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Summary

A large class of visual systems in the biological world often has multiple eyes in simulta-

neous motion and yet has little or no overlap in the visual fields between the eyes. These

systems include the lateral eyes found in many vertebrates and the compound eyes in

insects. Instead of computing feature correspondences between the eyes, which might

not even be possible due to the lack of overlap in the visual fields, we exploit the organi-

zational possibility offered by the eye topography. In particular, we leverage on the pair

of visual rays that are parallel to each other but opposite in direction, and compute what

we call the quasiparallax for translation recovery. Besides resulting in parsimonious vi-

sual processing, the quasi-parallax term also enhances the information pick-up for the

translation, as it is almost rotation-free. The rotation is subsequently recovered from a

pencil of visual rays using the individual epipolar constraints of each camera. As a result

of using these different and appropriate aspects of visual rays for motion recovery, our

method is numerically more effective in disambiguating the translation and rotation. In

comparison to the gold standard solution obtained by the bundle adjustment (BA) tech-

nique, our method has a better Fisher information matrix for a lateral eye pair, as well as

a superior experimental performance under the case of narrow field of view. For other

eye configurations, the two methods achieve comparable performances, with our linear

method slightly edging the nonlinear BA method when there exists imperfection in the

v



calibration.

In addition, we look at another class of biological eyes which have the same view-

ing directions. We study how the optic flow-fields can be used to facilitate the motion

recovery in this eye arrangement, without resorting to stereopsis cues which will be too

slow and heavy for animals with limited neural processing. Our algorithm proved to be

on par with nonlinear BA at much less computational cost, a significant advantage in any

visual system with a need for rapid visuomotor coordination.
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Chapter 1

Introduction

Marr’s computational vision paradigm has influenced deeply the development of com-

puter vision. While Marr is correct in his observation that understanding the physical

workings was not going to be enough and that we would also need to understand how

the system was organized at a higher level (the computational question), it has led to a

marginalization of the importance of the bodily aspect of the vision system. For although

it is (probably) true to say that a computational understanding is in principle independent

of the details of any specific implementation in hardware, the computational activities

(especially for biological systems) are certainly heavily sculpted by the hardware imple-

mentation. With this in mind, we might ask ourselves if we have overlooked the wealth

of organizational possibilities that are offered by the varieties of eye topography found

in nature.

Contemporary research in robotics and AI viewed vision processing as the activity

of an essentially situated agent: in particular, an agent that is at home in its proper bodily

and environmental niche. It is likely to exploit just about any mixture of bodily and en-

vironmental resources along with significant interpenetration of perception, thought and
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action. Yet the computer vision community has been primarily concerned with camera-

type eyes that are frontally placed, forgetting that for many vertebrates, the eyes are

laterally placed, not to mention the vast array of eye types that exist in the invertebrate

world.

In this thesis, we look at the different topography of the eyes found in both verte-

brates and invertebrates and see how the visual system can press maximal benefit from

the opportunities afforded by a particular class of bodily realization that encompasses

many animals. We are interested in leveraging the physical structure of this class of

systems to solve Structure from Motion, a fundamental problem in computer vision.

1.1 Inspirations from Biological World

Theories about how insects exploit their compound eyes and the environment to carry

out visuomotor tasks have been advanced indeed. For instance, in navigation, it was

found that flying insects (Srinivasan and et al., 1991) are able to center their flight path

in a corridor by balancing the image motion in their two eyes. In addition, honey bees

have been shown to regulate flight speed by trying to keep the overall image motion as

constant as possible (Srinivasan and et al., 1996). Such cooperation between bodily and

environmental factors has also been implemented in various biomimetic approaches. The

centering behavior of bees inspired the ”bee-bot” (Coombs and Roberts, 1993). By bal-

ancing the maximal flow on both sides, bee-bot centered its course between the nearest

objects. While correcting its course, bee-bot’s camera actively counter-rotated to prevent

the rotatory flow from contaminating the flow field. Other tasks investigated include al-

titude control landing (Srinivasan, Zhang, and Chahl, 2001) and view-based navigation
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(Franz and et al, 1998a). However, no work exists on general ego-motion estimation that

exploits the structure of the compound eye. The view seems to be that due to the limited

neural resources of the insects, general ego-motion recovery is difficult; it is believed

that only aspects of the ego-motion that are tailored to various visuomotor tasks are re-

covered. We show, however, that general ego-motion recovery can be achieved without

resorting to complex and computationally expensive algorithms if we make use of the

special arrangement of the compound eye.

Among vertebrates, the divorce of theoretical attention from the non-frontal eyes in

the computer vision community is even more pronounced. Frontal eyes, where two eyes

simultaneously gain very similar views of the same objects that lie in front of the head,

as in humans, has received the most attention. However, in the great majority of verte-

brates, each eye views a quite different part of the space that surrounds the head with

various degrees of overlap of view between the two eyes. While there are computational

works that look at a stereo pair or multiple cameras in simultaneous motion ((Baker,

Ogale, and Fermüller, 2004; Tsao and et al., 1997; Zhang, 1995)), either with a fixed or

varying epipolar geometry, their concerns are quite different. Stereo matching or feature

tracking over multiple frames often plays an important role in such systems, and as such,

corresponding points are needed. In our case of laterally placed eyes, correspondence of

features between the two eyes is not even possible. Indeed, even in the insect eye system

where the eyes are closely spaced, the visual field is so narrow that there might be lit-

tle overlap between eyes. Thus the aforementioned multiple-cameras-in-motion models

which require correspondences are not applicable. Are there, then, other affordances

that exist in such an arrangement of multiple eyes, each covering different parts of the

visual field, and each experiencing slightly different motions related to each other via
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some rigid transformation? Do we just fuse the multiple inputs in a loosely coupled

manner, that is, estimating the ego-motion of each camera independently and combining

these ego-motions at the last stage? Or is there a tighter constraint at the lower level that

allows a stable and preferably parsimonious solution for ego-motion recovery?

Biological systems in general seem to exploit the motion input from the different

parts of the visual field. In vertebrates with laterally positioned eyes, such as rabbits

and birds, as well as in arthropods equipped with panoramic vision, there are extensive

spatial pooling of motion information and interactions between inputs from the opposite

visual directions and they were shown to increase the sensitivity to particular types of

optic flow field (e.g. rabbits: (Leonard, J.I.Simpson, and Graf, 1988); birds: (Wylie

and Frost, 1999); bee: (Ibbotson, 1991); moth: (Kern, 1998), fly: (Haag and Borst,

2001)). Such exploitation of bodily factors results in parsimony of visual processing

that is needed for integrated visuomotor coordination.

1.2 Motivation of the Thesis

Despite the biological evidence of such leveraging of motion information from opposite

directions, it is certainly not the case that such a scheme is fully explored or understood

computationally. The detailed mathematical aspect of the actual motion estimation is

very much an open research question. As far as the authors are aware, save the works of

(Lim and Barnes, 2007; Lim and Barnes, 2008; Thomas and Simoncelli, 1994) for the

case of spherical cameras, there has been no work in the computational vision literature

that looks at pooling optic flow inputs from opposite directions of the visual fields and

investigate how such a pair of flows can be exploited in a tighter manner for ego-motion



5

estimation.

In this thesis, we pursue this strategy of pooling motion information from visual

fields that are 180◦ opposite to each other for general ego-motion estimation. Such a

strategy can be applied to a variety of vision systems, including the compound eye sys-

tem and the system with laterally-positioned eyes. We show that such a pair of flows

provide a measurement akin to parallax, and as in traditional parallax, it enhances in-

formation pickup for translation. This approach of pairing optic flows afforded by the

physical arrangement of the cameras is in contrast to current works in computational

vision, where the general motivation of having multiple cameras is to obtain feature

matches across multiple viewpoints or to collect the optical flows from all the cameras,

so as to resolve the inherent ambiguity in the ego-motion estimation problem. In that

sense, the input from the multiple cameras is not fully exploited at the optic flow level

in these conventional approaches; the redundancy enters the story only via the 3D rela-

tionships (i.e. the rigid transformations) that exist between the ego-motions experienced

by each camera. The decoupling of the global translation and rotation is only initiated

at the endpoint of a complex process which usually involves nonlinear estimation algo-

rithm. Lastly, we also develop a mathematical understanding of our formulation in terms

of its stability and robustness, and show how we have made the most of the information

present in visual rays that are parallel but 180◦ opposite in direction.

The next section reviews the biological and the biomimetic robotics literature and

discusses the wide variety of eye designs found in the vertebrates and the invertebrates.
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1.3 Biological Vision Systems for Motion Estimation

1.3.1 Vertebrate Eyes: the case of birds

We review the visual systems of birds, the second largest group of vertebrates after

fishes. Many bird species have laterally positioned eyes. Even in those cases where

the eyes might appear to have binocular overlap of visual field (such as the raptors),

the assumption that binocularity inevitably results in stereopsis has been questioned in

birds ((McFadden, 1994), (Davies and Green, 1994)). It is pointed out in (Davies and

Green, 1994) that stereopsis involves considerable neural processing and is too slow to

control the estimation of distance and depth when a bird is landing upon a perch. The

interactions between both eyes might indeed have to do with motion processing.

Interestingly, although many birds may appear to have significant overlap in the

visual field, such direct estimation of the size of the frontal binocular field by causal

examination of their appearance can be seriously erroneous. In particular, the width of

frontal field binocularity is likely to be considerably overestimated. For instance, the

Short-toed Snake-eagle eye optical systems produce a binocular field in the horizontal

plane that appears 40◦ wide, but functionally the field is only half that width because

there is no retina serving vision at the margin of the optical field. This is illustrated by

Figure 1.1 from (Martin and Katzir, 1999).

This situation is not unique to this eagle and has been found in other species in-

cluding Ostrich, herons and owls, and suggests that many bird species do not make full

use of the potentially available binocular field. This finding casts doubts on the utility

of stereopsis for general scene perception and locomotion, except for visuomotor tasks

involving close objects such as the bills.
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Figure 1.1: Depiction of visual fields for Short-toed Snake-eagle. a) A perspective view of
an orthographic project of the visual field shows the binocular sector to the front of the head
and the blind area above and the margins of the optical fields that are not served by retina. The
projections of the optic axes, pectens and of the bill are also shown. It should be imagined that the
bird is placed at the center of a transparent sphere that surrounds the head and the projections of
the various features are drawn onto the surface, the orientation of the head is depicted in the inset
drawing, but the median sagittal plane of the bird lies is in the same plane as the equator of the
projection which is vertical and contains the projection of the bill. b) Photograph of a bird taken
at a position in the sagittal plane below the bird that lies outside of the retinal visual field. The
bird seems to have binocular vision at this point, as it is possible to see into the eye. However,
there is no retina serving vision at this elevation and so the bird could not see the camera.

Interspecific comparison suggests that with respect to the features of the frontal,

particularly the binocular field, three main types of visual field topography are found in

birds. It is hypothesized that the characteristics of each particular type is determined pri-

marily by feeding ecology, and secondarily by the requirements of provisioning young,

rather than phylogeny or more general aspects of ecology and behavior.

• In species whose vision is used for the accurate control of bill position when pecking

or lunging at prey, the maximum width of the binocular field lies between 20◦ and 30◦.

Examples of such birds are found in the eagles, herons, albatrosses, and hornbills.

• In species which do not use vision to guide bill or feet position in foraging, but rely

upon tactile cues from the bill tip to locate items, or filter feed from surface waters, and

do not provision their young, maximum binocular field width is only about 10◦, and the

binocular field may be only 5◦ wide at the horizontal.
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• In the third type of visual field, the eyes are more frontally placed with wide binocular

overlap (approximately 50◦). However, it seems restricted to the owls and seems to be a

unique case of eye topography in the avian kingdom.

The majority of these birds, despite their narrow binocular fields are capable of

fast flight and maneuvering within both open and woodland habitats. This suggests

that the control of flight in both open and complex woodland habitats does not require

extensive frontal binocularity. Watching a sparrowhawk executing complex maneuvers

to pursue agile preys through dense foliage tends to underscore its amazing visuomotor

coordination, possibly achieved with only motion cues.

1.3.2 Invertebrate Eyes

Invertebrates have the greatest variety of eye types, with both camera eyes (e.g. Cephalopods)

and compound eyes. We focus in this section on the compound eyes, the most abundant

eye design in the animal kingdom, and probably its most adaptable. The first remarkable

fact about its adaptability is that the layout of ommatidia is often matched to the spatial

layout of the habitat, with higher concentration of ommatidia in some region termed as

the acute zone. The presence of such acute zone implies that one region of the visual

world is more important to the animals than the others. Such matching is clearly seen

in the apposition eyes of animals adapted for life in a flat habitat such as a water strider

that skates on a pond. All experience of a bright world is dominated by the horizon,

and objects of interest occur at or very near the horizon. Thus they all possess eyes

having an elongated horizontal region of enhanced resolution known as a visual streak.

On the other hand, blowflies and hoverflies have a frontal-dorsal acute zone known as

love spots used by the males to keep sight of females during high-speed pursuits. This
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is a remarkable demonstration of the kind of close interaction between the vision system

and the environment. Even the morphology of the compound eye itself adapts to the

environmental surroundings and actions! There are many other aspects of the eye optics

that are adapted to the environment (e.g. (Land and Nilsson, 2006), (Warrant, 2004)).

Clearly these different designs confer special properties to the visual systems.

As far as motion processing is concerned, besides the kind of processing dedicated to

specific reflexive responses such as collision avoidance and landing, general ego-motion

recovery is understood to benefit from the spherical field of view of the compound eyes.

Optic flow at positions that are 180◦ apart on a connecting meridian allows disambigua-

tion of translation and rotation. During forward translation the optic flow across both

eyes is directed backward. In contrast, during a pure rotation about the animal’s vertical

axis, optic flow is directed backward across one eye, but forward across the other eye.

Such a strategy of pooling optic flow from both eyes appears to be adopted generally by

arthropods. For instance, crabs use interactions between movement detectors that ”look”

in opposite directions of the visual field ((Blanke, Nalbach, and Varju, 1997)). Such in-

teractions between two eyes are also found in many insects (e.g, bee: (Ibbotson, 1991);

moth: (Kern, 1998), fly: (Haag and Borst, 2001)). For instance, the well-studied ’HS’

cells of the fly estimate rotation from optic flow and is used to provide information for

optomotor control and trajectory stabilization.

The thesis proposes a mathematical modeling of such motion processing and show

that such a pair of flows, resulting from either lateral placement of vertebrate eyes or

from compound eyes, provide a measurement akin to parallax, and as in traditional par-

allax, it enhances information pickup for translation. This is in contrast to current works

in computational vision, where the general motivations of having multiple cameras have
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been focused upon how a wide field of view can disambiguate the inherent ambigu-

ity in the ego-motion estimation problem. The input from the multiple cameras is not

exploited at the optic flow level; the redundancy enters the story only via the 3D relation-

ships (i.e. the rigid transformations) that exist between the ego-motions experienced by

each camera. The decoupling of translation and rotation is only initiated at the endpoint

of a complex process which involves nonlinear estimation algorithm.

