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On the modelling of isothermal gas flows
at the microscale
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(Received 18 September 2007 and in revised form 21 February 2008)

This paper makes two new propositions regarding the modelling of rarefied (non-
equilibrium) isothermal gas flows at the microscale. The first is a new test case for
benchmarking high-order, or extended, hydrodynamic models for these flows. This
standing time-varying shear-wave problem does not require boundary conditions to
be specified at a solid surface, so is useful for assessing whether fluid models can
capture rarefaction effects in the bulk flow. We assess a number of different proposed
extended hydrodynamic models, and we find the R13 equations perform the best in
this case.

Our second proposition is a simple technique for introducing non-equilibrium
effects caused by the presence of solid surfaces into the computational fluid dynamics
framework. By combining a new model for slip boundary conditions with a near-wall
scaling of the Navier–Stokes constitutive relations, we obtain a model that is much
more accurate at higher Knudsen numbers than the conventional second-order slip
model. We show that this provides good results for combined Couette/Poiseuille
flow, and that the model can predict the stress/strain-rate inversion that is evident
from molecular simulations. The model’s generality to non-planar geometries is
demonstrated by examining low-speed flow around a micro-sphere. It shows a marked
improvement over conventional predictions of the drag on the sphere, although there
are some questions regarding its stability at the highest Knudsen numbers.

1. Introduction
A number of competing high-order equation sets have been developed in recent

years in order to model rarefied gas flows within an efficient continuum-fluid
framework (see Reese, Gallis & Lockerby 2003; Struchtrup 2005). These methods have
shown promise, to varying degrees, in predicting certain non-equilibrium behaviour in
high-speed as well as microscale gas flows at a fraction of the computational cost of
molecular-based simulations. However, good predictions of, for example, the viscous
structure of one-dimensional shock waves have not always been matched by similarly
compelling success in modelling microscale gas flows. The primary difficulty is that,
unlike the shock-wave case, micro gas flows tend to be dominated by the influence
of solid bounding surfaces. The non-equilibrium introduced by a solid surface is
qualitatively different to that generated by the variation of hydrodynamic variables
alone; if the wall is assumed to behave like a Maxwellian emitter, a discontinuity is
introduced in the molecular distribution function.

It is no surprise, then, that continuum-based methods (such as those based on
perturbation series solutions of the Boltzmann equation) are unable to resolve
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properly the region of local non-equilibrium that exists up to one or two molecular
mean free paths from the wall in any gas flow near a surface. Kogan (1969)
demonstrated that the Chapman–Enskog technique (see Chapman & Cowling 1970)
does not provide a solution to the Boltzmann equation in this ‘Knudsen layer’, or
‘kinetic boundary layer’, and Lockerby, Reese & Gallis (2005a) compared Knudsen-
layer predictions from a number of current high-order equation sets and concluded
that none could be considered both reliable and accurate. This is problematic for the
future design and application of micro and nano flow devices because the momentum
and energy fluxes from the region of the Knudsen layer to the boundaries have a
critical influence on the overall flow behaviour.

Although not definitively proving that continuum equation sets are incapable of
accurately modelling near-wall behaviour, there is therefore strong evidence to suggest
that – if continuum equations are to be used at all – alternative phenomenological
approaches may be as useful in these non-equilibrium regions (at least for
practical engineering simulation purposes). We discuss this issue in greater depth in
§3.

Despite the difficulties associated with near-wall regions, there is no reason to
believe that high-order continuum equations cannot be used in regions of microscale
gas flows away from the walls. The questions that arise are, therefore: outside the
direct influence of solid bounding surfaces, can significant non-equilibrium exist in
low-speed micro gas flows? If so, can this be resolved using higher-order continuum
equations? In §2, we focus on addressing these questions.

2. The standing-shear-wave problem
A simple test case, that does not involve solid bounding surfaces, is required as an

analogue of typical micro gas flows. To be relevant to many micro device applications,
and for simplicity, it is desirable that this be low speed and isothermal (meaning here
negligible temperature variation, although not necessarily negligible heat flux). Here
we propose a standing shear wave: the one-dimensional shear flow generated by a
temporally and spatially oscillating body force. In this case, the body force (per unit
mass) is of the form:

Fx = Aeiαt cos βy, (1)

where Fx is the body force in a direction x (which is perpendicular to y), A the
amplitude, β the wave number, t is time, and α the frequency. In this paper, we
restrict our attention to the flow response this forcing generates in an otherwise
stationary and isothermal monatomic gas flow field. Note that this is different to
the form of waves commonly used in the stability analysis of high-order continuum
equation sets (see Struchtrup 2005; Greenshields & Reese 2007); it is simpler in two
respects: (i) the flow is isothermal; (ii) since the flow direction is perpendicular to the
spatial variation, mass continuity is decoupled from the conservation of momentum.
Furthermore, this standing-shear-wave case is arguably more relevant to micro flows,
which tend to be shear-dominated, than waves where the flow direction is in the
same direction as the flow variation (which are, perhaps, more relevant to the
modelling of hypersonic flows). We propose that, bar a trivial linear shear flow, this
is the simplest time-dependent microscale flow possible, so is a fundamental test case
that can be used to compare the predictive performance of high-order continuum
equations.
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2.1. Mathematical modelling using extended constitutive relations

For convenience, the following non-dimensional variables are defined:

ŷ = βy, û = u√
RT

, t̂ = β
√

RT t, F̂x = Fx

A
, α̂ = α

β
√

RT
,

τ̂xy =
τxy

βµ
√

RT
, q̂x = qx

βµRT
,

}
(2)

where u is the macroscopic velocity in the x-direction, µ the gas viscosity, R the gas
constant, T the gas temperature, τxy the shear stress and qx is the heat flux in the x-
direction. The ‘hat’ symbol, which here denotes a dimensionless value, will hereinafter
be omitted to aid clarity. We also define a Knudsen number, Kn, as follows:

Kn =
βµ

√
RT

p
, (3)

where p is the gas pressure.
There are several different high-order continuum equation sets, although the

majority stem from two alternative methods of solving the Boltzmann equation:
the Chapman–Enskog series expansion and Grad’s 13- moment approach. Because
of considerations of space, we restrict our attention here to the following more
established equation sets: Navier–Stokes; Burnett (1935); super-Burnett; Grad (1949)
13-moment; Struchtrup (2005) Regularized 13-moment. Space also precludes detailed
descriptions of their derivation and relative merits, but these can be found in the
relevant literature just cited, so we now consider their application to the standing-
shear-wave problem for a monatomic gas.

