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Summary 

 

In this thesis, the design of a low-power voltage-scalable asynchronous 8051 

microcontroller is presented. It is targeted to function as a general purpose 

processing unit in a biomedical sensor interface system with a possibly varying 

supply voltage in the range of 1V to 3.3V. At the top level, the proposed 

asynchronous 8051 microcontroller can be divided into four major parts: the 

asynchronous 8051 core, the synchronous peripherals, the custom-designed 

asynchronous SRAM and the interface wrapper blocks. The design flow starts 

from coding the asynchronous 8051 core using a dedicated hardware description 

language in the Balsa framework. After passing behavioral verification, the HDL 

code is synthesized into a Verilog gate-level netlist by the Balsa framework. This 

Verilog gate-level netlist of the asynchronous core is then read in by the Synopsys 

Design Compiler together with other Verilog modules that describe the interface 

blocks and synchronous peripherals. The Design Compiler optimizes and 

compiles the individual Verilog files into a unified Verilog gate-level netlist, 
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which is then imported into the Cadence SOC Encounter together with the LEF 

(library exchange format) file of the custom-designed asynchronous SRAM block 

for automatic P&R (placement and routing). A GDS (graphical database system) 

file of the asynchronous 8051 microcontroller is exported from the SOC 

Encounter into the Cadence Virtuoso framework. After performing LPE (layout 

parasitic extraction), the SPICE netlist is passed to Nanosim for final post-layout 

simulation verification. 

 

The asynchronous 8051core is synthesized using an asynchronous EDA tool 

called “Balsa” and it adopts the four-phase dual-rail protocol. Four different 

versions of the asynchronous core are developed during the master candidature. 

According to the Nanosim post-layout transistor-level simulation data, the last 

version (referred as Design 4 in this thesis) consumes about 166pJ per each 

instruction while running at around 0.42MIPS at 1.0V supply for AMS 0.35µm 

technology. It is able to function properly from the nominal supply voltage of 

3.3V down to 1V and below.  

 

The proposed novel interface block to external commercial memory can work 

with any commercial memory in general after proper configuration of the preset 

overflow value and driving clock frequency of an internal counter module inside 

the interface block. 
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Chapter 1  

 

Introduction 

 

At the moment, most of the commercial digital designs are synchronous in nature. 

In such circuits, there is usually a global clock signal which controls and 

synchronizes the data movement from one register to another. The correct 

functioning of these synchronous digital circuits depends on the distribution of the 

global clock signal. However, as the clock speed increases and the circuit size 

grows enormously over the years for VLSI digital designs, the proper distribution 

of the global clock signal becomes increasingly difficult in order to avoid the 

clock skew problem, which results in unreliable digital circuits. In addition, the 

power consumption of the clock tree also constitutes a significant amount 

especially for low-power digital designs. Consequently, there is an increasing 
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research interest in the field of asynchronous circuits over the years especially in 

the academic arena. Asynchronous circuits are fundamentally different from 

synchronous circuits in the way that there is no global clock signal present. 

Instead, asynchronous circuits makes use of handshaking signals, which acts as 

local clocks that are not in phase and with varying period, to perform the control 

and synchronization of data movement as illustrated by Fig 1 below [1]. In this 

way, the registers in asynchronous circuits are only clocked where and when 

needed by the handshake signals. 

 

 

 

Figure 1.1: Synchronous pipeline stages controlled by clock signal 
 
 

 

 

Figure 1.2: Asynchronous pipeline stages controlled by handshake signals 
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1.1 Synchronous Vs Asynchronous 

 

 

As mentioned earlier, the main difference between synchronous circuits and 

asynchronous circuits lies in the data synchronization and communication method 

adopted. Synchronous circuits use a global clock signal to enforce data 

synchronization and communication whereas asynchronous circuits use 

handshake signals to achieve the same purpose. This difference gives the 

asynchronous circuits some interesting advantages over the synchronous 

counterparts. Some of the often mentioned advantages are listed below [1]. 

• No clock skew problem 

This advantage is rather obvious. The absence of a global clock signal 

eliminates the clock skew problem faced in synchronous circuits. 

• Low-power consumption 

The absence of clock tree in asynchronous circuits leads to practically 

zero stand-by power consumption when the circuits are idle. For some 

synchronous circuits with special sleep mode operation where the clock 

oscillator is turned off when the sleep mode is activated, it can also 

achieve practically zero stand-by power consumption. However it suffers 

the penalty of a long delay (waiting for the oscillator to stabilize) upon 

exiting the sleep mode. On the other hand, for asynchronous circuits, the 

switch between idle and active mode is almost immediate. 
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• Potentially high operation speed 

The time delay involved in data transfer is determined by local latency 

for asynchronous circuits as compared to synchronous circuits where it is 

determined by the global worst case latency. 

• Robust towards variations in supply voltages and fabrication process. 

Timing assumption is based on matched delays for bundled data protocol, 

and for asynchronous circuits that adopt the dual-rail protocol, the 

circuits are even quasi delay insensitive or completely delay insensitive. 

• Less emission of electromagnetic noise 

For asynchronous circuits, the ticking of local clocks (handshaking 

signals) is generally random, leading to less emission of electromagnetic 

noise. 

 

On the other hand, asynchronous circuits also come with some disadvantages as 

compared to synchronous circuits. The handshaking signals that used in 

asynchronous circuits as a replacement of the global clock signal in synchronous 

circuits often results in an overhead in terms of area and sometimes operation 

speed when the delay involved in the control signals are large. In addition, a 

complete and mature set of CAD tools has been developed for designing VLSI 

synchronous digital circuits over the years and such CAD tools greatly facilitate 

the entire design flow. However, for designing asynchronous circuits, there is 

much less CAD tools support out there for designers, making the design flow 

much more difficult as compared to synchronous circuits. 
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1.2 Asynchronous Handshake Protocols 

 

There are several different handshake protocols out there in the field of 

asynchronous circuits. In this section, I will briefly discuss two most commonly 

used handshake protocols for designing asynchronous circuits: bundled data 

protocol and dual-rail protocol. For this project, the dual-rail four phase protocol 

is used to synthesize the asynchronous core of the 8051 microcontroller in 

BALSA.  

 

1.2.1 Bundled Data Protocol 

 

The bundled data protocol is also sometimes called the single-rail protocol as each 

bit of data is represented by one signal wire. It has separate request and 

acknowledge signal wires that are bundled with the data. It can be further divided 

into 4-phase bundled data protocol and 2-phase bundled data protocol. For 4-

phase bundled data protocol, the handshake signals need to return to zero before 

starting the next round of handshake operation. Whereas for 2-phase bundled data 

protocol, each transition (‘1’-to-‘0’ or ‘0’-to-‘1’) of the handshake signals 

represents a valid handshake operation.  
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The 4-phase bundled data protocol works in the following order as illustrated by 

the timing diagram on the left of Fig. 1.3 [1] below: 1. the sender sets the request 

line to high when a valid data is ready on the data bus and the acknowledge line 

from the receiver is low, 2. the receiver sets the acknowledge line to high once it 

captures the valid data on the data bus, 3. the sender then lowers the request line 

upon sensing an asserted acknowledge line and the data on the data bus may 

become invalid, 4. the receiver finally lowers the acknowledge line to indicate the 

completion of a successful handshake sequence. Steps 3 and 4 constitute the so-

called return-to-zero phase of the handshake sequence. This return-to-zero phase 

is necessary as in the four phase protocol, the handshake signals are level 

sensitive. In contrast, for 2-phase bundled data protocol as illustrated by the 

timing diagram on the right of Fig. 1.3, the return-to-zero phase is not needed 

since the handshake signals in this case are transition sensitive.  The 2-phase 

protocol is potentially faster than the 4-phase protocol since there is no extra 

return-to-zero phase. However, circuits that are transition sensitive are much more 

complex and hard to design than circuits that are level sensitive and they often 

results in a large overhead in terms of circuit area.    

 

 

Figure 1.3: Four-phase and two-phase bundled data protocol 
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For both 4-phase and 2-phase protocols, the correct functioning of the bundled 

data approach relies on the proper delay matching in the request line. At the 

sender’s side, the request line is set to high after the data is valid. To ensure the 

receiver captures the correct data, at the receiver’s side, the request line should 

also only goes to logic ‘1’ after the valid data is ready. Since there may be some 

delays involved in the data bus from the sender to the receiver due to some 

computation circuit in-between, the request line therefore needs to be delayed 

properly through inserting buffers to ensure the assertion only occurs after the 

valid data is ready on the data bus for the receiving side.  

 

Fig. 1.4 [1] below illustrates a simple 4-phase bundled data pipeline with three 

stages. As shown in the figure, a delay element is inserted in the request line to 

match the delay of the combinational logic in the data bus. The strange looking 

gate in the control logic is the so-called Muller C-element, which is used very 

frequently in the control path of asynchronous circuits. The truth table of the 

Muller C-element is shown in Fig. 1.5 [1]. 
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Figure 1.4: Three-stage pipeline adopting four-phase bundled data protocol 
 

 

 

Figure 1.5: Truth table of the Muller-C element 
 

 

1.2.2 Dual-rail Protocol 

 

The dual-rail protocol uses two wires to represent one bit of data as shown in the 

table below [1]. One of the wires is called the true line, represented by “d.t” in the 

table below, and the other is called the false line represented by “d.f”. When both 

wires are at logic ‘0’, it represents an empty state (the data is not valid).  When 

the true line is logic ‘1’ and the false line is logic ‘0’, it represents a valid logic ‘1’. 

When the true line is logic ‘0’ and the false line is logic ‘1’, it represents a valid 
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logic ‘0’. During normal operation, the two wires will not be at logic ‘1’ 

simultaneously.    

 

 

 

Figure 1.6: Dual-rail data encoding 
 

 

Unlike the bundled data protocol, the dual-rail protocol only has one separate 

handshake signal (a request or acknowledge line depending on the type of 

channels) while the other hidden handshake signal is encoded within the dual-rail 

data bus.  

 

When the sender is a push channel (a push channel activates the communication, 

also called the active channel), there is only one acknowledge line as shown in 

Fig. 1.7 [1] below. The hidden request line is actually encoded within the dual-rail 

data bus. For a 1-bit wide dual-rail data bus, the hidden request line can be simply 

represented by the output of an “OR” operation of the “d.t” and “d.f” lines. For an 

N-bit wide dual-rail data bus, an N-bit input Muller C element is involved and it 

will be elaborated on later in this chapter.  
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Figure 1.7: A push channel adopting four-phase dual-rail protocol 
 

 

Due to the presence of empty and valid states in dual-rail protocol, the receiver 

side is able to distinguish a valid data from an empty data without the help of a 

separate request line (in the bundled data approach, the absence of the empty 

states requires an extra delay-matched request line to indicate the validness of the 

incoming data). In this way, the dual-rail protocol does not suffer the delay 

matching problem faced in the bundled data approach. This protocol is very 

robust as it is insensitive to the delays involved in the wires connecting the two 

communicating parties. 

 

When the sender is a pull channel (a pull channel waits for the communication to 

be activated, also called the passive channel), there is only one request line. The 

hidden acknowledge line is encoded in the dual-rail data bus just as the hidden 

request line for a push channel mentioned earlier.  

 

The dual-rail approach also can be further divided into 4-phase dual-rail and 2-

phase dual-rail protocols. For a push channel using 4-phase dual-rail protocol, 
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there is always an empty state in-between two valid data. The handshake 

sequence is illustrated by Fig. 1.8 [1] below and goes as follows: 1. the sender 

issues a valid data on the data bus, 2. the receiver sets the acknowledge line to 

logic ‘1’ once it captures the valid data on the data bus, 3. the sender then issues 

an empty data on the data bus after capturing a logic ‘1’ in the acknowledge line, 

4. the receiver accordingly lowers the acknowledge line upon detecting an empty 

data on the data bus, completing one handshake cycle. 

 

 

 

Figure 1.8: Handshake sequence of four-phase dual-rail data protocol 
 

 

For the 2-phase dual-rail protocol, there are no empty state in-between valid states. 

Each valid data is followed immediately by another valid data once it is 

acknowledged. Therefore it has a shorter handshake cycle and can potentially 

leads to faster circuits than the 4-phase dual-rail protocol. However, as the 

handshake process is transition-triggered in nature, the resulting circuits are 

usually very complicated and hard to design.  

 

Fig. 1.9 [1] illustrates a 3-stage 1-bit wide pipeline using the 4-phase dual-rail 

protocol. As shown in the figure, the acknowledge signal for each stage is simply 
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generated through an “OR” operation of the two data wires since the {1, 1} state 

of the data wires is not used. When the acknowledge signal is asserted, it indicates 

that the valid data (logic ‘1’ or logic ‘0’) on the data bus from the sender has been 

captured. On the other hand, when the acknowledge signal is low, it indicates an 

empty state is captured on the data bus. 

   

 

 

Figure 1.9: Single bit three-stage pipeline adopting four-phase dual-rail protocol 
 

 

When the width of the data bus is greater than one, the acknowledge signal for 

each stage should only be asserted after all the individual data bits captured on the 

data bus are valid. In general, for an N-bit data bus, the generation of the 

acknowledge signal for each stage is illustrated in Fig. 1.10 [1] below. In the 

actual implementation, when N is large, the N-input Muller C-element in the 

figure is usually replaced by a tree structure of Muller C-element with 2 to 3 

inputs each. This tree structure of Muller C-element used for completion detection 

of a valid N-bit data results in a delay in the generation of the acknowledge signal 
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and this delay is closely related to the size of the data bus. When N is large, this 

completion detection tree of Muller C-element leads to a significant delay in the 

acknowledge line which slows down the handshake operation.  

 

 

 

Figure 1.10: Generation of acknowledge signal for dual-rail protocol 
 

 

1.2.3 Bundled Data Protocol Vs Dual-rail Protocol 

 

The two handshake protocols discussed above have their respective advantages 

and disadvantages. Both of them have their own applications. For comparison 
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purpose, the pros and cons of the two protocols will be briefly elaborated in this 

section.   

