging from 5% to 100% of the scene. It seems extremely difficult to

65

achieve predictable real-time response in the face of such large variability in

bandwidth requirement.

Sort-last, on the other hand, is compatible with hardware-assisted rendering because

in each frame, the rendering nodes render their assigned work independently. Thus,

the problem of generating each partial image looks exactly as if it were an

independent rendering problem, allowing the rendering nodes to employ hardware-

assisted rendering.

ECOVE is similar to sort-last in that rendering nodes generate images independently,

and so is compatible with hardware-assisted rendering. However unlike sort-last,

primitives in ECOVE, are typically assigned to renderers with regard to their

orientation and locality. This means that each renderer does not need to send the entire

image for each frame. Also, for certain hardware-assisted rendering techniques such

as Graphics Shaders, the complete geometric structure needs to be provided to each

renderer. Thus many sort-last implementations resort to replicating the entire 3D

scene on all the nodes. ECOVE, however, only sends the portion of the mesh assigned

to the corresponding renderer and a simplified representation of all the fragments (see

Section 2.2.1.3). Shaders can also significantly benefit in terms of speed due to the

reduced number polygons that they have to include in their calculations by using the

simplified fragments.

66

3.2 | ECOVE ARCHITECTURE

Figure 3.1 shows a possible architecture for ECOVE. In this diagram, there are four

types of nodes and they are namely, Data Server, Rendering Nodes, Compositor, and

Display. For ease of implementation, the Data Server, the Compositor and the Display

can be implemented as the same node (see Figure 3.2). That is, functionally this node

is responsible for:

๏ partitioning the 3D scene meshes,

๏ assigning work partitions to the rendering nodes,

๏ computing the current viewpoint at the beginning of every frame,

๏ composite sub-image layers from the rendering nodes, and

๏ display final image at the end of every frame.

It is also responsible for re-partitioning and re-assigning the workload in the event a

rendering node drops out the network.

Figure 3.2: Shows the interaction between a Rendering node and the
Display node. In implementation of ECOVE, the Display node that
interacts with the user, also doubles up as the Data Server, and the
Compositor for the Rendering node.

Rendering

Node

Sub-Image

Layer
ViewPoint

Display,
Data Server,
Compositor

Work
Assignment

67

In each frame, every rendering node receives a new viewpoint, renders the fragments

it is assigned, and sends the generated image back to the display node. The rendered

(partial) image generated at each rendering node is referred to as a sub-image layer

(since the final image is a composite of the generated images).

In this section, three essential components of ECOVE, with respect to the architecture

shown in Figure 3.2, will be described:

1. A method for estimating the rendering time of each fragment.

2. A method for estimating the footprint of each fragment.

3. The CAMP algorithm with regards to rendering and communication costs.

3.2.1 | RENDERING TIME OF A FRAGMENT

In order to partition the overall rendering work in a load-balanced manner, we must

be able to estimate the rendering loads of scene objects (since the rendering of each

fragment corresponds to a task that must be assigned to some node). One possible

basis for such an estimation is the number of primitives in each fragment. Estimation

methods based on primitive count can be very inaccurate, however, because the time

required to render a set of polygons can vary widely depending on the viewpoint.

Thus, we take a different approach that leverages the fact that our targeted application

domain involves interactive rendering, such as that performed by an OpenGL 3D

mesh viewer.

In an interactive application such as an OpenGL viewer, the viewpoint typically does

not change significantly from frame to frame because the user is navigating through

68

the scene in real-time. This implies that each 3D mesh object’s rendering time in one

frame will be about equal to its rendering time during the previous frame. (Exceptions

to this include abrupt jumps to predefined viewpoints, mesh objects coming into or

going out of visibility, and crossings of level-of-detail thresholds.) For example,

Figure 3.3(c) plots the rendering time of a 3D mesh object as the viewer “walks” from

the viewpoint shown in Figure 3.3(a) to that shown in Figure 3.3(b). Note that while

the rendering times of the object at (a) and (b) are quite different4, they are (almost

always) very similar in adjacent frames.

Figure 3.3: Changes in the rendering time of a scene object with
multiple levels of detail: (a) the initial view, where the object is far
away from the viewpoint; (b) the final view, where the object is close
to the viewpoint; (c) plot of rendering time vs. frame number as the

69

4 This is consistent with and further supports the fact that estimation methods based on primitive count
is not very accurate.

viewer moves from (a) to (b). This measurement was taken using an
OpenGL viewer running on a 2.16 GHz Intel machine with Intel GMA
950 Graphics Chipset.

Based on this observation, the rendering time of a fragment in the last frame can be

measured as the predictor of its rendering time in the current frame. On most current

processors, the rendering time of a fragment is measured with very little overhead by

reading a free running counter in the processor.

3.2.2 | FOOTPRINT OF A FRAGMENT

Estimating fragments’ footprints in the final image of a frame is important for two

reasons:

1. The transmission time of an image layer may comprise a substantial portion of the

load on a rendering node and so must be taken into account by the CAMP

algorithm. This required transmission time can be estimated if the (approximate)

aggregated footprint of the fragments assigned to each node and the achievable

bandwidth is known.

2. Figure 3.1 shows that, at the end of each frame, all rendering nodes send their

image layers to the display node. Typically, this many-to-one communication must

be performed sequentially because it is assumed that the display node has only

one network connection and receiving is typically more expensive than sending

(hence multiplexing sends from multiple senders would only degrade

performance). This serialization implies that it is important to minimize the total

amount of per-frame communication for ECOVE to scale. This in turn implies

that CAMP should strive to assign fragments that are clustered together and have

70

similar orientations. This critical optimization is only possible if we can estimate

fragments’ footprints.

Figure 3.4: Shows the method for calculating the footprint of a
fragment.

The most accurate way to compute the footprint of a fragment is to determine exactly

the set of pixels it paints when it is facing the camera directly. This approach implies

distribution overhead that is proportional to the scene complexity though, and so is

too expensive for our purposes. Instead, a coarser, scene-independent approach is

used, as follows (see Figure 3.4). The viewport is divided into a grid of cells W " H,

where each cell corresponds to a block of pixels5. Each frame, the tight rectangular

bounding volume of the fragments, is projected onto the 2D grid. The footprint is then

estimated as the set of grid cells that the projection overlaps.

Note that calculating the footprint of a fragment is itself a simple rendering problem.

The hardware graphics accelerator on any Data Server node or Rendering node can be

used to compute these projections efficiently.

71

5 In our test cases, we use a 10 ! 8 grid to represent a 640 ! 512 pixel viewport.

3.2.3 | CONTEXT AWARE MESH PARTITIONING ALGORITHM

Context Aware Mesh Partitioning (CAMP) is an algorithm, employed by ECOVE to

aggregate a scene’s fragments into groups called work partitions. Note that CAMP has

not been been fully implemented for the experiments conducted in Chapter 4. As such

this thesis does not provide a proof of the algorithm discussed in this section and will

be left for future work instead. At the beginning of the first frame, CAMP can be used

by the Data Server to do an initial assignment of fragments to the rendering nodes.