Navier–Stokes equations

In this case, the linear Navier–Stokes x-momentum equation in non-dimensional
form is:

∂u

∂t
− Kn

∂2u

∂y2
= Fx, (4)

where the non-dimensionalized body force given in (1) is Fx = eiαt cos y. For this study,
we restrict our attention to velocity perturbations about an otherwise stationary flow;
the solution to (4) thus has the form:

u = ūeiαt cos y, (5)

where ū is the amplitude of the velocity field. Equation (4) then simplifies to:

(αi + Kn)ū = 1. (6)

For a quasi-steady body force (i.e. α = 0), the Navier–Stokes model predicts the
dimensionless amplitude of the velocity to be the inverse of the Knudsen number.

Burnett and super-Burnett equations

As detailed by Chapman & Cowling (1970), the Boltzmann equation can be solved
by the Chapman–Enskog approach, which is a series expansion with the Knudsen
number as the perturbation parameter. At first-order in Knudsen number, this method
retrieves the Navier–Stokes equations (4); to second and third order, the Burnett and
super-Burnett equations, respectively.

The linear Burnett x-momentum equation in non-dimensional form is:

∂u

∂t
− Kn

∂2u

∂y2
+ Kn2 ∂3u

∂t∂y2
= Fx, (7)

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 11 Jun 2009 IP address: 137.205.202.8

238 D. A. Lockerby and J. M. Reese

and the linear super-Burnett x-momentum equation in non-dimensional form is:

∂u

∂t
− Kn

∂2u

∂y2
+ Kn2 ∂3u

∂t∂y2
− Kn3 ∂4u

∂t2∂y2
− 5

3
Kn3 ∂4u

∂y4
= Fx. (8)

Note that the exact forms of the material derivatives that feature in the Burnett and
super-Burnett stress tensors have been used (see Reese 1993 for further details).

Burnett solutions to the standing-shear-wave problem (restricting, as before, our
interest to velocity perturbations from an otherwise stationary flow) are therefore:

(αi + Kn − αiKn2)ū = 1, (9)

and the super-Burnett solution is:

(
αi + Kn − αiKn2 − α2Kn3 − 5

3
Kn3

)
ū = 1. (10)

Grad’s 13-moment equations

An alternative to the Chapman–Enskog method of solving the Boltzmann equation
was proposed by Grad (1949). He expanded the molecular distribution function
as a series of Hermite tensor polynomials, with variable parameters, around the
Maxwellian equilibrium state. To evaluate the distribution function at second-order,
moment equations are required for 13 dependent variables in the conservation
equation set. This process led to what are termed Grad’s 13-moment equations, which
for this one-dimensional case are somewhat more complicated than the Burnett and
super-Burnett equations, and now involve a coupling of the shear stress with a parallel
heat flux. The coupled set of equations is:

∂u

∂t
+

∂τxy

∂y
= Fx,

τxy = −Kn
∂τxy

∂t
− 2

5
Kn

∂qx

∂y
− Kn

∂u

∂y
,

qx = −3

2
Kn

∂qx

∂t
− 3

2
Kn

∂τxy

∂y

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11)

For a standing shear wave generated about an otherwise stationary and isothermal
flow, Grad’s equations (11) reduce to the following linear set:

ūαi + τ̄xy i = 1,

ūKni + τ̄xy (1 + Knαi) + 2
5
q̄xKni = 0,

3
2
τ̄xyKni + q̄x

(
1 + 3

2
Knαi

)
= 0,

⎫⎪⎬
⎪⎭ (12)

where τxy = τ̄xy ie
iαt sin y and qx = q̄xe

iαt cos y. Equations (12) can be solved
simultaneously to obtain ū.

Regularized 13-moment equations

Struchtrup (2005) and Struchtrup & Torrilhon (2003, 2007) proposed Regularized
13-moment equations (which we denote here as the R13 equations), which are similar
to Grad’s equations but include additional second-order terms in the field equations
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for stress and heat-flux, i.e.

∂u

∂t
+

∂τxy

∂y
= Fx,

τxy = −Kn
∂τxy

∂t
− 2

5
Kn

∂qx

∂y
− Kn

∂u

∂y
+

16

15
Kn2 ∂2τxy

∂y2
,

qx = −3

2
Kn

∂qx

∂t
− 3

2
Kn

∂τxy

∂y
+

9

5
Kn2 ∂2qx

∂y2
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(13)

Again, for the standing shear wave of (1) (in stationary and isothermal base-flow
conditions), this reduces to a set of relatively simple linear equations:

ūαi + τ̄xy i = 1,

ūKni + τ̄xy

(
1 + Knαi + 16

15
Kn2

)
+ 2

5
q̄xKni = 0,

3
2
τ̄xyKni + q̄x

(
1 + 3

2
Knαi + 9

5
Kn2

)
= 0,

⎫⎪⎬
⎪⎭ (14)

which can be solved simultaneously to obtain ū.
In this analysis we considered velocity perturbations from a stationary and

isothermal flow field, as described by (5). However, the general solution requires
the addition of the complementary function, which is a solution to (4), (7), (8), (11)
and (13) in the unforced case, i.e. Fx = 0. For example, the steady-state general
solutions for the Navier–Stokes, Burnett and Grad’s 13-moment equations are:

u = ū cos y + C1y + C2. (15)

For the super-Burnett equations, the general solution is:

u = ū cos y + C1y + C2 + C3 sin

( √
15

5Kn
y

)
+ C4 cos

( √
15

5Kn
y

)
; (16)

and for the R13 equations:

u = ū cos y + C1y + C2 + C3 exp

( √
5

3Kn
y

)
+ C4 exp

(
−

√
5

3Kn
y

)
. (17)

The integration constants, C1−4, relate to characteristics of the one-dimensional flow
field that are independent of the body forcing, Fx . These general solutions indicate
that in the steady-state a uniform velocity field, as well as a constant rate of strain,
can be supported within the flow field. Interestingly, equation (16) shows that the
super-Burnett equations can also support, in the steady state, a spatially-oscillating
velocity field with a dimensional wavelength of approximately six mean free paths.
There is, then, according to the super-Burnett equations, a spatial wavenumber for
which there is no viscous damping.

