
Philosophy Doctor Thesis

Video Quality for Video Analysis

By

Pavel Korshunov

Department of Computer Science

School of Computing

National University of Singapore

2011

Philosophy Doctor Thesis

Video Quality for Video Analysis

By

Pavel Korshunov

Department of Computer Science

School of Computing

National University of Singapore

2011

Advisor: Dr. Wei Tsang Ooi
Deliverables:

Thesis: 1 Volume

Abstract

Video analysis algorithms are commonly used in a wide range of applications, including
video surveillance systems, video conferencing, autonomous vehicles, and social web-based ap-
plications. It is typical in such systems to transmit video or images over an IP-network from
video sensors or storage facilities to the remote processing servers for subsequent automated
analysis. As video analysis algorithms advance to become more complex and robust, they start
replacing human observers in these systems. The situation when algorithms are receivers of
video data creates an opportunity for more efficient bandwidth utilization in video streaming
systems. One way to do so is to reduce the quality of the video that is intended for the algo-
rithms. The question is, however, can algorithms accurately perform on the video with lower
quality than a typical video intended for human visual system? And if so, what is the minimum
quality that is suitable for algorithms?

Video quality is considered to have spatial, SNR, and temporal components and normally
a human observer is the main judge of whether the quality is high or low. Therefore, quality
measurements, methods of video encoding and representation, and ultimately the size of the
resulted video are determined by the requirements of human visual system. However, we can
argue that computer vision is different from human vision and therefore has its own specific
requirements to video quality and quality assessment.

Addressing this issue, we first conducted experiments with several commonly used video
analysis algorithms to understand their requirements on video quality. We chose freely available
and complex algorithms including two face detection algorithms, face recognition, and two object
tracking algorithms. We used JPEG compression, nearest neighbor scaling, bicubic scaling,
frame dropping, and other algorithms to degrade video quality, calling such degradations video
adaptations. Experiments demonstrated that video analysis algorithms maintain high level of
accuracy until video quality is reduced to a certain minimal threshold. We term such threshold
the critical video quality. Video with this quality has much lower bitrate compared to the video
compressed for human visual system.

Although this result is promising, given a video analysis algorithm, finding its crirtical
video quality is not a trivial task. In this thesis, we apply an analytical approach to estimate
the critical video quality. We develop a rate-accuracy framework based on the notion of rate-
accuracy function, formalizing the tradeoff between algorithm’s accuracy and video quality. This
framework addresses the dependency between video adaptation used, video data, and accuracy
of video analysis algorithms.

The principal part of the framework is to use reasoning about key elements of the video
analysis algorithm (how it operates), essential effects of video adaptations on video (how it
reduces quality), and if available, the semantic information about video (what is the video’s
content). We show that, based on such reasoning and a number of heuristic measures, we can
also reduce the amount of experiments for finding critical video quality.

We also argue that in practice, an approximation of the critical video quality can be sufficient.
We propose using video quality metrics to estimate its value. Since today’s metrics are developed
for human visual system, new metrics needs to be developed for video analysis. We propose
two types of metrics. One type is based on the measurement of visual artifacts that video
encoders introduce to video such as blockiness and blurriness metrics. Another type is a general
measurement of information loss, for which we propose to use measure of mutual information.
We demonstrate that visual artifacts based metrics give more accurate video assessments but
work only for certain video adaptations; while mutual information is more conservative but

can be used for larger variety of video adaptations and is easier to compute. For temporal
video quality, we study the effect of frame dropping on tracking algorithms. We demonstrated
that by reasoning about tracking algorithms, as well as additional knowledge about tracked
objects (measurements of its speed and size), we can estimate the value of critical frame rate
analytically, or even approximate the tradeoff between tracking accuracy and video bitrate.

To summarize the contribution of the thesis: (i) we demonstrate on the few video analysis
algorithms their tolerance to low critical video quality, which can lead to significant bitrate
reductions when such an algorithm is the only “observer” of the video; (ii) we argue that
finding such video quality is a hard task and suggest estimating it using algorithm-tailored
metrics; and (iii) we demonstrate benefits in designing algorithms tolerant to reduced video
quality and video encoders customized for video analysis.

Subject Descriptors:
I.2.10 Vision and Scene Understanding
C.2.4 Distributed Systems

Keywords:
Video Analysis Algorithm, Video Quality, Blockiness, Blurriness, Mutual Information, Video

Surveillance

iii

Acknowledgement

First of all, I would like to thank my advisor Wei Tsang Ooi for guiding me relentlessly and

patiently through the Research Valley, which while being exciting and utterly rewarding in

many ways, is still a very hard journey. I also want to thank my parents, my three younger

brothers, and my little sister for being always there for me, even though we were separated by

10000 miles. Without family, I would not be able to push this work through to the finish line.

Table of Contents

Title i

Abstract ii

Acknowledgement iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Contributions . 10
1.2 Background . 11
1.3 Video Analysis Algorithms . 12

1.3.1 Face Detection . 12
1.3.2 Recognition . 14
1.3.3 Tracking . 15

1.4 Video Adaptations and Video Assessment . 16
1.5 Video Surveillance Systems . 19
1.6 Our Architecture of Video Surveillance System 23

2 Literature Review 26
2.1 Rate-Distortion Theory and Utility Function . 26
2.2 Semantic Video Reduction . 30
2.3 Scalability of Video Surveillance . 31

2.3.1 Sensor Networks . 32

3 Video Quality and Video Analysis: Motivation and Overview 34
3.1 Rate-Accuracy Tradeoff . 35
3.2 Overview of Experiments . 38

3.2.1 Test Data . 38
3.2.2 Video Adaptations . 43
3.2.3 Algorithms Accuracy . 45

4 Finding Critical Video Quality 47
4.1 Face Detection . 47

4.1.1 SNR quality . 48
4.1.2 Scaling quality . 53

4.2 Face Recognition . 59
4.3 Face Tracking . 60

v

4.4 Blob Tracking . 63

5 Rate-Accuracy Framework 68
5.1 Rate-Accuracy Function . 69
5.2 Estimation of the Rate-Accuracy Function . 71

5.2.1 Straightforward Approach . 72
5.2.2 Video Features . 74
5.2.3 Analysis of Video Features . 78
5.2.4 Identifying and Measuring Video Features 78
5.2.5 Reducing Experimental Complexity Using Video Features 82

6 SNR Quality Estimation 86
6.1 Blockiness Metric . 87

6.1.1 Face Detection . 88
6.1.2 Face Recognition . 92
6.1.3 Blurriness Metric . 92
6.1.4 Mutual Information Metric . 94
6.1.5 Combining Several Video Adaptations . 98
6.1.6 Lab Experiments . 99

7 Temporal Quality Estimation 103
7.1 Blob Tracking Algorithm . 104
7.2 CAMSHIFT Algorithm . 108
7.3 Adaptive Tracking . 110

8 Conclusion 114
8.1 Related Publications . 116

A Prototype of the Video Surveillance System A-1

References A-6

vi

List of Figures

1.1 An example of rate-accuracy tradeoff for a video analysis algorithm. 6
1.2 A process of finding critical video quality for a video analysis algorithm when

video is degraded with a video adaptation. 8
1.3 Dropping i out of i + j frames. i is the drop gap. 17
1.4 Architecture of Distributed Video Surveillance System. 24

3.1 Example of how video degradation (JPEG compression) can affect video analysis
algorithm (Viola-Jones face detection). Displayed image is degraded using JPEG
quantizer values 100, 50, 25, and 9. 35

3.2 Frame of the video used in experiments demonstrated in Figure 3.3. Network
camera Axis 207 was used. 36

3.3 Accuracy of Viola-Jones face detection algorithm vs. compression and scaling
adaptations, as well as their combination. 37

3.4 Snapshot examples of videos used in our experiments. 40
3.5 Video surveillance scenario of combining scaling and compression adaptations to

further reduce bitrate. 46

4.1 Haar-like features used by Viola-Jones face detection algorithm. 48
4.2 Accuracy of face detection algorithms vs. JPEG compression quality. 49
4.3 CDF for minimal face detection quality. Viola-Jones face detection. 50
4.4 CDF for Minimal Face Detection Quality for Different Face Size. P=3, T=-

0.0001. Viola-Jones face detection. 51
4.5 CDF for Minimal Face Detection Quality for Different Face Size. P=4, T=-1.0. . 51
4.6 Accuracy of Viola-Jones and Rowley algorithms when MIT/CMU images are

scaled with nearest neighbor to various spatial resolutions. 54
4.7 Examples of Viola-Jones detection for different resolutions of the practical video. 55
4.8 Degrading scaling quality for Viola-Jones face detection, MIT/CMU dataset. . . 56
4.9 Degrading scaling quality for Rowley face detection, MIT/CMU dataset. 56
4.10 MIT/CMU images are prescaled with nearest neighbor and compressed with

JPEG for Viola-Jones and Rowley algorithms. 57
4.11 The effect of image down-scaling (to 30%) followed up by its up-scaling to original

size. The image is from MIT/CMU dataset. Nearest neighbor scaling is used. . . 57
4.12 Identification CMC value of face recognition vs. scaling quality of scaling and

JPEG compression algorithms. 60
4.13 Identification CMC value of face recognition vs. JPEG compression algorithms. . 60
4.14 Average error vs. drop gap for CAMSHIFT algorithm. Video was compressed to

quality 100 in 4.14(a)and quality 50 in 4.14(b). 62
4.15 A snapshot frame from a test video for CAMSHIFT face tracking. In (a) it is

compressed with quality 100 and in (b) with quality 50. 63
4.16 Critical drop gap vs. compression quality. 63

vii

4.17 The schema of the difference between object foreground detection for original
video and for video with dropped frames. 65

4.18 The foreground object detection based on frame differencing. 65
4.19 Accuracy of blob tracking algorithm for VISOR (snapshot in Figure 3.4(f)) and

PETS2001 (snapshot in Figure 4.18(a)) videos. 66
4.20 Accuracy of blob tracking algorithm for PETS2001 video compressed with quality

10 and 20. 67

5.1 The relationship between video analysis algorithms and video adaptations. 76

6.1 Value of blockiness metric vs. JPEG compression quality for different modifica-
tions of JPEG algorithm. 89

6.2 Accuracy of Viola-Jones and Rowley face detection algorithms vs. JPEG com-
pression quality for different modifications of JPEG algorithm. 90

6.3 Blockiness metric vs. scaling quality for nearest neighbor 6.3(a) and pixel area
relation 6.3(b) scaling algorithms. 93

6.4 Nearest neighbor and pixel area relation scaling algorithms demonstrate a strong
blockiness artifact. An example image is from Yale dataset. 94

6.5 Bicubic and bilinear scaling algorithms demonstrate a strong blurriness artifact.
An example image is from Yale dataset. 94

6.6 Blurriness metric vs. scaling quality for bicubic 6.6(a) and bilinear 6.6(b) scaling
algorithms. 95

6.7 Mutual information vs. accuracy of face detection and face recognition algo-
rithms. Different curves correspond to different types of video adaptations. . . . 97

6.8 Mutual information vs. accuracy of face detection and face recognition algo-
rithms. Different curves correspond to different combinations of nearest neighbor
scaling and JPEG compression. 98

6.9 An example of original video frame (JPEG compression value 90) used in practical
tests (a) and an example of test frame scaled with nearest neighbor to 30%
followed by JPEG compression with quality 20 (b). 100

7.1 Accuracy of original and adaptive blob tracking algorithm for PETS2001 video
(snapshot in Figure 4.18(a)). 107

7.2 Accuracy of original and adaptive blob tracking algorithm for VISOR video (snap-
shot in Figure 3.4(f)). 108

7.3 Accuracy of original and adaptive CAMSHIFT tracking algorithm for video with
slow moving face (snapshot in Figure 4.15(a)). 109

7.4 Accuracy of original and adaptive CAMSHIFT tracking algorithm for video with
fast moving face (snapshot in Figure 4.15(a)). 111

A.1 Sample video shots used in experiments on the prototype video surveillance system.A-3
A.2 Video bitrate when a face comes in and out of the camera’s view for H.261 and

MJPEG video codecs. A-4

viii

List of Tables

3.1 Summary of datasets used in the experiments with different video analysis algo-
rithms. 39

3.2 Summary of video adaptations used in the experiments with different video anal-
ysis algorithms. 43

4.1 Experiments with Face Detection Algorithm and Actual Surveillance Image Set
of 237 Faces. 52

4.2 Up-scaling 160×120 video to higher spatial size for Viola-Jones face detection to
notice small faces. 55

4.3 Critical spatial qualities and corresponding reduction in bitrate for several scaling
algorithms and Viola-Jones and Rowley face detection. 58

5.1 Profiles of Video Matching Required for Face Tracking Accuracy of 0.3. 71

6.1 Critical video qualities and corresponding average images sizes estimated with
blockiness metric for Viola-Jones (a) and Rowley (b) algorithms with original
and modified JPEG compressions. 91

6.2 The reduction of video bitrate: original video, degraded video for face detection
(FD), and for face recognition (FR) algorithms. 100

ix

Chapter 1

Introduction

We can describe the basic tasks of video analysis as automated extraction, processing, and

structuring of essential information from images and image sequences obtained in the real world.

These tasks are performed by video analysis algorithms, which define the way computers can

“see” the world. The collection of such algorithms forms the field of computer vision, which is

defined by Haralick and Shapiro as “science that develops the theoretical and algorithmic basis

by which useful information about the world can be automatically extracted and analyzed from

an observed image, image set, or image sequence from computations made by special-purpose

or general-purpose computers” (Haralick & Shapiro, 1993).

In the last decade, computer vision research produced complex, fast, and accurate video

analysis algorithms. Such characteristics as “complex”, “fast”, and “accurate” are relative

to the specific tasks, previous approaches, or our expectations. Today’s algorithms are com-

plex in a sense that they are useful in many practical operations of detection, identification,

and tracking of objects and events. Algorithms’ speed is acceptable and is often real-time for

conventional video sizes due to the latest advances in computing speed and optimizations in al-

gorithms computations. The improvement in accuracy was influenced by many openly available

datasets containing large collections of practical video and image data for testing of video anal-

ysis algorithms. Regularly organized competitions and challenges also motivate further growth

of algorithms’ performance. Therefore, with the latest increases in efficiency and reliability of

video analysis algorithms, it is reasonable to say that computer vision is not only enhancing

1

but is replacing human vision in many practical applications.

The number of applications that rely or incorporate video analysis as a part of their core

functionality is constantly growing. Traditionally, such applications include security-based ap-

plications such as video surveillance, visual biometric, and personal identification. In recent

years, other types of video analysis-based application have emerged. Autonomous vehicles and

unmanned aircrafts are good examples of such systems. Social applications such as social net-

works and photo sharing services started integrating face detection and recognition into their

services. Many brands of hand held-photo and video cameras, as well as camera phones also

include, at least, a face detection algorithm. Video analysis algorithms are also becoming an

important integral part of video conferencing systems, systems for intelligent homes, care and

nursery systems that watch over elderly and disabled people, and so on. Let us demonstrate

how these intelligent and automated systems benefit from the video analysis algorithms.

New generation of video surveillance is one of the most prominent applications relying on

video analysis algorithms. The research goal for such systems is to relieve human guard from

the constant monitoring task of the surveillance site. Specifically, the aim is to alert the human

guard only in situations when an action or a human intervention is required, for instance if video

analysis algorithms detect and identify a suspicious person, object or event. According to Wu

et al., suspicious events are rare in typical surveillance environment (Wu, Jiao, Wu, Chang, &

Wang, 2003b), which makes the goal feasible and achievable, subject to acceptable accuracy and

efficiency of video analysis. The recent availability of fast computers, cheap video sensors, and

advances in network technology brought the research in surveillance systems closer to this goal.

But not only that, it also greatly expanded the range of surveillance applications from being

used mainly for conventional monitoring of government or military facilities to an essential part

of traffic control systems and integral part of intelligent homes. These advances made video

surveillance a commodity easily available to general public. For example, in 2006, it was reported

in the news1 that in England there were more than 4 million surveillance cameras installed in the

public places. London alone had about 500 thousands cameras in place. These figures indicate

1http://news.bbc.co.uk/2/hi/uk news/6108496.stm

2

the increasing demand for efficient video analysis algorithms that can be easily deployed over

existing infrastructure and can relieve human guards from the unnecessary surveillance tasks.

While the surge in hardware and network availability has given surveillance a new life, it

has also sparked new types of video analysis-based applications, for example, in unmanned

autonomous vehicles and aircrafts. The DARPA Grand Challenge2 for autonomous vehicles is

a prominent demonstration of the latest advances in computer vision and machine learning.

The latest 2007 Urban Challenge required vehicles to navigate in suburban-like environment

with heavy traffic, while obeying traffic laws, being able to drive around a parking lot as well as

automatically react to road blocks and unexpected obstacles. The participating vehicles used

GPS systems, radars, laser sensors, and video cameras to navigate themselves in a desert and

urban environments. Although lasers and GPS were the most popular means of orientation

among participating teams, video analysis was used for scene visualization, road detection,

object detection and image filtering. The reason for relying more on GPS and laser systems in

automatic navigation is that video analysis algorithms have not yet reached the level of maturity

required by demanding practical applications. But because video is such a natural type of data

for people, video analysis tools, though limited, are still implemented whenever possible.

Video analysis algorithms are also being integrated into various social services and collabo-

rative systems. In video conferencing and presentation capturing systems algorithms are used

for automated control and position of the cameras, for switching between the cameras and

projectors, for zooming on faces of the speakers, etc. Photo sharing web services like Picasa3

provide face detection algorithms for identifying people on the uploaded pictures. In Japan,

many mobile phones are equipped with automated recognition of 2D barcodes, which are be-

coming very popular for encoding advertisements or additional information about the items

in shops, information signs, etc. With an increasing accuracy of video analysis, many more

applications can be developed. For instance, one could use mobile camera phone for automated

tagging of friends on a photo or identification of the current location based on analysis of a

landmark captured in the picture. It is evident that video analysis algorithms have grown to

2http://www.darpa.mil/grandchallenge/index.asp
3http://picasa.google.com/

3

become essential components in diverse range of conventional and newly emerging applications

and technologies.

Many intelligent automated applications, examples of which we described above, rely on

IP-based network for video or image transmission. It can be attractive for these applications

to capture a video first and transmit it to a remote location for an automated processing later.

There can be several reasons to perform video analysis remotely. For instance, the protection

of intellectual property such as video analysis algorithms or increase in system’s efficiency (it is

easy to increase/decrease computational power of remote proxies when necessary) can be such

reasons. Running video analysis algorithms remotely also allows using cheap video sensors with

no computational power, which decreases the cost of the system. However, video streaming,

whether it is necessary or attractive, comes at the tradeoff of the system’s scalability. Video

and images are conventionally bandwidth demanding data while the network bandwidth is a

constrained resource. Therefore, there is a tradeoff between the number of videos that can be

streamed through network and the quality (bitrate) of each video.

In this study, we address the problem of video streaming, considering systems that signifi-

cantly rely on video analysis, with algorithms being main observers of the video. We also focus

on a subset of such systems that use IP-network to transmit captured video to the remote

location for its subsequent automated processing. Aside from some of the examples described

above, we assume a typical representative system to be a video surveillance system with the

following architecture. IP-based video cameras transmit video to remote processing proxies

running video analysis algorithms. Each proxy relays the video to a monitor station (human

guard) only in cases where something suspicious happens at the surveillance site. As it was

stated above, suspicious events are typically rare (Wu et al., 2003b), therefore, most of the

times, the video is transmitted only between cameras and proxies.

In such automated networked systems, solving a scalability problem comes down to un-

derstanding the requirements that video analysis algorithms pose to video quality. To our

knowledge, however, there has been no systematic research in understanding of these require-

ments. For a given video analysis algorithm, such questions like how much video quality can

4

be sacrificed while not changing algorithm’s accuracy or how to determine a sufficient video bi-

trate do not have clear answers. Typically, a newly proposed video analysis algorithm is tested

on a set of video or images encoded with a quality conventional to human vision system. For

instance, the survey of face detection algorithms by Hjelmas and Low (Hjelmas & Low, 2001)

discusses and compares the performance of about ten different algorithms. Their accuracy is

tested using the subsets of image dataset collected by MIT and CMU, well known as MIT/CMU

dataset. However, such datasets consist of photos or video frames encoded for viewing by a hu-

man. In this thesis, we argue that computer vision is different from human vision and therefore

its requirements to video quality should be studied differently.

There are few studies, particularly in the compression domain, that notice the effects of

decrease in video quality on the accuracy of video analysis algorithms. Eickeler et al. (Eickeler,

Muller, & Rigoll, 2000) propose a face recognition algorithm comparing its performance with

several other recognition algorithms. In one of the experiments, the authors record the accuracy

of their algorithm by running it on Olivetti Research Laboratory face database compressed

to different JPEG compression ratios. The results demonstrate that the algorithm has no

significant decline in accuracy until the compression ratio 7.5 : 1. Funk et al. (Funk, Arnold,

Busch, & Munde, 2005) degrade test images with various compression qualities of JPEG and

JPEG2000 to find how differently these compression algorithms affect performance of several

fingerprint and face recognition algorithms. While concluding that JPEG compression has

a higher impact than JPEG2000, the important result is that the tested algorithms show a

decrease in accuracy only when images are highly compressed (based on the figure shown in the

paper, to 10 times in terms of file sizes). Another study by Delac et al. (Delac, Grgic, & Grgic,

2005) also compares the effect of JPEG and JPEG2000 on several modifications of recognition

algorithms. The conclusion the authors make is that “not only that compression does not

deteriorate performance but it, in some cases, even improves it slightly” (Delac et al., 2005).

The above results can be summarized and represented by illustration in Figure 1.1. It depicts

the trend that accuracy of the described video analysis algorithms show when video quality

is decreased. The figure essentially demonstrates a tradeoff between accuracy of an algorithm

5

ac
cu

ra
cy

Q bitrate

Figure 1.1: An example of rate-accuracy tradeoff for a video analysis algorithm.

and video bitrate, suggesting a certain sweet spot, the value of video quality, until which the

accuracy remains the same as for original video. From the figure, it is evident that algorithms

perceive video quality differently compared to humans.

However, noticing and stating the difference between computer vision and human vision

perceptions of video quality is not sufficient for practical applications. It is important to un-

derstand if the rate-accuracy tradeoff given in Figure 1.1 is common for different kinds of video

analysis algorithms. If so, the presence of such sweet spot can have important implications, as

it suggests a limit on video quality and bitrate. Therefore, the thesis aims to study and answer

the following questions:

• Determine if the rate-accuracy tradeoff in Figure 1.1 is common for various types of

algorithms. Verify if it has a sweet spot.

• Understand how to find such tradeoff (or sweet spot) in practice for a given video analysis

algorithm.

• Analyze the practical usefulness for the rate-accuracy tradeoff in automated network based

systems. Study how knowing the tradeoff can improve scalability of such systems.

To answer these questions, we first, picked several commonly used and freely available video

analysis algorithms. We use face detection, face recognition, face tracking, and blob track-

ing, which represent various types of video analysis algorithms. The algorithms are (i) Viola-

Jones (Viola & Jones, 2004) and Rowley (Rowley, Baluja, & Kanade, 1998) face detection

algorithms (ii) QDA-based recognition algorithm (Lu, Plataniotis, & Venetsanopoulos, 2003)

(iii) CAMSHIFT (Bradski, 1998) face tracking algorithm, and (iv) a blob tracking, which uses

6

frame-differencing foreground object detection (Li, Huang, Gu, & Tan, 2003). There are other

reasons for choosing these types of algorithms. Face detection and recognition are popular algo-

rithms in large variety of applications from security systems to photo cameras. The availability

of standard test data with ground truth is an extra reason to experiment with face detection

and face recognition. Since these algorithms require only still images to work, we also consider

face and blob tracking algorithms to study the impact of temporal component of the video on

video analysis. Blob tracking is also commonly used in outdoor video surveillance systems.

To determine the tradeoff between video bitrate and accuracy of the algorithms, we measure

the changes in accuracy for each algorithm with input video of different quality. To change video

quality we use such video adaptations as JPEG compression, frame dropping, as well as bicubic,

nearest neighbor, and pixel area relation spatial scaling. In agreement with Figure 1.1, we

find that video analysis algorithms show almost no degradation in accuracy until a certain

threshold, the corresponding quality for which we term critical video quality. We demonstrate

that encoding video with critical video quality can amount to significant video bitrate reductions,

e.g., 23 times for Viola-Jones face detection algorithm.

However, given a video analysis algorithm, how do we find its critical video quality? The

naive approach is to empirically search for critical quality by running the algorithm with differ-

ently degraded videos, and find the video of the lowest quality, with which the algorithm still

works well. These are the types of experiments that we first perform with our selected video

analysis algorithms. In such empirical experiments, the components that participate in forming

the rate-accuracy tradeoff are treated as black boxes. This process is illustrated by Figure 1.2.