When a rendering node becomes unavailable for rendering, its corresponding buddy

node takes over the rendering workload (see Section 3.4) causing an imbalance in the

workload. CAMP, once again, is used by the Data Server to rectify the load

imbalance.

Before describing CAMP more precisely and devising a solution, we first consider an

essential characteristic of the expected system architecture. As already discussed in

Section 3.2.2, the many-to-one communication required at the end of each frame must

typically be serialized. Figure 3.5(a) shows that this serialization can cause significant

idle time if the transmission time of each image layer is non-trivial compared to the

distributed rendering time. To avoid this costly idleness, the communication phase of

a frame need to be overlapped with the rendering of the next frame. Figure 3.5(b)

shows this overlapping and the resulting performance increase. This overlapping is

supported by most hardware accelerators via double buffering (and so is compatible

with ECOVE’s goal of using hardware graphics accelerators).

72

Figure 3.5(a): The distributed rendering of each frame consists of 2
operations, a rendering phase that can be performed in parallel and a
communication phase that (typically) must be performed sequentially
(each horizontal line represents the timeline of a rendering node).

Figure 3.5(b): We can increase the efficiency of distributed rendering
by overlapping the rendering operation of a frame with the
communication operation of the last frame.

While critical to performance, overlapping communication and computation

introduces an additional complexity to the partitioning and assignment problem. At

the beginning of each frame, each rendering node is already loaded with the time

required to transmit the image layer it generated for the last frame. The total

(expected) load on each node for each frame is this transmission time plus the

Node 2:

Node 3:

Node 4:

Node 1:

Rendering Sending Idle

Frame Start Frame End

Node 2:

Node 3:

Node 4:

Node 1:

End Frame n-2
Start Frame n

End Frame n-1
Start Frame n+1

End Frame n
Start Frame n+2

Rendering
Frame n

Sending
Frame n-1

Rendering
Frame n+1

Sending
Frame n

73

rendering times of its assigned fragments6. In addition, the minimum frame time is

determined by the larger of the maximum load and the sum of the transmission times

for the last frame, where the frame time can now be defined as the time from when

the rendering of a frame is initiated until the time when the rendering nodes are ready

to transmit the corresponding sub-image layers to the display node. Thus, a Context

Aware Mesh Partitioning corresponds to a dual optimization problem: minimize both

the load imbalance and the total transmission time.

3.2.3.1 | PROBLEM DEFINITION

The CAMP problem for a frame is stated more precisely as follows. Given:

๏ an ECOVE system ES with P rendering nodes, p0, p1, p2, ..., pP-1,

๏ a scene M with N fragments, o0, o1, o2, ..., oN-1,

๏ "(oi), the locality of fragment i (i.e. centroid of the fragment),

๏ parameters W and H used to logically partition the viewport into a coarse W " H

2D grid,

๏ CT, the cost to transmit the pixels in one grid cell,

๏ RT(o,v), the expected rendering time of each fragment o in M when viewed from

viewpoint v,

๏ a fragment to grid cells mapping

74

6 This assumes that both rendering and networking use the CPU and so cannot be performed
concurrently. If either task does not make use of the CPU (e.g., use of a Graphics Processing Unit,
GPU, to off-load processing from the CPU), then the load on each node would be the larger of the
rendering and the transmission times.

Let S denote a subset of M with Q fragments and define:

๏ the locality of S as:

๏ the expected rendering time of S as:

๏ the mapping of S to grid cells as:

and

๏ the size of S’s footprint:

!

FP(o,x,y,v) =

1 if cell(x,y) is in " o s
footpr int when viewed
from viewpo int v

0 otherwise

, o# M, 0

$

%

&
& &

'

&
&
&

(x < W , 0 (y < H,

75

Finally, let PartP = {S0, S1, ..., SP-1} be a P-way partition of M. Define:

๏ the load corresponding to Si as

and

๏ a cost function for PartP as

The problem then is to find a partition, PartP,best = {S0,best, S1,best, ..., SP-1,best}, of M

such that

๏ Locality Criterion: there does not exist ox ! Si,best where

and

76

๏ Optimization Criterion: Cost(PartP,best) # Cost(PartP) for all partitions that PartP

satisfy the locality criterion.

The locality criteria ensure that the fragments of the chosen partition are clustered

together. This is required for estimating the footprint of the partition (see Section

3.2.2). The optimization criterion attempts to minimize the larger of the maximum

load placed on any node (the first component of Cost(PartP)) and the total

transmission time (the second component of Cost(PartP)), which affects the

completion time of the next frame. The intuition for including the latter component is

that, while CAMP attempts to minimize the completion time of the first frame after it

has distributed the work partitions, it should not do it at the expense of the completion

time of the subsequent frames (by pre-loading the nodes with overly large

transmission times).

Thus based on Equation 3.1, the cost of a chosen partitioning for frame f is not

necessarily equal to the frame time. Rather, the frame time Tf for frame f is given by

where the second component of Tf is the sum of the transmission time for the previous

frame (frame f - 1). This component is not included in the cost function because there

is nothing that CAMP can do in frame f to lessen the transmission cost arising from

frame f - 1.

77

3.2.3.2 | WORK PARTITIONING SOLUTION

CAMP is implemented as a two-part algorithm. The first part finds a set of vectors

(i.e. cluster centers) using the k-means clustering technique [3, 5, 12] and locality of

all the fragments. This is to allow each rendering node to be assigned to some initial

set of fragments. k-means clustering also ensures that each fragment will be classified

to only one rendering node, and thus will be rendered only once. The second part

makes corrections in the workload distribution where k-means algorithm either

overloaded or under-loaded individual sets.

For a system of P rendering nodes, P number of cluster centers, µ1, µ2, ..., µP, are

randomly selected from the set of fragments in the scene as the initial set of cluster

centers (or vectors). The Locality Criterion, presented in the previous section,

determines how to refine these cluster centers. The algorithm for this phase is given as

follows:

Algorithm 3.1: k-means Clustering for first part of Work Partitioning

 begin initialize n, P, µ1, µ2, ..., µP

 do classify n fragments according to nearest µi

 recompute µi

 until no change in µi

 return µ1, µ2, ..., µP

 end

Given the partition, PartP,LC = {S0,LC, S1,LC, ..., SP,LC}, produced by using the Locality

Criterion, CAMP will make a second pass if the cost is determined by the load

78

component - that is, if Cost(PartP,LC) = max0#i<P L(Si,LC). To correct this imbalance,

CAMP employs an iterative approach. As outlined in the listing for Algorithm 3.2

below, each iteration attempts to re-classify a fragment to the next nearest cluster

center. This re-classification is an exhaustive search process whereby the distances of

every fragment in the partition with respect to the rest of the cluster centers, is

calculated. The fragment with the shortest distance with a cluster center (or partition)

is moved to new corresponding partition. This iteration process is aborted if the

Optimization Criterion is violated.

Algorithm 3.2: Re-classifying a Fragment.

 begin {o1, o2, ..., oN}, {µ1, µ2, ..., µP}

 do find shortest distance from every o to every µ

 set shortest distance pair oi - µj

 do find shortest distance pair in all oi - µj

 do classify oi to µj

 end

79

3.3 | DISTRIBUTED RENDERING AND FRAME COMPOSITION

The rendering pipeline in ECOVE (modeled after the Sort-Last distributed rendering

technique) begins with the decomposition of a 3D scene or mesh into sub-meshes.