2.2. Results and comparison with a kinetic theoretical model

In the absence of any experimental data for the standing-shear-wave problem, in
this paper we use time-dependent solutions to the BGK Boltzmann equation as an
independent comparison. We obtained these solutions using a discrete velocity method
(DVM) similar to that used by Valougeorgis (1988). This numerical scheme, which
uses Gaussian quadrature to integrate in velocity space, has been tested extensively
against a host of problems in rarefied gas dynamics and has proved to be both
accurate and highly efficient (see Valougeorgis & Naris 2003; Naris & Valougeorgis
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Figure 1. Quasi-steady wave-amplitude variation with Knudsen number. BGK solution (—);
Navier–Stokes and Burnett (· · ·); super-Burnett (— · · —); Grad’s 13-moment (— · —);
regularized 13-moment (— — —).

2005; Naris et al. 2005). For solutions to the standing-shear-wave problem, a quasi-
one-dimensional spatial treatment is adopted with sinusoidal variations in y having
the same wavenumber as the imposed body force. This implies a stationary base flow
field, corresponding to the assumptions of our analysis in the previous section.

Though it has limitations, the physical basis of the BGK Boltzmann model is
appropriate for the linear and isothermal flows we are considering. It is important
to stress that we do not attempt to assess the accuracy of the physical model
underpinning the BGK equations here; our intention is to compare the predictive
capabilities of competing continuum equation sets relative to a more computationally
expensive molecular technique.

The quasi-steady case

We first consider a quasi-steady wave, i.e. α = 0. Figure 1 shows the amplitude
of the shear wave, ū, predicted by the BGK model and all five continuum equation
sets for Knudsen numbers in the range 0.1 to 1. The Navier–Stokes predictions
depart significantly from the BGK results; by Kn = 1.0 the Navier–Stokes predicted
amplitude is less than 50% of the BGK result, indicating that even for this type
of micro flow, an alternative to the conventional fluid mechanics model is certainly
required. However, the Burnett solution offers no improvement, coinciding with the
Navier–Stokes results (as can be confirmed by inspection of (9) with α = 0). The
super-Burnett solution is close to the BGK result at moderate Knudsen numbers,
but predicts seemingly non-physical amplitudes at higher Kn; in fact, the solution
has an asymptote at a Knudsen number around 0.8, corresponding directly to the
wavenumber with no damping that we discussed at the end of §2.1. Grad’s equations
do not appear to have the accuracy of the super-Burnett equations at low Kn but do
provide reasonable predictions over the range of Kn. The R13 equations produce the
best results: close correlation with the BGK model at moderate Kn, and acceptable
accuracy at higher values. These results therefore support the claim of Struchtrup &
Torrilhon (2003) that the R13 equations are ‘in between the super-Burnett and Grad’s
13-moment equations in as much as [they] . . . keep the desirable features of both.’
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Figure 2. Wave-amplitude variation with non-dimensional body-force frequency,
α; Kn = 0.1; BGK solution (—); Navier–Stokes (— — —).
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Figure 3. Velocity-phase-lag variation with non-dimensional body-force frequency,
α; Kn = 0.1; BGK solution (—); Navier–Stokes (— — —).

Time-varying shear waves

While our results for the quasi-steady case show that, for Kn ≈ 0.1, the Navier–
Stokes and the BGK models agree, we should extend the analysis to the time-
dependent case. Figures 2 and 3 show that, for fixed Kn = 0.1, the BGK model
results closely match the Navier–Stokes solution for all frequencies considered, both
in amplitude and phase lag. There does not, then, appear to be an independent
non-equilibrium effect introduced by the body forcing frequency at low Kn .

However, the form of the high-order continuum equations suggests that there may
be non-equilibrium effects introduced by time-dependency at higher Kn. Figures 4
and 5 show results for the wave amplitude and phase lag, respectively, at a fixed
Kn = 0.5. In the case of the wave amplitude, the Navier–Stokes equations appear
to be no better or worse at higher frequencies – the proportional difference between
the Navier–Stokes and BGK results remains relatively constant. The BGK model
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Figure 4. Wave-amplitude variation with non-dimensional body-force frequency, α; Kn = 0.5.
BGK solution (—); Navier–Stokes (· · ·); Burnett (– – – –); super-Burnett (– ·· –); Grad’s
13-moment (– · –); regularized 13-moment (– – –).
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Figure 5. Velocity-phase-lag variation with non-dimensional body-force frequency,
α; Kn = 0.5. BGK solution (—); Navier–Stokes (· · ·); Burnett (– – – –); super-Burnett
(– ·· –); Grad’s 13-moment (– · –); regularized 13-moment (– – –).

predicts that non-equilibrium effects tend to make the shear wave lag behind the
driving force. In both figures it is striking that the Burnett and super-Burnett results
are quite poor, whereas the R13 equations accurately reproduce the BGK results over
the range of frequencies considered.

Our final set of standing-shear-wave results are for a fixed frequency oscillation,
α = 1.0. Figures 6 and 7 show the wave amplitude and phase lag variation over a range
of Kn . Figure 6 shows that the BGK model predicts a slight increase in amplitude
with increasing Kn , which is qualitatively different behaviour to the quasi-steady case.
Again, the Burnett and super-Burnett equations are seemingly non-physical at higher
Kn , whereas the R13 equations provide sensible and accurate results over a wide
range of Kn .
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Figure 6. Wave-amplitude variation with Knudsen number; α = 1.0. BGK solution (–);
Navier–Stokes (· · ·); Burnett (– – – –); super-Burnett (– ·· –); Grad’s 13-moment (– · –);
regularized 13-moment (– – –).
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Figure 7. Velocity phase lag variation with Knudsen number; α = 1.0. BGK solution (—);
Navier–Stokes (· · ·); Burnett (– – – –); super-Burnett (– ·· –); Grad’s 13-moment (– · –);
regularized 13-moment (– – –).

Note that our analysis and results in this section, for a standing shear wave,
are equivalent to those for a travelling shear wave of speed α. In that case, the
non-dimensional body force, velocity response, shear stress, and heat flux would
be Fx = ei(y+αt), u = ūei(y+αt), τxy = τ̄xye

i(y+αt), and qx = q̄xe
i(y+αt), respectively. The

remainder of the analysis then follows identically, as do the results.

3. Knudsen layers
While the standing-shear-wave problem provides both a good illustration of non-

equilibrium arising in a micro flow, and a simple test example for competing sets of
high-order equations, any practical application of non-equilibrium flow models must
also be able to capture the nonlinear stress/strain-rate behaviour within the Knudsen
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layer, as we outlined in §1. The Knudsen layer is also an interesting problem because,
whereas its structure has been extensively investigated and is well-understood from a
kinetic theoretical viewpoint (see e.g. Kogan 1969; Cercignani 1990; Sone 2002), high-
order continuum equations generally have difficulties in predicting the extent of the
layer – which kinetic theory predicts is some 1.4 molecular mean free paths into the
flow from any surface. For example, the R13 equations, which performed well for the
standing-shear-wave problem in §2, predict a Knudsen layer of around twice this extent
(see Lockerby et al. 2005a). There are also difficulties that arise in selecting the addi-
tional wall boundary conditions required for uniquely solving higher-order equations
sets (although Struchtrup & Torrilhon 2007 shows significant advances in this area).