The figure shows how a video adaptation is used to degrade video quality; then, based on the

performance of video analysis algorithm (in our case, it is accuracy), the process either loops

back to continuing degrading video, or stops since value of critical video quality is found. In

such scenario, neither information about video analysis algorithm, nor semantics of the video,

nor the specific properties of video adaptations are considered. However, such information can

help in avoiding unnecessary experiments. For instance, increasing frame rate does not help to

improve the accuracy of a typical object detection algorithm, since object detection does not

7

video video adaptation video analysis

algorithm

degraded

video

accuracy
foundnot found

Figure 1.2: A process of finding critical video quality for a video analysis algorithm when video
is degraded with a video adaptation.

rely on the temporal video component. This is a simple and intuitive example, but it illustrates

that by knowing an algorithm’s requirements, we can limit the scope of the experiments needed

for find the critical quality value. Therefore, instead of using a black box blind approach, by

analyzing each component of Figure 1.2, we can develop framework that can be used in practice.

In general, however, determining the requirements of a video analysis algorithm to video

quality is a hard problem. Because the number of algorithms is very large and they are highly

heterogeneous, we cannot generalize results on finding critical quality using just a few algo-

rithms. Also, many non-trivial algorithms are based on neural networks or alike and are trained

on rich empirical data (natural video or images). Such design of the algorithms prevents any

justifiable formal analysis of their performance and generalization of the experiments. But

since performing blind experiments for every different video analysis algorithm is undesirable,

we propose to use a combination of reasoning/analysis (whenever possible) and experimental

heuristics. We use a notion of rate-accuracy function as the centerpiece of the rate-accuracy

framework, and a set of guidelines on how to use reasoning and heuristics for estimating critical

video quality value. We identify a set of video properties that are crucial for a given video

analysis algorithm. By studying the effect of a video adaptation on these video properties, we

estimate how adaptation affects accuracy of the algorithm.

One important step in estimating critical video quality is to have metrics of video quality

that are (i) suitable for video analysis algorithms and (ii) adequately measure degradation by

video adaptations. For SNR video quality, the available metrics, such as PSNR4, SIMM (Wang,

4Peak signal-to-noise ratio is commonly used as the quality metric of lossy compression codecs.

8

Bovik, Sheikh, & Simoncelli, 2004), PEVQ5, are not suitable, because they were developed to

measure the quality from the human perspective. To accommodate video analysis algorithms,

we propose using metrics of visual artifacts (which manifest a strong video alteration), such as

blockiness and blurriness, as well as adaptation independent measure of mutual information.

We show that these metrics satisfy both above criteria. We find that the use of common metrics

in a system that implements several video analysis algorithm and video adaptations can help

in estimation of critical video quality, which reduces the number of experiments needed to

find it. Therefore, the practical implementation of the critical video quality concept becomes

more attractive. Based on our experiments, artifact metrics show higher precision in estimation

of the critical video quality. Mutual information, however, is independent of the choice of

video adaptation, though it is less precise compared to artifact metrics. As for temporal video

quality, we show that by analyzing tracking algorithms and the effect of frame dropping on the

speed of the tracked object, the critical frame rate can be found analytically without running

experiments.

Use of reasoning/analysis opens possibilities for tuning video analysis algorithms to be more

robust against the degradation of video quality. We show that by modifying face and blob

tracking algorithms (adjusting video analysis algorithm’s component of Figure 1.2) we can

make them more tolerant to a lower frame rate. The algorithms are adjusting to the drops in

frame rate using the measurements of speed and size of the tracked object and the estimation

of these values after the next frame drop. Predicting where the object is likely to move after

the frame drop reduces the chance of losing the object by tracking algorithm.

On the other hand, a JPEG compression algorithm can be modified (adjusting video adap-

tation’s component of Figure 1.2) without affecting the accuracy of face detection algorithms,

which we demonstrate by simplifying JPEG quantization table. Originally JPEG is designed

to suit human visual system, perceptional requirements of which are incorporated into quanti-

zation table. Different implementations of JPEG have different quantization tables but all of

them are obtained experimentally and usually are hard-coded into the algorithms. For video

5Perceptual Evaluation of Video Quality, more details here: http://www.pevq.org/

9

analysis algorithms, we replaced such table with a table constructed with a simple formula,

which reflects the principles of quantization but does not contain information related to human

perception. Such manipulation simplifies JPEG algorithms, since it removes the requirement of

hard-coding YUV quantization tables.

1.1 Contributions

This work is the first to extensively study the tradeoff between accuracy of the video analysis

algorithms and video quality and bitrate. Our results demonstrate that computer vision is

different from human vision. Requirements of particular video analysis algorithm to video

quality are easier to find, compare to human visual system, because with algorithms we can

just run experiments and measure the resulted accuracy. However, video analysis algorithms

are not so uniformed in the way they perceive video compared to humans. Such heterogeneity

makes it hard to develop metrics of video quality adequate for all algorithms. It is also hard to

design a uniform approach to finding critical video quality for various algorithms. Addressing

this problem, we propose using metrics of video quality of two types: specific metrics selected

based on the type of video encoding used and video analysis algorithm and metrics that measure

general loss of information such as mutual information measure.

Armed with algorithm-specific video quality metrics, we focus our attention on the relation-

ship between video analysis algorithms and video encoders. We show that new video analysis

algorithms can be designed to accept low or purposely reduced quality of the video. Also, we

believe that developing video encoders tuned to computer vision instead of human vision can

improve the general robustness and stability of the video analysis algorithms as well as their

tolerance to lower video quality.

The following summarizes the contributions of this thesis:

• We introduce the notion of critical video quality. A video analysis algorithm does not

show significant loss of accuracy when ran on video with critical video quality or higher.

Furthermore, video with this quality has much lower bitrate compared to the video con-

ventionally encoded for human visual system. Therefore, we can save bandwidth when

10

video is streamed for computer vision.

• To avoid searching exhaustively for the value of critical video quality, we propose estimat-

ing it using video quality metrics that are selected specifically for a given video analysis

algorithm.

• Using blob tracking and CAMSHIFT algorithms as examples, we demonstrate that video

analysis algorithms can be designed to tolerate low video quality.

• By using simpler quantization tables for JPEG compression, we demonstrate the possi-

bility of developing new compression algorithms designed for computer vision rather than

human vision.

Now we describe background work for this thesis. We first discuss several video analysis

algorithms that were used in our experiments and video adaptations that we employ to degrade

video quality. We also present the overview of several video surveillance systems, as these

systems are the main examples for application of our work. Finally, we describe the architecture

of distributed video surveillance system that is assumed in this thesis.

1.2 Background

In this section, we describe the context of our work in the relevant research literature. As

the major direction of the thesis is to study the requirements to video quality and bitrate

when video analysis algorithms set to be observers, we give the background overview of several

interconnected research areas. We give a review of the algorithms used in our experiments and

analysis, following it with describing how we change and measure video quality in experiments.

We end the background chapter with a general overview of the video surveillance systems, which

are the main applications of our research findings.

11

1.3 Video Analysis Algorithms

Video or image analysis emerged with the ability to digitize the photography and video of the

world around us. At first video analysis served mainly the purpose to help in image tuning and

image effects for correcting imperfections in photos or making them look better. Then, after

development of digital video surveillance cameras, the use of video analysis has increased in

security applications.

As computational resources have grown and became more available, research in video anal-

ysis has expanded dramatically, with complex and meaningful video analysis algorithms coming

close to be used in practical applications. Numerous algorithms have being proposed every

year: object detection, tracking, recognition, event analysis, and fusion algorithms that work

on combination of results from basic algorithms. As object detection, recognition, and tracking

are some of the most common and important basic types of today’s video analysis algorithms,

we consider them in this thesis.

For the basic understanding of the background, we give a brief overview of various video

analysis algorithms with emphasis only on several of them that are used in our experiments.

We use Viola-Jones and Rowley face detection, QDA-based face recognition, and CAMSHIFT

as face tracking and blob tracking algorithms. The main reason for choosing these particular

algorithms was their availability to us as well as their complexity adequate to the practical

reality (as opposed to simple motion detection).

1.3.1 Face Detection

Face detection can be considered as typical fairly complex type of object detection. Other

common object detections are pedestrian, car, and carried item (suitcase) detections. It can

be argued that out of the typical detectable objects, face is one with finer and harder to define

features, which makes it more susceptible to large reductions in the quality of corresponding

image. This reasoning has influenced our choice to use face detection algorithms in our ex-

periments, since we wanted to determine critical video quality for useful and non-trivial video

analysis algorithms.

12

Hjelmas and Low (Hjelmas & Low, 2001) give an overview of the evolution of face detection

from first algorithms until year 2001. Algorithms have evolved from feature-based approaches,

which rely on description of a face shape and its content, color, and edges, to image-based

approaches that use a learning algorithm such as neural network or a weak classifier and train

it using a set of simple image features or image statistics to determine a rare face among large

amount of visual noise. The latter algorithms show better accuracy for detection of faces in

realistic complex background. Typically, such algorithms have the following several common

stages and components in detection of a face. The size of a face that can be detected is fixed

to some minimum, usually close to 20 × 20 pixels. In an image a faces are searched by moving

such window at different scales with small steps across the image. At each step classifier or

filter, which is the core of the algorithms, matches the window to the “generic” face that can

be generally described as a set of signature features and is obtained via offline training. In the

final stage, all positive overlapping matches are combined together and a face is considered to

be found for each such location. The main differences between various face detection algorithms

lie in the implementation of a classifier and in the choice of signature features used to represent

the face.

Rowley’s Face Detection One of the first successful face detection algorithms based on

neural networks was proposed by Rowley et al. (Rowley et al., 1998). The authors search for

a face in every 20 × 20 pixel region first adopting preprocessing step proposed by Sung and

Poggio (Sung & Poggio, 1998). Preprocessing includes lighting correction, subtracting bilinear

lighting approximation in the region, and histogram equalization. Preprocessed image is passed

through the neural network that looks for specific features, the hidden units, in a shape of smaller

and larger squares and parallel stripes. These features are meant to detect such subregions of

a face as mouth, lips, and eyes. Since neural network guesses many regions in the image as

potential faces, a filtering stage is applied. Only regions with a number of overlapping detections

above a certain empirical threshold are marked as a face. Such threshold determines the tradeoff

between the accuracy rate and the rate of false positive detections. In our experiments, we use

13

the version of the algorithm available online6 freely.

Viola-Jones Face Detection One of the most popular face detection algorithms available

for the public use is the algorithms proposed by Viola and Jones (Viola & Jones, 2004) and

implemented in Intel’s OpenCV library7. The authors use some ideas from work by Papageor-

giou et al. (Papageorgiou, Oren, & Poggio, 1998), which proposed to use Haar-like features as

basic elements for face representation (see Figure 4.1). Similarly to Rowley, the authors also

used the preprocessing stage suggested by Sung and Poggio (Sung & Poggio, 1998). The major

contribution of Viola and Jones however, is the drastic improvement in the algorithm’s detection

speed, making it nearly real-time. They propose to use a hierarchy of classifiers constructed

using AdaBoost (Freund & Schapire, 1995) method for selection of only important features.

Each classifier in such hierarchy makes a decision (present or not present) on a single feature

only, which serves as an input to the classifier at the higher level of the hierarchy. The authors

pre-compute a special image representation, integral image, which requires small number of op-

erations per pixel. This preprocessing step can be computed in a constant time, hence greatly

speeding up the detection algorithm. The speed of Viola-Jones algorithms demonstrates 15

times faster detection rate compared to the Rowley’s algorithm.

1.3.2 Recognition

Face recognition is an important task for wide range of applications including search engines,

biometric and human-computer interaction applications, and video surveillance. We use face

recognition algorithm based on QDA method, which is proposed by Lu et al. (Lu et al., 2003).

The authors focus on solving a common problem of linear discriminant analysis (LDA) and

quadratic discriminant analysis (QDA) based algorithms. For LDA and especially QDA based

type of algorithms, the problem is the small number of available training samples compared to

the dimension of the sample space. To overcome the problem, the authors proposed a modifica-

tion of the QDA-based algorithm introducing additional weights to the recognition classifiers,

6http://vasc.ri.cmu.edu/NNFaceDetector/
7http://sourceforge.net/projects/opencvlibrary

14

which reduces the variance in the sample space making it more biased to certain type of sam-

ples. Experimental results presented in (Lu et al., 2003) confirm that the proposed solution

outperforms several other face recognition algorithms including PCA-based, LDA-based, and

traditional QDA based. We thank Terence Sim for providing the implementation of this algo-

rithm. It is the only video analysis algorithm used in our experiments that is not available for

public use.

1.3.3 Tracking

Object tracking is another important category of video analysis algorithms that we believe

must be addressed in this study. One reason is that tracking is the central operation for

many automated video surveillance systems, as well as for many emerging applications such as

autonomous vehicles and robots. Another reason to study this type of algorithms separately is

because of its dependency on the continuity of the video. Therefore, unlike for detection and

recognition, video frame rate is a significant video quality for tracking operation.

There are two major approaches to tracking an object: feature-based and based on fore-

ground object. First approach is to search the current frame for the set of specific features

and relate to their position in the previous frame. Establishment of such relation identifies the

tracked object, otherwise it is considered to be lost. Another approach is to identify moving

regions in the current frame, which are called foreground objects. This step is usually based

on the frame differencing operation. Foreground regions are obtained by subtracting one frame

from another and applying on a set of obtained pixels a connected components algorithm or

similar. Identified foreground regions are then relayed to the currently tracked objects based on

their recorded trajectories, a set of features, or through other means. There is also a third type

of tracking algorithms, which is the hybrid combination of the first two approaches. We chose

two object tracking algorithms, which are described in brief below. CAMSHIFT face tracking

is the representative of the feature-base tracking approach, while blob tracking algorithm relies

on frame differencing approach and tracks detected foreground objects.

15

CAMSHIFT Tracking For our experiments on tracking faces we use CAMSHIFT algorithm

proposed by Bradski in (Bradski, 1998) and implemented in OpenCV library. The algorithm

tracks dynamically changing probability distributions. CAMSHIFT is essentially an adaptation

of mean shift algorithm (finds the peak of a histogram in a single image) to a sequence of frames.

We use a color histogram as the mean to track a face. CAMSHIFT employs a running average

to keep histogram values adjusted with every next frame. Algorithm searches for the peak of

the histogram inside a region of the previously known location of a face. The search window

is 150% of the last found face size. Algorithm is simple and very fast but tracks only a single

object and is easily affected by changes in environment such as lighting or occlusions. It also

does not detect a tracked object automatically, so the initial location of a face must be set either

manually or by using face detection. In our experiments with pre-recorded test videos, to avoid

ambiguities, we set face location manually, while in practical lab tests, we rely on Viola-Jones

face detection.

Blob Tracking We also use blob tracking algorithm implemented in OpenCV library, which

is based on foreground detection proposed by Li et al. (Li et al., 2003). Foreground detection

is done using background substraction from the current frame. Background mask is constantly

updated and maintained with every new frame. Major contribution of the authors is the robust

and fast algorithms for background maintenance. After foreground object is detected, the

connected component analysis is performed to find the connected parts of the same object. Then,

trajectory for each foreground object is constructed and updated accordingly. The algorithm

can track objects in real time.

1.4 Video Adaptations and Video Assessment

Video adaptation is basically a term with which we describe a general way to alter the video.

In this work, we consider mostly video adaptations resulting in reduced video bitrate by means

of compressing it, scaling it down, or decreasing its frame rate. The purpose of typical video

encoders is to reduce the size of the video while preserving its visual quality. Typically, the

16

j i

Figure 1.3: Dropping i out of i + j frames. i is the drop gap.

judge of the quality is a human, and today’s video encoders are developed for human vision.

Since we do not take into account preserving video quality in terms of human vision, we consider

video adaptation, as a more general way to modify video than encoding.

We have chosen JPEG8 and MJPEG (which is many JPEG frames put together to form

a video sequence) compression algorithms for images and videos we used in our experiments

because of their relative simplicity, open availability, and a wide use. MJPEG is relevant in

surveillance systems, since many network cameras, such as produced by Axis, primarily stream

MJPEG. Axis cameras in particularly support MPEG-2 as well, but this codec requires a license,

which reduces its popularity. In some of our experiments, besides MJPEG, we also used H.261

codec for video compression.

For face and blob tracking algorithms, we change the video frame rate of a test video by

dropping frames from the original video using drop pattern: “drop i out of i + j frames” (see

Figure 1.3 for illustration). We vary i and j from 1 to 14. The value i represents the gap

between frames. And j represents how many consecutive frames remain. For example, if we

drop every third frame, i equals to 1 and j to 2; when three consecutive frames out of nine

frames are dropped, i is 3 and j is 6. Note that while these two patterns give the same average

frame rate, the accuracy of the tracking algorithm can be different.

In varying video quality with different video adaptations, it is important to compare the

resulted qualities. Since in our experiments observers of the video are video analysis algorithms,

we propose using metrics of video quality that are specific to these algorithms. A standardized

metric can be used to compare videos degraded by video adaptations with different types of

distortion. It also can be used for finding critical video quality for an analysis algorithm,

8We use the popular free implementation by IJG http://www.ijg.org/

17

provided the metric is a “perceptual” metric for the algorithm, i.e., it fits the way the algorithm

analyses the video. Although, several quality metrics exist, such as objective PSNR metric or

perceptive VQM and SIMM, they were designed for human visual system and, therefore, cannot

be applied directly to video analysis. Algorithms, unlike humans, have different requirements

on the video quality, and hence, the challenge is to design a metric that can accurately measure

video quality for as many algorithms as possible.

We consider three different metrics that can be used to measure SNR quality of the video:

blockiness, blurriness, and mutual information. Blockiness and blurriness are common distortion

types, often called video artifacts. Other artifacts also include color bleeding, loss of colorfulness,

and others. A non-reference blockiness by Muijs and Kirenko (Muijs & Kirenko, 2005) and

bluriness by Chung et al. (Chung, Wang, Bailey, Chen, & Chang, 2004) metrics are adopted in

our experiments. We demonstrate that proposed metrics can be used to estimate critical SNR

quality for Viola-Jones face detection, Rowely face detection, and QDA-based face recognition

algorithms. By “estimate” we mean that a single value of a given metric can be used to

determine critical video qualities (sweet-spot of the given rate-accuracy curve) corresponding

to different video adaptations. We use JPEG compression and various scaling algorithms as

examples of different adaptations. We use blockiness metric with blocky video adaptations such

as JPEG, nearest neighbor, and area relation scaling; and blurriness with bicubic and bilinear

scaling.

Blockiness, blurriness, and potentially other visual artifact metrics can be used only with

certain video adaptations. Such restriction causes inconvenience in using artifact metrics when

wide range of video adaptations is implemented in a system. Therefore, it is desirable to have

metric of video quality for a video analysis algorithm that is independent from the choice of

video adaptation. We propose mutual information as such metric and show that it suites face

detection and face recognition algorithms well. Mutual information was first introduced in

information theory (Shannon, 1948) and has proven itself as a good similarity metric in image

registration. It measures the amount of statistical information two different images share about

each other, and it is easy to compute. This is more general measure of distortion compared to a

18

visual artifact metric, which focuses on a specific type of distortion. Also, mutual information is

a better measure of video quality for video analysis algorithms than a commonly used distortion

metric PSNR. This is because, for instance, mirroring an image to itself, while not affecting the

performance of face detection or face recognition, changes the value of PSNR. Also, PSNR metric

was developed to approximate value of MSE to human visual system. Mutual information value,

on the other hand, is not affected by such operations like mirroring. It is also more general and

simple way to measure the distortion and is not focused on human perception.

We demonstrate advantages of mutual information by measuring the quality of video de-

graded with different types of video adaptations. In addition to previously used blocky adapta-

tions (JPEG, nearest neighbor and pixel area relation scaling), we also consider bicubic scaling

algorithm, which adds a strong blurriness to the degraded image. We conduct experiments for

both face detection algorithms, Viola-Jones (Viola & Jones, 2004) and Rowley (Rowley et al.,

1998), and QDA-based face recognition (Lu et al., 2003). Similar to blockiness and blurriness,

we show that mutual information can be used as a metric of video quality for the selected algo-

rithms. It means that a single threshold value of mutual information can be used to estimate

the critical quality for a particular algorithm across various video adaptations.

1.5 Video Surveillance Systems

In this section, we present a review of several automated video surveillance systems as such

systems are popular applications that can benefit from the solution proposed in this thesis. In

the literature review Chapter 2, we discuss video surveillance emphasizing on how the bandwidth

problem is dealt with in such systems. In this section, however, we give a background observation

of video surveillance systems in general. Major trends in the surveillance research focus on

implementation of efficient system architecture, practically useful event and tracking algorithms,

effective collaborations between multiple video cameras, data fusion and trajectory building. We

start with VSAM, one of the pioneering automated systems for outdoor surveillance, and end

with DOTs, a sophisticated indoor surveillance system developed by FXPAL.

Since the focus of the research was primarily on the development of video analysis algorithms,

19

the problem of the bandwidth limitation was getting a little attention. Among researchers there

are two predominant ways to handle this problem. First one is taken by system developed for

practical use and they follow VSAM’s approach in providing as much visual data as a particular

network conditions allow. In such approach, conventional means for reducing bitrate of video

data are implemented; such reduced video resolution and compression. Another approach is

to assume a sufficient availability of the bandwidth, which allows focusing on other research

problems. There is no research on automated surveillance that would address specifically the

problem of the bandwidth in such systems.

VSAM Surveillance System One of the first full scale automated video surveillance systems

is VSAM, which was developed under the leadership Kanade as part of DARPA project (Collins,

Lipton, Kanade, Fujiyoshi, Duggins, Tsin, Tolliver, Enomoto, & Hasegawa, 2000). The purpose

of the system was an outdoor surveillance using a distributed network of calibrated video cam-

eras and other sensors (thermo-cameras, omnicamera). The authors advocated paradigm of the

”smart” sensors, which objectives were to perform independent surveillance tasks in real-time.

It employed several state of the art algorithms of object detection and tracking, object classifi-

cation into categories of human or a vehicle, and a simple gate analysis of moving people. Since

VSAM was a full scale surveillance system, the authors also addressed such issues as data fusion

from multiple sensors, cooperation of several sensors on a given surveillance task, user interface

issues like visualization and sensor control, as well as practical issues such as computational

and bandwidth efficiency. To accommodate limited computational power, the authors made

some hard choices on efficiency of detection and tracking algorithms. The problem of limited

bandwidth was addressed by allowing only a low quality video to be streamed in real time from

one selected video sensor. The rest of the sensors (they also had a workstation attached to

them) were only sending data describing tracked objects: coordinates, size, speed, etc. Limited

bandwidth was one of the major limitations of the system making choices of a workstation to

each camera and 3-D visualization of the surveillance site to be necessities rather than aids in

the surveillance.

The results obtained from VSAM system have encouraged more research efforts in develop-

20

ing full-scale automated surveillance systems. Since major novelty in such systems was their

automated component, developing robust and accurate video analysis algorithms became one

of the main directions in the surveillance research. The main attention was on improving accu-

racy of detection and tracking, incorporating them into event analysis, dealing with occlusions,

tracking through multiple cameras, attempting to discard the calibration of the video sensors.

We consider several of such systems here.

KNIGHT Surveillance System KNIGHT system focuses on outdoor surveillance (Javed &

Shah, 2002) (Javed, Rasheed, Alatas, & Shah, 2003). The proposed approach assumes the use

of multiple un-calibrated cameras with overlapping and not overlapping fields of views (FOVs).

Authors also present algorithm for movement detection and tracking of moving objects for

single camera. The system also is able to differentiate a walking, running or falling person

as well as cars, groups of objects. Each camera in the system has attached workstation for

processing video data to provide graphic vision operations such as object detection and tracking.

The results of operations are sent to a central server, which combines them for analysis and

further movement predictions. To provide multi camera tracking mechanism, since the system

does not require calibration of cameras and has no knowledge of paths topology, the system

training phase is introduced. During the training phase the system learns the relationships

between cameras and probable paths of movements using Parzen windows. Efficient tracking

across overlapping cameras is relatively easy since the relationships between fields of views of

different cameras are known from the training phase. While the main challenge is to correctly

predict an object trajectory across multiple non-overlapping cameras. During the active phase

of the system central server collects from all cameras the information about their viewed objects

movements such as current objects velocities, directions speeds, etc. Using such local trajectories

of all cameras and possible paths information obtained during the training phase the server

predicts global trajectory of each object using linear velocity model (Javed et al., 2003). This

allows tracking of objects across cameras with overlapping FOVs as well as prediction of objects

trajectories through multiple non-overlapping cameras.

The single camera tracking detection and classification algorithms were tested on the set of

21

general video sequences performing well when people were not occluded. Authors claim cor-

rectness and high performance of tracking algorithm across multiple cameras but the evaluation

was performed using a small testbed.

SfinX Surveillance System Concurrently the research on the system SfinX which has ob-

jectives similar to the KNIGHT system is carrying out by group from University of California.

The overview of the system and the main results can be found in (Wu et al., 2003b) (Niu,

Jiao, Han, & Wang, 2003) (Wu, Wu, Jiao, Wang, & Chang, 2003a) (Rangaswami, Dimitrijevi,

Kakligian, Chang, & Wang, 2004). The focus of their research is mainly on development of

algorithms for intelligent classification of moving objects such as people and cars and event

recognition to distinguish suspicious events, i.e. one person is passing an object to another per-

son. The problem of tracking across multiple cameras was not addressed. Interestingly, authors

of system KNIGHT argue that maintenance of calibration of a large network of sensors is a

significant maintenance task (Javed & Shah, 2002). However the approach proposed in (Wu

et al., 2003a) requires camera calibration and authors claim that it needed to be done once and

off-line. The problem of pose registration of moving camera was suggested to be solved using

Church’s algorithm, which was originally developed for aerial photogrammetry. This technique

requires knowledge of only three observed landmarks’ coordinates (compare to usual six point

correspondences) for each camera.

