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Summary 

Chlorinated organic solvents are pervasive groundwater and soil contaminants 

due to their extensive usage (as solvents, detergents or degreasers), improper disposal 

and accidental spills.  Under anaerobic conditions, chloroethenes such as 

tetrachloroethene (PCE) and trichloroethene (TCE) can be reductively dechlorinated 

to the less chlorinated ethenes, cis-1,2-dichloroethene (cis-DCE) by a variety of 

dechlorinators, and to vinyl chloride (VC) or ethene only by Dehalococcoides species.  

Although the generation of cis-DCE are much more commonly observed than its 

isomer, trans-1,2-dichloroethene (trans-DCE), the accumulation of trans-DCE at 

contaminated sites poses a serious problem due to its recalcitrant nature.  Currently, 

there is no information available on the Dehalococcoides isolates that generate trans-

DCE as the main end product.  Furthermore, the available isolates Dehalococcoides sp. 

strains BAV1 and FL2 that are able to dechlorinate trans-DCE to ethene cannot 

metabolically detoxify TCE or PCE to ethene.  Therefore isolates that could detoxify 

TCE and trans-DCE completely to ethene still remain elusive and complete 

detoxification of PCE remains a challenging task at chloroethene-contaminated sites.   

The main purpose of this study is to elucidate mechanisms involved in the 

generation and detoxification of trans-DCE in PCE/TCE-contaminated sites.  Another 

objective is to achieve complete detoxification of PCE to ethene for efficient 

bioremediation.  The enrichment process of several microcosm studies demonstrated 

that microorganisms within Cornell subgroup of Dehalococcoides could generate 

more trans-DCE than cis-DCE and terminate the reductive dechlorination of PCE or 

TCE at DCEs for the first time.  Pure culture Dehalococcoides sp. strain MB was 

isolated from environmental sediments.  It reductively dechlorinates PCE to trans-

DCE and cis-DCE at a ratio of 7.3 (± 0.4) : 1.  Although strain MB shares 100% 16S 



IX 
 

rRNA gene sequence identity with the first isolate of the same genus, 

Dehalococcoides ethenogenes strain 195, these two strains possess different 

dechlorinating pathways.  Microarray analysis revealed that 10 out of 19 putative 

reductive dehalogenase (RDase) genes present in strain 195 were also detected in 

strain MB.  Transcriptional analysis of RDase genes in strain MB grown with PCE 

shows that one RDase gene, designated mbrA, exhibited 10-fold up-regulation, higher 

than the rest of RDase genes.  The highly expressed RDase gene, mbrA gene may 

serve as an important biomarker for evaluating, predicting, and elucidating the 

biological production of trans-DCE in the chloroethene-contaminated sites.   

Subsequently, another strictly anaerobic bacterium, designated as 

Dehalococcoides sp. strain 11a, was isolated in defined medium.  Strain 11a rapidly 

and consistently dechlorinated TCE, 1,1-DCE, trans-DCE, cis-DCE, VC, and 1,2-

dichloroethane metabolically to ethene with an average dechlorination rate of 53.1, 

22.5, 21.6, 24.8, 86.5, and 16.7 µmol L-1 day-1 respectively.  The complete 

detoxification of PCE to ethene for the contaminated groundwater could be achieved 

with a co-culture of strain 11a and a PCE-dechlorinating isolate Sulfurospirillum 

multivorans.  Although strain 11a shares 100% 16S rRNA gene sequence identity with 

the first VC-dechlorinating isolate Dehalococcoides sp. strain BAV1, strain 11a 

showed broader substrate range than strain BAV1. 

To summarize, the successful cultivation of strain MB indicates that biotic 

processes could contribute significantly to the generation of trans-DCE in 

chloroethene-contaminated sites, while the isolation of strain 11a enhances our 

understanding of the evolution of this unusual microbial group - genus of 

Dehalococcoides.  This study also provides a promising cost-effective bioremediation 

solution to the chloroethene-contaminated sites. 
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Chapter I Introduction 

 Clean groundwater is important to meet public (e.g. drinking water), agricultural 

(e.g. irrigation), and industrial demands.  Groundwater is increasingly threatened by 

organic, inorganic, and radioactive contaminants that have been improperly (e.g. 

agricultural applications, improper disposal) or accidentally released into the 

environment.  Among the contaminants, halogenated organic compounds are the most 

widely distributed, which include chloroethenes, chloroethanes, chlorophenols, 

chlorobenzenes, polychlorinated biphenyls (PCBs), and polybrominated diphenyl 

ethers (PBDEs), and polychlorinated-dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) 

(Holliger et al., 2003; Bayen et al., 2005) (Fig 1.1).  Out of these halogenated 

compounds, halogenated organic solvents, e.g. tetrachloroethene (PCE), 

trichloroethene (TCE), 1,2-dichloroethane (1,2-DCA), and 1,1,1-trichloroethane 

(TCA) have been widely used in various industries, e.g. metal processing, degreasing, 

electronics, dry cleaning and paint, paper and textile manufacturing (Abelson, 1990).  

They can be found not only in water, but also in air, soil, and sediment. 

 Most of chloroethenes and chloroethanes are synthetic compounds, having a 

structure different from naturally occurring compounds, which makes them 

recalcitrant to be transformed in the natural environments.  Since the beginning of the 

20th century, large quantities of halogenated organic solvents have been released into 

the environment and contaminated groundwater, marine, and soil.  They are among 

the most commonly found groundwater pollutants and are detected at approximately 

80% of all superfund sites in the USA.   

 Chlorinated ethenes vary in the number of chlorine atoms on each molecule; 

from polychlorinated, PCE, TCE and dichlorothenes (DCEs), to the monochlorinated 
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vinyl chloride (VC).  PCE and TCE are found in groundwater most frequently and in 

highest concentration, due to extensive usage, illegal and improper disposal and 

accidental spills (Doherty, 2000a, b; Bradley, 2003).  DCEs (mainly cis-DCE) occur 

in groundwater primarily as the result of in situ microbial transformation (Bradley, 

2003).  VC contamination of groundwater results primarily from microbial reduction 

of DCE and TCA under anaerobic conditions or as the result of releases from PVC 

manufacturing operations (Hartmans, 1995). 
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Fig 1.1 Structures of typical halogenated compounds in subsurface. 

1.1 Chlorinated solvent contamination in the environment 

 The two-carbon chlorinated solvents (C2) that are of major commercial 

importance are PCE, TCE, and 1,1,1-trichloroethane (TCA), and 1,2-DCA.  They are 

widely used in industry due to their rapid evaporation rates, low flammability and 

reactivity, and excellent ability to quickly and efficiently dissolve a wide range of 

organic substances (Doherty, 2000a, b).  PCE is most commonly known for its use in 
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the dry cleaning industry and peak usage in the U. S. occurred in 1980, whereas TCE 

is used as degreasing solvent (an extraction agent for fats).  TCE was first prepared in 

1864 by E. Fischer but received little attention until TCE was commercialized in 

Germany in 1910 (Ullmann, 2005).  In 1912, TCE was applied in large scale for 

laundries, textiles and varnishes and as an extraction agent for fats.  However, the 

toxicity of TCE was shown when used as a defatting agent for soybean to feed animal.  

It was recognized as the source of cattle poisoning, which resulted in extensive losses 

of cattle in Europe between 1923 and 1925 (Doherty, 2000a).  Production of TCE in 

the United States started as a replacement for petroleum distillates in the dry-cleaning 

industry in the early 1920s and TCE became a good alternative of solvent for vapor 

degreasing in the 1930s.  TCE has been used primarily as a solvent in industrial 

degreasing operations.  Other uses have been as a solvent in dry cleaning and food 

processing, as an ingredient in printing inks, paints, etc.  However, the use of TCE as 

a degreaser decreased in the 1960s as a result of more stringent environmental 

regulations and increasing popularity of trichloroethane (TCA) (Doherty, 2000a) 

although the production rate of TCE increased steadily with a peak in the 1970s 

(Ullmann, 2005). 

 Due to improper handling, storage, or disposal, large quantities of PCE/TCE 

have extensively contaminated soils and groundwater supplies in the various 

industrial, residential, and military sites.  In military sites, PCE/TCE contamination 

can be due to toxic solvents, oils, greases, corrosives, fuels, and unexploded ordnance, 

emitted or discharged directly into soil, air, or water by the military yearly.  Currently, 

there are over 22,000 contaminated sites in 3,300 active and former military 

installations in the United States.  Many of these are included in the so-called 

“Superfund” list of the most contaminated and dangerous sites.  This problem extends 
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to overseas US bases including bases in Asia and the Pacific (Bayona and Albaigés, 

2006; Kurisu, 2008).  A recent report shows that about 25,500 tonnes per year of TCE 

are sold in Europe for metal cleaning in 2007 although TCE is classified as a category 

2 carcinogen (http://www.manufacturingtalk.com/news/ssg/ ssg101.html). 

1.2 Toxicity of chlorinated solvents 

 Chlorinated solvents, like PCE, TCE and TCA have become common 

environmental contaminants, resulting from discharge to surface waters and 

groundwater by industrial or individual consumers, evaporative losses during use, 

incidental addition of TCE during food production, leaching from hazardous waste 

landfills into groundwater.  On the other hand, more and more studies show that 

excess incidences of liver cancer, kidney cancer, or non-Hodgkin’s lymphoma are 

found to be associated with occupational exposure to the chlorinated solvents 

(Wartenberg et al., 2000; Sullivan and Krieger, 2003).  These health issues have 

helped the public dramatically raise their awareness of the man-made solvents’ side 

effects.  A number of studies on the commonly used solvents have been carried out in 

terms of their possible carcinogenic effects, safe-handling procedures, clean-up 

technologies, global effects, environmental regulations, etc (Apfeldorf and Infante, 

1981; Abelson, 1990; ATSDR., 1993, 1997; Kielhorn et al., 2000; United Nations 

Environment Programme, 2000; Davis et al., 2002; National Environment Agency, 

2002; Holliger et al., 2003; Sullivan and Krieger, 2003; Garcia, 2005; Ritalahti et al., 

2005; ATSDR., 2006; Löffler and Edwards, 2006; ATSDR., 2007; Bhatt et al., 2007; 

EPA, 2007).   

 The U. S. National Toxicology 11th report on Carcinogens (revised Feb 2009) 

lists the following six halogenated solvents as suspected carcinogens: carbon 
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tetrachloride (CCl4), chloroform (CHCl3), 1,2-DCA, dichloromethane (DCM), and 

PCE, and TCE  as “reasonably anticipated to be human carcinogens”, whereas VC is a 

proven carcinogen (http://ntp.niehs.nih.gov/).  As compared with other chloroethenes, 

VC has the lowest median lethal concentration (LC50) as shown in Table 1.1, which 

agrees well with its proven carcinogenic effect to human beings.  

 As for TCE, it was reclassified as a category 2 carcinogen by the European 

Union (EU) in January 2001 for the convincing evidence that it may cause cancer to 

human beings (http://www.hse.gov.uk/foi/internalops/fod/oc/200-299/294_49.pdf).   

Additionally, EPA also notes that TCE has the potential to induce neurotoxicity, 

immunotoxicity, developmental toxicity, liver toxicity, kidney toxicity, endocrine 

effects.  Therefore, it is highly likely to produce cancer in humans.   

 Besides chlorinated ethenes, chlorinated ethanes are also prevailing 

groundwater and soil contaminants due to extensive usage, illegal and improper 

disposal and accidental spills.  1,2-DCA is commonly used as an intermediate of 

industrial polyvinyl chloride (PVC) production.  Over 209 tons of 1,2-DCA were 

discharged to groundwater during 1987-1993 (www.epa.gov/enviro/html/tris/ez.html).  

Due to leakage and improper disposal, 1,2-DCA represents one of the world’s most 

important toxic C2 chlorinated aquifer pollutants.   

 Table 1.2 shows that PCE, TCE, VC, 1,2-DCA, and chloroethane (CA) have 

been found to be the top five chlorinated C1-C2 solvents in 2008 based on an survey 

on the average annual underground releases for “1988 Core Chemicals” in the United 

States (see “toxics release inventory” in 2008 at U.S. Environmental Protection 

Agency website, http://www.epa.gov/triexplorer/chemical.htm).  As one of the 

co-contaminant of the above listed solvents, TCA is also listed as an ozone-depleting 

chemical worldwide.  These pollutants pose dispersing and long-lasting hazards   
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 (suspected carcinogens) for humans and environments and tend to accumulate in 

reduced aquifers (De Wildeman and Verstraete, 2003).  Pump-and-treat technologies 

are too expensive and time-intensive for the expanded pollution plumes, while  

oxidative degradation is not suitable for the prevailing (De Wildeman et al., 2003) 

conditions on site and the presence of multiple chlorinated compounds may inhibit the 

dechlorination process.  PCE and TCE could be easily dechlorinated by cheap Fe(0) 

or bimetallic particles, but 1,2-DCA is totally resistant to metals (Gillham and 

O'Hannesin, 1994; Zhang et al., 1998).  Therefore, much attention has been given to 

the cost-effective, controlled, fast and complete in situ bioremediation technologies 

simutaneously for these co-existing solvents (De Wildeman and Verstraete, 2003; 

GeoSyntec Consultants., 2005). 

1.3 Extended toxicity of chlorinated solvents 

 The extensive usage of these chlorinated solvents consequently possesses a high 

potential to contaminate the environment, particularly water and soil, not only 

because of these solvents’ toxicity and widespread distribution in aquifers but also the 

toxicity caused by their degradation products, e.g. DCEs and VC (Vogel and McCarty, 

1985; Vogel et al., 1987; Vogel and McCarty, 1987; Abelson, 1990).  They tend to 

sink and accumulate in groundwater sources (known as dense nonaqueous phase 

liquids, DNAPLs) because these halogenated solvents are generally denser than water.  

These toxic wastes can adversely disrupt the ecosystem by reducing bio-diversity, 

even extinguishing some sensitive species, or devastating natural restorative processes.  

The long-term, low-dose exposure to different kinds of toxic solvents may bring the 

potential hazards to the human health, ranging from disorders of the lungs, liver, 

kidneys, and other organs, or adverse effects on the immune, reproductive, or central 
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nervous systems, as well as mutations of genes and a variety of cancers (Wartenberg 

et al., 2000; Sullivan and Krieger, 2003).  Acute overexposure to halogenated solvents 

can cause severe health effects to humans, including possible nervous system damage, 

heart failure, and increased rates of cancer (Sullivan and Krieger, 2003).  Several 

halogenated solvents, e.g. PCE, TCE, 1,2-DCA, are considered as potential 

carcinogens for humans and have been shown to cause cancer in laboratory animals 

(Prince, 1998).  1,2-DCA is mainly used in the production of vinyl chloride (VC), 

which is the precursor to PVC but a proven carcinogen to humans (Kielhorn et al., 

2000).  Much of VC originates from higher chlorinated ethenes and ethanes in 

industry.  Alternatively, as VC has higher solubility than the other chloroethanes, it 

also exists in groundwater systems, probably as the transformation product of PCE or 

TCE.  In addition, these solvents including TCA, have been found to be particularly 

hazardous to the ozone layer (http://www.hse.gov.uk/foi/internalops/fod/oc/200-

299/294_49.pdf).  Therefore, complete and efficient removal of these solvents is of 

utmost importance to human beings and the environment.   

1.4 Regulation of halogenated solvents 

 For many volatile organic compounds, different strategies have been attempted 

to prevent their misuse.  For instance, the US EPA has also regulated maximal 

concentration level (MCL) for drinking water contaminants at 5 μg L-1, 5 μg L-1, 70 

μg L-1, 100 μg L-1, 7 μg L-1, 2 μg L-1, 5 μg L-1 for PCE, TCE, cis-DCE, trans-DCE, 

1,1-DCE, VC, and 1,2-DCA, respectively (http:// www.epa.gov/safewater/ 

contaminants/index.html).  The usage of TCA was severely restricted and regulated 

by European Pollutant Emission Register (EPER) reporting requirements, United 

Nations Environment Programme (UNEP) Montreal Protocol on Substances that 
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Deplete the Ozone Layer in 1987 (which required the withdrawal of TCA by 2015 for 

developing countries) (United Nations Environment Programme, 2000).  As a 

hazardous substance, importation and sale of TCA is strictly banned in UK and 

Singapore, since 2000 and 2002, respectively (National Environment Agency, 2002).  

In the United States, no TCA is supposed to be applied for domestic use after Jan 1, 

2002 (ATSDR., 2006).   

1.5 Problem statement  

 The solubilized chlorinated ethenes (e.g., PCE, TCE, trans-DCE and cis-DCE) 

and chlorinated ethanes (e.g., TCA and 1,2-DCA) were commonly detected in the 

contaminated sites.  Much attention has been paid to the remediation of 

halohydrocarbons at contaminated sites, mainly chloroethenes and chloroethane 

(Zinder, 2010) through microbial reductive dehalogenation.  Under anaerobic 

conditions, PCE can be reductively dechlorinated to TCE primarily via cis-DCE, VC 

to ethene (Vogel and McCarty, 1985; Zhang and Bennett, 2005) catalyzed by the 

specific reductive dehalogenases (RDases).  One study conducted by U.S. Geological 

Survey (Garcia, 2005) during 2000-2005 identified chlorinated ethenes as one major 

source of volatile organic compounds through the subsurface occurrence 

characterization in the U.S.  The highest concentration for PCE, TCE, cis-DCE and 

trans-DCE were 500-920 μg L-1, 10,000-920,000 μg L-1, 5,000-710,000 μg L-1, 1,000-

1,700 μg L-1 at one landfill site (Garcia, 2005).  Generally, the most common 

degradation products of PCE and TCE are cis-DCE instead of trans-DCE; typically, 

cis-DCE is the predominant product by a 30-to-1 ratio compared with trans-DCE 

(Murphy and Morrison, 2002).  Further reductive dechlorination of DCEs to VC and 

ethene is likely when the cis-DCE concentration is larger than 80% of the total  
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1,2-DCEs’ concentration (total 1,2-DCEs are equivalent to the sum of cis-DCE and 

trans-DCE).  However, when the trans-DCE concentration is 50% or more of the total 

DCE concentration, there is considerable likelihood that trans-DCE would be released 

directly into the environment because of the shortage of trans-DCE dechlorinating 

microbes (Byl and Williams, 2000).  Recently, more and more reports have been 

published on the large accumulation of more trans-DCE than cis-DCE (Garcia, 2005; 

ITRC, 2007).  During microbial reductive dechlorination of PCE/TCE, although 

reports on the generation of trans-DCE are relatively fewer than studies on cis-DCE 

generation, the accumulation of trans-DCE at contaminated sites poses a serious 

problem owing to its recalcitrant nature at subsurfaces.  Studying the fate of trans-

DCE is equally important as cis-DCE.  

 In addition, the incomplete sequential dechlorination of PCE under anaerobic 

conditions could generally result in accumulation of TCE, cis-DCE, and/or VC 

(Krumholz, 1997; Maymó-Gatell et al., 1997; Miller et al., 1997; Holliger et al., 1998; 

Luijten et al., 2003; Sung et al., 2003; He et al., 2005).  However, as the isomers of 

cis-DCE,  trans-DCE or 1,1-DCE have also been observed and accumulated as the 

predominant end product during microbial reductive reduction of PCE and TCE 

(Griffin et al., 2004; Miller et al., 2005; Shouakar-Stash et al., 2006; Zhang et al., 

2006).  Skeen et al. observed the formation of significant amount of trans-DCE, cis-

DCE as well as 1,1-DCE in a methanogenic consortium in 1995 (Skeen et al., 1995).  

In 1997, Christiansen et al. demonstrated that trans-DCE was formed as the main 

DCE isomers over cis-DCE and 1,1-DCE in an upflow anaerobic sludge blanket 

reactor with the ratio of trans-DCE to cis-DCE at 1.2-2.2 with trace amount of 1,1-

DCE in the transformation of PCE (Christiansen et al., 1997).  Meanwhile, the 

formation of trans-DCE and cis-DCE (ratio-2.45) were also found from a sediment-
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free, nonmethanogenic culture which was initially cultivated in 1,2-dichloropropane 

(Löffler et al., 1997b).  In 2004, Griffin et al. reported the generation of trans-DCE to 

cis-DCE from PCE dechlorination at a ratio of 3.0(±0.5) :1 from six different 

microcosms which probably contained Pinellas groups of Dehalococcoides spp. 

(Griffin et al., 2004).  Besides this unique Dehalococcoides group, a polychlorinated 

biphenyl-dechlorinating bacterium, Dehalobium chlorocoercia DF-1, was reported to 

be capable of transforming PCE to trans-DCE and cis-DCE at a ratio of 1.2-1.7 

(Miller et al., 2005).  It shared 89% similarity of 16S rRNA gene sequence with D. 

ethenogenes strain 195.  However, culture DF-1 failed to grow in a fully defined 

medium as it required the presence of the cell extract from Desulfovibrio spp.  Thus, 

besides cis-DCE and 1,1-DCE, trans- DCE has been shown to be the major 

intermediate and end product during the dechlorination of PCE/TCE and no 

dechlorination beyond trans-DCE through Dehalococcoides sp. was observed in some 

contaminated sites.    

 In summary, currently little is known on the microbes involved in the 

production of trans-DCE in the contaminated sites.  The mechanism of trans-DCE 

generation in natural environment is also poorly understood.  Due to its recalcitrant 

nature, the accumulation of trans-DCE in the environment hinders its further 

transformation to the harmless product, ethene, thus posing a potential threat to 

human health.  This accumulation will subsequently result in an incomplete 

dechlorination of PCE or TCE, thus leading to inadequate bioremediation in the 

contaminated sites.   

 In addition, the functional genes responsible for production of significant 

amounts of trans-DCE remain unidentified.  Several highly enriched cultures in our 

lab are showing sequential dechlorination of PCE via TCE to trans-DCE and cis-DCE 
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as the major and minor degradation products, respectively.  Thus, characterization and 

isolation of such microbes followed by studying the reductive dehalogenase (RDase) 

genes specific for trans-DCE production are greatly required for understanding the 

mechanism of trans-DCE formation.   

 Complete dechlorination of PCE to ethene, the desired end point, often does not 

occur naturally because of insufficient electron donors, slow reaction kinetics, the 

absence of dehalogenating bacteria, or other environmental factors (Cupples et al., 

2004).  The transformations of PCE are frequently incomplete, often resulting in the 

accumulation of VC, a more hazardous and mobile compound (Haston and McCarty, 

1999).  Dechlorination of VC often occurs cometabolically, which will also increase 

the difficulty of bioremediation.  The resulting slow transformation rate of VC would 

increase the treatment cost tremendously, or even result in unsuccessful 

bioremediation of chloroethene-comtaminated site. 

1.6 Thesis hypothesis 

 Previous studies suggest the presence of novel microorganisms involved in 

trans-DCE production, mainly belonging to the genus of Dehalococcoides, which is 

capable of dechlorinating PCE to trans-DCE predominantly at many contaminated 

sites and in laboratory cultures.  This novel strain should differ primarily in the range 

of dechlorinating substrates and functional RDase genes from previously discovered 

Dehalococcoides spp.  Microcosms around the area with large accumulation of trans-

DCE may have the potential to further remove the generated trans-DCE as there is a 

higher likelihood that these microorganisms can adapt to this contaminant.  Therefore, 

it will be of great interest to explore the microorganisms that can produce trans-DCE  

as well as the microorganism that can eliminate trans-DCE in the contaminated 
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groundwater.   

 Given that high levels of trans-DCE may cause central nervous system 

depression in humans, the isolation of the trans-DCE producing culture may 

contribute to further investigations on the application of Dehalococcoides species.  

Therefore, exploring robust culture(s) that can detoxify PCE completely under 

anaerobic conditions is urgent in order to stimulate fast dechlorination in situ.  The 

mechanisms underlying this special dechlorination process will also be studied for 

better understanding of the bioremediation process while providing right source of 

inocula for successful bioaugmentation.  This would be the final objective of this 

project, complete detoxification of chloroethenes.  Results from this study will 

significantly improve the treatment efficiency towards halogenated compound-

contaminated sites. 

1.7 Objectives 

 The main objective of this study is to achieve the complete detoxification of 

PCE and to elucidate the formation of trans-DCE by Dehalococcoides spp.   

 The specific objectives of the current study are to:  

 1)  Explore the diversity of microorganisms in the trans-DCE producing  

microcosms collected from natural environments and characterize PCE-to-trans-DCE 

dechlorinating enrichment cultures.   

 2)  Characterize and isolate novel trans-DCE producing microbes, and 

understand the functional genes specific for trans-DCE production.   

 3)  Elucidate how the microbes catalyze dechlorination of PCE to the 

predominant trans-DCE through expression analysis of multiple RDase genes from 

the trans-DCE producing culture.   
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 4)  Cultivate robust dechlorinators capable of completely detoxifying PCE to 

ethene metabolically and understand the role of specific functional genes involved in 

individual dechlorinating isolate(s).  

1.8 Thesis outline 

 To achieve these objectives, research work has been carried out mainly in six 

stages for this thesis as shown in Fig 1.2.    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.2 The stages and objectives of this study 

Objective 3:  
Expression of RDase genes responsible for trans-
DCE production 

Stage 1: Background information 
(Chapter I) 

Stage 2: Literature review 
(Chapter II) 

Objective 1:  
Identification of trans-DCE producing cultures 
containing Dehalococcoides spp. 

Stage 3: Production of trans-
DCE (Chapter III) 

Objective 2:  
Elucidation of trans-DCE producing mechanism 
through isolation  

Stage 4:   
a) Isolation and characterization 
of the trans-DCE producing 
culture 
b) transcriptional analysis of 
RDase genes in the new isolate  
(Chapter IV) 

Stage 5:  
a) Isolation and characterization of 
the trans-DCE-dechlorinating 
culture 
b Study of RDase genes in the new 
isolate  (Chapter V) 

Objective 4:  
Complete detoxification of PCE in 
contaminated groundwater 

Stage 6: Conclusion and recommendations 
(Chapter VI) 

Hypothesis 1: Presence of microorganisms 
that can produce trans-DCE predominantly 
from reductive dehalogenation of 
chloroethenes.  

Hypothesis 2: Presence of 
microorganisms that can completely 
detoxify PCE to ethene in a robust 
manner  from microcosms.  
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 Chapter II offers a comprehensive literature review on the microbial reductive 

dechlorination processes mainly for chlorinated ethenes, application of 

bioremediation studies, and the main dehalorespirators as characterized by the 

molecular tools.  Chapter III describes study on the enrichment and identification of 

microorganisms involved with trans-DCE production from reductive dechlorination 

of PCE and TCE.  Chapter IV is the detailed study on the isolation of this novel trans-

DCE producing culture and the transcriptional analysis of RDase genes in this isolate.  

Chapter V focuses on the isolation of a novel microbe capable of completely 

dechlorinating all the chloroethenes to ethene including the recalcitrant trans-DCE.  

The application of this isolate is also investigated for the bioremediation of PCE-

contaminated groundwater.  Chapter VI presents the major conclusions of this study 

and states recommendation for future studies.     
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Chapter II Literature Review 

 Anthropogenic compounds can be transformed in the environment naturally 

through microbial mediated processes.  During these processes, organic compounds 

are oxidized for energy and growth, with oxygen as the electron acceptor 

(Pavlostathis et al., 2003).  However, man-made halogenated organic solvents present 

unique challenges to determining their fate in the environment because of their 

physiochemical properties (Wisconsin Department of Natural Resources, 2003).  

They are more oxidized due to the presence of electronegative halogen substituent, 

which makes them relatively stable for better usage but resistant to biodegradation 

under aerobic conditions.  Therefore, in the subsurface environment, reduction of 

these solvents is more likely to occur than oxidation in particular for polyhalogenated 

compounds.  These polyhalogenated compounds and their byproducts have a 

tendency to accumulate in the ecosystem including sediments, sludge, soils, and 

groundwater.  Numerous studies have shown that halogenated compounds are 

recalcitrant molecules resistant to mineralization, but can be transformed by anaerobic 

mechanism into harmless products, or into relatively lightly halogenated compounds, 

like vinyl chloride (VC) or chloroethane (CA) that are further degradable by aerobic 

microorganism (Holliger et al., 2003).  These reactions have triggered the request for 

microbial populations to play a role in reductive dehalogenation or detoxification in 

these environments.  Various molecular tools have been developed to understand this 

dehalogenation process. 

2.1 Transformation of halogenated compounds 

 Polyhalogenated compounds are relatively stable in the aerobic environments, 

probably due to the high reactivity of halogens and stable structure of carbon-halogen 
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bond (Reineke, 2001).  When released into soil, these aerobically persistent 

polyhalogenated compounds can form dense nonaqueous phase liquids (DNAPLs) 

and often exist in deep subsurface environments, which are anaerobic.  Depending on 

their ultimate fate, those chlorinated solvents may be degraded to harmless byproducts 

or they may exert harmful effects through toxicity, biomagnification and/or 

persistence in the environment.  Their harmful impact on the biota may be direct (e.g. 

toxicity) or indirect, such as by destruction of the protective ozone layer in the 

stratosphere by atmospheric halocarbons. 

 Of great importance is the microbial reductive dechlorination of chlorinated 

solvents in the natural environments (Smidt and de Vos, 2004).  With the removal of 

halogens during reductive dehalogenation, the less halogenated products tend to be 

less hydrophobic, more mobile, more volatile, and more soluble than the parent 

compounds by many orders of magnitude.  However, as halogens are removed 

sequentially, dehalogenation reactions tend to occur extremely slowly in particular 

when reaching di- or mono-halogenated state (Pavlostathis et al., 2003).    

Generally, two basic mechanisms are involved with reductive dehalogenation, abiotic 

(or cometabolic), and biotic (metabolic) conversion.  The former is proposed to be 

catalyzed mainly by metal ion-containing heat-stable tetrapyrroles or enzymes.  

During this process, these compounds are incorporated as cofactors and do not serve 

as a source of carbon or energy for microbial growth thus additional energy is 

required (Holliger et al., 2003; Smidt and de Vos, 2004).  Cometabolism is 

particularly referred to the simultaneous degradation of two compounds, in which the 

degradation of the second one depends on the presence of the first substrate 

(Jitnuyanont et al., 2001).  Examples of cometabolism include the reductive 

dechlorination of PCE by sulfate reducers (Cole et al., 1995), methanogens (Fathepure 



19 

 

and Boyd, 1988; Freedman and Gossett, 1989), or acetogens (Terzenbach and Blaut, 

1994).  Therefore, halogenated compounds might be degraded by fermentative, 

oxidative, or reductive pathways, depending on the prevailing environmental 

conditions.  In general, most abiotic transformations are slow, but can still be 

significant within the time scales commonly associated with the movement of 

groundwater.  In contrast, biotic transformations typically proceed much faster, 

provided that there are sufficient substrate and nutrients and a microbial population 

that can mediate such transformations (Vogel et al., 1987).  Although the role of 

cometabolic conversion cannot be excluded for the destruction of halogenated 

compounds, the metabolic conversion is the primary mechanism for the 

transformation of chlorinated solvents in the contaminated sites (Zinder, 2010).   

Halogenated compounds can serve in three different metabolic functions in anaerobic 

bacteria: i) as carbon or energy source or both, ii) as substrate for cometabolic activity, 

and iii) as terminal electron acceptor in an anaerobic respiration process (Holliger et 

al., 2003).  The last respiration process, also termed as microbial reductive 

dehalogenation which contributes to the primary metabolism (Zinder, 2010), can be 

further divided into two groups, hydrogenolysis, and dihaloelimination.  

Hydrogenolysis refers to the displacement of a halogen substituent with hydrogen, 

while dihaloelimination refers to replacement of two halogen-carbon bonds with a 

carbon-carbon bond.  The transfer of electrons from an external electron donor is 

essential for both groups of reactions.  In natural environment, hydrogenolysis occurs 

more frequently than dihaloelimination except 1,2-dichloroethane (1,2-DCA).  Thus 

reductive dehalogenation has been predominantly referred to the term hydrogenolysis.   
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2.2 Dehalorespiration process 

 In the reductive dehalogenation process, halogenated compound serves as 

terminal electron acceptor resulting in energy production for microbial growth, which 

is known as (de)halorespiration.  A number of studies have found some halogenated 

compounds are commonly used by bacterial species as growth substrates, e.g., 

chloroethenes, chloroethanes, chlorophenols, chlorobenzenes, polychlorinated 

biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polychlorinated-

dibenzo-p-dioxins (DD)/dibenzofurans (PCDD/Fs) (Zhang and Bennett, 2005; 

Bayona and Albaigés, 2006; Häggblom et al., 2006; Bunge and Lechner, 2009; Lee 

and He, 2010). 

 Previous studies have shown that certain naturally occurring microorganisms 

have evolved to break down these contaminants.  Originally, reductive dehalogenation 

was found to be a cometabolic side reaction in anaerobes, such as methanogens, 

sulfate-reducers, and acetogens (Bouwer and McCarty, 1983; Vogel and McCarty, 

1985, 1987; Fathepure and Boyd, 1988; Freedman and Gossett, 1989; Terzenbach and 

Blaut, 1994; Cole et al., 1995).  Most cometabolic transformations are slow but they 

can still be significant within the time scales associated with groundwater migration.  

