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Summary

The present work considers the optimal design of photonic crystals. Convex

optimization will be formally used for the purpose of designing photonic crystal

devices with desired eigenband structures. In particular, two types of devices

will be studied. The first type is a “two-dimensional” photonic crystal with

discrete translational symmetry in the transverse plane, and is invariant along

the longitudinal direction. The desired band structure of this device is one with

optimal band gap between two consecutive eigenmodes. The second type is a

three-dimensional photonic crystal fiber, which can be constructed schematically

from the first type of device by introducing a defect in the transverse plane and

breaking the translational symmetry. The desired feature of this device is to

possess a band structure with an optimal band width at a certain propagation

constant. The two design problems are analogous in that the difference between

two consecutive eigenmodes is the objective function, and the disparity lies in

the evaluation of eigenvalues with respect to different sets of wave vectors.

The mathematical formulations of both optimization problems lead to an

infinite-dimensional Hermitian eigenvalue optimization problem parameterized

by the dielectric function. To make the problem tractable, the original eigen-

value problem is discretized using the finite element method into a series of

finite-dimensional eigenvalue problems for appropriate values of the wave vector

parameter. The resulting optimization problem is large-scale and non-convex,

with low regularity and a non-differentiable objective. By restricting to appro-

priate sub-eigenspaces, and employing mesh adaptivity, we reduce the large-scale

non-convex optimization problem via reparametrization to a sequence of small-

scale convex semidefinite programs (SDPs) for which modern SDP solvers can

be efficiently applied.

We present comprehensive optimal structures of photonic crystals of dif-

ferent lattice types with numerous single and multiple, absolute and complete

optimal band gaps, as well as single-mode single-polarization photonic crystal

fiber structures of different lattice types with optimal band width for which only

single guided mode can propagate.
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The optimized structures exhibit patterns which go far beyond typical phys-

ical intuition on periodic media design.
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Chapter 1

Introduction

1.1 Background

1.1.1 Photonic crystals

Photonic crystals will grant us the control of light. When properly designed,

these structures, comprised of periodically arranged electromagnetic media, can

exhibit certain periodic potentials to the electromagnetic waves and affect their

propagation through it. Such fine control on light propagation has attracted con-

siderable interest in recent years, as photonic crystals have proven very impor-

tant as device components for integrated optics, including frequency filters[26],

waveguides[25], switches[53], and optical buffers[63].

From the microscopic point of view, a crystal is a periodic arrangement of

atoms or molecules. Such a pattern (or lattice) presents a periodic potential to

electrons traveling though it. Quantum mechanics explains the flow of electrons

in such a periodic potential as propagation of waves. Thus the electrons can

propagate through the bulk without being scattered by the constituents of the

crystal.

The photonic crystal is an optical analogue of the periodic media, in which

the periodic arrangements of atoms and molecules are replaced with layers of

alternating dielectric materials, see Figure 1.1. The periodic dielectric mate-

rial can produce many of the same phenomena for photons that the periodic

atomic potential has on electrons. In particular, one can construct a photonic

crystal with a photonic band gap, preventing light with certain frequencies from

1



Figure 1.1: Schematic examples of one-, two-, and three-dimensional photonic
crystals. The dimensionality of a photonic crystal is defined by the periodicity
of the dielectric materials along one or more axes.

propagating in certain directions. Moreover, photonic crystals can channel prop-

agation of light in more effective ways than homogeneous dielectric media, such

as index guiding in photonic crystal fibers.

Band gap

A band gap is a range of frequency ω in which the propagation of electromagnetic

waves (EM waves) at certain wave vector(s) is prohibited, and is sandwiched in

between propagating states. According to the range of prohibitive wave vectors

and polarizations, band gaps can be classified into three types. Incomplete band

gaps are that which exist over a subset of all possible propagating wave vectors

and polarizations; Absolute band gaps(ABG) are defined when the propagation

is blocked for all possible wave vectors of a specific polarization; Lastly, complete

band gaps(CBG) are that in which no propagation is allowed for any polarizations

at any wave vectors.

The photonic crystal’s periodic distribution of dielectric materials affects the

propagation of electromagnetic waves in the same way as the periodic potential

of a semiconductor affects the motion of electrons. In essence, the low-frequency

modes concentrate their energy in the high-ε regions, where ε is used throughout

this work to denote the dielectric constant, while high-frequency modes tend to

concentrate their energy in the low-ε regions. The band gap phenomenon is a

consequence of the localization of the low-frequency and high frequency oscillat-

ing EM waves, where the periodic differences exist in ε. Many of the promising

applications of two- and three-dimensional photonic crystals to date are based

on the locations and sizes of those band gaps [25, 26]. For example, a photonic

2



(a)

(b)

(c)

Figure 1.2: [Schematic illustrations of various waveguide operating with the
index guiding mechanism. (a) Conventional fiber with step-index profile; (b)
Photonic crystal holey fiber; (c) Fiber Bragg gratings.

crystal with a band gap can be used as band filter by rejecting frequencies within

the gap; a photonic crystal with a band gap can also be carved into a resonant

cavity, in which the walls are designed to reflect the frequencies within the gap.

Index guiding

Index guiding (or total internal reflection) is a confinement mechanism in which

electromagnetic waves (in particular, EM waves in the visible frequency range,

light) are confined within a waveguide consisting of core regions with a higher

effective refractive index (or higher permittivity), surrounded by cladding regions

with lower effective refractive index. A wide variety of dielectric waveguides can

operate with such a mechanism. Among those, we find conventional fibers with

a step-index profile, photonic crystal “holey” fibers where a two-dimensional

photonic crystal is used as cladding with a core of higher effective refractive

index that breaks the periodicity over the cross-section, and fiber Bragg gratings

with a periodic grating along fiber’s propagation direction, shown in Figure 1.2.

It is not of our interest in this work to consider other guiding mechanisms such

as photonic band gaps of photonic crystal fibers or metallic waveguides.

A photonic crystal fiber (PCF) that employs the index guiding mechanism

for light confinement can typically be engineered by filling up one or several holes

of a two-dimensional periodic photonic crystal. Thus, a much higher dielectric

contrast between the solid core and holey cladding can be obtained than with

3
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Figure 1.3: Example of dispersion relation of a photonic crystal fiber, showing
the light cone shaded in light blue, the light line ωc(β), the fundamental guided
mode ωWG,1, the higher-order guided modes, and an unguided mode above the
light line.

conventional solid fiber materials, which is a means of creating some unusual

dispersion relations, shown in Figure 1.3. In the absence of the core, all the

non-localized modes propagating in the infinite periodic cladding form the light

cone that includes all the permissible modes for propagation. The minimum

frequency ωc at each propagation constant β that defines the lower boundary

of the light cone is called light line, or fundamental space-filling mode (FSM).

Outside of the light cone, i.e., below the light line, only evanescent modes that

decay exponentially in the transverse directions can exist in the cladding. If

a core with a higher “average” index is introduced in this design, one or more

modes will be pulled beneath the light line to have frequencies ω < ωc. These

modes will very likely be localized inside the core and decay exponentially into

the cladding far from the core. The further they are below the light line, the

faster the decay. These are called index-guided modes. Figure 1.4 demonstrates

the field profiles of a localized and a non-localized mode.

In an ordinary index-guided waveguide, as the frequency ω goes higher, more
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negative positive

localized mode non-localized mode

Figure 1.4: Field profiles of localized and non-localized modes. The dashed box
indicates the core of the fiber, while the cladding consists of the surrounding
photonic crystals. A localized mode has a compact support within the fiber
cross section, i.e., decaying exponentially outside of the core into the cladding,
and a non-localized mode does not.

modes will be pulled below the light line to become guided modes. However, as

first pointed out in [11], photonic crystal fibers can remain endlessly single-mode.

The phenomenon can be explained by the fact that the reduced index contrast

between core and cladding at smaller wavelengths leads to a weaker confine-

ment strength, and thus the higher-order guided modes will remain above the

light line. Due to the common cylindrical cross-sectional shape of the fibers, the

so-called single-mode is actually composed of two doubly degenerate modes cor-

responding to two polarizations. A variation of the single-mode waveguide called

single polarization single mode (SPSM) is a truly single-mode waveguide because

it supports a single guided mode solution. In an SPSM fiber, only one linearly

polarized mode is guided while the mode with orthogonal polarization is sup-

pressed. In contrast, a birefringent fiber has two guided polarizations, but travel

at different speeds. Such waveguides are important as polarization-maintaining

fibers [45]. The notion of band width, similar to the band gap discussed before,

is defined as a range of frequency at certain wave vector(s) in which only a single

guided mode exists.

1.1.2 Optimal design

The optimal conditions for the appearance of photonic band gaps were first stud-

ied for one-dimensional crystals by Lord Rayleigh in 1887 [48]. A one dimensional

photonic crystal consists of alternating layers of material with different dielectric
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constants (e.g., a quarter-wave stack). An incident light of proper wavelength can

be completely reflected by being partially reflected at each layer interface and de-

structively interfering to eliminate the forward propagation. This phenomenon

is also the basis of many higher dimensional devices. In the one-dimensional

periodic structure, the band gap can be widened by increasing the contrast in

the refractive index and the difference in width between the materials. Further-

more, it is possible to create band gaps for any particular frequency by changing

the periodicity length of the crystal. Unfortunately, in two or three dimensions

one can only suggest rules of thumb for the existence of a band gap in a peri-

odic structure, since no rigorous criteria have yet been determined. Thus the

design of two- or three-dimensional crystals has largely been a trial and error

process, which is far from optimal. Indeed, the possibility of two- and three-

dimensionally periodic crystals with corresponding two- and three-dimensional

band gaps was only suggested in 1987 by Yablonovitch [60] and John [30], 100

years after Rayleigh’s discovery of photonic band gap in one dimension, .

From a mathematical viewpoint, the calculation of the band gap reduces to

the solution of an infinite-dimensional Hermitian eigenvalue problem parame-

terized by the dielectric function and the wave vector. In the design setting,

however, the central question is: which periodic structures, composed of arbi-

trary arrangements of two or more different materials, produce the largest band

gaps around a certain frequency? This question can be rigorously addressed by

formulating an optimization problem for the parameters that represent the ma-

terial properties and geometry of the periodic structure. The resulting problem

is infinite-dimensional with an infinite number of constraints. After appropri-

ate discretization in space and consideration of a finite set of wave vectors, a

large-scale finite-dimensional eigenvalue problem is obtained; this problem is

non-convex and is known to be non-differentiable when eigenvalue multiplici-

ties exist. The current state-of-the-art work done on this problem falls into two

broad categories. The first approach tries to find the “optimal” band structure

by parameter studies — based on prescribed inclusion shapes (e.g., circular or

hexagonal inclusions) [24], fixed topology [62], or geometric considerations from

the interpretation of an extensive numerical optimization study [50]. The second
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approach attempts to use formal topology optimization techniques [16, 20, 51],

and level set method [33], which allow for more flexible geometrical representa-

tions, and result in diverse optimal crystal structures. Nevertheless, both ap-

proaches typically use gradient-based optimization methods. While these meth-

ods are attractive and have been quite successful in practice, the optimization

processes employed explicitly compute the sensitivities of eigenvalues with re-

spect to the dielectric design function, which are local sub-gradients for such a

non-differentiable problem. Consequently, gradient-based solution methods of-

ten suffer from the lack of regularity of the underlying problem when eigenvalue

multiplicities are present, as they typically are at or near the solution.