Authors proposed more sophisticated algorithm of classification events and objects than one

used by VSAM system. Considering one camera, the movement trajectories are recognized first.

Then, the algorithm recognizes motion patterns such as hands and head motions. Performing

sequence alignment learning and imbalanced kernel boundary alignment techniques, the authors

are able to extract suspicious events and movements of people. Analysis of merging and splitting

of objects is also performed for more semantic classification (Niu et al., 2003). The evaluation

shows that the algorithm tracks very well even the occluding and splitting objects, but the tests

were not comprehensive and, hence, not convincing enough.

22

DOTs Surveillance System There are also systems that are specific to indoor surveillance.

Indoor surveillance provides a special subset of condition that makes some tasks of video analysis

easier. The major difference of indoor conditions from outdoor is the absence of interferences

from weather, presence of persistent and controlled lighting, and a more structured terrain with

movement trajectories that are easier to predict.

A good example of the sophisticated indoor surveillance system is the system recently devel-

oped by FXPAL called DOTS (Girgensohn, Kimber, Vaughan, Yang, Shipman, Turner, Rieffel,

Wilcox, Chen, & Dunnigan, 2007). The system operates with multiple calibrated cameras in-

stalled in hallways and public places in a typical office environment. It is designed for automatic

real-time tracking of multiple people with the emphasis on convenient and reliable user inter-

face. The tracking algorithm is based on foreground segmentation that is robust to shadows and

illumination changes; occlusions are also handled by the algorithm. Use of calibrated cameras

allows efficient tracking through cameras with overlapped and non-overlapped views as well

as location estimation of the tracked object. Face detection algorithm is also implemented to

identify faces at entrance and exit locations of the building. Detected faces are bound with

tracked objects and used as visual identifiers by the system’s user interface. The system pro-

vides an elaborate and flexible interface, which includes map of the surveillance site, timeline

that includes stored and current surveillance information (trajectories, videos, faces) and 3D

virtual model of the building. System’s implementation uses 23 Axis 210 IP video cameras and

Motion JPEG video is streamed and recorded at the rate of 15 frames per second.

1.6 Our Architecture of Video Surveillance System

We assume the following architecture of a video surveillance system. It consists of a number of

video sources, processing proxies, and monitoring stations, connected via a wide area network.

Video sources can be either networked cameras or video sensors. These sources capture, encode

and transmit video streams to processing proxies. Processing proxies are computers dedicated

to the processing and filtering of incoming video streams, and if needed, relaying them to

monitoring stations. The need to relay depends on the queries specified by users. For instance,

23

a user may request to see a certain video if suspicious events are detected. A sample query is

“Show me the video of secured room X if someone is detected in the room.” A video source

sends surveillance video from room X to a remote proxy. The proxy then runs a motion detection

algorithm on the surveillance video. The proxy relays the video to the monitor only if motion is

detected in the room. Figure 1.4 shows the architecture of such distributed surveillance system.

Networked
Cameras

Proxy
Processing

Proxy
Processing

Monitoring
Station

Networked
Cameras

:

:

:

Surveillance Query
Video Stream

Figure 1.4: Architecture of Distributed Video Surveillance System.

24

Using such distributed architecture for video surveillance has several advantages. First, it

allows flexibility in adding and removing cameras. Second, since video processing is done at the

proxies, cheap networked cameras or video sensors can be used as video sources. Finally, by

filtering uninteresting video at the proxies, the number of streams to be sent to the monitoring

station is kept small, thus increasing the scalability of the video surveillance system. Due to

these advantages, this type of architecture is becoming common in commercial video surveillance

systems (e.g., ObjectVideo9, MOXA10).

Note that our architecture does not consider archiving full quality video from video sources.

While such archives would be useful for forensic video analysis, performing continuous archiving

of full quality video from large number of video sources does not scale. Our architecture,

however, does not preclude archiving videos at monitors.

9http://www.objectvideo.com
10http://www.moxa.com

25

Chapter 2

Literature Review

In this chapter, we review some of the work that is most relevant to our study. We discuss

the rate-distortion framework and its application to video and image compression. We also

describe framework based on utility function, which is an extension of rate-distortion framework

that consider video quality in a broader sense, consisting of with SNR, spatial, and temporal

components. Also, video compression is generalized into notion of video adaptation, which can

include frame dropping, scaling, and other video degradations. In this thesis, we take a similar

approach to the utility-based framework, but, instead of human, we assume video analysis

algorithms to be main observers of the video. We also briefly discuss the ways to reduce video

bitrate based on the information about video content, including techniques using region of

interests and approaches based on viewer attention. Issues of scalability in video surveillance

and sensor networks are also discussed emphasizing on how scalability problem is addressed in

practical systems.

2.1 Rate-Distortion Theory and Utility Function

Originally proposed by Shanon, rate-distortion theory focuses on a unit of information transmit-

ted over a noisy channel and studies the relation between distortions caused by the transmission

and the number of bits necessary to encode the information. An application of this theory to im-

age and video compression was developed into a framework, commonly known as rate-distortion

26

framework (Ortega & Ramchandran, 1998). In this framework, rate is the number of bits per

second of the compressed video. Distortion is interpreted as an amount of degradation in qual-

ity of compressed video compared to original. Since human is assumed to be the main video

observer, the resulted distortion of the compressed video should satisfy requirement of human

visual system (HVS). Therefore, the distortion in rate-distortion framework corresponds to the

perceptual video quality. Since perceptual quality is hard to measure, HVS-oriented distortion

metrics are normally used. One of the most common and simple metric of distortion, while also

the most criticized, is mean square error (MSE).

Equipped with video quality metrics, rate-distortion framework deals with the tradeoff be-

tween distortion and bitrate of compressed video. Low video bitrate is desirable for faster trans-

missions or smaller storage while low distortion entails higher perceived video quality. Higher

compression yields lower bitrate but also higher distortion manifesting the rate-distortion trade-

off. It was discovered however that absence of high visual frequencies is less noticeable by human

visual system than absence of low frequencies; therefore, when performing lossy compression,

higher frequencies can be discarded first. Such approach allows achieving significant reductions

in bitrate with minimal impact on the perceptual quality. All commonly used lossy compression

algorithm such as JPEG, MPEG, and JPEG2000, are based on this approach.

The complexity of rate-distortion framework lies, however, in the fact that video and image

data are not homogeneous. Different regions of an image or a video frame can have different

intensity variations, different color and other image statistics, as well as can have be different

semantically. For instance, a face in the image can be more important than the background.

Therefore, to achieve an overall desired distortion, different compression parameters should

be used for different image regions. For example, in JPEG, each 8 × 8 pixels block of an

image is compressed independently (Ortega & Ramchandran, 1998). Such approach results in

different combinations of compression parameters leading to the same overall value of distortion

(measured with some metric). Each such combination, in turn, corresponds to different bitrate.

Since the goal of compression is to minimize the bitrate, the problem of finding the combination

of compression parameters resulting in smallest bitrate needs to be solved.

27

Therefore, the rate-distortion framework addresses two related optimization problems. First

problem is to minimize the resulted video bitrate while preserving overall distortion above a

certain threshold. Second problem is: for given bitrate value, determine compression param-

eters that result in compressed video with the least distortion. Both of these problems are

inter-dependent in a sense that solving one leads to the solution of another. There are several

methods for finding optimal solution. One of the most popular is method of Lagrange opti-

mization (Ortega & Ramchandran, 1998). It exploits the fact that rate-distortion function is

generally a convex function and finding the optimal solution at a certain point is equivalent

to finding the angle of the tangent line to the function. Another popular method exploits

dynamic programming when possible solutions are gradually built up from one another, and

the optimal can be found by a taking a simple minimum (or maximum) value in the table of

solutions (Ortega & Ramchandran, 1998).

Rate-distortion framework is generally applied to image compression, more specifically to

reducing image (or video) signal-to-noise ratio (SNR). However, video quality can be considered

to have three components, SNR, spatial, and temporal. Therefore, the idea of the distortion

(typically tied with SNR quality), and subsequently rate-distortion framework, can be viewed

in more general sense. Generalizing rate-distortion framework, the group of researchers under

Chang S.F. (Kim, Wang, & Chang, 2003; Wang, Kim, & Chang, 2003; Chang & Anthony,

2005) proposed the notion of utility function, which formalizes the combined quality of the

video with SNR, spatial and temporal components. Video compression is also extended to a

general notion of video adaptation, a general way of degrading video. Video adaptations can

include frame dropping, spatial scaling, and other video altering such as de-noising, or more

sophisticated content-aware filtering. Therefore, the problem of optimizing video bitrate in the

rate-distortion framework evolves in finding a set of optimal parameters for compression, frame

rate, and scaling that would satisfy the general constraint on video utility. Likewise utility can

be maximized given the minimal required bitrate.

The authors of utility function based framework (Wang et al., 2003) consider two different

video adaptations as examples, dropping of DCT components in MPEG compression and frame

28

dropping, as well as their combinations. The utility function is considered to be specific to a

particular application, for instance, it can be objective or subjective video quality, user satisfac-

tion, etc. The authors argue however utility function is, it can be represented as a set of several

video characteristics or features, such as motion variance, average quantization step, average

motion intensity, average PSNR, etc. (see (Wang et al., 2003) for more details). Therefore, the

problem of finding optimal utility for the given bitrate constraint transforms into the problem

of finding optimal values for the features set. The authors developed a prototype of the adap-

tation system for MPEG-4 video codec. The system uses combination of video adaptations,

dropping of DCT components and frame dropping, and it achieves higher utility (PSNR and

subjective tests used as an example of utility functions) for the given limit on video bitrate. The

value of utility was higher compared to scenarios when only one of the above video adaptations

was used. These results demonstrate that a clever combination of different video adaptations

can lead to higher gains in video quality, or otherwise is also true: lower video bitrate can be

achieved with the same video quality.

The latest research on how video quality affects perception of human visual system is con-

ducted by group under S. Hemami (Rouse & Hemami, 2008a) (Rouse & Hemami, 2008b) (Rouse,

Pepion, Hemami, & Callet, 2009). The authors of the work differentiate three types of video

assessments, namely, fidelity assessment (visibility of distortions), quality assessment (tolerance

to visible distortions) and utility assessment (usefulness of the distorted image with reference

to original), which is the primary focus of their study. The authors argue that there exists a

recognition threshold, the value of distortion, degrading beyond which the content of the image

cannot be recognized by the human visual system. Two ways of degrading video quality was

presented, signal-based (dropping subbands of discrete wavelet transform) and preserving visual

structure (smoothing based on total variation). Using the subjective studies through of ques-

tionnaire 25 people and natural images from A57 database, based on the subjective scores, the

recognition thresholds were found to be different for each image. Authors use the information

about these recognition thresholds to develop a new video quality assessment algorithm, called

NICE, because commonly used algorithms, including PSNR, SIMM, VSNR, VIF, were found

29

to be not satisfactory, especially, for high distortions.

In this thesis, we adopt the utility function to the scenario when a video analysis algorithm

is the observer of the video instead of human. In our work the problem also grows in dimen-

sion since, instead of the few user-oriented utility functions, every video analysis algorithm is

impacted differently by every different video adaptations. From the other hand, contrary to

utility functions accuracy of an algorithm can be obtained experimentally. In Chapter 5 we dis-

cuss in more details the dependency between video adaptations and accuracy of video analysis

algorithms.

2.2 Semantic Video Reduction

Many techniques were proposed for adapting video transmission rate to meet the bandwidth

constraints of wide area networks. One of the first suggested methods, presented by Eleftheriadis

and Anastassiou (Eleftheriadis & Anastassiou, 1995), uses a rate-distortion function to find

minimal distortion. Based on the bandwidth capacity predicted via monitoring the current state

of the network, the video is dynamically reshaped by being encoded with different quantization

values. Extending this idea, Kim and Altunbasak (Kim & Altunbasak, 2001) suggested a

technique to reshape video by scaling its spatial, temporal and SNR properties. This technique

was later generalized into a utility-based framework by Kim et al. (Kim et al., 2003). These

approaches aimed on reducing the time and complexity of re-encoding the video for the network

with limited bandwidth. In this thesis, we adapted some of these ideas, though we focus on the

case where the video observers are video analysis algorithms rather than human.

Region of interest (ROI) is another technique to reduce video transmission rate. This tech-

nique transmits only important regions in video frames at high quality (Schumeyer, Heredia, &

Barner, 1997) (Sanchez, Basu, & Mandal, 2004). This approach can be adapted for video anal-

ysis algorithms, for instance, video sources can stream only regions with faces for the later

recognition. Implementation of ROI in a practical system, however, requires a significant level

of intelligence and more computing power at video sources. Video sources would have to execute

detection algorithms for extracting such regions of interest from the video before transmitting.

30

Our work is different because we consider an analysis algorithm to be a ”viewer” of the video

but is similar in a sense that we want to understand what is the minimal important information

we need to keep in the video for the analysis algorithm to perform accurately still.

2.3 Scalability of Video Surveillance

Some of the researches in video surveillance proposed several solutions for reducing the amount

of information streaming through network. Yuan et al. (Yuan, Sun, Varol, & Bebis, 2003) and

Nair et al. (Nair & Clark, 2002) presented systems that avoid using excessive network band-

width by periodically sending still images from a video source to the end user. VSAM (Collins

et al., 2000) deals with bandwidth constraint by sending only one low quality video at a time,

and relies on workstations attached directly to video sources for the detection, tracking and

classification of events. Such solutions limit the amount of visual information that is available

to the viewer and are not scalable. The authors of many recent surveillance systems, for exam-

ple SfinX (Rangaswami et al., 2004) and KNIGHT (Javed et al., 2003), prefer not to address

the problem of video streaming and, instead, focus on developing more accurate video analy-

sis algorithms. However, the authors of DOTS surveillance system (Girgensohn et al., 2007)

acknowledge that even for their indoor surveillance system, the scalability was a problem, al-

lowing them to have only 15 video cameras streaming simultaneously. Addressing the problem

of video streaming in surveillance systems, in this thesis, we suggest taking the advantage of

video analysis algorithms’ tolerance to low video quality. Since in typical surveillance scenario,

suspicious events are rare (Wu et al., 2003b), it is not necessary for human to constantly observe

all video streams but only those that require his/her attention. Therefore, most of the time,

the video is transmitted for video analysis algorithms only, allowing us to significantly reduce

its quality and, hence, increase the scalability of the surveillance system.

A recent work that is most related to ours that of Boyle on the effects of capture conditions

on the CAMSHIFT face tracker (Boyle, 2001). That study aims to recommend how to set up a

low-end web-cam for face tracking on desktop computers. Similar to our experiments, the study

examines the effects of frame size, frame rate and compression quality on the CAMSHIFT face

31

tracker. Experiments presented by the author, however, only focus on a few values for each of

these qualities, and do not explicitly address the issue of critical video quality.

In the thesis, we address the scalability problem of automated distributed video systems. We

suggest fixing the bitrate of streaming videos to the limit, for which video analysis algorithms

still perform accurately. To this date, there is no research has been done that would address

this issue. Intuitively, video analysis algorithm should have a threshold on video quality. Our

goal is to determine how low it is compared with quality conventional for human vision. We

also want to understand how different video analysis algorithms perceive video quality. We

want to formulate approach for determining the required quality for an algorithm in a practical

scenario.

2.3.1 Sensor Networks

Sensor networks belong to a type of distributed system that required pass large amount of real-

time data from one remote node to another. Another characteristic of sensor networks is often

limited computational and electrical power of each node. Therefore, the problem of sending as

little data as possible is important for such systems.

A good representative of sensors networks is IrisNet. The general architecture proposed

by Gibbons et al. (Gibbons, Karp, Ke, Nath, & Seshan, 2003) aims on organizing real-time

changing data in the distributed storage with ability to perform real-time queries by the user.

It is assumed that the raw data from sensor can be preprocessed near the source and can be

significantly reduced in size for ease of transfer. The system has an agent-based architecture

consisting of sensing and organizing agents. Clearly, the sensing agents collect and process

data and transfer result to the organizing agents, which maintain up-to-date data in storage

and perform queries. The distributed data are organized in XML hierarchy based on their

geographical location. The system insures that each list of the hierarchy has a unique path

from the root and allocates the data on physical machines in branch-based manner. The system

maintains for entire network one XML document representing this logical structure of data.

The geographical-based approach for organizing data into hierarchy is straight forward since

32

the authors of the system assume each sensor has its own uniquely defined geographical location.

During query processing organizing agent identifies what parts of answer for the query can be

found locally and locations of others parts of answer using knowledge of the described hierarchy.

As fresh data is sent from the sensor to organizing agent it updates the corresponding storage

and cashes are updated as well. For verification of freshness of requested data timestamps of

updates are stored along with data. The obvious drawback of this approach is that it is not

scalable. If system manages significantly large number of sensors it has to maintain as a one

piece the XML document, which will be very large in size because contains the path information

about each sensor. And XML way of representation itself is not very scalable since XML syntax

is over saturated.

33

Chapter 3

Video Quality and Video Analysis:

Motivation and Overview

In this chapter, we discuss the motivation for this study and present overview of the experiments

demonstrating the dependency between video bitrate and accuracy of several video analysis

algorithms. We conducted preliminary experiments to understand what kind of video quality

is necessary for video analysis algorithms and how changes in quality affect their accuracy.

In these experiments, face detection and face recognition algorithms were used. We focus on

two video adaptations, JPEG compression and nearest neighbor scaling; and we study how

these adaptations and their combination affects the accuracy of the algorithms. The process of

determining critical video quality can be illustrated by Figure 1.2. Obtained results motivated us

to study the dependency between accuracy of the video analysis algorithms and video bitrate (we

call it rate-accuracy tradeoff) in more details and to consider other examples of algorithms and

video adaptations. The following chapters contain extensive experiments of several detection,

recognition, and tracking algorithms. First, we treat these algorithms and video adaptations

as black boxes and determine critical video quality via experimental search. Then, we propose

a framework based on combination of reasoning and heuristic measurements, allowing us to

formalize the tradeoff between video bitrate and accuracy of video analysis algorithms, as well

as to estimate a critical video quality in practical scenario.

34

3.1 Rate-Accuracy Tradeoff

To understand what rate-accuracy tradeoff is we take an algorithm, video/image, and video

adaptation and, gradually degrading its input video, we note the changes in algorithm’s accu-

racy. The rate-accuracy tradeoff can be visualized by plotting the bitrate of the degraded video

vs. the resulted accuracy value of the algorithm.

As a first example of video analysis algorithm, we picked face detection by Viola and

Jones (Viola & Jones, 2001) implemented in OpenCV 1 library. The advantages of using this

algorithm include its popularity in research community, availability of standard test data with

ground truth, and that it is non-trivial (as opposed to motion detection for example). Its main

disadvantage however is that it works on static images and the changes in video frame rate

have no meaningful impact on its accuracy. Figure 3.1 demonstrates how changes in compres-

sion quality affect algorithm’s accuracy. We compressed an image from a standard MIT/CMU

dataset (see Section 3.2 for more details) using different JPEG 2 values and ran the algorithm

on it. A square around the face indicates that the algorithm detected the face. We can see

that face is not detected only for the last face in the figure. The compression value 9 that was

used in the last case leads to the 90% reduction of image file size. If most of the images with

detectable faces can be reduced to a similarly small size, this finding can be useful for many

practical automated applications.

Figure 3.1: Example of how video degradation (JPEG compression) can affect video analysis
algorithm (Viola-Jones face detection). Displayed image is degraded using JPEG quantizer
values 100, 50, 25, and 9.

1Open Source Computer Vision library. More details can be found at http://opencv.willowgarage.com/wiki/.
2We use library by Independent JPEG Group (IJG)

35

We test this hypothesis on practical video that was shot in out lab using Axis 207 network

camera (see a snapshot example in Figure 3.2). To reduce quality of the video, we use two

different video adaptations, JPEG compression and nearest neighbor scaling. A combination of

these two degradations is used as well: video is first scaled down to some value, then compressed,

and scaled back up to its original size. Without going into the details about how we degrade

video and compute accuracy of face detection (details are given in Section 3.2), we plot the

rate-accuracy tradeoff in Figure 3.3. Different curves on the figure represent different ways the

video is degraded.

Figure 3.2: Frame of the video used in experiments demonstrated in Figure 3.3. Network camera
Axis 207 was used.

By looking at Figure 3.3, we can make one important observation. The accuracy of the face

detection (index value in the figure) can be at the high level (same as for original video) even

when the video is reduced to almost 10% of original size (0.1 ratio in the figure). Also, there are

several ways to degrade a video while obtaining the same ratio between detection accuracy and

the size reduction. Hence, the problem is to find the points on the curve that would correspond

to the best possible algorithm’s accuracy given the bitrate. These points actually form a pareto

set of all the points in the figure. In Figure 3.3, pareto set points are marked with a triangle. The

points from the pareto set is what comprises rate-accuracy function, since points corresponding

36

to low accuracy for the high bitrate can be discarded. The optimal point, corresponding to the

highest accuracy given the smallest bitrate, can be approximated using lagrangian function or

other convex optimization (Boyd & Vandenberghe, 2004) methods.

The problem is that such rate-accuracy tradeoff found for a given triplet: algorithm, video,

and video adaptation cannot be simply generalized to other similar combination. There are

many different video analysis algorithms and many ways to degrade video, which can affect

the accuracy of algorithms differently. Also, the quality of the original video and some of its

characteristics, such as lighting, background conditions, etc., can also affect the tradeoff between

bitrate and accuracy. Therefore, in this thesis, we study the problem from different approaches.

First, several video analysis algorithms that are not trivial and commonly used in practical

applications are selected. Second, we employ several different video adaptations representing

three components of video quality, SNR, spatial, and temporal. We also use standard test data

as well as practical videos shot on our campus or from security network cameras installed in our

lab. We obtain different rate-accuracy tradeoffs for various combinations of algorithm, video,

and video adaptation. By studying these tradeoffs, we suggest a formalization of the tradeoff

and several approaches on how to estimate it.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

In
de

x
V

al
ue

Ratio to original file size

Compression Curve
Scaling Curve

presc30
presc50
presc70
presc90

Pareto set

Figure 3.3: Accuracy of Viola-Jones face detection algorithm vs. compression and scaling
adaptations, as well as their combination.

37

3.2 Overview of Experiments

Before proceeding to describe our results, we first explain in more details how our experiments

were conducted. To determine the video quality requirements for a particular video analysis

algorithm, we degrade the original video to a point when the accuracy of the algorithm drops

significantly. We call such point a critical video quality, indicating the quality threshold above

which the algorithm performs with its original accuracy. The video is degraded in small steps

with a video adaptation, such as JPEG compression or frame dropping. It should be noted

that, in this thesis, we understand the accuracy of an algorithm as a relative measurement. It

is understood in terms of how much the accuracy changes when the video is degraded from its

original quality to low quality.

We use the following video analysis algorithms in our experiments: OpenCV3 implemen-

tation of Viola-Jones (Viola & Jones, 2001) face detection and Rowley face detection (Rowley

et al., 1998) algorithms; QDA-based face recognition (Lu et al., 2003) algorithm; CAMSHIFT

(OpenCV) face tracking (Bradski, 1998) algorithm, and blob tracking algorithm that relies on

frame differencing and foreground object detection by Li et al. (Li et al., 2003). We picked these

algorithms because they are freely available, fairly complex, and commonly used in various ap-

plications. Also, for face detection and face recognition algorithms, there are standard datasets

with ground truth available.

3.2.1 Test Data

Dataset Characteristics Short description Algorithm

MIT/CMU (subset A),
snapshot Figure 3.4(a)

images with 168
faces of different
sizes

various
background/lighting
conditions

face detection

Yale set, snapshot
Figure 3.4(b)

images with 165
faces of 15 people,
320×240

various lighting
conditions, different
facial expressions

face
recognition

Continued on next page

3http://www.intel.com/research/mrl/research/opencv/

38

Dataset Characteristics Short description Algorithm

Video of the lab door,
snapshot Figure 6.9(a)

video, 22000 frames,
320×240, 5 fps,
Canon VCC4
camera

surveillance of the door
in a research lab

face detection,
face
recognition

Video in the lab,
snapshot Figure 3.2

video, 543 frames,
320×240, 15 fps,
Axis 207 camera

two people move in the
frame facing the camera

face detection,
face
recognition

A person in front of the
camera, snapshot
Figure 4.7

300 frames, size
160×120, 5 fps, Axis
207 camera, 208
faces in total, 147 of
which are frontal

a person moving in and
out of the camera,
making a face appear
smaller or larger

face detection

Videos with moving
faces, snapshot
Figure 4.15(a)

video, 600 frames,
352×288, 30 fps,
webcam

office settings, web-cam,
face moves close-far from
the camera

face detection,
face tracking

News clips (SEQAM
laboratory), snapshot
Figure 3.4(d)

video, 200-350
frames, 320×240, 25
fps

talking heads, news
anchors and interviewed
stars

face tracking

Videos from PETS2001
dataset, snapshot
Figure 4.18(a)

video, 150-250
frames, 384×288, 30
fps

outdoor car park,
car/bicycle/people move
across the frame

blob tracking

Video from VISOR
dataset, snapshot
Figure 3.4(f)

video, 150 frames,
320×256, 30 fps

outdoor car park, car
moves across the frame

blob tracking

Campus videos,
snapshot Figure 3.4(e)

video, 200-500
frames, 360×288, 25
fps, SONY HD
camera

outdoor, cars on the
road, a person walking in
the field

blob tracking

Videos from RESCUE
project, snapshot
Figure 3.4(c)

video, 150-250
frames, 320×240, 8
fps, AXIS cameras

indoor, corridors, stairs,
and halls, people walking

blob tracking

Table 3.1: Summary of datasets used in the experiments with different video analysis algorithms.