Since early 1980s, considerable evidences have shown that metabolic reductive 

dechlorination of PCE, TCE, DCEs, VC, TCA, 1,2-DCA have arisen from anaerobic 

microcosms, enrichment cultures, and pure cultures and these metabolic processes 

proceeded much faster than the cometablic reactions (Vogel et al., 1987; DiStefano et 

al., 1991; Holliger et al., 2003).  With recent development of rapid and inexpensive 

molecular techniques, bioremediation industry developed rapidly for the PCE, TCE or 

TCA-contaminated sites/soil/groundwater, including i) the identification and isolation 
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of the specific bacteria mediating the dehalorespiration process, ii) essential nutrient 

requirements, and the proper approaches for stimulating the desired reactions but 

minimizing undesirable microbial activities, iii) development of biomarkers to 

evaluate and predict the in situ activities, iv) exploration of potential application of 

current halorespirators for halogenated compounds other than chlorinated solvents.      

 Over the past two decades, numerous mixed and pure culture studies have 

revealed that predominantly reductive dehalogenation processes, in addition to 

oxidative and fermentative mechanisms, are responsible for the initial attack and 

degradation of a wide range of halogenated compounds in the absence of molecular 

oxygen (Häggblom and Bossert, 2003; Holliger et al., 2003; Janssen et al., 2005).  

Furthermore, significant attention has been given to characterization, isolation of the 

main dehalorespirators, and identification of the main enzyme(s)-reductive 

dehalogenase(s) responsible for the dehalorespiration process.   

2.3 Specific bacteria mediating the dehalorespiration process 

 With the advent of molecular techniques, the dehalorespiration process for 

halogenated solvents has been understood and shown to be carried out mainly by 

three distinct groups of microorganisms, 1) genera Dehalobacter and 

Desulfitobacterium in the Peptococcaceae family in the Firmicutes, 2) members 

(Anaeromyxobacter, Desulfuromonas, Geobacter, Desulfomonile, Geobacter, 

Desulfononile, Desulfovibrio, and Sulfurospirillum) of the delta (δ) and epsilon (ε) 

subphyla of the Proteobacteria, and 3) the Dehalococcoides-predominant group in the 

Chloroflexi (Taş et al., 2009a; Zinder, 2010).  Among these three groups, the majority 

of these bacteria transform PCE or TCE to cis-DCE, only Dehalococcoides spp. are a 

unique group that is capable of completely dechlorinating PCE to ethene (Bombach  
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et al., 2010) and only Dehalobacter spp. have been reported to dechlorinate TCA 

metabolically (Sun et al., 2002; Grostern and Edwards, 2009).  Due to the extensive 

usage of chlorinated solvents and their related potential carcinogenicity, 

dechlorination of PCE, TCE, TCA and 1,2-DCA, carried out by Dehalococcoides and 

Dehalobacter, is of great oncern to be covered in this section.   

2.3.1 Major dechlorinating microorganisms for chlorinated ethenes 

 Chloroethene dechlorination isolates that belong to the genera 

Anaeromyxobacter, Desulfitobacterium, Sulfurospirillum, Desulfomonile, 

Desulfuromonas, Desulfovibrio, and Trichlorobacter are metabolically versatile with 

respect to their spectrum of electron donors and acceptors; while limited isolates 

appeared as highly specialized bacteria that strictly depend on halorespiration for 

growth, in most cases coupled to hydrogen as the electron donor (Smidt and de Vos, 

2004).  These pure cultures capable of coupling growth to this process via 

halorespiration include Desulfitobacterium spp., Desulfuromonas spp., 

Sulfurospirillum multivorans, Dehalobacter spp., and Dehalococcoides spp. (Holliger 

et al., 2003) (see Fig 2.1).   

 The majority of them could dechlorinate PCE and TCE to cis-DCE.  The first 

microorganism that coupled PCE dechlorination to growth was Dehalobacter 

restrictus PER-K23 (gram-negative bacteria), dominant in an enrichment culture, 

which dechlorinated PCE and TCE to cis-DCE found in 1993 (Holliger et al., 1993) 

and obtained in pure culture in 1998 (Holliger et al., 1998).  Dehalobacter restrictus 

TEA, a gram-positive, rod-shaped, motile bacterium, was isolated from an anaerobic 

charcoal reactor originally inoculated with contaminated groundwater, capable of 

dechlorinating PCE and TCE to cis-DCE.  It required H2 as the electron donor, and 
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acetate or CO2 as carbon source.  The 16S rRNA gene sequence of strain TEA is 99.7% 

similar to the sequence of strain PER-K23 (Wild et al., 1996).  Isolate belonging to 

genus of Desulfitobacterium could also dechlorinate PCE to cis-DCE, e.g., 

Desulfitobacterium sp. strain PCE-S (Miller et al., 1997), Desulfitobacterium sp. 

strain B3e31 (Yoshida et al., 2007).  However, there are also bacteria capable of 

dechlorinating PCE predominantly to TCE rather than cis-DCE, eg. 

Desulfitobacterium sp. strain PCE1 (Gerritse et al., 1996).  

 Generally, the above mentioned isolates often result in the accumulation of cis-

DCE during reductive dechlorination of PCE or TCE (Bradley, 2003).  Although 

reductive dechlorination of PCE and TCE was first recognized as early as 1983 

(Bouwer and McCarty, 1983), but the first isolate that dechlorinates PCE completely 

to ethene in a step-wise manner was Dehalococcoides etheneogenes strain 195, 

obtained in 1997 (Maymó-Gatell et al., 1997).   

 Since then, it is well established that PCE can be reductively dechlorinated by 

microorganisms to TCE, DCE isomers, and VC but complete dechlorination of PCE 

to ethene by pure culture was only observed for Dehalococcodies ethenogenes strain 

195 (Maymó-Gatell et al., 1997).  Considerable efforts have been expanded in 

understanding and improving the microbial dehalogenation process of PCE/TCE or 

chlorinated ethanes after the isolation of D. ethenogenes strain 195 (Maymó-Gatell et 

al., 1997; Magnuson et al., 1998; Magnuson et al., 2000).  For instance, 

dechlorination of VC is found to be the rate-limiting and the last step for complete 

detoxification of PCE to ethene in anaerobic condition for this member of Cornell 

subgroup of Dehalococcoides.  This VC-dechlorinating step follows first-order 

reaction and is also a rate-limiting step for other Dehalococcoides spp., such as strain 

FL2 within the Pinellas subgroup (He et al., 2005).  In some cases, VC can also be 
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degraded in aerobic systems with VC-oxidizing microorganisms, e.g. methanotrophs, 

etheneotrophs, or VC-assimilating bacteria (Chuang et al., 2010).    

  

Fig 2.1 Phylogenetic tree of major dechlorinating bacteria constructed based on the 
16S rRNA gene sequences.  The reference bar indicates the branch length that 
represents 10% sequence divergence (Taş et al., 2009a). 
 
 To date microbial community analyses of dehalogenating bacteria largely 

focused on chlorinated ethene-contaminated groundwater or soils by Dehalococcoides 

spp. (Taş et al., 2009b).  The presence of Dehalococcoides spp. in pristine and 

contaminated (with PCE, TCE, or VC) sites from North America, Europe, and Japan 

was reported elsewhere (Löffler et al., 2000; Hendrickson et al., 2002; Kittelmann and 

Friedrich, 2008a, b).  To date, only members of the genus of Dehalococcoides have 
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been reported to be capable of dechlorination past DCEs to VC and ethene (Smidt and 

de Vos, 2004) (as shown in Fig 2.2). 

 

Fig 2.2 Dechlorination process of PCE or TCE by the defined cultures. 

 Numerous studies have shown that Dehalococcoides genus is widely distributed 

in nature and is able to dehalogenate a wide variety of halogenated compounds, like 

chlorinated benzenes, biphenyls, naphthalenes, dioxins, and ethenes (see Table 2.1) 

(Adrian et al., 2000; Bradley, 2003; Zhang and Bennett, 2005; Häggblom et al., 2006; 

Adrian et al., 2007b; Bunge et al., 2007; Bunge et al., 2008; Adrian et al., 2009; 

Bunge and Lechner, 2009; Zinder, 2010).  There are currently 5 members of known 

Dehalococcoides isolates, Dehalococcoides ethenogenes 195 (Maymó-Gatell et al., 

1997; Maymó-Gatell et al., 1999; Seshadri et al., 2005), CBDB1 (Adrian et al., 2000), 

Dehalococcoides isolate BAV1 (He et al., 2003b), FL2 (He et al., 2005) and GT 

(Sung et al., 2006a).  Among them, D. ethenogenes 195 is the first isolate to 

completely dechlorinate PCE to ethene, although the last step of dechlorination of VC 

was done co-metabolically (Maymó-Gatell et al., 1997) (Fig 2.2).  Recently, further 

exploration of strain 195 suggests that its substrate range was not only limited to 

chloroethenes, but was also involved with other halogenated compounds, e.g., 2,3-

dichlorophenol, 1,2,3,4,7,8-hexachlorodibenzofuran, and octa-brominated diphenyl 
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ether (Ahn et al, 2008; He et al., 2006; Fung et al 2007).  Stain BAV1 could grow 

with all the DCE isomers and VC as substrate (He et al., 2003a; He et al., 2003b), but 

it used TCE and PCE co-metabolically.  Strain FL2, on the other hand, was able to 

Table 2.1 Dehalococcoides spp. and their metabolic substrates 

Name of the culture  Halogenated 
compounds reduced 

End-products References 

Dehalococcoides 
ethenogenes strain 195 

PCE, TCE, cis-DCE, 
1,1-DCE 
 

VC (ethene) 
 

Maymó-Gatell et al 
(1997) 

1,2-DCA, Ethene Maymó-Gatell et al 
(1999) 

1,2,3,4-
tetrachlorodibenzo-p-
dioxin 

1,2,4-trichlorodibenzo-p-
dioxin,  
1,3-dichlorodibenzo-p-
dioxin 

Fennell et al. 
(2004) 

2,3,4,5,6-
pentachlorophenyl 

2,3,4,6-, or 2,3,5,6-tetra-
chlorobiphenyl, 2,4,6-tri-
chlorobiphenyl 

Hexachlorobenzene 
(HCB) 

1,2,3,5-
tetrachlorobenzene, 
1,3,5-trichlorobenzene 

2,3-DCP, 2,3,4-TCP, 
2,3,6-TCP 

Lower chlorinated 
phenols (ortho chlorine 
removed) 

Adrian et al. (2007) 

Dehalococcoides sp. 
strain BAV1 

trans-DCE, cis-DCE, 
1,1-DCE, VC, 1,2-
DCA 

Ethene He et al. (2003a) 

Dehalococcoides sp. 
strain CBDB1 

HCB 1,3-DCB, 1,4-DCB, and 
1,3,5-TB 

Adrian et al. (2000) 

2,3-DCP, all six TCPs, 
all three triCPs and 
penta-CP 

Lower chlorinated 
phenols 

Adrian et al. (2007) 

Polychlorinated dioxins Dichloro-dioxins Bunge et al (2003) 
Polychlorinated 
biphenyls (Aroclor 
1260) 

various Adrian et al (2009) 

Dehalococcoides sp. 
strain FL2 

TCE, trans-DCE, cis-
DCE, 1,1-DCE  

VC (ethene) He et al. (2005) 

Dehalococcoides sp. 
strain GT 

TCE, cis-DCE, 1,1-
DCE, VC 

Ethene Sung et al. (2006) 

Dehalococcoides sp. 
strain DCMB5 

1,2,4-Trichlorodienzo-
p-dioxin 

2-Monochlorodizenbo-p-
dioxin 

Bunge et al. (2008) 

1,2,3-TCB 1,3-DCB 
Dehalococcoides spp. 
(VS, mixed culture) 

TCE(slow), cis-DCE, 
1,1-DCE, VC 

Ethene Cupples et al. 
(2003) 

Dehalococcoides spp. 
(KB-1, mixed culture) 

TCE, cis-DCE, VC Ethene Duhamel et al. 
(2004) 

Dehalococcoides spp. 
(ANAS, mixed culture) 

TCE, cis-DCE, 1,1-
DCE, VC 

Ethene Holmes et al. 
(2006) 
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dechlorinate TCE, trans-DCE and cis-DCE to VC as the end product (He et al., 2005).  

Strain GT was identified to use TCE, cis-DCE, 1,1-dichloroethene (1,1-DCE) and VC 

as the growth supporting substrates (Sung et al., 2006).  Strain CBDB1 metabolically 

dechlorinated chlorobenzenes (Adrian et al., 2000),  chlorophenols (Adrian et al., 

2007b), commercial PCB mixture Aroclor 1260 (Adrian et al., 2009) and some 

polychlorinated dibenzodioxin congeners (Bunge et al., 2003) but exhibited no TceA 

activity on chlorinated ethenes biotically (Hölscher et al., 2004). 

2.3.2 Major dechlorinating microorganisms for chlorinated ethanes 

 Although a number of studies have been conducted on the removal of 

chlorinated ethenes from contaminated sites (Fig 2.3a), remediation of chlorinated 

ethanes, such as 1,1,1-TCA and 1,2-DCA, remains problematic and these chlorinated 

ethanes can even inhibit the restoration of chloroethenes-contaminated site.   

 1,1,1-TCA may undergo slow abiotic degradation to acetic acid and 1,1-DCE or 

co-metabolic biotransformation (Bradley, 2003).  A growth-linked dehalorespiratory 

process of 1,1,1-TCA is only limited to strain TCA1, closely related to Dehalobacter 

restrictus, which could reductively dechlorinate 1,1,1-TCA to 1,1-DCA and CA (Sun 

et al., 2002).  Similar to strain TCA1, a mixed anaerobic microbial culture, named 

MS/H2, mainly consisting of Dehalobacter, enriched from 1,1,1-TCA contaminated 

sites also demonstrated its halorespiring capacity to dechlorinate 1,1,1-TCA to 1,1-

DCA but not any further (Grostern and Edwards, 2006).  These strains of 

Dehalobacter are unable to dechlorinate TCE.  Great inhibition of TCE removal by 

Dehalococcoides-containing enrichment culture KB-1 was also noticed in the 

presence of chlorinated ethanes (Grostern and Edwards, 2006). 
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 To date, reductive dechlorination of chloroethenes and chloroethanes mostly 

focused on Dehalococcoides and Dehalobacter species.  Although strain 195 could 

dechlorinate 1,2-DCA to ethene (Maymó-Gatell et al., 1999), this strain requires the 

presence of unknown bacterial extracts.  Additionally, strain BAV1 can dechlorinate 

1,2-DCA, all the DCE isomers, and VC coupling for growth but not PCE or TCE (He 

et al., 2003b).  Only a few field studies focused on chlorinated ethanes.  A recent 

study on the dechlorinating potential of 1,2-DCA by sediments collected from three 

different European rivers shows that  biodegradation of 1,2-DCA occurred only in the 

sediments instead of liquid phase under anaerobic conditions (van der Zaan et al., 

2009).  Generally, anaerobic removal of 1,2-DCA was observed under 1) 

methanogenic, 2) denitrifying, and 3) iron-reducing conditions.  Reductive 

dechlorination of 1,2-DCA to ethene occurred under the first conditions, while 

oxidation of 1,2-DCA was slowly observed under the denitrifying or iron-reducing 

conditions (van der Zaan et al., 2009) to CO2 (Fig 2.3b). 

 De Wildeman et al. (2003) successfully isolated Desulfitobacterium 

dichloroeliminans strain DCA1 which could dichloroeliminate 1,2-DCA and 1,2-

dichloroprapane.  The novel reductive dehalogenase (RDase) gene dcaA, isolated 

from this strain DCA1 shows that the open reading frame (ORF) encoding the 

catalytic subunit of dcaA, showed only 94% nucleotide and 90% amino acid identity 

with pceA of strain DSMZ 9455T. 

 A new Dehalobacter-containing coculture (WL DCA/H2) was later identified to 

be able to dihaloeliminate 1,2-DCA only with the presence of a non-dechlorinating 

Acetobacterium sp. strain.  A new putative RDase gene, WL rdhA1 was also 

identified from this study and transcribed specifically upon exposure to 1,2-DCA and 

found to be different from the RDase genes identified from strain DCA1. 
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2.4 RDase genes in dehalorespiration process 

 RDase is the key enzyme for halorespiration, which catalyzes the substitution of 

a halogen substituent (e.g., chlorine, bromine or iodine atom) with a hydrogen atom.  

The halogen removal by RDases drives the halorespiration process by helping to form 

a proton gradient on either side of the bacterial inner membrane (Habash et al., 2004). 

Membrane-bound hydrogenases and/or formate hydrogenases produce H+ on the 

periplasmic side of the inner membrane, whereas H+ is utilized by a soluble or 

membrane-associated RDase on the cytoplasmic side.  The presence of RDase at the 

end of the electron transport chain allows halogenated substrates to serve as a terminal 

electron acceptor.  Therefore, halorespiration performs two important functions, 

which was first proposed by Mohn and Tiedje (Mohn and Tiedje, 1990) based on 

studies with Desulfomonile tiedjei strain DCB-1. The first function is to form a proton 

motive force that result in H+ movement from the periplasmic to cytoplasmic sides of 

the membrane through an ATP-generating ATPase, while the other function is the 

dehalogenation of halogenated organic compounds. 

 Previous reports show that Dehalococcoides species have been involved in the 

reductive dechlorination of PCE and TCE past DCEs to VC and ethene (Maymó-

Gatell et al., 1997; Smidt and de Vos, 2004).  Most of these enzymes share a common 

feature of being membrane-bound, and containing a corrinoid cofactor and Fe4S4 

clusters (Müller et al., 2004).  Among these RDases, PceA (AAW40342) and TceA 

(AF228507), are the first two RDases that were partially purified from an anaerobic 

microbial enrichment culture containing Dehalococcoides ethenogenes strain 195 

(Magnuson et al., 1998; Magnuson et al., 2000).  The identified RDase genes, pceA 

and tceA genes are responsible for dechlorination of PCE to TCE and TCE to cis-DCE, 



30 

 

VC and ethene, respectively; whereas bvcA and vcrA genes play major roles for VC 

dechlorination to ethene (Magnuson et al., 1998; Krajmalnik-Brown et al., 2004; 

Müller et al., 2004) (Table 2.2).  Currently, bvcA gene was only found in strain 

BAV1-like culture, encoding the reductive dechlorination of all DCEs isomers and 

VC (Krajmalnik-Brown et al., 2004).   

 D. ethenogenes strain 195 exploits a separate RDase gene (pceA) for the 

dechlorination of PCE to TCE (Hendrickson et al., 2002).  The tceA gene, present in 

both strains 195 (Seshadri et al., 2005) and FL2 (He et al., 2005), has been shown to 

participate in the sequential transformation of TCE to cis-DCE and VC metabolically 

and in the reduction of VC to ethene co-metabolically (Magnuson et al., 2000; 

Magnuson et al., 1998).  This RDase dechlorinates TCE, cis-DCE, and 1,1-DCE at 

rates ranging from 5 to 12 µmol min-1 (mg of protein) -1, dechlorinates VC and trans-

DCE at substantially lower rates of 0.04 to 0.45 µmol min-1 (mg of protein) -1, but 

cannot dechlorinate PCE (Magnuson et al., 2000).  The VC reduction rate of TceA 

was less than 1% of its activity of TCE and cis-DCE reduction.   

 The vcrA gene was found to be involved in both strain VS (Müller et al., 2004) 

and strain GT (Sung et al., 2006) in the metabolism of VC.  Müller et al. found that 

the enzyme VcrA reduced VC and all DCE isomers at high rates, but not PCE or TCE 

(Müller et al., 2004).  Similarly, the reduction of TCE to cis-DCE by VcrA was very 

slow and occurred at only 5% of the reduction rate for cis-DCE to VC, indicating the 

possibility of a cometabolic process for TCE reduction (Cupples et al., 2003).  This 

VC RDase activity was sensitive to air exposure with an activity half-life of 5(±3) min. 
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Table 2.2   Functionally identified reductive dehalogenase (RDase) genes from 
Dehalococcoides 

Organism Enzyme, gene 
(accession No.) 

Molecular 
weight 

Substrate based on 
in vitro assay 

Reference 

Dehalococcoides 
ethenogenes strain 195 

PCE RDase,  
pceA (AAW40342) 

51 kDa PCE Magnuson et al., 
1998 

Dehalococcoides 
ethenogenes strain 195 

TCE RDase, tceA 
(AF228507) 

61 kDa TCE, cis-DCE,  
trans-DCE,  
1,1-DCE, VC 

Magnuson et al., 
1998; Magnuson et 
al., 2000 

Dehalococcoides sp. 
strain CBDB1 

Chlorobenzene RDase, 
cbrA (CAI82345) 

51.2 kDa 1,2,3,4-TeCB,  
1,2,3-TCB, 
pentachlorobenzene 

Adrian et al., 2007a; 
Jayachandran et al., 
2004 

Dehalococcoides sp. 
strain VS 

VC RDase, vcrA 
(YP_003330719) 

62 kDa All DCE isomers,  
VC 

Müller et al., 2004 

Dehalococcoides sp 
strain BAV1 

VC RDase, bvcA 
(AAT64888) 

57.4 kDa - Krajmalnik-Brown 
et al., 2004 

 

2.5 Remediation biotechnologies 

  There are many technological options to remove the toxic chlorinated ethenes 

and ethanes (Fig 2.3), such as physical, chemical, biological methods, or combined 

technologies (Kurisu, 2008).  Physical methods include pump and treat, adsorption 

technology (by granular activated carbon (GAC) or  resin adsorption), filtration 

technology, volatilization technology (e.g., air sparging, soil vapour extraction), 

washing/extraction technology, treatment walls (barriers) (Narayanan et al., 1993; 

ITRC 2008).  Physical treatment technology generally does not destroy wastes but is a 

means of separating hazardous contaminants from soils, sludges, and sediments, thus 

reducing the volume of the hazardous wastes.  An example of chemical treatment is 

chemical reduction of chlorinated compounds by zero-valent iron (ZVI) (Kurisu, 2008) 

(Gillham and O'Hannesin, 1994); biological treatments employ the biodegradation or 

bioaccumulation of the contaminants by microorganisms or plants (de Bruin et al., 

1992; Tartakovsky et al., 2005).  Whether abiotic or microbial dechlorination of 

chlorinated solvents will take place largely depends on field conditions, such as the 

abundance of dechlorinating bacteria, soil properties, and the mass loading of reactive 
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(a) 

PCE

TCE

DCEs

VC

Reductive 
dechlorination/
chlororespiration

Fermentative 
Acetogenesis

Fermentation

Direct oxidation

Ethene Methanogenic Ethane

SO4
2- reducing 

conditions
Ethane

Acetate Humic acids-
reducing

CO2

NO3
--,  Mn(IV)-, 

Fe(III)-, or SO4
2-

reducing
CO2

Methanogenic CO2+CH4

Chloroethanol CO2 (CH4?)

CO2 (CH4?)

 

(b)  

Abiotic
dehydrogenation 

Aerobic 
oxidation

1,1,-DCA

1,1-DCA, CA

1,1-DCE, 
acetatic acid CO2 (CH4?)

TCA
2,2,2-trichloroethanol 
trichloroacetic acid 
dichloroacetic acid

Half-life: > 2.8 years

Cometabolically

Dehalobacter restrictus strain TCA1

Dehalobacter-containing culture MS

1,2-DCA

Abiotic
dehydrogenation 

Cometabolic
reaction

Reductive dechlorination
/dihaloelimination

Reductive dechlorination
/chlororespiration

C2H4

CA

Cometabolic
reaction Methanogenic, slowly

SO4
2- reducing conditions

Half-life: > 50 years

Methanogenic, or acetogenic

SO4
2- reducing conditions

C2H4 (slowly) #

C2H4 (slowly) #

CO2
Denitrifying or iron-reducing conditions

Oxidation

 

Fig 2.3 Pathway of anaerobic biodegradation of chloroethenes (a) and chlorinated 
ethanes (b). Note:  *, Bradley et al., 2003.  #, Slowly, dechlorinate rate up to 0.07 
nmol Cl− min−1 mg−1 

protein (Reference: Holliger et al., 1990); normal dechlorinate rate, 
25 times higher than cometabolic conversion (De Wildeman et al., 2003). 
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minerals, electron donors (Dong et al., 2009). 

 A combination of features of the site makes it an interesting case study for the 

exploration of remediation options.  In a recent study conducted by Plagentz et al. 

(2006), both chemical and physical methods are applied to treat multiple contaminants 

simultaneously in two-sequential column using ZVI and granular activated carbon 

(GAC) (Plagentz et al., 2006).  In addition, Lampron et al. (2001) have studied the 

impact of microorganisms on the performance of Fe(0) barriers treating TCE-

contaminated groundwater.  It is reported that abiotic and biological process in the 

Fe(0)-cell system compete for the TCE available.  The maximal amounts of cis-DCE 

and VC generated were greater in reactors containing cells and H2 (no iron) than in 

reactors containing cells and Fe(0) as shown in the Fig 2.4 (Lampron et al., 2000).  

With the presence of hydrogen-utilizing, dechlorinating population in an iron barrier, 

TCE reduction will result in accumulation of VC in large quantities, greater than what 

would be expected in an abiotic system.  The mobile product (VC) may introduce a 

greater tendency to break through the iron barrier and alter the permeability, which 

will damage the iron barrier.   

 

 
 
Fig 2.4 Reduction pathway for the abiotic (a) and biological (b) transformation of 
TCE in Fe(0)-cell system. 
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 It is Dehalococcoides ethenogenes strain 195, the first pure culture that 

demonstrates growth and energy production coupled to complete reduction of PCE to 

ethene, termed as dehalorespiration (Maymó-Gatell et al., 1995; Maymó-Gatell et al., 

1997).  Since then, bioremediation technologies become more and more popular 

among many other approaches in that it has advantages over other physicochemical 

methods in terms of cost and environmental impact (Bradley, 2003).  The major 

advantages of bioremediation have been attributed to its capability in completely 

destroying the contaminants, less expensive than other remediation options.  

Additionally it can treat both dissolved and sorbed contaminants and can move with 

the contaminant plume, which makes it not limited to a fixed area, typical of chemical 

flushing or physical technologies.  Although bioremediation usually proceeds at 

modest rate and it may take relatively longer time to complete the cleanup than other 

methods, more and more practices have found that bioremediation is suitable for the 

treatment of a widely spread contamination of chlorinated solvents with low 

concentration, particularly those after the treatment of the core contamination by other 

methods (ITRC, 2005). 

2.6 Bioremediation of chlorinated solvents 

 Microbial transformations of chlorinated solvents have been studied extensively, 

with specific attention for the microbial community analysis (Zinder, 2010), in situ 

bioremediation strategies (Ritalahti et al., 2005; ITRC, 2007), enzymatic systems 

through various eco-genomic toolboxes (Maphosa et al., 2010).  Microorganisms 

belonging to genera of Dehalococcoides spp., Dehalobacter spp., Desulfitobacterium 

spp. and Sulfurospirillum spp. have been found as the main dechlorinators on site 

(Zinder, 2010).   
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 “Bioremediation refers to a managed or spontaneous process in which 

biological, especially microbiological, catalysis acts on chemical compounds, thereby 

detoxifying or eliminating environmental contaminants” (Major and Cox, 1992).  

Bioremediation can be achieved through one of the following three different 

approaches, biostimulation, bioaugmentation, and monitored natural attenuation 

(MNA), largely depending on the existence and capacity of the dechlorinating 

microorganisms.  Biostimulation is to activate the existing microorganisms by 

introducing some compounds to contaminated sites.  The ultimate goal of 

biostimulation is to speed up and activate the dechlorination by providing chemicals, 

such as nutrients, electron donors, or reductants to maintain the desired redox 

conditions.  It is mainly suitable when the dehalogenators exist in the site but 

dechlorination takes place slowly.   

 In the absence of essential dehalorespirators, bioaugmentation is needed through 

the addition of microorganisms with known dehalogenating capabilities.  The 

microorganisms to be added can be pure cultures, or mixed consortia but should not 

be pathogenic.  Post evaluation is greatly required to monitor the microbial ecology, 

concentration reduction.  The efficacy will be largely dependent on the 

microorganisms provided.  Bioaugmentation and biostimulation have been mainly 

chosen for the enhanced dechlorination of chloroethenes by targeting the 

Dehalococcoides 16S rRNA genes and RDase genes, e.g. pceA, tceA, bvcA, vcrA by 

qPCR (GeoSyntec Consultants., 2005; Ritalahti et al., 2005; Schaefer et al., 2009). 

A passive remediation, MNA is occurring in the contaminated sites where sufficient 

microorganisms to dechlorinate the pollutants are found and dechlorination process 

can be proceeded within the tolerance period as projected.  However, remediation of 

groundwater is an expensive and time-consuming endeavour.  When cost is an issue, 
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MNA might be eventually chosen by regulators.  Frequent site monitoring and 

diagnostics are always required to warrant the success of bioremediation, or active 

remediation method (biostimulation or bioaugmentation) can be introduced afterwards.    

2.6.1 Bioremediation technologies 

 Current bioremediation technology can be divided into three separate processes, 

designated as off-site, on site and in situ (Kurisu, 2008).  Off-site biological treatment 

includes methods practiced at waste treatment facilities or sewage treatment plants.  

On-site biological treatment usually needs excavation of soils or pumping of 

groundwater to remove contaminants, followed by immediate treatment at 

contaminated sites.  It may involve composting or bioreactors operated in engineered 

systems, such as bioventing, biosparging, direct injection method, groundwater 

circulation, permeable reactive barriers, photoremediation.  In situ bioremediation 

(ISB) refers to the enhancement of biological activity in place.  It may involve 

manipulation of eco-environmental conditions, such as introduction of selected 

inocula (bioaugmentation) or pumping of groundwater for better hydrogeological 

control or essential nutrients (biostimulation) but without engineered systems.   

The cleanup technology for the remediation of DNAPLs includes a list of remedial 

approaches, e.g. in situ chemical oxidation/reduction, surfactants (solvent-enhanced 

flushing), thermal treatment, extraction (dual phase, water flood, or pump and treat), 

in situ air sparging, and in situ bioremediation (ISB).  ISB is the newest application, 

including bioaugmentation, biostimulation, biopolishing, or enhanced reductive 

dechlorination (ERD).    

 Table 2.3 represents about one-third of ISB studies available in U.S. (ITRC, 

2007).  ISB is an attempt to work with nature through natural biological activity in the 
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subsurface and aims to degrade DNAPLs contaminants into less toxic or, ideally, 

harmless substances.  Significant progress has been achieved in the deployment of 

ISB against DNAPLs, particularly for those chlorinated ethenes (ITRC, 2007).  

Nowadays, with the development of molecular tools and identification of more robust 

dehalorespirators, ISB shows great potential in achieving measurable results within 

required time frames in an economical manner.       

 Multiple molecular tools are usually combined to explore the microbial 

dechlorinating communities for the environmental samples (Maphosa et al., 2010).  

For instance, three molecular tools, terminal-restriction fragment length 

polymorphism (T-RFLP), RFLP with clone sequencing, quantitative PCR (qPCR), 

were compared to assess the effectiveness of bioremediation through surveying the 

microbial differences between two contaminated sites, INEEL, and Seal Beach (Rahm 

et al., 2006).  The first two methods failed to differentiate the microbial communities 

for these two sites and Dehalococcoides was not targeted for these two sites by either 

T-RFLP or RFLP with sequencing methods.  However, qPCR targeting the 16S rRNA 

gene of Dehalococcoides strains which are known for their unique DCE-

dechlorinating capacity shows a significant proportion of Dehalococcoides in INEEL 

but no detectable Dehalococcoides at Seal Beach.  This result accounted for the 

different TCE-dechlorinating activities at bioremediation sites (Rahm et al., 2006). 

 In a bench study for the bioremediation of PCE DNAPL source zone at Dover 

Air Force Base, DE. (Table 2.3), two bioremediation strategies were compared to 

evaluate the effect of PCE bioremediation.  One was only biostimulation through 

addition of electron donor, e.g. methanol, sodium acetate, or ethanol (Sleep et al., 

2006).  The other was biostimulation first and then followed by bioaugmentation with 

dechlorinating culture KB-1.  Growth of iron-reducing bacteria, Geobacter was found 
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for both systems through biostimulation strategy-addition of electron donor, probably 

due to the high iron content of the Dover soil.  Methanogenesis became predominant 

activity with prolonged biostimulation after available iron was exhausted but not 

dechlorination activity despite of presence of native Dehalococcoides species.  

Dechlorination of PCE to ethene was only observed for the bioaugmented system with 

KB1.  The dechlorination activity was also effectively monitored by PCR-DGGE and 

qPCR, particularly in soil samples.  The results show that concentrations of both cis-

DCE and Dehalococcoides reached the first peak after 48 days of bioaugmentation, 

indicating the remarkable growth of Dehalococcoides with PCE.  The diverted 

distribution of electron donor around the PCE DNAPL zone was found to limit its 

dechlorination significantly.  This study also suggests three methods to enhance 

electron donor efficiency, 1) to recirculate PCE-laden water to inhibit methanogenesis, 

2) to inoculate cultures capable of transforming PCE efficiently, and 3) to choose 

electron donor with low hydrogen partial pressure limitations.  The last one, effective 

electron donor delivery to the dechlorinating microorganisms was found to be the 

most challenging part of this pilot-scale study. 