Besides the early studied band gap optimization problems, photonic crystals

have gained popularity in many other applications [53, 63]. The single polar-

ization single mode photonic crystal fiber mentioned above is among one of

them. For these devices, the calculation of the operating band width according

to the dispersion relations similarly reduces to finding the solution of an infinite-

dimensional Hermitian eigenvalue problem. The design of the photonic crystal

fiber that supports only one guided mode of a single polarization with optimal

band width can also be mathematically formulated to the control of dispersion

relations that are parameterized by the dielectric function. To our best knowl-

edge, the optimal design of such a device to date has been strictly limited to the

study of simple geometric parametrization. More precisely, these studies only

investigated photonic crystal fibers with a fixed cladding pattern but variable

core composition of prescribed inclusion shapes. In most work, the authors con-

struct the cross section of photonic crystal fiber with a fixed cladding pattern,

and allowed the central core to vary (design region of the optimization) with

prescribed topology, e.g., one central filled air hole, and four or eight enlarged

holes arranged in two rows above and below the central filled hole in a triangular

lattice [49]; or six enlarged holes arranged in two rows in a rectangular lattice

[64]; or two enlarged holes arranged to the left and right of the filled hole [32].

Some more elaborate core compositions consist of both enlarged and shrunk air

holes [4]. The obvious drawback of such studies is the rigid topology of the fiber

cross sections consequently, compared with those obtained using formal topology
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optimization methods.

If one were to design such a device possessing optimal operating band width

by employing topological methods which allow for maximum geometrical varia-

tions, followed by gradient-based methods for optimization, the reliable compu-

tation of eigenvalue sensitivities would become extremely challenging due to the

high density state of the eigenvalues. While these gradient methods perform well

in the published works on photonic crystal band gap optimization problems, in

which the eigenvalue degeneracy is mainly an accidental artifact of the artificial

periodicity chosen for the wave vectors in the Brillouin zone [29], they fail to

make progress in the band width problem in which the eigenvalue degeneracies

are physically prevalent.

1.2 Scope

1.2.1 Thesis contributions

The central theme of the work in this thesis is the optimal design of photonic crys-

tal using convex optimization. We propose a new approach based on semidefinite

programming (SDP) and subspace methods for the optimal design of photonic

band structure. In the last two decades, SDP has emerged as the most important

class of models in convex optimization, [1, 3, 46, 57, 59]. SDP encompasses a

huge array of convex problems as special cases, and is computationally tractable

(usually comparable to least-square problems of comparable dimensions). There

are three distinct properties that make SDP well suited to the band structure op-

timization problem. First, the underlying differential operator is Hermitian and

positive semidefinite. Second, the objective and associated constraints involve

bounds on eigenvalues of matrices. And third, as explained in this thesis, the

original non-convex optimization problem can be approximated by a semidefi-

nite program for which SDP can be well applied, thanks to the its efficiency and

robustness of handling this type of spectral objective and constraints.

The optimal design problems for both band gap and band width in the re-

spective photonic crystal devices are analogous in that the difference between

two consecutive eigenmodes is the objective function, and the disparity lies in
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the evaluation of eigenvalues with respect to different sets of wave vectors. In

our optimization approach, we first reformulate the original problem of maxi-

mizing the difference between eigenvalues as an optimization problem in which

we optimize the distance in eigenvalues between two orthogonal subspaces. The

first eigenspace consists of eigenfunctions corresponding to the lower eigenvalues,

whereas the second eigenspace consists of eigenfunctions of higher eigenvalues.

In this way, the eigenvalues are no longer present in our formulation; however,

like the original problem, the exactly reformulated optimization problem is large-

scale. To reduce the problem size, we truncate the high-dimensional subspaces to

only a few eigenfunctions below and above the band gap [17, 47], thereby obtain-

ing a new small-scale yet non-convex optimization problem. Finally, we keep the

subspaces fixed at a given decision parameter vector and use a reparametriza-

tion of the decision variables whenever necessary to obtain a convex semidefinite

optimization problem for which SDP solution methods can be effectively ap-

plied. We apply this approach to optimize various band gaps in two-dimensional

photonic crystals, and also optimize the band width in designing SPSM PCF.

By analyzing the initial optimal photonic crystal structures which consist of

two dielectric materials, we realize that a non-uniform computation mesh with

low resolution in the regions of uniform material properties and high resolution at

the material interface can lead to lower degrees of freedoms and fewer optimiza-

tion decision variables, hence a more efficient band structure computation and

optimization. Adaptive mesh refinement techniques have been widely used to

reduce the computation cost and improve computation efficiency associated with

the numerical solution of partial differential equations [19, 7]. Since our com-

putational technique are based on the finite element method, mesh refinement

can be easily incorporated. In our improved approach, we start the optimization

with a relatively coarse mesh, converge to a near-optimal solution, and subdi-

vide only chosen elements of the finite element mesh based on judiciously devised

refinement criteria. The optimization is then restarted with this near-optimal

solution extrapolated on the refined mesh as the initial configuration. The mesh

adaptivity approach is incorporated into the optimization procedure to achieve

reduced computation cost and enhanced efficiency.
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A detailed assessment of the computational efficiency of the proposed ap-

proach compared to alternative methods is outside the scope of this thesis. We

note that the performance of the methods that require sensitivity information

of the eigenvalues with respect to the dielectric function will deteriorate when

eigenvalue multiplicities occur. However, our approach is designed to deal with

such situations and therefore, we expect it will perform with increased robustness

in complex realistic applications.

1.2.2 Thesis outline

The necessary physical and mathematical background is reviewed in chapter 2.

These fundamental concepts will be frequently used throughout the thesis. In

chapter 3, two physical problems are introduced, the two-dimensional photonic

crystal and the three-dimensional photonic crystal fiber. Mathematical formu-

lations and finite element method based solution methods are derived to solve

the corresponding eigenvalue equations for the frequency and field variables of

the electromagnetic waves in each case. Chapter 3 also covers the mesh adaptiv-

ity methods for both problems to demonstrate the reliable computation of the

eigenvalues. Having established the computation procedure for the eigenvalues

(or frequencies of the electromagnetic waves), we discuss in chapter 4 the band

gap optimization problem – the most important and often studied optimal design

problem of photonic crystals. Using subspace approximation and reduction and

SDP relaxation, we propose a convex formulation of the original nonlinear, non-

convex problem. Adaptive mesh refinement is also seamlessly incorporated into

the algorithm to improve the computational efficiency. Extensive optimal de-

signs of the two-dimensional photonic crystals are presented with optimal band

gaps of various configurations, e.g., absolute band gaps, complete band gaps,

and multiple band gap. In chapter 5, we study the band width optimization

problem arising in the photonic crystal fiber, and investigate the design of the

single-mode single polarization fibers with several formal convex optimization

formulations. We will demonstrate that the optimization recipes developed for

the band gap optimization problem can be extended to this similar yet more

complicated physical problem. The resulting optimal crystal structures as well
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as validation of the field variable intensities will be presented. Finally in chapter

6, we summarize our findings and discuss the future implications of our work.
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Chapter 2

Building Blocks

This chapter serves to review the necessary physical and mathematical con-

cepts that will be frequently used throughout the thesis. We will first review

electromagnetism in dielectric media, which introduces the physics of the light

propagation in photonic crystals. Functional analysis will be briefly reviewed

next, which proves useful in understanding the finite element method that will

be reviewed afterwards. Finally, we review the convex optimization which will

turn out to be the fundamental optimization tool of our design algorithm.

2.1 Review of Electromagnetism in Dielectric Media

The propagation of electromagnetic waves in dielectric media is governed by

Maxwell equations.

2.1.1 Maxwell equations

Macroscopic equations

With appropriate assumptions in place [28, 29], the macroscopic Maxwell equa-

tions governing the electromagnetism in a mix dielectric medium without source

can be written as,

∇ ·H(r, t) = 0, ∇×E(r, t) + µ0
∂H(r,t)

∂t = 0,

∇ · [ε(r)E(r, t)] = 0, ∇×H(r, t)− ε0ε(r)∂E(r,t)
∂t = 0,

(2.1)
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where E and H are the macroscopic electric and magnetic fields respectively.

They are both functions of the Cartesian position vector r and vary with time t.

ε0 ≈ 8.854×10−12Farad/meter is the vacuum permittivity; ε(r) is a scalar dielec-

tric function, also called relative permittivity. The explicit frequency dependence

(material dispersion) of ε(r) can be appropriately ignored1 and is assumed to

be purely real and positive. µ0 = 4π × 10−7Henry/meter is the vacuum perme-

ability; µ(r), the relative magnetic permeability, is very close to unity for most

dielectric materials of interest, therefore it does not appear in the equations (2.1).

As a result, ε = n2, n being the refractive index from Snell’s law. (εµ = n2 in

general.)

Eigenvalue problem

Due to the linearity of the Maxwell equations, the temporal and spatial depen-

dence of both E and H fields can be separated by expanding the fields into a

series of harmonic modes. The standard trick is to write the harmonic mode

as the product of the spatial mode profile and a temporal complex exponential:

E(r, t) = E(r)e−iωt, and H(r, t) = H(r)e−iωt. Inserting these into equations

(2.1), we obtain the two divergence equations:

∇ ·H(r) = 0, ∇ · (ε(r)E(r)) = 0, (2.2)

which ensure that the displacement (D(r) = ε0ε(r)E(r)) and the magnetic fields

are built up of transverse electromagnetic waves. That is, equations (2.2) require

a · k = 0 for a plane wave H(r) = aeik·r of some wave vector k. The simple

physical interpretation is that there is no point sources or sinks of displacement

or magnetic fields in the medium. The two curl equations in (2.1) couple the

electric and magnetic fields together in the form of

∇×E(r)− iωµ0H(r) = 0, ∇×H(r) + iωε0ε(r)E(r) = 0. (2.3)

1Instead, the value of the dielectric constant is chosen appropriately to the frequency range
of the physical system being considered .[29]
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To decouple these two quantities, one can divide the second equation by ε(r),

take the curl, then eliminate ∇ × E using the first equation. This yields our

master equation only in H(r)

∇×
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2
H(r), in Rd. (2.4)

Similarly, one can obtain another equation only in E(r)

1

ε(r)
∇× (∇×E(r)) =

(ω
c

)2
E(r), in Rd, (2.5)

where c = 1/
√
ε0µ0 is the speed of light in vacuum. In practice, we only need to

solve one of the equation (2.4) or (2.5) together with the transversality constraint

(2.2) on the field being computed, and then we can recover the other quantity

via (2.3). The transversality constraint for the latter quantity is automatically

ensured because the divergence of a curl is always zero.

Scaling properties

The linear Hermitian eigenvalue problem of our master equation in (2.4) has

no fundamental constant on the dimensions of length; moreover, there is also

no fundamental value of the dielectric constant. In other words, the master

equation is scale invariant. We first examine the contraction or expansion of the

distance. Let us start with an eigenmode H(r) of corresponding frequency ω in

a dielectric medium represented by ε(r). Assume the dielectric configuration is

scaled by a scale parameter s, and it is now expressed as ε′(r) = ε(r/s). If we

introduce in equation (2.4) the change of variables, r′ = sr and ∇′ = ∇/s, and

rearrange the terms,

∇′ ×
(

1

ε′(r′)
∇′ ×H(r′/s)

)
=
( ω
cs

)2
H(r′/s), (2.6)

we obtained the master equation (2.6) with a different frequency ω′ = ω/s and

mode profile H ′(r′) = H(r′/s) that can be viewed as a rescaled version of the

original.

