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Summary 
!

The epidermal growth factor (EGF)-like domain is an evolutionarily conserved 

modular protein subunit. Despite hypervariability of amino acid sequences in 

their inter-cysteine region, they preferentially fold into a three-looped 

conformation with a disulfide pairing of C1-C3 , C2-C4, C5-C6.  To elucidate the 

structural determinants that dictates the canonical EGF-like domain fold, we 

had chosen the fourth and fifth EGF-like domain of thrombomodulin (TM) as 

models.  While the fourth EGF-like domain folds into the canonical 

conformation, the fifth EGF-like domain does not and possesses an alternate 

disulfide pairing of C1-C2, C3-C4, C5-C6. We examined the folding tendencies 

of two synthetic peptides corresponding to truncated versions of TM EGF-like 

domain four and five under air oxidation and redox folding conditions. By 

identifying the structural isoforms obtained in the folding reaction using 

regiospecifically-synthesized conformers as controls, we determined that the 

last segment of both domains (encompassing C5 and C6) do not influence the 

tendencies to fold into their respective native conformations.  When folded 

under denaturing conditions, the folding tendency of the fourth EGF-like 

domain changes to that of the C1-C2, C3-C4 conformer. Conversely, the 

addition of denaturant did not affect the folding tendency of the fifth EGF-like 

domain. This suggests that side chain interactions are crucial for achieving 

the canonical EGF-like domain fold but not for the non-canonical fold. Folding 

under high salt content did not disrupt the folding tendencies of both domains 

and result in slight increase of the C1-C3, C2-C4 conformer in both cases. This 

suggests that hydrophobic interaction, but not electrostatic interaction, is the 

key in the achieving the canonical fold of EGF-like domains.!
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1.1     The Protein Folding Problem!

Proteins obtain their native three-dimensional structure via folding from their 

primary structures. The question of how this folding is achieved is popularly 

known as the “protein folding problem”.  Although protein folding can be seen 

as a multifaceted problem, the questions involved can be summarized into 

primary aspects: (a) the folding code - the mechanistic question of how the 

primary amino acid sequence of a protein specifies its native three-

dimensional structure; (b) the folding pathway - the kinetic question regarding 

the route a protein take to reach its final native structure. 

 

1.1.1   The folding code 

Why do any two proteins, for example, lysozyme and ribonuclease, adopt 

different native three-dimensional structures? To do so, there must be a 

folding code that “instructs” each protein to fold into their respective native 

structures. What then is the nature of this folding code?  

As it is through the composite of different amino acid residues that 

differentiates one protein from another, one would see that the folding code is 

embedded in the amino acid side-chains located along the polypeptide chain. 

These side-chains provide folding instructions in terms of various inter-atomic 

forces (e.g. hydrophobic interactions, Van der Waals-interactions, electrostatic 

interactions, hydrogen bonding) mediated by the distinct physical-chemical 

properties of each side-chain.  

Thus, each amino acid, with its identity conferred by the nature of its side-
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chain, can be perceived as a single “instructional unit” among others in the 

folding code. This relation is analogous to a statement in the source code of a 

computer program. From this viewpoint, the location of an amino acid residue 

in the sequence of a protein is, thus, equivalent to the logical placement of a 

statement among others in the source code. When a program file is being 

executed, an effect is produced as the computer carries out the instructions 

embedded in the sequence of statements of the source code. Analogously, 

the “execution” of the folding code will result in the folding of the polypeptide 

chain into its native structure based on the overall balance of inter-atomic 

forces dictated by the amino acid sequence.  

To this end, it became apparent that the amino acid sequence in guiding 

protein folding is also in itself the determinant of its native three-dimensional 

structure. Indeed, from the famous experiments on ribonuclease (RNase), 

Anfinsen and colleagues demonstrated that fully reduced RNase, which 

lacked demonstrable secondary or tertiary structure, could spontaneously 

refold in vitro using molecular oxygen to yield a product that is 

indistinguishable in terms of enzymatic activity from the native enzyme [1-3] 

(Figure 1.1). This result leads to the postulation that a protein#s native 

structure is its most thermodynamically stable structure, and the information 

needed for the assumption of such a structure, including the correct pairing of 

half-cystine residues in disulfide linkages, is determined by the amino acid 

sequence itself. This postulation is now known as the Anfinsen#s 

thermodynamic hypothesis and its conclusion provides the basis of studying 

native structures in isolation inside a test tube rather than inside cells.  
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Figure 1.1   In vitro re-folding of ribonuclease. Reduced, denatured, ribonuclease can spontaneously 
refold into its native structure (with native disulfide-connectivity), upon the removal of denaturant (8M 
urea) and reducing agent ($-mercaptoethanol), via oxidative folding.  

 

Although Anfinsen#s thermodynamic hypothesis provides the apparent answer 

to the question of how proteins know a priori its native three-dimensional 

structure, the mechanistic details of how it works still remain elusive. Over the 

years, attempts to decipher the folding code had only lead to some general 

principles which are summarized below: 

(a) Secondary structure propensities ! 

Each of the 20 natural amino acids has different intrinsic properties to 

populate secondary structure elements. In fact, the frequencies with which 

different amino acids occur in "-helices and #-sheets of natural proteins 

correlate with the amino acid#s ability to stabilize these secondary 

structure elements [4]. Alanine, leucine, methionine and lysine have high 

propensities towards "-helices [5], whereas aromatic amino acids 

(tyrosine, phenylalanine and tryptophan) and #-branched amino acids 

(threonine, valine, isoleucine) have high propensities towards #-sheets 

[6]. Proline and glycine are not favored in "-helices and #-sheets and thus 
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have the lowest propensities for both secondary structures.  

(b)  Binary patterning of polar and non-polar amino acids ! 

Hydrophobic interaction is considered one of the dominant forces in 

protein folding [7].  Thus, simple binary pattern of polar and non-polar 

residues along the polypeptide chain has been suggested to encode low-

resolution folding information which would give a protein its general 

topology [8]. In fact, Kamtekar et al. had demonstrated that de novo-

designed binary pattern of polar and non-polar amino acid residues was 

sufficient to encode four-helix bundle proteins [9]. In this seminal work, 

combinatorial methods were used to generate a large collection of amino 

acid sequences where individual positions in the sequence is specified as 

either polar or non-polar, but the precise identity of each residue is 

allowed to vary. The relatively simple information encoded in the  “binary 

code” is sufficient to generate a significant number of proteins that  fold  

into  compact  "-helical  structures.  

(c)  Complementary packing of amino acid side-chains ! 

If binary patterning of polar and non-polar amino acids is sufficient to 

specify the overall topology of the proteins, what then provide the 

information needed to generate the high-resolution structures of these 

proteins? These information come from the exact identities of the side-

chains that are “complementary packed” in the cores of proteins [8].   

In complementary packing, side-chains in the cores of proteins fit together 

without leaving any large cavities. They do so by maximizing hydrophobic 
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contacts while avoiding any steric clashes that could occur. As the 

geometric requirement of complementary packing is dependent on the 

detailed properties of the side-chains involved (e.g. polarity, shapes, 

sized), the identities of core residues would, in turn, determine the 

protein#s high-resolution structure.  

The above discussion gave a simple and straightforward view on how the 

folding code is being interpreted. However, we should keep in mind that things 

are more complicated in reality as illustrated in the following examples: 

(a) Unlike "-helix propensity, #-sheet propensity of amino acids was later 

found to be context dependent [10]. The use of an edge strand rather than 

a center strand in the same #-sheet (of IgG-binding domain from protein 

G) for experimentation yielded a different scale of propensities.  

(b) In a related study, Minor and Kim successfully designed a so-called 

“chameleon” sequence that could fold as an "-helix when in one position, 

but as a #-sheet when in another position of the primary sequence of the 

IgG-binding domain of protein G [11]. This study demonstrated that the 

propensity of individual amino acids to form particular secondary 

structures is the result of intrinsic propensity, as well as, non-local 

interactions. In fact, a database survey of proteins with known three-

dimensional structures revealed many naturally occurring proteins with 

“chameleon” sequences [12].  

(c)  Short, disulfide-rich peptides such as the "-conotoxin family of neurotoxic 

peptides all fold into the same disulfide scaffold despite hypervariability of 
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the primary amino acid sequences [13] (Figure 1.2A). This hypervariability 

did not display any conservation of binary polar and non-polar amino acid 

patterns that was thought to determine the global topology of a protein 

fold. Since all members of the "-conotoxin family possess the same 

cysteine framework, it had been suggested that it was the identical 

cysteine pattern that contributed to the common fold. However, the related 

$/%-conotoxin family of neurotoxins also had the same cysteine 

framework, but they fold into an alternate disulfide scaffold (Figure 1.2B).   

 

!

Figure 1.2   Disulfide scaffold of !- and "-conotoxins. (A) Despite hypervariability of primary amino 
acid sequences, without conservation of binary polar and non-polar amino acid patterns, all "-
conotoxins fold into the same disulfide sca!old. (B) Despite identical cysteine patterns, "- and &-
conotoxins fold into distinct disulfide sca!olds. 

 
All the above examples tell us that there is still a large gap in our current 

understanding of the mechanism behind the interpretation of the folding code.  

Thus, the deciphering of the folding code still present an important field of 
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research despite the continual emergence of successful protein design based 

on variants of existing proteins and broadened alphabets of non-natural amino 

acids [14]. 

 

1.1.2   The folding pathway 

In 1969, Cyrus Levithal formulated the well-known Levinthal#s paradox [15], a 

thought experiment which explained the requirement of a folding pathway. In a 

standard illustration of the thought experiment, the phi (') and psi (() angle of 

each amino acid residue in a polypeptide chain is assumed to have only 3 

possible conformations respectively. Accordingly, a 100-residue polypeptide 

chain will have a total of 198 phi/psi angles that is free to vary, resulting in a 

total of 3198 possible three-dimensional structures. If the polypeptide chain 

were to sample all possible structures at a rate of 1013 per second (or 3 ) 1020 

per year) before picking out the most thermodynamically stable structure to 

adopt, it would take approximately 1073 years for the 100-residue polypeptide 

chain to settle into its final structure. This time scale is more than astronomical 

if we were to take into consideration the fact that the Big Bang only occurred 

about 1.37 ) 1010 years ago.  However, the real paradox in this case lies in 

the empirical observation that small proteins such as the Engrailed 

Homeodomain protein [16] and cytochrome c [17] could fold on a microsecond 

to millisecond time scale.  

With such a short time scale, it is reasonable to postulate the existence of 

specific folding “route” that leads a polypeptide chain towards its native 

structure, thus allowing it to by-pass structures that are irrelevant or sub-



! *!

optimal. To better understand this view, the following analogy could be used: 

Imagine you have to travel to London from Singapore for a business trip. If 

you do not have a definite path in mind, it will take you literally forever to reach 

London as you are just bumping around hoping to chance upon the English 

capital. However, if you have a definite itinerary, you could reach London in a 

matter of hours. What a difference in time-scale the presence of a defined 

pathway could make! 

The necessity of a protein folding pathway has led to intense research in this 

area. Examples of questions that have driven this field over the years are: 

Does the folding of a polypeptide chain proceed in a hierarchical manner? 

Does protein collapse to form compact non-native structures before actual 

structure formation? Does a folding nuclei exist? Does folding involve only a 

single distinct pathway or is multiple pathways possible?  

All these questions led to a multitude of possible solutions for the folding 

pathway puzzle. These include the “framework model”, “hydrophobic collapse 

model”, “nucleation-condensation model” and “energy landscape theory”. A 

brief description of each model is as follows: 

(a)  Framework model [18, 19] ! 

According to this model, a protein achieves its native structure in a 

stepwise manner, without the result of each step being re-considered at 

subsequent steps. Here, native secondary structures form before merging 

into a compact intermediate with a native-like structure. This is followed 
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by the formation of specific atomic interactions which will refine the tertiary 

structure of the protein.  

(b)  Hydrophobic collapse model [20, 21] ! 

In the hydrophobic collapse model, the polypeptide chain would first 

“collapse” into a more compact step before the initiation of secondary 

structure formation. The “collapse” is driven by the burial of hydrophobic 

side-chains due to the energetic stabilization conferred when they are 

sequestered from the surrounding water. This collapsed intermediate is 

also known as the “molten globule” and it is considered a “thermodynamic 

state” whose energy is lower than that of the denatured state but higher 

than that of the native state.  

(c)  Nucleation-condensation model [22-24] ! 

The nucleation-condensation model is an integration of the framework and 

the hydrophobic collapse model. The model describes a folding process 

which is analogous to crystal formation where an initial nucleation phase 

precedes outward crystal growth from the core. Here, a part of the 

polypeptide chain folds significantly earlier than other parts of the 

molecule, forming a nucleation site. This site, by initiating the first few 

correct secondary and tertiary structure interactions, then catalyzes 

further folding. From here, the folding reaction proceeds by having 

structure formation along the rest of the polypeptide chain which 

“condenses” or “collapses” onto the nucleation site, thus stabilizing the 

nucleus of the protein.  
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(d)  Energy landscape theory [25, 26] !  

Unlike other models of the protein folding pathway, the energy landscape 

theory assumes that folding occurs through organizing an ensemble of 

structures rather than through uniquely defined structural intermediates. 

Specifically, is a statistical description of a protein#s potential surface where a 

rugged funnel-like energy landscape biased the folding polypeptide towards 

its native structure. The mouth of the funnel represents the large entropy of 

the denatured state ! i.e. A large ensemble of denatured structures with high 

energy. As native/favorable contacts are formed, the stabilization energy will 

decrease with a concomitant drop in configurational entropy. This then pushes 

the folding polypeptide towards the single lowest energy structure which will 

become its native conformation.  
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1.2     Disulfide Bonds as Probes of Protein Folding 

1.2.1   Trapped disulfide-containing intermediates for the 

study of protein folding pathway 

Techniques such as fluorescence spectroscopy, pressure-jump relaxation, 

temperature-jump relaxation, hydrogen exchange pulse labeling and stopped-

flow circular dichroism had been used to study protein folding dynamics. 

Although these techniques allow the observation of protein folding events in 

the microsecond to millisecond timescale, they do not allow folding 

intermediates to be isolated for detailed characterization. This is due to the 

fact that folding intermediates are thermodynamically unstable and thus do 

not accumulate significantly at equilibration for them to be characterized. 

However, if these folding intermediates could somehow be trapped or “frozen” 

in time, it would offer a solution to the problem. To this end, disulfide bonds-

containing proteins had been suggested to be good candidates for detailed 

characterization of folding intermediates as they could be chemically trapped 

in the course of folding [27]. This is due to the unique chemistry of cysteine 

residues which are involved in disulfide bond formation. 

The folding of proteins containing disulfide bonds consist of two 

interdependent processes: (1) conformational folding and (2) disulfide bond 

regeneration [28]. During the course of conformational folding, two thiol 

groups (of cysteine residues) which are in close proximity to each other might 

form a disulfide bond via rearrangement (i.e. disulfide shuffling) or oxidation 

(e.g. air oxidation). Any free thiols present in the protein at this time could be 

chemically modified by iodoacetamide to prevent further disulfide bond 
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generation and thus conformational folding [29]. Another way to pause 

oxidative folding is by acid trapping ! To acidify the folding solution to 

disfavor the deprotonation of thiols to thiolates, the active species involved in 

disulfide bond formation [30].  

Trapped disulfide-containing folding intermediates had been used to elucidate 

the folding pathways of bovine pancreatic trypsin inhibitor (BPTI) [31, 32], 

hirudin [33], epidermal growth factor (EGF) [34], leech carboxypeptidase 

inhibitor (LCI) [35], "-lactalbumin [36] and RNase A [37]. The folding 

pathways of these disulfide-rich proteins had provided supporting evidence for 

the existence of various pathways suggested by fast-kinetic studies ! For 

example: In BPTI, a limited number of native-like intermediates funnel the 

protein towards its native structure, thus making this kind of folding in line with 

the “framework model” where local interactions is important in guiding the 

protein through the hierarchic condensation of native-like elements. On the 

other hand, hirudin-like proteins fold through an initial stage of disulfide bond 

formation followed by the rearrangement of isomers to form the native protein, 

thus making this kind of folding in line with the “hydrophobic collapse model” 

where an initial stage of collapse is followed by a slower annealing phase in 

which specific interactions are used to refine the structure [38]. 

 

1.2.2   Disulfide-connectivity based structural isoforms for the 

study of protein folding code    

In Section 1.1.2, we concluded that the absence of a folding pathway would 

require a 100-residue polypeptide chain to sample through 3198 possible 
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conformations (if each !- and "-angle is given 3 degrees of freedom) to find 

its native conformation. However, this is on the assumption that no cysteine 

residues, which could potentially participate in disulfide bonds, is present. Due 

to the structural constraint conferred by disulfide bonds, the inclusion of 6 

cysteine residues in the amino acid sequence of the polypeptide chain (i.e. 6 

cysteines, 94 non-cysteines) will make 3 disulfide bonds (if fully oxidized), 

resulting in the reduction of possible conformations to only 15. A 

conformational space of 3198 versus 15 makes a 93 order of magnitude 

difference! Even if it contains 17 disulfide bonds, the conformational 

possibilities of 6.33 ) 1018 will still be 76 order of magnitude lower than 

without any disulfide at all. Thus, the formation of disulfide bonds, whether 

native or non-native, during the process of protein folding is another 

innovative way to minimize the conformational search of a polypeptide chain.  