 To date, limited information is available for bioremediation of chlorinated 

ethanes.  One example is to use air stripper and soybean emulsion oils to generate 

hydrogen, which helps in stimulating specific bacteria capable of carrying out the 

transformation of chlorinated ethenes and ethanes (Solutions-IES, 2006).  More than 

75% reduction of 1,1,1-TCA was observed in this study and significant increases of 

1,1-DCA and 1,1-DCE was found, possibly in a partial dechlorination manner.  

Eventually, complete detoxification of chlorinated contaminants (e.g. TCE, TCA,  
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DCA, and VC) to non-toxic end-products (ethene and ethane) has not been achieved, 

probably due to the lack of appropriate dechlorinating microorganism capable of 

complete reduction of 1,1,1-TCA to non-toxic end products. 

2.6.2 Microorganisms involved with commercial applications 

 Since late 1980s, the growing acceptance of bioremediation has led to intense 

exploration of dehalorespirators for bioaugmentation.  A number of observations 

suggest that reductive dechlorination of chloroethenes in groundwater systems is often 

attributable to the activities of cooperative consortia of microorganisms rather than to 

a single species (Bradley, 2003).  These interesting enrichment cultures have been 

well characterized before available for commercial use and their value has been 

demonstrated under field conditions according to the white paper “Bioaugmentation 

for remediation of chlorinated solvents: Technology Development, Status, and 

Research Needs” published by Environmental Security Technology Certification 

Program (ESTCP, Department of Defense, U.S.A.) in 2005 (GeoSyntec Consultants., 

2005).  These cultures include KB-1TM (developed at University of Toronto and 

commercialized by SiREM), the Bachman Road culture (the source for both 

Regenesis’s BioDechlor INOCULUMTM and the BC2 inoculum marked by BioAug 

LLC), the Pinellas culture (developed by GE and licensed to Terra Systems), SDC-9 

(developed by Shaw Environmental, Inc.) and several other cultures marked by 

Bioremediation Consulting Inc (see Table 2.4) (Major and Cox, 1992; GeoSyntec 

Consultants., 2005). 
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Table 2.4 Characterization of commercial bioaugmentation inocula for chloroethene -
contaminated sites 
 
Companies Specific 

dechlorinating 
microorganisms 

Major 
contaminants 
to be treated 

Source of inoculum 

SBP 
Technologies, 
Inc., Technical 
Resources, 
Inc.,  

Pseudomonas cepacia TCE TCE-contaminates sites 

BioTrol, Inc. Methylosinus 
trichosporum,  
Pseudomonas cepacia

TCE In-house culture 
collections 

SiREM Dehalococcoides spp. 
(vcrA-containing 
culture and bvcA-
containing culture), 
acetogens and 
methanogens 

PCE, TCE KB-1, developed at 
University of Toronto 

Regenesis Dehalococcoides 
spp., Sulfurospirillum 
multivorans comb. 
nov.  

PCE, TCE Bio-Dechlor 
INOCULUM Plus,  
identified in George 
Tech  

BioAug LLC Dehalococcoides spp. Chloroethenes BC2 inoculum, George 
Tech 

Terra Systems Dehalococcoides spp. Chloroethenes The Pinellas, developed 
by GE 

Shaw 
Environmental 
Inc. 

Dehalococcoides spp. Chloroethenes SDC-9, developed by 
Shaw Environmental 
Inc. 

 

2.6.3 Problems/Challenges to be addressed in bioremediation 

 Firstly, remediation time frame is an area of active research and debate among 

the remediation community.  Secondly, there is a lack of cost evaluation system, 

remediation goal (end point concentrations) within the duration timeline in the field of 

bioremediation applications.  It is commonly suggested by various reviewers in the 

bioremediation community that both cost and time frame to complete the 

detoxification play a major role in resolving the utility of a technology (ITRC, 2007).   
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The expert panel from the Interstate Technology & Regulatory Council (ITRC) 

concluded that bioremediation of chlorinated ethene source zones is a viable 

remediation option.  A more quantitative comparison is needed to justify the 

expenditure of the application of corresponding bioremediation technology.  

Therefore, the first challenge is to decide the best biological amendments (or to 

stimulate those already present) that will accelerate the site restoration and use it as an 

energy source.   

 1) Bioaugmentation  

 Bioaugmentation is often associated with issues, such as competing with 

indigenous microorganisms due to different ecological factors.  It is difficult to assess 

the applicability and effectiveness of the inocula added.  This is because the lab-scale 

studies can only be used as a reference and cannot guarantee their metabolic function 

by themselves. 

 2) Biostimulation 

  Bioremediation through injection of high concentration of electron donor 

solutions has significantly enhanced depletion of TCE in the residual source and 

accelerated biodegradation rate of TCE to ethene from the first example as shown in 

Table 2.3.  The large volume of the contaminated area requires huge injection 

volumes of electron donors, which indicates the huge life-cycle costs of the project.  

In order to reduce the treatment cost, one effective way is to minimize the 

introduction of TCE from the source (sludge) or to treat the sludge sample before it is 

injected to the contaminated sites.   

 The project cost in a source area bioremediation study (located at a Portland, 

Oregon dry cleaner site) was estimated as the total of two parts, installation cost 

(installation labor, injection points, substrates [e.g., HRC, HRC-X, shipping], baseline 
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sampling, surveying, completion report) plus sum of annual operation costs within 

project time frame (mobilization, direct labor, sampling equipment and supplies, 

laboratory analysis, and project planning and reporting) (ITRC, 2007).  This cost 

estimation method could certainly serve as an important case history to the 

bioremediation community but the cost per unit volume of the material should be 

provided.   

 In accordance to the first case study of the report published by the 

Bioremediation of DNAPLs Team, reducing all contaminants of concern to below 

maximul contaminant levels (MCLs) regulated by EPA for drinking water could be 

served as the ultimate target to restore the contaminated groundwater.   

 Additionally, accumulation of trans-DCE is one of the challenging 

chloroethenes for bioremediation community probably due to their recalcitrant 

properties.  Site investigations plus a number of laboratory studies demonstrate 

microbial production of trans-DCE during reductive dechlorination of PCE/TCE 

(Griffin et al., 2004; Garcia, 2005; Miller et al., 2005; Kittelmann and Friedrich, 

2007).  For the bioremediation of chlorinated ethenes, particularly those sites with 

significant accumulation of trans-DCE, special care needs to be given on the choice 

of proper inoculum source as there is a lack of microorganisms capable of 

metabolically dechlorinating TCE and trans-DCE (Kittelmann and Friedrich, 2007; 

Cheng and He, 2009; Chow et al., 2010).   

 Finally, it will be of great interest to explore the enrichment cultures capable of 

complete detoxification of both chlorinated ethenes and ethanes in that they tend to 

co-exist in the contaminated sites, such as PCE, TCE, trans-DCE, TCA, 1,2-DCA.  

The isolation and characterization of these cultures would be beneficial to humans and 

earth essentially.   
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2.7 Molecular tools used in bioremediation community 

 Microbial reductive dehalogenation occurs in strictly anaerobic conditions, 

involving with diverse anaerobic microorganisms from different genera.  Of note with 

respect to microbiological characterization is the use of newer monitoring techniques, 

such as nested PCR, T-RFLP, PCR-denaturing gradient gel electrophoresis (PCR-

DGGE), single-nucleotide primer extension assay (SNuP), quantitative real-time PCR 

(qPCR), carbon isotope, comparative genomics through microarray analysis, 

sequencing of genome, transcriptional analysis, proteomics (Bombach et al., 2010; 

Zinder, 2010). 

2.7.1 Characterization of microbial populations based on 16S rRNA 

genes 

 For bioaugmentation, PCR-based tools are important to monitor the fate of 

microorganisms added into the contaminated sites.  Nested PCR targeted with genus-

specific method has been one of the most commonly used diagnostic tools.  Nested 

PCR has been firstly developed and applied in environmental biota, e.g. paddy soil, in 

fish, sediments, and water in 1995, using primers which are internal to the first-

amplified DNA fragment (Arias et al., 1995; Tsushima et al., 1995).  The rapid and 

sensitive detection method was immediately developed and applied in monitoring of 

anaerobic dechlorinating bacteria in 1997 for Desulfomonile tiedjei, 

Desulfitobacterium dehalogenans (el Fantroussi et al., 1997).  On the basis of their 

16S rRNA gene sequence differences, Dehalococcoides can be divided into three sub-

groups, namely, the Cornell, Victoria, and Pinellas groups (Hendrickson et al., 2002).  

This method has been employed gradually among more and more genera, including 

Dehalococcoides, Desulfuromonas, Desulfitobacterium, and Dehalobacter spp. 
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(Löffler et al., 2000; Ritalahti and Löffler, 2004).  This method is particularly 

sensitive and reproducible to the template with relative low concentration and it can 

also effectively prevent false negative signal.  One limitation of this method is that the 

template concentration should be in an optimized range. Otherwise, it may result in 

underestimation of certain genus with low concentration by showing false negative 

result.   

 Other PCR-based tools, have also been commonly used as 16S rRNA gene 

based finger-printing methods in the identification of dechlorinating microorganisms, 

in particular for the phylogenetically closely-related Dehalococcoides spp. in the 

bioremediation field, such as PCR-DGGE, T-RFLP, clone library, SNuP  

(Duhamel et al., 2004; Gu et al., 2004; Sung et al., 2006a; Nikolausz et al., 2008; Wu 

et al., 2009).   

 Although the Dehalococcoides 16S rRNA gene is one obvious marker 

(McDonald et al., 2008), numerous studies have found that Dehalococcoides strains 

with different dechlorinating activities share similar or identical 16S rRNA gene 

sequences.  Furthermore, the sole presence on the basis of the Dehalococcoides 16S 

rRNA gene in an environment may not guarantee the dechlorinating activity of a 

specific pollutant.  For instance, strain BAV1 would not generate ethene without H2 

and strain CBDB1 cannot dechlorinate DCEs to ethene.  Therefore, the high 

conservation of the 16S rRNA gene in Dehalococcoides made it insufficient to 

represent this unique group, not even to differentiate the dechlorination capacities 

among different strains of Dehalococcoides (Bhatt et al., 2007).  Consequently, 

molecular tools that target metabolic activities of the entire communities in the 

environment are needed to have an accurate assessment for in situ bioremediation. 



49 

 

2.7.2 Identification of RDase genes 

 Microbial reductive dehalogenation is found to be catalyzed by an unique 

enzyme systems- RDases, which are linked to an anaerobic respiratory chain (Smidt 

and de Vos, 2004).  Understanding the role of RDases has attracted many researchers’ 

attention for the past two decades, and many molecular techniques have been 

developed and applied to study the microbial composition, ecology of the 

Dehalococcoides, comparison of their behaviours, which will be discussed here.  

Current chloroethene-dehalorespiration process has been found to be encoded mainly 

by four RDase genes, namely, pceA, tceA, bvcA, and vcrA for chloroethenes (Bhatt et 

al., 2007).  Table 2.5 lists the primers which have been commonly used to target those 

chloroethene-RDase genes.   

 The corresponding RDase genes have been largely used as a good biomarker in 

bioremediation field as they narrow down the investigation to the studied functional 

group and enable a much higher sensitivity of detection in complex environmental 

samples, e.g. uncultivated members (Krajmalnik-Brown et al., 2004; Fields et al., 

2006; Lee et al., 2006).  Similar to the Dehalococcoides 16S rRNA gene, the tceA or 

vcrA gene copies also represented the cell number of common TCE-to-VC 

dechlorinators or VC-to-ethene cultures in that one single Dehalococcoides cell 

usually has one single copy of 16S rRNA gene and these functional RDase genes 

(Behrens et al., 2008).   

 The dechlorinating capabilities have been well addressed together with the 

identification, quantification, and transcriptional analysis of the known chloroethene 

RDase genes from Dehalococcoides spp. (Waller et al., 2005; Holmes et al., 2006; 

Sung et al., 2006a).  Holmes et al. (2006) successfully applied qPCR to discriminate 
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the Dehalococcoides strains in the enrichment culture ANAS by quantifying tceA and 

vcrA gene copies, and Dehalococcoides 16S rRNA gene copies (Holmes et al., 2006).  

It is suggested that at least two different Dehalococcoides strains should exist in this 

culture (ANAS) during the dechlorination of TCE to ethene. 

 Although the presence of the functional RDase genes, such as bvcA, tceA, vcrA, 

pceA, may help identify the dechlorinating potential and quantify the exact amount of 

specific subgroup of Dehalococcoides in the contaminated sites (Cupples, 2008), the 

role of other cofactors cannot be ignored as well.  A pceA-containing strain, 

Sulfurospirillum multivorans stain N failed to present its PCE-dechlorinating ability.  

However, as strain N’s closest relative, Sulfurospirillum multivorans stain K which 

was originated from the same source as strain N, can dechlorinate PCE rapidly to 

TCE and cis-DCE.  The identical pceA gene sequence was obtained for both strains N 

and K, but a novel corrinoid was missed in strain N as compared to strain K.  The 

missing corrinoid cofactor (Neumann et al., 2002) was reported to be the major reason 

for the displayed dechlorinating activity by reverse transcription PCR (RT-PCR) and 

western blot analysis under the same experimental conditions (Siebert et al., 2002).  

The genes encoding for the PCE dehalogenase namely pceA and pceB were present in 

both strains by PCR, but the expression of pceA in strain N was much weaker than 

that of strain K by RT-PCR and the apoprotein of the dehalogenase was only missing 

in strain N revealed by western blot hybridization (Siebert et al., 2002).  Therefore, 

the expression profiles of functional RDase genes or other unidentified RDase genes 

are also closely tracked for most dechlorinating studies. 
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 1) Reverse transcriptional analyses of RDase genes 

 The detection of specific RDase genes has allowed for better assessment of the 

dechlorinating potential in contaminated sites, as compared to conventional 16S 

rRNA gene-based tools.   Attempts to trace these RDase genes’ transcriptional profile 

by reverse transcription quantitative PCR (RT-PCR) could further predict the 

dechlorinating activities thus preventing ambiguous results.  RT-PCR has been largely 

applied to genus of Dehalococcoides by introducing luciferase control RNA as an 

internal reference mRNA during sample preparation (cell lysis, RNA isolation, and 

DNA removal) in 2005 (Johnson et al., 2005a).  This application was first developed 

in Alvarez-Cohen’s group and the accuracy for the absolute quantification of tceA 

transcripts was evaluated on a TCE-to-ethene dechlorinating microbial enrichment 

(Johnson et al., 2005b).  Expression level was quantified by qPCR as the number of 

tceA transcripts per tceA gene.  It is found that the expression of tceA gene increased 

about 40-fold when the chloroethenes-starved cells were exposed to its growth-

supporting substrates, TCE, cis-DCE, 1,1-DCE but not observed for PCE or VC.  It is 

also interesting to note that tceA expression level increased about 30-fold when 

exposed to the non-metabolic substrate, trans-DCE (Johnson et al., 2005b).  The level 

of tceA expression was found to be independent of the concentration of chloroethanes 

or electron donor (H2), which generally have much higher concentration than the half-

velocity coefficients.  Johnson et al. (2005) also found the strong correlation of tceA 

expression and incubation temperature (Johnson et al., 2005b).    

 With the identification of more and more RDase genes, the transcriptional 

profile of multiple RDase genes has been well characterized to better understand the 

dechlorinating potential (Waller et al., 2005).  With the isolation of another VC-

RDase gene vcrA in 2004 (Müller et al., 2004), significant expression of tceA and 
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vcrA during the first 24-hour contact with TCE for the starved cells was also found in 

a mixed enrichment culture that contains both of tceA and vcrA genes, suggesting that 

elevated RDase-encoding transcript numbers could serve as a biomarker to indicate 

the physiological ability of Dehalococcoides spp. (Lee et al., 2006).   

 Previous findings have also supported that RDase-encoding genes are expressed 

in the presence of a variety of chlorinated organics and under different environmental 

conditions (Johnson et al., 2005b; Lee et al., 2006; Fung et al., 2007; Behrens et al., 

2008; Lee et al., 2008).  But the correlation between activities and expression has not 

been studied in-depth in particular for pure culture(s).  

 2) Degenerate primers  

 The availability of sequences in a database is the key to identifying marker 

genes suitable for use in microbial ecology studies.  The identification of multiple 

RDase genes could have facilitated the estimation of dechlorination potential on site.  

Regeard et al. (2004) designed the first set of degenerate primer to target the putative 

chloroethene RDase genes (Regeard et al., 2004).  Krajmalnik-Brown et al. (2004) 

designed a pair of degenerate primer for targeting conserved regions of RDase genes 

in Dehalococcoides, RRF2 (5’-SHM GBM GWG ATT TYA TGA ARR-3’) and B1R 

(5’-CHA DHA GCC AYT CRT ACC A-3’) (Krajmalnik-Brown et al., 2004).  

Abbreviations for degenerate nucleotide positions are as follows: R = A or G; K = G 

or T; M = A or C; S = C or G; W = A or T; Y = C or T; B = C, G, or T; D = A, G, or 

T; V = A, C, or G; H = A, C, or T.  Through this pair of degenerate primer, the VC 

RDase gene (bvcA) was identified in both the gDNA and the cDNA of 

Dehalococcoides sp. strain BAV1.  Several non-identified putative RDase genes were 

also probed for other TCE-dechlorinating cultures (Hölscher et al., 2004; Krajmalnik-

Brown et al., 2004; Waller et al., 2005). 
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 The presence as well as expression of these RDase genes by qPCR provides 

clues to predicting the activity of the current microorganisms before reaction occurs 

regardless of their general specialization to reductive dechlorination.  For instance, the 

presence of tceA gene suggests a metabolic dechlorinating capacity of TCE to DCEs 

and possible accumulation of VC.  However, the abundance of bvcA and vcrA genes 

implicates the detoxification of VC, which is the essential step for complete 

detoxification of chloroethenes.  The recent investigation of the RDase genes has 

offered a wealth of sequence data.        

 To date, the degenerate primer set followed by genome walking has been 

commonly used to probe the RDase genes from a number of mixed cultures 

containing Dehalococcoides (Hölscher et al., 2004; Krajmalnik-Brown et al., 2004; 

Waller et al., 2005).  Clone library targeted with degenerate primer set has allowed for 

identification of multiple new RDase genes in both pure cultures and enrichment 

cultures, including strain BAV1 (7 homologues) (Krajmalnik-Brown et al., 2004), 

strains FL2 and CBDB1 (at least 14 homologues for each) (Hölscher et al., 2004), and 

mixed culture KB-1 (14 homologues) (Waller et al., 2005).  For culture KB-1, 

multiple RDase genes including vcrA and bvcA gene, were simultaneously transcribed 

in the dechlorination of different substrates, such as TCE, cis-DCE, VC, and 1,2-DCA.  

However, only genes that are specific to functions of interest, such as bvcA, tceA, 

vcrA genes, can serve as useful biomarkers whose quantification can enable effective 

monitoring of different Dehalococcodies activities (Lee et al., 2008).  However, one 

drawback of current degenerate primer sets is their limited covering range.  On one 

hand, the current degenerate primer sets cannot target all functionally-important 

RDase genes, for example, primer pair RRF2 and B1R cannot target tceA gene.  On 

the other hand, these primer sets mainly target RDase genes involved with 
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chloroethene dechlorination instead of other broad range of halogenated organics.  

Future study on the identification and functional investigation of other putative RDase 

genes may provide new insights into the dehalogenation process and thus design new 

degenerate primers to standardize current diagnosis methods for bioremediation. 

 3) Problems to be addressed 

 Although multiple RDase genes have been identified from cultured 

representatives of Dehalococcoides, very little information is available about the 

regulation and specific functions of RDase genes during the reductive dechlorination 

of trans-DCE.  Given that trans-DCE tends to persist in anoxic environment, studying 

the genetic makeup of the trans-DCE dechlorinating cultures may provide an 

enzymatic basis of trans-DCE production in contaminated sites.  The expression 

analysis of genes from those trans-DCE producing cultures will help to elucidate how 

the microorganisms catalyze dechlorination of PCE/TCE to the predominant trans-

DCE. 

2.7.3 Disclosures of Dehalococcoides spp. genomes 

 Despite previous identification of several RDase genes for Dehalococcoides 

activity, it remains unclear about the Dehalococcoides biology probably due to 

limited information about the role of various RDase genes.  The use of shotgun 

metagenome microarrays has allowed further investigation of the PCE/TCE-

dechlorinating communities, such as enrichment culture KB-1 (Waller, 2009).  With 

the developments of high-throughput sequencing technologies, more and more full 

genomic sequences have been revealed for those functionally-important chloroethene-

dechlorinating enrichment cultures, such as Desulfitobacterium hafniense Y51 

(Nonaka et al., 2006), and several members of Dehalococcoides (e.g. strain 195, 
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BAV1, VS, and GT) (Seshadri et al., 2005; McMurdie et al., 2007; McMurdie et al., 

2009; Taş et al., 2009a) (Table 2.6).  The common features for those Dehalococcoides 

are that these genomes are among the smallest in all free-living bacteria and each 

genome includes only one copy of rRNA gene (Taş et al., 2009a). 

 The genome sequence provides not only the diversity of RDase genes, but also 

offers insight into the microorganism’s unique nutritional requirements and its 

commitment to the dehalorespiratory process.  The genome of strain 195 also suggests 

that an ancestor for Dehalococcodies was a nitrogen-fixing autotroph (Seshadri et al., 

2005; Lee et al., 2009).  The first reported complete genome sequence of 

dehalogenators is Dehalococcoides ethenogenes strain 195 (Seshadri R et al., 2005), 

which composes a 1,469,720 base pair (bp) circular chromosome that contains 1,591 

predicted coding sequences (CDSs).  The genome possesses large duplicated regions 

and several integrated elements (IEs).  The sequence result also shows that pathways 

for the synthesis of some cofactors appear incomplete, which supports the observation 

that Dehalococcoides ethenogenes 195 requires corrinoid vitamin B12 in large 

amounts for growth (Maymó-Gatell et al., 1997; He et al., 2007a).  D. ethenogenes 

strain 195 has been shown not only capable of reductively dechlorinating 

chloroethenes through dehalorespiration, but also a number of other halogenated 

compounds, e.g. 1,2-DCA, 1,2,3,4-tetrachlorodibenzo-p-dioxin, 2,3,4,5,6-

pentachlorophenyl,  hexachlorobenzene (HCB), and chlorophenols (Maphosa et al., 

2010).  
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 In the long term, genomic data will serve as a foundation to develop new 

phylogenetic and functional marker probes, for detection, and monitoring of 

Dehalococcoides activities in the environment, and for population genetic studies.  

The whole-genome sequencing of isolated five Dehalococcoides strains (195, CBDB1, 
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BAV1, GT, VS) have all revealed that many RDase genes are located in or near 

putative integrated mobile genetic elements, providing strong evidence of horizontal 

gene transfer (Regeard et al., 2005; Krajmalnik-Brown et al., 2007; Taş et al., 2009a).  

Krajmalnik-Brown et al (2007) conducted the genetic analysis of tceA gene and its 

upstream and downstream regions among 21 TCE-to-ethene dechlorinating 

enrichment cultures diversified in the USA and found the presence of putative 

transposable element (PTE DET0076), including phage-like genes and recombinase-

like genes adjacent to the tceA genes of Dehalococcoides.  In particular, the PTE 

DET0076 which also commonly exists in other Dehalococcoides strains (e.g. 

CBDB1), shares 40% identity to the putative site-specific recombinase in several 

haloalkane-degrading Rhodococcus strains, indicating the occurrence of horizontal 

gene transfer between these two genera.   

2.7.4 Microarray analysis 

 The majority of microorganisms in the environments have not been fully 

sequenced yet.  Consequently, DNA microarray (microchip, biochip, and gene chip) 

technology allows the parallel analysis of highly complex gene mixtures in a single 

assay.  It used to be largely applied for genome-wide expression analysis and now 

increasingly used as microbial diagnostic microarrays (MDMs).  The MDM consists 

of nucleic acid probe set, which is designed to be specific for a given strain, 

subspecies, genus, or higher taxon.  The MDMs can also allow the parallel 

comparisons of genomic DNA from different sources as compared to the model 

microorganisms, such as the first PCE-dechlorinating Dehalococcoides ethenogenes 

strain 195 (West et al., 2008).    

          Additionally, functional gene arrays (FGAs) have also been developed recently 
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to target functional biomarkers, such as nitrogenases, cellulases, reductive 

dehalogenase genes for more comprehensive analysis on genes or their transcripts to 

evaluate metabolic potential and microbial activity comparatively (Taş et al., 2009b).  

For instance, the GeoChip can detect more than 10,000 catabolic genes involved in a 

broad range of applications, including those dehalorespirators (He et al., 2007b).  In 

2008, Johnson et al. used temporal transcriptomic microarray analysis on model 

microorganism (strain 195) during its transition from exponential growth into 

stationary phase to understand the genes involved with metabolism and translation 

(Johnson et al., 2008).   

 Further studies on the development of new functional RDase gene sets will 

undoubtedly aid in the identification and isolation of novel Dehalococcoides spp. and 

to reveal new and interesting physiology and biochemistry for this unique group of 

microorganisms.  

 

2.8 Other diagnostics tools 

2.8.1 Microscopy 

 In addition to the biomolecular tools, microscopic examinations have also been 

applied to the microbial communities in depth, e.g. confocal laser scanning 

microscope (CLSM), scanning electron microscope (SEM), and atomic force 

microscope (AFM) (Fang et al., 2000; Li et al., 2007; Mangold et al., 2008).   

 1) CLSM 

 Confocal microscopes create images by combining optical microscopy with 

computer-based image reconstruction techniques.  The CLSM is capable of capturing 

leteral images of stained cells at various depths of specimen.  It can be used to obtain 
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a high-resolution image using the mathematical filtration method.  With CLSM, a 

specific 16S rRNA-targeted oligonucleotide probes (Dhe1259) has been developed 

for the detection and quantification of Dehalococcoides species by fluorescence in 

situ hybridization (FISH) (Yang and Zeyer, 2003).  Dhe1259 is a mixture of two 

oligomers, Dhe1259t (5’-AGC TCC AGT TCA CAC TGT TG-3’) and Dhe1259c (5’-

AGC TCC AGT TCG CAC TGT TG-3’) which have one base difference (Yang and 

Zeyer, 2003).  In situ hybridization of probe Dhe1259t with D. ethenogenes strain 195 

and another two enrichment cultures successfully demonstrated the applicability of 

the probe for monitoring the abundance of active Dehalococcoides species in these 

samples with 30% formamide.  The majority of hybridized Dehalococcoides cells by 

Dhe1259t showed irregular cocci shape with a diameter less than 0.5 μm in this study 

and the relative abundance was estimated over the total count of bacteria using probe 

Eub338 (5’- GCT GCC TCC CGT AGG AGT-3’) (Amann et al., 1995).  The probe 

Dhe1259t was found to be more sensitive than the probe DhEth (5’- ACC TAT TGT 

TCT GTC CAT T-3’) designed in a previous study (Richardson et al., 2002). 

 2) SEM 

 It is noted that the diameter commonly observed for Dehalococcoides was about 

0.5-0.7 μm in previous studies by SEM (Duhamel et al., 2004; He et al., 2005), while 

the size of Dehalococcoides sp. strain GT under SEM was reported ranging from 0.7-

1.2 μm in diameter and 200-600 nm in depth (Sung et al., 2006a).  The thicker cells of 

GT were probably in a predivision stage with diameters of 1.1-1.5 μm (Sung et al., 

2006a). 

 3) AFM 

 AFM has been widely used in biology due to its capability of achieving high 

resolution images of biological samples even under physiological conditions such as 
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in fluid.  In addition to its powerful imaging abilities, AFM could also provide 

nanometer scale physicochemical and mechanical characterization of material 

surfaces.    

 4) Comparison of the commonly used microscopy methods in 

dehalogenation 

 In general, AFM is similar to other electron microscope techniques, SEM and 

TEM, where proper sample preparation is the key to measuring high quality data.  The 

art of sample preparation is in fact a simple procedure of critical-path steps, where 

every single step makes a difference.  TEM is well known for very time-consuming 

and complicated sample preparation.  SEM samples are “easier (fixed protocol)” but 

laborious to prepare.  Furthermore, the requirement for conductivity adds some 

difficulty and additional information through the coating steps to the specimen.  For 

SEM, a specimen is normally coated with gold which has a high atomic number and 

produces high topographic contrast and resolution.  The coatings have a thickness of a 

few nanometers, thick coating about 20 nm (beam: 5-10 kv) for traditional SEM or 

standard coating about 4-5 nm (beam: 1-5 kv).  The 5-20 nm thickness coating of gold 

typically used in SEM sample preparation often obscures the surface details of the 

thin specimen (http://www.ecmjournal.org/journal/files/Print-Specimen%20 

Preparation-SEM.pdf), especially for the disc-shaped Dehalococcoides cells.  

However, AFM samples do not have to be conductive, which makes sample 

preparation easier for the user, particularly appropriate for biological samples.  There 

are important criteria to be met in order to do AFM imaging.  Tight affinity to the flat 

substrate is the mandatory requirement for successful AFM imaging.  The specific 

disc-shaped morphology of Dehalococcoides cells indicates a natural affinity to the 

smooth surface of some particular substrate material.  For those small disc-shaped 
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cells, AFM has shown its powerful imaging abilities and advantages since AFM could 

provide nanometer scale physicochemical and mechanical characterization of material 

surfaces.   

2.8.2 Stable isotope fractionation  

 In recent years, stable isotope fractionation (SIP) approaches have been 

increasingly developed for the assessment of in situ biodegradation processes (Ewald 

et al., 2007) (Nijenhuis et al., 2007) (Aeppli et al., 2010).  SIP is a method that 

attempts to incorporate an isotope with low natural abundance (e.g. 13C) into identity 

of an organism with its metabolic function (McDonald et al., 2008).  Dong et al. 

(2009) assessed the relative importance of abiotic and microbial PCE and TCE 

reductive dechlorination by stable carbon isotope fractionation (Dong et al., 2009). In 

some cases, an elegant way for SIP is to “probe” nucleic acids, including those carried 

out with DNA (DNA-SIP) or RNA (RNA-SIP) (Kittelmann and Friedrich, 2008a).  

One key advantage of RNA-SIP is the natural amplification of the phylogenetic 

signature molecule rRNA in active cells.  RNA labelled with 13C can proceed much 

faster than DNA in densely populated bioreactor samples, indicating that RNA-SIP 

may have greater sensitivity than DNA-SIP.  By the RNA-based SIP, Kittelmann and 

Friedrich (2008) successfully identified a novel PCE-to-cis-DCE respiring population 

which has not been recognized previously (Kittelmann and Friedrich, 2008a).   

 In addition to those tools, other molecular markers have also been developed for 

bioremediation studies, including the analysis of lipid fraction, also named as 

phospholipid fatty acids (PLFA) analyses (White et al., 2005), proteomics (utilized to 

characterize the proteins) (Chuang et al., 2010).  It is reported that Dehalococcoides 

sp. strains FL2 and BAV1 contain high levels of furan fatty acids in the phospholipids 
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and high levels of high-potential benzoquinones in anaerobic avenues, which are 

proposed to protect the cells from oxidative pressure (White et al., 2005).  When 

combined with stable isotope labelling approaches, PLFA analyses can offer a 

convenient means to distinguish the functional microorganisms during 

biogeochemical transformations (Treonis et al., 2004).  For Dehalococcoides, these 

two biomarkers (SIP and PLFA) together with the utilization of acetate as a carbon 

source indicate that in situ exposure of these organisms to 13C-labeled acetate and the 

subsequent detection of 13C in these biomarker lipids could also provide means for 

monitoring the growth and putative metabolic activities of these organisms in the field 

(White et al., 2005).  Additionally, multidimensional protein identification technology 

(MudPIT) is a preferred approach in environmental proteomics studies, but the labor 

and expense involved could preclude widespread use in bioremediation studies 

(Wolters et al., 2001). 

 In summary, every method has its pros and cons.  For 16S rRNA gene-based 

tools, the combination of DGGE and FISH allows the characterization of the 

predominant microorganisms associated with reductive dehalogenation qualitatively 

and semi-quantitatively (Yang et al., 2005).  DGGE could easily compare the 

community structures but may not identify new species.  T-RFLP could show the 

comparison of microbial communities clearly and semi-quantitatively, but it may not 

always identify specific species in particular for novel microorganisms; RFLP 

analysis and clone library can identify specific species but cannot target all species 

present; qPCR can give accurate quantification for the chosen targets but appropriate 

primers/probe need to be carefully chosen.  Multiple molecular tools are usually 

combined to explore the microbial dechlorinating communities for the environmental 

samples.  For instance, Rahm et al. compared three molecular tools, T-RFLP, RFLP 
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with clone sequencing, quantitative PCR (qPCR), to assess the effectiveness of 

bioremediation through surveying the microbial differences between two 

contaminated sites, INEEL, and Seal Beach (Rahm et al., 2006).  It is found that the 

first two methods failed to differentiate the microbial communities for these two sites 

and Dehalococcoides was not targeted for both sites by either T-RFLP or RFLP with 

sequencing methods.  However, qPCR targeting the 16S rRNA gene of 

Dehalococcoides strains which are known for their unique DCE-dechlorinating 

capacity shows a significant proportion of Dehalococcoides in the microbial 

community of INEEL but no detectable Dehalococcoides in the microbial community 

of Seal Beach.  This result could account for the different TCE-dechlorinating 

activities at bioremediation sites (Rahm et al., 2006).     

