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SUMMARY 

This thesis describes the development of two techniques for detecting nano-scale 

motion of micromechanical structures which can potentially be applied for long-term 

MEMS device testing. The first technique, acoustic phonon detection, utilizes 

mechanical waves or phonons generated by surface interaction or energy loss during 

device actuation to sense motion. A piezoelectric element is employed to convert the 

generated phonons into an electrical signal which can then be used for measurement. 

Phonon detection is able to provide similar information on the short-term performance 

parameters of MEMS devices as more established electrical characterization 

techniques. In addition, as the detection signal arises from mechanical phenomena, 

phonon detection has the unique capability of being able to provide insight into device 

mechanical state. This is particularly useful for assessing long-term performance of 

MEMS devices since device mechanical state invariably changes over time. The 

technique is able to sense the vibration of state-of-the-art micromechanical resonators 

which exhibit sub-100 nm displacement. 

 

The second technique, stroboscopic scanning electron microscopy (SEM), is a high 

resolution imaging method that can capture the in-plane motion of MEMS devices 

down to ~20 nm. Through secondary electron (SE) signal gating, it is possible to 

freeze the dynamic motion of a micromechanical structure and image it at its 

instantaneous position. The technique can further be applied to obtain a phase-resolved 

micrograph of the motion of the structure during actuation by ramping the phase delay 

of the gate signal while imaging. This capability is particularly handy if a graphic 

visualization of device motion is required. In addition, quantitative data, such as device 



 

 

 

v 

displacement, can also be derived from the micrograph. The current hardware 

implementation can achieve a displacement resolution of about 20 nm, limited mainly 

by the electron probe size, for motion frequencies up to 3.58 MHz. Further 

optimization can potentially allow the system to provide sub-10 nm imaging resolution. 

 

Both techniques were employed to investigate the long-term behaviour of comb 

actuated clamped-clamped beam resonators. Fifteen random samples were tested, each 

over a 500-hour actuation period, and the results indicate that the long-term frequency 

stability of the devices is dependent on the magnitude of axial stress on the beam 

structure. From the measurements, it was established that a frequency drift of 1.233 Hz 

day
-1

 was induced in the samples for every 1 MPa of axial stress on the beam structure. 

The Q-factor and peak displacement of most of the samples remained fairly consistent 

throughout varying by less than 12% and 10% from their mean values respectively. 

More interestingly, three of the test samples exhibited possible signs of fatigue 

behaviour when their phonon dissipation properties were enhanced after several 

hundred hours of actuation. The enhanced dissipation gave rise to a 35% – 41% 

increase in the magnitude of the phonon voltage generated per nm of resonator 

displacement and also to a ~20% drop in the Q-factors of the three resonators. Such a 

change in the mechanical characteristics (i.e. phonon dissipation) of the device cannot 

be identified by current electrical testing methodologies. 

 



 

 

 

vi 

LIST OF TABLES 

 

Table 3.1. Summary of dimensions, physical and piezoelectric properties of the 

transducers used in the phonon detection setup [89]. The transducers are 

made from APC840 material. ...................................................................... 57 

 

Table 3.2. Comparison of switch performance parameters that can be obtained by 

electrical testing and by phonon detection.  denotes parameter is not 

quantifiable by the technique. ...................................................................... 64 

 

Table 3.3. Comparison of state-of-the-art micromechanical resonator characterization 

techniques with phonon detection. .............................................................. 69 

 

Table 3.4. Measured phonon coupling factor improvement provided by applying 

various filler materials in between sample and piezo sensor. ...................... 74 

 

Table 4.1.  Ramp rate and phase resolution values for the micrographs in Fig. 4.5.

 ..................................................................................................................... 87 
 

Table 4.2.  Standard deviation of the data points in the three resonator displacement. . 89 

 

Table 4.3.  Measured velocity values for the 8 resonator beam motion positions shown 

in Fig. 4.9. The deviation is the difference between the estimated and best 

fit values....................................................................................................... 92 

 

Table 4.4.  Average gray level intensity for all 512 y-pixels at 12 x-lines around the 

cut-off pixel (obtained from Fig. 4.4(b)). .................................................... 97 

 

Table 4.5. Mean and standard deviation of gray level intensity variation caused by 

background noise for image captures performed using different tgate. This 

variation translates into a pixel error during the displacement profile 

extraction. .................................................................................................... 97 

 

Table 4.6. Comparison of other techniques for measuring the dynamic motion of 

micromechanical structures with the stroboscopic SEM developed in this 

work. ............................................................................................................ 98 

 

Table 5.1. Summary of some published studies on long-term performance of 

micromechanical resonators. ..................................................................... 103 

 

Table 5.2. Summary of the fifteen devices used in these long-term stability 

experiments. The voltage-displacement gain was derived as described in 

Section 5.3.1. ............................................................................................. 121 

 

 

 



 

 

 

vii 

Table 5.3. Measured frequency drift ∂f0/∂t of the twelve devices compared with the 

derived axial stress σT (calculated using Equation (5.9)) at 28 °C (301 K) on 

the clamped-clamped beam. The devices are arranged in order of axial 

stress with positive values denoting tensile stress and negative values 

denoting compressive stress. 
1
The frequency drift of Devices R04 and R13 

could not be determined as they displayed large f0 swings during the 

actuation period (see Fig. 5.10). Data recording for these two devices was 

terminated at 120 hours. ............................................................................ 122 

 

Table 5.4. Mean and standard deviation of the Q-factor and peak in-plane  

displacement of the fifteen devices over the 500-hour actuation period. The 

coefficient of variation CV is calculated using Equation (5.12). 
1
Data 

recording for Device 04 and Device 13 was terminated at 120 hours. 
2
Shows data recorded before bifurcation point. ......................................... 127 

 

Table 5.5. Q-factor, in-plane displacement and voltage-displacement gain of Device 

R07, R10 and R14 before and after the bifurcation points for each device.

 ................................................................................................................... 128 
 



 

 

 

viii 

LIST OF FIGURES 

 

Fig. 2.1. A laser interferometry system for measuring out-of-plane motions of 

various MEMS devices [17]. ......................................................................... 9 

 

Fig. 2.2.   A typical laser Doppler vibrometer (LDV) setup [24]. ............................... 11 

 

Fig. 2.3. An optical microscopy setup with digital image capture capability for 

MEMS device characterization [34]. ........................................................... 14 

 

Fig. 2.4.  SEM micrograph showing blurring of structural features due to device 

motion [35]. ................................................................................................. 16 

 

Fig. 2.5.   Network analyzer setup for characterizing micromechanical resonators. ... 20 

 

Fig. 2.6.   Temperature compensated micromechanical resonators which utilize α 

mismatch to counteract the negative thermal frequency shift resultant from 

Si material softening [66]–[67]. ................................................................... 27 

 

Fig. 2.7.   Reaction-layer fatigue model for silicon thin-film failure [75]. .................. 32 

 

Fig. 3.1.   Generation of mechanical waves or phonons during MEMS cantilever 

switch operation. .......................................................................................... 39 

 

Fig. 3.2.   Clamped-clamped beam and actuation shape at fundamental frequency f0. 

Phonon dissipation occurs at the anchor structures during device actuation.

 ..................................................................................................................... 42 
 

Fig. 3.3.   A circular piezoelectric element with surface electrodes connected to a 

voltmeter. The axis convention is shown on the upper left. ........................ 49 

 

Fig. 3.4.   Schematic of the phonon detection setup for MEMS devices. .................... 54 

 

Fig. 3.5.   Block diagram of the in-vacuum phonon detection test system for MEMS 

devices. ........................................................................................................ 55 

 

Fig. 3.6.   (a) Optical image of the MEMS switch and (b) electrical schematic diagram.

 ..................................................................................................................... 61 
 

Fig 3.7.   Screenshot of voltage measurements recorded by the oscilloscope during ~2 

cycles of switch operation. .......................................................................... 62 

 

Fig. 3.8.   SEM image of the clamped-clamped beam resonator. For this particular 

device design L = 480 μm and w = 6 μm, therefore the theoretical resonance 

frequency f0 = 200 kHz. The anchor width W = 100 μm. ............................ 65 

 



 

 

 

ix 

Fig. 3.9.   (a) Phonon waveform Vphonon(t) generated by the resonator device actuated 

with DC bias VB = 10 V and AC drive input vd = 25 mV in a vacuum 

ambient (pressure ~10
-3

 Pa). The peak-to-peak voltage of the phonon 

waveform is 230 mVpp. (b) Corresponding sinusoidal physical displacement 

of the device observed with stroboscopic SEM. The measured peak-to-peak 

displacement is 112 nm. .............................................................................. 66 

 

Fig. 3.10.  Frequency response of the resonator, actuated with DC bias VB = 10 V and 

AC drive input vd = 25 mV, obtained using phonon detection and 

stroboscopic SEM (displacement measurements). Both techniques predict 

the same resonance frequency f0 = 212.653 kHz and Q-factor ~ 10,600 for 

the device. .................................................................................................... 67 

 

Fig. 3.11.   ln (Vphonon) vs. ln (u) at various linear drive conditions. From the slope of 

the best-fit line though all the points, n ~ 1.0 indicating a linear first-order 

relationship between the two parameters. .................................................... 71 

 

Fig. 3.12.  Phonon voltage vs. displacement plots for the sample at the three linear 

operating biases. From the best-fit line through all three sets of points, the 

average K is determined to be 2.246 mV nm
-1

. ........................................... 72 

 

Fig. 4.1.   Schematic diagram of time-gated signal detection for stroboscopic imaging.

 ..................................................................................................................... 79 
 

Fig. 4.2.   Block diagram of the stroboscopic imaging system. ................................... 82 

 

Fig. 4.3.  SEM images showing the comb actuated resonator (labeled Device 1) used 

for measurement. (a) The overall resonator device. (b) 200X magnified 

image of the comb structures. Circled in white (arrowed) is the portion of 

the 6 µm support beam used for imaging. (c) The portion of the 6 µm beam 

circled in (b) at 10,000X magnification. ...................................................... 83 

 

Fig. 4.4.   Stroboscopic micrographs of 6 µm support beam at its peak velocity point 

captured using gate width tgate of (a) 10 ns, (b) 30 ns, (c) 100 ns, (d) 300 ns, 

(e) 1 μs and (f) 3 μs. ..................................................................................... 85 

 

Fig. 4.5.   Micrographs captured with different gate delay ramp rates to show several 

cycles of resonator beam displacement in a single micrograph. (a) Ramp 

rate 2.4° s
-1

 – 1 cycle, (b) ramp rate 4.8° s
-1 

– 2 cycles, (c) ramp rate 9.6° s
-1 

– 4 cycles, (d) ramp rate 16.8° s
-1 

– 7 cycles and (e) ramp rate 21.6° s
-1 

– 9 

cycles. The gate width tgate for all the captures is 30 ns. ............................. 86 

 

Fig. 4.6.  (a) A 512 pixel-wide gray level intensity lineprofile of y-y’ in the 

stroboscopic micrograph (b). ....................................................................... 88 

 

 

 

 



 

 

 

x 

Fig. 4.7.   Quantitative displacement plots (shown in white) for stroboscopic resonator 

imaging over (a) one (ramp rate 2.4° s
-1)

, (b) four (ramp rate 9.6° s
-1

) and (c) 

nine (ramp rate 21.6° s
-1

) cycles of motion. The solid line shows the best-fit 

curve through the extracted data points. From (a), the fitted parameters for 

resonator peak displacement A0 was 265 nm and the phase shift 0 was 127º 

(phase lead with respect to the AC drive signal). ........................................ 88 

 

Fig. 4.8.   Motion of 6 µm support beam (one cycle) captured using varying gate 

widths tgate (a) 10 ns, (b) 30 ns, (c) 100 ns, (d) 300 ns, (e) 1 μs and (f) 3 μs.

 ..................................................................................................................... 90 
 

Fig. 4.9.   Velocity profile (white curve) of resonating beam at 8 selected points of its 

motion. The peak velocity of the structure occurs at the point where the 

micrograph (Fig. 9(e)) shows the most blurring. From the best-fit curve, the 

estimated maximum velocity is 0.192 m s
-1

. ............................................... 93 

 

Fig. 4.10.   30 keV gold on carbon calibration micrographs (120,000X magnification) 

used for determining effective resolution of the S-3500 SEM: (a) Spatial 

resolution of ~20 nm for in-situ resonator experiments with working 

distance (WD) = 17.8 mm. (b) Best case resolution of ~10 nm with WD = 

11.0 mm. ...................................................................................................... 94 

 

Fig. 4.11.   Actual 1 μs gate signal provided by the SR250 gated-integrator/boxcar 

averager compared with ideal. ..................................................................... 95 

 

Fig. 5.1.   (a) SEM micrograph of a specimen of the comb actuated clamped-clamped 

beam devices used in the long-term stability experiments. The devices were 

fabricated using the SOIMUMPs process. (b) Magnified image of the 

resonator anchor structures with W = 100 μm and w = 6 μm. The beam 

length L = 400 μm is shown in (a). (c) Cross-section schematic of the 

device showing the SOI structural layer and the substrate. ....................... 104 

 

Fig. 5.2.   Variation of mode constant β with axial stress. The numerical solution 

predicts a non-linear relationship between β and the stress parameter. For 

small stresses, a linear approximation about the zero stress point can be 

applied. ...................................................................................................... 107 

 

Fig. 5.3.   f0-temperature plot for Device R01. The temperature coefficient of 

resonance frequency TCf of the device is determined from the slope of the 

linear best-fit line. The best-fit line is obtained using line regression by the 

method of least squares. In this case, the TCf of Device R01 is –12.67 

Hz °C
-1

 or –73.87 ppm °C
-1

. ...................................................................... 109 

 

Fig.5.4.   Automated phonon detection setup for monitoring the long-term stability of 

resonator devices. ...................................................................................... 112 

 

 



 

 

 

xi 

Fig. 5.5.   Frequency response curve of Device R01 obtained using phonon detection 

at 28.6 
o
C and ~2 x 10

-2
 Pa. The device was actuated with VB = 6.0 V and vd 

= 30 mV. The measured f0 = 171.589 kHz and Q = 10,200 as determined 

from the best-fit Lorentzian curve. ............................................................ 114 

 

Fig. 5.6.   (a) Non-linear frequency response of Device R01 obtained by phonon 

detection (Vphonon) and by stroboscopic SEM (displacement) at 28.6 
o
C and 

~2 x 10
-2

 Pa. The resonator was actuated at with VB = 15.0 V and vd = 60 

mV. (b) Voltage-displacement relation of the phonon detector obtained 

using six points from both curves in (a). The gradient of the best fit 

equation (by linear line regression) gives the voltage-displacement gain of 

the detector for this particular device. ....................................................... 115 

 

Fig. 5.7.   (a) Recorded f0 of Device R01 over the 500-hour actuation period. The 

resonance frequency of the device has a substantial dependence on 

temperature, resulting in large fluctuations in the measured f0. (b) Measured 

surface temperature of Device R01. This data was used to decompose the 

effects of temperature variations on f0. The average surface temperature 

over the actuation period was ~27.9 ±1.8 °C. (c) Plot of temperature 

compensated f0 after temperature effects have been decomposed. The 

frequency drift ∂f0/∂t of Device R01, obtained using linear line regression, 

is –4.512 Hz day
-1

. ..................................................................................... 118 

 

Fig. 5.8.   Q-factor variation and in-plane displacement of Device R01 throughout the 

actuation period. The displacements were derived from the recorded 

phonon voltages at the resonance frequency f0 using the voltage-

displacement gain of 0.0780 mV nm
-1

. ...................................................... 119 

 

Fig. 5.9.   Graphical representation of f0 drift vs beam axial stress for thirteen of the 

fifteen test devices (Device R04 and Device R13 were omitted). The slope 

of the linear-fit line suggests that an f0 drift of 1.233 Hz day
-1

 is induced for 

every 1 MPa of stress acting on the clamped-clamped beam. ................... 123 

 

Fig. 5.10.   Temperature compensated f0 variation of Device R13 over the first 120 

hours of the actuation period. The device displayed periodic frequency 

swings of ~100 Hz throughout the actuation period. Compare with Fig. 

5.7(c) which shows the compensated f0 variation for a typical device. ..... 125 

 

Fig. 5.11.  Q-factor variation and phonon voltage Vphonon of Device R14 over 500 

hours. Note the drop in Q-factor at the bifurcation point t = 406 hr. The 

concurrent observation of an increase in Vphonon prompted a recalibration of 

the voltage-displacement gain. It was found that the voltage-displacement 

gain this device increased from 0.0428 mV nm
-1

 to 0.0612 mV nm
-1

 (~43%) 

after t = 406 hr. .......................................................................................... 128 

 



 

 

 

xii 

LIST OF SYMBOLS 

 

δi    Strain in the i-direction 

σi    Stress in the i-direction 

α     Coefficient of thermal expansion 

ρ    Density 

T     Temperature 

E    Young’s modulus 

ω     Angular frequency 

Q     Q-factor 

f0    Resonance frequency 

    Dielectric constant 

dij    Piezoelectric strain constant 

Z    Acoustic impedance 

R     Wave reflection coefficient 

U    Wave transmission coefficient 

κ    Phonon coupling factor 

K    Phonon voltage-displacement gain 

TCf    Temperature coefficient of resonance frequency 

 

 

 



Chapter 1     Introduction 

 

 

1 

CHAPTER 1 

INTRODUCTION 

 

 

 

 

 

 

1.1. Background 

Rapid progress in microsystems technology in the past two decades has enabled the 

development of many microelectromechanical systems (MEMS) devices such as 

resonators, micromirrors, microswitches, etc. and the increasing application of these 

MEMS devices in electrical products and systems over the years is a testament to the 

growing acceptance of MEMS as a viable future technology. The automotive industry 

was the first to commercially embrace MEMS devices as early as the 1990s. MEMS 

airbag accelerometers [1], which replaced their bulky macro counterparts due to their 

small size, relative low cost and high degree of sensitivity, were the first devices that 

saw high volume application. Since then, MEMS fuel pressure sensors, air flow 

sensors and tire pressure sensors are just some of the new devices that have found their 

place in the modern automobile [2]. In the wireless domain, future developments may 
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see discrete passives such as RF-switches, high-Q resonators and filters be replaced by 

their RF-MEMS counterparts [3]–[5], offering significant space and cost savings and 

allowing smaller form factors for RF chips. Devices for applications in biomedical 

science, telecommunications, video projection and a variety of other fields have been 

proposed with some already in production. The global market for MEMS devices 

totaled US$7 billion in 2007 and is forecasted to reach US$15.5 billion by 2012 [6]. 

 

This mammoth growth in device development cannot possibly proceed without 

characterization tools. State-of-the-art MEMS device characterization tools typically 

utilize imagining or electrical measurements in order to measure motion parameters 

such as displacement and velocity. Currently, this has proven to be sufficient for 

functional assessment of the device and to evaluate its short-term performance. 