The presence of non-native disulfide bonds in folding intermediates seemed 

peculiar. However, it is not ! Instead of directing folding in the wrong 

direction, structural constraints imposed on the folding intermediates by non-

native disulfide bonds had been suggested to enhance the folding process by 

creating a compact fold, thus bringing other cysteine residues and different 

parts of the polypeptide chain into close proximity to facilitate the re-shuffling 

of disulfide bonds and the concomitant formation of the native structure, 

respectively [39].  

However, to guarantee the success of this useful strategy, nature must place 

sufficient information in the protein folding code to ensure that the disulfide-

connectivity is correct at the end of the folding process. If not, structural 
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constraint exerted by incorrect disulfide-connectivity might “lock” the protein 

into an incorrect conformation, thus negating any positive effects the 

formation of disulfide bonds have on the folding process.  

The presence of such information in the protein folding code is exemplified in 

in vitro oxidative folding experiments using atmospheric oxygen as the 

oxidizing agent. Unlike the use of redox buffer system, such as 

cysteine/cystine or reduced/oxidized glutathione, where disulfide bonds could 

be continually reduced then re-formed, cysteine oxidation by atmospheric 

oxygen goes through free radical intermediates [40] which is irreversible once 

all thiol groups available had been engaged in disulfide bonds (i.e. no disulfide 

shuffling). In spite of this, fully reduced proteins or peptides such as 

ribonuclease [1-3] and "-Conotoxin ImI [41] respectively, had been shown to 

recover their native disulfide-connectivity in reasonable yield upon re-oxidation 

by atmospheric oxygen. These results demonstrated that information for 

correct disulfide-connectivity is encoded in the primary amino acid sequence 

of the protein itself (as anticipated by Anfinsen#s thermodynamic hypothesis) 

and the “instructions” given by them is needed to form native disulfide bonds 

in the presence of other highly competitive oxidative processes.  

In view of the above discussion, one can see that the dictation of correct 

disulfide-connectivity is an integral part of the protein folding code. Thus, it is 

important for us to understand how this information is being embedded in the 

amino acid sequence of a protein. A good model to use for the understanding 

of native disulfide-connectivity determination is that of short peptides 

containing four cysteine residues. By careful manipulation of sequence 
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information and/or oxidative folding conditions, one could pick out structural 

determinants that influence the disulfide-connectivity choices. The limited 

subset of structural isoforms in these simple models (i.e. 3 isoforms for 2 

disulfide bonds) allows us to see the influence of minor manipulations on 

folding tendency quantitatively.  
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1.3     The Canonical Fold of the EGF-like domain 

In light of the gaps still present in our knowledge of the protein folding code 

(Section 1.1.1), this study was undertaken to provide more insights into this 

aspect of the protein folding problem. To this end, the canonical fold of the 

evolutionarily conserved epidermal growth factor (EGF)-like domain was 

chosen as the subject of our study.  

 

1.3.1   Description of the canonical EGF-like domain fold 

The EGF-like domain is a sequence of about 30 to 40 amino acid residues, 

with the epidermal growth factor itself being the prototype sequence [42] 

(Figure 1.3A). A notable feature of all EGF-like domains is the evolutionary 

conservation of six cysteine residues in defined positions along the amino 

acid sequence as well as a glycine and aromatic residue in the third inter-

cysteine region (Figure 1.3B).   

With regards to the secondary and tertiary structure of the canonical EGF-like 

domain, it folds into a three-looped structure made up of a central two-

stranded #-sheet followed by a loop to a short C-terminal two-stranded sheet 

(Figure 1.4). This structure is stabilized by three disulfide bonds formed 

between the first and third, second and fourth, fifth and sixth cysteine residue 

(C1-C3, C2-C4, C5-C6)1 of the domain.  

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

.! !Annotation of disulfide-connectivity: “C” denotes a cysteine residue. Number in subscript represents the relative 
position of the cysteine residue along the amino acid sequence from the N-terminal to C-terminal ! e.g. “1” means 
first cysteine residue, “2” means second cysteine residue, “3” means third cysteine residue, etcetera.! ! “-” (Dash) 
denotes the connectivity between the two indicated cysteine residues. !
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Figure 1.3   The consensus sequence of the EGF-like domain. (A) The epidermal growth factor 
serves as the prototype sequence of the EGF-like domain. Its disulfide-connectivity is indicated by 
square brackets connecting the respective cysteine residues. (B) The consensus sequence of the EGF-
like domain. 

!

!

Figure 1.4   The canonical fold of the EGF-like domain. It consist of 3 loops, labeled as loop A, loop 
B and loop C, respectively. Cysteine residues are numbered according to their relative position along 
the amino acid sequence from the N-terminal to C-terminal.  The three disulfide bridges are also 
indicated. 
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1.3.2   Significance of studying the protein folding code of 

EGF- like domain   

EGF-like domains are found in the extracellular domain of membrane-bound 

proteins or in secreted proteins. They have been the subject of many 

biological investigations because it is an evolutionarily conserved protein 

domain with diverse functions !!For example, EGF-like domains from various 

proteins had been shown to be capable of: (a) Mediating receptor-binding for 

host-cell recognition in parasitic infection [43] ; (b) Conferring functional 

differences (activator or inhibitor) to various ligands involved in receptor 

signaling during embryogenesis [44] ; (c) Binding to calcium ions2 which 

serves to orient neighboring modules relative to each other in a manner that is 

required for biological activity (e.g. factor IX ! Gla-EGF fragment) [45]. Of 

course, the above-mentioned functions are only a tiny fraction of the vast 

functional capabilities of the EGF-like domains, but as this aspect of EGF-like 

domain biology is beyond the scope of this thesis, a detailed description shall 

not be attempted.  

However, of considerable interest in our discussion here is how do protein 

domains like the EGF-like domains achieve such an array of functional 

diversity? One reasonable explanation would be that of domain duplication 

during evolution, followed by accumulated amino acid changes in the 

duplicated domain to generate functional diversity. Indeed, functional 

divergence of the EGF-like domain had lead to hypervariability of amino acid

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 Constitute a distinct subset of EGF-like domain. The consensus sequence for  calcium binding is D/N-x-D/N-E/Q-y-
D/N-y-Y/F, where x indicates a variable amino acid and y indicates a sequence of variable amino acids.  
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sequence in its inter-cysteine region.  

Despite sequence hypervariability, most EGF-like domains (based on those 

with structures solved) fold into the canonical three-looped structure that is 

defined by a disulfide-connectivity of C1-C3, C2-C4, C5-C6 (Figure 1.4). For this 

to be possible, the perseverance of folding information in the amino acid 

sequence is necessary while functional evolution is taking place. However, the 

exact nature of this folding information is currently unknown ! Among the 30 

to 40 amino acid residues of the EGF-like domains, which are the “functional” 

residues and which are the “structural” residues? The “structural” residues 

constitute the protein folding code and they dictate the native three-

dimensional structure of the domain. This view slightly deviates from the 

traditional concept of the protein folding code in which the amino acid 

sequence in its totality determine the native structure of the protein. Here, only 

structural determinants are needed and they are interspersed in the amino 

acid sequence together with residues needed for the functional capability of 

the protein. This way of organizing “structure-function” information in the 

amino acid sequence allows for functional diversity to develop on a single 

protein scaffold. 

Here, the study of the folding code of the canonical fold of the EGF-like 

domain serve as a good starting point to provide more insights into the nature 

of structural determinants ! What are they, where are they located in the 

amino acid sequence and the mechanism by which they act. The focus of this 

study would be at the level of disulfide-connectivity as it is this aspect of the 

EGF-like domain structure that is most conserved despite slight variation in 
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the structure of the inter-cysteine loops3. In the case of EGF-like domain, the 

conservation of disulfide-connectivity had also led to the conservation of the 

overall fold, thus the study of the disulfide-connectivity is in itself a useful 

probe to understand the folding code of this domain.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

3 Slight variation in the structure of the inter-cysteine loops is inevitable due to the hypervariability of amino acid 
sequence in these regions of the EGF-like domains. However, it is important to note that only exact structural 
details are affected, while the overall three-looped structure is maintained throughout all EGF-like domains. 
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1.4     Thrombomodulin and Its Role in the Anti-

coagulation Pathway 

To determine the structural determinants that dictate the canonical fold (i.e. 

disulfide-connectivity) of the EGF-like domain, the fourth and fifth EGF-like 

domain of thrombomodulin (TM) were chosen as models for the study.  

Here, the role of TM in the anti-coagulation pathway will be discussed to aid in 

the understanding of the structural significance regarding it smallest co-factor 

active fragment ! TM EGF-like domain 4 and 5. 

 

1.4.1   TM as a regulator of the coagulation cascade 

1.4.1.1  Thrombin: The coagulant  

During secondary hemostasis, proteins in the blood plasma, called 

coagulation factors, engage in a complex pathway to form a fibrin meshwork. 

The purpose of this fibrin meshwork is to strengthen the platelet plug, which is 

formed during primary hemostasis, at the site of blood vessel injury.  

Thrombin, also known as coagulation factor II (FII), is a serine protease which 

acts as the direct effector in the formation of the fibrin meshwork. It does so in 

two steps: First, by converting fibrinogen into fibrin [46, 47] with the 

concomitant self-polymerization of fibrin monomers [48-50]. Second, by 

activating factor XIII (FXIII) into FXIIIa [51] which is responsible for the 

covalent cross-linking of the established fibrin-polymer [52]. 

In addition to its direct effects on fibrin meshwork formation, thrombin has the 

ability to amplify its own generation via the activation of other coagulation 

factors. Thrombin does so by activating: 
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(a) Factor XI (FXI) into FXIa [53] which, in turn, activates factor IX (FIX) into 

FIXa [54]. 

(b) Factor VIII (FVIII) into FVIIIa [55] which, in turn, acts as a cofactor for FIXa 

[56]. Together, they form the intrinsic tenase complex which activates 

factor X (FX) into FXa [57].  

(c) Factor V (FV) into FVa [58] which, in turn, acts as a cofactor for FXa [59]. 

Together, they form the prothrombin complex which activates prothrombin 

into thrombin, resulting in a positive feedback loop.   

 

1.4.1.2  Thrombin-TM complex: The anti-coagulant 

Although thrombin is an effective coagulant, this function could be reversed by 

the binding of TM, a transmembrane glycoprotein expressed on the luminal 

surface of vascular endothelial cells, in a 1:1 stoichiometric complex. By 

acting as a cofactor, TM serves as a molecular switch that turns thrombin into 

an anti-coagulant [60, 61].  

The thrombin-TM complex exerts its anti-coagulant activities in two main 

ways: (a) Passively, by preventing the binding of thrombin#s pro-coagulant 

substrates (fibrinogen, FV and FVIII [62-65]) ; (b) Actively, by the activation of 

protein C [66] which is a serine protease like thrombin. When protein C is 

activated by the thrombin-TM complex, it goes on to inactivate FVIIIa (with 

protein S and intact FV as cofactors) and FVa (with protein S as cofactor) [67-

69], thus shutting down the thrombin-mediated positive feedback loop on its 

own activation, and the reduction in formation of fibrin from fibrinogen.  

From the above discussion, we can see that TM plays a central role in the 
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homeostasis of the blood coagulation system by making thrombin a pivoting 

factor between pro-coagulation and anti-coagulation. Indeed, the importance 

of TM in the blood coagulation system could be exemplified by arterial and 

venous thrombotic diseases caused by mutations in the TM gene which 

resulted in the reduced expression of the TM protein [70]. In addition, effects 

of TM gene mutation could also be seen at the at level of embryonic 

development ! Isermann et al. showed that disruption of the mouse TM gene 

led to embryonic lethality due to activation of the blood coagulation at the feto-

maternal interface which resulted in the death of trophoblast cells [71].  

 

1.4.2   Structure-function relationship of TM: Role of the 

fourth to sixth EGF-like domains 

TM is a multi-modular protein consisting of a lectin-like domain at the amino 

terminal, followed by a hydrophobic segment, six tandem EGF-like domains, 

an O-glycosylated serine/threonine-rich domain, a trans-membrane segment 

and a short cytoplasmic tail (Figure 1.5). 

The smallest cofactor active fragment of TM had been identified as the fourth 

and fifth EGF-like domains. Together they constitute 10% of the specific 

activity of TM which is greatly enhanced when the sixth EGF-like domain is 

included [72]. Studies involving the individual EGF-like domain that constitute 

the cofactor active fragment had given us useful insights into the function of 

each specific domain:  

The fourth EGF-like domain (TM EGF D4) alone did not display any cofactor 
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Figure 1.5   The domain organization of thrombomodulin. 

!

activity when assayed as a replacement for full-length TM in protein C 

activation assay. It also did not display any ability to bind to thrombin when 

assayed as a competitive inhibitor for protein C activation when full-length TM 

is included in the reaction [73]. On the other hand, a TM fragment consisting 

of the fifth and sixth EGF-like domain (TM EGF D5-D6) was shown to bind to 

thrombin with high affinity by being a competitive inhibitor of thrombin-TM in 

the activation of protein C. However, like TM EGF D4, this fragment alone did 

not any cofactor activity [74]. These results support the view that although TM 

EGF D5 and TM EGF D6 could bind to thrombin, it needs TM EGF D4 for 

cofactor activity. Meanwhile, TM EGF D4 could not exert its function as it 

could not associate with thrombin without the help of TM EGF D5-D6. Further 

support for the central role of TM EGF D4-D6 in TM#s function comes in terms 

of structural evidence provided by Fuentes-Prior et al. [75]: 

In a 2.3 Å crystal structure of human "-thrombin bound to the TM EGF D4-D6 
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fragment (Figure 1.6), it was demonstrated that TM EGF D5 and part of TM 

EGF D6 bind to a cluster of lysine and arginine residues in the anion-binding 

exosite-I of thrombin. Since thrombin#s procoagulant substrates like 

fibrinogen, FV and FVIII also bind to thrombin via exosite-I [62-65], the 

competitive binding of TM EGF D5-D6 segment to the same site provides the 

basis of blockade of procoagulant substrates in the thrombin-TM complex.  

!

!
Figure 1.6   Ribbon model of the complex between !-thrombin and TM EGF D4-D6 [PDB: 1DX5]. 

"-Thrombin is shown in white. TM EGF D4, TM EGF D5 and TM EGF D6 are shown in cyan, yellow and 
red, respectively. Disulphide linkages are shown in green. 

!

On the hand, the TM EGF D4 segment was shown to be anchored almost 

perpendicular to the linear TM EGF D5-D6 tandem. It protrudes away from 

thrombin, and thus does not interact directly with it. It was suggested that 

thrombin binding to the TM EGF D5-D6 segment creates an additional 

substrate-binding interface on TM EGF D4-D5. The “free” TM EGF D4 

segment is then needed to interact with anti-coagulant substrates of thrombin 

(i.e. protein C) such that it positions the scissile peptide bond of the substrate 
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with the catalytic machinery of thrombin in an optimal stereochemical 

conformation for cleavage. This interaction provides the structural basis for 

the alteration of thrombin#s substrate specificity upon TM#s binding. 
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1.5     Thrombomodulin EGF-like Domain 4 and 5: 

          Models in the Study of the EGF-like Domain Folding Code 

 
1.5.1   TM EGF D4 versus TM EGF D5: Canonical versus non-

canonical EGF-like domain fold 

As TM EGF D4-D5 is the smallest active cofactor of TM, there had been keen 

interest in solving the three-dimensional structure of these two domains as 

part of a larger effort to understand the structure-function relationship of TM. 

The results of these research had led to the discovery of a non-canonical 

EGF-like domain fold involving TM EGF D5 [76-78]. This non-canonical 

structure of EGF-like domain is defined by a different disulfide-connectivity, 

and thus, is of considerable interest in this current study regarding the folding 

code of the canonical EGF-like domain. Below will be a brief description of the 

structure of TM EGF D4 and D5 with the intent to highlight the key differences 

between these two domains with regards to their three-dimensional structure.  

