
TOWARDS AN EFFECTIVE PROCESSING OF

XML KEYWORD QUERY

BAO ZHIFENG

Bachelor of Computing (Honors)

National University of Singapore

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48637642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ACKNOWLEDGEMENT

My first and foremost thank goes to my supervisor Prof. Ling Tok Wang who first

introduced me to database research. I still remember the first day I met Prof. Ling in

year 2005, when I came into his office to express my willing to work on his project as

my Honor Year project. Without his careful supervision, my work cannot be one of the

best Honor Year student projects. His heuristic guidance in our discussion makes me

think and work very independently and I really appreciate this “learn by doing” way. As

a supervisor, his insights in database research and rigorous attitude are invaluable for my

research. As a mentor, his kindness and wisdom help me to be a happy PhD student. I

will benefit from these not only for a Ph.D. degree but also for the whole life.

Prof. Ooi Beng Chin, who has influenced me in many ways, deserves my special

appreciations. He sets the high standard for our database research group, insists on the

importance of hard working, and advocates the value of building real systems. Without

his full credits to me, I would not be able to work in AT&T shannon lab and University

of Queensland for summer internships. He does set a great figure in both my career and

life to be a strong man anywhere anytime.

I would like to thank Prof. Stephane Bressan and Prof. Lee Mong Li for serving on

ii

my thesis committee and providing many useful comments on the thesis.

I would like to thank Dr. Divesh Srivastava who generously hosted me in AT&T

Shannon lab, where I spent 5 months in USA. Whenever I have a question, his door is

always open to discussion. Dr. Divesh taught me how to work hard and play harder,

and it is invaluable for me to learn from him how to present one’s idea in a precise and

concise way. I also want to thank all my cooperators in AT&T Shannon lab, Dr. Graham

Cormode, Dr. Theodore Johnson and Dr. Vladislav Shkapenyuk, who helped me start a

new research area. Dong Xin and her family deserve my special thanks, they offer me

their house for accommodation and taught me how to lead a delightful life. I would also

like to thank Prof. Zhou Xiaofang, who hosted me for 3-month internship in University

of Queensland, and colleagues in UQ, Henning, Xie Qing, Yang Yang, Zhu Xiaofeng,

Zheng Kai and Cheng Ran.

I appreciate all the people coauthoring with me, especially Lu Jiaheng and Chen Bo.

Their participation further strengthened the technical quality and literary presentation of

our papers. I am also appreciated to the help from Prof. Anthony Tung, Prof. Tan Kian

Lee and Prof Chan Chee Yong in our database group.

The last eight years in National University of Singapore have been an exciting and

wonderful journey in my life. I met a lot of friends who brought a lot of fun to my

life. They are Daisuke Mashima, Dong Xin, Eric, Ge Zihui, Jin Yu, Mao Yun, Pei Dan,

Qian Feng, Yu Fang and Zhao Qi in AT&T lab, Cao Yu, Chen Su, Dai Bingtian, Liu

Shanshan, Ju Lei, Sheng Chang, Sun Jie, Wang Xiaoli, Wu Huayu, Wu Ji, Wu Jun, Wu

Sai, Wu Wei, Yang Fei, Xiang Shili, Xu Liang, Xue Mingqiang, Ying Shanshan, Zhang

Dongxiang, Zhang Jingbo, Zhang Meihui and Zhang Zhenjie in NUS.

Lastly but not least, my deepest love is reserved for my parents, Bao Peiliang and

Zhao Xiuming, and my grandparents. Their unconditional love and nutrition have brought

me into the world and developed me into a person with endless passion and power.

iii

Publications

Materials in this thesis are revised from the following list of our previous publica-

tions.

1. Zhifeng Bao, Bo Chen, Tok Wang Ling, Jiaheng Lu. “Effective XML Keyword

Search with Relevance Oriented Ranking”, The 25th IEEE International Confer-

ence on Data Engineering (ICDE), PP. 517-528, Shanghai, China, 2009. [16]

2. Zhifeng Bao, Bo Chen, Tok Wang Ling, Jiaheng Lu. “Demonstrating Effective

Ranked XML Keyword Search with Meaningful Result Display”, The 14th Con-

ference on Database Systems for Advanced Applications (DASFAA), PP. 750-754,

Brisbane, Australia, 2009. [15]

3. Jiaheng Lu, Zhifeng Bao, Tok Wang Ling, Xiaofeng Meng. “XML Keyword

Query Refinement”, The 1st International Workshop on Keyword Search on Struc-

tured Data (KEYS), PP. 41-42, Providence, USA, 2009. [84]

4. Zhifeng Bao, Jiaheng Lu, Tok Wang Ling, Bo Chen. “Towards an Effective

XML Keyword Search”, IEEE Transactions on Knowledge and Data Engineer-

ing (TKDE), 2010. Special Issue on Best Papers of ICDE 2009. [19]

5. Zhifeng Bao, Jiaheng Lu, Tok Wang Ling, Liang Xu, Huayu Wu. “An Effective

Object-level XML Keyword Search”, The 15th Conference on Database Systems

for Advanced Applications (DASFAA), Tsukuba, Japan, 2010. [20]

6. Zhifeng Bao, Jiaheng Lu, Tok Wang Ling. “XReal: An Interactive XML Key-

word Searching”, The 19th ACM International Conference on Information and

Knowledge Management (CIKM), Toronto, Canada, 2010. [18]

iv

7. Jiaheng Lu, Zhifeng Bao, Tok Wang Ling, Xiaofeng Meng. “Content-aware

Query Refinement in XML Keyword Search”, Submitted to the IEEE Transactions

on Knowledge and Data Engineering. [83]

During the PhD study, I have participated in some XML query processing related

works, and the resulted publications are listed in chronological order as follows:

8. Liang Xu, Zhifeng Bao, Tok Wang Ling. “A Dynamic Labeling Scheme Using

Vectors”, The 18th International Conference on Database and Expert Systems Ap-

plications (DEXA), PP. 130-140. Regensburg, Germany, 2007. [115]

9. Zhifeng Bao, Huayu Wu, Bo Chen, Tok Wang Ling. “Using semantics in XML

query processing”, The 2nd International Conference on Ubiquitous Information

Management and Communication (ICUIMC), PP. 157-162, Suwon, Korea, 2008.

[21]

10. Zhifeng Bao, Tok Wang Ling, Jiaheng Lu, Bo Chen. “SemanticTwig: A Se-

mantic Approach to Optimize XML Query Processing”, The 13th Conference on

Database Systems for Advanced Applications (DASFAA), PP. 282-298, New Delhi,

India, 2008. [17]

11. Junfeng Zhou, Zhifeng Bao, Tok Wang Ling, Xiaofeng Meng. “MCN: A New

Semantics Towards Effective XML Keyword Search”, The 14th Conference on

Database Systems for Advanced Applications (DASFAA), PP. 511-526, Brisbane,

Australia, 2009. [123]

12. Huayu Wu, Tok Wang Ling, Liang Xu, Zhifeng Bao. “Performing grouping and

aggregate functions in XML queries”, The 18th International World Wide Web

Conference (WWW), PP. 1001-1010, Madrid, Spain, 2009. [110]

v

13. Liang Xu, Tok Wang Ling, Huayu Wu, Zhifeng Bao. “DDE: from dewey to a fully

dynamic XML labeling scheme”, The 35th SIGMOD international conference on

Management of data (SIGMOD), PP. 719-730, Providence, USA, 2009. [117]

14. Jiaheng Lu, Tok Wang Ling, Zhifeng Bao, Chen Wang. “Extended XML Tree

Pattern Matching: Theories and Algorithms”, IEEE Transactions on Knowledge

and Data Engineering (TKDE), 2010. [85]

15. Liang Xu, Tok Wang Ling, Zhifeng Bao, Huayu Wu. “Efficient Label Encod-

ing for Range-Based Dynamic XML Labeling Schemes”, The 15th Conference on

Database Systems for Advanced Applications (DASFAA), PP. 262-276, Tsukuba,

Japan, 2010. [116]

16. Huayu Wu, Tok Wang Ling, Gillian Dobbie, Zhifeng Bao and Liang Xu. “Re-

ducing Graph Matching to Tree Matching for XML Queries with ID References”,

The 21st International Conference on Database and Expert Systems Applications

(DEXA), Bilbao, Spain, 2010. [109]

CONTENTS

Acknowledgement i

Summary x

1 Introduction 1

1.1 Background on XML and XML Keyword Search 1

1.2 Research Problem: Effective XML Keyword Search 4

1.3 Contributions of This Thesis . 6

1.3.1 Effective Keyword Search Over XML Data Tree 7

1.3.2 Effective Keyword Search Over XML Directed Graph 7

1.3.3 Effective XML Keyword Query Refinement 8

1.4 Thesis Outline . 9

2 Related Work 10

2.1 XML Data Model . 11

2.1.1 Tree Model . 11

2.1.2 Directed Graph Model . 12

vi

vii

2.2 Labeling Schemes For XML Data . 13

2.3 Structured Query Languages on XML 16

2.4 Keyword Search on Web . 17

2.5 Keyword Search on XML Tree Model 18

2.5.1 Matching Semantics and Efficiency Issue 18

2.5.2 Result Ranking on XML Data Tree Model 23

2.5.3 Improving User Search Experience 24

2.6 Keyword Search on Digraph Model 26

2.7 Keyword Search over Relational Database 28

2.8 Keyword Query Refinement . 30

2.8.1 Keyword Query Refinement in IR Field 30

2.8.2 Keyword Query Cleaning in Relational Database 31

2.8.3 Keyword Query Refinement in XML Retrieval 32

3 Effective keyword search over XML data tree 35

3.1 Introduction . 35

3.2 Preliminaries . 41

3.2.1 TF*IDF Cosine Similarity . 41

3.2.2 Data Model . 43

3.2.3 XML TF & DF . 45

3.3 Inferring Keyword Search Intention 47

3.3.1 Inferring the Node Type to Search For 47

3.3.2 Inferring the Node Types to Search Via 49

3.3.3 Capturing Keyword Co-occurrence 50

3.4 Relevance Oriented Ranking . 53

3.4.1 Principles of Keyword Search in XML 53

3.4.2 XML TF*IDF Similarity . 55

viii

3.5 Algorithms . 61

3.5.1 Data Processing and Index Construction 61

3.5.2 Keyword Search & Ranking 62

3.6 Experiments . 65

3.6.1 Evaluation of Search Effectiveness 66

3.6.2 Evaluation of Ranking Effectiveness 70

3.6.3 Evaluation of Efficiency . 71

3.6.4 Evaluation of Scalability . 72

3.7 Summary . 73

4 Effective keyword search over XML digraph model 75

4.1 Introduction . 75

4.2 Data Model . 79

4.3 Object-Level Matching Semantics . 80

4.3.1 ISO Matching Semantics . 81

4.3.2 IRO Matching Semantics . 81

4.3.3 Separation of ISO & IRO Results Display 84

4.4 Relevance Oriented Result Ranking 84

4.4.1 Ranking for ISO . 84

4.4.2 Ranking for IRO . 87

4.5 Index Construction . 90

4.6 Algorithms . 91

4.7 Experimental Evaluation . 94

4.7.1 Effectiveness of ISO and IRO Matching Semantics 95

4.7.2 Efficiency & Scalability Test 95

4.7.3 Effectiveness of the Ranking Schemes 97

4.8 Summary . 101

ix

5 Content-aware Query Refinement in XML Keyword Search 102

5.1 Introduction . 102

5.1.1 Our Approach . 107

5.2 Preliminaries . 110

5.2.1 Meaningful SLCA . 110

5.2.2 Refinement Operations . 114

5.3 Ranking of Refined Queries . 117

5.3.1 Similarity Score of a RQ . 117

5.3.2 Dependency Score of a RQ 121

5.4 Exploring the Refined Query . 122

5.5 Content-aware Query Refinement . 126

5.5.1 Partition-based Algorithm . 127

5.5.2 Short-List Eager Algorithm 132

5.5.3 Summary . 135

5.6 Index Construction . 136

5.7 Experiments . 137

5.7.1 Sample Query Set . 138

5.7.2 Efficiency . 140

5.7.3 Scalability . 142

5.7.4 Effectiveness of Query Refinement 143

5.8 Summary . 147

6 Conclusion and Future Work 149

6.1 Conclusion . 149

6.2 Future Work . 152

Bibliography 156

x

SUMMARY

Inspired by the great success of information retrieval (IR) style keyword search on

the web, keyword search over XML data has emerged recently. As compared to keyword

search on the web, XML keyword search brings several new challenges. (1) The target

that a user query intends to search for is usually unknown or implicit. (2) The keyword

ambiguity problem: a keyword can appear as both a tag name and a text value of some

node; a keyword can appear as the text values of different XML node types and carry

different meanings; a keyword can appear as the tag name of different XML node types

with different meanings. It further obstructs identifying the constraints that a user query

intends to search via. (3) The hierarchical structure of XML data has to be taken into

account in devising the matching semantics and result ranking scheme. This dissertation

discusses three aspects in the construction of an effective XML keyword search engine

while conquering the above challenges.

First, we study the keyword search over XML data tree without ID references cap-

tured. In particular, we propose a statistics-based approach to identify the target(s) that

a user query intends to search for, quantify the likeliness of different search intentions

in result ranking, and end with designing an XML Term Frequency * Inverse Document

xi

Frequency (XML TF*IDF) result ranking scheme. Second, we realize that by taking the

ID references among elements in XML data into consideration, more relevant results can

be found. Through identifying the objects of interest from the given semantic informa-

tion of XML data, we model XML data as a set of object trees that are interconnected

by either containment or reference edges, and propose a series of matching semantics

at object tree level. As a result, user’s search concern on real-world objects can be pre-

cisely captured; by distinguishing the containment and reference edge in XML data, the

efficiency of matching result generation is improved as compared to previous works on

keyword search over general directed graph. Third, we observe that user queries may

contain irrelevant or mismatched terms, typos etc, which may easily lead to nonsensi-

cal or empty result. An effective query refinement is a demanding functionality of an

XML keyword search engine. Specifically, we propose a novel query ranking model to

quantify the confidence of a refined query (RQ) candidate, which can capture the mor-

phological/semantical similarity between Q and RQ and the dependency of keywords of

RQ over the XML data. Besides, we integrate the job of looking for RQ candidates and

generating their matching results as a single problem, thus guaranteeing the existence of

meaningful matching results of the suggested RQs.

As a result, by incorporating the above proposed techniques, a keyword search engine

prototype have been built. Through a comprehensive experimental study on both the

real-life and synthetic data set, the proposed solutions are shown to be efficient, effective

and scalable.

LIST OF TABLES

2.1 Summary of Related Works . 34

3.1 Data and Index Sizes . 65

3.2 Test on inferring the search for node 66

3.3 F-Measure Comparison . 70

3.4 Ranking Performance of XReal . 71

4.1 A summary of Indices . 94

4.2 Recall Comparison . 94

4.3 Ranking Performance Comparison . 98

4.4 Sample queries on DBLP . 98

4.5 sample query result number . 99

5.1 Query before and after refinement . 104

5.2 Sample Refinement Rule Instances with its dissimilarity score 116

5.3 Sample Query Sets for Term Deletion 139

5.4 Sample Query Sets for Term Merging 139

5.5 Sample Query Sets for Term Split . 140

xii

xiii

5.6 Sample Query Sets for Term Substitution 140

5.7 Top-4 ranked RQs with their result number 144

5.8 Query Statistics . 145

5.9 CG@4 by different ranking models . 146

5.10 CG@4 by different weights . 146

LIST OF FIGURES

1.1 A sample XML document . 2

1.2 Tree model of XML document in Figure 1.1 3

2.1 Sample StoreDB XML document . 11

2.2 Tree model representation for the XML data in Figure 2.1 11

2.3 Sample bookstore XML document . 12

2.4 Digraph model representation for the XML data in Figure 2.3 12

2.5 Sample XML document (with Dewey Labels) 14

2.6 Reduced subgraph for Q=“XML, John, Martin” on Figure 2.4’s XML data 26

3.1 Portion of data tree for an online bookstore XML database 38

3.2 Precision Comparison(%) . 68

3.3 Recall Comparison(%) . 69

3.4 Response time on individual queries 71

3.5 Response time on different number of keywords |K| 72

3.6 Response time w.r.t. result/document size 73

4.1 Example XML data (with Dewey IDs) 77

xiv

xv

4.2 Efficiency and scalability tests on DBLP 96

4.3 Efficiency and scalability tests on XMark 97

4.4 Result quality comparison . 100

5.1 Example XML document . 103

5.2 A running example of finding the optimal RQ 125

5.3 Effects of K on Top-K Query Refinement 142

5.4 Effects of Data Size on Top-3 RQ Computation 143

5.5 Top-1 sample query refinement on DBLP 148

CHAPTER 1

INTRODUCTION

1.1 Background on XML and XML Keyword Search

As the World Wide Web is becoming a major carrier to share and disseminate in-

formation, HTML (HyperText Markup Language) [99] and XML (EXtensible Markup

Language) [26] were initially designed to tailor for large-scaled web-compliant infor-

mation publishing on Web. On one hand, in contrast to HTML which has predefined

elements and attributes, for output formatting purpose XML allows users to define their

own elements specific to their application or business needs, where data stored in XML

contains more meaningful structural and semantic information, manifesting more pow-

erful expressiveness than HTML. On the other hand, in contrast to SGML (Standard

Generalized Markup Language) [6] whose specification is too complex to use and im-

plement, XML’s specification keeps the essence of SGML’s power and extensibility with

a much simpler specification. All of these promote XML to be a standard in data ex-

change and representation over Internet, which increases the volume of data encoded in

1

2

XML.

Figure 1.1 shows a sample XML document containing the papers of an academic

conference, where data is bounded by a pair of starting and ending tags. For example,

line 1 describes the root element of the document, namely conference, and the remaining

lines describe its four child elements, i.e. year (line 2), title (line 3), venue (line 4) and

inproceedings (line 5-26); finally, the last line defines the end of the root element.� ������������	 �
���� 	�� ��
����� ������� ���
 ����� ��������� ��������� ������� �������� �� !������ ��������" ���#�����������$ �#�#�� �� % &�'�(������� ��������� ��� �������
��� ��������)���*�� ���
XML

��
 ��� �����* ��������+ ����*��� ,�
��� ��� �����*����� ����*���
� �*�� �����*����� �������� ��)� % &������������'��	 ����������� ��)� % &)���������'��� -*��
processing

� ��
 ���
query

����
XML

����. � ��) �� ���� �*���)��� �������� ���)��������� ����)���� /�" ������������� //�$ �����������(//� �������� ��)� % &01#���)����� ����
'��+ �� � ��� ���. �*� ���������
 �� ��� query processing
)��*�� �� /	� ����������	� ��#�#���		 �#�#�� �� % &	'�	� ������� 2���������

XML
��������� ����� �1�)#��� ��� ����������� ��������	� //	" ��#�#���	$ ����#�����������	(//	 �������������

Figure 1.1: A sample XML document

The elements in an XML document usually form a document tree, starting at the

root and branches to the lowest level of the tree. Each node in the tree corresponds

to an element, an attribute or character data in XML document, and each edge in the

tree represents the element-subelement or element-attribute relationship. For example,

Figure 1.2 shows a tree model 1 of the XML document in Figure 1.1.
1For the convenience of typesetting, for the values of leaf nodes we only show part of them related to

3

conference

@id title

“yi chen”

author

“… XML ...”

“1”

author

...year title venue

“very large

databases”
“2008” ... paper

inproceedings

“ziyang

liu”

section

@name

“introduction”

subsection

@name

“motivation”

“...processing..

query over

XML data...”

section

@name

“Experimental

study”

subsection

“… query

processing...”

paper
@id

“2” title

“...XML...”

Figure 1.2: Tree model of XML document in Figure 1.1

As the volume of XML data is increasing, it is demanding to provide efficient and

effective management over XML data, such as structured query processing and keyword

query processing. Regarding structured query processing, database systems have been

notorious for being hard to use (even for expert users) all the time, because users have

to learn structured query languages specifically designed for such data (e.g. XQuery,

XPath for accessing XML document), and have to be very familiar with the (possibly

complex) underlying schema of such data. Even worse, unlike relational database where

the schema is relatively small and fixed, XML data model allows varied structures and

values, making it more difficult for web user to issue a structured query. On the contrary,

keyword search allows users to pose their information need in a free form, and its great

success on the World Wide Web, e.g. google keyword search engine, has inspired an

increasing interest in studying keyword search over XML database.

Unlike the ranked retrieval style keyword search such as google over collections of

unstructured documents, XML presents more structural and semantic information, thus a

result matching semantics is needed to find the most relevant and meaningful fragments

of XML data. Among all matching semantics proposed, the most basic one is called

the keyword query examples presented later in this section.

4

Lowest Common Ancestor (LCA) [52]. Intuitively, LCA returns a set of elements, each

of which contains2 at least one occurrence of all query keywords in its subtree, after

excluding the occurrences of keywords in the sub-elements that already contain all query

keywords. As a result, the above definition ensures that all independent occurrences of

the query keywords are represented in the query result, as illustrated in Example 1.1.

Example 1.1. Consider a keyword query Q = {XML, query, processing} issued on the

XML data in Figure 1.1.

By LCA semantics, two results R1 and R2 are returned: R1 is the subsection element

(line 12-15), as it directly contains all query keywords3 in its value part; R2 is the pa-

per element (line 6-21). We can find, although R2 is an ancestor of R1 which already

contains all keywords, it also contains independent occurrences these keywords, where

“XML” is contained in its title sub-element (line 7-8), “query” and “processing” are

contained in its section sub-element (line 18-20). 2

Later on, the concept of Smallest Lowest Common Ancestor (SLCA) is proposed

[118], in order to find the smallest LCAs that do not contain other LCAs in their subtrees.

The rational behind is that, users often favor subtrees of smaller size as it contains more

compact and specific information they intend to explore. For illustration, Let us refer

back to Example 1.1, the LCA result R2 (the paper element in line 6-21) is not a qualified

SLCA, because it contains a subsection sub-element (line 12-15) which is already a LCA

of all query keywords. Therefore, only R1 is returned as an SLCA result.

1.2 Research Problem: Effective XML Keyword Search

As a keyword search engine, the most important issue to be resolved is how to im-

prove the user search experience, especially for novice users. Regarding search expe-
2In this thesis, whenever we mention “contain”, it means the keyword is contained within either the

value part or the tag name of XML element.
3The keywords contained is highlighted in bold text.

5

rience, effectiveness and efficiency are the two critical aspects in evaluating the perfor-

mance of a keyword search engine. In this thesis, we put the effectiveness issue as our

major focus. In a nutshell, effectiveness in XML keyword search amounts to finding both

meaningful and relevant fragments of XML data.

Inspired by the great success of information retrieval (IR) style keyword search on the

web, keyword search on XML has emerged recently. However, the difference between

unstructured web data and semi-structured XML data results in three new challenges:

1. Identify the user search intention, i.e. identify the XML node types that user wants

to search for (i.e. search targets) and search via (i.e. search constraints).

2. Resolve keyword ambiguity problems: a keyword can appear as both a tag name

and a text value of some node; a keyword can appear as the text values of different

XML node types and carry different meanings; a keyword can appear as the tag

name of different XML node with different meanings.

3. As the search results are sub-trees of the XML document, new scoring function is

needed to estimate its relevance to a given query. Besides, an appropriate granu-

larity for the sub-trees is critical.

As we can see, in order to resolve the above challenges thoroughly, we should be

able to combine the techniques in database (DB) and information retrieval (IR) com-

munity, as it needs not only the DB-style specification on defining the structure-aware

matching results, but also needs similar IR-style measurement to judge the similarity of

the contents of matching results.

Unfortunately, existing methods cannot thoroughly resolve these challenges. One

major problem is, existing works that focus on the matching semantics design [52, 79,

118, 119] only account for the internal structure and occurrences of keywords, without

figuring out the most promising search targets and constraints of a user query.

6

Example 1.2. Consider the query in Example 1.1 again, by LCA there are two matching

results R1 and R2, which indeed represent two completely different search intentions

respectively (even the search target is different): R1 corresponds to a subsection whose

content contains all query keywords, while R2 corresponds to a paper which contains

“XML” in its title and “query”, “processing” in its subsection’s content. Unfortunately,

LCA is neither able to distinguish these two search targets or intentions, nor able to

account for the structural positions of the matched keywords in a matching LCA result;

instead, it only trivially enforces the occurrences of all keywords in a result.

From the above example, we can see that existing works that enforce the occurrences

of query keywords in matching result definition cannot resolve the problem of search tar-

get identification, instead it mixes the results corresponding to each of the above search

targets. Thus, it leads to a yet unsolved problem, which is to design IR-liked scor-

ing methods quantify the confidences of those candidates as the desired search target.

Further, an appropriate scoring model is needed to quantify the results associated with

different search predicates (e.g. R1 and R2 have different matching criteria). Another

problem of existing works is the integration of DB and IR techniques. Most previous

works [52, 38, 73] adopt the following flow in answering a keyword query: it first finds

all the matching results according to a particular matching semantics, followed by ex-

tending the existing IR scoring methods (such as TF*IDF) to account for the structural

similarity of results. In other words, it separates the IR-style ranked retrieval approach

and the DB-style precise matching in the exploration of query results, which may incur

the problem of missing some relevant results.

1.3 Contributions of This Thesis
In this thesis, we mainly investigate how to integrate both DB and IR techniques in a

seamless way to enforce effective keyword query processing over XML data. Our work

7

is also in line with the current trend of DB&IR integration to achieve ranked retrieval

on semi-structured XML data [12, 34]. Our major contributions include identifying the

search target of an XML keyword query, illustrating what an appropriate matching re-

sult should be, proposing relevance-oriented result ranking scheme, finding appropriate

content-aware refinements for an XML keyword query, and building an XML keyword

search engine prototype incorporating our proposed techniques. The following three

sections briefly describe the contribution of our three works respectively.

1.3.1 Effective Keyword Search Over XML Data Tree
When XML data is modeled as a labeled tree structure, the result is in form of a

subtree containing all query keywords. We propose an IR-style approach for XML key-

word query processing, which basically utilizes the statistics of underlying XML data

to address the problem of search intention identification (which includes identifying the

search targets and search constraints of a user query) and result ranking. We first propose

three major guidelines that a search engine should meet in both search intention identifi-

cation and relevance oriented ranking for search results. Then based on these guidelines,

we design novel formulae to identify the desired search for nodes and search via nodes

of a query, and design a novel XML TF*IDF ranking strategy to rank the individual

matches of all possible search intentions. Lastly, our approach manifests its superiority

especially for pure XML keyword queries.

1.3.2 Effective Keyword Search Over XML Directed Graph

Besides the containment edges (i.e. parent-child and ancestor-descendant edges) be-

tween XML elements, we find that without taking the ID references between elements

in XML data into account, some relevant results may be missed. Therefore, in this work,

we investigate how to find meaningful and relevant results of a keyword query over the

XML data with IDRefs, which is modeled as a special directed graph.

8

In contrast to previous work on keyword search over general digraph [37, 65, 53,

57], we propose an alternative approach by utilizing the available semantic informa-

tion to improve both the efficiency and effectiveness of the result matching and rank-

ing part. In particular, we model XML document as a set of interconnected object-

trees, where each object tree is in form of a subtree representing a real-world entity.

An important feature of this model is, we distinguish containment edges and reference

edges in XML data. Based on this model, we propose object-level matching semantics

called Interested Single Object (ISO) and Interested Related Object (IRO), where ISO

is to capture a single object as user’s interested search target, while IRO is to capture

multiple objects (connected/related by containment or reference edges) as user’s inter-

ested target. Subsequently, we design an object-level relevance oriented result ranking

scheme, and propose efficient algorithms to compute the query results and do the rank-

ing during result exploration. Lastly, we build a prototype incorporating all the above

techniques proposed, and an online demo of our system on DBLP data is available at

http://xmldb.ddns.comp.nus.edu.sg.

1.3.3 Effective XML Keyword Query Refinement

The above two pieces of work focus on how to find relevant and meaningful data frag-

ments for an XML keyword query, assuming each keyword is intended as part of it. It

is also the major research directions in recent years. However, in XML keyword search,

user queries quite often contain irrelevant or mismatched terms, typos etc, which may

easily lead to empty or meaningless results. At first glance people may think it is noth-

ing different with keyword suggestion facility in web search engines, and we can achieve

query refinement through user interaction and feedback. However, interactive reformu-

lation and browsing is generally time-consuming and may irritate customers [12]. It

motivates us to introduce the problem of content-aware XML keyword query refinement,

where the search engine should judiciously decide whether a user query Q needs to be

9

refined during the processing of Q, and automatically find a list of promising refined

query (RQ) candidates, and content-aware means each RQ candidate found guarantees

to have meaningful matching results over the XML data, without any user interaction or

a second try. To achieve this goal, we build a query refinement framework consisting of

two core parts: (1) we build a query ranking model to evaluate the quality of a refined

query RQ of a user query Q, which captures the morphological/semantical similarity

between Q and RQ and the dependency of keywords of RQ over the XML data; (2) we

integrate the exploration of RQ candidates and the generation of their matching results

as a single problem, which is fulfilled within a one-time scan of the related keyword

inverted lists optimally. Finally, an extensive empirical study verifies the efficiency and

effectiveness of our framework.

1.4 Thesis Outline
The rest of this thesis is organized as follows.

• Chapter 2 reviews the related work. The surveyed topics include XML query lan-

guages, XML labeling schemes, XML structured query processing and XML key-

word search methods for both labeled tree and directed graph models, and keyword

query refinement work.

• Chapter 3 presents our method for identifying the user search target and relevance

oriented result ranking scheme over XML data when it is modeled as a labeled

tree.

• Chapter 4 presents our method for effective keyword search over XML data when

ID references among XML elements are considered.

• Chapter 5 presents our method for effective keyword query refinement and result

generation for keyword search over XML data tree.

• Chapter 6 concludes this thesis and lists several future research directions on the

topic of effective XML keyword search.

CHAPTER 2

RELATED WORK

In this chapter, we would like to describe the related work. In particular, we first talk

about the emergence of XML, followed by two major XML data models; then we discuss

the labeling schemes designed for XML data to facilitate the processing of structured

query or keyword query. Then we overview the recent literatures on keyword search

over the above two data models respectively. Lastly, we investigate the topic of keyword

query refinement, which is an important part of a real-life search engine.

XML stands for Extensible Markup Language, which is a markup language much

like HTML. But in contrast to HTML which is used to display data, XML initially

emerges as a format to transport and store data; moreover, the XML tags are not pre-

defined and XML data is usually self-descriptive. From DB viewpoint, XML is an

exchange format for structured data; while from IR viewpoint, XML is a format for

representing the logical structure of documents. Recently, XML has been becoming

a standard for the exchange of heterogeneous data over the web, which increases the

volume of data encoded in XML. Therefore, it is attracting a lot of efforts to support

10

11

structured query processing and keyword query processing on the potentially numerous

XML data efficiently and effectively.

<StoreDB>

 <customers>

 <customer ID=”C1”>

 <name> Mary Smith </name>

 <address>

 <street> Art Street </street>

 <city> NJ </city>

 </address>

 <contact> … </contact>

 <interests>

 <interest> fashion </interest>

 <interest> tennis </interest>

 </interests>

 </customer>

 <customer ID=”C2”>

 <name> John Martin </name>

 …

 <interests>

 <interest> street art <interest>

 </interests>

 </customer>

 …

 </customers>

</StoreDB>

Figure 2.1: Sample StoreDB XML document

customers

storeDB

customer

ID
name

address
interest

street
city

interests

contact

“Art Street”

“NJ”

...

“fashion”

“Mary Smith”

“C1”

customer

ID name

interest

interests

“street art”“John Martin”

“C2”

...

...

...

interest

“tennis”

Figure 2.2: Tree model representation for the XML data in Figure 2.1

2.1 XML Data Model

2.1.1 Tree Model
Most of the time, XML documents are treated as trees of nodes, and the root of the

tree is called the document node or root node. There are seven major kinds of nodes,

i.e. element, attribute, text, namespace, processing-instruction, comment, and root node.

Usually the mostly used nodes are element, attribute and text. Figure 2.1 shows a sample

12

XML document storing the customer information of a store, and Figure 2.2 shows its

tree structure representation.

<bookstore>

 <books>

 <book ID = “B1”>

 <title> XML Introduction </title>

 <authors>

 <author> John Williams </author>

 <author> Daniel Jones </author>

 </authors>

 <cite IDREF = “B2”>

 …

 </book>

 <book>

 <title> … </title>

 <authors>

 <author> Edward Martin </author>

 <author> Sophia Jones </author>

 </authors>

 <publisher> Oxford </publisher>

 </book>

 …

 </books>

</bookstore>

Figure 2.3: Sample bookstore XML document
bookstore

books

...

“Oxford”

Tree edge

Reference edge

“Daniel Jones”
“John Williams”

book

title
...

ID

authors

author
“B1”

author�
XML

Introduction
� cite

book

title publisherID

authors

author
“B2”

...

“Edward Martin”

“Sophia Jones”

author

Figure 2.4: Digraph model representation for the XML data in Figure 2.3

2.1.2 Directed Graph Model
Since ID reference (IDRef) in XML data is used to represent the relationship be-

tween two XML elements that do not have a hierarchical structural relationship, when

the IDRef in XML data is considered in data modeling, the XML data is not of a hierar-

chical tree structure anymore. Instead, it is more like a directed graph: the containment

edge in the previous tree model can be viewed as a directed edge from the parent node

to its child node, and the reference edge is a directed edge from one node to another

13

node by IDRef notation in XML document. For instance, Figure 2.3 shows a sample

bookstore XML document, which contains the citation relationship between books via

IDRef. Such citation can be easily identified in its digraph model, as shown in Figure

2.4, the dotted IDRef edge from book “B1” to book “B2” denotes a citation relationship

from “B1” to “B2”.

2.2 Labeling Schemes For XML Data

In the evaluation of (structured or keyword) queries over the XML data tree T , it may

frequently involve the determination of whether a structural relationship exists between

two nodes in T . In order to facilitate such determinations, nodes are typically labeled.

Regarding the design of XML labeling scheme, it should not only support an efficient de-

termination of Ancestor-Descendant (A-D) and parent-child (P-C) relationship at least,

but also keep the total label size as compact as possible.

Containment Labeling Scheme

At an earlier time, the containment labeling scheme is proposed [76, 122, 7]. Basically,

when preprocessing the XML data tree in document order, it assigns a pair of values in

form of < start : end > to each node n, where start denotes the starting position of n

being visited, and end denotes the ending position of n being visited. In this way, a node

n1 is an ancestor of node n2 if the following two properties hold

• startn1 < startn2

• endn1 > endn2

Moreover, in order to decide the Parent-Child (P-C) relationship between two nodes, the

only adaption of the above scheme is to add the level information of each node (in the

XML data tree) as part of its label.

Dewey Labeling Scheme

Another widely adopted one is the Dewey number labeling scheme [105], which works

14

as below: when traversing the XML document in a breadth-first order, each node is

assigned a label which is a concatenation of its parent’s label and its local order. For

instance Figure 2.5 shows an XML data tree by Dewey labeling scheme (note that the

values contained within the leaf nodes of the XML data tree is not labeled). A dewey

label is a sequence of components separated by ‘.’ where the last component of the

sequence represents the local order of the node. The sequence of components before the

last component is called the parent label of the node as it is inherited from its parent

node. The local order of a node is i if it is the ith child of its parent. Besides, the

level information of a node is implicity stored in its dewey label, which is the number of

components of a Dewey label.