If the configuration of the dielectric function is fixed, but the value differs by
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a constant factor everywhere, i.e., ε′(r) = ε(r)/s, we can substitute sε′(r) into

2.4 to obtain

∇×
(

1

ε′(r)
∇×H(r)

)
= s

(ω
c

)2
H(r). (2.7)

The frequency of the new system is scaled by
√
s while the mode profile H(r) re-

mains unchanged. Based on (2.6) and (2.7), we can conclude that any coordinate

transformation can be offset simply by a change of ε to keep the frequency ω in-

tact. This powerful conceptual tool gives us extensive flexibility with a dielectric

structure while retaining various similar electromagnetic properties.

2.1.2 Symmetries and Bloch-Floquet theorem

A photonic crystal can be defined by a periodic dielectric function ε(r) = ε(r+R)

possessing discrete translational symmetry. R, known as the lattice vector, rep-

resents any linear combination of the primitive lattice vectors a = {ax,ay,az}.

All the points defined by R = mxax + myay + mzaz, mx,my,mz ∈ Z make

up the Bravais lattice; the primitive lattice vectors ax,ay and az define the

primitive unit cell of the Bravais lattice.

The reciprocal lattice of a Bravais lattice is a set of all vectors G that satisfy

eiG·R = 1.

This relation arises naturally when Fourier analysis is performed on such peri-

odic functions. The primitive reciprocal lattice vectors b = {bx, by, bz} can be

determined through

bx =
2πay × az

ax · (ay × az)
, by =

2πaz × ax
ax · (ay × az)

, bz =
2πax × ay

ax · (ay × az)
.

The primitive reciprocal lattice vectors bx, by and bz define the primitive unit

cell of the reciprocal lattice, also know as Brillouin zone.

In 1928, Felix Bloch pioneered the study of wave propagation in three-

dimensionally periodic media, by unknowingly extending a one-dimensional the-

orem proposed by Gaston Floquet in 1883. Bloch’s theorem [12, 27] states that

the eigenfunction (e.g., H(r) in (2.4)) for a periodic system (e.g., the periodic
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dielectric material in a photonic crystal, or the periodic potential in an atomic

lattice) can be expressed as a product of a plane wave envelope function and a

periodic function modulation:

H(r) = eik·rHk(r). (2.8)

This form is commonly know as a Floquet mode [36] in mechanics or Bloch state

[43] in solid-state physics. k,a wave vector that lies in the Brillouin zone, is a

linear combination of the primitive reciprocal lattice vectors, k = kxbx+kyby +

kzbz. Hk(r) is a periodic function on the Bravais lattice: Hk(r) = Hk(r+R).

Substituting (2.8) into (2.4) yields a different Hermitian eigenproblem over the

primitive cell of the Bravais lattice, denoted by Ω:

(∇+ ik)×
(

1

ε(r)
(∇+ ik)×Hk(r)

)
=
(ω
c

)2
Hk(r), in Ω. (2.9)

Thanks to the translational periodicity of the reciprocal lattice, one needs to solve

only for the eigensolutions in the set of k within the Brillouin zone closest to the

k = 0 origin, a region called first Brillouin zone. Moreover, due to the additional

symmetry of the lattice, rotation, mirror reflection, and inversion, eigenvalues

(λ = (ω(k)/c)2)/frequencies (ω(k)) computed from the first Brillouin zone wave

vectors may contain redundancy with the full symmetry of the point group of

the lattice [29]. Therefore, we also define the irreducible Brillouin zone as the

smallest region within the first Brillouin zone after removing the redundancy

for which ω(k) are not related by symmetry. We will illustrate examples of

this approach in Chapter 3 when the eigenvalue band structure calculation is

discussed.
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2.2 Review of Functional Analysis

2.2.1 Function spaces

Linear vector space

A linear vector space is a set V over a field F together with two binary operations:

addition, u,v ∈ V → u + v ∈ V , and scalar multiplication, u ∈ V , α ∈ F →

αu ∈ V that satisfies the following 8 axioms, ∀u,v and w ∈ V , and α, β ∈ F :

(1) Commutativity of addition: u+ v = v + u;

(2) Associativity of addition: u+ (v +w) = (u+ v) +w;

(3) Identity element of addition: ∀u ∈ V ,∃0 ∈ V , called the zero vector, such

that u+ 0 = u;

(4) Identity element of scalar multiplication: 1u = u, where 1 ∈ F denotes the

multiplicative identity;

(5) Inverse elements of addition: ∀u ∈ V ,∃−u ∈ V , called the additive inverse

of u, such that u+ (−u) = 0;

(6) Distributivity of scalar multiplication with respect to vector addition: α(u+

v) = αu+ αv;

(7) Distributivity of scalar multiplication with respect to field addition: (α +

β)u = αu+ βu;

(8) Compatibility of scalar multiplication with field multiplication: α(βu) =

(αβ)u.

Norm

A norm on a linear vector space V over a field F is a function f : V → R that

satisfies the following properties, ∀α ∈ F , and ∀u,v ∈ V :

(1) Positive scalability: f(αu) = |α|f(u);

(2) Triangle inequality: f(u+ v) ≤ f(u) + f(v);

(3) Positive definiteness: f(u) ≥ 0, and the equality holds iff u = 0.

Function f is commonly denoted as f(·) := ‖ · ‖V . A linear vector space V

together with a norm defined on itself ‖ · ‖V is a normed space.
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Inner product

An inner product on a linear vector space V is a map

(·, ·)V := V × V → F

where F is the field over which the linear vector space V is defined. The inner

product satisfies the following 3 axioms, ∀u,v,w ∈ V ,and ∀α ∈ F :

(1) Conjugate symmetry: (u,v)V = (v,u)V ;

(2) Bilinearity: (αu,v) = α(u,v); and(u+w,v) = (u,v) + (w,v);

(3) Positive definiteness:(u,u) ≥ 0, and the equality holds iff v = 0.

A linear vector space V with an inner product defined on itself is a called an

inner product space. One can associate a norm with every inner product as well:

‖u‖V = (u,u)
1/2
V .

Space of continuous functions

Given a non-negative integer k, we define a set of functions with continuous

derivatives up to and including order k as

Ck(Ω) = {v|Dαv is uniformly continuous and bounded on Ω, 0 ≤ |α| ≤ k},

where, for a given α ≡ (α1, . . . , αd), αi ≥ 0, 1 ≤ i ≤ d,

Dα ≡ ∂|α|

∂α1
x1 · · · ∂

αd
xd

, |α| =
d∑
i=1

αi.

If we associate Ck(Ω) with a norm defined as,

‖v‖Ck(Ω) = max
0≤|α|≤k

sup
r∈Ω
|Dαv(r)|,

then Ck(Ω) is a complete normed linear space, known as Banach space. Ck0 is the

space of continuous, kth differentiable functions with the subscript 0 indicating

a compact support on Ω, i.e., vanishing on the boundary of Ω.

18



Lebesgue spaces

Let p ≥ 1, the Lebesgue space, or the space of pth integrable functions, Lp(Ω)

is defined as

Lp(Ω) ≡ {v| ‖v‖Lp(Ω) <∞},

where the norm is defined as,

‖v‖Lp(Ω) =


∫

Ω |v|
pdx, 1 ≤ p <∞

ess sup
x∈Ω
|v(x)|, p =∞

(2.10)

Note that Lebesgue spaces are also Banach spaces. Here
∫

Ω denotes the Lebesgue

integral. ess supx∈Ωv(x), the essential supremum of a function v(x), is defined as

the greatest lower bound Cmax of the set of all constants C, such that |v(x)| ≤ C

“almost everywhere” on Ω, i.e., Ω\B for all sets B of zero measures.

Hilbert spaces

Let k be a non-negative integer. The Hilbert space Hk(Ω) is defined as,

Hk(Ω) ≡ {v| Dαv ∈ L2(Ω),∀α, s.t. |α| ≤ k},

with associated inner product,

(u,v)Hk(Ω) ≡
∑
|α|≤k

∫
Ω
Dαu ·Dαvdx,

and induced norm,

‖u‖Hk(Ω) =

∑
|α|≤k

∫
Ω
|Dαv|2dx

1/2

.

It is important to note that L2(Ω)(≡ H0(Ω)) is the only Lebesgue space that is

also a Hilbert space. Hilbert spaces will be used extensively in the subsequent

chapters of this thesis. They are the natural generalization of Euclidean spaces

in the functional setting, and thus very important for understanding the well-

posedness of weak formulations and for defining the convergence rate of the finite

19



element method.

Sobolev spaces

Let k be a non-negative integer and p ≥ 1. The Sobolev space W k,p(Ω) is defined

as,

W k,p(Ω) ≡ {v|Dαv ∈ Lp(Ω), ∀α, s.t.|α| ≤ k}.

The Sobolev spaces are Banach spaces with norms defined as,

‖v‖Wk,p(Ω) ≡


(∑

|α|≤k
∫

Ω |D
αv|pdx

)1/p
, 1 ≤ p <∞,

max
|α|≤k

ess sup
x∈Ω
|Dαv(x)|, p =∞.

Sobolev spaces are the natural setting for the variational formulation of partial

differential equations. Several cases are of particular interest. The first case is

when k = 0, s.t., W 0,p(Ω) ≡ Lp(Ω), hence the Lebesgue spaces are included

in the Sobolev spaces. The second case is when p = 2 and it corresponds to

W k,2(Ω) ≡ Hk(Ω), our earlier Hilbert spaces.

2.2.2 Linear and bilinear functionals

Linear functional

Let X be a linear space over field F . A linear transformation ` : X → K is

called a linear functional if and only if, ∀u, v ∈ X, and α, β ∈ F ,

`(αu+ βv) = α`(u) + β`(v).

The set of all linear functionals on a linear space X is itself a linear space. This

space, denoted by X ′, is called the dual space of X.

Bilinear functional

Let X and Y be two linear spaces over the field F . An operator a : X × Y → F

is a bilinear form if and only if, ∀u1, u2 ∈ X, v1, v2 ∈ Y , and α, β, γ, λ ∈ F

a(αu1 + βu2, γv1 +λv2) = αγ̄a(u1, v1) +αλ̄a(u1, v2) + βγ̄a(u2, v1) + βλ̄a(u2, v2).
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A bilinear form a : X×X → F is said to be symmetric if a(u, v) = a(v, u),∀u, v ∈

X.

2.3 Review of Finite Element Method

In general, a closed form solution to a partial differential equation like the one

in (2.9) is often unavailable, which makes it very difficult to solve it analytically.

Numerical techniques are therefore employed to obtain a “truth” approximation

– a numerical approximation that is sufficiently accurate such that the result-

ing approximate solution is indistinguishably close to the exact solution. The

finite element method is among the most frequently used numerical techniques

because of its various advantages, such as fast convergence and easy handling of

geometries.

2.3.1 Variational or weak formulation

The point of departure for finite element method is a weighted-integral statement

of the differential equation, called the variational formulation, or weak formula-

tion. The weak form allows for more general solution spaces as well as natural

boundary and continuity conditions of the problem.