 

1.5.1.1   Solution structure of TM EGF D4 

The solution structure of human TM EGF D4 has been determined by 2D 1H 

NMR [73, 79]. Here, the overall structure resembles that of the canonical 

EGF-like domain. Residues that are important for cofactor activity (Glu357, 

Tyr358, Gln359, Glu374 and Phe376), as determined by alanine scanning 

experiments, are found to form a “patch” that is exposed to solvent in the 

structure of TM EGF D4 [73]. More importantly (due to the purpose of this 

study), TM EGF D4 possesses the canonical EGF-like domain disulfide-

connectivity of C1-C3, C2-C4, C5-C6 (Figure 1.7). 
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Figure 1.7   Solution structure of TM EGF D4 and its disulfide-connectivity. (A) Backbone structure 
of TM EGF D4 (white) [PDB: 1DQB]. Disulfide linkages are indicated in yellow. Locations of cysteine 
residues are labeled as C1, C2, C3, C4, C5 and C6. (B) The amino acid sequence of TM EGF D4 with 
disulfide-connectivity indicated. The disulfide-connectivity of TM EGF D4 is C1-C3, C2-C4, C5-C6. This is 
the disulfide-connectivity of the canonical EGF-like domain. 

!

1.5.1.2   Solution structure of TM EGF D5 

Like TM EGF D4, the structure of human TM EGF D5 has also been 

determined by 2D 1H NMR [76, 79]. The structure of this domain appears to 

have diverged from the canonical EGF-like structure ! The central two-

stranded #-sheet in the canonical EGF-like domain is absent in TM EGF D5. 

Furthermore, the N- and C-termini is closer together in TM EGF D5 than in 

other EGF-like domains. In addition to structural divergence from the 
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canonical EGF-like fold, it is important to note that TM EGF D5 also possess a 

novel disulfide-connectivity of C1-C2, C3-C4, C5-C6 (Figure 1.8). 

 

!
Figure 1.8   Solution structure of TM EGF D5 and its disulfide-connectivity. (A) Backbone structure 
of TM EGF D5 (white) [PDB: 1DQB]. Disulfide linkages are indicated in yellow. Locations of cysteine 
residues are labeled as C1, C2, C3, C4, C5 and C6. (B) The amino acid sequence of TM EGF D5 with 
disulfide-connectivity indicated. The disulfide-connectivity of TM EGF D4 is C1-C2, C3-C4, C5-C6. This 
disulfide-connectivity is non-canonical. 

The functional significance of this unique non-canonical structure (and 

disulfide-connectivity) can be seen from a series of experiments performed by 

Meininger, Hunter and Komives [78]. In these experiments, various structural 

isoforms of TM EGF D5, based on differential disulfide-connectivity, were 

tested for thrombin-binding affinities through two kinds of thrombin inhibition 

assays ! (a) Amount of peptide needed to double fibrinogen clotting time 
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(thrombin inhibition) and (2) inhibition of protein C activation (competition with 

native full-length TM for thrombin binding). Key results from these two assays 

are highlighted below (Table 1.1):  

!

Table 1.1!!!Effect of various TM EGF D5 structural isoforms on thrombin activity!

TM EGF D5 
Structural Isoform 

Amount of peptide to double 
clotting time 

(*M) 

Ki for protein C 
activation 

(*M) 

C1-C2, C3-C4, C5-C6 210 ± 50 370 ± 50 

C1-C3, C2-C5, C4-C6 340 ± 50 830 ± 50 

[xt] C1-C2, C3-C4, C5-C6 0.2 ± 0.02 1.9 ± 0.2 

[xt] C1-C3, C2-C4, C5-C6 9 ± 1 13 ± 1 

Note. Structural isoforms are defined by disulfide-connectivity. [xt] denotes an extended form of the TM 
EGF D5 isoform which included four additional amino acids connecting the fifth and sixth EGF-like 
domains of TM. Adapted from “Thrombin-binding affinities of different disulfide-bonded isomers of the 
fifth EGF-like domain of thrombomodulin,” by M.J. Hunter and E.A. Komives, 1995, Protein Science, 4, 
p. 2134.  

From these results, it is apparent that the C1-C2, C3-C4, C5-C6 isoform of TM 

EGF D5 is a better inhibitor of thrombin activity and thrombin-TM interaction 

than the C1-C3, C2-C5, C4-C6 isoform. This is because a lower amount of C1-

C2, C3-C4, C5-C6 isoform is needed to achieve comparable inhibition level in 

both assays. Moreover, for the extended isoforms of TM EGF D5, which 

included four additional amino acids from the linker region between TM EGF 

D5 and TM EGF D6 (for the purpose of better binding), the [xt] C1-C2, C3-C4, 

C5-C6 isoform could inhibit both thrombin activity and thrombin-TM interaction 

better than the [xt] C1-C3, C2-C4, C5-C6 (canonical EGF-like domain) isoform. 

Therefore, the non-canonical structure/disulfide-connectivity of TM EGF D5 

has a high structure-function significance. This indicates that this highly 
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divergent EGF-like domain had been evolutionarily selected for, and is not 

simply a neutral mutation which has been “accidentally” preserved.  

 

1.5.2   TM EGF D4 and TM EGF D5 as models to identify the 

structural determinants of the canonical EGF-like 

domain fold   

Due to the different nature of TM EGF D4 and D5 with respect to their 

structure (i.e. TM EGF D4 is canonical EGF-like, while TM EGF D5 is non-

canonical), they serve as contrasting models in the study of the EGF-like 

domain folding code. Moreover, since the structural divergence of TM EGF D5 

had been evolutionarily selected for, it also serves as an interesting model to 

show how structural divergence can be achieved within a single domain.  

In the context of our study, the different native disulfide-connectivity of TM 

EGF D4 and TM EGF D5, with corresponding difference in structures, serve 

as a useful tool for the identification of structural determinants in the canonical 

EGF-like domain (C1-C3, C2-C4, C5-C6) fold. The criteria for being the 

structural determinants based on these two contrasting models are: 

(a) The amino acid qualifying as the structural determinant of TM EGF D4 

should not be present at its equivalent position in TM EGF D5, and vice 

versa.  

(b) When the structural determinant of TM EGF D4 is replaced with another 

residue of different physical-chemical property, it should change its folding 

tendency to that of the non-canonical fold.  
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(c) When TM EGF D4#s structural determinant is placed into its equivalent 

position in TM EGF D5, it should increase TM EGF D5#s folding tendency 

towards that of the canonical EGF-like domain fold.  

These criteria are based on the hypothesis that the switch from the canonical 

C1-C3, C2-C4 conformer to the non-canonical C1-C2, C3-C4 conformer is the 

result of a change in the physical-chemical properties of the canonical fold#s 

structural determinants. The change in physical-chemical properties of the 

structural determinants will then be manifested as a change in the dominant 

force of folding, thus resulting in a different final structure and disulfide-

connectivity. Therefore, studies that quantify the relative contribution of 

various inter-molecular forces to the folding tendencies of both domains would 

provide the clue to the nature and identity of the structural determinants. 
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1.6     Objectives and Scope of the Thesis 

The main objective of this thesis is to identify structural determinants that are 

responsible for dictating the alternate disulfide-connectivity of TM EGF D4 and 

TM EGF D5. The scope of this thesis covers the following areas:  

(a) General localization of the structural determinants in TM EGF D4 and D5. 

More specifically, it is to find out whether their respective structural 

determinants are located locally within the segment encompassing C1 to 

C4 (where disulfide-connectivity difference of TM EGF D4 and D5 lies) or if 

the C-terminal segment of the domain  (encompassing C5 to C6) has a role 

in influencing the different disulfide-connectivity preference of the front 

segment.  

(b) Determination of the dominant force that dictates the folding tendency/ 

disulfide-connectivity preference of each domain (i.e. hydrophobic or 

electrostatic). 

(c) Identification of key residues as structural determinants in TM EGF D4 and 

D5. This would be aided by knowledge regarding the general localization 

of the structural determinants and the nature of the dominant force that 

drive their respective folding tendencies.  

 



!

Chapter 2: Materials and Methods 

!
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2.1     Peptide Synthesis and Purification 

2.1.1   Peptide synthesis 

Peptides were synthesized using manual 9-fluorenylmethoxycarbonyl (Fmoc)-

solid phase peptide synthesis. All amino acids used were Fmoc-L-(amino 

acid)-OH derivatives, with some residues containing side-chain protection 

groups. The side-chain protected amino acids used were: Arg(Pbf), Asn(Trt), 

Asp(OtBu), Cys(Trt), Cys(Acm), Gln(Trt), Glu(OtBu), His(Trt), Ser(tBu), 

Thr(tBu), and Tyr(tBu). For synthesis of truncated TM EGF D4 and D5 

structural isoforms (t-TM EGF D4 and t-TM EGF D5), Cys(Trt) and Cys(Acm) 

were incorporated at specific locations along the amino acid sequence ! (a) 

C1: Cys(Trt), C2: Cys(Acm), C3: Cys(Trt), C4: Cys(Acm) for C1-C3, C2-C4 

isoform ; (b) C1: Cys(Trt), C2: Cys(Trt), C3: Cys(Acm), C4:  Cys(Acm) for C1-

C2, C3-C4 isoform ; (c) C1: Cys(Acm), C2: Cys(Trt), C3:   Cys(Trt), C4: 

Cys(Acm) for C1-C4, C2-C3 isoform (Figure 2.1). For peptides used for in vitro 

oxidative folding experiments, only Cys(Trt) was used.  

The peptides were assembled on the Novasyn® TGR resin (Novabiochem, 

Darmstadt, Hesse, Germany), which was designed for the synthesis of 

peptide amides. The coupling step was performed in N,N-dimethylformamide 

(DMF): N-Methyl-2-pyrrolidone (NMP) (2:1) with 5 times excess of amino acid 

derivatives activated in situ by 4.9 times excess of O-(7-Azabenzotriazol-1-yl)-

N,N,N!,N!-tetramethyluronium hexafluorophosphate (HATU) and 10 times 

excess of N,N-diisopropyl-ethylamine (DIPEA). Removal of Fmoc-moiety (de-

blocking) was achieved using a solution of 20% (v/v) piperidine in DMF. The 
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success of coupling and de-blocking was verified for each residue using the 

Kaiser test [80] (all amino acid residues except Pro) and Chloranil test [81] 

(Pro residue).  

!

!
Figure 2.1   Synthesis of t-TM EGF D4 and t-TM EGF D5 structural isoforms and their respective 

"test peptides" using Cys(Acm) and Cys(Trt). For the synthesis of structural isoforms, Cys(Trt) and 
Cys(Acm) were incorporated at specific positions along the polypeptide chain as illustrated in: (A) C1-C3, 
C2-C4, (B) C1-C2, C3-C4, and (C) C1-C4, C2-C3. (D) For the synthesis of peptides used for in vitro 
oxidative folding experiments, only Cys(Trt) was used. 

!

2.1.2   Peptide cleavage, deprotection and isolation 

After synthesis was complete, the resin was rinsed extensively with 3 cycles 

of successive methanol (MeOH), DMF and dichloromethane (DCM) washes, 

followed by a final MeOH rinsing step before drying overnight under vacuum. 

Peptides without Cys(Acm) derivatives were deprotected and cleaved from 

the resin using a cocktail of trifluoroacetic acid (TFA)/1,2-ethanedithiol 

(EDT)/thioanisole/water (90:4:4:2 % v/v) for 2 hrs with gentle stirring. Peptides 

with Cys(Acm) derivatives were deprotected and cleaved from the resin with a 
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cocktail of TFA/EDT/triisopropylsilane (TIS)/water (94:2.5:1:2.5 % v/v) instead.  

After removal of the resin by filtration through fritted glass funnels, the 

peptides were precipitated by dropping the filtrate drop-wise into ice-cold 

diethyl-ether. The precipitate was collected as a pellet after centrifugation and 

allowed to dry overnight. 

 

2.1.3   Peptide purification 

Dried peptides were dissolved using 0.1% (v/v) TFA in 10% (v/v) acetonitrile 

(ACN) and purified using reversed-phase HPLC with a Jupiter Proteo, 4 *, 90 

Å (15 ) 250 mm) column (Phenomenex, Torrance, California, USA) on an 

ÄKTA™ purifier system (GE Healthcare, Uppsala, Sweden). A segmented 

gradient elution method involving TFA as the counter-ion (constant 

concentration of 0.1% v/v), and ACN as the organic modifier (maximum 80% 

v/v) was used. The purified peptides were verified using electrospray 

ionization-mass spectrometry (Section 2.1.4) before lyophilization.  

 
2.1.4   Electrospray ionization-mass spectrometry (ESI-MS) 

Peptide mass determination using ESI-MS was performed on an API-300 

LC/MS/MS system (Perkin-Elmer Sciex, Selton, Connecticut, USA). The 

samples were introduced via direct injection. The LC-10AD liquid 

chromatography system (Shimadzu, Kyoto, Japan) was used as the solvent 

delivery system with 0.1% (v/v) formic acid in 50% ACN as the solvent. 

Ionspray, orifice and ring voltages were set at 4600 V, 50 V and 350 V, 

respectively. Nitrogen was used as the nebulizer and curtain gas. 
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2.2     Regioselective Synthesis of Structural Isoforms 

By placing S-trityl (Trt) or S-acetamidomethyl (Acm)-protected cysteine 

residues at specific positions along the peptide chain (Section 2.1.1), 

orthogonal protection of cysteine residues# side-chains were used to generate 

structural isoforms based on differential disulfide-connectivity. Cysteine 

residues involved in the formation of the first disulfide bridge were protected 

with the acid labile Trt-group, which were removed upon TFA treatment in the 

peptide synthesis cleavage step (Section 2.1.2). After formation of the first 

disulfide bridge, the remaining two Acm-protected cysteine residues would be 

treated with iodine to achieve simultaneous removal of Acm-group and 

oxidation to form the second disulfide bridge.  

 

2.2.1   Formation of the first disulfide bridge 

2.2.1.1  DMSO-mediated oxidation 

Fully reduced, purified Cys(Acm)-containing peptides with two free cysteine 

residues were dissolved at a concentration of 0.3 mM in a 0.1 M Tris-HCl, pH 

7.5 buffer containing 10% ACN and 20% DMSO. DMSO-mediated oxidation 

was allowed to take place under vigorous stirring and the progress of the 

reaction was monitored using the Ellman#s test (Section 2.2.1.2). When 

reaction was completed, as indicated by a negative Ellman#s test, the pH of 

the solution was adjusted to pH 2 using concentrated HCl. The peptide, now 

containing one disulfide-bridge, was directly injected into the Jupiter Proteo, 4 

*, 90 Å (15 ) 250 mm) column for purification using the segmented gradient 
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elution method described in Section 2.1.3. The purified peptides were verified 

using ESI-MS (i.e. mass reduction of 2 Da) before lyophilization.  

 

2.2.1.2  Ellman#s Test 

A reaction buffer of 0.1 M sodium phosphate, pH 8.0, containing 1 mM EDTA 

was prepared. This was followed by an Ellman#s reagent solution which was 

made by dissolving 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) in the reaction 

buffer at a concentration of 0.4% (w/v). The proportion of Ellman#s reagent, 

peptide sample and reaction buffer used in the test is 1:5:50, respectively. 

The reaction mixture was incubated at room temperature for 15 mins before 

the absorbance of the sample was measured at 412 nm using a NanoVue 

spectrophotometer (GE Healthcare, Uppsala, Sweden).  

 

2.2.2   Formation of the second disulfide bridge: Iodine 

mediated simultaneous deprotection/oxidation  

Purified Cys(Acm)-containing peptides with one disulfide bridge was dissolved 

at a concentration of 0.6 mM in a mixed solvent consisting of 10% (v/v) ACN 

and 80% (v/v) acetic acid. Solid iodine (5 equivalent per Acm) and HCl (1.5 

equivalent per Acm) were then added to the peptide solution. The reaction 

was allowed to proceed with vigorous stirring for 1 hr before quenching with a 

1 M ascorbic acid solution drop-wise until a colorless solution was obtained. 

The reaction mixture was diluted 4-fold before loading into the Jupiter Proteo, 

4 *, 90 Å (15 ) 250 mm) column for purification using the segmented gradient 

elution method described in Section 2.1.3. The purified peptides were verified 

using ESI-MS (i.e. mass reduction of 144 Da) before lyophilization.  
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2.3     Oxidative Folding of Fully Reduced Peptides 

2.3.1   Air oxidation 

The buffer used for air oxidation was 0.1 M Tris-HCl, pH 8.0, containing 10% 

(v/v) ACN. Fully reduced peptides (all cysteine residues derived from Cys(Trt) 

derivative) was dissolved at a concentration of 0.1 mM. The solution was 

stirred in an open atmosphere, and the progress of the reaction was 

monitored using the Ellman#s test (Section 2.2.1.2). When the reaction was 

completed (negative Ellman#s test), the pH of the solution was adjusted to pH 

2 using concentrated HCl. For air oxidation in the presence of denaturant, 6 M 

guanidine hydrochloride (Gn.HCl) was included in the buffer.  

 

2.3.2   Oxidation in the presence of redox reagents 

The buffer used for redox reagent-mediated oxidation was 0.1 M Tris-HCl, pH 

8.0, containing 1 mM EDTA, 2 mM reduced glutathione, 1 mM oxidized 

glutathione and 10% (v/v) ACN. Fully reduced peptides (all cysteine residues 

derived from Cys(Trt) derivative) was dissolved at a concentration of 0.1 mM. 