Datasets used in our experiments are summarized in Table 3.1. We use standard MIT/CMU

and Yale datasets with provided ground truth for testing the accuracy of face detection and face

recognition algorithms respectively. For face recognition, typically, the set of images is divided

into gallery and probe subsets. Images in gallery have faces that are assumed to be known

at the moment of recognition and images in probe set contain faces that are being recognized

by the algorithm. To avoid bias in our recognition results, we divide the Yale dataset into

39

(a) Image from MIT/CMU dataset (Viola-Jones and
Rowley face detection).

(b) Image from Yale dataset (face recognition).

(c) Snapshot from RESCUE videos (blob tracking). (d) From database by SEQAM laboratory
(CAMSHIFT face tracking).

(e) Shot on campus with hand-held camera (blob
tracking).

(f) From VISOR video database (blob tracking).

Figure 3.4: Snapshot examples of videos used in our experiments.

four randomly generated pairs of gallery (36% images) and probe (64% images) subsets; our

experimental results are obtained as average values corresponding to four subset pairs.

40

To test face detection and face recognition algorithms in practical scenario, we used two

videos that we recorded to simulate an indoor video surveillance system. First video is a one

hour long video of the door in our research lab that was recorded using Cannon VCC4 camera

with the default video quality settings (320×240 resolution and JPEG compression 90). Among

the recorded 22,000 frames, we manually marked 237 faces as ground truth, including 138 frontal

and 99 profile faces. Second video is recorded in our lab and included two people walking in and

out of the camera view. We manually marked 279 faces as the ground truth for face detection

and face recognition algorithms. These two videos are used to verify critical video qualities

estimated for face detection and face recognition algorithms using mutual information metric.

Since face recognition algorithm is often used in combination with face detection, the frames

with detected faces, including false positives, are used as the input probe faces. Verification

metric (Grother, Micheals, & Phillips, 2003) was used to test accuracy of the face recognition.

For each person in the test videos, one representative face-shot is selected and is used to verify

the probe faces in the video. Basically, for each input face (which is the output of face detection),

recognition algorithm compares it with the set of gallery faces (one face for each distinct person)

to determine the best match (the one with the highest similarity score).

For face tracking algorithm, due to the lack of standard test videos, we use our own videos

of a face captured with a web-cam (see a snapshot example in Figure 4.15). We also test face

tracking on some movies and news clips, as in Figure 3.4(d).

Blob tracking algorithm is tested on several video fragments from standard video dataset

PETS2001 and Visor database. Video sequences include moving cars, bicycle, and people. To

make experiments easier and clearer, only single object tracking is performed. We also shot

several videos of moving cars and people on the grounds of our university campus. Although

Sony HD handheld camera was used, to make running time of the blob tracking practically

feasible, the original HD video was resized to 360×288 resolution (more than 5 times reduction

in resolution).

41

Video adaptation Degradation pattern Algorithm Dataset

JPEG compression quantizer from 1 to 99
with step 2

face detection,
face recognition

MIT/CMU,
Yale

quantizer from 10 to
100 with step 10

face tracking, blob
tracking

Videos with
moving faces,
PETS2001,
VISOR,
Campus, and
RESCUE
videos

Scaling (nearest
neighbor, bicubic,
pixel area relation)

2 to 100 percent of
original size with step 2

face detection,
face recognition

MIT/CMU,
Yale, video in
the lab

from 25 to 100 with
step 25

face tracking, blob
tracking

Videos with
moving faces,
PETS2001,
VISOR,
Campus, and
RESCUE
videos

Combination of
JPEG compression
and scaling (nearest
neighbor and bicubic)

Dcaling from 10 to 100
percent with step 10,
for each step,
compressing from 1 to
99 with step 2

face detection,
face recognition

MIT/CMU,
Yale, video in
the lab

Frame dropping drop i out of i + j
frames (i, j = 15)

face tracking, blob
tracking

Videos with
moving faces,
news clips,
PETS2001,
VISOR,
Campus, and
RESCUE
videos

Continued on next page

42

Video adaptation Degradation pattern Algorithm Dataset

Combination of frame
dropping and nearest
neighbor scaling

Scaling from 25 to 100
percent with step 25,
for each step, drop i
out of i + j frames
(i, j = 15)

blob tracking PETS2001,
VISOR,
campus, and
RESCUE
videos

Combination of
frame dropping and
JPEG compression

Compression from 10
to 100 percent with
step 10, for each step,
drop i out of i + j
frames (i, j = 15)

face tracking, blob
tracking

Videos with
moving faces,
PETS2001,
campus, and
RESCUE
videos

Table 3.2: Summary of video adaptations used in the experiments with different video analysis
algorithms.

3.2.2 Video Adaptations

Table 3.2 summarizes video adaptations that we use to change different video quality for our

video analysis algorithms.

SNR quality of images is degraded with IJG4 implementation of JPEG compression algo-

rithm. In this implementation, compression quality 1 corresponds to image with the highest

compression ratio (the most distorted image) and 99 to image with lowest compression ratio

(the least distorted image). In most of the experiments, images are degraded from quality 1 to

quality 99 with step 2, leading to 50 different SNR qualities. In some experiments (such cases

are indicated), to make them run faster, the step size is 4 instead of 2.

For videos, we degrade SNR quality using VirtualDub5 open source video editor. Microsoft

Video 1 codec is used to degrade videos for face tracking algorithm and Indeo video 5.10 codec

is used for blob tracking algorithm. Originally, we used Microsoft Video 1, which adds heavy

blocky artifacts when video quality is significantly reduced. It is not a problem for face track-

ing because the videos have large moving objects and blockiness has less affect on accuracy.

However, in the most videos used to test blob algorithms, moving objects are small in size and

such blockiness is not acceptable. Therefore, we chose Indeo video 5.10 codec instead because

4http://www.ijg.org/
5http://www.virtualdub.org/

43

it produces clearer videos with a similar bitrate. Video quality for face tracking ranges from 10

(higher distortion, low quality) to 100 (best quality) with step 10. Video quality for the blob

tracker ranges from 10 to 100 with step 10.

Spatial quality of images is reduced using OpenCV implementations of nearest neighbor,

bilinear, bicubic, and pixel area relation scaling algorithms. With a given scaling algorithm, we

reduce spatial sizes of images from 100 to 2 percent of the originals with step 2 or, for some

experiments, step 4. Then, we scale them back to the original sizes. For example, downscaling

320×240 pixels image to 60% results in 192×144 image, which, in turn, is scaled back to the

original 320×240 size. Such downscaling-upscaling transformation can be used in a practical

scenario of distributed video surveillance system, as demonstrated in Figure 3.5. The video

with reduced spatial size is sent by a camera to a proxy through network. Upon receiving a

video frame, the proxy upscales it to its original size and runs a video analysis algorithm. The

downscaling-upscaling of the video stream allows us to reduce amount of data transmitted across

the network link between camera and proxy/server, thus reducing the required bandwidth.

To scale videos, we used bicubic scaling algorithm that is built into VirtualDub video editor.

The spatial quality ranges from 25 to 100 with step 25. The approach is similar to scaling images.

he video is scaled down to a given percentage of its frame size and scaled back to the original.

The scaling adaptations can also be combined with SNR adaptation. We combine nearest

neighbor scaling with JPEG compression in the following way. Images are first prescaled to

several spatial sizes (20%, 30%, 40%, etc.) after which they are compressed with JPEG quantizer

varying between 1 and 99 with step 2. Then, images are decompressed and scaled back to

their original spatial sizes. Compressing downscaled video frame allows achieving even higher

reduction in bitrate at the expense of receiving frame with higher distortion at the proxy (in

the example shown in Figure 3.5).

To degrade temporal video quality, we reduce the video frame rate by dropping frames using

drop pattern: “drop i out of i+ j frames” (see Figure 1.3 for illustration). We vary i and j from

1 to 14. The value i represents the gap between frames, and j represents how many consecutive

frames remain. For example, if we drop every third frame, i equals to 1 and j to 2; when

44

three consecutive frames out of nine frames are dropped, i is 3 and j is 6. Note that while

these two patterns give the same average frame rate, the accuracy of the tracking algorithm

can be different. We also combine SNR and scaling video adaptations with frame dropping to

determine how such combination affects accuracy of face tracking.

3.2.3 Algorithms Accuracy

To evaluate accuracy of face detection, we compute the detection index as follows. For each

JPEG quality, the number of detected faces is recorded. Using available ground truth, we obtain

the number of correctly detected faces and divide it by the recorded total number of faces to

get the detection index. We also note the number of faces that are wrongly detected by the

algorithm. Dividing this number by the total number of faces, we obtain the false positive index

of face detection.

In experiments with Yale dataset, the identification task of face recognition algorithm is

evaluated using the standard performance metric, rank one of cumulative match characteristic

(CMC) (Grother et al., 2003). CMC rank one value is computed for images from the probe set

only. In experiments with practical surveillance video, we evaluate the recognition algorithm

by using the standard verification performance metric instead.

We compute the accuracy of tracking algorithms as follows. The mean distance between

the center of the tracked object (face, blob, or human) in degraded video (with applied drop

pattern) and the center of the face in the original video is recorded. We use this mean distance

(in pixels) as a metric of accuracy for the tracking algorithm. Essentially it measures the error

of tracking across all frames in the video, therefore, we call the metric average error. For a

given dropping pattern, smaller average error means better relative accuracy of the algorithm.

45

Network

Scale down

Compress Decompress

Scale up

Camera Proxy

Figure 3.5: Video surveillance scenario of combining scaling and compression adaptations to
further reduce bitrate.

46

Chapter 4

Finding Critical Video Quality

In this chapter, we present experimental results of finding critical video quality for several

examples of video analysis algorithms. The experiments aim to demonstrate how different

types of video degradation affect accuracy of different video analysis algorithms. The emphasis

is made on the following pairs: SNR adaptation (JPEG compression) and face detection; spatial

adaptations (various scaling algorithms) and face recognition; and temporal adaptation (frame

dropping) and blob tracking.

4.1 Face Detection

We investigate how the accuracy of Viola-Jones and Rowley face detection algorithms change

when SNR quality of the video is reduced. Viola-Jones algorithm is an object detection algo-

rithm that uses a cascade of classifiers based on Haar-like features (see Figure 4.1). Intuitively,

it should perform accurately as long as images contain such features. Rowley algorithm is based

on the statistical changes in intensity values across a given image. Those regions that reflect the

patterns collected through algorithm’s training are marked as a face. We present experimental

findings showing changes in accuracy of these two algorithms for degraded SNR quality (see

Section 3.2 for more detailed description of experiments).

47

(a) Edge Features

(b) Line Features

(c) Four-rectangle Features

Figure 4.1: Haar-like features used by Viola-Jones face detection algorithm.

4.1.1 SNR quality

The experimental results for Viola-Jones algorithm and MIT/CMU dataset are presented in

Figure 4.2(a). The figure shows both detection and false positive indexes of the face detection

algorithm against different compression qualities. It can be noted that the average accuracy of

the face detection algorithm does not change significantly when JPEG compression quality is

decreased from 99 to 9 (indicated with the dashed vertical line on the figure). For quality less

than 9, the detection index demonstrates a sharp decrease. Since 90-95 is the default JPEG

compression quality used in typical video surveillance cameras (e.g., Axis 207, Canon VCC4),

compressing images to quality 9 can lead to significant reduction in size. Also note that the false

positive index does not increase in response to reduced compression quality, which means that

only the detection index is affected. Therefore, we can transmit video frames compressed with

quality 9 and achieve similar detection results as with uncompressed video. If we conservatively

choose 20 as the critical compression quality, we find that the average file size of JPEG images

in the MIT/CMU data set is 15.8 KB compared to 135.6 KB for original images (a nine times

reduction in size). This reduction, however, does not directly apply to a normal video, since

video encoders typically use motion estimation between frames to achieve higher compression.

The effect of JPEG compression on accuracy was also tested for Rowley face detection

algorithm. Results, presented in Figure 4.2(b), demonstrate that this algorithm is generally less

accurate compared to Viola-Jones algorithm (see Figure 4.2(a)). Nevertheless, the detection

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

JPEG Compression Quality

Viola-Jones Face Detection

detection index
false positive index

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

JPEG Compression Quality

Rowley Face Detection

detection index
false positive index

(b)

Figure 4.2: Accuracy of face detection algorithms vs. JPEG compression quality.

index of Rowley algorithm shows the same pattern of being at its original level until JPEG

compression quality is reduced to value 13 (indicated with the dashed vertical line in the figure).

Conservatively, the critical compression quality can also be chosen as 20. False positive of

Rowley algorithm is lower than Viola-Jones algorithm and it is also not affected by the decrease

in compression quality.

Figure 4.2(a) and Figure 4.2(b) demonstrate that both face detection algorithms have no-

ticeable fluctuations in the detection index. The main reason for such fluctuations in the

49

detection lies in the reliance of the Viola-Jones and Rowley algorithms on different threshold

values, which are empirically obtained through offline training of their classifiers. These values

affect the detection sensitivity of algorithms to the faces in the input images. Slight changes

in the pixel values of an image due to compression can unpredictably affect the decision of the

algorithm on faces that are near the threshold. Also, these algorithms are sensitive to factors

such as face size, lighting, background conditions, etc. These factors can cause the algorithm

to oscillate between detecting and not detecting faces as we vary the compression quality. To

analyze this type of behavior, we compute the cumulative distribution function (CDF) on the

maximum JPEG quality which causes the face detection algorithm to fail. The resulting CDF

for Viola-Jones algorithm is shown in Figure 4.3 (the results for Rowley algorithm are similar).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

Minimal Face Detection Quality

Figure 4.3: CDF for minimal face detection quality. Viola-Jones face detection.

The CDF curve in Figure 4.3 is computed as follows: For each face, we find a compression

quality q such that the face is not detected when compressed with quality q, but is detected

when compressed with any quality larger than q. We call this compression quality the minimal

face detection quality, and regard it as a random variable for Figure 4.3.

The CDF function shows relatively large decline (about 9% or 45 faces) when compression

quality decreases from 100 to 20. This figure demonstrates inconsistent detection results for 9%

of the faces. Combining this result with observation from Figure 4.2, we can deduce that in this

subset of faces, the faces are constantly changing from being detected to not being detected as

50

we vary the quality. For instance, one particular face is detected for compression quality 77, 76,

74 and 73, but is not detected for value 75. These faces are found to be of a smaller size. We

re-plot Figure 4.3 for different face size, measured as the maximum of distances between left

eye and right eye, and between eye-line and mouth. The new plot, Figure 4.4, shows that the

algorithm tends to maintain more consistent detection behavior for faces that are larger than

30 pixels, as we can see from the noticeable drops of the probability value for the faces with

size less than 40 pixels.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

Minimal Face Detection Quality

10 to 20 pixels
20 to 30 pixels
30 to 40 pixels
40 to 60 pixels

Figure 4.4: CDF for Minimal Face Detection Quality for Different Face Size. P=3, T=-0.0001.
Viola-Jones face detection.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

Minimal Face Detection Quality

10 to 20 pixels
20 to 30 pixels
30 to 40 pixels
40 to 60 pixels

Figure 4.5: CDF for Minimal Face Detection Quality for Different Face Size. P=4, T=-1.0.

51

The reason for the fluctuations in detection lies in the reliance of the algorithm on different

threshold values. These values affect the detection sensitivity of the algorithm for the faces

in the input images. Slight changes in the pixel values of an image due to compression can

unpredictably affect the decision of the algorithm on faces that are near the threshold. Fur-

ther experiments support this explanation: We increase absolute values of two main threshold

parameters: the pruning value P for face candidates and a threshold T that is used inside the

cascade classifier. Value P is used as follows: an image area, candidate to be a face, is discarded

if the number of times it is detected by the cascade of classifiers is less than pruning value P ,

which means that increasing P leads to classifying lesser image areas as faces. On the other

hand, increasing absolute value of threshold T , which is used inside the decision tree of each

classifier, leads to many more areas of the image to be marked as possible faces by the cascade.

We change these values from the default values of P=3 and T=-0.0001 to P=4 and T=-1.0.

Figure 4.5 shows the new results. The consistency of detection across different compression

quality values improves. The parameters, however, increase the sensitivity of the algorithm,

causing the number of false positives to increase by five times. Interestingly, using the new

parameters, the number of false positives is not significantly affected by compression quality.

To strengthen our results, we also run Viola-Jones algorithm on the surveillance video of our

lab door (see Section 3.2 for more details). Video is compressed to two different quality values,

90 and 20, using two sets of threshold parameters P = 3, T = −0.0001 and P = 4, T = −1.0.

P=3,T=-.0001 P=4,T=-1.0

detection index

quality 90 0.63 0.77
quality 20 0.61 0.76

false positive index

quality 90 0.004 0.09
quality 20 0.01 0.11

Table 4.1: Experiments with Face Detection Algorithm and Actual Surveillance Image Set of
237 Faces.

From the experiments, we find that the Viola-Jones algorithm exhibits unpredictable be-

havior temporally, returning false positive results periodically. We exclude such false positives

by considering a face as detected only if it is detected consecutively for three frames. This

52

method is reasonable because faces are usually present in a video in a consecutive sequence of

frames (assuming sufficiently high frame rate). Table 4.1 presents the detection and false pos-

itive indexes for the algorithm with the two sets of parameters. This result verifies that both

the detection and false positive indexes do not change significantly when compression quality is

reduced to 20. The results obtained for real surveillance data are consistent with our findings

on the MIT/CMU data set.

4.1.2 Scaling quality

Spatial adaptations are another set of adaptations affecting the accuracy of face detection

algorithms. The details on how we scale the test images for Viola-Jones and Rowley algorithms

are given in Section 3.2. It is important to note that a typical learning-based face detection

algorithm has a limit on a minimal detectable size of a face. For example, the limit for Viola-

Jones algorithm is 20×20 pixels, which is set during the training stage of the face classifier.

Therefore, if the image containing face is down-sampled by scaling algorithm to such extend

that the size of the face falls below this limit, the detection algorithm will not be able to find

this face. That is why it is often not reasonable to perform a simple down-sampling of the

images, as we did with SNR quality by simply reducing it.

There are two practical cases of using scaling adaptation with face detection. First case

is when face sizes in a video fall under the minimal detectable limit of the face detection. To

detect the faces, we can up-scale video frames until faces become large than the detectable limit.

This approach would be useful if videos sensors are cheap with low spatial resolution and no

optical zoom. To be practical, however, we need to know by how much to increase the size of the

frames. We can compute it via offline profiling of the typical face sizes at the given video sensor.

Another practical case of using scaling adaptation is reducing the bandwidth of the streaming

video from video sensor to proxy that runs face detection. We proposed to down-scale images

first and up-scale them back to original size, with understanding that in practical situation,

downscaled small size images would be transmitted through network, while scaled-back images

would be fed to a detection algorithm (see Figure 3.5 for the illustration).

53

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 80 100 120 140 160 180 200

In
de

x
V

al
ue

Spatial resolution (% to original)

detection index
false positive index

(a) Viola-Jones face detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 80 100 120 140 160 180 200

In
de

x
V

al
ue

Spatial resolution (% to original)

detection index
false positive index

(b) Rowley face detection

Figure 4.6: Accuracy of Viola-Jones and Rowley algorithms when MIT/CMU images are scaled
with nearest neighbor to various spatial resolutions.

To see the effect of up-scaling and down-scaling on face detection, we plot in Figure 4.6

accuracy results of Viol-Jones and Rowley algorithm vs. different spatial sizes of MIT/CMU

images. We used nearest neighbor scaling because it is one of the simplest scaling algorithms.

Spatial size of the images varies from 50% (in both width and height) of their original size

to 200% of their original size. From the figure, we can note that accuracy of the algorithms

increases slightly when images are larger than the original size. This observation indicates that

some of the faces in the dataset were smaller than the face size minimal detectable limit. The

important observation is, however, that with increase in the image sizes, the false positive index

increases significantly. This means that using spatial scaling can give increase in accuracy but

also results in the increase of false positive.

To understand how up-scaling of the video frames can improve detection accuracy in prac-

tical applications, we conducted experiments with a surveillance video of a person moving in

front of the camera. It was shot with Axis 207 in a typical lab-like environment (see Table 3.1

for more details). The person moves his head with a lot of motion, moving in and out of the

camera view, moving hands in front of the face, turning his head in all directions. Due to a

small frame size, which implies a low cost, low power video sensor, for example a cheap mobile

phone, many facial shots are below the minimal detectable limit (20×20 pixels) of Viola-Jones

algorithm. From the original video (160×120 pixels resolution) we also derived two videos with

224×168 and 256×192 frames sizes by up-scaling it to 140% and 160% respectively. We ran

Viola-Jones detection algorithm on these three sets of frames and detection results are presented

54

Figure 4.7: Examples of Viola-Jones detection for different resolutions of the practical video.

in Table 4.2. Snapshots of videos with all different frame sizes are shown in Figure 4.7.

From the Table 4.2 we can notice a significant improvement in the detection index caused by

up-scaling the original low resolution video. Since many of the faces in the original video were

too small for the detection algorithm to recognize, the increase in spatial resolution allowed

to detect more faces. The detection accuracy for video scaled to 160% is three times higher

than for original video. Such results provide practical benefits for using spatial scaling for low

resolution video sensors. As with MIT/CMU results, Table 4.2 also shows an increase in false

positive for up-scaled videos.

When the resolution of video sensors is high and video is transmitted over network before

it is analyzed, the problem of reducing video bitrate is important. Therefore, we can propose

to first down-scale video frames, transmit them over network, and then up-scale them back to

the original size. Firgure 4.8 and Firgure 4.9 demonstrate how down-sampling-up-sampling of

MIT/CMU images with different scaling algorithms affects accuracy of Viola-Jones and Rowley

face detection respectively. We can notice that detection index and false positive show similar

behavior across all scaling algorithms. Arguably, nearest neighbor scaling gives the worst accu-

racy results for both face detection algorithms, since the corresponding detection index inhibits

a more rapid decline compared to other scaling algorithms. In these experiments, scaling qual-

Original 140% scaled 160% scaled

detection index 48 faces 119 faces 146 faces

frontal faces 0.33 0.80 0.99
all faces 0.23 0.57 0.70

false positive index 0 faces 1 face 4 faces

Table 4.2: Up-scaling 160×120 video to higher spatial size for Viola-Jones face detection to
notice small faces.

55

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

Scaling Quality

detection index
false positive index

(a) Nearest Neighbor Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

Scaling Quality

detection index
false positive index

(b) Pixel Area Relation Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

Scaling Quality

detection index
false positive index

(c) Bilinear Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

Scaling Quality

detection index
false positive index

(d) Bicubic Scaling

Figure 4.8: Degrading scaling quality for Viola-Jones face detection, MIT/CMU dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

Scaling Quality

detection index
false positive index

(a) Nearest Neighbor Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

Scaling Quality

detection index
false positive index

(b) Pixel Area Relation Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

Scaling Quality

detection index
false positive index

(c) Bilinear Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

Scaling Quality

detection index
false positive index

(d) Bicubic Scaling

Figure 4.9: Degrading scaling quality for Rowley face detection, MIT/CMU dataset.

56

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

JPEG Compression Quality

Prescaled and Compressed

-orig
-preNN10
-preNN30
-preNN50
-preNN80

(a) Viola-Jones face detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

JPEG Compression Quality

Prescaled and Compressed

-orig
-preNN30
-preNN50
-preNN80

(b) Rowley face detection

Figure 4.10: MIT/CMU images are prescaled with nearest neighbor and compressed with JPEG
for Viola-Jones and Rowley algorithms.

(a) (b)

Figure 4.11: The effect of image down-scaling (to 30%) followed up by its up-scaling to original
size. The image is from MIT/CMU dataset. Nearest neighbor scaling is used.

ity is the percentage in size (width×height) to which images were down-scaled first and then

up-scaled back from. Such process distorts images in a similar fashion as JPEG compression

does. The example of the image degraded in such way is shown in Figure 4.11. Looking at

the figures 4.8 and 4.9 we can chose the critical spatial quality for each scaling and face de-

tection algorithm as the beginning of more rapid decrease in detection index. We indicated

the such points with vertical dashed lines on the figures and also summarized the them into a

Table 4.3 together with the corresponding reduction in bitrate (average size of degraded images

compared to file size of original un-scaled images). The bitrate reduction data was computed

for the surveillance video in the lab shot with Axis 207 camera (see Table 3.1).