However, present tools do possess a common drawback in that they have limited 

capability when assessing device mechanical state. Mechanical energy dissipation, 

actuation force and contact surface tribology are some examples of mechanical 

phenomena which are also present during MEMS device actuation but are difficult to 

quantify using imaging techniques or electrical measurements. Therefore, it would be 

worthwhile to develop new testing methodologies that can detect changes in these 

mechanical phenomena and hence offer a different perspective on device performance 

from current characterization techniques. One possible application of such testing 

methodologies could be in the area of long-term device testing. Device long-term 

performance is an indication of reliability and ultimately quality, and is expected to 

grow in importance especially considering the increasing volume of MEMS devices 

that will eventually find their way into consumer products. The wear and tear in 

micromechanical structures that occurs during long-term operation will lead to changes 
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in various aspects of their mechanical state and having a test technique that can detect 

these changes will therefore be useful in assessing long-term performance. 

 

Long-term stability tests are a key aspect of the device developmental process and are 

typically carried out with the purpose of identifying time-dependant failure 

mechanisms and establishing projected life estimates. The information provided by 

these tests is a quantitative measure of the reliability of a product, which in turn is a 

benchmark for product quality. Of the diverse array of MEMS devices currently 

available in the market, the long-term stability of micromechanical resonators appears 

to have the greatest scope for study. Silicon resonators are one of the latest 

micromechanical structures to make the leap form developmental stage to full-scale 

production. Oscillator products that encompass micromechanical resonators have 

shipped since 2007 and by 2009 have become ubiquitous, finding applications in many 

consumer electronic products. The take-up rate of silicon oscillators has been 

remarkable, leading to the technology being proclaimed as the heir to quartz in the 

US$5 billion timing market. Judging by these current trends, micromechanical 

resonators have a very bright future. While the short-term performance parameters of 

resonators are fairly well understood, precious little published work exists on their 

long-term stability and it is this particular issue which this work intends to address. 

Resonator long-term stability experiments documented thus far have utilized network 

analyzer measurements, which are sufficient to track frequency changes but, in fact, 

provide no additional mechanical information (such as energy dissipation) on device 

performance. This form of device testing has also been unsuccessful in identifying a 

failure mode for micromechanical resonators. 
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1.2. Objectives 

This work first aims to develop a phonon detection technique for the characterization 

of MEMS devices. MEMS devices are known to exhibit phonon generation and 

dissipation mechanisms during actuation [7]–[9] and these have been studied in the 

context of maximizing device performance [10]. However, these generated phonons 

can also play a crucial role in functionality assessment as they carry information on the 

dynamic mechanical state of the device. This property is particularly useful for 

monitoring long-term performance since device mechanical state inevitably degrades 

with wear and tear. The concept of acoustic phonon generation and detection has been 

demonstrated elsewhere for characterizing IC devices [11]–[12], hence it is expected 

that it can be viably extended to motion detection of dynamic MEMS structures. 

 

A high resolution imaging technique is also required for subsequent motion calibration 

of the phonon detection technique. The micromechanical resonators used as test 

structures in experiments in this work typically exhibit ~100 nm displacement when 

actuated in their linear modes and hence their motion cannot be imaged by 

conventional optical/laser methods which are diffraction limited (~0.5 μm resolution). 

A stroboscopic technique based on the scanning electron microscope (SEM) is 

proposed to achieve the required high resolution. The physical motion measurements 

obtained through imaging will be matched against the detected characterization signal 

from phonon detection for verification purposes. 

The second objective of this work is to employ the phonon detection technique which 

has been developed to investigate the long-term stability of micromechanical 

resonators. This particular aspect is targeted for two reasons: one, the need for long-
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term stability data by device manufacturers and two, the lack of said data.  The 

specimen of choice for study is the clamped-clamped beam resonator. This particular 

device architecture, which has reported applications in frequency reference and signal 

processing [13]–[16], is structurally simple and fairly straightforward to theoretically 

model. Working samples can also be fabricated consistently and reliably using 

commercially available MEMS fabrication processes. It is anticipated that this testing 

methodology will provide information from a mechanical perspective which will 

complement the performance parameters provided by current reported studies carried 

out using conventional network analyzer measurements.  

 

1.3. Overview 

This thesis documents the development of a phonon detection technique that can be 

applied for long-term testing of micromechanical resonators. Chapter 2 examines a 

number of state-of-the-art approaches for characterizing the motion of MEMS devices 

to provide a comparison for the proposed testing methodology. A review of recent 

studies on short-term performance and long-term stability of micromechanical 

resonators is also presented. 

 

The phonon detection technique which has been developed is detailed in Chapter 3. 

This chapter covers phonon generation mechanisms of dynamic structures and 

highlights the difference in the phonons generated by contact and non-contact mode 

MEMS structures. The theory behind piezoelectric sensing is discussed as it is the 

method which was used to detect the generated phonons. The chapter also presents 
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calibration experiments, error source analysis and proof-of-concept experiments on 

MEMS switches and resonators. 

 

Chapter 4 introduces stroboscopic SEM for nano-scale motion measurement. The 

technique was developed in-house for the purpose of providing in-plane physical 

displacement measurements for the resonator samples. A modified form of this chapter 

was published in Sensors and Actuators A 138 (2007), 167. The technique was used 

extensively during calibration experiments for the phonon detection test setup. 

 

The long-term stability studies on micromechanical clamped-clamped beam resonators 

are detailed in Chapter 5. Theory and modeling of clamped-clamped beam structures is 

first presented. Of notable interest is the influence of temperature on resonator 

frequency shift, an effect that must be decomposed when determining long-term 

frequency drift. A study on this subject, which was part of this work, was published in 

Journal of Micromechanics and Microengineering 19 (2009), 065021. The measured 

long-term stabilities of a number of sample devices are presented next. Some of the 

performance parameters monitored include resonance frequency, Q-factor, in-plane 

displacement and phonon dissipation. Observation of a possible form of resonator 

fatigue response is also discussed. Part of these results has been submitted for 

publication in Measurement Science and Technology. 
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CHAPTER 2 

REVIEW OF TECHNOLOGIES FOR CHARACTERIZING 

DYNAMIC MEMS DEVICES AND THEIR APPLICATIONS 

 

 

 

 

 

2.1. Introduction 

Most MEMS devices are designed to display mechanical motion upon actuation. 

Microcantilevers and resonators exhibit in-plane or out-of-plane vibrations when 

excited by an AC drive signal, micromirrors are designed to flex and rotate during 

operation, while accelerometers function based on capacitive plate rotation, etc. Hence, 

MEMS device characterization focuses on detecting and measuring the displacement 

of the devices’ moving parts. 

 

This chapter reviews various techniques which have been designed for sensing 

dynamic motion in the micro-scale. These techniques can be broadly classified into 

four categories: laser-based techniques, optical methods, SEM imaging and electrical 

measurements. Laser-based techniques and optical methods have proven to be popular 
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measurement techniques because of their good performance, cost effectiveness and 

operational simplicity. The SEM is a high resolution option for imaging static 

structures that can be adapted for distinguishing dynamic motion. Electrical 

measurements can be carried out on packaged samples and are useful in the 

characterization of a variety of MEMS devices including switches and oscillators. 

Different implementations of these techniques will be presented in the following 

sections along with their strengths and associated drawbacks. 

 

The application of some of these techniques to study various aspects of resonator 

behaviour will also be reviewed. Silicon micromechanical resonators have been 

selected as the subject of study due to their prospects as one of the most exciting 

emerging micromechanical technologies. The long-term performance of these devices 

has received far less attention than short-term parameters such as thermal frequency 

stability and phase noise. In addition, the current methods being utilized for long-term 

performance characterization reveal little about the change in mechanical state of the 

device over extended actuation. Hence, it is this lack of insight into the long-term 

mechanical performance of resonators that this work intends to address. 

 

2.2. Laser-based techniques 

Laser-based techniques have long been applied for accurately measuring the velocity 

and displacement of vibrating structures in many engineering applications. Due to the 

non-contact nature of these methods, measurements can be performed even on small 

structures without interfering with their operation. Hence, laser-based techniques are 

well-suited for MEMS characterization. In fact, both laser interferometry and laser 
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Doppler vibrometry (LDV) have been demonstrated for measuring the motion of a 

variety of microstructures including micromechanical resonators and cantilevers. 

 

2.2.1. Laser interferometry 

Laser interferometry utilizes wave inteference to detect device motion. In a typical 

interferometer system, a single laser beam is split into two identical beams, a 

measurement beam and a reference beam, by a grating or a partial mirror. Each of 

these beams will travel a different path before they are recombined at a detector. The 

path difference creates a phase difference between them and it is this introduced phase 

difference that generates an interference pattern between the initially identical waves. 

When the measurement beam interacts with a vibrating microstructure, a phase change 

in the beam occurs resulting in a corresponding change in the interference pattern. This 

change in the inteference pattern can be measured using a photodetector and the 

photovoltage generated is directly representative of structure displacement. 

 

 
Fig. 2.1.  A laser interferometry system for measuring out-of-plane motions of various MEMS 

devices [17]. 
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Regular interferometer systems have been demonstrated for characterizing the out-of-

plane motions of various MEMS structures such as microcantilevers [17] and switches 

[18]. These systems managed to achieve resolutions of up to 0.1 μm [17] and laser spot 

diameter (which determines in-plane spatial resolution) of ~10 μm. More sophisticated 

systems also incorporate stroboscopy for motion freezing by pulsing the laser source 

[19]–[20]. Stroboscopic optical interferometry systems which can characterize both the 

in-plane and out-of-plane motions of MEMS devices have also been reported [21]–[22]. 

These systems combine stroboscopic optical microscopy (which captures in-plane 

motion) and laser interferometry (for measuring out-of-plane motion) to achieve three 

dimensional motion characterization of the device-under-test (DUT). Image sequence 

processing by optical flow techniques, such as gradient methods, allow for out-of-

plane measurement accuracies in the nanometer range [22] although in-plane spatial 

resolution is limited to ~2 μm due to light diffraction. 

 

2.2.2. Laser Doppler vibrometry 

LDV works based on the detection of the Doppler shift of coherent laser light that is 

scattered from a small area of the test sample. The sample scatters or reflects light 

from an incident laser beam and the Doppler frequency shift is used to measure the 

component of velocity which lies along the axis of the laser beam. An interferometric 

system is usually applied for extraction of the Doppler frequency information [23]. 

LDV can be applied to the dynamic evaluation of microstructure motion as the 

measurement system does not to impose undefined loads on the structure. 
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LDV systems or hybrid systems which incorporate the LDV for vibration 

measurements have grown increasingly popular due to the sensitivity and accuracy of 

the technique in detecting out-of-plane motion. In their work, Burdess et al. present a 

two-channel vibrometer system to measure sub-micron oscillations of micromachined 

structures at positional resolutions of approximately 10 μm [24]. The LDV unit in their 

system has a signal bandwidth of 150 kHz and a 0.6 μm s
-1

 velocity resolution over 

this bandwidth. A lateral resolution of ~5 μm was attained, limited by the laser spot 

diameter. This system was used to measure the dynamic characteristics of the 

microstructure including the mode shapes of vibration, modal damping factors and 

natural frequencies. LDV has also been applied by [25] to characterize the in-plane 

motion of comb actuated rotor/stator structures. In-plane displacement measurement 

was achieved by tilting the laser source and aiming the laser spot on exposed sidewalls 

of the structural layer. 

 

 
Fig. 2.2.  A typical laser Doppler vibrometer (LDV) setup [24]. 
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However, one major drawback of conventional LDV systems is that they are only able 

to perform point measurements and hence if measurements at multiple locations on the 

device are required, one has to physically move either the laser source or the sample. 

To overcome this issue, Vignola et al. have demonstrated a scanning LDV system 

which they have used to characterize the motion of micro-oscillators [26]. The laser 

spot was scanned over the sample surface by physically stepping the laser source with 

a mechanical sub-system. The typical achievable laser spot diameter was ~2.5 μm. 

Hybrid systems have also been proposed for improving the in-plane spatial resolution 

(laser spot diameter) capabilities of LDV. The confocal vibrometer microscope (CVM) 

demonstrated by [27] is essentially a LDV where its measurement beam is the laser 

beam of a confocal microscope. The confocal microscope component of the CVM 

system is able to reduce the laser spot diameter down to ~700 nm, allowing the CVM 

to characterize the out-of-plane motions of sub-micrometer devices. Out-of-plane 

resolution was claimed to be in the picometer (10
-12

 m) regime. The scanning function 

provided by the confocal microscope component also allows the system to map out-of-

plane motion over the entire topography of the device. 

 

Although laser-based techniques fair well in terms of measurement accuracy and 

throughput, a major downside is that laser probes utilize wavelengths in the visible 

spectrum. This, in effect, means that the lateral resolution of these techniques is 

diffraction limited to about 0.5 μm. Optical engineering methods, like confocal 

microscopy [27], would contribute minimal improvement to this resolution. Hence 0.5 

μm is probably the best resolution the system can achieve. For direct imaging of the 

microstructure or its motion, optical microscopy is perhaps the most frequently used 

technique and this method is discussed next.  
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2.3. Optical microscopy and optical stroboscopy techniques 

Optical microscopy and optical stroboscopy techniques are perhaps the most common 

and intuitive means of capturing dynamic micro-device motion. A typical optical setup 

for characterizing MEMS devices would feature a high-magnification light microscope 

whose optical output is linked to some form of image or video capture system (e.g. 

video camera). The resolution limits of these systems are determined primarily by the 

microscope lenses with aberrations in the lenses being the largest contributors to 

inaccuracies. 

 

Measurement systems combining a conventional optical microscope with a charge-

coupled device (CCD) camera have been presented to analyze the in-plane motion of 

MEMS structures [28]–[29]. A video recording of structural motion is first obtained 

and quantitative measurement data is then extracted using image processing techniques. 

Nanometer accuracy is achieved through sub-pixel extraction algorithms although 

spatial resolution (i.e. minimum resolvable feature size) is limited in the micrometer 

regime. The method of confocal microscopy is sometimes also utilized to improve the 

spatial resolution. The confocal optoelectronic holography microscope developed by 

[30] utilizes a confocal optical microscope and piezoelectric stepping (in the z-

direction) to image MEMS structures. By applying back-end processing of the image 

data, they are able to generate 3D images of structures with micometer lateral 

resolution and nanometer depth resolution. 
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Fig. 2.3.  An optical microscopy setup with digital image capture capability for MEMS device 

characterization [34]. 

 

Since measurement of dynamic motion is required when studying MEMS devices, 

most optical characterization systems also feature stroboscopic illumination for motion 

freezing. The stroboscopic effect is usually achieved by either blanking or pulsing the 

light source. Freeman has demonstrated optical microscopy with stroboscopic 

illumination to achieve bi-directional in-plane measurements of MEMS device 

vibrations [31]. Optical stroboscopy was also applied by Smith et al. in determining the 

resonant frequencies of a variety of MEMS actuators [32]. Both systems were able to 

detect device displacements in the micrometer regime. By performing sub-pixel 

processing on the images captured by their stroboscopic optical microscopy system, 

Davis et al. were able to attain displacement measurements of dynamic motion with 

nanometer accuracy [33]. However, their system is still limited to imaging devices 

with micrometer dimensions due to the spot diameter. 
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Applying the stroboscopic principle together with high-speed cine photomicrography, 

Rembe and Tibken have been able to optically visualize the motion of microrelays [34]. 

The technique features the use of an ultra high-speed CCD camera mounted on a 

powerful optical microscope to capture cinematographic image sequences of 

microstructure motion. The image sequences allow the measurement of the position 

with respect to time of the moving parts in the structure. If a dynamic model of the 

microstructure is available, these position data are used to estimate the model 

parameters. Stroboscopic illumination can also be added to the system during the 

analysis of very fast dynamic processes. The spatial resolution of this system is 

approximately 600 nm and is limited by the properties of the high-speed camera. 

 

It should be noted that optical measurement techniques suffer from the same 

diffraction limits (best case spatial resolution is ~0.5 μm) as laser-based techniques 

since both utilize probe sources in the visible spectrum. These characterization 

methods may still be applicable in the short- to mid-term, however, as MEMS device 

dimensions continue to scale down, sub-micron imaging techniques, like scanning 

electron microscopy (SEM), will become more relevant. 

 

2.4. Scanning electron microscopy 

The scanning electron microscope (SEM) is a high resolution (down to 2 nm) tool for 

imaging specimens with sub-micron features. Although it is traditionally used to image 

static samples, it can be adopted for characterizing the dynamic motion of MEMS 

devices as well. 
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Fig. 2.4.  SEM micrograph showing blurring of structural features due to device motion [35]. 

 

When imaging an actuating MEMS device, the lack of synchronization between the 

primary electron beam and MEMS device movement result in the device features 

showing up blurred in the final capture as shown in Fig. 2.4. The motion of the moving 

parts can be estimated from the edge blurring to provide a quantitative measure of the 

displacement (blur synthesis). In their work, Roy et al. applied this technique to the 

characterization of polycrystalline SiC resonators [35]. However, blur synthesis 

provides, at best, a rough approximation of the motion amplitude and its accuracy 

declines substantially when estimating small (nanometer) displacements. Furthermore, 

the actual motion of the structure cannot be ascertained from the image capture since 

the moving parts are blurred. 

 

An alternative to blur synthesis was proposed by Pike and Standley in their work [36] 

where they utilized slow-scan SEM imaging (time-resolved digital sampling) to 

visualize the motion of a micro-seismometer structure. By slowing the SEM raster scan 
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rate to match the frequency of the structure’s vibration, a time-resolved profile of its 

motion over a single period was obtained, from which quantitative displacement data 

was then extracted. However, the testing bandwidth is limited to a few hundred Hz as 

the required scan rate is too fast to provide images of sufficient quality for higher 

frequency devices. 

 

More sophisticated SEM-based measurement systems employ some form of 

stroboscopy for motion freezing which not only improves the accuracy of the 

displacement measurements but also allows the visualization of structure movement. 

There are two typical methods to realize stroboscopy in the SEM. The first is to blank 

the primary electron beam as it scans the sample surface. The second is to gate the 

secondary electron (SE) signal, which has the advantages of simpler implementation 

and does not degrade the electron-optical performance due to primary beam blanking. 

Ogo et al. utilized SE signal modulation to implement a stroboscopic SEM for 

characterizing microcantilevers [37]. The implementation of stroboscopic SEM 

imaging, presented in Chapter 3, is also based on the concept of SE signal gating. 

 

Other novel SEM-based measurement techniques include spot-mode measurement 

introduced by [38]. The electron beam is fixed at a static position at an edge of a 

moving part of the device and the SE signal is monitored using an oscilloscope. During 

actuation, device motion modulates the SE signal and this change in the signal level is 

representative of the motion. Prior calibration of the signal levels allows for 

quantification of device displacement while observing the SE signal magnitude. The 

authors have demonstrated the technique by performing displacement measurements 
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on microcantilevers. Similar measurement methodologies have been proposed by [39] 

and [40]. 