The solution was then purged with nitrogen gas for 5 mins before the reaction 

tube was sealed. The reaction was allowed to proceed with vigorous stirring 

for 48 hrs before the pH of the solution was adjusted to pH 2 with 

concentrated HCl. For redox reagent-mediated oxidation in the presence of 

denaturant or high salt content, 6 M Gn.HCl or 0.5 M NaCl was included in the 

buffer, respectively.  
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2.4     Chromatographic Separation of Structural Iso-

forms Obtained from Oxidative Folding Studies     

 
2.4.1   Structural isoforms of t-TM EGF D4 

Structural isoforms of t-TM EGF D4 obtained from oxidative folding (Section 

2.3) were separated using reversed-phase HPLC with a Cosmosil Cholester, 

5 *, 120 Å (4.6 ) 250 mm) column (Nacalai Tesque, Kyoto, Japan). A 

segmented gradient elution method involving TFA as the counter-ion 

(constant concentration of 0.1% v/v), and MeOH as the organic modifier 

(maximum 60% v/v) was used. 

  

2.4.2   Structural isoforms of t-TM EGF D5 

Structural isoforms of t-TM EGF D5 obtained from oxidative folding (Section 

2.3) were separated using reversed-phase HPLC with a Kinetex™ PFP, 2.6 *, 

100 Å (4.6 ) 100 mm) column (Phenomenex, Torrance, California, USA). A 

segmented gradient elution method involving heptafluorobutyric acid (HFBA) 

as the counter-ion (constant concentration of 10 mM), and MeOH as the 

organic modifier (maximum 80% v/v) was used. 

 

2.4.3   Structural isoforms of t-TM EGF D4 (Y25T) 

Structural isoforms of t-TM EGF D4 (Y25T) obtained from oxidative folding 

(Section 2.3) were separated using reversed-phase HPLC with a Cosmosil 

Cholester, 5 *, 120 Å (4.6 ) 250 mm) column (Nacalai Tesque, Kyoto, Japan). 

A segmented gradient elution method involving HFBA as the counter-ion 
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(constant concentration of 10 mM), and MeOH as the organic modifier 

(maximum 80% v/v) was used. 

 

2.4.4   Calculation of peak area 

The amount of each structural isoform obtained is correlated to the area of its 

corresponding peak in the chromatogram. The peak area was calculated 

using the “peak integration” function of the UNICORN protein purification 

software (GE Healthcare, Uppsala, Sweden). Skim procedures were applied 

when deemed necessary to improve accuracy of calculations. 

 

2.4.5   Statistical analysis 

All oxidative folding experiments were performed in triplicates. The amount of 

each structural isoform obtained from each replicate was expressed as 

percentage values before the average and standard deviation values were 

calculated. 

The Student#s t-test (independent samples) (Eq. 1 to Eq. 5, Table 2.1) was 

used to test for significant differences in the proportion of corresponding 

structural isoforms obtained from two different oxidative folding conditions. It 

should be noted that for a parametric test, the direct input of percentage data 

is not recommended. Thus, in accordance to a solution recommended by Zar 

[82], an arcsine transformation (Eq. 6, Table 2.1) was performed on all 

percentage values (from each replicate) before the statistical test was 

performed.  
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Student#s t-test (Independent samples) 

 

            (Eq. 1) 

 

           (Eq. 2) 

 

          (Eq. 3) 

 

         (Eq. 4) 

 

          (Eq. 5) 

 

 

Arcsine transformation (degrees) 

 

         (Eq. 6) 

 

Table 2.1   Annotation for statistical formulas (Eq. 1 to Eq. 6) 

Student#s t-test (Independent samples) 

%x1 
mean of arcsine transformed values ! 
oxidative folding condition 1 

%x2 
mean of arcsine transformed values ! 
oxidative folding conditions 2 

*2 - *2 H0: no difference = 0  

Mean difference =!
(Samples)!

Mean difference =!
(Null hypothesis)!

Standard error of difference =!
(Samples)!

Test statistic =!

Degrees of freedom=!

Arcsine transformation =!
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s1 
standard deviation of arcsine transformed 
values ! oxidative folding condition 1 

s2 
standard deviation of arcsine transformed 
values ! oxidative folding condition 2 

n1 number of trials for oxidative folding condition 1 

n2 number of trials for oxidative folding condition 2 

Arcsine transformation 
x percentage value 

 

The p-values for the Pearson#s chi-square test were obtained using the “p-

value calculator for the chi-square test” ! http://www.danielsoper.com/ 

statcalc/calc11.aspx 

The p-values for the Student#s t-test (indepndent samples) were obtained 

using the “p-value calculator for the Student t-test” ! http://www.danielsoper. 

com/statcalc/calc08.aspx 
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3.1     Synthesis of Truncated TM EGF D4 and TM EGF 

D5 Structural Isoforms 

To identity structural determinants in the 45- and 39-residue long domains of 

TM EGF D4 and TM EGF D5, respectively, it is important to simplify the 

search by narrowing down the region in which the determinants are located. 

Since the structural/disulfide-connectivity difference of TM EGF D4 and D5 

are restricted to the first two disulfide bonds within their N-terminal segments 

(encompassing C1 to C4) (Figure 3.1), it was of interest to determine whether 

the structural determinants of each domain are located locally within that 

segment or if the C-terminal segment of the domain (encompassing C5 to C6) 

had a role in influencing the different disulfide-connectivity preference of the 

front segment.  

 

!
Figure 3.1   A comparison between the disulfide-connectivity of (A) TM EGF D4 and (B) TM EGF 

D5. The difference in disulfide-connectivity lies in the first two disulfide bonds of the respective domains, 
as denoted by asterisks (*). The disulfide-connectivity of C1 to C4 is C1-C3, C2-C4 for TM EGF D4, while it 
is C1-C2, C3-C4 for TM EGF D5.   

!
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To do so, truncated version of TM EGF D4 and D5 (t-TM EGF D4 and t-TM 

EGF D5) lacking the segment encompassing C5 to C6 were used for in vitro 

oxidative folding studies. The structural isoforms obtained from these studies 

were identified by comparing and matching their retention volume with those 

of regioselectively-synthesized structural isoforms.  

These regioselectively-synthesized structural isoforms were generated using 

an orthogonal cysteine-protection scheme depicted in Figure 3.2 (details in 

Materials and Methods, Section 2.1 and Section 2.2). The retention volume 

and elution order of each individual structural isoform was then determined by 

reversed-phase HPLC on a Cosmosil Cholester column for t-TM EGF D4 

isoforms, and a Kinetex PFP column for t-TM EGF D5 isoforms (details in 

Section 2.4).  

 

3.1.1   Elution characteristics of t-TM EGF D4 structural 

isoforms 

Human t-TM EGF D4 has a sequence of “HMEPVDPCFRANCEYQCQPLNQT 

SYLCV”. The regioselective synthesis of t-TM EGF D4 structural isoforms 

were successful as the observed average mass of each isoform correspond 

well with the theoretical (fully oxidized) average mass of 3284.7 Da (Table 3.1 

and Appendix (AP) Figure A3.1 to A3.3): 

 
Table 3.1   Observed versus theoretical mass of t-TM EGF D4 structural isoforms 

Structural Isoform Observed  
Average Mass (Da)a 

Theoretical  
Average Mass (Da) 

C1-C3, C2-C4 (Native) 3284.69 
C1-C2, C3-C4 3284.68 
C1-C4, C2-C3 3284.72 

3284.7 

a Observed masses were calculated from ESI-MS data obtained from Perkin-Elmer Sciex API 300 
LC/MS/MS system using the “Peptide Reconstruct” function of the Analyst® software.    
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!
Figure 3.2   Regioselective synthesis of t-TM EGF D4 and t-TM EGF D5. In stage 1, the peptide chain was assembled by solid phase peptide synthesis on a rink amide-

based resin. Cysteine residues with S-trityl (Trt) or S-acetamidomethyl (Acm) side-chain protection groups were incorporated at specific locations along the peptide chain. Upon 

treatment with high concentration of TFA, the peptide chain was released from the solid phase with simultaneous removal of all side-chain protection groups except Acm-

groups on cysteine residues. In stage 2, the first disulfide bond was formed by DMSO-mediated oxidation of the two free cysteine residues previously derived from Cys(Trt). 

The second disulfide bond was formed by iodine treatment (at 5 equivalent per Acm) which mediated the simultaneous deprotection and oxidation of Cys(Acm) residues. 
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The elution order of t-TM EGF D4 structural isoforms based on reversed-

phase analysis using the Cosmosil Cholester column is as follows: C1-C3, C2-

C4 (native) (lowest retention volume), followed by C1-C2, C3-C4, and C1-C4, C2-

C3 (highest retention volume).  

As a gradual decrease in retention volume was observed with every use of the 

column (due to reasons yet unknown), each structural isoforms was re-

analyzed individually on the column with every set of oxidative folding 

experiments to re-establish the retention volume of each structural isoform. 

This is to ensure the validity of the retention volume-based identification of 

various structural isoforms even though the elution order of the isoforms was 

not affected (i.e. retention volume of each isoform decrease by the same 

factor, therefore, not affecting the order of elution).   

 

3.1.2   Elution characteristics of t-TM EGF D5 structural 

isoforms 

Human t-TM EGF D5 has a sequence of “MFCNQTACPADCDPNTQASCE”. 

The regioselective synthesis of t-TM EGF D5 structural isoforms were 

successful as the observed average mass of each isoform correspond well 

with the theoretical (fully oxidized) average mass of 2244.5 Da (Table 3.2 and 

AP Figure A3.4 to A3.6): 

 
Table 3.2!!!Observed versus theoretical mass of t-TM EGF D5 structural isoforms!

Structural Isoform Observed  

Average Mass (Da)
a
 

Theoretical  

Average Mass (Da) 

C1-C3, C2-C4  2244.49 

C1-C2, C3-C4 (Native) 2244.45 

C1-C4, C2-C3 2244.51 

2244.5 

a
 Observed masses were calculated from ESI-MS data obtained from Perkin-Elmer Sciex API 300 

LC/MS/MS system using the “Peptide Reconstruct” function of the Analyst
®
 software.  
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The elution order of t-TM EGF D5 structural isoforms based on reversed-

phase analysis using the Kinetex PFP column is as follows: C1-C2, C3-C4 

(native) (lowest retention volume), followed by C1-C3, C2-C4, and C1-C4, C2-C3 

(highest retention volume).  
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3.2     The in vitro Folding Tendencies of t-TM EGF D4 

and t-TM EGF D5  

To determine the folding tendency of t-TM EGF D4 and t-TM EGF D5, fully 

reduced peptides with all free cysteine residues, were placed in high pH (pH 

8.0) buffer for in vitro oxidative folding. Two oxidative conditions were used: 

(a) Air oxidation, which makes use of atmospheric oxygen. Here, the oxidation 

process going through a series of free radical intermediates [40] and often 

results in cleaner products. However, the dominant product obtained may not 

represent the most thermodynamically favorable conformation; (b) Redox 

system, which involves the use of reduced:oxidized glutathione at a ratio of 

2:1. These compounds catalyze disulfide exchange reactions resulting in the 

most thermodynamically favorable status of the cysteine residues [83]. 

However, it has the disadvantage of generating additional products which 

corresponds to peptides containing intermolecular disulfides between the 

peptide and glutathione [84].  

 

3.2.1   In vitro oxidative folding of t-TM EGF D4 

Oxidative folding of reduced t-TM EGF D4 was performed using air oxidation 

and redox reagent-mediated folding: 

(a)  Air oxidation-mediated folding of reduced t-TM EGF D4 was monitored by 

the Ellman!s test and the reaction was deemed complete when a negative 

test result was obtained. For t-TM EGF D4, the completion of oxidative 

folding took approximately 98 hrs. Structural isoforms obtained from the 
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reaction were resolved by reversed-phase chromatography and as 

expected, three monomeric isoforms were obtained (Figure 3.3).  

(b)  Redox reagent-mediated folding of t-TM EGF D4 was allowed to proceed 

for 48 hrs before the reaction was quenched by acidification. Like air 

oxidation, three monomeric isoforms were obtained (Figure 3.4).  

In both cases, the retention volume of the three monomeric isoforms obtained 

matched well with that of regioselectively-synthesized structural isoforms. This 

enabled the identification of peaks in the chromatogram, and the relative 

proportions of the three isoforms were calculated based on the area of their 

respective peaks (Table 3.3A: Purple columns). 

Results from both oxidative folding experiments showed that t-TM EGF D4 

has a folding preference towards the C1-C3, C2-C4 (native) isoform as it 

constitutes the highest percentage of t-TM EGF D4 structural isoforms 

obtained in both cases. 

Pairwise comparison of corresponding structural isoforms from air oxidation 

and redox reagent-mediated oxidation studies using Student!s t-test (with 

arcsine transformed-percentage values) showed significant differences (at 

0.05 level of significance) in the proportions of C1-C3, C2-C4 (native) and C1-

C2, C3-C4 structural isoforms obtained between the two studies. Here, an 

increase and decrease in the proportion of C1-C3, C2-C4 (native) and C1-C2, 

C3-C4 structural isoforms, respectively, were observed when t-TM EGF D4 

was folded via the redox buffer system (Figure 3.5 and AP Table A3.1).  
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Figure 3.3   Analysis of t-TM EGF D4 air oxidation products by reversed-phase chromatography. 

Retention volume of the three monomeric structural isoforms obtained were compared with that of 

regioselectively-synthesized structural isoforms. 
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Figure 3.4   Analysis of t-TM EGF D4 redox reagent-mediated oxidation products by reversed-

phase chromatography. Retention volume of the three monomeric structural isoforms obtained were 

compared with that of regioselectively-synthesized structural isoforms. Abbreviations: GSH ! Reduced 

glutathione; GSSG ! Oxidized glutathione.   
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Table 3.3   Percentages of structural isoforms obtained from oxidative folding of t-TM EGF D4 and t-TM EGF D5 in 
various conditions 

(A) Oxidative folding of t-TM EGF D4 
 (---)a, b +6 M Gn.HClc +0.5 M NaCld 

Structural Isoforms Air Oxidation 

(%) 

Redox Buffer 

System (%) 

Air Oxidation 

(%) 

Redox Buffer 

System (%) 

Redox Buffer 

System (%) 

C1-C3, C2-C4 (Native) 67.53 ± 0.69 69.08 ± 0.57 18.48 ± 1.15 31.31 ± 0.98 74.66 ± 0.87 

C1-C2, C3-C4 21.13 ± 0.67 18.96 ± 0.57 52.72 ± 0.94 47.28 ± 0.32 17.18 ± 0.45 

C1-C4, C2-C3 11.34 ± 0.63 11.96 ± 0.27 28.80 ± 0.82 21.42 ± 0.71 8.17 ± 0.49 
 

 

(B) Oxidative folding of t-TM EGF D5 
 (---)a, b +6 M Gn.HClc +0.5 M NaCld 

Structural Isoforms Air Oxidation 

(%) 

Redox Buffer 

System (%) 

Air Oxidation 

(%) 

Redox Buffer 

System (%) 

Redox Buffer 

System (%) 

C1-C3, C2-C4  20.57 ± 0.34 20.36 ± 0.11 17.69 ± 0.35 19.11 ± 0.15 23.32 ± 0.43 

C1-C2, C3-C4 (Native) 60.40 ± 0.64 60.67 ± 1.07 61.80 ± 0.91 61.46 ± 0.77 54.40 ± 1.78 

C1-C4, C2-C3 19.03 ± 0.30 18.97 ± 0.98 20.52 ± 0.67 19.43 ± 0.63 22.28 ± 1.98 

a Discussion in Section 3.2, b Normal oxidative folding conditions (without denaturant or salt) 
c Discussion in Section 3.3 
d Discussion in Section 3.4 

!
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Figure 3.5! ! !Pairwise comparison of t-TM EGF D4 structural isoform proportions obtained from 

air oxidation and redox reagent-mediated oxidation studies. Student!s t-test (independent samples) 

using arcsine transformed-values were used for the calculation of probability (p)-values. Difference in 

proportion between corresponding structural isoforms is deemed to be significant when the p-value is 

less than 0.05 (one-tailed).  

!

3.2.2   In vitro oxidative folding of t-TM EGF D5 

Oxidative folding of reduced t-TM EGF D5 was performed using air oxidation 

and redox reagent-mediated folding: 

(a)  Air oxidation-mediated folding of reduced t-TM EGF D5 was completed in 

approximately 72 hrs as judged by the Ellman!s test. Structural isoforms 

obtained from the reaction were resolved by reversed-phase 

chromatography and as expected, three monomeric isoforms were 

obtained (Figure 3.6).  

(b)  Folding of t-TM EGF D5 in redox buffer system was performed over 48 

hrs. Like air oxidation, three monomeric isoforms were obtained (Figure 

3.7).  

Like t-TM EGF D4, the retention volume of t-TM EGF D5 structural isoforms 
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Figure 3.6   Analysis of t-TM EGF D5 air oxidation products by reversed-phase chromatography. 