We use a simple two-dimensional Laplacian eigenvalue problem as the exam-

ple to review the finite element method,

−∇ · µ∇u = λu, on Ω. (2.11)

A periodic boundary condition is imposed on the boundary of Ω, denoted by

Γ, to align with our physical problems later. To derive the weak form of the

governing equation, we first introduce a function space

Xe = {v ∈ H1(Ω)}, (2.12)

where

H1(Ω) = {v ∈ L2(Ω)| ∇v ∈ (L2(Ω))d}. (2.13)
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The associated norm is defined as

‖v‖Xe =

(
d∑
i=1

‖vi‖2H1(Ω)

)1/2

, (2.14)

where d indicates the dimension of the computation domain. Multiplying (2.11)

by a test function v ∈ Xe and integrating by parts gives,

∫
Ω

∂v

∂x
µ
∂u

∂x
+

∫
Ω

∂v

∂y
µ
∂u

∂y
= λ

∫
Ω
uv. (2.15)

Hence, the weak form of an eigenvalue problem can be stated as follows: find a

solution pair (λq, u
e
q(µ)) ∈ R×Xe that satisfies

a(ueq(µ), v;µ) = λqm(ueq(µ), v), ∀v ∈ Xe

m(ueq(µ), ue`(µ)) = δq`, q, ` = 1, 2, . . . ,

(2.16)

where

a(u, v;µ) =

∫
Ω

∂v

∂x
µ
∂u

∂x
+

∫
Ω

∂v

∂y
µ
∂u

∂y
, m(u, v) =

∫
Ω
uv.

Here a(·, ·;µ) and m(·, ·) are µ-parameterized, and µ-independent bilinear forms

respectively; δq` is the Kronecker delta which is defined as δq` = 1 for q = `, and

δq` = 0 for q 6= `.

2.3.2 Spaces and basis

In the finite element method, one seeks an approximate solution over a discretized

domain, known as a triangulation Th of the physical domain Ω : Ω =
⋃
Th∈Th T

k
h,

where T kh , k = 1, . . . ,K, are the elements, and xi, i = 1, . . . ,N , are the nodes.

That is, Ω is the sum of T
k
h (closure of elements). The subscript h denotes the

diameter of the triangulation Th and is the maximum of the longest edges of

all the elements. Next, we define a finite element “truth” approximation space

X ∈ Xe,

X = {v ∈ Xe|vTh ∈ P
p(Th), ∀Th ∈ Th},

where Pp(Th) is the space of pth degree of polynomials over element Th.

To obtain the discrete equations of the weak form, we approximate the field
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variables uq(µ) as as a linear combination of the basis functions ϕi ∈ X,ϕi(xj) =

δij such that

uq(µ) =

N∑
i=1

uqi(µ)ϕi, (2.17)

where the “truth” space is now constructed as

X = span{ϕ1, . . . , ϕN },

and uqi(µ), i = 1, . . . ,N , is the nodal value of uq(µ) at node xi.

2.3.3 Discrete equations

Applying the Galerkin projection on the discrete “truth” space X, we can

substitute (2.17) into (2.16), take the test function v as the basis function

ϕi, i = 1, . . . ,N , and obtain the linear system

N∑
j=1

a(ϕj , ϕi;µ)uqj =

N∑
j=1

λhm(ϕj , ϕi)uqj , i = 1, . . . ,N ,

N∑
i=1

N∑
j=1

m(ϕj , ϕi)uqiu`j = δq`, q, ` = 1, . . . ,N ,

(2.18)

which can be rewritten into matrix form

Ah(µ)uqh(µ) = λqhMhuqh(µ). (2.19)

Here Ah is an N×N symmetric stiffness matrix with Aij(µ) = a(ϕj , ϕi;µ), Mh is

of the same size N ×N positive definite mass matrix with Mij = m(ϕj , ϕi), and

uqh(µ) is a vector with uqi(µ) = uq(xi;µ). Besides the explicit partial differential

equation, the stiffness matrix and mass matrix also depend closely on the finite

element discretization, e.g., the triangulation, the basis functions for the solution

approximation, and the shape functions for the geometry interpolation. They

are normally formed via elemental (Th of Th) matrices assembly. For a more

detailed discussion and implementation of the finite element procedure, one can

refer to various finite element method textbooks (e.g.,[6]).
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2.4 Review of Convex Optimization

A convex optimization problem is one of the form,

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . , n,

(2.20)

where f0, f1, . . . , fn : Rm → R are convex functions, i.e.,

fi(αx+ (1− α)y) ≤ αfi(x) + (1− α)fi(x),

for all x, y ∈ Rm, and for all α ∈ [0, 1]. Equality constraints can be treated equiv-

alently by a pair of inequality constraints (h(x) = 0⇔ h(x) ≤ 0 and h(x) ≥ 0),

therefore they can be removed from our standard form for theoretical purpose.

Both the least-squares problem and the linear programming problem are widely

known subclasses of the general convex optimization problems. In the following

sections, we will focus on reviewing two relatively recent classes that are exten-

sively employed throughout this work: semidefinite program and second-order

cone program. However, some important concepts have to be briefly defined

first, e.g., convex sets and cones, as well as generalized inequalities. More details

on convex optimization and related topics are covered in [2, 13].

Following the standard notations in literature, we use R to denote the set of

real numbers, R+ to denote the set of nonnegative real numbers, and R++ to

denote the positive real numbers. To denote the set of real n-vectors, and the

set of m× n matrices, Rn and Rm×n are used respectively.

2.4.1 Convex sets and cones

Convex sets

A set C is a convex set if the line segment between any two points in C lies in

C, i.e., ∀x, y ∈ C, and ∀α ∈ [0, 1],

αx+ (1− α)y ∈ C.
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A loose way to visualize a convex set is one in which every point in the set can be

seen by every other point, along an unobstructed straight path between them,

where “unobstructed” means being confined inside the set.

Cones

A set C is a cone (or nonnegative homogeneous), if for every x ∈ C and α ≥ 0,

there is αx ∈ C. A convex cone is a set C that is both convex and is a cone. In

other words, a set C is a convex cone if ∀x, y ∈ C, and any α, β ≥ 0, we have,

αx+ βy ∈ C.

Proper cones

A proper cone is a cone K ⊆ Rn that satisfies the following:

1. K is convex;

2. K is closed;

3. K is solid, i.e., it has nonempty interior;

4. K is point, i.e., it contains no line; or equivalently, x ∈ K,−x ∈ K → x = 0.

Generalized inequalities

A generalized inequality can be defined over a proper cone K. The notation of

generalized inequalities is meant to suggest the analogy to ordinary inequality

on R. Hence, it has many of the similar properties. A generalized inequality is

a partial ordering on Rn as an extension of the standard ordering on R. It is

associated with the proper one K and defined by

x �K y ⇔ y − x ∈ K.

Similarly, an associated strict partial ordering is defined by

x ≺K y ⇔ y − x ∈ intK.
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where intK indicates the interior of K. When K = R+, the partial ordering

�K becomes the standard ordering on R, and the strict partial ordering ≺K is

equivalent to the strict inequality < on R.

Positive semidefinite cone

We use Sk to denote the set of symmetric k × k matrices,

Sk := {X ∈ Rk×k|X = XT }.

Note that Sk is a vector space with dimension k(k + 1)/2. Analogously, Sk+ is

used to denote the set of symmetric positive semidefinite matrices:

Sk+ := {X ∈ Sk|X � 0},

and Sk++ to denote the set of symmetric positive definite matrices:

Sk++ := {X ∈ Sk|X � 0}.

Since the partial ordering on S+ and S++ arises frequently throughout this thesis,

the subscript is dropped whenever there is no chance of confusion: X � 0 and

X � 0 imply positive semidefiniteness and positive definiteness for symmetric

matrix X.

Second-order cone

A second-order cone of dimension q + 1 is defined as,

Qq+1 = {x = (x0; x̄) ∈ Rq+1| x0 ≥ ‖x̄‖},

where ‖ · ‖ refers to the standard Euclidean norm. The second-order cone in-

equality is denoted by x �Q 0. Notice that in this expression, the dimension of

the cone is dropped for succinctness.
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2.4.2 Semidefinite program

The conic form of a semidefinite program (SDP) is defined as,

minimize cTx

subject to F i0 + x1F
i
1 + · · ·xmF im �Ski 0, i = 1, . . . , n,

Ax = b,

(2.21)

where F i0, F
i
1, · · ·F im ∈ Sk

i
, i = 1, . . . , n, i.e., symmetric matrices of dimension

ki×ki, and A ∈ Rp×m. The generalized inequality in (2.21) is called a linear ma-

trix inequality (LMI). (2.21) reduces to a linear program when F i0, F
i
1, · · ·F im, i =

1, . . . , n are diagonal.

2.4.3 Second-order cone program

Similarly, the second-order cone program (SOCP) can be expressed as a conic

form problem:

minimize cTx

subject to Qix �Ki 0, i = 1, . . . , n,

Ax = b,

(2.22)

where

Ki = {[x0; x̄] ∈ Rqi+1| x0 ≥ ‖x̄‖},

is a second-order cone in Rqi+1. The matrices Qi ∈ R(qi+1)×m and A ∈ Rp×m.

2.4.4 Linear fractional program

Another special class of problems worth mentioning which will appear in our

formulations in later chapters: is called linear-fractional program. The problem

is to minimize a ratio of affine functions over a polyhedron:

minimize aTx+b
cTx+d

subject to Fx � g,

Ax = f.

(2.23)
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By change of variables,

y =
x

cTx+ d
, z =

1

cTx+ d
, (2.24)

program (2.23) can be transformed to a linear program:

minimize aTy + bz

subject to Fy − gz � 0,

Ay − fz = 0,

cTy + dz = 1,

z ≥ 0.

(2.25)

(2.23) is in the form that can be handled by most standard optimization solvers.
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Chapter 3

Band Structure Calculation

In this chapter, we will focus on the numerical calculations of the Maxwell equa-

tions in the form of Hermitian eigenvalue problems. Two physical problems will

be introduced, the two-dimensional photonic crystal and the three-dimensional

photonic crystal fiber. Next, the eigenvalue problem based governing equations

and finite element method based solution methods will be derived and solved.

Mesh adaptivity will also be introduced for more efficient representation of the

material properties. These numerical recipes are the essential premise to the

optimal design problems in Chapters 4 and 5.