Dept

0

Courses

0.1

Lecturers

0.2

Course

0.1.0

Course

0.1.1

Course

0.1.2

... Lecturer

0.2.0

Lecturer

0.2.1

Lecturer

0.2.2

...

Title

0.1.0.1

“Advanced

Topics in AI”

...
Title

0.1.1.1
Title

0.1.2.1

“Database

Management”

“Advanced

Topics in

Database”

Prereq

0.1.2.2

Students

0.0

...

...

Name

0.2.0.1
Name

0.2.2.1

Name

0.2.1.1

“Smith” “Jones”“Lee”

Teaches

0.2.0.2

...

Teaches

0.2.2.2ID

0.1.1.0

“CS202”

ID

0.1.0.0

“CS501”

ID

0.1.2.0

“CS502”

ID

0.2.1.0

...

ID

0.2.0.0

...

ID

0.2.2.0

...

Dname

0.3
Address

0.4

...

Figure 2.5: Sample XML document (with Dewey Labels)

Since the path information of a node is contained in its labels, Dewey labeling can

compute the LCA (Lowest Common Ancestor) of a set of nodes directly, thus becomes

the natural choice for XML keyword query processing [118, 52, 38, 79]. For example in

Figure 2.5, from the label 0.1.2.1 of node Title, we can know it is at level 4, and is the first

child of its parent; the LCA of node 0.1.2.1 and node 0.1.2.2 is Course:0.1.2. Moreover,

from dewey label, it is easy to quickly identify the A-D, P-C and sibling relationship

between two nodes.

15

Dynamic XML Labeling Schemes

However, the above two basic labeling schemes only work well for the static XML doc-

ument, rather than the dynamic XML document. In order to resolve it, Li et al. first

proposed to leave some space between adjacent labels for future node insertions [76];

however, it needs relabeling the whole XML document when the spare space is used up.

Later, O’Neil et al. proposed a variant of dewey labeling, namely ORDPATH, to resolve

the relabeling problem by assigning only positive odd integers in initial labeling, while

keeping even and negative integers reserved for later node insertion. A potential problem

of this approach is, skipping the even numbers may make the label size less compact. Wu

et al. [111] proposed a prime labeling scheme, where the label of a node n is the product

result of its self label and the label of its parent node. As all self labels are distinct prime

numbers, the A-D and P-C relationship can be easily determined by judging whether the

mod of their labels equals to 0. The problem of this approach is, it is expensive to do the

computation of prime numbers, and it cannot be used to label a large XML document.

As an alternative approach to avoid relabeling (especially when the XML document

is frequently updated), several encoding schemes were proposed, which transform the

labels to another format [71, 72, 115, 117]. In particular, Li et al. proposed the Compact

Dynamic Binary String (CDBS) encoding [72], which guarantees that a node can be

inserted between any two consecutive CDBS labels with the orders maintained and no

relabeling of any existing nodes at all. In QED (Quaternary Encoding for Dynamic

XML data) [71], given a set of three numbers S={1,2,3}, a QED code is a sequence of

the elements in S ending with 2 or 3. Given any two QED codes, it is guaranteed to

find a QED code falling between them in the lexicographical order. However, it may

not scale well for skewed node insertions due to the fast increase of QED code’s length.

Thus, Xu et al. proposed a vector based label [115], which is less compact than QED and

scales better for skewed insertions. Most recently, a new labeling scheme called DDE

16

(i.e. Dynamic DEwey) [117] was proposed to well control the label quality, which is the

most resilient to the number and order of node insertions; besides, it can support LCA

computation efficiently.

2.3 Structured Query Languages on XML

Several structured query languages have been proposed so far. They are Lorel [8],

XML-QL[40], XML-GL[31], Quilt[32], XPath[23] and XQuery[25]. Here, we mainly

discuss XPath and XQuery, both of which are the W3C (World Wide Web Consortium)

recommendation.

XPath [23] is a language for addressing parts of an XML document or navigating

within an XML document, designed to be used by both XSLT [113] and XPointer

[88]. In XPath, an XML document is treated as a tree of nodes, and it mainly uses

path expressions (which are similar to traditional file system paths) to locate node or

node-sets in an XML document. XPath contains seven major axes, i.e. ancestor, de-

scendant, parent, child, preceding, following, attribute. A location path consists of

one or more steps, each separated by a slash(/) or double slash(//). For example, the

path expression “//StoreDB/customers/customer/name” (issued on the XML doc-

ument in Figure 2.1) is to find the name child of all customer elements in StoreDB,

and the result returned is a set of nodes {<name>Mary Smith</name>, <name>John

Martin</name>}. Here, a double slash (//) signals that all StoreDB elements in the

XML document that match the search criteria are returned, regardless of the location or

level within the document.

Recently, XQuery [25] is standardized as the major XML query language. The main

building block of XQuery consists of path expressions, which addresses part of XML

documents for retrieval by value search and structure search in their elements, and returns

17

a sequence of values. XQuery can be viewed as a big extension of XPath, which gives the

possibility of declaring custom functions. So it is something like programming language,

which works natively with XML. For example, the following path expression

for $a in//customer[.//interest = ‘fashion′]

return $a/name

is to find the name of customer who is interested in ‘fashion’ over the XML document

in Figure 2.1. The XQuery evaluation engine returns ‘Mary Smith’ as a result.

As a core operation in structured XML query processing, XML twig pattern matching

has been attracting a lot of research efforts [122, 28, 86, 61, 60, 36, 11, 62, 112, 17]. An

XML twig query, represented as a small query tree, is essentially a complex selection

on the structure of an XML document. Matching a twig query means finding all the

instances of the query tree embedded in the XML data tree. In particular, the idea of

holistic XML twig pattern processing is first proposed in [28], which has the unique

advantage of efficiently controlling the size of intermediate results.

2.4 Keyword Search on Web

In the web, data is stored in form of unstructured documents, and the main issue for

keyword search on web is to design the result ranking scheme. There have been a lot

of research efforts conducted, and the most classical one is called the Term Frequency

* Inverse Document Frequency (TF*IDF) scoring function [101], which emphasizes the

relevance between a document and a user query. The detailed rational can be referred

in section 3.2.1 of chapter 3 later. Another classical ranking model is the well-known

PageRank [27] used by the google internet search engine, which emphasizes the impor-

tance of the document over the World Wide Web. PageRank is a numeric value that

represents how important a page is on the web. Google figures that when one page links

18

to another page, it is effectively casting a vote for the other page. The more votes that are

cast for a page, the more important the page must be. Also, the importance of the page

that is casting the vote determines how important the vote itself is. Google calculates a

page’s importance from the votes cast for it. How important each vote is is taken into

account when a page’s PageRank is calculated. PageRank is Google’s way of deciding

a page’s importance. It matters because it is one of the factors that determines a page’s

ranking in the search results. Note that it isn’t the only factor that Google uses to rank

pages, but it is an important one.

2.5 Keyword Search on XML Tree Model

As keyword search methods over XML data involve the matching semantics design,

efficient evaluation method and result ranking scheme, we will discuss them one by one

for the XML labeled tree model.

2.5.1 Matching Semantics and Efficiency Issue

At the early stage of the research in XML keyword search, most research efforts focus

on how to define an appropriate matching semantics to find the smallest sub-structures

in XML data that each contains all query keywords in tree data model, and meanwhile

design efficient algorithms to find all the matched results in XML databases [52, 38, 79,

118, 80, 104, 73, 67, 16, 119, 81].

In tree data model, LCA (lowest common ancestor) semantics is first proposed and

studied in [102, 52] to find XML nodes, each of which contains all query keywords

within its subtree. XRANK [52] proposes a stack-based algorithm to utilize the inverted

lists of Dewey labels to compute the LCA results of a query. An inverted list of a keyword

k is a list of Dewey labels, each of whose corresponding node directly contains k. The

19

algorithm maintains a result heap and a Dewey stack. The result heap keeps track of the

LCA results seen so far. The Dewey stack keeps the current dewey ID, and the longest

common prefixes computed. The algorithm sort merges all keyword lists, then each time

chooses the node n with the smallest Dewey label (in document order) from the merged

list, and computes the longest common prefix of the node denoted by the top entry of

the stack and n. Then it pops out all top entries (in the Dewey stack) containing Dewey

components that are not part of the common prefix. If a popped entry e contains all

keywords, then e is a result node. Otherwise, the information about which keywords

that e contains is used to update its parent entry’s keywords array. Also, a stack entry is

created for each Dewey component of n which is not part of the common prefix, to push

n into the stack. The action is repeated for every node from the sort merged input lists.

Later, Xu et al. propose a more efficient algorithm called Indexed Stack to find the LCA

results of a query [119].

XSEarch [38] introduces the concept of interconnection to find meaningfully related

nodes as search results. The intuitive definition is as below: For a given keyword query

Q=“k1,k2,...,km”, suppose there exists node ni such that ni directly contains keyword ki

either in its value or its label for i∈[1,m], then n1 up to nm are said to be interconnected

if along the path from v to each ni, there are no two distinct nodes with the same node

name. The LCA of n1 up to nm is counted as a result. E.g. consider a query Q =

“John, tennis” on the XML data tree in Figure 2.2. By LCA semantics, node customers

is returned; however, it should not be a meaningful answer because the two nodes that

contain the above two keywords are descendants of different customer. The rational

behind is that, it tries to constrain the answer to be a single real-world entity containing

all query keywords; however, it may miss some relevant results as user’s search concern

may involve more than one entity. Li et al. proposed a new indexing way to find the

above matching results in a more efficient way [73].

20

Subsequently, SLCA (smallest LCA [79, 118]) is proposed to further constrain the

LCA results of a query, i.e. to find the smallest LCAs that do not contain other LCAs in

their subtrees. In particular, Li et al. [79] incorporate SLCA in XQuery and propose a so

called Schema-Free XQuery where predicates in an XQuery can be specified through the

concept of SLCA. With Schema-Free XQuery, users are able to query an XML document

without full knowledge of the underlying schema. When users know more about the

schema, they can issue more precise XQuery queries. However, when users have no idea

of the schema, they can still use keyword queries with Schema-Free XQuery. [79] also

proposes a stack-based sort merge algorithm to compute SLCA results, which is similar

to the stack algorithm in XRANK [52].

XKSearch [118] focuses on efficient algorithms to compute SLCAs. It also maintains

a sorted inverted list of Dewey labels in document order for each keyword. XKSearch

addresses an important property of SLCA search, which is, given two keywords k1 and

k2 and a node v containing k1, only two nodes in the inverted list of k2 that directly

proceeds and follows v in document order are able to form a potential SLCA solution

with v. Based on this property, XKSearch proposes two algorithms: Indexed Lookup

Eager and Scan Eager algorithms. Indexed Lookup Eager scans the shortest inverted

list of all query keywords and probes other inverted lists for SLCA results. During the

probing process, nodes in other inverted lists that cannot contribute to the final results

can be effectively skipped. In contrast, Scan Eager algorithm scans all inverted lists

for cases when the inverted lists of all query keyword have similar sizes. Experimental

evaluation shows the superiority of these two algorithms as compared to the stack-based

algorithm in [79]. Indexed Lookup Eager is better than Scan Eager when the shortest

list is significantly shorter than other lists of query keywords; or slightly slower but

comparable to Scan Eager when all inverted lists of query keywords have similar lengths.

Sun et al. [104] make a further effort to improve the efficiency of computing SLCAs.

21

It discovers the fact that we may not need to completely scan the shortest keyword list

for certain data instances to find all SLCA results. Instead, some Dewey labels in the

shortest keyword list can be skipped for faster processing. As a result, Sun et al. pro-

pose Multiway-based algorithms to compute SLCAs. In particular, Multiway SLCA

computes each potential SLCA by taking one keyword node from each kewyord list in

a single step instead of breaking the SLCA computation to a series of intermediate bi-

nary SLCA computations. As compared to XKSearch [118] where the algorithm can be

viewed as driven by nodes in the shortest inverted list, Multiway SLCA picks an “an-

chor” node from all query keyword inverted lists to drive the SLCA computation. In this

way, it is able to skip more nodes than XKSearch [118] during SLCA computation. Al-

though algorithms in Multiway SLCA [104] have the same theoretical time complexity

as Indexed Lookup Eager algorithm in [118], experimental results show the superiority

of Multiway-based algorithms. In addition, [104] generalizes the SLCA semantics to

support keyword search to include both AND and OR boolean operators, by transferring

queries to disjunctive normal forms and/or conjunctive normal forms.

Besides LCA and SLCA, Hristidis et al. [54] proposed Grouped Distance Minimum

Connecting Trees (GDMCT) and Lowest GDMCT as variations of LCA and SLCA for

XML keyword search. The main difference between GDMCT and LCA is that, GDMCT

identifies not only the LCA nodes but also the paths from LCA nodes to their descendants

that directly contain query keywords. Similarly, Lowest GDMCT identifies not only

the SLCA nodes but also the paths from SLCA nodes to descendants containing query

keywords. GDMCT is useful to show how query keywords are connected to the LCA (or

SLCA) nodes in result display, which is classified as path return (in contrast to subtree

return in LCA and SLCA) in [80].

XSeek [80] generates the return nodes which can be explicitly inferred by keyword

match pattern and the concept of entities in XML data. However, it addresses neither

22

the ranking problem nor the keyword ambiguity problem. Besides, it relies on the con-

cept of entity (i.e. object class) and considers a node type t in DTD as an entity if t is

“*”-annotated in DTD. As a result, customer, interest, book in Figure 2.4, are iden-

tified as object classes by XSeek. However, it causes the multi-valued attribute to be

mistakenly identified as an entity, causing the inferred return node not as intuitive as

possible. E.g. interest is not intuitive as entities. In fact, the identification of entity is

highly dependent on the semantics of the underlying XML data rather than its DTD, so

it usually requires the verification and decision from database administrator. Therefore,

the adoption of entities for keyword search should be optional although this concept is

very useful. Based on SLCA, Liu et al. further proposed an axiomatic way to decide

whether a result is relevant to a keyword query [81], in term of two properties called

monotonicity and consistency with respect to the XML data and query, as shown below:

• (Data Monotonicity) If a new node is inserted into the data, then the data content

becomes richer, thus the number of query results should be (non-strictly) mono-

tonically increasing.

• (Query Monotonicity) If a new keyword is added to the query, then the query

becomes more restrictive, therefore the number of query results should be (non-

strictly) monotonically decreasing.

• (Data Consistency) After a new node n is inserted into the data, then each addi-

tional subtree that becomes (part of) a query result should contain n.

• (Query Consistency) If a new keyword k is added to the query, then each additional

subtree that becomes (part of) a query result should contain at least a match to k.

We can find that among all the matching semantics proposed so far, no one has ex-

plicitly addresses the problem of identifying the target that a user query intends to search

for. That motivates our works in this thesis.

23

2.5.2 Result Ranking on XML Data Tree Model
Result ranking is another crucial issue in building an effective XML keyword search

framework. XRANK [52] presents a ranking method to rank subtrees rooted at LCAs.

XRANK extends the well-known Google’s PageRank [27] to assign each node u in the

whole XML tree a pre-computed ranking score, which is computed based on the connec-

tivity of u in the way that u is given a high ranking score if u is connected to more nodes

in the XML tree by either parent-child or ID reference edges. Note the pre-computed

ranking scores are independent of queries. Then, for each LCA result with descendants

u1, ...un to contain query keywords, XRANK computes its rank as an aggregation of the

pre-computed ranking scores of each ui decayed by the depth distance between ui and

the LCA result. In contrast, our work [16] in this thesis is built at sub-tree level, which

coincides with the fact that the answer to a keyword query should be a subtree rooted at

an appropriate node rather than the LCA or SLCA node itself. In addition, no empirical

study is done to show the effectiveness of its ranking function. XSEarch [38] adopts a

variant of LCA, and combines a simple TF*IDF IR ranking with size of the tree and the

node relationship to rank results; but it requires users to know the XML schema infor-

mation, causing limited query flexibility. Most recently, EASE [74] proposes a unified

graph index to handle keyword search on heterogenous data which includes unstructured,

structured and semi-structured data. It combines IR ranking and structural compactness

based DB ranking to fulfill keyword search on heterogenous data. However, they ei-

ther don’t take the hierarchical structure of XML data into consideration in their ranking

function design, or the granularity of ranking function designed is at node level rather

than subtree level. Another important problem during result ranking is to identify the

search target of an XML keyword query, which is initialized by our work [16], which

utilize the statistics of underlying database to issue a formula to compute the confidence

of each node type in XML data as the potential search targets.

For the ranking methods in IR field, TF*IDF similarity [101], which is originally de-

24

signed for flat document retrieval, is insufficient for XML keyword search due to XML’s

hierarchical structure and the presence of keyword ambiguities mentioned in [16]. The

details of TF*IDF will be introduced in section 3.2. Several proposals for XML infor-

mation retrieval suggest to extend the existing XML query languages [46, 13, 106] or

use XML fragments [30] to explicitly specify the search intention for result retrieval and

ranking.

XRANK [52] relies on a static processing of ranking score computation, while our

work [20] (as described in chapter 4) employs a dynamic computation. Some previous

methods such as ObjectRank [14] and HITS [66] also employ the dynamic ranking meth-

ods, but in contrast, our approach (as later shown in Chapter 4) takes advantage of the

co-occurrence of query keywords in a single logical result while they cannot. As a re-

sult, the relevance rank computed by HITS and ObjectRank may be biased to keywords

which are frequent among objects, especially when there are three or more keywords.

2.5.3 Improving User Search Experience

Besides the design of search semantics, efficient evaluation method and result rank-

ing scheme, there are many other issues that need consideration in building a keyword

search engine over semi-structured data. One important issue is how to help users an-

alyze the results and offer them a friendly search experience. In recent literature, two

works are worth mentioning.

The first one is about result snippet generation [58], which is used to complement

the result ranking scheme to effectively handle user searches, which are inherently am-

biguous and whose relevance semantics are difficult to assess. The authors first regulate

four guidelines for a desired result snippet: (1) a result snippet should be self-contained

so that users can understand it; (2) different result snippets should be distinguishable

from each other, so that users can differentiate the results from their snippets with little

effort; (3) a snippet should be representative to the query result, thus users can grasp

25

the essence of the result from its snippet; (4) a result snippet should be small so that

users can quickly browse several snippets. The first three goals are conflicting with the

last goal, as the larger the snippet size is, the more information it can contain. Then

the authors prove that, the decision problem of selecting as many features as possible to

form a snippet given an upper bound of the snippet size is NP-complete (by reducing the

classical set cover problem [39] to it). Besides, they quantify the above four goals by a

careful design of scoring metrics, and design a greedy algorithm to achieve an efficient

generation of semantic result snippets.

The second work is about result differentiation. Most recently, Liu et al. [82] raise

the issue of automatically differentiating the search results of an XML keyword query,

aiming to save user efforts in manually investigating and comparing potentially large

results. They first define what a differentiation feature set (denoted as DFS) should be

for a search result, and propose three desired features for a good DFS, which are differ-

entiability, validity and small size. Then they prove the NP-hardness for the problem of

constructing DFSs that are valid and maximally differentiate a set of results within a size

bound. Instead, they adopt two relaxed constraints and propose a dynamic programming

solution to achieve the local optimality for the DFS construction. Experimental study

has validated the practical effectiveness and efficiency of their approach.

Lastly, there is also an emerging research effort in answering the top-k keyword

search over XML database. [35] is the first to study the problem of finding the top-k

results for XML keyword search based on the LCA matching semantics with a given

result ranking scheme. The authors first mention that existing approaches designed for

efficient result evaluation (such as [118, 119, 104]) cannot be adapted to support top-

k query in XML keyword search, because they determine and generate the results in

document order instead of the order of ranking scores of results. Then they discuss why

existing top-k algorithms designed for relational databases such as the famous Threshold

26

Algorithm (TA) [43] cannot be easily applied to the context of XML keyword search,

because in finding the results by SLCA semantics (which has been one of the most

widely adopted matching semantics so far) which is a subset of LCA semantics, it not

only needs to compute LCAs of individual nodes, but also needs to prune those that are

already ancestors of other LCAs, which indeed is a complex computation; thus directly

applying TA’s intuition may easily lose the optimization of the semantic pruning and

makes it very expensive. The authors propose a novel way to combine the semantic

pruning and top-k processing to support top-k keyword search over XML data, which

reduces the keyword query evaluation to a series of relational joins and adapt the idea of

traditional top-k join in relational database to XML database in a seamless way.

“John Williams”

book

title

authors

author�
XML

Introduction
� cite

book

ID

authors

author

“B2”

“Edward

Martin”

Figure 2.6: Reduced subgraph for Q=“XML, John, Martin” on Figure 2.4’s XML data

2.6 Keyword Search on Digraph Model

By capturing the IDRef edges in XML data, it is assured that more relevant results

may be found. Similar to tree model, the most important semantics is to find the small-

est substructure of the XML data containing all query keywords [37, 65, 53, 57]. The

key concept in the existing semantics is called reduced subgraph ([37]). An informal

definition is as below: given an XML graph G and a list KS of keywords, a connected

subgraph G′ of G is a reduced subgraph w.r.t KS if G′ contains all keywords in KS,

and no proper subgraph of G′ contains all these keywords. For example, given a query

Q=“XML, John, Martin” issued on the XML document shown in Figure 2.4, a possible

reduced subgraph result for Q is shown in Figure 2.6.

27

However, the cost of finding all such G′ ranked by size is intrinsically expensive as

the reduced tree problem on graph is as hard as NP-complete [77]. Therefore, in digraph

data model, there has not been any work that can resolve the exploration of reduced sub-

graphs in an efficient way. Previous approaches are heuristics-based in order to reduce

the search space as much as possible. In particular, Li et al. [77] propose a method

of retrieving and organizing web pages by In formation Unit and show the reduction

from minimal reduced tree problem to the NP-complete Group Steiner Tree problem

on graphs. BANKS [65] uses bidirectional expansion heuristic algorithms to search as

small portion of graph as possible and ranks resulted reduced-trees in approximate order

of result generation during the expansion. Given a good estimation of “important” nodes

and edges where the expansion starts with, BANKS seems to work well for a small num-

ber of results. However, BANKS still has the inherited limitation of slow query response

when a large number of results are required, because it requires the entire visited graph in

memory. BLINKS [53] improves it by proposing a bi-level index to prune and accelerate

searching for top-k results in digraphs, with the tradeoffs in index size and maintenance

cost. Its main idea is to maintain indices to keep the shortest distance from each key-

word to all nodes in the entire database graph. XKeyword [57] uses schema information

to reduce search space, but its query evaluation is based on the method of DISCOVER

[56] built on relational database, so it still suffers from the efficiency problem. Besides,

it needs to compute candidate networks and thus is constrained by schemas.

In a nut shell, it is inefficient to treat XML data (with IDref edges) as a directed

graph and apply the above approaches in finding the reduced subgraphs, due to two rea-

sons. First, the number of all reduced subgraphs may be exponential in the size of G. In

contrast, the number of LCA subtrees (in tree data model) is bounded by the size of the

given XML tree. Different reduced subgraphs present different connected relationships

in real world, and most of them cannot be trivially judged as redundant results. Second,

28

if we adopt enumerating results by increasing the sizes of reduced subgraphs (as smaller

subtree usually indicates a closer connection according to general assumption of XML

keyword proximity search), this problem can be NP-hard; the well-known Group Steiner

tree problem [33] for graph can be reduced to it [77]). Although there are a multitude of

polynomial time approximation approaches such as [33, 48] that can produce solutions

with bounded errors for minimal Steiner problem, they require an examination of the en-

tire graph. These approaches are not desirable since the overall graph of XML keyword

search is often very large.

2.7 Keyword Search over Relational Database

Keyword search over relational database is also related to this thesis. Although it can

be generalized to the keyword search over directed graph, there are many efforts targeted

specifically to relational database. In particular, several prototypes such as DBXplorer

[10], DISCOVER [56], DISCOVER-II [55], BANKS [24] and BANKS-II [65] have been

proposed, and efficiency has been the main focus of these works. DBXplorer generates

trees of tuples that are connected through primary key-foreign key relationship and con-

tain all query keywords. BANKS identifies connected trees in a labeled graph by using

an approximation of the Steiner tree problem. DISCOVER-II [55] considers the prob-

lem of keyword proximity search by disjunctive semantics, as opposed to DISCOVER

[56] which adopts conjunctive semantics. In [65], a bidirectional approach is proposed

to further improve the search efficiency, but it suffers from identifying Steiner trees from

the whole graph due to the difficulty in identifying structural relationships through in-

verted indices. Ding et al. [41] designed a dynamic programming method to improve

the efficiency in identifying steiner trees. Guo et al. proposed a data topology search

approach to find meaningful structures from richer structural data such as complex bio-

logical databases [51]. He et al. proposed a partition-based method to improve search

efficiency with a novel bi-level index [53]. Markowetz et al. studied the problem of

29

keyword search over relational data streams [89]. Luo et al. proposed a new ranking

method that extends state-of-the-art IR ranking function to the resulted joined database

tuples [87]. Recently, Li et al. propose an efficient and adaptive keyword search method

called EASE [74] to index and query large collections of heterogeneous data, including

unstructured, structured and semi-structured data. They first model unstructured, struc-

tured and semi-structured data as graph G, where nodes represent documents, tuples and

XML elements respectively, and edges represent hyper-links, primary-key-foreign-key

relationship and parent-child relationship (or IDREF) respectively. They introduce the

concept of r-radius steiner graph1, and then reduce the problem of finding the matching

results of a query to a so called r-Radius Steiner Graph Problem: given a graph G and

an input query K, we try to find all the r-radius steiner graphs in G, which contain all

or part of the input keywords in K ranked by its relevance w.r.t K. As opposed to the

steiner tree based methods which need to maintain the whole graph in memory, the au-

thors novelly propose to cluster the r-radius graphs and then partition the whole graph

based on clusters to facilitate identifying r-radius graphs without maintaining the whole

graph. Accordingly, they propose an effective cost metric to guarantee a high-quality

and meaningful cluster to be found.

All the above works focus on answering a keyword query over a single relational

database. As the distributed databases emerge in many real world applications, it is

necessary to support keyword-based querying over distributed databases. A specific re-

search problem is about how to select the top-k database sources in peer-to-peer context,

in order to avoid the high cost of searching in large number of potentially irrelevant

databases in such systems. [120] is the first work that addresses this issue by summariz-

ing the relationships between keywords in the underlying databases. Its main idea is to

build an entry for each pair of keywords for each database, recording the frequencies of

1Simply speaking, it is a sub-graph of G whose radius is not greater than r, where r is the minimum of
the max distance from one node u to any other node, for each node u in G.

30

co-occurrences of the two terms at different distances, where distance is defined as the

the number of join operations in a joining sequence of tuples. When a user query q is

issued, the similarity between q and each database is computed by using the entries of all

possible keyword pairs in q. However, it exploits only the binary relationships between

keyword terms to eliminate the non-promising databases, it cannot be easily fit to the

IR-style ranking measures, and may even produce many false positive results for queries

where all pairs of keywords are related but no explicit join sequence connecting these bi-

nary relationships within a single result. In order to address the above limitations, [108]

follows up this problem and proposes to summarize each database as a keyword rela-

tionship graph, where nodes represent terms and edges describe relationships between

them. It also proposes an IR-style scoring method to measure the importance of nodes

and edges, and an algorithm to estimate the potential of a join solution containing all

query keywords for selecting the top-k databases as a result.

2.8 Keyword Query Refinement

In keyword search over any type of data, user queries may contain irrelevant or mis-

matched terms, typos etc, which may easily lead to empty or nonsensical results. There-

fore, it is demanding to provide an automatic query refinement strategy to relieve as

many user efforts as possible along the way to find their desired results.

2.8.1 Keyword Query Refinement in IR Field

Keyword query refinement in information retrieval field can be divided into two main

spectrums: (1) A fully automatic refinement [114, 64, 50], which modifies and subsumes

terms to queries according to a thesaurus or terms in documents, with no intervention on

user part; the thesaurus itself may automatically or manually be generated. (2) An inter-

active refinement [100], such as relevance feedback requiring user to manually identify

31

relevant documents whose terms are removed from (or added to) the query.

Common refinement tasks include query expansion, query word deletion and word

substitution. Query word substitution can be further classified into spelling error correc-

tion, synonym substitution, acronym expansion, merging of words, split of words etc.

In particular, most existing works focus on designing specific solution (which applies

a particular type of refinement operation) rather than an all-purpose solution. In query

expansion, one adds new terms to the query to overcome the term mismatch problem

[29, 97], assuming no error exists in the queries submitted by users. The so-called global

analysis and local analysis are usually used in query expansion to find related queries to

the user to enhance his/her search experience [22, 45, 68]. In query substitution [64],

its key idea is to replace current query with a new query that can improve search rele-

vance by learning from search log data. In query word deletion, queries with no matches

can have words deleted till a match is obtained, and the prediction is done by tracing

the users’ search modifications [63]. Lastly, spelling error correction [75] is achieved

by using a Maximum Entropy (ME) model as well as the source channel model, and

then utilizing the distributional similarities between the query word and its correction

candidate as features in the ME model. Two models, linear classification and linear re-

gression, are trained by using labeled data and employed in the substitution and query

suggestion is that the former is used to consider inter-query relations, while the latter

considers intra-query relations.

Regarding the generation of the refinement rules, such information can be obtained

from the existing dictionary such as WordNet [44], document mining for synonyms [42],

query log analysis [63, 47] or manual annotation.

2.8.2 Keyword Query Cleaning in Relational Database

In the context of relational database, keyword query cleaning consists of rewriting

the user query, segmenting the keywords, matching each segment to database items, and

32

tagging the segments by their meta-data information. [96] is the first work studying

this problem. It introduces a preprocessing stage to clean the raw text and extract a

high quality keyword query, in order to reduce the search space of a keyword query.

This method, while pioneering, has two major drawbacks: (1) The cleaned query is

not guaranteed to have matching results in database. (2) Their methods to rank the

cleaned queries do not consider the matching results of those queries in database, thus

significantly hampering effectiveness. In our work as introduced in Chapter 5 later, our

focus is to build a refinement solution that circumvents all the pitfalls encountered above

by efficiently retrieving the real matching results of the refined queries.

Alternatively, Pu [95] proposed to solve the above problem by building a probabilis-

tic model. In particular, the author proposed to model user queries by constructing a

generative probabilistic Hidden Markov Model [98] (HMM), and reduce the problem

of finding the optimal query cleaning to the problem of finding the most likely path of

the constructed HMM. In contrast to [96], the HMM-based approach can provide more

theoretical explanation as to why certain cleaned queries are better, offer extra flexibility

of being adaptive to user feedback and existing query logs, and facilitate the extension

of the cost model to incorporate new ways of cleaning a keyword query. At the same

time, Yu et al. studied a particular problem in keyword query cleaning, i.e. query seg-

mentation which groups the nearby keywords in a query to segments [121]. Instead of

the above HMM, the authors present a principled approach based on another statistical

model called conditional random fields (CRF) [69, 94]. Similar to [95], this approach

also can be learned from past search history and adapted to user feedback.

2.8.3 Keyword Query Refinement in XML Retrieval

XML retrieval is an important new area for the application of IR methods. A repre-

sentative framework for the evaluation of XML retrieval methods is INEX (INitiative for

the Evaluation of XML Retrieval) [4], where the search quality is judged by large-scale

33

user studies.

In the field of XML retrieval, a dominant refinement strategy is query expansion,

which adds new terms highly correlated with the initial query to enhance the result qual-

ity. In particular, [90] adopts a pseudo-feedback to choose the expanded terms from the

top ranked results of the initial query; [92] expands the initial query based on the feed-

back of result relevance from user; TopX [107] generates the potential expanded terms

by using a thesaurus database WordNet [44]. Another related direction is to transform

an XML keyword query into a set of structured twig queries based on the schema of

XML data [93]. However, it is time consuming, as a keyword query may derive many

structured queries. [93] achieves it by assuming the user has provided structural clues to

indicate the type of XML elements he is interested in and no keyword ambiguity occurs

in the query; however, user is required to learn the (possibly very complex) structure of

XML data, which defeats the purpose of keyword search. Moreover, in our opinion, the

best way for user to judge the quality of the structured query is to look at its matching

result rather than the query itself.

In contrast, our work (as described in chapter 5) achieves an automatic query re-

finement at two levels: first, it automatically and quickly peruses the XML document

and makes appropriate modifications on the query by exploiting the refinement rules;

second, it can automatically generate the query results for both the original and refined

query within a one-time scan of related keyword inverted lists. This is convenient for

users to quickly decide which list of results meets their search needs without a second

try. Moreover, we propose a general scoring model to qualify the refined query can-

didates, by accommodating for different kinds of refinement operations including term

deletion, merging, split and substitution.

Table 2.1 summarizes a classification of all the above works related to keyword query

processing and keyword query refinement in XML search, web search and relational

34

database.

Table 2.1: Summary of Related Works
Data Model Matching Semantics Result Ranking Result Computation Search Experience
XML Tree LCA[52], SLCA[118] XRANK[52] XKSearch[118] snippet generation[58]

XSeek[80], ELCA[119] XSEarch[118] Multiway SLCA[104] result differentiation[82]
GDMCT[54], Interconnected top-k keyword search[35]

Semantics[38, 73]
XML Graph Reduced Subgraph EASE[74] BANKS[65]

[37, 65, 53, 57] BLINKS[53]
XKeyword[57]

DISCOVER[56]
RDMBS Reduced Subgraph DBXPlorer[10]

[37, 65, 53, 57] BLINKS[53]
DISCOVER[56]

DISCOVER-II[55]
BANKS[24]

BANKS-II[65]

Keyword Query Web Search XML Search RDBMS
Refinement

Automatic refinement Pseudo-feedback Keyword query
[114, 64, 50] for query expansion cleaning[96]

Interactive way [90, 92]
[100]

CHAPTER 3

EFFECTIVE KEYWORD SEARCH

OVER XML DATA TREE

3.1 Introduction

The extreme success of web search engines makes keyword search the most popular

search model for users. As XML is becoming a standard in data representation, it is

desirable to support keyword search in XML database. It is a user friendly way to query

XML database since it allows users to pose queries without the knowledge of complex

query languages and the database schema.

As most XML data is modeled as a labeled tree [118, 38, 80, 73, 119], in this chapter

our main solution is built for the XML data tree model. For instance, In Figure 3.1, the

XML data stores the information of a bookstore about the books sold and their frequent

customers. Unless otherwise specified, we do not consider the dotted reference edges in

the XML data throughout this chapter; instead, we treat it as a labeled tree in designing

35

36

solutions for result matching and ranking.

Effectiveness in term of result relevance is the most crucial part in keyword search,

which can be summarized as the following three issues in XML field.

Issue 1: It should be possible to effectively identify the type of target node(s) that a

keyword query intends to search for. We call such target node as search for node.

Issue 2: It should be possible to effectively infer the types of condition nodes that a

keyword query intends to search via. We call such condition nodes as search via nodes.

Issue 3: It should be possible to rank each query result in consideration of the above two

issues.

The first two issues address the search intention problem, while the third one ad-

dresses the relevance based ranking problem w.r.t. the search intention. Regarding Issue

1 and Issue 2, XML keyword queries usually have ambiguities in interpreting the search

for node(s) and search via node(s), due to three reasons below.

• Ambiguity 1: A keyword can appear both as an XML tag name and as a text value

of some other nodes.

• Ambiguity 2: A keyword can appear as the text values of different types of XML

nodes and carry different meanings.

• Ambiguity 3: A keyword can appear as an XML tag name in different contexts

and carry different meanings.