Retention volume of the three monomeric structural isoforms obtained were compared with that of 

regioselectively-synthesized structural isoforms. 

!
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Figure 3.7   Analysis of t-TM EGF D5 redox reagent-mediated oxidation products by reversed-

phase chromatography. Retention volume of the three monomeric structural isoforms obtained were 

compared with that of regioselectively-synthesized structural isoforms. Abbreviations: GSH ! Reduced 

glutathione; GSSG ! Oxidized glutathione. 
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obtained from both oxidative folding studies matched well with that of 

regioselectively-synthesized structural isoforms. Thus, peak identities were 

assigned and the relative proportions of the three isoforms were calculated 

based on the area of the respective peaks (Table 3.3B: Purple columns). 

Unlike the folding tendency of t-TM EGF D4, results from these oxidative 

folding experiments showed that t-TM EGF D5 has a folding preference 

towards the C1-C2, C3-C4 isoform instead of the C1-C3, C2-C4 isoform. 

However, it should be noted that C1-C2, C3-C4 is the native disulfide-

connectivity of t-TM EGF D5. Thus, in a way similar to t-TM EGF D4, t-TM 

EGF D5 has a folding preference towards its native isoform.  

With regards to the difference in proportions of corresponding structural 

isoforms obtained from air oxidation and redox reagent-mediated oxidation 

studies, the Student!s t-test (with arcsine transformed values) revealed no 

significant difference (at 0.05 level of significance) in all structural isoforms 

between the two studies (Figure 3.8 and AP Table A3.2). 

 

3.2.3   Truncated TM EGF D4 and TM EGF D5 preferentially 

fold into their respective native isoform 

Similar to air oxidation-mediated folding, the highest yield obtained from redox 

reagent-mediated folding was the respective native isoforms of both domains. 

This is approximately 70% for t-TM EGF D4 (C1-C3, C2-C4) and 60% for t-TM 

EGF D5 (C1-C2, C3-C4). From these redox-based experiments, it is reasonable 

to conclude that the respective native isoforms of both domains are the most 

thermodynamically stable among the three possible structural isoforms.  
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Figure 3.8   Pairwise comparison of t-TM EGF D5 structural isoform proportions obtained from 

air oxidation and redox reagent-mediated oxidation studies. Student!s t-test (independent samples) 

using arcsine transformed-values were used for the calculation of probability (p)-values. Difference in 

proportion between corresponding structural isoforms is deemed to be significant when the p-value is 

less than 0.05 (one-tailed).  

!

Together, these results demonstrated that fully reduced t-TM EGF D4 and t-

TM EGF D5 still preferentially fold into their native, most thermodynamically 

stable, structural isoform even when the C-terminal segment of both EGF-like 

domains (encompassing C5 and C6) were absent. This prominent folding 

tendency suggests the existence of structural determinants that lies within the 

N-terminal segment (encompassing C1 to C4) of both domains and that their 

respective C-terminal segments do not play a major role in dictating the 

disulfide-connectivity of the first two disulfide bonds. Logically, the respective 

structural determinants of both domains must be of different or opposing 

properties so as to dictate the canonical versus non-canonical EGF-like 

domain fold of TM EGF D4 and TM EGF D5, respectively. 
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3.3     Contribution of Side-chain Interactions in the 

Folding Tendencies of t-TM EGF D4 and t-TM 

EGF D5 

To identify the structural determinants which are located in the N-terminal 

segment of the EGF-like domain, it is important to identify the dominant forces 

that drives and stabilizes the fold of t-TM EGF D4 and t-TM EGF D5. To this 

end, it is of interest to detect any difference in the folding tendency of both 

truncated EGF-like domains upon manipulation of the oxidative folding 

environment. This would tell us the relative contribution of specific side-chain 

interactions in stabilizing the native fold of the domain and thus aid in the 

identification of the dominant force. Any knowledge of the dominant force 

would then indicate the physical-chemical properties of the amino acid 

residues involved in the folding code of the EGF-like domain. 

To determine the role of side-chain interactions in dictating the folding 

tendency of t-TM EGF D4 and t-TM EGF D5, 6 M Gn.HCl was included in the 

oxidative folding buffer to disrupt side-chain interactions in the peptide. The 

extent of change in the folding tendency of both domains would be compared 

to ascertain if differences in the necessity of side-chain interactions is the 

main contributor to the two EGF-like domains! different folding tendency. 

 

3.3.1   In vitro oxidative folding of t-TM EGF D4 in the 

presence of 6 M Gn.HCl  

Air oxidation and redox reagent-mediated folding of t-TM EGF D4 was 

performed with the inclusion of 6 M Gn.HCl in the folding buffer: 
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(a)  For air oxidation in the presence of 6 M Gn.HCl, the reaction was 

completed in approximately 72 hrs as judged by the Ellman!s test. 

Analysis by reversed-phase chromatography revealed that all three 

monomeric isoforms were obtained (Figure 3.9). 

(b)  The redox reagent-mediated oxidative folding of t-TM EGF D4 in the 

presence of 6 M Gn.HCl was allowed to proceed for 48 hours. It also 

yielded three monomeric isoforms which were resolved by reversed-

phase chromatography (Figure 3.10).  

Peak identities were assigned and their respective peak area revealed that 

the highest yield obtained from both oxidative folding studies was the C1-C2, 

C3-C4 isoform (Table 3.3A: Green columns). This meant that t-TM EGF D4 

has a folding preference towards the C1-C2, C3-C4 isoform, instead of its 

native C1-C3, C2-C4 isoform, when folded in the presence of denaturant (Note: 

more detailed discussion in Section 3.3.3). 

Pairwise comparison of corresponding structural isoforms from both oxidative 

folding studies was performed. The Student!s t-test (with arcsine transformed-

percentage values) showed significant difference in the proportions of all 

structural isoforms obtained ! i.e. When folding was performed via the redox 

buffer system in the presence of denaturant, the proportion of the C1-C3, C2-

C4 (native) isoform obtained was much higher. This resulted in the 

concomitant decrease in the proportions of the C1-C2, C3-C4 and C1-C4, C2-C3 

isoforms (Figure 3.11 and AP Table A3.3). The increase in the C1-C3, C2-C4 

(native) isoform in redox buffer system could be attributed to the redox 
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Figure 3.9   Analysis of t-TM EGF D4 products obtained from air oxidation in the presence of 6 M 

Gn.HCl by reversed-phase chromatography. Retention volume of the three monomeric structural 

isoforms obtained were compared with that of regioselectively-synthesized structural isoforms. 

!
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Figure 3.10   Analysis of t-TM EGF D4 products obtained from redox reagent-mediated oxidation 

in the presence of 6 M Gn.HCl by reversed-phase chromatography. Retention volume of the three 

monomeric structural isoforms obtained were compared with that of regioselectively-synthesized 

structural isoforms. Abbreviations: GSH ! Reduced glutathione; GSSG ! Oxidized glutathione. 
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reagent-mediated increase in the most thermodynamically stable isoform of t-

TM EGF D4 (i.e. C1-C3, C2-C4). Here, redox reagent-mediated oxidation had 

increase the proportion of C1-C3, C2-C4 isoform despite an overwhelming 

tendency for t-TM EGF D4 to fold into the C1-C2, C3-C4 isoform in the 

presence of 6 M Gn.HCl. 

  

!

Figure 3.11   Pairwise comparison of t-TM EGF D4 structural isoform proportions obtained from 

air oxidation (with 6 M Gn.HCl) and redox reagent-mediated oxidation (with 6 M Gn.HCl) studies. 

Student!s t-test (independent samples) using arcsine transformed-values were used for the calculation 

of probability (p)-values. Difference in proportion between corresponding structural isoforms is deemed 

to be significant when the p-value is less than 0.05 (one-tailed).  

!

3.3.2   In vitro oxidative folding of t-TM EGF D5 in the 

presence of 6 M Gn.HCl 

Air oxidation and redox reagent-mediated folding of t-TM EGF D5 was 

performed with the inclusion of 6 M Gn.HCl in the folding buffer: 

(a) In the presence of denaturant, air oxidation-mediated folding was 

completed in approximately 48 hrs as judged by the Ellman!s test. 
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Subsequent analysis by reversed-phase chromatography showed that 

three structural isoforms were obtained (Figure 3.12). 

(b)  The folding of t-TM EGF D5 using redox reagent-mediated oxidation in the 

presence of denaturant also yielded three structural isoforms (Figure 

3.13). 

Quantification of structural isoform proportions based on relative peak areas 

revealed that the folding tendency of t-TM EGF D5 was not affected by the 

presence of 6 M Gn.HCl in the oxidative folding buffers. t-TM EGF D5 still 

showed a folding preference towards its native (C1-C2, C3-C4) isoform (Table 

3.3B: Green columns). This is in contrast to t-TM EGF D4 whose folding 

tendency was altered when denaturant was added to the oxidative folding 

buffers (Note: more detailed discussion in Section 3.3.3).  

Pairwise comparison of corresponding structural isoforms from both set of 

experiments using Student!s t-test (with arcsine transformed values) revealed 

no difference in proportions, except for a slightly larger percentage of C1-C3, 

C2-C4 isoform in the redox reagent mediated-experiments (Figure 3.14 and AP 

Table A3.4). 

 

3.3.3   Side-chain interaction is necessary for the canonical 

C1-C3, C2-C4 fold of the EGF-like domain 

Disruption of side-chain interactions using 6 M Gn.HCl in the oxidative folding 

buffer had a different effect on the folding tendencies of t-TM EGF D4 and t-

TM EGF D5.  
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Figure 3.12   Analysis of t-TM EGF D5 products obtained from air oxidation in the presence of 6 

M Gn.HCl by reversed-phase chromatography. Retention volume of the three monomeric structural 

isoforms obtained were compared with that of regioselectively-synthesized structural isoforms. 

!

!
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Figure 3.13   Analysis of t-TM EGF D5 products obtained from redox reagent-mediated oxidation 

in the presence of 6 M Gn.HCl by reversed-phase chromatography. Retention volume of the three 

monomeric structural isoforms obtained were compared with that of regioselectively-synthesized 

structural isoforms. Abbreviations: GSH ! Reduced glutathione; GSSG ! Oxidized glutathione. 

!

!
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Figure 3.14!!!Pairwise comparison of t-TM EGF D5 structural isoform proportions obtained from 

air oxidation (with 6 M Gn.HCl) and redox reagent-mediated oxidation (with 6 M Gn.HCl) studies. 

Student!s t-test (independent samples) using arcsine transformed-values were used for the calculation 

of probability (p)-values. Difference in proportion between corresponding structural isoforms is deemed 

to be significant when the p-value is less than 0.05 (one-tailed). 

!

3.3.3.1  Disruption of side-chain interactions led to change in folding 

tendency of t-TM EGF D4 

For t-TM EGF D4, the loss of side-chain interactions resulted in the change of 

folding tendency from that of C1-C3, C2-C4 (native) to C1-C2, C3-C4. This shift 

in folding tendency was rather prominent as the percentage of native isoform 

dropped from 67.53 ± 0.69% to 18.48 ± 1.15% when 6 M Gn.HCl was 

included in the air oxidation buffer, and from 69.08 ± 0.57% to 31.31 ± 0.97% 

when the denaturant was included in redox buffer. To put these numbers into 

perspective, the decreased native isoform proportion corresponds to only 0.26 

(about one quarter) and 0.45 (about half) of the original air oxidation and 

redox reagent-mediated oxidation proportion, respectively.  

For the C1-C2, C3-C4 isoform, the disruption of side-chain interactions in the 

folding peptide had benefited its numbers. When 6 M Gn.HCl was included in 
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the air oxidation buffer, the percentage of C1-C2, C3-C4 isoform increased from 

21.13 ± 0.67% to 52.72 ±0.94%. For the inclusion of denaturant into the redox 

buffer, the percentage of C1-C2, C3-C4 isoform increased from 18.96 ± 0.57% 

to 47.28 ± 0.31%. In both cases, the increased C1-C2, C3-C4 proportion 

corresponds to 2.5 times the original amount obtained from air oxidation and 

redox reagent-mediated oxidation.  

To lend further support to the observation that the folding tendency of t-TM 

EGF D4 was affected when side-chain interactions were disrupted, the 

Student!s t-test (with arcsine transformed values) was performed. Pairwise 

comparison of corresponding structural isoform proportions showed 

statistically significant decrease and increase in the proportions of C1-C3, C2-

C4 and C1-C2, C3-C4 isoforms, respectively, when oxidative folding was 

conducted in the presence of denaturant (Figure 3.15 and Figure 3.16, AP 

Table A3.5 and AP Table A3.6).  

Thus, the folding of t-TM EGF D4 into its native isoform is highly dependent 

upon the presence of side-chain interactions. In its absence, the t-TM EGF D4 

opted for the fold with the C1-C2, C3-C4 disulfide-connectivity which is 

interestingly the native conformer of t-TM EGF D5, the non-canonical EGF-

like domain.  

 

3.3.3.2  Disruption of side-chain interactions did not affect the folding   

tendency of t-TM EGF D5 

Based on the results presented in Section 3.3.2, it is now apparent that the 

folding tendency of t-TM EGF D5 was not affected by the disruption of side-
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Figure 3.15! ! !Pairwise comparison of t-TM EGF D4 structural isoform proportions obtained from 

air oxidation and air oxidation (with 6 M Gn.HCl) studies. Student!s t-test (independent samples) 

using arcsine transformed-values were used for the calculation of probability (p)-values. Difference in 

proportion between corresponding structural isoforms is deemed to be significant when the p-value is 

less than 0.05 (one-tailed).  

!

!

!

!

Figure 3.16! ! !Pairwise comparison of t-TM EGF D4 structural isoform proportions obtained from 

redox reagent-mediated oxidation and redox reagent-mediated oxidation (with 6 M Gn.HCl) 

studies. Student!s t-test (independent samples) using arcsine transformed-values were used for the 

calculation of probability (p)-values. Difference in proportion between corresponding structural isoforms 
is deemed to be significant when the p-value is less than 0.05 (one-tailed).  
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chain interactions. When looking at the exact numbers, the presence of 6 M 

Gn.HCl in both oxidative folding buffer had resulted in a slight but statistically 

significant decrease in the C1-C3, C2-C4 isoform, without affecting the 

proportion of the C1-C2, C3-C4 (native) isoform at all (Figure 3.17 and Figure 

3.18, AP Table A3.7 and Table A3.8).  

In conclusion, the results obtained from oxidative folding studies on t-TM EGF 

D4 and t-TM EGF D5 in the presence of 6 M Gn.HCl suggested that the 

absence of side-chain interactions generally decreases the C1-C3, C2-C4 

isoform and increases the C1-C2, C3-C4 isoform regardless of the exact 

identities of the EGF-like domains (i.e. whether it is t-TM EGF D4 or t-TM EGF 

D5). In view of this generalized effect, the finding that the absence of side-

chain interactions disfavors the C1-C3, C2-C4 conformer could be applicable to 

other canonical EGF-like domains as well.  

 

!

Figure 3.17! ! !Pairwise comparison of t-TM EGF D5 structural isoform proportions obtained from 

air oxidation and air oxidation (with 6 M Gn.HCl) studies. Student!s t-test (independent samples) 

using arcsine transformed-values were used for the calculation of probability (p)-values. Difference in 

proportion between corresponding structural isoforms is deemed to be significant when the p-value is 
less than 0.05 (one-tailed).  
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Figure 3.18! ! !Pairwise comparison of t-TM EGF D5 structural isoform proportions obtained from 

redox reagent-mediated oxidation and redox reagent-mediated oxidation (with 6 M Gn.HCl) 

studies. Student!s t-test (independent samples) using arcsine transformed-values were used for the 

calculation of probability (p)-values. Difference in proportion between corresponding structural isoforms 

is deemed to be significant when the p-value is less than 0.05 (one-tailed).  

 

3.3.3.3  Putting the requirement for side-chain interactions into the 

context of nature!s selection for t-TM EGF D4!s and t-TM EGF 

D5!s structural determinants 

From the above discussion, it is clear that the EGF-like domain requires side-

chain interactions to acquire its canonical fold with the C1-C3, C2-C4 disulfide-

connectivity. As such, the structural determinants of t-TM EGF D4 was 

probably “chosen” to enable optimal participation in side-chain interactions so 

that the domain could preferentially fold into it C1-C3, C2-C4 isoform under 

normal oxidative conditions. When these structural determinants were 

prevented from interacting, the domain would not be able to fold into its native 

isoform and instead adopt an alternate isoform which does not require side-

chain interactions to form. 

On the other hand, since the folding of the C1-C2, C3-C4 isoform does not 
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require “information” from side-chain interactions, it is plausible to assume 

that t-TM EGF D5!s structural determinants, unlike that of t-TM EGF D4, are 

“selected” for optimal disengagement in side-chain interactions under normal 

oxidative conditions. Therefore, the preferential folding of t-TM EGF D5 into its 

native isoform would not be affected even when 6 M Gn.HCl was included in 

the oxidative folding buffer. In such a case, any side-chain interactions that 

occur in t-TM EGF D5 would not be the main determinant of its native fold and 

the associated disulfide-connectivity.  