These sub-meshes are then distributed across the various Rendering Agents in the

network (see Section 3.2.3). For every frame, each rendering agent renders a complete

image of the data it has been assigned to, using its local GPU. Then it reads back the

contents of the frame buffer from the GPU to main memory as a sub-image. This sub-

image is sent to a compositor node where a parallel image compositing step is

performed to blend all the full resolution sub-images into the final frame image; this

step intensively uses the interconnection network to transfer pixel data from the

rendering agents to the compositor. Finally, the composite image is written to the

frame buffer of the GPU on the intended machine. We propose the rendering pipeline

performance, PF, to be expressed as follows:

PF = DS + RT + CLT + CMP (eq 3.3)

where DS is the time required to dispatch scene settings (or animation information) to

all the rendering agents; RT is the time required to render a portion of the scene by a

rendering agent, and read back the color and depth information of the rendered sub-

image; CLT is the time required to collect n sub-images to compose the final image;

and CMP is the time required to merge all the sub-images together to form the final

image for display or storage to disk.

80

3.3.1 | DISPATCH SCENE SETTINGS

To render an animation sequence, the data server (see Figure 3.2) needs to broadcast

the animation information about the 3D mesh to all the rendering agents. This

information can be in the form of the angle of rotation or the entire transformation

matrix. If it is assumed that multicast is not used to broadcast the animation

information, then the time required to dispatch this information to n rendering agents

can be expressed as:

where lsi is the network latency between the data server and the rendering agent i; $ is

the size of the transformation matrix in terms of bytes; and bneti is the network

bandwidth for transferring information over the network from the data server to the

rendering agent i.

For discussion purposes, if we assume that the latency ls is negligible and the bnet is

the same for all rendering agents, then equation 3.4 can be simplified as follows:

In other words, the time required to dispatch the animation information for each frame

is directly dependent on the number of rendering agents and the amount of

information transferred to each of the agents.

(eq 3.4)

(eq 3.5)

81

3.3.2 | RENDER

We define the term RT as the time required for both rendering a scene and reading it

from the frame buffer to main memory. If rendering of a scene is measured as the

number of frames per second, fps, at a given resolution of x by y pixels, then the

rendering performance can be expressed as:

where lr refers to the latency in terms of reading either the color information or the

depth information (i.e. the z-buffer) from the frame buffer; bppc and bppz refers to the

bits per pixel of color and depth information respectively; and br is the bandwidth in

bits per second of the GPU operation. The first component of the equation refers to

the time taken to render each frame on a rendering agent. The second and third

components formulates the time required to read the color and depth information from

the graphics card, respectively.

For most parts, equation 3.6 holds true for our proposed solution, except that our

solution does not need to read back the z-buffer information. As such the third

component of equation 3.6 can be eliminated (see Equation 3.7). This shows that the

performance of the rendering agents in our solution is dependent on the time required

to read only the color information from the frame buffer.

Equation 3.7 assumes that the latency lr is negligible when reading large buffers.

Suppose for a target frame rate of 25 fps, the sub-image resolution xy is set at 1024 by

(eq 3.6)

(eq 3.7)

82

768 pixels with 32-bit color information and 32-bit z-buffer; the bandwidth brc for the

reading of color information is about 6.9G/s; and the bandwidth brz for the reading of

depth information is about 2.4G/s [72]. With this setup, a rendering agent in a

classical sort-last system would yield a RT of 0.054 secs while a rendering agent in

our solution would yield a RT of 0.044 secs. As such it is possible to achieve about

20% performance improvement at this stage.

3.3.3 | COLLECT

We define the term CLT (in equation 3.3) as the time required for all sub-images to be

sent across the network to the compositor. This also takes into account the time

required to compress the sub-image at the rendering agent and uncompress it at

compositor. Thus, CLT of a classical sort-last system can be expressed as follows:

where lcpr and ldcpr refer to the latency in the compression and decompression of a

sub-image respectively; bcpr and bdcpr refer to the bandwidth in bits per second to

compress and decompress the sub-image respectively; bnet is the network bandwidth;

lsi refers to the latency incurred by a rendering agent i when sending (or receiving) the

sub-image across the network to a compositor; and "i is the size of the compressed

sub-image from a rendering agent i. Here we are assuming that only the color

information of sub-image can be compressed using convectional techniques like RLE

compression. Thus, the first component of the equation is the time required for

compression of the color information of a sub-image. Unlike the compression process

that can be done in parallel on all the rendering agents, the transferring of the sub-

(eq 3.8)

83

images (second component of Equation 3.8) and uncompressing them (third

component of Equation 3.8) can only be done serially on the compositor node.

For discussion purposes, we would like to keep the network load a constant by not

implementing compression and assuming that on a high speed network where the

network latency, lsi is assumed to be negligible, we can simplify Equation 3.8 as

follows:

For a 32-bit bppc and bppz, Equation 3.9 shows that our solution can achieve up to

50% performance improvement over the classical sort-last algorithm since there will

no z-buffer information transferred between the rendering agents and the compositor

node. That is, it only takes half the time required to collect n sub-images from n

rendering agents.

3.3.4 | COMPOSITION

The CMP term in equation 3.3 refers to image composition operation. Once all the

sub-images are collected as specified in the previous section, the composite image is

determined by sorting the pixel depths. A common technique is to fill a pixel on the

composite image with the pixel on a sub-image that is closest to the screen (i.e. least

in depth). The following equation shows cost of sorting the depth information for

each pixel.

(eq 3.9)

(eq 3.10)

84

where lcmp is the latency incurred during composition operation; bcmp is the

bandwidth required for blending of a source pixel over a target pixel. Typically the

image blending option “over” is used to blend a new sub-image on top of the final

composite image.

Figure 3.6: Shows that the distributed rendering of a 3D mesh across 3
different rendering agents. The final composite image is simply pieced
together like a jigsaw puzzle, Thus, eliminating the need for z-buffer
for image composition

Unlike the classical sort-last algorithm, our proposed solution would consider bppz to

be 0 since there is no need for z-buffer comparison. This is because each sub-image is

rendered by a rendering agent whose polygon set has similar orientations. Also the

fragment masks (see Section 2.2.1.3) removes regions from the sub-image that would

overlap with fragments from other sub-images. Therefore, there is no need to compare

depth information between sub-images. Instead, the sub-images fit onto the final

composite image like a “jigsaw puzzle” (see Figure 3.6).

(eq 3.11)

85

If lcmp is assumed to be negligible, then Equation 3.10 can be simplified as above.

Equation 3.11 shows that cost of composition for our solution depends only on the

cost of writing a pixel from a sub-image to the composite image. This gives us up to

50% performance gain over the classical sort-last algorithm.