Ambiguity 1 is syntactic; while Ambiguity 2 and 3 are semantic. For example see the

XML document in Figure 3.1, keywords customer and interest appear as both an XML

tag name and a text value (e.g. value of the title for book B1); art appears as a text value

of interest, address and name node; name appears as the tag name of the name node of

both customer and publisher.

Regarding Issue 3, the search intention for a keyword query is not easy to determine

and can be ambiguous, because the search via condition is not unique; so how to measure

37

the confidence of each search intention candidate, and rank the individual matches of all

these candidates are challenging.

Although many research efforts have been conducted in XML keyword search [38,

52, 118, 80, 54, 81], none of them has well resolved the above three issues yet. For

instance, one widely adopted approach so far is to find the smallest lowest common

ancestor (SLCA) of all keywords [118]. Each SLCA result of a keyword query contains

all query keywords but has no subtree which also contains all the keywords.

In particular, regarding Issue 1 and 2, SLCA may introduce answers that are either

irrelevant to user search intention, or answers that may not be meaningful or informative

enough. For example, when a query “Jim Gray” that intends to find Jim Gray’s publica-

tions on DBLP [70] is issued, SLCA returns only the author elements containing both

keywords. Besides, SLCA also returns publications written by two authors where “Jim”

is a term in the first author’s name and “Gray” is a term in the second author, and publica-

tions with title containing both keywords. It is reasonable to return such results because

search intention may not be unique; but they should be given a lower rank, as they are

not matches of the major search intention. Regarding Issue 3, no existing approach has

studied the problem of relevance oriented result ranking in depth yet. Moreover, they

don’t perform well on pure keyword query when the schema information of XML data

is not available [80]. The actual reason is, none of them can solve the above keyword

ambiguity problems, as demonstrated by the following example.

Example 3.1. Consider a keyword query “customer interest art”1 issued on the book-

store data in Figure 3.1, and most likely it intends to find the customers who are inter-

ested in art. If adopting SLCA, we will get 5 results, which include the title of book B1

and the customer nodes with IDs from C1 to C4 (as these four customer nodes contain

“customer”, “interest” and “art” in either the tag names or node values) in Figure 3.1.
1Throughout this chapter, a keyword query is in form of “k1 k2, ...,kn”, where neighboring keywords

are separated by a single space.

38

customers

storeDB

books

... ...
book

title publisherID

authors

author
“B2”

...

“Edward Martin”

“Sophia Jones”

author

customer

ID
name

interest

interests
...

“art”“Rock Davis”

“C4”

...

“Daniel Jones”

“John Williams”

book

title
...

ID

authors

author
“B1”

author

“Art of Customer

Interest Care”

customer

ID
name

address
interest

street
city

interests

contact

no.

“1”

“Art Street”

...

...

“fashion”

“Mary Smith”

“C1”

customer

ID

name

interest

interests

“rock music”

“Art Smith”

“C3”

purchase

purchases

customer

ID name

interest

interests

“street art”“John Martin”

“C2”

...

...
...

...
name

“Oxford”

Figure 3.1: Portion of data tree for an online bookstore XML database

Since SLCA cannot well address the search intention, all these 5 results are returned

without any ranking applied. However, only C4 is desired which should be put as the

top ranked one, and C2 is less relevant, as his interest is “street art” rather than “art”,

while C1 and C3 are irrelevant. 2

Inspired by the great success of IR approach on web search (especially its distin-

guished ranking functionality), we aim to achieve similar success on XML keyword

search, to solve the above three issues without using any schema knowledge.

The main challenge we are going to solve is how to extend the keyword search tech-

niques in text databases (IR) to XML databases, because the two types of databases

are different. First, the basic data units in text databases are flat documents. For a given

query, IR systems compute a numeric score for each document and rank the document by

this score. In XML databases, however, information is stored in hierarchical tree struc-

tures. The logical unit of answers needed by users is not limited to individual leaf nodes

containing keywords, but a subtree instead. If we are not aware of which kind of sub-

tree should be an appropriate information unit for user’s search intention at first, while

view subtrees of different levels as a document and simply apply existing TF*IDF-like

approaches to rank those subtrees, it will cause two problems: (1) It incurs an inefficient

39

computation to return many more results which even have a containment relationship

with each other, while it is more difficult for user to identify which (kind of) subtrees

match his search target; (2) the index size for the keyword inverted list will be much

larger, as a same keyword appearing in a subtree T also appears with the subtrees rooted

at T ’s ancestors. Second, unlike text database, it is difficult to identify the (major) user

search intention in XML data, especially when the keywords contain ambiguities men-

tioned before. The search intention in the context of XML search includes the search

target part which never appears in flat document search. Third, effective ranking is a key

factor for the success of keyword search. There may be dozens of candidate answers

for an ordinary keyword query in a medium-sized database. For instance, in Example

3.1, five subtrees of the XML tree in Figure 3.1 can be the query answers, but they are

not equally useful to user. Due to the difference in basic answer unit between docu-

ment search and database search, in XML database we need to assign a single ranking

score for each subtree of certain category with a fitting size, in order to rank the answers

effectively.

Statistics is a mathematical science pertaining to the collection, analysis, interpreta-

tion or explanation of data; it can be used to objectively model a pattern or draw infer-

ences about the underlying data being studied. Although keyword search is a subjective

problem that different people may have different interpretations on the same keyword

query, statistics provides an objective way to distinguish the major search intention(s).

It motivates us to model the search engine as a domain expert who automatically in-

terprets user’s all possible search intention(s) through analyzing the statistics knowledge

of underlying data. As a result, we propose an IR-style approach which well captures

XML’s hierarchical structure, and works well on pure keyword query independent of

any schema information of XML data. A search engine prototype called XReal is imple-

mented to achieve effective identification of user search intention and relevance oriented

40

ranking for the search results in the presence of keyword ambiguities.

Example 3.2. We use the query in Example 3.1 again to explain how XReal infers user’s

desired result and puts it as a top-ranked answer. XReal interprets that user desires to

search for customer nodes, as all three keywords have high frequency of occurrences in

customer nodes. Similarly, since keywords “interest” and “art” have high frequency of

occurrences in subtrees rooted at interest nodes, it is considered with high confidence

that this query wants to search via interest nodes, and incorporates this confidence into

our ranking formula. Besides, customers interested in “art” should be ranked before

those interested in (say) “street art”. As a result, C4 is ranked before C2, and further

before customers with address in “art street”(e.g. C1) or named “art” (e.g. C3). 2

To our best knowledge, we are the first that exploit the statistics of underlying XML

database to address search intention identification, result retrieval and relevance oriented

ranking as a single problem for XML keyword search. Our contributions in this chapter

are summarized as follows:

1. This is the first work that addresses the keyword ambiguity problem and search

target identification.

2. We define our own XML TF (term frequency) and XML DF (document frequency),

which are cornerstones of all formulae proposed later.

3. We propose three important guidelines in identifying the user desired search for

node type, and quantify the confidence of a certain node type to be a desired search

for node based on the guidelines.

4. We design formulae to compute the confidence of each candidate node type as the

desired search via node to model natural human intuitions, in which we take into

account the pattern of keywords’ co-occurrence in query.

5. We propose a relevance oriented ranking scheme called XML TF*IDF similarity

which can capture the hierarchical structure of XML and resolve Ambiguity 1-3 in

41

a heuristic way. Besides, the popularity of query results is designed to distinguish

the results with comparable relevance scores.

6. We implement the proposed techniques in a keyword search engine prototype

called XReal. Extensive experiments are conducted to show its effectiveness, effi-

ciency and scalability.

The rest of the chapter is organized as follows. We present the preliminaries in

Section 3.2. Section 3.3 infers user search intention. Section 3.4 discusses the ranking

scheme. Section 3.5 presents the search algorithms. Experimental study is discussed in

Section 3.6 and we summarize in Section 3.7.

3.2 Preliminaries
3.2.1 TF*IDF Cosine Similarity

TF*IDF (Term Frequency * Inverse Document Frequency) cosine similarity [101]

is one of the most widely used approaches to measure the relevance of keywords and

document in keyword search over flat documents. We first review its basic idea, then

address its limitations for keyword search over XML data. The main idea of TF*IDF is

summarized in the following three rules.

• Rule 1: A keyword (or term2) appearing in a few documents may be regarded as

being more important than a keyword appearing in many.

• Rule 2: A document with more occurrences of a query keyword may be regarded

as being more important for that keyword than a document that has less.

• Rule 3: A normalization factor is needed to balance between long and short doc-

uments, as Rule 2 discriminates against short documents which may have less

chance to contain more occurrences of keywords.
2We use keyword and term interchangeably in this chapter.

42

To combine the intuitions in the above three rules, the TF*IDF similarity is designed:

ρ(Q,D) =

∑
k∈Q∩D WQ,k ∗WD,k

WQ ∗WD

(3.1)

where Q represents a query, D represents a flat document and k is a keyword appearing

in both Q and D. A larger value of ρ(Q,D) indicates Q and D are more relevant to

each other. WQ,k and WD,k represent the weights of k in query Q and document D

respectively; while WQ and WD are the weights of query Q and document D. Among

several ways to express WQ,k, WD,k, WQ and WD, the followings are the conventional

formulae:
WQ,k = ln (N/(fk + 1)) (3.2)

WD,k = 1 + ln (fD,k) (3.3)

WQ =

√∑

k∈Q

W 2
Q,k (3.4)

WD =

√∑

k∈D

W 2
D,k (3.5)

where N is the total number of documents, and document frequency fk in Formula 3.2

is the number of documents containing keyword k. Term frequency fD,k in Formula 3.3

is the number of occurrences of k in document D.

WQ,k is monotonically decreasing w.r.t. fk (Inverse Document Frequency) to reflect

Rule 1; while WD,k is monotonically increasing w.r.t. fD,k (Term Frequency) to reflect

Rule 2. The logarithm in Formula 3.2 and 3.3 are designed to normalize the raw doc-

ument frequency fk and raw term frequency fD,k. Finally, WQ and WD are increasing

w.r.t. the size of Q and D, playing the role of normalization factors to reflect Rule 3.

However, the original TF*IDF is inadequate for XML, because it is not able to fulfill

the job of search intention identification or resolve keyword ambiguities resulted from

43

XML’s hierarchical structure, as Example 3.3 shows.

Example 3.3. Suppose a keyword query “art” is issued to search for customers interested

in “art” in Figure 3.1’s XML data. Ideally, the system should rank customers who do

have “art” in their nested interest nodes before those who do not have. Moreover, it

should give customer A who is only interested in art a higher rank than another customer

B who has many interests including art (e.g. C4 in Figure 3.1).

However, it causes two problems if directly adopting the original TF*IDF to XML

data. (1) If the structure in customer nodes is not considered, customer A may have a

lower rank than B if A happens to have more keywords in its subtree (analog to long

document in IR) than B. (2) Even worse, suppose a customer C is not interested in “art”

but has address in “art street”. If C has less number of keywords than A and B in the

underlying XML data, then C may have a higher rank than A and B. 2

3.2.2 Data Model

We model XML document as a rooted, labeled tree, such as the one in Figure 3.1.

Our approach exploits the prefix path of a node rather than its tag name for result

retrieval and ranking. Note that the existing works [80, 73] rely on DTD while our

approach works without any XML schema information.

Definition 3.1. (Node Type) The type of a node n in an XML document is the prefix path

from root to n. Two nodes are of the same node type if they share the same prefix path.

In Definition 3.1, the reason that two nodes need to share the same prefix path in-

stead of their tag name is, there may be two or more nodes of the same tag name but of

different semantics (i.e. in different contexts) in one document. E.g. in Figure 3.1,

the name of publisher and the name of customer are of different node types, which

are storeDB/books/book/publisher/name and storeDB/customers/customer/name respec-

44

tively. Besides, when XML database contains multiple XML documents, the node type

should also include the document name.

To facilitate our discussion later, we use the tag name instead of the prefix path of a

node to denote the node type in all examples throughout this chapter. Besides, in order

to separate the content part from leaf node, we distinguish an XML node into either a

data node or a structural node.

Definition 3.2. (Data Node) The text values that are contained in the leaf node of XML

data and have no tag name is defined as a data node.

Definition 3.3. (Structural Node) An XML node labeled with a tag name is called a

structural node. A structural node that contains other structural nodes as its children is

called an internal node; otherwise, it is called a leaf node.

In this chapter, we do not consider the case that an internal node n contains both data

nodes and structural nodes, as we can easily avoid it by adding a dummy structural node

with a tag name say “value” between n and the data nodes during node indexing without

altering the XML data.

With the above two definitions, the value part and structure part of the XML data is

separated. For instance, within the subtree of customer C1 in Figure 3.1, address is an

internal node, street is a leaf node, and “Art Street” is a data node.

Definition 3.4. (Single-valued Type) A structural node T is of single-valued type if each

node of type T has at most one occurrence within its parent node.

Definition 3.5. (Multi-valued Type) A structural node T is of multi-valued type if some

node of type T has more than one occurrence within its parent node.

Definition 3.6. (Grouping Type) An internal node T is defined as a grouping type if

each node of type T contains child nodes of only one multi-valued type.

45

XML nodes of single-valued type and multi-valued type can be easily identified when

parsing the data. A node of single-valued (or multi-valued, or grouping) type is called a

single-valued (or multi-valued, or grouping) node. For example in Figure 3.1, address

is a single-valued node, while interest is a multi-valued node and interests is a grouping

node for interest. In this chapter, for ease of presentation later, we assume every multi-

valued node has a grouping node as its parent, as we can easily introduce a dummy

grouping node in indexing without altering the data. Note a grouping node is also a

single-valued node. Thus, the children of an internal node are either of same multi-

valued type or of different single-valued types.

3.2.3 XML TF & DF

Inspired by the important role of data statistics in IR ranking, we try to utilize it to

resolve ambiguities for XML keyword search, as it usually provides an intuitionistic and

convincing way to model and capture human intuitions.

Example 3.4. When we talk about “art” in the domain of database like Figure 3.1, we

in the first place consider it as a value in interest of customer nodes or category (or

title) of book nodes. However, we seldom first consider it as a value of other node types

(e.g. street with value “Art Street”).

The reason for this intuition is, usually there are many nodes of interest type and

category type containing “art” in their text values, while “art” is infrequent in street

nodes. Such intuition (based on domain knowledge) always can be captured by statistics

of underlying data. Similarly, when we talk about “interest”, intuitionally we in the first

place consider it as a node type instead of a value of the title of book nodes. Besides the

reason that “interest” matches the XML tag interest, it can be explained from statistical

point of view, i.e. all interest nodes contain keyword “interest” in their subtrees. 2

This example clearly shows the importance of statistics as formalized below.

46

Intuition 3.1. The more XML nodes of a certain type T (and their subtrees) contain a

query keyword k in either their text values or tag names, the more intuitive it is that that

nodes of type T are more closely related to the query w.r.t. keyword k.

Note that, the above intuition seems to contradict the Rule 1 in TF*IDF cosine simi-

larity (in section 3.2.1). Indeed it is not, because Intuition 3.1 talks about the type of the

node, which we can understand as which kind of “document” as the search target of a

query, while the Rule 1 in TF*IDF talks about the possibility of a single document as a

result of a query.

In this chapter, we maintain and exploit two important basic statistics terms, fa,k and

fT
k .

Definition 3.7. (XML TF) fa,k: The number of occurrences of a keyword k in a given

data node a in XML data.

Definition 3.8. (XML DF) fT
k : The number of T -typed nodes that contain keyword k in

their subtrees in XML data.

Here, fa,k and fT
k are defined in an analogous way to term frequency fd,k (in Formula

3.3) and document frequency fk (in Formula 3.2) used in the original TF*IDF similarity

respectively; except that we use fT
k to distinguish statistics for different node types,

as the granularity on which to measure similarity in XML is a subtree rather than a

document. Therefore, fa,k and fT
k can be directly used to measure the similarity between

a data node (with parent node of type T) and a query based on the intuitions of original

TF*IDF. Besides, fT
k is also useful in resolving ambiguities, as Intuition 3.1 shows. We

will discuss how these two sets of statistics are used for relevance oriented ranking for

XML keyword search in presence of ambiguities.

47

3.3 Inferring Keyword Search Intention

In this section, we discuss how to interpret the search intentions of a keyword query

by linking the intuitively defined statistics for the query keywords in XML data and the

pattern of keyword co-occurrence in the query.

3.3.1 Inferring the Node Type to Search For

The desired node type to search for is the first issue that a search engine needs to

address in order to retrieve the relevant answers, as the search target in a keyword query

may not be specified explicitly like in structured query language. Given a keyword query

Q, a node type T is considered as the desired node to search for only if the following

three guidelines hold:

Guideline 1: Query keywords coverage. T is intuitively related to every query key-

word in Q, i.e. for each keyword k, there should be some (if not many) T -typed nodes

containing k in their subtrees.

Guideline 2: Maximum relevant information. XML nodes of type T should be infor-

mative enough to contain enough relevant information.

Guideline 3: Minimum irrelevant information. XML nodes of type T should not be

overwhelming to contain too much irrelevant information.

Guideline 2 prefers an internal node type T at a higher level to be the returned node,

while Guideline 3 prefers that the level of T -typed node should not be very near to the

root node. For instance let’s refer to Figure 3.1: according to Guideline 2, leaf nodes of

type interest, street etc. are usually not good candidates for desired returned nodes, as

they are not informative. According to Guideline 3, nodes of type customers and books

are not good candidates as well, as they are too overwhelming as a single keyword search

result.

By incorporating the above guidelines, we define Cfor(T, Q), which is the confi-

48

dence of a node type T to be the desired search for node type w.r.t. a given keyword

query Q as follows:

Cfor(T,Q) = loge(1 +
∏

k∈Q

fT
k) ∗ rdepth(T) (3.6)

where k represents a keyword in query Q; fT
k is the number of T -typed nodes that contain

k as either values or tag names in their subtrees (as explained in Section 3.2.3 to reflect

Intuition 3.1); r is a reduction factor with range (0,1] and normally chosen to be 0.8, and

depth(T) represents the depth of T -typed nodes in document.

In Formula 3.6, the first multiplier (i.e. loge(1 +
∏

k∈Q fT
k)) actually models Intu-

ition 3.1 to address Guideline 1. Meanwhile, it effectively addresses Guideline 3, since

the candidate overwhelming nodes (i.e. the nodes that are near the root) will be assigned

a small value of
∏

k∈Q fT
k , resulting in a small confidence value. The second multiplier

rdepth(T) simply reduces the confidence of the node types that are deeply nested in the

XML database to address Guideline 2.

In addition, we use product rather than sum of fT
k (i.e.

∏
k∈q fT

k) in the first mul-

tiplier to combine statistics of all query keywords for each node type T . The reason

is, the search intention of each query usually has a unique desired node type to search

for, so using product ensures that a node type needs to be intuitively related to all query

keywords in order to have a high confidence as the desired type. Therefore, if a node

type T cannot contain all keywords of the query, its confidence value is set to 0. Further-

more, when the schema of XML data is available, the entity can be inferred (by adopting

XSeek’s methods [80]) and used to constrain the search for node candidates produced

by Formula 3.6, as users are usually interested in real world entities. Similar to all the

existing works [52, 118, 80, 54], in this chapter we assume each query keyword has at

least one occurrence in the XML document being queried.

Example 3.5. Given a query “customer interest art”, node type customer usually has

49

high confidence as the desired node type to search for, because the values of three statis-

tics f customer
“customer”, f customer

“interest” and f customer
“art” (i.e. the number of subtrees rooted at customer

nodes containing “customer”, “interest” and “art” in either nested text values or tags

respectively) are usually greater than 1. In contrast, node type customers doesn’t have

high confidence since f customers
“customer” = f customers

“interest” = f customers
“art” = 1. Similarly, node type in-

terest doesn’t have high confidence since f interest
“customer” usually has a small value. E.g. in

Figure 3.1’s XML data, f interest
“customer” = 0. 2

Finally, with the confidence of each node type being the desired type, the one with the

highest confidence is chosen as the desired search for node, when the highest confidence

is significantly greater than the second highest. However, when several node types have

comparable confidence values, the system can either offer users a choice to decide the

desired one, or do a search for each convincing candidate node by default (in case user

rejects the offer). Regarding the threshold for comparableness judgement, we adopt

the results from our empirical study: when the difference percentage of the scores of

these node types is within 10%, they are viewed as “comparable”. Although not always

fully automatic, our inference approach still provides a guidance for the system-user

interaction for ambiguous keyword queries in absence of syntax. For example, the search

engine can provide a guidance for users to browse and select their desired node type(s)

in case that the keyword queries are ambiguous, before adopting the ranking strategy to

rank the individual matches.

3.3.2 Inferring the Node Types to Search Via

Similar to inferring the desired search for node, Intuition 3.1 is also useful to infer

the node types to search via. However, unlike the search for case which requires a node

type to be related to all keywords, it is enough for a node type to have high confidence

as the desired search via node if it is closely related to some (not necessarily all) key-

50

words, because a query may intend to search via more than one node type. For example,

we can search for customer(s) named ”Smith” and interested in “fashion” with query

“name smith interest fashion”. In this case, the system should be able to infer with high

confidence that name and interest are the node types to search via, even if keyword

“interest” is probably not related to name nodes.

Therefore, we define Cvia(T,Q), which is the confidence of a node type T to be a

desired type to search via as below:

Cvia(T, Q) = loge(1 +
∑

k∈Q

fT
k) (3.7)

where variables k, Q and T have the same meaning as those in Formula 3.6. Compared

to Formula 3.6, we use sum of fT
k instead of product, as it is sufficient for a node type to

have high confidence as the search via node if it is related to some of the keywords. In

addition, if all nodes of a certain type T do not contain any keyword k in their subtrees,

fT
k is equal to 0 for each k in Q, resulting in a zero confidence value, which is also

consistent with the semantics of SLCA. Then, the confidence of each possible node type

to search via will be incorporated into XML TF*IDF similarity (which will be discussed

in Section 3.4.2) to provide answers of high quality.

3.3.3 Capturing Keyword Co-occurrence

In this section, we discuss the search via confidence for a data node. Although

statistics provide a macro way to compute the confidence of a structural node type to

search via, it alone is not adequate to infer the likelihood of an individual data node to

search via for a given keyword in the query.

Example 3.6. Consider a query “customer name Rock interest Art” searching for cus-

tomers, each of whose name includes “Rock” and interest includes “Art”. Based on

statistics, we can infer that name-typed and interest-typed nodes have high confidence

51

to search via by Formula 3.7, as the frequency of keywords “name” and “interest” are

high in node types name and interest respectively. However, statistics is not adequate to

help the system infer that the user wants “Rock” to be a value of name and “Art” to be

a value of interest, which is intuitive with the help of keyword co-occurrence captured.

Thus, if purely based on statistics, it is difficult for a search engine to differ customer C4

(with name ”Art” and interest ”Rock”) from C3 (with name “Rock” and interest ”Art”)

in Figure 3.1. 2

Motivated from the above example, the pattern of keyword co-occurrence in a query

provides a micro way to measure the likelihood of an individual data node to search via,

as a compliment of statistics. Therefore, for each query-matching data node v in XML

data, in order to capture the co-occurrence of keyword kt matching the node types of an

ancestor node of v and keyword k matching a value in v (if they do exist in the query) in

both query and XML data respectively, the following distances are defined.

The design of IQD is motivated by an observation: when users want to specify both

the predicate kt and its value k in a keyword query, they always put kt and k close to

each other, regardless of the search habits of different users, i.e. no matter whether k is

specified before/after kt for a particular user.

Definition 3.9. (In-Query Distance (IQD)) The In-Query Distance Distq(Q, kt, k) be-

tween keyword k and node type kt in a query Q is defined as the absolute value of the

position distance between kt and k in Q; otherwise, Distq(Q, kt, k)=∞.

Note that, the above definition assumes there is no repeated kt and k in a query Q,

and the position distance of two keywords k1 and k2 in a query Q is the difference of

k1’s position and k2’s position in the query.

Definition 3.10. (Structural Distance (SD)) The Structural Distance Dists(Q, v, kt, k)

between kt and k w.r.t. a data node v is defined as the depth distance between v and the

52

nearest kt-typed ancestor node of v in XML data ; Dists(Q, v, kt, k) = ∞ if v does not

have kt-typed ancestor.

IQD and SD are designed to capture the closeness of such node type kt and keyword

k in the input user query and underlying XML data resp. With intuition thinking, a data

node v is favored when such kt and k associated with it appear closely to each other in

both the query and XML data, as stated in Intuition 3.2 and captured in Definition 3.11.

Intuition 3.2. For a data node v, if the keyword kt matching its associated node type and

keyword k covered by v appear closely to each other in both the user query and XML

data, it is more intuitive that v has a high confidence to be searched via. w.r.t keywords

kt and k.

Definition 3.11. (Value-Type Distance (VTD)) Dist(Q, v, kt, k) between kt and k w.r.t.

a data node v is defined as max(Distq(Q, kt, k), Dists(Q, v, kt, k)).

In general, the smaller the value of Dist(Q, v, kt, k) is, it is more likely that Q intends

to search via the node v with a value matching keyword k. Note that, any monotonic

function can be applied in Definition 3.11 to fulfill such intuition, while max is one of

them. Therefore, we define the confidence of a data node v as the node to search via

w.r.t. a keyword k appearing in both query Q and v as follows.

Cvia(Q, v, k) = 1 +
∑

kt∈Q∩ancType(v)

1

Dist(Q, v, kt, k)
(3.8)

Example 3.7. Consider the query in Example 3.6 again, i.e. Q=“customer name Rock

interest Art”. Let n3 and i3 represent the data nodes under name (i.e. Art Smith) and

interest (i.e. rock music) of customer C3. Similarly, let n4 and i4 be the data nodes

under name and interest of customer C4. Now, the in-query distance between name

and Art is 3, i.e. Distq(Q,name, Art) = 3; Dists(Q,n3, name, Art) = 1; as a result

53

Dist(Q,n3,name, Art) = 3 and Cvia(Q,n3, Art) = 4/3. Similarly, Cvia(Q, i3, Rock)

= 1; Cvia(Q,n4, Rock) = 2; and Cvia(Q, i4, Art) = 2. We find, the two predicates of

customer C4 have a larger confidence to be searched via than those of customer C3.

Intuitively, C4 should be more preferred than C3 as the result of Q. We will discuss how

to incorporate these values into our XML TF*IDF similarity in section 3.4.2. 2

3.4 Relevance Oriented Ranking

In this section, we first summarize some unique features of keyword search in XML,

and address the limitations of traditional TF*IDF similarity for XML. Then we propose

a novel XML TF*IDF similarity, which incorporates the confidence formulae designed

in Section 3.3, to resolve the keyword ambiguity problem in relevance oriented ranking.

3.4.1 Principles of Keyword Search in XML

Compared with flat documents, keyword search in XML has its own features. In

order for an IR-style ranking approach to smoothly apply to it, we present three principles

that the search engine should adopt.

Principle 1: When searching for XML nodes of desired type D via a single-valued

node type V , ideally, only the values and structures nested in V -typed nodes can affect

the relevance of D-typed nodes as answers, whereas the existence of other typed nodes

nested in D-typed nodes should not. In other words, the size of the subtree rooted at a

D-typed node d (except the subtree rooted at the search via node) shouldn’t affect d’s

relevance to the query. 2

Let us take a look at the following example to have an intuitionistic understanding of

Principle 1.

Example 3.8. When searching for customer nodes via street nodes using a keyword

query “Art Street”, a customer node (e.g. customer C1 in Figure 3.1) with the matching

54

keyword “street” shouldn’t be ranked lower than another customer node (e.g. customer

C3 in Figure 3.1) without the matching keyword “street”, regardless of the sizes, values

and structures of other nodes nested in C1 and C3. Note this is different from the original

TF*IDF similarity that has strong intuition to normalize the relevance score of each

document with respect to its size (i.e. to normalize against long documents). 2

Principle 2: When searching for the desired node type D via a multi-valued node type

V ′, if there are many V ′-typed nodes nested in one node d of type D, then the existence of

one query-relevant node of type V ′ is usually enough to indicate, d is more relevant to the

query than another node d′ also of type D but with no nested V ′-typed nodes containing

the keyword(s). In other words, the relevance of a D-typed node which contains a query

relevant V ′-typed node should not be affected (or normalized) too much by other query-

irrelevant V ′-typed nodes. 2

Example 3.9. Consider when searching for customers interested in art using the query

“art”, a customer with “art”-interest along with many other interests (e.g. C4 in Figure

3.1) should not be regarded as less relevant to the query than another customer who

doesn’t have “art”-interest but has “art street” in address (e.g. C1 in Figure 3.1). 2

Compared to the existing works which blindly exploit the compactness of the query

results in result ranking [52, 38, 74], a significant difference of the above two principles

is: the internal structure of a query result should be exploited as a critical factor to reflect

the real relevance of the query results.

Principle 3: The proximity of keywords in a query is usually important to indicate the

search intention. 2

The first two principles look trivial if we know exactly the search via node. However,

when the system doesn’t have exact information of which node type to search via (as user

issues pure keyword query in most cases), they are important in designing the formula

55

of XML TF*IDF similarity; we will utilize them in designing Formula 3.14 for WQ
a in

section 3.4.2.

3.4.2 XML TF*IDF Similarity

ρs(Q, a) =

(a) a is value node
∑

k∈Q∩a
W Ta

Q,k∗Wa,k

W Ta
Q ∗Wa

(base case)

(b) a is internalnode
∑

c∈chd(a)

ρs(Q,c)∗Cvia(Tc,Q)

W Q
a

(recursive case)

(3.9)

We propose a recursive Formula 3.9, which captures XML’s hierarchical structure, to

compute XML TF*IDF similarity between an XML node of the desired type to search

for and a keyword query. It first (base case) computes the similarities between the leaf

nodes l of XML data and the query, then (recursive case) it recursively computes the

similarities between internal nodes n and the query, based on the similarity value of each

child c of n and the confidence of c as the node type to search via, until we get the

similarities of search for nodes.

In Formula 3.9, Q represents a keyword query; a represents an XML node; ρs(Q, a)

represents the similarity value between Q and a. We first discuss the intuitions behind

Formula 3.9 briefly.

(1) In the base case, we compute the similarity values between XML leaf nodes and

a given query in a similar way to the original TF*IDF, since leaf nodes contain only

keywords with no further structure.

(2) In the recursive case: on one hand, if an internal node a has more query relevant child

nodes while another internal node a′ has less, then it is likely that a is more relevant to

the query than a′. This intuition is reflected as the numerator in Formula 3.9(b). On

the other hand, we should take into account the fan-out (size) of the internal node as

normalization factor, since the node with large fan-out has a higher chance to contain

56

more query relevant children. This is reflected as the denominator of Formula 3.9(b).

Next, we will illustrate how each factor in Formula 3.9 contributes to the XML struc-

tural similarity in Section 3.4.2 (for base case) and 3.4.2 (for recursive case).

Base case of XML TF*IDF

Since XML leaf nodes contain keywords with no further structure, we can adopt

the intuitions of the original TF*IDF to compute the similarity between a leaf node and

a keyword query by using statistics terms fT
k and fa,k which have been explained in

Section 3.2.3.

However, unlike Rule 1 in the original TF*IDF which assigns the same weight to a

query keyword w.r.t. all documents (i.e. WQ,k in Formula 3.2), we model and distinguish

the weights of a keyword w.r.t. different XML leaf node types (i.e. W Ta
Q,k in Formula

3.10), as shown in Example 3.10.

Example 3.10. Keyword street may appear quite frequently in address nodes of Fig-

ure 3.1 while infrequently in other nodes. Thus it is necessary to distinguish the (low)

weight of street in address from its (high) weight in other nodes. Similarly, we distin-

guish the weights of a query w.r.t. different XML node types (i.e. W Ta
Q), rather than a

fixed weight for a given query for all flat documents. 2

Now let us take a detailed look at Formula 3.9. In the base case for XML leaf nodes,

each k represents a keyword appearing in both query Q and data node a; Ta is the type of

a’s parent node; W Ta
Q,k represents the weight of keyword k in Q w.r.t. node type Ta. Wa,k

represents the weight of k in data node a; W Ta
Q represents the weight of Q w.r.t. node

type Ta; and Wa represents the weight of a. Following the conventions of the original

TF*IDF, we propose the formulas for W Ta
Q,k, Wa,k, W Ta

Q and Wa in Formula 3.10, 3.11,

3.12 and 3.13 respectively:

W Ta
Q,k = Cvia(Q, a, k) ∗ loge (1 + NTa/(1 + fTa

k)) (3.10)

57

Wa,k = 1 + loge (fa,k) (3.11)

W Ta
Q =

√∑

k∈Q

(W Ta
Q,k)

2 (3.12)

Wa =

√∑

k∈a

W 2
a,k (3.13)

In Formula 3.10, NTa is the total number of nodes of type Ta while fTa
k is the number

of Ta-typed nodes containing keyword k; Cvia(Q, a, k) is the confidence of node a to be

a search via node w.r.t. keyword k (explained in Section 3.3.3).

In Formula 3.11, fa,k is the number of occurrences of k in data node a. Similar to

Rule 1 and Rule 2 in original TF*IDF, W Ta
Q,k is monotonically decreasing w.r.t. fTa

k , while

Wa,k is monotonically increasing w.r.t. fa,k. Wa is normally increasing w.r.t. the size

of a, so put it as part of denominator to play a role of normalization factor to balance

between leaf nodes containing many keywords and those with a few keywords.

Recursive case of XML TF*IDF

The recursive case of Formula 3.9 recursively computes the similarity value between

an internal node a and a keyword query Q in a bottom-up way based on two intuitions.

Intuition 3.3. An internal node a is relevant to Q, if a has a child c such that the type of

c has a high confidence to be a search via node w.r.t. Q (i.e. large Cvia(Tc, Q)), and c is

highly relevant to Q (i.e. large ρs(Q, c)).

Intuition 3.4. An internal node a is more relevant to Q if a has more query-relevant

children when all others being equal.

In the recursive case of Formula 3.9, c represents one child node of a; Tc is the node

type of c; Cvia(Tc, Q) is the confidence of Tc to be a search via node type presented in

Formula 3.7; ρs(Q, c) represents the similarity between node c and query Q which is

computed recursively; WQ
a is the overall weight of a for the given query Q.

58

Next, we explain the similarity design of an internal node a in Formula 3.9: we first

get a weighted sum of the similarity values of all its children, where the weight of each

child c is the confidence of c to be a search via node w.r.t. query Q. This weighted

sum is exactly the numerator of formula 3.9, which also follows Intuition 3.3 and 3.4

mentioned above. Besides, since Intuition 3.4 usually favors internal nodes with more

children, we need to normalize the relevance of a to Q. That naturally leads to the use

of WQ
a (Formula 3.14) as the denominator.

Normalization factor design

Formula 3.14 presents the design of WQ
a , which is used as a normalization factor

in the recursive case of XML TF*IDF similarity formula. WQ
a is designed based on

Principle 1 and Principle 2 pointed out in section 3.4.1.

WQ
a =

√ ∑
c∈chd(a)

(Cvia(Tc, Q) ∗B + DW (c))2 (a) if a is

grouping node
√ ∑

T∈chdType(Ta)

Cvia(T, Q)2 (b) otherwise

(3.14)

Grouping Node Case

Formula 3.14(a) presents the case that internal node a is a grouping node; then for each

child c of a (i.e. c ∈ chd(a)), B is considered as a Boolean flag: B = 1 if ρs(Q, c) > 0

and B = 0 otherwise; DW (c) is a small value as the default weight of c which we choose

DW (c) = 1/ loge(e− 1 + |chd(a)|) if B = 0 and DW (c) = 0 if B = 1, where |chd(a)|
is the number of children of a, so that WQ

a for grouping node a grows with the number of

query-irrelevant child nodes, but grows very slowly to reflect Principle 2. Note DW (c)

is usually insignificant as compared to Cvia(Tc, Q).