With regards to the C1-C4, C2-C3 isoform, the proportion of this particular 

isoform in t-TM EGF D4 had also been shown to increase significantly when 

oxidative folding was performed in the presence of denaturant. However, it did 

not manage to reach a proportion as high as that of the C1-C2, C3-C4 isoform. 

This is probably because of the shorter inter-cysteine loop between C2 and C3 

which disfavors formation of a disulfide bond between these two cysteine 

residues due to steric hindrance/clashes. Thus, it remains to be seen whether 

a longer inter-cysteine loop would draw folding tendencies away from the C1-

C3, C2-C4 and C1-C2, C3-C4 isoform. For this purpose, an EGF-like domain 

with a longer inter-cysteine loop between C2 and C3 would be needed for 

verification. An example of this would be EGF-like domain 2 of human 

thrombospondin-2 which has eight residues between C2 and C3 instead of just 

three in TM EGF D4 and TM EGF D5. Moreover, the short C2-C3 inter-

cysteine loop of TM EGF D4 and D5 might be “nature!s strategy” to divert 

folding away from the C1-C4, C2-C3 isoform so that only binary decision 

between C1-C3, C2-C4 or C1-C2, C3-C4 is needed. This binary decision then 
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depends on whether their respective structural determinants participate in 

side-chain interactions or not.  

 

3.3.3.4  Probing into the nature of the side-chain interaction  

Although side-chain interactions had been demonstrated to be necessary for 

the EGF-like domain to fold into its canonical C1-C3, C2-C4 fold, the nature of 

the side-chain interactions remained elusive. This is because the effects of 

Gn.HCl on side-chain interactions could not be differentiated between 

hydrophobic interaction or electrostatic interaction ! i.e. The guanidinium ion 

could interact with hydrophobic side-chains to disrupt hydrophobic interactions 

[85, 86], and in addition, the ionic nature of Gn.HCl (i.e. guanidinium cation 

and chloride anion) could also mask any electrostatic interactions/repulsions 

present in the protein molecule [87].  

Consideration for hydrophobic side-chain interactions as the force responsible 

for dictating the C1-C3, C2-C4 fold was based on the fact that compact protein 

structure is often stabilized by hydrophobic interactions [88]. Based on the 

solution structure of TM EGF D4-D5 solved by Wood, Sampoli Benitez and 

Komives [PDB: 1DQB] [79], it was observed that the t-TM EGF D4 segment 

folds into a rather compact structure (Figure 3.19A). Thus, hydrophobic 

interaction is likely to be involved in guiding the fold of the domain, as well as, 

dictating the C1-C3, C2-C4 disulfide-connectivity that reinforces the compact 

structure. On the other hand, the t-TM EGF D5 segment of the TM EGF D4-

D5 structure folds into a less compact structure (Figure 3.19B) with most its 

side-chains facing away from the central core. This excludes hydrophobic
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Figure 3.19   Space-filled model of (A) t-TM EGF D4 and (B) t-TM EGF D5. The model of these 

segments were extracted from PDB: 1DQB, which represents the solution structure of the TM EGF D4-

D5 fragment solved by Wood, Sampoli Benitez and Komives (2000). 

!
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side-chain interaction as the dominant force in guiding the fold of the C1-C2, 

C3-C4 structural isoform. 

The next consideration is that of electrostatic interactions. Although 

electrostatic interaction was also disrupted by high concentration of Gn.HCl, it 

was not likely the cause of t-TM EGF D4!s failure to follow its native folding 

tendency in the presence of denaturant. This is because oppositely-charged 

residues in t-TM EGF D4 are all located in the N-terminal half of the truncated 

domain (Figure 3.1A), and are thus unlikely to be involved in guiding the 

formation of the overall compact structure under normal oxidative conditions.  

As for the acidic t-TM EGF D5, it only contain three charged residues ! i.e. 

one aspartic acid located on each side of C3 and one glutamic acid N-terminal 

to C4 (Figure 3.1B). These common charges might result in electrostatic 

repulsion that could bring C3 and C4 further away from each other than the 

equivalent cysteine residues in t-TM EGF D4. Indeed, a simple measurement 

of the C"-C" distance of C3 and C4 in t-TM EGF D4 and t-TM EGF D5 yield a 

distance of 4.828 Å and 5.400 Å, respectively. Structurally, disulfide bond 

formation between cysteine residues that are too close together (e.g. such as 

across two strands in a #-sheet [89]) creates strain and is thus unfavorable. 

Thus, the increased distance between C3 and C4 in t-TM EGF D5 might be 

more favorable for disulfide bond formation between these two residues to 

create the C1-C2, C3-C4 isoform. However, the 6 M Gn.HCl-experiments could 

disprove the above argument. The high content of guanidinium cation could 

possibly shield the negatively charged acidic residues in t-TM EGF D5 to 

reduce the effect of electrostatic repulsion. If electrostatic repulsion (and thus 
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lack of side-chain interactions) is responsible for the favorable formation of the 

C3-C4 disulfide bond, the proportion of the C1-C2, C3-C4 isoform would be 

brought down by the presence of Gn.HCl in the oxidative folding buffer. 

However, this did not happen and the C1-C2, C3-C4 remained the dominant 

isoform, with percentage values unaltered, in oxidative folding experiments 

conducted in the presence of 6 M Gn.HCl. 

In view of these considerations, it seemed that hydrophobic side-chain 

interactions and lack thereof is responsible for the differential folding 

tendencies of t-TM EGF D4 and t-TM EGF D5, respectively. Thus, to confirm 

this conclusion, another set of experiments, using a different chemical reagent 

to manipulate the oxidative folding environment, was performed. Here, 0.5 M 

NaCl was chosen as the reagent ! i.e. NaCl like Gn.HCl could disrupt 

electrostatic interactions [90], but unlike Gn.HCl which disrupts hydrophobic 

interactions, the presence of high NaCl concentration increases the 

hydrophobic effect in proteins (a phenomena that serves as a basis for 

hydrophobic interaction chromatography) [91]. Here, it was hypothesized that 

the inclusion of 0.5 M NaCl to the folding buffer would result in the increase of 

the C1-C3, C2-C4 structural isoform in both t-TM EGF D4 and t-TM EGF D5 as 

the presence of hydrophobic interactions favor the formation of this structural 

isoform. 
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3.4     Contribution of Hydrophobic Interactions in the 

Folding Tendencies of t-TM EGF D4 and t-TM 

EGF D5 

To determine the role of hydrophobic interactions in dictating the folding 

tendency of t-TM EGF D4 and t-TM EGF D5, 0.5 M NaCl was included in the 

redox oxidative folding buffer to increase the hydrophobic effect, and to 

disrupt/mask any possible electrostatic interactions and repulsions. Alteration 

in the folding tendency of both domains was then noted to ascertain if 

hydrophobic interactions is the main contributor to the C1-C3, C2-C4 fold of the 

canonical EGF-like domain. 

 

3.4.1  In vitro oxidative folding of t-TM EGF D4 in the presence 

of 0.5 M NaCl 

Folding of t-TM EGF D4 in the presence of 0.5 M NaCl was performed using 

the redox buffer system and three monomeric isoforms were obtained (Figure 

3.20A). Based on the relative yield of the respective structural isoforms (Table 

3.3A: Orange columns), the result showed that t-TM EGF D4 still had a 

preference towards its native isoform when folded in the presence of high salt 

content.   

 

3.4.2  In vitro oxidative folding of t-TM EGF D5 in the presence 

of 0.5 M NaCl 

In the presence of 0.5 M NaCl, redox reagent-mediated folding of t-TM EGF 

D5 yielded three monomeric isoforms (Figure 3.20B). Like t-TM EGF D4, t-TM 
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EGF D5 still showed a folding preference towards its native isoform when 

folded in the presence of 0.5 M NaCl (Table 3.3B: Orange columns). 

 

!
Figure 3.20! ! !Analysis of (A) t-TM EGF D4 and (B) t-TM EGF D5 products obtained from redox 

reagent-mediated oxidation in the presence of 0.5 M NaCl by reversed-phase chromatography. 

Retention volume of the monomeric structural isoforms obtained were compared with that of 

regioselectively-synthesized structural isoforms for identification. 

 

3.4.3  Hydrophobic interaction is necessary for the canonical 

C1-C3, C2-C4 fold of the EGF-like domain 

As high salt content is known to disrupt electrostatic attraction, the preferential 

folding of t-TM EGF D4 into its native C1-C3, C2-C4 isoform even in the 

presence of 0.5 M NaCl showed that electrostatic interaction is not the nature 



! "#!

of the side-chain interaction involved in dictating the C1-C3, C2-C4 fold. 

Student!s t-test comparison of corresponding t-TM EGF D4 structural isoforms 

obtained from oxidative folding in the absence versus presence of 0.5 M NaCl 

(Figure 3.21 and AP Table A3.9) showed a significant increase in the 

proportion of the native C1-C3, C2-C4 isoform in the experiments performed 

with NaCl. This was accompanied by significant decrease in the proportion of 

non-native structural isoforms (C1-C2, C3-C4 and C1-C4, C2-C3). Based on 

these results, increased in proportion of the C1-C3, C2-C4 isoform was deemed 

to be attributed to increased hydrophobic effect caused by the presence of 0.5 

M NaCl. This reinforces the conclusion from Section 3.3.3.4 that the identity of 

the side-chain interactions involved in dictating the C1-C3, C2-C4 fold is that of 

hydrophobic interactions. 

As for t-TM EGF D5, although it still folds predominantly into its native C1-C2, 

C3-C4 isoform in NaCl-containing folding buffer, pairwise comparison of 

corresponding structural isoforms obtained from oxidative folding in the 

absence versus presence of 0.5 M NaCl (Figure 3.22 and AP Table A3.10) 

showed a significant decrease in the proportion of its native C1-C2, C3-C4 

isoform in experiments performed with NaCl. This decrease was accompanied 

by an increase in the canonical EGF-like C1-C3, C2-C4 isoform. This was 

probably due to salt-induced increase in hydrophobic effect which in turn 

make the folding into the C1-C3, C2-C4 conformer more favorable regardless of 

the exact identities of the EGF-like domains. In addition, as high salt content 

also mask electrostatic repulsion, the increased folding of t-TM EGF D5 into 

the compact C1-C3, C2-C4 isoform could also be attributed to this effect. 
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Figure 3.21! ! !Pairwise comparison of t-TM EGF D4 structural isoform proportions obtained from 

redox reagent-mediated oxidation and redox reagent-mediated oxidation (with 0.5 M NaCl) 

studies. Student!s t-test (independent samples) using arcsine transformed-values were used for the 

calculation of probability (p)-values. Difference in proportion between corresponding structural isoforms 

is deemed to be significant when the p-value is less than 0.05 (one-tailed).  

 

 

 

!

Figure 3.22! ! !Pairwise comparison of t-TM EGF D5 structural isoform proportions obtained from 

redox reagent-mediated oxidation and redox reagent-mediated oxidation (with 0.5 M NaCl) 

studies. Student!s t-test (independent samples) using arcsine transformed-values were used for the 

calculation of probability (p)-values. Difference in proportion between corresponding structural isoforms 
is deemed to be significant when the p-value is less than 0.05 (one-tailed).  
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However, in view of! the! observations made from the Gn.HCl-containing 

experiments, this is probably not the case. 

To conclude, hydrophobic interactions had been identified as the dominant 

force that drives the C1-C3, C2-C4 fold of the canonical EGF-like domains. 

Revisiting what had been mentioned in Section 3.3.3.3, this meant that the 

structural determinants of the canonical EGF-like domain is “designed” to 

optimally engage specifically in hydrophobic interaction. On the contrary, the 

structural determinants of the C1-C2, C3-C4 isoform, are probably more polar 

(or less hydrophobic) and thus prefer to interact with the aqueous medium. 

Although polar side-chain interactions can also occur, the amino acid 

sequence of t-TM EGF D5 is probably “designed” such that balance of 

physical-chemical forces in the folding peptide could not outcompete the 

aqueous solvent for interaction with the side-chain of the structural 

determinants.  

The identification of the dominant force that dictates the C1-C3, C2-C4 fold 

provided clues to the identity of the structural determinants in t-TM EGF D4. 

Thus, it is now of interest to identify the key hydrophobic residues in t-TM EGF 

D4 that is involved in dictating its canonical EGF-like fold. 
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3.5     Identification of Key Hydrophobic Residues as 

Structural Determinants of the Canonical EGF-

like Domain fold in t-TM EGF D4 

Based on the experimental evidence provided in Section 3.4, it can be 

suggested that the increase in hydrophobic interactions/effect generally 

increase folding into the C1-C3, C2-C4 isoform regardless of the exact identities 

of the EGF-like domains involved. In view of this generalized effect, the finding 

that hydrophobic interaction is the nature of the side-chain interactions that 

guides folding towards the C1-C3, C2-C4 fold could be applicable to other 

canonical EGF-like domains as well.  

Therefore, for amino acids to satisfy the role of structural determinants in the 

canonical EGF-like domain, they have to be hydrophobic in nature. However, 

an addition requirement is that the amino acid residues at their equivalent 

positions in the non-canonical fold have to be either hydrophilic or less 

hydrophobic. This additional requirement assumes that the structural 

determinants for the C1-C2, C3-C4 fold are located in the same position along 

the amino acid sequence as that of the C1-C3, C2-C4 fold. This assumption is 

based on the following reasoning: 

The EGF-like domain is an evolutionarily conserved modular unit with diverse 

functionality. Therefore, the positions of its structural determinants have to be 

conserved, while accommodating varied “functional” residues between them, 

to maintain the overall canonical fold across the domain family. Thus, the 

switch from canonical to non-canonical EGF-like domain fold in TM EGF D5 is 

more likely to be caused by a switch in chemical properties of the structural 
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determinants which are located at conserved position, rather than the 

“relocation” of structural determinants to cause a different fold. In the case of 

TM EGF D5, the C1-C2, C3-C4 fold is determined to be the result of the 

absence of side-chain interactions between key structural determinants.  

To identify potential hydrophobic residues in t-TM EGF D4 for further studies, 

sequence alignment of t-TM EGF D4 and other canonical EGF-like domains 

from various proteins was performed to identify conserved hydrophobic 

residues. These other canonical EGF-like domains were chosen on the basis 

that their three-dimensional structures had been solved. Thus, EGF-like 

domains whose three-dimensional structures are unknown, but are assumed 

to possess the C1-C3, C2-C4 disulfide connectivity based on sequence 

homology, were not chosen.  

Interestingly, results from the sequence alignment showed only one 

conserved hydrophobic/aromatic residue which is located two residues N-

terminal to the C4 residue (Figure 3.23). This hydrophobic/aromatic residue is 

also present in TM EGF D4 of other organisms, but is absent from TM EGF 

D5 (Figure 3.24). The amino acid in the equivalent position in TM EGF D5 is 

substituted by less hydrophobic residues. Although it seemed unlikely that a 

single residue is all that is needed to guide the folding of the EGF-like domain 

towards the C1-C3, C2-C4 conformer, this possibility could not be ruled out ! 

Research on the structural determinants of "-conotoxin ImI showed that a 

mere switch from amide to acid at its C-terminal is enough to switch its 

disulfide-connectivity preference from C1-C3, C2-C4 to C1-C4, C2-C3 [41]. 

Here, the identified hydrophobic/aromatic residue satisfies the two criteria for 
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Figure 3.23   Sequence alignment of canonical EGF-like domains from various proteins. Shown 

here are the sequences of the EGF-like domain segment encompassing C1 to C4. The conserved 

hydrophobic/aromatic residue is highlighted in green. Conserved cysteine residues of the EGF-like 

domain are highlighted in yellow.  

!

!

Figure 3.24   Sequence alignment of t-TM EGF D4 and t-TM EGF D5 from various organisms. The 

conserved hydrophobic/aromatic residue in t-TM EGF D4 is highlighted in green. The less hydrophobic 

residues at the equivalent position in t-TM EGF D5 is highlighted in pink. The conserved cysteine 
residues of the EGF-like domain are highlighted in yellow. 
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being a structural determinant in the canonical fold of the EGF-like domain. To 

further verify its suitability as a structural determinant, the structures of these 

canonical EGF-like domains were inspected to see if this conserved residue is 

in hydrophobic contact with other residues in the domain. The analysis 

revealed that this conserved residue mainly makes hydrophobic contact with 

amino acid residues located within the first inter-cysteine loop (Figure 3.25). 

Examples of this contact within the canonical EGF-like domain is depicted in 

Figure 3.26 with EGF-like domain 1 of human coagulation factor VII (Figure 

3.26A) and the EGF-like domain of human Pro-neuregulin-1 (Figure 3.26B).  