To reduce the size of the images even further, we degrade them using the combination of

57

Scaling
Algorithms

Viola-Jones Rowley
Critical

Quality

Bitrate

Reduction(times)

Critical

Quality

Bitrate

Reduction(times)

Nearest neighbor 40 3.5 50 2.5

Bilinear 38 3.8 50 2.8

Bicubic 35 3.87 40 3.5

Pixel area relation 30 5.7 45 3.17

Table 4.3: Critical spatial qualities and corresponding reduction in bitrate for several scaling
algorithms and Viola-Jones and Rowley face detection.

scaling and SNR adaptations. A suitable scenario could be as following: images are prescaled

to a certain spatial quality, compressed with certain SNR quality, transmitted over network,

decompressed, scaled back to their original spatial quality, and used as input to video analysis

algorithm. We prescaled MIT/CMU images with nearest neighbor scaling to several quality

values. We chose nearest neighbor scaling since it demonstrated the worst critical spatial quality

among other scaling algorithms. The detection results for Viola-Jones and Rowley algorithms

for the combination of scaling and compression are presented in Figure 4.10. Curve marked as

“-orig” corresponds to the images with no prescaling and is identical to results in Figure 4.2.

Curve “-preNN50” corresponds to mages that were prescaled to 50% of their original size with

nearest neighbor scaling. Other curves are marked likewise. We can notice that shapes of the

curves in this figure are similar to the one from experiments with JPEG compression. The

prescaling however, has a negative effect on overall accuracy. Even when images are prescaled

to 80%, the accuracy of both face detection algorithms is noticeably lower than for images

without scaling adaptation applied.

It is hard to find a definitive and quantitative answer to why our tested face detection

algorithms remain accurate for highly compressed or scaled images. Intuitively, algorithm’s

accuracy depends on what type of features it searches for in an image and how it performs

the search. The type of distortions, caused to video/image by reduction in quality, affects

algorithms’ accuracy as well. For instance, Viola-Jones algorithm is based on Haar-like features,

which are affected relativelly insignificantly by the strongest artifact of JPEG compression, as

compared to an edge detection algorithm. The design of the algorithm, however, plays very

important role as well. Many modern algorithms (including Viola-Jones and Rowley algorithms)

58

are based on empirical training using a large pool of real-life images with faces of various

qualities, shapes, and scales. Therefore, thresholds and pruning values obtained in the training

stage have a strong affect on algorithms’ accuracy as well as their robustness to reduction in

video quality. In Chapter 5 and Chapter 6 we discuss this issue in more details.

4.2 Face Recognition

The accuracy of QDA-based face recognition algorithm (Lu et al., 2003) is evaluated for the

following spatial video adaptations: nearest neighbor and pixel area relation scaling algorithms

(see Table 3.2). The results are presented in Figure 4.12(a) and Figure 4.12(b) respectively.

Similarly to the accuracy pattern of face detection algorithms, the accuracy of face recognition

does not change until video quality is reduced to a critical spatial quality. As indicated with

dashed vertical lines in the figures, for nearest neighbor scaling algorithm the critical quality is

20% of the original images sizes and for pixel area relation it is 11%. On average, for images

from Yale set, these qualities reduce file sizes to 9.9% of their original sizes (10 times reduction)

for the nearest neighbor scaling algorithm and to 4.2% (24 times reduction) for the pixel area

relation scaling.

Similarly to face detection algorithms, face recognition remains accurate for images with

significantly reduced quality. We use QDA-based recognition, which relies on a quadric offline-

trained classifier to determine whether two input faces belong to the same person or not (a

categorization task). Detection and recognition algorithms are designed to perform their task

accurately on data (images or video) with large amount of noise. Visual artifacts of compres-

sion and scaling can be regarded as noise added to an image. Therefore, since detection and

recognition algorithms are designed to be prone to noise, they are robust on video that is highly

compressed or scaled.

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
M

C
 v

al
ue

, r
an

k
1

Scaling Quality

Nearest Neighbor Scaling

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
M

C
 v

al
ue

, r
an

k
1

Scaling Quality

Pixel Area Relations Scaling

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
M

C
 v

al
ue

, r
an

k
1

Scaling Quality

Linear Scaling

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
M

C
 v

al
ue

, r
an

k
1

Scaling Quality

Bicubic Scaling

(d)

Figure 4.12: Identification CMC value of face recognition vs. scaling quality of scaling and
JPEG compression algorithms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
M

C
 v

al
ue

, r
an

k
1

JPEG Compression Quality

Figure 4.13: Identification CMC value of face recognition vs. JPEG compression algorithms.

4.3 Face Tracking

In this section, we study the trade-off between accuracy of implemented in OpenCV library

CAMSHIFT (Bradski, 1998) face tracking algorithm and two qualities of the video, temporal

and SNR. We run the tracking algorithm on video with different frame dropping patterns and

60

compute tracking average error as described in Section 3.2. We also test face tracking for

different compression qualities.

Figure 4.14(a) shows the average error for one of the test videos for patterns with i varying

from 1 to 14 and j equal to 1, 3, 6 and 12. The figure shows that drop gap i plays a more

important role in the accuracy of the tracking algorithm compared to j. We can see from the

figure that accuracy is consistent with increase of i and decrease of value j. Only when gap i is

more than 8, the algorithm shows unpredictable behavior; we call this drop gap a critical drop

gap. The reason for unpredictable behavior is that CAMSHIFT algorithm searches for a given

object’s histogram inside a subwindow of the current frame of the video, which is computed as

150% of the object size detected in the previous frame. Therefore, if the object, moves between

two frames from its original location for a distance larger than half of its size, the algorithm

will lose the track of the object. With another drop gap, the face may be able to move out

and move back into the search subwindow. Hence, the oscillations in the algorithm’s accuracy

occur.

Such observations demonstrate the significance of gap i for the accuracy of the face tracking

algorithm. In the video used for Figure 4.14(a), i should be bounded by 8 for the tracking to

be consistently accurate. Therefore, the algorithm can achieve reasonable accuracy (within two

pixels) using the pattern: “Drop 8 frames out of 9 frames.” In other words, the video source

only needs to send at 1/9 of the original frame rate.

Next, we study the effect of SNR quality on the accuracy of face tracking. We compress

the video with different compression qualities and repeat the experiments with frame dropping

pattern. The results for video with compression quality 50 are shown in Figure 4.14(b). We

can see that accuracy is lower on average for video of higher compression ratio. An increase

in compression ratio leads to an increase in average face distance ratio since highly compressed

video has fewer details, making the border of a tracked face less distinct. Figure 4.15(b) shows

the effect of the compression with quality 50 using a frame sample from the test video.

The results reported above come from experiments on a single video, captured using a web-

cam in a normal office environment. We repeat the experiments for different videos with different

61

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

CAMSHIFT Face Tracking

j=1
j=3
j=6

j=12

(a)

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

CAMSHIFT Face Tracking, Compression 50

j=1
j=3
j=6

j=12

(b)

Figure 4.14: Average error vs. drop gap for CAMSHIFT algorithm. Video was compressed to
quality 100 in 4.14(a)and quality 50 in 4.14(b).

content and notice that for a movie clip with talking person, moving his hands occasionally,

the critical drop gap is 14, even when the video was compressed with quality 10. On the other

hand, for a movie clip showing a character moving his head constantly in a fast and jumpy

motion, the critical drop gap is found to be 4 (“drop 4 out of 5 frames” pattern). We also

run experiment with web-cam video captured in different lighting conditions. The critical drop

gap found for various videos and different compression qualities is plotted in Figure 4.16. The

figure shows that compression quality does not significantly affect accuracy of the face tracking

algorithm, hence, the type of face motions is a major video constraint for the accurate tracking.

Face tracking algorithm is resistant to video compression because it is based on histogram

62

(a) (b)

Figure 4.15: A snapshot frame from a test video for CAMSHIFT face tracking. In (a) it is
compressed with quality 100 and in (b) with quality 50.

matching. Since DCT-based compression removes high frequencies from a video, it does not

have a significant effect on the histogram of a face.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50 60 70 80 90 100

C
rit

ic
al

 D
ro

p
G

ap

Compression Quality

Moving Slowly, Normal Light
Moving Slowly, Bright Light

Moving Jumpy, Normal Light

Figure 4.16: Critical drop gap vs. compression quality.

4.4 Blob Tracking

Similarly to face tracking in Section 4.3, we performed experiments with the blob tracking

algorithm that is based its tracking on the frame differencing. We use a fragment of PETS2001

video and VISOR video. See snapshots in Figure 4.18(a) and respectively Figure 3.4(f). Unlike

face tracking, failure of the blob tracking algorithm is harder to define. If too many consecutive

63

frames are dropped, the object in the current frame appear so far away from its location in

the previous frame that the frame differencing operation results in detecting two separate blobs

(see Figure 4.18(b)). Therefore, strictly speaking, the algorithm would not loose tracked object

because of the frame dropping. Instead, it gets wrongly confused that a new object entered a

scene. For typical original video with 30 fps, dropping even 15 consecutive frames may not result

in splitting the tracked object into two blobs (at least for our test videos). Instead, the more

frames are dropped, the larger becomes the tracked object. This observation is demonstrated

by Figure 4.19(a) and Figure 4.19(b), which show the drop gap vs. average error of the blob

tracking. As we can see, as oppose to CAMSHIFT tracking, blob tracking does not lose object

even for large drop gap, but the error grows rapidly. Although, technically blob tracking

algorithm does not lose an object, its accuracy shows a significant drop for low frame rate

video. It appears that we cannot guarantee algorithm to perform with original accuracy when

we reduce frame rate. However, we realize that with simple reasoning based on tracked object’s

and algorithm’s features it is possible to adapt algorithm to low frame rate without significant

loss of the accuracy. We discuss the analysis and the approach in Section 7.1.

We also test the effect of SNR quality on accuracy of blob tracking using PETS2001 video.

The results of blob tracking for videos compressed with qualities 10 and 20 (Indeo video 5.10

codec) are presented in Figure 4.20(a) and Figure 4.20(b). As we can see, the frame dropping is

still applied. This was done to understand how lower SNR quality changes algorithm’s accuracy

for different frame rates. We can notice that the accuracy for compressed videos shows a

similar pattern to the original video, which means the accuracy is affected insignificantly by the

compression. Such results are expected since blob tracking algorithm only detects and tracks

foreground object represented as blobs of pixels. Since compression removes fine details from

each frame, the blobs can still be tracked.

64

∆x
0

original video drop gap i = 1

Figure 4.17: The schema of the difference between object foreground detection for original video
and for video with dropped frames.

(a) Detected foreground object with drop gap 14
frames. PETS2001 video.

(b) Binary mask of the frame in 4.18(a). Effect of
drop gap on frame differencing.

Figure 4.18: The foreground object detection based on frame differencing.

65

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

Blob Tracking

j=1
j=3
j=6

j=12

(a) Original VISOR video.

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

Blob Tracking

j=1
j=3
j=6

j=12

(b) Original PETS2001 video.

Figure 4.19: Accuracy of blob tracking algorithm for VISOR (snapshot in Figure 3.4(f)) and
PETS2001 (snapshot in Figure 4.18(a)) videos.

66

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

Blob Tracking, Compression 10

j=1
j=3
j=6

j=12

(a)

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

Blob Tracking, Compression 20

j=1
j=3
j=6

j=12

(b)

Figure 4.20: Accuracy of blob tracking algorithm for PETS2001 video compressed with quality
10 and 20.

67

Chapter 5

Rate-Accuracy Framework

Our experiments on the selected video analysis algorithms demonstrate the dependency between

accuracy of the selected video analysis algorithms and reduced video quality. We show that

critical video quality exists for face detection, recognition, and tracking algorithms when SNR,

spatial, and temporal video qualities are reduced. We considered the effect of SNR and spatial

quality (and their combination) on face tracking and face detection; and the effect of SNR

and temporal quality on face tracking. The blob tracking, due to the specifics of the frame

differencing of foreground object detection, does not show a clear critical temporal quality but

demonstrates a strong correlation with frame dropping pattern.

Running experiments with different combinations of video analysis algorithms and video

adaptations is not enough to understand the relationship between an algorithm and a video

adaptation. Video analysis algorithms, video data, and video adaptations (e.g., compression)

are often complex in their nature. Also, given large growing number of video analysis algo-

rithms, which are constantly evolving, there are many different combinations of algorithms and

adaptations. Testing how every adaptation affects accuracy of every algorithm is not feasible

in a practical system. Therefore, we need to do have some way to formalize and analyze the

tradeoff between video bitrate (result of applying a video adaptation) and accuracy of a video

analysis algorithm (a response to reduction in video quality).

In this chapter, we generalize our experimental findings by introducing the rate-accuracy

function for a given video analysis algorithm. We first estimate the complexity of the experi-

68

ments needed for finding critical video quality for a given video analysis algorithm and several

available video adaptations. Then, we suggest an approach to reduce a number of experiments

by analyzing the features that an algorithm is searching for in video, features of the video itself,

and the way adaptations affect these features.

By advancing in our reasoning about video features, we diverge from the idea of simply

reducing the number of experiments for finding critical video quality. We show that video

features metrics (measures how much of certain video feature is present in the video) can be

used to evaluate quite accurately the performance of video analysis algorithms and are good

in estimation of critical video quality across the corresponding video adaptations. Thus, video

features metrics can be considered as an instrument for measuring the quality of computer vision.

Such reasoning can also lead to developing improved versions of video analysis algorithms that

are more tolerant to lower video bitrate.

5.1 Rate-Accuracy Function

The rate-accuracy function of a video analysis algorithm, under an environmental condition,

gives the minimum rate of a video stream that satisfies the required accuracy of the algorithm.

Deriving this function is non-trivial, as the rate of the stream depends on three different quality

dimensions: SNR, temporal and spatial, each having different effects on different video analysis

algorithms. For instance, the accuracy of a face detection algorithm mainly depends on the

SNR quality of video while the accuracy of an object tracker is affected by the temporal quality

as well.

Let the accuracy a of a computer video analysis algorithm A under an environmental con-

dition e be a function g of the quality of the video, which consists of temporal quality τ , com-

pression quality γ, and spatial quality σ. The environmental conditions can be some discrete

values that would categorize video into a certain way. For example, a set of such conditions can

include “good lighting”, “snow falling”, “outdoor”, “road traffic”, etc. Then, we can express

the accuracy function as:

a = gA,e(τ, γ, σ) (5.1)

69

We can obtain the function g through off-line experiments with the algorithm that are similar

to presented in Chapter 4.

The rate of the streaming video, R, depends directly on the video quality based on some

function r, i.e.:

R = r(τ, γ, σ) (5.2)

There are two different problems that may be of interest in the context algorithm’s practical

application. The first is to minimize the transmitting video bit rate for the given accuracy a′

of an algorithm A. Let S(a′) be the set of solution triples (τ ′, γ′, σ′) that satisfies the equation:

a′ = gA,e(τ, γ, σ) (5.3)

Each triple, or combination of encoding parameters, leads to different possible video bit rates,

among which we should find one that minimizes the bit rate. Denoting RA(a′) as the minimal

bit rate of a video satisfying the accuracy a′ of algorithm A, we can express:

RA(a′) = min
(τ ′,γ′,σ′)∈S(a′)

(r(τ ′, γ′, σ′)) (5.4)

As an example, let algorithm A be the CAMSHIFT face tracker, and accuracy a (mea-

sured as average face distance ratio) be 0.3. Based on the experimental findings presented in

Figure 4.14(a) and Figure 4.14(b), the accuracy, subject to environmental conditions, can be

achieved with videos encoded using the parameters shown in Table 5.1. For example, the first

row of Table 5.1 shows that we can achieve the accuracy of 0.3 with SNR quality of 100, and

frame rates between 3.3 fps and 30 fps. This set of encoding parameters yield a resulting bit

rate ranging from 0.2 Mbps to 2 Mbps. Note that videos of compression quality below 50 can-

not satisfy the required accuracy of 0.3. Hence, we can find the minimum bit rate according

to Equation 5.4, which is of 12 kbps and achieved using video of compression quality 50 and

temporal quality 3.75 fps.

Besides minimizing the bit rate, the set of equations above also gives us a framework for

dynamic video rate adaptation, with the goal of maximizing the accuracy of a given algorithm.

Such formulation is similar to the utility-based adaptation framework presented by Kim et

al. (Kim et al., 2003). In their framework, the rate is constrained, and the goal is to find

70

Compression Quality Min FPS Max FPS Min Bit Rate Max Bit Rate

100 3.3 30 0.2 Mbps 2 Mbps
75 3.3 30 70 kbps 0.6 Mbps
50 3.75 30 12 kbps 100 kbps

Table 5.1: Profiles of Video Matching Required for Face Tracking Accuracy of 0.3.

the maximum quality of the video based on human perceptions. In our context, instead of

maximizing the video quality, we need to maximize accuracy of the algorithm. The problem

becomes the following: find a combination of encoding parameters to maximize the accuracy of

the algorithm when the available bandwidth is less than B:

amax = max
τ,γ,σ

(gA,e(τ, γ, σ)) (5.5)

subject to r(τ, γ, σ) ≤ B (5.6)

In the case where several video analysis algorithms need to be performed on the same video

source, the resulting video should have the quality to satisfy the most quality-sensitive algorithm

among them. The maximum of temporal, spatial and SNR qualities among all values that

meet the accuracy of all these algorithms should be used. If there is a constraint on network

bandwidth, priority can be assigned to each operation. Taking the priorities into account,

the resulting video rate can be adjusted by solving the max-min problem with varying SNR,

temporal and spatial qualities.

5.2 Estimation of the Rate-Accuracy Function

We have demonstrated that our tested video analysis algorithms can sustain high reductions in

video quality, and we introduced rate-accuracy function, a formal representation of the phenom-

ena. An important question remains however, of how to determine the critical video quality in

practice. One approach is to perform an exhaustive search by running a video analysis algorithm

on degraded video with every video adaptation used in the system. Such search is inefficient

and therefore undesirable. We demonstrated, however, that by using reasoning, critical video

quality can be approximated. Sometimes even a simple intuition may suffice. For example, we

71

can reason that in typical office environment, 0.5 seconds is enough to capture face of a person

passing in front of a video camera. Hence, without resorting to experiments, we can estimate

that 2 fps should be the minimal frame rate of the video that is intended for face detection

algorithms. But such simple reasoning would not work in all cases. Compression algorithms

(JPEG, MPEG4, etc.), for instance, are very complex and, therefore, it is hard to estimate

their effect on non-trivial face detection or recognition algorithms. To obtain a fairly accuracy

estimation of critical video quality, we need to take a closer look at video adaptations, video

analysis algorithms, and the video itself.

But first, we want to understand the complexity of running all necessary experiments for

determining critical video quality for a given video analysis algorithm and several video adapta-

tions. Let’s assume that there are n video adaptations that modify a video, changing its quality

and bit rate. By running algorithm A on each possible modification of the video, we obtain a

corresponding accuracy value. All pairs of the video bit rate and the algorithm’s accuracy form

the rate-accuracy function. The sweet spot in the curve of the function determines the value of

the critical video quality. The number of experiments, necessary for finding the critical video

quality, we call experimental complexity. Using such quantitative metric allows us to measure

the benefits of estimating critical quality instead of using the blind experimental search.

5.2.1 Straightforward Approach

First, we assume the simplest situation when we have no specific knowledge about algorithm

A and consider it as a black box. We can only determine the rate-accuracy function through

experiments. Therefore, for each variation of adaptations, we obtain the modified video, note

the video bit rate, execute the algorithm A, and record its accuracy.

Notations and Assumptions Let Di denote a video adaptation, where i = 1...n. We assume

that each video adaptation Di has a parameter, which we call modification degree, measuring

how much the adaptation modifies the video. If the modification degree of the adaptation

is ji, we write the adaptation in form of Dji

i . The word quality is often used in the sense

of the modification degree creating ambiguity with the video quality describing the level of

72

video distortion. For example, JPEG compression quality is the modification degree for JPEG

adaptation, which should not to be confused with compression video quality.

Although in reality each adaptation can have different number of modification degrees, for

simplicity of computing the experimental complexity, we assume that each adaptation Di has

m modification degrees.

We define D(J) to be a set of video adaptations, where each Di is stated in its modification

degree ji. Hence, D(J) describes the state of all Di and can be written as following:

D(J) = {Dj1
1 , Dj2

2 , ..., Djn

n }, where J = (j1, j2, ..., jn) (5.7)

Vector J represents one of the variations obtained by changing ji from 0 to m for each adaptation

Di. We denote the total number of variations as T (n, m).

We denote the video in its original unmodified condition as v0. The expression Dji

i · v0 = vji

means that applying adaptation Di with degree ji to the original video v0 results in modified

video vji
. Therefore,

D(J) · v0 = Dj1
1 · Dj2

2 · ... · Djn

n · v0 ≡ vJ (5.8)

Thus, video vJ is the video that is obtained from original video v0 by applying video adap-

tations with modification degrees defined by J .

We assume that the order in which adaptations are applied to the video is not important, i.e.,

adaptations have a commutative property: ∀i, k, Di ·Dk ·v0 = vjik = Dk ·Di ·v0. The assumption

is valid in many cases; consider: for MJPEG format, dropping frames followed by compression

results in the same video as compression followed by dropping frames (since MJPEG is just a

series of independent frames compressed with JPEG), cropping (in percentage to the spatial

size) followed by spatial scaling gives the same result as scaling followed by cropping, etc. While

adaptations of similar type, i.e., two different lossy compressions JPEG and JPEG2000, may

not be commutative, it is rare that they would be used together in the same set D(J).

We also define rJ to be the bit rate of the video vJ and aJ to be the accuracy of the algorithm

A, obtained by executing the algorithm with the input video vJ .

73

Complexity Estimation T (n, m) denotes the number of all possible states D(J) of n adap-

tations, each changing the modification degree from 0 to m. Computing T (n, m) is similar to

computing the number of variations with repetitions in combinatorics. It is analogous to placing

m + 1 objects (ji = 0...m) into n slots, since vector J = (j1, j2, ..., jn). The total number of

variations with repetitions equals to (m + 1)n. Therefore,

T (n, m) = (m + 1)n (5.9)

In practice, m can be large, for instance, JPEG compression quality varies from 1 to 100.

Number of adaptations n is, usually, at least 2. For example, the commonly used adaptations

are: frame-dropping, compression, cropping, and spatial scaling. Since we treat the video

analysis algorithm A as a black box, it is necessary to conduct (m + 1)n experiments. For each

state D(J), we obtain video vJ , compute bit rate rJ of the resulted video, and run algorithm

A on vJ to find accuracy aJ . Functions rJ and aJ form the rate-accuracy function that can be

defined as

aJ = gA(rJ) (5.10)

Both aJ and rJ are functions depending on video, which is obtained by applying adaptations

determined by D(J). The sweet spot of the rate-accuracy curve, i.e., the critical video quality,

is the value of J that gives the minimal video bit rate for a given algorithm’s accuracy.

Figure 4.2(a) shows the example of accuracy aJ for the face detection algorithm vs. JPEG

compression quality, when vector J consisting of just one element. As the vertical dashed line

in the figure indicates, we can consider the compression quality 9 to be the critical quality for

the Viola-Jones face detection.

5.2.2 Video Features

Running blind-search experiments to find critical video quality is an exponential function of

the number of video adaptations as we have derived in equation 5.9. Such complexity makes it

infeasible to use several different video adaptations in practical systems. We, therefore, propose

reducing the number of experiments by considering video features that are certain characteristics

74

of the video, changing which (with video adaptations) would affect accuracy of video analysis

algorithm A. The reasoning is that since treating an algorithm, video, and adaptations as

black boxes gives large experimental complexity, analysis of additional information would help

in reducing the number of necessary experiments.

Different algorithms are sensitive to different video features. For example, video features

of an object tracking algorithm can include speed and size of the tracked object, color of the

background, histogram, etc. If the speed of the tracked object increases significantly, the tracker

can lose the object. Also, if the color of the background becomes similar to the color of the

tracked object, the tracker will lose the object, confusing it with the background.

But before going into details, let’s compute the new experimental complexity by considering

the set of video features just as a “bridge” connecting n video adaptations and algorithm A. In

Section 5.2.3, we continue to reason about video features and how to use them.

Notations and Assumptions Assume that we have identified the set of p video features

that are critical to the accuracy of the video analysis algorithm A. Identifying such features is a

difficult task and requires a deep knowledge of A. We discuss different categories and examples

of video features in Section 5.2.4.

We denoted the set of features for algorithm A as

FA = {f1, f2, ..., fp} (5.11)

When video adaptations modify the video, they also affect video features in the set FA.

Note, that a video adaptation affects only some of the video features. For example, scaling or

compression adaptations do not change such video feature as the speed of the tracked object.

Therefore, for each adaptation Di, there exists a corresponding set FDi
⊆ FA. The modification

degree of Di affects video features from FDi
only.

Figure 5.1 shows the graphical representation of relationships between video adaptations,

video features, and video algorithm. The figure draws attention to the fact that video adapta-

tions modify video features FDi
in the video, which in turn, affect the accuracy of the algorithm

A. The bit rate of the modified video and the corresponding accuracy of the algorithm form

75

the rate-accuracy function as discussed in Section 5.2.1.

Video

Space of Video AdaptaionsSpace of Video Analysis Algorithms

Figure 5.1: The relationship between video analysis algorithms and video adaptations.

Assume that we can measure the current condition or state of the video feature. Video

adaptations, by modifying the video, change the states of the video features from FA. For

instance, the feature such as speed (per frame) of the object of interest is affected by the frame-

dropping adaptation. More details on how to analyze and measure video features can be found

in Section 5.2.4.