The intuition for the formula 3.14(a) of grouping node a comes from Principle 2, so

59

we don’t count Cvia(Tc, Q) in the normalization unless c contains some query-relevant

keywords within its subtree. In this way, the similarity of a to Q will not be significantly

normalized (or affected) even if a has many query-irrelevant child nodes of the same

type. At the same time, with the default weight DW (c), we still provide a way to distin-

guish and favor a grouping node with small number of children from another grouping

node with many children, in case that the two contain the same set of query-relevant

child nodes. In other words, the result specificity is taken into account in this case.

Non-Grouping Node Case

When internal node a is a non-grouping node, we compute WQ
a based on the type of

a rather than each individual node. In Formula 3.14(b), chdType(Ta) represents the

node types of the children of a, and it computes the same WQ
a for all a-typed nodes

even if each individual a-typed node may have different sets of child nodes (e.g. some

customer nodes have nested address while some do not have).

This design has two advantages. First, it models Principle 1 to achieve a normaliza-

tion that the size of the subtree of individual node a does not affect the similarity of a to

a query.

Example 3.11. Given a query Q “customer Art Street”, since address has high con-

fidence to be searched via (i.e. Cvia(address,Q)), C1 (with address in “Art Street”)

will be ranked before C2 (with interest in “street art”) according to the normalization in

Formula 3.14(b). However, if we compute the normalization factor based on the size of

each individual node, then the high confidence for address node doesn’t contribute to

the normalization factor of C2 (who even doesn’t have address and street nodes etc.).

As a result, C2 has a good chance to be ranked before C1 due to its small size which

results in small normalization factor. 2

Second, Formula 3.14(b)’s design has advantage in term of computation cost. With

WQ
a for non-grouping node computed based on node types instead of data nodes, we only

60

need to compute WQ
a for all a-typed nodes once for each query, instead of repeatedly

computing WQ
a for each a-typed node in the data.

Note that, the normalization factor in Formula 3.14(b) potentially favors nodes with

more nested node types. However, the existence of one or a few nodes containing query

keywords but with low-confidence to be searched via is usually insufficient to outweigh

a query-relevant search via node with high confidence. In addition, we do not choose

the same normalization factor for all nodes of the same type, because we have to prevent

the similarity of internal nodes (up to the search for node) from increasing monotonically

from the base case of the recursive XML TF*IDF formula (i.e. Equation 3.9(a)), in order

to avoid discriminating against nodes that are nested near the nodes to be searched for.

Note in the base case, a keyword k is less important in T -typed nodes if more T -

typed nodes contain k. However, now we consider T -typed nodes are more important

for keyword k (i.e. larger Cvia(T, k)). These two, which seem contradictory, are in fact

the key to accurate relevance based ranking.

Example 3.12. Consider when searching for customers with query “customer art road”,

statistics will normally give more weights to address than other node types because of

the high frequency of keyword “road” in address. But if no customer node has address

in “art road” but some have address in “art street”, then these customer nodes will

be ranked before customers with address containing “road” without “art”, because the

keyword “road” has a lower weight than ”art” in address nodes due to its much higher

frequency. 2

Advantages of XML TF*IDF

Compatibility - The XML TF*IDF similarity can work on both semi-structured and

unstructured data, because unstructured data is a simpler kind of semi-structured data

with no structure, and XML TF*IDF ranking Formula 3.9(a) for data node can be easily

61

simplified to the original TF*IDF Formula 3.1 by ignoring the node type.

Robustness - Unlike existing methods which require a query result to cover all key-

words [80, 118, 54, 52], we adopt a heuristic-based approach that does not enforce the

occurrence of all keywords in a query result; instead, we rank the results according to

their relevance to the query. In this way, more relevant results can be found, as a user

query may often be an imperfect description of his real information need [64]. Users

never expect an empty result to be returned even though no result can cover all key-

words; fortunately, our approach is still able to return the most relevant results to users.

3.5 Algorithms

3.5.1 Data Processing and Index Construction

We parse the input XML document, during which we collect the following informa-

tion for each node n visited: (1) assign a Dewey label DeweyID [105] to n; (2) store

the prefix path prefixPath of n as its node type in a global hash table, so that any

two nodes sharing the same prefixPath have the same node type; (3) in case n is a leaf

node, we create a data node a (mentioned in section 3.2.2) as its child and summarize two

basic statistics data fa,k (in Definition 3.7) and Wa (in Formula 3.13) at the same time.

Besides, we also build two indices in order to speedup the keyword query processing.

The first index built is called keyword inverted list, which retrieves a list of data

nodes in document order whose values contain the input keyword; moreover, an index

(e.g. B+-Tree) is built on top of each inverted list for probing purpose. In particular,

we have designed and evaluated three candidates for the inverted list: (1) Dup, the most

basic index which stores only the dewey id and XML TF fa,k; (2) DupType, which

stores an extra node type (i.e. its prefix path) compared to Dup; (3) DupTypeNorm,

which stores an extra normalization factor Wa (in Formula 3.13) associated with this data

62

node compared to DupType. DupTypeNorm provides the most efficient computation

of XML TF*IDF, as it costs the least index lookup time; in contrast Dup and DupType

need extra index lookup to gather the value of Wa,k (see formula 3.11) to compute Wa

online.

Given a keyword k, the inverted list returns a set of nodes a in document order, each

of which contains the input keyword and is in form of a tuple <DeweyID, prefixPath,

fa,k, Wa>. Each term here has been explained as above. In order to facilitate the ex-

planations of the algorithm, we name such tuple as a “Node”. It supports the following

operations:

• getDeweyID(a,k) returns the Dewey id of data node a.

• getPrefix(a,k) returns the prefix path of a in XML data.

• getFrequency(a,k) returns XML TF fa,k of data node a.

• getWeight(a) returns Wa for data node a.

The second index built is called frequency table, which stores the frequency fT
k for

each combination of keyword k and node type T in XML document. Its worst case

space complexity is O(K*N), where K is the number of distinct keywords and N is the

number of node types in XML database. Since the number of node types in a well de-

signed XML database is usually small (e.g. 100+ in DBLP 370MB and 500+ in XMark

115MB), the frequency table size is comparable to inverted list. It is indexed by key-

words using Berkeley DB B+-Tree [1], so the index lookup cost is O(log(K)). It sup-

ports getFrequency(T ,k) which returns the value of fT
k . The values returned by these

operations are important to compute the result of formulae in Section 3.4.

3.5.2 Keyword Search & Ranking

Algorithm 3.1 presents a flowchart of keyword search and result ranking. The input

parameter Q[m] is a keyword query containing m keywords. Based on the inverted lists

63

built after pre-processing the XML document, we extract the corresponding inverted

lists IL[1], ..., IL[m] for each keyword in the query. Each inverted list IL contains a

set of tuples in form of <DeweyID, prefixPath, fk
a , Wa>. F is the frequency table

mentioned in section 3.5.1. In particular, Algorithm 3.1 executes in two steps.

Algorithm 3.1: KWSearch(Q[m], IL[m], F [m])
Let max = 0; Tfor = null1
List Lfor = getAllNodeTypes()2
foreach Tn∈Lfor do3

Cfor(Tn, Q) = getSearchForConfidence(Tn,Q)4
if (Cfor(Tn) > max) then5

max = Cfor(Tn); Tfor = Tn6
LinkedList rankedList7
Nfor = getNext(Tfor)8
while (!end(IL[1]) || ... || (!end(IL[m]))) do9

Node a = getMin(IL[1],IL[2],...,IL[m])10
if (!isAncestor(Nfor, a)) then11

ρs(Q,Nfor) = getSimilarity(Nfor,Q)12
rankedList.insert(Nfor, ρs(Q,Nfor))13
Nfor = getNext(Tfor)14

if (isAncestor(Nfor, a)) then15
ρs(Q, a) = getSimilarity(a,Q)16

else17
ρs(Q, a) = 018

return rankedList;19

First, it identifies the search intention of the user, i.e. to identify the most desired

search for node type (line 1-6). In particular, it first collects all distinct node types in

XML document (line 2). Then for each node type, we compute its confidence to be a

search for node through Formula 3.6, and choose the one with the maximum confidence

as the desired search for node type Tfor (line 3-6).

Second, for each search for node candidate Nfor, it computes the XML TF*IDF sim-

ilarity between n and the given keyword query (line 7-18). We maintain a rankedList

to contain the similarity of each search for node candidate (line 7). Nfor is initially

set to the first node of type Tfor in document order (line 8). The computation of XML

TF*IDF similarity between an XML node and the given query is computed recursively

in a bottom-up way (line 9-18): for each Nfor, we first extract node a which occurs first

64

in document order (line 10), then compute the similarity of all leaf nodes a by calling

Function getSimilarity(), then go one level up to compute the similarity of the lowest

internal node (line 15-18), until it reaches up to Nfor, which is actually the root of all

nodes computed before. Then it computes the similarity between current Nfor and the

query (line 12), inserts a pair (Nfor, ρ) into rankedList (line 13), and moves the cursor

to next Nfor by calling function getNext() and calculates the similarity of next Nfor in

the same way (line 14). Function isAncestor(N1, N2) returns true if N1 is an ancestor

of N2.

Lastly, it returns the ranked list of all search for node candidates by their similarity

to the query (line 19).

Function getSimilarity(Node a, q[n])
if (isLeafNode(a)) then1

foreach k ∈ Q
⋂

a do2
Cvia(Q, a, k) = getKWCo-occur(Q,a,k);3

WTa

Q,k = getQueryWeight(Q,k,a);4

WTa

Q,k = Cvia(Q, a, k) * WTa

Q,k;5
Wa,k = 1+loge(fa,k);6

sum += WTa

Q,k * Wa,k;7
ρs(Q, a) = sum/(WTa

q *getWeight(a));8
if (isInternalNode(a)) then9

WQ
a = getQWeight(a,Q);10

foreach c∈child(a) do11
Tc = getNodeType(c);12
Cvia(Tc,Q) = getSearchViaConfidence();13
sum += getSimilarity(c,Q) * Cvia(Tc,Q);14

ρs(Q, a) = sum/WQ
a ;15

return ρs(Q, a);16

Function getSimilarity() presents the procedure of computing XML TF*IDF simi-

larity between a document node a and a given query Q of size n. There are two cases to

consider.

Case 1: a is a leaf node (line 1-8). For each keyword k in both a and Q, we first capture

whether k co-occurs with keyword kt matching some node type. Line 3-8 present the

calculation details of ρs(Q, a) in Formula 3.9(a). The statistics in line 3,5,6 are illustrated

65

in Formula 8, 10 and 11 respectively.

Case 2: a is an internal node (line 9-15). We compute a’s similarity ρs(Q, a) w.r.t.

query Q by exactly following Formula 3.9(b). ρs(Q, a) is computed by a sum of the

product of the similarity of each of its child c and the confidence value of c as a search

via node (line 11-14). Finally, ρs(Q, a) is normalized by a factor WQ
a (line 15), which is

the weight of internal node a w.r.t. Q. Lastly, we return the similarity value (line 16).

The above search method can be gracefully adapted to handle unstructured data,

which provide an easy way to incorporate our ranking techniques in a standard text

indexing system to handle both unstructured and semi-structured data.

3.6 Experiments

We have performed comprehensive experiments to compare the effectiveness, effi-

ciency and scalability of XReal with SLCA and XSeek, all implemented in Java and run

on a 3.6GHz Pentium 4 machine with 1GB RAM running Windows XP. We tested both

synthetic and real datasets. XMark [3] is used as synthetic dataset; WSU, eBay from [2]

and DBLP are used as real datasets. The size of the data, the three indices and the the

connection table CT (proposed in section 3.5.1), and the total indexing time are reported

in Table 3.1. Berkeley DB Java Edition [1] is used to store the keyword inverted lists,

frequency table and connection table CT.

The effectiveness test contains two parts: (1) the quality of inferring the desired

search for node; (2) the quality of our ranking approach.

Table 3.1: Data and Index Sizes
Data Data Size Dup DupType DupTypeNorm CT Index Time

DBLP 370MB 1.96GB 2.05GB 2.23GB 2MB 2.3 hours
XMark 115MB 1.26GB 1.3GB 1.32GB 13MB 58 minutes
WSU 15.6MB 13.1MB 13.4MB 14.1MB 0 91 seconds
eBay 350KB 718KB 732KB 803KB 0 10 seconds

66

Table 3.2: Test on inferring the search for node
 Query Intention

����� ����
 / XSeek

DBLP (370MB)

QD1 Java, book book book book; title / book;

article

QD2 author, Chen, Lei inproceedings inproceedings author

QD3 Jim, Gray, article article article article

QD4 xml, twig inproceedings inproceedings title / inproceedings

QD5 Ling, tok, wang,

twig

inproceedings inproceedings inproceedings

QD6 vldb, 2000 inproceedings inproceedings inproceedings

WSU (16.5MB)

QW1 230 place course; place room; crs / course

QW2 CAC, 101 course course course

QW3 ECON course course prefix / course

QW4 Biology course course title / course

QW5 place, TODD course course place / course

QW6 days, TU, TH course course days / course

eBay (0.36MB)

QE1 2, days auction_info listing time_left / listing

QE2 cpu, 933 listing listing cpu / listing

QE3 Hard, drive, CA listing listing description / listing

3.6.1 Evaluation of Search Effectiveness

Infer the Search For Node

To test XReal’s accuracy in inferring the desired search for node, we make a survey

of 20 keyword queries, most of which do not contain an explicit search for node. To get

a fairly objective view of user search intentions in real world, we post this survey online

and ask for 46 people to write down their desired search for and search via nodes. We

summarize their answers and choose the queries that more than 80 percentage of users

agree on a same search intention. The final queries are shown in Figure 3.2, and some

queries contain ambiguities: e.g. QD1 and QD3 have both Ambiguity 1 and Ambiguity

2; QD2, QD6 and QW1 have Ambiguity 2. The 4th column contains the search for node

inferred by XReal while the 5th column contains the majority node types returned by

SLCA and XSeek, as the semantics of SLCA cannot guarantee all results are of the same

node type.

67

We find XReal is able to infer a desired search for node in most queries, especially

when the search for node is not given explicitly in the query (e.g. QD2, QD4, QW2,

QE1), or its choice is not unique (e.g. QD1, QD3), or both cases such as QW1. XSeek

infers the return nodes of individual keyword matches case by case, rather than address-

ing the major search intention(s), whereas XReal does so before it goes to find individual

matches. In addition, if more than one candidate have comparable confidence to be a

search for node, XReal returns all possible candidates (for user to decide), or returns a

ranked result list for each such candidate in parallel if user interaction is not preferred.

E.g. in QW1, both place and course can be the return node, as the frequency of “230”

in subtrees of course and place are comparable. Note that, the search for node usually

models a real world object, so we choose to return sub-trees rooted at the desired search

for node, and provide links to the descendants of subtrees for user interested in particular

parts of the subtree to explore.

Precision, Recall & F-measure

To measure the search quality, we evaluate all queries in Figure 3.2, and summa-

rize two metrics borrowed from IR field: precision and recall. Precision measures the

percentage of the output subtrees that are desired; recall measures the percentage of the

desired subtrees that are output. We obtain the correct answers by running the schema-

aware XQuery with an additional manual verification. As most queries on DBLP have

more than 100 results, we compute XReal’s top-100 precision and top-100 recall besides

the overall ones; since SLCA and XSeek do not provide any ranking function, we only

compute their overall precision and recall. Besides, as there are less than 100 results for

each query issued on WSU and eBay, we do not show the top-100 precision and recall

in Figure 3.2(b)-3.2(c) and Figure 3.3(b)-3.3(c).

To evaluate XReal’s performance on large real datasets, we include four more queries

for DBLP: QD7 “Philip Bernstein”; QD8 “WISE”; QD9 “ER 2005”; QD10 “LATIN

68

 20

 40

 60

 80

 100

QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8 QD9QD10

SLCA
XSeek
XReal

XReal-Top100

(a) DBLP

 20

 40

 60

 80

 100

QW1 QW2 QW3 QW4 QW5 QW6

SLCA
XSeek
XReal

(b) WSU

 20

 40

 60

 80

 100

QE1 QE2 QE3

SLCA
XSeek
XReal

(c) EBAY

Figure 3.2: Precision Comparison(%)

2006”. Each of these queries has Ambiguity 2 problem, e.g. ”WISE” can be the bookti-

tle, title of inproceedings, or a value of author.

From Figure 3.2 and 3.3, we have four main observations.

(1) XReal achieves higher precision than SLCA and XSeek for the queries that con-

tain ambiguities (e.g. QD1-QD4, QD6-QD10, QW1). E.g. in QD3 which intends to

find the articles written by author “Jim Gray”, since “article” can be either a tag name

or a value of title node, and “Jim” and “Gray” can appear in one author or two different

authors, SLCA and XSeek generate some false positive results and lead to low accu-

69

 20

 40

 60

 80

 100

QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8 QD9QD10

SLCA
XSeek
XReal

XReal-Top100

(a) DBLP

 20

 40

 60

 80

 100

QW1 QW2 QW3 QW4 QW5 QW6

SLCA
XSeek
XReal

(b) WSU

 20

 40

 60

 80

 100

QE1 QE2 QE3

SLCA
XSeek
XReal

(c) EBAY

Figure 3.3: Recall Comparison(%)

racy, while XReal addresses these ambiguities well. As another example in QD9 which

intends to find the inproceedings of ER conference in year 2005, since “ER” appears in

both booktitle and title, and “2005” appears in both title and year, XSeek returns not only

the intended results, but also other inproceedings whose titles contain both keywords; but

XReal correctly interprets the search intention.

(2) SLCA suffers a zero precision and recall from the pure keyword value query, e.g.

QD4, QD7, QD8, QW1, QE1-QE3, as the SLCA results contain nothing relevant except

the SLCA node. E.g. for QD8 SLCA returns the booktitle or title nodes containing

70

“WISE”, while user wants the inproceedings of “WISE” conference. In contrast, XReal

correctly captures the search intention. XSeek suffers a zero precision in QD2 and QD7,

mainly because it mistakenly decides “author” as an entity, while the query intends to

find the publications.

(3) XReal Performs as well as XSeek (in both recall and precision) when queries

have no ambiguity in XML data (e.g. QD5, QW4-QW6, QE1-QE3). XReal has a low

precision on QD2, as there are more than one person called Lei Chen in DBLP, while

the users are only interested in one of them.

(4) For queries that have more than 100 results on DBLP such as QD3, QD6-QD9,

XReal Top-100 has a higher precision (and lower recall) than overall XReal, which indi-

rectly proves our ranking strategy works well on large datasets.

Table 3.3: F-Measure Comparison
F-measure SLCA XSeek XReal XReal top-100

DBLP 0.272 0.3461 0.4748 0.4799
WSU 0.0083 0.4162 0.4967 0.4967
EBAY 0 0.4002 0.4002 0.4002

Furthermore, we adopt F-measure used in IR as the weighted harmonic mean of

precision and recall. We compute the average precision and recall of all queries in

Figure 3.2 for each dataset (plus QD7-QD10), adopting formula F = precision ∗
recall/(precision + recall) to get F-measure in Table 3.3. We find XReal beats SLCA

and XSeek on all datasets, and achieves almost a perfect value of F which is 0.5 on WSU.

3.6.2 Evaluation of Ranking Effectiveness

To evaluate the effectiveness of XML TF*IDF alone, we use three measures widely

adopted in IR field. (1) Number of top-1 answers that are relevant. (2) Reciprocal

rank (R-rank). For a given query, the reciprocal rank is 1 divided by the rank at which the

first correct answer is returned, or 0 if no correct answer is returned. (3) Mean Average

71

Precision (MAP). A precision is computed after each relevant answer is retrieved, and

MAP is the average value of such precisions. The first two measure how good the system

returns one relevant answer, while the third one measures the overall effectiveness for

top-k answers returned, k=40 for DBLP (as DBLP data has very large size) and k=20 for

others (if they do exist).

We evaluate a set of 30 randomly generated queries on DBLP, and 10 queries on

WSU, eBay and XMark, with an average of 3 keywords. The average values of these

metrics are recorded in Table 3.4. We find XReal has an average R-rank greater than

0.8 and even over 0.9 on DBLP. Besides, XReal returns the relevant result in its top-1

answer in most queries, which shows high effectiveness of our ranking strategy.

Table 3.4: Ranking Performance of XReal
Dataset Top-1 Number/Total Number R-Rank MAP
DBLP 27/30 0.946 0.925
WSU 8/10 0.85 0.803
eBay 9/10 0.9 0.867

XMark 7/10 0.791 0.713

 5

 10

 15

 20

 25

QD1 QD2 QD3 QD4 QD5 QD6

T
im

e
 (

s)

Dup
DupType

DupTypeNorm

(a) DBLP

 0.5

 1

 1.5

 2

 2.5

 3

QW1 QW2 QW3 QW4 QW5 QW6

T
im

e
(s

)

Dup
DupType

DupTypeNorm

(b) WSU

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

QE1 QE2 QE3

T
im

e
(s

)

Dup
DupType

DupTypeNorm

(c) eBay

Figure 3.4: Response time on individual queries

3.6.3 Evaluation of Efficiency

We compare the query response time of XReal adopting three indices for keyword

inverted list mentioned in section 3.5.1, i.e. Dup, DupType and DupTypeNorm, measured

72

by the timestamp difference between a query is issued and result is returned. Throughout

section 3.6, XReal refers to the one adopting DupTypeNorm. Figure 3.4 shows the time

on hot cache for queries listed in Figure 3.2. DupTypeNorm outperforms the other two

on all three real datasets, about 2 and 4 times faster than DupType and Dup respectively.

Because DupTypeNorm stores the dewey id, node type and normalization factor (for

data nodes) together, thus it needs less number of index lookups to fulfill the similarity

computation in Formula 3.9. Such advantage is significant when the number of keywords

is large or query result size is large, e.g. QD5 and QD6 in Figure 3.4(a).

 0.1

 0.2

 0.3

 0.4

 0.5

2 3 4 5

T
im

e
(s

)

|K|

Dup
DupType

DupTypeNorm
SLCA

(a) XMark

 1
 2
 3
 4
 5
 6
 7
 8

2 3 4 5 6 7 8

T
im

e
(s

)

|K|

Dup
DupType

DupTypeNorm
SLCA

(b) DBLP

Figure 3.5: Response time on different number of keywords |K|

3.6.4 Evaluation of Scalability

Among the existing keyword search methods [118, 54, 38], SLCA is recognized as

the most efficient one so far, so we compare XReal with SLCA on DBLP and XMark.

For each dataset, we test a set of 50 randomly generated queries, each guarantees to

have at least one SLCA result and contains |K| number of keywords, where |K| = 2 to

8 for DBLP and |K| = 2 to 5 for XMark. The response time is the average time of the

corresponding 50 queries in four executions on hot cache, as shown in Figure 3.5.

From Figure 3.5(a) and 3.5(b), we find XReal is nearly 20% slower than SLCA on

both datasets which is acceptable, because XReal does extra search intention identifica-

73

tion, precise result retrieval and ranking; and XReal finds extra results; so this overhead

is worthwhile. We also find, the response time of each proposed index increases as |K|
increases. In particular, the one with DupTypeNorm index costs less time than DupType,

in turn less than Dup. XReal adopting DupTypeNorm index scales as well as SLCA,

especially when |K| varies from 5 to 8 for DBLP (Figure 3.5(b)).

 20

 40

 60

 80

0.2 1 2 3 4 5 6

T
im

e
(s

)

Result Size (*105 Nodes)

Dup
DupType

DupTypeNorm

(a) DBLP

 1
 2
 3
 4
 5
 6
 7

5 10 15 20 25 30 35 40

T
im

e
(s

)

Document Size (MB)

Dup
DupType

DupTypeNorm

(b) XMark

Figure 3.6: Response time w.r.t. result/document size

Besides, we evaluate the scalability of those indices by drawing the relationship be-

tween the response time and query result size (in term of number of nodes returned). A

range of 15 queries with various result sizes run over DBLP, and the result is shown in

Figure 3.6(a). We can see DupTypeNorm again outperforms the other two, and scales

linearly w.r.t. the query result size. Similarly, we test the response time of a query “lo-

cation united states item” on XMark data of size 5MB up to 40MB. As shown in Figure

3.6(b), both DupTypeNorm and DupType’s response time increase linearly w.r.t. the data

size.

3.7 Summary
In this chapter, we discovered three critical problems specific to keyword search over

XML data tree, which have not been solved by any existing work yet. The first problem,

also the most important one, is the keyword ambiguity problems: a keyword can be a

74

tag name or a value of some node, or value of different nodes, or tag name of different

nodes, carrying different meanings as they appear in different contexts. Thus, the search

intentions (i.e. search targets and search constraints) of a user query is often various.

The second problem is how to identify the search target for a keyword query. The third

problem is how to rank the results in term of its relevance to user’s search intentions in

presence of the keyword ambiguity problems.

We find that, as a convinced search target (i.e. a node type to be searched for), its

subtree in XML data should cover all keywords, contain as much relevant information

while exclude as much irrelevant information as possible. Based on this intuition, we

designed a scoring model to quantify the confidence of the search target candidates as

the desired search target that a user query intends to search for. Then, motivated by the

success of TF*IDF ranking model in information retrieval field, we defined XML TF

and XML DF, based on which we designed formulae to compute the confidence level

of each candidate node type to be a search via node, and further proposed a novel XML

TF*IDF similarity ranking scheme to capture the hierarchical structure of XML data.

Lastly, extensive experiments on both real and synthetic data set have been conducted to

verify the effectiveness of our search target identification and result ranking methods.

CHAPTER 4

EFFECTIVE KEYWORD SEARCH

OVER XML DIGRAPH MODEL

4.1 Introduction

In chapter 3, we mainly talk about how to answer a keyword query over XML data

tree. However, the tree model ignores the ID references (denoted by “IDRef”) between

the elements in XML data. Without considering IDRefs, some relevant results may be

missed. Therefore, in this chapter, we would like to investigate how to find meaningful

and relevant results of a keyword query over the XML data where IDRefs are taken into

consideration.

Motivation

One solution to this problem is: we treat XML data as a general directed graph

(i.e. the direction of the edge is considered) such as the one in Figure 4.1, and find

all the steiner trees [24], each of which is a directed rooted tree that contains all query

75

76

keywords. Usually we start from finding the steiner tree with minimal size, then incre-

mentally enlarge the size of the steiner tree found. However, this solution suffers three

problems. First, similar to LCA semantics for tree data model, the concept of steiner

tree itself exploits only the structure of the data while ignoring how to capture user’s real

search need. Second, the problem of finding the results by increasing the sizes of such

steiner trees for keyword proximity has been proven to be NP-hard [77], thus such so-

lution is heuristics-based and intrinsically expensive. Third, without distinguishing the

containment edge (i.e. parent-child edge) and the reference edge (i.e. IDRef edge) in

XML data, it may incur a lot overhead in generating the steiner trees that do not meet

user’s search concern though they contain all query keywords.

Despite the inherent problem of treating XML data with IDRef edges as a general

digraph to do keyword query processing, we have another important observation. With

the presence of clean and well organized knowledge domains such as Wikipedia, World

Factbook, IMDB [5] etc, the future search technology should appropriately help users

precisely finding explicit objects of interest. As XML is becoming a standard in data

exchange and representation in the internet, in order to achieve the goal of “finding only

the meaningful and relevant data fragments corresponding to the objects (that users really

are interested in)”, search techniques over XML document need to exploit the matching

semantics at object-level due to the following two reasons.

First, the information in XML document can usually be recognized as a set of real

world objects [80], each of which has attributes and interacts with other objects through

relationships. E.g. Course and Lecturer can be recognized as objects in the XML data

of Figure 4.1. Second, whenever people issue a keyword query, they would like to find

information about specific objects of interest, along with their relationships. E.g. when

people search Figure 4.1’s data by a query “smith”, they most likely intend to find the

Lecturer object about “smith”. Therefore, it is desired that the search engine is able to

77

find and extract the data fragments corresponding to the real world objects.

Dept

0

Courses

0.1

Lecturers

0.2

Course

0.1.0

Course

0.1.1

Course

0.1.2

... Lecturer

0.2.0

Lecturer

0.2.1

Lecturer

0.2.2

...

Title

0.1.0.1

“Advanced

Topics in AI”

...
Title

0.1.1.1
Title

0.1.2.1

“Database

Management”

“Advanced

Topics in

Database”

Prereq

0.1.2.2

Students

0.0

Student

0.0.0

...

Name

0.2.0.1
Name

0.2.2.1

Name

0.2.1.1

“Smith” “Jones”“Lee”

Teaches

0.2.0.2

...

Teaches

0.2.2.2

Containment Edge

Reference Edge

ID

0.1.1.0

“CS202”

ID

0.1.0.0

“CS501”

ID

0.1.2.0

“CS502”

ID

0.2.1.0

...

ID

0.2.0.0

...

ID

0.2.2.0

...

Dname

0.3

...

Address

0.4

...

course

_taken

0.0.0.0

Name

0.0.0.1

“John”

Figure 4.1: Example XML data (with Dewey IDs)

Our Approach

In fact, in most real-life datasets, semantic information about real objects is either

explicitly presented or can be inferred without much effort. Therefore, we aim to utilize

the semantic information associated with XML data to build an object-level XML key-

word search framework, which manifests better result quality in term of result relevance

and query answering efficiency.

In particular, we first propose to model XML document as a set of object trees, where

each real world object o (with its associated attributes) is encapsulated in an object tree

whose root node is a representative node of o; two object trees are interconnected via a

containment or reference edge in XML data. E.g. The part enclosed by a dotted circle in

Figure 4.1 shows an object tree for Dept and Course.

Next, we propose our object-level matching semantics based on an analysis of user’s

search concern, namely ISO (Interested Single Object) and IRO (Interested Related Ob-

ject). ISO is defined to capture user’s concern on a single object that contains all key-

78

words, while IRO is defined to capture user’s concern on multiple objects. Compared to

previous works, our object-level matching semantics have two main advantages. First,

each object tree provides a more precise match with user’s search concern, so that mean-

ingless results (which even though contain all keywords) are filtered. Second, it captures

the reference edges missed in tree model, and meanwhile achieves better efficiency than

those solutions in digraph model by distinguishing the reference and containment edge

in XML.

Then we design a customized ranking scheme for ISO and IRO results. The ranking

function ISORank designed for ISO result not only considers the content of result by

extending the original TF*IDF [101] to object tree level, but also captures the keyword

co-occurrence and specificity of the matching elements. The IRORank designed for an

IRO result considers both its self similarity score and the “bonus” score contributed from

its interconnected objects. We design efficient algorithms and indices to dynamically

compute and rank the matched ISO results and IRO results in one phase. Finally, we

experimentally compare ISO and IRO algorithms to the best existing methods XSeek

[80] and XReal [16] with real and synthetic data sets. The results reveal that our approach

outperforms XReal by an order of magnitude in term of response time and is superior

to XSeek in term of recall ratio, well confirming the advantage of our novel semantics

and ranking strategies. A search engine prototype incorporating the above proposed

techniques is implemented, and a demo of the system on DBLP data is available at

http://xmldb.ddns.comp.nus.edu.sg [15].

Our contributions in this chapter are summarized as follows:

• We propose a novel data model for XML data with ID references considered,

namely interconnected object-tree model, to well capture user’s search concern

on real-world objects.

• We propose two major matching semantics based on this data model, to capture

79

user’s search concern on a single object of interest or multiple objects of interest

that are connected in a meaningful way and help find more relevant results.

• Efficient algorithms are proposed to find the matching results and an elaborate

object-level result ranking model is designed.

• Extensive experiments have been conducted to evaluate the efficiency and effec-

tiveness of our approach.

The rest of the chapter proceeds as follows. Section 4.2 presents our interconnected

object-tree data model. Section 4.3 presents two major matching semantics, Interested

Single Object tree (ISO) and Interested Related Object trees (IRO). Section 4.5 describes

the index construction. Section 4.4 presents our ranking schemes. Section 4.6 discusses

the search and ranking algorithms. Section 4.7 reports experiment results, and section

4.8 summarizes this chapter.

4.2 Data Model
Definition 4.1. (Object Tree) An object tree 1 t in D is a subtree of the XML document,

where its root node r is a representative node2 to denote a real world object o, and each

attribute of o is represented as a child node of r.

In an XML document D, a real-world object o is stored in form of a subtree due to

its hierarchical inherency. How to identify the object trees is orthogonal to this work;

here, we adopt the inference rules in XSeek [80] to help identify the object trees, as

clarified in Definition 4.1. As we can see from Figure 4.1, there are 7 object trees (3

Course, 3 Lecturer and 1 Dept), and the part enclosed by a dotted circle is an object

tree for Course:0.1.0 and Dept:0 respectively. Note that nodes Students, Courses

1Terms object tree and object are used interchangeably in the rest of this chapter.
2To facilitate our discussion in the rest of this chapter, we use the representative node to denote the

corresponding object tree.

80

and Lecturers of Dept:0 are connection nodes, which connect the object “Dept” and

multiple objects “Student” (“Course” and “Lecturer”).

Conceptual connection reflects the relationship among object trees, which is either a

reference-connection or containment-connection defined as below.

Although it is desirable to materialize all the precise relationships from XML data,

existing techniques are not able to do so. Fortunately, such relationships can be general-

ized into two meaningful structural relationships in XML data as below.

Definition 4.2. (Reference-connection) Two object trees u and v in an XML document

D have a reference-connection (or are reference-connected) if there is an ID reference

relationship between u and v in D.

Definition 4.3. (Containment-connection) Two object trees u and v in an XML docu-

ment D have a containment-connection if there is a P-C relationship between the root

node of u and v in D, regardless of the connection node.

Definition 4.4. (Interconnected object-trees model) models an XML document D as a

set of object trees, D=(T ,C), where T is a set of object trees in D, and C is a set of

conceptual connections between the object trees.

In contrast to the model in XSeek [80], ID references in XML data is considered in

our model to find more meaningful results. From Figure 4.1, we can find Dept:0 and

Course:0.1.0 are interconnected via a containment connection, and Lecturer:0.2.0 and

Course:0.1.2 are reference-connected.

4.3 Object-Level Matching Semantics

When a user issues a keyword query, his/her concern is either on a single object, or

a pair (or group) of objects connected via somehow meaningful relationships. There-

81

fore, we propose Interested Single Object (ISO) and Interested Related Object (IRO) to

capture the above types of user’s search concern.

4.3.1 ISO Matching Semantics

Definition 4.5. (ISO) Given a keyword query Q, an object tree o is the Interested Single

Object (ISO) of Q, if o covers all keywords in Q.

ISO can be viewed as an extension of LCA, which is designed to capture user’s

interest on a single object. E.g. for a query “database, management” issued on Figure

4.1, LCA returns two subtrees rooted at Title:0.1.1.1 and Courses:0.1, neither of which

is an object tree; while ISO returns an object tree rooted at Course:0.1.1.

4.3.2 IRO Matching Semantics

Consider a query “CS502, lecturer” issued on Figure 4.1. ISO cannot find any qual-

ified answer as there is no single object qualified while user’s search concern is on mul-

tiple objects. However, there is a Lecturer:0.2.0 called “Smith” who teaches Course

“CS502” (via a reference connection), which should be a relevant result. This motivates

us to design IRO (Interested Related Object).