 

For the bundled data approach, its advantages are: 

• It is less power consuming as compared to the dual-rail protocol since 

only a single wire is used to represent one bit of data which leads to a 

much smaller circuit for the same design. 

• In general, when proper delay matching is performed, this approach tends 

to operate faster than the dual-rail protocol especially when the width of 

the data bus is large since it does not suffer from the delay involved in 

the completion detection tree for the case of a dual-rail protocol. 

 

However, the bundled data approach suffers from a significant drawback: its 

correct operation relies on the correct delay matching in the request line. If the 

delay in the request line is not matched correctly to the delay in the data bus, the 

entire circuit may malfunction. Usually, a safety margin should be included when 

performing the delay matching. This makes the circuit more reliable but at the 

expense of a penalty in the operation speed. This approach is in general not as 

robust as the dual-rail approach towards variations in the fabrication process and 

supply voltages. 

 

For the dual-rail protocol, the advantage is very obvious. This approach is very 

robust towards variations in the fabrication process and supply voltages since it is 
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insensitive to the delays in the wires connecting the two communicating parties. 

This makes it very suitable for applications that robustness is the top priority and 

a wide range of operating supply voltages is desired. 

 

The disadvantages of the dual-rail protocol are:  

• It consumes more power and area since two wires are used to represent 

one bit of data, resulting in a much larger circuit. 

• It is generally slower than the bundled data approach especially if a wide 

data bus is used in the design. This is mainly due to the large delay 

involved in the control logic for completion detection as explained 

previously 

 

In this work, the dual-rail four phase protocol is chosen instead of the bundled 

data four phase protocol (In the current version of the Balsa system, it only 

supports four phase protocols. The two phase protocols are not supported) in 

order to take advantage of the robustness of the dual-rail circuits. Also, as the 

supply voltage is potentially variable so that the asynchronous 8051 can operate in 

different modes with varying operation speed, the dual-rail protocol renders the 

circuit the desired robustness towards a scalable supply voltage.  

 

 

1.3 Asynchronous Circuit and its Applications 
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Despite the fact that in today’s world synchronous circuits still dominate the field 

of VLSI designs, there are many researches on asynchronous circuits going on 

especially in the academic field. A lot of successful asynchronous designs have 

been published over the years [2] [3] [4] [5] [6]. Many of the published designs 

have shown superior performance over their synchronous counterpart in terms of 

speed, power consumption or the Et2 metric [7]. The appealing advantages offered 

by asynchronous circuits have led to the formation of several start-up companies 

such as Handshake Solutions [8] [9] and Theseus Logic [8] [10]. In addition, 

some successful commercial asynchronous products have been launched over the 

years such as the Telephony controllers (P83CL882, P87CL888) and Pager 

baseband controllers (PCA5007, PCA5010) offered by Philips [8]. 

.  

  

1.4 Motivation for This Work 

 

 

This work [11] is initially intended to integrate with a front-end analog signal 

acquisition unit to form a wearable biomedical sensor interface block which 

captures ECG or EEG signals from the human body and transmit the raw data or 

processed data to a remote host computer through wireless communication.  
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In the present market, there are available commercial devices that monitor the 

human ECG signals. However, such devices are usually quite large and needs to 

get the supply from the main power line. Therefore the patients using such 

devices have very limited space to move around and this can be very inconvenient. 

If the current hand-held device could be replaced with a wearable device that 

operated on batteries, it would be much more convenient for the patients wearing 

the device to walk around at easy.  

 

In order to make sure the device is operational on batteries, the power 

consumption of the device must be kept low so that a longer operation time can be 

expected. The microcontroller, which is a significant source of power 

consumption for the sensor interface block, therefore should have the desirable 

characteristic of low-power consumption. Also as the microcontroller may need to 

operate in different modes through adjusting the supply voltage level, it should be 

functional in a wide range of supply voltage. Hence, an asynchronous 

microcontroller adopting the dual-rail four phase protocols is chosen to be the 

desired microcontroller for the sensor interface block. 

 

The asynchronous microcontroller presented in this work closely follows the 

structure of a standard synchronous 8051 microcontroller invented by Intel. The 

8051 microcontroller uses a CISC (Complex Instruction Set Controller) structure 

and is widely used in today’s world. With over 200 instructions available for use, 

the 8051 is adequate to work as a general purpose microcontroller.  
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The asynchronous core of the 8051 microcontroller is synthesized using the Balsa 

[12] system which is an asynchronous design tool from the University of 

Manchester. Standard peripheral units such as the serial port and interrupt 

controller will be included in the overall design and they remain as synchronous 

circuits. The serial port is required as the data may need to be transmitted out 

through the USART unit. The interrupt controller is necessary as there may be 

external interrupts coming from other blocks which communicate with the 

microcontroller.  In addition, since external SRAM may be used as temporary 

data storage memory, the asynchronous 8051 designed should be able to interface 

with commercial SRAM blocks.  

 

In short, this work aims to design a low-power asynchronous version of the 8051 

microcontroller which works as a local processing and control unit in a bio-

medical sensor interface block which is powered by batteries. 

 

 

1.5 Organization of This Thesis 

 

 

This thesis presents the design of a low-power asynchronous 8051 microcontroller 

which is fabricated using the AMS 0.35µm technology. The organization of the 

thesis goes as follows. Chapter 1 briefly covers the background of asynchronous 
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circuits and the motivation for this work. Chapter 2 introduces the Balsa system 

which is an asynchronous design tool provided by the University of Manchester. 

Chapter 3 briefly discusses the main features of a standard synchronous Intel 8051 

microcontroller. Chapter 4 elaborates on the proposed asynchronous 8051 

microcontroller design with interface to external commercial memory. Chapter 5 

compares four different structures of the asynchronous 8051 core designed in the 

Balsa framework. Chapter 6 presents the post-layout transistor-level Nanosim 

simulation results of the four different asynchronous cores and compares them 

with some existing designs. Chapter 7 finally concludes this thesis with a short 

summary. 
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Chapter 2  

 

Balsa 

 

Balsa [12] is the name of the free software developed by the University of 

Manchester. It provides a fully automatic approach for synthesizing asynchronous 

circuits through describing the asynchronous circuits using a dedicated high-level 

hardware description language which shares the same name as the software itself. 

In the latest version 3.5 of the Balsa system, the user can implement asynchronous 

designs in silicon or FPGA form with the necessary vendor-specific tools such as 

Cadence design framework with the back-end cell library for the desired 

technology and the Xilinx design software. It supports both the 4-phase bundled 

data approach and 4-phase dual-rail approach. Any kind of 2-phase protocols are 

not supported in the current version. This section intends to give a very brief 
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introduction on the Balsa framework used in this work, more details can be found 

in the tutorial guide on Balsa [12].  

 

 

2.1  Introduction to the Balsa Framework 

 

 

The Balsa system adopts a syntax-directed compilation method which compiles 

the source code written in the Balsa language into an intermediate file, the so-

called breeze format, which consists of a number of communicating handshake 

components (there are about 46 handshake components available in the current 

3.5 version of Balsa). In this approach, the compilation process is transparent to 

the user due to the one-to-one mapping of Balsa language construct to 

intermediate circuits composed of handshake components [13]. Therefore, it is 

possible for experienced user to optimize the circuit at the source code level 

through foreseeing the resultant circuits after compilation. 

 

For illustration purpose, a short piece of source code describing a simple single-

stage buffer unit is shown in the figure below. After performing a compilation of 

the piece of source code in Balsa, an intermediate breeze file which is made up of 

handshake components is generated. A picture view of the breeze file is shown in 

the figure. The one-to-one mapping relationship of Balsa language construct to 
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handshake components is shown clearly by the two figures. The filled circles 

represent active channels while empty circles represent passive channels.  

  

 

Figure 2.1: A Balsa procedure describing a simple buffer 
 

 

 

Figure 2.2: Netlist of handshake components describing a simple buffer 
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An overview of the design flow for the Balsa system is shown in the figure below 

[12]. The asynchronous design is first described in the Balsa language, thorough a 

compilation, the Balsa description is transformed into the intermediate breeze 

description which is a netlist composed of various handshake components. 

Behavioral simulation can be formed on this handshake component (HC) netlist 

using the Balsa behavioural simulation system for initial verification. A gate-level 

netlist consists of the standard cells of a specific technology can be generated 

from the HC netlist based on a mapping file which replaces each handshake 

component with the corresponding combination of  standard cell units from the 

target technology. Functional simulation can be performed on the gate-level 

netlist to verify the functionality of the asynchronous design. After passing the 

functionality test, the gate-level netlist can be imported into commercial place and 

route tools such as Cadence SOC Encounter to generate the physical layout of the 

asynchronous design. Post-layout simulation can then be carried out to verify the 

asynchronous design at the final stage.    
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Figure 2.3: Design flow of the Balsa framework 
 

 

For illustration purpose, the gate-level as well as handshake component circuit of 

a modulo-10 counter is shown in the figure below [12]. Those parts in blue depict 

the circuit at the handshake components level while the black parts shows the 

gate-level description of the counter. From this figure, it can be seen clearly that 

the intermediate handshake components in Balsa are actually made up of standard 

digital cell units or even just connecting wires. 



25 
 

 

Figure 2.4: Gate-level and handshake component views of a modulo-10 counter 
 

 

2.2 Introduction to the Balsa Language 

 

 

This section gives a very brief overview of the Balsa language. More details on 

the language are found in the tutorial guide [12]. 

 

The Balsa language is a dedicated high-level hardware description language 

designed for the Balsa framework. It is a strongly typed language whose data 

types are build upon bit vectors [12]. It supports both sequential (“;” operator) and 

concurrent (“||” operator) programming. It also has the usual features such as 

looping construct and conditional construct that are commonly find in other high-

level HDL such as Verilog with some slight differences in the syntax. The 



26 
 

structure “procedure” forms the bulk of a Balsa description, which is more or less 

similar to the “module” structure in Verilog. Each procedure corresponds to a 

piece of hardware and each call to a procedure generates a new instantiation of the 

same piece of hardware. To avoid duplicating the same piece of hardware when 

multiple calls to the same procedure are involved, the procedure can be declared 

as a “shared” procedure so that the same piece of hardware is shared by the 

multiple calls. In this way, it helps to reduce the size of the circuits generated.   

 

 

2.3  Balsa Vs Other Asynchronous Software 

 

 

Apart from Balsa, there are a few other tools available for VLSI asynchronous 

circuit design, such as the Tangram framework [14] from the Philips Research 

Lab and the CaSCADE tool set [15] from Columbia University and University of 

Southern California.  

 

The Tangram framework from the Philips Lab is very similar to the Balsa system. 

It also adopts a fully automated approach through compiling the source code into 

an intermediate netlist of handshake components first, and then replacing the 

handshake components with various combinations of standard digital cell units to 

obtain the final gate-level netlist which can be used by commercial P&R tools to 

generate the layout. 
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The CaSCADE asynchronous design tool set adopts a different design approach 

which is half automated half customized. It uses a language called 

Communicating Hardware Processes (CHP) which is based on C.A.R. Hoare’s 

CSP [16] and E.W. Dijkstra’s guarded commands [17]. Through compilation, the 

processes described in CHP are decomposed into a series of production-rule 

expansions. The so-called production-rule expansion then corresponds to some 

primitive custom designed cells. Overall, this approach tends to obtain better 

performance than the fully automated approach adopted by Balsa and Tangram 

when proper optimization is carried out for the custom designed primitive cells. 

These custom designed primitive cells tend to work more efficient than the 

handshake components which are made up of standard digital cells from the target 

technology. The disadvantage for the approach adopted by the CaSCADE lies in 

the inconvenience of moving from one target technology to another. The layout of 

each primitive cell needs to be redrawn and optimized again. On the other hand, 

Balsa’s handshake components are made up of standard digital cells which are 

supplied by the vendor, therefore it is easy for an asynchronous design to transfer 

from one target technology to another technology. The user just needs to replace 

the original digital cell library with the new one and using the software to 

regenerate the handshake components based on the new digital cell library.      

 

In short, the CaSCADE asynchronous design tool set tends to generate circuits 

with better performance due to the better circuit optimization obtained through 
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custom designed primitive cells for asynchronous logic. Whereas for Balsa and 

Tangram framework, the design process is fully automated and it is more 

convenient to change from one target technology to another one than the 

CaSCADE tool set. In this work, the Balsa framework is chosen to synthesize the 

asynchronous core for the 8051 microcontroller to take advantage of the relatively 

easier design flow and the convenience when a change of technology is desired in 

the future.  
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Chapter 3  

 

Synchronous Intel 8051 

Microcontroller 

 

 

3.1 Introduction to Intel 8051 

 

 

The standard synchronous 8051 microcontroller is originally developed by Intel 

and usually comes with a 40-pin package as shown in the figure below [19]. 

Intel’s very early 8051 family is made using the NMOS technology. In later 

versions, Intel moves to the CMOS technology and the name changes to 80C51. 

Both 8051 and 80C51 are members of Intel’s MCS-51 family of microcontroller 
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ICs. The generic Intel 8051 is a single-chip package that adopts the Harvard 

architecture which separates the storage and signal paths for instruction program 

and data. The Intel 8051 is one of the world’s most popular microcontroller cores 

and it has a wide range of variants made by many manufacturers all over the 

world.  

 

 

Figure 3.1: Pin configuration of a DIP packaged Intel 8051 

 

 



31 
 

3.2 Main Features of Intel 8051 

 

 

The overall architecture of the Intel 8051 is shown in the figure below [20]. 

 

 

 

Figure 3.2: Overall architecture of a synchronous Intel 8051 
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The main features of a general 8051 consist of: 

• 8-bit data bus 

The bus width of the Arithmetic and Logic Unit (ALU) and Special 

Function Registers (SFR) is 8-bit, therefore the 8051 is an 8-bit 

microcontroller. 