When looking specifically at TM EGF D4 and D5, the conserved 

hydrophobic/aromatic residue of Tyr25 in TM EGF D4 is in close contact with 

Ala11 of the first inter-cysteine loop (Figure 3.27A). On the contrary, the 

amino acids residues at their equivalent positions (Figure 3.27B) in TM EGF 

D5 (Thr50 and Ala62) were not in contact (Figure 3.27C). 

Although the contact between the conserved hydrophobic/aromatic residues 

and the identified residues in the first inter-cysteine loops might not represent 

hydrophobic contacts during the transition state of folding, these contacts are 

needed for the compact C1-C3, C2-C4 fold since they bring the third inter-

cysteine loop (near the C-terminal) in close proximity to the first inter-cystine 

loop (near the N-terminal). Thus, any disruption of these contacts would 

probably destabilize the C1-C3, C2-C4 structure to create the more loosely 

packed isoform with the C1-C2, C3-C4 disulfide-connectivity. 

To experimentally verify the conserved hydrophobic/aromatic residue as the 

structural determinant in the canonical C1-C3, C2-C4 fold of the EGF-like 
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Figure 3.25   Identification of residues that interacts with the conserved hydrophobic/aromatic 

residues in various canonical EGF-like domains. Shown here are the sequences of the EGF-like 

domain segment encompassing C1 to C4. By inspection of the three-dimensional structure of the various 

EGF-like domains, amino acid residues which are in contact with the conserved/hydrophobic residue are 

identified. Here, the interacting residues are indicated in bold font. The conserved hydrophobic/aromatic 

residue is highlighted in green. The conserved cysteine residues of the EGF-like domain are highlighted 
in yellow.  



! "#!

!

Figure 3.26   Residues interacting with the conserved hydrophobic/aromatic residues in (A) 

coagulation factor VII EGF-like domain 1 and (B) Pro-neuregulin-1 EGF-like domain. Depicted 

here are the EGF-like domain segments encompassing C1 to C4. The model of these segments were 

extracted from PDB: 1FF7 and PDB: 1HAE, respectively. Interacting residues were labeled, and the 

indicated positions are in accordance to the position numbers used in their respective PDB files. 
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Figure 3.27   Residues interacting with the conserved hydrophobic/aromatic residue in the 

canonical EGF-like t-TM EGF D4. (A) Model of t-TM EGF D4 showing interaction between the 

conserved hydrophobic/aromatic residue of Y25 interacting with A11 of the first inter-cysteine loop. (B) 

Identification of the equivalent residues in t-TM EGF D5 which are indicated in (red) bold font. (C) Model 

of t-TM EGF D5 showing non-interaction between T50 and A62. The models of these segments were 

extracted from PDB: 1DQB. Positions of residues are labeled in accordance to the position numbers 
used in the PDB files. 
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domain, modified t-TM EGF D4 with Tyr25 substituted with threonine was 

synthesized. The threonine residue is more hydrophilic than the tyrosine 

residue as it lacks the hydrophobic aromatic ring of tyrosine. Moreover, it was 

chosen as a substitution for tyrosine as it also carries a hydroxyl group, thus 

making the hydrophilic substitution based solely on the removal of the 

hydrophobic aromatic ring.  

The fully reduced modified t-TM EGF D4 peptide was then folded using air 

oxidation or redox reagent-mediated oxidation, either in the absence or 

presence of 6 M Gn.HCl. The dominant structural isoform obtained from these 

folding studies were then identified based on elution profile comparison with 

that of regioselectively-synthesized structural isoforms. If the conserved 

hydrophobic/aromatic residue is the structural determinant of the C1-C3, C2-C4 

fold, the proportion of this conformer should decrease significantly in t-TM 

EGF D4 after its substitution with a more hydrophilic residue.  

 

3.5.1   In vitro oxidative folding of t-TM EGF D4 (Y25T) 

Oxidative folding of reduced t-TM EGF D4 (Y25T) was performed using air 

oxidation and redox reagent-mediated folding: 

(a) Air oxidation-mediated folding of reduced t-TM EGF D4 (Y25T) was 

completed in approximately 72 hrs as judged by the Ellman!s test. 

Structural isoforms obtained from the reaction were resolved by reversed-

phase chromatography and three monomeric isoforms were obtained 

(Figure 3.28).  
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(b)  Folding of t-TM EGF D4 (Y25T) was performed in redox buffer over a 

period of 48 hrs. Like air oxidation, three monomeric isoforms were 

obtained (Figure 3.29).  

In both oxidative folding studies, the retention volume of the three monomeric 

isoforms obtained matched well with that of regioselectively-synthesized 

structural isoforms. This enabled the identification of peaks in the 

chromatogram, and the relative proportions of the three isoforms were 

calculated (Table 3.4: Pink columns). 

Results from both folding studies showed that t-TM EGF D4 has an altered 

folding preference after replacing the putative structural determinant of the 

canonical C1-C3, C2-C4 fold with a more hydrophilic residue ! That is, instead 

of folding into the canonical fold of the EGF-like domain, t-TM EGF D4 (Y25T) 

displayed a folding preference towards the non-canonical C1-C2, C3-C4 

isoform (Figure 3.30 and Figure 3.31).  

 

 

Table 3.4   Percentages of structural isoforms obtained from oxidative folding 
of t-TM EGF D4 (Y25T) in various conditions 

Oxidative folding of t-TM EGF D4 (Y25T) 
 (---)

a,b
 +6 M Gn.HCl

c
 

Structural Isoforms Air Oxidation 

(%) 

Redox Buffer 

System (%) 

Air Oxidation 

(%) 

Redox Buffer 

System (%) 

C1-C3, C2-C4 (Native) 22.78 ± 0.32 22.27 ± 0.42 8.16 ± 0.33 17.26 ± 0.45 

C1-C2, C3-C4 42.20 ± 0.36 42.25 ± 0.70 54.08 ± 0.52 45.92 ± 0.36 

C1-C4, C2-C3 35.02 ± 0.06 35.48 ± 0.78 37.76 ± 0.19 36.83 ± 0.18 

a 
Discussion in

 
Section 3.5.1 

b
 Normal oxidative folding conditions (without denaturant or salt) 

c 
Discussion in

 
Section 3.5.2 
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Figure 3.28   Analysis of t-TM EGF D4 (Y25T) air oxidation products by reversed-phase 

chromatography. Retention volume of the three monomeric structural isoforms obtained were 

compared with that of regioselectively-synthesized structural isoforms. 
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Figure 3.29   Analysis of t-TM EGF D4 (Y25T) redox reagent-mediated oxidation products by 

reversed-phase chromatography. Retention volume of the three monomeric structural isoforms 

obtained were compared with that of regioselectively-synthesized structural isoforms. Abbreviations: 

GSH ! Reduced glutathione; GSSG ! Oxidized glutathione.   
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Figure 3.30!!!Proportion of structural isoforms obtained from air oxidation-mediated folding of t-

TM EGF D4 and t-TM EGF D4 (Y25T). The dominant isoform obtained from t-TM EGF D4 is the 

canonical EGF-domain like (C1-C3, C2-C4) fold, while the dominant isoform obtained from t-TM EGF D4 

(Y25T) is the non-canonical C1-C2, C3-C4 fold.  

!

!

!

Figure 3.31! ! !Proportion of structural isoforms obtained from redox reagent-mediated oxidative 

folding of t-TM EGF D4 and t-TM EGF D4 (Y25T). The dominant isoform obtained from t-TM EGF D4 

is the canonical EGF-domain like (C1-C3, C2-C4) fold, while the dominant isoform obtained from t-TM 

EGF D4 (Y25T) is the non-canonical C1-C2, C3-C4 fold.  
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3.5.2   In vitro oxidative folding of t-TM EGF D4 (Y25T) in the 

presence of 6 M Gn.HCl  

Air oxidation and redox reagent-mediated folding of t-TM EGF D4 (Y25T) was 

performed with the inclusion of 6 M Gn.HCl in the folding buffer: 

(a)  For air oxidation in the presence of the denaturant, the reaction was 

completed in approximately 48 hrs as judged by the Ellman!s test. 

Analysis by reversed-phase chromatography revealed that all three 

monomeric isoforms were obtained (Figure 3.32). 

(b)   Redox reagent-mediated oxidative folding of t-TM EGF D4 (Y25T) in the 

presence of denaturant was allowed to proceed for 48 hours. It also 

yielded three monomeric isoforms (Figure 3.33).  

The relative proportion of the three structural isoforms obtained in both studies 

revealed that the folding tendency of t-TM EGF D4 (Y25T) was unaltered 

despite the presence of 6 M Gn.HCl in the folding buffer (Table 3.4: Blue 

columns). Interestingly, this observation was similar to that of t-TM EGF D5, 

where the presence of denaturant in the folding buffer did not change the 

folding tendency of this non-canonical EGF-like domain.  

 

3.5.3   The hydrophobic/aromatic residue, Tyr25, as the main 

structural determinant of t-TM EGF D4 

The relative proportion of the three structural isoforms obtained from the 

oxidative folding of t-TM EGF D4 in the presence of 6 M Gn.HCl was similar to 

that of t-TM EGF D4 (Y25T) folded under normal oxidative conditions (Figure 

3.34 and Figure 3.35). This suggests that hydrophobic interactions mediated 
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Figure 3.32   Analysis of t-TM EGF D4 (Y25T) products obtained from air oxidation in the 

presence of 6 M Gn.HCl by reversed-phase chromatography. Retention volume of the three 

monomeric structural isoforms obtained were compared with that of regioselectively-synthesized 

structural isoforms. 
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Figure 3.33   Analysis of t-TM EGF D4 (Y25T) products obtained from redox reagent-mediated 

oxidation in the presence of 6 M Gn.HCl by reversed-phase chromatography. Retention volume of 

the three monomeric structural isoforms obtained were compared with that of regioselectively-

synthesized structural isoforms. Abbreviations: GSH ! Reduced glutathione; GSSG ! Oxidized 

glutathione. 
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Figure 3.34!!!Proportion of structural isoforms obtained from air oxidation-mediated folding of t-
TM EGF D4 (+6 M Gn.HCl) and t-TM EGF D4 (Y25T).  

!

!

!

!

Figure 3.35! ! !Proportion of structural isoforms obtained from redox reagent-mediated oxidative 
folding of t-TM EGF D4 (+6 M Gn.HCl) and t-TM EGF D4 (Y25T).  
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Tyr25 of t-TM EGF D4 was the identity of the side-chain interactions that were 

being disrupted by 6 M Gn.HCl, resulting in the shift of folding tendency from 

C1-C3, C2-C4 (canonical EGF-like) to C1-C2, C3-C4. Moreover, the proportion of 

the canonical C1-C3, C2-C4 isoform obtained from the folding of t-TM EGF D4 

(Y25T) and t-TM EGF D5 under normal oxidative conditions, and t-TM EGF 

D4 in the presence of denaturant were similar (Figure 3.36 and Figure 3.37). 

This observation provide further evidence that the conserved 

hydrophobic/aromatic residue is the main structural determinant of the 

canonical C1-C3, C2-C4 EGF-like domain fold, with the disruption of which 

leading to an alternate fold that does not require hydrophobic interactions to 

form.  

 

 

 

Figure 3.36!!!Comparison of structural isoform proportions obtained from air oxidation-mediated 
folding of t-TM EGF D4 (+6 M Gn.HCl), t-TM EGF D4 (Y25T) and t-TM EGF D5.  
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Figure 3.37! ! ! Comparison of structural isoform proportions obtained from redox reagent-
mediated oxidative folding of t-TM EGF D4 (+6 M Gn.HCl), t-TM EGF D4 (Y25T) and t-TM EGF D5.  

!

However, it should be noted that although the relative proportion of the non-

canonical C1-C2, C3-C4 isoform increased when t-TM EGF D4 was folded in 

the presence of 6 M Gn.HCl or when t-TM EGF D4 (Y25T) was folded under 

normal oxidative conditions, its level did not reach as high as that of t-TM EGF 

D5 (Figure 3.36 and Figure 3.37). This suggests that t-TM EGF D5 contains 

its own specific structural determinants for the non-canonical C1-C2, C3-C4 fold 

in addition to the lack of the conserved hydrophobic/aromatic residue that is 

needed for the canonical EGF-like domain fold. 



!

Chapter 4: Conclusion 

!
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4.1     Conclusion 

The proposal of the thermodynamic hypothesis by Nobel Prize Laureate C.B. 

Anfinsen in the 1960s [92] had fueled intensive research with aims to decipher 

the protein folding code. However, despite such efforts, only fragmentary 

information, which consists mainly of general principles, had been obtained 

over the years. The presence of gaps in our current knowledge of the protein 

folding code had motivated the work described in this thesis. Here, the folding 

code of the evolutionarily conserved EGF-like domain is studied to provide 

more insights into how an amino acid sequence is being interpreted to result 

in three-dimensional structural information.  

The EGF-like domain is a ubiquitous modular unit with diverse biological 

functions. All EGF-like domains consist of six conserved cysteine residues, 

with distinct hypervariability in the amino acid sequence of their inter-cysteine 

region. Although this hypervariability could explain the functional diversity of 

the various EGF-like domains, it has contributed to the puzzling question of 

how most EGF-like domains fold into their canonical C1-C3, C2-C4, C5-C6 

scaffold despite of the inconsistency in sequence information.  

A solution to this problem would involve the presence of conserved “structural 

determinants” embedded in the amino acid sequence of the EGF-like domain. 

These structural determinants could explain how the canonical three-looped 

structure of EGF-like domain is maintained in the midst of functional 

diversification. To find out the nature of these structural determinants, TM 

EGF D4 and TM EGF D5 were used as models for the study.  
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As TM EGF D4-D5 is the smallest co-factor active fragment of TM, interest in 

its structure-function relationship had resulted in interesting findings with 

regards to the structure of TM EGF D5. While TM EGF D4 folds into the 

canonical C1-C3, C2-C4, C5-C6 structure of the EGF-like domain, TM EGF D5 

does not. Instead, it folds into an alternate conformation stabilized by the C1-

C2, C3-C4, C5-C6 disulfide-connectivity. So how did this switch in conformation, 

from C1-C3, C2-C4 to C1-C2, C3-C4, occur? This switch could be attributed to a 

change in the physical-chemical properties of the canonical EGF-like 

domain!s structural determinants which will be manifested as a difference in 

inter-molecular force, thus affecting the overall thermodynamic property of the 

polypeptide chain to result in a different fold. Based on this reasoning, the 

relative contribution of various inter-molecular forces in the folding of TM EGF 

D4 and TM EGF D5 was determined to provide clues to the identity of the 

structural determinants involved. 

The first objective of this thesis was to narrow down the region where the 

structural determinants are located. Since the structural/disulfide-connectivity 

difference between TM EGF D4 and D5 lies in the first two disulfide bonds 

within their N-terminal segments (encompassing C1 to C4), it was of interest to 

see whether the folding information is located locally within that segment or 

non-locally in the C-terminal segment (encompassing C5 to C6). To this end, 

fully reduced, truncated versions of both domains were synthesized (t-TM 

EGF D4 and t-TM EGF D5) so that the oxidative folding of both domains could 

be performed without their respective C-terminal segments. 
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With the aid of regioselectively synthesized structural isoforms for peak 

identification in oxidative folding studies, results obtained from air oxidation 

and redox reagent-mediated oxidation studies showed that t-TM EGF D4 and 

t-TM EGF D5 still fold preferentially into their respective native structural 

isoforms despite the absence of the C-terminal segment. This suggest that 

the structural determinants of both domains lie locally within their N-terminal 

segments, encompassing C1 to C4. 

To next objective was to determine the relative contribution of side-chain 

interactions to the folding tendency of both domains. Here, 6 M Gn.HCl was 

included in the oxidative folding experiments to disrupt any side-chain 

interactions present within the folding peptide. This changed the folding 

tendency of t-TM EGF D4 from that of its native C1-C3, C2-C4 conformer to that 

of the C1-C2, C3-C4 conformer. On the contrary, the disruption of side-chain 

interactions did not affect the folding tendencies of t-TM EGF D5 at all, and 

even resulted in a slight decrease of the C1-C3, C2-C4 isoform. These 

observations suggested that side-chain interactions is needed to guide the 

fold of EGF-like domains towards its canonical C1-C3, C2-C4 conformer. If 

side-chain interactions is absent, the default conformation adopted would be 

that of the C1-C2, C3-C4 conformer. When these findings were put into 

perspective, this meant that the structural determinants of the C1-C3, C2-C4 

fold is selected for optimal engagement in side-chain interactions, while the 

converse is true for the C1-C2, C3-C4 fold.  