Analysis of User’s Search Concern

The difficulty of keyword search is to capture the search intention, as two users may

issue the same query for different search intentions, or different queries for the same

intention. However, for a given query, the target that users search for (i.e. user’s search

concern) is usually fixed, which is either objects or relationships. Here, we use a pair of

objects (t1,t2) to analyze user’s search concerns, and such analysis can be easily extended

to a group of objects.

82

Case 1: User knows the relationship R between t1 and t2, and information of a particular

object (e.g. t1) ahead before they issue a query. What they intend to find is the detailed

information of t2 which relates to t1 via relationship R.

Case 1.1: There is a direct relationship R between t1 and t2.

Example 4.1. Query ”CS202, Lecturer” is issued on Figure 4.1. As user knows “CS202”

is the course and the precise relationship Teach (captured by reference edge between

Lecturer and Course), he intends to find the lecturer teaching “CS202”. 2

Case 1.2: A series of relationships R1,...,Rn connect t1 to t2 indirectly.

Example 4.2. Query “Smith, Prereq” is issued on Figure 4.1, intending to find the pre-

requisite of the course taught by Smith. The relationships between Lecturer “Smith”

and the result Course “CS202” are shown as below:

Lecturer “Smith”→(teach) Course “CS502” →(pre-requisite) Course “CS202” 2

Case 2: User knows the information of objects t1 and t2 beforehand, and wants to explore

whether any relationship R exists between t1 and t2.

Example 4.3. Query “Jones, CS202” is issued on Figure 4.1, which intends to find how

Lecturer “Jones” and Course “CS202” are connected. 2

IRO pair & IRO group

As a first step to define IRO pair and IRO group, we give a formal definition on the

connections among these multiple objects.

Definition 4.6. (n-hop-meaningful-connection) Two object trees u and v in an XML

document have a n-hop-meaningful-connection (or are n-hop-meaningfully-connected)

if there are n− 1 distinct intermediate object trees t1, ...tn−1, s.t.

1. there is either a reference connection or a containment connection between each

pair of adjacent objects;

83

2. no two objects are connected via a common-ancestor relationship.

Definition 4.7. (IRO pair) For a given keyword query Q, two object trees u and v form

an IRO pair w.r.t. Q if the following two properties hold:

1. Each of u and v covers some, and u and v together cover all keywords in Q.

2. u and v are n-hop-meaningfully-connected (within an upper limit L for the number

of intermediate hops n).

IRO pair is designed to capture user’s search concern on two objects that have a

direct or indirect conceptual connection. Intuitively, the larger the upper limit L is, more

results can be found, but the relevance of those results decay accordingly. Let us take an

example to understand the rational behind Definition 4.7.

Example 4.4. Consider a query Q “Smith, Database, Management” issued on Figure

4.1’s XML data. Object tree Lecturer:0.2.0 and Course:0.1.1 form an IRO pair, be-

cause they are connected by a 1-hop-meaningful-connection: Course:0.2.0 “Database

Management” is a prerequisite (i.e. label Prereq in Figure 4.1) of the Course:0.1.2 that

Lecturer:0.2.0 “Smith” teaches. 2

Besides a pair of object trees, a more general case is, a group of interconnected object

trees are involved to capture user’s search concern. Therefore, IRO group is introduced

to capture the relationships among three or more connected objects.

Definition 4.8. (IRO group) For a given keyword query Q, a group G of object trees

forms an IRO group if:

1. All the object trees in G collectively cover all keywords in Q.

2. There is an object tree h∈G (playing a role of hub) connecting all other object

trees in G by a n-hop-meaningful-connection (with an upper limit L′ for n).

3. Each object tree in G is compulsory in the sense that, the removal of any object

tree causes property (1) or (2) not to hold any more.

84

As an example, for query “Jones, Smith, Database” issued on Figure 4.1, four objects

Course:0.1.1, Course:0.1.2, Lecturer:0.2.0 and Lecturer:0.2.2 form an IRO group

(with L′ = 2), where both Course:0.1.1 and Course:0.1.2 can be the hub. The con-

nection is: Lecturer:0.2.2 “Jones” teaches Course:0.1.1, which is a pre-requisite of

a “Database” Course:0.1.2 taught by Lecturer:0.2.0 “Smith”.

In the rest of the chapter, we call an object involved in IRO semantics as the IRO

object. Note that, an ISO object o can form an IRO pair (or IRO group) with an IRO

object o′, but o is not double counted as an IRO object.

4.3.3 Separation of ISO & IRO Results Display

As ISO and IRO correspond to different user search concerns, we separate the results

of ISO and IRO in our online demo1 [15], which is convenient for user to quickly rec-

ognize which category of results meet their search concern, thus a lot of user efforts are

saved in result consumption.

4.4 Relevance Oriented Result Ranking

As another equally important part of this work, a relevance oriented ranking scheme

is designed. Since ISO and IRO reflect different user search concerns, customized rank-

ing functions are designed for ISO and IRO results respectively.

4.4.1 Ranking for ISO

In this section, we first outline the desired properties in ISO result ranking; then

we design the corresponding ranking factors; lastly we present the ISORank formula

which takes both the content and structure of the result into account.

Object-level TF*IOF similarity (ρ(o,Q)) Inspired by the extreme success of IR

style keyword search over flat documents, we extend the traditional TF*IDF (Term

1Note: in our previous demo, ISO was named as ICA, while IRO was named as IRA.

85

frequency*Inverse document frequency) similarity [101] to our object-level XML data

model, where flat document becomes the object tree. We call it as TF*IOF (Term fre-

quency*Inverse object frequency) similarity. Such extension is adoptable since the object

tree is an appropriate granularity for both query processing and result display in XML.

Since TF*IDF only takes the content of results into account, but cannot capture XML’s

hierarchical structure we enforce the structure information for ranking in the following

three factors.

F1. Weight of matching elements in object tree The elements directly nested in

an object may have different weights related to the object. So we provide an optional

weight factor for advanced user to specify, where the default weight is 1. Thus, the

TF*IOF similarity ρ(o,Q) of object o to query Q is:

ρ(o,Q) =

∑
∀k∈o∩Q WQ,k ∗Wo,k

WQ ∗Wo

(4.1)

The detailed expansion of WQ,k and Wo,k is as below.

WQ,k = N
1+fk

Wo,k =
∑

∀e∈attr(o,k) tfe,k ∗We

In Equation 4.1, k∈o∩Q means keyword k appears in both o and Q. WQ,k represents

the weight of keyword k in query Q, playing a role of inverse object frequency (IOF);

N is the total number of objects in xml document, and fk is the number of objects

containing k. Wo,k represents the weight of k in object o, counting the term frequency

(TF) of k in o. attr(o, k) denotes a set of attributes of o that directly contain k; tfe,k

represents the frequency of k in attribute e, and We is the adjustable weight of matching

element e in o, whose value is no less than 1, and We is set to 1 for all the experiments

conducted in section 4.7.

Normalization factor of TF*IOF should be designed in the way that: on one hand

the relevance of an object tree o containing the query-relevant child nodes should not

86

be affected too much by other query-irrelevant child nodes; on the other hand, it should

not favor the object tree of large size (as the larger the size of the object tree is, the

larger chance that it contains more keywords). Therefore, in order to achieve such goals,

two normalization factors Wo and WQ are designed: Wo is set as the number of query-

relevant child nodes of object o, i.e. |attr(o, k)|, and WQ is set to be proportional to the

size of Q, i.e. |Q|.

F2. Keyword co-occurrence (c(o,Q)) Intuitively, the less number of elements (nested

in an object tree o) containing all keywords in Q is, o is likely to be more relevant, as

keywords co-occur more closely. For example, when finding papers in DBLP by a query

“XML, database”, a paper whose title contains all keywords should be ranked higher

than another paper in “database” conference with title “XML”.

Based on the above intuition, we present c(o,Q) in Equation 4.2 (denominator part),

which is modeled as inversely proportional to the minimal number of attributes that are

nested in o and together contain all keywords in Q. Since this metric favors the single-

keyword query, we put the number of query keywords (i.e. |Q| in nominator part) as a

normalization factor.

c(o,Q) =
|Q|

min(|{E|E = attrSet(o) and (∀k ∈ Q, ∃e ∈ E s.t. e.contain(k))}|) (4.2)

F3. Specificity of matching elements (s(o, Q)) An attribute a of an object is fully

(perfectly) specified by a keyword query Q if a only contains the keywords in Q (no

matter whether all keywords are covered or not). Intuitively, an object o with such fully

specified attributes should be ranked higher; and the larger the number of such attribute

is, the higher rank o is given.

Example 4.5. When searching for a person by a query “David, Lee”, a person p1 with

the exact name should be ranked higher than a person p2 named “David Lee Ming”, as

87

p1’s name fully specifies the keywords in query, while p2 does not. 2

Thus, we model the specificity by measuring the number of elements in the object

tree that fully specify all query keywords, namely s(o,Q).

Note that s(o,Q) is similar to TF*IDF at attribute level. However, we enforce the im-

portance of full-specificity by modeling it as a boolean function; thus partial specificity

is not considered, while it is considered in original TF*IDF.

So far, we have exploited both the structure (i.e. factors F1,F2,F3) and content

(TF*IOF similarity) of an object tree o for our ranking design. Since there is no ob-

vious comparability between structure score and content score, we use product instead

of summation to combine them. Finally, the ISORank(o,Q) is:

ISORank(o,Q) = ρ(o, Q) ∗ (c(o,Q) + s(o, Q)) (4.3)

4.4.2 Ranking for IRO

IRO semantics is useful to find a pair or group of objects conceptually connected. As

an IRO object does not contain all keywords, the relevance of an IRO object o, namely

IRORank, should consist of two parts: its self TF*IOF similarity score, and the bonus

score contributed from its IRO counterparts (i.e. the objects that form IRO pair/group

with o). The overall formula is:

IRORank(o,Q) = ρ(o,Q) + Bonus(o,Q) (4.4)

where ρ(o,Q) is the TF*IOF similarity of object o to Q (Equation 4.1). The reason we

do not use ISORank as the choice of the similarity of o is, both c(o,Q) and s(o,Q)

in Formula 4.3 is 0, because o does not contain all keywords. Bonus(o,Q) is the extra

contribution to o from all its IRO pair/group’s counterparts for Q, which can be used as a

relative relevance metric for IRO objects to Q, especially when they have a comparable

TF*IOF similarity value. Regarding the design of Bonus score to an IRO object o for

88

Q, we present three guidelines first.

Guideline 1: IRO Connection Count. Intuitively, the more the IRO pair/group that

connect with an IRO object o is, the more likely that o is relevant to Q; and the closer the

connections to o are, the more relevant o is. 2

For example, consider a query “interest, painting, sculpture” issued on XMark [3].

Suppose two persons Alice and Bob have interest in “painting”; Alice has conceptual

connections to many persons about “sculpture” (indicated by attending the same auc-

tion), while Bob has connections to only a few of such auctions. Thus, Alice is most

likely to be more relevant to the query than Bob.

Guideline 2: Distinction of different matching semantics. The IRO connection count

contributed from the IRO objects under different matching semantics should be distin-

guished from each other. 2

Since IRO pair reflects a tighter relationship than IRO group, thus for a certain IRO

object o, the connection count from its IRO pair’s counterpart should have a larger im-

portance than that from its IRO group’s counterpart.

Example 4.6. Consider a query “XML, twig, query, processing” issued on DBLP. Sup-

pose a paper p0 contains “XML” and “twig”; p1 contains “query” and “processing”

and is cited by p0; p2 contains the same keywords as p1; p3 contains no keyword, but

cites p0 and p2; p4 contains “query” and p5 contains “processing”, and both cite p0. By

Definition 4.7-4.8, p1 forms an IRO pair with p0; p2, p3 and p0 form an IRO group; p0,

p4 and p5 form an IRO group. Therefore, in computing the rank of p0, the influence from

p1 should be greater than that of p2 and p3, and further greater than p4 and p5. 2

According to the above two guidelines, the Bonus score to an IRO object o is pre-

sented in Equation 4.5. Bonus(o,Q) consists of the weighted connection counts from its

IRO pair and group respectively, which manifests Guideline 1. w1 and w2 are designed

to reflect the weights of the counterparts of o’s IRO pair and group respectively, where

89

w1>w2, which manifests Guideline 2.

Bonus(o,Q) = w1 ∗BSIRO P (o, Q) + w2 ∗BSIRO G(o,Q) (4.5)

Guideline 3: Distinction of different connected object types. The connection count

coming from different conceptually related objects (under each matching semantics)

should be distinguished from each other. 2

Example 4.7. Consider a query Q “XML, query, processing” issued on DBLP. The

bonus score to a “query processing” paper from a related “XML” conference inpro-

ceedings should be distinguished from the bonus score coming from a related book

whose title contains “XML”, regardless of the self-similarity difference of this inpro-

ceedings and book. 2

Although the distinction of contributions from different object types under a certain

matching semantics helps distinguish the IRORank of an IRO object, it is preferable

that we can distinguish the precise connection types to o to achieve a more exact Bonus

score. However, it depends on a deeper analysis of the relationships among objects and

more manual efforts. Therefore, in this work we only enforce Guideline 1 and Guideline

2. As a result, the IRO bonus from the counterparts of o’s IRO pair and IRO group is

presented in Equation 4.6-4.7:

BSIRO P (o,Q) =
∑

∀o′|(o,o′)∈IROPair(Q,L)

ρ(o′, Q) (4.6)

BSIRO G(o,Q) =

∑
∀g∈IROGroup(Q,L′)|o∈g BF (o,Q, g)

|IRO Group(o,Q)| (4.7)

In Equation 4.6, ρ(o′, Q) is the TF*IOF similarity of o′ w.r.t. Q, which is adopted as

the contribution from o′ to o. Such adoption is based on the intuition that, if an object

tree o1 connects to o′1 s.t. o′1 is closely relevant to Q, whereas object tree o2 connects to

o′2 which is not as closely relevant to Q as o′1, then it is likely that o1 is more relevant to

Q than o2. In Equation 4.7, BF (o, Q, g) can be set as the self similarity of the object in g

90

containing the most number of keywords. As it is infeasible to design a one-fit-all bonus

function, other alternatives may be adopted according to different application needs. L

(in Equation 4.6) and L′ (in Equation 4.7) is the upper limit of n in definition of IRO pair

and IRO group.

4.5 Index Construction

As we model the XML document as the interconnected object-trees, the first index

built is the keyword inverted list. An object tree o is in the corresponding list of a keyword

k if o contains K. Each element in the list is in form of a tuple (Oid, DL, wo,k), where

Oid is the id of the object tree containing k (here we use the dewey label of the root node

of object tree o as its oid, as it serves the purpose of unique identification); DL is a list of

pairs containing the dewey labels of the exact locations of k and the associated attribute

name; wo,k is the term frequency in o (see Equation 4.1). c(o,Q) (in Equation 4.2) can

be computed by investigating the list DL; s(o,Q) is omitted in index building, algorithm

design and experimental study later due to the high complexity to collect. Therefore, the

ISORank of an object tree can be efficiently computed. A B+ tree is built on top of

each inverted list to facilitate fast probing of an object in the list.

The ISORank of an object tree can be efficiently computed, as TF Wo,k and IOF

WQ,k are pre-computed in index building, and the keyword co-occurrence c(o,Q) (in

Equation 4.2) of the matching elements can be easily derived from the keyword inverted

lists.

Without loss of generality, we assume there is only one object class and one inverted

list for each keyword in the following since the keyword query processing of multiple

interested object class can be performed independently.

The second index built is connection table CT , where for each object c, it maintains

a list of objects that have direct conceptual connection to c in document order. B+ tree

91

is built on top of object id for efficient probes. Since it is similar to the adjacency list

representation of graph, the task of finding the n-hop-meaningfully-connected objects of

c (with an upper limit L for connection chain length) can be achieved through a depth

limited (to L) search from c in CT . The worst case size is O(|id|2) if no restriction is

enforced on L, where |id| is number of object trees in database. However, we argue that

in practice the size is much smaller as an object may not connect to every other object in

database.

4.6 Algorithms

The backbone workflow compute and rank the ISO and IRO results is in Algorithm

4.1. Its main idea is to scan the shortest keyword inverted list ILs, check the objects

in the list and their connected objects, then compute and rank the ISO and IRO results.

The details are: for each object tree o in ILs, we find the keywords contained in o by

calling function getKeywords()(line 5). If o contains all query keywords, then o is

an ISO object, and we compute the ISORank for o by calling initRank(), then store

o together with its rank into hash table HT (line 6-7). If o contains some keywords,

then o is an IRO object, and all its IRO pairs and groups are found by calling functions

getIROPairs() (Algorithm 4.2) and getIROGroups (Algorithm 4.3) (line 8-10). The

results for ISO and IRO are inserted into RL for output(line 11).

Function computeRank() computes/updates the ranks of objects o′ in oList, each

forming an IRO pair with o. For each such o′, it probes all inverted lists with o′ to check

two cases: (1)If o′ is an ISO object containing all query keywords, then its ISORank is

computed and it is added into ISO Result (line 3-4). (2)If both o and o′ are IRO objects,

their TF*IOF similarity are initialized (if not yet), and their IRORanks are updated

accordingly (line 5-9). Function initRank() computes its ISORank by Equation 4.3 if

o is an ISO object; otherwise computes its TF*IOF similarity by Equation 4.1.

92

Algorithm 4.1: KWSearch
Input: Keywords: KW [m]; Keyword Inverted List: IL[m]; Connection Table: CT ;

upper limit: L, L′ for IRO pair and group
Output: Ranked object list: RL

1 let RL = ISO Result = IRO Result = {};
2 let HT be a hash table from object to its rank;
3 let ILs be the shortest inverted list in IL[m];
4 for each object o ∈ ILs do
5 let Ko = getKeywords(IL, o);
6 if (Ko == KW) /* o is an ISO object */
7 initRank(o,Ko,KW ,HT); ISO Result.add(o);
8 else if (Ko 6= ∅)
9 IRO Pair = getIROPairs(IL, o, o, CT, L) /* Algorithm 2 */
9 IRO Group = getIROGroups(IL, o, o, CT, L′,Ko) /* Algorithm 3 */

10 RL = ISO Result ∪ IRO Pair ∪ IRO Group;
Function initRank(o, Ko,KW,HT)
1 if (o not in HT)
2 HT.put(o.id, computeISORank(o,Q,KW));

Function computeRank(o, oList)
1 foreach object o′ ∈ oList
2 Ko′ = getKeywords(IL, o′) ;
3 if (Ko′ == KW) /* o′ is an ISO object */
4 initRank(o′,Ko,KW ,HT); ISO Result.add(o′);
5 else if(Ko′ 6= ∅ AND (Ko′ ∪Ko == KW)) /* o′ is IRO object */
6 initRank(o′,K ′

o,KW ,HT);
7 IRO Pair.add(o,o′);
8 initRank(o,Ko,KW ,HT); /* o is an IRO object also */
9 updateIRORank(o, o′,oList, HT);

Function updateIRORank (o, o′, oList, HT)
1 update the IRORank of o based on Equation 4.5−4.7;
2 put the updated (o, IRORank) into HT ;

Algorithm 4.2: getIROPairs (IL[m], src, o, CT , L)

/* find all counterparts of o captured by IRO pair */

1 if L == 0 then return ;

2 let oList = getConnectedList(o,CT) ;

3 computeRank(o, oList) ;

4 let ancList = getParent(o) ;

5 computeRank(o, ancList) ;

6 let desList = getChildren(o) ;

7 computeRank(o, desList(o)) ;

8 L = L - 1 ;

9 foreach o′ ∈ (oList ∪ ancList ∪ desList) s.t. o′ is not IRO object yet

10 getIROPairs(IL, src, o′, CT, L) ;

93

Algorithm 4.2 shows how to find all objects that form IRO pair with an IRO object

src. It works in a recursive way, where input o is the current object visited, whose initial

value is src. Since two objects are connected via either a reference or containment

connection, line 2-3 deal with the counterparts of o via reference connection by calling

getConnectedList(); line 4-7 deal with containment connection. Then it recursively

finds such counterparts connecting to src indirectly in a depth limited search(line 8-10).

getIROGroups() in Algorithm 4.3 works in a similar way.

Algorithm 4.3: getIROGroups (IL[m], o, CT , L′, Ko)

/* find all counterparts of o captured by IRO group */

1 let KS = ∅; count = 0;

2 cList = getConnectedList(o, CT, L′);

3 for n= 1 to L′ do

4 foreach o′ ∈ cList do

5 KS = getKeywords(IL, o′) ∪KS;

6 if (KS⊂KW) then

7 count++; continue;

8 elseif (count>2) then

9 initialize group g containing such o and o′;

10 IRO Group.add(o,g);

The time complexity of KWSearch algorithm is composed of three parts: (1) the

cost of finding all IRO pairs is:
∑

o∈Ls

∑L
i=1 |cListi(o)| ∗

∑k
j=1 log |Lj|, where Ls, o,

|cListi(o)|, k and |Lj| represent the shortest inverted list of query keywords, an object ID

in Ls, length of the list of objects forming an IRO pair with o with chain length = i (lim-

ited to L), the number of query keywords, and the length of the jth keyword’s inverted list

respectively. (2) the cost of finding all IRO groups is:
∑

o∈Ls

∑L′
i=1 |QL′ |∗

∑k
j=1 log |Lj|),

where the meaning of each parameter is same as part (1), and |QL′| denotes the maximal

94

number of object trees reached from o by depth limited search with chain length limit to

L′. (3) the cost of finding all ISO objects is: O(
∑

o∈Ls

∑k−1
j=1 log |Lj|). The formation

of each cost can be easily derived by tracing Algorithm 4.1-4.3. The overall complexity

of KWSearch algorithm is
∑

o∈Ls

∑L
i=1(|cListi(o)| + |QL|) ∗

∑k
j=1 log |Lj|, assuming

L > L′.

4.7 Experimental Evaluation

Experiments run on a PC with Core2Duo 2.33GHz CPU and 3GB memory, and all

codes are implemented in Java. Both real dataset DBLP(420 MB) and synthetic dataset

XMark(115 MB) [3] are used in experiments. The inverted lists and connection table are

created and stored in the disk with Berkeley DB [1] B+ trees, a summary of indices built

is shown in Table 4.1. An online demo [15] of our system on DBLP, namely ICRA, is

available at http://xmldb.ddns.comp.nus.edu.sg.

Table 4.1: A summary of Indices
Data File size Keyword inverted lists Connection table

creation time size creation time size
DBLP 420MB 783 sec 214MB 94 sec 1.91MB
XMark 114MB 315 sec 141MB 270 sec 13.8MB

Table 4.2: Recall Comparison
Data SLCA XSeek XReal ISO ISO+IRO

DBLP 75% 82.5% 84.1% 84.1% 90.5%
XMark 55.6% 63.8% 60.4% 62.2% 80.7%

95

4.7.1 Effectiveness of ISO and IRO Matching Semantics

In order to evaluate the quality of our proposed ISO and IRO semantics, we investi-

gate the overall recall of ISO, ISO+IRO3 with XSeek [80], XReal [16] and SLCA [118]

on both DBLP and XMark. 20 queries are randomly generated for each dataset, and the

result relevance is judged by five researchers in our database group. From the average

recall shown in Table 4.2, we find: (1) ISO performs as well as XReal and XSeek, and

is much better than SLCA. It is consistent with our conjecture that the search target of

a user query is usually an object of interest, because the concept of object indeed is im-

plicitly considered in the design of ISO, XReal and XSeek. (2) ISO+IRO has a higher

recall than ISO alone, especially for queries on XMark, as there are more ID references

in XMark that bring more relevant IRO results. In general, IRO semantics do help find

more user-desired results while the other semantics designed for tree data model cannot.

4.7.2 Efficiency & Scalability Test

Next, we compare the efficiency of our approach with SLCA and XReal [16] in tree

model, and Bidirectional expansion [65] (Bidir for short) in digraph model. For each

dataset, 40 random queries whose lengths vary from 2 to 5 words are generated, with 10

queries for each query size. The upper limit of connection chain length is set to 2 for

IRO pair and 1 for IRO group, and accordingly we modify Bidir to not expand to a node

of more than 2-hops away from a keyword node for a fair comparison. Besides, since

Bidir searches as small portion of a graph as possible and generates the result during

expansion, we only measure its time to find the first 30 results. The average response

time on cold cache and the number of results returned by each approach are recorded in

Figure 4.2 and 4.3.

3ISO+IRO represents a result set, each of which is a matching result under either ISO semantics or
IRO semantics.

96

101

102

103

104

105

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

 (
Lo

g-
sc

al
ed

)

Number of keywords

SLCA
ISO

IRO pair
IRO group
ISO+IRO

Bidir first-30
XReal

(a) Execution time

 0

 20

 40

 60

 80

 100

 120

 140

2 3 4 5

A
ve

ra
ge

 R
es

ul
t N

um
be

r

Number of keywords

SLCA
ISO

IRO pair
IRO group
ISO+IRO

XReal

(b) Total result number

Figure 4.2: Efficiency and scalability tests on DBLP

The log-scaled response time on DBLP is shown in Figure 4.2(a), and we find: (1)

Both SLCA and ISO+IRO are about one order of magnitude faster than XReal and Bidir

for queries of all sizes. SLCA is twice faster than ISO+IRO, but considering the fact that

ISO+IRO captures much more relevant results than SLCA (as evident from Table 4.2),

such extra cost is worthwhile and ignorable. (2) ISO+IRO scales as well as SLCA w.r.t

the number of query keywords, and ISO alone even has a better scalability than SLCA.

(3) Bidir approach (where we only count the response time of getting the first-30

results) has the least efficiency.

The reasons is threefold: First, at each expansion, Bidir needs to find the best node to ex-

pand among all expandable nodes in order to quickly find the next result. Second, when

Bidir computes or updates the goodness score of a node, it has to recursively propagate

the goodness to all neighbors to improve their goodness until no nodes’ goodness can be

improved. Third, Bidir involves the floating point numbers in computing and comparing

the goodness of expandable nodes.

From Figure 4.2(b), we find the result number of ISO is a bit smaller than that

of SLCA, as ISO defines qualified result on (more restrictive) object level. Besides,

ISO+IRO finds more results than SLCA and XReal, because many results that are con-

97

nected by ID references can be identified by IRO.

101

102

103

104

105

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

 (
Lo

g-
sc

al
ed

)

Number of keywords

SLCA
ISO

IRO pair
IRO group
ISO+IRO

Bidir first-30
XReal

(a) Execution time

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 3 4 5

A
ve

ra
ge

 R
es

ul
t N

um
be

r

Number of keywords

SLCA
ISO

IRO pair
IRO group
ISO+IRO

XReal

(b) Total result number

Figure 4.3: Efficiency and scalability tests on XMark

The efficiency result of each approach on XMark is shown in Figure 4.3, which is

similar to that on DBLP; thus we ignore the detailed discussion. One observation worth

notifying is that, the result number increases when number of keywords increases from

2 to 4 and then drops for IRO group. It is because the 40 random queries we choose for

each keyword number differ with each other, and in average the 40 queries of 4 keywords

have more matching groups of object trees that are meaningfully connected by IDRefs

than other batches of query by coincidence.

4.7.3 Effectiveness of the Ranking Schemes

To evaluate the effectiveness of our ranking scheme on ISO and IRO results, we use

two widely adopted metrics in IR: (1) Reciprocal rank (R-rank), which is 1 divided by

the rank at which the first relevant result is returned. (2) Mean Average Precision (MAP).

A precision is computed after each relevant one is identified when checking the ranked

query results, and MAP is the average value of such precisions. R-Rank measures how

good a search engine returns the first relevant result, while MAP measures the overall

effectiveness for top-k results. A perfect ranking strategy should have a value of 1 for

both R-rank and MAP.

98

Here, we compute the R-rank and MAP for top-30 results returned by ISO, IRO

and XReal, by issuing the same 20 random queries as describe in section 4.7.1 for each

dataset. Specificity factor s(o,Q) is ignored in computing ISORank; in computing the

IRORank, w1 = 1 and w2 = 0.7 are chosen as the weights in Equation 4.5. The result is

shown in Table 4.3. As ISO and XReal do not take into account the reference connection

in XML data, it is fair to compare ISO with XReal. We find ISO is as good as XReal in

term of both R-rank and MAP, and even better on DBLP’s testing. The ranking strategy

for IRO result also works very well, whose average R-rank is over 0.88.

Table 4.3: Ranking Performance Comparison
Data R-rank MAP

XReal ISO IRO XReal ISO IRO
DBLP 0.872 0.877 0.883 0.864 0.865 0.623
XMark 0.751 0.751 0.900 0.708 0.706 0.705

Besides the random queries, we choose 7 typical sample queries as shown in Ta-

ble 4.4, which contain various search needs: Q1 intends to search for publications co-

authored by two authors; Q2-Q4 intends to search for publications on a certain topic by

a certain author; Q5 intends to search for publications of a particular author on a certain

conference; Q6-Q7 search for publications about a certain topic.

Table 4.4: Sample queries on DBLP
id Query
Q1 David Giora
Q2 Dan Suciu semistructured
Q3 Jennifer Widom OLAP
Q4 Jim Gray transaction
Q5 VLDB Jim Gray
Q6 conceptual design relational database
Q7 join optimization parallel distributed environment

In particular, we compare our system [15] with some academic search engines such

as Bidir in digraph model [65], XKSearch employing SLCA [118] in tree model, with

99

commercial search engines, i.e. Google Scholar and Libra4. Since both Scholar and

Libra can utilize abundant of web data to find more results than ours whose data source

only comes from DBLP, it is infeasible and unfair to compare the total number of relevant

results. Therefore, we only measure the number of top-k relevant results, where k=10,

20 and 30. Table 4.5: sample query result number
Query ISO result IRO Result

Q1 16 42
Q2 14 58
Q3 1 56
Q4 14 230
Q5 8 1238
Q6 3 739
Q7 0 93

Since our system separates ISO results and IRO results (as mentioned in section

4.3.3), top-k results are collected in the way that, all ISO results are ordered before the

IRO results. The total number of ISO results and IRO results are shown in Table 4.5, and

the comparison for the top-30 results is shown in Figure 4.4.

First, we compare ISO+IRO with Bidir and XKSearch. For queries that have both

ISO and IRO results (e.g. Q1-Q6), our approach can find more relevant results, and rank

them in most of the top-30 results. E.g. for Q5, Bidir does not work well, because it

treats two authors coauthored in one paper, and one author writes a VLDB paper, as a

result; however, our approach puts citation relationship between papers as an important

matching condition. Note that, there is no ISO result for Q7, XKSearch also returns

nothing; but 26 IRO results are actually relevant.

Second, we compare ISO+IRO with Libra and Scholar. From Figure 4.4, we find

our approach is comparable with Scholar and Libra for all sample queries. In particular,

ISO+IRO is able to rank the most relevant ones in top-10 results for most queries, be-

cause its top-10 precision is nearly 100% for most queries, as evident in Figure 4.4(a). In

4Google Scholar: http://scholar.google.com. Microsoft Libra: http://libra.msra.cn

100

 0

 2

 4

 6

 8

 10

 12

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Bidir
XKSearch

Scholar
Libra

ISO+IRO

(a) Top-10 Results

 0

 5

 10

 15

 20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Bidir
XKSearch

Scholar
Libra

ISO+IRO

(b) Top-20 Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Bidir
XKSearch

Scholar
Libra

ISO+IRO

(c) Top-30 Results

Figure 4.4: Result quality comparison

addition, as Libra only supports keyword conjunction (similar to our ISO semantics), it

does not work well for Q3 and Q7, as there is only 1 and 0 result containing all keywords

for Q3 and Q7. As shown in Figure 4.4(a), Scholar only finds 3 relevant results for Q5 in

its top-10 answers, probably because keywords “Jim” and “Gray” appear in many web

pages causes many results that don’t contain “VLDB” to still have a high rank, which

is undesired. Moreover, due to information loss of citation and content of publication in

DBLP data file, it may cause some relevant result not to be found by ISO+IRO. Scholar

may find such results due to its power to search the whole web information. E.g. the

101

top-30 relevant result for Q4 by ISO+IRO is smaller than that by Scholar.

Thirdly, as shown in Figure 4.4, the average recall for each query generated by our

ISO+IRO is above 80% at each of the three top-k levels, which confirms its advantage

over any other approach.

4.8 Summary
In this chapter, we have built a preliminary framework for object-level keyword

search over XML data, by taking into account the ID references missed in tree data

model. In particular, based on the semantic information about the objects of interest

available to us, we model XML data as the interconnected object-trees, where each

object-tree is in form of a subtree representing a single object of interest. Then, based

on this model, we propose two object-level matching semantics that are close to user’s

search concern, namely ISO (Interested Single Object) and IRO (Interested Related Ob-

ject). ISO is to capture user’s search concern on a single object-tree, while IRO is to

capture user’s search concern on multiple object-trees which are connected by either

containment or reference edge in somehow related way. A customized ranking scheme

is proposed by taking both the structure and content of the results into account. Efficient

algorithms are designed to compute and rank the query results in one phase, and exten-

sive experiments have been conducted to show the effectiveness and efficiency of our

approach. As a future work, we would like to investigate how to distinguish the relation-

ship types among objects and utilize them to define more precise matching semantics.

Although our approach targets at keyword query processing over XML data with

IDRef edges, it can nonetheless be easily adapted to processing XML data tree (without

taking IDRef into consideration), to solve the problem in chapter 3. The difference is,

solutions proposed in chapter 3 can work without knowing the semantic information,

while solutions here works assuming the semantic information is known.

CHAPTER 5

CONTENT-AWARE QUERY

REFINEMENT IN XML KEYWORD

SEARCH

5.1 Introduction

Chapter 3 and 4 focus on how to find relevant and meaningful data fragments in XML

data without and with IDRef edges being considered respectively to answer a keyword

query, assuming each query keyword is correct and intended as part of it. However,

user queries may contain irrelevant or mismatched terms, typos etc, which may easily

lead to empty or meaningless results. As reported by [103], web search users have to

reformulate their queries at least once 40% to 52% of the time in order to find their

desired results, and 10-15% of the queries sent to search engines contain spelling errors.

Similarly, keyword search over XML data suffers from the same problems, which draws

102

103

our attention to the problem of query refinement in the context of XML keyword search.
bib
0

Mike

Edward

author
0.0

name
0.0.0

title

Base line of

XML key

0.0.1.0.0
year

2002

0.0.1.0.1

0.0.1.0.1.0

inproceedings
0.0.1.0

inproceedings
0.0.1.1

title

online

database

service

0.0.1.1.0 0.0.1.1.1
year

2003
0.0.1.1.1.0

author
0.1

publications
0.1.1

inproceedings
0.1.1.0

title
0.1.1.0.0

Keyword

search on

XML data

year
0.1.1.0.1

2000
0.1.1.0.1.0

article
0.1.1.1

title
0.1.1.1.0

2001
0.1.1.1.1.0

year
0.1.1.1.1

article
0.1.1.2

title
0.1.1.2.0

Write

news on

XML

2002
0.1.1.2.1.0

year
0.1.1.2.1

title

Information
Retrieval

0.0.1.2.0

0.0.1.2.0.0

0.0.1.2.1
year

2003
0.0.1.2.1.0

0.0.1.0.0.0

0.1.1.1.0.0
0.1.1.0.0.0

0.0.0.0

hobby
0.02

publications
0.0.1

inproceedings

name
0.1.0

John Hopkins
0.1.0.0

0.0.1.2

read newspaper
0.0.2.0

00.1.1.2.0.0.0.1.1.0.0

Data
Model for
word

processing

hobby
0.1.2

paper folding
0.1.2.0

by machine
learning

Figure 5.1: Example XML document

A user query may often be an imperfect description of their real information need,

which may easily cause an empty matching result or wrong result. Even when the in-

formation need is well described, a search engine may not be able to return the results

matching the query as expected possibly due to term mismatch, keyword ambiguity or

unintentional spelling error etc, as shown in Example 5.1.