3.3.5 | OVERALL PERFORMANCE

To illustrate a theoretical performance comparison between our solution and the

classical sort-last algorithm, we will assume the running of a rendering application on

an ideal Commodity Off-The-Shelf (COTS) cluster with no latencies. Then the time

to render an image of x " y pixels from Equation 3.6 can be re-expressed as follows

based on Equations 3.4, 3.6, 3.8 and 3.10:

Likewise by eliminating the z-buffer components of Equation 3.12, we obtain a

simplified equation for our solution as shown below, which is consistent with

Equations 3.5, 3.7, 3.9 and 3.11:

An ideal COTS cluster will be equipped with 3 GHz processors (provides a bcmp of 4

G/s [72]), full duplex Gigabit Ethernet with infinite aggregate bandwidth, and AGP x8

graphics. Let us assume only the angle of rotation is broadcast for each frame (8

bytes). Then for a target frame rate of 25 fps on a 6 node cluster with a 32-bit RGBA

(eq 3.12)

(eq 3.13)

86

pixel format and 32-bit z-buffer, the our modified sort-last algorithm should yield a

theoretical 20% rendering performance gain over the classical sort-last algorithm.

In typical parallel rendering systems, the rendering times overlap with the dispatching

of the animation information and the collection of rendered partial images (see Figure

3.5). Assuming that rendering times for each frame on each rendering agent is

removed from Equations 3.12 and 3.13, we obtain a theoretical, maximum

performance gain of 50%.

87

3.4 | DISCOVERING, RENDERING AND MONITORING

As mentioned in the beginning of this chapter, ECOVE adopts the conventional

distributed rendering pipeline: load a 3D scene; create work partitions, distribute the

workloads to various rendering nodes; and finally compositing the sub-image layers

from these nodes for display. One of the goals of ECOVE, however, is to reduce the

reliance on a centralized server and thus, P2P technology is used to take some of load

of the Data Server node.

P2P is particularly used for discovering and monitoring of rendering nodes, and

collaboratively rendering a 3D scene.

1. Discovery

Using the P2P technology called Zero Configuration Networking (see Appendix

A), discovery of the services of individual nodes can be dynamic. For example,

rather than keeping a static list of the IP addresses of all the rendering nodes,

ECOVE can generate a dynamic list of all the available rendering nodes. The Data

Server advertises itself for the available Rendering Nodes to contact it. This thus,

promotes dynamism and event based processing.

Upon initial contact, the Data Server sends the node a Peer ID. This is a unique

number for the node throughout the system and is in running order. That is, the

first node will be tagged as 1 and the second node as 2 and so on.

At the same time, the Data Server issues the node with its owner set (i.e. the set of

fragments that the node will be responsible for rendering). The node will also

receive a copy of the simplified fragments of the 3D scene’s mesh objects.

88

2. Assignment of Buddy

Every node in ECOVE will have a buddy node that it needs to monitor for

presence. This assignment is issued by the Data Server after a node has received

its owner set and pseudo meshes. The Data Server adopts a cyclic assignment

method. For example, a node with Peer ID 2 will be assigned a buddy node with

Peer ID 3. As such the last node in the list will be assigned to monitor the node

with Peer ID 1.

Figure 3.7: Shows the process of how a rendering node interacts with
the Data Server and its peers to get the all the required fragment sets.

Once a node has been assigned its buddy node, it advertises it Peer ID and waits

for its buddy node to advertise itself. Upon noticing the advertisement of the

buddy node, it requests the buddy node to send its owner set and store the set as

Rendering Node 2 Rendering Node 1 Data Server

Request for Work

Peer ID

Owner Set &
Pseudo Mesh

Buddy ID

Advertise as Data Server

Advertise as Peer 2

Advertise as Peer 1

Peer 2's Owner Set

Request for Buddy Set

89

the buddy set. Rendering of the first frame can begin once the first node (i.e. the

node with Peer ID 1) has updated the last node of its owner set.

3. Collaborative Rendering

At the start of each frame, the first node will receive the viewpoint settings from

the Data Server. Once the node has finished rendering the frame, it will inform its

buddy node to start rendering while the first node sends its rendered sub-image

layer to the Compositor. This continues as a chain-reaction till the last node has

rendered the frame and prompts the first node to start rendering the next frame.

This works in accordance to the solution depicted in Figure 3.5(b) where the

rendering process of one node is overlapped with transmission of the sub-image

layer of another node.

Figure 3.8: Shows the process of how rendering nodes collaboratively
render a scene.

Rendering Node 2 Rendering Node 1 Data Server

Rendering
Fragments

Rendering
Fragments

ViewPort Settings

Sub-Image Layer

ViewPort Settings

Sub-Image Layer

90

4. Monitoring

In the event a rendering node drops out of the network, there will not be anymore

advertisements with that node’s Peer ID. As a result, the node monitoring for these

advertisements will realize that its buddy node is down. It will first inform the

Data Server of the change in the number of the rendering nodes and then include

the buddy set of fragments into its workload. This results in an imbalance in

workload and thus, the Data Server uses the CAMP algorithm once again to

redistribute the workload to the rendering nodes.

91

3.5 | SUMMARY

The three key focuses of ECOVE’s architecture were presented in this chapter and

they are namely: CAMP, Rendering Performance, and P2P based discovery and

runtime monitoring. CAMP treats each fragment (obtained from Chapter 2) as a unit

of work and looks at how to optimally group them based on the available number of

rendering nodes (or agents).

Once the groups of fragments are distributed, we analyze the rendering performance

of ECOVE against a classical sort-last rendering system. The analysis showed that by

eliminating the need for depth information throughout the rendering pipeline, we

should be able to obtain about 20 to 50% performance gain. These results will be

compared with the experimental results obtained in Chapter 4.

Finally this chapter looks at how P2P could be used to discover rendering nodes for

distribution of mesh and for monitoring the availability of each rendering node. The

latter is essential for continuity of a rendering cycle in the event a rendering node

drops out of the network.

92

CHAPTER 4

4 | IMPLEMENTATION AND RESULTS

ParaView [53] is an open-source, multi-platform parallel visualization application.

This application is designed to visualize data sets of size varying from small to very

large. ParaView runs on distributed and shared memory parallel as well as single

processor systems. For distributed rendering, ParaView employs a sort-last approach.

While both ECOVE and ParaView are both implementing the sort-last method, the

difference, however, is in the way ECOVE partitions its 3D scene’s mesh objects.

Using Ellipsoidal Mesh Partitioning technique (see Chapter 2), ECOVE breaks up a

3D mesh model into fragments that have similarly orientated and connected polygons.

Thus, each fragment is generally featureless and can be simplified without too much

loss of detail. Context Aware Mesh Partitioning (see Chapter 3) is employed to group

these fragments into work partitions taking into account the number of available

rendering nodes and the locality of each fragment. ParaView, on the other hand,

partitions the mesh model on a First-Come-First-Serve basis. That is, if there are n

rendering nodes, ParaView divides the list of polygons into n equal partitions. Each

partition might contain polygons from various parts of the mesh. These partitions are

not broken along the geometric features of the mesh model. Also just as in a typical

93

sort-last implementation, ParaView sends the entire rendered image with its depth

buffer. ECOVE on the other hand, attempts to reduce the communication overheads

by only transmitting the foot-print of the rendered polygons (see Section 3.2.2).