• 16-bit address bus 

The address bus is 16-bit wide for both ROM and RAM, which supports 

up to 64 KB of memory locations. 

• On-chip 128 byte of internal RAM 

The 8051 has 128 byte of SRAM built internally for temporary data 

storage as well as functioning as a stack for Program Counter (PC) 

register in the event of interrupt calls.  Out of the 128 bytes, 16 bytes are 

bit-addressable via the bit-addressing instructions. When a larger 

capacity of SRAM is desired for data storage, external SRAM block up 

to the size of 64 KB can be interfaced with the microcontroller through 

the alternate functions of the I/O ports.   

• On-chip 4 KB of internal ROM 

The 8051 has 4 KB of ROM built internally which is used as the program 

memory. The program code can also be stored in external ROM blocks 

up to the size of 64 KB and the instructions are then fetched via the 

alternate functions of the I/O ports. 

• Four general purpose I/O ports each of 8 bit wide 
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Some of the ports are multiplexed with alternate functions as shown in 

the pin configuration diagram. In fact, only port 1 is a purely general 

purpose I/O port with no other alternate functions.  

• On-chip programmable fully duplex USART  serial port 

The 8051’s serial port supports both synchronous and asynchronous 

serial communication that closely follows the existing serial 

communication protocols. It is software configurable and supports 

several modes of operations. The programmable baud rate is provided by 

one of the internal timers.  

• Two on-chip 16-bit timers 

The 8051 has two 16-bit timers on-chip, named as timer0 and timer1. 

Both of the timers can be configured to operate in several different 

modes. The overflow of each timer can be software configured to 

function as a source of interrupt. 

• Two-level priority interrupt handling 

There are five sources of possible interrupt for standard 8051 

microcontroller: external interrupt 0, external interrupt 1, timer 0 

overflow interrupt, timer 1 overflow interrupt and serial port interrupt. 

The interrupt handling block supports a two-level priority handling 

mechanism and the priority level of each source of interrupt is software 

configurable. During the execution of a low priority level interrupt 

service routine, a high priority level interrupt can cause the CPU to jump 

to the execution of the high priority level interrupt service routine before 
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actually finishing the execution of the low priority level interrupt service 

routine. The execution of a high priority level interrupt cannot be 

interrupted by any incoming interrupts. 

 

 

3.3 Addressing Modes and Instruction Set of Intel 8051 

 

 

Addressing modes refer to the various ways that the CPU can access data. The 

data can come from memory, registers or immediate data from the instruction 

byte. In Intel 8051, it supports five addressing modes and the complete instruction 

set of the 8051 can be classified into five groups as discussed later in this section. 

 

3.3.1  Addressing Modes of Intel 8051 

 

There are five types of addressing modes supported by the 8051: direct addressing, 

indirect addressing, register addressing, immediate addressing and indexed 

addressing [18]. Each of them will be elaborated in details in this section. 

 

• Direct Addressing 

In the direct addressing mode, the instructions are two bytes long with the 

first byte being the op-code and the following byte being the address. The 
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address refers to a location in the internal RAM or SFR space where the data 

stored there is to be fetched. 

 

• Indirect Addressing 

In the indirect addressing mode, the instructions are typically one byte long. 

The address of the data to be fetched is not directly specified in the 

instruction byte. Instead, the instruction byte specifies a register (usually R0 

to R7 or the DPTR register when accessing external data memory) which 

contains the address of the data to be fetched. In this mode, both the internal 

RAM as well as the external data memory can be accessed. 

 

• Register Addressing 

In the register addressing mode, the instructions are all one byte long and the 

registers used for this mode are typically R0 to R7 from the internal RAM. 

The data to be fetched in this case is just the data stored in the register 

specified in the instruction byte. 

 

• Immediate Addressing 

In the immediate addressing mode, the instructions are two to three bytes 

long. The data to be fetched is specified in the instruction bytes as immediate 

constant. The immediate constant is usually one byte, unless the destination 

register is DPTR in which case the immediate constant consists of two bytes. 
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• Indexed Addressing 

The indexed addressing mode is mainly used for two purposes: reading data 

from program memory or implementing jump tables. A 16-bit register (either 

DPTR or PC) is used to hold the base address and the accumulator holds the 

index. The data to be fetched is pointed to by the sum of the base address and 

the index. 

 

3.3.2 Instruction Set of Intel 8051 

 

In Intel 8051, the instruction length varies from 1 to 3 bytes. There are 111 

instruction types all together. Among which, 49 types are one-byte, 45 types are 

two-byte and 17 types are three-byte [18]. Taking account of the variations of 

each type of instructions into consideration, there are in total 255 separate 

instructions available for the Intel 8051 instruction set. Each 8-bit hex code 

represents a valid instruction except the hex code “A5”, which is not used. In 

general, the 255 instructions can be classified into five groups: arithmetic, logic, 

data transfer, Boolean and branching. 

 

• Arithmetic Operations 

The arithmetic operations of the 8051 includes: add (ADD), add-with-

carry (ADDC), subtract-with-borrow (SUBB), increment (INC), 

decrement (DEC), decimal-adjust-accumulator (DA), multiply (MUL) 

and divide (DIV).  For multiplication and division, the two operands are 
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fixed to be the contents of the accumulator and register B.  The 

addressing mode supported in arithmetic operations are direct, indirect, 

register and immediate. 

 

• Logic Operations 

The logic operations of the 8051 includes: and (ANL), or (ORL), 

exclusive-or (XRL), clear (CLR), complement (CPL), rotate-right (RR), 

rotate-right-with-carry (RRC), rotate-left (RL), rotate-left-with-carry 

(RLC) and swap (SWAP).  

 

• Data Transfer Operations 

The data transfer operations include move operations (MOV, MOVC, 

and MOVX), stack push operation (PUSH), stack pop operation (POP) 

and the exchange operation (XCH). For the three types of move 

operations, MOV is used to transfer data to-and-from the internal RAM 

and Special Function Register (SFR) space. MOVC is dedicated to 

transfer data from the program memory to the accumulator. MOVX is 

used to transfer data to-and-from the external RAM. 

 

• Boolean Operations 

The Boolean operations basically consist of all instructions that operate 

on a single bit. These instructions can only operate on the bit-addressable 

locations in the internal RAM and SFR space.  
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• Branching Operations 

This group of instructions includes the subroutine calls and returns, and 

various conditional and unconditional jumps. There are three basic types 

of jump operations: the short jump (SJMP), the long jump (LJMP) and 

the absolute jump (AJMP). The short jump uses a relative offset and the 

offset ranges from -128 to 127 bytes. The long jump uses a 16-bit 

immediate address which constitutes the last two bytes of the instruction, 

therefore it is able to reference to any location in the entire 64 KB 

program memory space. The absolute jump uses 11-bit address from the 

instruction to replace the lower 11-bit of the program counter (PC), 

therefore the location can be referenced is at most 2K bytes from the 

address immediately following the AJMP instruction.  

 

 

3.4 Memory and Register Organization of Intel 8051 

 

 

The 8051 has separate storages for program (ROM) and data (RAM). It supports 

up to 64K bytes of program memory with the first 4K bytes being internal on-chip 

ROM and the rest being external. It also supports up to 64K bytes of external 

RAM for data storage, not including the 128 bytes of internal on-chip RAM. 
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There are another 128 bytes of registers available internally which forms the so-

called Special Function Register (SFR) Space.    

 

 

 

 

• Program Memory  

 

The 8051 program memory space ranges from 0000h to FFFFh. The first 4K 

bytes of program memory space can refer to either internal on-chip ROM or 

external ROM depending on the value of the external address pinEA  . If EA  

is tied to low, the entire 64K bytes of program memory space is mapped to 

the external ROM. If EA  is tied to high, the first 4K bytes (0000 to 0FFF) 

refers to the on-chip ROM while the rest is mapped to the external ROM as 

shown in the figure below. 

 

 

Figure 3.1: Memory organization of Intel 8051 
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• Internal Data Memory and Register 

 

The internal data memory consists of two blocks: the first 128 bytes of 

memory space is the internal RAM and the next 128 bytes is the SFR space 

as shown in the figure below. 

 

 

                                       Figure 3.2: Program memory structure of Intel 8051 
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         For the 128 bytes of internal RAM, the first 32 bytes forms the four banks of 

registers (R0 to R7), the next 16 bytes of RAM is bit-addressable and the 

remaining 80 bytes is the general purpose data memory as shown in the 

figure. 

 
 

      Internal Data Memory 

   SFRs 

Internal 
RAM 

FFh 
 
 
 
80h 
7Fh 
 
 
 
 
00h 

                            Figure 3.3: Internal data memory structure of Intel 8051 
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Figure 3.6: 128-byte internal ram 

 
 

 
 

         In the SFR space, not all the locations are utilized. In fact, only a small 

portion of the SFR space is associated with registers that has special 

functions. Some of the locations in the SFR space are bit-addressable as 

indicated by * in the figure below. 
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Figure 3.7: 128-byte SFR space 
 

 

• External Data Memory (RAM) 

 

The 8051 supports up to 64K bytes of external data memory. The external 

memory is accessed through ports 0 and 2. Only the MOVX type of 

instructions can access the external data memory.  
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Chapter 4  

 

Architecture of the Proposed 

Asynchronous 8051 

 

In this chapter, the overall system architecture of the proposed asynchronous 8051 

microcontroller will be discussed and each individual block in the system 

architecture will be elaborated in details. 

  

4.1 Requirements of the Asynchronous 8051 

 

Before the system architecture of the proposed asynchronous 8051 is discussed, I 

will first explain the design requirements of the asynchronous 8051 in this work.  
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The first requirement of the asynchronous 8051 to be designed is that it should be 

able to function well in a wide range of supply voltage to accommodate the 

possible different modes of operation (fast, medium and slow) required in the 

actual sensor interface block to handle different workloads respectively.  

 

The second requirement is the presence of peripherals such as serial port and 

interrupt controller as in the case of standard Intel 8051. The serial port may be 

used to transfer the data out via the standard UART protocol and the interrupt 

controller is needed to handle the possible external interrupts coming from other 

parts in the sensor interface block such as the front-end amplifier and the ADC.  

 

The third requirement is that the asynchronous 8051 should be able to interface 

well with external commercial SRAM which will be used as temporary storage of 

data received from the front-end ADC. Therefore the asynchronous 8051 to be 

designed must be able to communicate with the various commercial SRAM 

blocks in general. 

 

To meet the first design requirement, the dual-rail 4-phase protocol is chosen to 

implement the asynchronous core of the 8051, making the asynchronous core 

quasi-delay-insensitive and robust towards variations in the supply voltages. To 

meet the second design requirement, the synchronous peripherals are included in 

the overall design with special interface blocks designed to enable the 
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communication between the synchronous peripherals and the asynchronous core. 

To meet the third design requirement, a novel interface block is designed to 

enable the asynchronous 8051 microcontroller to communicate with practically 

any commercial SRAM in general. 

 

4.2  System Architecture of the Proposed Asynchronous 8051 

 

The system architecture of the proposed asynchronous 8051 is shown in the figure 

below. There are five major blocks in the proposed asynchronous 8051: 

asynchronous core, synchronous peripherals, external memory interface, I/O ports 

and asynchronous internal RAM. Each individual block will be elaborated in 

details later on. All the signals within the asynchronous core are dual-rail in 

nature (a single bit of data is represented by two wires as explained in Chapter 1). 

Outside the asynchronous core, most of the signals are single-rail (a single bit of 

data is represented by one wire only) except some signals in the custom designed 

asynchronous RAM which are also dual-rail. Since dual-rail signals cannot 

communicate with single-rail signals directly, various wrapper blocks are 

designed around the asynchronous core to perform the data conversion between 

dual-rail data and single-rail data.  Another function performed by these wrapper 

blocks is associated with the synchronization of data and handshake signals 

coming into and out of the asynchronous core.  
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In the current design, there is no internal ROM for program storage. The program 

code is stored in the external ROM (actually an external flash memory is used).  

 

 

 

Figure 4.1: Architecture of the proposed asynchronous 8051 microcontroller 
 

 

4.3 The Asynchronous Core 
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The asynchronous core as shown in Fig. 4.2 is synthesized using the dual-rail 4-

phase protocol in the Balsa framework. As the dual-rail protocol is quasi-delay-

insensitive, the asynchronous core is very robust towards variations in fabrication 

process and supply voltage. It is able to work in a wide range of supply voltages 

as illustrated in Chapter 6.  

 

 

 

 

 

The asynchronous core is first described using the Balsa language. After passing 

the behavioral simulation in the Balsa framework, it is synthesized into a gate-

level Verilog netlist comprising of the standard digital cells of the AMS 0.35um 

technology. 
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                                    Figure 4.1: The four-phase dual-rail asynchronous core 
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There are four major sub-blocks inside the asynchronous core: the instructions 

fetch and decode unit (IF & ID), the execution unit (EXE), the ALU (ALU), and 

the register file (REG File) unit. The function of each unit will be discussed in 

details in the following section. 

 

• The Instructions Fetch and Decode Unit 

 

The instructions fetch and decode unit is responsible for two main tasks: the 

fetching and decoding of the instruction bytes and the checking of the current 

interrupt status coming from the interrupt controller of the synchronous 

peripherals. Before fetching the instruction byte from the external program 

memory, the current interrupt status is checked through checking two 

variables coming from the interrupt controller of the synchronous peripherals: 

“int_req” and “int_mask”. The “int_req” variable is a 3-bit signal that 

indicates the type of incoming interrupt. The designation of this variable is 

shown in the table below.  