2.9 Summary 

 Successful bioremediation of chlorinated ethenes, mainly in the form of 

bioaugmentation and biostimulation, largely depends on the presence of 

Dehalococcoides sp. which is capable of detoxifying PCE or TCE to ethene in a 

timely manner.  Due to relatively few cultured representatives and limited 

dechlorinating capacity, there is urgent need to explore novel microorganisms as well 

as the corresponding RDase genes involved with fast and complete detoxification of 

all chloroethenes.  Isolation of these novel microbes will facilitate more in-depth 

understanding of unusual dechlorination pathway.  These microbes will guide 

development of efficient bioremediation strategy specifically targeting the chlorinated 

solvents.  More genomic content would also be revealed with the microarray analysis 

after the new cultures are obtained.     
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Chapter III A Dehalococcoides-Containing Co-Culture That 

Dechlorinates Tetrachloroethene  

to trans-1,2-Dichloroethene 

 In the microbial reductive dechlorination of tetrachloroethene (PCE) and 

trichloroethene (TCE), dechlorinators usually produce cis-1,2-dichloroethene (cis-

DCE) as the predominant product or an intermediate.  This chapter shows that 

dechlorination of PCE and TCE can also lead to the generation of trans-1,2-

dichloroethene (trans-DCE) by a co-culture MB.  During its enrichment process, the 

ratio of trans- to cis-DCE increased from 1.4 (± 0.1) : 1 to 3.7 (± 0.4) : 1, whereas the 

TCE reductive dechlorination rate went up from ~ 26.2 to ~ 68.8 µmol l-1 day-1.  PCR- 

denaturing gradient gel electrophoresis (PCR-DGGE) revealed that the increased ratio 

of trans- /cis-DCE was well correlated with the increased proportions of 

Dehalococcoides and the disappearance of Desulfuromonas during the enrichment 

process.  As shown by PCR-DGGE, similar Dehalococcoides species were 

consistently present in another three sediment-free cultures with various trans- /cis- 

DCE ratios.  The 16S rRNA gene sequence of this Dehalococcoides species in co-

culture MB is 100% identical (over 1,489 bp) to that of Dehalococcoides ethenogenes 

strain 195 (CP000027), which belongs to the Cornell subgroup of the 

Dehalococcoides cluster.  The other bacterium in this co-culture MB was a 

Sedimentibacter species, which showed no PCE or TCE dechlorination activity.  

Results from this study show that microbial dechlorination of chloroethenes by this 

particular subgroup of Dehalococcoides could result in significant accumulation of 

trans-DCE in the environment if no trans-DCE dechlorinators co-exist in the 

contaminated sites.  
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3.1 Introduction 

 Large quantities of chlorinated organic solvents, tetrachloroethene (PCE) and 

trichloroethene (TCE) have been released into the environment because of their 

widespread usage (for example, metal degreasing or dry cleaning) (Abelson, 1990).  

Under anaerobic conditions, PCE and TCE can be dechlorinated to dichloroethenes 

(DCEs) by a variety of microbes (for example, Dehalobacter, Desulfuromonas, 

Sulfurospirillum and Dehalococcoides) (Krumholz, 1997; Maymó-Gatell et al., 1997; 

Holliger et al., 1998; Luijten et al., 2003; Duhamel et al., 2004; Sung et al., 2006b; 

Sung et al., 2006a).  However, only Dehalococcoides species are involved in the 

complete reductive dechlorination of PCE/TCE beyond DCEs to vinyl chloride (VC) 

and ethene (Smidt and de Vos, 2004).  These dechlorination steps are facilitated by 

various functional reductive dehalogenase (RDase) genes such as pceA (PCE-to-TCE), 

tceA (TCE-to-VC), bvcA or vcrA (DCEs-to-ethene) genes in Dehalococcoides sp.  

(Magnuson et al., 1998; Krajmalnik-Brown et al., 2004; Müller et al., 2004; Smidt 

and de Vos, 2004).  In particular, Dehalococcoides sp. strains BAV1 and FL2 are able 

to dechlorinate all DCE isomers to VC or ethene (He et al., 2003b; He et al., 2005).  

Multiple Dehalococcoides strains have also been found in mixed cultures that work 

together to dechlorinate PCE completely to ethene (Hölscher et al., 2004; Waller et al., 

2005; Holmes et al., 2006).  To date, the characterized PCE and TCE dechlorinators 

usually produce cis-1,2-dichloroethene (cis-DCE) predominantly and trans-1,2-

dichloroethene (trans-DCE) negligibly (Smidt and de Vos, 2004).  However, trans-

DCE was found in at least 563 sites of the 1,430 National Priority List Superfund sites 

identified by the U.S. Environmental Protection Agency (EPA), whereas cis-DCE was 

detected only in 146 locations (ATSDR., 2007).  Ratios of trans- / cis-DCE ranging 
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from (1 to 7) : 1 have been documented in the TCE-contaminated subsurface of the 

Naval Air Force Station (Fort Worth, Texas) (http://pubs.usgs.gov/sir/2005/5176/) and 

in the TCE-contaminated wells of Key West, Florida (SWMU9, 2002).  Significant 

amounts of trans-DCE were also detected at concentrations of up to 18 000 µg l-1 in 

groundwater samples taken from the upper tertiary aquifer in Bitterfeld (Germany) 

(Nijenhuis et al., 2007).  The accumulated trans-DCE in the chloroethene-

contaminated sites tends to persist and disperse in the subsurface (He et al., 2003a; 

Smidt and de Vos, 2004), hindering the complete removal of chloroethenes.   

 A few laboratory-scale studies report that certain microorganisms in 

microcosms or mixed cultures could produce more trans- than cis- DCE during the 

reductive dechlorination of PCE/TCE (Löffler et al., 1997b; Griffin et al., 2004; 

Miller et al., 2005; Kittelmann and Friedrich, 2008b).  For instance, a number of 

uncultured microbes of the Dehalococcodies sp. and DF-1 in the Chloroflexi cluster 

were capable of producing trans- /cis- DCE in various ratios ((1.3-3.5): 1) when fed 

with PCE/TCE (Futamata et al., 2007).  Although certain part of trans-DCE may be 

produced through abiotic processes (Arnold and Roberts, 1998; ATSDR., 2007), a 

large fraction of accumulated trans-DCE at contaminated sites could be a result of 

microbial reductive dechlorination of PCE and TCE.  Enrichment of such 

dechlorinating bacteria, in particular of the genus Dehalococcoides, has been proven 

to be laborious because of their long doubling time (> 1 day).  Therefore, limited 

information is available for dechlorinating microbes possessing specific RDase(s) 

involved in trans-DCE production and its further detoxification.  So far, only 

Dehalococcoides sp. strain BAV1 could completely dechlorinate trans-DCE to the 

benign ethene (He et al., 2003b).  Owing to the persistent nature of trans-DCE and 

limited information on trans-DCE-dechlorinating bacteria, it would be of interest to 
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look further into trans-DCE detoxification by multiple dechlorinators when trans-

DCE was formed predominantly at the contaminated sites. 

 This chapter describes dechlorination of PCE/TCE to various amounts of trans-

DCE by Dehalococcoides-containing microcosms, enrichment, and a co-culture MB.  

The microbial populations associated with various trans- /cis-DCE generation ratios 

were investigated in detail.  We have also identified the first Dehalococcoides sp. 

belonging to the Cornell subgroup responsible for trans- and cis- DCE production in 

culture MB.  In contrast to previous reports linking the Dehalococcoides species to 

VC and ethene generation, in this study, we concluded that the specific 

Dehalococcoides sp. which produced trans-DCE predominantly could not 

dechlorinate DCEs further to VC and ethene.  However, complete dechlorination of 

PCE to ethene through predominant intermediate trans-DCE was achieved by co-

inoculating the enrichment culture MB and a trans-DCE dechlorinating culture 11a 

that contained multiple Dehalococcoides spp.  The study of trans-DCE producing 

consortia will provide more information on the diversity of dechlorinators involved in 

the generation of various dechlorination products (such as trans-DCE, VC, or ethene) 

upon exposure to PCE/TCE.  These findings could then be extrapolated to 

contaminated sites and potentially aid in the determination of the type of 

bioremediation strategy such as bioaugmentation, with the appropriate dechlorinators.  

3.2 Materials and methods 

3.2.1 Chemicals  

 The chlorinated ethenes, ethene, and other chemicals were purchased from 

Sigma-Aldrich (Saint Louis, MO, USA) with a minimum purity of 99.5%.  Hydrogen 
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was produced from a hydrogen generator (NM-H250, Schmidlin-DBS AG, Neuheim, 

Switzerland) and used as indicated.   

3.2.2 Microcosm preparation  

 Sediments or slurry used for setting up microcosms were collected from San 

Francisco Bay Area (CA, U.S.A.), Sungei Buloh Wetland Reserve (Singapore), 

Wuhan industrial districts (Hubei, China), and Guiyu landfill sites receiving electrical 

waste (Guangdong, China).  Triplicate microcosm studies were conducted in 60-mL 

serum bottles containing ~ 10 g of sediments or slurry, 25 ml autoclaved, bicarbonate-

buffered mineral salts medium reduced with L-cysteine (0.2 mM), sodium sulfide (0.2 

mM), and DL-dithiothreitol (0.5 mM) as previously described (Wolin et al., 1963; Cole 

et al., 1994; Löffler et al., 1997a; He et al., 2002; He et al., 2003a).  The bottles were 

sealed with black butyl rubber septa (Geo-Microbial Technologies, Inc., Ochelata, OK, 

USA) and secured with aluminum crimp caps.  All microcosms in triplicates were 

amended with 10 mM of lactate and 55 mM of PCE per bottle.  Abiotic controls were 

carried out by autoclaving another set of microcosm bottles that were set up in the 

same way as the sample bottles.  All bottles were inverted and incubated quiescently 

in the dark at room temperature.   

3.2.3 Culture and growth conditions 

 After screening the above microcosms, two microcosms MB (San Francisco, 

CA, U.S.A.) and 11a (Hubei, China) were selected for further enrichment as they 

showed rapid dechlorination rates.  After transferring 20 times in the presence of PCE 

or TCE, serial dilutions (10%, v/v) were used to enrich the cultures, which were 

carried out in 20 mL vials filled with 10 mL of mineral salts medium.  In addition, 
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ampicillin (50-300 mg l-1) (Maymó-Gatell et al., 1997; He et al., 2003b) was added to 

the dilution series spiked with TCE (0.2 mM), acetate (10 mM), and hydrogen 

(500,000 ppmv).  Initially, the cultures from the first three consecutive transfers 

received 200 mg l-1 of ampicillin.  Subsequently, three consecutive dilution-to-

extinction series and agar shakes were conducted.  During these treatments, more than 

50 colonies were picked up and re-inoculated back to liquid medium to test their 

dechlorination activity on exposure to TCE.  Dechlorination time course studies were 

conducted in 160-mL serum bottles containing 100 mL of mineral salts medium 

amended with TCE or PCE (~ 50 µmoles, nominal concentration 0.5 mM), lactate (10 

mM) or acetate (10 mM) and hydrogen (500 000 ppmv), a vitamin solution including 

0.05 mg l-1 of vitamin B12 (He et al., 2007a), and 2 % of inocula.  All time-course 

studies were conducted in triplicates along with an extra abiotic control.  All bottles 

were inverted and incubated quiescently in the dark at 30 oC.  The average 

dechlorination rate (µmol L-1day-1) was calculated from the decrease of substate mass 

divided by the required reaction time and culture volume used for each bottle, 

whereas the maximum dechlorination rate indicated the highest concentration change 

for the substrate.   

3.2.4 Analytical methods 

 Chloroethenes and ethene were measured with a gas chromatograph (GC-6890, 

Agilent, Wilmington, DE, USA) equipped with a flame ionizing detector and a 

capillary column (GS-GasPro, 30-m length, 0.32-mm i.d., J&W Sci, Folsom, CA, 

USA).  The oven temperature was initially held at 50 ºC for 2 min, increased at 30 ºC 

min-1 to 220 ºC, and held for 1 min.  The supernatants carrying volatile fatty acids 

(VFAs) were obtained by centrifugation of 1 mL of sample at 14,000×g for 10 
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minutes at 4 ºC.  VFAs were determined on a high performance liquid chromatograph 

(Agilent 1100 HPLC system, Palo Alto, CA, USA) equipped with a UV detector (set 

at 210 nm).  Separation of VFAs was conducted on an organic acid analysis column 

Aminex HPX-87H (300×7.8 mm, Bio-Rad, Hercules, CA, USA) at 40 ºC and 5 mM 

H2SO4 was used as the eluent at a flow rate of 0.5 ml min-1.   

3.2.5 DNA extraction and PCR amplification 

 Cells for DNA extraction were collected periodically from 1 mL of culture 

samples by centrifugation (15 min at 20, 000×g, 4ºC) in DNase/RNase-free 

microcentrifuge tubes.  Cell pellets were stored at -20 ºC until further processing.  The 

genomic DNA was extracted with Qiagen DNeasy Tissue Kit (QIAGEN GmbH, 

Hilden, Germany) according to the manufacturer’s instructions.  PCR (Eppendorf, 

Hamburg, Germany) amplification was performed by targeting the genomic DNA 

with universal Eubacterial primers 8F (Zhou et al., 1995) and 1541R (Lane et al., 

1985) to obtain the 16S rRNA genes.  Genomic DNA was also screened with the 

following species-specific primer pairs: Dehalococcoides, Desulfuromonas, and 

Dehalobacter (Holliger et al., 1998; Löffler et al., 2000; Bunge et al., 2003) as 

previously described.  The primer sequences used in this study were included in the 

Table 3.1. 

 The presence of chloroethene RDase genes (pceA, tceA, bvcA and vcrA) in the 

cultures of this study was examined as described previously (Magnuson et al., 1998; 

Krajmalnik-Brown et al., 2004; Müller et al., 2004; Smidt and de Vos, 2004).  The 

PCR products were subsequently visualized on a Molecular Imager Gel Doc XR 

System (Bio-Rad, CA, U.S.A.) or on a Bioanalyzer by using a DNA7500 Labchip Kit 

(Agilent Technologies, Inc, Palo Alto, USA).    
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 The 16S rRNA genes copies of Dehalococcoides sp. in co-culture MB were 

determined by quantitative real-time PCR (qPCR) (ABI 7500 Fast Real-Time PCR 
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system, Foster, CA, U.S.A.) as previously described (He et al., 2003a; He et al., 

2003b; Sung et al., 2006a).  Standard curves spanned a range of 102 to 107 gene 

copies per microliter of template DNA with a R2 linear regression of 99.9%. 

3.2.6 PCR-DGGE and T-RFLP 

 PCR-denaturing gradient gel electrophoresis (DGGE) analyses were carried out 

for both universal bacterial 16S rRNA gene (with the primer pair 341F-GC and 534R) 

and Dehalococcoides-specific 16S rRNA gene fragments (1F-GC and 259R primer set) 

with a touch-down thermal program as previously described (Duhamel et al., 2004).  

PCR-amplified fragments were electrophoresed on an 8% polyacrylamide gel with a 

30-60% urea-formamide gradient for 16 h at 120 V and 60ºC.   

T-RFLP with the restriction enzyme provides a broad picture of the microbial 

community composition over time during the enrichment process to estimate the 

microbial diversity.  By using the protocol described previously (Liu et al., 1997), the 

amplified fragments by universal primer (8F and 1541R, 8F labeled with Cy5) were 

digested with the restriction endonucleases Msp I (NEB, USA) according to the 

manufacturer’s recommendations.  The enzyme was deactivated by heating at 65 ºC 

for 10 min.  Analysis of 16S rRNA gene-based T-RFLP was carried out with Beckman 

Coulter (CEQ 8000 automated sequencer, Beckman Coulter, US). PCR-RFLP 

products were analyzed by horizontal electrophoresis in 2% agarose or using Agilent 

Bioanalyzer (Agilent Technologies, US) with DNA 7500 chips (Rahm et al., 2006) 

and strictly following the manufacturer’s protocol. 
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3.2.7 Clone library 

 A clone library of 16S rRNA genes of co-culture MB was established by using 

the TOPO-TA cloning kit (Invitrogen, Carlsbad, CA, U.S.A.) and all further clone-

based experiments were carried out as previously described (Löffler et al., 2000; He et 

al., 2003a).  The clones’ purified plasmid DNA concentrations were measured by 

Nanodrop-1000 (NanoDrop Technologies Inc, Wilmington, DE, USA).  The extracted 

plasmid DNA was subjected to RFLP analysis with the restriction endonucleases HhaI 

and MspI (NEB, Ipswich, MA, USA).  The 16S rRNA gene inserts representing 

groups of distinct enzyme restriction pattern were subsequently sequenced with an 

ABI 3100 Sequencer (Applied Biosystems, Foster City, CA, U.S.A.) by using primers 

M13F-20, M13R-24, 533F, 529R, and 907F (http://www.genomics.msu.edu).  

Sequences were aligned with BioEdit assembly software (http://www.mbio.ncsu.edu/ 

BioEdit/bioedit.html) and were analyzed with BLASTN 

(http://www.ncbi.nlm.nih.gov/).  The nearly complete Dehalococcoides-like 16S 

rRNA gene sequence (1489 bp) was deposited under GenBank accession number 

EU073964.  The other bacterium was isolated and characterized as being a 

Sedimentibacter sp. under GenBank accession number FJ593657. 

 

3.3 Results 

3.3.1 Dechlorination of PCE to predominant trans-DCE  

 From the 23 microcosms established with sediments collected from various 

locations, three (namely MB, 11a, GY from CA, U.S.A.; Hubei, China; and 

Guangdong, China; respectively) generated more trans-DCE than cis-DCE in the 
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reductive dechlorination of PCE, while SB (Singapore) generated relatively lower 

trans- /cis-DCE ratio (Table 3.2).  No PCE dechlorination or lactate fermentation was 

observed in the abiotic control bottles (autoclaved microcosms).  Microcosms, MB, 

SB and GY, generated trans-DCE and cis-DCE as the final dechlorination products, 

while 11a could dechlorinate PCE to ethene through intermediates trans- and cis- 

DCEs.  Among these microcosms, MB exhibited the highest PCE dechlorination rate 

of 26.2 µmol liter-1 day-1 with a trans- /cis- DCE generation ratio of (1.4 ± 0.1) :1 and 

was selected for further transfers and investigation.   

 

Table 3.2 Summary of microcosms that produced trans-DCE and cis-DCE from 
dechlorination of PCE  
 

Source Final product trans-DCE/  
cis-DCE ratio 

San Francisco Bay Area 
(CA, USA), MB 
 

trans-DCE, cis-DCE 1.4 ± 0.1 
 

Wuhan industrial districts 
(Hubei, China), 11a 
 

Ethene (through 
trans- /cis-DCEs) 

1.7 ± 0.2 

Guiyu landfill sites 
(Guangdong, China), GY 
 

trans-DCE, cis-DCE 2.8± 0.3 

Sungei Buloh Wetland 
Reserve (Singapore), SB 

trans-DCE, cis-DCE 0.4 ± 0.06  

Note: The presented ratios were from triplicate cultures with standard deviation. 

 

 Enrichment culture MB was obtained by sequentially transferring the above 

PCE-to- trans/cis-DCE dechlorinating microcosm.  Methane was below detection 

limit after 10 transfers with PCE as substrate, though it was detected in the 

microcosms and the previous batches of sediment-free culture.  The subsequent 10 
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transfers were fed with TCE and the time course studies on the dechlorination of TCE 

were carried out thereafter.  In defined mineral salts medium amended with lactate (10 

mM) and TCE (0.2 mM), culture MB dechlorinated ~50 µmoles of TCE completely to 

trans/cis- DCEs with a ratio of (1.43 ± 0.04) :1 within 20 days, and a dechlorination 

rate of 30.6 µmol liter-1 day-1 (Fig 3.1a).  Dechlorination of TCE to trans- and cis- 

DCEs (in a ratio of 1.4 : 1) also occurred when culture MB grew in the same mineral 

salts medium amended with acetate (10 mM) only, or acetate (10 mM) and H2 

(170,000 ppmv).  The sole acetate-grown culture (no H2 supplied) showed the slowest 

dechlorination rate.  Thereafter, the acetate-grown sub-culture was used as inocula for 

subsequent transfer to fresh acetate and H2 medium in order to facilitate the 

enrichment and isolation of the dechlorinators.   

 When culture MB was treated with ampicillin (50 mg l-1) in the mineral salts 

medium amended with acetate and H2, dechlorination of TCE occurred at a slower 

rate as compared with dechlorination without ampicillin.  The treatment of acetate/H2 

cultures with 0 - 300 mg l-1 of ampicillin resulted in the variation of trans-DCE to cis-

DCE ratio, ranging from (1.4 to 3.0) : 1.  The highest ratio was achieved in the culture 

receiving 200 mg l-1 of ampicillin dosage.  After growing in ampicillin-amended 

medium for two more transfers, the active cultures were then continuously transferred 

to medium amended with acetate and H2 only.  Consequently, culture MB was capable 

of dechlorinating ~50 µmoles of TCE to trans- and cis- DCEs with an increased ratio 

of 3.7:1 (Fig 3.1b) within 15 days.  However, when culture MB was transferred back 

to the mineral salts medium amended with lactate, an extended lag phase (~13 days) 

was observed and the dechlorination of TCE (~50 µmoles) took another 17 days in all 

the triplicate bottles (data not shown).  Acetate and propionate, detected as the 
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fermentation products measured with HPLC, indicated that certain fermentative 

microbes had yet to be diluted out of the culture.    

 After three more transfers in the absence of antibiotics, the ampicillin-treated 

culture MB with acetate and H2 achieved its highest TCE dechlorination rate (68.8 

µmoles L-1day-1) but the trans-/cis- DCE generation ratio remained unchanged (Fig 

3.1c).  Culture MB was continuously transferred to fresh medium (every 3-4 weeks) 

over a period of 2 years and showed consistent PCE/TCE dechlorination rates and 

trans- /cis- DCE generation ratio.  At this stable dechlorination stage, culture MB was 

observed under light microscopy, which demonstrated the prevalence of small disc-

shaped bacteria and a lower abundance of rod-shaped bacteria.  The size of the disc-

shaped microbes coincides with that of the reported Dehalococcoides species ( 1.0 

µm in diameter).  Attempts had been made to isolate each of them by both serial 

dilutions and agar shakes amended with acetate and H2.  However, only the rod-

shaped bacteria were able to grow in pure culture successfully.  Its 16S rRNA gene 

sequence was shown to be closely (99% identity over 1504 bp, 5 bp difference) 

related to Sedimentibacter sp. C7, which was reported to grow in co-culture with a 

Dehalobacter species (van Doesburg et al., 2005; He et al., 2007a).  This isolated 

Sedimentibacter sp. did not show dechlorination activity on PCE or TCE.  Therefore, 

culture MB should mainly consist of the PCE-dechlorinating Dehalococcoides and the 

Sedimentibacter species.    
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Fig 3.1 Reductive dechlorination of TCE to trans-DCE and cis-DCE by culture MB at 
different enrichment phases.  (a) Enrichment culture MB after 20 transfers in lactate-
amended medium; (b) Further enrichment culture MB grown with acetate (10 mM) 
and H2 (260,000 ppmv) after ampicillin treatment; (c) Highly enriched culture MB 
after three more transfers in acetate- /H2-amended medium.  No VC, ethene, ethane or 
methane was detected on extended incubation.  Datum points were averaged from 
triplicate cultures.  Error bars indicate standard deviation and are not shown when 
they are smaller than the symbol. 

 

3.3.2 Identification of the trans-DCE producing microbes  

 To identify the dechlorinating microbes in the sediment-free cultures, MB, 11a, 

GY, and SB, genus-specific primers targeting the16S rRNA genes of Dehalobacter, 

Desulfuromonas, and Dehalococcoides were tested on genomic DNA of the above 

cultures by PCR.  When targeted with Dehalococcoides specific primers, the PCR 

amplicons yielded the expected DNA size of 620 bp for all the cultures.  When using 

Desulfuromonas- specific primers to amplify the genomic DNA of the above trans-
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DCE producing cultures, only culture MB exhibited a very weak band of 815 bp.  

However, the Desulfuromonas-like species was no longer detected in MB when the 

ratio of trans- to cis- DCE reached ~ 3.7:1.  Amplification of the genomic DNA using 

Dehalobacter- specific primers yielded no amplicons for all the cultures.  Therefore, 

the PCR analysis based on 16S rRNA genes suggests that the rod-shaped 

Desulfuromonas or Dehalobacter species may not contribute to trans-DCE formation, 

and further confirms the existence of Dehalococcoides-like species in the above 

cultures.   

3.3.3 Dehalococcoides species diversity versus the ratio of trans- to  

cis-DCE 

 To understand the elevated ratio (1.4 :1 to 3.7:1) of trans-/ cis-DCE in culture 

MB, PCR-DGGE was used to track the community structures with universal bacterial 

primer pair and the diversity of Dehalococcoides sp. with genus-specific primer pair 

by targeting the genomic DNA of culture MB at different enrichment stages.  Fig 3.2a 

shows the microbial community transitions from mixed culture (before ampicillin 

treatment), highly enriched culture (after one-time ampicillin treatment), to apparent 

co-culture (after ampicillin treatment), reflected by detecting multiple DGGE bands to 

two major bands.  The band on the top was getting thicker, which turned out to be 

Dehalococcoides species.  This was verified by the positive control, plasmid DNA 

containing the 16S rRNA gene fragment of Dehalococcoides ethenogenes strain 195.  

The second major band in Fig 3.2a corresponded to the minor group in the co-culture, 

Sedimentibacter, which was confirmed by the positive control of this isolate.  It is to 

be noted that the Desulfuromonas-like band disappeared in the post ampicillin-treated 
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MB cultures (Fig 3.2a).  Only one band representing the Cornell subgroup of 

Dehalococcoides species (Fig 3.2b) was detected in the trans- and cis-DCEs 

producing culture MB.  Therefore, the detected Desulfuromonas-like species before 

ampicillin treatment (Fig 3.1b) could have contributed to cis-DCE production in the 

mixed culture MB.  In all, the DGGE profiles confirmed that culture MB consisted of 

the Cornell subgroup of Dehalococcoides and Sedimentibacter only, while the former 

was responsible for trans-DCE production from PCE/TCE.   

 Sediment-free cultures obtained from microcosms shown in Table 1 also 

generated trans- and cis- DCEs in various ratios.  The presence of multiple 

Dehalococcoides sp. bands (e.g., GY and 11a) explained the various ratios of trans- 

/cis- DCE as exhibited in this study (Fig 3.2c).  Fig 3.2c also shows the stronger the 

MB-like bands, the higher trans- /cis- DCE generation ratios in the sediment-free 

cultures; conversely, the stronger the FL2-like bands, the lower the trans- /cis- DCE 

ratios in these cultures.   
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Fig 3.2 PCR-DGGE profiles of trans-DCE producing cultures.   
(a) DGGE profile of PCR-amplified with a universal bacterial primer pair targeting 
genomic DNA of culture MB.  (b) DGGE profile of PCR-amplified with a 
Dehalococcoides-specific primer pair targeting genomic DNA of culture MB.  The 
template DNA for lane 1, 2 and 3 was extracted from cultures as shown in the time 
course studies of Fig 1a, 1b and 1c, respectively.  Lane 1, culture MB before 
ampicillin treatment; lane 2, culture MB after one-time ampicillin treatment; lane 3: 
culture MB post ampicillin treatment; lane 4, positive control of D. ethenogenes 195 
clone DNA; lane 5, a TCE-to-cis-DCE-to-VC culture which shared 100% 16S rRNA 
gene as Dehalococcoides sp. strain FL2; lane 6, Desulfuromonas sp. strain BB1; lane 
7, an isolate of Sedimentibacter.  (c). PCR-DGGE profile of Dehalococcoides species 
present in different TCE-dechlorinating cultures.  The number on the top of the lane 
indicates the ratio of trans-DCE to cis-DCE produced from various microcosms as 
described in Table 3.1.  Dehalococcoides sp. strain FL2- like culture serves as a 
control.  NA, no trans-DCE was accumulated during the dechlorination of TCE.   
  

 During the enrichment process, T-RFLP was also conducted to determine 

whether Dehalococcoides species is the predominant population in culture MB. After 

utilizing enzyme MspI and RsaI to digest the 16S rRNA genes amplified from the 
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genomic DNA of highly enriched culture MB, T-RFLP profiles distinguished a peak 

of Dehalococcoides species as shown in Fig 3.3.  Comparing the T-RFLP profiles 

generated from different enrichment phases, the Dehalococcoides peak intensity (513 

bp for MspI) increased dramatically while other peaks decreased.  It indicates that 

culture MB became highly enriched and the predominance of Dehalococcoides 

populations.  Similar Dehalococcoides peak changes appeared on the T-RFLP profiles 

(T-RF of 444 bp) when enzyme RsaI was used to digest the above PCR products.  

However, no Dehalococcoides-like peaks were found in the enzyme HhaI digestion 

profiles, which was similar to that of the isolate D. ethenogenes 195 (Maymó-Gatell 

et al., 1997).  The results from T-RFLP show similar trend as PCR-DGGE for the 

microbial community change of this trans-DCE producing culture.  

 

Fig 3.3  T-RFLP profiles digested with MspI for enrichment culture MB at different 
stages.  Note: the template DNA tested for a, b, and c correspond with cultures as 
shown in the time course studies of Fig 3.1a, 3.1b and 3.1c, respectively.  a, culture 
MB before ampicillin treatment; b, culture MB after one-time ampicillin treatment; c, 
culture MB post ampicillin treatment. 
 

MspI 

MspI 

MspI 
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3.3.4 Clone library and sequence analysis of culture MB 

 To further determine the phylogeny of the PCE-to-trans/cis-DCEs 

dechlorinator(s), a clone library based on 16S rRNA genes was established with the 

genomic DNA extracted from the apparent co-culture MB fed with acetate and H2.  

The restriction fragment length polymorphism analysis of 57 clones revealed two 

different digestion patterns (56: 1).  Twenty-eight of the 56 clones, and the last single 

clone were sequenced for their 16S rRNA gene inserts in the plasmids.  After aligning 

the sequences with the BioEdit assembly software, the contigs were analyzed using 

BLASTN, and compared with known existing 16S rRNA gene databases.  Results 

show that the 56 clones possessed identical 16S rRNA gene sequence, which shares 

100% identity of the 16S rRNA gene sequence of D. ethenogenes strain 195 

(accession number CP000027) from its complete genome.  The 16S rRNA gene 

sequence of the uncultured Dehalococcoides sp. strain MB (the Cornell subgroup of 

Dehalococcoides sp.) was deposited in GenBank under accession number of 

EU073964 (1489 bp).  In addition to the above Dehalococcoides species found in the 

culture MB, the sequence of the other clone revealed that it belonged to 

Sedimentibacter as isolated in pure culture.   

 The presence of the known RDase genes was also examined in the trans- and 

cis-DCEs producing cultures.  The following genes, pceA gene, tceA gene, bvcA gene, 

or vcrA gene were not detected in culture MB when fed with PCE or TCE.  The 

results suggested that a novel RDase gene, instead of pceA or tceA gene, might be 

responsible for the production of trans-DCE by the Dehalococcoides in culture MB.  

Therefore, on the basis of the above analysis (for example, constant trans- /cis- DCE 

ratio, light microscopy, DGGE, clone library, RDase genes), we were able to ascertain 
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that the culture was further enriched to a co-culture MB consisting only of 

Dehalococcoides species of the Cornell subgroup and Sedimentibacter species.   

3.3.5 Growth of Dehalococcoides-like species in co-culture MB   

 Quantitative real-time PCR (qPCR) was carried out to further confirm that 

Dehalococcoides-like species was responsible for the generation of trans-DCE during 

the dechlorination of TCE.  The Dehalococcoides cells were measured by targeting 

the genomic DNA extracted from co-culture MB.  qPCR results demonstrated the 

increase of Dehalococcoides 16S rRNA gene copies with the dechlorination of TCE 

(Fig 3.4).  The total Dehalococcoides cell number reached 2.54×108 cells/ml from 

initial 5.91×106 cells/ml (~ 43 times increase) in the co-culture, verifying that the 

increase of the Dehalococcoides 16S rRNA gene copies was directly correlated with 

the dechlorination of TCE to the predominant trans-DCE.   