 

LDV, optical techniques and SEM measurements, although well-established and easily 

implementable, have the weakness of requiring a direct line of sight to the device 

under test. In the case of packaged devices, this would mean that decapsulation of the 

sample would be necessary before characterization, which may not always be desirable. 

In addition, the characterization signal is derived form the way the moving structural 

components interact with the laser, optical or electron probes (compared to a signal 

that is directly generated due to the motion itself). Hence, such a signal, while able to 

provide information on dynamic parameters such as displacement and velocity, offers 

no insight on the mechanical state of the test device. Next, electrical measurement 

techniques for sensing the motion of dynamic MEMS devices are reviewed. 

 

2.5. Electrical measurements 

Electrical tests are an important analysis platform for a large class of MEMS devices. 

However, while powerful electrical measurement tools exist to test their electrical 

behaviour, relatively few are available to measure micromechanical behaviour. 

Capacitive detection is perhaps the most commonly utilized methodology for 

electrical-based motion sensing, since most MEMS devices are electrostatically driven. 

Structural motion during actuation modifies the geometrical configuration of the 

capacitor plates in the device and hence the system displacement can be derived based 

on the change in capacitance. This change in capacitance can be measured by a 

capacitance meter. As only electrical contacts to the sample are required during 
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measurement, batch characterization for packaged devices is possible. Ferraris et al. 

applied this technique for characterizing their comb actuated stator/rotor structures 

[25]. The measured capacitances were verified with in-plane displacement 

measurements carried out using LDV. 

 

In the case of resonant microstructures, sensing is often based on measuring the current 

induced by the relative motion of capacitive electrodes [41]. For electrostatic comb 

actuated resonators pairs, the sinusoidal motion of one resonator on actuation induces a 

change in capacitance in the static plate of its pair [42]. With this change in 

capacitance, a sense current is induced in the pair which can be detected and used to 

characterize the motion of the device. Resonance can be excited and detected using a 

network analyzer and an off-chip transresistance amplifier [43]–[44]. A network 

analyzer setup for characterizing micromechanical resonators is shown in Fig. 2.5. A 

DC polarization voltage VP is directly applied to the resonator proof mass. The AC 

excitation vd from the network analyzer is connected to the drive port. As the resonator 

starts to vibrate under periodic electrostatic force, the DC-biased time-varying 

capacitance formed between the resonator proof mass and the sense combs produces 

an output current i0, which is subsequently converted to a voltage v0 through the off-

chip trans-resistance amplifier. Taking the ratio of v0/vd, the transmission response of 

the resonator can be obtained from the network analyzer measurement. 
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Fig. 2.5.  Network analyzer setup for characterizing micromechanical resonators. 

 

Capacitive detection has several key advantages over imaging techniques, including 

the ability to characterize both at the package and wafer level, parallel processing of 

devices and ease of implementation, which highlight its versatility and cost-

effectiveness. Hence, it is one of the most commonly applied techniques in various 

MEMS device characterization studies. Some of these studies are reviewed in the 

following section. It is worth noting, however, that the technique invariably suffers 

from electrical parasitic effects such as the fringing capacitance [45] and feedthrough 

interference [46] which distort the measured frequency characteristics and hence give 

rise to errors in the measurements. Furthermore, the voltage-to-displacement 

conversion is highly based on mathematical equations and thus it cannot directly 

quantify device motion. There is also a lack of mechanical information from the 

electrical signal. 

 

2.6. Applications in micromechanical resonator testing 

The motion detection techniques discussed in the previous sections have the capability 

of sensing most forms of micro-mechanical motion and hence can be applied for 
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characterizing various MEMS devices including accelerometers, micro-motors, 

switches and resonators. However, silicon micromechanical resonators have been 

selected as the subject of study in this work due to their prospects as one of the most 

exciting emerging micromechanical technologies. 

 

Silicon resonators are one of the latest MEMS structures to make the leap form 

developmental stage to full-scale production. The technological drive behind this 

transition is spearheaded by start-up companies such as Discera Inc. [47], SiTime [48] 

and Silicon Clocks [49], as silicon-based oscillators attempt to stake a claim in the 

US$5 billion timing industry currently dominated by quartz-based components. 

MEMS oscillator products have shipped since 2007 and by 2009 have become 

ubiquitous, finding applications in flat panel televisions, laptop PCs, networking 

equipment, cameras, phones, printers, set-top boxes and disk drives. The momentum 

that silicon timing has gathered in the past two years has shown that it has the potential, 

in time, to replace the legacy of quartz timing. 

 

The recent rise of micromechanical resonators therefore represents an opportunity: 

studies on the performance of these devices will no doubt take on more significance 

since resonators have a long-term future. It is thus the aim of this work to develop 

techniques to assess certain aspects of resonator operation. While short-term 

parameters such as phase noise and temperature frequency stability are well-

understood, long-term stability of these devices has received significantly less attention. 

Considering the importance of long-term stability data from a manufacturing 

standpoint, it is appropriate that this work should target measurement of long-term 
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stability parameters. The following sections review a selection of current work on both 

short-term and long-term parameters of micromechanical resonators. 

 

2.6.1. Phase noise 

Among the primary short-term stability concerns for MEMS oscillator systems is the 

phase noise. Phase noise can generally be defined as the frequency domain 

representation of rapid, short-term, random fluctuations in the phase of the waveform 

generated by the oscillator. An ideal oscillator would generate a pure sine wave. In the 

frequency domain, this would be represented as a delta function at the oscillator's 

frequency (i.e. all the signal's power is at a single frequency). However, real oscillators 

have phase modulated noise components and these phase noise components spread the 

power of the signal to adjacent frequencies, resulting in noise sidebands. 

 

In a MEMS oscillator system, phase noise can arise due to instabilities either in the 

micro-mechanical resonator or in the oscillation sustaining circuitry or both. Therefore, 

a variety of phase noise reduction stratagies that target either one noise source or both 

have been proposed. For the resonator structure, phase stability can be improved by 

increasing the Q-factor of the device or by enhancing its power handling capability 

[45]. This is a fairly well-understood field considering the large body of work that has 

been published on the subject. 

 

On maximizing Q-factor, this is typically achieved by minimizing energy loss 

mechanisms through optimized device design. More conventional resonator 

architectures such as capacitively-transduced beam [50] and folded-beam [51] 
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structures with Q-factors of ~13,000 in vacuum have been demonstrated. Novel 

designs including square [52]–[53] and disk [54] resonators, which operate in the bulk 

acoustic mode, are able to achieve substantially higher Q-values in excess of 98,000. 

Oscillators built with some of these resonators can achieve phase noise levels of –138 

dBc/Hz [52], which meet the Global System for Mobile Communications (GSM) 

reference oscillator phase noise performance specifications. Oscillator designs 

incorporating the concept of enhancing power handling have also been presented. The 

series-resonant micromechanical resonator oscillator proposed by [55] features the use 

of three different resonator structures combined with some on-chip components to 

boost the overall power handling capability of the oscillator. The final phase noise of –

125 dBc/Hz is close to GSM specifications. Other phase noise reduction techniques 

include tuning the electrode-to-resonator capacitive gaps via the use of atomic layer 

deposition as presented by [56]. By depositing hafnia (HfO2) between the capacitive 

gaps of a disk resonator, the authors were able to increase the power handling of the 

device and reduce its phase noise. 

 

Device characterization in the above mentioned studies were typically performed using 

capacitive measurements. The Q-factors were derived from network analyzer scans of 

the capacitively-generated currents at the device sense electrodes. In the case of phase 

stability, the power spectral density of the time-domain current signal induced at the 

sense electrode at resonance was studied to determine the phase noise. Phase noise in 

micromechanical oscillator systems is fairly well understood and therefore has much 

less scope for further study. Next, a second important short-term stability parameter is 

reviewed: temperature frequency stability. 
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2.6.2. Temperature frequency stability 

One of the major issues micromechanical resonator manufacturers face is the 

frequency sensitivity to temperature of such devices. This frequency sensitivity is 

characterized by the temperature coefficient of resonance frequency TCf of the 

resonator which is defined as the rate of change of frequency with temperature with 

respect to a reference frequency. 

 

For resonators, in general, the TCf is determined by the material properties of the 

device as well as the resonator geometry [57]. The two key material properties which 

influence the TCf are the Young’s modulus ESi and thermal expansion coefficient αSi of 

the resonator’s silicon structural layer. ESi was studied by Kahn et al. [58] for 

temperatures up to 450 °C and the measurements made were used to generate a second 

order polynomial fit, 

)(109816.5102225.8106806.1)( 23611 PaTTTESi     (2.1) 

where T is temperature. Hence, from Equation (2.1), ESi has negative temperature 

dependence (i.e. ESi decreases with increasing temperature) and this phenomenon is 

known as material softening. A decrease in the ESi reduces the f0 of the resonator and 

therefore material softening also contributes negative temperature dependence to the f0 

of the device. 

 

The thermal expansion coefficient determines the rate at which the dimensions of the 

resonator expand at elevated temperatures. αSi has been empirically measured to be 2.6 

× 10
-6

 – 2.9 × 10
-6

 ppm 
o
C

-1
 [59]–[60]. Expansion of the device dimensions causes an 

overall increase in the f0, opposite to the effect of ESi. However, the negative frequency 
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shift resultant from material softening is far more substantial than the contribution 

from αSi and hence the overall TCf of the resonator is dominated by the temperature 

dependence of silicon Young’s modulus [57]. 

 

The geometry of the resonator has a bearing on the magnitude of stress the resonator 

structure experiences during heating which in turn also influences the TCf of the device. 

Clamped-clamped beam resonators, in particular, are prone to axial stresses resultant 

from mismatch in thermal coefficients of expansion. These mismatches can occur at 

both the die level [57] (between the structural layer and the substrate of the resonator) 

and the package level [61] (between the resonator die and the IC package material). 

Depending on the type of stress induced, tensile stress tends to increase the f0 while 

compressive stress reduces it [62], and its severity, the TCf of the device is modulated 

accordingly. Hence, the various influences on the TCf of clamped-clamped beam 

resonators can be summarized as, 

)()( TTETC SiSif           (2.2) 

where σ(T) is variation of axial stress with temperature. To find the TCf of a resonator, 

the f0 of the device is first recorded at various operating temperatures. The slope of the 

f0-temperature plot gives the TCf of the device. Due to its good measurement 

throughput and relative ease of implementation, the current dominant method for 

determining resonator TCf is network analyzer [63]–[65]. 

 

Thermal frequency stability is a key issue when considering silicon-based oscillators 

for frequency reference and timing applications. Uncompensated resonators tend to 

display between –16 to –30 ppm 
o
C

-1
 of frequency shift with temperature [63]–[65] 
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and this is in stark contrast to AT-cut quartz crystals, currently being used, which show 

less than 2 ppm 
o
C

-1
 frequency drift. In order for resonators to even be considered for 

such applications, some form of temperature compensation must first be implemented. 

Compensation techniques for reducing the TCf of resonators have been explored and 

can be categorized as either passive or active. 

 

Passive techniques typically use a mismatch of coefficients of thermal expansion of 

different materials to induce stress in the resonator [66]–[67]. Fig. 2.6 shows two 

modified resonator structures designed for temperature compensation. The structure in 

Fig. 2.6(a) is fabricated with support beams which are longer than the resonator beam. 

At elevated temperatures, the support beams expand faster than the resonator beam, 

inducing a net tensile stress on the resonator beam in the axial direction. The resultant 

positive frequency shift induced by the tensile stress counteracts the negative 

frequency shift caused by material softening, hence reducing the TCf of the device. The 

TCf of the structure was measured to be –2.5 ppm 
o
C

-1
 [66] and is a substantial 

improvement over uncompensated devices. The resonator structure in Fig. 2.6(b) is a 

stiffness-compensated microresonator. The resonator beam and overhead electrode are 

fabricated from materials with mismatched thermal expansion coefficients so that 

when heated, the overhead electrode expands upwards faster than the resonator beam. 

This results in an increase in the gap distance between the overhead electrode and the 

beam, reducing the electrical spring constant of the device. When this happens, the f0 

of the resonator increases, hence opposing the negative frequency shift caused by 

material softening. A TCf of –0.24 ppm 
o
C

-1
 was achieved [67], making the device 

almost temperature insensitive. 
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Fig. 2.6.  Temperature compensated micromechanical resonators which utilize α mismatch to 

counteract the negative thermal frequency shift resultant from Si material softening [66]–[67]. 

 

Active temperature compensation techniques include electrostatic tuning [67]–[69] 

which utilizes electronic circuits to modify the bias voltage and tune the f0 of the 

resonator. However, this technique is only applicable for resonators which display f0 

change with bias voltage variation. The I-shaped bulk acoustic resonators (IBAR) 

fabricated by [67]–[69] display resonance frequencies which can be tuned by 2580 – 

4500 ppm when varying the DC bias. The resonators were closed-loop actuated and a 

temperature compensating bias generator circuit was designed to moderate the DC 

drive level and maintain f0 with changing temperature. The compensated oscillator had 

a measured TCf of –0.39 ppm 
o
C

-1
 which is a 70 times improvement over an 

uncompensated oscillator [69]. 
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Overall, the temperature performance of micromechanical resonators is a topic that has 

been well explored. Various oscillator product lines available from Discera, SiTime 

and Silicon Clocks already incorporate a range of temperature compensation 

techniques in order to meet the stringent temperature frequency stability specifications 

required by customer applications. Hence, future studies on this particular subject will 

have a lower return on investment of time and resource spent. Long-term stability 

issues, on the other hand, have been far less investigated. The importance of long-term 

stability information should not be understated since it describes the reliability of the 

resonator over its useful lifetime, which in turn is an indication of product quality. In 

the next section, some of the published studies on the long-term stability of 

micromechanical resonators are reviewed. 

 

2.6.3. Resonator long-term stability 

Long-term stability tests are typically carried out with the purpose of identifying time-

dependant failure mechanisms and establishing projected life estimates. The 

information provided by these tests is a quantitative measure of the reliability of a 

product, which in turn is a benchmark for product quality. As oscillator devices based 

on micromechanical resonators transitions to manufacturing, as is the trend since 2007, 

long-term stability testing will become increasingly important since the data that these 

tests provide are an indication of device quality. 

 

However, very few reliability studies on the long-term stability of micromechanical 

resonators have, so far, been published. Koskenvuori et al. are among the first to 

present such a study [70]. In their work, four length-extensional mode microresonators 
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were examined, two that were vacuum encapsulated and two control samples that were 

not. The four devices were housed inside a climate chamber and their frequency drifts 

were tracked over a 42-day actuation period (~1000 hrs) using a multi-channel 

network analyzer setup. It was found that the vacuum encapsulated devices showed 

substantially better stability (<1 ppm) compared to the non-encapsulated devices which 

displayed tens of ppm frequency drift. A second study by Kaajakari et al. featured 

eight resonators (four different designs) that were actuated continuously for 30 days 

using an external bias source. The transmission response of the devices was recorded 

at 5 min intervals using a multi-channel network analyzer. The devices were measured 

to have frequency shifts of 1 – 400 ppm month
-1

 depending on the device design [71]. 

It was noted by the authors that temperature fluctuations and package stresses can 

influence the frequency shift of the oscillators and hence their effects must be 

compensated for when determining the long-term frequency stability of the devices. 

 

Kim et al. also demonstrate long-term frequency stability experiments on two different 

resonator types [72]. Six devices were continuously actuated for ~10000 hrs (>1 year) 

with their frequency characteristics measured every 30 min. Both device designs did 

not show significant frequency drift during the test period and frequency fluctuations 

of <4 ppm about the mean f0 value was observed. Temperature cycling also did not 

degrade the frequency stability of the devices. The authors note the absence of burn-in 

frequency drift in the resonators which is a potential advantage over quartz crystals. A 

more recent study presented findings on the stability of aluminum nitride (AlN) ring 

resonators [73]. The four devices (of the same design) that were tested showed an 

average frequency drift of about 600 ppm over 760 hours. Frequency monitoring was 

carried out using network analyzer measurements. The authors speculate that the drift 
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was caused by silicone contaminants coming from their vacuum chamber being 

deposited onto the resonator structures. 

 

The abovementioned studies offer valuable insights on the potential long-term 

frequency stability of various resonator designs as well as testing methodologies for 

investigating long-term resonator behaviour. However, there are three important 

aspects of current studies which future investigations should address. Firstly, it should 

be noted that very small sample sizes (two devices per design for [71], three devices 

per design for [72] and four each for [70] and [73]) were used in current studies, which 

may or may not reflect the true frequency stability of the particular resonator design. 

Secondly, a failure mode for micromechanical resonators has yet to be identified since 

the various samples used in the studies reviewed here show no signs of fatigue 

behaviour during testing. And thirdly, long-term stability tests have so far utilized 

network analyzer measurements, which are sufficient to track frequency changes but, 

in fact, provide no additional mechanical information (such as energy dissipation) on 

device performance. Since the failure modes of the resonators are expected to be in 

mechanical form (device operation is afterall mechanical in nature), it is perhaps 

prudent to also consider alternative testing techniques which have the capability of 

providing information on the long-term mechanical state of the device. Considering the 

importance of long-term testing for resonator manufacturing and the current lack of 

investigation on this particular subject, it is the aim of this work to develop techniques 

to study resonator long-term behaviour, specifically addressing the three points 

mentioned above. 

Lastly, some of the published work on the fatigue behaviour of silicon structures 

undergoing cyclic stress (the structure of a vibrating resonator experiences cyclic 
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stresses during actuation) are presented. These studies are pertinent as they provide an 

insight on the possible failure modes or fatigue behaviour that may occur during long-

term testing. 

 

Possible failure modes 

Although bulk silicon, being a brittle material, is not known to exhibit susceptibility to 

cyclic fatigue, micron-scale structures made from silicon films have been discovered to 

be vulnerable to degradation by dynamic fatigue – delayed fracture under applied 

cyclic stresses [74]–[78]. This is particularly relevant to micromechanical resonators 

since these structures are designed to undergo high frequency (kHz to MHz) cyclic 

displacement when actuated. Hence, fracture of the resonator beam after many cycles 

of actuation is a very possible device failure mode, although there have not yet been 

reports published on this occurrence. 

 

The many proposed mechanisms explaining the dynamic fatigue of silicon are 

summarized in [79]. The two most widely discussed mechanisms are: reaction-layer 

fatigue [74]–[75] and mechanically induced subcritical cracking [76]–[77]. The 

reaction-layer fatigue model involves the silicon structure first undergoing cyclic stress 

enhanced surface oxide thickening and then environmentally assisted stress corrosion 

cracking. Fig. 2.7 details the failure process. 
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Fig. 2.7.  Reaction-layer fatigue model for silicon thin-film failure [75]. 