Example 5.1. Consider Q3={keyword, paper} in Table 5.1 issued on a bibliographic

XML document in Figure 5.1 (where both the tags and their content nodes are labeled

using dewey labeling scheme [105]), intending to find “papers” about “keyword”. By

SLCA, the whole XML tree rooted at bib:0 is returned (as lca(0.0.2.0, 0.1.1.0.0.0)= 0)

due to the occurrence of the ambiguous “paper” at node 0.0.2.0, which contains “paper

folding” as a hobby of an author. However, such result is meaningless and irrelevant

to user’s search intention; moreover, the result is the is overwhelmingly large (i.e. the

whole document) for user to consume. RQ3={keyword, inproceedings} is a potential

refinement of Q3, as inproceedings is a synonym of paper in this context. 2

Besides the above scenarios that necessitate the query refinement, another frequently

104

encountered scenario in XML keyword search is, a user query may be too restrictive

to have a meaningful matching result. E.g. consider Q4={XML, John, 2003} in Table

5.1 issued on Figure 5.1, intending to find John’s publication about XML in year 2003.

However, the only result covering all the keywords is the root node of XML data, which

is meaningless to the user. A possible refinement is to delete “2003” from the original

query.

Table 5.1: Query before and after refinement
Initial query Suggested Refined query

Q1: IR, 2003, Mike RQ1: Information Retrieval, 2003, Mike
Q2: Mike, publication RQ2: Mike, publications
Q3: keyword, paper RQ3: keyword, inproceedings

Q4: XML, John, 2003 RQ4: XML, John
Q5: mechin, learn RQ5: machine, learning

Q6: hobby, news, paper RQ6: hobby, newspaper
Q7: on, line, data, base RQ7: online, database

In the scenario of web search, there are often a large number of documents to (par-

tially) match query keywords, and query refinement is carried out to make the query

result more specific. In contrast, XML keyword search focuses on finding only few

meaningful and relevant fragments of an XML document, and a conjunctive search se-

mantics is enforced which may easily lead to nonsensical or empty result. Therefore,

in this chapter we focus on a particular direction - the initial query has no meaningful

matching result over XML data, and needs to be refined to a closely related query that

has meaningful matching results.

Now, the question becomes whether we can offer a solution during search, which

peruses the content of XML data being queried and refines the queries that have no

(meaningful) matching result, in order to better represent users’ search needs and help

users more easily find the relevant information, without an initial result retrieval or any

intervention on user part. This is called XML keyword query refinement as addressed in

105

this work. In particular, there are four critical issues to be addressed.

Issue 1: It should be able to adaptively and judiciously decide whether the initial query

Q needs to be refined during the processing of Q.

Issue 2: It should find a list of refined query (RQ) candidates, where each RQ candidate

is aware of the contents of the corresponding query answers and assured to have mean-

ingful matching results over the XML data.

Issue 3: Effectiveness - It should be able to provide a query ranking model that closely

relates the refined query to the XML data being queried in evaluating the quality of the

RQ candidates found in Issue 2.

Issue 4: Efficiency - In addressing the above three issues especially Issue 2, it should be

able to scan the corresponding keyword inverted lists as few times as possible (optimally

only once).

In resolving Issues 1 and 2, there are three challenges. The first challenge is to define

what a meaningful query result should be for an XML keyword query, as it will be

used to judge whether a query needs to be refined. Compared to the traditional IR-style

keyword search whose search target is usually the flat documents, the search target of

an XML keyword query is usually implicit or unknown [16], which makes the problem

more difficult to solve. The second challenge is, it cannot decide in advance whether

query refinement is required or not before processing the initial query. A brute force

approach needs to submit a query for an initial result retrieval, before deciding whether

the refinement should be used [64]. However, it is a prohibitively expensive operation

to answer one query by evaluating several potential RQs one at a time, as it has to scan

the related keyword inverted lists multiple times, which defeats the primary efficiency

goal as requested in Issue 4. The third challenge is how to generate appropriate RQ

candidates in term of the closeness to user search intention.

Regarding Issue 3, no previous work has touched on building an intuitive query rank-

106

ing model to evaluate the quality of a refined query in XML keyword search yet. E.g.

consider a query Q={database,publication} issued on Figure 5.1, at least two candidates

RQ1 = {database,article} and RQ2 = {database,inproceedings} seem to be of equal rank

as both are the synonym of “publication”, but to know which one has the best match w.r.t

Q needs further exploration of the content of XML data being queried.

At first glance people may think there is no big difference for query refinement be-

tween web search and XML search, and consider extending the methods for web search

to XML. But when one actually attempts to implement such extension, one is faced with

myriad options and difficult decisions every step of the way, because of the following

three reasons.

1. In web search, result is usually computed in an IR style by adopting a scoring

model to judge the similarity between the query and result; while in XML search

a strictly conjunctive search semantics and tree structure-preserved result form

(which enforces each query keyword to appear in a subtree) are widely adopted.

2. The search target is usually unknown or implicit in an XML keyword query.

Despite the limitations of existing IR methods in addressing Issues 1-3, a unique

challenge for XML keyword search that limits the extension of the above IR meth-

ods is: compared to web search whose search target are flat documents, an XML

keyword search engine needs to identify the target node in XML data (for a key-

word query), which is usually implicit and unfixed [16], and it is becoming even

more challenging for queries that have no matching result and need to be refined.

For example, without figuring out the search target of a query, there seems no way

to judge whether a RQ has a meaningful matching result as mentioned in Issue 2,

such as Q4 in Example 5.1. Moreover, it prevents us from extending the machine

learning methods (in web search context) to predict high-quality RQs in XML

context; and how to incorporate the semi-structured nature of XML in building

107

such extension remains an open problem.

3. Most previous works designed for web search improve the search relevance by

machine learning from a large set of users’ search log data [63, 114, 50]. How-

ever, a lack of such widely-used commercial XML keyword search engine (with

abundant user search activities) prevents us from acquiring a thesaurus of user log

data for model training.

Therefore, query refinement in XML keyword search is not just a trivial extension of

its counterpart in web search, which motivates us to start this work.

5.1.1 Our Approach

In a nutshell, towards building an automatic query refinement framework that ad-

dresses Issues 1-4 as a whole, we novelly integrate the job of looking for the desired

RQs and finding the matching results of such RQs as a single problem, namely as the

content-aware solution. Basically, we achieve such content-aware feature in two ways:

(1) the RQ candidates are materialized during the procedure of finding the matching re-

sults of original query rather than before processing the original query, so that we can

ensure each RQ candidate found so far has non-empty matching result. (2) We keep

track of a set of RQ candidates and their up-to-date results on the fly, during traversing

the related inverted lists for keywords that belong to either initial query Q and its RQ

candidates. An immediate benefit of this integration is that user’s search experience is

significantly enhanced, because from user’s perspective, when judging the quality of a

RQ, his/her concern is on checking the results of RQ over the XML data, rather than

judging from the literal meaning of RQ itself, as even a good refinement may not have

any meaningful matching result in the XML data being queried.

As the first step towards our goal, four major refinement operations, namely term

deletion, merging, split and substitution are defined in a rule based way, where each par-

108

ticular operation is associated with a basic dissimilarity score. In order to judge whether

a query needs to be refined, we propose an enhanced notion of SLCA as a criteria by

taking the search target node of a query into account, we call it meaningful SLCA.

In the second step, we adopt a basic metric to judge the quality of a refined query RQ

by computing the accumulated dissimilarity from initial query Q to RQ. As the RQ that

has both minimum dissimilarity and non-empty meaningful SLCA result over XML data

is unknown ahead, it is prohibitively expensive to infer all RQ candidates and find the

one with minimum dissimilarity. Instead, we design a dynamic programming solution

to find the RQ with minimum dissimilarity, and the potential Top-K RQ candidates are

also produced as its side product.

In the third step, we investigate how to rank the refined queries, especially for those

with the same dissimilarity. Basically, we investigate the quality of a RQ from two

complementary aspects: the relevance of RQ w.r.t the initial query Q and the dependency

of keywords of RQ on XML data D, both of which are able to capture the hierarchical

structure of XML data. In particular, we utilize the keyword frequency, co-occurrence,

textual similarity between Q and RQ etc. in qualifying the relevance and dependency

score.

In the last step, we move to design efficient algorithms to find RQs and their matching

results, which is another core part. Based on the observation that the document root is

never counted as a meaningful SLCA, we propose a partition-based approach, in which

an XML document tree is logically divided into a sequence of subtrees (in document

order) which we call as partitions, and query refinement is sequentially executed on each

partition. In this way, the Top-K RQ candidates in each partition can be identified before

employing existing methods to find their SLCA results (and extracting meaningful SLCA

from those SLCA results, as the meaningful SLCA results of a query Q is a subset of

the SLCA results of Q), so unnecessary computation for the RQ candidates that have

109

no meaningful SLCA result can be totally skipped. Besides, those RQ candidates found

in the subsequent partitions that have larger dissimilarity than the current Top-K RQs

will also be pruned for their SLCA computation, which is an important optimization.

Lastly, this approach needs only one-time keyword inverted list scan, manifesting good

I/O performance.

Furthermore, we take into account the distribution of keyword frequency, and propose a

short-list eager approach to start the exploration of Top-K RQs from those that contain

the keyword with the shortest inverted list, in order to avoid the full scan of long keyword

lists as much as possible. This approach works well when the frequency distribution of

query keywords is skewed.

A salient feature of partition-based and short-list eager approach is, they are orthogo-

nal to the methods of finding matching results of a query. If the initial query Q does have

meaningful matching result, both of the above algorithms will stop finding refinements

and their matching results immediately after the first matching result of Q in XML data

is found.

To our best knowledge, this is the first work towards an effective query refinement in

XML keyword search, and our major contributions are summarized as below.
• We formally define the problem of keyword query refinement in XML keyword

search, propose an enhanced notion of the widely adopted SLCA matching se-

mantics to judge whether a query has meaningful matching result, and define four

typical refinement operations in a rule-based way.

• We build a query ranking model to evaluate the quality of RQ candidates from a

statistical perspective based on tree structural data, by considering the semantical

and morphological similarity between RQ and Q, together with the dependency

of keywords of RQ in XML data.

• We design a dynamic programming solution to efficiently find the optimal RQ.

• We propose two solutions to achieve an efficient XML keyword query refinement

110

and results generation: partition-based approach and short-list eager approach,

both of which are orthogonal to any existing SLCA computation methods. More-

over, the partition-based approach needs only one-time scan of the corresponding

keyword inverted lists.

• We conduct extensive experiments to show the efficiency and effectiveness of our

refinement framework, by using the real-life data sets and real-life user queries.

The rest of this chapter is organized as below. Section 5.2 defines the meaningful

SLCA. Section 5.3 presents our query ranking model. Section 5.4 presents an efficient

approach to find the optimal RQ. Section 5.5 presents two dynamic query refinement

approaches. Section 5.6 discusses the index construction for efficient refinement. Exper-

imental result is reported in section 5.7 and we summarize our work in section 5.8.

5.2 Preliminaries

Same as Chapter 3, we model XML data as a rooted, labeled tree using dewey label-

ing scheme, and a keyword query Q={k1, k2, ..., kn} is treated as an ordered sequence

of terms separated by commas.

5.2.1 Meaningful SLCA

In recent literature, the notion of Smallest Lowest Common Ancestor (SLCA) [118,

80] has been suggested as an effective way to identify the segments of interest from

XML data for a keyword query. However, a unique feature of XML keyword search is

to identify the target that user intends to search for [16] while SLCA and its variations

cannot resolve thoroughly, as mentioned in Chapter 3.

Therefore, we define the concept of meaningful SLCA, which is the SLCA that is

aware of the search targets. A typical non-meaningful SLCA is the document root, as it

makes no sense to return the whole XML document to user. Consider a query “database,

111

model” issued on XML data in Figure 5.1, the only SLCA is the root node bib:0, which

user never expects to have.

Regarding how to identify the target that a user desires to search for, recall that in

Chapter 3 we have defined the concept of node type, search for node and XML DF (XML

Document Frequency). These definitions will be utilized in this chapter again, and please

refer to section 3.2 for details.

Formula 5.1 is designed to measure the confidence of a node type T to be the desired

search for node w.r.t a given query Q, with same intuition as Formula 3.6, except that we

use Sum of XML DF (fT
k) to combine the statistics of all keywords for each node type

T , as some query keywords may not appear in the XML data for ill-formed query. r is

a reduction factor ranging in (0,1); depth(T) represents the depth of T -typed nodes in

XML data.

Cfor(T, Q) = loge(1 +
∑

k∈Q

fT
k) ∗ rdepth(T) (5.1)

Choosing the desired search for node

Due to the keyword ambiguity problem as mentioned in chapter 3, different people may

issue the same query for different search intentions, so the search for node may not be

unique. In the worst case, the number of search for node candidates can be as large as the

number of distinct node types of an XML document, an appropriate threshold δ should

be set to filter those that cannot be a promising candidate. We choose the desired search

for node in two steps.

In the first step, we believe there should be at least one subtree (in the XML data tree)

that contains at least one keyword of the initial query. Thus, the lower bound of Formula

5.1 is δ=ln(1+1)*rdepth(D), where depth(D) denotes the depth of the XML data tree D.

As a result, those T whose search for confidence is above δ will be chosen as the search

for node candidates.

112

In the second step, we try to get only the promising ones from those resulted in

step 1. We first sort all the above candidates and pick the node type with the highest

confidence, say Tmax. Then we compute the relative difference percentage of the confi-

dence scores of the remaining node types with Cfor(Tmax,Q), and choose those whose

difference percentage is within a given threshold σ as one of the final desired search for

node candidates. Note that there is no one-fit-all threshold value, and our empirical study

demonstrates that a value of σ=30% has an overall reasonable and effective performance.

As a result, those desired search for node candidates will be used to further constrain

the meaningfulness of an SLCA result of a query, which is shown in Definition 5.1. Re-

garding the tunable value of r in Formula 5.1, there is no one-fit-all choice, and through

our empirical study, a choice of r=0.8 works well in general.

Definition 5.1. A node n is a meaningful SLCA of query Q on XML document D, if all

the following properties hold:

1. n∈SLCA(Q,D)[118] (i.e. n contains all the query keywords in either its labels

or the labels of its descendants, and has no descendant that also contains all the

query keywords).

2. n is not the root node of XML document D.

3. n is a self or descendant of one of the search for node candidates T inferred by

Formula 5.1 and above a give threshold δ.

We can find that, if we return user the meaningful SLCA and its subtree, it may not

provide enough relevant information, as it is not closely related to user’s search target.

What user expects to be returned is as below.

Definition 5.2. (Meaningful Result) For a certain meaningful SLCA n of query Q over

XML document D, the corresponding meaningful result (output to user) should be the

subtree rooted at node m, where among all promising search for node candidates T

satisfying property 3 of Definition 5.1, m is the structurally nearest T to n.

113

As a quick example, consider Q6={hobby,news,paper} in Table 5.1 issued on Fig-

ure 5.1. By formula 5.1, author is a promising search for node candidate of Q6. The

only SLCA result of Q6 is the root node bib:0, which violates property 2 in Defini-

tion 5.1. Thus, Q6 does not have any meaningful SLCA. In contrast, the only SLCA of

RQ6={hobby,newspaper} is hobby:0.1.2 which is a descendant of author; so it is a mean-

ingful SLCA, and the output of RQ6 is the subtree rooted at author:0.1 (by Definition

5.2).

Now, we would like to argue the rationality of the properties as described in Defini-

tion 5.1 to trigger a query refinement. For a given query Q, whether Q needs refinement

may vary from users, as different people may have different search intentions even when

they issue the same query. However, despite of the subjective search intention issue, we

observe that no matter which user issues a keyword query on an XML data tree, she

is interested in particular fragments, rather than the whole XML data tree that is over-

whelmingly large for user to consume. Therefore, if all the matching results of Q are

the root node of the XML tree, it is certain that Q needs refinement. It naturally drives

us to impose property 2 in Definition 5.1. Moreover, when a user issues a query, she

usually has her search target in mind ahead, though the search condition (that is used

to constrain the resulted instances of the search target) may have various interpretations.

Therefore, if all the potential search targets that a user query may intend to search for can

be inferred, we can further constrain the condition to trigger the refinement. As a result,

property 3 is specified to ensure the result is related to one of the potential search targets.

In other words, Definition 5.1 indeed describes an objective bottom line that necessitates

a query refinement.

Furthermore, we would like to discuss the flexibility of Definition 5.1 in two aspects.

(1) In this work, Definition 5.1 is defined to fit the SLCA matching semantics [80], but

it is not confined to SLCA only. Indeed, it can be easily adapted to accommodate to

114

any other matching semantics proposed for XML data tree model, such as LCA [52],

MSLCA [79] etc, because only property 1 in Definition 5.1 needs to be adjusted.

(2) Besides the above two mandatory properties for meaningful SLCA, an optional prop-

erty is: “The element denoted by n is of either entity category or attribute category1

according to the Entity inference rule (with the aid of DTD of XML data) defined in

XSeek [80].” This property is designed to coincide with the fact that user’s search tar-

get is normally at real entity level. E.g. in Figure 5.1, people’s concern is on author,

inproceedings and article which are of entity category, while publications is not.

Lastly, people usually mistakenly take the (meaningful) SLCA node as the output of

a query. Indeed, as claimed in Definition 5.2, a desired output of a query is the subtree

rooted at the search for node, which is the self-or-ancestor of a meaningful SLCA node.

Definition 5.3. A keyword query Q is said to need refinement if Q does not have any

meaningful SLCA on XML document D.

5.2.2 Refinement Operations

As reported by the web query logs tracing users’ search modifications [63], a fre-

quently used strategy by users is deleting terms, presumably to obtain greater coverage;

while term substitution is the major strategy adopted by search engines. Besides, we

observe that there are four potential sources that frequently cause ill-formed queries: (1)

queries may contain misspelled or mismatched words (e.g. Q1-Q3,Q5 in Table 5.1), (2)

mistakenly split words (e.g. Q6,Q7 in Table 5.1), (3) mistakenly merged words (such

as queries in Table 5.5), (4) queries that contain strong conjunctive constraints have no

match against a small corpus (e.g. Q4 in Table 5.1). These four ill-forms cause the results

of the initial query either empty or nonsensical.

1Same as [80], when the SLCA of a query is an attribute node, we return its associated entity as SLCA
result instead.

115

As a result, four refinement operations, i.e. term substitution, term merging, term

split and term deletion, are defined to increase the query coverage. E.g. a query {online,

newspaper} may often be written as {on,line,news,paper} by user, which needs term

merging. Term deletion is employed presumably to obtain greater coverage, as queries

with no matches can have words deleted till a match is obtained, such as Q4 in Table 5.1.

Term substitution is wide-ranging, which mainly includes spelling error correction (Q5

in Table 5.1), synonym substitution (Q3), acronym expansion (Q1) and word stemming

(Q2). Note that, we can include more refinement operations if needed, as it is an orthog-

onal problem to our query refinement methods as introduced in Section 5.5; however, we

believe the above four operations are enough to serve the general purpose to cover most

refinement jobs in real world.

Definition 5.4. A refinement rule instance2 r associated with a refinement operation

op is in form of: S1−→op S2, where S1 and S2 are two keyword sequences, and r has an

associated dissimilarity score dsr, which models the dissimilarity between S1 and S2.

Table 5.2 lists some refinement rule instances. In particular, for term merging, term

split and spelling error correction, dsr can be a variant of the morphological metric such

as the string edit distance between the LHS and RHS of rule r. E.g. the dissimilarity dsr

of a one-time term merging or split is 1, as a single space is removed/added, such as r1,

r2, r4 and r7 in Table 5.2. For r5, dsr5 = 2 as two string edits are needed to correct the

spelling error.
Since the term substitution is wide-ranging, which may include synonym substitu-

tion, typo correction, acronym expansion etc, the dissimilarity varies correspondingly.

For synonym substitution rule such as r3 in Table 5.2, dsr can be the similarity score

provided by checking against a corpus of the known database tokens or the semantic

lexical database such as WordNet [44]. For instance, in WordNet the dissimilarity score

between two words a and b is the length of the path from a’s belonging synset to b’s

2Without ambiguity, we use the term “rule” to denote rule instance in the rest of this chapter.

116

Table 5.2: Sample Refinement Rule Instances with its dissimilarity score
Operation Example dsr

r1 Merging on,line → online 1
r2 Merging data,base → database 1
r3 Substitution article → inproceedings 1
r4 Merging learn,ing → learning 1
r5 Substitution mechin → machine 2
r6 Substitution WWW → world,wide,web 1
r7 Split online → on,line 1

belonging synset; two synonyms in the same synset has a dissimilarity score of 1, such

as r3. For acronym expansion such as r6 in Table 5.2, a score of 1 is designated.

It is out of the scope of this work to study a normalized measurement scheme that

can well handle the dissimilarity caused by either the semantic similarity or the literal

similarity. Therefore, in order to minimize the effect of the dissimilarity assignment in

evaluating the effectiveness of the query ranking model (as proposed in section 5.3), we

designate a uniform dissimilarity score for all refinement rule instances (that invoke a

single refinement operation) except for term deletion. Besides, in this work we do not

consider the recursive refinement which further applies refinement rule(s) on the newly

generated keywords.

Since term deletion has the greatest potential in changing the meaning of initial query,

we adopt the principle that its dissimilarity score is greater than any other three rules

throughout this chapter3. The refinement rules can be obtained from data mining, query

log analysis [63] or manual annotation [50]. However, how to generate these rules is

orthogonal to this work. Lastly, we define the dissimilarity between an initial query Q

and a refined query RQ.

Definition 5.5. Given a set R of refinement rule instances, the dissimilarity between Q

and a RQ, denoted as dSim(Q,RQ), is the minimum of the sum of the cumulated dsr

3To facilitate our discussion, the dissimilarity score of a single term deletion rule is 2 throughout all
examples in this chapter.

117

among all possible sequences of application4 of the rule instances in R to transform Q

into RQ.

5.3 Ranking of Refined Queries
In section 5.2.2, dSim(Q,RQ) is defined as a preliminary quality metric for a RQ,

mainly based on its lexical and morphological similarity w.r.t Q. However, it is inade-

quate without considering the local context (i.e. the XML data) being queried, especially

for those RQs that have the same dissimilarity. Motivated by the ability of statistics in

modeling patterns or drawing inferences about the underlying data, we aim to utilize the

statistic knowledge of underlying XML data to build an in-depth content-aware query

ranking model. In general, the overall quality of a RQ can be evaluated in two com-

plementary aspects: (1) the similarity score of RQ which captures the relevance of RQ

w.r.t the initial search intention, and (2) the dependency score of RQ which captures the

keyword dependencies of RQ in XML data D.

We begin with introducing some statistic notations used in later discussion. tf(k, T)

denotes the term count of k in all the subtrees rooted at node type T ; FT denotes

the number of distinct terms contained in either the values or tags of all the subtrees

rooted at node type T , while the stop words are omitted. For example in Figure 5.1,

tf (”XML”,author)=3, as “XML” appears 3 times within the subtrees rooted at author;

Farticle=14 as there are 14 distinct keywords within the subtrees rooted at article. Note

that these statistics data can be pre-computed in parsing the XML data.

5.3.1 Similarity Score of a RQ

Given a query Q issued on an XML document D and a RQ candidate, we propose

four intuitive guidelines in an incremental way to compute the similarity of RQ w.r.t the

initial search intention.
4Recursive application of rule instances are not considered.

118

Guideline 1: Keyword frequency. The more frequently the keyword in RQ appears

within a search for node type T , the more important RQ is. 2

Following Guideline 1, Formula 5.2 is designed to accumulate the term frequencies

of all keywords in RQ, and FT is chosen as a normalization factor to prevent a bias to a

search for node type T whose subtrees are of large size.

Imp(RQ, T) =
∑

k∈RQ

tf(k, T)

FT

(5.2)

In addition, we notice that each keyword in a query has its own ability to discriminate

the query results, i.e. each k∈Q as a constraint of Q actually has different importance.

Take term deletion as an example (Example 5.2), ki is one of the keywords that are

deleted from Q to form a RQ. Thus, the less frequent ki appears in the subtrees rooted

at T -typed nodes, the more discriminative ki is to Q, i.e. the RQ resulted from deleting

this ki from Q is less favored.

Example 5.2. Consider Q={XML, twig, pattern, join} issued on DBLP, where no match-

ing result is found. Suppose inproceedings is a search for node candidate. Then, by delet-

ing “join” and “pattern” respectively, we get two candidates RQ1={XML, twig, pattern}
and RQ2={XML, twig, join}, where dSim(RQ1 ,Q)=dSim(RQ2 ,Q) as only one term dele-

tion is adopted. Though, f inproceedings
pattern =17297 5 is much larger than f inproceedings

join = 946,

i.e. “join” and “pattern” have different importance as a constraint of Q, which also

should affect the similarity of the resulted RQ. 2

Guideline 2: Importance of keyword. The more discriminative a keyword ki (that is

either deleted from the initial query Q or newly generated by the term merging, term

split and/or term substitution rules) is w.r.t the initial query Q, the lower the rank of RQ,

which is resulted from the corresponding refinement involving ki, should be assigned. 2

5These statistics can be validated by an online demo of our previous work [15] at
http://xmldb.ddns.comp.nus.edu.sg

119

Recalling Definition 3.8, the XML DF fT
k provides an effective way to measure the

discriminative power of a keyword k, as Guideline 2 is in line with the design intuition

of document frequency. In other words, the less XML DF of a keyword ki (i.e. fT
ki

) is,

the more discriminative this ki is w.r.t. Q. As a result, Formula 5.3 is designed to address

Guideline 2 alone.
Impki

(Q, T) = loge

NT

1 + fT
ki

(5.3)

where NT is the total number of nodes of type T in XML document D. The log function

is applied to normalize the raw ratio.

Guideline 1 favors the RQ whose keywords have large term frequencies, which is

analogous to the intuition of TF part in TF*IDF definition; while Guideline 2 favors the

RQ whose deleted or newly generated keyword has the largest importance in the initial

query, which is analogous to the intuition of IDF part. Therefore, we define the similarity

ρ(RQ,Q|T) of a RQ w.r.t Q, for a given search for node type T in Formula 5.4, where

the first multiplier manifests Guideline 1, and the second multiplier manifests Guideline

2 by accumulating the importance of ki involved in refining Q to RQ.

ρ(RQ, Q|T) = Imp(RQ, T) ∗
∑

ki∈(RQ4Q)

Impki
(Q, T) (5.4)

Here, RQ4Q denotes a set of keywords that are either deleted from Q or newly gener-

ated by term merging, term split or term substitution rules to produce RQ.

So far, we have only considered the case that the search for node candidate T of

a query is unique. However, the keyword ambiguity problem [16] may cause more

than one T to have comparable and promising search for confidence by Formula 5.1, as

discussed in section 5.2.1. Motivated by this fact, Guideline 3 is proposed.

Guideline 3: Confidence as a desired search target. For an initial query Q that has

multiple desired search for node candidates T , the confidence Cfor(T, Q) of each such

T should be taken into account. The higher the confidence of T as a desired search for

node is, the more important its associated similarity ρ(RQ, Q|T) is. 2

120

Therefore, we incorporate the confidence of T as the desired search for node (i.e.

Formula 5.1) and its similarity as below.

ρ(RQ,Q) =
∑

T∈Tfor

Cfor(T,Q) ∗ ρ(RQ, Q|T) (5.5)

where Tfor denotes a set of candidates of the desired search for node. Note that, Guide-

line 3 holds based on the principle that both the initial and refined query share the same

search for node(s).

We argue that the design of Formula 5.5 is reasonable, because firstly the literal

difference between Q and RQ are usually small (1-2 keyword difference); secondly, the

use of logarithm function in search for confidence computation (in Formula 5.1) ensures

a small confidence difference between Q and RQ, as validated by empirical study in

section 5.7.

Lastly, by taking the semantic and morphological dissimilarity dSim(Q,RQ) be-

tween Q and RQ into account, whose intuition is mentioned in Guideline 4, the similar-

ity of a RQ w.r.t the initial query Q is presented in Formula 5.6.

Guideline 4: Textual/Semanitc dissimilarity. The smaller the dissimilarity between Q

and RQ is, RQ is closer to Q in term of the search intention. 2

Continuing with Example 5.2, if two keywords are deleted from Q, there are 6 more

RQs to be generated. Although these queries have more results than RQ1 and RQ2 , they

are farther to Q in term of search intention. Thus, we also incorporate the dissimilarity

score into our query ranking model.

As a result, we define Formula 5.6, using the weighted sum of the dissimilarity be-

tween Q and RQ w.r.t a given search for node candidate T and the confidence of T as

the desired search for node as the final similarity between RQ and Q.

ρ(RQ, Q) = w(dSim(Q,RQ)) ∗
∑

T∈Tfor

Cfor(T, Q) ∗ ρ(RQ, Q|T) (5.6)

where dSim(Q,RQ) denotes the dissimilarity between Q and RQ as described in Def-

121

inition 5.5. w is a decay factor ranging in (0,1) to enforce Guideline 4, and w=0.7 is a

good choice as evident by our empirical study in section 5.7.4.

5.3.2 Dependency Score of a RQ

In evaluating the quality of a RQ, the above similarity function emphasizes the rel-

evance between Q and RQ, which has a limitation: the query terms are assumed to be

mutually independent. As a complementation of the similarity score, if RQ contains

more than one keyword, the dependency between the keywords in RQ over the XML

data being queried should also be captured.

Guideline 5: Keywords’ co-occurrence. A refined query candidate RQ is effective

for a certain search for node T , if RQ has as many keywords as possible that co-occur

frequently in the subtrees of type T . 2

Since the desired search for node candidate T may not be unique, for convenience we

first discuss the case that T is unique. In order to quantify the dependency of keywords

in a refined query RQ, we utilize a variant of association rule [9]. For each keyword

ki∈RQ, we measure how often another keyword k∈RQ appears in the subtrees of type

T that contain ki, as shown in Formula 5.7:

C(ki ⇒ k) = fT
k,ki

/fT
ki

(5.7)

where fT
ki

represents the number of subtrees (rooted at node type T) that contain keyword

ki, and fT
k,ki

denotes the number of subtrees (rooted at node type T) that contain both ki

and k. Note that fT
k,ki

is computed offline at the expense of large index stored.

The dependency score of a RQ is shown in Formula 5.8. The inner sum is a cumu-

lation of how often each other keyword ki∈RQ appear together with k, while the outer

sum cumulates such score for each keyword in RQ. In addition, as Guideline 5 usually

favors the RQ with large size, a normalization factor |RQ| is introduced to prevent such

bias.

122

Dep(RQ, Q|T) =
∑

k∈RQ

∑
ki∈RQ,ki!=k

C(ki ⇒ k)

|RQ| (5.8)

Once again, when Q is inferred to have multiple desired search for node candidates,

we adopt Guideline 3 again to get the overall dependency score Dep(RQ,Q) as below.

Dep(RQ,Q) =
∑

T∈Tfor

(Cfor(T,Q) ∗Dep(RQ,Q|T)) (5.9)

At last, the overall rank of a refined query RQ (w.r.t the initial query Q) is completed

by a weighted sum of its similarity score and dependency score in Formula 5.10.

Rank(RQ, Q) = α ∗ ρ(RQ, Q) + β ∗Dep(RQ, Q) (5.10)

where α and β are tunable weights that reflect the importance of each metric. α=β=1 is

the default choice, and the effectiveness impact of different choices will be evaluated in

section 5.7.4.

All the above statistic data can be collected during the pre-processing of XML docu-

ment, and we refer readers to section 5.6 for the index construction on collecting all the

above statistic data for efficient ranking computation.

5.4 Exploring the Refined Query

Given a query Q and a set R of refinement rules at term level, a static query refine-

ment is to infer all potential RQ candidates and sort them by their respective dissimilari-

ties. However, it is not guaranteed that which RQ candidates have meaningful matching

results over the XML data D, until they are tried on D. Furthermore, it is quite expensive

to infer all such RQ candidates, as the amount of such RQs may be quite large, espe-

cially for those derived by applying term deletion. Lastly, it is also expensive to conduct

multiple-times scan of the keyword inverted lists in order to find those RQ candidates

123

that have results over D.

Since the RQs that have both minimum dSim(Q,RQ) and meaningful matching

result over XML data D is unknown ahead of processing Q, we should adaptively explore

those RQs during the processing of Q. As can be seen in any refinement algorithm in

section 5.5 later, a fundamental problem encountered in between is: we can obtain a

set T of keywords, each of which is from a rule set R or the initial query Q (e.g. see

line 1 of Algorithm 5.2), and does exist in XML data D (see line 9 of Algorithm 5.2).

However, it remains a challenge to efficiently materialize a RQ from T , such that RQ

has the minimum dSim(Q,RQ). This is what we mean the exploration of optimal RQ,

as defined below:

Problem Formulation: Given a keyword sequence S={k1,k2,...,ks} (S denotes the ini-

tial query Q), a set T={k′1,k′2,...,k′t} of keywords and a set R of refinement rules. We aim

to find a RQ, which is a subset of T and ∀RQ′⊆T , dSim(Q,RQ)≤dSim(Q,RQ′) (by

Definition 5.5).

We develop a bottom-up dynamic programming method, namely getOptimalRQ(S,T),

to resolve this problem.

Sub-problems: We create subproblems as below. Let 0<i≤s be an integer. Let S[1, i]=

{k1,k2,...,ki} be a sub-sequence of S. Let C be an array of length (|S|+1), where C[i]

is the minimum dissimilarity between S[1, i] and some RQ⊆T . Our final goal is to

compute a value for C[|S|], which is the minimum dissimilarity between S and some

RQ⊆T .

Notations: Each ki∈S is associated with a set of refinement rules, denoted as R(ki),

R(ki)={r | r=<*ki → k′m,...,k′n >}, where ∗ki={kj , kj+1,...,ki−1, ki} is a sub-sequence

of S ended with ki and {k′m,...,k′n} ⊆ T . For each rule r, its left and right hand side are

denoted as LHS(r) and RHS(r) respectively.

124

Initialization: C[0] = 0, which means the dissimilarity between an empty query and any

other query is 0.

Recurrence Function: Regarding the subproblem of computing C[i] for 0<i≤|S|, we

have three options to consider.

Option 1: when the ith keyword ki∈S also appears in T , then the dissimilarity score

remains unchanged.

Option 2: when ki does not appear in T , and term deletion is applied to delete ki.

Option 3: for a refinement rule r, if LHS(r) = ∗k and RHS(r)⊆T , C[i] should be

equal to a sum of C[i − |LHS(r)|] and dsr. If more than one rule can be applied here,

the one with the minimum sum is selected. This case is used to handle term merging,

split and/or substitution.

Among these three options, the one with the minimum value is assigned to C[i], as

summarized in Formula 5.11.

C[i] = min

C[i− 1] if ki ∈ T

C[i− 1] + cost of deleting ki if ki /∈ T

C[i− |LHS(r)|] + min{dsr}
if ki /∈ T AND LHS(r) = ∗ki AND

RHS(r) ⊆ T, for each r ∈ R(ki)
(5.11)

As we can see, getOptimalRQ is insensitive to the order of keywords in T , but sen-

sitive to the order of keywords in S, because S denotes the original query which is a

sequence of keywords (as defined in section 5.2). However, this property does not limit

its applicability and correctness w.r.t the four refinement operations defined. For in-

stance, if a user mistakenly splits a term to two terms in his query S, then these two

neighboring terms must also appear next to each other in the same order in the LHS of a

term merging rule.