The propagation of electromagnetic waves in photonic crystals is governed

by Maxwell’s equations, which have been cast as linear Hermitian eigenvalue

problems (3.1), assuming the electromagnetic waves are monochromatic in (2.4)

and (2.5):

∇×
(
ε(r)−1∇×H(r)

)
=
(ω
c

)2
H(r), in R3, (3.1a)

ε(r)−1∇× (∇×E(r)) =
(ω
c

)2
E(r), in R3. (3.1b)

In addition, we need to add the two divergence free conditions to ensure no point

source or sinks of magnetic fields and displacement in the medium:

∇ ·H(r) = 0, ∇ ·
(
ε(r)−1E(r)

)
= 0, in R3. (3.1c)

The solutions to these equations are in general very complex functions of space
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and time; numerical computations are hence crucial for any further analysis. Es-

tablished frequency-domain numerical methods include finite difference method,

spectral method and boundary element method. Please refer to appendix D

of [29] for a more comprehensive survey of the available computational meth-

ods. Finite element method is chosen in our work for eigenvalue computation

(this chapter) and the optimization problems (chapters 4 and 5), mainly for the

following reasons:

Geometry representation. Finite element method is known for representing

complicated geometries with high accuracy using suitable unstructured

computational meshes. One might argue that this is not an obvious ad-

vantage of the method when used in topology optimization, since struc-

tured meshes are normally used. However, the superiority of the method

lies in its ability to handle complicated geometries with structured, but

non-uniform meshes with ease. It will be made clearer in the next bullet

point;

Mesh Adaptivity. While structured meshes are called for in the topology opti-

mization, one can use successively refined non-uniform, yet still structured

adaptive meshes to achieve more accurate representation of the geome-

tries during the optimization process. Finite element method undoubtedly

excels in accomplishing this task.

Parameter sensitivity and affinity. As we shall soon see, the governing equa-

tions in our problems are either linear in the design variables (material

property: dielectric function ε) or linear with respect to its reciprocal.

Thanks to the use of the finite element methods (in fact, many other

numerical methods would also maintain the linearity in the discrete sys-

tems), after reformulating the optimization problem into convex programs

in chapters 4 and 5, we can easily transfer the eigenvalue sensitivity with

respect to the design variables, to the relevant matrices sensitivity with

respect to the design variables. While the eigenvalue sensitivity has a

nonlinear relation and is non-differentiable at eigenvalue degeneracy, the

matrices sensitivity can be easily rewritten in a linear fashion with some
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changes of variables.

3.1 Band Structure of Two-dimensional Photonic Crys-

tal Structure

3.1.1 Governing equations

In a two-dimensional photonic crystal, periodicity occurs across two of its axes

(e.g., xy−plane), and the structure is homogeneous along the third axis (e.g.,

z-axis). There are two possible polarizations of the electromagnetic waves prop-

agating in such a structure: transverse electric (TE) polarization, and transverse

magnetic (TM) polarization. For TE polarization, the electric field ETE(r) =

(Ex, Ey, 0) is confined to the plane of wave propagation, while the magnetic field

HTE(r) = (0, 0, H) is perpendicular to this plane. Conversely, for TM polariza-

tion, the magnetic field HTM (r) = (Hx, Hy, 0) is confined to the plane of wave

propagation, while the electric field ETM (r) = (0, 0, E) is perpendicular to this

plane. In such cases, the Maxwell equations can be reduced to scalar eigenvalue

problems:

TE : −∇ ·
(
ε−1(r)∇H(r)

)
=
(ω
c

)2
H(r), in R2, (3.1.1a)

TM : −∇ · (∇E(r)) =
(ω
c

)2
ε(r)E(r), in R2 . (3.1.1b)

Note that the reciprocal of the dielectric function is present in the differential

operator for the TE case, whereas the dielectric function is present in the right-

hand side for the TM case.

We consider two of the most common types of a two-dimensional lattice for

the arrangement of dielectric materials: the square lattice and the hexagonal

lattice, depicted in Figure 3.1. Recall that the dielectric material of a photonic

crystal satisfies a periodic function of the form ε(r) = ε(r+R) for all vectors R,

where R are the lattice vectors spanned by the primitive lattice vectors {a1,a2}

which translate the lattice into itself. There are many ways of representing the

primitive lattice vectors a1 and a2 for different lattices, one of which is shown in

Figure 3.1. In this representation, the square lattice has a1 = ax̂, and a2 = aŷ;
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and the hexagonal lattice has a1 = ax̂, and a2 = a(x̂+ ŷ
√

3)/2.

(a) Square lattice

(b) Rhombic lattice

Figure 3.1: Left: A photonic crystal on a square lattice (top), and on a hexag-
onal lattice (bottom). The dashed box represents the primitive unit cell (Ω),
where a is the periodicity length of the lattice. Right: The respective reciprocal
lattices. The dashed box represents in each case the first Brillouin zone (B).
The irreducible zone is shown as the green triangular wedge, with its boundary
denoted by ∂B.

Bloch-Floquet theory introduced in section 2.1.2 states that the solution to

the periodic eigenvalue problems (3.1.1) is of the form

H(r) = Hk(r)eik·r, and E(r) = Ek(r)eik·r,

where Hk(r) and Ek(r) are periodic envelope functions. Substituting these into

(3.1.1), we can show that Hk(r) and Ek(r) are now the eigenfunctions of slightly

different Hermitian eigenvalue problems respectively,

TE : (∇ + ik) ·
(

1

ε(r)
(∇ + ik)Hk(r)

)
=
(ω
c

)2
Hk(r), in Ω, (3.1.2a)

TM : (∇ + ik) · ((∇ + ik)Ek(r)) =
(ω
c

)2
ε(r)Ek(r), in Ω. (3.1.2b)

Thus, the effect of considering periodicity amounts to replacing the indefinite

periodic domain by the unit cell Ω and ∇ by ∇ + ik in the original equations.
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k is a wave vector in the first Brillouin zone B.

For notational convenience, we write the above equations in the following

operator form:

Au = λMu, in Ω. (3.1.3)

For the TE case, u ≡ Hk(r)(∈ H1(Ω) ≡
{
v ∈ L2(Ω) | ∇⊥v ∈ (L2(Ω))2

}
), λ ≡

ω2
TE/c

2, and

A(ε,k) ≡ −(∇ + ik) ·
(

1

ε(r)
(∇ + ik)

)
. M≡ I; (3.1.4a)

For the TM case, u ≡ Ek(r)(∈ H1(Ω)), λ ≡ ω2
TM/c

2, and

A(k) ≡ −(∇ + ik) · (∇ + ik), M(ε) ≡ ε(r)I, (3.1.4b)

In the equations (3.1.4), I denotes the identity operator. We denote by (um, λm)

the m-th pair of eigenfunction and eigenvalue of (3.1.3) and assume that these

eigen pairs are numbered in ascending order: 0 < λ1 ≤ λ2 ≤ · · · ≤ λ∞.

3.1.2 Discretization

Next, we need to discretize the above infinite dimensional eigenvalue problem so

that it can be handled numerically.

This process involves three steps. First, we discretize the boundary of the

irreducible Brillouin zone ∂B, so that only nk wave vectors are considered (Figure

3.2). The choice of solving the eigenproblem only on the irreducible Brillouin

boundary is driven by the band gap calculation and the optimization problem,

as the optima of the eigenvalues of the underlying eigenproblem are shown to

usually occur on ∂B. Therefore,

Ph := {kt ∈ ∂B, 1 ≤ t ≤ nk} . (3.1.5)

Second, the unit cell Ω is decomposed into N disjoint subcells Ki, 1 ≤ i ≤ N ,

such that Ω = ∪Ni=1Ki, and the shared interface of two neighboring elements Ki

and Kj is denoted by eij . This subcell grid is then used to represent the dis-
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(a) Square lattice (b) Hexagonal lattice

Figure 3.2: The shaded wedges denote in each case the irreducible brillouin zone
of (a) square lattice and (b) hexgonal lattice. The red dots are the representative
discrete wave vectors.

tribution of dielectric function discretely, as shown in Figure 3.3. Our dielectric

function ε(r) takes a uniform value between εL and εH on each cell, where εL

and εH are dielectric constants of a low-index material and a high-index mate-

rial respectively that make up the composite of the photonic crystal. That is

ε(r) = εj(∈ R) on Ki, and εL ≤ εj ≤ εH . Moreover, if the symmetry of the

prescribed lattice is taken into consideration, the dielectric function only needs

to be defined in 1/8 of the unit cell in a square lattice, or in 1/12 of the unit cell

in a hexagonal lattice, namely,

Qh = {ε : ε ∈ [εL, εH ]nε} , (3.1.6)

where nε < N2 ≡ N .

Third, a discrete subcell triangulation Th is used to approximate the finite

element solution of the system (3.1.3). A finite element “truth” approximation

space Xh of complex valued functions is defined as

Xh =
{
v ∈ H1(Ω) | v|K ∈ Pp(K), ∀K ∈ Th

}
, (3.1.7)

where Pp is the space of complex valued polynomials of total degree at most

p = pRE + pIM on K. It is known that either increasing the interpolation poly-

nomial degree p or decreasing the mesh size h or both lead to a more accurate
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(a) Square lattice
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ŷ
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=1 ˆa ax

Ω

(b) Hexagonal lattice

Figure 3.3: Dielectric variables are defined on the highlighted cells; the rest are
obtained through symmetry. The red dashes indicate the symmetry lines.

approximation of the solution. While both p− and h− refinement schemes result

in more degrees of freedom for the system, hence increased computation cost,

p−refinement approach almost always provides an advantageous convergence.

However, in topology optimization [9], where the material properties of each

subcell are the optimization decision variables, the capacity of efficient geometry

representation is prior to higher convergence. This is why in all our computa-

tion and optimization simulations followed, low order interpolation polynomials

(mostly, p = 1 is used) are employed on fine computational meshes. As part of

the finite element discretization of step three, the equations in (3.1.3) are mul-

tiplied by a test function v ∈ Xh, and integrated by parts to obtain the weak
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forms:

∫
Ω

1

ε
∇v · ∇HkdΩ + ik ·

∫
Ω

1

ε
(Hk∇v − v∇Hk)dΩ + k · k

∫
Ω

1

ε
vHkdΩ = λ

∫
Ω
vHkdΩ,

(3.1.8a)∫
Ω
∇v · ∇EkdΩ + ik ·

∫
Ω

(Ek∇v − v∇Ek)dΩ + k · k
∫

Ω
vEkdΩ = λ

∫
Ω
εvEkdΩ.

(3.1.8b)

We obtain the discrete equations of the weak forms,

Ah(ε,k)u
mj
h = λ

mj
h Mh(ε)u

mj
h , ε ∈ Qh,k ∈ Ph, (3.1.9)

where Ah(ε,k) ∈ CN×N is a Hermitian matrix and Mh(ε) ∈ RN×N is a sym-

metric positive definite matrix. Since ε(r) is piecewise-constant on Ω, the

ε−dependent matrices can be expressed as

ATEh (ε,k) =

nε∑
i=1

ε−1
i ATEh,i (k), MTM

h (ε) =

nε∑
i=1

εiM
TM
h,i , (3.1.10a)

while ATM
h (k) and MTE

h are independent of ε, and can be expressed as

ATMh (k) =

nε∑
i=1

ATMh,i (k), MTE
h =

nε∑
i=1

MTE
h,i , . (3.1.10b)

In the equations (3.1.10) and following, superscripts TM and TE are used to

indicate TM polarization and TE polarization, respectively. The subscripts i of

the matrices contain the contribution of all the elements indexed by dielectric

variable εi.

Equations (3.1.10a) and (3.1.10b) can then be solved by standard eigen

solvers. “eigs” from MATLABr is chosen in our implementation as it also

exploits the sparsity of the matrices.