 

int_req Interrupt Source 
000 No interrupt 
001 External interrupt 0 
010 Timer 0 
011 External interrupt 1 
100 Timer 1 
101 Serial port 
110 Not used 
111 Not used 

 
Table 4.1: Encoding of the different interrupt sources 
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The “int_mask” variable is a 2-bit signal which indicates the priority level of 

the currently serviced interrupt. The designation of this variable is shown in 

the table below. When the “int_mask” value is “00”, any incoming interrupt 

can be serviced immediately since there is no interrupt being serviced at that 

moment. When the “int_mask” value is “01”, a low priority level interrupt is 

being serviced. Therefore only high priority level incoming interrupts can be 

serviced immediately, any low priority level incoming interrupt can only be 

serviced when the current interrupt service routine finishes.  When the 

“int_mask” value is “10” or “11”, all incoming interrupts have to wait for the 

current interrupt service to be finished since the currently serviced interrupt 

is of high priority level. 

 

 

int_mask Interrupt Level 
00 No interrupt 
01 Low priority level 
10 High priority level 

 
 

11 

High priority level (the 
current high priority 

interrupt occurs during 
the execution of a low 

priority interrupt  
 

Table 4.2: Encoding of the interrupt priority level 
 

 

At the interrupt checking step, when no interrupt is detected, the CPU 

proceeds to the instruction fetch step without modifying the value stored in 
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the PC (Program Counter) register. If an incoming interrupt is detected, the 

original value held in the PC register is pushed onto the stack and the 

corresponding ISR (Interrupt Service Routine) address value of the incoming 

interrupt is loaded into the PC register to start the interrupt handling process.  

 

At the instruction fetch and decode step, the opcode (operation code) which 

is the first instruction byte is fetched from the external program memory 

according to the value held in the PC register. The fetched opcode byte is 

decoded and depending on the outcome of the decoding process, the second 

or even the third byte may need to be fetched for the current instruction. The 

decoded opcode and operands of the current instruction are then passed 

forward to the execution step. 

 

• The Instruction Execution Unit 

 

The instruction execution unit is basically a huge “case” structure with 111 

options which corresponds to the 111 instruction types as mentioned 

previously in Chapter 3. The default option corresponds to a “NOP” 

operation. The instruction execution unit first receives the decoded operation 

code from the Instruction Fetch and Decode unit. If it is a valid operation 

code, the corresponding commands to execute that operation will be carried 

out. Any invalid operation code will be treated as a “NOP” operation, which 
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simply increments the Program Counter register without changing the values 

stored in any other registers and memory locations.  

Depending on the type of instruction executed, the execution unit may need 

to access the ALU unit, the Register File unit or the external SRAM during 

the execution process. If the execution process involves arithmetic or logical 

operations, the execution unit will need to send the ALU operation code and 

operands to the ALU unit and fetch the corresponding outcome from the 

ALU unit when it is ready. If the execution process involves data movement 

to and from the SFR space or the internal RAM, the execution unit then will 

need to exchange data with the Register File unit. If the instruction belongs 

to the MOVX type of instructions, access to the external SRAM block will 

be required. 

 

• The ALU Unit 

 

The ALU unit is a dedicated block for arithmetic and logical operations.  In 

addition, it also takes care of shifting operation as well as some jump 

operations which modifies the PC values obtained in the early stage from the 

Instruction Fetch and Decode unit. The ALU unit is a case structure with 15 

valid operations, namely ALU_OPC_ADD, ALU_OPC_SUB, 

ALU_OPC_DA, ALU_OPC_NOT, ALU_OPC_AND, ALU_OPC_XOR, 

ALU_OPC_OR, ALU_OPC_RL, ALU_OPC_RLC, ALU_OPC_RR, 

ALU_OPC_RRC, ALU_OPC_PCSADD, ALU_OPC_PCUADD, 
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ALU_OPC_MUL and ALU_OPC_DIV (The last two operations responsible 

for multiplication and division are not present in the early tape-out version, 

but they are included in a modified version. Since the Balsa framework does 

not have operators that support integer variable multiplication and division, 

two modules are designed specially to handle the multiplication and division 

operations). The ALU unit receives the ALU opcode and operands from the 

Execution Unit and sends the resultant value together with affected flag 

values back to the Execution Unit. 

 

The ALU_OPC_ADD operation deals with all kinds of add operations (ADD) 

and add-with-carry operations (ADDC). The ALU_OPC_SUB operation 

deals with all kinds of subtract-with-borrow operations (SUBB). The 

ALU_OPC_DA operation takes care of the decimal-adjust operation (DA). 

The ALU_OPC_NOT, ALU_OPC_AND, ALU_OPC_XOR and 

ALU_OPC_OR corresponds to the logical “not”, “and”, “xor” and “or” 

operations. The ALU_OPC_RL, ALU_OPC_RLC, ALU_OPC_RR and 

ALU_OPC_RRC handles the rotate-left, rotate-left-with-carry, rotate-right 

and rotate-right-with-carry operations. The ALU_OPC_PCSADD operation 

calculates the new Program Counter value for various conditional jump 

operations through signed 2’s complement addition. The 

ALU_OPC_PCUADD operation derives the new Program Counter value for 

the MOVC type of operations through unsigned addition.  The 

ALU_OPC_MUL is dedicated to handle the integer multiplication operation. 
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It is composed of a series of add and shift operations to derive the resultant 

product value. The ALU_OPC_DIV deals with the integer division operation. 

The module that handles the 8-bit integer division checks first if the scenario 

belongs to some special cases such as the divisor is one or powers of two 

where the quotient and remainder can be derived easily; if the scenario does 

not fall into any of the special cases, then a series of “shift and compare” 

operations are performed to find the quotient and the remainder and this 

process is mainly carried out by three sub-modules: “div_4 ( )”, “div_16 ( )” 

and “div_32 ( )” (for this general case, the range of the quotient to be found 

is from 1 to 255/3 = 85 since both 255/1 and 255/2 belong to the special 

cases). Each of the three sub-modules is elaborated in details in the following 

section. The basic idea is to express the resultant quotient as the sum of 

several quotient terms which are to be found through a series of “shift and 

compare” operations. Each quotient term is of the form 2n and the search 

procedure finds the quotient terms in a descending order, starting with the 

largest quotient term.  

 

The module “div_4 ( )” handles the case where the sum of the remaining 

quotient terms is less than 4 and the algorithm for this module is described as 

below. 

 

1. Compare the current dividend with the current divisor, if the dividend 

equals the divisor, set the second LSB of the quotient to 1 (the 
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quotient term is 2) and the remainder to 0, then exit; else if the 

dividend is less than the divisor, go to step 2; else if the dividend is 

greater than the divisor, go to step 3. 

2. Shift the divisor to the left by one and compare it with the dividend. 

If the dividend is less than the new divisor, set the remainder to be 

the dividend (the quotient term is 0) and exit; else if the dividend 

equals to the divisor, set the LSB of the quotient to 1 (the quotient 

term is 1) and the remainder to 0, then exit; else if the dividend is 

greater than the divisor, set the LSB of the quotient to 1 (the quotient 

term is 1) and the remainder to the difference between the dividend 

and the divisor, then exit.  

3. Set the second LSB of the quotient to 1 (the quotient term is 2) and 

subtract the divisor from the dividend. Let the difference be the new 

dividend and go to step 2 above. 

 

The module “div_16 ( )” handles the case where the sum of the remaining 

quotient terms is less than 16 and the algorithm for this module is described 

as below. 

 

1. Shift the current divisor to the right by two and compare it with the 

current dividend. If the dividend equals to the new divisor, set the 

third LSB of the quotient to 1 (then quotient term is 4) and the 

remainder to 0, then exit; else if the dividend is less than the divisor, 
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shift the divisor to the right by one and call div_4 ( ); else if the 

dividend is greater than the divisor, go to step 2. 

2. Shift the divisor to the left by one and compare it with the dividend. 

If the dividend equals to the divisor, set the fourth LSB of the 

quotient to 1 (the quotient term is 8) and the remainder to 0, then exit; 

else if the dividend is less than the divisor, go to step 3; else if the 

dividend is greater than the divisor, go to step 4. 

3. Shift the divisor to the right by one and subtract it from the dividend. 

Let the difference be the new dividend and set the third LSB of the 

quotient to 1 (the quotient term is 4). Shift the divisor to the right by 

one again and call div_4 ( ). 

4. Subtract the divisor from the dividend and let the difference be the 

new dividend. Set the fourth LSB of the quotient to 1 (the quotient 

term is 8) and shift the divisor to the left by one. If the new dividend 

equals to the new divisor, set the third LSB of the quotient to 1 (the 

quotient term is 4) and the remainder to 0, then exit; else if the 

dividend is less than the divisor, shift the divisor to the left by one 

again and call div_4 ( ); else if the dividend is greater than the divisor, 

go to step 5. 

5. Subtract the divisor from the dividend and let the difference be the 

new dividend. Set the third LSB of the quotient to 1 (the quotient 

term is 4) and shift the divisor to the left by one. Call div_4 ( ). 

 



57 
 

The module “div_32 ( )” handles the case where the sum of the remaining 

quotient terms is less than 32 and the algorithm for this module is described 

as below. 

 

1. Compare the current dividend with the current divisor, if the dividend 

equals to the divisor, set the fifth LSB of the quotient to 1 (the 

quotient term is 16) and the remainder to 0, then exit; else if the 

dividend is less than the divisor, call div_16 ( ); else if the dividend is 

greater than the divisor, go to step 2. 

2. Subtract the divisor from the dividend and let the difference be the 

new dividend. Set the fifth LSB of the quotient to 1 and call div_16 

( ). 

 

Based on the above three sub-modules, the overall division algorithm is 

explained as below. 

 

1.  If the dividend is less than the divisor, the quotient is zero and the 

remainder is just the dividend; else if the dividend equals the divisor, 

the quotient is one and the remainder is zero; else go to step 2. 

2. If the divisor belongs to the special cases: 1 or powers of two (2, 4, 

8…128), the quotient and remainder can be easily obtained through 

shifting the dividend; else go to step 3. 
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3. Add eight 0’s in front of both the dividend and divisor to make them 

both 16 bits long and the 8-bit quotient is initialized to be zero. Shift 

the new divisor to the left by four and then compare the shifted 

divisor with the dividend. If the dividend equals to the shifted divisor, 

set the fifth LSB of the quotient to 1 (the quotient term is 16) and the 

remainder is 0, then exit; else if the dividend is less than the divisor, 

call div_16 ( ); else if the dividend is greater than the divisor, go to 

step 4. 

4. Shift the divisor to the left by two and compare it with the dividend. 

If the dividend equals to the divisor, set the second MSB of the 

quotient to 1 (the quotient term is 64) and the remainder is 0, then 

exit; else if the dividend is less than the divisor, go to step 5; else if 

the dividend is greater than the divisor, go to step 6. 

5. Shift the divisor to the right by one and compare it with the dividend. 

If the dividend equals to the divisor, set the third MSB of the quotient 

to 1 (the quotient term is 32) and the remainder is 0, then exit; else if 

the dividend is less than the divisor, shift the divisor to the right by 

one and subtract it from the dividend, set the fifth LSB of the quotient 

to 1 (the quotient term is 16) and call div_16 ( ); else if the dividend 

is greater than the divisor, subtract the divisor from the dividend and 

let the difference be the new dividend, set the third MSB of the 

quotient to 1 (the quotient term is 32), shift the divisor to the right by 

one and call div_32 ( ). 
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6. Subtract the divisor from the dividend and let the difference be the 

new dividend. Set the second MSB of the quotient to 1 (the quotient 

term is 64) and shift the divisor to the right by two. Call div_32 ( ).  

 

• The Register File Unit 

 

The Register File Unit controls the access to the SFR space and internal 

RAM of the 8051. There are four sub-blocks in this unit: ReadRAM ( ), 

ReadBitRAM ( ), WriteRAM ( ) and WriteBitRAM ( ). The same address 

bus is shared by the four sub-blocks. At any time when the Register File Unit 

is accessed by the Execution Unit, only one of the four sub-blocks will be 

activated. The ReadRAM ( ) block is responsible for retrieving 8-bit data 

from the SFR space or the internal RAM. The ReadBitRAM ( ) block is 

responsible for retrieving one bit of data from bit-addressable memory 

locations. The WriteRAM ( ) block writes 8-bit data into the SFR space or 

the internal RAM. The WriteBitRAM ( ) block controls the writing of a 

single bit of data into memory locations that support the bit-addressing mode.  

 

The operations of the four sub-blocks are very similar. For illustration 

purpose, the operation of the ReadRAM ( ) block is briefly described as 

follows. First of all, the MSB of the address bus is checked to determine the 

destination memory space, being the SFR space (MSB = 1) or the internal 

RAM (MSB = 0). If the destination memory space is the SFR space, it is 
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again separated into two scenarios since the SFR space resides in two 

different regions for this design. Most of the registers in the SFR space lie 

within the asynchronous core, except some registers that are related to 

interrupt handling, timer operation and serial port are found in the 

synchronous peripherals. If the target register is within the asynchronous 

core, the stored value can be retrieved directly. If the target register falls in 

the synchronous peripherals, the address bus together with some control 

signals are passed to the synchronous peripherals via the synchronous 

peripheral wrapper block (will be covered in later sections of this Chapter) to 

retrieve the data from the destination register that resides in the synchronous 

peripherals. If the destination memory space belongs to the internal RAM, 

the seven least significant bits of the 8-bit address bus are passed to the 

internal RAM as the address of the requested location and the corresponding 

value stored there can be retrieved thereafter.    

  

 

4.4 The Interface to Synchronous Peripherals 

 

Since all signals within the asynchronous core are encoded using the dual-rail 

protocol, in order to communicate with signals coming from the synchronous 

peripherals where data is single-rail in the sense that one bit of data is represented 

by one wire only, some kind of data conversion between dual-rail and single-rail 

data is required. In addition, since the asynchronous core uses handshake signals 
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to control data movement whereas the synchronous peripherals rely on the clock 

signal instead, some kind of data synchronization is also required when the data 

moves across the boundary. These two tasks (data conversion and data 

synchronization) are performed by the wrapper block called “Synchronous 

Wrapper” located in-between the asynchronous core and the synchronous 

peripherals.     