Despite the generally poor ability of high-order equations to capture the Knudsen
layer accurately, a continuum-fluid formulation (in conjunction with slip boundary
conditions) is still preferred, particularly for engineering applications, as it would offer
distinct and practical computational advantages over current molecular methods. The
issue is, therefore, how to develop or adapt a continuum-fluid model to incorporate
the most important non-equilibrium Knudsen-layer effects.

3.1. Continuum-fluid models of slip

Integral to any calculation of the Knudsen layer is the model for gas slip at the surface.
Maxwell’s (1879) slip boundary condition relates velocity slip to the shear stress at
a gas–surface interface. Although his derivation was crude in comparison to modern
kinetic theory, this boundary condition performs surprisingly well. It is partly owing
to this, and its simplicity, that it still endures in rarefied gas dynamics (see Lockerby
et al. 2004). This boundary condition, for isothermal cases, has the form:

uslip = −2 − σ

σ
λ

τ

µ
, (18)

where uslip is the velocity slip, τ is the shear stress, µ is the viscosity, σ is the
tangential momentum accommodation coefficient (equal to one for perfectly diffuse
molecular deflection, and zero for purely specular deflection) and λ is the mean free
path, defined as:

λ = µ

√
π

2ρp
, (19)

where ρ is the density, and p is the pressure.
However, one of the main shortcomings of Maxwell’s boundary condition is its

inability to take into account the nonlinear stress/strain-rate relationship characteristic
of the Knudsen layer (as depicted schematically in figure 8). As a way of compensating
for this, modern slip boundary conditions (see e.g. Kogan 1969; Cercignani 1990; Sone
2002) use slip coefficients that predict greater than the actual slip at the boundaries.
This ‘fictitious’ slip, as it is sometimes called, ensures that the linear Navier–Stokes
model is accurate beyond the Knudsen layer, but not within it (i.e. the diagonal
dashed line in figure 8).

The Maxwell condition is often supplemented by a second-order contribution to
the slip, i.e.

uslip = A1λ
du

dx
+ A2λ

2 d2u

dx2
, (20)

where x is in a direction normal to, and away from, the surface, and A1 and A2

are slip coefficients. Cercignani (1990) and others have calculated the values of these
slip coefficients from numerical solutions to the BGK Boltzmann equation. For a

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 11 Jun 2009 IP address: 137.205.202.8

Modelling isothermal gas flows at the microscale 245

≈ 2λ

u∗

uslip

uw

τ = const

Figure 8. Schematic of the Knudsen layer extending out from a solid wall surface (shaded):
uw is the velocity of the wall; uslip the velocity slip at the wall; u* is the amount of ‘fictitious’
slip velocity that would be required to ensure that a Navier–Stokes solution (diagonal dashed
line) provides an accurate prediction (solid line) beyond the Knudsen-layer limit (vertical
dashed line).

monatomic and isothermal gas at low Knudsen number:

A1 = 1.1466, A2 = −0.9576, (21)

(this further assumes perfectly diffuse reflection of molecules at surfaces, i.e. σ = 1).
Using the same DVM for the BGK Boltzmann model as we used in §2.2, we

compare in figures 9 and 10 BGK solutions for isothermal Couette and Poiseuille
channel flows with Navier–Stokes solutions using the boundary conditions (20) with
(21). These results are for Kn(= λ/H ) = 0.05, where the characteristic length, H , is
the channel depth. As expected, a near-precise agreement is shown; it is only near
to the walls that any inaccuracy is evident. Note that all the results that follow
are non-dimensionalized using µ, λ and p, all of which are constant for the cases
presented.

If the average error in the Navier–Stokes velocity profile compared to the BGK
result may be defined as:

uerr =
1

|uBGK |max

√
〈(ui − uBGKi

)2〉, (22)

where ui is the non-dimensional velocity of the Navier–Stokes solution at the
ith grid point (the 4000 grid points of our BGK and Navier–Stokes simulations
coincide), then for these Couette and Poiseuille cases the average errors are
0.6% and 1.2%, respectively. This is a reasonable degree of accuracy considering
the computational savings afforded by using a Navier–Stokes solver. (For the
one-dimensional calculations here, the computational expense of both the BGK
and Navier–Stokes solutions is trivial. However, for complex geometries, such as
those common in three-dimensional microfluidic device design, the difference in
computational requirements would be considerable.)
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Figure 9. Non-dimensional velocity profile for Couette flow, Kn = 0.05 (= λ/H ). Comparison
of the BGK solution (—) with the slip solution (– – –). Non-dimensional wall velocities at
x = 0 and x = H are –1 and 1, respectively.
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Figure 10. Non-dimensional velocity profile for Poiseuille flow, Kn = 0.05 (= λ/H ).
Comparison of the BGK solution (—) with the slip solution (– – –). The non-dimensional
applied pressure gradient = Kn .

However, the accuracy of Navier–Stokes slip solutions rapidly diminishes at higher
Knudsen numbers. For example, at Kn = 0.5 the average errors in the Couette and
Poiseuille flow slip solutions are 10% and 33%, respectively. So it is clear that there
is a relatively low Knudsen-number limit up to which the Navier–Stokes model with
slip boundary conditions can be confidently applied.
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The two fundamental problems with using ‘fictitious’ slip boundary conditions
with the Navier–Stokes constitutive relations are: (i) that some portion of the flow
domain is therefore necessarily fictitious, and at transitional Knudsen numbers (i.e.
Kn = 0.1 ∼ 1), where the Knudsen layers are relatively much larger, this error
becomes unacceptable; (ii) that for moderate transitional Kn, the linear stress/strain-
rate relationship is invalid, not just near the walls, but for the entire channel. For
example, a BGK solution of Couette flow with Kn = 0.5 shows that nowhere in the
flow are the linear Navier–Stokes constitutive relations less than 16% inaccurate. This
inaccuracy is inherent in the foundational axioms of linearity of the Navier–Stokes
constitutive relations, and is irrespective of the amount of slip introduced at the
boundary.