3.1.3 Mesh refinement

Uniform structured mesh has been used for the previous discretizations of dielec-

tric function and eigenvalue problem (section 3.1.2). To improve the efficiency

of the discretization while preserving the accuracy, we explore adaptive mesh
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refinement in this section. The primary objective of adaptive mesh refinement

is to capture the details of material property more efficiently and to resolve the

field solutions accurately. One strategy to increase the discretization resolu-

tion is to allocate more degrees of freedom, hence more computational nodes,

in regions where the eigenfunctions have higher gradient, and to maintain a

coarser discretization in regions of smooth solutions. In our problem where the

computation domain consists of materials of two different dielectric constants,

increased variation in the eigenfunctions can typically be expected along the ma-

terial interfaces. Given any initial coarse representation of the optimal crystal

configuration, we will only further subdivide those elements meeting the refine-

ment criteria, and allow more degrees of freedom in both the field variables (by

increasing N in (3.1.9) ) and optimization decision variables (by increasing nε in

(3.1.6)). Practically, a quadrilateral element is simply subdivided into 4 smaller

elements by connecting the mid points of its edges, as shown in Figure 3.4.

(a) Quadrilateral element

Figure 3.4: Mesh elements can be refined by connecting mid-points of the edges
and creating three more elements.

Care should be given to the choice of the refinement criteria to ensure both

the efficiency and accuracy of the computation. The efficiency of the adaptive

refinement is accomplished by correctly identifying the elements on the material

interface that should be subdivided. An element is categorized as an interface

element if any of its neighbors has different material property (ε) than his own.

By the same token, this different neighbor will also be classified as an interface

element. This principle is illustrated in Figure 3.5 using quadrilateral elements.

In our implementation, the element connectivity of the mesh structure is used

to locate all the 4 – 8 neighbors of any element. The cost of this search is

only of order O(logN (r)
t ), where N (r)

t is the number of elements at the current

refinement level r.
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Figure 3.5: In this illustration, elements T2, T3, T4 all are of different material
property from their adjacent element T1, and conversely, element T1 is of different
material property than its neighbors T2, T3, T4. According to our definition, they
all fall under the category of interface elements. To refine these elements, their
edges are bisected and connected to form finer regional mesh.

In such a way, hanging nodes are generated after each refinement if the

adjacent elements are not of the same size. To ensure the conformability of the

mesh and the consistency of the solution, the 2 : 1 rule is applied to restrict

the refinement level difference between adjacent elements. In our approach, an

element, although not necessarily an interface element, will still be refined if

one of its neighbors has been refined twice more than itself, demonstrated in

Figure 3.6. By imposing such a restriction, we can ensure there is at most one

hanging node along the edge of a relatively coarser element.

Figure 3.6: As a result of refining element T3 in Figure 3.5, two hanging nodes
N1 and N2 are created along the left edge of element T5. This leads to the
violation of the 2 : 1 rule, as both elements T6 and T7 have been refined twice
more than T5. Therefore, although T5 is not on the material interface, it should
be flagged and refined to ensure the conformability of the method.

Many methods have been proposed to handle the presence of hanging nodes,

see [55] for a review of such methods. In this work where the structured mesh is

used, the simplest strategy is to fix the value of the hanging node by a suitable

(linear) interpolation using the corresponding neighboring regular nodes. In Fig-

ure 3.7, the field value at node ~x5, U(~x5) or simply U5, is treated as a “spurious”

degree of freedom, and its value is interpolated as U(~x5) = 1
2(U(~x4) + U(~x6)).
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Figure 3.7: A quadtree mesh demonstrating several hanging nodes. Specifically,
node 5 will be interpolated by the values of nodes 4 and 6. This is equivalent
to using the modified basis functions – φ′3(~x), φ′4(~x) – for interpolating the field
variable. A linear reference element is shown on the right.

Effectively, the field variable in T2 can be represented as

U(~x)T2 = U(~x1)φ1(~x) + U(~x2)φ2(~x) + U(~x5)φ3(~x) + U(~x4)φ4(~x)

= U(~x1)φ1(~x) + U(~x2)phi2(~x) +
1

2
(U(~x4) + U(~x6))φ3(~x) + U(~x4)φ4(~x)

= U(~x1)φ1(~x) + U(~x2)φ2(~x) + U(~x6)
(

1
2φ3(~x)

)
+ U(~x4)

(
1
2φ3(~x) + φ4(~x)

)
= U(~x1)φ1(~x) + U(~x2)φ2(~x) + U(~x6)φ′3(~x) + U(~x4)φ′4(~x).

(3.1.11)

The refinement criteria are summarized below:

• if two adjacent elements are of different material property (ε), both of them

should be refined;

• if two adjacent elements have a refinement level difference more or equal

than 2, the coarser one should be refined.

3.1.4 Results and discussion

Eigenvalue convergence on homogeneous domain

We start with the simplest problem where the material is homogeneous with

dielectric constant ε(r) = 1 everywhere. The analytical eigenvalue in this case

is known to be λj = (mπ + kx)2 + (nπ + ky)
2, m, n ∈ Z when the computation

domain is Ω = [−1, 1]2. We consider quadrilateral meshes of both uniform and

non-uniform size. The uniform mesh is obtained by splitting a regular n × n

Cartesian grid into a total of n2 squares, giving an uniform element size of
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(a) Uniform mesh, h =
a/16;

(b) Non-uniform mesh,
hequiv = a/20.39.

Figure 3.8: Homogeneous domain discretized by uniform mesh and nonuniform
structured grids.

h = a/n. The non-uniform mesh is obtained by refining half of the elements

of the uniform mesh, giving the smallest element size of hmin = a/(2n). Four

different meshes are used in each case, n = 8, 16, 32, 64, and the eigenfunctions

are obtained via interpolation polynomials of degree p = 1. Figure 3.8 illustrates

the computation meshes used when n = 16. For the nonuniform meshes used

in all the subsequent experiments, we define another more meaningful quantity,

the equivalent mesh size:

hequiv = a/
√
NDOF .

Here, NDOF represents the number of degrees of freedom of the system. In Figure

3.8(b) this number is also the remaining number of nodes after subtracting the

number of hanging nodes.

The errors of the jth eigenvalue λjh on a uniform mesh and λjhequiv on a

nonuniform mesh are defined as:

ejh = ‖λjh − λ
j‖/‖λj‖, (3.1.12a)

ejhequiv = ‖λjhequiv − λ
j‖/‖λj‖. (3.1.12b)

In Figure 3.9, the errors of the computed eigenvalues v.s. the mesh sizes

are plotted at several critical points of the Brillouin zone, namely, the points

of high symmetry: Γ, X, and M , as first shown in Figure 3.1. These points

are of great importance as the sites of the optimal eigenvalues, and will be

discussed in the next subsection 3.1.4 when band structures are computed. The

convergence of the first 20 eigenvalues is plotted; using the convergence rate as
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defined below in (3.1.13), it is observed to be r ≈ 2 = 2p, where p = 1 is the

order of the interpolation polynomials for the finite element basis functions. This

convergence rate is consistent with the value reported in the literature for the

Galerkin finite element method [10, 15].

r = logh′/h
eh′

eh
. (3.1.13)

Eigenvalue convergence on inhomogeneous domain

Next we examine the convergence of the eigenvalues in an inhomogeneous do-

main. The computation domain (one primitive cell of the photonic crystal)

consists of a column of radius 0.2a with dielectric material GaAs (εH = 11.4) in

vacuum (εL = 1). To ensure that the dielectric functions used in all the examples

are the same, the dielectric variable ε representing the column of said radius is

created on a 32 × 32 uniform mesh, and extrapolated to various finer uniform

meshes(Figure 3.10(a),(b), and(c)), or to adaptively refined non-uniform meshes

(Figure 3.10(d),(e), and(f)) using the procedure described in section 3.1.3. By

this approach, the resolution of the circular dielectric is determined by the coars-

est mesh. Figure 3.10 demonstrates the refinement history for the uniform mesh

extrapolation and nonuniform mesh adaptivity.

Due to the lack of an analytical solution, the solution from the finest mesh

(n = 256) is considered as the “truth” solution (not shown in Figure 3.10). The

errors of the jth eigenvalue λjh on a uniform mesh and λjhequiv on a nonuniform

mesh are defined slightly differently as,

ejh = ‖λjh − λ
j
h=a/256‖/‖λ

j
h=a/256‖, (3.1.14a)

ejhequiv = ‖λjhequiv − λ
j
h=a/256‖/‖λ

j
h=a/256‖. (3.1.14b)

The first 20 eigenvalues of the TE polarization have been computed, and

their errors versus the grid sizes h (or hequiv for nonuniform mesh) are plotted in

Figure 3.11. The results in the uniform meshes are consistent with the previous

observations from the homogeneous domain case, i.e., an approximate conver-

gence rate of 2. In the non-uniform meshes, the convergence rate can be as high
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Figure 3.9: Eigenvalue convergence on homogeneous domain. Γ, X, and M
indicate the vertices of the irreducible Brillouin zone. Each line represents the
convergence of one of the first 20 eigenvalues, while the lowest line corresponds
to the smallest eigenvalue.
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(a) h = a/32 (b) h = a/64

(c) h = a/128 (d) hequiv = a/34.35

(e) hequiv = a/40.74 (f) hequiv = a/51.19

Figure 3.10: Computation meshes used on inhomogeneous domain. Meshes (a),
(b), and (c) are used to study eigenvalue convergence on uniform meshes. Meshes
(d), (e), and (f) are used to study the convergence on adaptive meshes.
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as r ≈ 9. Additionally, the error plots corresponding to the non-uniform meshes

indicate that while fewer DOFs are required, smaller errors can be achieved.

This proves that the adaptive mesh refinement procedure is both efficient and

effective.

Band structure

Having analyzed the accuracy and convergence of the eigenvalue computation,

we also examined the effect of discretization on the band structure, namely,

how the numbers of nk determines the calculated eigenvalue band structures.

The eigenvalue band structure of a photonic crystal is typically plotted as the

eigenmodes λi(k), i = 1, 2, ..., (vertical axis) versus the wave vector k (horizontal

axis). For two- and three-dimensional photonic crystals, the discrete boundary

of the irreducible Brillouin zone is mapped onto the horizontal axis. A band gap

is identified as the void between the lower band and higher band at a given wave

vector. When the void expands to cover all the wave vectors of the irreducible

Brillouin zone, i.e., the entire horizontal axis, an absolute band gap arises, such as

the demonstrations in Figures 3.12 and 3.13. While the eigenvalue bands become

smoother and more defined as the discretization resolution of the irreducible

Brillouin zone boundary increases, the resulting band gap (in blue shade) size

is not affected, since the optima of the eigenvalues often occur at the important

symmetry points – vertices of ∂B, Γ, X, and M .