A formal presentation of the above core idea of getOptimalRQ is shown in Function

125

Function getOptimalRQ(S[1...s],T [1...t])

1 Let C be an array of length s+1, C[0]=0;
2 Let RQ be an empty set;
3 Hashtable R = readInRules();
4 for (i = 1 to s) do

/* Option 1 */
if (S[i]∈T) then C[i] = C[i-1];5

RQ.add(S[i]);6

else if (S[i]/∈T) then7

/* Option 2 */
C[i] = C[i-1] + cost of deleting S[i];8

/* Option 3 */
foreach (*S[i]=S[j,...,i] for j∈[i,1]) do9

if (∃r∈R, s.t. *S[i]=LHS(r) ∩ RHS(r)⊆T) then10

temp = C[i-|LHS(r)|]+cost of applying rule r;11

if (temp < C[i]) then12

C[i]=temp;13

RQ.add(RHS of the r with minimum dissimilarity);14

15 return C[s] and its associated RQ;

6, which runs exactly as what we have described above.

Time Complexity: getOptimalRQ runs in |Q| loops, where in the worst case, each

subsequence of Q is related to a certain refinement rule r. In addition, suppose a B-tree

index is built upon the refinement rule set R, so the cost of locating such r is O(log|R|).
As a result, the worst case time complexity of getOptimalRQ is: O(

∑|Q|
i=1

∑i
j=1log|R|)

= O((|Q|(|Q|+1)(2|Q|+1)
12

+ |Q|(|Q|+1)
4

)log|R|) = O(|Q|3log|R|).
A running example of getOptimalRQ is shown as below.

 WWW article machine learn ing
0 1 2 2 4 3

Figure 5.2: A running example of finding the optimal RQ

Example 5.3. Given a query Q={WWW,article,machine,learn,ing} and a keyword set

T={machine,inproceedings, learning,worldwide, Web,World,Wide}, three relevant rule

instances r3, r4 and r6 in Table 5.2 are identified. Figure 5.2 shows how array C is filled

126

during the process of getOptimalRQ(Q,T). To compute C[1], option 2 offers a cost of

C[0]+cost of deleting “WWW”=0+2=2, while option 3 offers a cost of C[0]+dsr6=1.

So C[1]=min(2,1)=1. Similarly, C[2]=C[1]+1=2, C[3]=2 as “machine” exists in T ;

C[4]=2+2=4, and C[5]=min(C[3]+1, C[4]+2)=3. Finally, the optimal RQ= {World,

Wide,Web,inproceedings,learning}, and dSim(RQ,Q)=5.2

Summary getOptimalRQ serves two purposes. First, it generates the optimal RQ in

term of dSim(Q,RQ). Second, as a side product, a ranked list of some (but not all)

non-optimal RQ candidates by dSim(Q, RQ) can also be obtained, as they are indeed

the intermediate results kept during executing getOptimalRQ. They will be used as the

candidates for Top-K RQs later in section 5.5.

5.5 Content-aware Query Refinement

The main challenge towards an effective query refinement is, it is unknown whether

any refinement is needed ahead of processing the initial query, as each RQ must have

meaningful SLCA results over the XML data by Definition 5.1. A straightforward so-

lution is to try the initial query first, and if no matching result is found, we go to infer

all potential RQ candidates based on the given refinement rule set, and try them one by

one until the desired RQ is found. However, it may involve the evaluation of multiple

queries, which has to scan the corresponding keyword inverted lists multiple times; even

worse, many top-ranked RQs may not have any matching result.

Therefore, we propose to integrate the job of looking for the refined queries of Q

and generating their matching results together to guarantee the existence of meaningful

SLCA result for each RQ found; and meanwhile accompany the refinement job with the

job of processing the initial query Q, in order to scan the related keyword inverted lists

as few times as possible (optimally only once). This is what we call content-aware XML

127

keyword query refinement.

As a result, two separate solutions, namely partition-based approach and short-list

eager approach, are designed to find the approximate Top-K RQs and their matching

results in a flow of document order. The main procedure is: we first maintain a ranked

list to store the approximate Top-2K RQ candidates in term of dSim(Q,RQ) during

answering Q. In the end, we apply the complete query ranking model (proposed in

section 5.3) to generate the final Top-K RQs from the 2K candidates.

5.5.1 Partition-based Algorithm

As evident by Definition 5.1, the root node of an XML data tree is a typical meaning-

less SLCA, because users are only interested in the fragments of XML data. Therefore,

we can partition the XML data tree into a list of ordered partitions as defined below:

Definition 5.6. (Document Partition) Given an XML data tree D, a subtree Di is a

document partition of D if the root node RDi
of Di is the ith child of D’s root node.

Document partition is a logical partition in that, it is a virtual view of the XML

data tree D by ignoring its root node without modifying the structure and order of the

nodes in D. In this way, our algorithm proceeds from one partition to another partition

in document order, thus avoids all SLCA computations leading to the meaningless root

node of D. In Figure 5.1, there are 2 document partitions of D: D1 rooted at author:0.0

and D2 rooted at author:0.1, and all the meaningful SLCA nodes are either the self or

descendants of the root node of D1 or D2.

As most users concern on the Top-K RQs, we aim to support Top-K query refine-

ment. The main procedure is as follow: we first maintain a ranked list to store the

approximate Top-2K RQ candidates in term of dSim(Q,RQ) during the processing of

Q. In the end, we apply the complete query ranking model (proposed in section 5.3) to

generate the final Top-K RQs from the 2K candidates.

128

Before we introduce the main algorithm, we would like to describe some important

data structures used as a preliminary step. RQSortedList is developed to store the up-

to-date Top-2K RQs during the procedure of query refinement. It is implemented as

a sorted list with a B-tree index built on the dissimilarity of RQ, where method insert

and remove can be done in O(log2K) time. Besides, method hasRQ, which is used to

check whether a RQ to be inserted is already in the list, can be done in O(1) time by

maintaining a separate hashtable whose key is RQ itself.

Algorithm 5.2: Partition-based Top-K query refinement
input : Q={k1,...,kn}, refinement rule set R, XML document D, K
output : result={(RQ1 ,SLCA(RQ1)),...,(RQK ,SLCA(RQK))}
Let result ← ∅; Let KS = getNewKeywords(Q) + Q1
Let RQSortedList = a list of RQs sorted by dSim(Q, RQ)2
{S1,S2,...,Sm} ← getInvertedLists(KS)3
while (!end(Si) for each i∈[1,m]) do4

vs = getSmallestNode(); /* 1≤s≤m */5
Dpid = getDocPartition(vs)6
{S′1, S′2,..., S′m} ← getKLPartition(pid)7
move cursor of Si to the node next to the end of each S′i8
Let T = {ki | Si’ is not empty}9
{<RQi,dSim(Q,RQi)>|i∈[1,2K]}=getOptimalRQ(Q,T,2K)10
foreach RQi do11

if (dSim(Q,RQi) < RQSortedList.max) then12
if (!RQSortedList.hasRQ(RQi)) then13

RQSortedList.remove(2K)14
RQSortedList.insert(<RQi,dSim(Q,RQi)>)15

slcaRQi = computeSLCAs({S′1, S′2,..., S′m},RQi)16
result.add(RQi,slcaRQi)17

reset S′1, S′2,..., S′m to empty18
Apply Formula 5.10 on result to get final Top-K RQs19

Algorithm 5.2 presents the details of partition-based approach. The input is an initial

user query Q, a value of K, an XML document D and a given refinement rule set R. The

output is a list of Top-K refined queries and their corresponding matching results over

the XML data. Initially, it finds a set KS of keywords that appear in either R or Q via

a consultation on a given pertinent refinement rule set R (line 1). A ranked list called

RQSortedList is developed to store the up-to-date Top-2K RQs during the procedure

of query refinement (line 2). It supports three major operations: insert a RQ into the list,

129

remove the lowest-ranked RQ from the list, and hasRQ checking whether a RQ to be

inserted is already in the list.

A cursor is maintained for each keyword inverted list Si. The algorithm runs in an

iterative way: as long as the end of all the related keyword lists haven’t been reached,

the smallest node vs in document order is selected (line 5), and the document partition

that contains vs is located by Definition 5.6, denoted as Dpid, where pid is the label of

this partition’s root node (line 6). Function getKLPartition is responsible for identifying

the corresponding sublist S ′i of each keyword list Si within partition Dpid, based on

the property that pid is the prefix of the dewey label of each node in each S ′i (line 7).

Accordingly, the cursor of each Si is moved to the node next to the end of S ′i (line 8).

An extension of Function getOptimalRQ(Q,KS,2K) (proposed in section 5.4) is in-

voked to find the Top-2K RQ candidates (if they do exist) within partition Dpid (line

9-10); this extension is easy to achieve, as those RQ candidates are in fact preserved

as the intermediate results during the exploration of optimal RQ. For each RQi in the

Top-2K RQs found, if the dissimilarity of RQi is smaller than that of the lowest-ranked

query in RQSortedList and RQi has not been inserted before, then RQi is inserted

into RQSortedList (line 13-15), and any existing SLCA computation method (such as

[118, 104]) can be employed to find the SLCAs of RQi within partition Dpid (line 16)

and add them into result (line 17). Lastly, the overall query ranking model (i.e. Formula

5.10) is applied on the 2K RQ candidates to get the final Top-K RQs (line 19).

A running example of Algorithm 5.2 is shown in Example 5.4.

Example 5.4. Consider a query Q={article,online,data,base} issued on the XML data

in Figure 5.1, and the Top-1 RQ is expected if Q needs to be refined. Rules r2, r3 and

r7 in Table 5.2 are found to be relevant to Q. For illustrative purpose, we list only five

typical RQ candidates in an ascending order of its dissimilarity w.r.t Q.

RQ1: {article,online,database} (2 merges)

130

RQ2: {article,on,line,database} (1 merge)

RQ3: {inproceedings,online,database} (1 merge, 1 substitution).

RQ4: {inproceedings,on,line,data,base} (1 split, 1 substitution).

RQ5: {inproceedings,online,base} (1 deletion, 1 substitution).

......

There are two document partitions D1 and D2 in Figure 5.1. Partition D1 in Fig-

ure 5.1 is identified to contain part of the related keywords, and the partitioned key-

word lists are: S ′online= S ′database={0.0.1.1.0.0}, S ′on=S ′data= S ′article={}, S ′inproceedings=

{0.0.1.0, 0.0.1.1, 0.0.1.2}, S ′line= S ′base={0.0.1.0.0.0}. getOptimalRQ returns RQ3 (with

dSim(Q,RQ3)=2) and RQ5 (with dSim(Q,RQ5)=3) as Top-2 RQs, as D1 doesn’t

cover all keywords for any of Q, RQ1 , RQ2 and RQ4 . As RQSortedList is empty, both

RQ3 and RQ5 are inserted and their SLCA results are computed.

Then, we move to next partition D2, where S ′on={0.1.1.0.0.0}, S ′data = {0.1.1.0.0.0,

0.1.1.1.0.0}, S ′line=S ′base=S ′online=S ′database ={}, S ′article = {0.1.1.1, 0.1.1.2} and S ′inproceedings

= {0.1.1.0}. Now, the optimal RQ found by getOptimalRQ is RQ = {article, data}
with dSim(Q,RQ) = 4 (as two term deletions are applied on Q), which is even larger

than the dissimilarity of the current 2nd-ranked RQ (in RQSortedList), i.e. 3. There-

fore, we can skip computing the SLCA results for any new RQ (other than those in

RQSortedList) found in partition D2.

Lastly, result={<RQ3 , inproceedings:0.0.1.1>} is returned as the Top-1 RQ. 2

In summary, Algorithm 5.2 reveals two major advantages: (1) Within each partition,

it is able to decide the current Top-2K RQ candidates before computing their SLCA

results. As evident in line 12-17, for a partition Dj whose associated RQ candidates

have larger dissimilarity than that of the lowest ranked RQ in RQSortedList, we can

skip computing the SLCA results of such RQ candidates on Dj (as they never can be the

top-K RQ), which is an important optimization. (2) It follows in a flow of the document

131

order, so for a query Q that needs no refinement, the refinement will immediately stop

once the first meaningful SLCA result of Q in XML data is found, thus the extra cost

spent on finding its RQs is minimized. Lastly, Lemma 5.1 and Theorem 5.1 show the

exclusive features of Algorithm 5.2.

Lemma 5.1. Algorithm 5.2’s query refinement is orthogonal to any existing method of

computing the SLCA results of a query on a certain XML document.

Proof Sketch. Algorithm 5.2 proceeds from one partition to another in document order,

where in each partition P , the RQ candidates are determined before finding their SLCA

results within P , as evident in line 10-15. Thus, it is orthogonal to the concrete methods

of computing the SLCA results of these RQ candidates.

Note that, without loss of generality, Algorithm 5.2 is orthogonal to any LCA compu-

tation methods, where the only modification is to relax the criteria of triggering a query

refinement as defined in property 1 of Definition 5.1.

Theorem 5.1. Given a query Q issued on an XML document D, Algorithm 5.2 is able to

return the Top-K RQs according to their dissimilarity dSim(Q,RQ), and meanwhile

generate their matching results within a one-time scan of related keyword inverted lists.

Proof Sketch. In Algorithm 5.2, line 4 guarantees a one-time scan of the related key-

word inverted lists. Besides, for each partition visited, function getOptimalRQ is able to

find the top-K RQs, the RQSortedList can guarantee to store the up-to-date top ranked

RQs. Lastly, by Lemma 5.1 the correctness and completeness of the matching results of

each RQ are guaranteed.

Time Complexity: If indexed lookup in [118] is adopted for SLCA computation, Al-

gorithm 5.2 costs O(F*KlogK*|S ′1|mdlog|S ′|), where S ′(S ′1) is the max (min) size

throughout lists S ′1 to S ′m; F is the fanout of document root node; m is number of

132

keywords involved and d is the document depth. The total cost by getOptimalRQ is

O(F*m3). Thus, the total cost is O(F*(KlogK*|S ′1|mdlog|S ′|+m3)).

5.5.2 Short-List Eager Algorithm

As we can see, Algorithm 5.2 requires a full scan of the related keyword inverted

lists, though it needs only one-time scan. In practice, however, the frequencies of query

keywords typically vary significantly [118]. Therefore, during the exploration of Top-K

RQs, if we can start from the RQ candidates that contain the keyword of the shortest

inverted list first, it is possible to skip the full scan of all the other inverted lists involved,

as shown in Example 5.5.

Example 5.5. Consider the Top-1 query refinement of Q={XML, database,2002} issued

on Figure 5.1. Sdatabase={0.0.1.1.0.0}, SXML ={0.0.1.0.0.0, 0.1.1.0.0.0, 0.1.1.2.0.0},

S2002={0.0.1.0.1.0, 0.1.1.2.1.0}. If we start from the shortest inverted list Sdatabase, par-

tition D1 with pid=0.0 is found to cover the first occurrence of database. Since D1

contains all the keywords of Q, there is no need to find any refinement for Q in D1 and

all the subsequent partitions. Therefore, the sequential scan of SXML and S2002 can be

avoided. 2

This idea is presented in Algorithm 5.3, which runs in two main steps. In step 1,

the Top-K RQs are found (line 5-19). In step 2, any existing method is employed to

compute the SLCA matching results for each RQ found in step 1 (line 20-21). The input

and output in Algorithm 5.3 are same as those in Algorithm 5.2. The variables that have

the same name with those in Algorithm 5.2 share the same meaning.

The core part of Algorithm 5.3 is how to set the stop condition for the Top-2K RQ

exploration, i.e. whether the potentially minimum dissimilarity is larger than the dis-

similarity of the 2K-th query in current RQSortedList when RQSortedList is already

133

Algorithm 5.3: Short-List Eager Algorithm
input : Q={k1,...,kn}, refinement ruleset R, XML document D, K
output: result={(RQ1 , SLCA(RQ1)),..., (RQK ,SLCA(RQK))}
Let RQSortedList be a list of RQs sorted by dissimilarity;1
Let KS = getNewKeywords(Q) + Q; Let Cpotential=0;2
{S1,S2,...,Sm} ← getInvertedLists(allKeywords);3
Let KSpid denote a set of keywords appearing in partition pid;4
while (Cpotential≤RQSortedList.max) do5

ki = the keyword in KS with the shortest inverted list Si;6
foreach partition Dpid in Si do7

foreach keyword k∈KS other than ki do8
if (k appears in Partition Dpid) then9

insert k into KSpid;10
{<RQi,dSim(Q,RQi)>|i∈[1,2K]} = getOptimalRQ(Q,KSpid,2K);11
foreach RQi do12

if (dSim(Q,RQi) < RQSortedList.max) then13
if (!RQSortedList.hasRQ(RQi)) then14

RQSortedList.remove(2K);15
RQSortedList.insert(<RQi,dSim(Q,RQi)>);16

KS = KS - ki; remove Si from {S1,...,Sm};17
Compute Cpotential = getOptimalRQ(Q,KS,2K);18

Apply Formula 5.10 on RQs in RQSortedList to get final Top-K RQs;19
foreach RQi∈RQSortedList do20

result.add(RQi, computeSLCAs(RQi));21

full (line 5). Cpotential denotes the potentially minimum dissimilarity for those RQ can-

didates unexplored yet. If it is greater than the dissimilarity of the 2K-th RQ in current

RQSortedList, then any RQ candidate found later can never be one of the final Top-K

RQs, and we can safely stop step 1. Otherwise, the current shortest list Si is selected, and

for each partition Dpid containing ki, keyword sequence KSpid will collect all keywords

covered in Dpid by random accessing the inverted list of each other related keyword (line

8-10). Then getOptimalRQ is invoked to find Top-2K RQs within Dpid, and qualified

RQs are put into RQSortedList (line 11-16).

A salient feature of short-list eager approach is line 17-18: at the end of each iter-

ation, all refined queries that contain ki have been identified, so the shortest list Si is

removed, and ki is removed from KS accordingly; lastly, the potentially minimum dis-

similarity Cpotential between Q and some RQ (which is a subset of the updated KS) is

computed, which will be used in the stop condition checking of next iteration.

134

In order to better understand Algorithm 5.3, a running example is shown as below.

Example 5.6. Consider a query Q4 = {XML, John, 2003} (in Table 5.1) issued on the

XML data in Figure 1, and the user expects the Top-2 refined query to be returned if Q4

needs refinement. Initially, the inverted list for each keyword is: SXML =<0.0.1.0.0.0,

0.1.1.0.0.0, 0.1.1.2.0.0>, SJohn=<0.1.0.0>, S2003=<0.0.1.1.1.0, 0.0.1.2.1.0>.

In the first iteration, the shortest inverted list is SJohn, which is contained in the

partition with pid 0.1, denoted as D0.1. Then we access SXML and S2003 to find whether

any occurrence of these two keywords is within D0.1. Then getOptimalRQ computes

the Top-4 RQ candidates (if any), each of which should contain keyword “John”. As a

result, RQa={XML, John} (where dSim(Q,RQa)=2 as a term deletion is enforced) and

RQb={John} (where dSim(Q, RQb)=4) are found and inserted into RQSortedList.

In the second iteration, keyword “2003” has the shortest inverted list and is con-

tained in partition D0.0, where keywords “2003” and “XML” are found to exist in par-

tition 0.0. Thus, RQc={2003, XML} and RQd={2003} are the candidates in D0.0 and

are inserted into RQSortedList.

Finally, assuming the query ranking model gives equal rank to each RQ, RQa and

RQc are returned as the Top-2 refined queries for Q4, as both of them have the smallest

dissimilarity. 2

Time Complexity. In the worst case, each keyword in KS is involved in Top-K RQ

exploration, and let m=|KS|. In each loop, the cost of finding all partitions covering

kj is |Sj| (line 7), so let Pkj
denote the number of partitions containing kj; random ac-

cesses to other keyword lists cost
∑|KS|

i=j+1 log|Si| (line 8-10) (assuming keyword lists

are sorted by length ahead, i.e. |Sj|≤|Si|, ∀j<i); getOptimalRQ costs 2|Q|3(line 11,17);

all the operations supported by RQSortedList is O(1). Thus, its time complexity is
∑m

j=1(|Sj| + Pkj
∗ (

∑m
i=j+1(|Q|3 + log|Si|) + Tslca)), where Tslca denotes SLCA com-

putation time for Top-K RQs, depending on the concrete algorithm adopted.

135

Discussion. First, Lemma 5.1 and Theorem 5.1 also hold for Algorithm 5.3. Second, the

performance of Algorithm 5.3 depends on two factors: (1) whether the RQs that cover

the keyword with the shortest inverted list are among the final Top-K RQs.

(2) how early the first match of each RQ in the final Top-K RQs appears in XML data.

Based on this analysis, we can have a smarter choice of ki and Si in each iteration

(line 6): the ki which either appears in the RHS of the refinement rules related to Q or

never appears in the LHS of any rule related to Q (i.e. the keyword that does not need

any refinement), and also has the shortest inverted list should be chosen first. In this way,

the RQ containing such ki should have a high probability to be one of the final Top-K

RQs, and thus the exploration of Top-K RQs can finish earlier.

As a summary, Algorithm 5.2 achieves a one-time scan of the related keyword lists

at the expense of a full scan for each related keyword list; while Algorithm 5.3 avoids

the full scan at the expense of scanning the related keyword lists multiple times. The

practical performance of these two approaches are query and data dependent.

5.5.3 Summary

We can find, the performance of the partition-based approach and short-list eager

approach depends on two important factors:

1. How many times the related keyword inverted lists are traversed.

2. Whether a full scan of the related inverted lists is needed.

There is a tradeoff between the above two factors; and these two algorithms are

designed to focus on one factor at the expense of the other factor. Therefore, there is

no such algorithm that can beat the other one all the time; the performance of both

algorithms are query and data dependent, as illustrated in section 5.7 later.

136

5.6 Index Construction

In this section, we describe the indices built for an efficient content-aware query

refinement framework.

The first index built is the traditional keyword inverted list. For each keyword k, it

stores a list of nodes that directly contain k in document order. Such order is in accor-

dance with the query processing order in both Algorithm 5.2 and 5.3. A B-tree index (on

the keyword) is built over all the inverted lists to accelerate the lookup.

As another core part of our query refinement framework, how to efficiently calculate

the ranking score of a RQ is also important. Among all the statistics needed in the whole

ranking model, FT (in Formula 5.2) and NT (in Formula 5.3) can be easily collected

when parsing the input XML document, and stored in two separate tables, where each

entry of the table corresponds to a unique node type T .

Furthermore, some statistics such as the XML term frequency tf(k, T) (in Formula

5.2) and document frequency fT
k (in Formula 5.3) involve both the node type and the

keyword. Therefore, we build another index called keyword stats table, which stores

both tf(k, T) and fT
k for each combination of keyword k and node type T in the XML

document D. In the worst case, each node type may directly contain all the distinct key-

words in D; so the space is O(m ∗ t), where m denotes the number of distinct keywords

in D and t denotes the number of node types in D (i.e. the number of distinct prefix

paths of the XML data tree). Similar to the above keyword inverted list, a B-tree index is

built on the keyword stats table for an efficient support on the following two operations:

• getTF (T, k), which returns the XML TF tf(k, T).

• getDF (T, k), which returns the XML DF fT
k .

Lastly, a keyword dependency table is built to store the statistics fT
k,ki

(in Formula

5.7). For each combination of any two distinct keywords k and ki and any node type T ,

we have an entry storing fT
k,ki

.

137

5.7 Experiments

In the experimental study, we investigate the efficiency and scalability of the two

refinement algorithms (i.e. the partition-based approach and short-list eager approach)

proposed in section 5.5, and the effectiveness of our query ranking model proposed in

section 5.3. Note that, we do not include the evaluation of the most related work [96]

which is designed for keyword query cleaning in relational database, because it is nearly

infeasible to extend it to fit into XML document, and it cannot guarantee the existence

of the matching result of the cleaned keyword query.

Equipment. All experiments are performed on a 1.9 GHz AMD DualCore PC running

Windows XP with 3GB memory. All codes are implemented in Java, and Berkeley DB

Java Edition [1] is used to store the keyword inverted lists.

Notations.

(1) SLCA refers to the scan-eager approach proposed in [118] for SLCA computation.

(2) The short-list eager and partition-based algorithm proposed in section 5.5 are called

SLE and Partition respectively. Both Partition and SLE employ the scan-eager approach

[118] in computing the SLCA results of a query.

Data set and Query Set. Since our work is an empirical study closely related to

user’s real search experience, we use real data set and real-world user queries instead

of the synthetic data sets and queries. To our best knowledge, a common problem that

all existing works in the field of XML keyword search have encountered in studying the

practicability of their approaches is the lack of real-world data sets and user queries.

Due to the lack of real-world data sets, only two real data sets DBLP [70] (420MB,

depth =2, up to 2007/12/10) and Baseball6 (1MB, depth=5) are used in our experi-

ments. DBLP contains publications in computer science; Baseball contains information

on teams and players of North American baseball league. These two real data sets differ

6http://www.ibiblio.org/xml/books/biblegold/examples/baseball/

138

from each other in terms of the data-organization and data-application: DBLP is shallow

and wide, while Baseball is deep and narrow. Our goal in choosing these diverse data

sources is to understand the usefulness of our refinement strategies in different real-world

environments.

In order to minimize the subjectivity in experimental evaluation, the most recent 1000

real-world user queries are selected from the query log of an DBLP online demo7 of our

previous work [15], out of which 219 queries (with an average length of 3.92 keywords)

that have empty result are selected to form a pool of queries that need to be refined,

which coincides with the primary motivation of this work. Besides, we randomly pick

100 queries that have meaningful matching results and add them into the query pool, in

order to increase the variety of queries. The refinement rules come from either WordNet

[44] or human annotation, and we adopt the same metrics for measuring the dissimilarity

score of each rule (except for term deletion) as described in section 5.2.2.

Same as IR query refinement approaches such as [50], we build the refinement rule

set at term-level for the four refinement operations adopted in this work by asking two

human annotators to manually refine the above 219 queries. However, the refinement is

not immediate, as there can be many possible refined queries resulted from the applica-

tion of different rules. Regarding the dissimilarity score dsr of a refinement rule r, we

adopt the same metrics as described in section 5.2.2, and dsr = 2 is assigned for a single

term deletion.

5.7.1 Sample Query Set

Sample queries with a refinement using a typical operation are shown in Table 5.3,

5.4, 5.5 and 5.6 respectively, where in each table the 3rd column shows the refinements

returned by our method, and the 4th column shows the cardinality of results based on the

7http://xmldb.ddns.comp.nus.edu.sg

139

Table 5.3: Sample Query Sets for Term Deletion
ID Initial Query Suggested Refinements Results

QD1 Ling,Tok,Wang,twig,pattern,join delete “pattern” or “join” 2 or 5
QD2 Yufei,Tao,skyline,2000 delete “2000” 5
QD3 Tan,Kian,Lee,keyword,search delete “keyword” 8
QD4 XML,view,model,1995 delete “XML” or “1995” 4 or 8
QD5 XML,graph,keyword,search delete “XML” or “graph” 1 or 22
QD6 Ooi,Beng,Chin,Jagadish,index delete “Jagadish” or “index” 8 or 11
QD7 Yannis,graph,keyword,search delete “Yannis” or 1 or 10

“graph” or “keyword” or 1

Table 5.4: Sample Query Sets for Term Merging
ID Initial Query Suggested Refinements Results

QM1 Jia,wei,han,2006 Jiawei 35
QM2 Xiao,fang,zhou,2005 Xiaofang 16
QM3 on,line,news,paper online,newspaper 6
QM4 electronic,text,book textbook 6
QM5 xml,key,word,search keyword 21
QM6 online,hand,writing handwriting 47
QM7 work,shop,data,management,korea workshop 2
QM8 net,work,routing,protocol network 59
QM9 micro,array,gene,classification,selection microarray 21
QM10 over,lay,routing,cost overlay 3

corresponding RQ. Besides, queries involving multiple mixed refinements, i.e. QX1-

QX6, are shown as below.

QX1:{eficient, key, word, search}, which can be refined by substituting “efficient” for

“eficient”, followed by a merging of “key” and “word”.

QX2:{eficient, sky, line, computation}, where a desired refinement is {efficient, skyline,

computation}.

QX3:{worldwide, web, search, engine} can be refined by either adopting worldwide→world,wide

or www→ worldwide web.

QX4:{inproceeding, xml, twig, match} can be refined by substituting “inproceedings”

for “inproceeding”, “matching” for “match”.

QX5:{suficient, bundary, values} can be refined by a series of substitutions: suficient→

140

Table 5.5: Sample Query Sets for Term Split
ID Initial Query Suggested Refinements Results

QP1 adhoc,search ad,hoc 14
QP2 webpage,filtering,2006 web,page 2
QP3 fulltext,search,networks full,text 3
QP4 floatingpoint,function floating,point,function 10
QP5 multiquery,processing multi,query 24
QP6 realtime,application,analysis real,time 11
QP7 hengtao,shen,video,2007 heng,tao 5

Table 5.6: Sample Query Sets for Term Substitution
ID Initial Query Suggested Refinements Results
QS1 Jagadish,VLBD VLDB 41
QS2 machin,learning,technique machine 9
QS3 Jim,Gary,VLDB Gray 8
QS4 principle,component,neural,network principal 18
QS5 xml,document,object,model DOM 11
QS6 extensible,markup,language,application XML 71
QS7 privacy,preserving,cluster clustering 24
QS8 fuzy,database,search fuzzy 4
QS9 DASFA,2007,XML DASFAA 11
QS10 distributed,allocation,chanel channel 42
QS11 search,bundary,constraints boundary 2

sufficient, bundary→boundary, values→value.

QX6:{private, data, preserve} can be refined by a series of substitutions: private→privacy,

preserve→preservation.

5.7.2 Efficiency

In this section, we evaluate the efficiency of SLE and Partition by measuring the

latency between a query is issued and its Top-K RQs with their matching SLCA results

are returned.

Efficiency on sample queries We first evaluate SLE and Partition for Top-1 query re-

finement on all sample queries in Table 5.3 to 5.6 plus QX1-QX6. We also compare them

141

with a naive approach, where we first process the initial query and then enumerate all the

RQ candidates if necessary, and try them one by one (in a descending order of its query

rank) until a user is satisfied with the query results; while the time spent on user judge-

ment is not counted. Besides, we record the time spent on processing the initial query

by SLCA [118] to understand the extra cost brought by the exploration of RQs. Note

that directly processing the initial query without refinement may return either empty or

meaningless results.

Figure 5.5(a)-5.5(e) show the elapsed time for all sample queries that need refinement

(on hot cache), where we have four observations.

(1) Both Partition and SLE outperform the naive approach for all sample queries;

Partition is about twice faster than SLE.

(2) SLCA spends the least evaluation time, as it is only responsible for processing the

initial query which even has no meaningful matching result. In contrast, Partition brings

a very small extra cost (about 30% in average), but serves both the purpose of producing

the top-1 RQ and finding its matching result in XML data tree.

(3) SLE outperforms Partition for QD2 and QX3, because the keyword with the short-

est inverted list is also in the final Top-1 RQ, so that the full scan of corresponding

inverted lists is avoided.

(4) Interestingly, we find for QM10, QS3, QS11 and QD7, Partition is even more ef-

ficient than SLCA which does not perform any refinement operation. This can be ex-

plained that the extra cost spent by Partition on computing the ranking scores of the RQ

candidates is even smaller than the cost by SLCA in computing the meaningless LCAs

(i.e. the document root node) for those queries.

Lastly, we randomly pick 10 queries that do not need refinement and test the elapsed

time by SLE, Partition and SLCA. As shown in Figure 5.5(f), in average both SLE and

Partition spend about 20% extra time as compared to SLCA, which is acceptable.

142

5.7.3 Scalability

In order to test the scalability of SLE and Partition in Top-K query refinement, we

design two experiments.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

A
v
er

ag
e

E
v
al

u
at

io
n
 T

im
e

(s
)

K

SLE
Partition

(a) DBLP

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6

A
v
er

ag
e

E
v
al

u
at

io
n
 T

im
e

(m
s)

K

SLE
Partition

(b) Baseball

Figure 5.3: Effects of K on Top-K Query Refinement

Firstly, we measure the effects of different choices of K on the evaluation time of

Top-K query refinement, where K∈[1,6]. A batch of 40 random queries with an average

length of 3.71 for DBLP and 20 random queries with an average length of 3.18 for

Baseball are tried, and the average time of those queries in five executions are shown in

Figure 5.3. As evident from Figure 5.3(a), Partition scales well all the way, while SLE’s

time increases much faster when K>3. Since SLE has to find all Top-K RQs before

evaluating them, the larger the K is, the more extra time on dissimilarity computation

is, and more times of keyword lists scan are needed in employing existing methods to

find SLCA results. In contrast, for Partition approach, the larger the K is, the higher

possibility that the lower-ranked RQs and their SLCA results (that are detected before

the higher-ranked queries) are preserved (rather than pruned away), so less extra cost is

introduced. For Baseball data, both algorithms scale equally well, as shown in Figure

5.3(b).

Secondly, we measure the response time of Top-3 query refinement by SLE and Par-

tition over the data sets of different size, which are obtained from DBLP (420MB), and a

143

 0

 0.5

 1

 1.5

 2

 2.5

 3

20 40 60 80 100

E
v

al
u

at
io

n
 T

im
e

(s
)

Percentage(%)

SLE
Partition

Figure 5.4: Effects of Data Size on Top-3 RQ Computation

batch of 40 random queries are used again. As shown in Figure 5.4, both approaches have

a good scalability over the data size. Note that SLE has a significant increase from 60%

to 80%, as SLE’s efficiency relies heavily on how early the Top-K RQs are detected,

which consequently affects the number of random accesses to the keyword inverted lists.

5.7.4 Effectiveness of Query Refinement

Having verified the efficiency of our algorithms, in the sequel we assess the effec-

tiveness of our query ranking model.

Evaluation method

Traditional IR evaluation methods include precision, recall, F-measure [80], recipro-

cal rank [16] etc; however, all of them are based on a binary judgement (which judges a

result to be either relevant or irrelevant). In contrast, by taking into account the fact that

all results are not of equal relevance to users, Cumulated Gain-based evaluation (CG)

[59] is proposed to combine the degree of relevance of the results and their ranks (af-

fected by their possibility of relevance) in a coherent way, no matter what the recall base

size is. In particular, given a ranked result list, [59] turns the list to a gained value vector

G[i], which denotes the relevance score of the ith result retrieved; then a cumulated gain

144

vector CG is defined recursively as shown in Formula 5.12, where CG[i] is computed by

summing G[1] up to G[i]. Discounted CG (DCG) is designed to model user persistence

to weigh down the gain from results found later in examining long ranked result lists, we

refer interested readers to [59] for details. In our experiment, we adopt CG rather than

DCG to evaluate the effectiveness of our query ranking model, as the ranked query list

is usually not too long and all users participated in experiment are patient.