 

For the data conversion part, the main task is to convert data from its dual-rail 

representation into its single-rail representation and vice vs. According to the 

definition of the dual-rail representation introduced early in Chapter 1, converting 

data from its dual-rail representation to its single-rail representation is rather 

straight forward: just ignore the false lines of the dual-rail data and take the true 

lines of the dual-rail data to be its single-rail representation. Converting data from 

its single-rail representation into its dual-rail representation requires some slight 

manipulations as illustrated by the figure below. 

 

 

 

         dual_rail_data_f[7:0] 

data_ack  
  

   single_rail_data[7:0]          dual_rail_data_t[7:0] 

                      Figure 4.2: Data conversion from single-rail into dual-rail representation 
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Through an “AND” operation with an acknowledge signal “data_ack”, the 8-bit 

single-rail data “single_rail_data[7:0]” from the synchronous peripherals is 

converted to be the true lines “dual_rail_data_t[7:0]” of its dual-rail representation. 

Similarly, the inversion of the single-rail data is converted to be the false lines 

“dual_rail_data_f[7:0]” of its dual-rail representation. The 8-bit dual-rail data 

formed by “dual_rail_data_t[7:0]” and “dual_rail_data_f[7:0]” are now ready to 

be used by the asynchronous core.  

 

In order to indicate that the data obtained through the above conversion 

mechanism (between single-rail and dual-rail) is the correct valid data, there is a 

need to perform some kind of data synchronization since data is moving from one 

domain to another different domain.    

 

In the case of data moving from the asynchronous core to the synchronous 

peripherals (converting data from dual-rail to single-rail), the handshake signals 

and data bus coming out and into the wrapper block is shown by the figure below. 

For simplicity, other signals such as the address bus and read/write control lines 

are not shown in the figure below and they are treated in a similar way as the data 

bus. 
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The asynchronous core domain initiates the communication through outputting a 

valid data on the dual-rail data bus. The dual-rail data is then converted into its 

single-rail representation by the synchronous wrapper and sent to the synchronous 

peripherals domain. Upon capturing a valid single-rail data, the synchronous 

peripherals domain sends a high acknowledge signal to the synchronous wrapper 

which then passes it to the asynchronous core domain. This completes the positive 

phase of the handshake cycle between the two different domains. In the return-to-

zero phase, the asynchronous core puts an empty data on the data bus and 

synchronous peripherals domain lowers the acknowledge line upon detecting an 

invalid single-rail data coming from the synchronous wrapper block. The purpose 

of the extra signal “Req_out” in the above figure and the generation of the 

acknowledge signal “Ack_out” by the synchronous wrapper block is explained in 

the following paragraphs. 

  

                   Figure 4.3: Data moving from asynchronous domain to synchronous domain  
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The validness of a single bit of data in its dual-rail representation can be checked 

through performing an “XOR” operation on the true and false lines. A logical “1” 

output indicates a valid data while a logical “0” indicates an empty data. Thus the 

validness of a data bus in its dual-rail representation can be checked through 

performing an “AND” operation on all the signals that indicating the validness of 

each single bit of the data bus in shown in the figure below. A logical “1” at the 

output “Data_ready” indicates a valid data on the bus while a logical “0” indicates 

an invalid data on the bus (empty or partially valid data). Therefore the arriving 

dual-rail data “Data_in_t[7:0]” and “Data_in_f[7:0]” from the asynchronous core 

is able to indicate its own validness through the dual-rail encoding.  

 

 

Figure 4.5: Generation of validity indicating signal of dual-rail data bus 
 

 

However after conversion, the data in its single-rail representation 

“Data_out[7:0]” (basically wires connecting to the true lines of the dual-rail data) 

cannot indicate its own validness without the extra indicating signal “Req_out”. 
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Consider the case that when the incoming dual-rail data is in the empty state 

where both true lines and false lines are all zero, after conversion the single-rail 

data obtained is zero and it may be mistaken as a valid zero by the synchronous 

peripherals domain. Also, if the active clock edge of the capturing register in the 

synchronous peripherals domain occurs during the transition state where the 

incoming dual-rail data changes from the empty state to a valid state, a wrong 

single-rail data may be captured since not all the true lines of the dual-rail data 

have changed to the correct state. Therefore an extra indicating signal “Req_out” 

is required in this case to ensure that the single-rail data captured by the 

synchronous peripherals domain is valid. This indicating signal is actually derived 

from the “Data_ready” signal in Fig. 4.5, which is similar to that used for 

completion detection in the asynchronous dual-rail protocol by replacing the 

“AND” gate with a Muller C element. In this way, the single-rail data 

“Data_out[7:0]” (the true lines) is guaranteed to be a valid data when the 

indicating signal “Req_out” is at logic “1”. Each time when the synchronous 

peripherals domain captures the single-rail data, it checks the indicating signal 

coming out from the wrapper block to determine the validness of the data 

captured.   

 

The signal “Ack_in” coming out from the synchronous peripherals domain and 

the “Ack_out” signal sent out by the synchronous wrapper block are generated 

according to the timing diagram shown below. During the positive phase, the 

acknowledge signal “Ack_out” is asserted at the next rising edge of the clock 



66 
 

signal after capturing an asserted indicating signal “Req_out” in the previous 

clock rising edge. During the return-to-zero phase, in order to reduce the 

communication cycle, the acknowledge signal “Ack_out” is lowered immediately 

once a low “Req_out” signal is captured desipte that the “Ack_in” signal coming 

from the synchronous peripherals is only lowered later on. 

 

 

 

Figure 4.6: Timing diagram of the handshake signals 
 

 

In the case of data moving from the synchronous peripherals domain to the 

asynchronous core (converting data from single-rail to dual-rail), the handshake 

signals and data coming out and into the wrapper block is shown by the figure 

below. Again for simplicity, other signals such as the address bus and read/write 

control lines are not shown in the figure below and they are treated in a similar 

way as the data bus. 
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The asynchronous core domain initiates the communication through asserting the 

request signal “Req_in”. The wrapper block forwards this request signal to the 

synchronous peripherals domain via the “Req_out” signal. Upon detecting a high 

“Req_out” signal at the rising edge of the clock signal, the synchronous 

peripherals issues the requested single-rail data on the “Data_in[7:0]” bus together 

with a logic “1” on the acknowledge line “Ack_in”. In this case, the acknowledge 

signal “Ack_in” serves as the validity indicating signal for the single-rail data 

“Data_in[7:0]” coming from the synchronous peripherals domain. Within the 

synchronous wrapper block, the input single-rail data “Data_in[7:0]” is converted 

into its dual-rail representation and sent out through the output data bus 

“Data_out_t[7:0]” and “Data_out_f[7:0]”. Internally, the acknowledge signal used 

to perform the conversion (the “data_ack” signal in Fig. 4.3) is not simply the 

input “Ack_in” signal, but rather the output of a 2-input Muller C-element with 

“Ack_in” as one of the inputs and the request signal “Req_in” from the 
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                   Figure 4.4: Data moving from synchronous peripherals to asynchronous core 



68 
 

asynchronous core domain as the other input. In this way, a valid dual-rail output 

data will only appear on the outputs when the input acknowledge signal “Ack_in” 

is at logic “1” and it will only return to the empty state when both “Ack_in” and 

“Req_in” signals are at logic “0”. The Muller C-element is required to prevent the 

valid dual-rail data from returning to the empty state before being latched by the 

asynchronous core domain. The timing diagram for the generation of the 

acknowledge signal “Ack_in” is same as the one shown in Fig. 4.6 for the 

previous case.  

 

 

4.5 The Interface to External Commercial Memory 

 

 

In the proposed design, the program code is stored in the external commercial 

ROM and an external commercial SRAM is used for temporary data storage, 

therefore, the asynchronous 8051 needs to interface with both external 

commercial ROM and SRAM. However, since the interface to external 

commercial ROM is similar to the interface to external SRAM, only the interface 

to external commercial SRAM will be elaborated in this section. 

 

Just like the interface to synchronous peripherals covered in the previous section, 

the interface to external commercial SRAM also performs two main tasks: data 

conversion between dual-rail data (from the asynchronous core domain) and 
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single-rail data (from the external commercial SRAM domain) as well as data 

synchronization to ensure the validness of data traversing across the two different 

domains. 

 

For illustration purpose, the case of a reading operation on the external SRAM 

block by the asynchronous core is discussed below to demonstrate the internal 

data conversion and synchronization performed by the wrapper block “Extenal 

SRAM Wrapper” shown in Fig. 4.1 previously in this Chapter. 

 

At the start of a reading operation, the asynchronous core sends out several 

signals to the wrapper block: a data request signal, a read signal, an external 

SRAM access enable signal and an address bus as shown in Fig. 4.8 below. The 

external SRAM access enable signal “Xram_en_out” acts as a control signal to 

select one of the two external memory chips (external ROM or external SRAM)  

to be active since the two external memory chips share the same address bus and 

data bus. The data request signal “Data_req” is a handshake signal that initiates 

the reading process. Other data signals are all in the dual-rail representations and 

needs to be converted into the corresponding single-rail representations by the 

wrapper block before being passed to the external SRAM block. The conversion 

process from dual-rail to single-rail is done in a similar manner as covered 

previously in the synchronous peripheral interface design. In Fig. 4.8, the 

“Read_out” signal, which is connected to the “Read” input of the external SRAM 

chip, is not simply a wire connecting to the true line of the dual-rail signal 
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(“Read_in_t”). It is the output of some combinational logics with an internal 

validity indicating signal as one of the inputs. Basically through the combinational 

logics, it is ensured that when the “Read_out” signal is at logic “1’, the single-rail 

address bus “Addr_out[7:0]” contains the valid address values. The inversion of 

the “Read_out” signal is connected to the “Output Enable” input of the external 

SRAM chip.   

 

 

  

 

Upon receiving the reading address and the output enable signal, the external 

SRAM outputs the requested data on the data bus after a specified delay T. The 

output data “Data_in[7:0]” from the SRAM block is in the usual single-rail 

representation and it is converted to its dual-rail representation by the wrapper 

block before being sent out to the dual-rail asynchronous core as shown by the 

figure below. 
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                              Figure 4.5: First phase of a read operation on the external SRAM 
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As mentioned previously, to convert data from the single-rail representation to the 

dual-rail representation, a validity indicating signal is required to ensure that the 

single-rail data being converted is the desired valid data. Internally within the 

wrapper block, the validity indicating signal “sram_ack” is generated by a counter 

module called “SRAM_Wrapper Counter” as shown in Fig. 4.10 below. 
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                        Figure 4.6: Second phase of a read operation on the external SRAM 

Figure 4.7: Symbol view of “SRAM_Wrapper Counter” module 
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The assertion of the input signal “sram_req” (which is an internal signal in the 

wrapper block) starts the 3-bit counter within this module and the counting starts 

from zero. This internal signal “sram_req” is derived based on the request signal 

“Data_req” from the asynchronous core and the validity checking of the relevant 

dual-rail data from the asynchronous core as well. Essentially, when “sram_req” 

is asserted, the single-rail data on the address bus “Addr_out[7:0]” shown in Fig. 

4.8 is ensured to be the correct valid address value. 

 

The 3-bit input signal “sram_count[2:0]” (in the early version, this 3-bit wide 

signal is adjusted through external pins; in the later version, it is adjusted through 

modifying the values stored in a dedicated internal register in the SFR space) is 

adjustable and sets the overflow value for the internal counter based on the actual 

access time of the commercial SRAM used and the frequency of the clock signal 

driving the counter. When the internal counter reaches the overflow value, it 

asserts the output acknowledge signal “sram_ack” which indicates the validity of 

the single-rail data “Data_in[7:0]” shown in Fig. 4.9 coming from the external 

SRAM block. 

 

The last input signal “clk1” defines the clock period of the internal counter. 

However, it is not used directly to drive the internal counter. The actual driving 

clock of the internal counter is “clk_sram”, which is a gated version of the “clk1” 

signal with the “sram_req” signal. In this way, it helps to reduce the power 
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consumption of the counter module as the 3-bit counter will only be running when 

a read or write operation on the external commercial SRAM is desired. 

 

The timing diagram for the generation of the acknowledge signal “sram_ack” is 

shown in the timing diagram below. In the positive phase, the acknowledge signal 

is asserted after the internal counter reaches the preset overflow value. In the 

return-to-zero phase, the acknowledge signal is lowered immediately after the 

request signal “sram_req” is lowered. 

 

 

 

Figure 4.11: Timing diagram of the acknowledge signal “sram-ack” 
 

 

In short, a reading operation on the external SRAM by the asynchronous core 

goes in the following order: the asynchronous core sends out a read request signal 

and the relevant control signals and address bus to the wrapper block; the wrapper 

block processes these signals and converts the dual-rail signals into their single-

rail representations and sends them to the external SRAM block, meanwhile, the 

internal signal “sram_req” is asserted which starts the internal counter; upon 
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receiving the valid single-rail control signals and address bus “Addr_out[7:0]” 

from the wrapper block, the external SRAM block outputs the requested data onto 

the data bus “Data_in[7:0]” after a specified delay time (the access time defined 

in the actual datasheet of the external commercial SRAM chip); when the internal 

counter reaches the preset overflow value which is defined by the 3-bit signal 

“sram_count[2:0]”,  the acknowledge signal “sram_ack” is asserted (the time 

taken from the starting of the counter to the assertion of the acknowledge signal is 

typically slightly longer than the access time of the external SRAM chip) which 

indicates the validity of the single-rail data “Data_in[7:0]” coming from the 

external SRAM; once the acknowledge signal “sram_ack” is asserted, the 

conversion of the single-rail data from the external SRAM to its dual-rail 

representation is carried out within the wrapper block; the converted dual-rail data 

is sent to the asynchronous core together with an asserted acknowledge signal 

“Ack_out” as shown in Fig. 4.9; upon receiving the valid dual-rail data and an 

asserted acknowledge signal from the wrapper block, the asynchronous core 

latches the dual-rail data and then lowers the data request signal “Data_req” and 

clears the dual-rail control signals and address bus, starting the return-to-zero 

phase of the reading procedure; upon detecting a low data request signal and 

empty dual-rail data signals coming from the asynchronous core, the wrapper 

block lowers the control signals sent to the external SRAM to indicate the end of 

a read operation on the SRAM part and lowers the internal acknowledge signal 

“sram_ack” immediately without starting the counter, the lowering of the 

“sram_ack” signal leads to a low acknowledge signal “Ack_out” and an empty 
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state in the dual-rail data bus going to the asynchronous core, ending the entire 

handshaking process of a reading operation on the external SRAM.  