 

 

 

 

 

 

 

 

 

 

 

Fig 3.4 The growth of the Dehalococcoides species with the dechlorination of TCE to 
predominant trans-DCE by co-culture MB. 
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3.3.6 Complete dechlorination of TCE to ethene via trans- and cis- 

DCEs by culture MB and 11a  

 Similar to culture MB, the sequential transfers of another microcosm (Hubei, 

China) generated enrichment culture 11a, which was capable of completely 

dechlorinating TCE to ethene via intermediates trans- and cis- DCEs (in a ratio of 1.7: 

1) in lactate-amended mineral salts medium (Fig 3.5a).  After 40 days, the generated 

DCEs were completely dechlorinated to ethene.  DGGE profile showed that culture 

11a contained multiple Dehalococcoides species (Fig 3.2c), one of which was MB-

like to produce trans-DCE whereas another may function to further dechlorinate 

trans-DCE.  With the trans-DCE dechlorinating mixed culture 11a in hand, it was 

inoculated together with culture MB to the bottles spiked with TCE to examine the 

possibility of complete reductive dechlorination of the persistent trans-DCE generated 

biologically by culture MB.  As shown in Fig 3.5b, complete dechlorination to ethene 

via trans-DCE occurred within 80 days.  The maximum trans- to cis- DCE ratio 

reached ~1.75: 1 on day 11 when cis-DCE concentration started to decrease.  During 

the reductive dechlorination process, trans-DCE was found to be the main 

intermediate, accumulating up to 18.6 µmoles on day 21, whereas small amounts of 

cis-DCE and VC (about 6.9 and 7.8 µmoles, respectively) appeared and the amount of 

1,1-DCE produced was negligible.  After day 21, trans-DCE started to be 

dechlorinated to ethene without the accumulation of VC (Fig 3.5b). 
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Fig 3.5 Reductive dechlorination of TCE to ethene through trans-DCE predominantly.  
(a) Culture 11a alone amended with lactate; (b) Culture MB and 11a amended with 
acetate (10 mM) and H2 (400 000 ppmv).  (Datum points were averaged from 
triplicate cultures.  Error bars indicate standard deviation and are not shown when 
they are smaller than the symbol).   
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3.4 Discussion and conclusion 

 In this study, a highly enriched PCE-to-trans/cis- DCE dechlorinating co-culture 

MB was characterized and the growth of the newly identified trans-DCE producing 

Dehalococcoides species was verified by qPCR.  A number of identified trans-DCE 

producing Dehalococcoides species, including the Cornell (in this study) and Pinellas 

(Griffin et al., 2004) subgroups, showed a common inability to dechlorinate PCE/TCE 

beyond DCEs to VC and ethene.  The dechlorination pathway of MB is different from 

the previously discovered Dehalococcoides species linking to VC or ethene 

production from polychloroethenes, including those that produced predominant 1,1-

DCE isomers during the reductive dechlorination of TCE (Zhang et al., 2006).  

Complete detoxification of PCE/TCE through intermediates trans- and cis- DCEs also 

occurred when the required dechlorinating microbes were present in the community, 

as shown in the mixed culture of 11a and MB.  Results from this study indicate that 

accumulation of trans-DCE through microbial reductive dechlorination in 

contaminated sites could be significant when the trans-DCE dechlorinator(s) are 

absent or are operating at a lower rate than that of cis-DCE and VC dechlorinators.   

The chloroethene distribution in contaminated sites is significantly affected by 

different types of indigenous dechlorinators (Smidt and de Vos, 2004).  The trans-

DCE generating microbe discovered in this study would enhance the current 

understanding of the diverse dechlorinating capabilities of the Dehalococcoides genus.  

 During the enrichment process from sediment-free culture to co-culture MB, the 

ampicillin treatment step significantly increased the culture’s TCE-dechlorination 

rates (from 26.2 to 68.8 µmoles L-1day-1) and the ratio of trans-DCE to cis-DCE 

(from (1.4 ± 0.1):1 to (3.7 ± 0.4):1).  Previous studies showed that sediment-free 
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cultures generated trans-DCE to cis-DCE in ratios of (3 ± 0.5):1 (Griffin et al., 2004) 

and (1.3 ± 0.2):1 (Miller et al., 2005), accompanying with an average TCE 

dechlorination rate of 4.8 µmoles L-1day-1 (Griffin et al., 2004) and 20 µmoles L-1day-

1 (Miller et al., 2005), respectively.  The increased dechlorination rates and trans- to 

cis- DCE ratios for culture MB could be explained by that (i) the competitors for 

electron donor H2 (e.g., methanogens) were diluted out; (ii) culture MB contained 

higher number of trans-DCE producing Dehalococcoides cells, but less or negligible 

amount of the cis-DCE producing Desulfuromonas-like cells (revealed by DGGE 

profiles), compared with previous cultures.  This is also supported by the fact that the 

majority of the clones (56 out of 57) belong to Dehalococcoides and the 

Desulfuromonas band disappeared in the co-culture MB.  However, culture MB was 

not a pure culture yet as lactate fermenters (e.g., Sedimentibacter) were still present.   

This is reflected by their recovered dechlorination activity after an extended 

incubation time when fed back from acetate/H2- to lactate-amended medium.   

 By sequencing of the representative clones (established with PCR 16S rRNA 

gene inserts), Dehalococcoides sp. was identified to be responsible for PCE/TCE 

dechlorination to trans- and cis- DCEs.  On the basis of the 16S rRNA gene sequence 

identity, Dehalococcoides sp. MB belongs to the Cornell subgroup of the 

Dehalococcoides cluster (Hendrickson et al., 2002), which is different from the trans- 

and cis- DCEs producing Dehalococcoides populations in the Pinellas group (Griffin 

et al., 2004) (refer to the Table 3.3).  Table 3.3 also shows that bacterium DF-1 and 

TFCC group (T-RF 513bp and T-RF 143 bp), which are distantly related to 

Dehalococcoides sp., contributed to the production of trans-DCE. We could not 

exclude the possibility of other bacteria having a role in trans-DCE formation in the 

environment.  However, this study provides conclusive proof that the Cornell  
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subgroup of Dehalococcoides sp. in co-culture MB grew with the dechlorination of 

TCE to predominant trans-DCE by both qualitative (for example, DGGE and clone 

library) and quantitative (real-time PCR) molecular tools.  On the other hand, owing 

to the high identity of 16S rRNA gene sequences for the genus Dehalococcoides, it is 

difficult to rule out the presence of other Dehalococcoides sp.  Nevertheless, the 

Cornell subgroup (no peak was shown for HhaI profile of T-RFLP) of 

Dehalococcoides has never been shown to have this dechlorination ability of 

producing trans-DCE predominantly.  The stable trans-/cis- DCE ratio, two 

morphologies by light microscopy, and the culture -independent approaches (DGGE, 

clone sequencing, RDase gene analysis) strongly suggest that co-culture MB 

contained only one Dehalococcoides sp.  The interactions between Dehalococcoides 

and Sedimentibacter are not clear but may be nutritional in nature.  Isolation of this 

particular strain of Dehalococcoides will lead to an improved understanding of the 

nutritional requirements and physiological characterization of this novel 

Dehalococcoides sp.  Therefore, this study and previous reports (Griffin et al., 2004; 

Miller et al., 2005; Kittelmann and Friedrich, 2008b) suggest that these diverse trans-

DCE producing dechlorinators belong to the green non-sulfur bacteria, including 

Dehalococcoides, the Tidal Flat Chloroflexi Cluster, and bacterium DF-1.  

 Despite the high conservation of the 16S rRNA gene among the 

Dehalococcoides species, RDase genes (pceA, tceA, bvcA and vcrA) have been 

identified to differentiate reductive dechlorination of chloroethenes (Magnuson, 1998; 

Krajmalnik-Brown, 2004; Müller, 2004).  In the enrichment process of culture MB, 

no pceA or tceA gene was detected in its genomic DNA.  This observation suggests 

that the tceA gene in D. ethenogenes 195 is different from the functional trans-DCE-

producing gene(s) in the Dehalococcoides sp. of culture MB.  Similarly, bacterium 
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DF-1 was reported to dechlorinate PCE/TCE to significant amounts of cis- and trans-

DCEs, whereas no tceA gene was reported in its genome (Miller et al., 2005).  

Therefore, the trans-DCE producing gene could be quite different from the currently 

identified RDase genes, which may also be potentially acquired through horizontal 

gene transfer as suggested for the known RDases in Dehalococcoides species 

(Regeard et al., 2005; Seshadri et al., 2005).  PCR-DGGE identified a common band, 

whose presence may indicate trans-DCE production from PCE or TCE.  However, the 

detection of this band in DGGE would not guarantee the generation of trans-DCE in 

the Dehalococcoides sp., e.g. D. ethenogenes strain 195. 

 Findings in this and previous studies suggest that diverse trans-DCE producing 

Dehalococcoides species are present at chloroethene-contaminated sites and these 

Dehalococcoides species are capable of producing high levels of trans-DCE (Löffler 

et al., 1997b; Griffin et al., 2004; Miller et al., 2005; Futamata et al., 2007; 

Kittelmann and Friedrich, 2008b).  For the first time, we reported that the trans-DCE 

producing Dehalococcoides species was unable to generate VC and ethene during the 

dechlorination process through characterization of the co-culture MB (~ 98% of the 

bacteria belonging to the Cornell subgroup of Dehalococcoides species and ~ 2% 

affiliated with Sedimentibacter), whereas previous Dehalococcoides cultures were 

linked to VC and ethene generation.  Hence the large amounts of trans-DCE detected 

in the TCE contaminated sites might be a result of the presence of trans-DCE-

producing microbes and the lack of trans-DCE dechlorinators.  Fortunately, culture 

11a in this study proves to be a promising candidate in the complete dechlorination of 

PCE/TCE to harmless ethene through the cooperation of multiple Dehalococcoides 

species.  Thus great care must be taken when bioremediation techniques are being 

applied to such trans-DCE formation sites since the trans-DCE producing-culture (for 
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example, MB) is also capable of using the same electron donor as the other 

Dehalococcoides strains such as BAV1.  The identification and administration of the 

microbe(s) responsible for rapid and complete dechlorination at any particular 

chloroethene-contaminated site may provide a better bioremediation strategy. 
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Chapter IV Isolation and Characterization of 

Dehalococcoides sp. Strain MB, Which Dechlorinates 

Tetrachloroethene to trans-1, 2-Dichloroethene 

 In chapter III, the enrichment process of several microcosm studies 

demonstrated that microorganisms within Cornell subgroup of Dehalococcoides could 

generate more trans-1,2-dichloroethene (trans-DCE) than cis-DCE during the 

reductive dechlorination of tetrachloroethene (PCE) or trichloroethene (TCE).  In an 

attempt to understand the microorganisms involved in the generation of trans-DCE, 

pure culture Dehalococcoides sp. strain MB was isolated from environmental 

sediments.  In contrast to currently known PCE or TCE dechlorinating pure cultures 

which generate cis-DCE as the predominant product, Dehalococcoides sp. strain MB 

reductively dechlorinates PCE to trans-DCE and cis-DCE at a ratio of 7.3 (± 0.4) : 1.  

It utilizes H2 as the sole electron donor and PCE or TCE as the electron acceptor 

during anaerobic respiration.  Strain MB is a disc shaped, nonmotile bacterium.  

Under an atomic force microscope, the cells appear singly or in pairs and are 1.0 µm 

in diameter and ~ 150 nm in depth.  The purity was confirmed by culture-based 

approaches and 16S rRNA gene-based analysis and was corroborated further by 

putative reductive dehalogenase (RDase) gene-based quantitative real-time PCR.  

Although strain MB shares 100% 16S rRNA gene sequence identity with 

Dehalococcoides ethenogenes strain 195, these two strains possess different 

dechlorinating pathways.  Microarray analysis revealed that 10 putative RDase genes 

present in strain 195 were also detected in strain MB.  Transcriptional analysis of 

RDases in strain MB grown with PCE shows that one RDase gene, designated mbrA, 
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exhibited 10-fold up-regulation, higher than the rest of RDase genes.  Successful 

cultivation of strain MB indicates that biotic process could contribute significantly to 

the generation of trans-DCE in chloroethene-contaminated sites.  The highly 

expressed RDase gene, mbrA gene, may serve as an important biomarker for 

evaluating, predicting, and elucidating the biological production of trans-DCE in the 

chloroethene-contaminated sites.  The results of this chapter enhance our 

understanding of the evolution of this unusual microbial group, Dehalococcoides 

species.  

4.1 Introduction 

 Dehalorespiring bacteria play an important role in transformation and 

detoxification of a wide range of halogenated compounds, e.g., chlorophenols, 

chloroethenes, chlorobenzenes, polychlorinated biphenyls (PCBs), and 

polybrominated diphenyl ethers (PBDEs) (Quensen III et al., 1988; Mohn and Tiedje, 

1992; Cole et al., 1994; Gerritse et al., 1996; Sanford et al., 1996; Holliger et al., 1998; 

Adrian et al., 2000; He et al., 2006; Hiraishi, 2008).  Among these compounds, the 

organic solvents tetrachloroethene (PCE) and trichloroethene (TCE) are suspected 

carcinogens that are found in soil and groundwater due to their extensive usage and 

improper disposal (DiStefano et al., 1991).  The widespread PCE and TCE in the 

subsurface environment have driven intensive studies on anaerobic microbes capable 

of reductive dechlorination of chloroethenes (Smidt and de Vos, 2004).  Over the last 

decade, at least 18 isolates, which belong to the genera of Desulfitobacterium, 

Sulfurospirillum, Desulfomonile, Desulfuromonas, Geobacter, Dehalococcoides, and 

Dehalobacter, show reductive dechlorination of chlorinated ethenes (Smidt and de 

Vos, 2004; Hiraishi, 2008).  In particular, most of these microbes produce cis-1,2-
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dichloroethene (cis-DCE) as the end product in the chloroethene-contaminated sites, 

whereas complete detoxification of PCE or TCE to ethene has been restricted only to 

members of the genus Dehalococcoides.  Thus, the Dehalococcoides species have 

received considerable attention from the bioremediation community in the past decade.   

 Several strains of Dehalococcoides species (e.g., 195, CBDB1, BAV1, and VS) 

have been sequenced for their whole genomes (Kube et al., 2005; Seshadri et al., 

2005).  Their dechlorinating capabilities have also been well addressed through 

identification and quantification of the known chloroethene reductive dehalogenase 

(RDase) genes or expression of specific RDase genes (Holmes et al., 2006; Lee et al., 

2006; Sung et al., 2006a).  In the chloroethene-contaminated sites, the natural 

activities of single or multiple Dehalococcoides strains can lead either to more toxic, 

mobile intermediates (e.g., cis- or trans- DCEs and vinyl chloride [VC]) via partial 

dechlorination of PCE/TCE or to harmless ethene by complete detoxification (He et 

al., 2003b; Griffin et al., 2004; He et al., 2005; Sung et al., 2006a).  Many mixed 

cultures and pure isolates have been reported to produce cis-DCE or VC during 

PCE/TCE dechlorination processes (Smidt and de Vos, 2004; He et al., 2005; Yoshida 

et al., 2007).  However, trans-DCE has been detected in more than one-third of the 

U.S. Environmental Protection Agency (EPA) superfund sites (Agency for Toxic 

Substances and Disease Registry in 2007).  The source of trans-DCE production was 

thought to be an abiotic process, although recently both trans-DCE generation and 

cis- DCE generation was reported to occur via microbial dechlorination.    

 To date, microbes from either Dehalococcoides- or DF-1-containing mixed 

cultures have been reported to produce more trans- than cis-DCE with a ratio of 1.2:1 

to 3.5:1 in the laboratory-scale studies (Griffin et al., 2004; Miller et al., 2005; 

Futamata et al., 2007; Kittelmann and Friedrich, 2008b).  For example, in a recent 
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report by Kittelmann and Friedrich, trans/cis-DCE at a ratio of 3.5:1 was generated in 

tidal flat sediments-containing microcosms with microbes closely related to 

Dehalococcoides sp. or DF-1-like microbes (Kittelmann and Friedrich, 2008b).  

Additionally, Griffin et al. (2004) identified Dehalococcoides species of the Pinellas 

subgroup in several enrichment cultures, which dechlorinated TCE (~ 0.25 mM) to 

trans- DCE and cis- DCE at a ratio of ~ 3:1 (Griffin et al., 2004).  There is no 

information available on the Dehalococcoides isolates that generate trans-DCE as the 

main end product.  This also means a lack of information on the genomic contents of 

trans-DCE-producing bacteria.  Therefore, finding microorganisms that produce 

trans-DCE in pure culture will be useful for the comprehensive characterization of 

this group of bacteria.  

 The aim of this study was to isolate a PCE-to- trans-DCE-dechlorinating culture 

to facilitate the elucidation of trans-DCE formation during reductive dechlorination 

processes.  Microarray analysis was conducted to compare the whole-genome 

contents of the new isolate and the well-characterized Dehalococcoides ethenogenes 

strain 195 (Maymó-Gatell et al., 1997).  Expression analysis of the multiple RDase 

genes of strain MB would help to elucidate how the microbes catalyze dechlorination 

of PCE/TCE to the predominant trans-DCE and thus provide an enzymatic basis of 

trans-DCE production in contaminated sites.  In addition, a coculture which consisted 

of the new isolate and a TCE-to-cis-DCE-to-VC-dechlorinating Dehalococcoides sp. 

strain ANAS1 was explored to study the interaction, distribution, and function of the 

dechlorinators in the dechlorinating process.     
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4.2 Materials and methods 

4.2.1 Chemicals   

 Unless stated otherwise, chemicals were purchased from Sigma-Aldrich at the 

highest purity available.  The DNA extraction kits were obtained from QIAGEN 

(Germany), and the GoldTaq DNA polymerase and related PCR reagents were from 

Applied Biosystems (Foster City, CA).  The TOPO-TA cloning kit (Cat. no. K450001) 

and staining reagents were purchased from Invitrogen (Carlsbad, CA).  

4.2.2 Isolation and growth conditions   

 A trans-DCE producing enrichment culture MB that originated from the 

sediment in San Francisco Bay Area (California) was transferred continuously in 20-

ml glass vials containing 10 ml of mineral salt medium.  Dilution-to-extinction series 

and agar shakes were performed to enrich culture MB in acetate (5mM)-H2 (500, 000 

ppm) - amended mineral salt medium spiked with PCE (in a nominal concentration of 

2 mM) (He et al., 2003b).  During the isolation process, an active culture inoculated 

from a single colony was subsequently subjected to two repeated dilution-to-

extinction series with 100 µg/ml of ampicillin, followed by another seven consecutive 

transfers amended with neat PCE in liquid medium without any antibiotic.   

 After obtaining the new Dehalococcoides species in pure culture, all subsequent 

time course experiments were performed in triplicate with 160-ml serum bottles filled 

with 100 ml growth medium as stated above and with 1-2% inocula.  The following 

halogenated compounds were also tested on the new isolate as electron acceptors: 

chlorinated ethenes (DCE isomers, VC); 1,1-dichloroethane; 1,2-dichloroethane; 

chloroform; carbon tetrachloride; PCBs (Aroclor 1260 and CB-155); 2,4,6-
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trichlorophenol; pentachlorophenol; and PBDEs (octa-BDE mixture, deca-BDE 

mixture,  and penta-BDE mixture).  If the compound was in powder form, it was 

dissolved in either TCE or the inert solvent nonane before being injected into medium 

bottles to a final concentration of 0.1 - 0.2 mM.  Compounds in liquid or gaseous 

forms were added to the medium directly to a final concentration of about 0.2 mM.  In 

addition to the above-mentioned halogenated compounds, the following substrates 

were also tested on this isolate: succinate (10 mM), glucose (10 mM), lactate (5 mM), 

pyruvate (5 to 10 mM), fumarate (5 to 10 mM), malate (10 mM), glutamate (10 mM), 

sulfate (5 to 10 mM), sulfite (0.5 to 5 mM), nitrate (5 to 10 mM), and nitrite (1 to 10 

mM).  The bottles were incubated statically under strict anaerobic conditions in the 

dark at 30ºC. 

 By use of similar isolation approaches, another Dehalococcoides sp. strain 

ANAS1 was isolated from a mixed culture ANAS and was characterized for its 

capability to utilize the above-mentioned compounds (Holmes et al., 2006; West et al., 

2008).   

4.2.3 Atomic force microscope and sample preparation   

 A high resolution atomic force microscope (AFM) was chosen to observe the 

microbes in three dimensions.  Bacterial cells (1 ml) were harvested at the mid-

exponential phase (~1x108 cells ml-1) by centrifugation at 8, 000×g for 5 min at 4 ºC.  

The cell pellets were immersed in a phosphate buffer solution (pH 7.2) containing 2.5% 

glutaldehyde and 2% paraformadehyde for 20 mins and were then rinsed with sterile 

distilled water twice.  The cells were further concentrated to a final volume of 30 µL 

by centrifugation at 8, 000×g for 5 min and a duplicate sample was examined with an 

upright epifluorescene microscope (CLSM, model LSM Pascal, Carl Zeiss) at a 
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magnification of ×1,000 to ensure right range of cell density.  Prior to AFM imaging, 

the cell suspension was manually transferred to a clean 5- by 5- by 1-mm silicon 

wafer with a smooth surface, which had been immersed in 5 M H2SO4 and 10% H2O2 

for 1 h to remove any possible impurity and rinsed with distilled water.  The specimen 

was placed in a sterile petri dish and then dried at 30 ºC for 6 hours in an incubator.   

The petri dish was sealed with parafilm during the transportation before AFM 

examination.  

 Imaging was performed with a Nanoscope III Dimension 3100 AFM (Digital 

Instruments, Santa Barbara, CA) as described previously (Li et al., 2007).  Standard 

silicon AFM cantilevers with a spring constant of 0.15 N/m and a nominal tip radius 

of ~ 20 nm were used to image the cells.  The samples were imaged in air by use of a 

contact mode with settings of 512 pixels per line and 1-Hz scan rate.  The deflection 

images were first order flattened and the contrast was enhanced by use of software 

Nanoscope 5.13 for better resolution.  

4.2.4 Analytical methods   

 Headspace samples of chloroethenes, chloroethanes, and ethene were injected 

manually with a glass gas-tight, luerlock syringe (Hamilton Co., Nevada) into an 

Agilent gas chromatography (GC) 6890N equipped with a flame ionization detector 

and a GS-GasPro column (30m×0.32 mm, J&W Sci, U.S.A), as described previously 

(Lee et al., 2006), whereas PCBs, chlorophenols, and PBDEs were extracted with 

isooctane and tested on the same GC but coupled with an electron capture detector 

(ECD) and an HP-5 column (30 m × 0.32 mm ×  0.25 µm).  For the GC-ECD test 

program, the oven temperature was initially held at 170 oC for 5 min, increased at 5 oC 
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min-1 to 260 oC, and held for 5 min.  Helium was used as the carrier gas with a column 

flow of 1.2 ml min-1.   

4.2.5 DNA extraction, PCR and sequencing   

 Total genomic DNA was extracted from 1 ml of cell pellets of the PCE- or 

TCE-dechlorinating cultures according to the method described previously (Löffler et 

al., 1997b).  The concentration of the nucleic acid was determined by Nanodrop-1000 

instrument (NanoDrop Technologies Inc.).  Nearly complete 16S rRNA gene 

sequences were amplified by targeting the genomic DNA with a universal bacterial 

primer pair (8F and 1541R) while PCR (Eppendorf, Hamburg, Germany) 

amplification was carried out under conditions described previously (Löffler et al., 

2000).  A clone library of the 16S rRNA genes was established with the amplified 

PCR products.  A fragment of approximately 1,489 bp of the 16S rRNA gene was 

cloned, sequenced and aligned as previously described (He et al., 2003a). 

4.2.6 Putative RDase gene identification   

 Genomic DNA of culture MB was used as a template for the amplification of 

putative RDase genes with degenerate primer pair RRF2 and B1R (Krajmalnik-Brown 

et al., 2004).  Subsequently, construction of clone library, screening of major clone 

types, and genome walking were conducted as described previously (Krajmalnik-

Brown et al., 2004).  In brief, 40 clones were selected from the DNA clone library, 

which showed one major RDase gene clone type, named putative RDase gene dceA1.  

As shown in Table 4.1, a pair of gene specific primers (dceA1F and dceA1R) targeting 

the dceA1 gene was designed, and specificity was confirmed by targeting the genomic 
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DNA of the trans-DCE producing culture MB and the non-trans-DCE producing 

cultures such as Dehalococcoides species strains ANAS1 and 195. 

Table 4.1 Taqman primers and probes used to quantify cell numbers in this study.  
 

Target gene 
Primer/ 
probe 

Sequence 
Reference 
or source 

Dehalococcoides 
16S rRNA genes 

DhcF 
5'-GGT AAT ACG TAG GAA GCA 
AGC G 

Holmes et al., 
2006  

DhcR 5'-CCG GTT AAG CCG GGA AAT T 

DhcProbe 
5'-VIC-ACA TCC AAC TTG AAA 
GAC CAC CTA CGC TCA CT-
TAMRA 

Bacteria 16S  
rRNA genes 

BacF1 5’-TCC TAC GGG AGG CAG CAG 

Holmes et al., 
2006 

BacR1 
5’-GGA CTA CCA GGG TAT CTA 
ATC CTG TT 

BacR2 
5’-GGA CTA CCA GAG TAT CTA 
ATT CTG TT 

BacProbe 
5’-FAM-CGT ATT ACC GCG GCT 
GCT GGC AC -TAMRA 

tceA gene 
tceAF 
tceAR 
tceAProbe 

 
5'-ATC CAG ATT ATG ACC CTG 
GTG AA  
5'-GCG GCA TAT ATT AGG GCA 
TCT T 
5'-FAM-TGG GCT ATG GCG ACC 
GCA GG- TAMRA -3’ 
 

Holmes et al., 
2006 

dceA1 gene 

dceA1F 
5’-GGG TAC ACC CGA AGA AAA 
TCT G        

This study dceA1R 
5’-AGC CGC CAA AAA ACC TGA 
T                

dceA1Probe 
5’-FAM-AAA CCT GCC GTA CTG C-
MGB      

 
Note: MGB, minor groove binder. 
 

4.2.7 Quantitative real-time PCR (qPCR)   

 qPCR (ABI 7500 Fast Real-Time PCR system, Foster, CA) assay was 

performed in triplicate for cultures grown with PCE or TCE by using Bacteria and 

Dehalococcoides 16S rRNA gene (Holmes et al., 2006), and dceA1 gene-targeted 

primers/probes, respectively.  The primer and probe sequences used in this study are 
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shown in Table 4.1.  A calibration curve was obtained by using 10-fold serial 

dilutions of plasmid DNA with cloned Bacteria 16S rRNA gene and dceA1 gene 

inserts.  The standard curves spanned a range of 102 to 108 gene copies per µl of 

template DNA.  

 Amplification of the Bacteria 16S rRNA gene, the Dehalococcoides 16S rRNA 

gene, and the dceA1 gene was done at an annealing temperature of 60 ºC for all assays.  

The 9600 Emulation PCR cycle parameters were as follows: 2 min at 50 ºC and 10 

min at 95 ºC, followed by 40 cycles of 15 sec at 95 ºC and 1 min at 60 ºC.  This study 

utilized sterile, nuclease-free water or plasmid pCR 2.1 DNA without an insert as the 

negative control for the RDase gene-targeted primer and probe set.  

 For the cocultures, multiplex qPCR was run with Dehalococcoides 16S rRNA 

gene- and tceA gene- targeted primer and probe sets (VIC-TAMRA probe for 

Dehalococcoides and FAM-TAMRA probe for tceA [TAMRA is 6-

carboxytetrramethylrhodamine and FAM is 6-carboxyfluorescein]).  The tceA gene 

copies represent the cell number of common TCE-to-VC dechlorinators for isolate 

ANAS1 in this study.  The cell numbers of the new isolate were calculated by 

subtracting the number of tceA gene copies from the number of total Dehalococcoides 

gene copies, which were double checked by quantifying the number of putative dceA1 

gene copies identified from this new isolate.   

4.2.8 Microarray analysis   

 The genomic DNA of the new isolate was extracted from actively TCE-to- 

trans-DCE dechlorinating cultures and treated with RNase A immediately after cell 

lysis.  Microarray analysis was conducted in triplicate with 1 µg of genomic DNA per 

array, according to a protocol described previously (Johnson et al., 2008; West et al., 
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2008).  The statistical analysis of the genomic microarray in this study followed the 

method that was described previously for genomic analysis of mixed and pure 

Dehalococcoides cultures (Johnson et al., 2008; West et al., 2008).  In brief, the 

Affymetrix GeneChip software and the MAS5 algorithm were used to calculate the 

hybridization signal intensities from each chip’s scan (Affymetrix, 2001; Liu et al., 

2002).  Prior to comparisons between microarray chips, the data were normalized by 

scaling the signal intensities of the added positive controls to a target signal intensity 

of 2,500 (West et al., 2008).  A gene was considered “present” in a sample if each 

triplicate probe set showed signal intensity greater than the highest signal intensity of 

129 measured for the negative controls and a P value of less than 0.05 (Liu et al., 

2002).  

4.2.9 Nucleotide sequence accession number   

 GenBank accession number EU073964 was assigned to the 16S rRNA gene 

sequence of the isolate designated Dehalococcoides sp. strain MB.  The complete 

sequence of putative RDase gene dceA1 was also deposited in GenBank under 

accession number EU625402. 

4.2.10 RNA extraction and gene expression study   

 When pure culture MB was obtained, transcriptional analysis was conducted to 

find out the functional RDase gene(s) among the seven identified genes (by 

degenerate primer pairs 1 and 2 in Table 4.2) in strain MB on exposure to PCE (Chow 

et al., 2010).  After starving the MB cells for 72 hrs, three parallel cultures were 

spiked with PCE (0.22 mM of each).  Total RNA was extracted from cultures at 
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different time points, followed by reverse transcription and subsequent qPCR with the 

primer pairs designed specifically for the RDase genes (primers 3-9 in Table 4.2). 

 Firstly, total RNA was extracted from the cell pellet of 1.5 ml pure culture MB 

by using the RNeasy extraction kit (QIAGEN GmbH, Hilden, Germany) according to 

the manufacturer’s instructions, except that the tubes holding the cells received 100 l 

of 0.1mm zirconia-silica beads (Biospec Products, Bartlesville, OK, USA) and were 

bead-beaten for 2 min to improve cell lysis.  Reverse transcription was carried out by 

using the two-step reverse transcription-PCR Sensiscript kit (QIAGEN, GmbH, 

Hilden, Germany).  First, the corresponding cDNAs were synthesized by incubating 

20-50 ng of extracted RNA in a 20 l reaction mixture at 37ºC for 3 hrs.   

Table 4.2   Specific primer sequences designed for culture MB RDase genes 

Primer Pair Primers 5’-3’ sequence Gene targeted Tm Size (bp) 

1 
RR2F*  SHMGBMGWGATTTYATGAARR 

RDase genes 48°C 1500 
B1R*  CHADHAGCCAYTCRTACCA 

2 
RDH F1C  TTYMVIGAYITIGAYGA 

 RDase genes 47°C 1200 
RDH R1C  CCIRMRTYIRYIGG 

3 
dceA1F CCGTACTGCCATCAGGTTTT 

dceA1 48°C 556 
dceA1R AAGCCCAAAGGGACAAGAAT 

4 
dceA2F AAGAACCCGTGACAACCAAG 

dceA2 60°C 520 
dceA2R GCAGTTTCCACCCACAAGTT 

5 
dceA3F CTGGTCATCCCCAATGTACC 

dceA3 60°C 528 
dceA3R GCACAGGGGCAGATTGTTAT 

6 
dceA4F TCTCTCCGGTTTTCCATGAC  

dceA4 60°C 545 
dceA4R ATCCTGGGGGTAGAGCATTT 

7 
dceA5F TCCGGACAGCTAATGAATCC 

dceA5 60°C 590 
dceA5R TGAATTAAGTGCGGGGGTAG 

8 
dceA6F (mbrAF) CCTGTAAACGACTCCCCAGA 

dceA6 (mbrA) 60°C 427 
dceA6R (mbrAR) GGATTGGATTAGCCAGCGTA 

9 
dceA7F GGATATCATGGTCCCACCAG 

dceA7 60°C 148 
dceA7R TTCAGCACAACCAGAGATGC 

* Primers from Krajmalnik-Brown et al., 2004. 

 Secondly, gene expression analysis of the seven identified RDases in strain MB 

was conducted on an ABI 7500 fast quantitative real-time PCR (qPCR) (Applied 
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Biosystems, Foster City, CA, USA) by using SYBR green assays and their respective 

primers (primer pairs 3 to 9) (Table 4.2).  Luciferase control RNA (Promega, Madison, 

WI, USA) was added as an internal reference transcript for mRNA losses during RNA 

isolation, reverse transcription, and quantification (Johnson et al., 2005a) and rpoB 

was included in this study as a housekeeping gene (a positive control) for all qPCR 

assays.  The housekeeping gene, rpoB, was chosen to serve as an indicator of the 

basal metabolic activity of the bacterial cells because it is highly conserved among 

Dehalococcoides spp.  The transcriptional levels of RDase genes were normalized 

against the housekeeping gene, rpoB, before comparing with their respective   

Dehalococcoides 16S rRNA gene copies.  SYBR green dye bounds to all amplified 

double stranded DNA during qPCR reactions and the fluorescently tagged DNA in 

turn would be detected by the qPCR system.  The specificity of such an assay was 

ensured by the use of the stringent HotStar Taq DNA polymerase (QIAGEN GmbH) 

as well as the inclusion of a melt curve analysis at the end of the entire amplification 

process.  Reactions were performed in 20-µl volumes containing 10 µl of QuantiTect 

SYBR green PCR master mix (QIAGEN GmbH, Hilden, Germany), 1.2 µl of each 

primer (5 pmol µl-1), 6.6 µl of distilled water, and 1 µl of template DNA or cDNA.  