1.4 Thesis Organization

The organization of this thesis is as follows. Chapter 2 starts with the definition of

Structure from Motion (Sf M) and difficulties Sf M faces, then it seeks to situate our pro-

posed method in the vast Sf M literature, relating our work to other research efforts and

paradigms. Chapter 3 first briefly discusses the contribution of our linear quasi-parallax

approach and lists those systems to which our approach applies. Then it introduces

our quasi-parallax formulation in details, using first a basic setup with a single pair of

cameras with opposing visual fields, and then an extended version that handles multiple

pairs. To improve the robustness and accuracy of our linear algorithms, a Total Least

Squares approach with an appropriate normalization scheme is presented. Then we go

on to study the inherent ambiguity in our formulation using Fisher Information matrix

and compares it against the “gold standard” solution obtained by the Bundle Adjust-

ment method. Chapter 4 proposes two variant formulations of the linear quasi-parallax

approach and the corresponding applicable biological eye combinations. Chapter 5 re-

ports a set of experiments on motion recovery that were conducted using both “realistic”

scenes adapted from range image input, and visual images of real scenes. Our method
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was fully evaluated under different scenarios, and its performance was compared against

the Bundle Adjustment algorithm. Chapter 6 carries out another set of experiments to

study the performance of depth reconstruction in our method and Bundle adjustment.

Finally this paper ends with discussion and conclusion in Chapter 7.
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Chapter 2

Review of SfM Computational

Literature

2.1 The Problem of Structure from Motion

2.1.1 Definition

The problem of structure from motion is to recover the 3D ego-motion of the camera and

subsequently the 3D world structure from image sequences. Existing methods typically

fall into two categories. One is the discrete case where we have a set of widely separated

views obtained from multiple camera positions. It includes the classical eight-point al-

gorithm (Hartley, 1997) and multiple view approaches (multiple-view tensor (Hartley

and Zisserman, 2000). Discrete methods are based on image correspondences, which

are two points in two the images projected from the same 3D world point. Given a set of

image correspondences, discrete methods will estimate an essential matrix, which can

later be decomposed into 3D camera translation and rotation.
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The other category is known as the differential case. We have a monocular camera

in motion and a sequence of densely sampled image velocities (optical flows) acquired

under a relative instantaneous motion between the camera and the scene. This thesis

adopts the differential approach.

We adopt a pinhole camera model with perspective projection. A point P in the

world projects onto a point p in the image plane which is f pixels away from the optical

center. We have p = f P
Z

. Here we assume the focal length f is known in a calibrated

camera.

Denote the camera is undergoing a global translation (U, V,W )T and a global rota-

tion (α, β, γ)T . Assuming (u, v) is the optical flow at image point (x, y) arising from a

scene point with depth Z, we have (Longuet-Higgins and Prazdny, 1980):

u =
utr

Z
+ urot =

Wx− fU
Z

+
αxy

f
− β(

x2

f
+ f) + γy

v =
vtr

Z
+ vrot =

Wy − fV
Z

+ α(
y2

f
+ f)− βxy

f
− γx (2.1)

where 1
Z

(utr, vtr) and (urot, vrot) are the components of the flow due to the translation

and the rotation respectively. utr = (Wx − fU), vtr = (Wy − fV ) and urot = αxy
f
−

β(x
2

f
+ f) + γy, vrot = Wy−fV

Z
+ α(y

2

f
+ f) − β xy

f
− γx. Canceling the depth Z from

the above two equations gives us the differential epipolar constraint:

uvtr − vutr = urotvtr − vrotutr (2.2)

Fully expanding Equation (2.2) yields many nonlinear terms on the right-hand side, most

of which are the coupling terms between translation and rotation generated by the prod-

ucts urotvtr and vrotutr. This coupling contributes to the formation of the bas-relief

valley, which will be discussed in the next section.
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2.2 Review of Computational Literature

2.2.1 Two-view Motion Estimation Methods

Ego-motion estimation methods typically are divided into two categories. The first is the

discrete case where the camera displacement and the resulting 3D world structure can

be recovered from two or multiple widely separated views of the same scene, as shown

in Fig 2.1.

Figure 2.1: General stereo imaging configuration

These views may be acquired simultaneously as in a stereo rig, or acquired sequen-

tially, such as by a camera moving relative to the scene. One of the prominent approaches

is the essential matrix approach (Toscani and Faugeras, 1986). Given image point cor-

respondences, we enforce the intrinsic geometric constraint (termed as the epipolar con-

straint) from which a so-called essential matrix is recovered. For the two-view discrete

case, some classical linear methods include the eight-point algorithm which is based on

SVD-decomposition to decompose the essential matrix into 3D camera translation and

rotation (Hartley, 1997). A general principle for such discrete, epipolar-constraint based

algorithms to work well is that the displacement (especially the translation, also known

as baseline) between the two images needs to be relatively large. Otherwise, due to the
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small translation this algorithm becomes singular and the depth reconstruction becomes

less reliable too. Unfortunately, in the case of a large baseline, the search distance for

the corresponding point in the other view generally is also large. Hence feature corre-

spondence is difficult to establish.

The other class of motion estimation algorithms is the differential case: the camera

motion and the 3D world are recovered from a sequence of densely sampled image

velocities (also known as optical flow) acquired under a relative motion between the

monocular camera and the scene as in Fig 2.2.

Figure 2.2: 3D motion field projected onto the image plane: 2D motion field

Most algorithms in this category are based on the differential epipolar constraint

which relates optical flow to the camera translation and rotation. The camera motion

can be solved either through numerical optimization or by linear methods after a cost

function is obtained from the epipolar constraint. Linear subspace method proposed in

(Heeger and Jepson, 1992) is one such example. One big advantage of the differential

approach is that there is no correspondence problem. But the computation of optical

flow involves assumptions that might be violated, for example in the aperture problem
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(Trucco and Verri, 1998) illustrated in Fig 2.3. In the image the solid line moves to the

dash line. If we view the image through a small aperture, we cannot tell where this point

(xi, yi) moves to due to the lack of differently oriented edges and distinctive points. Thus

we do not know the image velocity ~u and only the component perpendicular to the edge

~un can be computed. This is known as the aperture problem.

Figure 2.3: Illustration of the aperture problem

It is known that linear two-view methods yield biased motion estimates and many

nonlinear methods have been proposed to overcome this problem. Among various meth-

ods, the bundle adjustment (Triggs and et al., 2000) (referred hereafter as BA) stands out

with its optimal performance and is regarded as the “Gold Standard”. By minimizing

the reprojection error between the measured flows and the estimated flows, BA yields

maximum likelihood estimates given a Gaussian image noise.

One thing to note is that in both discrete and differential classes, the two-view meth-

ods suffer from the bas-relief ambiguity arising from the coupling between the transla-

tion and rotation. This bas-relief ambiguity is caused by the geometry of the problem

itself and thus cannot be removed by any statistical schemes. We will discuss this in

details in the next section.
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2.2.2 Bas-relief Ambiguity

According to a number of geometrical investigations of the Sf M behavior (Fermüller

and Aloimonos, 2000; Xiang and Cheong, 2003), Sf M problem suffers from inherent

ambiguity even in the noiseless case. And some of the well-known visual confusions

can be attributed to this ambiguity. For example, in a small field of view, the optical

flow field of a rotation around the vertical y-axis is very similar to that of a translation

along the horizontal x-axis. According to (Xiang and Cheong, 2003) paper, when the

FOV=28o, the ambiguity is already very prominent.

Figure 2.4: Confusion between translation in the x-axis and rotation around the y-axis.

The analysis of the error surface topology shows that the coupling of the translation

with rotation generates a so-called bas-relief valley in many motion-scene configura-

tions. Figure 2.5 from (Fermüller and Aloimonos, 2000) shows that the valley is quite

flat and consequently many motion candidates could serve as the minimum. Thus when

the algorithm is minimizing the error function, it is very likely that the minimum returned

is not the true solution, thus introducing errors into the estimates.

As we mentioned above, due to the coupling between the translation and rotation,

the error residue caused by an error in the translational estimate can be compensated by

suitable choice of error in the rotational estimate. Since this ambiguity is caused by the
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Figure 2.5: Topology of the cost function surface in the space of the direction of translation
where ’O’ is the true FOE position and ’X’ is the solution of the optimization algorithm.

geometry of the problem itself, it cannot be removed by any statistical schemes.

Taking a closer look at the error profile along the bas-relief valley, we see that the

location of the true FOE, i.e. the direction of the true translation, has a critical influence

on the shape of the bas-relief valley. In general, largely lateral translations present a

more difficult scenario for SfM recovery as the location of the so-called opposite mini-

mum will approach infinity with its residual value approaching zero (Xiang and Cheong,

2003). Hence in Fig 2.6, a large part of the bas-relief valley becomes very flat, thus re-

sulting in a highly ambiguous situation. In contrast, in the pure forward motion case, the

opposite minimum merges with the true solution at the origin; thus the local minimum

disappears and the true solution clearly stands out.

Correspondingly, according to the error analysis of SfM in the discrete case, there

is also an intrinsic bas-relief ambiguity independent of the choice of objective cost func-

tions (Ma, Kosecka, and Sastry, 2001; Adiv, 1989; Weng, Ahuja, and Huang, 1993).

It is shown in the small field of view, for each lateral translation (parallel to the image

plane), there exists a corresponding type of rotation such that the displacement field of a

translation can be interpreted as a rotation. Even small pixel-level errors will cause large
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Figure 2.6: Error profiles of the bas-relief valley in the limiting cases. JR is the cost
function. x0 is the x-coordinate of the true FOE while x̂0 is that of the estimated FOE.
(a) pure forward motion where the true FOE is at the origin and (b) pure lateral motion
where the true FOE lies at infinity.

errors in the estimated motion.

2.2.3 Multiple-view Motion Estimation Method

Multiple-frame algorithms such as multiple view tensor (Hartley and Zisserman, 2000))

incorporate redundancy from multiple frames to overcome the inherent bas-relief ambi-

guity faced by two-view methods. The extension in space results in a geometry described

by the so-called multiple-view tensor, which has analogous properties to the fundamen-

tal matrix of two-view geometry, but enjoys additional benefits over two-view geometry.

Take the three-view case as an example in Fig 2.7. Given the cameras, in the two-view

case each point correspondence provided four equations on the three degrees of freedom

(the position) of the 3D point. In three views there are six equations on the three de-

grees of freedom. So with more equations, the measurement errors in the input can be

minimized and the solution becomes more stable.

However, this approach has its limitation. As we have to establish feature correspon-

dence across all the frames, the difficulty in correspondence compounded. Moreover, we

still face this dilemma: use large baselines to gain robustness or use small baselines to
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Figure 2.7: Three-view geometry.

ease correspondence problem.

Analogously, there is also an extension in time of the two-frame optical flow method,

one example of which is the factorization method (Tomasi and Kanade, 1992). Based on

the assumption that the camera model is orthographic (objects are distant with respect

to their size), it tracks P scene points, not all coplanar, across F image frames with F ≥

3. Constructing a 2F × P measurement matrix, the authors then use SVD technique to

factor the matrix into two matrices which describe object shape (3D scene points’ co-

ordinates) and camera motion respectively. This method works fast and yields accurate

results. However, because of the orthographic assumption, the component of the trans-

lation along the optical axis cannot be determined. Moreover, this approach no longer

works in domains where perspective camera effect cannot be ignored.

Another class of algorithms combine stereo and motion analysis to solve SFM so

that the two visual cues complement each other (Okutomi and Kanade, 1993; Baker,

Ogale, and Fermüller, 2004). These works use two cameras to take a stereo pair of image

sequences to facilitate the establishment of stereo correspondences. Afterwards, motion

cue is ignored and only stereo cue is used to solve for motion parameters and later for
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3D reconstruction. Thus the fusions in these works are characterized by loose coupling.

The focus of our work, however, is on tightly integrating the two cues so that both ease

of correspondence and accurate recovery of motion parameters can be achieved. The

joint information from both cues is utilized throughout the whole recovery process.

2.2.4 Motion Parallax

Traditional parallax method (Longuet-Higgins and Prazdny, 1980) is a different ap-

proach to the SfM problem. It separates the rotational flows from the translational flows

by observing that for near-coincident image points across a depth discontinuity, the dif-

ference in their flows cancels the rotational flow. Provided with sufficient number of

such points, this method is able to solve for the translation, after which the rotation can

be readily obtained. Unfortunately it is very difficult to find enough nearby points with

sufficiently large depth differences, and thus its usefulness is limited. Alternative ap-

proaches called “plane+parallax” have been proposed (Anandan and Irani, 2002). They

assume a dominant plane in the scene or a piecewise planar world model. The alignment

with respect to this plane removes the rotation and leads to an epipolar motion field (or

a parallax field), from which the ego-motion can be computed. However for a general

scene with arbitrary structure, the planar assumption might be violated.

2.2.5 Non-conventional Cameras

In recent years, camera cluster in various configurations has seen increasing popularity

thanks to falling costs and miniaturization. In tandem with this development, there have

been several theoretical analysis analyzing the properties of such camera clusters. Pless
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(Pless, 2004) obtained a generalized epipolar constraint for multi-camera setup and com-

pared the fitness of several designs in resolving the rotation-translation ambiguity via the

Fisher information matrix. Sturm (Sturm, 2005) considered a general imaging model

that incorporates multiple-camera views and analyzed the geometry of the problem. The

minimal information needed to solve the motion recovery problem for a multiple-camera

platform was discussed in (Stewenius and Astrom, 2004). Both (Stewenius and Astrom,

2004) and (Sturm, 2005) assumed that correspondences were available, but as discussed

in the preceding sections, correspondences are difficult and computationally expensive to

obtain. The configuration of these multiple cameras is in general arbitrary, and thus the

algorithms proposed are also general, independent of any specific camera arrangement.

One of the works exploiting such multiple-camera system in simultaneous motion

is the Argus eye (Baker, Ogale, and Fermüller, 2004) which consists of nine outward-

pointing cameras. For each camera, a set of camera motion candidates with the smallest

residual errors were found. The intersection of these candidates when expressed in the

global coordinates was taken as the global motion. The fusion of information from the

various cameras in the Argus Eye can be regarded as a loose form of couplings (in the

sense of (Clark and Yuille, 1994)), since the individual motion estimates are computed

independently and the fusion takes place only at the last stage.

In the work of (Tsao and et al., 1997), the epipolar constraints of each camera are

collected together, and a nonlinear residual function is obtained when the individual

camera motions are expressed in terms of the global motion. This nonlinear function was

then minimized to obtain the global motion. Similar to works reviewed in the preceding

paragraphs, the multiple camera model analyzed is a general one, without any attempt

to exploit the constraints afforded by a particular configuration of the multiple-camera
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setup.

Neumann et al (Neumann and et al., 2004) proposed a linear plenoptic approach

for motion estimation. Our work is similar to this work in the sense that both methods

are linearly formulated and do not need correspondence. Like (Neumann and et al.,

2004), our work can be applied to a compound eye system, but our formulation can

also be applied to other eye topology. There are, however, several major differences.