 

When the external clock source “clk1” is adjustable, the wrapper block interface 

design is able to work with practically any commercial SRAM block with 

different access time. If the external clock source “clk1” is fixed at a certain 

frequency, this interface design is still able to work with a wide range of 

commercial SRAM blocks since the preset overflow value of the internal counter 

is still adjustable. For example, when the external clock source is fixed at 50MHz 

(clock period is 20ns), to interface with an external SRAM whose access time is 

65ns, the overflow value can be set to 4 to ensure the time taken to assert the 

acknowledge signal is longer than the access time of the external SRAM. If 

another external SRAM with an access time of 130ns is used, the overflow value 

can be adjusted to 7.  

 

 

4.6 The Interface to Internal Customized Asynchronous SRAM  

 

 

As mentioned early on, a custom-designed 128x8 asynchronous SRAM block is 

used to serve as the 128 byte internal RAM of the proposed asynchronous 8051 

microcontroller. The customized asynchronous SRAM is designed by another 

Master student (Cheng Xiang) and it adopts the four-phase handshake protocol 
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with dual-rail encoding for the input and output data buses. The symbol diagram 

of the customized asynchronous SRAM is shown in the figure below. 

 

 

 

 

The input data bus “Din” and output data bus “Dout” are both dual-rail encoded 

and thus can interface with the dual-rail asynchronous core directly. The 

acknowledge signal “Ram_ack” is a handshake signal and can also be connected 

to the handshake signals of the asynchronous core directly. However, for the read 

signal “Read”, the write signal “Write” and the address bus “Address”, all of them 

are single-rail and thus needs to pass through a wrapper block “Ram_Wrapper” to 

interface with the dual-rail asynchronous core.  

 

The operation of the customized asynchronous SRAM block is briefly elaborated 

in this section. For a reading operation, the sequence of actions goes in the 

 
 

RAM 

Read 
Write 

Ram_ack 

Address          

Din.t   Din.f 
      
      Din 
 

 
                 Dout 
 
           Dout.t  Dout.f  

                       Figure 4.8: Symbol view of the customized asynchronous SRAM block 
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following order: when a logic “1” is detected on the line “Read”, the RAM block 

outputs the requested data onto the output data bus “Dout” according to the value 

of the address bus and subsequently sets the output acknowledge signal 

“Ram_ack” high; in the return-to-zero phase, upon detecting a logic “0” on the 

line “Read”, the RAM block changes the output data bus to the empty state and 

lowers the acknowledge line accordingly, ending the complete four-phase 

handshake cycle. For a writing operation on the RAM block, the sequence of 

actions goes in the following order: upon detecting a logic “1” on the line “Write”, 

the RAM block writes the data on the input data bus “Din” into the memory 

location specified by the address bus and sets the acknowledge line high 

accordingly; in the return-to-zero phase, upon detecting a logic “0” on the line 

“Write”, the RAM block lowers the acknowledge line and ends the handshake 

cycle for a write operation. 

 

From the above elaboration, it is easy to figure out that for a reading operation the 

read signal should only goes to logic “1” state after the single-rail address bus 

contains the correct valid address. Otherwise the data stored in a wrong location 

may be read and sent to the asynchronous core. The same goes for the write signal 

in the case of a writing operation. The timing requirements for these signals are 

enforced within the wrapper block while the data conversion is performed. 

Basically, within the wrapper block, it checks for the validness of the dual-rail 

address bus from the asynchronous core before sending out the read or write 

control signals to the RAM block.  
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4.7 The Synchronous Peripherals 

 

 

There are mainly three components in the synchronous peripherals block shown 

in Fig. 4.1 previously: interrupt handler, timers and serial port. All of the three 

sub-blocks closely follows the structure of a standard Intel synchronous 8051 

design with very minimum changes to accommodate some control signals coming 

from the synchronous wrapper block. Since the functionality of these blocks are 

the same as that find in standard Intel 8051, only brief coverage on these blocks 

will be presented in this section. 

 

4.7.1 The Interrupt Handler 

 

The interrupt handler tackles interrupts coming from five different sources either 

within the synchronous peripherals block or from the external I/O pins. The 

Interrupt-Service-Routine (ISR) addresses for the five sources of possible 

interrupts are tabulated in the table below.  

 

 

Symbol Address Interrupt Source 

EXTI0 03H External Interrupt 0 
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TIMER0 0BH Timer 0 interrupt 

EXTI1 13H External Interrupt 1 

TIMER1 1BH Timer 1 interrupt 

SINT 23H Serial Port Interrupt 

 
Table 4.3: Addresses of different Interrupt-Service-Routines 

 

 

The interrupt handler block sends the current interrupt status to the asynchronous 

core, where the interrupt status is checked at the beginning of each instruction 

fetching stage. If an interrupt is detected, the Program Counter is branched to the 

corresponding ISR address shown in the table above.  

 

The interrupt handler supports two priority levels (high and low) for the five 

sources of interrupts. The priority level of each interrupt source can be configured 

through adjusting the corresponding bit of the Interrupt Priority (IP) register 

located within the synchronous peripherals block. A high-level incoming interrupt 

can interrupt the execution of a low-level interrupt. In addition, each interrupt 

source can also be enabled or disabled through changing the corresponding bit of 

the Interrupt Enable (IE) register located within the synchronous peripherals block 

as well. 

 

4.7.2 The Timers 

 

There are two 16-bit timers built within the synchronous peripherals block, 

namely Timer 0 and Timer 1. Both of them can work as either a timer or a counter 
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depending on the selected driving clock source. When functioned as a timer 

(interval counting), the registers which store the current count value are 

incremented once per eight clock periods of the global clock driving the 

synchronous peripherals block. When functioned as a counter (event counting), 

the registers are incremented on the falling edge of the external pins T0 (for timer 

0) or T1 (for timer 1). There are four different operational modes available for 

both timers. For modes 0, 1 and 2, Timer 0 and Timer 1 function in the same way; 

for mode 3, the two timers function in different ways. The selection of the driving 

clock source and operational mode of the two timers is controlled by the values of 

the TMOD register located in the SFR space. 

 

In mode 0, the timer works as a 13-bit counter with the lower 8-bit count stored in 

the corresponding TL register (TL0 or TL1) and the higher 5-bit count is stored in 

the lower 5 bits of the corresponding TH register (TH0 or TH1). The counting 

process starts when the corresponding TR bit (TR0 or TR1) is set. When the timer 

overflows, the corresponding TF bit (TF0 or TF1) is set. Mode 1 is very similar to 

mode 0. Instead of working as a 13-bit counter, it works as a full 16-bit counter in 

mode 1 with the lower 8-bit count stored in the TL register and the higher 8-bit 

count stored in the TH register. In mode 2, the TL register alone functions as an 8-

bit counter and the TH register holds an 8-bit preset value. Each time the TL 

register overflows, the preset value in the TH register is reloaded into the TL 

register. In mode 3, Timer 1 is not activated and the corresponding registers TL1 

and TH1 hold their previous values. For Timer 0 in mode 3, the corresponding 
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registers TL0 and TH0 acts as two separated 8-bit counters. TL0 is associated 

with the usual Timer 0 control bits (TR0 and TF0) and TH0 is associated with the 

usual Timer 1 control bits (TR1 and TF1). 

 

4.7.3 The Serial Port 

 

The serial port in this design is fully duplex: it allows simultaneous data 

transmission and reception. Essentially the function performed by the serial port is 

converting output data from parallel to serial and converting input data from serial 

to parallel via the two external I/O pins TXD and RXD. 

 

There are four different operation modes supported by the serial port through 

changing the two control bits SM0 and SM1 in the SCON register. In mode 0 

(SM0 = 0 and SM1 = 0), the serial port functions as an 8-bit shift register with the 

baud rate fixed at 1/12th the clock frequency driving the synchronous peripherals 

block. The RXD pin functions as the data line with serial data entering into and 

exiting the chip. The shifting clock signal is sent out via the TXD pin. Both 

transmission and reception starts with the least-significant bit first. In mode 1 

(SM0 = 1 and SM1 = 0), the serial port functions as an 8-bit UART with variable 

baud rate which is supplied by Timer 1. In this mode, serial data are transmitted 

out via the TXD pin and received via the RXD pin. Each data frame contains 10 

bits with the first bit being “0” which acts as the start bit, followed by 8 data bits 

and finally the last bit being “1” which acts as the stop bit. Transmission is 
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initiated by a write operation to the SBUF register and reception is initiated by a 

1-to-0 transition on the RXD pin. In mode 2 (SM0 = 0 and SM1 = 1), the serial 

port functions as a 9-bit UART with fixed baud rate. Each data frame in this mode 

contains 11 bits: a start bit, 8 data bits, a programmable ninth data bit and a stop 

bit. The programmable ninth data bit can be an extra data bit or a parity bit used 

for simple error detection. The baud rate in this case is fixed at 1/32nd or 1/64th of 

the driving clock frequency of the synchronous peripherals block. Finally in mode 

3 (SM0 = 1 and SM1 = 1), the serial port functions as a 9-bit UART with variable 

baud rate. This mode is very similar to the previous mode 2 except that this time 

the baud rate is variable. The variable baud rate is supplied by Timer 1 just like 

the case in mode 1. 
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Chapter 5  

 

Different Structures of the 

Asynchronous Core 

 

In this chapter, four different structures of the asynchronous core developed along 

the way in this work will be discussed and compared. The first design is a non-

pipelined design with isolated Register File block where the Register File block is 

described in a separate module within the Balsa framework. The first design was 

sent out for tape-out in January 2009 using the AMS 0.35µm CMOS technology. 

The second design is completed after the previous tape-out and it is still a non-

pipelined design but with the Register File block integrated into the main module 

within the Balsa framework. Through this integration process and some changes 
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made to better utilize the integrated Register File block at the code level within 

the Balsa framework, improvements in both speed and power are obtained during 

simulation as compared to the first design. The third design is basically a two-

stage pipelined version of the second design which aims to increase the 

operational speed of the asynchronous core. The fourth design is modified based 

on the third design through taking out the interrupt checking block from the 

Instruction Fetch stage to form a three-stage pipelined structure. In addition, this 

design also incorporates the Multiplication and Division operations into the ALU 

block.   

 

 

5.1 Design 1: Non-pipelined With Isolated Register File Block  

 

 

In this design, the Register File block is located outside of the main module of the 

asynchronous core. At the top-level in the Balsa framework, there are two 

modules: a module describing the Register File block and a main module 

describing the rest of the asynchronous core. The two modules are synthesized 

separately into two Verilog gate-level netlists in the Balsa framework using the 

dual-rail four-phase protocol. After synthesis, all the top-level inputs and outputs 

are transformed into active channels (active channels are the ones that initiate a 

handshake sequence as mentioned in Chapter 1) by default. Since an active 

channel cannot communicate with another active channel, the two synthesized 
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netlists cannot be connected directly. Passivators (a passivator is a Handshake 

Component in the Balsa framework that has passive channels for all its inputs and 

outputs) are manually inserted in-between the two synthesized netlists for the 

Register File block and the main block as shown in the figure below. Active 

channels are indicated by a black dot while passive channels are indicated by a 

white dot.  

 

 

 

 

In this implementation, since each handshake communication between the main 

module and the Register File module must go through the passivators in-between, 

thus it incurs a large communication delay and consumes unnecessary power 

while transferring data across the two blocks.  

 

 

5.2 Design 2: Non-pipelined With Integrated Register File Block 

 

 
Main module 
(Including 
IF&ID block, 
ALU and EXE 
block)  

 
 
Register File 
module 
 

 
 
Passivators 

Data Bus Data Bus 

Handshake 
Signal 

Handshake 
Signal 

            Figure 5.1: Communication between the Main block and the Register File block  
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This design is actually a optimized version of the first design with isolated 

Register File block. The Balsa description of the asynchronous 8051 core is 

modified to combine the two top-level modules of the first design into a single 

module. Essentially, the Register File block is moved into the main module of the 

asynchronous 8051 core in the Balsa framework. In doing so, the passivators 

required for the handshake communications in the previous design can be 

discarded away since there is only one gate-level netlist generated after synthesis 

in the Balsa framework.  

 

Another advantage offered by combining the two modules is associated with the 

easier access to some frequently used registers that belongs to the SFR space. 

Registers such as the ACC and the PSW are read each time when an instruction is 

fetched. The time reduction in accessing these registers directly leads to the time 

reduction in the instruction fetch stage. In the previous design structure, whenever 

the instruction fetch and decode block needs to access the ACC and PSW 

registers, it needs to send the address of the corresponding registers along with 

some control signals to the Register File block via the passivators in-between. The 

Register File block decodes the address received and sends back the requested 

data stored in those locations to the main module via the passivators again. 

Therefore the whole process incurs large communication and decoding delay. On 

the other hand, for this design structure with integrated Register File block, the 

Register File lies within the main module. Therefore whenever the instruction 
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fetch and decode block needs to read data stored in the ACC and the PSW 

registers, it can be done through direct assignment without incurring long 

communication and decoding delay. In addition, since it cuts down on the logics 

involved in the long communication path for the previous design, reduction in 

power consumption can also be expected for this integrated Register File block 

approach. 