 

The native oxide initially forms on the exposed silicon surface with a thickness and 

composition dictated by the environment and processing history. This oxide then 

thickens in high stress regions during subsequent fatigue loading and becomes the site 

for stress-corrosion cracks which grow stably in the oxide layer. Oxide thickening and 

sub-critical crack growth also tends to reduce the resonance frequency of the structure 

[80]. The process then repeats until a critical crack size is reached, whereupon the 

silicon itself fractures catastrophically by transgranular cleavage. The rate-dependence 

of this failure mechanism is dictated by the cycle-dependent oxide thickening process 

and the time-dependent, environmentally assisted, subcritical crack growth in this 

oxide layer [75]. Note that cyclic fatigue damage only occurs on the surface oxide 

which suggests that this failure mechanism is only applicable for structures actuated in 

an air or oxygen ambient. 

 

The mechanically induced subcritical cracking model states that subcritical cracking 

occurs in the silicon itself when subjected to cyclic loads, particularly cyclic loads with 
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large compressive components [77]. Failure again occurs when a critical crack size is 

reached and the silicon fractures catastrophically. Subcritical cracking can take place 

in both vacuum and air environments. In an air ambient, surface oxide formation on 

mechanically induced subcritical cracks result in wedging effects that increase the 

applied stress intensity at the crack tips and speed up subcritical crack propagation and 

failure. 

 

Prior knowledge of the possible failure modes of micromechanical resonators and the 

mechanisms behind them would certainly aid in designing experiments to study the 

long-term or fatigue behaviour of these devices. From the above mentioned 

mechanisms which describe silicon thin-film failure, it can be deduced that test 

ambient does have some influence over the time-to-failure (or cycles-to-failure) of the 

device, allowing accelerated testing methodologies to be designed. For example, air 

and high humidity test ambients should accelerate failure since oxygen and water 

vapour promote silicon dioxide formation. The experimental results by [74]–[78] also 

suggest that, in order for catastrophic fracture to occur, the thin-film must undergo 

very large cyclic stresses, usually several GPa. However, resonators operating in the 

linear (small signal) mode usually only experience structural stresses in the MPa range, 

a difference of 2 – 3 orders of magnitude. Hence, it would be unlikely to induce any 

form of mechanical cracking or fracture in resonators within a reasonable time period 

(<1000 hrs) unless they are actuated well into their non-linear regime (very large 

displacement amplitudes). These are some of the considerations which must be taken 

into account when designing experiments to study the fatigue behaviour of 

micromechanical resonators. 
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Of course, whether or not micromechanical resonators actually fail by structural 

fracture is still an open question since there is currently no publication on the 

observation of such phenomena. The truth of the matter is that there is still no known 

failure mode for resonator devices. It is therefore necessary for the long-term stability 

experiments to start from the very basic step of simply actuating sample devices under 

normal operating conditions and monitoring their performance for signs of fatigue. 

Once some form of fatigue behaviour is observed and the mechanism behind it is 

determined, it is then possible to further consider applying external stress (e.g. heat or 

humidity) to accelerate the fatigue behaviour and possibly induce a failure mode. 

 

2.7. Conclusions 

The review of motion sensing technologies in this chapter indicates that there currently 

exists a wide variety of techniques for characterizing dynamic micromechanical 

structures. Imaging techniques, such as LDV, optical microscopy and SEM, derive 

measurements form the way the moving structural components interact with laser, 

optical or electron probes. This is adequate for providing measurements on motion 

parameters such as displacement and velocity, but offers no insight on the mechanical 

state of the test device. Capacitive measurements, which are currently widely applied 

for characterizing electrostatically-actuated devices, suffer from the same deficiency. 

Hence, this work aims to develop a technique that is able to offer an alternative 

perspective on MEMS device performance (from a mechanical stand-point). Such a 

detection technique can find potential application in the long-term testing of 

micromechanical resonators. Micromechanical resonators are, at present, one of the 

most exciting emerging micromechanical technologies. Having just made the transition 
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to manufacturing in 2007, long-term stability data will become increasingly important 

in the product improvement process. Studying long-term stability with a 

characterization technique that can monitor the mechanical state of the resonator will 

hence provide complementary information to state-of-the-art network analyzer 

measurements. In addition, the different data might be useful in distinguishing time-

dependent failure mechanisms that have yet to be identified by current long-term 

testing methodologies. Chapter 3 presents the phonon detection technique which has 

been developed in this work that can potentially provide information on device 

mechanical state. This technique is later applied in studies on resonator long-term 

stability. 
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CHAPTER 3 

ACOUSTIC PHONON DETECTION FOR DYNAMIC MOTION 

CHARACTERIZATION IN MEMS DEVICES 

 

 

 

 

 

3.1. Introduction 

The current rapid progress in MEMS technology necessitates the development of tools 

for functionality and reliability assessment. As MEMS device actuation is mostly 

dynamic in nature, evaluating device performance typically involves measurement of 

micro-scale motion. State-of-the-art MEMS device characterization tools in general 

utilize imagining or electrical sensing in order to measure motion parameters such as 

displacement and velocity. While this is sufficient for assessing functionality, motion 

measurements offer little information on long-term performance or reliability. The 

wear and tear in MEMS structures that occurs during long-term operation leads to 

changes in various aspects of their mechanical state, such as mechanical energy 

dissipation, actuation force and contact surface tribology, most of which cannot be 

detected by current testing techniques. Hence, it becomes necessary to devise new 
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testing methodologies which can assess device mechanical state in order to 

complement current technologies for long-term device testing.  

 

It is well-known that phonon generation and dissipation mechanisms such as 

thermoelastic dissipation (TED) [7] and anchor losses [8] exist for both silicon and 

amorphous carbon-based MEMS devices [9] and these have been previously reported 

in the context of maximizing device performance (e.g. increasing Q-factor in 

micromechanical resonators [10]). Since the phonons are generated as a direct result of 

device motion, they can be utilized for MEMS device characterization as well. Locally 

generated acoustic phonon detection has been utilized elsewhere for non-MEMS 

device applications [11]–[12] and therefore it is expected that it can be viably extended 

to micromechanical motion detection. 

 

This chapter describes an acoustic phonon detection technique which has been 

developed for dynamic MEMS device characterization. The difference between the 

phonons generated by contact-mode and non-contact-mode MEMS structures is first 

highlighted. These phonons are used as the coupling mechanism through which 

information on the dynamic mechanical state of the device can be obtained. This 

information is particularly pertinent for long-term device testing since long-term 

operation (wear and tear) invariably alters the mechanical state of the device. Phonon 

detection is achieved via piezoelectric sensing. Practical considerations with regards to 

piezo sensor selection and maximizing phonon transmission from device to sensor are 

described. Some proof-of-concept experiments carried out on MEMS switches and 

resonators are also presented. 
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3.2. Acoustic phonon generation by dynamic MEMS 

structures 

Despite the large variety of MEMS structures currently available, these structures can 

be broadly classified into two categories: contact-mode and non-contact-mode 

structures, for the purposes of analyzing their phonon generation characteristics. The 

fundamental difference between the phonons that can be detected from these two types 

of devices lies in the nature of the motion exhibited during actuation. These are 

discussed in the following sections. 

 

3.2.1. Contact-mode MEMS structures 

Contact-mode MEMS structures can be defined as structures whose operation entails 

some form of surface-to-surface contact. Some examples include MEMS switches, 

where the closing of the switch typically involves the coming together of a free 

standing cantilever with a contact electrode on the substrate, and micro-mirrors, where 

rotating and tilting the mirror causes the hinges to twist and flex and hinge surfaces to 

abrade against each other. 

 

Consider the case of the MEMS switches. When the cantilever beam contacts the 

immobile substrate electrode during switch closing, an energy transfer takes place at 

the area of contact as the moving beam is brought to a sudden stop. This scenario is 

depicted in Fig. 3.1. The energy transferred to the electrode works to deform the area 

of contact thereby applying a stress on the electrode. 
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Fig. 3.1.  Generation of mechanical waves or phonons during MEMS cantilever switch 

operation. 

 

Taking the electrode/substrate as a 1-D elastic medium, wave theory suggests that the 

stress exerted on the surface of the substrate results in the generation of compressional 

waves that propagate through the substrate bulk. The motion of these waves is 

governed by the one-dimensional wave equation [81], 
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where u3 describes the x3-component of the displacement field of the wave propagating 

in the x3 direction. The wave velocity α is given by, 




E
            (3.2) 

where ρ is the density and E is the Young’s modulus of the material. Suppose the stress 

exerted on the surface of the substrate during a single operating cycle (switch-close at t 

= 0 followed by switch-open at t = t0) can be described by σ33 = σ0P(t), where P(t) is a 

simple square function defined by, 
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The displacement field u3 generated in the substrate bulk due to the stress σ33 can be 

found by treating the substrate as an elastic half-space and solving Equation (3.1) with 

the boundary condition, 
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The resulting displacement field of the compressional wave propagating in the 

substrate is, 
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There are two things that are immediately apparent about u3. First, the displacement 

magnitude is directly proportional to the applied stress σ0 and second, the shape of the 

generated wave displacement field is dependent on the stress function P(t). Since the 

stress function is resultant from the way the cantilever contacts the electrode/substrate 

surface, the above two observations imply that the generated wave is, in theory, a 

direct representation of the motion that occurs during switch operation. Information 

that can be obtained from the generated compressional wave include the switching 

force, which can be deduced from the wave amplitude since u3 is proportional to σ0, 

and tribological properties such as contact surface wear [82], since these phenomenon 

would invariably alter the stress function P(t). For structures which also exhibit 

flexural motion during actuation, shear waves are generated as well and the 

displacement field of these waves can be similarly derived using Equation (3.1) and 
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appropriate boundary conditions. Due to the principle of wave particle duality, these 

compressional and shear waves are also known as phonons. 

 

Therefore, the dynamic motion of contact-mode MEMS structures result in the 

generation of mechanical waves (compressional or shear waves) or phonons that are 

directly representative of the nature of their motion. These waves carry useful 

mechanical information, such as the switching force, contact surface wear and bounce, 

and can, hence, be utilized to characterize the motion of these structures. However, in 

the case of non-contact-mode MEMS structures, mechanical waves are generated via a 

different mechanism, which will be discussed in the following section. 

 

3.2.2. Non-contact-mode MEMS structures 

The motion of non-contact-mode MEMS structures, on the other hand, does not 

involve any form of surface interaction. The most basic instance of such a structure is 

the resonator, which generates sinusoidal vibrational motion when actuated. A typical 

resonator design is the clamped-clamped architecture, as shown in Fig. 3.2, which 

features a free-standing beam that is anchored to the substrate at both its ends. When a 

sinusoidal driving force, at the resonance frequency f0 of the beam, is applied to the 

structure, another class of mechanical waves known as bending waves are excited 

within the structure which causes the entire beam to vibrate in the fundamental mode 

at f0. However, since beam motion is completely restricted at the anchors, the bending 

waves generated during actuation are confined between the anchors and do not 

propagate outside of the clamped-clamped structure. 
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Fig. 3.2.  Clamped-clamped beam and actuation shape at fundamental frequency f0. Phonon 

dissipation occurs at the anchor structures during device actuation. 

 

Of course, the bending waves can still be utilized for motion characterization by 

directly measuring the amplitude of the beam deflection via an optical or SEM imaging 

technique. Nevertheless, there is, in fact, a simpler approach which does not involve 

the use of optical or electron beam probes. Micromechanical resonators are known to 

exhibit a few types of energy loss mechanisms (which limit the maximum achievable 

Q-factor) and these are namely air damping [83], thermoelastic dissipation (TED) [7] 

and anchor losses [8]. Both TED and anchor losses will result in the generation of 

mechanical waves or phonons in the substrate and detecting these phonons is a 

possible method for motion characterization. 

 

TED in resonant structures is a fairly well-understood phenomenon and current 

theoretical formulations [7],[84] of the problem are based on Zener’s general theory. 

The theory states that, due to energy losses through thermoelastic damping, the upper 

limit of the Q-factor of a resonant beam can be approximated by, 
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where cp is the specific heat capacity, ρ is the density, E is the Young’s modulus, α is 

the coefficient of thermal expansion, T0 is the equilibrium temperature of the beam and 

ω is the angular frequency of mechanical resonance. τ is the time constant for 

temperature decay and is given by, 
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with w being the width of the beam and CT is the thermal conductivity. 

 

The Zener theory appears to work well for simple beams and has been experimentally 

verified by [85]. The resonator samples used in subsequent experiments in this work 

are indeed simple silicon clamped-clamped beam structures (refer to Sections 4.4 and 

5.2 for detailed descriptions of the devices) and hence their TED properties can be 

described using Equation (3.6). Consider a resonator design with beam thickness w = 6 

μm and nominal f0 ~ 200 kHz, QTED works out to be ~97,000. However, the average 

measured Q-factor of the test samples obtained during later experiments is ~15,000 

(see Table 5.2) indicating the presence of another more dominant energy loss 

mechanism in these devices. As the devices were tested at low pressure (in vacuum), 

air damping is expected to have nominal contribution to energy dissipation and hence 

it can be deduced that anchor losses is the major loss mechanism for the clamped-

clamped beam resonators used in this work. Therefore, phonon generation from these 

resonator test structures will be modeled based on anchor losses. 
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Theoretical studies [86]–[87] have shown that, although bending waves do not 

propagate beyond the anchors, the motion of clamped vibrating beams does result in 

the transmission of other mechanical waves at the anchor points. The reason for this is 

that although the displacement fields at the end face of the beam are zero during 

vibration, the stress fields are not and it is these stress fields that are the radiation 

sources of mechanical waves into the substrate. Since these transmitted mechanical 

waves carry energy away form the vibrating system, this form of energy transmission 

is therefore termed as anchor losses. It is interesting to note that the transmitted waves 

also hold information about the motion of the source, i.e. the vibrating beam, and 

hence are ideal for beam motion detection. 

 

Consider a 1-D clamped-clamped beam of width w with a rectangular cross-section, 

anchored to the substrate by rectangular blocks of width W (as shown in Fig. 3.2). 

When actuated to vibrate, the bending waves generated in the beam structure is 

governed by the one-dimensional equation [81], 
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where E is the Young’s modulus and ρ is the density of the beam material, A is the 

cross-sectional area and I is the moment of inertia. For a beam with rectangular cross-

section, I = Aw
2
/12. u2 describes the x2-component of the displacement field of the 

wave propagating in the x1 direction. 

 

Take a sinusodial incident wave traveling towards the anchor with in-plane 

displacement u2 = e
i(kx – ωt)

, the boundary conditions at the anchor (x1 = 0, see Fig. 3.2) 

are, 
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However, at x1 = 0 there must be continuity of the displacement u, rotation angle 

∂u2/∂x1, total moment –EI∂
2
u2/∂x1

2
 and total force –EI∂

3
u2/∂x1

3
. Hence, two additional 

boundary conditions must be applied [86], 
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where k is the wave number of the incident bending wave.  These two boundary 

conditions suggest the presence of an alternating momentum/force (resulting in 

alternating stress fields) at the anchor which is directly resultant from the sinusoidal 

vibration of the beam structure. Solving the wave equation (Equation (3.8)) with these 

boundary conditions yields [86], 
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This solution suggests that in the beam structure (x1 < 0), there exists three waveforms: 

the incident wave e
i(kx – ωt)

, a reflected wave ie
-i(kx + ωt)

 and an evanescent wave (1 + 

i)e
(kx – iωt)

 that decays exponentially. More interestingly, in the rectangular anchor block 

(x1 > 0), a transmitted transverse wave and an evanescent wave are also found, with the 

amplitudes of both these waveforms being inversely proportional to the cube of the 

ratio wW . The implications of this solution are that the bending waves generated by 

the vibrational motion of the beam also causes the transmission of transverse waves 
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into the anchor structures and the amplitude of the transmitted waves is proportional to 

the dimensions of the beam and anchor. 

 

From the solution, it can be deduced that the transmitted transverse waves maintain the 

vibration characteristics of the radiation source, i.e. there is no frequency change or 

phase shift during transmission, and are therefore representative of the sinusoidal 

motion of the source. Hence, information such as the frequency and the phase of the 

vibrating beam can be obtained simply by detecting these transmitted waves, without 

having to measure the actual bending waves that are resultant from beam motion. It is 

also worth noting that the magnitude of the transmitted waves is dependent on the ratio 

W/w. For very large anchor structures, where W >> w, W/w → ∞ and the magnitude of 

the transmitted waves goes to 0. This is a reasonable result as the wider the anchor 

width W, the stiffer the anchor structure and hence a significantly larger stress field is 

required to excite transverse waves within it. However, in practical devices, due to 

dimensional constraints, W/w is typically finite and hence energy loss by the vibrating 

resonator through the transmission of these transverse waves is expected. The 

magnitude of the bending wave displacement (i.e. the deflection amplitude of the beam) 

can hence also be deduced from the transverse wave amplitude, albeit scaled by a 

factor of
 3

2

wW
. 

 

In contrast to contact-mode MEMS structures, where mechanical waves directly 

generated by the interaction of surfaces can be used to characterize structural motion, 

motion characterization of non-contact MEMS devices can be carried out by 

measuring the energy loss, through the transmitted waves, by these structures. The 
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information that can be obtained from the transmitted waves includes the frequency, 

phase and amplitude of vibration. Both cases involve the detection of mechanical 

waves or phonons, albeit generated by different mechanisms. A common technique to 

achieve this is to utilize piezoelectric materials – materials that produce an electrical 

signal in response to applied mechanical stress. The concept of piezoelectric sensing is 

discussed next. 

 

3.3. Piezoelectric sensing 

Piezoelectric materials possess the ability of converting mechanical stress into electric 

charge. Common instances of such materials include crystals, such as tourmaline, 

quartz and topaz, and certain types of ceramics [88]. Peizo materials are highly 

sensitive to minute changes in stress/pressure, making them ideal as sensing elements 

for mechanical waves or phonons. In effect, phonons are material perturbations in an 

elastic medium generated by changes in stress fields propagating through the medium. 

By placing a peizo sensor below a phonon source, such as an actuating MEMS switch 

or resonator, the mechanical waves transmitted across the source/sensor interface give 

rise to stress fields in the piezo element which in turn induces a voltage across the 

sensor. This voltage can then be utilized as a signal for motion characterization. In the 

following sections, the structure and operation of piezoelectric ceramics, such as lead 

zirconate titanate (PZT) which is used in the phonon detection system, will be 

discussed. Equations relating the conversion form stress to voltage in piezo sensors 

will also be presented.  
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3.3.1. Piezoelectric ceramics 

A piezoelectric ceramic is typically a mass of perovskite crystals with each crystal 

being composed of a small tetravalent metal ion placed inside a lattice of larger 

divalent metal ions and oxygen [88]. In the case of lead zirconate titanate (PZT), the 

divalent metal is lead and the tetravalent metal is a mixture of zirconium and titanium 

(the composition being dependent on the required peizo characteristics). At 

temperatures below the Curie temperature, each crystal has tetragonal symmetry and 

with it an associated dipole moment. However, as the dipoles of each crystal is in a 

random direction, the moments cancel out, giving rise to zero net polarization for the 

material.  