First, our linear method stems from considering projection rays that are parallel but

opposite in direction. In contrast, the linearity of the plenoptic method comes from a five-

dimensional plenoptic function, which is unmeasurable in a conventional camera. Due

to this difference, our system can be built from conventional pinhole cameras, whereas

the plenoptic method requires a specially designed sensor whose physical structure is

currently unrealizable. Secondly, in our method, the translation is recovered from a

quasi-parallax term where information pick-up for translation is enhanced; whereas the

rotation is estimated in a separate post-translation step. In this way, the coupling between

the translation and the rotation is minimized, since only those measurements best suited

for translation recovery (and rotation recovery respectively) are utilized. In contrast,

the plenoptic approach solves for both the translation and the rotation simultaneously.

Though the motion recovery enjoys the benefit of a spherical FOV, it is not clear if the

plenoptic approach is the best way of removing the coupling between the translation and

the rotation.

Other pertinent works are that of (Lim and Barnes, 2007; Lim and Barnes, 2008;

Thomas and Simoncelli, 1994) which estimate the epipole in a spherical eye. These

works are related to ours in so far that they exploit the information present in an oppo-

site pair of visual rays, which are termed as an antipodal pair. However, such a camera
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system with a single viewpoint is a serious qualification as far as modeling biological

visual systems is concerned, as most natural visual systems such as the lateral eyes of

vertebrates and the insect compound eyes are not of a single viewpoint. For instance, in a

compound eye system, each ommatidium has its own optical center, situated on different

parts of the substrate surface or the head. Our paper examines fully the computational

implications of such eye arrangements found prevalently in the animal kingdom. Fur-

thermore, we use Fisher information matrix to explicitly characterize the inherent ambi-

guity in such eye arrangements, where each eye might only have a small field of view.

In comparison, the methods of (Lim and Barnes, 2007; Lim and Barnes, 2008; Thomas

and Simoncelli, 1994) have little to say about these numerical aspects, since they start

with a spherical field of view, which hardly suffers from the bas-relief ambiguity. Thus,

it is unclear whether their good performances benefit from the formulation, or simply

result from the spherical field of view. For instance, in (Lim and Barnes, 2007), if all the

antipodal pairs are closely clustered, the great circles in their formulation would span a

small angle in their orientations; thus the intersections of these great circles might not be

well-localized enough for accurate epipole estimation. Where applicable, further differ-

ences between (Lim and Barnes, 2007; Lim and Barnes, 2008; Thomas and Simoncelli,

1994) and our work will be highlighted in later sections.



25

Chapter 3

Linear SfM based on Quasi-Parallax

This thesis proposes a method for solving ego-motion and applies to systems where there

exists visual rays that are parallel to each other but facing the opposite direction, and the

entire system moves in tandem. These visual systems can be realized in a variety of ways

such as via the compound eye or via the laterally placed pinhole cameras (for details,

see Section 3.2). We show that our formulation presses maximum advantage from the

physical structure of these visual systems, while conventional methods based on some

nonlinear constraints do not have the optimal way of combining information and thus

still suffer from the bas-relief ambiguity to some extent, even for the gold-standard BA

technique.

3.1 Our Contribution

The main contribution of our work lies in proposing a method that utilizes different and

appropriate ensembles of visual rays for estimating translation and rotation respectively.

For translation recovery, we consider visual rays that are parallel but facing the opposite
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direction. We call such pairs of visual rays the matching pairs. In a geometrical sense,

this grouping operation that we perform is akin to that in obtaining the parallax, as the

matching pair have identical rotational flows. However, we term the resulting difference

in motion flows as quasi-parallax, because it still contains weak induced translational

terms caused by the global rotation, and thus carries terms determined by the rotational

parameters. Despite this, the effect of the induced translational terms has been largely

reduced and thus the global translation can be accurately recovered. For the same rea-

son, such quasi-parallax term is clearly not suitable for rotation recovery. Instead, the

rotation is computed in a post-translation step, by looking at the individual epipolar con-

straint of each camera. In this way, we are able to press maximum advantage from the

diametrically opposite visual field available in such visual system.

In the terminology of the plenoptic function, we are using parallel rays for trans-

lation recovery and a pencil of rays for rotation recovery. Thanks to this two-staged

recovery process, the translation can be recovered well even with a dominant rotational

flow; a good translation estimate in turn benefits the rotation recovery. This is in contrast

to those nonlinear computationally expensive methods, which use the same input to es-

timate the translation and the rotation together, and typically involve heavy optimization

over six motion parameters simultaneously (Pless, 2004; Triggs and et al., 2000). In

consequence, the estimate error of the translation and that of the rotation are intertwined

and affect each other. This undesirable coupling effect is especially obvious when either

the translational flow or the rotational flow is dominant.

To quantify the relative merits of our linear method and the nonlinear BA, we use

Fisher information matrix as a tool to analyze the inherent ambiguity in the two formu-

lations. We show that our formulation has a more optimal integration of the information
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from multiple cameras, in the sense that it resolves the bas-relief ambiguity much better,

especially under small field of view.

With regards to numerical implementation, we adopt data normalization and the

Total Least Squares approach (TLS) so that the system is well-conditioned and robust

to noise perturbation. Compared to Linear Least Squares, TLS is more robust for our

errors-in-variables system. Our quasi-parallax method also improves the feasibility of

the traditional parallax idea: we only require a matching pair of points in two cameras to

have some depth difference, instead of requiring two coincident points in the same cam-

era to have depth difference. Clearly, this assumption is much more readily satisfiable,

considering that each camera faces opposite directions and is likely to view scenes with

different depths.

There are other advantages to our formulation. Like the traditional parallax method,

our method is based on optical flows; thus no stereo correspondence is needed. Another

important advantage of our algorithm is that the length of the baseline (the distance

between the camera centers) is not necessary for the motion estimation, as we show in

the next section. This advantage renders our method suitable for cases where the baseline

might be difficult to measure.

In sum, the contribution of our work lies in the following. First, we analyze the

aptitude of a class of eyes (possessing the common characteristics of having matching

pairs of visual rays) for SfM. Then a linear algorithm is put forth to address both the

geometrical and numerical difficulties associated with the motion estimation problem.

Geometrically, we are able to make full use of the inherent robustness of such wide-

FOV camera clusters by tightly coupling the information from each individual camera

at the flow level. We make use of the quasi-parallax to accurately recover the translation
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by weakening the rotation. The robustness of the algorithm is enhanced as we eschew

correspondences and do not require strict parallax. Numerically, with appropriate data

normalization and the TLS approach, the linearization proves to behave well, with both

the translation and rotation being recovered well with very little biases. Compared to

nonlinear methods, our method runs at a much less computational cost and is much

faster.

3.2 Systems to which our method can be applied

During the last 20 years, high-speed micro-circuitry, sensor arrays, arrays of micro

lenses, gradient index materials, special glasses, and plastic optics manufacturing tech-

niques are starting to give us more suitable building blocks for artificial eyes arranged in

different configurations.

3.2.1 Artificial Compound Eye

Biologically inspired optical science is a relatively new and expanding field. The recent

development of reconfigurable soft lithography using polydimethylsiloxane (PDMS) al-

lows the creation of unconventional three-dimensional (3D) polymeric optical systems

similar to biological ones, which are themselves constructed from biological polymers.

New micro-machining technologies have miniaturized these devices to a scale never

before possible. Ogata et al. (Ogata, Ishida, and Sasano, 1994) fabricated an artificial

compound eye and integrated retina in the 1990s using planar arrays of gradient refrac-

tive index (GRIN) rods to focus light through pinholes onto a photodetector array. Their

resolution was only 16 by 16 but has led to modern versions that have the ability to
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(1)

(2)

Figure 3.1: (1) Microlens array from Ogata et al (2) An artificial compound eye fabri-
cated by the biologically inspired 3D optical synthesis method from Jeong et al

capture full color images (Duparre and et al., ). Even newer examples of apposition

eyes have ommatidia arranged normal to a sphere, more faithful to their natural coun-

terparts. Hornsey et al. (Hornsey and et al., 2004) constructed an optic dome covered

with eyelet lenses made of glass fiber bundles. The first artificial ommatidia by self-

aligned microlenses and waveguides were created by (Kim, Jeong, and Lee, 2005). This

was followed by a 3D compound eye with self-aligned waveguides and individual mi-

crolens units on a spherical surface by (Jeong, Kim, and Lee, 2006). The ommatidia

are arranged along a hemispherical polymer dome such that each points to a different

direction, allowing for a wide field of view, similar to that of the natural eye. Neumann

et al (Neumann and et al., 2004) also presented a design concept for a compound eye

sensor and showed how it can be used to solve the ego-motion estimation problem.
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3.2.2 Lateral Eyes

The visual system of lateral eyes is commonly found in vertebrates, especially birds.

Located at opposite sides of the head, the two laterally positioned eyes have viewing

directions that are parallel but 180◦ apart. Each eye works independently and views

different parts of the world with non-overlapping visual fields. A special case arises

when the two optical centers coincide, reducing the lateral eye system to a panoramic

eye configuration. Any visual system configured in this fashion can obtain matching rays

in the entire or part of the visual field of each camera, and it has the virtue of simplicity

in construction.

3.2.3 Conical Mirror

The following conical mirror camera from (Chahl and Srinivasan, 1997) has become

quite popular in biomimetic vision systems since it provides a two-dimensional model

of the almost omnidirectional insect eye, and it is relatively easy to construct (see also

(Franz and et al, 1998b),(Huber and Bülthoff, 1998)). Referring to Figure 3.2 if the upper

limiting ray lu is above the horizon (this is the case if α > 90◦ andR > −h cosα tan 0.5α

), then matching pairs of visual rays can be found. In particular, if we let θ(l) de-

note the angle made by the visual ray l with the horizon, then those visual rays li with

|θ(li)| < min(|θ(l1)|, |θ(lu)|) and which are mapped inside the circular disk with radius

ρmax in the image plane would have matching pairs.
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Figure 3.2: Imaging geometry for a conical mirror camera. N , camera nodal point; T , tip of
conical mirror; lu, upper limiting ray; h, horizontal ray; l1, lower limiting ray. The conical mirror
camera allows for capturing omnidirectional images without rotating a camera. A ring-shaped
visual field between l1 and lu is mapped to a circular disk with radius ρmax in the image plane.
The visual field contains the horizon if α > 90◦ and R > −h cosα tan 0.5α

3.3 Technical Details of Our Approach

3.3.1 Prerequisites

Figure 3.3: Configuration of the laterally-placed pair of cameras. pcam1 and pcam2 form
a matching pair of points.

Figure 3.3 shows the basic set-up of our system, configured as a laterally placed pair

of cameras. An extended set-up involving more than two cameras is studied in Section

3.3.3.
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Here, the two cameras face opposite directions and their optical centers are of equal

distance (termed as radius r) from the global origin O. The two cameras are attached

rigidly to the body and move together according to a global motion (v, ω) expressed in

the world coordinate system {O-XYZ}. The cth camera’s translation vc and rotation ωc

are related to the global motion by the following respectively:

vc = RT
c · (ω ×Tc + v), ωc = RT

c · ω (3.1)

where Rc and Tc denote the orientation and translation of the cth camera relative to the

world reference frame respectively:

R1 =


1 0 0

0 1 0

0 0 1

 T1 =


0

0

r

 , R2 =


−1 0 0

0 1 0

0 0 −1

 T2 =


0

0

−r


Assuming the global motion executed by the system is given by translation v = (U, V,W )T

and rotation ω=(α, β, γ)T , the individual 3D motions of cameras are:

v1 = (U + βr, V − αr,W )T , ω1 = (α, β, γ)T

v2 = (−U + βr, V + αr,−W )T , ω2 = (−α, β,−γ)T (3.2)

This paper adopts a perspective pinhole camera model with known focal length f . As-

suming (u, v) is the optical flow at image point (x, y) arising from a scene point with

depth Z, we have:

u =
utr

Z
+ urot =

Wx− fU
Z

+
αxy

f
− β(

x2

f
+ f) + γy

v =
vtr

Z
+ vrot =

Wy − fV
Z

+ α(
y2

f
+ f)− βxy

f
− γx (3.3)

where 1
Z

(utr, vtr) and (urot, vrot) are the components of the flow due to the translation

and the rotation respectively. Canceling the depth Z from the above two equations gives
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us the differential epipolar constraint:

uvtr − vutr = urotvtr − vrotutr (3.4)

Fully expanding Equation (3.4) yields many nonlinear terms on the right-hand side, most

of which are the coupling terms between translation and rotation generated by the prod-

ucts urotvtr and vrotutr. This coupling contributes to the formation of the bas-relief

valley under small FOV: the residue caused by error in the translational estimate can be

compensated by suitable choice of error in the rotational estimate.

3.3.2 The Basic Two-stage Recovery Algorithm

Our estimation algorithm consists of two stages where the translation and the rotation

are recovered separately. In the first stage, the translation is estimated from the quasi-

parallax terms in which the translational flows are dominant. Given the translational

estimate, the second stage constructs a linear system suitable for recovering rotation.