 

 
5.3 Design 3: Two-Stage Pipelined Design 

 

 

This third design structure is modified based on the second design with integrated 

Register File block by pipelining the Instruction Fetch and Decode stage with the 

Instruction Execution stage to achieve a faster operational speed at the expense of 

an increase in power consumption. Both of the two stages are slightly modified at 

the code level to better balancing the operational time required for the two stages. 

However, since the instruction set of the Intel 8051 is highly irregular, it is almost 

impossible to balance the two stages for all instructions. There are cases that the 

time taken by the instruction fetch and decode stage is significantly longer than 

that taken by the instruction execution stage, leading to the time taken for the two-

stage pipeline design is almost the same as the that of the second design where the 

two stages executes sequentially. A typical example for this scenario is the 

“LJMP” (long jump) instruction. In the instruction fetch and decode stage, threes 

byte of instruction data are fetched sequentially from the Program ROM which 
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takes a rather long time. Whereas in the instruction execution stage, only a simple 

assignment to the Program Counter register is required which takes very little 

time as compared to the first stage. Also, there are cases that the instruction 

execution stage is actually the dominating stage and leading to only slight 

improvement in operational speed too as compared to the second design. A 

typical example for this scenario is the “ADD A, @Ri” instruction. In the 

instruction fetch and decode stage, there is only one instruction byte needs to be 

fetched from the Program ROM. However in the instruction execution stage, two 

sequential data fetching from the Register File block and one addition operation 

are required in total, consuming significantly longer time as compared to the first 

stage. Thus the time taken for the parallel execution of the two stages is actually 

comparable to the time taken for the sequential execution of the two stages for 

such kind of instructions. 

 

In general, the time reduction harvested from the two-stage pipelined design is 

only significant for cases that have comparable execution time for both stages. 

Even in such cases, the time reduction harvested is still smaller than 50% due to 

some extra logics added to enable the parallel execution.      

 

 

5.4 Design 4: Three-Stage Pipelined Design With MUL and DIV 
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In design 4, there are mainly two changes made within the Balsa framework as 

compared to design 3. The first change is the addition of the Multiplication and 

Division operations for the ALU. The Multiplication and Division blocks are 

elaborated previously in Chapter 4. Another change is taking the interrupt 

checking block (mentioned earlier in Chapter 4) out of the Instruction Fetch and 

Decode block to form a standalone block which executes in parallel with the other 

two blocks. The interrupt checking block is mainly responsible for checking the 

current interrupt status coming from the synchronous peripherals block. Since the 

interrupt status coming from the synchronous peripherals is only updated on the 

rising edge of the clock signal, the asynchronous core may have to wait for as 

long as one clock period for the valid incoming interrupt status data. This waiting 

time may significantly slow down the operational speed of the asynchronous core 

when the synchronous peripherals’ clock period is comparable to the circuit 

running time of the asynchronous core. Consequently, the running speed of the 

asynchronous core may be more inclined to be limited by the Instruction Fetch 

and Decode stage. By taking out the interrupt checking block, it helps to improve 

the operational speed of instructions that are originally limited by the Instruction 

Fetch and Decode stage.  

 

Outside of the Balsa framework, some optimizations are also performed on the 

synthesized gate-level netlist within the Design Compiler to fix the heavy loading 

effect and long transition time of some interconnect nets via the insertion of 
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balanced buffer trees. The operational speed of the asynchronous 8051 core 

significantly increases after the insertion of balanced buffer trees. 

 

After performing these optimizations within and outside of the Balsa framework, 

design 4 is capable of running at a significantly faster speed as compared to 

design 3 even after the inclusion of the Multiplication and Division blocks as 

shown by the Nanosim post-layout simulation results in the next chapter.    
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Chapter 6  

 

Simulation Results of Different 

Asynchronous 8051 Core 

Designs 

 

In this chapter, the simulation results of the four different designs of the 

asynchronous 8051 core mentioned in Chapter 5 will be presented and discussed. 

All the simulation data presented in this chapter are obtained via performing post-

layout transistor-level simulation on the corresponding spice netlists of the 

asynchronous 8051 core in Nanosim. The spice netlists are created from the 

extracted versions of the circuit layouts which are obtained after performing P&R 
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in SOC Encounter. There are basically two main transistor-level blocks inside the 

spice netlist: the asynchronous 8051 microcontroller designed and an external 

program ROM which stores the testing program. 

 

 

6.1 Common Simulation Settings 

 

 

Before presenting the detailed simulation data, some common simulation settings 

adopted are elaborated in this section. For each design, simulations are performed 

at five different voltage levels: 3.3V (nominal supply voltage for AMS 0.35µm 

CMOS technology), 2.0V, 1.5V, 1.1V and 1.0V, in order to cover the potential 

supply voltage that ranges from 1.0V to 3.3V for sensor interface applications. 

Meanwhile, it also demonstrates the robustness of the dual-rail four-phase 

procotol towards variations in supply voltage. For simplicity, the frequency of the 

driving clock of the synchronous peripherals is fixed at 5MHz regardless of the 

supply voltage used. The frequency of the driving clock of the blocks that 

interface with external memory varies with the supply voltage used as shown by 

the table below while the overflow values of the internal counters located within 

the interface blocks are fixed at 2. The variation in the clock frequency is required 

to accommodate the variation in the access time of the program ROM under 

different supply voltages. 
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Table 6.1: Common simulation settings 
 

Voltage Frequency 
3.3V 100MHz 

2.0V 80MHz 

1.5V 50MHz 

1.1V 20MHz 

1.0V 20MHz 
 

 

 

Five performance indicating parameters are tabulated for each design at a 

particular supply voltage. The first parameter represents the time to complete one 

instruction and it is denoted by “T(instruction)” in the tables. The second 

parameter is called Million Instruction Per Second (MIPS) which represents the 

number of instruction that can be completed within one second. The third 

parameter is the total current consumption of the asynchronous 8051 

microcontroller denoted by “I_total” which includes the current consumptions of 

the asynchronous core and the synchronous peripherals. The fourth parameter 

represents the current consumption of the asynchronous core alone and it is 

denoted by “I_asyncore” in the tables. The last parameter presents the energy 

consumption of the asynchronous core to complete one instruction and it is 

denoted by “Energy/Instrn” in the tables. 

 

 For typical synchronous 8051 design, it is relatively easier to measure the MIPS 

value since most of the instructions (except multiplication and division) finishes 

in one machine cycle. The length of a machine cycle may vary with the design 
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structure adopted (for a typical Intel 8051 microcontroller, one machine cycle 

consists of twelve clock cycles of the driving oscillator). For example, for a 

typical Intel 8051 microcontroller driven by a 12MHz oscillator, the time taken to 

complete any instruction except MUL and DIV is fixed at 1us, which means the 

chip is running at 1 MIPS. However, for asynchronous 8051 design, the time 

taken to complete one instruction is dependent on the instruction itself. It is 

possible that each instruction runs at different speeds due to the absence of the 

notion of a machine cycle. Therefore it is very hard to derive an accurate number 

for the MIPS value since a different piece of program code can generate a 

different MIPS value. In this work, for simplicity as well as simulation time 

considerations, the MIPS value is calculated as the average of seven different 

instructions that falls into the three major instruction types: arithmetic instructions 

(ADD_1 and ADD_4), data transfer instructions (MOV_1 and MOV_4) and 

logical instructions (ORL_1, ORL_4 and SWAP). Instructions ADD_4, MOV_4 

and ORL_4 have two instruction bytes while the rest have one instruction byte. 

Each of the seven instructions is repeatedly executed for several times to obtain a 

more accurate average value for the parameter “T(instruction)”.  

    

 

6.2 Simulation Results of Design 1 
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The Nanosim simulation data of the first design is summarized in the table below. 

As mentioned in Chapter 5, for design 1, the Register File block is a standalone 

module within the Balsa framework and its communication with the main module 

of the asynchronous core has to go through some passivators. Consequently its 

performance is the worst among the four.   

 

Table 6.2: Post-layout transistor-level Nanosim simulation results of Design 1 
 

Design 1 

3.3V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 0.80 0.93 0.80 0.80 0.80 0.80 0.60 0.79 

MIPS 1.25 1.08 1.25 1.25 1.25 1.25 1.67 1.28 

I_total/uA 2500 2100 2150 1990 2240 2100 2370 2207 

I_asyncore/mA 2119 1719 1769 1609 1859 1719 1989 1826 

Energy(pJ)/Instrn 5594 5276 4670 4248 4908 4538 3938 4739 

  

2.0V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 1.40 1.40 1.20 1.20 1.20 1.20 1.00 1.23 

MIPS 0.71 0.71 0.83 0.83 0.83 0.83 1.00 0.82 

I_total/uA 837 799 791 764 870 809 847 817 

I_asyncore/uA 650 612 604 577 683 622 660 630 

Energy(pJ)/Instrn 1820 1714 1450 1385 1639 1493 1320 1547 

  

1.5V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 2.00 2.20 1.80 1.80 1.80 1.80 1.40 1.83 

MIPS 0.50 0.45 0.56 0.56 0.56 0.56 0.71 0.56 

I_total/uA 443 415 438 413 425 423 847 486 

I_asyncore/uA 329 301 324 299 311 309 733 372 

Energy(pJ)/Instrn 987 993 875 807 840 834 1539 982 

  

1.1V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 4.92 5.20 4.00 3.90 4.20 4.40 2.80 4.20 

MIPS 0.20 0.19 0.25 0.26 0.24 0.23 0.36 0.25 

I_total/uA 170 161 179 177 175 171 189 175 

I_asyncore/uA 102 93 111 109 107 103 121 107 

Energy(pJ)/Instrn 552 532 488 468 494 499 373 487 
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1.0V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 7.40 7.80 6.00 5.80 6.40 6.40 4.65 6.35 

MIPS 0.14 0.13 0.17 0.17 0.16 0.16 0.22 0.16 

I_total/uA 123 118 125 119 122 119 135 123 

I_asyncore/uA 63 58 65 59 62 59 75 63 

Energy(pJ)/Instrn 466 452 390 342 397 378 349 396 

 
 

 

Observing the “T(instruction)” data at 3.3V, it may seem surprising that for 

instructions ADD_1, MOV_1, MOV_4, ORL_1 and ORL_4 all of them have the 

same value of 0.8us. The cause of this phenomenon lies in the interrupt checking 

step, where the asynchronous core has to wait for the interrupt status data from 

the synchronous peripherals that arrive only at the rising edge of the clock signal. 

The figure below illustrates the case for a two-byte long instruction. The 

“Syn_CLK” signal is the driving clock signal for the synchronous peripherals and 

it runs at 5MHz. The “Read” signal is sent out by the asynchronous core to the 

external Program ROM to fetch the instruction bytes. When repeatedly executing 

the same instruction, the “Read” signal is periodical and its period corresponds to 

the instruction execution time “T(instruction)”. As shown in the figure, the total 

time can be divided into two parts: time taken for instruction fetch & execution 

step and time taken for interrupt checking step (the blue interval is actually the 

time taken by the interrupt checking step of the following instruction, but it is the 

same as that of the current instruction). As long as the finishing time of the 

instruction fetch & execution step passes the third rising edge of the “Syn_CLK” 

signal after the first “Read” pulse, the interrupt checking step has to wait for the 

interrupt status data that arrives earliest at the next rising edge of the “Syn_CLK” 
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signal. Therefore even though different instructions may have varying length for 

the instruction fetch & execution interval, they may still end up have the same 

“T(instruction)” value due to different waiting time in the interrupt checking step.  

 

 

Syn_CLK

Read  

 

 

 

In short, for this design, the asynchronous core is running at quite slow speed 

(1.28 MIPS at 3.3V and 0.16 MIPS at 1.0V) and the energy consumed per 

instruction at 1.0V is about 396pJ/Instrn.  

 

This design went for tape out in January 2009 using the AMS 0.35µm CMOS 

technology. The die photo of the chip manufactured is shown in Fig. 6.2 below. 

The measurement results are in good agreement with the Nanosim simulation 

results. The MIPS values captured during testing are practically the same as those 

obtained in Nanosim post-layout simulation. For the power consumption, the 

measurement results are about 10% smaller than that obtained during simulation 

in average. Due to the time limitation at that time, this version (Design 1) is not 

optimized and its performance is not as good as those later versions. 

     Instruction Fetch &        
               Execution 

     Interrupt 
     Checking 

     T(instruction)=80us 

               Figure 6.1: One instruction cycle of a two-byte instruction of Design 1 at 3.3V 
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Figure 6.2. Die photo of the asynchronous 8051 microcontroller (Design 1) 
 

 

6.3 Simulation Results of Design 2 

 

The Nanosim simulation data of the second design is summarized in the table 

below. In design 2, the Register File block is integrated into the main module. 