Each change in the modification degree of Di corresponds to different states that features

from FDi
have. We denote the state of the feature fk as fsk

k , where sk is called the state degree

and is the value measuring the state of feature fk. Thus, f0
k indicates the original state of a

video feature, before any adaptation is applied. Since we want to estimate the experimental

complexity, we can assume, for the worst case, that FDi
≡ FA.

We can describe the effect of applying a video adaptation as follows. Video adaptation Di

changes its modification degree from ji to ji + 1, i.e., Dji

i becomes Dji+1
i , modifying video from

vji
to vji+1, affecting some feature fk ∈ FDi

to change its state degree from sk to s′k, what

results in change of the accuracy from a to a′.

Complexity Estimation In this section, we extend the complexity estimation given in Sec-

tion 5.2.1 by introducing p video features, in addition to n video adaptations and one video

analysis algorithm A. We consider video features, without semantically analyzing them, as

an extra set of entities serving as a “bridge” between A and adaptations. We estimate the

experimental complexity by analyzing, first, how video adaptations change video features, and,

76

second, how video features affect the accuracy of algorithm A. In Section 5.2.5, we aim to

reduce the resulted experimental complexity through analysis of the video features.

There are n video adaptations changing the states of p video features. As we found ear-

lier, the total number of states of adaptations D(J) is (m + 1)n. Therefore, the experimental

complexity of finding all possible state degrees of p video features equals to

O(p × (m + 1)n) (5.12)

Video features, in turn, affect the accuracy of the video analysis algorithm A. We have

two assumptions. First, we assume that each value sk, the state degree of the feature fk, has

a lower, sl
k and upper, su

k , limits. For example, the speed of object of interest is bounded

between 0 and the original speed. Theoretically, some features may have no fixed limit on the

state degree, for instance, the size of object can be spatially up-scaled to any number. But in

practice, we can always choose some fixed value for such limit. Second, we assume that each

video feature is changing in discrete steps and we can identify the minimal step of change, for

example, for spatial size it would be a pixel, and for speed it would be a pixel per frame. We

denote the minimal step of change for the feature fk as ∆sk. Every time fsk

k is changed by

a video adaptation Di to f
s′
k

k we can write that s′k − sk = x × ∆sk, where x is some integer

constant. Since a feature has lower and upper limits on its state degree, we can write for every

feature fk,

su
k − sl

k = mf × ∆sk (5.13)

where mf is the maximum times the feature fk can be changed if every time the step of change

is ∆sk. For the simplicity of the experimental complexity estimation, we assume that mf is the

same for every video feature. Since there are total p video features that determine the accuracy

of the algorithm A, the experimental complexity to find accuracy of A via video features can

be estimated as

O(mf + 1)p (5.14)

Combing two complexity estimations above, the total number of experiments for obtaining

77

the rate-accuracy function by using video features is estimated as

O(p × (m + 1)n + (mf + 1)p) (5.15)

This estimation is the worst case estimation and is not surprising that it appears to be

large, since we introduced an additional set of video features between the algorithm and video

adaptations. However, by considering the semantics of video features, in many cases, we can

significantly reduce the experimental complexity. In the best case, when all experiments are

substituted by reasoning, the experimental complexity in Equation 5.15 becomes just a com-

putational complexity. In the next section, we study and analyze video features aiming to

maximize the use of analytical expressions instead of experiments.

5.2.3 Analysis of Video Features

As we mentioned in Section 5.2.2, we consider video features as video characteristics that are

modified by a given video adaptation and affect the performance of video analysis algorithm

A. Our hypothesis is that we can apply measure or analytically describe most of the video

features affecting algorithm A, which allows us to run less experiments than is estimated by

Equation (5.15).

5.2.4 Identifying and Measuring Video Features

We categorized all video features that the accuracy of a general algorithm depends on into three

distinctive groups:

• Video features related to algorithm’s object of interest. Object of interest can be, for

example, silhouette, face, car, etc., i.e., an object that the algorithm searches for in a

video. We denote such set of features as FO.

• Video features resulted from using video adaptations to degrade the video. These features

are those that were not part of the original quality video but introduced to it due low

bitrate encoding and compression. Such features include blockiness, blurriness and other

common visual artifacts. We denote such set of features as FV .

78

• Video features related to algorithm’s internal structures; often also called features but

to avoid ambiguity we call them internal structures. Such structures can be Haar-like

features, moving foreground blobs, histograms, etc., i.e., what algorithm uses to search

for the object in a video. These features also include the probabilistic features, which are

defined by the training stage of the learning type of algorithms. We denote such set of

features as FI .

Therefore, video features used by the algorithm A can fall into three groups:

FA = FO ∪ FV ∪ FI , (5.16)

We mainly focus on the first two categories of features as essential for finding the critical

video quality. As for the internal structures of the algorithm, FI , we try to avoid using these

features in our reasoning; but only consider them in relation to FO and FV features. The reason

is that FI features over-complicate the analysis: (i) they are very different for each individual

video analysis algorithm; (ii) algorithms are often updated and modified to include various

new features to improve their accuracy; (iii) many new algorithms are developed every day.

Therefore, it is not feasible to analyze the internal features of the algorithms and develop any

practically working approach for the estimation of critical video quality. Also, many video anal-

ysis algorithms are the learning algorithms, i.e., they are based on neural networks, AdaBoost,

etc. Therefore, the training stage of such algorithms is crucial in shaping their performance

accuracy. The method of training and the used training data (video) justify the probability

with which an algorithm tracks, detects, or recognizes objects or events. Once the algorithm

is trained however, the probabilistic decision tree is fixed, so applying video adaptations to

degrade video quality would not affect the decision making process of the algorithm. Therefore,

such probabilistic features of the algorithm do not affect how relative accuracy of the algorithm,

which is our focus, changes when video adaptations are applied.

We can identify and measure video features in the set FO analytically. The features of this

type include such properties of object of interest as height, width, shape, speed, etc. These

features do not depend on the video analysis algorithm itself, and therefore, we can analytically

79

compute the effect on them caused by a video adaptation. For example, we can compute the

relative size of the object with respect to the spatial scaling adaptation or relative change in

object’s speed with respect to the number of the dropped frames.

Identifying the second type of features, FV , is less straightforward and requires a specific

knowledge about video, video adaptations, and even a little about video analysis algorithms

themselves. For example, considering Haar-like features used by Viola-Jones face detection as

an internal structure, we can make a general deduction that sharpness of edges and intensity

contrast near the edges are important for face detection to be accurate. Therefore, it is rea-

sonable to assume that video adaptations affecting such properties of the image, would have

a critical effect on face detection. Such reasoning lead us to focusing on visual artifacts, the

most prominent artifacts that video adaptations, such as JPEG compression, introduce to im-

ages/video at low bitrates. Visual artifacts can be viewed as the structural damage of a video

adaptation to the original image/video quality. The examples of visual artifacts include:

• Blockiness. This artifact gives a visible blocking effect to the image or video. It can be the

result of JPEG compression (see Figure 3.1), nearest neighbor scaling (see Figure 4.11 and

Figure 6.4(a)), pixel area relation scaling (Figure 6.4(b)), video encoders (see for example

Figure 4.15), and others.

• Blurriness. This artifact makes edges in the image wider and less sharp and can be

the result of some lossy compression algorithms like JPEG2000, bicubic scaling (see Fig-

ure 6.5(a)), bilinear scaling (see Figure 6.5(b)), and others.

• Color bleeding or loss of colorfulness. It is caused by the suppression of high-frequency

coefficients of the chroma component of the image. The artifact can be a result of com-

pression adaptation as well as other encoders. We do not consider the effect of this artifact

on critical video quality because it does not appear to be prominent for the used JPEG

compression and scaling algorithms. However, for more advanced algorithms (such as

JPEG200 or wavelet-based compression), this artifact (and others such as ringing) can

play a more important role and should be considered.

80

One of the main reasons why visual artifacts are great video features to use when estimating

critical video quality for video analysis algorithms is that there are many metrics measuring how

much of the artifact is present in the image/video. Therefore, the values of visual artifact metrics

can be treated as the state degrees (described in Section 5.2.2) of the FV features. In this study,

we focus on two prominent visual artifacts, blockiness and blurriness and use corresponding non-

reference metrics. More details on the analysis and experiments demonstrating the advantages

of using artifact metrics can be found in Chapter 6.

Computing Critical Quality Assuming that the prominent video features of the algorithm

A are identified as described in Section 5.2.4, and the relevant metrics are chosen, in this section,

we describe how to compute the critical video quality value using video features.

Analogous to a human observer, who sets requirements on a perceived video quality, a video

analysis algorithm imposes specific constraints on the video features. Typically, a human prefers

frame rate higher than 24 fps, spatial resolution to be maximized, video frames neither to be

blur nor rigid, etc.; likewise, the algorithm has its preferences to certain video features. Each

algorithm has a different set of thresholds on how degraded a video feature can be; and based on

our various practical experiments in Chapter 4, we assume that algorithms are more tolerant to

low quality video than a human observer. The deterministic nature of video analysis algorithms

and their relative simplicity compare to the human visual system encourages us to use reasoning

approach for identifying thresholds for state degrees of the video features (see Section 5.2.2 for

the definition).

We assume that algorithm A has lower, denoted as s̃l
A,k, and upper, denoted as s̃u

A,k, thresh-

olds on state degree of each feature fk from FA. Recalling the lower and upper limits on state

degrees of the video features defined in Section 5.2.2, the following holds for each feature fk:

sl
k ≤ s̃l

A,k < s̃u
A,k ≤ su

k (5.17)

There are several ways to identify such thresholds. Some are set in the code of the algorithm,

for example, face detection algorithms set a limit on the minimal detectable size, usually, 20×20

pixels. Some can be determined from the indirect factors such as maximal traceable speed of

81

the object in the video. Others can be only obtained through experiments, for example, the

maximal thickness of the edge for a face detection algorithm.

A threshold of the algorithm can be termed as the critical state degree of the feature fk if

decreasing or increasing the state sk below or above the threshold degrades the original accuracy

a0 of the algorithm A. Once we find the critical state degrees for all video features from FA, we

can derive the critical video quality. We base this claim on the assumption that the accuracy

of A is determined by the critical state degrees. We demonstrate this approach and show that

the claim is valid in Chapter 6 using examples of blockiness and blurriness visual artifacts.

Consider the example when adaptation D is JPEG compression, and Viola-Jones face

detection is the algorithm A. Let video features or the artifacts of the adaptation D be

FA = {fu = blurriness, fo = blockiness, fe = jerkiness, fc = color blindness}. Chang-

ing JPEG compression quality from 1 to 100, since it is modification degree of D, leads the

state D(J) to be {D1}, {D2}, ..., {D100}, with vector J changing from (1) to (100) respectively.

To each Dj , there are corresponding values of metric functions, i.e., state degrees {su, so, se, sc},

for each features from FA. Our hypothesis suggests that we can identify critical state degrees

for each feature, i.e., {s̃u, s̃o, s̃e, s̃c}, such that they determine a given accuracy of the algorithm

A. As follows from the experimental results presented on Figure 4.2(a), when JPEG compres-

sion quantizer is 9, one of the feature suppose to match its critical state degree, brining the

accuracy of A to the sweet spot. This example of this situation is studied in Section 6.1 with

only blockiness as the video feature in the set FA; it is shown that the same value of blockiness

corresponds to sweet spots in different video adaptations.

5.2.5 Reducing Experimental Complexity Using Video Features

The experimental complexity, stated in Equation 5.15, consists of two main parts. Relation-

ships between video adaptation and video features contribute to the first part and relationships

between video features and the algorithm A to the second. In this section, we, first, present

the computational algorithm that combines changing video adaptations, corresponding video

features, and the accuracy of A. The experimental complexity given in Equation 5.15 matches

82

the computational complexity of this algorithm, when each step of the algorithm is an exper-

iment. Second, we consider two groups of video features, denoted in Section 5.2.3 by FO and

FV , and, using analysis presented in Section 5.2.4, replace in computational algorithm as many

experiments as possible with analytical formula.

Computational Algorithm To find the critical video quality, we need to increase modifi-

cation degrees of video adaptations until video features match the corresponding critical state

degrees. The problem is how to increase the modification degrees of n adaptations that the

video gradually changes from original to the video that is most degraded by adaptations. We

propose an algorithm that imposes a partial order on the way each video adaptation Di changes

its modification degree. Recall that D(J) is the set of adaptations with modifications degrees,

where J is the state vector. If we start from J = (0, 0, ..., 0), by increasing modification degree

for each Di, we should eventually reach J = (m, m, ..., m). Let’s choose the current adaptation

D̃ to be consequently D1, D2, D3, and so on. To go through all variations of J , at one step,

we either increase or decrease by 1 the modification degree of D̃ and perform the recursive call

making the previous adaptation as D̃. In such manner, we visit all states from (0, 0, ..., 0) to

(m, m, ..., m), when D̃ becomes Dn in m’s modification degree. Therefore, any time the state

vector J = (j1, ..., ji, ..., jn) changes to the next vector denoted as J ′, the following rule applies,

J = (j1, ..., ji, ..., jn) 7→ J ′ ⇒

∃i : ji 7→ ji ± 1 ⇒

D(J) = {Dj1
1 , ..., Dji

i , ..., Djn

n } 7→ D(J ′) =







{Dj1
1 , ..., Dji+1

i , ..., Djn

n }

{Dj1
1 , ..., Dji−1

i , ..., Djn

n }

(5.18)

The algorithm ensures that every step only one video adaptation increases or decreases

its modification degree by 1, thus, advancing p video features in FA to the previous state

degrees or the next state degrees. For every change in state degrees of features in FA there is

a corresponding accuracy of the algorithm A. The computational algorithm finding accuracy

of A, for every step out of (m + 1)n steps, has the same computational complexity as stated

83

in Equation 5.15. In case we need experiments to find state degrees of all features and the

accuracy of A, the complexity, then, becomes experimental.

Substitute Experiments with Analysis In Section 5.2.5, we proposed the computational

algorithm that can be used to find the critical video quality for a given accuracy of the video

analysis algorithm A. Through analysis of video features, we aim to use analytical formulas

instead of experiments in the computational algorithm. We consider each of the two groups of

features, FO and FV , individually.

Video features in FO are related to the video object of interest, and therefore, we can

analytically measure their state degrees. For example, we can measure speed and size of the

object of interest. The thresholds on such features imposed by the algorithm A are either

stated in its code, i.e., minimal detectable size for face detection, or can be derived indirectly,

i.e., minimal traceable speed of the object for object tracking. Therefore, for every modification

degree of the corresponding adaptations, the state degrees of features in FO can be computed

analytically, as well as the accuracy of the algorithm A can be analytically derived from their

state degrees.

Thus, defining po = ‖FO‖, the experimental complexity can be reduced to

O((p − po) × (m + 1)n + (mf + 1)(p−po)) (5.19)

Video features in FV are related to the video adaptations degrading video quality for the

algorithm A. These video features typically are visual artifacts which we suggest to measure

with available metrics. Such features include blockiness, blurriness, edge sharpness, contrast,

brightness, etc. By measuring the effect of modification degrees for each video adaptation, we

can further reduce the experimental complexity to

O((mf + 1)pi), (5.20)

where pi = p − po.

The analytical estimation of the critical state degrees for the video features in FV appears to

be complicated. If such estimation is not possible, we can run experiments to find these critical

84

state degrees, which, recall, are thresholds of the algorithm A. However, since for each feature

we need to determine only one value from mf + 1 values, we can use experimental search, for

example, binary search. The use of the binary search reduces the experimental complexity to

O((log(mf + 1))pi) (5.21)

85

Chapter 6

SNR Quality Estimation

In Chapter 5, we have proposed to use reasoning and rely on video features when approximating

critical video quality for video analysis algorithms in practical systems. We also estimated the

experimental complexity of finding such critical quality. In this chapter, we are going to show

how the proposed video features and their metrics can be used in practice. We first focus on

the features from the set FV , which are the result of video adaptation degrading video quality.

Video features related to object of interest, FO, and their analysis is considered in Chapter 7.

As discussed, for effective estimation of critical SNR quality, we propose to use quality met-

rics specific to video adaptations and video analysis algorithms. We propose to measure visual

artifacts, including blockiness, blurriness, color bleeding or loss of colorfulness, and ringing. For

instance, blockiness is the most prominent artifact of JPEG compression. In the same time,

Viola-Jones face detection relies on Haar-like features (see Figure 4.1), which means that its

accuracy is significantly affected by blockiness. Therefore, we can find a value of blockiness

for face detection that corresponds to critical JPEG quality and use this value to estimate a

critical quality for other video adaptations with strong blockiness. In such practical scenarios,

when there are fewer visual artifacts than the number of possible adaptations, measuring video

quality with artifact metrics is more efficient than performing exhaustive experiments for every

possible pair of video analysis algorithm and video adaptation.

While quality metrics exist for human visual system, for example, objective PSNR metric or

perceptive VQM and SIMM, these metrics cannot be applied to video analysis because, unlike

86

humans, every algorithm has different requirements to the quality.

In this chapter, we consider estimation of critical SNR quality for Viola-Jones, Rowely face

detection and QDA-based face recognition algorithms, using JPEG compression and several

scaling algorithms as video adaptations. We first demonstrate that blockiness and bluriness

metrics (blurriness is shown for face recognition only) can be accuracte in estimating critical

SNR quality. Therefore, in terms of our rate-accuracy framework, algorithm A is consequently

considered as face detection and recognition algorithms. Video adaptation D is either JPEG

compression or a scaling algorithm. And we simplify the set video features to one video feature

at a time, which we pick to be the most prominent video feature of a particular video adaptation.

We pair blockiness with JPEG compression, nearest neighbor, and pixel area relation scaling;

and blurriness with bicubic and bilinear scaling algorithms. We also propose to use more general

metric, mutual information, for measuring the degree of video adaptation’s degradation of the

image quality. We show that mutual information can also be used as an adaptation independent,

though less accurate compared to blockiness or bluriness, metric of SNR video quality.

6.1 Blockiness Metric

In this section, we demonstrate that blockiness can be used as a video quality metric for various

blocky video adaptations. To avoid inconsistencies with definition of critical SNR quality, we

call the corresponding value of blockiness metric as threshold on blockiness. We first find

such threshold for a face detection or recognition algorithm and a single video adaptation with

blockiness artifact, e.g., JPEG compression. To demonstrate that it can be used as metric, we

show that the same threshold value can be used to determine critical SNR quality for other

blocky video adaptation as well.

A non-reference blockiness metric by Muijs and Kirenko (Muijs & Kirenko, 2005) is adopted

in our experiments. We chose this metric, because it is easy to implement and easy to adjust

for blocks of different size. In a given blocky image, the metric measures the contrast between

local gradient of the block’s edge and the average gradient of the adjacent pixels. Essentially,

the metric’s value is the ratio of these gradients. It considers horizontal and vertical block edges

87

separately and takes the average of these values across all the blocks in the image.

We use images from MIT/CMY dataset for face detection algorithms (see Section 3.2 for

more details) with JPEG compression as video adaptation. For recognition algorithm, we use

Yale dataset and different scaling algorithms.

6.1.1 Face Detection

Since blockiness is the most prominent visual artifact of JPEG compression, it is reasonable

to suggest that this artifact would affect accuracy of face detection. We compute blockiness

for each compressed image assuming that block artifacts of JPEG have a size of 8 × 8 pixels.

Since we later use blockiness for other video adaptations that have blocks of different sizes,

we normalize its original value by multiplying it with the block’s size. Using the MIT/CMU

dataset, we measure the blockiness for different JPEG compression qualities and plot the results

in Figure 6.1(a).

For Viola-Jones face detection algorithm, taking JPEG compression quality 9 (the sweet

spot in Figure 4.2(a)), we can suggest 26.4 to be the threshold on blockiness (indicated by the

dashed line in Figure 6.1(a)). In order to verify that blockiness is a suitable quality metric for

Viola-Jones algorithm, we need other video adaptations with blockiness artifact, and, for these

adaptations, the same threshold value should fit the corresponding sweet spots.

We artificially created other blocky video adaptations by modifying JPEG compression. We

created three simple quantization tables of JPEG that lead to blockier images than the original

JPEG compression. Tables are constructed without any specific reason in mind, except they

should be simple and emulate the pattern of the original quantization table. We used formula

aij = (4 + i)(4 + j), to obtain seven rows of the first table with last row and column repeated

twice. Multiplying values of this table by 3/2, we obtain the second table and multiplying them

by 2, we obtain the third table. We term the corresponding JPEG compressions according

to their tables’ most top-left values: “qt16”, “qt24”, and “qt32”. JPEG with the original

quantization table is marked as “original”.

Blockiness values for our JPEG modifications are compared in Figure 6.1(b). Taking 26.4

88

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

B
lo

ck
in

es
s

V
al

ue

JPEG Compression Quality

Blockiness of JPEG Compression

(a)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

B
lo

ck
in

es
s

V
al

ue

JPEG Compression Quality

Blockiness of different JPEG modifications

-original
-qt16
-qt24
-qt32

(b)

Figure 6.1: Value of blockiness metric vs. JPEG compression quality for different modifications
of JPEG algorithm.

as threshold on blockiness determined above, we can estimate that the critical SNR quality

for “qt16” should be 15, for “qt24” should be 21, and for “qt32” should be 29 (all values are

indicated in the figure with dashed vertical lines). Plotting accuracy of Viola-Jones algorithm

against compression qualities of these JPEG modifications in Figure 6.2(a) demonstrates that

the estimated critical SNR qualities match the sweet spots of the corresponding curves very

well. Therefore, the same threshold on blockiness determines the critical SNR quality value for

Viola-Jones face detection algorithm and several different versions of JPEG compression.

89

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

JPEG Compression Quality

Viola-Jones Face Detection

-original
-qt16
-qt24
-qt32

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

In
de

x
V

al
ue

JPEG Compression Quality

Rowley Face Detection

-original
-qt16
-qt24
-qt32

(b)

Figure 6.2: Accuracy of Viola-Jones and Rowley face detection algorithms vs. JPEG compres-
sion quality for different modifications of JPEG algorithm.

To verify that blockiness as the quality metric is not specific to Viola-Jones algorithm only,

we conducted the above experiments for Rowley algorithm. The threshold on blockiness is

determined as 21.5 based on the sweet spot value 13 from Figure 4.2(b) and the blockiness

measurements of JPEG in Figure 6.1(a). Therefore, critical SNR qualities for different mod-

ifications of JPEG can be estimated as 20 for “qt16”, 29 “qt24”, and 39 for “qt32” (from

Figure 6.1(b)). Plotting accuracy of Rowley algorithm against our versions of JPEG compres-

sion in Figure 6.2(b) confirms the estimated values as they fit the corresponding sweet spots.

90

Rowley face detection algorithm is based on variations in pixel intensities, which are not

blocky type of features as Haar-features of Viola-Jones algorithm. Nevertheless, blockiness

metric estimates the critical SNR quality for Rowley algorithm well, because we use JPEG

compression, for which blockiness is a main visual artifact. This observation indicates that the

accuracy of face detection is mostly affected by the type of video adaptation’s distortion rather

than features that algorithm relies on in its detection.

(a)

Critical
quality

Image size
(bytes)

original 9 6955
qt16 15 6861
qt24 21 6604
qt32 29 6739

(b)

Critical
quality

Image size
(bytes)

original 13 8547
qt16 20 8171
qt24 29 7980
qt32 39 8035

Table 6.1: Critical video qualities and corresponding average images sizes estimated with block-
iness metric for Viola-Jones (a) and Rowley (b) algorithms with original and modified JPEG
compressions.

Note that the proposed simple modifications of JPEG are more preferable compared to

original JPEG compression. First, the original quantization table is empirically determined

to fit human visual system, which is not well suited for video analysis algorithms. Second,

modified quantization tables can be expressed using formula and hence easier to use in practice

compared to storing tables in memory of every device that uses JPEG compression (the current

situation). The only concern with simpler modifications of JPEG would be that their critical

SNR qualities amount to bigger file size compared to original JPEG. To address this concern,

we measured the average size of tested images compressed the critical qualities for Viola-Jones

algorithm in Table 6.1(a). From the table, we notice that each critical quality corresponds

to images with average size 8% of the images compressed with conventional JPEG quality 90.

Hence, our simplified versions of JPEG lead to similar or arguably better bitrate reductions

than the original JPEG. Similarly, Table 6.1(b) shows that for Rowley algorithm, critical SNR

qualities of original and modified JPEG compressions result in images with comparable average

sizes. These findings suggest that simpler and more efficient encoders can be developed for these

face detection algorithms.

91

6.1.2 Face Recognition

For QDA-based face recognition algorithm, we estimate the critical video quality using blocki-

ness metric for nearest neighbor and pixel area relation scaling algorithms. These scaling algo-

rithms exhibit strong blockiness visual artifacts, as shown in Figures 6.4(a) and Figures 6.4(b).

Unlike JPEG compression, however, sizes of resulted blocks depends on the value of scaling

quality (the percentage to which images are pre-scaled to). For example, consider downscaling

an original image to 50% using nearest neighbor. After scaling back, each pixel in the resulted

image is repeated, resulting in the blocks of 2 × 2 pixels. Therefore, we adopted the blockiness

metric used in Section 6.1 to blocks of different size. The blockiness value for nearest neigh-

bor and pixel area relation scaling algorithms are presented in Figure 6.3(a) and Figure 6.3(b)

respectively. Combining these measurements with results on accuracy of the face recognition

algorithm given in Figure 4.12(a) and Figure 4.12(b), we can find value 158.5 to be a threshold

on blockiness. Note that the same threshold value is obtained for different scaling adaptations.