CG[i] =

G[i] if i = 1

CG[i− 1] + G[i] otherwise
(5.12)

Table 5.7: Top-4 ranked RQs with their result number
Q RQ1 RQ2 RQ3 RQ4

QM1 jiawei,h,2006; 35 h,w,2006; 45 j,w,2006; 29 h,j,2006; 9
QM2 xiaofang,z,2005; 16 xiaofang,z; 91 x,z,2005; 27 f,z,2005; 7
QM9 microarray,g,c,s; 21 microarray,g,s; 60 array,g,c,s; 2 m,a,c,s; 1
QS3 J,Gray,VLDB; 8 J,Gary;21 J,VLDB; 11 G,VLDB; 4
QS5 XML,DOM; 11 d,o,m;9 XML,o,m; 5 XML,d,m;8
QS6 XML,a; 71 m,l,a;6 e,m,l; 22 l,a; 189
QP3 full,text,s,n; 3 t,s,n; 7 f,t,n; 5 f,s,n; 3
QP6 real,time,ap,an; 11 ap,an; 1187 realtime,ap;5 realtime,an; 2
QX1 efficient,keyword,s; 19 efficient,k,s; 4 word,s; 21 key,w,s; 1
QX2 efficient,skyline,c; 8 skyline,c; 13 eff,skyline; 17 efficient,l,c;4
QX3 world,wide,w,s,e;9 www,s,e;39 web,s,e;156 w,w,w,s;43

Effectiveness study

In order to study the empirical effects of our query ranking model, all queries tested

are real-world user queries as logged in our XML keyword search engine [15]. For each

query, we extract its Top-4 RQs. Six researchers are invited for relevance judgement of

query refinement on DBLP, as DBLP is one of the few large real XML data sets, and the

six researchers use DBLP to find papers frequently, which helps make their judgement

more reliable. They are asked to look into each RQ and its matching results carefully,

and judgements are done on a four-point scale as: (1) irrelevant, (2) marginally relevant,

145

(3) fairly relevant, (4) highly relevant. As mentioned in [59], a proper choice of relevance

score depends on the evaluation context. Thus, we use moderate relevance scores (say,

0-1-2-3) for the above four-point scale, as we assume that our users are patient enough

to dig down the results of low-ranked RQs.

Table 5.7 shows the Top-4 RQs and their result numbers (separated by semicolon) for

some queries in Table 5.3-5.6. For simplicity, each keyword is denoted by its first letter

if no ambiguity is caused. For each query in Table 5.7, all six users have an agreement

that its Top-1 refined query RQ1 is the most appropriate refinement.

Next, we make an in-depth analysis of the query ranking model. As the overall rank

of a RQ consists of two complementary parts, i.e. similarity score and dependency score,

we conduct two sets of experiments to test their respective effects individually.

Table 5.8: Query Statistics
Refinement Num

Term Merging 18
Term Split 10

Term Substitution 31
Term Deletion 4

In the first experiment, we investigate the query ranking model that takes the sim-

ilarity score into account alone. As Guidelines 1-4 (in section 5.3.1) contribute to the

similarity score of a RQ, we test how each of them contributes to the overall quality. Let

RS0 denote the original ranking scheme, and RSi denote a variant of RS0 by removing

Guideline i from consideration for i∈[1,4]. In our experiment, we adopt the above

CG evaluation but the input now is a ranked list of RQs (associated with their matching

results). 50 queries that have no meaningful result on DBLP, involve various refine-

ment(s) and have at least 4 possible RQ candidates, are chosen from our query pool.

Table 5.8 shows a summary of the number of queries that involve the four refinement

operations respectively. The decay factor w in Formula 5.6 is set to 0.7 here.

146

Table 5.9: CG@4 by different ranking models
Variants CG[1] CG[2] CG[3] CG[4]

RS0 2.631 3.562 4.233 4.539
RS1 2.343 3.491 4.127 4.516
RS2 2.416 3.525 4.161 4.525
RS3 2.427 3.509 4.058 4.497
RS4 2.305 3.456 4.16 4.521

Table 5.9 shows the results of the average CG values judged by the above 6 users for

Top-K RQs, for K=1 to 4. (1) From column 2 of Table 5.9, we find the original ranking

model, i.e. RS0 is the most effective one that can capture the most relevant result as

Top-1 RQ, compared to all its four variants. (2) By comparing CG[i] of each model for

i∈[0,4], we find the original ranking model outperforms all its four variants in finding

the Top-K RQs for any K∈[1,4]. (3) In finding the Top-1 RQ, Guideline 4 plays a

much more important role than other guidelines, as CG[1] of RS4 has the smallest value.

(4) From the last column of Table 5.9, we find both the original ranking model and its

four variants have similar value for CG[4], which means all of them are able to find the

desired Top-4 RQs, although the relative ranks of these RQs vary in each variant.

Table 5.10: CG@4 by different weights

[α,β] CG[1] CG[2] CG[3] CG[4]
[1,2] 2.626 3.56 4.217 4.532
[2,1] 2.64 3.565 4.241 4.537
[1,1] 2.675 3.569 4.236 4.543
[1,0] 2.631 3.562 4.233 4.539

In the second experiment, we test a combined effect of the similarity score and the

dependency score of a RQ. The importance of these two factors are investigated by

varying the choice of the tunable parameters α and β in Formula 5.10. From the result

as shown in Table 5.10, we have the following observations: (1) By comparing variants

[1,1] and [1,0], we find the consideration of the dependency score does improve the

147

overall effectiveness of our query ranking model. (2) By comparing the CG[1] for all

the variants, we find the similarity score is more effective than the dependency score in

contributing to infer the Top-1 RQ.

Conclusion In summary, the naive query refinement approach is not adequate due to its

costly query time; the original SLCA algorithm without refinement functionality is not

reliable because it fails to report meaningful answers for many queries. In contrast, SLE

and Partition can detect and produce high quality refined queries and their matching

results in an efficient way. Overall the best solution is the Partition algorithm, which

offers the best-fit refinement and scales better than SLE. Furthermore, the comprehensive

CG evaluation demonstrates the effectiveness of our query ranking model.

5.8 Summary

In this chapter, we introduced the problem of content-aware XML keyword query

refinement, aiming to integrate the job of finding the desired refined queries and gener-

ating their matching results as a single problem, with no intervention on user part. We

first described the criteria to trigger a query refinement and introduce the concept of

dissimilarity as a preliminary quality metric of a refined query RQ. As a core part of

this work, we proposed a statistics-based query ranking model which takes into account

of both the keyword dependencies in RQ and the relevance of RQ w.r.t original search

intention. We further proposed two adaptive query refinement algorithms. Lastly, exper-

iments have shown the efficiency and effectiveness of our approach. In future, we would

like to study another extreme - how to refine a query which has “too many” matching

results over the XML data.

148

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

QD1 QD2 QD3 QD4 QD5 QD6 QD7

E
va

lu
at

io
n

T
im

e
(m

s)

SLCA
naive
SLE

Partition

(a) Delete

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8 QM9 QM10

E
va

lu
at

io
n

T
im

e
(m

s)

SLCA
naive
SLE

Partition

(b) Merge

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

QS1 QS2 QS3 QS4 QS5 QS6 QS7 QS8 QS9 QS10 QS11

E
va

lu
at

io
n

T
im

e
(m

s)

SLCA
naive
SLE

Partition

(c) Substitution

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

QP1 QP2 QP3 QP4 QP5 QP6 QP7

E
va

lu
at

io
n

T
im

e
(m

s)

SLCA
naive
SLE

Partition

(d) Split

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

QX1 QX2 QX3 QX4 QX5 QX6

E
va

lu
at

io
n

T
im

e
(m

s)

SLCA
Naive

SLE
Partition

(e) Mix

 0

 50

 100

 150

 200

 250

 300

QN1 QN2 QN3 QN4 QN5 QN6 QN7 QN8 QN9 QN10

E
va

lu
at

io
n

T
im

e
(m

s)

SLCA
SLE

Partition

(f) no refinement

Figure 5.5: Top-1 sample query refinement on DBLP

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Keyword search over semi-structured and structured data offers users great oppor-

tunities to explore more well-organized data. XML, as a kind of semi-structured data,

has enabled data exchange over the internet. Therefore, there is rapidly growing aware-

ness of the needs for providing effective and efficient XML keyword search method in

both academic and commercial communities. However, traditional information retrieval

style keyword search methods (designed for unstructured documents) are inappropriate

or inadequate in the context of XML keyword search, due to its inability to take the

hierarchical structure of XML data into consideration.

Building an effective XML keyword search engine has revealed various research

problems, such as the design of appropriate matching semantics, the design of effective

result ranking scheme such that most users can find their desired ones in top-k results

returned, the design of appropriate indexing method for efficient computation of both

149

150

result retrieval and result ranking, result snippet generation, keyword query refinement

etc. This thesis mainly resolves the effectiveness issue by combining the contemporary

DB and IR technologies, which is line with the trend of DB&IR integration [34, 12]. In

particular, this thesis contributes on the identification of user search intention, the design

of result ranking scheme and the keyword query refinement, as listed below.

• Keyword query processing over tree-structured XML data We discovered the

keyword ambiguity problem in XML keyword search: a query keyword can appear

as the tag name of or (part of) the value of a node in XML data, or (part of) the

value of different nodes in XML data to express different meanings. In particular,

we first proposed to identify the type of a node by its prefix path, and defined

document frequency (DF) and term frequency (TF) in XML context. XML TF

fa,k counts the frequency of a term k in leaf node a, and XML DF fT
k counts

how many nodes of type T (in XML data) containing a particular keyword k.

Then in inferring the most promising search target, we have found: the desired

search target should be a node type T , whose associated subtrees can cover as

many distinct query keywords as possible, and should maximize other relevant

information and minimize the irrelevant information. Based on this observation,

we carefully designed a formula to quantify the confidence of a certain node type

in XML data to be the desired search target w.r.t. a user query. Similarly, since

the search constraint of a user query is usually not unique due to the occurrence

of the above keyword ambiguities, we further capture the structural distance of

neighboring query keywords in XML data and the proximity between keyword

and the node type (as a search constraint) in measuring the confidence of potential

search constraints w.r.t the query. Then we incorporated them into the design of

our XML TF*IDF result ranking scheme to rank the individual matches of all

possible search intentions. Lastly, we built a system prototype called XReal [18],

151

and experimentally showed the effectiveness of our approach on XML real data

set.

• Keyword query processing over digraph-structured XML data We observed

that when XML data is modeled as a directed graph where ID references between

XML elements are considered, more relevant results can be found. We also ob-

served that whenever user issues a query, what he/she is really interested in is either

a single object of interest or a list of objects of interest that interact in somehow a

meaningful relationship, though users may not know such relationship explicitly.

Therefore, we modeled XML document as a set of interconnected object-trees,

where each object tree is a subtree representing a concept in real world, and are in-

terconnected by either the containment edge (i.e. p-c edge) or reference edge (i.e.

the edge between nodes of type ID and IDRef). Based on this model, we propose

object-level matching semantics called Interested Single Object (ISO) and Inter-

ested Related Object (IRO) to capture single object and multiple objects (related

via IDRef or containment edges) as user’s search target respectively. An immedi-

ate benefit is that, the matching result is of finer granularity to user’s search needs

than previous works. Moreover, we designed efficient algorithms to find ISO and

IRO matching results, and customized ranking schemes for ISO and IRO results

respectively.

• Query refinement for XML keyword search User queries may contain irrele-

vant or mismatched terms, typos etc, which may easily lead to empty or mean-

ingless results under the widely adopted conjunctive matching semantics (such as

SLCA) in the context of XML keyword search. Therefore, we issued the problem

of XML keyword query refinement, where the search engine should judiciously

decide whether a user query Q needs to be refined during the processing of Q, and

find a list of promising refined query candidates which guarantee to have meaning-

152

ful matching results over the XML data, without any user interaction for all cases.

To achieve this goal, we built a novel content-aware XML keyword query refine-

ment framework which consists of two core parts: (1) we devised a statistics-based

query ranking model to evaluate the quality of a refined query RQ of Q, which

captures the morphological and/or semantical similarity between Q and RQ and

the dependency of keywords in RQ over the XML data; (2) we integrate the ex-

ploration of RQ candidates and the generation of their matching results as a single

problem, to guarantee the meaningfulness of the refined query found w.r.t. the

XML data being queried. Moreover, it can be fulfilled within a one-time scan

of the related keyword inverted lists optimally. Experiments on real-world data

set by queries of real users have verified the efficiency and effectiveness of our

refinement framework.

6.2 Future Work

How to resolve the keyword ambiguity in interpreting a user query has always been

the most concerned problem in XML keyword search. While this thesis has presented

several solutions, there are several directions we would like to work on this problem in

the future.

• Personalization of Search Results. Existing XML keyword search methods focus

on providing a relevance-oriented result ranking scheme to every user; however,

different users may issue the same query with different search intentions, where

the objective relevance score may not address the subjective individual search in-

tention problem. In our first work as described in Chapter 3, besides automatically

selecting the most promising search target for user, we may achieve a better re-

sult by offering a user interaction: i.e. before finding the final matching results,

153

we first compute all the promising search target candidates, from which we allow

user to select his/her desired search target(s), as done in [18]. Web search has

tried to build user profile by looking into user’s long term search history, click-

through streams and data usage, in order to provide a high-quality user-oriented

search to satisfy various information needs from different individuals. As XML is

deployed to represent more and more information and data in internet, it demands

for a similar search result personalization and proactive support for user’s infor-

mation need. In contrast to the unstructured document on web, keyword search

on semi-structured data (such as XML) poses more challenges on analyzing user

preferences, where not only the content of results, but also the structure of results

should be considered. Furthermore, we plan to exploit the personalization tech-

niques to enhance the effects of our query refinement work in Chapter 5, as it can

help provide a customized suggestion w.r.t each specific user, which can alleviate

the machine efforts in enumerating all possible suggestions at query-level only.

• Improvement on Query Form. Most of the time, the keyword ambiguity problem

is attributed to the free form of keyword query itself. In contrast, the structured

query language (e.g. XQuery) is expressive and leads to a unique search intention.

Therefore, how to add some structured constraints on keyword query (e.g. user can

roughly specify the ancestor-descendant relationship between any two keywords in

the query, or specify those keywords that must appear together as part of the value

by enclosing them by double quotes, etc.) according to user’s own knowledge-

level while alleviating user efforts in learning much syntax of structured query

languages is a promising research direction. So far, several preliminary solutions

in the context of XML search have been proposed: XSEarch [38] requires user

to differentiate the tag name and value in his/her keyword query; DaNaLIX [78]

provides users a generic natural language interface to specify their information

154

need and translate it into XQuery expressions. However, how to improve the pre-

cision of interpretation of the search intention is still a long way to go. We believe

one possible solution is to design an easy-to-use user interaction in clearing the

ambiguities of query keywords.

• Result Diversification. When a user’s underlying information need cannot be un-

ambiguously determined from an initial query, an effective approach is to diversify

the search results of this query, where diversification aims to find k items which

are subset of all relevant results that contain both the most relevant and the most

diverse results. However, increasing the diversity leads to a decrease in relevance,

and it has been proven to be NP-hard [49] to find the optimal trade-off between

diversity and relevance in the context of web search. It is an issue orthogonal to

the result ranking scheme design, where diversification aims to display the results

representing as many user search intents as possible in top-k results, while result

ranking work solves the problem at individual result level and aims to display the

results with as high relevance score as possible to satisfy most users’ search in-

tentions (as most users have the same intention for a particular query). It is also

complementary to the issue of improvement on query form, because it improves

the search quality from the perspective of internal implementation of search en-

gine, whereas the above achieves so from the perspective of user-interface design

of search engine. In particular, we find there are three future works to do: (1)

How to define the dimension of diversity and features of diversity specific to XML

database. (2) How to find a greedy approximation solution to strike a well balance

between diversity and relevance of a result for most user information needs. (3)

How to define appropriate metric to evaluate the effectiveness of the result diver-

sification for XML keyword query.

155

Another independent problem we would like to investigate is how to support keyword

search over probabilistic XML databases. In web 2.0 period, many data are generated

either by automated information extraction which usually brings unexpected errors, or

by integration from various data sources that may be uncertain to a certain degree. Since

XML is able to represent data uncertainty of different degrees more naturally (by its hi-

erarchical structure) and its semi-structured nature is tailored for the above information

extraction and data integration applications, abundant uncertain data is being stored in

XML format, which is called as probabilistic XML database formally [91]. In existing

data models for probabilistic XML database, each node is associated with a probability

assigned conditionally based on the probability of its parent node. We believe that there

is a demanding need for querying on such probabilistic XML data for ordinary user in

future, where keyword query will remain the most popular way to explore such uncertain

data. Here, we list three challenges to be addressed. First, in deciding what a qualified

result should be, instead of only enforcing the occurrences of all query keywords, how

to incorporate the probability of each individual matching node for a matching result is

a very critical problem. Second, it calls for an intuitive and appropriate combination of

the relevance scoring function with the probability of the matching nodes in computing

the ranking score of a matching result. In particular, it should adapt the traditional prob-

abilistic data model and information retrieval model to tailor for XML context in order

to have a strong theoretical guarantee for the resulted ranking scheme over uncertain

XML data. Third, as compared to the keyword query processing over certain XML data

which can skip the computation towards nodes which can not be the SLCA result [118]

or contributing to the same SLCA result [104], now for each keyword, we may need to

access all its related nodes and even all its ancestor nodes to compute the probability of

the SLCA result under nowadays probabilistic XML data models. An efficient method

that caters for both result finding and probability computation is demanded.

BIBLIOGRAPHY

[1] Berkeley DB. http://www.sleepycat.com/.

[2] http://www.cs.washington.edu/research/xmldatasets.

[3] http://www.xml-benchmark.org/.

[4] INEX. initiative for the evaluation of xml retrieval. http://inex.is.informatik.uni-

duisburg.de/.

[5] The internet movie database. http://www.imdb.com/interfaces.

[6] Information processing – text and office systems – standard generalized markup

language (sgml), 1985. International Organization for Standardization.

[7] XRel: a path-based approach to storage and retrieval of xml documents using

relational databases. ACM Trans. Internet Technol., 1(1):110–141, 2001.

[8] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The lorel query

language for semistructured data. In International Journal on Digital Libraries

1(1), pages 68–88, 1997.

156

157

[9] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. In SIGMOD, pages 207–216, 1993.

[10] S. Agrawal, S. Chaudhuri, and G. Das. DBXPlorer: A system for keyword-based

search over relation databases. In Proc. of ICDE Conference, pages 5–16, 2002.

[11] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas,

and Divesh Srivastava. Structural joins: A primitive for efficient xml query pattern

matching. In ICDE, pages 141–152, 2002.

[12] Sihem Amer-Yahia, Djoerd Hiemstra, Thomas Roelleke, Divesh Srivastava, and

Gerhard Weikum. Db&ir integration: report on the dagstuhl seminar. SIGIR

Forum, 42(2):84–89, 2008.

[13] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank Pandit. Flexpath:

flexible structure and full-text querying for xml. In SIGMOD conference, 2004.

[14] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. Objectrank:

Authority-based keyword search in databases. In VLDB, pages 564–575, 2004.

[15] Zhifeng Bao, Bo Chen, Tok Wang Ling, and Jiaheng Lu. Demonstrating effective

ranked XML keyword search with meaningful result display. In DASFAA, 2009.

[16] Zhifeng Bao, Tok Wang Ling, Bo Chen, and Jiaheng Lu. Effective XML keyword

search with relevance oriented ranking. In ICDE, 2009.

[17] Zhifeng Bao, Tok Wang Ling, Jiaheng Lu, and Bo Chen. Semantictwig: A se-

mantic approach to optimize XML query processing. In DASFAA, pages 282–298,

2008.

[18] Zhifeng Bao, Jiaheng Lu, and Tok Wang Ling. XReal: An interactive XML key-

word searching. In In Proceedings of the 19th CIKM Conference, 2010.

158

[19] Zhifeng Bao, Jiaheng Lu, Tok Wang Ling, and Bo Chen. Towards an effective

XML keyword search. IEEE Trans. Knowl. Data Eng., 2010.

[20] Zhifeng Bao, Jiaheng Lu, Tok Wang Ling, Liang Xu, and Huayu Wu. An effective

object-level XML keyword search. In DASFAA (1), pages 93–109, 2010.

[21] Zhifeng Bao, Huayu Wu, Bo Chen, and Tok Wang Ling. Using semantics in XML

query processing. In ICUIMC, pages 157–162, 2008.

[22] Doug Beeferman and Adam Berger. Agglomerative clustering of a search engine

query log. In KDD, 2000.

[23] A. Berglund, S. Boag, and D. Chamberlin. XML path language (XPath) 2.0. W3C

Working Draft 23 July 2004.

[24] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and

S. Sudarshan. Keyword searching and browsing in databases using banks. In

Proc. of ICDE Conference, pages 431–440, 2002.

[25] S. Boag, D. Chamberlin, and M. F. Fernandez. Xquery 1.0: An XML query

language. W3C Working Draft 22 August 2003.

[26] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Tim Bray Tex-

tuality. Extensible markup language (xml) 1.0 (second edition), 2000.

[27] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. Computer Networks, 30(1-7):107–117, 1998.

[28] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal

xml pattern matching. In SIGMOD Conference, pages 310–321, 2002.

[29] Chris Buckley. Automatic query expansion using smart: Trec 3. In TREC, pages

69–80, 1995.

159

[30] David Carmel, Yoëlle S. Maarek, Matan Mandelbrod, Yosi Mass, and Aya Soffer.

Sea- rch xml documents via xml fragments. In SIGIR, pages 151–158, 2003.

[31] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. Xml-gl:

a graphical language for querying and restructuring xml documents. In In Proc.

of the Eighth Int’l World Wide Web Conference, May 1999.

[32] D. D. Chamberlin, J. Robie, and D. Florescu. uilt: An xml query language for

heterogeneous data sources. In Proc. of the Third Int’l Workshop on the Web and

Databases, pages 53–62, 2000.

[33] Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel,

Sudipto Guha, and Ming Li. Approximation algorithms for directed steiner prob-

lems. In SODA Conference, pages 192–200, 1998.

[34] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard Weikum. Integrating db

and ir technologies: What is the sound of one hand clapping? In CIDR, pages

1–12, 2005.

[35] Liang Jeff Chen and Yannis Papakonstantinou. Supporting top-k keyword search

in xml databases. In ICDE, pages 689–700, 2010.

[36] Ting Chen, Jiaheng Lu, and Tok Wang Ling. On boosting holism in xml twig

pattern matching using structural indexing techniques. In SIGMOD Conference,

pages 455–466, 2005.

[37] Sara Cohen, Yaron Kanza, Benny Kimelfeld, and Yehoshua Sagiv. Interconnec-

tion semantics for keyword search in xml. In CIKM, pages 389–396, 2005.

[38] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. XSEarch: A

semantic search engine for XML. In VLDB, pages 45–56, 2003.

160

[39] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to algorithms, second edition, 2001.

[40] A. Deutsch, M. F. Fernndez, and D. Florescu. A query language for xml. In World

Wide Web Consortium, 1998.

[41] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin.

Finding top-k min-cost connected trees in databases. Data Engineering, Interna-

tional Conference on, pages 836–845, 2007.

[42] Ahmad El Sayed, Hakim Hacid, and Djamel Zighed. Mining semantic distance

between corpus terms. In PIKM, 2007.

[43] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms

for middleware. In PODS ’01: Proceedings of the twentieth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, pages 102–113,

2001.

[44] Christiane Fellbaum. Wordnet: an electronic lexical database.

[45] Alan Feuer, Stefan Savev, and Javed A. Aslam. Evaluation of phrasal query sug-

gestions. In CIKM, pages 841–848, 2007.

[46] Norbert Fuhr and Kai Großjohann. Xirql: A query language for information re-

trieval in xml documents. In SIGIR, pages 172–180, 2001.

[47] J. Teevan G. Murray. Query log analysis: social and technological challenges. In

SIGIR forum, 2007.

[48] Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation

algorithm for the group steiner tree problem. In SODA, pages 253–259, 1998.

161

[49] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result di-

versification. In WWW ’09: Proceedings of the 18th international conference on

World wide web, pages 381–390, 2009.

[50] Jiafeng Guo, Gu Xu, Hang Li, and Xueqi Cheng. A unified and discriminative

model for query refinement. In SIGIR, pages 379–386, 2008.

[51] Lin Guo, Jayavel Shanmugasundaram, and Golan Yona. Topology search over

biological databases. In ICDE, pages 556–565, 2007.

[52] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. XRANK:

Ranked keyword search over XML documents. In SIGMOD, 2003.

[53] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. Blinks: ranked keyword

searches on graphs. In SIGMOD, 2007.

[54] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword prox-

imity search in XML trees. In TKDE, pages 525–539, 2006.

[55] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient ir-style

keyword search over relational databases. In VLDB ’2003: Proceedings of the

29th international conference on Very large data bases, pages 850–861, 2003.

[56] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in

relational databases. In Proc. of VLDB Conference, pages 670–681, 2002.

[57] Vagelis Hristidis, Yannis Papakonstantinou, and Andrey Balmin. Keyword prox-

imity search on XML graphs. In ICDE, pages 367–378, 2003.

[58] Yu Huang, Ziyang Liu, and Yi Chen. Query biased snippet generation in xml

search. In SIGMOD Conference, pages 315–326, 2008.

162

[59] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR

techniques. ACM Trans. Inf. Syst., 20(4), 2002.

[60] Haifeng Jiang, Wei Wang 0011, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig

joins on indexed xml documents. In VLDB, pages 273–284, 2003.

[61] Haifeng Jiang, Hongjun Lu, and Wei Wang 0011. Efficient processing of twig

queries with or-predicates. In SIGMOD Conference, pages 59–70, 2004.

[62] Haifeng Jiang, Hongjun Lu, Wei Wang 0011, and Beng Chin Ooi. Xr-tree: Index-

ing xml data for efficient structural joins. In ICDE, pages 253–263, 2003.

[63] Rosie Jones and Daniel Fain. Query word deletion prediction. In SIGIR, 2003.

[64] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Generating query

substitutions. In WWW, pages 387–396, 2006.

[65] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi De-

sai, and Hrishikesh Karambelkar. Bidirectional expansion for keyword search on

graph databases. In VLDB, 2005.

[66] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,

46(5):604–632, 1999.

[67] Lingbo Kong, Rémi Gilleron, and Aurélien Lemay Mostrare. Retrieving meaning-

ful relaxed tightest fragments for xml keyword search. In EDBT ’09: Proceedings

of the 12th International Conference on Extending Database Technology, pages

815–826, 2009.

[68] Reiner Kraft and Jason Zien. Mining anchor text for query refinement. In WWW,

pages 666–674, 2004.

163

[69] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional

random fields: Probabilistic models for segmenting and labeling sequence data. In

ICML ’01: Proceedings of the Eighteenth International Conference on Machine

Learning, pages 282–289, 2001.

[70] Michael Ley. DBLP computer science bibliography record.

http://www.informatik.uni-trier.de/ ley/db/.

[71] Changqing Li and Tok Wang Ling. Qed: a novel quaternary encoding to com-

pletely avoid re-labeling in xml updates. In CIKM ’05: Proceedings of the 14th

ACM international conference on Information and knowledge management, pages

501–508, 2005.

[72] Changqing Li, Tok Wang Ling, and Min Hu. Efficient processing of updates in dy-

namic xml data. In ICDE ’06: Proceedings of the 22nd International Conference

on Data Engineering, 2006.

[73] Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. Effective keyword

search for valuable lcas over xml documents. In CIKM, pages 31–40, 2007.

[74] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou.

Ease: Efficient and adaptive keyword search on unstructured, semi-structured and

structured data. In SIGMOD, 2008.

[75] Mu Li, Yang Zhang, Muhua Zhu, and Ming Zhou. Exploring distributional sim-

ilarity based models for query spelling correction. In ACL, pages 1025–1032,

2006.

[76] Q. Li and B. Moon. Indexing and querying XML data for regular path expressions.

In Proc. of VLDB, pages 361–370, 2001.

164

[77] Wen. Syan Li, K. Selcuk Candan, Quoc Vu, and Divyakant Agrawal. Retrieving

and organizing web pages by information unit. In WWW, pages 230–244, 2001.

[78] Yunyao Li, Ishan Chaudhuri, Huahai Yang, Satinder Singh, and H. V. Jagadish.

Danalix: a domain-adaptive natural language interface for querying xml. In SIG-

MOD ’07: Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, pages 1165–1168, 2007.

[79] Yunyao Li, Cong Yu, and H.V. Jagadish. Schema-free XQuery. In VLDB, pages

72–83, 2004.

[80] Ziyang Liu and Yi Chen. Identifying meaningful return information for xml key-

word search. In SIGMOD, 2007.

[81] Ziyang Liu and Yi Chen. Reasoning and identifying relevant matches for xml

keyword search. PVLDB, 1(1):921–932, 2008.

[82] Ziyang Liu, Peng Sun, and Yi Chen. Structured search result differentiation.

PVLDB, 2(1):313–324, 2009.

[83] Jiaheng Lu, Zhifeng Bao, Tok Wang Ling, and Xiaofeng Meng. Content-aware

query refinement in xml keyword search. Submitted to IEEE rans. Knowl. Data

Eng.

[84] Jiaheng Lu, Zhifeng Bao, Tok Wang Ling, and Xiaofeng Meng. XML keyword

query refinement. In KEYS, pages 41–42, 2009.

[85] Jiaheng Lu, Tok Wang Ling, Zhifeng Bao, and Chen Wang. Extended xml tree

pattern matching: Theories and algorithms. IEEE Trans. Knowl. Data Eng., 2010.

165

[86] Jiaheng Lu, Tok Wang Ling, Chee Yong Chan, and Ting Chen. From region en-

coding to extended dewey: On efficient processing of xml twig pattern matching.

In VLDB, pages 193–204, 2005.

[87] Yi Luo, Xuemin Lin, Wei Wang 0011, and Xiaofang Zhou. Spark: top-k keyword

query in relational databases. In SIGMOD Conference, pages 115–126, 2007.

[88] Eve Maler, Steve DeRose, Eve Maler (arbortext, and Steve Derose (inso Corp.

Xml pointer language (xpointer), 1998.

[89] Alexander Markowetz, Yin Yang, and Dimitris Papadias. Keyword search on

relational data streams. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, pages 605–616, 2007.

[90] Yosi Mass and Matan Mandelbrod. Component ranking and automatic query re-

finement for xml retrieval. In INEX, 2004.

[91] Andrew Nierman and H. V. Jagadish. Protdb: Probabilistic data in xml. In In

Proceedings of the 28th VLDB Conference, pages 646–657. Springer, 2002.

[92] Hanglin Pan, Anja Theobald, and Ralf Schenkel. Query refinement by relevance

feedback in an xml retrieval system. In ER, 2004.

[93] Desislava Petkova, W. Bruce Croft, and Yanlei Diao. Refining keyword queries

for xml retrieval by combining content and structure. In ECIR, 2009.

[94] David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft. Table extraction

using conditional random fields. In SIGIR ’03: Proceedings of the 26th annual

international ACM SIGIR conference on Research and development in informaion

retrieval, pages 235–242, 2003.

166

[95] Ken Q. Pu. Keyword query cleaning using hidden markov models. In KEYS ’09:

Proceedings of the First International Workshop on Keyword Search on Structured

Data, pages 27–32, 2009.

[96] Ken Q. Pu and Xiaohui Yu. Keyword uery cleaning. In VLDB, volume 1, pages

909–920, 2008.

[97] Yonggang Qiu and Hans-Peter Frei. Concept based query expansion. In SIGIR,

pages 160–169, 1993.

[98] Lawrence R. Rabiner. Readings in speech recognition. chapter A tutorial on hid-

den Markov models and selected applications in speech recognition, pages 267–

296. 1990.

[99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. Html 4.01 specification, 1999.

W3C Recommendation, http:// www.w3c.org/TR/html401.

[100] Ian Ruthven. Re-examining the potential effectiveness of interactive query expan-

sion. In SIGIR, pages 213–220, 2003.

[101] Gerard Salton and Michael J. McGill. Introduction to Modern Information Re-

trieval. McGraw-Hill, Inc., 1986.

[102] Albrecht Schmidt, Martin L. Kersten, and Menzo Windhouwer. Querying xml

documents made easy: Nearest concept queries. In ICDE, pages 321–329, 2001.

[103] Amanda Spink, Bernard J. Jansen, Dietmar Wolfram, and Tefko Saracevic. From

e-sex to e-commerce: Web search changes. IEEE Computer, 35(3):107–109,

2002.

[104] Chong Sun, Chee Yong Chan, and Amit K. Goenka. Multiway slca-based key-

word search in xml data. In WWW, 2007.

167

[105] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasundaram, Eu-

gene Shekita, and Chun Zhang. Storing and querying ordered xml using a rela-

tional database system. In SIGMOD, pages 204–215, 2002.

[106] Anja Theobald and Gerhard Weikum. The index-based xxl search engine for

querying xml data with relevance ranking. In EDBT, pages 477–495, 2002.

[107] Martin Theobald, Holger Bast, Debapriyo Majumdar, Ralf Schenkel, and Gerhard

Weikum. Topx: efficient and versatile top-k query processing for semistructured

data. The VLDB Journal, 17(1):81–115, 2008.

[108] Quang Hieu Vu, Beng Chin Ooi, Dimitris Papadias, and Anthony K. H. Tung. A

graph method for keyword-based selection of the top-k databases. In SIGMOD

Conference, pages 915–926, 2008.

[109] Huayu Wu, Tok Wang Ling, Gillian Dobbie, Zhifeng Bao, and Liang Xu. Re-

ducing graph matching to tree matching for XML queries with id references. In

DEXA (2), pages 391–406, 2010.

[110] Huayu Wu, Tok Wang Ling, Liang Xu, and Zhifeng Bao. Performing grouping

and aggregate functions in XML queries. In WWW, pages 1001–1010, 2009.

[111] X. Wu, M. Lee, and W. Hsu. A prime number labeling scheme for dynamic

ordered XML trees. In Proc. of ICDE, pages 66–78, 2004.

[112] Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Structural join order selection

for xml query optimization. In ICDE, pages 443–454, 2003.

[113] XSLT. http://www.w3.org/Style/XSL/.

[114] Jinxi Xu and W. Bruce Croft. Improving the effectiveness of information retrieval

with local context analysis. ACM Trans. Inf. Syst., 18(1):79–112, 2000.

168

[115] Liang Xu, Zhifeng Bao, and Tok Wang Ling. A dynamic labeling scheme us-

ing vectors. In DEXA ’07: Proceedings of the 18th international conference on

Database and Expert Systems Applications, pages 130–140, 2007.

[116] Liang Xu, Tok Wang Ling, Zhifeng Bao, and Huayu Wu. Efficient label encoding

for range-based dynamic XML labeling schemes. In DASFAA, 2010.

[117] Liang Xu, Tok Wang Ling, Huayu Wu, and Zhifeng Bao. Dde: from dewey to a

fully dynamic XML labeling scheme. In SIGMOD, pages 719–730, 2009.

[118] Yu Xu and Yannis Papakonstantinou. Efficient keyword search for smallest LCAs

in XML databases. In SIGMOD, 2005.

[119] Yu Xu and Yannis Papakonstantinou. Efficient lca based keyword search in xml

data. In EDBT, pages 535–546, 2008.

[120] Bei Yu, Guoliang Li, Karen Sollins, and Anthony K. H. Tung. Effective keyword-

based selection of relational databases. In SIGMOD, pages 139–150, 2007.

[121] Xiaohui Yu and Huxia Shi. Query segmentation using conditional random fields.

In KEYS ’09: Proceedings of the First International Workshop on Keyword Search

on Structured Data, 2009.

[122] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On support-

ing containment queries in relational database management systems. In Proc. of

SIGMOD Conference, pages 425–436, 2001.

[123] Junfeng Zhou, Zhifeng Bao, Tok Wang Ling, and Xiaofeng Meng. MCN: A new

semantics towards effective xml keyword search. In DASFAA, pages 511–526,

2009.