Although Gn.HCl disrupts side-chain interactions, its effect could not be 

differentiated between the disruption of electrostatic interactions or 
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hydrophobic interactions. Thus, 0.5 M NaCl was included in the oxidative 

folding experiments to disrupt any electrostatic interactions, as well as, to 

increase the hydrophobic effect within the folding peptides. Unlike 6 M 

Gn.HCl, the inclusion of 0.5 M NaCl did not alter the folding tendency of t-TM 

EGF D4, and even increased the proportion of its native C1-C3, C2-C4 

structural isoform. Therefore, this suggests that electrostatic interactions is not 

the nature of the side-chain interactions disrupted by 6 M Gn.HCl and that the 

increase in the canonical C1-C3, C2-C4 isoform was attributed to the increased 

hydrophobic effect. As for t-TM EGF D5, the presence of 0.5 M NaCl also did 

not change its folding tendency, but an increase in the proportion of the C1-C3, 

C2-C4 isoform was observed. These results collectively identifies the role of 

hydrophobic interactions in guiding the fold of the EGF-like domain towards 

the C1-C3, C2-C4 fold. 

The final objective of this thesis was to identify key hydrophobic residues as 

the structural determinants of the canonical EGF-like domain fold. A sequence 

alignment of canonical EGF-like domains from various proteins helped identify 

a conserved hydrophobic/aromatic residue which is located two residues N-

terminal to the C4 residue. Interestingly, this conserved hydrophobic/aromatic 

residue is not present in its corresponding position in t-TM EGF D5. When the 

structures of various canonical EGF-like domains were examined, this 

conserved hydrophobic/aromatic residue mainly make contacts with residues 

in the first inter-cysteine loop of the domain. In TM EGF D4, this contact is 

present between Ala11 and Tyr25. However, this contact is not present in the 

equivalent positions in t-TM EGF D5 (Thr6 and Ala18).  
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With these analysis, an attempt was made to verify this hydrophobic/aromatic 

residue as the structural determinant of the canonical fold of the EGF-like 

domain. To this end, the Tyr25 residue of t-TM EGF D4 was substituted with a 

more hydrophilic threonine residue. If the conserved hydrophobic/aromatic 

residue is a structural determinant of the C1-C3, C2-C4 fold, the placement of 

this residue into t-TM EGF D4 should decrease its folding towards the C1-C3, 

C2-C4 conformer. Indeed, when t-TM EGF D4 (Y25T) was folded under 

oxidative conditions, with and without denaturant, it displayed a preferential 

folding towards the non-canonical C1-C2, C3-C4 conformer. More importantly, 

this was accompanied by a sharp drop in the proportion of the canonical C1-

C3, C2-C4 conformer. This suggests that the conserved hydrophobic/aromatic 

residue is indeed the main structural determinant of the canonical C1-C3, C2-

C4 fold of the EGF-like domain.  
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4.2     Future Work 

4.2.1   Verifying the structural determinant of the canonical 

EGF-like domain fold 

Future work for the current study would involve the continued focus on the 

verification of the conserved hydrophobic/aromatic residue as the structural 

determinant of canonical EGF-like domain fold. To this end, an alternate 

strategy involving the insertion of the hydrophobic/aromatic residue into t-TM 

EGF D5 at its equivalent position is proposed. In support of the current 

evidences, this insertion is expected to increase the proportion of the 

canonical C1-C3, C2-C4 fold in t-TM EGF D5.  

 

4.2.2   The role of the structural determinant in the transition 

state of protein folding 

After confirming the identity of the structural determinant, its role in the 

transition state of protein folding should be examined. For t-TM EGF D4, the 

slow kinetics of oxidative folding and the unique chemistry of the disulfide 

bond meant that folding intermediates could be trapped in a time course 

manner using either chemical modification (of free thiol groups) or acid-

trapping. The structures of these trapped intermediates could then be 

analyzed by NMR to examine the contacts (i.e. native or non-native) made by 

this structural determinant during the process of folding. 
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4.2.3   Extending the study to other canonical EGF-like 

domains 

When t-TM EGF D4 and t-TM EGF D5 were folded in the presence of 6 M 

Gn.HCl, the loss of side-chain interactions disfavored folding into the C1-C3, 

C2-C4 isoform for both domains. On the contrary, the increased hydrophobic 

effect mediated by 0.5 M NaCl drove up the proportion of C1-C3, C2-C4 in both 

domains. These generalized effect, without regards to the exact identities of 

the EGF-like domain, meant that the conclusion regarding hydrophobic 

interactions as the dominant driving force in dictating the C1-C3, C2-C4 fold 

could be applied to other canonical EGF-like domains as well.  

However, to provide further support for the conclusion, the same set of 

experiments performed on t-TM EGF D4 and D5 should be applied to other 

canonical EGF-like domains (e.g. EGF-like domain 1 of coagulation factor VII 

and pro-neuregulin-1 EGF-like domain).  
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4.3     Implication of Findings 

The main objective of this thesis is to provide more insights into the 

interpretation of the protein folding code. Here, attempts were made to shed 

light on the nature of structural determinants which play a role in maintaining 

the overall fold of evolutionarily conserved protein domains despite 

hypervariability in their amino acid sequences.  

The concept of structural determinants deviate from the common definition of 

the protein folding code. In the common definition, the three-dimensional 

structure of a protein is considered to be dictated by the totality of the amino 

acid sequence. However, in the case of structural determinants, only certain 

specific residues fulfill the role of a guide in the folding decision of a protein. 

This, as mentioned previously, would allow functional diversification to take 

place on a single protein scaffold. 

The results obtained from this study demonstrated that a simple switch in the 

requirement of hydrophobic interactions to the non-requirement in the folding 

domain ! hypothesized to be mediated by the switch in the physical-chemical 

properties of the structural determinants ! is enough to generate a novel 

protein fold from a single domain platform. Therefore, a single protein modular 

unit not only serves as the platform for functional diversification, it also serves 

as a basis for the evolution of protein structure. This new protein structure 

could in turn participate in novel functions, thus amplifying the rate of 

functional diversification. In such a case, an exponential rate of protein 

evolution could be achieved. This could explain the exponential increase in 
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the complexity of life forms since the beginning of life approximately 3.8 billion 

years ago ! i.e. For a long time the rate of increase in the complexity of life-

forms is very slow. Only in the last 350 million years there was an exponential 

growth in the multi-cellular eukaryotic lineage in its complexity and diversity 

[93]. !
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Figure A3.1   ESI-MS mass spectrum of t-TM EGF D4 C1-C3, C2-C4 (native) isoform. (A) Mass 

spectrum showing the +3 (m/z: 1096) and +2 (m/z: 1643) charge states of the folded peptide. (B) 

Reconstructed mass spectrum obtained using the “Peptide Reconstruct” function of the Analyst
®
 

software. 
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Figure A3.2   ESI-MS mass spectrum of t-TM EGF D4 C1-C2, C3-C4 isoform. (A) Mass spectrum 

showing the +3 (m/z: 1096) and +2 (m/z: 1643) charge states of the folded peptide. (B) Reconstructed 

mass spectrum obtained using the “Peptide Reconstruct” function of the Analyst
®
 software. 
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Figure A3.3   ESI-MS mass spectrum of t-TM EGF D4 C1-C4, C2-C3 isoform. (A) Mass spectrum 

showing the +3 (m/z: 1096) and +2 (m/z: 1643) charge states of the folded peptide. (B) Reconstructed 

mass spectrum obtained using the “Peptide Reconstruct” function of the Analyst
®
 software. 
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Figure A3.4   Reconstructed ESI-MS mass spectrum of t-TM EGF D5 C1-C3, C2-C4 isoform. 

Reconstructed mass spectrum was obtained using the “Peptide Reconstruct” function of the Analyst
®
 

software. Shown here is the isotopic cluster corresponding to the +1 charge state of the folded peptide. 

The difference of 1 Da between one isotopic mass to the next confirmed the assignment of the +1 
charge state to the isotopic cluster.  
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Figure A3.5   Reconstructed ESI-MS mass spectrum of t-TM EGF D5 C1-C2, C3-C4 (native) 

isoform. Reconstructed mass spectrum was obtained using the “Peptide Reconstruct” function of the 

Analyst
®
 software. Shown here is the isotopic cluster corresponding to the +1 charge state of the folded 

peptide. The difference of 1 Da between one isotopic mass to the next confirmed the assignment of the 
+1 charge state to the isotopic cluster.  
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Figure A3.6   Reconstructed ESI-MS mass spectrum of t-TM EGF D5 C1-C4, C2-C3 isoform. 

Reconstructed mass spectrum was obtained using the “Peptide Reconstruct” function of the Analyst
®
 

software. Shown here is the isotopic cluster corresponding to the +1 charge state of the folded peptide. 

The difference of 1 Da between one isotopic mass to the next confirmed the assignment of the +1 
charge state to the isotopic cluster.  
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Table A3.1   Student!s t-test (independent samples) for t-TM EGF D4 structural isoforms derived from air oxidation and redox reagent-mediated 

oxidation 

t-TM EGF D4: 

Air Oxidation versus Redox Buffer System   

 Arcsine Transformed Values 

 Air Oxidation Redox Buffer System 
Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4 (Native) 55.26 0.42 56.21 0.35 0.95 0.32 3.00 4 0.02 

C1-C2, C3-C4 27.36 0.47 25.81 0.42 -1.55 0.36 -4.26 4 0.01 

C1-C4, C2-C3 19.68 0.56 20.23 0.24 0.55 0.35 1.57 4 0.10 

a 
Statistical significance when p-value is smaller than 0.05.  

 

 

 

 

Table A3.2   Student!s t-test (independent samples) for t-TM EGF D5 structural isoforms derived from air oxidation and redox reagent-mediated 

oxidation 

t-TM EGF D5: 

Air Oxidation versus Redox Buffer System   

 Arcsine Transformed Values 

 Air Oxidation Redox Buffer System 
Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4 26.97 0.24 26.82 0.07 -0.14 0.15 -0.98 4 0.19 

C1-C2, C3-C4 (Native) 51.00 0.38 51.16 0.63 0.16 0.42 0.38 4 0.36 

C1-C4, C2-C3 25.87 0.22 25.81 0.72 -0.05 0.43 -0.12 4 0.45 

a 
Statistical significance when p-value is smaller than 0.05.  
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Table A3.3   Student!s t-test (independent samples) for t-TM EGF D4 structural isoforms derived from air oxidation (with 6 M Gn.HCl) and 

redox reagent-mediated oxidation (with 6 M Gn.HCl) 

t-TM EGF D4: 

Air Oxidation (with 6 M Gn.HCl) versus Redox Buffer System (with 6 M Gn.HCl) 

 Arcsine Transformed Values 

 
Air Oxidation  
(+6 M Gn.HCl) 

Redox Buffer System  
(+6 M Gn.HCl) 

Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4 (Native) 25.46 0.85 34.02 0.60 8.57 0.60 14.23 4 <0.01 

C1-C2, C3-C4  46.56 0.54 43.44 0.18 -3.12 0.33 -9.51 4 <0.01 

C1-C4, C2-C3 32.46 0.52 27.56 0.50 -4.89 0.42 -11.77 4 <0.01 

a 
Statistical significance when p-value is smaller than 0.05.  

 

 

 

Table A3.4   Student!s t-test (independent samples) for t-TM EGF D5 structural isoforms derived from air oxidation (with 6 M Gn.HCl) and 

redox reagent-mediated oxidation (with 6 M Gn.HCl) 

t-TM EGF D5: 

Air Oxidation (with 6 M Gn.HCl) versus Redox Buffer System (with 6 M Gn.HCl) 

 Arcsine Transformed Values 

 
Air Oxidation  
(+6 M Gn.HCl) 

Redox Buffer System  
(+6 M Gn.HCl) 

Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4  24.87 0.26 25.92 0.11 1.05 0.16 6.43 4 <0.01 

C1-C2, C3-C4 (Native) 51.82 0.54 51.63 0.46 -0.20 0.41 -0.48 4 0.33 

C1-C4, C2-C3 26.93 0.48 25.15 0.46 -0.78 0.38 -2.04 4 0.11 

a 
Statistical significance when p-value is smaller than 0.05.  
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Table A3.5   Student!s t-test (independent samples) for t-TM EGF D4 structural isoforms derived from air oxidation and air oxidation (with 6 M 

Gn.HCl) 

t-TM EGF D4: 

Air Oxidation versus Air Oxidation (with 6 M Gn.HCl) 

 Arcsine Transformed Values 

 
Air Oxidation Air Oxidation  

(+6 M Gn.HCl) 

Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4 (Native) 55.26 0.42 25.45 0.85 -29.81 0.55 -54.35 4 <0.01 

C1-C2, C3-C4  27.36 0.47 46.56 0.54 19.20 0.41 46.40 4 <0.01 

C1-C4, C2-C3 19.68 0.56 32.46 0.52 12.78 0.44 28.85 4 <0.01 

a 
Statistical significance when p-value is smaller than 0.05.  

 

 

Table A3.6   Student!s t-test (independent samples) for t-TM EGF D4 structural isoforms derived from redox reagent-mediated oxidation and 

redox reagent-mediated oxidation (with 6 M Gn.HCl) 

t-TM EGF D4: 

Redox Buffer System versus Redox Buffer System (with 6 M Gn.HCl) 

 Arcsine Transformed Values 

 
Redox Buffer System Redox Buffer System  

(+6 M Gn.HCl) 

Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4 (Native) 56.21 0.35 34.02 0.60 -22.19 0.40 -55.03 4 <0.01 

C1-C2, C3-C4  25.81 0.42 43.44 0.18 17.63 0.26 67.42 4 <0.01 

C1-C4, C2-C3 20.23 0.24 27.56 0.50 7.33 0.32 22.99 4 <0.01 

a 
Statistical significance when p-value is smaller than 0.05.  
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Table A3.7   Student!s t-test (independent samples) for t-TM EGF D5 structural isoforms derived from air oxidation and air oxidation (with 6 M 

Gn.HCl) 

t-TM EGF D5: 

Air Oxidation versus Air Oxidation (with 6 M Gn.HCl) 

 Arcsine Transformed Values 

 
Air Oxidation Air Oxidation  

(+6 M Gn.HCl) 

Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4  26.97 0.24 24.87 0.26 -2.10 0.21 -10.20 4 <0.01 

C1-C2, C3-C4 (Native) 51.00 0.38 51.82 0.54 0.82 0.38 2.16 4 0.05 

C1-C4, C2-C3 25.87 0.22 26.93 0.48 1.07 0.30 3.51 4 0.01 

a 
Statistical significance when p-value is smaller than 0.05.  

 

 

 

Table A3.8   Student!s t-test (independent samples) for t-TM EGF D5 structural isoforms derived from redox reagent-mediated oxidation and 

redox reagent-mediated oxidation (with 6 M Gn.HCl) 

t-TM EGF D5: 

Redox Buffer System versus Redox Buffer System (with 6 M Gn.HCl) 

 Arcsine Transformed Values 

 
Redox Buffer System Redox Buffer System  

(+6 M Gn.HCl) 

Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4  26.82 0.07 25.92 0.11 -0.90 0.08 -11.53 4 <0.01 

C1-C2, C3-C4 (Native) 51.16 0.63 51.63 0.46 0.46 0.45 1.04 4 0.18 

C1-C4, C2-C3 25.81 0.72 26.15 0.46 0.34 0.49 0.69 4 0.26 

a 
Statistical significance when p-value is smaller than 0.05.  
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Table A3.9   Student!s t-test (independent samples) for t-TM EGF D4 structural isoforms derived from redox reagent-mediated oxidation and 

redox reagent-mediated oxidation (with 0.5 M NaCl) 

t-TM EGF D4: 

Redox Buffer System versus Redox Buffer System (with 0.5 M NaCl) 

 Arcsine Transformed Values 

 
Redox Buffer System Redox Buffer System  

(+0.5 M NaCl) 

Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4 (Native) 56.21 0.35 59.78 0.57 3.56 0.39 9.19 4 <0.01 

C1-C2, C3-C4  25.81 0.42 24.48 0.34 -1.33 0.31 -4.29 4 0.01 

C1-C4, C2-C3 20.23 0.24 16.60 0.51 -3.63 0.32 -11.17 4 <0.01 

a 
Statistical significance when p-value is smaller than 0.05.  

 

 

 

Table A3.10   Student!s t-test (independent samples) for t-TM EGF D5 structural isoforms derived from redox reagent-mediated oxidation and 

redox reagent-mediated oxidation (with 0.5 M NaCl) 

t-TM EGF D5: 

Redox Buffer System versus Redox Buffer System (with 0.5 M NaCl) 

 Arcsine Transformed Values 

 
Redox Buffer System Redox Buffer System  

(+0.5 M NaCl) 

Test statistics 

Structural Isoform Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Mean 

Difference 

Standard Error 

of Difference 

t-statistic 

(t*) 

Degrees of 

freedom 

Probability (p)
a
 

(one-tailed) 

C1-C3, C2-C4  26.82 0.07 28.87 0.29 2.05 0.17 11.77 4 <0.01 

C1-C2, C3-C4 (Native) 51.16 0.63 47.53 1.02 -3.64 0.69 -5.25 4 <0.01 

C1-C4, C2-C3 25.81 0.72 28.15 1.36 2.34 0.88 2.64 4 0.03 

a 
Statistical significance when p-value is smaller than 0.05.  