This fact indicates that blockiness can be used as SNR quality metric for QDA face recognition

as well.

6.1.3 Blurriness Metric

Similarly to blockiness, blurriness is another common artifact that video adaptations introduce

to the images. We demonstrate that a metric measuring blurriness, naturally the blurriness

metric, can also be used to determine a critical SNR quality for certain video adaptations. We

use a non-reference blurriness metric proposed by Chung et al. (Chung et al., 2004), which

measures the spread of the edges in a blurred image. As we can see in Figure 6.5(a) and

Figure 6.5(b), bicubic and bilinear scaling algorithms introduce a strong blurriness artifact

into an image, to which a down-scaling-up-scaling was applied. Blurriness metric computed

for Yale dataset is presented in Figure 6.6(a) for Bicubic scaling and Figure 6.6(b) for bilinear

scaling. Considering QDA-based recognition algorithm, we marked with vertical dashed lines the

critical qualities of the algorithm for bicubic and bilinear adaptations respectively. For details

on corresponding critical video qualities of the recognition algorithm, refer to Figure 4.12(d)

92

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

B
lo

ck
in

es
s

V
al

ue

Scaling Quality

Nearest Neighbor Scaling

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

B
lo

ck
in

es
s

V
al

ue

Scaling Quality

Pixel Area Relations Scaling

(b)

Figure 6.3: Blockiness metric vs. scaling quality for nearest neighbor 6.3(a) and pixel area
relation 6.3(b) scaling algorithms.

and Figure 4.12(c) in Section 4.2. We can notice that these critical qualities correspond to

the same value 42.6 of blurriness, as shown with a horizontal dashed line in Figures 6.6(a)

and 6.6(b). Such strong correlation of blurriness and accuracy of recognition algorithm shows

that blurriness can be a good metric for estimation of critical SNR quality for video adaptations

that make images or video blurry.

93

(a) Nearest neighbor algorithm, scaling quality 10. (b) Pixel area relation algorithm, scaling quality 10.

Figure 6.4: Nearest neighbor and pixel area relation scaling algorithms demonstrate a strong
blockiness artifact. An example image is from Yale dataset.

(a) Bicubic algorithm, scaling quality 10. (b) Bilinear algorithm, scaling quality 10.

Figure 6.5: Bicubic and bilinear scaling algorithms demonstrate a strong blurriness artifact. An
example image is from Yale dataset.

6.1.4 Mutual Information Metric

Visual artifact metrics can be used only with video adaptations that produce the measured

artifacts. Such restriction causes inconvenience in using artifact metrics in practice. Therefore,

it is desirable to have a video quality metric that is more independent of the way the video is

degraded. In this section, we propose mutual information as such a metric and show that it

suits face detection and face recognition algorithms.

Mutual information was first introduced in information theory (Shannon, 1948) and has

proven itself as a good similarity metric in image registration. It measures the amount of sta-

tistical information two different images share about each other. It is easy to compute and it is

94

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

B
lu

rin
es

s
V

al
ue

Scaling Quality

Bicubic Scaling

(a)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

B
lu

rin
es

s
V

al
ue

Scaling Quality

Linear Scaling

(b)

Figure 6.6: Blurriness metric vs. scaling quality for bicubic 6.6(a) and bilinear 6.6(b) scaling
algorithms.

a more general measure of distortion compared to a visual artifact metric (such as blockiness),

which focuses on a specific type of distortion. Also, mutual information is a better measure of

video quality for video analysis algorithms than PSNR. This is because, for instance, mirroring

an image to itself, while not affecting the performance of face detection or face recognition,

changes its PSNR. Mutual information value, on the other hand, is not affected by such opera-

95

tions.

We demonstrate the advantages of mutual information by measuring the quality of video

degraded with different types of video adaptations. In addition to previously used blocky

adaptations (JPEG, nearest neighbor, and pixel area relation scaling), we also consider bicubic

scaling algorithm, which adds a strong blurriness artifact to the degraded image. We conduct

experiments for Viola-Jones face detection and QDA-based face recognition algorithms. Similar

to experiments with blockiness and bluriness, we show that mutual information can be used as

a metric of video quality for the selected algorithms. It means that a single threshold value of

mutual information can be used to estimate the critical quality for a particular algorithm across

various video adaptations.

To compare experimental results on mutual information for different adaptations, we plot the

value of mutual information vs. the accuracy of a given video analysis algorithm. The results

are presented in Figure 6.7(a), for face detection and in Figure 6.7(b), for face recognition.

We explain how a single curve on the graph is obtained, using example of JPEG compression

(marked as “jpeg”) and face detection algorithm. Images from the MIT/CMU test dataset are

compressed with JPEG compression qualities varying from 1 to 99. For each JPEG quality, we

compute detection index of the face detection algorithm and the average mutual information,

using original uncompressed images as references. Note that mutual information has lower value

for more distorted images and higher value for less distorted. The resulted pair of detection index

and mutual information represent one point on “jpeg” curve. Curves for scaling algorithms are

obtained similarly. Curves marked as “scale NN”, “scale BC”, and “scale Area” correspond to

nearest neighbor, bicubic, and area-based scaling respectively. For face recognition algorithm,

Yale dataset is used (partitioned to probe and gallery subsets as described in Section 3.2), and

cumulative match characteristic (CMC) rank one value (Grother et al., 2003) is computed.

Figure 6.7(a) demonstrates that a mutual information value between 2 to 2.3 can be consid-

ered as a threshold corresponding to the critical video quality for the face detection algorithm

for the given set of images. The threshold is actually an interval, because the face detection

algorithm is not very robust to high noises in images showing frequent fluctuations in accuracy.

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

D
et

ec
tio

n
In

de
x

Mutual Information

Viola-Jones Face Detection

-jpeg
-scale NN
-scale BC

-scale Area

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

C
M

C
 v

al
ue

, r
an

k
1

Mutual Information

QDA-based Face Recognition

-jpeg
-scale NN
-scale BC

-scale Area

(b)

Figure 6.7: Mutual information vs. accuracy of face detection and face recognition algorithms.
Different curves correspond to different types of video adaptations.

In practice, we can conservatively use 2.3 to be the threshold for mutual information metric, as

indicated with the dashed vertical line in the figure. This value reflects the quality 17 for JPEG

compression (which is between sweet spot value 9 and our conservatively selected critical qual-

ity 20), 54 for nearest neighbor, 48 for bicubic, and 52 for area scaling algorithms. Degrading

images in MIT/CMU dataset to these qualities corresponds to approximately 12, 4, 5, and 6

times reductions in average image sizes.

For face recognition, the CMC rank one value is plotted against the value of mutual in-

formation in Figure 6.7(b). From the figure, the face recognition threshold value on mutual

information can be conservatively set to 1.8. This value gives approximately 10, 11, 21, and 29

times reduction in Yale image sizes for JPEG compression, nearest neighbor, bicubic, and area

scaling algorithms respectively.

97

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

D
et

ec
tio

n
In

de
x

Mutual Information

Viola-Jones Face Detection

-jpeg
-preNN30
-preNN50
-preNN80

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 1 1.5 2 2.5 3 3.5

C
M

C
 v

al
ue

, r
an

k
1

Mutual Information

QDA-based Face Recognition

-jpeg
-preNN20
-preNN30
-preNN40

(b)

Figure 6.8: Mutual information vs. accuracy of face detection and face recognition algorithms.
Different curves correspond to different combinations of nearest neighbor scaling and JPEG
compression.

Since blocky and blurry types of video adaptations were used in these experiments, it

demonstrates that, compared to artifact metrics, mutual information is adaptation indepen-

dent. Therefore, we can use mutual information to measure SNR quality for a combination

of different video adaptations. For example, video frames can be scaled down first and then

compressed with JPEG to achieve a higher bitrate reduction. We only need to make sure that

for the resulted frames, the value of mutual information is above the threshold.

6.1.5 Combining Several Video Adaptations

Figure 3.5 shows a practical video surveillance scenario, where the surveillance video is reduced

by scaling followed by compression. Combination of two adaptations allows even higher reduc-

tions in video size compared to using single adaptation (compression or scaling). We use nearest

98

neighbor scaling for its speed. It also shows the worst reduction results compared with other

scaling algorithms. As described in Section 3.2, images from MIT/CMU and Yale datasets are

degraded following this sequence: prescaled, compressed with JPEG, decompressed, and scaled

back to their original resolution. The accuracy of Viola-Jones face detection and QDA-based

face recognition algorithms are compared on the degraded and original images. Accuracy vs.

mutual information are plotted in Figure 6.8(a) for face detection and in Figure 6.8(b) for face

recognition. The vertical dashed lines indicate the mutual information’s threshold values of

2.3 for face detection and 1.8 for face recognition that were found in Section 6.1.4. For face

detection algorithm, the images were prescaled to 30%, 50%, and 80% of their original reso-

lution, which correspond to curves “preNN30”, “preNN50”, and “preNN80”. Images for face

recognition algorithm were prescaled to 20%, 30%, and 40%.

By looking at Figure 6.8(a) and measuring the reduction in files sizes for the corresponding

transformations, we notice that there is no apparent benefit in combining neighbor scaling and

JPEG compression video adaptations for face detection algorithm. Only images prescaled to

80% and compressed with JPEG compression quality higher than 75 have mutual information

larger than the threshold. Evidently, the best choice for face detection, because of simplicity

and amount of bitrate reduction, is to apply a single JPEG compression with quality 17.

With face recognition, the situation is different (Figure 6.8(b)), since the accuracy of face

recognition is not affected by pre-scaling as much as face detection algorithm. Hence, when

using face recognition, we can achieve higher bitrate reduction by combining scaling and JPEG

compression. By measuring resulted files sizes, we found that the best reduction in size is

achieved by prescaling images to 30 with nearest neighbor and then compressing them with

JPEG quality 20.

6.1.6 Lab Experiments

To verify the critical video qualities determined in the previous section for Viola-Jones face

detection and face recognition algorithm in a practical scenario, we installed a video camera

in our research lab and pointed it at the door (see the description of the test video given in

99

(a) (b)

Figure 6.9: An example of original video frame (JPEG compression value 90) used in practical
tests (a) and an example of test frame scaled with nearest neighbor to 30% followed by JPEG
compression with quality 20 (b).

Section 3.2). We degrade the original video frames to JPEG quality 20, as the critical SNR

quality for face detection. For face recognition, we prescale the video with nearest neighbor

algorithm to 30 percent first, then compress it with 20 JPEG quality. An example of the

original camera frame shown in Figure 6.9(a) can be visually compared with the degraded

frame in Figure 6.9(b). The resulted reductions in bandwidth are presented in Table 6.2.

The reduction in bandwidth amounts to 3.9 times for face detection and 12.5 times for face

recognition. If we also reduce original video frame rate from conventional 30 fps to 5 fps, which

is a reasonable frame rate for detection and recognition, the reduction amounts to 23 times for

face detection algorithm and 75 times for face recognition.

Video Mutual Information Bitrate (kbps) Reduction

Original - 4403.2 -
Video for FD 2.7158 1138.8 3.9
Video for FR 1.798 352.2 12.5

Table 6.2: The reduction of video bitrate: original video, degraded video for face detection
(FD), and for face recognition (FR) algorithms.

We evaluated both video analysis algorithms with video degraded in the above manner,

considering each frame as a separate image. Coordinates of faces detected by face detection

algorithm were given as an input to the recognition algorithm. We evaluate the recognition

100

algorithm by using the verification, instead of identification, performance metric (Grother et al.,

2003). The choice of evaluation metric is not essential to us, since we only concern with the

consistency in algorithm’s performance when the video is changed from the original high quality

to the degraded low quality.

Practical evaluation showed that face detection algorithm correctly detected 144 out of 237

faces in images compressed with both JPEG quality 20 and 90. The algorithm, however, had

falsely detected four faces for quality 20 and one face for 90. To avoid random false positives

occurring due to algorithm’s fluctuations, only faces that are present in three consecutive frames

were counted as a real face. The detected faces from the degraded video, including false posi-

tives, were used as inputs to recognition algorithm. Recognition showed two false positives for

degraded video (i.e., false positives from face detection were not recognized) and surprisingly

five false positives for the original video. Since we used only one face per person in the gallery

for verification, adding more faces to the gallery, may improve the recognition performance.

From our experiments, we can notice that the same type of degradation results in different

mutual information values depending on the image types. This is because computation of

mutual information requires the reference image. Therefore, in practice, two situations need

to be considered: (i) finding the threshold on mutual information for the given video and (ii)

checking if mutual information for current live frames exceeds the threshold. Since the original

and degraded video frames are required for computing mutual information, during the normal

operation of the system, its value should be computed at the video source for each frame. The

threshold value on mutual information can be found interactively during the calibration stage

of the system, by incrementally decreasing the video quality and evaluating the performance

of video analysis algorithms. Another way is to build a table of typical thresholds values for

different categories of images offline and use corresponding values in particular live scenarios.

Experiments with artifact and mutual information metrics demonstrate that once the cor-

responding threshold is found for a face detection or recognition algorithm, it can be used to

determine critical SNR qualities for different video adaptations, e.g., JPEG compression or

nearest neighbor scaling. To understand which metric to use and what metric’s threshold is,

101

we reason about a video analysis algorithm (understand what video features it relies upon)

and a video adaptation (determine how it degrades the video). Limited empirical experiments,

however, are still required for finding metric’s threshold for SNR quality.

102

Chapter 7

Temporal Quality Estimation

In the Chapter 5, we demonstrated how features from set FV such as blockiness and blurriness

help in estimating critical video quality when such non-trivial video adaptations like JPEG com-

pression, and various scaling algorithms are used. In this chapter, we focus on object oriented

features, FO, specifically on speed and size the moving object. As algorithm A we consider

both blob tracking and CAMSHIFT object tracking. We demonstrate that unlike the FV video

features that required metrics and some number of experiments to estimate critical SNR quality,

we can use a simple reasoning about features from FO and frame dropping adaptation D to

approximate temporal critical quality.

As shown in Section 3.2, we degrade temporal video quality by applying the dropping pattern

“drop i frames out of i + j frames”, where i is drop gap, and j is the number of consecutive

remaining frames (see Figure 1.3).

First, we present an estimation of the critical drop gap for an object tracking algorithm

without taking into account the specific method of detection and tracking. For simplicity,

consider a video containing a single moving object, which can be accurately tracked by the

algorithm. We can notice that dropping frames affects the speed of object. Since video is a

sequence of discrete frames, the speed of object can be understood as a distance between the

centers of object positions in two consecutive frames, which we call inter-frame speed denoted

as ∆d. Without loss of generality, we can say that for every object tracking algorithm there

exists a ∆d̃ such that, if object moves for a larger distance than ∆d̃, the algorithm loses it.

103

Let ∆d0 be the maximal inter-frame speed of the object in the original video, when no

frame dropping is applied yet. If we drop frames with drop gap i = 1, the new maximum inter-

frame speed can be approximated as ∆d1 = 2∆d0. Then, for general frame dropping pattern,

∆di = (i + 1)∆d0. Assume we know the original speed of the object and the algorithm’s

threshold ∆d̃. Then, we can compute the maximum number of consecutive frames that can be

dropped, i.e., critical drop gap ĩ, as

ĩ =
∆d̃

∆d0
− 1. (7.1)

7.1 Blob Tracking Algorithm

For blob tracking algorithm, due to frame differencing detection, the value ĩ depends on the

size and the speed of tracked object. If too many consecutive frames are dropped, the object

in the current frame appear so far away from its location in the previous frame that the frame

differencing operation results in detecting two separate blobs (see Figure 4.18(b)). Such tracking

failure occurs when the distance between blob detected in the previous frame and blob in the

current frame is larger than the size of the object itself. Therefore, this distance is the threshold

distance ∆d̃. To determine its value, we need to estimate the coordinates of the blob center in

the current frame, which depend on its location and size in the previous frame.

In this analysis, we assume a single object monotonously moving in one direction. Although

this assumption considers only a simplified scenario, many practical surveillance videos include

objects moving in a single direction towards or away from the camera view. Also, such move-

ments of the object in camera’s view as rotating or only changing in size (when object goes

away/towards camera view but does not move sideways) do not have a significant effect on

frame differencing object detection. We also assume, without loss of generality, that the object

moves from left to right with its size increasing linearly. The assumption allows us to consider

only changes in coordinate x, and width w. Increase/decrease in size is important because when

tracked objects approach or move away from the camera, their size changes. In practice, when

object moves in both x and y coordinates, the overall critical drop gap would be the minimum

of the two values estimated for corresponding coordinates.

104

Consider the original video when no frames are dropped. We assume the average distance

between fronts of the blob when it shifts from the previous frame to the current frame is ∆x0.

We consider the front of the object because it is more accurately detected by frame differencing.

When frame differencing is used, the resulted detected blob is the union of the object presented

in the previous and current frames (see Figure 4.18(b)). Therefore, when we drop frames, the

width of the blob in the frame following after the drop gap will be larger than that in the

original video sequence (see Figure 4.17 for illustration). However, the front of the blob would

be detected in the same way as in the original video.

Since frame dropping affects size of the detected object, we consider average change in size

as ∆w0. The superscript indicates the size of the drop gap, which is 0 when frames are not

dropped. Assume that x0
k is x-coordinate of blob’s center in k-th frame, then, we can estimate

its coordinate in the frame k + i + 1 as following,

x0
k+i+1 = x0

k + (i + 1)∆x0 − (i + 1)
∆w0

2
. (7.2)

If i frames are dropped after frame k, the detected blob in the k+ i+1 frame is the union of

actual object appearing in frames k and k + i + 1 (as Figure 4.17 illustrates). Then, the width

difference (wi
k+i+1/2−w0

k/2) can be approximated as (i+1)∆x0/2. Therefore, the blob’s center

in the k + i + 1 frame can be estimated as,

xi
k+i+1 = xi

k + (i + 1)∆x0 − (i + 1)
∆x0

2
= x0

k + (i + 1)
∆x0

2
, (7.3)

since xi
k = x0

k.

As was mentioned, ∆d̃ = |xĩ
k+ĩ+1

− xĩ
k|, where ĩ indicates the critical drop gap. The failure

of the blob tracking implies that ∆d̃ = w0
k, where value w0

k is the width of the blob detected in

frame k. Therefore, from equation (7.3), we obtain w0
k = ∆d̃ = (̃i + 1)∆x0

2 , from which we can

find the critical drop gap to be

ĩ =
2w0

k

∆x0
− 1. (7.4)

In practice, values w0
k and ∆x0 can be determined by either keeping the history of speed and

size of tracked object or by estimating their average values for a particular surveillance site.

105

In addition to the estimation of the critical drop gap for blob tracking, we can estimate the

dependency function between accuracy of the algorithm and video frame rate. Such estimation

is possible because of the way drop gap affects the accuracy of the frame differencing object

detection algorithm used in blob tracking. We can define blob detection error for a particular

frame as the distance between blob centers detected in this frame for the degraded video (with

dropped frames) and the original video. Then, the average error, denoted as εij , is the average

blob tracking error for all frames in the video. This εij function can be used as accuracy metric

for the blob tracking depicting the tradeoff between tracking accuracy and video frame rate.

Using equations (7.2) and (7.3) we can estimate the blob tracking error for k + i + 1 frame

as following,

∣

∣xi
k+i+1 − x0

k+i+1

∣

∣ = (i + 1)

∣

∣

∣

∣

∣

(

∆x0 − ∆w0
)

2

∣

∣

∣

∣

∣

= (i + 1)C, (7.5)

where constant C ≥ 0 depends on the size and the speed of object in the original video.

Since we apply the dropping pattern “drop i frames out of i+j frames”, we need to estimate

the blob tracking error for each of the remaining j frames in the video. There is no error in

detecting blob for j−1 frames that do not have drop gap in front of them, i.e., for these frames,

the result of the frame differencing would be the same as in original video with no dropping.

Therefore, the average error for all j frames is the error estimated for the frame, which follows

the drop gap (equation (7.5)) divided by j:

εij =
i + 1

j

∣

∣

∣

∣

∣

(

∆x0 − ∆w0
)

2

∣

∣

∣

∣

∣

=
i + 1

j
C. (7.6)

Note the important property of this function that the average error is proportional to i and

inversely proportional to j.

We performed experiments to validate the estimation of the average blob tracking error εij .

We use several videos from ViSOR video database, PETS2001 datasets, as well as videos we

shot on campus with a hand-held camera (example screenshots in Figure 4.18(a), Figure 3.4(e),

and Figure 3.4(f)). Videos include moving cars, person on a bicycle and people walking in

a distance. We ran blob tracking algorithm on these videos and applied different dropping

patterns. We plot the resulted average error against drop gap i when value j is 1, 3, 6, and 12.

106

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

Blob Tracking

j=1
j=3
j=6

j=12

(a)

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

Adaptive Blob Tracking

j=1
j=3
j=6

j=12

(b)

Figure 7.1: Accuracy of original and adaptive blob tracking algorithm for PETS2001 video
(snapshot in Figure 4.18(a)).

The results are shown in Figure 7.1(a) (original video is 158 frames of 384 ×288, 30 fps) and

Figure 7.2(a) (original video is 148 frames of 320 ×256, 30 fps).

Figure 7.1(a) shows the resulted average tracking error plotted against the drop gap i when

value j is 1, 3, 6, and 12. It can be noted from the Figure 7.1(a) that for each fixed value j the

average error is proportional to i. Also, average error is inversely proportional to j, as indicated

by the angles of each line in the graph (for instance, angle of the line marked as “j=1” is three

times larger than the angle of the line “j=3”). Figure 7.2(a) demonstrates similar results. These

experimental results strongly support our analytical estimation of the average error given in the

equation (7.6). The figures do not reflect the critical drop gap value because even for large drop

107

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

Blob Tracking

j=1
j=3
j=6

j=12

(a)

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

Adaptive Blob Tracking

j=1
j=3
j=6

j=12

(b)

Figure 7.2: Accuracy of original and adaptive blob tracking algorithm for VISOR video (snap-
shot in Figure 3.4(f)).

gaps the blob tracking did not lose the track of the car in this test video sequence.

7.2 CAMSHIFT Algorithm

CAMSHIFT object tracking (Boyle, 2001) relies on color histogram detection and mean shift

algorithm for tracking. The algorithm searches for a given object’s histogram inside a subwindow

of the current frame of the video, which is computed as 150% of the object size detected in the

previous frame. Therefore, if the object, moves between two frames from its original location

for a distance larger than half of its size, the algorithm will lose the track of the object. Hence,

assuming we drop i frames before frame k + i + 1, the threshold distance ∆d̃ =
w0

k

2 , where w0
k is

108

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

CAMSHIFT Face Tracking

j=1
j=3
j=6

j=12

Figure 7.3: Accuracy of original and adaptive CAMSHIFT tracking algorithm for video with
slow moving face (snapshot in Figure 4.15(a)).

the width of the blob detected in frame k. Since CAMSHIFT does not use frame differencing,

drop gap does not have an additional effect on object’s size. Therefore, we can estimate the

center of the blob after drop gap i using the equation (7.2) instead of equation (7.3). Hence,

the critical drop gap can be derrived as

ĩ =
w0

k

2∆x0 − ∆w0
− 1. (7.7)

Estimating the average tracking error loses its meaning for CAMSHIFT tracking because it uses

a simple threshold for detection of the object in the current frame. If the drop gap of the given

frame dropping pattern is less than critical drop gap in equation (7.7), the algorithm continue

tracking the object, otherwise it loses it. And the critical drop gap depends on the changes in

speed and size of the object.

We performed experiments with CAMSHIFT tracking algorithm to verify our analytical

estimation of the critical drop gap (equation (7.7)). We used several videos of a moving face

shot with a simple web-cam, videos of talking heads by SEQAM laboratory and some movie

clips (example screenshots in Figure 4.15(a) and Figure 3.4(d)). Figure 7.4(a) (original video

is 600 frames of 352 ×288, 30 fps) and Figure 7.3 (original video is 303 frames of 320 ×230,

30 fps) show average tracking error vs. drop gap for CAMSHIFT tracking and various frame

dropping patterns. Figure 7.3, corresponding to the video of a talking head (see snapshot in

Figure 3.4(d)), demonstrates that tracking algorithm does not lose the face even when drop gap

109

is 14 frames. The reason is because the face in the video does not move around and is always

present in the search subwindow of CAMSHIFT tracker. However, for the experiments shown

in Figure 7.4(a), the video with fast moving head was used (see snapshot in Figure 4.15(a)).

It can be noted that the algorithm does not lose the face until value of drop gap is 8, because

for the smaller drop gaps, the face is still within a search subwindow and can be detected by

the histogram matching. The fluctuations in the average error for the larger drop gaps appear

because the face is either lost by the tracker or, for some large enough gaps, it would move

out of the subwindow and move back in, hence the tracker does not lose it. We conducted

experiments with more videos and observed that the critical drop gap value is smaller for videos

with faster moving faces and larger for videos with slower moving faces. These observations

agree with equation (7.7).

7.3 Adaptive Tracking

We propose to modify blob tracking and CAMSHIFT algorithms and make them more tolerant

to video with low frame rate. We have shown that average error and the critical frame rate of

tracking algorithms depend on speed and size of the object in the original video. Therefore, if

we record these characteristics for previous frames, the location and the size of object in the

frame that follows a drop gap can be approximated. Adjusting to frame dropping in such way

allows us to reduce the average error for blob tracking algorithm and increase the critical drop

gap for the CAMSHIFT algorithm.