The next section looks at how both the ECOVE and a sort-last implementation

(similar to ParaView’s mesh partitioning technique), are implemented to render

several 3D mesh models. The section following that will compare the results from the

implementation to evaluate ECOVE’s performance.

94

4.1 | IMPLEMENTATION

To assess ECOVE’s performance, we measure its ability to:

1. achieve faster overall rendering pipeline performance over classical sort-last

algorithm, and

2. limit the growth in bandwidth as the number of nodes in the system grows.

Thus to evaluate ECOVE, we have implemented both the classical and our modified

sort-last algorithm as the software application shown in Figure 4.1.

Figure 4.1: Shows the custom created application called Distributed
Rendering Server.

This application called Distributed Rendering Server is implemented using the

Visualization Toolkit [20] framework and provides information such as the achieved

frame times for a number of traces. We ran our tests on a 9-node (2.26GHz Intel Core

2 Duo, NVIDIA GeForce 9400M) cluster with Gigabit Ethernet interconnect.

95

The 3D mesh models used in this experiment are fragmented with various Ellipsoidal

schemas using an offline application as shown in Figure 4.2. This application called

Dihedral accepts 3D mesh models either in PLY or OBJ file formats. It provides

options to manipulate the resolution of a schema and apply the schema to a 3D model

for mesh partitioning. The results are displayed with distinct colors for each code-

vector. Other statistics such as the code-book size used, number of fragments

generated and the performance of a mesh partitioning operation are also captured by

Dihedral. The application also provides an option to export the fragmented mesh

together with the simplified one to file for use by the Distributed Renderer.

Figure 4.2: Shows the Dihedral application that is used for the
fragmentation of a mesh.

When the Distributed Rendering Server application (see Figure 4.1) is launched, it

assumes the role of a data server. A user can then begin by selecting a file containing

all the fragments of a 3D mesh. The application then begins to search for a list of

96

rendering agents. These rendering agents will run the Distributed Rendering Client

application, which can communicate with a data server and amongst other rendering

agents. A user can artificially control the number of rendering agents to focus on. If

not, the application will default the maximum number of available rendering agents.

As each rendering agent renders and sends the sub-images to the Distributed

Rendering Server, the server application assumes the role of an image compositor.

The application displays all the sub-images (maximum of 9) and composited images.

An animate button is provided to add additional complexity. The parameters for the

animation are sent by the server application to the clients.

97

4.2 | RESULTS

4.2.1 | FRAGMENTATION

We have performed several runs of distributed polygonal rendering using both the

classical sort-last algorithm and our modified sort-last algorithm. For these runs, we

have used five unique 3D meshes (see Appendix B) that were subjected to our mesh

partition algorithm. Table 4.1 shows the polygon count for each of these meshes.

Table 4.1: Polygon counts of the 3D meshes used in the experiment

Gaea-5 Bunny Extinguisher Dragon Blade

300 69,451 300,572 871,414 1,765,388

4.2.1.1 | DENSITY DISTRIBUTION

As shown in Tables 4.2 through 4.5, these meshes were fragmented using three

different Uniform Ellipsoidal Schemas and one Non-uniform Ellipsoidal Schema. For

each fragmentation of the meshes, the highest, the lowest and the average densities

(i.e. the concentration of polygons in one fragment) are shown in these tables.

Table 4.2: Shows the fragment densities using Gaea-1 based Uniform
Ellipsoidal Schema

Gaea-5 Bunny Exting. Dragon Blade

Code-Book Size 6 6 6 6 6

Highest Density (%) 16.67 21.05 21.73 21.21 20.57

Lowest Density (%) 16.67 13.84 14.78 13.83 11.13

Average Density (%) 16.67 16.67 16.67 16.67 16.67

98

Table 4.3: Shows the fragment densities using Gaea-3 based Uniform
Ellipsoidal Schema

Gaea-5 Bunny Exting. Dragon Blade

Code-Book Size 54 54 54 54 54

Highest Density (%) 2.67 6.89 11.49 3.25 10.10

Lowest Density (%) 0.67 0.58 0.55 0.76 0.22

Average Density (%) 1.85 1.85 1.85 1.85 1.85

Table 4.4: Shows the fragment densities using Gaea-4 based Uniform
Ellipsoidal Schema

Gaea-5 Bunny Exting. Dragon Blade

Code-Book Size 96 96 96 96 96

Highest Density (%) 2.67 3.14 4.14 2.58 6.75

Lowest Density (%) 0.67 0.20 0.26 0.42 0.09

Average Density (%) 1.04 1.04 1.04 1.04 1.04

Table 4.5: Shows the fragment densities using Gaea-x,y,z based
Uniform Ellipsoidal Schema

Gaea-5 Bunny Exting. Dragon Blade

GAEA-X,Y,Z G-3,3,3 G-3,2,4 G-2,3,4 G-4,3,2 G-2,2,5

Code-Book Size 54 52 52 52 48

Highest Density (%) 2.67 4.66 5.03 3.42 8.07

Lowest Density (%) 0.67 0.51 0.59 1.10 0.48

Average Density (%) 1.85 1.92 1.92 1.92 2.08

Based on the results of the fragmentation provided in Tables 4.2 through 4.5, Figures

4.3 and 4.4 show the density distribution graph for the different models used. The

graph in Figure 4.3 shows the deviation of the highest density from the average

99

density for each fragmentation schema while the one in Figure 4.4 shows the

deviation of the lowest density from the average density.

G1 G3 G4 GXYZ

0

2.5

5.0

7.5

10.0

GAEA-5 Sphere Bunny Extinguisher Dragon Blade

Hi-Ave Density Distribution %

Figure 4.3: Shows deviation of the highest density from the average
density of all the 3D meshes for the schemas using Gaea 1. The lower
the value

For Gaea-5 Sphere, the deviation of the highest (and even the lowest - see Figure 4.4)

density from the average density for Gaea-1 based schema (G1) is actually 0. This

means that all the polygons are evenly spread across all the fragments. Thus this is the

best partitioning strategy for this model.

100

G1 G3 G4 GXYZ

0

1.5

3.0

4.5

6.0

GAEA-5 Sphere Bunny Extinguisher Dragon Blade

Lo-Ave Density Distribution %

Figure 4.4: Shows deviation of the lowest density from the average
density of all the 3D meshes under each schema.

Though G1 uses a smaller code-book than the other schemas, it does not necessarily

produce the best polygon distribution. In fact, G4 and GXYZ (the Non-uniform

Ellipsoidal Schema) generally produces lower density deviations as compared to G1

for models Bunny, Extinguisher and Dragon. Of the 4 schemas, G3 seems to produce

relatively poor polygon distribution, especially for models Bunny, Extinguisher and

Blade. While generally the lowest densities are not far off from the average densities

for G3, large deviations of the highest densities from the average densities are

observed. This shows that more code-vectors need to be introduced to distribute the

concentration of polygons.

One option as discussed in Chapter 2, is to increase the resolution of the schema. The

results produced by G4 are relatively better. However this is done at the expense of a

larger code-book than a G3. The other option is to use a Non-uniform Ellipsoidal

Schema like GXYZ. As shown in Figures 4.3 and 4.4, this latter schema has produces

101

results that are comparable to G4’s polygon distribution while maintaining a code-

book similar to that of G3’s. This thus shows that a Non-uniform Ellipsoidal Schema

can general produce better polygon distribution for mesh partitioning than an

equivalent Uniform Ellipsoidal Schema.