3.2 Band Structure of Three-dimensional Photonic

Crystal Fiber

3.2.1 Governing equations

To describe the three-dimensional structure of the photonic crystal fiber, we

start with the two-dimensional photonic crystal we are familiar with, a pho-

tonic crystal with translational symmetry over two of its axes (xy− plane), and

homogeneous along the third axis (z−axis). In contrast with the strictly peri-

odic two-dimensional case, where the propagation is limited to the xy− plane

(i.e., k = kxy + kz, and kz = 0), the propagation direction of electromagnetic
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Figure 3.11: Eigenvalue convergence on inhomogeneous domains. Γ, X, and M
indicate the vertices of the irreducible Brillouin zone. Each line represents the
convergence of one of the first 20 eigenvalues, while the lowest line corresponds
to the smallest eigenvalue.
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(a) Geometry: connected dielectric veins.
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(c) Non-uniform mesh with hmin = a/64
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(d) Non-uniform mesh with hmin = a/128

Figure 3.12: TE Band diagrams of a connected dielectric vein structure on a
square lattice. Successively refined computation meshes (increasing nε) and
higher discretization resolution of the irreducible Brillouin zone boundary (in-
creasing nk) are used for band structure calculation.
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(a) Geometry: isolated dielectric columns.
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Figure 3.13: TM Band diagrams of an isolated dielectric column structures on
a hexagonal lattice. Successively refined computation meshes (increasing nε)
and higher discretization resolution of the irreducible Brillouin zone boundary
(increasing nk) are used for band structure calculation.
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waves in a three-dimensional fiber is along the fiber axis (taken to be the z-axis),

i.e., kxy = 0. Next, the translational symmetry over the xy-plane is disrupted

by introducing a defect known as core; the surrounding region is called pho-

tonic crystal cladding. In the most general case, the structure is described by

a dielectric function ε(x, y, z) = εCL(x, y, z) + εCO(x, y, z); ε(x, y, z), εCL(x, y, z)

and ε(x, y, z) are all periodic with period az(az → 0 in the case of constant

cross-section); the cladding dielectric function εCL(x, y, z) is periodic in xy (or

homogeneous in a conventional fiber). Supported by numerous numerical calcu-

lations [38], exponentially localized index-guided modes can be obtained if the

refractive index (or dielectric constant) is increased in the core, i.e., εCO(x, y, z)

is non-negative.

We start with the master equation for macroscopic Maxwell equations (3.1a).

Because the fiber is translationally symmetric along the z-axis, kz is conserved

across the dielectric interface (and is commonly referred in the waveguide liter-

ature as the propagation constant, and denoted by β). The field variable can be

written in Bloch form

H(r) = H(x, y)eiβz. (3.2.1)

Therefore, equation (3.1a) can be reduced to

(∇⊥ + iβez)×
(
ε−1(∇⊥ + iβez)×H(x, y)

)
= λH(x, y), in Ωs, (3.2.2)

where∇⊥ = ∂
∂x x̂+ ∂

∂y ŷ is the transverse gradient operator. Computation domain

is the super cell Ωs, which expands to the fiber cross-section and includes multiple

primitive unit cells. If we further split H(x, y) into a transverse part H⊥(x, y) =

Hx(x, y)x̂+Hy(x, y)ŷ and a longitudinal part H‖(x, y) = Hz(x, y)ẑ, then

H(x, y) = H⊥(x, y) +Hz(x, y)ẑ. (3.2.3)

Substituting it into (3.2.2), we obtain

∇⊥ ×
(
ε−1∇⊥ ×H⊥

)
+ β2ε−1H⊥ + iβε−1∇⊥Hz = (ω/c)2H⊥,

iβ∇⊥ · ε−1H⊥ −∇⊥ ·
(
ε−1∇⊥Hz

)
= (ω/c)2Hz, in Ωs.

(3.2.4)
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For notational convenience, we rewrite the system of equations in the following

operator form:

Au = λMu, in Ωs, (3.2.5)

where λ ≡ (ω/c)2, and

A(ε, β) ≡

 ∇⊥ × (ε−1∇⊥×
)

+ β2ε−1 iβε−1∇⊥

iβ∇⊥ · ε−1 −∇⊥ ·
(
ε−1∇⊥

)
 , M≡ I, u ≡

 H⊥
Hz

 .
(3.2.6)

We denote by (um, λm) the m-th pair of eigenfunction and eigenvalue of (3.1.3)

and assume that these eigen pairs are numbered in ascending order: 0 < λ1 ≤

λ2 ≤ · · · ≤ λ∞.

The formulation shown in (3.2.6) is also known as the resonance problem.

When the third dimension is homogenous as the photonic crystal fiber, the orig-

inal three-dimensional vectorial problem (3.1) is reduced to a two-dimensional

vectorial eigenproblem; comparing with the eigenproblem in section 3.1, the

original two-dimensional vectorial problem was reduced to two two-dimensional

scalar problems, when the propagation wave vector k(x, y) is limited to the cross

section of the two-dimensional photonic crystal structures.

We need to keep our numerical scheme simple enough for the optimization

formulation (to be discussed in Chapter 5) yet not oversimplified to result in the

loss of accuracy. Essentially, two types of eigenmodes will be sought. The first

type relates to the modes in a photonic crystal cladding with perfect translational

symmetry, from which the fundamental space filling mode will be calculated. A

periodic boundary condition on the primitive unit cell Ω suffices in this case.

The second type involves the modes in a disrupted cladding, also known as the

photonic crystal fiber, or in the most general case, the waveguide. In this case,

we are seeking only the guided modes, whose corresponding magnetic field decays

exponentially away from the core to zero inside the cladding region within a finite

domain, i.e., the super cell Ωs if it is set large enough. While most boundary

conditions would be satisfied in this case, the periodic boundary condition is

again chosen for consistency and simplicity.
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3.2.2 Discretization

Mixed continuous Galerkin

The most well-known issue with the finite element method for solving three-

dimensional electromagnetic eigenproblems is the introduction of spurious modes

[54], i.e., nonphysical eigenvalues which appear in the computed spectrum pol-

luting the correct, physical eigenvalues. This is believed to attribute to the

improper modeling of the discontinuities of the field variables across dielectric

boundaries by node elements. Recall that node elements enforce the continuity

of the field variables over the entire computation domain. However, Maxwell

equations require the continuity of the tangential component of the field vari-

ables across dielectric boundaries. Tangential vector finite elements, also known

as edge elements, need to be introduced to enforce the tangential continuity

of the elements. In our optical waveguide problem where the dimensional-

ity is reduced to two due to longitudinal symmetry, the longitudinal compo-

nent of the field variable is continuous across material boundaries, while the

transverse components are discontinuous and the continuity of their tangential

components need to be enforced. As a result, the longitudinal field variable

uz(∈ H1(Ω)) is represented by node elements, and the transverse field vari-

able u⊥(∈ H(curl,Ω) ≡
{
v ∈ [L2(Ω)]2 | ∇⊥ × v ∈ [L2(Ω)]2

}
) is represented by

edge elements to ensure that all the non-zero eigensolutions correspond to valid

waveguide modes [37, 22].

The strategy described above is called the mixed formulation, and was first

proposed by Kikuchi in [35]. In the same paper, he also pointed out the presence

of an infinitely degenerate eigenvalue “0” whose eigenspace lies in the functional

space of the field variables. To understand this issue, we can apply the Helmholtz

decomposition to split the field variable into curl-free and divergence-free parts:

 H⊥
Hz

 =

 ∇⊥ϕ
iβϕ


︸ ︷︷ ︸
curl−free

+

 u⊥
uz

 .
︸ ︷︷ ︸
div−free

(3.2.7)

The curl-free part is non-physical and violates the divergence condition. It also
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resides in the null space of the operator A of (3.2.5). Therefore, an eigen solver

which minimizes the Rayleigh quotient will inevitably converge to this null space.

It is thus meaningful to include the divergence free constraint to eliminate the

non-physical eigensolutions. A mixed formulation based on Lagrange multiplier

p(∈ H1
0 (Ω) ≡

{
v ∈ H1(Ω) | v |∂Ω= 0

}
) [5, 14] is a typical method to relax such

a condition. The modified operators are such that,

A(ε, β) ≡


∇⊥ ×

(
ε−1∇⊥×

)
+ β2ε−1 iβε−1∇⊥ ∇⊥

iβ∇⊥ · ε−1 −∇⊥ ·
(
ε−1∇⊥

)
iβ

∇⊥· iβ 0

 , M≡

I

I

0

 , u ≡

H⊥

Hz

p


(3.2.8)

H1(Ω) and H(curl,Ω) conforming basis

We briefly review the two types of interpolation basis functions to be used for the

finite element discretization of equation (3.2.8). Throughout our work, we em-

ploy isoparametric quadrilateral elements, i.e., the shape functions for geometric

mapping from the reference coordinate system (ξ, η) to the (x, y) coordinate

system are of the same order as the H1(Ω) conforming nodal basis functions.

1

1̂τ

2̂τ

3̂τ

4̂τ

ξ

η

2

34

( )1, 1− −

( )1,1

( )1, 1−

( )1,1−

Figure 3.14: Reference quadrilateral element.

Over the reference square element shown in 3.14, recall that the linear H1(Ω)

conforming basis functions ϕ̂i(ξ, η), i = 1, . . . , 4, can be expressed as (illustrated

in Figure 3.15)

ϕ̂1 =
1

4
(1−ξ)(1−η), ϕ̂2 =

1

4
(1+ξ)(1−η), ϕ̂3 =

1

4
(1+ξ)(1+η), ψ̂4 =

1

4
(1−ξ)(1+η).

(3.2.9)
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Figure 3.15: H1(Ω) conforming basis functions.

The hat denotes a quantity expressed relative to the reference coordinate

system (ξ, η). The scalar field variable ûz over the element can be interpolated

as

ûz =

4∑
i=1

uziϕ̂i, (3.2.10)

where the scalar coefficients uzi are the unknowns.

Next, the lowest order H(curl,Ω) conforming basis functions ψ̂i(ξ, η), i =

1, . . . , 4, over the reference element can be expressed as

ψ̂1 =
1

2
(1−η)

 1

0

 , ψ̂2 =
1

2
(1+ξ)

 0

1

 , ψ̂3 =
1

2
(1+η)

 1

0

 , ψ̂4 =
1

2
(1−ξ)

 0

1

 .
(3.2.11)

This is illustrated in Figure 3.16.

If the unit tangent vector of an edge i is denoted by τi, then these vector basis

functions satisfy the requirements τi · ψ̂j = δij , where δij is the Kronecker Delta.

Therefore, the vector field variable û⊥ over the element can be interpolated as

û⊥ =

 ûξ

ûη

 =

4∑
i=1

u⊥iψ̂i, (3.2.12)

where the scalar coefficients u⊥i are the unknowns and are constant on each edge

i.
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Figure 3.16: H(curl,Ω) conforming basis functions.

Discretization

We follow the similar procedure described in section 3.1.2 to discretize the in-

finite dimensional eigenvalue problem. First, we discretize the one-dimensional

propagation constant in the range of [0, βM ]:

Ph = {βt ∈ [0, βM ], 1 ≤ t ≤ nβ} . (3.2.13)

Second, the super cell Ωs is decomposed into N disjoint subcells Ki, 1 ≤

i ≤ N , such that Ωs = ∪Ni=1Ki, and the shared interface of the two neighboring

elements Ki and Kj is denoted by eij . The dielectric function ε(x, y, r) takes

a uniform value between εL and εH on each element, where εL and εH are

dielectric constants of a low-index material and a high-index material that make

up the cross section of the photonic crystal fiber. That is, ε(r) = εj(∈ R) on

Ki, and εL ≤ εj ≤ εH . Instead of the square and hexagonal lattices used in

section 3.1, we use the rectangular and hexagonal lattices to avoid the double

degeneracy of the fundamental space filling mode [38]. This choice is explained

in details where the optimization problem is formulated in Chapter 5. As shown

in Figure 3.17, both lattices have 4–fold symmetry. Dielectric variables are

defined only on the highlighted cells, with the rest obtained through symmetry.
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The symmetry lines are marked by red dashes. The structure of the cross-

section can now be completely characterized by the dielectric variable vector

for the cladding εCL, and the vector for the core εCO, i.e., ε =
[
εCL; εCO

]
=[

εCL1 , . . . , εCLn
εCL

, εCO1 , . . . , εCOn
εCO

]
. As before, the permissible set is defined as

Qh ≡ {ε : ε ∈ [εL, εH ]nε}, (3.2.14)

where nε = nεCL + nεCO .