To obtain the quasi-parallax terms for translation recovery, we collect from the cam-

era pair projection rays that are parallel but opposite in direction. Such pair of visual rays

project onto the two image planes a pair of image points, which we term as the matching

points. As in Figure 3.3, pcam1 and pcam2 are a pair of matching points. pcam1 is pro-

jected from visual ray O1P1 and pcam2 is projected from O2P2. If the image coordinate

of pcam1 is (a,−b), it is evident that pcam2 should lie at the position of (a, b). In general,

we use pcam1 = (xi, yi) and pcam2 = (xi,−yi) to represent the ith matching pair. In

the cth(c = 1, 2) camera, denote (uic, v
i
c) as its optical flow measured at the ith matching

pair. For notational convenience, we omit the index i where it is clear from the context,

and thus 1
Z

(utrc , v
tr
c ) denotes the translational flow and (urotc , vrotc ) the rotational flow.
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3.3.2.1 Stage 1: Recovering the global translation

At the matching points, we substitute the respective camera rotations in Equation (3.2)

into Equation (3.3). It is clear that the rotational flows at the pair of matching points are

identical in magnitude:

urot2 = urot1
∆
= urot, vrot2 = − vrot1

∆
= −vrot (3.5)

With these two equalities in hand, we subtract the respective epipolar constraints (Equa-

tion (3.4)) of camera 1 and camera 2 and obtain:

u1v
tr
1 − u2v

tr
2 − v1u

tr
1 + v2u

tr
2 = urot(vtr1 − vtr2 )− vrot(utr1 + utr2 ) (3.6)

Substituting the respective motions of camera 1 and camera 2 in Equation (3.2) into

Equation (3.6), we obtain:

(v1 + v2)U + (u2 − u1)V +
(u1 − u2)y − (v1 + v2)x

f
W

=2r(urotα + vrotβ)− (u1 + u2)αr − (v1 − v2)βr (3.7)

This equation is linear in the translation unknowns (U, V,W ), with all the coupling terms

between v and ω eliminated. Note that if we set r = 0, the preceding would reduce to

the following equation:

u1 − u2

v1 + v2

=
Wx− fU
Wy − fV

(3.8)

This is equivalent to the constraint obtained by summing the optical flows at antipodal

points of a spherical camera in (Lim and Barnes, 2007) and then eliminating the depth-

related factor K in their formulation. It is also related to the earlier work of (Thomas

and Simoncelli, 1994) which takes the cross product of the optical flow with the position

vector to obtain the angular flow, essentially a dual representation of the usual optical

flow. In terms of the geometrical constraint utilized, there is no difference between the
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formulations of (Thomas and Simoncelli, 1994) and (Lim and Barnes, 2007; Lim and

Barnes, 2008) and the r = 0 special case in our formulation.1

Coming back to our system, normally it produces multiple pairs of matching points

in the form of Equation (3.7). Collecting all the N equations from the entire set of

matching points, we arrive at:

A(N×3)x1 = −rB(N×6)x2 (3.9)

where x1 = [U, V,W ]T , x2 = [α, β, αβ, βγ, αγ, β2 − α2]T , and the corresponding ith

row of A and B are as follows:

ai = [vi1 + vi2, u
i
2 − ui1,

(ui1 − ui2)yi

f
− (vi1 + vi2)xi

f
]

bi = [ui2 + ui1, v
i
1 − vi2, 2

xi2 − yi2

f
, 2xi, −2yi, 2

xiyi

f
] (3.10)

The right-hand-side (RHS) of Equation (4.12) or 3.9 still contain terms in α, β, γ and r;

they enter the equation via the induced terms ω×Tc in the individual camera translations

vc. That is, they arise from the translation induced by the global rotation ω. In this sense,

the term r‖Bx2‖ on the RHS of Equation (3.9) can be viewed as a residue, resulting from

imperfect parallax arising from the induced translation ω × Tc. Clearly, if the radius r

is zero, no induced translation exists, and we will obtain perfect parallax.

In most scenarios, this residue caused by the induced translation ω × Tc is much

smaller compared to the other terms, due to the typical sizes of ω and Tc. Firstly, the

magnitude of ω is normally much smaller than that of translation v, unless the rotation
1The apparent difference in the operations done to the antipodal pair of optical flows (summation

in (Lim and Barnes, 2007) and subtraction in (Thomas and Simoncelli, 1994)) is a consequence of the
sign difference introduced by the cross product operation in (Thomas and Simoncelli, 1994); the eventual
expressions in both formulations are essentially the same. In this connection, we would also like to observe
that it is incorrect to say that the subtraction operation of (Thomas and Simoncelli, 1994) will face problem
when the antipodal points are equally far away, as claimed by both sets of authors. The so-called angular
translation flows of an antipodal pair in (Thomas and Simoncelli, 1994) are pointing in opposite directions;
thus subtracting them would not make them vanish!
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is very dominant in the system. Secondly, the radius r in Tc is usually much shorter

than 1 m in both man-made and biological systems. Thus, multiplying all the terms on

the RHS of Equation (3.9) by r further reduces their magnitude. As a consequence, the

induced translation terms on the RHS are negligibly small compared to the true parallax

terms on the left-hand-side. Due to the smallness of those terms, it would be numerically

questionable to solve all the unknowns in Equation (3.9) directly, whether via a nonlinear

method or via a linearizing scheme (by ignoring the dependency among the unknowns).

Viewed in another way, the quasi-parallax formulation are not suited for estimating

both the translation and the rotation together, as the effect of the rotation is very weakly

represented in the quasi-parallax via the induced translation. Trying to fit all the un-

knowns in one go would result in overfitting and produce a biased solution that is noise

sensitive.

Instead, we find that numerically it is much more stable to first ignore the residual

terms on the RHS of Equation (3.9) and solve the homogeneous system Ax1 = 0 via

Total Least Squares (TLS). With the approximate translation estimate, we proceed to

Stage 2 (Section 3.3.2.2) to solve for the rotation. We then substitute the rotation estimate

(α̂, β̂, γ̂) back into x2 of Equation (3.9) and form a new equation:

[A,Bx2]︸ ︷︷ ︸ · [x1, r]
T︸ ︷︷ ︸ = 0

ÃN×4 · x̃1 = 0 (3.11)

Assume the singular values of Ã are τ1 > . . . > τ4 > 0. If the computed x2 is accurate

enough, or alternatively, the whole residue r‖Bx2‖ is insignificant compared to the other

terms, τ4 will be close to zero, since Equation (3.11) is homogenous. It follows that we

can use this condition to check if we need to refine the current estimate of the translation.
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As the absolute value of τ4 is also affected by the level of noise, we consider instead

both the value of τ4 and the ratio ρ = τ3
τ4

. If ρ > 100 and τ4 < 0.3, we deem the

rotational residue r‖Bx2‖ insignificant or well estimated, so that Equation (3.11) can be

satisfyingly regarded as a homogeneous system of equations2. In this case, we accept the

current solution (v̂, ω̂) as correct. Otherwise, we recompute the translation by solving

Equation (3.11) with TLS. With the new translation estimate, the rotation estimate can

also be refined via Stage 2. In principle, we can iterate the above process until both

the translation and rotation estimates converge, However, we find that under most cases

tested in our simulation, Ã is rank-deficient and there is no need to refine the estimates.

Even in cases when the induced terms are not negligibly small (for instance, caused by

dominant rotation), the solution converges after one iteration.

Based on the above observations, we propose the method in Algorithm 1. Note that

the recovery does not require the knowledge of r and the recovered translation v̂ is in the

form of (sU, sV, sW )T , up to an unknown scale factor s which scales the magnitude of

v̂ to unity.

3.3.2.2 Stage 2: Recover the global rotation

It is not advisable to compute (α, β, γ) from Equation (3.9), since it comprises chiefly of

global translation (U, V,W ). Instead, we revert to the epipolar constraint of each camera

and use all the available feature points (not necessarily matching points) to recover rota-

tion. Substituting the estimated (sU, sV, sW )T into the individual epipolar constraints

2Given a approximation of (α, β, γ), checking the rank condition of Ã works better than checking the
rank of A directly, especially when the induced translation terms might not be vanishingly small.
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Algorithm 1 Linear Quasi-parallax Algorithm
1: Recover the translation estimate v̂ from Ax1 = 0, which is to be solved by TLS

approach in Section 3.4.
2: Given v̂, compute ω̂ as described in Algorithm 2.
3: Check if current estimate (v̂,ω̂) obeys the rule of positive depth. If not, flip v̂ by

180◦ and go back to Step 2 to recompute rotation with −v̂.
4: Check if the induced translation is insignificant. If the following condition is sat-

isfied, the algorithm regards the induced translation as insignificant: it stops and
returns current (v̂, ω̂) as the global motion. Otherwise, the algorithm proceeds to
Step 5.
[Condition:] Substitute ω̂ into x2 to form Ã in Equation (3.11). If ρ > 100 and
τ4 < 0.3, we consider Ã as having rank 3 and accept current solution (v̂, ω̂) as
correct.

5: Ã is full rank. Recompute translation by using TLS to solve Equation (3.11) for x̃1.
Then v̂ is returned as the first three components of x̃1. Rotation is also refined using
this updated x̃1. Repeat Steps 4 and 5 until convergence.

of the two cameras, we obtain a system of equations in the form of:

M · [α, β, γ︸ ︷︷ ︸, rsα, r

s
β,
r

s
αβ,

r

s
αγ,

r

s
γβ,

r

s
(α2 − β2)︸ ︷︷ ︸]T = d

Θ1 Θ2 = r
s
Φ (3.12)

where M is a data matrix, d is a measurement vector, Θ1 and Θ2 are two unknown

vectors.

Denote (u1, v1) as the optical flow at the feature point (x1, y1) in camera 1 and

(u2, v2) as the flow at (x2, y2) in camera 2. Then mcam1 and mcam2, respectively the

rows of M arising from the measurement at (x1, y1) in camera 1 and (x2, y2) in camera

2, are given by:

mcam1 = [f2U − fWx1 − x1y1V + y2
1U, (f

2V − fWy1 − x1y1U + x2
1V ),

Wy2
1 − Ufx1 − V fy1 +Wx2

1,−u1f,−v1f, y
2
1 − x2

1, y1f,−x1f, x1y1]

mcam2 = [x2y2V − f2U + fWx2 − y2
2U, fWy2 − f2V + x2y2U − x2

2V,

Ufx2 −Wy2
2 + V fy2 −Wx2

2,−u2f, v2f, y
2
2 − x2

2, y2,−x2, x2y2] (3.13)
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Defined in a similar manner, dcam1 and dcam2 are given by:

dcam1 = f(v1U − u1V ) +W (u1y1 − v1x1)

dcam2 = W (v2x2 − u2y2)− f(u2V2 + v2U2) (3.14)

Due to the existence of six higher order terms in Θ2, Equation (3.12) cannot be directly

solved by linear techniques without compromising the recovery performance. Even solv-

ing the equation nonlinearly is fraught with the danger of overfitting, since these six

terms of Θ2 contribute to Equation (3.12) insignificantly compared to the first three terms

of Θ1. For our application scenario, with its typical values of r and s, and with the (x, y)

values arising from small to moderately small FOVs, the contribution of the second-

order terms (i.e. r
s
α, r

s
β) is typically one to two orders of magnitude smaller compared

to that of the first three terms, and the contribution of the remaining four third-order

terms is yet another order of magnitude smaller. Incorporating all these terms will result

in an overly complex model that captures noises in the data. As before, we adopt the

strategy of reducing the dimension of the problem and drop the four third-order terms.

The remaining terms give rise to this system of equations:

[
m1, . . . ,m5

]
·
[
α, β, γ, r

s
α, r

s
β

]T
= d (3.15)

where mi is the ith column in M. Further ignoring the dependency among the unknown

variables, we can compute the initial estimate ω̂0 = (α̂0, β̂0, γ̂0)T from Equation (3.15)

by the linear least squares technique.

The recovered ω̂0 is used for the refinement step. Substituting ω̂0 into Φ in Θ2, we

have Φ̂0 = Φ|α̂0,β̂0,γ̂0
. Rearranging Equation (3.12) leads to a standard linear system:[

m1, m2, m3, [m4 . . .m9]Φ̂0

]
·
[
α, β, γ, r

s

]T
= d (3.16)
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Solve the above equation for an updated rotation estimate. If necessary, we substitute the

newly obtained estimate back into Equation (3.16) and solve it again for a more refined

solution. This process can be repeated until the solution converges. Numerical tests show

that the estimate always converges onto a global solution after one or two iterations. This

fast convergence can be attributed to the small magnitude of those higher order terms, in

comparison to the first three terms of Θ1 in Equation (3.12). Algorithm 2 presents our

linear rotation estimation algorithm, carried out in three steps.
Algorithm 2 Linear Rotation Recovery Algorithm

1: Linearize: Directly solve Equation (3.15) as a linear system, with the solution given
by M1

+d where M1
+ is the pseudo-inverse of the matrix

[
m1, . . . ,m5

]
.

2: Refine: Given the estimate ω̂0 = (α̂0, β̂0, γ̂0)T , compute Φ̂0 = Φ|ω0 to form Equa-
tion (3.16). Solve Equation (3.16) by linear least squares for a new estimate of ω.

3: Iterate: Iterate Step 2, if necessary, until convergence.
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3.3.3 Extended Quasi-parallax for Multiple Camera Pairs

Figure 3.4: Multiple camera pairs configured as a compound eye. The global coordinate
is {O-XYZ} and the kth camera’s coordinate is {Ok − XkYkZk}. The system is made
up of camera pairs placed at diametrically opposite positions, such as the camera pair 3
and 4.

Figure 3.4 shows a system of multiple camera pairs configured in the manner of the

insect compound eye. It consists of many small-FOV cameras, situated on the surface

of a sphere. Each individual camera represents an ommatidium and has a visual axis

which points outward in the direction of the surface normal of the sphere. Any two

diametrically opposing cameras (e.g. Camera 3 and Camera 4) can be considered as a

lateral eye pair discussed in the preceding sections, with a matrix equation similar to

Equation (3.9). Suppose N is the total number of matching points collected from all the

pair of cameras. Collecting the respective equations from all the pairs in the system, we

have:
A∗(N×3)x1 = rB∗(N×9)x3 (3.17)

where x3 = [α, β, γ, αβ, βγ, αγ, α2, β2, γ2]T . Similar to A and B in Equation

(3.9), the data matrices A∗ and B∗ depend on the optical flows and the matching point

positions. In addition, A∗ and B∗ also contain terms decided by the orientation and
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displacement of each camera pair with respect to the global coordinate.

Translation recovery is rather straightforward: we just need to substitute Equation

(3.17) into Algorithm 1 on page 38 and follow the procedure accordingly. Once the

translation is recovered, we then proceed to the rotation estimation stage, described in

Algorithm 2 on page 40. The original system of equations in Equation (3.12) is slightly

modified to:

M∗ ·

[
α, β, γ︸ ︷︷ ︸, rs [α, β, γ, αβ, αγ, γβ, α2, β2, γ2]︸ ︷︷ ︸

]T
= d∗

Θ1 Θ3 =
r

s
Φ∗ (3.18)

where M∗ is the data matrix, d∗ is the measurement vector, and Θ1 and Θ3 are two un-

known vectors. Compared to the original Equation (3.12), we now have 3 more higher

order unknown terms. Such terms arise because in many lateral eye pairs, their opti-

cal axes are no longer aligned with the global Z-axis, introducing more coupling terms

between the induced translation and the rotation.

The Linearize step in Equation (3.15) needs to be modified too to incorporate the

r
s
γ term: [

m∗1, . . . ,m
∗
6

]
·
[
α, β, γ, r

s
α, r

s
β, r

s
γ

]T
= d∗ (3.19)

where m∗i is the ith column in M∗. The rest of the procedure is the same.

3.4 TLS and Data Normalization

In real images, the data matrix A of a system of linear equations Ax1 = 0 is inevitably

perturbed by noise. From a statistical perspective, the Total Least Squares (TLS) ap-

proach is better suited to deal with such errors-in-variables (EIV) models, as compared
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to the classical Linear Least Squares techniques (Leedan and Meer, 2000). The TLS ap-

proach has a restrictive requirement that the error covariance matrix C associated with

A should be an identity matrix scaled by an unknown scale factor. As this condition is

violated in many applications as well as in our case, we need to perform data normaliza-

tion on the matrix A. We will demonstrate how this can be done in the case of Equation

(3.10). The normalization matrix for Ã in Equation (3.11) could be obtained in a similar

spirit.

The following assumptions are required:

1. The noises in the optical flows of both cameras are additive, i.i.d and Gaussian, with

σ2
v as the noise variance.