4.2.1.2 | MESH PARTITIONING PERFORMANCE

Section 2.1.3 discussed about the time complexity to perform a mesh partition using

EMP. The conclusion of the analysis was that the algorithm is O(MS). That is the

algorithm’s performance is dependent on the number of polygons and the size of the

code-book. Thus in order to ascertain this analysis, Bunny, Extinguisher and Dragon

models were subjected to mesh partitioning using Ellipsoidal Schemas based on

Gaea-3, Gaea-4, Gaea-5, Gaea-6, Gaea-7 and Gaea-8. This would let us analyze the

effects of increasing the code-book size on a 3D model.

Table 4.6: Shows the number of milliseconds taken for mesh
partitioning using Uniform Ellipsoidal Schema with increasing

resolution.

G3 G4 G5 G6 G7 G8

Bunny

Extinguisher

Dragon

1,087 1,382 1,837 2,319 2,870 3,486

8,757 9,999 11,411 13,093 15,277 17,286

13,972 16,528 20,950 26,611 32,943 40,260

When the values in Table 4.6 are plotted, Figure 4.5 reveals a linear increase in the

time taken to partition a mesh with increasing schema resolution. However linearity is

not observed when it was subjected to Gaea-3 and Gaea-4. This trend is more

apparent for the Dragon model that contains the largest number of polygons (about

871,000 polygons) than that of the other 2 models.

102

Bunny Extinguisher Dragon

0

12500

25000

37500

50000

G3 G4 G5 G6 G7 G8

Figure 4.5: Plot of Table 4.6 shows a linear increase in the time taken
for mesh partitioning with increasing schema resolution.

Based on observations in Figure 4.5, it would seem that there is a co-relation between

the code-book size and the number of polygons in a mesh. To study this co-relation,

we look at the situation where all the polygons are equally divided amongst the

number of code-vectors in the code-book. As such, we define R as the resolution

factor that is defined as the ratio of the number of polygons in the mesh to the size of

the code-book. Table 4.7 shows R for all the models when subjected to the increasing

code-book size.

Table 4.7: Shows the resolution factors for the 3 models when
subjected to increasing code-book size.

G3 G4 G5 G6 G7 G8

Bunny

Extinguisher

Dragon

1E+03 7E+02 5E+02 3E+02 2E+02 2E+02

6E+03 3E+03 2E+03 1E+03 1E+03 8E+02

2E+04 9E+03 6E+03 4E+03 3E+03 2E+03

103

Figure 4.6: Graphical representation of the figures in Table 4.7.

Figure 4.6 shows that the smaller the code-book size, the larger the resolution factor R

for a model. This is more prominent for the Dragon model when subjected to the

Gaea-3 based code-book. Thus when studied with reference to the results in Figure

4.5, it is evident that the performance of Algorithm 2.1 is dependent on the resolution

factor, R. That is, as R for a model tends to 0, the performance of Algorithm 2.1

exhibits linearity.

4.2.2 | PERFORMANCE GAIN OVER CLASSICAL SORT-LAST

All the 3D models were rendered using the classical sort-last algorithm. For classical

sort-last, the meshes was partitioned by randomly assigning polygons to the required

number of work units (i.e. the number of rendering agents). The time taken to render

100 frames using 3 Rendering Agents was recorded. These results were compared

against the time taken to render 100 frames using our modified method as shown

below in Figure 4.7.

Bunny Extinguisher Dragon

0

5,000

10,000

15,000

20,000

G3 G4 G5 G6 G7 G8

104

Modified Classic

0

0.035

0.070

0.105

0.140

Sphere Bunny Extinguisher Dragon Blade

Figure 4.7: Shows the frame times for rendering on a 3-node cluster
using our modified and the classical sort-last algorithms

The results are clearly better for our solution, because much less data has to be

transferred over the network. The elimination of Z-buffer during the transmission and

composition, has improved per frame rendering times. On average we are able to

obtain a performance gain of about 40% performance increase by using our modified

sort-last algorithm. This result is in accordance to our theoretical performance gain of

between 20% to 50% as calculated in Chapter 3. Due to latencies in network

transmission of the sub-images, the performance of the system might be capped at

40% gain.

4.2.3 | RENDERING QUALITY

Besides the assessing the performance gain our solution, we have also subjected the

quality assessment of the final render image. To perform this analysis, the rendered

image produced from the compositor of our solution was compared with the rendered

image produced from a standalone renderer. The difference in the analysis is shown in

Figure 4.8 below.

105

Figure 4.8: Shows the pixel to noise comparison between the bunny
model rendered on a single machine vs a the same model rendered
using our solution. The noise our results are highlighted as white spots.

The model in Figure 4.8 was subjected to fragmentation using Gaea-3,2,4 and was

rendered on a 9 node cluster. The resulting rendered image was compared against a

standalone renderer’s output and the results of our solution shows high accuracy. The

noise as seen in the figure is introduced by fragment masks that are over-flattened. As

a result, the final image is masked out at unintended regions. These errors are but far

and few. An the areas of unintended masking was is very small. As such the overall of

the quality of the image is not impacted.

106

CHAPTER 5

5 | CONCLUSION AND FUTURE WORK

In this thesis, we have presented techniques to build a collaborative visualization

environment called ECOVE that partitions a 3D mesh model to balance the rendering

load across all the peers of a P2P network. The basis for ECOVE is our mesh

partitioning technique called Ellipsoidal Mesh Partitioning (EMP). This technique

partitions a mesh in such a way that the geometric features are preserved. We have

shown that this technique can parallelized (i.e. run using a cluster of computers in a

P2P network). It has also been demonstrated that the system can be expected to

outperform another that uses sort-last, a commonly used partitioning technique, for

our targeted environment. Using Context Aware Mesh Partitioning (CAMP), we have

shown how to efficiently distribute the rendering load across all the peers of a P2P

network.

Implementation of pseudo polygons (or fragment masks) for use in graphics shaders

has been left out for this thesis although it has been used for discussion purposes of

this thesis. However, ECOVE is being considered as a viable solution for distributed

application of graphics shaders such Ambient Occlusion, in the industry at the time of

this writing. A full distributed rendering system is being left for future work as there

107

has yet to be system that tackles the issues of applying graphics shaders on distributed

3D mesh models for comparison.

While ECOVE as it is in its present state, has fulfilled its current objectives. However,

there is still room for improvement. Currently only static models are supported by

ECOVE. That is once the models are loaded and partitioned, they are not modified or

morphed to another model. These forms of transformations are common in interactive

applications such as games, where a 3D avatar goes through many different

transformations. These changes to the model cause the code-book to become invalid.

Thus, we need to develop a method to allow code-books to dynamically adapt to

changing orientations of the polygons of a 3D mesh.

Also another possibility for future work would be to consider supporting volumetric

data models in ECOVE. This domain is becoming increasingly challenging as the

amount of data generated by scientific simulations is increasing exponentially. While

volumetric data models are significantly different from polygonal models, we believe

the concept of Ellipsoidal Mesh Partitioning can help to reduce the complexity of the

data models by decomposing them into simpler structures.