However, we here propose an adaptation to the Navier–Stokes model capable of
addressing both of these problems. This new model has two components: micro slip
coefficients, which model the actual slip at gas–surface interfaces; and a wall-distance-
dependent scaling of the Navier–Stokes constitutive relations. It is important to stress
that our new model, for rarefied monatomic gas flows, is calibrated with precisely
the same BGK result as used in the generation of the standard second-order slip
boundary conditions (20) with (21). Any generality is therefore left intact.

3.2. Near-wall scaling of the constitutive relations

For ease of implementation, we seek a simple functional relationship between the
departure from Navier–Stokes behaviour and the wall-normal distance from a surface.
This concept is similar to the ‘wall-function’ proposed in Lockerby et al. (2005b).
However, there are some marked differences in the model we propose below, most
notably the presence of a second-order contribution to the near-wall scaling (second-
order, in that it is dependent on a local Knudsen number) and a more accurate
functional form (we also do not continue to use the phrase ‘wall-function’ in the
present paper, to avoid confusion with those wall-functions associated with turbulence
modelling). There are some similarities between our method and effective viscosity
approaches, such as the one proposed by Guo, Shi & Zheng (2007).

For a simple one-dimensional flow, we propose scaling the stress/strain-rate
relationship as follows (the scaling for a three-dimensional flow is essentially similar,
see (31)–(34) below):

du

dx
= − τ

µ
[1 + Ψ1(x̂) + kΨ2(x̂)], (23)

with the functions Ψi defined by:

Ψi(x̂) = aix̂
bi eci x̂ , (24)

where x̂ is the perpendicular distance from a wall surface (non-dimensionalized with λ)
and positive in the direction away from the surface; ai , bi and ci are coefficients to
be determined; and the variable k is:

k =
1

τ

dτ

dx̂
. (25)

This flow-dependent variable, k, is in essence a form of local Knudsen number,
and is introduced to provide a second-order component to the constitutive scaling;
similar, in a sense, to the second-order slip term featuring in (20). It can assume
positive values, as well as negative, suggesting that a positive (or negative) strain-rate
might be possible in the presence of a positive (or negative) stress. This qualitatively
non-Newtonian behaviour will be examined below.
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Values for the coefficients ai , bi and ci are optimised using a simple genetic algorithm
to most accurately reproduce the two low-Kn BGK results presented in Figures 9 and
10, resulting in:

a1 = 0.1859, b1 = −0.4640, c1 = −0.7902,

a2 = 0.4205, b2 = −0.3518, c2 = −0.4521.

}
(26)

Although these values are given to four significant figures, our results that follow
are reasonably insensitive to their exact values. For example, for a Poiseuille flow of
Kn = 0.2 (based on channel depth), a 5% alteration in any of the values listed in
(26) results in less than 1% difference in the additional mass flow rate that occurs in
the rarefied case.

Our scaling may be implemented conveniently within an existing computational
fluid dynamics (CFD) code by defining a variable viscosity to effect the desired scaling.
It is important to emphasize, however, that nothing artificial is being introduced into
the subsequent Navier–Stokes calculations. The actual viscosity remains unaltered.
Furthermore, the velocity profile correction that results is not at the expense of an
inaccuracy in the prediction of stress (as will be demonstrated later); it is only the
stress/strain-rate relationship that is being altered, and this is a reflection of what
happens in reality.

The functional form given in (24) is qualitatively different to that proposed by
Lockerby et al. (2005b) and Guo et al. (2007), and has been chosen to reproduce the
Knudsen layer’s actual structure more accurately; it allows for an indefinitely steep
profile in the inner most regions of the Knudsen layer, and a more gradual decay in
the outer regions. It also allows for a second-order contribution to the Knudsen layer.
Our model predicts an infinite scaling at the wall (since the coefficients b1 and b2 are
negative), and therefore an infinite rate of strain. Although this might, at first, seem
counter-intuitive, it is in accord with kinetic theory analysis of the Knudsen layer by
Sone (2002) and the recent work of Lilley & Sader (2007). In practice, this has limited
consequences on the implementation of our method since the function is evaluated
within the first fluid cell close to a wall (i.e. between the surface and first fluid grid
points). As such, there is no singularity to reckon with in the computational scheme.
Difficulties arise only if the spatial resolution is particularly high; then derivatives
become large and the errors associated with their evaluation significant. To avoid this,
very near-wall scaling values (e.g. x̂ < 0.05) can be obtained by linear extrapolation
from a value that is close to the wall, but which does not have excessively large
derivatives (an example of this technique is discussed below).

3.3. Combined effect of two parallel walls

At transitional Knudsen numbers, it is likely that surfaces in close proximity will have
a coupled effect on the departure of the flow from Navier–Stokes behaviour. Here,
as an initial model, we assume that in parallel wall cases, their contributions can
be combined linearly. This rather crude assumption is based on the simple premise
that the direct influence of a wall is restricted to molecules travelling away from its
surface. Since, in steady-flow cases, this set of molecules is half the total number, the
influence of the opposite wall can be considered separately, and therefore added to
this. In cases involving parallel walls, the combined scaling function is then:

du

dx
= − τ

µ
[1 + Ψ1(x̂a) + Ψ1(x̂b) + kaΨ2(x̂a) + kbΨ2(x̂b)] , (27)
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where x̂a and x̂b are the distances measured normal to the first and second wall
surfaces, respectively. It is important to note that this would make no appreciable
difference to the low-Knudsen-number cases in figures 9 and 10 because of the
relatively large distance between the solid surfaces. It is highly likely that for
non-planar cases, this linear combination of Knudsen-layer effects will have to be
reconsidered in a more rigorous manner.

3.4. Micro slip

In our new model, we aim to model the actual (sometimes referred to as ‘micro’) slip,
as opposed to a fictitious value of slip. So we propose here boundary conditions for
the micro slip in a similar form to those used for fictitious slip, as in (20), but in
terms of stress rather than strain-rate. For ordinary Navier–Stokes simulations this
difference is of no consequence, but this is not the case for our model. Lockerby et al.
(2004) showed that Maxwell’s slip boundary condition should be expressed in terms
of stress rather than strain-rate, and so here we extend this to second order:

uslip = −A1λ
τ

µ
− A2

λ2

µ

dτ

dx
. (28)

We obtain the values of the slip coefficients A1 and A2 directly from the low-Kn BGK
solutions presented in figures 9 and 10:

A1 = 0.798, A2 = −0.278. (29)

This completes our micro-slip Navier–Stokes model with near-wall scaling of the
constitutive relations.