2. The matching points’ positions are not corrupted by noise.

With the preceding assumptions, the error in the ith observed vector can be written as:

∆ai = [∆vi1 + ∆vi2,∆u
i
2 −∆ui1, (∆ui1 −∆ui2)

yi

f
− (∆vi1 + ∆vi2)

xi

f
] (3.20)

where (∆uic,∆v
i
c) represents the Gaussian noise added to the flow at the ith matching

pair in the cth camera. Denoting the covariance matrix associated with ∆ai as Ci (i =

1 . . . N ), we have:

Ci = 2σ2
v


1 0 −xi

f

0 1 −yi

f

−xi

f
−yi

f
xi2+yi2

f2

 (3.21)

Clearly Ci is not the identity matrix as required. We should normalize the dataset to

make the average covariance matrix closer to identity. The normalization scheme is

carried out in the following order to obtain the normalization matrix H.

1. Translate: Shift the centroid of the data to the image origin so that the off-diagonal

terms in Ci are closer to 0.
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2. Scale: Normalize the shifted matching points (x
i

f
, y

i

f
) so that they have a scatter closer

to a unit circle. As a result, the last diagonal entry xi2+yi2

f2
in Ci will be nearer to 1.

Normalized by H, the homogeneous equation Ax1 = 0 becomes:

(AH)(H−1x1) = 0 ⇒ Āx̄1 = 0 (3.22)

The solution for x̄1 is given by the eigenvector associated with the smallest singular

value of Ā. The original translation x1 is then recovered as Hx̄1.

After normalization, not only the error covariance matrix C becomes much closer

to identity, the condition number of ĀT Ā is also much smaller, which means that the

system is more robust to noise perturbations.

3.5 Numerical Characterization

3.5.1 Extended Bundle Adjustment

In this section, we intend to compare our method against the gold standard solution ob-

tained by the BA algorithm using Fisher Information Matrix. The purpose of the com-

parison is not intended to establish the superiority of our method over BA or otherwise;

in any case, the BA method is usually applied to scenarios with longer baselines than the

differential displacements being considered here. In our system, where the scene points

cannot be tracked over a large number of views, the bundle of visual rays being adjusted

in the BA are “local” to each camera (over its successive views), although in our formu-

lation, the adjustment does obey the constraint that the individual camera motions must

arise from the same global motion. When the field of view of each individual camera is

small, difficulties might arise and it is not at all clear if BA would have a better perfor-
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mance than our quasi-parallax formulation. The purpose of the following comparison is

to shed some light on this issue.

The original BA deals with a single camera and thus needs to be extended to a sys-

tem of two laterally placed cameras. The outline of the extended BA is given out in

Algorithm 3. The extension of the preceding algorithm to the case of multiple cam-

era pairs is straightforward and will be carried out in the next section for experimental

comparison.

Algorithm 3 Extended Bundle Adjustment

1: Initialize: Using linear subspace method, solve camera motion (vc, ωc) (c = 1, 2)
separately and compute initial world depths Z0 for all feature points. The ini-
tial estimates of the global motion (v0, ω0) is given by v0 = (v1 + Rv2)/2, and
ω0 = (ω1 + Rω2)/2 in this simple configuration, where R is a diagonal matrix with
[−1, 1,−1] on the diagonal.

2: Estimate: For every feature point pi (i = 1 . . .Mc) in the cth camera, compute the
back-projected flow (ûic, v̂

i
c) using the global motion estimate.

3: Iterate: Minimize the following nonlinear cost function using Levenberg-
Marquardt algorithm over M1 +M2 + 6 variables where M1 and M2 are the number
of feature points in Camera 1 and Camera 2 respectively. There are M1 +M2 depth
unknowns forming the vector Z and 6 global motion parameters. For the sake of
simplicity, we assume M1 = M2 and r is known.

J(v, ω,Z) =
2∑
c=1

Mc∑
i=1

[(ûic − uic)2 + (v̂ic − vic)2] (3.23)

3.5.2 Quasi-parallax versus Bundle-adjustment

We investigate the effectiveness of the quasi-parallax formulation in removing the inher-

ent ambiguity between the translation and the rotation, and compare it against that of the

gold standard BA formulation. Fisher information matrix is used to compute the covari-

ance between motion parameters. Large off-diagonal entries in this matrix indicate an

inherent ambiguity between the corresponding parameters. It is well-known that a single

camera suffers from the ambiguity between the U and β pair, and the V and α pair.
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According to Pless (Pless, 2004), if we assume a Gaussian distribution for the errors

in the measured optical flows, the Fisher matrix of a multiple camera system is defined

as:

F =
∑
k∈D

(
N∑
i=1

∂qi
∂k

T ∂qi
∂k

) |k=(v,ω,Z1...ZN ) (3.24)

where N is the total number of feature points and qi is the optical flow measured

at the ith feature point. k is a vector of unknown parameters which contains the global

motion and the depths of all the feature points. Each k in the parameter set D defines a

motion-scene configuration and has an associated Fisher matrix. The numerical integra-

tion of this matrix over many samples from D, characterizes the behavior of a camera

system in the environment described by D.

The camera and the motion-scene configuration for computing the Fisher matrices is

as follows. Each camera has a 40◦ FOV and views a different scene with depths ranging

from 3m to 7m in one camera, and from 5m to 10m in the other. As we will see later, this

asymmetrical depth distributions for the two cameras is crucial to bring out the hidden

ambiguity in the extended BA method. Both the translation and the rotation are sampled

uniformly, with their respective norms equal to 1 and 0.01 respectively.

For a laterally-placed camera pair, the extended BA simply collects all the available

flows from the two cameras. Thus the measurement vector Q = {qi}Ni=1 is [u1; v1; u2; v2],

as no interaction exists between the two cameras at the level of optical flows. The overall

Fisher matrix is equal to the addition of the individual Fisher matrices for each camera.

As shown in Table 3.1(b), the bas-relief ambiguity still looms large in the extended

BA. This contradicts Pless’ claim in (Pless, 2004) that no ambiguity exists in this lateral

eye set-up. This discrepancy can be attributed to the fact that in his simulations, both

cameras were viewing scenes with identical depth distributions. Under such setting,
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Table 3.1: Fisher matrices of two methods with ambiguities highlighted, QP refers to
Quasi Parallax and BA refers to Bundle adjustment

U V W α β γ

1 0 0 0 0.002 0
0 1 0 -0.002 0 0
0 0 0.088 0 0 0
0 -0.002 0 0.001 0 0

0.002 0 0 0 0.001 0
0 0 0 0 0 0

U V W α β γ

0.03 0 0 0 0.035 0
0 0.03 0 -0.036 0 0
0 0 0.002 0 0 0
0 -0.036 0 0.994 -0.004 0

0.035 0 0 -0.004 1 0
0 0 0 0 0 0.079

(a) QP-based with FOV= 50◦ each (b) BA-based with FOV= 50◦ each

U V W α β γ

1 0 0 0 0.001 0
0 1 0 -0.001 0 0
0 0 0.947 0 0 0
0 -0.001 0 0.001 0 0

0.001 0 0 0 0.001 0
0 0 0 0 0 0

U V W α β γ

0.017 0 0 0 0.003 0
0 0.017 0 -0.003 0 0
0 0 0.016 0 0 0
0 -0.003 0 0.981 0.005 0

0.003 0 0 0.005 1 0
0 0 0 0 0 0.352

(c) QP-based with FOV= 100◦ each (d) BA-based with FOV= 100◦ each

the corresponding ambiguities of the individual cameras, say the confusion between U

and β, manifest in covariance terms with the same magnitude but different signs. Thus

if added up, these ambiguities canceled each other and the entry of Uβ in the overall

Fisher matrix became zero. Hence the “zero ambiguity” phenomenon in (Pless, 2004)

can be regarded as a case of special scene type; here, a more general, asymmetric depth

scene reveals that BA still suffers from the bas-relief ambiguity in the case of small and

moderate field of view.

In our quasi-parallax formulation, the input measurement is chosen to facilitate

translation pickup. The Fisher matrix is thus based on the matching points, that is,

Q is given by [u1 − u2; v1 + v2]. It can be seen from the large values of the first three

diagonal entries of Table 3.1(a) that the translation parameters are picked up well using

our formulation. The last three diagonal entries also revealed that this formulation is not

suitable for rotation recovery and indeed we used a separate step in Section 3.3.2.2 to
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recover the rotation. Note that since ωz is not present in our Q, all the associated entries

are zero.

Tables 3.1(c) and (d) show the Fisher matrices of the same two methods with iden-

tical setup, except that the field of view of each camera is now 100◦. We can see that

the bas-relief ambiguities are very much reduced, especially in the case of the extended

BA. The results suggest that with visual field that covers the entire visual sphere, the

bas-relief ambiguities do vanish. Thus, the fact that it is only doing “local” bundle ad-

justment might not matter in this case.
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Chapter 4

Other Formulation of Linear

Quasi-Parallax

Besides the lateral eye model discussed above, there are other biological eye systems

that can leverage the linear quasi-parallax. The following sections will explore how our

quasi-parallax can be adapted to 1) a new imaging sensor inspired by spider eyes and 2)

a pair of eyes with parallel optical axis pointing in the same directions. These kind of

eyes differ from those in the previous chapter in that the eyes face the same directions.

4.1 Aranead Eye

A common eye model which exists in various families of actively hunting spiders in-

spires us to propose a new imaging sensor termed as the Aranead Eye. These spiders

catch prey without a web; thus their eye structure and the attendant visual acuity is

of paramount importance. Despite slight variation in the eye arrangement, the general

topology of these different families of spiders is largely the same. They all have two to
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three rows of eyes, each with its own retina and lens, spanning a wide field of view. As in

Fig 4.1, a jumping spider has eight eyes, each with its own retina and lens, arranged into

two rows. The front row has four eyes comprising two forward-facing pairs. The second

row has two smaller eyes on either side. Back on the side of the head is another pair of

eyes. This structure not only gives the spider a large field of view, but also enables it to

rapidly pick up the movement of the prey.

Figure 4.1: The eyes of a jumping spider

Such wide field of view can potentially disambiguate the coupling between rotation

and translation for accurate motion recovery. Moreover, each individual eye is not unlike

conventional pinhole camera, so that its resolution (especially the frontal eyes) is far

better than that of compound eyes. This allows the spiders to detect prey quickly. Most

importantly, SfM benefits a lot from the geometrical constraint afforded by the Aranead

eye arrangement, namely, there exists at least two parallel rows of similarly oriented

eyes.
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4.1.1 System Set-up

Figure 4.2: Configuration of the Aranead Eye

Figure.4.2 shows the configuration of the Aranead eye, where eight cameras with

small field of view are mounted on the surface of a hemisphere. The hemisphere is

built on a platform whose 3D motion is referred to as the global motion. The world

coordinate’s origin O is set at the center of the hemisphere. Four out of the eight cameras

are on the equator with viewing directions emanating from the center. The remaining

four cameras are positioned on the smaller circle whose center is B; they have the same

orientations as that of the camera below them on the equator. We group these eight

cameras into four pairs (camera i pairs with camera (i+4), i=1..4); thus each pair lie on a

great circle and have the same viewing direction and orientation. All the optical centers

of the eight camera are set on the surface of the hemisphere; the radius of the equator is

r and the radius of the smaller circle is t.
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4.1.2 Motion Recovery Algorithm

Denote the orientation and translation of camera C relative to the world reference frame

as R and T respectively. Assume the hemisphere undergoes a global motion given by

translation v = (U, V,W )T and rotation ω=(α, β, γ)T . The individual 3D motions of

some of the cameras induced by the global motion of the platform are listed below:

Camera 1 : ω1 = [ γ β −α ]T v1 = [ W + βr v − γr −U ]T (4.1)

Camera 2 : ω2 = [ −γ β α ]T v2 = [ −W + βr V + γr U ]T (4.2)

Camera 5 : ω5 =

[
γ β −α

]T
v5 =

[
W + βt V − αt− γt −U − βt

]T
(4.3)

Camera 6 : ω6 =

[
−γ β α

]T
v6 =

[
−W + βt V − αt+ γt U + βt

]T
(4.4)

For general motion that is non-lateral, i.e. W 6= 0, we can eliminate W/Z from the

optical flow equation and obtain the following equation:

(x− x0)[v − α(
y2

f
+ f) +

βxy

f
+ γx] = (y − y0)[u− αxy

f
+ β(

x2

f
+ f)− γy)] (4.5)

which can be re-written as:

[a0 a1 ... a11]T · [W U V αW βW γW Uα Uβ Uγ V α V β V γ] = 0 (4.6)

where

a0 = −vx+ uya1 = fva2 = −fua3 = xfa4 = yf

a5 = −(x2 + y2)a6 = −(f 2 + y2)a7 = xya8 = xf = a3

a9 = xy = a7a10 = −(f 2 + x2)a11 = yf = a4

(4.7)

To differentiate between the coefficients ae, 1 ≤ e ≤ 11 in Equation.4.6, we attach

a subscript i after the coefficients of the ith camera, e.g. a0,i is the a0 in the ith camera.

Assume that for each pair of cameras, there are two corresponding feature points at the
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same image position, called the matching points, in their respective image plane (not

necessarily projected from the same world point). Thus for the pair of cameras i and j,

ae,i equals ae,j for 3 ≤ e ≤ 11. For brevity ae,i and ae,j will henceforth appear as ai

for 3 ≤ e ≤ 11 in later discussion. However a0,i, a0,j ,a1,i, a1,j , a2,i, a2,j could still be

different as they are dependent on the optical flow at the feature point.

Take the 2nd pair of cameras, camera 2 and camera 6, as example. We substi-

tute Equation.(4.2) and Equation.(4.4) into Equation.(4.6) and obtain Equation.(4.8) and

Equation.(4.9) for camera 2 and camera 6 respectively.

a0,2U + a1,2(−W + βr) + a2,2(V + γr) + a3(−γU) + a4(βU) + a5(αU)

+a6(−W + βr)(−γ) + a7(−W + βr)β + a8(−W + βr)α + a9(V + γr)(−γ) (4.8)

+a10(V + γr)β + a11(V + γr)α = 0

a0,6(U + βt) + a1,6(−W + βt) + a2,6(V − αt+ γt) + a3(−γ)(U + βt) + a4β(U + βt)

+a5α(U + βt) + a6(−W + βt)(−γ) + a7(−W + βt)β + a8(−W + βt)α (4.9)

+a9(V − αt+ γt)(−γ) + a10(V − αt+ γt)β + a11(V − αt+ γt)α = 0

Subtracting Equation.(4.9) from Equation.(4.8), we get:

(a2,6t)α + (a1,2r − a1,6t− a0,6t)β + (a2,2r − a2,6t)γ + (a0,2 − a0,6)U + (a2,2 − a2,6)V

+(a1,6 − a1,2)W + (a8(r − t) + (a10 − a5)t)αβ + (a3t+ (a10 − a6)(r − t))βγ (4.10)

+(a11(r − t)− a9t)αγ + (a11t)α
2 + (a7(r − t)− a4t)β

2 − a9(r − t)γ2 = 0

Similarly, subtracting camera 5’s equation from camera 1’s yields:

(a2,5t)α + (a1,1r − a1,5t+ a0,5t)β + (a2,5t− a2,1r)γ + (a0,5 − a0,1)U + (a2,1 − a2,5)V

+(a1,1 − a1,5)W + ((a10 − a5)t− a8(r − t))αβ + (a3t+ (a6 − a10)(r − t))βγ (4.11)

+(a11(r − t) + a9t)αγ − (a11t)α
2 + (a7(r − t) + a4t)β

2 + a9(t− r)γ2 = 0
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It is straightforward to derive the other equations by subtracting camera 7 from camera

3 and camera 8 from camera 4 respectively. As a consequence of combining equations

from strategically located pairs of cameras, only six rotational nonlinear terms, αβ, βγ,

αγ, α2, β2, γ2, are present in Equation.(4.10) and Equation.(4.11) in addition to the six

global motion parameters U, V, W, α, β, γ (similar equations arise for the remaining

2 pairs of cameras). This formulation is almost identical to Equation 3.9, except the

composition of the rotational nonlinear terms. Thus we can employ the algorithm in

Algorithm 1 to solve for the global motion parameters with x1 = [U, V,W ]T , x2 =

[α, β, γ, αβ, βγ, αγ, β2 − α2]T .