108

APPENDIX A

A | 3D MESH MODELS

The following figures show the results of subjecting several 3D mesh models

(obtained from http://www.cc.gatech.edu/projects/large_models/) to Ellipsoidal Mesh

Partitioning. Each fragment is highlighted using distinct colors.

Figure A.1: Gaea-5 Sphere mesh partitioned using (a) Gaea-1 schema
(b) Gaea-3 schema (c) Gaea-4 schema.

(a) (b)

(c)

109

http://www.cc.gatech.edu/projects/large_models/
http://www.cc.gatech.edu/projects/large_models/

Figure A.2: Stanford Bunny mesh partitioned using (a) Gaea-1 schema
(b) Gaea-3 schema (c) Gaea-3,2,4 schema (d) Gaea-4 schema.

Figure A.3: Fire Extinguisher mesh partitioned using (a) Gaea-1
schema (b) Gaea-3 schema (c) Gaea-2,3,4 schema (d) Gaea-4 schema.

(b)(a)

(c) (d)

(a) (b)

(c) (d)

110

Figure A.4: Dragon mesh partitioned using (a) Gaea-1 schema (b)
Gaea-3 schema (c) Gaea-4,3,2 schema (d) Gaea-4 schema.

Figure A.5: Blade mesh partitioned using (a) Gaea-1 schema (b)
Gaea-3 schema (c) Gaea-4,3,2 schema (d) Gaea-4 schema.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

111

REFERENCES

1. A. Frederico, et al. A load-balancing strategy for sort-first distributed rendering.

Proceedings of the Computer Graphics and Image Processing, XVII Brazilian

Symposium, 2003.

2. A. Heirich, L. Moll. Scalable Distributed Visualization Using Off-the-Shelf

Components. IEEE Parallel Visualization and Graphics Symposium, pp. 55–59,

San Francisco, CA., 1999.

3. A. K. Jain, R. C. Dubes. Algorithms for clustering data, Prentice-Hall, Inc., Upper

Saddle River, NJ, 1998.

4. A. Leonardis, et al. Superquadrics for segmentation and modeling range data.

IEEE Trans Pattern Anal Mach Intell 19:1289–1295, 1997.

5. A. Likas, N. Vlassis, J J. Verbeek. The global k-means clustering algorithm.

Pattern Recognition, Volume 36, pp. 451-461, 2003.

6. A. Mangan, R. Whitaker. Partitioning 3D surface meshes using watershed

segmentation. IEEE Trans Vis Comput Graph 5(4):308–321, 1999.

7. A. Razdan, M. Bae. A hybrid approach to feature segmentation of 3-dimensional

meshes. Computer-Aided Design, 2002.

8. A. Sanna, C. Zunino, L. Ciminiera. A distributed JXTA-based architecture for

searching and retrieving solar data. Future Generation Computer Systems,

Volume/Issue 21/3, pp. 349-359, ISSN: 0167-739X, 2005.

112

9. A.J. Cuadros-Vargas, et al, Generating Segmented Quality Meshes from Images.

Math Imaging Vis (2009) 33: 11-23, 2009.

10. AH. Barr. Superquadric and angle-preserving transformation. IEEE Trans Comput

Graph Appl 1:11–23, 1981.

11. Apple Inc. XGrid. http://www.apple.com/server/macosx/features/xgrid.html

12. C. Ding, X. He. K-means clustering via principal component analysis. ACM

International Conference Proceeding Series, 2004.

13. C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes for the

parallel solution of problems in computational mechanics. International Journal

for Numerical Methods in Engineering, 36:745-764, 1993.

14. C. Farhat. A simple and efficient automatic FEM domain decomposer. Computers

and Structures, 28:579-602, 1988.

15. C. Farhat. On the mapping of massively parallel processors onto finite element

graphs. Computers and Structures, 32:347-354, 1989.

16. C. Mueller. The Sort-First Rendering Architecture for High-Performance

Graphics. Interactive 3D Graphics, pages 75–82, Apr. 1995.

17. C. Rossl, et al. Extraction of feature lines on triangulated surfaces using

morphological operators. Smart Graphics, AAAI Spring Symposium, Stanford

University, pp 71–75, 2002.

113

18. C. Walshaw, M. Cross, and M. Everett. Mesh partitioning and load-balancing for

distributed memory parallel systems. In Proceedings of International Conference

on Parallel and Distributed Computing for Computational Mechanics, 1997.

19. C. Xavier, M. Christophe. Pipelined Sort-last Rendering: Scalability, Performance

and Beyond. Eurographics Symposium on Parallel Graphics and Visualization,

2006.

20. D. Bartz, D. Staneker, W. Strasser, B. Cripe, T. Gaskins, K. Orton, M. Carter, A.

Johannsen, J. Trom. Jupiter: A Toolkit for Interactive Large Model Visualization.

Parallel and Large-Data Visualization and Graphics, pp. 129–134, San Diego, CA,

2001.

21. D. N. Thu, Z. John. Image Layer Decomposition for Distributed Real-Time

Rendering on Clusters. Parallel and Distributed Processing. pp 421, 2000.

22. D. Salomon. Data Compression, the complete reference 2nd Edition. Springer-

Verlag, 2000.

23. D. Taubman, M. Marcellin. JPEG2000: Image Compression Fundamentals,

Standards and Practice. Springer-Verlag, 2001.

24. D. Vanderstraeten and R. Keunings. "Optimized partitioning of unstructured

computational grids". International Journal for Numerical Methods in

Engineering, 38:433-450, 1995.

25. Discreet Inc. http://www.discreet.com/

114

26. F. Chen, B. Jüttler. 3D Mesh Segmentation Using Mean-Shifted Curvature.

Springer-Verlag Berlin Heidelberg, GMP 2008, LNCS 4975, pp. 465–474, 2008.

27. F. Vivodtzev, et al. Hierarchical isosurface segmentation based on discrete

curvature. Proc. of VisSym ’03, Eurographics—IEEE TVCG symposium on

visualization, 2003.

28. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, J. T.

Klosowski. Chromium: A Stream Processing Framework for Interactive

Rendering on Clusters. ACM SIGGRAPH, pp. 693–702, San Antonio, TX, 2002.

29. G. Subramaniam, K. Ong. Mesh Simplification using Ellipsoidal Schema for

Isotropic Quantization of Face-Normal Vectors. In Proceedings of International

Conference on Asia Pacific Symposium on Information Visualization, 2006.

30. G.S. Oliver, et al. A Survey and Performance Analysis of Software Platforms for

Interactive Cluster-Based Multi-Screen Rendering. In Proceedings of the

workshop on Virtual environments, 2003.

31. H. Hoppe. View-Dependent Refinement of Progressive Meshes. Computer

Graphics, SIGGRAPH ’96, 99–108, 1996.

32. H.D. Simon. Partitioning of unstructured meshes for parallel processing.

Computing Systems in Engineering, 2:135-148, 1991.

33. H.W. Jensen. A practical guide to global illumination using ray tracing and photon

mapping, Proceedings of the conference on SIGGRAPH 2004 course notes, 2004.