(a) Rectangular lattice

(b) Hexagonal lattice

Figure 3.17: Schematics of the cross-sections of photonic crystal fiber. Left: core
region ΩCO made up of one primitive cell; middle: super cell Ωs; right: one of
the primitive cells Ω that make up of the cladding region.

Third, the finite element “truth” approximation spaces of complex valued

functions are defined as,

Xh ≡
{
v ∈ H1(Ω) | v|K ∈ Pp(K), ∀K ∈ Th

}
, (3.2.15a)

X0
h ≡

{
v ∈ H1

0 (Ω) | v|K ∈ Pp(K), ∀K ∈ Th
}
, (3.2.15b)

Wh ≡
{
v ∈ H(curl,Ω) | v|K ∈ [Pm(K)]2, ∀K ∈ Th

}
. (3.2.15c)

Pm is the space of complex valued polynomials of total degree at most m =

mRE + mIM on element K. The weak formulation of the eigenproblem can

be stated as follows, find (λ,u⊥, uz, p) ∈ R × Wh × Xh × X0
h, ∀(v⊥, vz, q) ∈
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Wh ×X0
h ×X0

h, such that

(∇⊥ × v⊥, ε−1∇⊥ × u⊥) + β2(v⊥, ε
−1u⊥) + iβ(v⊥, ε

−1∇⊥uz) + (v⊥,∇⊥p) = λ(v⊥,u⊥),

−iβ(∇⊥vz, ε−1u⊥) + (∇⊥vz, ε−1∇⊥uz) + iβ(vz, p) = λ(vz, uz),

−(∇⊥q,u⊥) + iβ(q, uz) = 0.

(3.2.16)

Finally, we obtain the discrete equation

Ah(ε, β)u
mj
h = λmjMhu

mj
h , ε ∈ Qh, β ∈ Ph, (3.2.17)

where

Ah(ε, β) =


A1(ε) + β2A2(ε) iβB(ε) C

−iβB(ε)∗ D(ε) iβMz

−C∗ iβMz 0

 Mh =


M⊥

Mz

0

 uh =


H⊥h

Hzh

ph

 .

(3.2.18)

We can further rewrite the stiffness matrix in terms of its ε−dependence

Ah(ε, β) = Ah(εCL, β) +Ah(εCO, β) +Ah(β)

=

n
εCL∑
i=1

εCLi Ah,i(β) +

n
εCO∑
i=1

εCOi Ah,n
εCL

+i(β) +Ah,0(β).
(3.2.19)

Mesh refinement

The refinement criteria and the treatment of the hanging nodes are exactly the

same as described in section 3.1.3 for two-dimensional photonic crystal. The

additional complications arises due to edge elements, i.e., H(curl) conforming

bases. In our implementation, the lowest of the H(curl) bases are used, along

each one of which the field variables take constant values. This leads to minimal

modifications to the algorithm: when a hanging node splits an edge (e1) into two

(e2 and e3), the field variables along these two edges e2 and e3, each belonging to

a different smaller element, and e1, belonging to the larger neighboring element,

should have the same value. Hence, these three edges should be assigned with

one single degree of freedom.
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3.2.3 Results and discussion

Cladding eigenvalue convergence

We first examined the convergence of the mixed formulation in both homoge-

neous and inhomogeneous domains, using the model problem where the material

is homogeneous with dielectric constant ε(r) = 1 everywhere. The analytical

eigenvalue in this case is known to be λj = (mπ)2 + (nπ)2 + β2, m, n ∈ Z on

a computation domain Ω = [−1, 1]2. Note that this is for the perfect cladding

case, and the computation domain consists of one primitive unit cell. Quadri-

lateral meshes of both uniform and non-uniform sizes are considered. Shown in

Figure 3.8, the uniform mesh is obtained by splitting a regular n× n Cartesian

grid into a total of n2 squares, giving an uniform element size of h = a/n; The

non-uniform mesh is obtained by refining half of the elements of the uniform

mesh, giving the smallest element size of hmin = a/(2n). Three different meshes

are used in each case, n = 8, 16, 32. The errors and convergence rate are defined

as before in (3.1.12) and (3.1.13). Shown in Figure 3.18 is the convergence of

the first 20 eigenvalues at several propagation constants (β = 0, π, 2π). The

first observation is that the multiplicity of the eigenvalues are well captured

by the uniform mesh, because only a few overlapped lines are visible in Figure

3.18(a); whereas in the nonuniform meshes, the degenerate eigenvalues deviate

from each other by small margins. The convergence rate in both cases are also

approximated to be r ≈ 2 = 2 min(p,m), where p and m are the orders of the

polynomials employed for H(Ω) and H(curl; Ω) conforming basis functions.

The convergence of the first 20 eigenvalues in inhomogeneous domain is shown

in Figure 3.19, with the same setup as in section 3.1.4, and Figure 3.10. Overall,

a very stable convergence rate of r ≈ 2 is demonstrated through the uniform

meshes. In the non-uniform meshes, the convergence rate can be as high as

r ≈ 6 for the lower eigenmodes, and less satisfactory convergence (r < 2) for the

higher modes, as the higher order eigenfunctions are not as sufficiently resolved.
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Figure 3.18: Eigenvalue convergence on homogeneous domain at different propa-
gation constants, β = 0, π, 2π. Each line represents the convergence of one of the
first 20 eigenvalues, while the lowest line corresponds to the smallest eigenvalue.
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Figure 3.19: Eigenvalue convergence on inhomogeneous domain at different prop-
agation constants, β = 0, π, 2π. Each line represents the convergence of one of
the first 20 eigenvalues, while the lowest line corresponds to the smallest eigen-
value.
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Band structure

To lay the ground work for the optimization problem, we examine in this section

the effect of a core being introduced to the otherwise perfect periodic cladding.

As introduced in section 1.1.1, a higher εCO would pull more modes beneath

the light line. Hence, we would expect the fundamental eigenmode (λWG,1
h ) and

some higher order modes (say λWG,2
h ) of the waveguide to be smaller than the

fundamental space-filling mode, or light line of the cladding (λCL,1h ). Waveguide

of both rectangular and rhombic lattices are considered in this section. Two

dielectric materials are used to construct the waveguide, epoxy of εL = 1.52 =

2.25, and silicon carbide of εH = 2.652 = 7.02. An advantage of using these two

materials is that they are both solid at room temperature, therefore it simplifies

the issue of non-connectivity. In Figure 3.20(a)(left), a primitive cell Ω of the

cladding is constructed as a rectangular lattice (pitch distances Λxa = 1.5a and

Λya = a ) of dielectric material εH with cylindrical holes (εL) of radius 0.485a.

The primitive cells is used as the building blocks to construct the super cell Ωs

of the waveguide, shown in Figure 3.20(a)(right), not to scale. The core of the

waveguide is made up of one Ω with the εL hole filled up by εH . The cladding

consists of two rings of Ω surrounding the core. In Figure 3.20(b), a waveguide

set on a rhombic lattice (pitch distance Λ = a) with elliptical holes of major

axis length 0.485a and minor axis 0.194a is constructed in the same way. In

both cases, the dielectric function is computed on a uniform mesh of size a/20,

and extrapolated to adaptively refined meshes, as shown in the two subplots of

Figure 3.21.

The corresponding dispersion relations of the light line and the first two

waveguide modes computed on different computation meshes are shown in Figure

3.22. From (i) – (iv), the difference between the waveguide modes and light lines

are calculated on successively finer meshes. In all of the four subplots of either

rectangular lattice (a) or rhombic lattice (b), the differences between the light line

and the fundamental waveguide mode, λCL,1h − λWG,1
h , asymptotically approach

zero from a positive value as the frequency decreases (or as the wavelength

increases). The positivity of the difference for all β ≥ 0 indicates that the

subtrahend is a guided mode, and its asymptocity makes the subtrahend also a
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Figure 3.20: Computation meshes for primitive unit cell Ω of cladding (left), and
super cell Ωs of the waveguide (right). The core is formed by removing one εL
hole and filling it with the εH . The cladding consists of two rings of primitive
unit cells.
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Figure 3.21: Dielectric function is first defined on the coarsest uniform mesh (i),
and extrapolated adaptively to finer meshes sequentially (ii) – (iv).
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cut-off free mode. However, the differences between the light line and the second

waveguide mode, λCL,1h − λWG,2
h , only show nonnegative values for propagation

constants β > βc (e.g., in Figure 3.22(a), the intersection with the horizontal axis

is around βca/2π = 0.5). This guided mode is known as a cut-off guided mode.

Lee et al have proposed conditions for which these cut-off free and cut-off guided

modes would arise [39]. Also shown in the same figure, the guidedness and the

cut-off properties of the waveguide modes are not affected by the resolutions of

the computation meshes.

3.3 Conclusions

This chapter focused on the numerical solutions to the macroscopic Maxwell

equations in the form of Hermitian eigenvalue problems. The numerical recipe

chosen for this task is the finite element method, which surpasses others in

performance due to its convenient geometrical representation, parameter affinity,

and flexible mesh adaptivity.

Two variations based on different physical problems are considered. The first

type, two dimensional photonic crystal fiber, describes a dielectric structure that

is discretely periodic in the xy-plane, and invariant in the z-axis. The second

type, the photonic crystal fiber, is constructed by introducing perturbations

across the xy-plane to the perfectly periodic 2D photonic crystal of the first type.

This can also be treated as a two-dimensional structure due to its homogeneity

along the z-axis.

The governing equation of the two-dimensional photonic crystal can be sim-

plified to two separate scalar equations depending on the polarization of the

electromagnetic waves propagating in the xy-plane: transverse electric, or trans-

verse magnetic. These two Laplace-like scalar eigenvalue equations can be dis-

cretized by standard finite element method using nodal basis functions for shape

and field variable interpolations. The governing equation of the photonic crystal

fiber has additional complexity as the propagation direction is along the z-axis,

and therefore no advantage can be taken of the polarization. In addition, the

special mixed method between edge basis and nodal basis was used for the finite
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Figure 3.22: Dispersion relation of structures corresponding to those shown in
Figures 3.20 and 3.21 on the coarsest uniform mesh (i), and to finer meshes
sequentially (ii) – (iv).
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element approximation. In either case, we end up with a generalized eigen-

value problem that can be solved by various standard eigen solvers; “eigs” from

MATLABr is our solver of choice throughout this thesis.

Mesh adaptivity has also been introduced and incorporated to discretize the

computation domain non-uniformly and represent the material property more

efficiently.

Finally, we examined the convergence rate of the numerical methods on both

uniform and non-uniform meshes, homogeneous and inhomogeneous domains of

various lattices. A consistent convergence rate of r ≈ 2 has been obtained for the

eigenmodes in the uniform meshes. In the non-uniform meshes, the convergence

rate can be as high as r ≈ 9 for the lower eigenmodes. These validated results

laid the ground work for the optimization problems in the next two chapters.
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