4.2 Parallel Camera Array

Most predatory animals, from spiders and crustaceans through birds to mammals and

humans, tend to have the eyes facing in the same direction. This arrangement is, pre-

sumably, to take advantage of stereoscopic depth perception, which has been demon-

strated in humans, monkeys, cats, and falcons, and is likely to be widespread across

other species. It is unclear, however, whether the binocular field is used to take advan-

tage of stereoscopic depth cues or merely for the improvement in image reliability by

binocular comparison. As discussed in the previous chapter, many birds seem to forego

maximising binocularity, presumably because stereopsis involves considerable neural

processing and is too slow to control the estimation of distance and depth when a bird

is landing upon a perch (Davies and Green, 1994). Instead, it is likely that the general

function of binocularity is concerned with optic flow-fields (Martin and Katzir, 1999).

In this chapter, we explore how having a binocular pair of eyes can aid motion analysis
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without necessarily involving stereopsis and having to deal with the attendant problem

of feature correspondence.

4.2.1 Literature review

We focus our literature review on the so-called stereo-motion integration works which

involve a pair of cameras moving in time. The integration can be extended to involve

multiple cameras, but this case has been reviewed in the earlier chapter and is thus omit-

ted here. We also want to distinguish between the standard temporal stereo + motion

problem, and the more restricted problem of just estimating disparity and 2D motion

from two consecutive frames in a stereo sequence. Our review will be primarily limited

to the former.

Some earlier works of motion-stereo integration are merely juxtaposition of the

results from independent processing of the motion and stereo information (Kriegman,

Triendl, and Binford, 1989; Symosek et al., 1990; Ayache and Faugeras, 1989; Grosso,

Sandini, and Tistarelli, 1989). The final estimates of the 3-D structure are based on some

combination of the outputs of these separate processes. These works can be classified

under the modular integration scheme whereby the degree of interaction between the

processing of individual sources of 3-D structure is loose.

In contrast to the modular approach, the processing of one type of visual information

may depend on the presence of another type in a non-modular manner. In the case of

perceived 3-D structure from the combination of binocular stereopsis and kinetic depth,

there has been growing evidence that a modular approach fails to adequately describe

human performance (Bradshaw and Rogers, 1993; Johnston, Cumming, and Lany, 1994;

Nawrot and ., 1993; Tittle and Braunstein, 1993). On the basis of these results, it seems
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clear that some degree of interaction exists between the processing of 3-D structure from

motion and binocular stereopsis.

Among these non-modular approaches, some of them depend on the stereo module

as the main source of depth information which is then used to guide the motion analysis.

These works depend on a single (and possibly erroneous) source for the depth. There

are also approaches that are based upon more integrated relations of motion and stereo

(Argyros and Orphanoudakis, 1997; P. and M.A., 1991; Grosso and Tistarelli, 1995;

Li and Duncan, 1993; Shi, Shu, and Pan, 1994; Waxman and Duncan, 1986). In (P.

and M.A., 1991; Li and Duncan, 1993; Shi, Shu, and Pan, 1994; Waxman and Duncan,

1986), the temporal derivative of disparity (equivalently, the difference of flow between

the stereo pair) is exploited. The works by (P. and M.A., 1991; Shi, Shu, and Pan,

1994; Waxman and Duncan, 1986) are close to ours in the sense that they take the

difference of the image velocities in the pair of binocular images and the constraint is

valid for general motion. They derive a special relation between the ratio of the relative

optic flow in a binocular pair of images and the disparity. Argyros et al (Argyros and

Orphanoudakis, 1997) consider a moving pair of fixating camera with unknown stereo

parameters. The binocular and motion cues are combined into a single equation which is

solved by linearizing the coupled stereo and motion parameters. The system in (Li and

Duncan, 1993)is limited to the case where the stereo setup only executes translational

motion, and as a result, it does not require point to point correspondence (instead, gross

correspondence of regions is needed). (Grosso and Tistarelli, 1995) extracts time-to-

contact information from the temporal evolution of the stereo disparity.

More recently, works like (Stein and Shashua, 1998; Zhang, 1995; Zhang and Ne-

gahdaripour, 2008) exploit the constraint that governs the stereo disparity and the optical
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flow given two pairs of stereo views. Other approaches like (Li and Sclaroff, 2008; Tao,

Sawhney, and Kumar, 2001; Vedula et al., 2005) recovered 3d information from video

in the form of 3d scene flow constraint. Typically, the 3d scene flow is solved from 2d

optical flow and correspondences between N cameras (N ≥ 2).

With the advent of more sophisticated techniques, we also see approaches using

PDE, variational and factorization techniques, often dealing with long video sequences.

(Strecha and Gool, 2002) weighs both the stereo and the motion correspondences at

every iteration and the depths are solved through the evolution of a system of coupled,

non-linear diffusion equations. Ho et al. (Ho and Chung, 2000) cast the problem in the

factorization framework, whereby the stereo correspondence becomes one ordering the

columns of the extended measurement matrix. The recovery of 3d scene flow has also

been cast in a variational framework (Huguet and Devernay, 2007; Pons, Keriven, and

Faugeras, 2007; Williams, Isard, and MacCormick, 2005). In one form or other, stereo

disparity is still estimated.

Our work also fuses the stereo and motion cues right at the early stage and thus it too

exhibits tight cue integration. What sets our work apart from all the above is that we do

not perform stereo correspondence, either explicitly or implicitly. Instead, we compute

the difference in optical flow between the stereo pair at the same image location (x, y).

The resulting quantity is akin to parallax and facilitates translation recovery, yet we do

not have the problem faced by the traditional approaches of getting parallax (where too

few image points provide good parallax). In other word, our way of exploiting the in-

formation in the stereo pair does not just offer statistical advantage, but it geometrically

disambiguates the coupling between translation and rotation. Furthermore, we do not

need strict parallel stereo rig. Our formulation allows small deviation from the parallel
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configuration. It also allows gaze in any direction as long as the stereo pair is approxi-

mately parallel.

4.2.2 Motion Recovery Algorithm

Figure 4.3: Set-up of the parallel camera array. pcam1 and qcam2 form a pair of matching points.

Figure 4.3 shows the set-up of our system. This setup is in a way a special case of

those in Section 4.1, except that the global coordinate system is placed at the center and

that t = r. The two cameras have parallel viewing directions and their optical centers

are of equal distance (termed as h) from the origin O. The two cameras move together

according to a global rigid motion expressed in the world coordinate system {O-XYZ}.

The global motion is given by translation v = (U, V,W )T and rotation ω=(α, β, γ)T .

A quasi-parallax motion field is obtained from pairs of matching points which ex-

perience identical rotational flows. At a matching point p, we substitute the respective

camera motions into the epipolar constraints and subtract them:

pT (ṽ1r1 − ṽ2r2) = −2pT (ω ×T)× (ω̃p) (4.12)

Normally we have multiple pairs of matching points in this form and collecting all
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the N equations from the entire set gives us:

A(N×5)x1 = −B(N×4)x2 (4.13)

x1 = [U, V,W, hβ, hγ]T , x2 = h[αβ, βγ, αγ, β2 − γ2]T . The ith row of A is

[ v1 − v2 u2 − u1
(v2−v1)x+(u1−u2)y

f
(u1+u2)y−(v2+v1)x

f
u1 + u2

], and the ith row of

B is 2[ −x y2

f
− f xy

f
−y ]. The form of Eq.(4.13)is also identical to Equation 3.9,

thus Algorithm 1 can be applied to solve this equation. This formulation is motivated

by the theory that though some animals have frontally placed binocular eye pair, they

are more used for motion computation rather than for stereo. One example is the bird,

unless its eyes are manipulating an object in its grasp where object depths are very close.

The basic formulation for a pair of parallel cameras can be extended easily to the

general case of an array of parallel camera pairs: the optical axis of the cameras are

parallel but they are glancing sideway. That is, the z-axis are parallel but not pointing to

the front so the x-axis are not aligned, as shown in Fig 4.4.

Figure 4.4: Set-up of a parallel camera pair where the gaze is sideway

Denote the world coordinates as O −XY Z and the global motion is given by trans-

lation v0 = (U, V,W )T and rotation ω0=(α, β, γ)T . The individual 3D motions of cam-
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era 1 and camera 2 are (vc, ωc), c = 1, 2 and they are induced by the global motion:

ω1 = ω2 = RT · ω0v1 = RT · (v0 + ω0 × T )V2 = RT · (v0 − ω0 × T ) (4.14)

where (R, T ) is the orientation and translation of camera 1 relative to the world coordi-

nate respectively, note that camera 2 has the same orientation as camera 1.

In this set-up, a quasi-parallax motion field similar to Equation 4.12 can be obtained

by subtracting the respective epipolar constraints of camera 1 and camera 2 at the match-

ing point:

pT (ṽ1r1 − ṽ2r2) = −2pT (R · ω ×T)× (r̃ · ωp) (4.15)

Collect all the equations of matching points pairs and we have:

A(N×5)x1 = −B(N×4)x2 (4.16)

x1 = [U, V,W, hβ, hγ]T , x2 = h[αβ, βγ, αγ, β2 − γ2]T . The form of Eq.(4.16)is also

identical to Eq.(4.13), only the coefficients change.

The ith row of A is [(v2x− v1x+ u1y − u2y) sinϕ+ f(v1 − v2) cosϕ, f(u2 − u1)

f(v2 − v1) sinϕ+ (v2 − v1)x cosϕ+ (u1 − u2)y cosϕ,

(u2y − v2x+ u1y − v1x) cosϕ− f(v2 + v1) sinϕ, f(u1 + u2)]

The ith row of B is [1
2

sin 2ϕ(f 2 − x2) + xf cos2 2ϕ, x2 − y2 + (f 2 − x2) cos2 ϕ− xf sin 2ϕ.

−xy cosϕ− fy sinϕ, y(f cosϕ− x sinϕ)]
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Chapter 5

Experiments on Motion Recovery

Several experiments were conducted to test our quasi-linear parallax method under dif-

ferent scenarios and in different camera models. First we evaluate the method in a lateral

eye system and then in one parallel eye with a configuration which can be regarded as

a special case of Aranead eye. The motion recovery performance of our linear method

was further compared against that of the extended BA. The evaluation criteria consist of

the errors in direction (the angle between the estimated and the true motion in degree)

for both the translation and rotation estimates, and the error in magnitude for the rotation

estimate (the norm of the difference between the estimated and the true rotation). Note

that the translation magnitude is not recoverable in our method since r is not known.

Both methods were tested with varying translation-to-rotation ratio ε, computed as the

ratio of the total magnitude of the translational flow and that of the rotational flow from

all feature points. The image resolution used in this thesis is 512×512 pixels.
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5.1 Lateral Eye

5.1.1 Experiment on Range Image for Lateral Eye

This set of experiment uses the Brown range image database (Lee and Huang, 2000)

which contains many static natural scenes. Figure 5.1 shows the forest scene we used

with depths ranging from 3m to 10m.

Figure 5.1: Range image of a forest scene used. Intensity represents depth with distant
object looking brighter. Regions with no range data appears black. The image plane of
camera 1 is denoted by a white rectangle

We endowed the scene with 3D motions, and projected the 3D scene points and their

flows onto each camera’s image plane. The resulting image points were matched across

cameras. This scheme allows us to experiment with realistic scenes with its sparse and

clustered feature distribution, and yet able to control the exact amount of noise added

to the image. The noise added was a zero-mean Gaussian noise, isotropic in direction

and with standard deviation equal to the Noise-to-Signal Ratio (NSR) times the average

flow speed. We evaluated both the BA and our method under three motion types of ε

=0.2, 1, 5 and subject to different levels of noise. The scale units for each type of motion

were listed as follows.

Each simulation consisted of 300 trials for the linear method and 50 trials for the non-

linear one. The error of each simulation was computed as the average of the errors from

all the trials.
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Table 5.1: In the forest scene, three types of motions corresponding to ε =0.2, ε=1, ε=5
are executed.

ratio ε Motion Type Translation: cm/s Rotation: rad/s
ε=1 Balanced motion [1, 3, 2] [0.004, 0.003, 0.002]
ε=5 Dominant translation [6, 12, 1] [0.004, 0.003, 0.002]
ε=0.2 Dominant rotation [1, 3, 2] [0.01, 0.02, 0.016]

5.1.1.1 A lateral pair of cameras with narrow FOV

Our first experiment consists of a lateral pair of cameras with narrow FOV of 15◦ and

r = 0.1 m. With such small FOV, bas-relief ambiguity is expected to be very severe and

result in large errors in the solution. A total of 86 matching points were found for the

linear method and 452 feature points for BA. In general, there are much fewer feature

points for our method due to the need to satisfy the matching requirement1.

Under all conditions, our linear method significantly outperformed the nonlinear BA

in all aspects. Even at the highest noise level of 15%, the linear method was still robust.

Take the recovery of the translation direction as an example (the left column in Figure

5.2). When ε=0.2, the estimation error of our method is only 30% of that of the nonlinear

one. It is worth emphasizing that the linear method ran at a much less computational

cost and required only about 1
15

the computation time of the nonlinear method using

Matlab on a 1.86GHz Pentium PC. Our superior performance can be attributed to the

better resolving of the bas-relief ambiguity and the stable numerical behavior of TLS

with proper data normalization. In contrast, the BA suffered from the ambiguity to a

significant extent at such a narrow FOV and thus yielded strongly biased estimates. This

confirms the earlier results obtained with the Fisher information matrix—even with a pair

of laterally placed cameras, ambiguities may still exist if each camera only has narrow

1If the distance between two feature points is no more than 5 pixels, they are considered as a matching
pair.
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(a) Estimation error when translation is dominant with ratio ε=5

(b) Estimation error when trans. and rot. are balanced with ratio ε=1

(c) Estimation error when rotation is dominant with ratio ε=0.2

Figure 5.2: Motion recovery of the two methods with a pair of cameras with narrow
FOV of 15◦ each. QP stands for our Quasi-parallax method, while BA denotes bundle
adjustment. The three columns, starting from the left, depict the estimation errors in
translation direction, rotation direction, and rotation magnitude respectively. Note that
the y-axis for different diagrams may have different scales.