The thermocycling program was as follows: an initial step of 15 min at 95°C, 

followed by 40 cycles of 15 s at 94°C and 30 s at 55 to 59°C depending on the primer 

annealing temperature (Table 4.2), and then 30 s at 72°C.  Fluorescence data were 

collected after each elongation step.  To create qPCR standard curves, PCR products 

of individual genes amplified with the individual primers were ligated into the 

pCR2.1 vector (Invitrogen, Carlsbad, CA, USA), and were transformed into 

Escherichia coli TOP10 chemically competent cells (Invitrogen, Carlsbad, CA, USA).  

The plasmids were obtained by using the QIAprep Spin Miniprep kit (QIAGEN 
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GmbH, Hilden, Germany).  A calibration curve was obtained by using serial dilutions 

of known plasmid DNA concentrations.  The qPCR experiments were carried out in 

triplicate along with appropriate controls (reference luciferase mRNA and 

housekeeping rpoB controls). 

4.3 Results 

4.3.1 Isolation of Dehalococcoides sp. strain MB   

 A PCE-dechlorinating, mixed-culture MB was initially obtained to be able to 

generate trans- and cis- DCEs at a ratio of 1.5:1 in mineral salt medium amended with 

lactate.  Dehalococcoides species was detected by species-specific primer pairs and 

found to be the main PCE-dechlorinator, which usually requires acetate as the carbon 

source and H2 as the electron donor.  In subsequent serial dilutions, lactate was 

replaced with acetate (5 mM)-H2 (500, 000 ppm) in order to enrich the potential 

trans-DCE generating Dehalococcoides.  In the meantime, ampicillin (50 mg/L) was 

applied to inhibit the growth of ampicillin-sensitive bacteria while keeping the 

ampicillin-resistant Dehalococcoides species.  After 22 transfers, the ratio of trans- to 

cis- DCE elevated to 3.7:1, suggesting that there were fewer cis-DCE producing 

microbe(s) in the enrichment.  With the dilution-to-extinction strategy, 20 single 

colonies in agar shakes were picked and then transferred to liquid medium.  Three out 

of the 20 colonies were found to be able to dechlorinate PCE and TCE in the presence 

of ampicillin.  The one that showed the highest ratio of trans- to cis- DCE (5.3:1) was 

subjected to the same isolation approach as described above.  Eventually, a pure 

culture, which was capable of generating trans- to cis- DCE in a ratio of 7.3 (± 0.4) : 

1 and dechlorinating PCE twice as fast as the initial microcosms, was obtained.  A 

clone library established with the 16S rRNA genes of culture MB yielded identical 
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restriction patterns for the 72 clones after digesting with three enzymes, HhaI, RsaI 

and MspI, indicating that the culture became pure. The 16S rRNA genes amplified 

from genomic DNA of culture MB exhibited a sequence identical to that of D. 

ethenogenes strain 195.  The experimental restriction patterns were exactly the same 

as the predicted restriction patterns based on the 16S rRNA gene sequence.  The new 

isolate was then designated Dehalococcoides sp. strain MB.   

4.3.2 Morphological characteristics of strain MB   

  Light microscopy demonstrated that strain MB is a disc-shaped, nonmotile 

bacterium.  Under the AFM, the cells appeared as single or in pairs (Fig 4.1a).  The 

images of a single cell repeatedly show a diameter of 1.0 µm, a maximum height of 

158 nm, and a surface area of 1.9 µm2 (Fig 4.1).   The diameter of strain MB (~ 1.0 

µm) is slightly larger than that of the previously reported Dehalococcoides species ( 

0.5 - 0.7 µm); while the thickness was less (He et al., 2005).  Compared to results 

obtained with scanning electron microscopy, this discrepancy in cell size may be 

caused by the tight affinity of cells to the silicon wafer used for AFM imaging. The 

extra material around the surface of the cell may be the macromolecules from the 

lysed cells. 
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Fig 4.1 AFM examination of Dehalococcoides sp. strain MB. (a) Overview of cells; 
(b) Deflection image of the single cell shown in the middle panel of image (a); (c and 
d) Section analysis of the cell shown at the top of panel (a). 
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 4.3.3 Growth and purity confirmed by qPCR   

Dehalococcoides sp. strain MB dechlorinated PCE and TCE to predominantly 

trans-DCE with average rates of 44.5 and 78.6 µmol liter-1 day-1, respectively (Fig 4. 

2a and b).  After consuming ~ 50 μmol of PCE (0.5 μmol mL-1 of nominal 

concentration), culture MB reached a density of (10.0±0.16)×107 cells mL-1 (reflected 

by the Dehalococcoides 16S rRNA gene copies, since one cell contains one 16S 

rRNA gene copy on the genomic DNA), whereas it increased to (3.09±0.07)×107 cells 

mL-1 of 16S rRNA gene when it dechlorinated ~55 μmol of TCE (0.55 μmol mL-1 of 

nominal concentration) (Fig 4.2c and d).  The qPCR results showed that MB could 

capture energy for growth from both PCE-to-TCE and TCE-to-DCE dechlorination 

steps, suggesting that isolate MB was capable of dechlorinating both PCE and TCE 

metabolically.  There was no obvious growth inhibition on isolate MB when the 

concentration of PCE increased up to 200 μmol per bottle.  No growth was found for 

isolate MB in the absence of PCE or TCE, and no dechlorination products were 

detected during abiotic incubation with PCE or TCE within the experimental period.  

 Under optimal anaerobic conditions (pH 7.2, temperature 30  2ºC), strain MB 

showed a doubling time of ~ 24 hours, which coincides with the growth rates of other 

known Dehalococcoides isolates (He et al., 2007a).  Table 4.3 shows a comparison of 

the growth rates of current known Dehalococcoides species.  Strain MB yielded 0.12 

mg of protein per mol of chloride released, which was comparable to the rates for 

other Dehalococcoides sp. isolates (e.g. strain 195, FL2, and BAV1) but was much 

lower than the rates for the highly enriched culture VS and mixture culture KB1.  

 It is noteworthy that isolate MB consistently produced 6.3 μmol of cis-DCE 

after dechlorinating ~ 50 μmol of PCE or TCE.  To further corroborate culture MB’s 
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purity, qPCR assays were performed by using three sets of primer and probe pairs to 

target the genomic DNA of culture MB (Table 4.1).  One of the primer and probe sets 

was designed to target the dceA1 gene identified in culture MB.  The translated amino 

acid of dceA1 gene sequence exhibited a 97%, 93%, 64% and 58% identities when 

compared with the putative RDases of Dehalococcoides sp. strains VS, CBDB1, 195, 

and BAV1, respectively.  The specificity of the primer and probe set targeting dceA1 

gene was verified by obtaining a positive response with the trans-DCE-producing 

culture MB but negative responses on the non-trans-DCE-producing cultures (such as 

strains ANAS1 and 195), indicating the uniqueness of the dceA1 gene primer and 

probe set.  As observed with the qPCR results (Fig 4.2d), the increase in total bacterial 

cell numbers (measured as Bacteria 16S rRNA gene copies) appeared to be the same 

as that for the Dehalococcoides cells (measured as Dehalococcoides 16S rRNA 

genes), suggesting that the community of culture MB consisted of only one genus, 

Dehalococcoides.  Additionally, the increase in dceA1 gene copies identified for 

culture MB was found to be identical to the increase in Dehalococcoides cells, 

indicating that culture MB consisted of a single strain of the Dehalococcoides species.  

In contrast, the enrichment culture MB (with a trans-/cis- DCE ratio of 3.7 :1) 

contained ~ 35% of Dehalococcoides sp. strain MB (equal copies of Dehalococcoides 

and dceA1 gene), indicating that the presence of other genera of dechlorinator(s) may 

have contributed to the production of cis-DCE.  In all, we can conclude that a pure 

culture of Dehalococcoides sp. strain MB was obtained to dechlorinate PCE/TCE to 

predominantly trans-DCE.  
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Fig 4.2 Reductive dechlorination of PCE (a) and TCE (b) to trans-DCE by 
Dehalococcoides sp. strain MB, and the increase in different gene copies as quantified 
by qPCR during reductive dechlorination of PCE (c) and TCE (d).  Error bars indicate 
standard deviations.  d, days. 

Table 4.3 Comparison of the growth rates of known Dehalococcoides species 

Strain (substrate) 
Yield 

References 16S rRNA gene 
copies/µmol Cl- 

g (dry wt)/  
mol of Cl- 

VS* (5.2±1.5)×108 2.2±0.6 Cupples et al. 2003 
BAV1 (1.67±0.03)×108 0.35±0.01 He et al. 2007 

KB-1/VC* (5.6±1.4)×108 2.4±0.6 
Duhamel et al. 
2004 

GT (TCE) (3.1±0.2)×108 0.65±0.05 Sung et al. 2006 
FL2 (TCE) (7.8±0.9)×107 0.16±0.02 He et al. 2005 

CBDB1 
(hexachlorobenzene) 

- 2.1±0.24 
Jayachandran et al. 
2003 

195 (TCE) (1.18±0.02)×108 0.25±0.003 He et al. 2007 
MB (TCE) (5.62±0.13)×107 0.12±0.01 This study 
ANAS1 (TCE) (3.18±0.04)×108 0.67±0.03 This study 

*  mixed culture 

4.3.4 Metabolism of Dehalococcoides sp. strain MB   

 Among the potential electron acceptors tested, only PCE and TCE supported the 

growth of MB within the experimental period.  They could not be replaced by DCE 

isomers; VC; 1,1-dichloroethane; 1,2-dichloroethane; chloroform; carbon 

tetrachloride; PCBs (Aroclor 1260 and CB-155); 2,4,6-trichlorophenol; 

pentachlorophenol; PBDEs dissolved in solvent nonane; sulfate; sulfite; nitrate; and 

nitrite.  Similarly to strain 195, strain MB could cometabolize only octa-BDEs (0.2 

mM) to penta- and tetra-BDE congeners in the presence of TCE (0.5 mM) (He et al., 

2006).  Isolate MB could not use fumarate, malate, lactate, pyruvate, glucose, 

succinate, or glutamate as the carbon source for anaerobic growth.  No growth 

occurred if this culture was transferred to anaerobic medium fed with PCE or TCE but 

without H2.  Therefore, isolate MB depends strictly on energy from the reductive 
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dechlorination of PCE/TCE by coupling to electron transport phosphorylation, with 

acetate as the carbon source, H2 as the electron donor.    

4.3.5 Microarray analysis on genomic DNA of strain MB   

 Dehalococcoides sp. strain MB shared 100% 16S rRNA gene sequence identity 

with strain 195.  Therefore, a microarray analysis on genomic DNA of strain MB was 

performed on microarray chips with probes designed to cover >99% of the predicted 

protein-coding sequences of the strain 195 genome (Seshadri et al., 2005; West et al., 

2008).   

 Of the 1,579 probe sets on the microarray, the genomic DNA of isolate MB 

hybridized to 1,389 (88.0%), suggesting that genes are highly conserved between 

strains 195 and MB.  Among the 19 RDase genes of strain 195, 10 genes were present 

in strain MB while 9 genes were designated absent due to the signal intensity criterion 

(Fig 4.3).   

 It is not surprising that MB’s genomic DNA did not hybridize to probes 

targeting the pceA gene (DET0318) or the tceA gene (DET0079), which functions for 

PCE and TCE dechlorination to cis-DCE and VC.  In the absence of these two RDase 

genes (confirmed further by gene-specific primers with PCR), isolate MB has 

consistently been maintained to dechlorinate both PCE and TCE to trans-DCE 

predominantly, indicating that a novel RDase gene(s) is responsible for the 

dechlorination process in isolate MB.  Additionally, strains MB and CBDB1 showed 

the closest match with the 19 RDase genes of strain 195, while the other strain of the 

Pinellas subgroup (e.g., BAV1) matched only 3 of the 19 genes (Fig 4.3).  It is 

apparent that both RDase genes of DET0180 and DET1535 were found to be present 

among multiple strains of Dehalococcoides; however, DET1528 was present in 
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strains 195 and MB only.  The microarray data were highly consistent for triplicate 

arrays containing DNA from a single sample. 
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Fig 4.3 Comparison of the RDase genes from D. ethenogenes strain 195 with those 
from different Dehalococcoides species.  A filled square indicates the presence of the 
RDase genes, whereas an open square indicates the absence of the gene.  The results 
for ANAS (West et al., 2008) and MB are based on genomic DNA comparison 
through microarray analysis, while the rest are based on amino acid similarity through 
BLASTP.  The gene is considered present if the relevant amino acid has more than 85% 
similarity.  
  
 Besides the RDase genes, strain MB possesses 26.3% of the ~ 22-kb putative 

integrated elements (IEs), the mobile genetic elements (MGEs) present in the genome 

of strain 195 (Regeard et al., 2005; Seshadri et al., 2005) (see Table 4.4).  Three entire 

regions (II, V and the prophage-like region VII) of the IEs were missing from strain 

MB.  The tceA gene is located in the first region of IEs of strain 195 but is absent in 

strain MB, indicating that strain MB may have acquired novel gene(s) to dechlorinate 

PCE and TCE.  Out of the 17 phage-related genes in the whole genome of strain 195, 

only two (DET0354 and DET0539) were detected in the strain MB genome.  As 
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shown in Table 4.5, these two genes were situated outside of the IEs in the D. 

ethenogenes 195 genome.  In addition to the RDase genes and MGEs, strain MB 

demonstrated a wide-ranging identity with putative housekeeping genes of strain 195.  

For instance, the microarray results suggested that MB could also have the capability 

to fix nitrogen by possessing a nitrogenase-encoding operon (nifHI1I2DKENB, 

DET1151 to DET1158) and a distal gene, nifV (DET1614), which encodes 

homocitrate synthetase used in nitrogenase FeMo cofactor biosynthesis.  Gene 

DET1184 encoding a biotin transporter in strain 195, was also found in strain MB, 

suggesting that these two strains may share similar biotin transport mechanism.   

 

Table 4.4  Detection of integrated elements (IEs) from Dehalococcoides ethenogenes 
strain 195 in isolate MB 

IEs Locus tags 
Genes in strain 

195 

Genes present 

in strain MB 

Presence of genes in MB 

as a percentage of IE 

I DET0063-0091 29 7 24.1% 

II DET0155-0169 15 0 0.0% 

III DET0251-0272 22 12 54.5% 

IV DET0273-0295 23 13 56.5% 

V DET0875-0883 9 0 0.0% 

VI DET0884-0905 22  12 54.5% 

VII DET1066-1118 53 0 0.0% 

VIII DET1472-1478 7 1 14.3% 

IX DET1552-1561 10 5 50.0% 

 
 
Note: A gene considered as present has to have a P-value of all triplicates less than 
0.05 and an average signal intensity of triplicate higher than 129, which is the highest 
signal obtained from a negative control. Compared to the 190 genes located in the 
integrated elements (IEs) of strain 195, about 50 genes (26.3%) were considered to be 
present in strain MB.  Note that there is a triplicate region (III, IV and VI) in the IEs 
of strain 195. 
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Table 4.5 Detection of phage-related genes from D. ethenogenes strain 195 in 
Dehalococcoides sp. strain MB 

No. IEs 
Phage-
related 
genes 

Presencea of 
gene in 
strains 

Remark 

195 MB 
1 I DET0064 + - Virulence-related protein 
2 I DET0072 + - Phage/plasmid DNA primase 

3 II DET0157 + - 
Site-specific recombinase, phage 
integrase family 

4 III DET0272 + - 
Site-specific recombinase, phage 
integrase family 

5 IV DET0295 + - 
Site-specific recombinase, phage 
integrase family 

6 - DET0323 + - 
Site-specific recombinase, phage 
integrase family 

7 - DET0354 + + Phage domain protein 

8 - DET0539 + + 
dnaD/phage-associated domain 
protein 

9 V DET0883 + - 
Site-specific recombinase, phage 
integrase family 

10 VI DET0905 + - 
Site-specific recombinase, phage 
integrase family 

11 VII DET1067 + - 
Site-specific recombinase, phage 
integrase family 

12 VII DET1068 + - 
Site-specific recombinase, phage 
integrase family 

13 VII DET1069 + - 
Site-specific recombinase, phage 
integrase family 

14 VII DET1089 + - Virulence-related protein 
15 VII DET1091 + - Virulence-related protein 
16 VII DET1098 + - Virulence-associated protein 

17 VIII DET1474 + - 
Site-specific recombinase, phage 
integrase family 

Note: a +, gene was present; -, gene was absent. 
 

4.3.6 Dechlorination of TCE to trans-/cis-DCEs by a coculture   

 After the first trans-DCE producing Dehalococcoides sp. strain MB was 

obtained, it was mixed with a cis-DCE producing isolate, Dehalococcoides sp. strain 

ANAS1, to elucidate their interactions in terms of dechlorination products and cell 

growth, since multiple Dehalococcoides species commonly co-exist in chloroethene-
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contaminated sites.  Similarly to strain MB, isolate ANAS1 utilizes acetate as the 

carbon source and H2 as the electron donor, instead of other carbon sources or 

electron donors, such as pyruvate, lactate, sulfate, or nitrate etc.  Among all of the 

halogenated compounds tested for strain MB, strain ANAS1 was able to dechlorinate 

TCE, 1,1-DCE, cis-DCE to VC but not PCE or trans-DCE.  The dechlorination of VC 

by this strain occurred slowly, maybe by a co-metabolic process.  Within 7 days, 

ANAS1 dechlorinated 55 µmols of TCE to VC, accompanied by an increase in cells 

from 2.6 × 106 to 3.57 × 108 cells ml-1.  With different inoculation ratios (MB: 

ANAS1 at 4:1, 1:1, and 1:4), it is surprising to observe that the formation of trans- 

/cis- DCE ratios did not correspond to the same ratios of initial biomass for MB and 

ANAS1.  Although the initial total cell masses were similar among these three sets of 

experiment, the MB-ANAS1 4:1 coculture produced the largest amount of trans-/cis-

DCE at a ratio of ~ 1:1 (Fig 4.4a), while MB-ANAS1 1:1 coculture showed a 16.7% 

higher dechlorination rate and a trans-/ cis- DCE generation ratio of 1:4 (Fig 4.4c).  

The dechlorination profile of MB-ANAS1 1:4 coculture  was similar to that for the 

control bottle inoculated with ANAS1 alone, with only negligible amount of trans-

DCE production (Fig 4.4e), suggesting that culture MB failed to compete with 

ANAS1 during the dechlorination of TCE.   

 Simultaneously, the cells for each isolate in the coculture were quantified as 

shown in Fig 4.4b, d, and f.  For MB-ANAS1 4:1 coculture, the initial cell numbers 

for MB and ANAS1 were 1.24 × 107 and 3.1 × 106 cells  ml-1, respectively.  On day 6, 

the cell numbers for MB and ANAS1 increased to 4.67 × 108 and 2.70 × 108 cells·ml-1 

but with the cell ratio decreased from the initial 4 : 1 to a final ratio of 1.7 : 1.  In 

comparison, the cells in the control bottle inoculated with MB alone (1.08 × 107 

cells·ml-1) increased to 8.09× 108 cells·ml-1.  Similarly, the cells for the MB-ANAS1  



120 

 

Time (d)
0 1 2 3 4 5 6 7G

ro
w

th
 o

f 
in

d
iv

id
u

al
 i

so
la

te
 L

o
g

 (
g

en
e 

co
p

ie
s/

m
l)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

MB
ANAS1

b 

Time (d)
0 2 4 6 8 10 12 14

C
h

lo
ro

et
h

en
es

 a
n

d
 

E
T

H
 (
m

o
l/b

o
tt

le
)

0

10

20

30

40

50

60
TCE 

trans-DCE 

cis-DCE 

VC

Ethene 

a 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (d)
0 2 4 6 8 10 12 14

C
h

lo
ro

et
h

en
es

 a
n

d
 

E
T

H
 (
m

o
l/b

o
tt

le
)

0

10

20

30

40

50

60

TCE 

trans-DCE 

cis-DCE 

VC

Ethene 

c 

Time (d)
0 1 2 3 4 5 6 7G

ro
w

th
 o

f 
in

d
iv

id
u

al
 is

o
la

te
 L

o
g

 (
g

en
e 

co
p

ie
s/

m
l)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

MB
ANAS1

d 



122 

 

Time (d)
0 1 2 3 4 5 6 7G

ro
w

th
 o

f 
in

d
iv

id
u

al
 i

so
la

te
 L

o
g

 (
g

en
e 

co
p

ie
s/

m
l)

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

MB
ANAS1

f 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Time (d)
0 2 4 6 8 10 12 14

C
h

lo
ro

et
h

en
es

 a
n

d
 

E
T

H
 (
m

o
l/b

o
tt

le
)

0

10

20

30

40

50

60

TCE 

cis-DCE 

VC

Ethene 

e 



123 

 

Fig 4.4 Dechlorination of TCE and increase in cell growth as determined by qPCR 
from cocultures consisting of Dehalococcoides sp. strain MB and ANAS1.  (A and B) 
MB-ANAS1  4:1; (C and D) MB-ANAS1 1:1; (E and F) MB-ANAS1 1:4.  Error bars 
indicate standard deviations. d, days.  ETH, ethene. 

1:1 coculture reached the maximal numbers of 2.1 × 108 and 3.9 × 108 cells·ml-1 for 

MB and ANAS1, respectively, on day 6, accompanied by a change in the ratio of MB 

to ANAS1 cells from the initial ratio of 1:1 to a final ratio of 1:2.  Therefore, the 

growth rate of ANAS1 was at least as twice as that of MB.  As for coculture of MB-

ANAS1 1:4 coculture, the number of MB cells was increased just slightly from 3.1 × 

106  to 6.2 × 106  cells·ml-1.  However, the ANAS1 cells measured as tceA gene copies 

increased significantly from 3.0×106 to 4.0×108  cells·ml-1 on day 7. 

4.3.7 Reverse transcriptional analysis of RDase genes in strain MB  

 After isolation of culture MB, Chow et al. (2010) identified seven RDase genes 

at DNA level in strain MB through degenerate primers but three of them are also 

identified by microarray analysis.  However, the transcription of DNA to copies of 

mRNA might not occur for all these seven genes.  Therefore, transcriptional analysis 

was conducted to find out which gene among the seven identified ones might be 

responsible for dechlorinating PCE to trans-DCE by the new isolate MB.  At time 

zero, negligible amounts of cDNAs were detected by qPCR.  After 72 h, dceA6 and 

dceA7 genes expressed eight- and fivefold, whereas dceA6 gene reached its highest 

expression of 10- fold when compared with the 16S rRNA gene copy numbers at 120 

h (Fig 4.5).  The expressions of the other five identified RDase genes remained 

relatively low (less than twofold augmentation of gene copies) when compared with 

the 16S rRNA gene copies, suggesting little or no upregulation of the respective 

RDase genes.  However, the gel picture of PCR showed positive bands when the 
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genomic DNA of culture MB was targeted with the gene specific primers, suggesting 

that these five genes were present in the genome of MB but were not expressing.  

Furthermore, the extracted RNA samples were not contaminated with genomic DNA, 

as confirmed by no visible amplicons from amplification of RNA samples with the 

seven RDase gene-specific primers.  Therefore, two (dceA6 and dceA7) out of the 

seven identified RDase genes are actively expressing in strain MB when fed with 

PCE.  The RDase gene (dceA6) with highest expression in strain MB also presented in  

 

Fig 4.5 Expression profiles of the potential trans-DCE-producing RDase genes in 
Dehalococcoides sp. MB when fed with PCE. Transcripts corresponding to dceA6 and 
dceA7 are preferentially expressed.  
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five other trans-DCE-producing microcosms from various locations by gene-specific 

primer.  This result together with the high exression rofile suggests the potential role 

of dceA6 in distinguishing trans-DCE producing cultures from dechlorinating cultures 

generating negligible amount of trans-DCE.  The RDase gene dceA6 (also named as 

mbrA gene) may serve as a potential biomarker for trans-DCE production at those 

chloroethene-contaminated sites.    

4.4 Discussion and conclusion 

 Chloroethenes are common organic pollutants that have contaminated the 

groundwater for over half century.  In this study, a novel PCE-to-trans-DCE 

dechlorinating bacterium (Dehalococcoides sp. strain MB) was isolated, and it 

distinguished itself from other dechlorinators by generating predominantly trans-DCE.  

The purity of culture MB was confirmed by (i) a uniform morphology, (ii) a lack of 

fermentative microbes, and (iii) equal number of cells in the culture measured by 

targeting 16S rRNA genes and specific putative RDase gene (dceA1 gene).  Prior to 

the isolation of strain MB, other chloroethene-dechlorinating isolates (Table 4.3) 

within the genus Dehalococcoides were characterized to generate VC or ethene via 

predominantly cis-DCE but negligible amounts of trans-DCE (Maymó-Gatell et al., 

1997; He et al., 2005; Sung et al., 2006a).  

 Strain MB belongs to the Cornell subgroup of Dehalococcoides as it has the 

same 16S rRNA gene sequence as strain 195.  Other similarities include cell 

morphology, and a common carbon source (acetate) and electron donor (H2).  These 

two isolates also demonstrate the capability of debrominating the commercial octa-

BDE mixture to penta-/tetra-BDEs in the presence of TCE.  The diverse substrate 

range for Dehalococcoides isolates can be explained by their possession of different 
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RDase genes (e.g., pceA, tceA, bvcA, vcrA and cbrA), which are able to catalyze 

specific reductive dehalogenation processes (Krajmalnik-Brown et al., 2004; Müller 

et al., 2004; Smidt and de Vos, 2004; Adrian et al., 2007a).  However, the above-

identified genes are not responsible for trans-DCE production and are not detected in 

strain MB.  Therefore, identification of the key enzymes involved in trans-DCE 

production is desirable for in-depth understanding of the mechanism.  

 Isolate MB exhibited the highest trans-/cis-DCE generation ratio ([7.3 ± 0.4] : 

1),  compared to previous reports on trans-DCE producing mixed cultures (Griffin et 

al., 2004; Miller et al., 2005; Futamata et al., 2007; Kittelmann and Friedrich, 2008b).  

During the enrichment process, ampicillin played an important role in increasing the 

ratio of trans- to cis-DCE by inhibiting other cis-DCE producing dechlorinators.  The 

lower ratios of trans-DCE to cis-DCE commonly observed in the contaminated sites 

could be a result of the coexistence of MB-like Dehalococcoides isolates and other 

cis-DCE generating microbes, e.g. Desulfuromonas or other Dehalococcoides isolates.  

This can be seen from the coculture of strain MB and ANAS1.  It is interesting to note 

that the cell growth rate for strain ANAS1 is twice as high as that for strain MB when 

they coexist, though the specific dechlorination activities of individual cells are the 

same for both strains.  This can be explained by the fact that strain ANAS1 consumes 

twice the number of electrons from two dechlorination steps as does strain MB from 

one dechlorination step, though the free energies per electron are nearly the same for 

both strains.  The same explanation may also apply to the difficulty in cultivating 

trans-DCE-producing microbes in pure culture.  More MB-like isolates are needed in 

order to make a conclusive statement that cis-DCE-producing microbes outcompete 

trans-DCE producing microbes.  Fortunately, the absence of other cis-DCE producing 

Dehalococcoides species in the MB mixed culture facilitated the isolation of strain 
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MB in pure culture, since trans-/cis-DCEs were the endpoints of the stepwise 

reductive dechlorination of PCE in mixed-culture MB.  In addition, until now, no 

Dehalococcoides species have been found to stop chloroethene dechlorination at only 

cis-DCE.  Thus, this study suggests that competition among different dechlorinators 

determines the fate of chloroethenes at the contaminated sites.   

 The application of microarrays to query the genome of pure cultures has given 

us an in-depth understanding of the putative RDase genes of isolate MB.  The 

genomic content derived from a microarray based on strain 195, without complete 

genome sequencing, provides an insight into this new strain’s complex nutrient 

requirements and its commitment to the dehalorespiratory process.  Isolate MB 

possesses 88% of the genes found in strain 195, indicating their close connection.  

The close RDase gene match explains the capability of strains 195, MB, and CBDB1 

to dehalogenate aromatic halogenated compounds.  To date, more than 90 RDase 

genes have been identified in the five Dehalococcoides isolates, many of which exist 

in more than one Dehalococcoides sp. strain (Morris et al., 2007).  For example, both 

RDase genes DET0180 and DET1535 are present among multiple strains of 

Dehalococcoides; however, DET1528 is present in strains 195 and MB only.  

Correspondingly, the inability of strain MB to dechlorinate DCEs might be due to the 

absence of the four genes, DET0079, DET0162, DET0876 and DET1559 (located in 

IEs I, II, V and IX, respectively), which may define an organism’s ability to 

dechlorinate TCE past DCEs, based on strain 195 (Seshadri et al., 2005).  

Additionally, isolate MB shows a lack of large proportions of genes found in D. 

ethenogenes strain 195, such as IEs (73.7% absent) and the phage-related genes, 

indicating a high level of variation in the MGEs.  This is consistent with the 

microarray study conducted for the enrichment culture ANAS (88% absent) (West et 
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al., 2008).  Additional sequence information about strain MB is needed for a better 

understanding the dynamics of MGE acquisition and maintenance, as well as the 

related plasmid or phage families.  Isolation of strain MB will fill the gap regarding 

trans-DCE-producing genes and add new information to the RDase gene library.  The 

mbrA RDase gene (dceA6) highly expressed on exposure to PCE is suggested to be 

involved in the reductive dechlorination of PCE/TCE to the major end product trans-

DCE, corroborated by its wide distribution in other trans-DCE producing cultures.  

However, more in-depth study through proteomic analysis may be needed to enhace 

our understanding about its direct role in generating trans-DCE by MB-like culture. 

 In all, a novel Dehalococcoides species strain MB was isolated and grown in a 

defined medium by dechlorinating PCE to trans-DCE predominantly.  Obtaining this 

new isolate could provide insights into the source of trans-DCE and increase our 

understanding of the diversity, specificity, and evolution of the genus 

Dehalococcoides, which will contribute to the implementation of a bioremediation 

strategy.   
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Chapter V Rapid Detoxification of Trichloroethene by a New 

Isolate Dehalococcoides Species Strain 11a  

and Its Potential Application to Remediate  

Chloroethene-Contaminated Groundwater 

 

 Efforts to remediate chloroethenes, such as tetrachloroethene (PCE) and 

trichloroethene (TCE) often result in the accumulation of dichloroethenes (DCEs) or 

vinyl chloride (VC) in the anoxic subsurface.  Although Dehalococcoides spp. can 

convert TCE, 1,1-DCE, cis-DCE, and VC to ethene, those that can detoxify both TCE 

and trans-DCE completely to ethene still remain elusive.  Finding an effective and 

energy-conserving technology that helps to dechlorinate all the DCEs and VC is thus 

an important research discipline in environmental engineering.  In this study, two 

novel strains were obtained from industrial sludge.  The first isolate, Dehalococcoides 

sp. strain 11a5 could only transform TCE and all three DCE isomers to VC 

metabolically.  The second isolate, Dehalococcoides sp. strain 11a, rapidly 

dechlorinated TCE, 1,1-DCE, trans-DCE, cis-DCE, VC, and 1,2-DCA metabolically 

to ethene with an average dechlorination rate of 53.1, 22.5, 21.6, 24.8, 86.5, and 16.7 

µmol L-1 day-1, respectively.  Strain 11a can also co-metabolically dechlorinate PCE 

to TCE, which is subsequently converted to ethene via a metabolic process.  Strain 

11a shares 100% 16S rRNA gene sequence identity with the first VC-dechlorinating 

isolate Dehalococcoides sp. strain BAV1, but differs in the reductive dehalogenases 

used (VcrA for 11a and BvcA for BAV1).  The vcrA gene of culture 11a also shows a 

difference of nine and ten base pairs (bp) from strain ANAS2 and VS, respectively. 
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As compared with previous dechlorinators (e.g., strain GT and ANAS2), strain 11a is 

the fastest one till date, particularly 3-folds higher for VC dechlorination rates, 

catalyzed by the newly discovered VcrA RDase.  Most importantly, complete 

detoxification of PCE to ethene in contaminated groundwater was achieved within 10 

days by co-culturing strain 11a with another PCE-to-cis-DCE dechlorinating bacteria, 

Sulfurospirillum multivorans.  This study indicates that there are other vcrA-

containing Dehalococcoides strains that have not been successfully targeted 

previously but were actively involved in remediation of TCE-contaminated sites.  It 

also shows strain 11a’s potential application in industries where bioremediation of 

chloroethene-contaminated sites is needed.   