 

Before a piezo ceramic element can be applied as a sensor, it must first undergo a 

poling process whereby the element is heated to a temperature slightly below the Curie 

temperature and exposed to a strong DC field. This results in most of the dipoles in the 

crystals being aligned in a particular direction, giving the element a permanent net 

polarization. This permanent net polarization, also known as the remnant polarization, 

makes the element permanently elongated and possessing an initial poling voltage in 

the direction of polarization. Now, mechanical tension or compression on the element 

alters the dipole moment associated with the element and creates a change in the 

poling voltage. Compression in the direction of polarization causes more dipoles to be 

aligned which in turn generates a voltage with the same polarity as the poling voltage. 

Tension, on the other has, has the opposite effect. 
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Fig. 3.3.  A circular piezoelectric element with surface electrodes connected to a voltmeter. 

The axis convention is shown on the upper left. 

 

The magnitude of the generated voltage change is dependent upon the material 

coefficients of the piezo material and governed by the piezoelectric constitutive 

equations. The key coefficients and electromechanical relations for sensing 

applications are discussed next. 

 

3.3.2. Stress-to-voltage conversion 

A direct numerical representation of a piezo material’s electromechanical properties is 

provided by the piezoelectric strain constant dij. Consider the circular PZT element 

shown in Fig. 3.3. The axis convention is shown in the figure inset with directions 4, 5 

and 6 denoting the shear around directions 1, 2 and 3 respectively. The element is 

poled along the 3-axis and connected to a voltmeter via surface electrodes. dij describes 

the ratio of short circuit charge per unit area collected in the i-direction in response to 

stress applied in the j-direction. As is the case for most piezoelectric ceramics, PZT is a 

transversely isotropic material and hence, its only non-zero piezoelectric strain 

constants are d31, d33 and d15 [88]. Hence, the charge per unit area that is generated by 
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a PZT motion sensor in response to applied stress can be summarized in the following 

electrical displacement vector, 
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     (3.11) 

where Di is the total charge per unit area generated in the i-direction, σi denotes stress 

in the i-direction and τij is the shear force on the i,j-plane. 

 

Consider a phonon source that generates 1-D compressional waves propagating in the 

3-direction, as is the case for a MEMS switch that displays out-of-plane motion upon 

actuation, located on the top surface (1,2-plane) of the PZT element. As the waves are 

transmitted across the source-element interface and into the peizo, a stress field σPZT,3 

is set up in the element. From the electrical displacement vector (Equation (3.11)), the 

total charge per unit area generated is given by, 

3,333 PZTdD             (3.12) 

 

Hence, the total charge q generated is, 

 2

3,3333,33

3

rddAdq PZT

A

PZT           (3.13) 

where r is the radius of the circular piezo element. The sensing voltage VS generated is 

therefore, 

3,

33

PZT
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           (3.14) 
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where h is the thickness and p is the dielectric constant (F m
-1

) of the piezo element. 

Cp is the capacitance of the element, which can be determined from 

h

r
C

p

p

 2

             (3.15) 

 

Assuming loss-less transmission and no reflection across the source-element interface, 

the stress field σ0 generated by switch actuation is maintained as it propagates into the 

piezo element. However, since Equation (3.14) predicts VS based on the charge 

generated over the entire sensor surface, the generated stress σ0 must be averaged over 

the sensor area A3 = πr
2
. Therefore, 

30203,

3

1
dA

r
A

PZT  


         (3.16) 

Combining Equations (3.9) and (3.10), 

302
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         (3.17) 

which gives the relationship between the stress produced during device actuation σ0 

and the sensing voltage VS generated. Hence, the magnitude of the measured VS 

provides a quantitative measure of the stress that is generated during switch actuation. 

Since the stress field σ0 changes according to the contact condition during actuation, 

the fluctuations in VS are also indicative of various mechanical phenomenon, such as 

bounce, which occurs during device operation. 

 

For vibrating resonator structures, a similar derivation for the piezo voltage can be 

performed. In Section 3.2.2, a 1-D beam/anchor junction in a resonator was derived to 

be a wave source that, during in-plane vibration of the beam, injects transverse waves 
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into the anchor structure. Considering the junction as a radial source of transverse 

waves (neglecting the effects contributed by the evanescent waves), the waves 

propagating in the 3-direction (with displacement field u2) will be picked up by the 

piezo element. The relevant stress field, in this case, is in the 2-direction. Therefore, 

2,313 PZTdD            (3.18) 

where σPZT,2 denotes the stress in the PZT element generated in the 2-direction by the 

propagating transverse wave. The total charge q and sensing voltage VP are hence, 
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          (3.20) 

where EPZT is the Young’s modulus of the piezo material and δ2 is the strain generated 

in the piezo element by the transmitted transverse waves. Noting the relationship 

between the wave displacement and strain fields:  dxu   and considering Equation 

(3.10), the relationship between VP and the in-plane displacement of the vibrating 

beam (the bending wave displacement and beam displacement are synonymous) can be 

derived as, 

 
 tu

wWr

hEd
V

p

PZT

P 3

31 2


         (3.21) 

 

Hence, the piezo voltage VP is a direct representation of the in-plane displacement of 

the vibrating device. Since the transmitted waves from the vibration source (i.e. the 

resonator) are measured, the voltage amplitude is dependent on the dimensional 

characteristics of the device and is modulated by the ratio of W/w (which was derived 

earlier in Section 3.2.2). 
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The above voltage equations for contact-mode (Equation (3.17)) and non-contact mode 

(Equation (3.21)) MEMS structures are derived for the ideal conditions whereby no 

energy loss and no reflection occur as the elastic waves propagate across the 

structure/sensor boundaries. Hence, they tend to overestimate the generated voltages 

VS and VP. In the actual experimental setup, both these effects are present and 

contribute somewhat to reducing the amplitude of the piezo voltages. This reduction in 

signal can be tempered by simply amplifying the piezo voltage with electronics. More 

importantly, the frequency characteristics of the waves are actually maintained and 

these carry important information regarding the motion of the structure. The 

experimental setup for phonon detection will be described next, along with 

considerations for piezo selection and associated signal loss mechanisms. 

 

3.4. Experimental setup 

A setup for phonon detection can be easily realized with three basic components: a 

piezoelectric transducer, voltage amplification electronics and voltage detection 

instrumentation. Fig. 3.4 shows a schematic diagram of the phonon detector setup that 

has been implemented. The MEMS device-under-test (DUT), such as an electrostatic 

comb actuated resonator, is mounted on top of the piezo transducer which is positioned 

within a metallic housing. The housing provides a ground reference for the piezo 

voltage (VS or VP) and also shields the transducer form stray electric fields. Voltage 

amplification is provided by a two-stage preamplifier circuit with measured gain of 

~200 and 3-dB bandwidth of 364 kHz. The amplified piezo voltage is then read by a 

digital storage oscilloscope, to provide the phonon waveform Vphonon(t). 
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Fig. 3.4.  Schematic of the phonon detection setup for MEMS devices. 

 

Combining the phonon detector (consisting of the PZT transducer, the preamplifier 

circuitry and the digital oscilloscope) with various hardware components, an in-

vacuum test system for MEMS device characterization was developed. A block 

diagram of the test system is presented in Fig. 3.5. The vacuum test system consists of 

the following major hardware components: a HP6634B DC power supply, a AFG3102 

signal generator, the phonon detector, a Tektronix TDS5034B digital oscilloscope and 

the Hitachi Model S3500 SEM. The DC power supply and signal generator provide the 

electrical inputs necessary for device operation and the Tektronix digital oscilloscope 

provides a read-out of the phonon waveform Vphonon(t). The transducer housing and 

preamplifer circuitry are housed inside the vacuum chamber of the S3500 SEM. 

Electrical contacts to the DUT and the detector are made via microprobes and flanges. 

The SEM chamber provides the vacuum environment (nominal base pressure 10
-4

 – 10
-

3
 Pa) required by the test system. At the same time, the SEM also allows imaging of 

device movement. Hence, this test system provides the dual capability of phonon 

detection and in-situ measurement of device displacement. 
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Fig. 3.5.  Block diagram of the in-vacuum phonon detection test system for MEMS devices. 

 

Automation of the in-vacuum test system was achieved using software developed with 

National Instruments’ LabView 8.0. The automation software interfaces the HP6634B 

DC power supply, the AFG3102 signal generator as well as the Tektronix TDS5034B 

DSO with a main controlling computer (CPU). The instruments and the CPU 

communicate via the general-purpose interface bus (GPIB). Each instrument has a 

GPIB port to both send data and receive control instructions while the CPU is 

equipped with a GPIB card to receive data and send instructions. The automation 

software can be customized for device-specific characterization applications. 

 

Two aspects of this detection system must be treated with considerable care in order to 

achieve the best motion detection sensitivity. The first is selection of the piezoelectric 

transducer and the second is the contact condition between device and transducer 

(which minimizes propagation loss and reflection at the device/transducer interface). 

Both of these will be discussed in the following sections. 
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3.4.1. Selection of piezoelectric transducer 

Since the piezoelectric transducer is the component converting the waves representing 

device motion into a measurable voltage signal, selecting a material with the 

appropriate piezoelectric properties is of vital importance. Aside from the piezoelectric 

strain constant dij and the dielectric constant p which determine the piezo voltage 

magnitude, another key characteristic to note is the operating bandwidth of the 

transducer, which is effectively the range of frequencies over which its piezoelectric 

properties are maintained. An appropriate sensor element should have a bandwidth that 

encompasses the frequencies of the phonons to be detected. 

 

In this case, the frequencies of the clamped-clamped beam resonators which will be 

characterized in later experiments have operating frequencies which range from 100 

kHz to 200 kHz and are hence expected to generate phonons in the same frequency 

range. The piezoelectric transducers which were procured for the phonon detection 

setup are made from the material APC840, which is a variant of the PZT ceramic, 

supplied by APC International, Ltd. The transducers are essentially discs of APC840 

material sandwiched between circular metal electrodes. The dimensions, physical and 

piezoelectric properties of the transducer, obtained from the APC International online 

catalogue [89], are summarized in Table 3.1. The transducer operating bandwidth of 55 

– 212 kHz is sufficient to cover the frequency range of the resonators that were 

characterized in later experiments. Considering also the preamplifier circuit with gain 

~200 and 3-dB bandwidth of 364 kHz, the overall bandwidth of the phonon detector 

should be ~212 kHz, limited by the piezo transducer. 
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Table 3.1.  Summary of dimensions, physical and piezoelectric properties of the transducers 

used in the phonon detection setup [89]. The transducers are made from APC840 material. 

Piezoelectric strain constants, (C N
-1

) 
d33 2.90 x 10

-10
 

d31 1.25 x 10
-10

 

Dielectric constant, p (F m
-1

) 1.11 x 10
-8

 

Radius, r (mm) 8 

Thickness, h (mm) 1.43 

Young’s modulus, EPZT (GPa) 80 

Density, ρ (kg m
-3

) 7600 

Resonance frequency, f0 (kHz) 133 

Operating bandwidth (kHz) 55 – 212 

 

Using the specified properties in Table 3.1 and applying Equation (3.21), the voltage-

displacement gain can be calculated to be
 3

101044.6

wW


 V m

-1
 (inclusive of the electrical 

gain of 200). For a nominal device with dimensions W = 100 μm and w = 6 μm, a 

beam vibration with 1 nm peak amplitude would hence generate a voltage of ~946 mV. 

Of course, this voltage value is derived based on ideal conditions at the 

device/transducer interface, i.e. no transmission losses and reflection. In the practical 

system, both effects may actually reduce the voltage-displacement gain by a few orders 

of magnitude. These will be discussed in the following section. 

 

From both the selection of the piezo transducer and the design of the supporting 

voltage amplification electronics, the test system has been optimized for motion 

sensing of low frequency devices. It is, in fact, possible to extend the technique to 

characterize higher frequency devices by selecting an appropriate piezo sensing 

element and redesigning the supporting amplification electronics. The main limiting 

factor to the testing bandwidth is the frequency characteristics of the piezoelectric 

sensor. Current commercially available transducers are still limited to relatively low 
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operating frequencies (<5 MHz) [88]. However, significant efforts have been directed 

toward the development of high frequency transducers in recent times. Piezoelectric 

transducers designed for medical ultrasonic imaging have already been shown to 

operate at frequencies ranging from 50 – 75 MHz [90] and it is likely that novel 

materials with even higher operating frequencies will emerge in the near future. 

Extending the frequency capabilities of phonon sensing by utilizing these state-of-the-

art piezo materials is a distinct possibility.  

 

3.4.2. Interface effects and phonon coupling between device and 

transducer 

The two key factors influencing the motion detection sensitivity of the technique are 

reflection effects and transmission losses at the device/transducer interface. Reflection 

effects arise due to the mismatch in the acoustic impedances between the device (for 

an unpackaged device, this is usually silicon) and transducer (in this case, APC840) 

materials. The acoustic impedance Z of a material can be expressed as [91], 

EZ             (3.22) 

where ρ is the density and E is the Young’s modulus of the material and α is the wave 

velocity of the elastic waves propagating in the material. 

 

Once the acoustic impedances are known, it is possible to calculate the reflection R and 

transmission U coefficients at the boundary [91], 
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where Z1 and Z2 are the acoustic impedances of the source and target materials 

respectively. The reflection coefficient R is an indication of the fraction of incident 

acoustic energy that is reflected at the boundary due to the difference in the physical 

properties of the two materials. As long as Z2 ≠ Z1, R > 0 and U < 1. 

 

Transmission losses are the result of poor phonon coupling between device and 

transducer. Some common causes of this include improper sample mounting causing 

air gaps between device and transducer, poor sample adhesion to the transducer surface 

and presence of foreign particles at the device/transducer interface. Some strategies to 

improve the contact condition between device and transducer, alleviating transmission 

losses, are discussed in Section 3.5.3. The effects of transmission losses are 

significantly harder to quantify theoretically and are perhaps best represented by a 

coupling factor κ (0 < κ < 1) which should be experimentally measured from sample to 

sample. The higher the coupling factor, the better the transmission properties and 

lesser the transmission losses at the interface. 

 

Hence, including the effects of interface reflection and transmission losses, the 

voltage-displacement relationship (Equation (3.21)) for characterizing resonator 

devices is modified to be, 

 
 tu
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         (3.24) 

 

In summary, the necessary hardware components for the in-vacuum phonon detection 

test setup have been described. The selection of an appropriate piezo sensing element 

is of key importance as it determines the operating bandwidth of the test system. As 
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the resonator structures to be characterized in future experiments operate at frequencies 

ranging from 100 – 200 kHz, the test setup has been optimized to have a bandwidth of 

~212 kHz. Interface reflection and transmission losses have also been identified as the 

two main factors affecting detection sensitivity. In the following section, some proof-

of-concept experiments that were carried out on clamped-clamped beam resonators 

and MEMS switches to verify the phonon voltages they generate during actuation will 

be presented. 

 

3.5. Proof-of-concept experiments on MEMS switches and 

resonators 

Having established the hardware for the in-vacuum phonon detection system, a simple 

set of tests were carried out on contact and vibrating MEMS structures as a proof-of-

concept for motion detection. The devices utilized were MEMS switches and 

electrostatic actuated clamped-clamped beam resonators. Several techniques for 

improving the phonon coupling between device and transducer and reducing 

transmission losses were investigated and these results will be discussed. Calibration 

tests were also performed to determine the voltage-displacement transfer function for 

resonator devices since this relation is required for monitoring displacement drift in 

later experiments on resonator long-term stability. 

 

3.5.1. Phonon waveforms generated by switches and resonators 

Phonon characterization of MEMS switches 

The contact-mode device selected for the experiment is the DowKey Microwave 

M1C06-CDK2 magnetically-latched SPDT RF MEMS switch. An optical image of the 
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device is shown in Fig. 3.6 along with a schematic diagram representing the electrical 

connections. The switch utilizes low-power magnetic actuation to shift the position of 

a short-travel cantilever between open and closed states to effect latched switching. 

Both the switch cantilever and contact pads are made of gold. 

 

To characterize the motion the switch exhibits during actuation, a specimen of the 

packaged device is first mounted onto the piezo transducer in the test system (as shown 

in Fig. 3.4) using silver paste as an adhesive. The paste also acts as a medium through 

which the phonons generated during actuation are coupled to the transducer sensor. 

The switch is operated to change state at 1 kHz by supplying a periodic square wave of 

the same frequency at the X1-X2 contacts. During switching, the cantilever contacts 

the J2 electrode first followed by the J3 electrode as it alternates between the on and 

off states. Hence, an observation of two distinct phonon waveforms representing the 

two contact events is expected.  

 

 
Fig. 3.6.  (a) Optical image of the MEMS switch and (b) electrical schematic diagram. 

 



Chapter 3     Acoustic phonon detection for dynamic MEMS motion characterization 

 

 

62 

 
Fig 3.7.  Screenshot of voltage measurements recorded by the oscilloscope during ~2 cycles of 

switch operation. 

 

A screenshot of the voltage measurements recorded by the oscilloscope during ~2 

cycles of switch operation is shown in Fig. 3.7. The waveforms displayed include the 1 

kHz square wave electrical input (10 Vpp magnitude), the corresponding 5 V switch 

electrical outputs at J2 and J3 and the phonon waveforms generated during the contact 

events. The phonon waveforms Vphonon(t) can be analyzed as follows. From the 

screenshot, it can observed that there are indeed two different Vphonon(t) recorded 

during the operating cycle, one with larger peak-to-peak amplitude of ~180 mVpp 

resultant from contact at J3 and the other ~100 mVpp waveform from contact at J2. At 

first glance, the most obvious implication of the two waveforms is that a greater 

amount of stress is generated on the electrode during contact at J3 (i.e. the cantilever is 

hitting the electrode harder at J3). A possible ill-effect of this larger stress is increased 

mechanical degradation of the cantilever/J3 electrode during long term operation. 

Since Vphonon is representative of the stress which is present at the point of contact (as 

predicted by Equation (3.17)), the entire waveform is hence an indication of the change 

in the stress during and after the switching event. 
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It is apparent from the phonon waveforms that the cantilever does not immediately 

settle to a steady state when contact occurs, but persists in a state of under-damped 

vibration for some time. However, the amplitude of this vibration is not sufficient to 

break the electrical contact as evidenced by the electrical outputs. The time it takes for 

the transient vibration to dissipate, this time is labeled as the settling time tS, is also 

different for each switching event and the measured tS during J3 and J2 contact are 264 

μs and 212 μs respectively. The shape of the phonon waveforms and hence tS is 

expected to vary over the operating life of the switch as the contact surfaces suffer 

from mechanical degradation and wear. A good means by which this change in 

waveform shape can be monitored is through performing frequency analysis on the 

waveform itself. This is achieved by applying Fast Fourier Transform (FFT) to obtain 

the frequency components and a significant disparity in the intensity of one or more 

components would indicate a variation in the time-domain waveform. 

 

To summarize, Table 3.2 provides a comparison of the quantitative data that can be 

obtained during switch testing from the switch electrical output and from the phonon 

waveform (see Fig. 3.7 for both waveforms). It is apparent that conventional electrical 

testing can only provide information on very basic switch operation parameters. 