FOV. We should also mention that the nonlinear BA method sometimes got trapped in

local minima. If the error in direction of the estimate is greater than 30◦, we deem that

this has happened and ignore the trial result, in order not to unduly influence the results

of the BA method.

With dominant translation in Figure 5.2(a), both methods recovered the translation

accurately whereas the rotation estimates became worse off. Nevertheless, rotation re-

covery was much better in the linear method than the nonlinear BA. This can be at-

tributed to the post-translation step used to estimate the rotation. Firstly, rotation esti-

mation benefited substantially from a good translation estimate. Secondly, we are using
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different aspects of the plenoptic function suited for rotation recovery. Thus the poten-

tially unfavorable condition for rotation recovery caused by the dominant translation was

ameliorated by our method. Decreasing ε expectedly improved rotation recovery while

impairing translation recovery, as observed in both methods. However the nonlinear

method was affected more adversely.

In terms of the translation direction recovery, when ε was reduced from 5 to 0.2,

our linear method still managed to produce an acceptable estimate. In the case of 15%

noise, our translation estimate was worsened by 9◦. This is in contrast to the BA where

the recovery deteriorated rapidly: under the same setting, the estimate error increased by

25◦. This comparison indicated that under narrow FOV, the removal of rotational flow in

the quasi-parallax formulation was very helpful for translation recovery.

The different degree of bas-relief ambiguity that still exists in both methods under

narrow FOV can be illustrated from another perspective. Looking at the rotation recov-

ery under increasingly dominant rotational flow, our method generated a significantly

improved estimate. For example, when ε dropped from 5 to 1, the improvement of our

rotation direction estimate was by 10◦ at 15% noise, whereas BA only improved slightly

by 3◦. The reason that no substantial improvement is seen in BA is precisely due to the

bas-relief ambiguity that still exists under such narrow FOV, exacerbated by the high

level of noise.

In sum, the better performance of the linear method under narrow FOV is due to the

separate recovery of the translation and rotation, each using different aspects of the flow

field most suited for their respective recoveries.
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5.1.1.2 A lateral pair of vertebrate eyes

To mimic the two laterally-positioned eyes of some birds and vertebrates, we configure

a visual system consisting of two diametrically opposite cameras with 50◦ FOV each

and r = 0.1m. The results in Figure 5.3 show that the wide FOV of 50◦ has largely

resolved the bas-relief ambiguity. Both methods performed better compared to that of

the preceding experiment under narrow FOV. In particular, as the BA method no longer

suffers from the bas-relief ambiguity, its performance became comparable and even out-

performed ours in some instances, though overall, there is no clear winner among the

two methods.

(a) Estimation error when translation is dominant with ratio ε=5

(b) Estimation error when trans. and rot. are balanced with ratio ε=1

(c) Estimation error when rotation is dominant with ratio ε=0.2

Figure 5.3: Motion recovery of the two methods with a pair of laterally-positioned cam-
eras with 50◦ FOV each.

We picked 341 matching points for the linear method and a comparable number of
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1058 feature points for BA. Under ε = 1 in Figure 5.3, the linear and the BA meth-

ods produced similar results, with the former’s performance being slightly inferior. The

maximal angular difference between the two was 0.2◦, occurring in the translation re-

covery.

With a dominant translation of ε = 5, the quasi-parallax method actually performed

better than the BA method in two aspects: both in the translation and rotation direction

recovery. In comparison, the estimation of the rotation magnitude was not as good as the

BA’s.

As for the case of dominant rotation with ε = 0.2, the linear method outperformed

BA significantly, especially in the translation estimation. With 15% noise, our esti-

mate error is 4.1◦ less than BA’s. This is not surprising if we recall that the undesirable

influence of the strong rotational flow was removed from the estimation and thus its

deleterious effect on the translation recovery was kept to a minimum.

5.1.1.3 A compound eye with small number of facets

This section investigates the performance of both methods in a compound eye set-up.

A multiple camera system with configuration similar to that of Figure 3.4 is employed,

with the visual field of individual camera being 5◦ (which is the FOV of an individual

ommatidium in the honeybee). In our simulation, each eye is made up of nine cameras,

with all cameras arranged on the surface of a sphere with radius r = 0.05m. The linear

method had 352 matching points, while the BA had 1279 feature points.

Under all conditions tested in Figure 5.4, the linear method and the BA produced

almost identical results, given the wide coverage of the visual field. While our linear

method achieved comparable accuracy to that of the nonlinear optimization techniques,
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(a) Estimation error when translation is dominant with ratio ε=5

(b) Estimation error when trans. and rot. are balanced with ratio ε=1

(c) Estimation error when rotation is dominant with ratio ε=0.2

Figure 5.4: Motion recovery of the two methods in a compound eye with small number
of facets.

it required much less computational cost, which is crucial for an agent (such as insect)

with little computational resources and yet with a need to perform rapid visuomotor

tasks.

5.1.2 Effect of Rotation-induced terms for Lateral Eye

Here, we carried out an additional experiment to demonstrate the importance of account-

ing for the induced terms caused by the separation between each camera pair. We used

the same compound eye setup as in the preceding experiment. The compound eye was

viewing an indoor scene with depths ranging from 0.5m to 3m. A total of 185 matching

points were selected for the linear method while 536 feature points were for bundle ad-

justment. The matched points of linear method were derived from the features points of
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bundle adjustment, that’s why they are much fewer. The flow input of the system was

subject to a 10% isotropic noise.

Recall that our formulation modeled these induced terms as rBx2 on the right hand

side of Equation (3.9) and iteratively refined their estimates until Equation (3.11) is suf-

ficiently close to a homogeneous system of equations. The performance of our method

is here compared to one which sets r to zero, thereby ignoring the induced terms totally,

and is effectively reduced to the antipodal constraint used in the spherical systems of

(Lim and Barnes, 2007; Lim and Barnes, 2008; Thomas and Simoncelli, 1994). We

compare the two schemes under three types of global motions: a rotation-dominant mo-

tion with ratio ε = 0.1, a motion with significant rotation at ε = 0.3, and finally, a

balanced motion with ε = 1. The details of each type of motion are tabulated as follows.

Table 5.2: In the indoor scene, three types of motions corresponding to ε =0.1, ε=0.3,
ε=1 are executed.
ratio ε Motion Type Translation: cm/s Rotation: rad/s
ε=0.1 Dominant rotation [0.5, 1.5, 1] [0.06, 0.12, 0.096]
ε=0.3 Significant rotation [0.5, 1.5, 1] [0.02, 0.04, 0.032]
ε=1 Balanced motion [0.5, 1.5, 1] [0.01, 0.0075, 0.005]

(a) Error with ratio ε=0.1 (b) Error with ε=0.3 (c) Error with ε=1

Figure 5.5: Errors in translation recovery when the induced terms are not modeled, with
(a) ε = 0.1, (b) ε = 0.3 and (c) ε = 1 respectively. “QP” and “BA” are as defined before,
whereas the curve “No Res” refers to the case of ignoring the induced terms rBx2 and
solving the linear equation Ax1 = 0 from Equation (3.9). The vertical dashed lines
indicate the radius r above which our algorithm deems the induced terms as significant.
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Referring to Figure 5.5, the results of the comparison show that given a moderately

large r, the translation recovery in all types of motions were significantly improved if

we explicitly modeled the induced terms in the estimation process. This improvement

is especially obvious when the rotational flow was significant. For instance, with ratio

ε = 0.3 and r = 0.1m, the gap between the error in QP and that of ignoring the induced

terms was 3.1◦. When the rotation was dominant with ratio ε = 0.1, modeling the

induced terms at r = 0.1m improved the estimate by a large 6.4◦. We also observe that

even in the case of balanced motion (ε = 1), with r no less than 0.09m, the estimate

became worse off by a significant margin if the induced terms were ignored.

The vertical dashed lines in Figure 5.5 indicate the radii r below which the induced

terms are regarded as negligibly small by our QP algorithm: they are r = 0.01m for

ε = 0.1, r = 0.02m for ε = 0.3 and r = 0.09m for ε = 1 respectively. Trying to

fit these small induced terms below these threshold levels would cause overfitting and

thus might be detrimental to performance. In view of the values which are chosen to

reflect a fairly typical range of conditions encountered in both biological vision systems

and artificial systems, our results suggest that the spherical camera system with a single

viewpoint might not be adequate for modeling the large class of non-frontal eyes. This

holds true especially if the separation between eyes are of medium length (e.g. for the

vision systems of many large vertebrates and most non-miniaturized artificial systems),

or the rotation is significant.

5.1.3 Effect of Calibration Errors for Lateral Eye

In real vision systems, there often exist imperfections in the construction of the com-

pound eye. One kind of error is the imperfection in the spherical substrate of the com-
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pound. This is especially pertinent in a biological compound eye system, where the head

is not a perfect sphere. In other words, the radius r is different along different directions.

The other kind of error stems from imperfections in the camera postures, where it could

be difficult to perfectly align the optical axes of two opposite cameras. In this section,

we conduct two experiments to test how both recovery methods (QP and BA) perform

under such two kinds of errors. We used the same compound eye set-up in the previous

section 5.1.1.3 and the same global motions as in Table 5.1.

In the first experiment, we study the performance of the two estimation methods

when the radius r is not constant, with variation of up to 50% being simulated across

different pairs of ommatidia. In particular, r is set to be r0 + ∆ri where r0 is the average

value of the varying r and ∆ri is the random error added to the ith(i = 1 . . . 9) pair’s

separation with up to 0.5r0 variation. As before, the value of r0 is assumed known for

the BA.

On the whole, both methods are affected by the error in r (i.e. ∆ri) but to different

extents. Compared to the identical performances seen in Figure 5.4, our method now

gains a distinct advantage over the BA as shown in Figure 5.6. This could be attributed

to the fact that our method is largely independent of the calibration parameter r; r only

results in second and higher order residual terms which are negligible. Thus error in r has

less an impact on our method’s performance. In contrast, the BA’s estimation algorithm

depends more significantly on the fact that r is a known constant. Of course one can

explicitly estimate these variations in r, but doing so would result in an algorithm that is

much more complex and whose numerical performance is open to question.

In the second experiment, we study how imperfections in the camera postures will

affect the performance of these two methods. More specifically, consider the case where
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(a) Estimation error when translation is dominant with ratio ε=5

(b) Estimation error when trans. and rot. are balanced with ratio ε=1

(c) Estimation error when rotation is dominant with ratio ε=0.2

Figure 5.6: Motion recovery of the two methods in a compound eye placed on a non-
perfect spherical substrate.

the two opposing cameras Cam1 and Cam2 of 50◦ FOV each in Figure 3.4 do not have

their optical axes properly aligned. Without loss of generality, we can assume that the

Cam2’s viewing direction Z2 is aligned with the global Z-axis. Then the misalignment

error of Cam1 can be modeled by the three consecutive rotations around the coordinate

axes required to align the viewing direction of Cam1 with that of Cam2. Here, for

simplicity, we only study the effect of misalignment error around the X-axis, which

we model by the rotation angle θ. The flow input of the system was subject to a 10%

isotropic noise.

As the results in Figure 5.7 showed, under all conditions tested, our method out-

performed the bundle adjustment considerably. It seemed that our method can tolerate

misalignment error to a much greater extent than the bundle adjustment method. For
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(a) Estimation error versus misalignment error θ, under ratio ε=5

(b) Estimation error versus misalignment error θ, under ratio ε=1

(c) Estimation error versus misalignment error θ, under ratio ε=0.2

Figure 5.7: Motion recovery of the two methods in a compound eye with misalignment
error θ around the X-axis.

example, when misalignment error becomes substantial (θ = 10◦), the estimation er-

ror of our translation estimate was approximately 3◦ smaller under all ε. This superior

performance of our algorithm can be attributed to the data normalization based on Total

Least Squares, which is known to be suited for dealing with errors-in-variables model

(misalignment error in this case).

5.1.4 Experiment on Real Image for Lateral Eye

In this experiment on real image, we mounted a lateral pair of cameras with r = 0.12m

on a mobile robot. We used two Dragonfly cameras from Point Grey Research with

50◦ FOV each. The frame rate is 15 frames per second and the image size is 640×480
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pixels. The lateral pair views an indoor scene with depths ranging from 2m to 5m. The

robot moves on the floor with two degrees of freedom in the translation and one degree

of freedom in the rotation. A picture of the scene taken by one of the cameras is shown

in Figure 5.8. We tested three sets of global motions (see Figure 5.9 for details), with ε

roughly equal to 0.2, 1 and 5 respectively. The robot moved approximately 2 meters. An

average of 140 matching points were selected for the linear method while 850 feature

points were selected for the BA. Figure 5.9 plots the bias in degrees for the two direction

estimates and in % for the magnitude estimate. It shows that under all conditions, the

estimation accuracy of the linear method was comparable to that of the BA.

Figure 5.8: An indoor scene for the real-image experiment.

5.2 Parallel Eye

5.2.1 Experiment on Range Image for Parallel Eye

Each camera has a 40◦ FOV and h = 0.2 m. 145 matching points were found for the

linear method and 952 feature points were for BA.

Under all conditions tested in Fig.(5.10), the linear and BA methods produced al-

most identical results. With ε = 1, the linear method’s performance is slightly inferior

to the BA method. The maximal angular difference between the two was 1.6◦, in the

case of translation recovery. Decreasing ε from 1 to 0.2 expectedly improved rotation
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Figure 5.9: Motion recovery of the two methods using real image. The unit of translation
v is m/s and the unit of rotation ω is rad/s. Bias plotted in degrees for the two direction
estimates and in % for the magnitude estimate.

recovery while impairing translation recovery, as was observed in both methods. How-

ever compared to BA, our method produced a substantially improved rotation estimate

with the translation estimate slightly worsened.

Raising ε from 1 to 5 generates a dominant translational flow. Both methods recov-

ered translation accurately whereas the rotation estimates became worse off. However,

BA’s rotation recovery was affected more adversely: with 15% noise, our rotation esti-

mate was worsened by 3.2◦, in contrast to a 6.5◦ increase in BA. Our better performance

can be attributed to the post-translation step, where rotation estimation benefited sub-

stantially from a good translation estimate. Thus the potentially unfavorable condition

for rotation recovery caused by the dominant translation was ameliorated by our method.

Overall, there is no clear winner among the two methods. While our linear method

achieved the accuracy of the nonlinear BA, it required much less computational cost

(about 1
15

the computation time of BA), which is crucial for an agent with little compu-

tational resources.