5.1 Introduction 

Chloroethenes, such as tetrachloroethene (PCE) and trichloroethene (TCE) 

and their transformed products remain a global threat to groundwater due to their 

potential carcinogenic effect and persistence in the environment (Smidt and de Vos, 

2004; Bhatt et al., 2007).  Natural attenuation of PCE and TCE typically results in 

partial dechlorination, leading to the accumulation of cis-1,2-dichloroethene (cis-DCE) 

or vinyl chloride (VC, a proven carcinogen) in the groundwater (Taş et al., 2009a).  

Dehalogenating anaerobes at these chloroethene-contaminated sites have therefore 

been well characterized and identified (Maymó-Gatell et al., 1997; Cupples et al., 

2003, 2004; Duhamel et al., 2004; Smidt and de Vos, 2004; Bhatt et al., 2007; Fung et 

al., 2007; Futamata et al., 2007; Behrens et al., 2008; Lee et al., 2008; Taş et al., 

2009a).  However, the production of 1,1-DCE (Zhang et al., 2006), and the prevalence 

of trans-DCE (ATSDR., 2007) have also been observed at several chloroethene-
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contaminated sites as the main intermediates.  Toxic levels of 1,1-DCE (2,000 μg L-1) 

and trans-DCE (18,000 μg L-1) are also detected at several chloroethene-contaminated  

sites, possibly generated through the microbial reductive dechlorination process (e.g., 

Dehalococcoides, bacteria capable of reductive dechlorination of PCE and TCE) 

(Benson, 2003; Löffler et al., 1997b; Griffin et al., 2004; Miller et al., 2005; Zhang et 

al., 2006; ATSDR, 2007; Futamata et al., 2007; Kittelmann and Friedrich, 2008a, b; 

Cheng and He, 2009; Cheng et al., 2010; Chow et al., 2010; Macro-Urrea et al., 2011).  

For instance, strains MB and CBDB1 belonging to genus of Dehalococcoides have 

been reported to be able to dechlorinate PCE and TCE to trans- and cis-DCEs with a 

ratio of 7.3 (±0.4):1 and 3.4 (±0.2):1, respectively (Cheng and He, 2009; Marco-Urrea 

et al., 2011).  Due to the frequent detection of DCEs at federal and state hazardous 

waste sites, the toxicity of trans- and cis- DCEs has been re-evaluated by the 

integrated risk information system (IRIS) program within U.S. EPA in 2010 (Galizia, 

2010).  It has been found that the most striking and unique biological consequence of 

DCEs is their ability to inhibit hepatic cytochrome P450 (CYP), which is associated 

with competitive inhibition of the metabolism of other CYP substrates (e.g., volatile 

organic compounds) in rat liver (Freundt, 1978).  Due to the accumulation of DCEs 

and VC, complete reductive dechlorination of PCE or TCE cannot be assured in the 

natural environment despite the local abundance of certain Dehalococcoides.   

 Various strains beloning to genus of Dehalococcoides and only seven 

functionally diverse members have been isolated with specific halogenated 

compounds as the growth substrates, namely strains 195, CBDB1, BAV1, FL2, GT, 

DCMB5, and MB (as summarized in Table 5.1).  While each of these individual 

strains was found to be capable of dechlorinating their favoured halogenated 

compounds, complete and rapid detoxification of a mixture of PCE, TCE and all DCE 
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isomers to harmless ethene was not achievable by a single strain (He at al., 2005; 

ITRC, 2005; Cheng et al., 2009; Taş et al., 2009a).  For instance, a VC-dechlorinating  

Table 5.1  Dehalococcoides species and their metabolic substrates 

Name of the culture  Halogenated 
compounds reduced 

End-products References 

Dehalococcoides 
ethenogenes strain 195 

PCE, TCE, cis-DCE, 
1,1-DCE 
 

VC (ethene) 
 

Maymó-Gatell et 
al., 1997 

1,2-DCA, Ethene Maymó-Gatell et 
al., 1999 

1,2,3,4-
tetrachlorodibenzo-p-
dioxin 

1,2,4-trichlorodibenzo-p-
dioxin,  
1,3-dichlorodibenzo-p-
dioxin 

Fennell et al., 2004 

2,3,4,5,6-
pentachlorophenyl 

2,3,4,6-, or 2,3,5,6-tetra-
chlorobiphenyl, 2,4,6-tri-
chlorobiphenyl 

Hexachlorobenzene 
(HCB) 

1,2,3,5-
tetrachlorobenzene, 
1,3,5-trichlorobenzene 

2,3-DCP, 2,3,4-TCP, 
2,3,6-TCP 

Lower chlorinated 
phenols (ortho chlorine 
removed) 

Adrian et al., 
2007b 

Dehalococcoides sp. 
strain BAV1 

trans-DCE, cis-DCE, 
1,1-DCE, VC, 1,2-
DCA 

Ethene He et al., 2003b 

Dehalococcoides sp. 
strain CBDB1 

HCB 1,3-DCB, 1,4-DCB, and 
1,3,5-TB 

Adrian etal., 2000 

2,3-DCP, all six TCPs, 
all three triCPs and 
penta-CP 

Lower chlorinated 
phenols 

Adrian et al., 
2007b 

Polychlorinated dioxins Dichloro-dioxins Bunge et al., 2003 
Polychlorinated 
biphenyls (Aroclor 
1260) 

various Adrian et al., 2009 

Dehalococcoides sp. 
strain FL2 

TCE, trans-DCE, cis-
DCE, 1,1-DCE  

VC (ethene) He et al., 2005 

Dehalococcoides sp. 
strain GT 

TCE, cis-DCE, 1,1-
DCE, VC 

Ethene Sung et al., 2006a 

Dehalococcoides sp. 
strain DCMB5 

1,2,4-Trichlorodienzo-
p-dioxin 

2-Monochlorodizenbo-p-
dioxin 

Bunge et al., 2008 

1,2,3-TCB 1,3-DCB 
Dehalococcoides sp. 
strain MB 

TCE, PCE  trans-DCE, cis-DCE Cheng and He,  
2009 

Dehalococcoides sp. 
strain ANAS1 

TCE, cis-DCE, 1,1-
DCE  

VC (ethene) Cheng and He,  
2009 

Dehalococcoides sp. 
ANAS2 

TCE, cis-DCE, 1,1-
DCE, VC 

Ethene Lee et al., 2011 

Dehalococcoides spp. 
(VS, mixed culture) 

TCE(slow), cis-DCE, 
1,1-DCE, VC 

Ethene Cupples et al., 
2003 

Dehalococcoides spp. 
(KB-1, mixed culture) 

TCE, cis-DCE, VC Ethene Duhamel et al., 
2004 
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pure culture, Dehalococcoides sp. strain GT, cannot respire trans-DCE and requires 

longer time (about two weeks) to initiate TCE-dechlorination activity (Sung et al., 

2006a).  Strain 195 shows the capability of dechlorinating PCE, but the dechlorination 

of VC to ethene is rate-limiting (McMurdie et al., 2009).   

 Several other genera, such as Sulfurospirillum, Desulfitobacterium, 

Dehalobacter are also able to dechlorinate PCE or TCE but result in the accumulation 

of cis-DCE (Smidt et al., 2004).  Therefore, it is suggested that complete 

dechlorination of PCE to ethene requires the cooperation of multiple dehalogenating 

strains unless novel dechlorinators are to be discovered (ITRC 2005, 2007).  In fact, a 

number of Dehalococcoides (one or multiple strains)-containing enrichment cultures 

have also been reported to dechlorinate TCE, cis-DCE, 1,1-DCE, and VC to ethene 

such as cultures VS (Cupples et al., 2003), KB-1 (Duhamel et al., 2004) and ANAS 

(Holmes et al., 2006).   

 Present in either pure or mixed cultures, the dechlorinators catalyze reductive 

dechlorination of chloroethenes by the reductive dehalogenase (RDase), which could 

be expressed from genes including tceA, pceA, bvcA, as well as vcrA (Maphosa et al., 

2010).  The role of VcrA in the dechlorination of cis-DCE, 1,1-DCE or VC has been 

proven previously, whereas the discrepancy occurs for trans-DCE (Müller et al., 2004; 

Holmes et al., 2006).  Although the purified enzyme VcrA from culture VS showed 

dechlorination ability for trans-DCE, the vcrA gene-containing cultures failed to use 

this substrate, e.g. (Duhamel et al., 2004; Holmes et al., 2006; Sung et al., 2006a).  

Very little has been reported on the role of vcrA gene during the dechlorination of 

trans-DCE and thus uncovering their association can be insightful for further 

development of the dechlorination process.   
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        The aim of this study is to cultivate a rapid trichloroethene-to-ethene-detoxifying 

culture and to investigate the microbe’s catalyzing ability (e.g., the vcrA gene) during 

the dechlorination of TCE, trans-DCE, and VC to ethene.  The application of this 

novel culture will provide a cost-effective and environmentally-friendly 

microbiological application that helps to completely detoxify PCE-/TCE-

contaminated sites with minimum accumulation of intermediate toxic products.    

 

5.2 Materials and methods 

5.2.1 Chemicals   

 All chemicals were supplied from Sigma-Aldrich (U.S.A.) with more than 97% 

purity unless stated otherwise.  Genomic DNA, plasmid DNA and RNA extraction 

kits were purchased from Qiagen (QIAGEN GmbH, Hilden, Germany).  PCR 

reagents including the GoldTaq DNA polymerase were obtained from Applied 

Biosystems (Foster City, CA, U.S.A.).   

5.2.2 Isolation and cultivation conditions   

 Isolation of functional microbes in a TCE-dechlorinating microcosm was 

carried out by series dilution in 20-ml glass vial containing 10-ml of liquid medium 

spiked with either TCE or VC as electron acceptor to enrich diverse dechlorinators 

within this culture.  Three consecutive treatments with ampicillin (100 mg l-1) were 

applied to two active sub-cultures, the TCE-fed and VC-fed cultures of the dilution 

series, with acetate as carbon source and hydrogen as electron donor.  Subsequent 

dilution batches were free of any antibiotics.  The TCE-fed culture was serially 

diluted again and transferred to two subcultures from the dilution series according to 
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the observed predominant dechlorination product (VC or ethene). Thereafter, dilution-

to-extinction procedure was carried out on these three sub-cultures, TCE-to-ethene 

culture (named 11a4), TCE-to-VC culture (named 11a5), and VC-to-ethene culture 

(11a).  All cultures were grown in mineral salt medium reduced with L-cysteine (0.2 

mM), sodium sulfide (0.2 mM) and DL-dithiothreitol (0.5 mM) in liquid medium and 

agar shakes as described previously (He et al 2003b).  Active dechlorinating culture 

was observed periodically under light microscope, Nikon Eclipse E200 (Nikon, 

Melville, N.Y., U.S.A.) until the culture became morphologically uniform.   

 After obtained the new Dehalococcoides species in pure culture, they were also 

tested on other chloroethenes, like PCE, TCE (or VC), 1,1-DCE, trans-DCE, cis-DCE 

(about 2 mM each in the liquid phase).  The dechlorination time course studies were 

carried out in 160-ml serum bottles in triplicates under the same medium conditions 

as described above with 2% (v/v) inocula.  One ml of cells was kept periodically for 

downstream nucleic acid studies.  

 In addition to these chloroethenes, the following halogenated compounds were 

also tested on the new isolates as electron acceptors: 1,1,1-trichloroethane (TCA), 1,1-

dichloroethane (1,1-DCA), 1,2-dichloroethane (1,2-DCA), chloroform, carbon 

tetrachloride, PCBs (Aroclor 1260 and CB-155), 2,4,6-trichlorophenol (TCP) and 

pentachlorophenol (PCP), and PBDEs (octa-BDE mixture, deca-BDE mixture,  and 

penta-BDE mixture).  If the compound is in powder form, it was dissolved in either 

TCE or inert solvent nonane before being injected into medium bottles with a final 

concentration of 0.1 - 0.2 mM.  Compounds in liquid or gaseous forms were added to 

the medium directly with a final concentration of 0.2 mM.  Other substrates tested on 

the new isolates include succinate (10 mM), succinate (10 mM), glucose (10 mM), 

lactate (10 mM), pyruvate (10 mM), propionate (10 mM), fumarate (10 mM), malate 
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(10 mM), glutamate (10 mM), sulfate (5 mM), sulfite (5 mM), nitrate (10 mM), and 

nitrite (5 mM). The bottles were incubated statically under strict anaerobic conditions 

in the dark at 30ºC. 

5.2.3 Analytical procedures   

 The dehalogenation activity of chloroethenes and chloroethanes was closely 

monitored by injecting 100 μl of headspace sample manually to Agilent gas 

chromatograph (GC) 6890N equipped with flame ionization detector (Agilent, 

Wilminton, DE, USA) as described previously (Cheng et al., 2010).  PCBs, 

chlorophenols, and PBDEs were tested by GC coupled with an electron capture 

detector (ECD) as described previously (Cheng and He, 2009).   

5.2.4 DNA extraction, PCR and sequencing   

 Total genomic DNA was extracted from one ml of cell pellets of the active 

dechlorinating cultures with Qiagen DNeasy tissue kit according to the method 

described previously (Löffler et al., 1997b).  The concentration of the nucleic acid 

was determined by Nanodrop-1000 (NanoDrop Technologies Inc., U.S.A.).  The 16S 

rRNA gene sequences were amplified by targeting the genomic DNA with the 

universal bacterial primer pair (8F and 1392R) while PCR (Eppendorf, Hamburg, 

Germany) amplification was carried out under conditions as described previously 

(Löffler et al., 2000).  A clone library of the 16S rRNA gene was established with the 

amplified PCR products.  A fragment of approximately 1311 bp of the 16S rRNA 

gene was cloned, sequenced and aligned as previously described (He et al., 2003a).  

PCR-DGGE was carried out to confirm the purity of the new isolates as previously 

described in chapter III (Cheng et al., 2010).  
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 Sequences were compared to other published sequences with the BLASTN 

search tool provided in the National Center for Biotechnology Information.  Deduced 

amino acid sequences were obtained with the TRANSLATE program 

(http://us.espasy.org/tools/dna.html) and aligned with the ClustalW program 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html) as described previously (Chow et 

al., 2010) 

5.2.5 Amplification of the putative RDase genes   

 PCR was used to check the presence of known RDase genes, such as tceA, bvcA, 

pceA, mbrA, and vcrA genes in the genomic DNA by following the method described 

previously (Holmes et al., 2006; Chow et al., 2010).  For the unknown putative RDase 

genes, clone library was constructed with two degenerate primer sets, RRF2 and B1R 

(Krajmalnik-Brown et al., 2004), or  RDH F1C (5’-TTY MVI GAY ITI GAY GA-3’) 

and RDH R1C (3’-CCI RMR TYI RYI GG-3’) as described previously (Chow et al., 

2010) to target RDase genes from the genomic DNA of culture 11a grown with TCE.   

PCR mixtures (20 µl) contained about 10 ng of template DNA (genomic DNA from 

strain 11a), 0.5 µM of each primer, 2.5 mM MgCl2, 0.25 mM each deoxynucleoide, 

0.13 mg of bovine serum albumin ml-1, and 0.5 U of Taq DNA polymerase (Applied 

Biosystems).  The PCR was run with the following parameters: 130 s at 95 °C; 40 

cycles of 30 s at 95 °C, 45 s at 49 °C, and 130 s at 72 °C; and a final extension of 6 

min at 72°C.  A total of 250 µl of amplified PCR products were purified with a 

QIAquick PCR purification kit and the purified PCR products were subsequently 

cloned with the pCR2.1-TOPO TA cloning kit (Invitrogen, Carlsbad, CA, U.S.A.) 

according to manufactures’ instructions.  Positive clones were screened with 

restriction enzyme HhaI and MspI (New England Biolabs, Ipswich, MA, U.S.A.) 
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digestion.  Plasmids containing insert with different restriction patterns were extracted 

from the respective E. coli clones with a Qiaprep Spin Miniprep kit (QIAGEN) and 

sent for sequencing with primer M13F and M13R. 

5.2.6 Gene expression studies for culture 11a with different 

substrates   

 To investigate the role of vcrA gene in the pure culture, TCE or VC were 

supplied as individual substrate in respective culture bottles for culture 11a which had 

been starved with chloroethenes for about three days.  Briefly, two weeks were 

required for the single dose of TCE (5 µL, about 55 µmol) completely consumed by 

11a.  After 72-hour starvation, two ml of 11a cells were inoculated to two parallel 

batches of 100-ml medium amended with TCE (5 µL, 55.6 µmol) or VC (1.5 mL, 

61.3 µmol) in triplicate, respectively; the control bottles were set up exactly the same 

way but without the addition of any chloroethene.  RDase gene expression was 

performed on these chloroethene-fed subcultures and the control bottles as described 

previously (Chow et al., 2010).  The growth conditions for 11a have been described 

previously in multiple 160-ml serum bottles (100 ml of medium, 2% inoculation).  

Cells were intensively collected before dechlorination activity was observed for the 

transcription studies, including the control bottle.  

 Cells for DNA and RNA extraction were collected periodically from 1-ml and 

1.5-ml of culture samples by centrifugation (5 min at 20, 000× g, 4ºC) in RNase-free 

microcentrifuge tubes.  The cell pellets were stored at -20 ºC or -80 ºC, respectively 

until DNA and RNA extraction.  Measurements of vcrA gene transcription levels were 

tracked over 24h or one week under the aforementioned dechlorination activity. 
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5.2.7 Cell lysis and RNA extraction   

 Cell lysis was enhanced by 45 µL of proteinase K (25 mg mL-1), 20 µL of            

Lysozyme (100 mg mL-1), and 10 µL achromopeptidase (7,500 U mL-1)   

(He et al., 2003a).  

 Total RNA was isolated using RNeasy extraction kit (Qiagen, Germany) 

according to the manufacturer’s instructions with some modifications described 

previously (Krajmalnik-Brown et al., 2004; Johnson et al., 2005b; Lee et al., 2008).  2 

µL of 107 transcripts µL-1 of luciferase control RNA (reference mRNA) was added to 

the cell suspension prior to the addition of lysozyme digestion buffer.  The cell lysate 

was transferred to a tube with 100 µL of 0.1mm zirconia-silica beads, which has a 

density of 3.7g cm-3 (BioSpec, Bartlesville, OK, USA) and followed by bead beating.  

Reverse transcription PCR was conducted with the two-step RT-PCR Sensiscript kit 

(Qiagen).  Removal of contaminating DNA was performed after RNA isolation using 

Ambion DNase I (Ambion, Inc, Austin, TX, U.S.A.) following the manufacturers’ 

instructions.  

 For reverse transcription PCR (RT-PCR), each 20-µL reaction mixture 

contained 1 mM random hexamer primers (Promega, Madison, USA) and 5-50 ng of 

RNA from samples or serially diluted reference luciferase RNA standard and was 

incubated for 3 hrs at 37 ºC.  Triplicate quantitative PCR (qPCR) was applied to 

analyze both gene copy numbers of the Eubacteria, genus of Dehalococcoides or the 

RDase genes, and the reverse transcripts of the RDases.  Duplicate qPCR was also 

applied to each RNA sample which was subjected to similar RT reaction but without 

any reverse transcriptase to examine the presence of contaminating DNA.                             
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5.2.8 PCR-DGGE    

 Genomic DNA was PCR amplified with a Dehalococcoides-specific primer pair 

(1F-GC and 259R) as described previously (Duhamel et al., 2004). The PCR  

fragments were resolved on an 8% polyacrylamide gel with 30-60% urea-formamide 

gradient for 16 h at 115 V and 60 °C. 

5.2.9 Quantitative real-time PCR (qPCR)   

 Total numbers of Eubacterial- and Dehalococcoides-targeted 16S rRNA genes, 

vcrA gene as well as the tceA gene were determined by ABI 7500 FAST Real-Time 

PCR system instrument with v1.4 software (Foster, CA, USA), as described 

previously  (Holmes et al., 2006).   The Taqman-based primers and probe for vcrA 

gene were designed using the Primer Express software package suite based on the 

nearly complete condons of the VC dehalogenase gene of strain 11a.  In brief, the 

vcrA gene (vcrAB operon) over 1482 bp was firstly amplified using the following 

forward and reverse primers: 5’-CTA TGA AGG CCC TCC AGA TGC-3’  (21nt) 

and 5’-GTA ACA GCC CCA ATA TGC CAA GTA-3’ (24nt) (Müller et al., 2004).  

The sequencing result of vcrA gene from culture 11a was compared with that of 

culture VS and ANAS2 (unpublished result) as shown in Fig 5.1.   

 A new set of Taqman primers and probe was designed to quantify vcrA gene: 

forward primer vcrA11F (5’-GTA TGG TCC GCC ACA TGA TTC-3’), reverse 

primer vcrA11R (5’-TCT TCT GGA GTA CCC TCC CAT TT-3’), and probe 

vcrA11P (5’-FAM-CGC CAC CTG ATG GGA GCG TAC C-TAMRA-3’).  This new 

set of Taqman-based primers and probe was designed to target various kinds of vcrA 

gene in order to cover a number of other VC-dechlorinating microbes, e.g. KB-1 like 

culture, ANAS enrichment culture, VS and GT.  
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 The specificity of the selected primers and probe were examined with the 

plasmid containing a cloned vcrA gene from strain 11a under 9600 Emulation mode.  

A calibration curve was obtained using 10-fold serial dilutions or pure culture plasmid 

DNA carrying either a cloned Eubacterial 16S rRNA gene (including genes specific 

for Dehalococcoides 16S rRNA), or vcrA gene cloned from reductive dehalogenase 

genes from strain 11a, respectively. Standard curves spanned a range of 100 to 107 

gene copies per µl of template DNA. 

 

Fig 5.1  ClustalW2 alignment of the sequence of vcrA gene from three different vcrA-
containing Dehalococcoides sp. strains VS, ANAS2, and 11a.  
 

5.2.10 SDS polyacrylamide gel electrophoresis (SDS-PAGE)   

 The PAGE gel was run for the cell extracts of active cultures fed with trans-

DCE and TCE, respectively.  The gel was stained with PlusOne Silver Staining Kit 
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 (GE Healthcare) as previously described (Chow et al., 2010). 

5.2.11 Application of culture 11a in contaminated water samples      

 Microcosm study was conducted to evaluate the amendments needed to enhance 

complete reductive dechlorination. The groundwater sample was collected from a 

leather cleaning facility located in Conyers, Georgia.  The initial analysis of the 

groundwater samples revealed the presence of PCE (6,700 μg L-1), TCE (690 μg L-1), 

trans-DCE (11 μg L-1) and cis-DCE (4,100 μg L-1), but VC was not detected.  Field 

investigations revealed the presence of a source of chloroethenes at the drainfield of 

the facility.  For demonstration, additional 20 µmols of PCE was supplied per 40-ml 

of groundwater to evaluate the potential application of the new culture in the 

bioremediation site.  The surface aquifer was under aerobic condition with pH ranging 

from 4.15 to 5.36.  Enhanced reductive dechlorination (ERD) was conducted in this 

study with the new TCE-dechlorinating isolate 11a and another PCE dechlorinating 

isolate, Sulfurospirillum multivorans comb. nov. (DSM 12446, known as the fastest 

culture converting PCE to cis-DCE (Luijten et al., 2003)).  Microcosms in duplicates 

were set up with medium comprising of contaminated groundwater or defined 

medium, and 20 μmoles of PCE (liquid concentration ~ 57,965 μg L-1) or TCE.  All 

sample bottles and controls were inverted and incubated in the dark at 30°C statically.   

5.2.12 Nucleotide sequence accession number   

 GenBank accession numbers FJ593658 and HM138520 were assigned to the 

16S rRNA gene sequence of two isolates, designated as Dehalococcoides sp. strain 

11a and 11a5, respectively.  GenBank accession numbers HM138513-HM138519 

were assigned to the RDase genes 1-7 of the new isolate 11a.  
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5.3 Results 

5.3.1 Isolation of Dehalococcoides sp. strain 11a and strain 11a5.   

 A TCE-dechlorinating microcosm was originated from the outlet of an 

industrial wastewater treatment station of Gehua Group in Wuhan, Hubei, China.  It 

used to produce measurable amount of trans-DCE for the first three times’ transfer 

during its dechlorination of TCE to ethene in defined mineral salts medium buffered 

with bicarbonate at 30 ºC(Cheng et al., 2010).  However, further transfer of this 

culture resulted in the loss of its capability to produce trans-DCE but still maintained 

its role in actively dechlorinating both TCE and VC to ethene.   

 A TCE-dechlorinating mixed culture (named 11a) was enriched and was 

reported to be able to dechlorinate TCE to ethene through trans- and cis-DCEs under 

strict anaerobic condition in mineral salts medium amended with acetate and 

hydrogen (Cheng et al., 2010).  Dehalococcoides was detected by genus-specific 

primer pairs and was found to be the main TCE-dechlorinators, which usually 

required acetate as carbon source and H2 as electron donor.  Ampicillin was then 

applied to inhibit the growth of methanogens or acetogens present in this culture.  

After two consecutive treatments with ampicillin (100 mg L-1), the dilution series 

amended with TCE showed different dechlorination end products.  The first four vials 

(10-1, 10-2, 10-3, 10-4) in the dilution series showed ethene as the main product similar 

to the initial microcosm, whereas the next one (10-5) showed significant accumulation 

of VC.  The different dechlorination end products indicate the presence of at least two 

different strains of Dehalococcoides in this microcosm and the fifth vial may lose one 

Dehalococcoides strain responsible for VC-dechlorinating.  Therefore, two 

subcultures, VC-generating culture (vial 10-5, named 11a5) and ethene-generating 
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batch (vial 10-4, named 11a) were selected as the main target for isolation.  They were 

maintained, serial diluted, and transferred with respective substrates TCE and VC in 

liquid medium.  After 23rd and 25th transfers respectively, both light microscopy and 

epifluorescence microscopy revealed morphologically homogenous disc-shaped 

bacteria (about 1 µm in diameter as shown in Fig 5.2) in culture 11a5 and 11a.   

(a)                         

                 

(b) 

 

 

 

 

 

 

Fig 5.2 Morphology of (a) Dehalococcoides sp. strains 11a and (b) 11a5 as observed 
with confocal laser scanning microscopy (Confocal LSM 5 Pascal). Cells were stained 
with the fluorescent dye Syto-9 (5 µM) and viewed under 1000× magnification 
through the Carl Zeiss scope lens. Both strains (11a and 11a5) show similar disc-
shape with a diameter of 1.0 µm. 

 The 16S rRNA gene amplified from genomic DNA of culture 11a showed a 

sequence identical to that of Dehalococcoides sp. strain BAV1, whereas culture 11a5 

showed 100% 16S rRNA gene sequence identical to that of Dehalococcoides sp. 
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strain FL2.  In summary, serial dilution resulted in the separation and isolation of two 

functionally different Dehalococcoides species.   

5.3.2 Substrate utilization by culture 11a and 11a5  

 Two Dehalococcoides sp. strains 11a and 11a5 were found to couple reductive 

dechlorination of TCE, three DCE isomers with growth, while only strain 11a could 

dechlorinate VC and 1,2-DCA to ethene with growth.  Strain 11a differs from strain 

BAV1 from physiological aspects, such as metabolizing versus co-metabolizing TCE 

and fast VC dechlorination rate.  Fig 5.3a demonstrates that the amount of TCE (52.7 

µmol) in the medium spiked with Dehalococcoides sp. strain 11a decreased at an 

average rate of 80.8 (±0.2) µmol L-1 day-1 from day 4 to day 13.  In addition to TCE 

dechlorination, 1,1-DCE, trans-DCE, cis-DCE, VC, and 1,2-DCA could also be 

completely dechlorinated to ethene, at rates reaching 53.7 (±0.7), 68.8 (±0.1), 73.2 

(±1.2), 407.1 (±2.3), 25.3 (±0.8) µmol L-1 day-1, respectively (Fig 5.3).  Noteworthy, 

culture 11a could dechlorinate TCE (Fig 5.3a) within two weeks with extremely low 

level of VC accumulation (1.72 (±0.02) μmol per bottle), while none of the previous 

dechlorinators showed similar phenomenon (Fig 5.3).  The fast TCE-dechlorination 

process indicates its promising application for bioremediation.  Additionaly, similar to 

strain 195 (He et al., 2006), strain 11a could cometabolize octa-PBDEs (0.2 mM) to 

penta-BDE congeners in the presence of TCE (0.5 mM).  It could dechlorinate PCE  

cometabolically in the presence of TCE but could not dechlorinate 1,1-DCAor 1,1,1-

TCA even in the presence of TCE or VC.   
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Fig 5.3 Reductive dechlorination of halogenated compounds by Dehalococcoides sp. 
strain 11a.  (a) TCE, (b) trans-DCE, (c) cis-DCE, (d) 1,1-DCE, (e) VC, (f) 1,2-DCA.  
Data points were averaged from triplicate cultures, and error bars represent standard 
deviations.  
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        In the process of dechlorination, strain 11a utilized acetate as the carbon source 

and H2 as the electron donor.  Some of the other common substrates, e.g. lactate, 

pyruvate, propionate, glucose, succinate, or glutamate were not feasible for anaerobic 

culturing of strain 11a.  Since strain 11a showed advantages in dechlorinating VC 

than strain 11a5, the performance of strain 11a was thus of greater interest to our 

application and was studied in details on a biomolecular level.   

5.3.3 Functional gene of strain 11a    

 Previously reported gene-specific primers (for tceA, pceA, mbrA, vcrA or bvcA) 

were used to target the genomic DNA from culture 11a to find out more about the 

genes that transcribed the RDase.  The PCR results suggest that only vcrA gene was 

present in strain 11a, the sequence of which was comparable to those identified from 

cultures VS, GT, ANAS2, or KB-1.  The vcrA gene (1482 bp) from culture 11a was 

found to have 10 bp difference from VS, 9 bp from that of GT, 9 bp with ANAS2, and 

8 bp with KB1, up to 99% identity over 1482 bps.  There was one-bp mismatch in the 

reverse primers of the previously published two sets of Taqman primers and probes 

(Holmes et al., 2006; Ritalahti et al., 2006) as shown in Fig 5.1.  These two sets of 

primers and probe failed to target vcrA gene in current culture 11a by qPCR or PCR.  

Thus a new set of primers and probe (highlight in the square of Fig 5.1) was designed 

in this study to quantify all the vcrA-containing cultures.  The specificity was 

confirmed through BLASTN program and PCR.  

5.3.4 Growth and purity confirmation   

  PCR-DGGE with Dehalococcoides-specific primers was conducted to further 

check the subgroup of Dehalococcoides for the isolated cultures (11a and 11a5).   
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Three bands were observed for the initial mixed cultures after 3 consecutive 

ampicillin treatments, indicating the existence of at least 3 subgroups of 

Dehalococcoides.  In contrast, a single band was observed for culture 11a and 11a5 

respectively, suggesting that culture 11a or 11a5 consisted of a single 

Dehalococcoides species as shown in Fig 5.4.  It also agrees well with the sequencing 

results that 11a shared an identical 16S rRNA gene sequence with strain BAV1, while 

the other isolate 11a5 shared the same sequence with strain FL2.  The single band in 

PCR-DGGE indicates that cultures 11a and 11a5 are likely to be pure cultures. 

 

Fig 5.4 Confirmation of the purity for two isolate, Dehalococcoides sp. strains 11a 
and 11a5 by PCR-DGGE. Lane 1, Dehalococcoides ethenogenes strain 195; lane 2, 
Dehalococcoides sp. strain FL2; lane 3, TCE-dechlorinating mixed culture 11a after 
ampicillin treatment; lane 4, 5, Dehalococcoides sp. strain 11a5 grown with TCE and 
cis-DCE, respectively; lane 6, Dehalococcoides sp. strain 11a grown with TCE; lane 7, 
Dehalococcoides sp. strain BAV1; lane 8, a trans-DCE producing pure culture strain 
MB (positive control). 

 To further corroborate culture 11a’s purity, Taqman qPCR assays were 

performed to quantify three genes in the genome of culture 11a, i.e., Eubacterial 16S 

rRNA gene, Dehalococcoides 16S rRNA gene, and vcrA gene (with newly designed 

primers and probe mentioned above).  After dechlorinating about 50 μmol of TCE at 
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day 15, the cells of 11a reached a density of (8.95±0.02)×108 copies ml-1 for 16S 

rRNA gene, and showed an increase of (8.92±0.01)×108 copies ml-1 of 

Dehalococcoides 16S rRNA gene and (8.94±0.03)×108 copies ml-1 of  vcrA gene (Fig 

5.5).  The almost identical trend of the three curves indicates that culture 11a 

consisted of only a single strain of the Dehalococcoides species.  Additionally, the 

bvcA gene previously identified in culture BAV1 was not found in culture 11a by 

PCR or qPCR, ruling out the existence of BAV1-like culture. 

 During the dechlorination of three DCE isomers - 1,1-DCE (60.0 µmol per 

bottle), trans-DCE (66.0 µmol per bottle), and cis-DCE (65.7 µmol per bottle), the 

cells of culture 11a increased 29, 41, and 37 folds to a cell density of (3.79±0.19)×108,  

(4.60±0.40)×108, and (4.65±0.32)×108 cells ml-1, respectively measured by the vcrA 

gene copies.  Rapid dechlorination of the three DCE isomers (up to 0.14, 0.15, and 

0.16 μmol cell-1 d-1 for 1,1-DCE, trans-DCE, and cis-DCE, respectively) further 

confirmed that culture 11a, unlike other vcrA-gene containing cultures, was able to 

utilize chloroethenes for growth, including the recalcitrant trans-DCE. 