115

34. I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A Characterization of Ten

Hidden Surface Algorithms. ACM Computing Survey, 6(1):1–55, Mar. 1974.

35. I.J. Grimstead, N.J. Avis, DW Walker. RAVE: Resource-Aware Visualization

Environment. All-Hands Meeting, 2004

36. J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes. Computer Graphics:

Principles and Practice. Addison-Wesley, Reading, MA, 1990.

37. J. Pineda. A parallel algorithm for polygon rasterization. Proceedings of the 15th

annual conference on Computer Graphics and Interactive Techniques, 1998.

38. J. Van, P. Shi, D. Zhang. Mesh simplification with hierarchical shape analysis and

iterative edge contraction. IEEE Transactions on Visualization and Computer

Graphics, 2004.

39. J. Ziv, A. Lempel. A universal algorithm for sequential data compression. In

Proceedings of IEEE transactions on information theory, 23, 3, 337-343, 1977.

40. J.S. William, et al.. Visualizing with VTK: A Tutorial. IEEE Computer Graphics

and Applications, vol. 20, no. 5, pp. 20-27, 2000.

41. K. Moreland, B. Wylie, C. Pavlakos. Sort-Last Parallel Rendering for Viewing

Extremely Large Data Sets on Tile Displays. Parallel and Large-Data

Visualization and Graphics, pp. 85–92, San Diego, CA, 2001.

42. K. Wu, M.D. Levine. 3D part segmentation using simulated electrical charge

distributions. IEEE Trans Pattern Anal Mach Intell 19:1223–1235, 1997.

116

43. K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo. Large mesh deformation

using the volumetric graph Laplacian. In Proceedings of ACM SIGGRAPH, 2005.

44. L. Chevalier, et al. Segmentation and superquadric modeling of 3D objects.

Journal of WSCG 11(1), 2003.

45. L. Shi, Y. Yu, N. Bell, W.W. Feng. A fast multigrid algorithm for mesh

deformation. ACM Transactions on Graphics (TOG), 2006.

46. M. Al-Nasra, D.T. Nguyen. An algorithm for domain decomposition in finite

element analysis. Computers and Structures, 39:277-289, 1991.

47. M. Bunnell. Dynamic ambient occlusion and indirect lighting. In GPU Gems 2:

Programming Techniques for High-Performance Graphics and General-Purpose

Computation. Addison-Weseley Professional, 223--233, 2004.

48. M. Garland, et al. Hierarchical face clustering on polygon surfaces. ACM

Symposium on Interactive 3D Graphics, 2001.

49. M. Sattler, R. Sarlette, G. Zachmann, R. Klein. Hardware-accelerated ambient

occlusion computation. In Vision, Modeling, and Visualization 2004, 331--338,

2004.

50. M.E. Rettmann, et al. Automated sulcal segmentation using watersheds on the

cortical surface. NeuroImage (15):329–344, 2002.

51. P. Hodgson, et al. Cluster visualization rises to the seismic processing challenge.

SIS Global Forum First Break Volume 23, 2005.

117

52. P. Wu, E.N. Houstis. Parallel adaptive mesh generation and decomposition.

Engineering with Computers, 12:155-167, 1996.

53. ParaView. http://www.paraview.org/

54. R. Samanta, J. Zheng, T. Funkhouser, K. Li, J. P. Singh. Load Balancing for

Multi-Projector Rendering Systems. Eurographics/ SIGGRAPH workshop on

Graphics hardware, 107-116, 1999.

55. R. Samanta, T. Funkhouser, K. Li, J. P. Singh. Hybrid Sort-First and Sort-Last

Parallel Rendering with a Cluster of PCs. In Proc. ACM SIGGRAPH/

Eurographics Workshop on Graphics Hardware, pp. 97–108, Interlaken,

Switzerland, 2000.

56. Render-IT. http://www.render-it.co.uk/

57. S. Molnar, et al. A Sorting Classification of Parallel Rendering. IEEE Computer

Graphics and Applications, 14(4):23–32, 1994.

58. S. Molnar, J. Eyles, J. Poulton. PixelFlow: High-Speed Rendering Using Image

Composition. SIGGRAPH ’92, pages 231–240, July 1992.

59. S. Molnar, M. Cox, D. Ellsworth, H. Fuchs. A Sorting Classification of Parallel

Rendering. IEEE Computer Graphics and Applications, 14(4):23–32, July 1994.

60. S. Pulla, et al. Improved curvature estimation for watershed segmentation of 3-

dimensional Meshes. IEEE Trans Vis Comput Graph, 2002.

118

61. S. Rudrajit, et al. Hybrid Sort-First and Sort-Last Parallel Rendering with a

Cluster of PCs. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

workshop on Graphics hardware, 2001.

62. S.T. Barnard, H.D. Simon. A fast multilevel implementation of recursive spectral

bisection for partitioning unstructured problems. In Proceedings of the Sixth

SIAM Conference on Parallel Processing for Scientific Computing, pages

711-718, 1993.

63. T Duff. Compositing 3-D rendered images. ACM SIGGRAPH Computer

Graphics, 1985

64. T. Apodaca, L. Gritz, M. Pharr, H. Hery, K. Bjorke, L. Treweek. Advanced

RenderMan 3: Render Harder. ACM SIGGRAPH, 2001.

65. T. W. Crockett, T. Orloff. A MIMD Rendering Algorithm for Distributed Memory

Architectures. ACM SIGGRAPH Symposium on Parallel Rendering, pages 35–

42. ACM, Nov. 1993.

66. T. W. Crockett. 1997. An Introduction to Parallel Rendering. Parallel Computing,

23(7):819–843, July 1997.

67. T. W. CROCKETT. An Introduction to Parallel Rendering. Parallel Computing 23,

7, 819-843, 1997.

68. W. Correa, J. T. Klosowski, C. Silva. Out-of-Core Sort-First Parallel Rendering

for Cluster-Based Tiled Displays. In Proc. Eurographics Workshop on Parallel

Graphics and Visualization, pp. 89–96, Blaubeuren, Germany, 2002.

119

69. W. Lages, et al. A Parallel Multi-View Rendering Architecture. XXI Brazilian

Symposium on Computer Graphics and Image Processing, 2008.

70. W. Leeson, C. O'Sullivan, S. Collins. An Efficient Framework for Implementing

Global Illumination. Eighth International Conference in Central Europe on

Computer Graphics, Visualization and Interactive Digital Media, 2000.

71. W. Leeson, S. Collins. EFFIGI An Efficient Framework For Implementing Global

Illumination. Eighth International Conference in Central Europe onComputer

Graphics, Visualization and Interactive Digital Media, 2000.

72. X. Cavin, et al. COTS cluster-based sort-last rendering: Performance evaluation

and pipelined implementation. In Proceedings of IEEE Visualization, 2005.

73. Y. Pan, F.T. Marchese. A peer-to-peer collaborative 3D virtual environment for

visualization. Visualization and Data Analysis, 2004.

74. Y.F. Hu, R.J. Blake. Numerical experiences with partitioning of unstructured

meshes. Parallel Computing, 20:815-829, 1994.

120