In real biological vision systems, there often exist a small amount of convergence

between two eyes, i.e. stereos are no longer strictly parallel. Figure 5.11 shows a con-

vergence angle formed by stereo cameras. While looking at near objects with large

convergence angle, animals are more likely to use stereo cues. But we are interested in
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(a) Estimate error when translation is dominant with ratio ε=5

(b) Estimate error when trans. and rot. are balanced with ratio ε=1

(c) Estimate error when rotation is dominant with ratio ε=0.2

Figure 5.10: Motion recovery of two methods. QP stands for quasi-parallax method, while BA
denotes bundle adjustment. Starting from the left, the three columns depict the estimate errors in
translation direction, rotation direction, and rotation magnitude respectively. Note that y-axis for
different diagrams may have different scales.

the case of far vision, for human it means objects are beyond 1m with angle < 5◦.

We conducted an experiment to show how the two recovery methods (QP and BA)

perform when the camera pair are no longer parallel but has an unknown convergence

angle instead. The convergence angle is modeled by a rotation angle θ around Y-axis.

The flow input of the system was subject to a 10% isotropic noise. And the camera pair

undergoes a global motion of balanced translation and rotation with ratio ε = 1.

As the results above showed, when the convergence angle increased, our method

started to outperform the bundle adjustment. It seemed that our method can tolerate

the convergence angle to a much greater extent than the bundle adjustment method.
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Figure 5.11: Stereo camera array with small covergence angle

Figure 5.12: Motion recovery of both methods in a stereo eye of convergence angle θ
around Y-axis

For example, when convergence angle becomes substantial (θ = 2.5◦ produces a 5◦

convergence angle), the estimation error of our translation estimate was approximately

4◦ smaller. Our robust performance results from the data normalization based on Total

Least Squares, which can deal with errors-in-variables model).

In addition to the convergence angle, another imperfection in real biological vision

system is the baseline error, i.e. the baseline can not be precisely measured and the

baseline estimate has errors. We also want to study the effect of baseline estimate error

on the performance of the two estimation methods. In the following experiment,the

baseline h is set to be h0 + ∆h where where h0 is the baseline ground truth and ∆h is

the estimate error with up to ±0.5h0 variation. The camera array has a 10% isotropic

noise and experiences a global motion with ratio ε = 1.On the whole, the estimate error
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in h does not have a major effect on both methods. This could be due to the fact that the

calibration parameter h only has results in second and higher order residual terms which

are negligible.

Figure 5.13: Motion recovery of both methods in a stereo eye with errors in baseline
estimate

5.2.2 Experiment on Real Image for Parallel Eye

We mounted a parallel camera array with h = 0.15 m on a mobile robot. Each camera

has a 50◦ FOV and views an indoor scene which is similar to Fig 5.8. We tested three

sets of global motions, with ε roughly equal to 0.2, 1 and 5 respectively. Around 180

matching points were selected for the linear method and 750 feature points were selected

for BA. Fig.( 5.14) shows that under all conditions, the estimation accuracy of the linear

method was comparable to that of BA.

Figure 5.14: Motion recovery of both methods on real image. Bias plotted in degree for the two
direction estimates and in % for the magnitude estimate.

In sum, under the three motion types we have tested, our linear method is compa-

rable to Bundle adjustment in terms of recovery accuracy, while we are much faster.

Interestingly, when the stereo pair is not perfectly parallel with a convergence angle,
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the effect of such imperfection is lesser on the linear method. For the estimate error of

baseline, both methods are immune from it.
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Chapter 6

Experiments on Depth Reconstruction

As pointed out by the reliability analysis of depth recovery conducted in (Cheong and

Xiang, 2001), when translation is coupled with rotation, with known or unknown intrin-

sic parameters, lateral motion is better than forward motion in terms of yielding ordinal

depth information and other aspects of depth recovery. More specifically, for lateral

movement, although Euclidean reconstruction is difficult, the resulting distortion in the

structure possesses many nice properties. For example, in the case of calibrated motion,

the distortion preserves ordinal depth. In contrast, for forward movement, whether cali-

brated or uncalibrated, depth information (even partial one) is hard to recover, except for

those points close to the observer.

Specific motion-scene configurations can lead to the degeneracy problem (Hartley,

1997). For instance, this degenerate problem arises in a planar scene where all world

points lie on a plane. For the discrete stereo set-up, this means there is no unique solu-

tions for the fundamental matrix and consequently the projective reconstruction cannot

be estimated. Moreover, configurations close to the degenerate ones are likely to lead to

a numerically ill-conditioned estimation. In this chapter, we attempt to recover depths
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for the case of a lateral eye system.

6.1 Depth Reconstruction Method

After recovering the ego-motion (U, V,W ) of the lateral eye system, we proceed to re-

construct the depth scenes viewed by each camera. We assume the radius r to be known.

Then, based on Equation 3.1, we can compute the motions of the two cameras in their

own camera coordinate systems, from which we can recover depth from the following

linear equation:

Z =
(Wx− fU,Wy − fV ) · (nx, ny)

(u− urot, v − vrot) · (nx, ny)
(6.1)

Where (nx, ny) is an unit vector which specifies a direction. Here we choose to re-

cover depth along the estimated epipolar direction, based on the intuition that the epipo-

lar direction contains the strongest translational flow. It means that we first project opti-

cal flow along the direction emanating from the estimated FOE and then recover depth

along that direction, i.e. (nx, ny) = (Wx−fU,Wy−fV )√
(Wx−fU)2+(Wy−fV )2

, or in the case of W = 0

where the estimated FOE is at infinity, (nx, ny) = − (U,V )√
U2+V 2

Denote the depth estimate at the ith feature point as Ẑi. To measure the performance

of depth recovery method, we define the depth reconstruction error as 1
N

∑
|Ẑi − Zi)|

where N is the total number of feature points.

6.2 Experiment of Lateral Set-up

We first conduct experiments on range image. We use a pair of lateral cameras with 50◦

of FOV each, and the radius r is 0.1m. In addition to the forest scene that was used in
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Chapter 5, we also use the following office scene Fig 6.1 with depth ranging from 1m

to 55m. After projecting the the 3D scene points onto the image planes, the 2D image

points now have depths ranging from 2m to 7m. For the forest scene, the depth range is

from 8m to 20m.

Figure 6.1: An office scene used. Intensity represents depth with distant object looking
brighter. Regions with no range data appears black. The image plane of camera 1 is
denoted by a white rectangle.

The depth reconstruction performance of both methods (linear quasi-parallax and

bundle adjustment) were tested in various motion-scene configurations, with 10% of

isotropic noise added. More specifically, the system executed three types of motions as

shown in Table 6.1: lateral motion (W = 0), forward motion (U = V = 0) and general

motion. The translation-to-rotation ratio ε was fixed at 1.

Table 6.1: Three types of global motions (lateral, forward and general) are executed to
test the performance of depth reconstruction.

Motion Type Translation: cm/s Rotation: rad/s
Lateral [2, 3, 0] [0.004, 0.003, 0.002]

Forward [0, 0, 7] [0.004, 0.003, 0.002]
General [1, 3, 2] [0.004, 0.003, 0.002]
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6.3 Experimental Results on Range Image

6.3.1 Perfect r

In this section, we evaluate the performance of depth reconstruction when the measure-

ment of the radius r is prefect. Table 6.2 listed the numerical error of ego-motion esti-

Tra. Dir Tra. Mag Rot. Dir Rot. Mag Forest Office
Lateral QP 2.09◦ 18% 3.20◦ 10.0% 2.29 m 0.51 m
Lateral BA 1.73◦ 24% 3.65◦ 8.9% 1.82 m 0.63 m
General QP 1.93◦ 14% 2.96◦ 8.5 % 2.43 m 0.53 m
General BA 1.49◦ 12% 2.90◦ 7.2 % 2.57 m 0.48 m
Forward QP 1.24◦ 11% 1.56◦ 4% 3.27 m 1.05 m
Forward BA 1.26◦ 9% 1.37◦ 3% 3.7 m 1.21 m

Table 6.2: Recovery results of our linear quasi-parallax method (QP) and Bundle adjustment
(BA). Starting from the left, the columns represent errors of translation direction in degree, errors
of translation magnitude, errors of rotation direction, errors of rotation magnitude, reconstruction
error of forest and reconstruction error of office.

mation, along with the depth reconstruction error. These results were further compared

against those of Bundle adjustment. For brevity, we will only show the reconstruction

results of one camera and here we choose camera 1. In Figure 6.2, the depth maps of the

two scenes were depicted using a color coding scheme: the colorbars showed that cool

colors such as deep blue represented closer feature points, while warm colors such as

red means that the points were far away. Note that the mappings between the color and

the depth were different for the two scenes, so that the plots were easier to read.

For both scenes, we see that under all the motion types, both methods yielded similar

results and the depth reconstructions were quite good. More specifically, depth orders

were preserved for most of the feature points, though a precise metric Euclidean re-

construction was still difficult, as can be seen from the last two columns of Table 6.2.

Among the three different types of global motion, lateral motion generated a depth map

with the highest accuracy, despite the fact that its ego-motion estimate is the least ac-
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(a) Ground truth (b) General motion (c) Lateral motion (d) Forward motion

(1) A forest scene

(2) An office scene

Figure 6.2: Recovered depthmaps for various motion-scene settings. The first row (1) shows a
forest scene and the second row (2) shows an indoor office. The columns represent respectively
(a) ground truth depthmap, (b) recovered depthmap under general motion, (c) depthmap under
lateral motion, (d) depthmap under forward motion. Note that each scene has its own individual
color mapping scheme.

curate. This confirms to the previous findings that lateral motion is conducive to depth

recovery, although in such case the bas-relief ambiguity is difficult to resolve and causes

errors in the motion estimates. In contrast, forward motion is not well suited for depth

recovery but good for ego-motion recovery.

6.3.2 Erroneous r

In real applications, it is not easy to get an accurate measurement of the radius r. We

model this case by introducing a random error ∆r into the true radius r0: the radius r is

r0 + ∆r and ∆r has up to 50%r variation. In this experiment, we test the reconstruction

of the forest scene, knowing only r0.

Table 6.3 clearly shows that our algorithm is quite immune from error in r. Accord-

ing to Equation 6.1, there are two ways that ∆r affects the depth recovery. First, it is
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through the global translation parameters. As mentioned in Sect 5.1.3, U, V,W can be

recovered accurately even with ∆r present. The second way is through the terms of α∆r

and β∆r. Normally these terms are much smaller than U and V in magnitude. Thus on

the whole, the effect of ∆r is negligible.

Table 6.3: Three types of global motions (lateral, forward and general) are executed to
test the performance of depth reconstruction.

∆r=0 ∆r = 0.2r0 ∆r = 0.5r0

Lateral 2.29 m 2.37 m 2.51 m
General 2.43 m 2.42 m 2.45 m
Forward 3.27 m 3.27 m 3.29 m

6.4 Experimental Results on Real Image

As for the experiment on real-image, the ground truth of the depth map is not available.

Instead, we checked the number of depth orders that were recovered correctly. Though

it is not a comprehensive test, it serves as a good performance measure of the ordinal

depth recovery. We manually picked and divided feature points into foreground points

and background points. In all, we picked 530 foreground points and 662 background

points (some are shown in Figure 6.3); and then compared the recovered depth of each

foreground point with that of each background point. The former should be smaller than

the latter if the depth order is preserved.

As mentioned above, we used the number of correct depth orders to measure the

performance of depth recovery. As the results in Table 6.4 shows, the rate of correct

depth order was quite high in both methods, even in the unfavorable condition of forward

motion.
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Figure 6.3: The indoor scene from the real-image experiment, with foreground points
marked as green + and background points as red x.

Table 6.4: Depth reconstruction of two methods in the real-world experiment. The table
show the percentage of points whose depth orders were preserved.

Correct % Forward General
V = [0, 0, 0.28]T , ω = [0.005, 0, 0]T V = [0, 0.141, 0.141]T , ω = [0.005, 0, 0]T

QP 52.3% 77.6%
BA 56.1% 79.8%
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Chapter 7

Conclusion

Having eyes that look at diametrically opposite parts of the world is a common form

of visual field layout found throughout the biological world. Such form of eye arrange-

ment is realized in many animals including the lateral eyes of vertebrates such as birds

and fishes, and invertebrates such as insects with their compound eyes. Though theo-

ries have been advanced about how these animals exploit this special eye topography

to accomplish complex visuomotor tasks with limited brain power, these theories lack

computational underpinning.

Part of this thesis addresses this gap by investigating computationally how the ego-

motion recovery problem can gain maximal benefit from the opportunities afforded by

this particular form of eye arrangement. We showed that the ego-motion can be solved

by making full use of the special eye structure without resorting to complex and com-

putationally expensive algorithms. We proposed a linear method based on the notion of

quasi-parallax. It makes use of a matching pair of diametrically opposite visual rays to

directly recover the heading direction, without any need of finding correspondences nor

requiring nonlinear optimization.
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Our method recovers the translation and rotation separately by looking at different

ensembles of projection rays. The quasi-parallax motion field contains terms primarily

arising from global translation, save for the residual terms caused by induced transla-

tion. Therefore, information pick-up for the translation is enhanced. The accuracy of

the translation estimate is further improved by a small iterative step that computes the

induced terms. Given this translation estimate, the rotation is recovered from a pencil of

visual rays using the individual epipolar constraints of each camera. As a consequence

of this two-stage process that selects different and appropriate aspects of the visual rays,

both the translation and rotation can be recovered well even under adverse conditions,

such as dominant translational or rotational flow coupled with a high level of noise.

Statistically, the Fisher information matrix corroborates our conjecture that the quasi-

parallax method is more effective in resolving the bas-relief ambiguity than the BA al-

gorithm, especially under small and moderate field of views. This is also verified by the

experimental results obtained under a pair of lateral eyes with narrow FOV. For other

scenarios such as wide FOV, cameras arranged in resemblance of a compound eye, real

images with non-ideal feature distribution, our method achieved a comparable perfor-

mance compared to that of the BA algorithm. We also showed that our method is robust

against imperfection in the construction of the spherical substrate of the compound eye.

Variation up to 50% in the radius r and misalignment error up to 10◦ resulted in grace-

ful deterioration of the performance for our method, whereas the BA method showed a

greater drop in accuracy. This is possibly because the BA method relied more signifi-

cantly upon the fact that r is a constant; besides our data normalization scheme based

on Total Least Squares is well-suited to dealing with such errors-in-variables model. It

is also worth emphasizing that our method requires much less computational cost and
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calibration efforts, a significant advantage in any visual system with a need for rapid

visuomotor coordination.

We also present schemes that exploits eyes of the same viewing directions, namely

the Aranead eye and parallel pair of eyes. Such eyes are inspired by predatory animals

which tend to have the eyes facing in the same direction. A common view is that this

arrangement is to leverage the stereoscopic depth perception. Yet we explore the other

possibility that for animals with restricted neural power, the general function of binoc-

ularity is concerned with optic flow-fields. The schemes obtain motion parallax from

subtracting optical flows at the matching points. The resulting motion parallax is proven

to facilitate the translation recovery and subsequently the motion recovery.

Once the motion parameters were recovered, we proceeded to linearly reconstruct

the depth maps for both indoor and outdoor scenes. It was shown that given accurate

motion estimates, the depth reconstruction was fast and reliable, capable of being used

in real-time tasks.
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