Phonon detection, on the other hand, is able to offer a more comprehensive mechanical 

perspective to complement the parameters obtained from electrical testing. For 

example, both the stress amplitude (which gives the actuation force) and cantilever 

settling time tS are properties representative of the mechanical state of the switch which 

cannot be quantified by simply observing the electrical outputs alone. 
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Table 3.2.  Comparison of switch performance parameters that can be obtained by electrical 

testing and by phonon detection.  denotes parameter is not quantifiable by the technique. 

 
Electrical parameters Mechanical parameters 

Rise time 

(µs) 

Fall time 

(µs) 

Open/ 

Close 

Force 

(mN) 

Settling 

time (µs) 

Surface 

properties 

Energy 

dissipation 

Electrical 

testing 
5 8      

Phonon 

detection 
   

0.269 (J2) 

0.484 (J3) 

212 (J2) 

264 (J3) 
  

 

Although examining the electrical outputs is sufficient to provide short-term 

performance parameters, such as rise time, fall time and switching delay, studying the 

mechanical state can offer a more long-term performance assessment of the device 

since these mechanical characteristics will invariably change with the tribological 

properties of the contact surfaces over many cycles of actuation. Hence, the phonon 

detection technique can provide a good body of information to switch designers to 

complement the performance parameters that can be obtained via electrical testing. 

 

Phonon characterization of micromechanical resonators 

A second proof-of-concept experiment was carried out on a non-contact mode device. 

The aim was to sense the vibration motion of a micromechanical electrostatic actuated 

clamped-clamped beam resonator. An SEM image of the device is shown in Fig. 3.8. 

When actuated by a DC bias VB and an AC drive input vd at its fundamental resonance 

frequency f0, the resonator produces simple sinusoidal in-plane motion. Since the 

device is designed to operate in its fundamental mode, the peak displacement occurs at 

the mid-point of the clamped-clamped beam. 
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Fig. 3.8.  SEM image of the clamped-clamped beam resonator. For this particular device 

design L = 480 μm and w = 6 μm, therefore the theoretical resonance frequency f0 = 200 kHz. 

The anchor width W = 100 μm. 

 

The peak-to-peak vibration amplitude u(t) of the beam is less than 0.5 μm when 

operating in linear mode and therefore its motion cannot be detected using optical 

imaging techniques. However, a physical verification of the resonator motion is 

required, in the form of a direct measurement of its motion amplitude, for comparison 

with the generated phonon waveform. Hence, a stroboscopic scanning electron 

microscopy (SEM) technique was developed to provide the required nanoscale 

resolution for measuring resonator dynamic motion. A detailed description of this 

technique will be provided in Chapter 4. 

 

The resonator was mounted onto the piezo transducer using silver paste in the same 

manner as the switch (described earlier). However, the device is not packaged and 

hence the phonon transmission occurs directly from the silicon substrate to the 

transducer. The device was actuated to operate in its linear region with VB = 10 V and 

vd = 25 mV and in a vacuum ambient of pressure ~10
-3

 Pa. 
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The resultant phonon waveform Vphonon(t) generated by the device at resonance is 

shown on the oscilloscope screenshot in Fig. 3.9(a). To visualize the actual physical 

motion of the resonator, a phase-resolved stroboscopic SEM image of its vibration was 

simultaneously taken and the resulting micrograph is shown in Fig. 3.9(b). Fig 3.9(b) 

suggests that the motion of the clamped-clamped beams is sinusoidal in nature with 

peak-to-peak amplitude u = 112 nm which corresponds well with the observed 

sinusoidal phonon waveform with Vphonon ~ 230 mVpp. This indicates that the physical 

motion of the device is directly represented by its phonon waveform. The measured 

peak-to-peak vibration amplitude u is related to the recorded phonon voltage Vphonon by 

Equation (3.24). Subsequent calibration experiments, presented in Section 3.5.2, 

confirm that Vphonon, in fact, increases/decreases linearly with u. The phonon waveform 

also indicates that the resonator vibration has a phase lag of 54° with respect to the 

actuation voltage, and this is in good agreement with the displacement measurements 

(i.e. both methods detect the same device phase shift). 

 

 
Fig. 3.9.  (a) Phonon waveform Vphonon(t) generated by the resonator device actuated with DC 

bias VB = 10 V and AC drive input vd = 25 mV in a vacuum ambient (pressure ~10
-3

 Pa). The 

peak-to-peak voltage of the phonon waveform is 230 mVpp. (b) Corresponding sinusoidal 

physical displacement of the device observed with stroboscopic SEM. The measured peak-to-

peak displacement is 112 nm. 
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Fig. 3.10.  Frequency response of the resonator, actuated with DC bias VB = 10 V and AC drive 

input vd = 25 mV, obtained using phonon detection and stroboscopic SEM (displacement 

measurements). Both techniques predict the same resonance frequency f0 = 212.653 kHz and 

Q-factor ~ 10,600 for the device. 

 

The phonon detection test system can be further utilized to obtain the frequency 

response of the resonator. This is accomplished by performing a frequency sweep 

around the resonance frequency f0 of the device and recording the peak-to-peak 

voltages of the phonon waveform at each frequency point. As the process only 

involves measurement and recording of voltages, very high throughput can be 

achieved, limited only by the rate of the frequency sweep and the sampling rate of the 

oscilloscope. A similar characterization can be carried out using stroboscopic SEM, 

albeit at the expense of measurement efficiency since the high resolution imaging 

requires a significantly longer time. To provide a basis for comparison for phonon 

detection, the device frequency response was obtained using both techniques and the 

resulting response curves are presented in Fig. 3.10. The response curves in Fig. 3.10 

show that both techniques predict the same resonance frequency (212.653 kHz) and Q-

factor (10,600) for the device, with both curves displaying an almost exact same shape. 

As direct physical measurement of resonator amplitude are considered as the gold 
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standard for motion detection, this excellent agreement in the frequency response data 

further establishes the reliability of phonon detection for dynamic motion sensing of 

non-contact mode MEMS devices. 

 

Having established that phonon detection can accurately measure the short-term 

operating parameters of the resonator, such as resonance frequency and Q-factor, its 

potential in evaluating the long-term performance of the device will be highlighted at 

this point. Over long-term operation, it is reasonable to expect deterioration in the 

mechanical state of the resonator that could manifest itself in a variety of ways. Crack 

initiation and propagation is a possibility (see Section 2.6.3). Considering that the 

clamped beam regions near the anchors experience the greatest stress during bending, 

if cracks were to occur, they would likely begin at or near the anchors. A weakening of 

the beam near the anchor would no doubt alter the anchor’s phonon dissipation 

properties and hence keeping track of the phonon voltage would actually be a useful 

method for monitoring the health of the device. This concept is utilized in later 

experiments on the long-term frequency stability of resonators. While electrical 

measurements (see Section 2.5) can similarly provide information on resonator f0 and 

Q-factor, they lack the ability of monitoring the mechanical state of the device, a 

capability that can be provided by phonon detection. 

 

Table 3.3 provides a comparison of state-of-the-art resonator characterization 

techniques with phonon detection. The sensitivities and measurement capabilities 

listed are based on hardware setups that have been published in literature. It is first 

worth noting that phonon detection is able to measure the same device functional 

parameters (f0 and Q-factor) as current techniques while achieving the high 
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measurement throughput of electrical methods (network analyzer). In terms of 

sensitivity, phonon detection is able to provide nanometer resolution, as evidenced by 

the proof-of-concept experiment in which the peak vibration amplitude of the resonator 

tested was <50 nm. This is comparable to high sensitivity techniques such as SEM and 

the network analyzer. In addition, imaging methods, such as optical microscopy and 

SEM, are not feasible for long-term testing due to their poor measurement throughput 

and electrical methods can only provide information on resonator frequency drift over 

time. It is doubtful that any of these current test methodologies will be able to identify 

long-term fatigue or failure modes since the measured parameters (displacement and 

capacitive currents) in no way reflect device mechanical state. Phonon detection, on 

the other hand, has immense potential for resonator long-term testing since it is able to 

keep track of the mechanical state of the device in terms of its anchor dissipation 

properties. It is this property that is likely to change during long-term operation. 

 

Table 3.3.  Comparison of state-of-the-art micromechanical resonator characterization 

techniques with phonon detection. 

 Sensitivity Throughput 
Measured 

parameter 

Functional 

testing 

Long-term 

testing 

Optical 

microscopy 
(Serio et al. [28]) 

~0.5 µm Poor Displacement f
0
, Q-factor Not feasible 

SEM 
(Roy et al. [35]) 

~2 nm Poor Displacement f
0
, Q-factor Not feasible 

Network 

analyzer 
(Bruschi et al. [44]) 

< 10 nm High 

Capacitive-

induced 

current 

f
0
, Q-factor 

Yes, freq. 

performance 

only 

Phonon 

detection 
nm range High 

Mechanical 

energy 

dissipation 

f
0
, Q-factor 

Yes, freq. 

performance 

& fatigue 
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To summarize, the proof-of-concept experiments show that the motion of the two 

contact mode and non-contact mode MEMS device samples that were used generate 

measurable phonon waveforms that are representative of their respective mechanical 

motion. In both instances, the phonon waveforms are able to provide similar 

information on the short-term performance parameters of the devices as more 

established electrical characterization techniques. In addition, phonon detection also 

offers additional insight into the mechanical state of the devices, supplying data that 

can be used to assess their long-term performance. In the following section, a method 

for calibrating the motion measurement capability of the phonon detection test setup is 

presented since voltage-to-displacement conversion is required in later experiments on 

resonators. 

 

3.5.2. Voltage-displacement calibration and experimental 

determination of coupling factor κ 

Calibrating the phonon detection setup is fairly straightforward, although it requires 

high resolution imaging of dynamic motion. The procedure heavily involves another 

technique developed in this work: the stroboscopic SEM. The process is demonstrated 

on the mounted resonator device that was used in the proof-of-concept experiments 

described in the previous section. The mounted sample was actuated to operate in its 

linear mode and its motion was simultaneously measured using phonon detection and 

stroboscopic SEM. The phonon voltage and physical displacements were recorded at 

several frequency points at and around its resonance frequency f0 = 212.653 kHz. This 

was repeated for two other bias conditions within the linear operating regime of the 

resonator. The voltage-displacement relation can be represented by, 
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   tKutV n

phonon            (3.25) 

ln Vphonon(t) against ln u(t) is plotted for each drive condition as shown in Fig. 3.11. 

From the best-fit curve through all three sets of points a value of n ~ 1 is obtained, 

indicating a linear first-order relationship between Vphonon(t) and u(t). Therefore, the 

relation can be simplified to, 

   tKutVphonon            (3.26) 

 

The voltage-displacement gain K can then be obtained by plotting the recorded voltage 

against measured displacement at all the frequency points and finding the slope of the 

best-fit curve through the points. The voltage-displacement plots for the sample at all 

three operating biases are shown in Fig. 3.12 and from the best-fit curve through the 

points, the average K is determined to be 2.246 mV nm
-1

 (or 2.264 × 10
6
 V m

-1
). 

 

 
Fig. 3.11.  ln (Vphonon) vs. ln (u) at various linear drive conditions. From the slope of the best-fit 

line though all the points, n ~ 1.0 indicating a linear first-order relationship between the two 

parameters. 
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Fig. 3.12.  Phonon voltage vs. displacement plots for the sample at the three linear operating 

biases. From the best-fit line through all three sets of points, the average K is determined to be 

2.246 mV nm
-1

. 

 

Considering Equation (3.24) and the physical and dimensional characteristics of the 

resonator and piezo transducer, this measured value of K can be used to determine the 

coupling factor κ of this particular device. Hence, 

 3
31 2

wW
GU

K

hEd

r

PZT

p
          (3.27) 

where G = 200 is the electrical gain of the test setup. For the device in question, the 

relevant dimensions are W = 100 μm and w = 6 μm, and since it is directly mounted 

onto the transducer, U = 0.985. Applying Equation (3.27) κ is calculated to be 0.00243. 

The small coupling factor suggests that the transmission losses across the sample-

transducer interface are substantial, owing largely to the contact condition between the 

two surfaces. To enhance the motion sensitivity of the technique, it is necessary to 

investigate approaches for enhancing the phonon coupling between sample and 

transducer. Some of the methods that have been explored, and their respective 

effectiveness, are presented in the next section. 
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3.5.3. Sample mounting for improved phonon coupling 

The approaches that have been tested revolve around the concept of maximizing the 

contact surface area between sample and transducer to improve phonon coupling. A 

direct mating of the sample and transducer surfaces usually suffers from issues such as 

uneven mounting which introduces air gaps at the contact interface, presence of 

foreign particles and poor sample adhesion, all of which reduce the contact surface 

area between the two entities. A direct way of circumventing these issues would be to 

introduce a thin layer of filler material in-between the two surfaces so as to lessen the 

air gaps and increase the contact area. Some of the materials experimented with 

include acoustic friendly Braycote oil, thermal conductive tape, carbon paint and silver 

paste. All four materials are good thermal conductors which, by default, also make 

them good conductors of phonon energy. 

 

To assess their effectiveness, the voltage-displacement gain K was determined while 

using each of the four materials to mount a resonator sample (the same device was 

used in the four K measurements) onto the piezo transducer. In each case, a thin layer 

of each material was applied onto the bottom surface of the sample die. The control 

case is a filler-free mount with only silver paste applied to the die corners as an 

adhesive to anchor the sample onto the transducer. The coupling factor κ was then 

calculated from the measured K values using Equation (3.27). The data obtained is 

summarized in Table 3.4. 
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Table 3.4. Measured phonon coupling factor improvement provided by applying various filler 

materials in between sample and piezo sensor. 

Material 
Measured K 

(V m
-1

) 

Coupling 

factor κ 

% 

improvement 

No filler (control) 2.264 × 10
6
 0.00243 – 

Braycote oil 9.410 × 10
6
 0.0101 315.6 

Thermal tape 5.031 × 10
6
 0.00540 122.3 

Carbon paste 3.857 × 10
6
 0.00414 70.2 

Silver paste 7.938 × 10
6
 0.00852 250.7 

 

From the collected data, it appears that Braycote oil is the most effective filler material, 

providing about 4X improvement to the gain K when applied. This is likely due to the 

fact that it is a liquid, making it more effective at plugging air gaps. In addition, the oil 

is vacuum friendly, making it well-suited to be used in the in-vacuum phonon 

detection test setup. The other materials all provide some degree of coupling 

enhancement and may be utilized in situations when Braycote oil is deemed unsuitable. 

 

Hence, applying a suitable filler material at the device-transducer interface can 

significantly improve the phonon coupling and boost its transmission properties. This 

serves to enhance the overall signal-to-noise ratio (SNR) of the detection system and 

consequently its motion detection sensitivity. 

 

3.6. Conclusions 

In this chapter, a phonon detection technique for sensing the dynamic motion of 

MEMS devices was presented. Motion detection is achieved by utilizing a 

piezoelectric transducer to sense the mechanical waves or phonons generated during 

surface interaction or energy dissipation which occurs during device actuation. Proof-

of-concept experiments carried out on MEMS switches and resonators show that 
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phonon detection is able to provide similar information on the short-term performance 

parameters of the devices as more established electrical characterization techniques. In 

addition, the technique also offers additional insight into the mechanical state of the 

devices, supplying data that can be used to assess their long-term performance. 

Although the test setup has currently been optimized for motion characterization of 

low frequency devices, the detection concept can be extended to higher frequency 

sensing by utilizing more advanced piezo materials and supporting electronics. Motion 

detection calibration of the test setup for resonator characterization was discussed and 

it was found that the setup is capable of sensing the nanoscale (~100 nm) linear 

vibration of resonators. Some considerations for enhancing detection sensitivity were 

also presented. In the next chapter, a high-resolution stroboscopic SEM technique 

developed for directly measuring the in-plane physical displacement of dynamic 

MEMS devices with nanoscale accuracy is introduced. The technique was applied 

extensively in subsequent calibration tests to compliment phonon detection. 
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CHAPTER 4 

STROBOSCOPIC SCANNING ELECTRON MICROSCOPY 

FOR NANO-SCALE IN-PLANE MOTION MEASUREMENT 

 

 

 

 

 

4.1. Introduction 

Most MEMS devices exhibit motion or vibration upon actuation and hence, in order to 

characterize and evaluate device performance, it is necessary to be able to detect and 

measure their momentary displacement. State-of-the-art MEMS structures are already 

exhibiting motion amplitudes in the nano regime and it is likely that their 

displacements will continue to scale downwards with their physical dimensions. Laser 

and optical measurement methods have proven to be popular motion detection 

techniques because of their good performance, low cost and operational simplicity 

(refer to Sections 2.2 and 2.3). Although some of these optical techniques have 

nanometer spatial resolution when determining structure displacement [22], the 

displacement readings are based on image sequence processing by optical flow 

techniques, such as gradient methods, rather than actual physical measurements. Hence, 
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on top of possible aberrations already present in the imaging system, errors in the 

mathematical algorithms applied during image processing will contribute to larger 

measurement inaccuracies. It is fundamentally impossible for an optical microscope to 

resolve microstructure motion in the nanometer regime in far-field imaging due to 

visible light diffraction limits (~0.5 μm). 

 

A possible solution to this limitation is to utilize an imaging technology that can 

achieve the required nano-scale resolution. The scanning electron microscope (SEM) is 

a well-established option for high resolution imaging down to about 2 nm. However, 

SEM is conventionally used for imaging static samples and not dynamic behaviour 

such as motion in MEMS devices. SEM stroboscopy, on the other hand, allows direct 

imaging and measurement of physical microstructure displacement with nanometer 

resolution [92]. The concept of stroboscopic SEM has already been demonstrated in IC 

testing [93] and magnetic domain analysis [94]–[95] and will be extended to 

micromechanical motion measurement in this work. This chapter presents the 

development of a stroboscopic imaging system for phase-resolved motion freezing and 

displacement tracking as well as time-resolved velocity estimation of micromechanical 

electrostatic comb actuated resonators. Using the implemented hardware, it is possible 

to obtain a full profile of the resonator’s displacement over one or several cycles of its 

motion as well as a fairly accurate estimate of the resonator’s instantaneous velocity at 

various phases of its motion. The stroboscopic SEM imaging system is heavily utilized 

for calibration of the phonon detection setup in subsequent experiments. 
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4.2. Principle of stroboscopic imaging using SEM 

There are two typical methods to realize stroboscopy in the SEM. The first is to blank 

the primary electron beam as it scans the sample surface [93]. The second is to gate the 

secondary electron (SE) signal [94]–[95], which has the advantages of simpler 

implementation and does not degrade the electron-optical performance (unlike primary 

beam blanking). Continuous chopping of the electron beam in primary beam blanking 

reduces the signal-to-noise ratio (SNR) of the SEM. It also introduces beam jitter and 

beam motion at the target plane [96] and both these effects are detrimental to the 

primary beam’s resolution and imaging capabilities. Gating the SE signal circumvents 

the above-mentioned issues since stroboscopy is realized under continuous 

illumination of the primary beam. Hence, the stroboscopic SEM imaging system is 

built around the concept of SE signal gating which is described in this section. 