3.5. Results and comparison with a kinetic theoretical model

We now compare our new model to both conventional second-order slip solutions
and BGK results at transitional Knusden numbers. This represents a real test of both
the conventional second-order slip model (equation (20)) and our new model, since
both are based upon the same low-Kn BGK data.

It is important to be clear that we are not investigating the appropriateness
of the physical model underpinning the BGK Boltzmann equation itself; we are
interested only in whether the standard and our current models can achieve the same
predictions. As such, we do not present solutions to the Boltzmann equation for
the same test cases; however, such solutions can be used to refine the calibration
of our proposed model. Although not used in our simulations presented here, the
model coefficients for a hard-sphere gas (calibrated using the data of Ohwada, Sone
& Aoki 1989a,b) are: a1 = 0.1824; b1 = −0.5101; c1 = −1.051; a2 = 0.2001;
b2 = −0.7193; c2 = −0.652; A1 = 0.8055; and A2 = −0.1452. The first-order
coefficients (A1, a1, b1, c1) are very similar to those from the BGK model; the disparity
in the second-order coefficients (A2, a2, b2, c2) reflects the inaccuracy of the BGK
model unless adjusted to be applicable to hard spheres (Hadjiconstantinou 2003).

The results that follow are non-dimensionalized using µ, λ and p, all of which
are constant for the cases presented (e.g. velocity is non-dimensionalized using λp/µ,
and shear stress using p). The simulations conducted here are trivial in terms of
computational requirements, and far more numerical grid points have been used than
necessary for an acceptably accurate result; all simulations in this section have been
performed using 4000 grid points. To give an indication of grid dependency using our
model, for Poiseuille flow (Kn = λ/H = 0.1), 50 grid points provide a prediction of
mass flow rate within 2% of that obtained using 5000 grid points.
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Figure 11. Non-dimensional velocity profile for high Knudsen number Couette flow
(Kn = 1.0). Comparison of the slip solution (· · ·), the BGK solution (—), and our model
(– – –). Non-dimensional wall velocities at x = 0 and x = H are −1 and 1, respectively.
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Figure 12. Average error of Couette flow velocity predictions up to Kn = 2.0. Comparison
of no-slip solution (– · –), slip solution (· · ·), and our model (– – –).

Couette flow

Figure 11 shows the velocity profiles for a high-Kn Couette flow (Kn = λ/H = 1.0)
predicted by our new model, the standard slip model, and the BGK equation; the
opposing non-dimensional wall velocities are equal to −1 and 1. Our model provides
strikingly close agreement to this BGK solution. Figure 12 shows the average velocity
error (defined in (22)) for the no-slip solution, the slip solution, and our model over a
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Figure 13. Non-dimensional Couette flow shear stress up to Kn = 1.0. Comparison of the
no-slip solution (– · –), slip solution (· · ·), BGK solution (——) and our model (– – –). The
non-dimensional wall velocities at x = 0 and x = H are –1 and 1, respectively.

range of Knudsen numbers. The slip solution has an average error of approximately
1% for Kn = 0.07, whereas our model can reach Kn = 2.0 before showing the same
level of error; this clearly represents a significant extension of applicability of the
continuum-fluid model.

Our model’s accuracy in predicting the Couette velocity field is not, as initially
might be assumed, at the expense of the stress field. The stress is constant throughout
the channel, and predictions of our model are compared to those of the slip model
and the BGK solutions in figure 13. Clearly, both the slip model and our current
model very accurately predict the stress in the channel. For a Knudsen number as
high as Kn = 2.0 the stress predictions are within 5% of the BGK solution for our
model and within 6% for the slip model.

Poiseuille flow

The second-order elements of the slip model and our current model are not tested in
Couette flow, as it is a constant-stress problem. So we now consider planar Poiseuille
flow at transitional Knudsen numbers. For these simulations, we have chosen a
non-dimensional streamwise pressure gradient equal to Kn.

Figure 14 shows the velocity profiles for a high-Kn Poiseuille flow (Kn = λ/H = 1.0)
predicted by our model (with the same coefficients, equations (26)), the slip model
and the BGK code. The current model provides a great improvement on the slip
solution: the strain-rate variation of the velocity profile predicted by our model is
very close to that of the BGK solution, suggesting that in this case it is the micro
slip coefficient that is introducing most of the error, rather than the scaling of the
constitutive relations.

The average error of the velocity profile is plotted in figure 15 for Knudsen numbers
up to 2.0. The slip model shows an average error of 5% at a Knudsen number as
low as 0.13, whereas our model can reach Kn = 0.62 before showing the same
average error. Our model’s improvement on the slip solution is therefore marked;
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Figure 14. Non-dimensional velocity profile for high-Knudsen-number Poiseuille flow
(Kn = 1.0). Comparison of the slip solution (· · ·), the BGK solution (—), and our model
(– – –). The non-dimensional applied pressure gradient is Kn .
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Figure 15. Average error of Poiseuille flow velocity predictions up to Kn = 2.0. Comparison
of no-slip solution (– · –), slip solution (· · ·), and our model (– – –). The non-dimensional
applied pressure gradient is Kn .

this is reinforced by figure 16, which shows predicted normalized mass flow rates
for Knudsen numbers up to 1.6 for the various models and the BGK code. The
‘Knudsen minimum’ in the flow rate is captured much more accurately with our
model as compared to the slip solution, although this minimum does appear to occur
at a significantly lower Knudsen number (Kn ∼ 0.4) than the BGK model predicts
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Figure 16. Normalized mass flow rate predictions for Poiseuille flow up to Kn = 1.6.
Comparison of no-slip solution (– · –), slip solution (· · ·), BGK solutions (—), and our
model (– – –). The non-dimensional applied pressure gradient is Kn; the non-dimensional
mass flow rate is normalized with

√
π/(2Kn).

(Kn ∼ 0.9). (Note that in this figure the Knudsen minimum appears quite slight; it
would be more accentuated if the graph were extended to higher Kn.)

Couette/Poiseuille flow

In developing slip models and extensions to Navier–Stokes solvers, the hope is
that they might be applicable to general geometries. The model we have proposed is
no less general in its derivation than the conventional slip model we have used for
comparison. An investigation into both models’ accuracy in cases other than Couette
and Poiseuille flows is therefore required.

For a combined Couette/Poiseuille test case we have chosen a non-dimensional
pressure gradient equal to Kn and opposing wall velocities equal to −1 and 1.
Figure 17 shows the velocity profile of this combined flow at Kn = 1.0. Again, our
current model (with the same coefficients) provides a much better prediction than
the conventional slip model. The average error of the velocity profile is plotted in
figure 18 versus Knudsen number. The slip model shows a 5% average error at a
Knudsen number of 0.14, whereas our model can reach a Knudsen number of 0.67
before showing the same level of error.