 

 

Table 6.3: Post-layout transistor-level Nanosim simulation results of Design 2 
 
 

Design 2 

3.3V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 0.60 0.60 0.40 0.40 0.60 0.50 0.40 0.50 

MIPS 1.67 1.67 2.50 2.50 1.67 2.00 2.50 2.07 

I_total/uA 1500 1510 1660 1620 1360 1570 1370 1513 

I_asyncore/mA 1212 1222 1372 1332 1072 1282 1082 1225 

Energy(pJ)/Instrn 2400 2420 1811 1758 2123 2115 1428 2008 
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2.0V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 1.00 1.00 0.80 0.80 0.80 0.80 0.60 0.83 

MIPS 1.00 1.00 1.25 1.25 1.25 1.25 1.67 1.24 

I_total/uA 536 560 518 530 611 590 565 559 

I_asyncore/uA 388 412 370 382 463 442 417 411 

Energy(pJ)/Instrn 776 824 592 611 741 707 500 679 

  

1.5V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 1.50 1.60 1.20 1.20 1.40 1.30 1.00 1.31 

MIPS 0.67 0.63 0.83 0.83 0.71 0.77 1.00 0.78 

I_total/uA 280 273 279 268 275 278 251 272 

I_asyncore/uA 185 178 184 173 180 183 156 177 

Energy(pJ)/Instrn 416 427 331 311 378 357 234 351 

  

1.1V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 3.60 3.40 2.95 2.60 3.20 3.00 2.20 2.99 

MIPS 0.28 0.29 0.34 0.38 0.31 0.33 0.45 0.34 

I_total/uA 123 127 114 117 118 118 114 119 

I_asyncore/uA 62 66 53 56 57 57 53 58 

Energy(pJ)/Instrn 246 247 172 160 201 188 128 192 

  

1.0V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 5.40 5.20 4.40 4.00 4.80 4.40 3.20 4.49 

MIPS 0.19 0.19 0.23 0.25 0.21 0.23 0.31 0.23 

I_total/uA 93 93 86 90 90 93 85 90 

I_asyncore/uA 39 39 32 36 36 39 31 36 

Energy(pJ)/Instrn 211 203 141 144 173 172 99 163 

 
 

 

From the simulation data above, it is rather obvious that design 2 out-performs 

design 1 both in terms of speed and power consumption. The energy consumed 

per instruction at 1.0V supply is about 163pJ for this design. 
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6.4 Simulation Results of Design 3 

 

 

The Nanosim simulation data of design 3 is summarized in the table below. For 

this design, the IF & ID unit runs in parallel with the EXE unit to form a two-

stage pipeline structure. Due to the difficulties involved in balancing the time 

spent for the two stages, the improvement in operational speed is not very 

significant. 

 

 

Table 6.4: Post-layout transistor-level Nanosim simulation results of Design 3 
 

Design 3 

3.3V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

MIPS 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 

I_total/uA 2420 2560 1950 2020 2250 2290 1960 2207 

I_asyncore/mA 2109 2249 1639 1709 1939 1979 1649 1896 

Energy(pJ)/Instrn 2784 2969 2163 2256 2559 2612 2177 2503 

  

2.0V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 0.60 0.80 0.60 0.80 0.60 0.67 0.60 0.67 

MIPS 1.67 1.25 1.67 1.25 1.67 1.49 1.67 1.52 

I_total/uA 894 745 737 599 843 793 664 754 

I_asyncore/uA 736 587 579 441 685 635 506 596 

Energy(pJ)/Instrn 883 939 695 706 822 851 607 786 

  

1.5V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 0.80 1.20 0.80 1.20 0.80 1.20 0.80 0.97 

MIPS 1.25 0.83 1.25 0.83 1.25 0.83 1.25 1.07 

I_total/uA 470 367 410 300 460 326 355 384 

I_asyncore/uA 371 268 311 201 361 227 256 285 

Energy(pJ)/Instrn 445 482 373 362 433 409 307 402 



101 
 

  

1.1V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 2.10 2.60 1.80 2.60 1.85 2.60 1.80 2.19 

MIPS 0.48 0.38 0.56 0.38 0.54 0.38 0.56 0.47 

I_total/uA 170 145 155 124 171 136 137 148 

I_asyncore/uA 107 82 92 61 108 73 74 85 

Energy(pJ)/Instrn 247 235 182 174 220 209 147 202 

  

1.0V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 3.27 3.80 2.80 4.00 2.85 3.80 2.80 3.33 

MIPS 0.31 0.26 0.36 0.25 0.35 0.26 0.36 0.31 

I_total/uA 120 109 115 93 119 101 100 108 

I_asyncore/uA 65 54 60 38 64 46 45 53 

Energy(pJ)/Instrn 213 205 168 152 182 175 126 174 

 
 

 

Design 3 runs at 2.5 MIPS at 3.3V supply and 0.31 MIPS at 1.0V supply. The 

energy consumed per instruction is about 174pJ at 1.0V supply. 

 

 

6.5 Simulation Results of Design 4 

 

 

The Nanosim simulation data of the third design is summarized in Table 6.5. In 

design 4, the Interrupt Checking unit is taken out of the IF&ID unit to form an 

independent stage. In addition, balanced buffer trees are inserted into the 

synthesized gate-level netlist using Design Compiler. The insertion of balanced 

buffer trees greatly helps to reduce the delay in some heavily loaded nets and 

improves the operational speed of the asynchronous core.  
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Table 6.5: Post-layout transistor-level Nanosim simulation results of Design 4 

 

Design 4  

3.3V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 0.24 0.26 0.19 0.26 0.22 0.25 0.16 0.23 

MIPS 4.17 3.85 5.41 3.85 4.55 4.00 6.25 4.58 

I_total/uA 3610 3540 3370 2530 3470 3080 3290 3270 

I_asyncore/mA 3269 3199 3029 2189 3129 2739 2949 2929 

Energy(pJ)/Instrn 2589 2745 1849 1878 2272 2260 1557 2164 

  

2.0V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 0.43 0.44 0.33 0.44 0.39 0.41 0.28 0.39 

MIPS 2.33 2.27 3.03 2.27 2.56 2.44 3.57 2.64 

I_total/uA 1135 1123 1114 823 1140 1017 1095 1064 

I_asyncore/uA 960 948 939 648 965 842 920 889 

Energy(pJ)/Instrn 826 834 620 570 753 690 515 687 

  

1.5V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 0.75 0.75 0.56 0.75 0.68 0.70 0.49 0.67 

MIPS 1.33 1.33 1.79 1.33 1.47 1.43 2.04 1.53 

I_total/uA 500 507 482 370 500 460 492 473 

I_asyncore/uA 391 398 373 261 391 351 383 364 

Energy(pJ)/Instrn 440 448 313 294 399 369 282 363 

  

1.1V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 1.90 1.81 1.45 1.86 1.73 1.70 1.19 1.66 

MIPS 0.53 0.55 0.69 0.54 0.58 0.59 0.84 0.62 

I_total/uA 183 193 175 148 177 176 182 176 

I_asyncore/uA 118 128 110 83 112 111 117 111 

Energy(pJ)/Instrn 247 255 175 170 213 208 153 204 

  

1.0V ADD_1 ADD_4 MOV_1 MOV_4 ORL_1 ORL_4 SWAP Average 

T(instruction)/us 2.91 2.61 2.22 2.67 2.66 2.45 1.72 2.46 

MIPS 0.34 0.38 0.45 0.37 0.38 0.41 0.58 0.42 

I_total/uA 124 135 121 110 124 124 126 123 

I_asyncore/uA 68 79 65 54 68 68 70 67 

Energy(pJ)/Instrn 198 206 144 144 181 167 120 166 
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Design 4 runs at 4.58 MIPS at 3.3V supply and 0.42 MIPS at 1.0V supply. The 

energy consumed per instruction is about 166pJ at 1.0V supply. 

 

 

6.6 Comparison Between the Simulation Results of the Four 

Designs 

 

 

The Nanosim post-layout simulation results of the previously mentioned four 

different designs of the asynchronous 8051 core is summarized in the table below 

for comparison. 

  

Table 6.6: Comparison between the four asynchronous core structures 
 

Comparison Between the Four Designs of the Asynchronous 8051 Core 

 Design 1 Design 2 Design 3 Design 4 

 MIPS uW 
pJ/ 

instrn MIPS uW 
pJ/ 

instrn MIPS uW 
pJ/ 

instrn MIPS uW 
pJ/ 

instrn 

3.3V 1.3 6026 4739 2.1 4042 2008 2.5 6257 2503 4.6 9666 2164 

2.0V 0.82 1260 1547 1.2 822 679 1.5 1192 786 2.6 1778 687 

1.5V 0.56 558 982 0.78 266 351 1.1 428 402 1.5 546 363 

1.1V 0.25 118 487 0.34 64 192 0.47 94 202 0.62 121 203 

1.0V 0.16 63 396 0.22 36 163 0.31 53 174 0.42 67 166 

 
 

 

Comparing design 2 with design 1, design 2 out-performs design 1 both in terms 

of power and speed although they are both non-pipelined designs. The reason for 
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this phenomenon lies in the integration of the Register File block into the main 

module within the Balsa framework as explained previously in Chapter 5. 

Comparing design 3 with design 2, design 3 runs faster than design 2 at the 

expense of higher power consumption due to its two-stage pipeline structure. The 

increase in operational speed (MIPS value) is about 41% at 1.0V supply. The 

energy consumed per instruction for design 3 is slightly higher than that of design 

2 at the same supply voltage. 

 

Comparing design 4 with design 2, design 4 runs much faster than design 2 at the 

expense of higher power consumption due to its three-stage pipeline structure and 

the insertion of balanced buffer trees. The increase in operational speed (MIPS 

value) is about 91% at 1.0V supply. The energy consumed per instruction is 

almost the same as that of design 2 at the same supply voltage. 

 

In short, design 1 with an isolated Register File block is not a satisfactory design. 

Its performance is the worst among the four. Design 2 has the lowest power 

consumption and energy per instruction value although the operational speed is 

slower as compared to design 3 and 4. Design 4 has the fastest operational speed 

and a comparable energy per instruction value as compared to design 2. 
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6.7 Comparison with Other Existing Designs 

 

 

The performance comparison between design 2, 3 and 4 with two other existing 

designs are summarized in the table below at 1.1V supply and 0.35µm technology 

 

 

Table 6.7: Comparison with other existing designs at 1.1V 0.35µm 

 
       *The performance of this design is scaled from 3.3V.  
       #This is a 2-stage pipelined design using the four-phase bundled data protocol in Balsa  

 

 

The first design “Sync8051” is an optimized synchronous version of the 8051 

microcontroller designed by the Philips Lab. Its performance is scaled down from 

3.3V supply. The second design “A8051” [6] is a two-stage pipelined 

asynchronous 8051 designed using the four-phase bundled-data approach in the 

Balsa framework. Comparing to our four-phase dual-rail designs (design 2, 3 and 

4), the bundled-data design “A8051” is expected to run faster and consume less 

Comparison with Existing Designs @ 1.1V 0.35µm 

Design MIPS mW pJ/Instrn Et2(Js2) 

Sync80C51*[4] 1.3 1.48 1100 6.51 x 10-22 

A8051#[6] 0.6 0.07 130 4.04 x 10-22 

Design2 0.34 0.064 192 1.66 x 10-21 

Design3 0.47 0.094 202 9.14 x 10-22 

Design4 0.62 0.121 203 5.28 x 10-22 
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power for reasons that have been mentioned in Chapter 1. In short, the optimized 

synchronous version “Sync8051” has the fastest operational speed at the expense 

of fairly large power consumption. Its energy consumed per instruction is also the 

largest. The “A8051” has the lowest energy consumption per instruction due to 

the four-phase bundled data approach used. However it is only able to work in a 

very narrow range of supply voltage around 1.1V since its proper functioning 

relies on the delay matching in the request signal. Our designs although have a 

slightly higher energy per instruction value as compared to “A8051”, they are 

capable of functioning correctly in a much wider range of supply voltage due to 

the quasi-delay-insensitive nature of the four-phase dual-rail protocol used.  

 

The table below shows the comparison between our designs with two other 

existing designs at 1.1V supply and 0.18µm technology. 

 

 

Table 6.8: Comparison with other existing designs at 1.1V 0.18µm 
 

Comparison with Existing Designs @ 1.1V 0.18µm 

Design MIPS mW pJ/Instrn Et2(Js2) 

Lutonium[2] 100 20.7 207 2.06 x 10-26 

A8051*#[6] 5 0.114 23 9.11 x 10-25 

Design2* 2.8 0.104 37 4.72 x 10-24 

Design3* 3.9 0.153 39 2.56 x 10-24 

Design4* 5.2 0.197 38 1.40 x 10-24 
 
         *These designs are scaled down from 0.35µm technology.  
         #This is a 2-stage pipelined design using the four-phase bundled data protocol in Balsa  
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The first design “Lutonium” [2] is a highly pipelined asynchronous 8051 

microcontroller from Caltch and it is designed according to the four-phase dual-

rail protocol using the CaSCADE tool set. “Lutonium” is capable of running at 

very high speed at the expense of high power consumption. Comparing our 

designs with the “Lutonium”, our designs consume much less energy per 

instruction though running at a much slower speed. 



108 
 

 

 

Chapter 7  

 

Conclusion 

 

In this thesis, the design of a low-power voltage-scalable asynchronous 8051 

microcontroller with interface to external commercial memory is presented. The 

asynchronous core of the proposed design is synthesized in the Balsa framework 

using the dual-rail four-phase approach in order to achieve good robustness 

towards variations in supply voltage and fabrication process. 

 

The main difference of the proposed asynchronous 8051 as compared to the 

synchronous Intel 8051 lies in the presence of some interface wrapper blocks 

which are located around the asynchronous core. The main purpose of these 

wrapper blocks is to control the data movement into and out of the dual-rail 
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asynchronous core. The design of the asynchronous core is elaborated and the 

constituting blocks are discussed in details in Chapter 4. The novel interface block 

design to external commercial memory can work with any commercial memory in 

general after proper configuration. 

 

Four different versions of the asynchronous core developed in the course of this 

work are presented. Design 1 is the first version and its performance is less 

satisfactory as compared to the later three designs. Design 2 has the lowest energy 

consumption among the four and it consumes about 163pJ per instruction while 

running at 0.22MIPS at 1.0V supply. Design 3 is a two stage-pipelined version of 

Design 2 and it trades power consumption for speed improvement. The latest 

version, Design 4, is a three-stage pipelined design and it achieves the best overall 

performance, consuming about 166pJ per instruction while running at 0.42MIPS 

at 1.0V. 

 

Currently, the Balsa framework is unable to optimize the drive strength of the gate 

cells while synthesizing the gate-level netlist. Applying more optimization 

techniques on the gate-level netlist generated by the Balsa framework to 

improvement the performance may be one area of future work. 
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