 No growth was observed for isolate 11a in the absence of chloroethenes, and no 

dechlorination products were detected during abiotic incubation with the above 

mentioned substrates (chloroethenes or 1,2-DCA) within the experimental period.  

Similar studies that were conducted on the isolate 11a5 showed that tceA gene instead 

of vcrA gene was involved in the dechlorination of chloroethenes to VC by this isolate 

(data not shown).  No tceA gene was detected in pure culture 11a by PCR.  In contrast, 

the earlier mixed culture that included strains 11a and 11a5 showed the presence of 

four RDase genes, pceA, tceA, bvcA, and vcrA gene, indicating the presence of 

multiple dechlorinator(s) or multiple Dehalococcoides spp.  In all, a pure culture of 
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Fig 5.5  Cell growth of pure culture Dehalococcoides sp. strain 11a during reductive 
dechlorination of TCE to ethene as quantified by qPCR. 

 Isolate 11a showed a doubling time of 1.3 days with  TCE as substrate, which is 

shorter than that of strain GT  (2 to 2.5 days) (Sung et al., 2006a) or BAV1 (2.2 days) 

(He et al., 2003b).  During VC dechlorination, the growth yield of culture 11a 

(2.27[±0.01] g dry wt per mol of Cl-) was comparable with that of culture VS, 

(2.2±0.6) g dry wt per mol of Cl- (24); however, the maximum dechlorination rate of 

culture 11a (407 μmol L-1 d-1) was at least 3 times faster than that of VS (127 μmol L-

1 d-1) (Table 5.2). This accelerated dechlorination rate of VC may be resulted from the 

reduced doubling time and thus the faster growth rate of strain 11a.    
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Table 5.2 Comparison of the growth yields and maximum daily dechlorination rates 
on selected vcrA gene-containing Dehalococcoides isolates 
 

Substrate 
Growth yields  

(g (dry wt)/mol of Cl-) 
Maximum daily  

dechlorination rates (μmol L-1 d-1) 

11a ANAS2A 11a     GTB ANAS2A 

TCE 1.16±0.03 0.52±0.04 81 40 47 
1,1-DCE 0.65±0.03 0.78±0.07 54 62 53 
cis-DCE 0.74±0.01 0.58±0.01 73 41 55 

trans-DCE 0.71±0.06 NA 69 NA NA 
VC 2.27±0.01 0.57±0.02 407 127 89 

1,2-DCA ND NA 25 NA NA 
 
Note: A, referred to Lee et al. (2011). B, referred to Sung et al. (2006).  NA, no 

activity; ND, not detected. 
 

5.3.5 Putative RDase genes identified from culture 11a   

 Table 5.3 shows that seven RDase genes named as 11aRdh 1-7 were found in 

strain 11a and were deposited in GenBank under the accession numbers (HM138513-

HM138519), 5 of which are similar to RDase genes in strain CBDB1 (cbdbA187 (or 

DehaBAV1_173), cbdbA1618, cbdbA1624, cbdbA1627, cbdbA1638) and the other 

two similar to the RDase genes in culture VS (VSorf1196-vcrA and VSorf1137).  The 

sequence analysis of 11a shows that RDase genes 11aRdh1, 11aRdh4, 11aRdh5, 

11aRdh7 sharing 99% identity with that from strain BAV1, GT, CBDB1, and VS, 

while 11aRdh2 and 11aRdh6 share 98% identity with that from strain FL2 and VS 

respectively, whereas 11aRdh3 only shares about 94% with strains GT, FL2, and 

CBDB1.  No RDase genes of strain 195 were found in 11a by PCR.  The diversity of 

RDase genes in this new isolate provides another evidence for the occurrence of 

horizontal gene transfer. 
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5.3.6 The role of VcrA in strain 11a during dechlorination of TCE, 

trans-DCE and VC   

 It was hypothesized that the vcrA gene could be related to the rapid 

dechlorination of VC and TCE.  The expression of vcrA gene was conducted for 

starved cells of culture 11a when exposed with 61.3 µmol of VC (Fig 5.3e).  During 

the complete dechlorination of VC (Fig 5.3e), the maximum expression (17 folds) of 

vcrA gene was found at day 5 (Fig 5.6a), close to the end of the exponential growth 

phase (Fig 5.6b).  After day 5, a slight decrease was observed for the transcription 

level of vcrA, probably due to the faster increase in the DNA copies (intensive growth 

of culture 11a with VC) when dechlorination of VC was nearly completed.   

 To further understand the role of vcrA gene in TCE dechlorination, vcrA gene 

expression profile within the first 24 h was captured.  The expression of vcrA in pure 

culture 11a was up-regulated about 40 folds during the first 12 hours’ exposure to 

TCE.  The observed up-regulation of the vcrA gene (about 40-fold) of strain 11a on 

TCE is comparable with that of strain 195 on TCE (about 30-fold) (Lee et al., 2006). 

The transcript levels of vcrA gene exposed to TCE were found to be higher than that 

of VC (Fig 5.6c), indicating that this vcrA gene could be functionally important for 

the respiration of both TCE and VC.  Additionally, an up-regulation of vcrA gene 

(about 30 fold) was also observed in the presence of trans-DCE (~ 68 μmol) after 24 

hrs.  Different from culture VS, strain 11a shows unique capability of coupling trans-

DCE with growth (Table 5.2) and vcrA gene expression. 
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Fig 5.6 The role of vcrA gene during reductive dechlorination of TCE and VC by 
Dehalococcoides sp. strain 11a.  (a) Gene expression of vcrA gene with TCE and VC, 
(b)  change of transcript numbers of vcrA for strain 11a,  (c) growth of culture 11a 
during 7-day dechlorination of VC.  Data points were averaged from triplicate runs, 
and error bars represent standard deviations.  

 The role of VcrA in dechlorination of cis-DCE or 1,1-DCE was proven 

previously (Müller et al., 2004), whereas the discrepancy occurs for trans-DCE.  The 

purified enzyme VcrA showed dechlorination ability for trans-DCE, however the 

previously found vcrA-containing active cultures failed to use this substrate including 

culture VS, KB-1, GT or ANAS.  The SDS-PAGE was conducted to check the role of 

VcrA in the active trans-DCE dechlorinating culture 11a as compared to TCE.  Fig 

5.7 shows that the same major band (~ 62 kDa) was found to have highest expression 

during the reductive dechlorination of TCE and trans-DCE.  The position of this 

expressed 62-kDa band agrees well with the VC-dechlorinating enzyme, VcrA found 

in culture VS (Müller et al., 2004), suggesting the functional role of VcrA of strain 

11a in dechlorination of not only VC, but also TCE and trans-DCE.  This versatile 

Time (h)
0 5 10 15 20 25 30

N
u

m
b

er
 o

f 
fo

ld
 i

n
cr

ea
se

 
in

 v
cr

A
 g

en
e 

ex
p

re
ss

io
n

0.0

10.0

20.0

30.0

40.0

50.0

TCE 
VC 

c



158 

 

dechlorinating activity was consistent with the activity of in vitro assay of VcrA 

purified from mixed culture VS (Müller et al., 2004) and agreed well with the cell 

growth measured by qPCR during the dechlorination of trans-DCE by 11a (Table 5.2).  

The results of this study showed that the highly expressed RDase (VcrA) in culture 

11a has broader substrate range than that of culture VS or GT in that neither of these 

active cultures showed metabolic activity for trans-DCE.  In other words, the SDS-

PAGE results together with 11a’s physiology and qPCR results confirm that the VcrA 

in culture 11a encodes the dechlorination of VC, all DCEs isomers and TCE to ethene. 

 

 

 
Fig 5.7 SDS-polyacrylamide gel of VC-reductive dehalogenase of Dehalococcoides 
sp. strain 11a.  Lane 1, prestained pageruler protein ladder; lane 2 and 3, active cell 
extract of trans-DCE and TCE, respectively (after gel filtration with sizes of major 
peptides).   
 
 The variability of culture 11a’s vcrA gene sequences as compared with other 

TCE-to-ethene cultures resulted in amino acid substitutions at the C terminus of the 

protein (Fig 5.8), suggesting their close relationship.  As shown in Fig 5.8, the active 



159 

 

site of VcrA RDase could be represented with two motifs of iron-sulfur clusters- 

CX2CX2CX3CP (Müller et al., 2004) identified in the previous vcrA gene-containing 

Dehalococcoides species (e.g., culture ANAS2, GT, VS, or KB-1).  The first motif of 

strain 11a contains a histidine (H) after the second cysteine (C) instead of tyrosine (Y), 

while the second motif displays a threonine (T) before the fourth cysteine (C) instead 

of serine (S).  These amino acid substitutions might have accounted for the 

differences in the biocatalytic response to chloroethenes.  The relationship between 

the RDase structure changes and the activity of the protein will be rationalized in the 

discussion section.  

 

 
 
Fig 5.8 ClustalW alignment of the VcrA sequence of Dehalococcoides sp. strain VS 
(AY322364), ANAS2 (HM241732), GT (CP001924) and 11a (HM138519).  *, 
conserved cysteines in the two iron-sulfur clusters binding motifs (CX2CX2CX3CP).  
The varied regions are boxed. 
 

5.3.7 Dechlorination of PCE to ethene by a coculture   

 The microcosm study was performed to evaluate the bioremediation of 

chloroethenes-contaminated groundwater carrying some sediment by bioaugmenting 

the newly isolated Dehalococcoides sp. strain 11a.  It is found that Dehalococcoides 

sp strain 11a alone did not show any activity for chloroethenes (e.g., PCE- or TCE-

contaminated groundwater) without the amendment of nutrients or reductants.  After 
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amendment of lactate and vitamins, TCE was completely dechlorinated to ethene 

within 9 days by strain 11a.  However, PCE dechlorination did not occurred after 60 

days incubation.  Therefore, a PCE-to-cis-DCE dechlorinating culture - 

Sulfurospirillum multivorans (Fig 5.9) and culture 11a was co-inoculated to the PCE- 

spiked microcosm.  Surprisingly, this coculture was able to completely detoxify the 

source contaminant PCE to ethene in both of the collected contaminated groundwater 

samples within 10 days (Fig 5.10a) and the defined medium (control) (Fig 5.10b) 

within 16 days.  The bioaugmention for groundwater was found to proceed relatively 

faster than the defined medium, probably due to the presence of unknown trace 

amounts of nutrients.  Either culture 11a or S. multivorans alone would not generate 

ethene regardless of the nutrients added.   

 Fig 5.9 shows the growth of pure culture of S. multivorans during reductive 

dechlorination of about 50 µmols of PCE to cis-DCE within 2 days in defined 

medium, as revealed by 40-times increase in 16S rRNA gene copies by qPCR.  Fig 

5.10b shows complete detoxification of PCE by the same co-culture in defined 

medium.  As a robust indicator for cis-DCE dechlorination, the generation of ethene 

was found to be correlated to the increased percentage of cells of culture 11a (as 

measured by vcrA gene copies) over the total co-culture cell numbers from 1% to 65% 

by qPCR during microcosm incubation (Fig 5.11).  No activity was detected for the 

control bottles.  It is concluded that bioaugmentation with co-culture (11a and SM) 

could successfully remediate chloroethene-contaminated groundwater. 
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Fig 5.9  Dechlorination of PCE (a) by Sulfurospirillum multivorans only and its 
growth (b) in defined medium. 
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Fig 5.10  Dechlorination of PCE by a coculture containing Sulfurospirillum 
multivorans and Dehalococcoides sp. 11a. (a), in chloroethene- contaminated 
groundwater; (b), in defined medium. 
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Fig 5.11 Relative abundance of Dehalococcoides sp. 11a in the co-culture (with 
Sulfurospirillum multivorans) during the remediation of contaminated groundwater as 
revealed by qPCR. Note, the dechlorination process is shown in Fig 5.10a. 
  
5.4 Discussion and conclusion 

          The newly identified Dehalococcoides sp. strain 11a is capable of rapid 

detoxification of chloroethenes to ethene.  Apart from the ability to dechlorinate 1,1-

DCE, cis-DCE and VC (i.e. a common trait among Dehalococcoides sp.), the VcrA 

RDase in strain 11a demonstrated an essential role in dechlorinating trans-DCE and 

TCE to ethene.  The rapid dechlorination capability of strain 11a is reflected by the 

minimal VC accumulation (<2 μmol) during the dechlorination of trans-DCE and 

TCE (50-60 µmol) in the 100-ml defined medium, while strains BAV1 and FL2 

usually show 35 µmol of accumulated VC intermediate during the dechlorination of 

similar amount of trans-DCE under similar conditions (He et al., 2003a; He et al., 

2005).  Strain 11a is also able to grow with 1,2-DCA, which has never been reported 

for other vcrA gene-containing strains.  Additionally, strain 11a could  transform PCE 

cometabolically in the presence of TCE, which also distinguishes 11a from all other 

VC-dechlorinating isolates, such as BAV1 (from DCEs to ethene) (He et al., 2003b), 
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ANAS2 (from TCE, cis- and 1,1-DCEs to ethene) (Lee et al. 2011), VS (from TCE, 

cis- and 1,1-DCEs to ethene) (Müller et al., 2004) or GT (from TCE, cis- and 1,1-

DCEs to ethene) (Sung et al., 2006).  The maximum daily VC dechlorination rate by 

11a was found to be 3.2 times higher than that of GT as revealed by the 

dechlorination time course study.  The average VC-dechlorination rate (86 µmol L-1 

day-1) by 11a was 4 times higher than isolate BAV1 (20 µmol L-1 day-1) (He et al., 

2007).  Therefore, the fast dechlorination rate of culture 11a shows most promising 

application in various chloroethene-impacted sites, including those sites with trans-

DCE accumulation.     

          Previous studies have suggested that the expression level of RDase genes is 

intimately related to the corresponding substrates that the dechlorinating culture 

utilizes.  Lee et al (2006) reported that the expression level of tceA gene was up-

regulated to ~ 30-fold during 12-h exposure to TCE for Dehalococcoides 

etheneogenes strain 195 (Lee et al., 2006), while Chow et al (2010) found that the 

mbrA gene was up-regulated about eight-fold after 72-h exposure to PCE for 

Dehalococcoides sp. strain MB (Chow et al., 2010).  The elevated transcription levels 

(up to 40-fold) of vcrA gene to TCE, trans-DCE and VC for strain 11a was also 

closely related to its metabolism of chloroethenes and indicated that the vcrA gene in 

strain 11a could be functionally important for the respiration of these chloroethenes.  

It also suggests that strain 11a had a broader substrate range than culture VS, GT or 

ANAS2, given that none of them could metabolize trans-DCE.  Essentially, these 

results together with 11a’s physiology and qPCR results suggest that the VcrA in 

culture 11a encodes the dechlorination of VC, all DCEs isomers and TCE to ethene.     

          While the vcrA gene is commonly present among several Dehalococcoides 

species, plasticity in the protein expressed from the vcrA gene, particularly the active 
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iron-sulfur clusters, could potentially lead to differences among various 

Dehalococcoides strains in their biocatalytic responses to chloroethenes.  This is 

because changes to the primary sequence, particularly when occurring near or at the 

active sites, might alter the conformation of the sites and lead to changes in the 

protein activity and substrate specificity (Yoshikuni et al., 2006).  In the case of strain 

11a, amino acid substitutions were found in the iron-sulfur clusters (Fe4S4) - 

important structures in mediating electron transfer (Müller et al., 2004; Ciurli and 

Musiani, 2005), therefore, these changes might be related to the enhanced rate of 

reductive dechlorination and the broader substrate diversity.  The substitution of “H” 

in strain 11a for “Y” in strain VS introduced a basic imidazole group (i.e. pKA ~7.0) 

to strain 11a.  Since histidine (H) is suspected to be involved in electron donation and 

acceptance particularly for dehalogenation (Marsh and Ferguson, 1997; Smidt et al., 

2000; Hölscher et al., 2004) and the incorporation of histidine amino acid 

substitutions in the active site of cytochrome P450 enzymes has resulted in the most 

significant rate enhancement for the His 96 mutant in the protonated state 

(Manchester and Ornstein, 1996).  This imidazole group, while protonated, might 

develop transient electrostatic interactions between the active site of VcrA and 

nucleophiles (e.g. hydride ions).  Such interactions could have potentially helped to 

mediate electron transfers that were essential to reductive dechlorination, thus directly 

contributing to a broader substrate utilization range and consequently a faster 

dechlorination for strain 11a.  On the other hand, the substitution of “S” in VS to “T” 

in 11a added one side chain (-CH3).  Since the substitutions by bulkier side chains has 

been found to weaken the binding of chloroethane but increase the dehalogenation 

rate (Walsh et al., 2000), this substitution might reinforce the stability of VcrA with 

faster dechlorination rate.  However, the precise function of this evolution remains to 
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be further elucidated.  Future analysis of the active binding site of VcrA, by applying 

the homology models and X-ray crystallography (Damborský and Koča, 1999) (both 

theoretical and experimental) will be necessary to fully understand the unique activity 

of the enzyme system for strain 11a, which is also important for developing an 

enhanced bioremediation system.   

          Bioaugmention is considered as a technically feasible and cost-effective remedy 

for the high concentrations of multiple halogenated contaminants in groundwater 

(GeoSyntecConsultants., 2005; Ritalahti et al., 2005).  The fast metabolism of isolate 

11a on TCE, all the DCEs isomers, VC, and 1,2-DCA has proven its practical 

advantages in terms of efficient and cost-effective bioaugmentation in chlorinated 

ethene- or chlorinated ethane- contaminated sites.  This fast metabolism also helped to 

minimize the competitive inhibition of higher chlorinated ethenes on the lesser 

chlorinated ethenes (Yu et al., 2005).  The additional amendment of nutrients (e.g., 

lactate or vitamins) ensured the success of immediate bioremediation in the presence 

of strain 11a-like Dehalococcoides and S. multivorans.  At contaminated sites, it 

would be cost-effective to treat the entire contaminant plume over a short period; the 

rapid detoxification of chloroethenes (with the concentration comparable to the level 

of field sites) by culture 11a would thus significantly reduce both the time and the 

cost for bioremediation.  In all, culture 11a is able to effectively dechlorinate a wide 

variety of chlorinated compounds including TCE and trans-DCE to ethene.  The 

variation of VcrA sequences suggests that culture 11a may have been adapted to the 

environment under intense evolutionary pressure.  The proposed bio-inocula could be 

encouraging for the clean-up of numerous chloroethene-contaminated sites as the 

complete detoxification of PCE is readily achievable without accumulating the 

carcinogenic VC.    
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Chapter VI Conclusion and Recommendations 

6.1 Conclusion 

 This thesis work was originated from the novel cultures involved in both partial 

dechlorination of PCE or TCE to various amounts of trans-DCE and complete 

dechlorination of PCE to ethene via predominant intermediate trans-DCE.  Three 

Dehalococcoides isolates, named MB, 11a and 11a5 were obtained and characterized 

with respect to specific dehalogenating capacities.  The key conclusions made in this 

study are listed below. 

 A number of microcosms containing Cornell subgroup of Dehalococcoides 

species could produce various amounts of trans-DCE through the enrichment process.  

These screened cultures showed different capacity in dechlorinating PCE or TCE as 

compared with Dehalococcoides ethenogenes strain 195, the first isolate of Cornell 

subgroup.  The screened microcosms, MB, SB and GY, originally generated trans-

DCE and cis-DCE as the final dechlorination products in a ratio of (1.4±0.1):1, 

(0.4±0.06):1, and (2.8±0.3):1, respectively.  The ratio of trans-DCE to cis-DCE in the 

final products has been found to be positively correlated with the proportion of 

specific Cornell subgroup of Dehalococcoides over the total community.  The 

identified co-culture MB and other trans-DCE producing cultures show an inability to 

dechlorinate PCE/TCE beyond DCEs to VC and ethene.  This process was found to 

be mainly catalyzed by a novel RDase gene, instead of those commonly found pceA 

gene, tceA gene, bvcA gene, or vcrA.  It also complimented the current understanding 

about the generation of trans-DCE, not only by those Pinellas subgroup of 

Dehalococcoides spp., but also new members of Cornell subgroup of 

Dehalococcoides spp.   
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 To understand the generation of trans-DCE, pure culture Dehalococcoides sp. 

strain MB was eventually isolated from environmental sediments.  Strain MB 

reductively dechlorinates PCE to trans-DCE and cis-DCE in a ratio of 7.3 (± 0.4) : 1, 

which is found to be the highest trans-/cis-DCE ratio as compared to previous reports 

on trans-DCE producing mixed cultures.  Different ratio of MB and ANAS1 

(unpublished information, a TCE-to-cis-DCE-to-VC-dechlorinating culture) resulted 

in different profiles of trans-DCE and cis-DCE in the dechlorination products.   It has 

been found that competition among different dechlorinators would determine the fate 

of chloroethenes at contaminated sites.   

 Fourteen putative RDase genes were identified from isolate Dehalococcoides sp. 

strain MB by using comparative genomic study (10 from microarray analysis on the 

basis of strain 195 genome) and biomolecular tools (7, but 3 of them are found by 

both method).  Of the 1,579 probe sets on microarray targeting genes from D. 

ethenogenes strain 195, the genomic DNA of isolate MB hybridized to 1389 (88.0%), 

indicating that genes are highly conserved between strains 195 and MB.  New strain 

MB also demonstrates a lack of large proportions of genes found in strain 195, such as 

integrated elements (73.7% absent) and the phage-related genes by microarray 

analysis.  This study has provided a direct evidence for the accumulation of trans-

DCE that MB-like culture is present or novel RDase gene mbrA is highly expressed in 

PCE/TCE-contaminated sites.  The RDase gene, mbrA gene responsible for 

dechlorinating PCE to trans-DCE is found to be 98% similar to the putative RDase 

gene (cbdbA80) of Dehalococcoides sp. strain CBDB1.  This novel mbrA gene can be 

served to quantify trans-DCE producing cultures.  In a mixed community, more trans-

DCE than cis- DCE could be produced when mbrA gene-containing culture is at least 

four times more than the tceA gene-containing culture.  The obtained dechlorinating 
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pure culture MB could give detailed information about the diversity of 

microorganisms in the natural environments and also provide fundamental 

understanding of the diverse mechanisms involved.  Both of the factors studied here 

may be of great importance to investigate the correlation of the novel mbrA gene with 

the relevant microbes in order to understand the presence of other trans-DCE-

producing cultures in the contaminated sites.   

 Dehalococcoides sp. strain 11a was obtained to be able to rapidly dechlorinate 

TCE, all DCE isomers, VC, and 1,2-DCA metabolically to ethene, catalyzed by VcrA.  

An ERD solution employing co-culture of Dehalococcoides sp. strain 11a and 

Sulfurospirillum multivorans demonstrated the complete detoxification for PCE-

contaminated groundwater without any accumulation of chloroethene.  Isolate 11a can 

be successfully applied in rapid bioremediation of chloroethene-contaminated sites for 

complete detoxification.   

 The enrichment culture 11a (including pure Dehalococcoides sp. strain 11a) 

screened in this study proves to be a promising candidate in the complete 

dechlorination of PCE/TCE via predominantly trans-DCE to ethene through the 

cooperation of multiple Dehalococcoides species.  The highest ratio of trans-DCE and 

cis-DCE was found to be 1.7:1 in lactate-amended medium by culture 11a.  It also 

demonstrated that the metabolism of this novel strain (11a) of Dehalococcoides would 

be of great importance for the bioremediation of chloroethene-contaminated sites with 

significant accumulation of trans-DCE or PCE.   

 In all, pure culture MB has facilitated detailed studies on the genomic contents 

of new species prior to the whole genome sequencing by comparative genomics.  The 

origins of trans-DCE in natural environments were postulated through the identified 

functional gene studies (mbrA gene) as compared with the commonly detected tceA 
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gene involved with reductive dechlorination of TCE. The isolation of strain 11a 

confirmed that TCE, trans-DCE, 1,1-DCE and 1,2-DCA could also serve as electron 

acceptors besides those commonly detected compounds, cis-DCE and VC as 

summarized in Table 6.1.  Complete detoxification of PCE to ethene in the 

contaminated site was achieved with the co-culture of strain 11a and a PCE-

dechlorinating isolate Sulfurospirillum multivorans.  Complete detoxification of PCE 

via predominantly trans-DCE could also be carried out by two pure cultures isolated 

therein, the novel trans-DCE producing culture(s) Dehalococcoides sp strain MB and 

the trans-DCE dehalogenating culture Dehalococcoides sp strain 11a.  Results from 

this study would significantly improve the treatment efficiency towards halogenated 

compounds both in the engineered systems and in situ bioremediation sites. 

Table 6.1 Summary of chloroethene utility profile by current Dehalococcoides 
isolates.   
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PCE + - -a - a - - + - - NA Co - 
TCE + - - a + Co + + + + NA + + 
1,1-DCE + - + + + + - + + NA + + 
trans-DCE Co - + + NA - - - - NA + + 
cis-DCE + - + + + + - + + NA + + 
1,2-DCA + - + - NA - - - NA NA + NA 
VC Co - + Co + + - - + NA + - 

 
Notes: “Co” refers to co-metabolic process and “NA” means information not 
available.  a, Cometabolic reaction takes place in cultures with another growth 
supporting electron acceptor.  b, unpublished information. 

 

6.2 Recommendations 

 The pure culture Dehalococcoides sp. strain MB obtained in this work provides 

scientific basis for understanding the production of trans-DCE during reductive 

dechlorination of PCE and TCE.  Also, Dehalococcoides sp. strain 11a has 
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demonstrated its metabolic capacity towards all chloroethenes and 1,2-DCA with 

rapid dechlorination rates.  A novel dechlorination pathway from PCE to ethene via 

trans- and cis-DCEs can thus be elaborated.  However, several knowledge gaps still 

exist in this body of thesis and there are four main areas in which we feel further 

research are needed.  

 Firstly, further studies of other ubiquitously distributed halogenated compounds, 

e.g. ethylene dibromide (McConnel, 1984; Henderson et al., 2008), 1,1,1-TCA, 

chlorinated benzenes, and polychlorinated dibenzo-p-dioxins, could also be helpful in 

elucidating the potential role of strain MB, 11a, and 11a5 in bioremediation.  Bacteria 

of the genus of Dehalococcoides are known to be extraordinarily specialized in 

detoxifying halogenated compounds.  Several trans-DCE producing culture have 

shown their capability of dehalogenating PCBs, chlorobenzenes, dioxins etc 

(Futamata et al., 2007; Miller et al., 2005; Yoshida et al., 2005).  This study also 

found that strain MB was able to debrominate one of the commercial PBDE mixtures 

(octa-BDE) to penta-BDE and finally stopped at tetra-BDE cometabolically with the 

dechlorination of TCE.  It is also documented from the sequence of the putative 

RDase gene dceA1, which showed a classical aromatizing enzyme for dehalogenating 

complicated organic compounds.  However, we have found no obvious expression of 

this gene when exposed to PCE or TCE.  Thus it is desirable to further explore other 

potential substrate for this trans-DCE producing culture MB.  In addition, through the 

comparison of the key RDase, VcrA, culture 11a has shown a unique adaptation of 

metabolic capacity towards various chlorinated ethenes and ethanes (like 1,2-DCA) as 

compared with other VcrA-related culture.  It is also of importance to investigate its 

potential role in TCA-contaminated groundwater through the given pressure of 

adaption as limited information is available for the complete detoxification of TCA by 
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Dehalococcoides.  Last but not the least, the collected groundwater was used as a 

demonstration of bioaugmentation study to estimate the site dechlorination rate by the 

proposed coculture containing strain 11a, which may not reveal the real conditions for 

the contaminated sites.  Therefore, it is desirable to conduct more site investigation 

and in situ bioremediation in large scale for better illustration of its real application.   

 Secondly, sequencing of Dehalococcoides sp. strains MB and 11a genome will 

provide additional insight into these two novel strains and allow more in-depth 

understanding on the role of other putative RDase genes, in addition to mbrA and 

vcrA, respectively.  The comparison of genome sequences between strain CBDB1 and 

195 shows that CBDB1 has a greater potential as a dehalogenator than strain 195, 

probably due to higher number of RDase genes in strain CBDB1 than strain 195 

(Kube et al., 2005; Seshadri et al., 2005).  Dehalococcoides seems particularly well 

adapted to carry out respiratory reductive dehalogenation.  Genome sequencing could 

give us a simpler but more direct and more powerful way to study the evolutionary 

relationships among different isolates within this unique genus of Dehalococcoides.  

However, the genomic contents of novel cultures, particularly for strain 11a, are 

largely unknown in current study.  Potential novel RDase genes, phage-related genes, 

and comparison of genomic contents of all vcrA-containing isolates should hence be 

evaluated and particularly addressed.  Transcriptional analysis of all the identified 

RDase genes and sequencing of the most expressed enzyme shall also be done for the 

new Dehalococcoides isolates, MB, 11a5, and 11a. 

 Thirdly, the unique disc-shaped morphology of Dehalococcoides spp. indicates 

the potential attachment of Dehalococcoides cells onto a flat surface, especially those 

highly used nanomaterials.  This may greatly increase the chance of stabilizing 

Dehalococcoides with the indigenous microorganisms thus promoting the attachment 
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of cells with the substrates available in the contaminated sites.  It may significantly 

reduce the reaction time as well as the treatment cost for efficient bioremediation 

strategy.  

 Lastly, there is great necessity in reducing the cost used for cultivating 

Dehalococcoides in large-scale at the bioremediation sites.  It is known 

Dehalococcoides spp. are difficult to grow as they are strictly anaerobic cultures.  

Addition of extra vitamin B12 could result in at least two times higher density than 

that without addition of vitamin B12 (He et al., 2007a).  Therefore, investigation of 

microorganisms capable of producing vitamin B12 for Dehalococcoides and 

collaborating with Dehalococcoides would be of scientific and commercial interest to 

bioremediation community.  On the other hand, Dehalococcoides needs acetate as the 

sole carbon source for growth, hydrogen as electron donor for reductive 

dehalogenation, and high salt solution in the medium.  Both acetate and hydrogen can 

be biologically supplied from the side products during the bioconversion of tropical 

waste into renewable energy sources, such as bioethanol or biobutanol, mainly by the 

solvent-producing bacteria, e.g. Chlostridium acetobuylicum (Calam, 1980).  The 

cultivation of dehalogenating bacteria with these solvent-producing bacteria could not 

only supply nutrients for large amounts of Dehalococcoides, but also provide an 

alternative for handling the wastewater from the bioconversion process of solid waste.  

In addition, the abundant seawater in Singapore also provides a natural source for 

supplying the high-salt concentration solution to the medium needed for growing 

Dehalococcoides.  Further research into an eco-friendly bioremediation approach by 

these novel cultures would be desirable to save the cost for limited energy resources 

in today’s society.   
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Appendix 

1. List of accession number for the sequences submitted to GenBank  

1) 16S rRNA gene sequence of Dehalococcoides sp. strain MB (EU073964) 

2) 16S rRNA gene sequence of Sedimentibacter sp. strain WS2 (FJ593657) 

3) 16S rRNA gene sequence of Dehalococcoides sp. strain 11a (FJ593658) 

4) 16S rRNA gene sequence of Dehalococcoides sp. strain 11a5 (HM138520) 

5) 16S rRNA gene sequence of Dehalococcoides sp. strain ANAS1 (HM241729) 

6) 16S rRNA gene sequence of Dehalococcoides sp. strain ANAS2 (HM241730) 

7) RDase gene, mbrA sequence of Dehalococcoides sp. strain MB (GU120391) 

8) RDase gene sequence (11aRdh 1-7) of Dehalococcoides sp. strain 11a 

(HM138513-HM138519) 

2. Papers generated from this study 

 
Cheng, D., Chow, W.L., and He, J. (2010) A Dehalococcoides-containing co-culture 
that dechlorinates tetrachloroethene to trans-1,2-dichloroethene. ISME J 4: 88-97. 
 
Cheng, D., and He, J. (2009) Isolation and characterization of "Dehalococcoides" sp. 
strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Appl 
Environ Microbiol 75: 5910-5918. 
 
Chow, W.L., Cheng, D., Wang, S., and He, J. (2010) Identification and transcriptional 
analysis of trans-DCE-producing reductive dehalogenase in Dehalococcoides species. 
ISME J 4: 1020-1030. 
 
Cheng, D., and He, J. (2010) Isolation of a Dehalococcoides sp. strain 11a for rapid 
detoxification of chloroethenes to ethene in groundwater. (In preparation) 
 
Lee, P.K.H., Cheng, D., Hu, P., West, K.A., Dick, G.J., Brodie, E.L. et al. (2011) 
Comparative genomics of two newly isolated Dehalococcoides strains and an 
enrichment using a genus microarray. ISME J.  
 
Lee, P.K.H., Cheng, D., Hu, P., West, K.A., Brodie, E.L., Andersen, G.L. et al. 
Querying the genomes of new un-sequenced Dehalococcoides isolates via a 
microarray targeting the Dehalococcoides genus. (In preparation) 
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3. Alignment of the 16S rRNA gene sequences of several known 

Dehalococcoides spp. 
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