It was mentioned in §3.2 that our model might predict regions of positive (or
negative) strain-rate that are coincident with positive (or negative) shear stress. This
qualitatively non-Newtonian behaviour is noticeable in figure 17. The shear stress in
the entire flow is negative, and consequently, the Navier–Stokes slip solution predicts
a positive rate of strain throughout the channel. However, the BGK solution clearly
predicts an inversion in the rate of strain at x > 0.85H ; an unexpected phenomenon,
but captured by our new model quite well.
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Figure 17. Non-dimensional velocity profile for high-Knudsen-number combined
Couette/Poiseuille flow (Kn = 1.0). Comparison of the slip solution (· · ·), the BGK solution
(–), and our model (– – –). The non-dimensional applied pressure gradient is Kn, and the
non-dimensional wall velocities at x = 0 and x = H are –1 and 1, respectively.

150

100

50

0 0.5 1.0 1.5

Kn

2.0

uerr
(%)

Figure 18. Average error of combined Couette/Poiseuille flow velocity predictions up to
Kn = 2.0. Comparison of no-slip solution (– · –), slip solution (· · ·), and our model (– – –).
The non-dimensional applied pressure gradient is Kn .

3.6. Results and comparison for micro-sphere flow

Our model was developed using planar case data, so it should be assessed for its
usefulness in predicting non-planar situations; we therefore investigate creeping flow
past a micro sphere.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 11 Jun 2009 IP address: 137.205.202.8

Modelling isothermal gas flows at the microscale 255

The oil droplet experiments of Millikan (1923) demonstrated that the classical
Stokes drag prediction of flow past a sphere required correction as the Knudsen
number increased. Allen & Raabe (1985) conducted a similar but improved experiment
and used their data to obtain a drag formula, dependent on Knudsen number, as
follows:

D = DS

(
1 + Kn(α + βe−γ /Kn

)−1
, (30)

where Ds is the Stokes drag, Kn is the Knudsen number based on sphere radius,
α = 1.142 ± 0.0024, β = 0.558 ± 0.0024, and γ = 0.999 ± 0.0212. This expression will
be used as our experimental benchmark to which we compare the predictions of our
model, alongside conventional slip solutions.

The governing equations

The three-dimensional low-speed incompressible Navier–Stokes momentum
equations with our constitutive-relation scaling are as follows:

∇P = 2µ∇ · (Φ∇U ) = µΦ∇2U + 2µ∇Φ · ∇U, (31)

where

∇U =
1

2
[∇U + (∇U )T ], (32)

and

Φ = [1 + Ψ1(n̂) + kΨ2(n̂)]−1
, (33)

with n̂ being the non-dimensional surface-normal distance from the nearest wall
surface, and the functions Ψi and their coefficients are, again, those in (24) to (26).
The variable k is calculated as follows:

k =
1

τ

dτ

dn̂
with τ = ix̂ · (in̂ · Π), (34)

where Π is the stress tensor, in̂ is a unit vector in the wall-normal direction and i x̂ is a
unit vector perpendicular to i n̂ in a direction that gives maximum shear stress, τ . Our
constitutive-scaling model as a whole can indirectly (although will not necessarily)
affect the shear stress field, which in turn will alter k, producing a weak coupling
effect.

A schematic of the sphere and the coordinate system adopted is shown in figure 19.
The symmetry of the problem indicates a solution independent of θ and with no
θ-component of velocity, i.e.

U =

⎡
⎣ Ur

Uφ

0

⎤
⎦ ,

∂Ur

∂θ
=

∂Uφ

∂θ
=

∂p

∂θ
= 0. (35)

Furthermore, since this is creeping flow (i.e. very low Reynolds number), variations
in flow variables can be assumed to have the following form, with dependence only
on r:

Ur (r, φ) = ur (r) cos φ,

Uφ(r, φ) = uφ(r) sin φ,

P (r, φ) = p∞ + p(r) cos φ,

⎫⎪⎬
⎪⎭ (36)

where p∞ is the free-stream pressure.
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Figure 19. Coordinate system for the micro-sphere flow problem.

The continuity and momentum equations are then:

0 =
∂Ur

∂r
+

2Ur

r
+

1

r

∂Uφ

∂φ
+

Uφ cotφ

r
, (37)

∂P

∂r
= µΦ

(
∂2Ur

∂r2
+

2

r

∂Ur

∂r
− 2Ur

r2
+

1

r2

∂2Ur

∂φ2
+

cotφ

r2

∂Ur

∂φ
− 2

r2

∂Uφ

∂φ
− 2Uφ cot φ

r2

)

+µ
∂Φ

∂r

∂Ur

∂r
, (38)

1

r

∂P

∂φ
= µΦ

(
∂2Uφ

∂r2
+

2

r

∂Uφ

∂r
− Uφ

r2 sin2 φ
+

1

r2

∂2Uφ

∂φ2
+

cotφ

r2

∂Uφ

∂φ
+

2

r2

∂Ur

∂φ

)

+µ
∂Φ

∂r

(
∂Uφ

∂r
+

1

r

∂Ur

∂φ
− Uφ

r

)
. (39)

Note that Φ has dependence only on r , which is equal to λn̂ (the variable k, which
must be evaluated for Φ , is also dependent only on r despite the shear stress, τ ,
varying with sinφ). After making substitutions for Ur , Uφ and P given in (36), and
after eliminating ur from the momentum equations, (37) to (39) become:

uφ = −ur − r

2

dur

dr
, (40)

dp

dr
= µΦ

(
d2ur

dr2
+

4

r

dur

dr

)
+ 2µ

dΦ

dr

dur

dr
, (41)

p

r
= µΦ

(
r

2

d3ur

dr3
+ 3

d2ur

dr2
+

2

r

dur

dr

)
+ µ

dΦ

dr

(
r

2

d2ur

dr2
+

dur

dr

)
. (42)
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Then differentiating (42) and substituting into (41) (to eliminate pressure) gives the
following fourth-order ordinary differential equation:

0 = Φ

(
r2

2

d4ur

dr4
+ 4r

d3ur

dr3
+ 4

d2ur

dr2
− 4

r

dur

dr

)

+
dΦ

dr

(
r2 d3ur

dr3
+ 5r

d2ur

dr2
+

dur

dr

)
+

d2Φ

dr2

(
r2

2

d2ur

dr2
+ r

dur

dr

)
. (43)

This is solved with the following boundary conditions:

ur (r = ∞) = U∞, ur (r = a) = 0,

dur

dr
(r = ∞) = 0,

dur

dr
(r = a) = −2uφ

a
=

2uslip

a
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(44)

where a is the radius of the sphere and U∞ is the free-stream velocity. Note that in
the final boundary condition given in (44), the gradient of ur at the surface of the
sphere is related to the slip velocity via the continuity equation (40).