 

In typical SEM imaging, the primary electron beam is scanned in a raster pattern over 

the sample surface. The secondary electrons generated by the primary electron beam 

are detected by an SE detector, usually a scintillator-photomultiplier Everhart-

Thornley Detector (ETD) [97], and the resulting analogue image signal is rendered into 

a gray level intensity distribution that is viewed as a two-dimensional image. For a 

digitally-controlled SEM, the pixel dwell time tpixel of the raster scan can be defined as 

 
N

t
t scan

pixel              (4.1) 

where tscan is the frame scan time and N is the total number of pixels in the frame.  
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Fig. 4.1.  Schematic diagram of time-gated signal detection for stroboscopic imaging. 

 

Hence, the lateral scan rate of the SEM is, 

  
pixel

pixel

scan
t

d
v             (4.2) 

where dpixel is the spatial resolution per pixel which is dependent on the magnification 

setting of the SEM. 

 

During conventional SEM imaging of an actuating MEMS device, the device features 

will show up blurred in the final capture due to lack of synchronization between the 

primary electron beam and MEMS device movement (e.g. see Fig. 4.4(f)). It is 

possible to observe the actual position of the structure at a specific point in time by 

taking a time-gated sample of the SEM SE signal at a specific phase of the structure’s 

motion.  The principle of time-gated sensing is illustrated in Fig. 4.1. Consider the 

simple case of a resonant microstructure actuated by an AC sine input with frequency 

f0. The expected change in displacement of the structure’s moving parts would follow 

the periodicity of the AC drive waveform. If the SE signal is synchronously acquired at 

a constant gate delay  of every cycle of the drive voltage with a sufficiently narrow 
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gate width tgate, a stationary image of the vibrating sample can be obtained as the 

electron beam scans the sample. By varying , a plurality of stroboscopic images of the 

sample at various phases of its motion can be obtained. 

 

In order to effectively freeze structure motion during the stroboscopic image capture, a 

crucial consideration is the choice of an appropriate value of tgate determined by the 

peak in-plane velocity of the moving structure. The threshold gate width is given by 

maxmax

0
v

d
t

v

v
t

pixel

pixel

scan 









          (4.3) 

where vmax is the peak velocity of the structure. A frozen image of the moving structure 

is obtained only when a gate width below t0 is applied. From Equation (4.3), it can be 

seen that for a given SEM scan rate, a smaller gate width is required to freeze the 

motion as the peak velocity of the structure increases. For example, a 160 kHz comb 

actuated resonator with vmax = 0.24 m s
-1

 at spatial resolution dpixel = 24 nm pixel
-1

 

would require tgate of 100 ns or below to freeze its motion. 

 

Having established the necessary timing and signal gating requirements for motion 

freezing and stroboscopic imaging, the practical implementation of the stroboscopic 

SEM system will now be presented. The required instrumentation is described in the 

next section. 

 

4.3. Experimental setup 

The stroboscopic imaging system is presented in Fig. 4.2. The main system 

components include a Hitachi S-3500N SEM, a PC-controlled SEM scanning and 
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signal digitizer system (SEMICAPS 2000), a Tektronix AFG3102 signal generator and 

a Stanford Research System SR250 gated-integrator/boxcar averager. The SEM 

chamber has a nominal base pressure of 10
-4

 – 10
-3

 Pa. 

 

During SEM imaging, a 512 × 512 pixel scan with 4096 sample averaging takes 

approximately 150 s, yielding a pixel dwell time tpixel = 572 µs. At a magnification of 

10,000X, the digital SEM image has a resolution of 24 nm per pixel.  Therefore, at 

these settings, vscan is 41.9 µm s
-1

. tpixel can be varied by changing the frame resolution 

(from 256 × 256 to 2048 × 2048) as well as the sample averaging (1 – 4096X). The 

analogue SE signal is fed into the gated-integrator/boxcar averager. The boxcar 

amplifies and integrates the image signal during the set gate width, samples it and 

holds the result till the next gate trigger. The boxcar is triggered by an external pulse 

which is synchronized with the MEMS device AC drive. By adjusting the relative 

phase delay  of the boxcar gate trigger pulse, it is possible to selectively freeze the 

MEMS device at various phases of its motion down to about 2 ns (or 0.115° for a 

MEMS device vibrating at 160 kHz), limited by the minimum gate delay of the gated-

integrator/boxcar averager. The averaged boxcar analogue output signal is 

subsequently digitized by the SEMICAPS system for image display and storage. 

Charge build-up on the devices due to electron bombardment during imaging is 

minimal as most MEMS devices are fabricated from polysilicon, which is a conducting 

material with a good charge sink path to ground. 
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Fig. 4.2.  Block diagram of the stroboscopic imaging system. 

 

In the following section, the test setup is demonstrated on a micromechanical resonator. 

The stroboscopic system is not only able to measure dynamic motion parameters such 

as peak displacement, phase and velocity, it is also capable of obtaining a quantitative 

time-domain displacement plot which is particularly useful if a study of the device 

motion is required. 

 

4.4. Stroboscopic imaging for measuring in-plane motion of 

micromechanical resonators 

To evaluate the capabilities of the stroboscopic imaging system, a set of experiments to 

characterize the motion of a micromechanical comb actuated clamped-clamped beam 

resonator was carried out. The resonator, when actuated by a sinusoidal AC drive 

voltage vd under linear (small-signal) drive conditions, produces simple sinusoidal 

vibrational motion in the plane of the substrate [98]–[99]. This vibration occurs in the 

fundamental mode and its amplitude peaks at the natural resonance frequency of the 
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resonator design. For a drive voltage vD = VB + vd sin (ωt), where VB is the DC 

proofmass bias and vd is the AC drive amplitude, the in-plane displacement, u of the 

resonator at the midpoint of the 6 μm support beam (refer to Fig. 4.3) at resonance is 

given by [98], 
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B         (4.4) 

where ksys is the system spring constant, ∂C/∂x is the incremental comb capacitance as 

a function of in-plane displacement, and Q is the quality factor at resonance. 

 

Therefore, during resonance, the instantaneous velocity at the same point on the beam 

at time t is, 
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Fig. 4.3.  SEM images showing the comb actuated resonator (labeled Device 1) used for 

measurement. (a) The overall resonator device. (b) 200X magnified image of the comb 

structures. Circled in white (arrowed) is the portion of the 6 µm support beam used for 

imaging. (c) The portion of the 6 µm beam circled in (b) at 10,000X magnification. 

 



Chapter 4     Stroboscopic scanning electron microscopy for nano-scale  

                     in-plane motion measurement 

 

 

84 

In these experiments, the sample device utilized was (labeled Device 1) driven at its 

fundamental resonance frequency of 161.762 kHz. The drive conditions applied were: 

DC bias, VB = 24.0 V and AC drive, vd = 0.10 V. The device has a measured Q of 

approximately 12,000 under a 10
-3

 Pa vacuum with theoretical values of ksys = 237 N 

m
-1

 and ∂C/∂x = 1.8 nF m
-1

. The Q values were found to be relatively constant within 

the 10
-4

 – 10
-3

 Pa base pressure range of the SEM. The theoretical peak velocity of the 

resonator given by Equation (4.5) is 0.222 m s
-1

. Hence, from Equation (4.3), in order 

for the image capture system to freeze the motion of the resonator within one 24 nm 

digital pixel (10,000X SEM magnification) at tpixel = 572 µs, the sampling gate width, 

tgate of the boxcar integrator must not exceed 108 ns. A test of this motion freezing 

concept is presented next. 

 

4.4.1. Stroboscopic motion freezing of dynamic resonator actuation 

To show the effects of varying gate width, tgate on stroboscopic image capture, the 

sample was driven at the above-mentioned drive conditions at its resonance frequency. 

Strobed image captures of a section of the sample’s 6 µm support beam (refer to Fig. 

4.3) were performed using tgate between 10 ns – 3 µs, with the gating phase fixed at the 

resonator’s peak instantaneous velocity (Gate A in Fig. 4.1). The resultant micrographs 

are presented in Fig. 4.4. 

 

For tgate of 100 ns and below (Fig. 4.4(a) – (c)), well-defined beam edges were 

obtained, indicating that the sampling gate width was narrow enough to freeze the 

resonator beam’s motion. However, for tgate of 300 ns and above, an increasing 

blurring of the beam edges is observed. These observations are in excellent agreement 

with the previous calculations of tgate < 108 ns for stroboscopic motion freezing. 
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Fig. 4.4.  Stroboscopic micrographs of 6 µm support beam at its peak velocity point captured 

using gate width tgate of (a) 10 ns, (b) 30 ns, (c) 100 ns, (d) 300 ns, (e) 1 μs and (f) 3 μs. 

 

As the SR250 provides a minimum tgate of 2 ns, the stroboscopic system can effectively 

freeze the motion of a microstructure with a maximum instantaneous in-plane velocity 

of dpixel/tmin = 24 nm pixel
-1

/2 ns = 12.0 m s
-1

 (using Equation (4.3)). 

 

4.4.2. Stroboscopic phase imaging 

In the next set of experiments, the gate delay (or phase) was ramped at 1° (or 17.2 ns at 

161.762 kHz resonance) per step during an image capture. A micrograph which tracks 

the displacement of the resonator over a single cycle (360°) or more can be generated. 

By increasing the gate delay ramp rate, it is possible to capture several cycles of 

resonator beam motion within one micrograph. 
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Fig. 4.5.  Micrographs captured with different gate delay ramp rates to show several cycles of 

resonator beam displacement in a single micrograph. (a) Ramp rate 2.4° s
-1

 – 1 cycle, (b) ramp 

rate 4.8° s
-1 

– 2 cycles, (c) ramp rate 9.6° s
-1 

– 4 cycles, (d) ramp rate 16.8° s
-1 

– 7 cycles and (e) 

ramp rate 21.6° s
-1 

– 9 cycles. The gate width tgate for all the captures is 30 ns. 
 

The entire 512 × 512 pixel frame capture requires 150 s and hence, in order to obtain a 

displacement profile for one cycle of the resonator’s motion, the gate delay ramp rate 

required would be 360°/150 s = 2.4° s
-1

 or 41.2 ns s
-1

. Fig. 4.5 shows micrographs 

captured with five different gate delay ramp rates in order to obtain 1, 2, 4, 7 and 9 

cycles of beam displacement. A gate width of 30 ns was used for each of the captures. 

 

Note that increasing the delay ramp rate reduces the phase resolution of the final image. 

Taking the line scan time for the capture system as 150 s/512 = 0.293 s, the phase 

resolution of a 2.4° s
-1

 ramp rate is 2.4° s
-1

 × 0.293 s = 0.703°. If a smaller minimum 

resolvable phase is required, a lower phase delay ramp rate and a higher digital 

scanning resolution should be used. Table 4.1 summarizes the relationship between the 

delay ramp rate and phase resolution for the micrographs in Fig. 4.5. 
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Table 4.1.  Ramp rate and phase resolution values for the micrographs in Fig. 4.5. 

Ramp rate 

(° s
-1

) 

Number of 

cycles 

Minimum 

resolvable 

phase (°) 

2.4 1 0.703 

4.8 2 1.41 

9.6 4 2.81 

16.8 7 4.92 

21.6 9 6.33 

 

The phase-resolved micrographs provide a qualitative picture of device motion and in 

the case of the resonator sample the vibration which occurs during actuation is 

observed to be sinusoidal in nature. In order to extract quantitative displacement data 

from the micrographs, some image processing is necessary and the procedure is 

described next. 

 

4.4.3. Phase-resolved stroboscopic displacement quantification 

Quantitative displacement data of resonator motion can be acquired from the phase-

resolved stroboscopic images shown in Fig. 4.5. The displacement profiles can be 

extracted from the gray level intensities of the micrographs. Taking the upper-left 

corner as the origin (0, 0), a gray level line-profile at y-y’ is obtained as shown in Fig. 

4.6. The x-location of a resonator edge, i.e. the instantaneous displacement, is 

determined using the Full Width Half Maximum (FWHM) criterion. 

 

By determining the edge x-pixel values for all 512 y-lines, a quantitative plot of the 

resonator’s displacement (in nm) is obtained. Fig. 4.7 presents the displacement profile 

data extracted from micrographs (a), (c) and (e) in Fig. 4.5. 
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Fig. 4.6. (a) A 512 pixel-wide gray level intensity lineprofile of y-y’ in the stroboscopic 

micrograph (b). 

 

 
Fig. 4.7.  Quantitative displacement plots (shown in white) for stroboscopic resonator imaging 

over (a) one (ramp rate 2.4° s
-1)

, (b) four (ramp rate 9.6° s
-1

) and (c) nine (ramp rate 21.6° s
-1

) 

cycles of motion. The solid line shows the best-fit curve through the extracted data points. 

From (a), the fitted parameters for resonator peak displacement A0 was 265 nm and the phase 

shift 0 was 127º (phase lead with respect to the AC drive signal). 
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Table 4.2. Standard deviation of the data points in the three resonator displacement. 

Ramp rate (° s
-1

) 2.4 9.6 21.6 

Standard deviation (nm) 19.61 22.78 22.29 

 

Applying the method of least squares, the extracted data points were fitted to the 

equation 

   00 sin   tAtu          (4.6) 

where A0, ω and 0 are the three fitting parameters. The best-fit curve represents the 

time-domain displacement variation of the vibrating beam from which the maximum 

amplitude A0, vibration frequency ω and phase shift 0 (refer to Fig. 4.1) of the 

resonator can be obtained. 

 

From Fig. 4.7(a), the best-fit parameters indicate that the resonator motion has a peak 

displacement of 265 nm with a 126º phase lead over the AC drive signal. Table 4.2 

summarizes the standard deviation of the data points for the displacement profiles in 

Fig. 4.7. The current setup has an error tolerance of about 20 nm, with the primary 

electron probe size and digital scan resolution being the primary contributors. These 

will be discussed in more detail in Section 4.4.5. Aside from momentary displacement 

and phase measurements, the stroboscopic SEM technique can also provide vibration 

velocity estimates and these are discussed in the following section. 

 

4.4.4. Time-resolved velocity estimation 

Here, the stroboscopic motion freezing and phase-resolved imaging discussed 

previously in Sections 4.4.1 and 4.4.2 are combined. Keeping the gate delay ramp rate 

constant at 2.4° s
-1

 so that each micrograph would capture exactly one cycle of the 
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resonator’s motion, the gate widths were varied from 10 ns – 3 µs to obtain the 

displacement profiles shown in Fig. 4.8. 

 

The micrographs for tgate < 100 ns show a sinusoidal shaped beam with well-defined 

edges as discussed previously. For tgate > 300 ns, edge blurring was observed at 

positions where the resonator’s in-plane velocity tends towards is peak. The greatest 

blurring occurs at the mid-point (zero-crossing) of the beam’s sinusoidal motion where 

the instantaneous velocity is at its highest. At the positive and negative displacement 

peaks, the instantaneous velocity of the beam is zero and hence well-defined edges are 

always obtained. 

 

 
Fig. 4.8.  Motion of 6 µm support beam (one cycle) captured using varying gate widths tgate (a) 

10 ns, (b) 30 ns, (c) 100 ns, (d) 300 ns, (e) 1 μs and (f) 3 μs. 
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Using the pixel spread from edge blurring and assuming a piecewise linear velocity 

interpolation, the instantaneous velocity of the resonator beam at various points of its 

motion can be estimated. Since the image capture only occurs within the sampling gate 

width, the pixel-spread divided by the gate width itself gives the velocity of the beam 

at the point of capture. This velocity measurement approach is only applicable for tgate 

above the threshold width for freezing motion, and is also limited by the single-pixel 

digital resolution limit. On the other hand, tgate must also not be so large that the entire 

amplitude of the beam’s displacement is revealed by the edge blurring during capture. 

Due to the piecewise linear velocity interpolation, applying a smaller tgate would 

provide a more accurate velocity measurement. However, decreasing tgate also reduces 

the pixel-spread. As a pixel-spread of p pixels is required to obtain p distinct resonator 

velocity measurements, smaller pixel-spread would limit velocity resolution.  

 

A tgate value that is exactly ¼ of the resonator’s period and synchronized to the 0° 

phase (zero crossing) would result in an edge blurring that is equivalent to its peak 

displacement. As the sample was actuated to vibrate at 161.762 kHz, the largest 

allowable tgate which can be used to estimate its velocity is 1.55 μs. Therefore, for this 

particular resonator sample, 108 ns < tgate < 1.55 μs can be used for velocity 

measurement. With reference to the micrographs in Fig. 4.8, only tgate = 300 ns (d) and 

tgate = 1 µs (e) are applicable for velocity measurement based on the above-mentioned 

tgate criteria. Here, Fig. 4.8(e) is used to demonstrate stroboscopic velocity 

measurement. To determine the amount of blurring which occurs at the resonator beam 

edges for a particular y-line, the previous FWHM criterion is applied to obtain the 

length of the blurred beam portion in pixels. 
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Table 4.3.  Measured velocity values for the 8 resonator beam motion positions shown in Fig. 

4.9. The deviation is the difference between the estimated and best fit values. 

Time (μs) 
Measured 

velocity (m s
-1

) 

Deviation 

(m
 
s

-1
) 

0.072 –0.132 0.0131 

1.12 –0.156 –0.0188 

2.11 0.012 –0.0021 

3.02 0.132 –0.0237 

3.74 0.240 0.0366 

4.34 0.144 –0.0064 

4.90 0.036 –0.0321 

6.13 –0.108 0.0229 

 

The instantaneous velocity of the resonating beam was estimated for several points of 

its motion using Fig. 4.8(e). Table 4.3 tabulates the velocity values obtained using this 

approach. The resultant velocity profile is presented in Fig. 4.9 along with a best-fit 

curve obtained by the method of least squares estimation. The equation used for fitting 

was, 

   00 cos   tVtv          (4.7) 

with V0, ω and 0 being the fitting parameters. The estimated maximum velocity of 

beam vibration is hence given by the V0 parameter. 

 

The estimated maximum velocity of 0.192 m s
-1

 (from the best-fit curve) is in good 

agreement with the theoretical value of 0.222 m s
-1

 obtained using Equation (4.5). The 

velocity estimates have a standard deviation of 0.0224 m s
-1

 and represents the overall 

measurement accuracy of the technique. The maximum velocity which can be resolved 

by this method is equivalent to the maximum velocity of motion which the system can 

freeze, i.e. 12 m s
-1

. At tgate = 1 µs, the velocity resolution is 0.012 m s
-1

. 
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Fig. 4.9.  Velocity profile (white curve) of resonating beam at 8 selected points of its motion. 

The peak velocity of the structure occurs at the point where the micrograph (Fig. 9(e)) shows 

the most blurring. From the best-fit curve, the estimated maximum velocity is 0.192 m s
-1

. 