Blob tracking algorithm tracks the detected foreground object using the simplified version

of Kalman filter: xk = (1 − α)xk−1 + αzk, where xk and xk−1 represent estimated coordinates

of the object in the current and previous frames, zk is the output of the object detector, and

α ≤ 1 is some constant. When α = 1, then the tracker trusts the measurement zk fully and

its average error can be estimated by equation (7.6). In cases when α < 1, the accuracy of the

tracking against the frame dropping worsens, due to the larger shifts in blobs’ centers for videos

with high drop gap. We propose using adaptive Kalman filter (Welsh & Bishop, 2001) to make

blob tracking more tolerant to the frame dropping. We apply the filter only to the width of

110

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

CAMSHIFT Face Tracking

j=1
j=3
j=6

j=12

(a)

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 E
rr

or

i

Adaptive CAMSHIFT Face Tracking

j=1
j=3
j=6

j=12

(b)

Figure 7.4: Accuracy of original and adaptive CAMSHIFT tracking algorithm for video with
fast moving face (snapshot in Figure 4.15(a)).

the object, because the front is detected correctly by frame differencing (see Figure 4.17). The

filter can be defined as following,

w̃k = wk−1 + Kk (wk−1 + uk) P̃k = Pk + Qk (7.8)

Pk = (1 − Kk)P̃k Kk =
P̃k

(P̃k + Rk)
,

where Qk and Rk are the process and measurement noise covariances; w̃k is the new estimate

of the blob’s width in the current frame; wk−1 is blob’s width in the last not dropped frame; uk

is the width measurement provided by the frame-differencing based detector.

Kalman filter depends on correct estimation of the error parameters, Qk and Rk. By looking

at Figure 4.17, we can set Qk = (i∆w0)2, which estimates how big the tracked object should

111

be at frame k + i + 1 compare to its width before the drop gap at frame k. Rk is essentially

the error of the measurement, i.e., the output of the foreground object detector, therefore,

Rk = (wi
k+i+1 − w0

k+i+1)
2.

Since wi
k+i+1 can be estimated as w0

k + (i + 1)∆x0 and w0
k+i+1 as w0

k + (i + 1)∆w0, we can

approximate Rk = (i + 1)2(∆x0 − ∆w0)2. We obtain the values of ∆w0 and ∆x0 by recording

the speed of the object and how fast it grows in size using last two available frames.

To compare how adaptive Kalman filter improves the accuracy of blob tracking, we per-

formed the same experiments varying frame dropping pattern. The average error for blob

tracking with adaptive Kalman filter is plotted in Figure 7.1(b) and Figure 7.2(b), which can

be compared to results with original algorithm in Figure 7.1(a) and Figure 7.2(a) respectively.

We can note that the accuracy of the adaptive blob tracking algorithm is improved for larger

drop gaps (larger frame rate reduction). In both figures, Figure 7.1(b) and Figure 7.2(b), the

angles of the lines in the graph are not inversely proportional to j anymore, giving fundamen-

tally different bound on the average error. All lines with j > 1 are almost parallel to x-axis.

It means that Kalman filter adapts very well to the drastic changes in speed and size of the

object that occur due to the frame dropping. The constant increase in the average error for

j = 1, is because, for such dropping pattern, all remaining frames are separated by drop gaps.

In this scenario, adaptive Kalman filter accumulates the approximation error of object’s size

and speed. Therefore, the critical frame rate can be achieved with j that is at least equal to 2.

If we take i = 12, the original frame rate is reduced by 7 times.

We also modified the CAMSHIFT tracking algorithm, adjusting the size of its search sub-

window to the frame dropping. We simply increased the subwindow size in the current frame by

i∆x0, where i is the drop gap. The average error of this adaptive CAMSHIFT algorithm for the

video with fast moving face is shown in Figure 7.4(b). Comparing with the results of original

algorithm in Figure 7.4(a), we can notice that the adaptive tracker performs significantly better

for the larger drop gaps. The experiments show that we can drop 13 frames out of 14 with a

tradeoff in small average error. It means that CAMSHIFT algorithm, for this particular video

sequence, can accurately track the face with frame rate reduced by 13 times from the original.

112

For the news videos of talking heads, where face does not move significantly around, adaptive

algorithm performs with exactly the same accuracy results as the original algorithm. Therefore,

Figure 7.3 illustrates essentially both versions of the algorithm, original and adaptive. These

experiments demonstrate that by using analysis to modify CAMSHIFT algorithm, we can im-

prove its performance on videos with fast moving faces, while retaining the original accuracy

on videos with slow moving faces.

113

Chapter 8

Conclusion

In this thesis, we evaluated the effect of video quality degradation on several typical examples

of video analysis algorithms. The surprising finding of this study is that tested algorithms

show very high tolerance towards large reductions in video quality. Demonstrated consistency

in accuracy for low video quality amounts to at least 10 times lesser video bitrate than a

conventional requirement of human visual system.

We argued that an algorithm-oriented video quality metrics need to be developed. Metrics

based on visual artifacts, blockiness and blurriness as examples, and mutual information were

suggested. Artifact metrics show more precision when used to estimate critical video quality

for a given video analysis algorithm and video adaptation. Mutual information, however, is not

only easier to compute, it is also less dependent on the type of video adaptation, making it

more practical.

Our analysis of tracking algorithms have shown that better algorithms can be designed with

high tolerance towards low video quality. We demonstrated that by using extra information

about tracked object, blob and face tracking algorithms can be modified so, their performance

on low quality video improves by a magnitude.

The main limitation of the thesis is the fact that video analysis algorithms are heterogeneous

in their nature. Therefore, the results of the study cannot be generalized to other algorithms

except those, for which experimental results are presented. However, we believe that non-trivial

and useful video analysis algorithms can be classified in a limited number of groups that show

114

similar responses in terms of accuracy to various reductions in video quality.

Video analysis algorithms in their core often use empirical data or are training-based. Such

lack of the determinism makes it impossible to fully formalize the behavior of the algorithms.

Therefore, the idea that common video analysis algorithms require lesser video quality than hu-

mans needs to be supported with more experiments on typical examples of algorithms. Changes

in algorithms’ accuracies need to be studied for major video adaptations used in practical sys-

tems, i.e., commonly used video encoders.

Another important limitation is the “academic” setup of our experiments with standard

datasets and lab-shot videos used for testing. Performing experiments in the controlled envi-

ronment unarguably have a positive effect on the obtained results. Some of the conditions that

can weaken the performance of video analysis algorithms with low quality video can include

poor lighting, object occlusions, a tracked object moving with a variable speed or in a circle.

Poor performance of the algorithm under such conditions, however, would be mostly due to

its imperfection. Based on our own experience and observation, the degradation of the video

quality would not have a significant effect on the performance on average, but the results would

not show a convincing pattern. The logical notion “falsity implies anything” could be used to

describe the situation. Nevertheless, we strongly believe that our findings, to a high degree,

would still remain true in practical systems and environments. However, a deeper study of the

relationships between analysis algorithms and video quality would greatly benefit building more

robust and efficient automated intelligent systems with video analysis.

Overall, the results of the study strongly suggest that it is impractical and inefficient to

treat video analysis algorithms in the same manner as a human video observer. The resource

economical video analysis algorithms can and should be designed. The encoding algorithms

better matching the computer vision need to be developed as well. This study shows that, in

terms of video quality and video encoding, computer vision is very different from human vision.

115

8.1 Related Publications

Korshunov, P., & Ooi, W. T. (2005). Critical video quality for distributed automated video

surveillance. Proceedings of the 13th ACM International Conference on Multimedia, ACMMM’05

(pp. 151–160), Singapore, November, 2005.

Korshunov, P. (2006). Rate-accuracy tradeoff in automated, distributed video surveillance sys-

tems. Proceedings of the the 14th ACM International Conference on Multimedia, ACMMM’06

(pp. 887–889), Santa-Barbara, USA, October, 2006.

Korshunov, P., & Ooi, W. T. (2010). Reducing frame rate for object tracking. In proceedings of

the 16th International MultiMedia Modeling Conference, MMM’10 (pp. 454–464), Chongqing,

China, January, 2010.

Korshunov, P., & Ooi, W. T. (2012). Video quality for face detection, recognition and tracking.

To appear in ACM Transactions on Multimedia Computing, Communications and Applications

journal, ACM TOMCCAP (the paper is accepted), 2012.

116

Appendix A

Prototype of the Video Surveillance

System

To test our experimental findings in a practical environment, we have built a prototype of

the video surveillance system. Although the system is fairly simple with only one camera,

one proxy, and one monitor station, its importance is the presence of real devices and the IP-

network, which allow us to demonstrate the practical application of the critical video quality.

The prototype uses a Canon VCC4 camera connected to an LML33 capture card, one computer

as a processing proxy, and another computer serving as a monitoring station. To transmit and

display video, we use the OpenMash1 framework. Together with OpenMash we adopted its

extension called Indiva (Ooi, Pletcher, & Rowe, 2004), which allows us remotely control the

compression quality, frame rate of the video captured from the camera, and gather necessary

statistics. We use Viola-Jones face detection and CAMSHIFT tracking as the examples of video

analysis algorithms, which runs on the proxy processing the incoming video from the camera.

Also, only SNR video quality was degraded using MJPEG and H.261 encoders.

In this experimental setup, we assume that the critical video quality for a given video

analysis algorithm and video adaptation is known (through off-line profiling or estimation).

In the case of Viola-Jones face detection and compression, we take conservative value of 20,

1www.openmash.org

A-1

assuming the JPEG compression value (see experiments presented in Section 4.1). Our video

surveillance system can dynamically adjust the rate of streaming video depending on the result

of the face detection. When there is no face detected in the video, the camera can stream low

quality video to the processing proxy. In this case, the proxy would be in “observe” mode,

continuously running video analysis algorithms on low quality video without relaying it to the

monitor. In this scenario, we are saving the bandwidth on the link between the camera and

proxy by streaming low bitrate video, and we do not use any bandwidth on the link between

proxy and monitor. Once the algorithm detects something in the video, the proxy requests the

video source to raise the quality of the video to the quality suitable for human visual system

and relay it to the monitor, thus alerting the end user. In this scenario, the proxy would be in

“alert” mode. Hence, in the observe mode, usage of network bandwidth is minimized, and in

alert mode, full quality video is transmitted from video source to monitor.

The experiments on the prototype system are carried out in an office-like environment. We

use video of size 352 × 288. Faces appearing in a video generally have eyes, nose, and mouth

within a 20 × 20 pixels square. We run our system in several scenarios for both the MJPEG

and H.261 video encoders, the two main encoders available in OpenMash.

To verify our experimental findings presented in Section 4.1, we run our system with changing

compression quality every three seconds, ranging from 90 to 1 and decreasing by 2 every time.

We use scenarios where one person is sitting in front of the camera, moving her head and talking.

The sample shots are shown in Figure A.1(c) and Figure A.1(d). We run the system in such

scenarios eight times each, using the MJPEG and H.261 encoders. For faces that have eyes,

nose and mouth within a square of 10x10 pixels size (e.g., Figure A.1(d)), the detection index

demonstrates unpredictable fluctuations. Faces that are bigger in size (e.g., Figure A.1(c)) are

correctly detected at least until compression quality is reduced to 15. These observations are

consistent with our experimental results on images from both the MIT/CMU data set and our

own lab surveillance.

Our prototype system can dynamically adapt the bit rate for surveillance video according

to the current result of the face detection algorithm. When no face is detected, the system

A-2

runs in observe mode, using only a small amount of bandwidth. Video is compressed with

quality equal to 20, and the proxy does not relay it to the monitor. Once a face is detected,

the system automatically switches to alert mode by changing compression quality to 90, and

relays the video to the monitor to alert the user. The system switches back to observe mode

when no face is detected. We run the prototype on a video scene with a person walking in and

out of the camera’s view. The sample shots of the video used are shown in Figure A.1(a) and

Figure A.1(b). The system successfully detects faces and changes to alert mode in accordance

with our experimental findings.

We collect the bit rate for the MJPEG and H.261 encoders during a period of 100 seconds.

The collected data is shown in Figure A.2(a) and Figure A.2(b). The figures show that when

there are no faces detected, i.e., the compression quality is reduced to 20, the bandwidth on

average is reduced up to 94% for the H.261 encoder and up to 72% for the MJPEG encoder. The

H.261 encoder demonstrates higher reduction in bandwidth for videos with static background

due to its conditional replenishment algorithm (McCanne & Jacobson, 1995). The important

thing to note is that the frame rate remains at 30 fps throughout the experiment. Since the

frame rate of the video is less important for face detection, we can further reduce the frame

rate to 5 fps in observe mode. By doing so, we obtain bandwidth reduction of up to 35 times

for the H.261 encoder and up to 29 times for the MJPEG encoder.

The above experiments are conducted on a video scene with static background. In our ex-

Figure A.1: Sample video shots used in experiments on the prototype video surveillance system.

A-3

 0

 100

 200

 300

 400

 500

 600

 700

 200 250 300 350

B
itr

at
e

(k
bp

s)

Time (s)

H.261 codec

(a)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 140 160 180 200 220 240 260

B
itr

at
e

(k
bp

s)

Time (s)

MJPEG codec

(b)

Figure A.2: Video bitrate when a face comes in and out of the camera’s view for H.261 and
MJPEG video codecs.

periments on video scene with intensive background motions, the effect of motion on bandwidth

reduction is significantly reduced, showing mainly the effect caused by a decrease in compression

quality. With these conditions, we can still obtain up to six times bandwidth reduction for the

H.261 encoder. For MJPEG, there is no significant differences in the bandwidth measurement

since the MJPEG format is not motion compensated.

In similar experiments on the CAMSHIFT face tracker, the way the tracking algorithm was

A-4

used in our prototype is different. Usually, the tracking algorithm is used to support higher

level tasks such as detecting suspicious behavior, identifying a running or falling person, group

tracking, etc. Therefore, the decision whether to stream video to the user or not would be made

by those algorithms. We do not implement such high level algorithms. Therefore, instead of

switching between observe mode and alert mode, we simply run the tracking algorithm on the

video with the suggested critical video quality of compression 50 and frame rate of 6 fps. Such

settings lead to an MJPEG bit rate of 175 kbps on average, giving us 16 times reduction in the

bandwidth.

A possible concern is the latency caused by switching from observe to alert mode. Such

latencies might cause high quality video frames of suspicious events to be lost. To address this

concern, we measure the latency between when a face is detected, and when high quality video

is received at the monitor in our prototype. This delay is found to be at most 100 ms. A caveat

is that our prototype system runs over a local area network. This latency might increase if the

system is deployed over a wide-area network.

A-5

References

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

Boyle, M. (2001). The effects of capture conditions on the CAMSHIFT face tracker (Technical
Report 2001-691-14). Department of Computer Science, University of Calgary, Alberta,
Canada.

Bradski, G. R. (1998). Computer vision face tracking as a component of a perceptual user
interface. Proceedings of the Forth IEEE Workshop on Applications of Computer Vision,
WACV’98 (pp. 214–219), Princeton, NJ, January, 1998.

Chang, S.-F., & Anthony, V. (2005). Video adaptation: Concepts, technologies, and open
issues. Special Issue on Advances in Video Coding and Delivery, Proceedings of IEEE,
93 (1), January, 2005, 148–158.

Chung, Y.-C., Wang, J.-M., Bailey, R., Chen, S.-W., & Chang, S.-L. (2004). A non-parametric
blur measure based on edge analysis for image processing applications. Proceedings of the
IEEE international conference on Cybernetics and Intelligent Systems, CIS’04, Vol. 1 (pp.
356–360), Singapore, December, 2004.

Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto,
N., & Hasegawa, O. (2000). A system for video surveillance and monitoring (Technical
Report CMU-RI-TR-00-12). Carnegie Mellon University: Robotics Institute.

Delac, K., Grgic, M., & Grgic, S. (2005). Effects of JPEG and JPEG2000 compression on face
recognition. Lecture Notes in Computer Science, Pattern Recognition and Image Analysis,
3687 , August, 2005, 136–145.

Eickeler, S., Muller, S., & Rigoll, G. (2000). Recognition of JPEG compressed face images
based on statistical methods. Image and Vision Computing Journal, Special Issue on
Facial Image Analysis, 18 , March, 2000, 279–287.

Eleftheriadis, A., & Anastassiou, D. (1995). Constrained and general dynamic rate shaping
of compressed digital video. Proceedings of the IEEE International Conference on Image
Processing, ICIP’95 (pp. 396–399), Washington, DC, USA, October, 1995.

Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning
and an application to boosting. Proceedings of the Computational Learning Theory, Second
European Conference, EuroCOLT’95 (pp. 23–37), Barcelona, Spain, March, 1995.

Funk, W., Arnold, M., Busch, C., & Munde, A. (2005). Evaluation of image compression
algorithms for fingerprint and face recognition systems. Proceedings of 6th Annual IEEE

A-6

SMC Information Assurance Workshop, IAW’05 (pp. 72–78), Darmstadt, Germany, June,
2005.

Gibbons, P. B., Karp, B., Ke, Y., Nath, S., & Seshan, S. (2003). Irisnet: An architecture for
internet-scale sensing. Proceedings of the 29th international conference on Very large data
bases, VLDB’03, Vol. 29 (pp. 1137–1140), Berlin, Germany, September, 2003.

Girgensohn, A., Kimber, D., Vaughan, J., Yang, T., Shipman, F., Turner, T., Rieffel, E.,
Wilcox, L., Chen, F., & Dunnigan, T. (2007). DOTS: Support for effective video surveil-
lance. Proceedings of the 15th ACM International Conference on Multimedia, ACMMM’07
(pp. 423–432), Augsburg, Germany, September, 2007.

Grother, P. J., Micheals, R. J., & Phillips, P. (2003). Face recognition vendor test 2002
performance metrics. Proceedings of the 4th International Conference on Audio Visual
Based Person Authentication, AVBPA’03 (pp. 937–945), Guildford, UK, June, 2003.

Haralick, R. M., & Shapiro, L. G. (1993). Computer and robot vision, Vol. 1. Addison-Wesley.

Hjelmas, E., & Low, B. K. (2001). Face detection: A survey. Computer Vision and Image
Understanding, 83 (3), July, 2001, 236–274.

Javed, O., Rasheed, Z., Alatas, O., & Shah, M. (2003). KNIGHTM : A real-time surveil-
lance system for multiple overlapping and non-overlapping cameras. Proceedings of the
IEEE International Conference on Multimedia and Expo, ICME’03, Vol. 1 (pp. 649–652),
Baltimore, Maryland, July, 2003.

Javed, O., & Shah, M. (2002). Tracking and object classification for automated surveillance.
Proceedings of the 7th European Conference on Computer Vision, ECCV’02 (pp. 343–357),
Copenhagen, Denmark, May, 2002.

Kim, J., Wang, Y., & Chang, S.-F. (2003). Content-adaptive utility-based video adaptation.
Proceedings of the IEEE International Conference on Multimedia and Expo, ICME’03,
Vol. 3 (pp. 281–284), Baltimore, Maryland, July, 2003.

Kim, M., & Altunbasak, Y. (2001). Optimal dynamic rate shaping for compressed video
streaming. Proceedings of the International Conference on Networking, ICN’01 (pp. 786–
794), Colmar, France, July, 2001.

Li, L., Huang, W., Gu, I. Y., & Tan, Q. (2003). Foreground object detection from videos
containing complex background. Proceedings of the 11th ACM International Conference
on Multimedia, ACMMM’03 (pp. 2–10), Berkeley, CA, USA, November, 2003.

Lu, J., Plataniotis, K. N., & Venetsanopoulos, A. N. (2003). Regularized discriminant analysis
for the small sample size problem in face recognition. Pattern Recognition Letters, 24 ,
December, 2003, 3079–3087.

McCanne, S., & Jacobson, V. (1995). vic: A flexible framework for packet video. Proceedings
of the Third ACM International Conference on Multimedia, ACMMM’95 (pp. 511–522),
San Francisco, CA, November, 1995.

Muijs, R., & Kirenko, I. (2005). A no-reference blocking artifact. measure for adaptive video
processing. Proceedings of the 13th European Singal Processing Conference, EUSIPCO’05,
Antalya, Turkey, September, 2005.

A-7

Nair, V., & Clark, J. J. (2002). Automated visual surveillance using hidden markov models.
Proceedings of the 15th International Conference on Vision Interface, VI’02 (pp. 88–92),
Calgary, May, 2002.

Niu, W., Jiao, L., Han, D., & Wang, Y. (2003). Real-time multiperson tracking in video
surveillance. Proceedings of the Fourth International Conference on Information, Commu-
nications and Signal Processing and Fourth IEEE Pacific-Rim Conference On Multimedia,
ICICS-PCM’03, Vol. 2 (pp. 1144–1148), Singapore, December, 2003.

Ooi, W. T., Pletcher, P., & Rowe, L. (2004). Indiva: A middleware for managing distributed
media environment. Proceedings of the SPIE Conference on Multimedia Computing and
Networking, MMCN’04 (pp. 211–224), Santa Clara, CA, jan, 2004.

Ortega, A., & Ramchandran, K. (1998). Rate-distortion techniques in image and video com-
pression. IEEE Signal Processing Magazine, 15 (6), November, 1998, 23–50.

Papageorgiou, C., Oren, M., & Poggio, T. (1998). A general framework for object detection.
Proceedings of the Sixth International Conference on Computer Vision, ICCV’98 (pp.
555–562), Bombay, India, January, 1998.

Rangaswami, R., Dimitrijevi, Z., Kakligian, K., Chang, E., & Wang, Y. (2004). The SfinX video
surveillance system. Proceedings of the IEEE International Conference on Multimedia and
Expo, ICME’04, Taipei, Taiwan, June, 2004.

Rouse, D., & Hemami, S. S. (2008a). Analyzing the role of visual structure in the recognition of
natural image content with multi-scale ssim. Proceedings of SPIE Conference on Human
Vision and Electronic Imaging, SPIE’08, Vol. 6806, San Jose, CA, USA, January, 2008.

Rouse, D., & Hemami, S. S. (2008b). How to use and misuse image assessment algorithms.
Proceedings of Western New York Image Processing Workshop, WNYIP’08, Rochester,
NY, USA, September, 2008.

Rouse, D., Pepion, R., Hemami, S. S., & Callet, P. L. (2009). Image utility assessment and a
relationship with image quality assessment. Proceedings of SPIE Conference on Human
Vision and Electronic Imaging, SPIE’09, Vol. 7240, San Jose, CA, USA, January, 2009.

Rowley, H., Baluja, S., & Kanade, T. (1998). Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20 , January, 1998, 23–38.

Sanchez, V., Basu, A., & Mandal, M. (2004). Prioritized region of interest coding in JPEG2000.
Proceedings of the 17th International Conference on Pattern Recognition, ICPR’04, Vol. 2
(pp. 799–802), Melbourne, Australia, August, 2004.

Schumeyer, R., Heredia, E. A., & Barner, K. E. (1997). Region of interest priority coding for
sign language videoconferencing. Proceedings of the First IEEE Workshop on Multimedia
Signal Processing, MMSP’05 (pp. 531–536), Princeton, NJ, June, 1997.

Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal,
27 , July, 1948, 379–423.

Sung, K.-K., & Poggio, T. (1998). Example-based learning for view-based human face detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (1), January,
1998, 39–51.

A-8

Viola, P., & Jones, M. (2001). Robust real-time face detection. Proceedings of the ICCV 2001
Workshop on Statistical and Computation Theories of Vision, ICCV’01, Vol. 2 (p. 747),
Vancouver, Canada, July, 2001.

Viola, P., & Jones, M. (2004). Robust real-time face detection. International Journal of
Computer Vision, 57 (2), April, 2004, 137–154.

Wang, Y., Kim, J., & Chang, S.-F. (2003). Content-adaptive utility-based video adaptation.
Proceedings of the IEEE International Conference on Image Processing, ICIP’03, Vol. 1
(pp. 189–192), Barcelona, Catalonia, Spain, September, 2003.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Processing,
13 (4), January, 2004, 600–612.

Welsh, G., & Bishop, G. (2001). An introduction to the kalman filter. Proceedings of SIG-
GRAPH 2001, Vol. Course 8, Los Angeles, CA, USA, August, 2001.

Wu, G., Wu, Y., Jiao, L., Wang, Y., & Chang, E. (2003a). Multi-camera spatio-temporal
fusion and biased sequence-data learning for security surveillance. Proceedings of the 11th
ACM International Conference on Multimedia, ACMMM’03 (pp. 528–538), Berkeley, CA,
USA, November, 2003.

Wu, Y., Jiao, L., Wu, G., Chang, E., & Wang, Y. (2003b). Invariant feature extraction and
biased statistical inference for video surveillance. Proceedings of the IEEE International
Conference on Advanced Video and Signal Based Surveillance, AVSS’03 (pp. 284–289),
Miami, FL, July, 2003.

Yuan, X., Sun, Z., Varol, Y., & Bebis, G. (2003). A distributed visual surveillance system.
Proceedings of the IEEE International Conference on Advanced Video and Signal Based
Surveillance, AVSS’03 (pp. 199–204), Miami, FL, July, 2003.

A-9