The surface shear stress, τ , and surface normal stress, σ , are as follows:

τ (φ) = τ̂ sinφ, σ (φ) = σ̂ cos φ, (45)

where

τ̂ = µΦ

(
r

2

d2ur

dr2
+

dur

dr

)
, σ̂ = −2µΦ

(
dur

dr

)
. (46)

These expressions, combined with the pressure that is obtained from (42), can be used
to evaluate the total drag force, F , on the sphere:

F =

∫
S

(P + σ − τ )ds, (47)

where S is the surface of the sphere and ds = a2 sinφdφdθ . By substituting (45),
and the pressure equation in (36), into (47) our final expression for the drag force is
obtained:

F =
4

3
πa2(p + σ̂ − 2τ̂ ). (48)

Note that, numerically, the surface stresses and surface pressure may be evaluated by
one-sided finite differences.

Numerical procedure

The domain is semi-infinite, and so the following mapping is used:

η =
L

r − a + L
, (49)

where η is the mapped variable (η = 1 at the sphere surface, η = 0 at infinity) and L

is a scaling factor. The derivatives featuring in (43) can be rewritten in terms of η as
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Figure 20. Normalized drag on a sphere versus Knudsen number. Comparison of classical
slip solution (– · · –) by Basset (1888); a second-order slip solution (· · ·) by Cercignani (1990);
our model (– – –); a BGK solution (�) by Lea & Loyalka (1982); and a curve fit to the
experimental data of Allen & Raabe (1985) (——).

follows:
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∂4ur
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12

η

∂3ur

∂η3
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η2

∂2ur

∂η2
+
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η3
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∂η

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(50)

We discretize the resulting differential equation using centred finite differences and
solve it using a standard linear equation solver. For all computations presented here,
4000 grid points have been used, but acceptably accurate results can be obtained with
far fewer points. For Kn = 0.1, a simulation with 100 grid points obtains a prediction
of drag within 2.5% of that obtained using 4000 grid points; a simulation with 300
grid points, within 1%.

One minor numerical complication arises from the derivatives of the function Φ

tending to infinity at the surface of the sphere. To circumvent the numerical problems
this causes, the function is linearly extrapolated back towards the surface for values
of n̂ < 0.05. This extrapolated region is very small and has negligible effect on the
solution other than to stabilize it.

Results

Our model is compared with the experimentally-fitted function of (30), a first-order
slip solution due to Basset (1888) (A1 = 1; A2 = 0), a second-order slip solution
given by Cercignani (1990) (A1 = 1.1466; A2 = −0.9576), and BGK results from
Lea & Loyalka (1982). Our results for drag, normalized by Stokes’ continuum drag
prediction (F = 6πµaU∞), are shown in figure 20.
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Aside from a marginal over-prediction at low Knudsen numbers, our model provides
significantly better predictions than the second-order slip model, and much better
predictions than Basset’s classical slip model, when compared to both the experimental
data and the BGK result. Considering that the second-order slip solution also has
fictitious contributions to the flow velocity near to the wall (as we noted in §3.1), our
current model is therefore greatly to be preferred.

One caveat to this latter statement is that at much higher Kn (greater than about
0.6), and for this configuration, our model meets some stability problems. More work
is required to establish whether this is a problem with the current implementation
strategy, or an inherent instability in the model.

4. Discussion and conclusions
We have tested a number of different continuum-type equations, each purporting to

capture non-equilibrium physical flow effects, against a simple new benchmark case in
rarefied flows: the time-varying standing shear wave. While this is an ideal case, it has
the distinct advantage of separating rarefied gas effects in the bulk flow from those
due to solid bounding surfaces. Another advantage is that the analysis is relatively
simple, so competing continuum-type models can be evaluated straightforwardly. We
showed that the R13 equations, proposed by Struchtrup & Torrilhon as a development
of Grad’s original 13 moment technique, provide the best model among those we
tested. Cases more complicated than this ideal benchmark may, however, require
efficient computational methods in order to make the R13 equations a tractable
design tool; it is unclear at present how computationally demanding calculations of
three-dimensional flows in complex geometries may be for any high-order continuum
equation set.

To tackle, within the conventional fluid dynamics framework, the non-equilibrium
introduced by solid surfaces, we have developed a new Navier–Stokes model for
monatomic micro gas flow simulations. This combines slip boundary conditions with
a near-wall scaling of the constitutive relations. We showed that this model is much
more accurate at higher Knudsen numbers than the conventional second-order slip
model. It provides good results for combined Couette/Poiseuille flow, and can predict
the stress/strain-rate inversion that is evident from BGK solutions.

We also applied our new model to the non-planar low-speed micro-flow around
a sphere. Again, it demonstrated a marked improvement on conventional second-
order slip predictions of drag, although there are some as yet unanswered questions
regarding its stability at high Knudsen numbers.

In addition to its predictive capabilities in planar and curved geometries, our new
model

(i) does not require re-calibration of its coefficients for different geometries;
(ii) is easily and consistently implemented within existing CFD frameworks as a

scaled effective viscosity;
(iii) is of equivalent computational cost to the standard Navier–Stokes equations

(and additional numerical grid points are not required to maintain accuracy);
(iv) is based on the same BGK results as standard second-order slip boundary

conditions, i.e. it has not been fitted to higher Knudsen number data for the particular
flows considered;

(v) does not require additional boundary conditions for higher moments of the
flow properties.
Future work should include:
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(i) consideration of the effect of non-parallel wall interactions on the overall flow
field;

(ii) incorporating the thermal Knudsen layer that is important in non-isothermal
flows;

(iii) developing micro slip and constitutive relation scaling based on a more
sophisticated collision model than the BGK approximation;

(iv) investigating polyatomic gas flows and the effect of gas mixtures.

The authors would like to thank Professor Dimitris Valougeorgis for providing a
well-documented DVM code that generated the BGK results presented in this paper.
We also thank the referees of this paper for their very helpful comments. This work is
funded in the UK by the Engineering and Physical Sciences Research Council under
grant EP/D007488/1.
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