 

In summary, the experiments on Device 1 have demonstrated the ability of the 

stroboscopic SEM setup in motion freezing, phase-resolved displacement imaging and 

motion velocity estimation. Phase-resolved displacement imaging is of particular 

importance as it is the means by which the physical motion of the device can be 

quantified. Next, the overall resolution capabilities of the technique for both 

displacement and velocity measurement are considered. Factors that limit resolution 

arise from two main sources: the electron probe of the SEM and the supporting digital 

electronics that sample the SE signal. These factors are discussed in the next section. 

 

4.4.5. Experimental errors and limitations 

Spatial and temporal factors  

The SEM probe resolution is examined first. For the experiments presented, the S-

3500 was configured with a working distance of 17.8 mm. At this setting, the best 

spatial resolution of the SEM is approximately 20 nm at 30 keV. This was determined 
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using the gold on carbon resolution test image in Fig. 4.10(a) obtained using identical 

SEM imaging conditions as the stroboscopic images presented here. The spatial 

resolution figure determines the smallest displacement which the stroboscopic system 

can possibly resolve (20 nm). With the S-3500 optimally configured for high 

resolution imaging, this measurement limit can be reduced to 10 nm (Fig. 4.10 (b)) or 

less. Since the sample resonators are expected to exhibit ~100 nm peak-to-peak in-

plane displacement during linear operation, the detection threshold of 10 – 20 nm is 

sufficient for future experiments. 

 

The digital sampling limits of the SEMICAPS SEM scanning and acquisition system 

must also be considered. The digital sampling rate of the SEM digital capture is 7.16 

MHz for a 512 × 512 pixel, 4096X averaging, 150 s frame time image capture. 

Therefore, the stroboscopic imaging system is limited to resolving microstructure 

motion with frequencies below 3.58 MHz due to the Nyquist (2X) sampling limit. The 

digital sampling rate can, of course, be bettered by upgrading the system hardware, 

hence allowing for the motion of devices with higher frequency to be characterized. 

 

 
Fig. 4.10.  30 keV gold on carbon calibration micrographs (120,000X magnification) used for 

determining effective resolution of the S-3500 SEM: (a) Spatial resolution of ~20 nm for in-

situ resonator experiments with working distance (WD) = 17.8 mm. (b) Best case resolution of 

~10 nm with WD = 11.0 mm. 
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Ideally, the gate signal provided by the gated integrator/boxcar averager should be a 

perfect square waveform (Fig. 4.11). However, noise in the external trigger signal as 

well as the boxcar give rise to jitter in the final sampling gate. Fig. 4.11 shows the 

actual gate signal provided by the gated integrator/boxcar averager for tgate = 1 μs 

compared with the ideal. The actual gate signal has finite rise and fall times of 42 ns 

and 94 ns respectively and a width of 1.1 μs, i.e. 10% larger than the 

specified tgate. The SR250 gated-integrator/boxcar averager has a specified error of up 

to 20% in the gate timing. Since tgate determines the extent of the observable edge 

blurring for velocity estimation, a 20% uncertainty in tgate translates to an equivalent 

20% error in the velocity estimates as well. Trigger delays also result in the gate signal 

being right-shifted by 365 ns when it should ideally be synchronized with the 

resonator’s AC drive signal. This 365 ns delay contributes to a phase offset error 

during displacement/velocity profiling. 

 

 
Fig. 4.11.  Actual 1 μs gate signal provided by the SR250 gated-integrator/boxcar averager 

compared with ideal. 
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The issues presented in this section reflect the physical limitations on resolution and 

accuracy of the technique imposed by the system hardware (which includes the SEM 

itself and the signal gating and digital sampling electronics). When considering the 

accuracy of the displacement data obtained, it is also necessary factor in the error 

sources contributed by the image processing step (Section 4.4.3). These are discussed 

next. 

 

SEM image noise and other contributions to inaccuracies  

During the SEM scan, the electron beam introduces several types of noise to the image 

signal and these include shot noise, secondary electron noise and partition noise [100]. 

The gated integrator/boxcar averager also contributes to noise in the final image signal. 

 

As the individual noise components cannot be quantified, a final image-based 

approach to analyzing overall system noise is hereby adopted. Consider the 30 ns gate 

micrograph in Fig. 4.4(b). In the dark areas of the image, the gray level intensity of 

these areas has a mean of 24 intensity units and a standard deviation of 24. Hence, it 

can be assumed that all the noise sources for this particular capture give rise to an 

uncertainty of ±24 gray level intensity units per pixel. Table 4.4 shows the average 

gray level intensities for all 512 y-pixels at 12 x-lines obtained from the 30 ns gate 

micrograph in Fig. 4.4(b). The asterisk (*) marks the average cut-off point found by 

adhering to the FWHM criterion, with 90.4 being the average threshold intensity. 

Considering the ±24 intensity units uncertainty provided by the noise, it is possible for 

both pixels 152 and 154 to have an intensity which comes within range of the threshold 

value and be taken as the cut-off pixel also. 
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Table 4.4.  Average gray level intensity for all 512 y-pixels at 12 x-lines around the cut-off 

pixel (obtained from Fig. 4.4(b)). 

x-pixel no. 150 151 -152 
* 

153 
-154 155 156 157 158 159 

# 

160 
161 

Gray level 

intensity 
48.3 58.4 72.1 87.9 106 129 149 166 176 179 181 180 

 

Hence, in the worst case, the background noise contributes a ±1 pixel error to the 

displacement profile obtained. Since the pixel-to-displacement conversion is 24 nm 

pixel
-1

, the error in the profile extraction is hence ±24 nm. This error can be improved 

by reducing the pixel-to-displacement conversion (i.e. by using a larger SEM 

magnification during imaging), although the ultimate resolution of the technique is still 

determined by the SEM probe size as discussed in the previous section. 

 

Applying the same analysis to the remaining five micrographs in Fig. 4.4, it was found 

that the gray level uncertainty caused by the background noise decreases when a larger 

gate width is used. The numbers are summarized in Table 4.5. This is not unexpected 

as increasing the gate width raises the signal to noise ratio (SNR). For the 1 µm and 3 

µm gate widths, the SNR is large enough such that the gray level variation caused by 

the noise does not cause significant error in the displacement extraction. However, 

such large gate widths are not practical due to the tgate < 108 ns requirement for 

stroboscopic motion freezing discussed previously. 

 

Table 4.5.  Mean and standard deviation of gray level intensity variation caused by background 

noise for image captures performed using different tgate. This variation translates into a pixel 

error during the displacement profile extraction. 

Gate width 
Mean 

intensity 
Std dev 

Error 

(pixel) 

10 ns 24 27 ±1 

30 ns 24 24 ±1 

100 ns 25 23 ±1 

300 ns 26 20 ±1 

1 µs 26 13 0 

3 µs 24 9 0 
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Table 4.6.  Comparison of other techniques for measuring the dynamic motion of 

micromechanical structures with the stroboscopic SEM developed in this work. 

 
In-plane 

resolution 
Accuracy Displacement quantification 

LDV 

(Ferraris et al. [25]) 
5 µm pm range Doppler shift measurements 

Optical stroboscopy 

(Rembe et al. [34]) 
600 nm 100 nm 

Motion freezing, sub-pixel 

image processing 

SEM 

(Roy et al. [35]) 
~2 nm Poor Blur synthesis 

Stroboscopic SEM 20 nm nm range Phase-resolved imaging 

 

In summary, stroboscopic SEM is able to freeze and image device motions down to 

about 20 nm, limited by the electron probe size of the SEM. The frequency limit of the 

system is determined to be ~3.58 MHz with the sampling rate of the digital image 

acquisition system being the main bottleneck. With a more advanced imaging system, 

devices of higher frequency can be characterized. Uncertainties in the gate signal from 

the gated integrator/boxcar averager also result in some phase offset error during 

displacement/velocity profiling. When extracting quantitative displacement 

information from the stroboscopic phase-resolved images, errors contributed by image 

noise must also be considered. These errors, however, can be effectively regulated by 

using an appropriate SEM magnification during imaging. 

 

To highlight its dynamic motion quantification capabilities, stroboscopic SEM is 

compared to other resonator displacement measurement techniques and these are 

summarized in Table 4.6. In terms of in-plane resolution, stroboscopic SEM is 

significantly better than optical and laser-based (LDV) techniques since both these 

methods are diffraction limited. Although it cannot achieve the 2 nm resolution of 

conventional SEM imaging, the phase-resolved imaging and displacement 
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quantification in stroboscopic SEM provide substantially better accuracy when 

obtaining measurements compared to the blur synthesis method used in conventional 

SEM. In any case, the minimum displacements of most micromechanical structures 

currently under development have yet to reach the sub-10 nm regime. Overall, there is 

a good compromise between resolution and accuracy which allows stroboscopic SEM 

to be employed for measuring the dynamic motions of most micromechanical 

structures. 

 

4.5. Conclusions 

A system for dynamic in-plane stroboscopic SEM imaging and displacement-velocity 

quantification of MEMS devices was presented in this chapter. Stroboscopy was 

achieved by time-gated sampling of the SEM SE signal. Stroboscopic imaging 

experiments were carried out on a comb actuated clamped-clamped beam resonator. 

By varying the phase delay of the gate signal, the instantaneous displacement of the 

resonator at various phases of its motion can be captured. The technique can further be 

applied to obtain a phase-resolved image of the motion of resonator during actuation 

by ramping the phase delay of the gate signal while imaging. The current hardware 

implementation can achieve a displacement resolution of about 20 nm, limited mainly 

by the electron probe size, for motion frequencies up to 3.58 MHz. Resonator 

instantaneous velocity for in-plane motions up to 12 m s
-1

 can also be measured using 

pixel blurring analysis with a velocity resolution of 0.012 m s
-1

. Improvements to 

various hardware components can enhance both resolution and frequency limits of the 

system. Overall, when compared to other dynamic motion measurement techniques, 

there is a good compromise between resolution and accuracy which allows 
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stroboscopic SEM to be employed for measuring the dynamic motions of most 

micromechanical structures. The following chapter presents long-term frequency 

stability experiments that were carried out utilizing the two motion detection tools 

introduced in Chapters 3 and 4. Stroboscopic SEM has the function of calibrating the 

phonon setup for monitoring device displacement drift over long-term actuation. 
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CHAPTER 5 

LONG-TERM FREQUENCY STABILITY OF SILICON 

CLAMPED-CLAMPED BEAM RESONATORS 

 

 

 

 

 

5.1. Introduction 

Silicon based micromechanical resonators have long been recognized as a promising 

alternative technology to quartz oscillators for many frequency reference and timing 

applications [50]–[55]. In fact, companies including Discera Inc., SiTime and Silicon 

Clocks are already marketing a wide range of oscillator products based on silicon 

resonators. However, very little published information exists on the long-term stability 

of these devices despite its importance in assessing device reliability. Current studies 

on resonator long-term stability are carried out using network analyzer-based systems. 

However, as mentioned in Chapter 2, these test setups have their own short-comings 

when determining the frequency characteristics of test devices, some of which include 

parasitic effects and feedthrough interference [46]. 
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This chapter presents an automated test setup based on phonon detection for 

monitoring the long-term stability of micromechanical resonator devices. Phonon 

detection does not suffer form parasitic effects since the characterization signal is 

mechanical in nature (acoustic phonons). The automated test system developed is able 

to continuously actuate up to four devices (which can be scaled up easily) and 

characterize them at regular intervals to monitor resonance frequency f0 and Q-factor 

changes resultant from long-term operation. Device displacements at resonance can 

also be derived from the phonon voltage Vphonon recorded, with the voltage 

displacement conversion being provided by stroboscopic SEM. 

 

The subject of this long-term stability study is comb actuated clamped-clamped beam 

resonators. Due to their simple structure, compact size and power efficiency, clamped-

clamped beam resonators are ideal candidates for various frequency reference and 

signal processing applications [101]–[102]. The short term stability parameters of 

clamped-clamped beam devices, such as phase noise [55],[103] and thermal frequency 

stability [61],[66], are well explored, but their long-term performance has not been 

investigated sufficiently. A summary of some published studies on micromechanical 

resonator long-term performance is shown in Table 5.1. Of notable interest is the fact 

that most of these studies are based on a fairly small number of devices and hence it 

would be difficult to generalize the observed long-term behaviour to the device 

population. In addition, no resonator failure mode has been identified in any of these 

tests, quite possibly because the measurement method used was an electrical technique 

(network analyzer) which does not assess/track changes in the mechanical state of the 

device over time. 
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Table 5.1.  Summary of some published studies on long-term performance of micromechanical 

resonators. 

 
Resonators 

studied 

Actuation 

time 

Measurement 

method 
Freq. drift 

Failure 

modes 

Koskenvuori 

et al. [70] 
4 x length ext. 1,000 hrs 

Network 

analyzer 
~1 ppm day

-1
 None 

Kaajakari 

et al. [71] 

2 x square ext. 

2 x cantilever 

2 x c-c beam 

2 x piston 

700 hrs 
Network 

analyzer 
0.5 – 15 ppm 

day
-1

 
None 

Kim et al. 

[72] 

6 x ring resonator 

(2 designs) 
~9,000 hrs 

Network 

analyzer 
>>1 ppm 

day
-1

 
None 

 

The phonon detection methodology used in this work, on the other hand, does have the 

capability of evaluating the phonon transmission or energy dissipation properties of 

resonator devices (see Section 3.2.2). Hence it is possible for the technique to identify 

device failure modes associated with changes in this particular aspect (i.e. energy 

dissipation) of device mechanical state. Applying the phonon detection technique, the 

experiments performed here focus on f0, Q-factor and in-plane displacement variation 

over time. These three parameters were used to analyze the long-term performance of 

the devices. 

 

5.2. Micromechanical comb actuated clamped-clamped 

beam resonators 

A specimen of the comb actuated clamped-clamped beam resonators that are studied in 

these long-term stability experiments is shown in Fig. 5.1. These devices were 

fabricated using the SOIMUMPs process provided by MEMSCAP. This process 

features a structural layer of phosphorus doped silicon with thickness h = 25 μm and 

has minimum feature sizes of 2 μm [104]. The resonators are actuated by applying a 
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DC proof-mass bias VB to the clamped-clamped beam and an AC drive voltage vd to 

one of the comb actuators. The periodic electrostatic force generated by the applied 

voltages excites the resonator into vibration and the in-plane vibration amplitude 

reaches a maximum as the frequency of vd approaches the resonance frequency f0 of 

the resonator. As these resonators are designed to operate in the fundamental mode, the 

peak displacement occurs at the mid-point of the clamped-clamped beam. The 

fundamental f0 is determined by the length L, width w and height h of the beam 

structure and is given by [105], 

3

32

0

0
34 ML

hEw
f




           (5.1) 

 

 
Fig. 5.1.  (a) SEM micrograph of a specimen of the comb actuated clamped-clamped beam 

devices used in the long-term stability experiments. The devices were fabricated using the 

SOIMUMPs process. (b) Magnified image of the resonator anchor structures with W = 100 μm 

and w = 6 μm. The beam length L = 400 μm is shown in (a). (c) Cross-section schematic of the 

device showing the SOI structural layer and the substrate. 
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where E is the Young’s modulus of the resonator material (silicon in this case), M is 

the mass of the beam (volume × density of silicon), L and h are the length and height 

of the beam respectively, w is the width of the beam in the direction of vibration and β0 

is the mode constant. For these resonator samples, L = 400 μm, w = 6 μm (h = 25 μm 

as determined by the SOIMUMPs process) and β0 = 3.40 which gives f0 ~ 167 kHz. 

 

To examine the long-term performance of these devices, they are continually actuated 

and observed for changes in their resonance frequency f0, Q-factor and in-plane 

displacement over time. However, while monitoring the Q-factor and in-plane 

displacement parameters are fairly straight-forward, assessing f0 stability is tricky as 

there are multiple contributing factors which can give rise to f0 shift. 

 

One of these is fluctuations in the ambient temperature. The clamped-clamped 

architecture of the device means that the structure is particularly prone to axial stress 

since the beam is anchored at both its ends. Temperature fluctuations cause the 

clamped-clamped beam to expand and contract, thereby altering the magnitude of axial 

stress on the beam. Since it is well-known that this stress tends to cause the f0 of the 

resonator to shift [62], it can be deduced that temperature fluctuations also have an 

adverse effect on f0 stability. To isolate the f0 shift caused by fatigue degradation, it is 

therefore necessary to decompose the effects of temperature. Some knowledge of the 

temperature frequency sensitivity of the device is required, and this is discussed in the 

following section. 
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5.2.1. Temperature frequency sensitivity 

The thermal frequency sensitivity of a resonant structure is characterized by the 

temperature coefficient of resonance frequency TCf which is the rate of change of its 

resonance frequency with temperature with respect to a reference frequency. In this 

section, a simple theoretical model is presented for the TCf of clamped-clamped beam 

resonators along with a method for determining the TCf value of a sample device. 

Determining the sample TCf allows decomposition of the effects of ambient 

temperature fluctuations on the measured frequency drift during long-term frequency 

stability experiments. 

 

First consider the clamped-clamped beam resonance frequency f0 expression given in 

Equation (5.1). The temperature dependent parameters in Equation (5.1) include the 

mode constant, the silicon Young’s modulus and the beam dimensions which expand 

when heated. Hence, the TCf of the resonator is, 
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with TCE being the temperature coefficient of Young’s modulus of silicon and α being 

the coefficient of thermal expansion of the resonator material. To find ∂β/∂T, first 

consider the effects of axial stress σ on β and then determine how σ changes with 

temperature. 
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Fig. 5.2.  Variation of mode constant β with axial stress. The numerical solution predicts a 

non-linear relationship between β and the stress parameter. For small stresses, a linear 

approximation about the zero stress point can be applied. 

 

The mode constant β has a non-linear dependence on axial stress acting on the 

resonator structure (see Fig. 5.2) [105]. However, for small stresses, a linear 

approximation about the zero stress point can be applied, 
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Changes in the axial stress on the clamped-clamped beam with temperature can be 

caused by a mismatch in the thermal coefficients of expansion α in the die or even in 

the packaging material and can be expressed as, 

T
E

T 






 
           (5.4) 

where E is the Young’s modulus of silicon and ∂δ/∂T is the thermal induced axial 

strain acting on the clamped-clamped beam structure. Combining Equations (5.2), (5.3) 

and (5.4), 
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TCE of silicon is approximately –77.56 ppm 
o
C

-1
 due to material softening [58] and 

with α = 2.6 ppm 
o
C

-1
, these last two terms in Equation (5.5) account for –37.48 ppm 

o
C

-1
 change in f0 with increasing temperature. From Equation (5.5), it is immediately 

evident that for clamped-clamped beam resonators which experience thermal induced 

strain (i.e. ∂δ/∂T  0), the TCf will be moderated by the first term in the equation. 

 

The TCf of a resonator sample can be determined simply by characterizing the device 

and determining its f0 at several temperature steps within a certain temperature range. 

By plotting f0 against temperature, the slope of the plot gives the TCf of the device. Fig. 

5.3 shows the variation in resonance frequency f0 of a specimen of the clamped-

clamped beam resonators (labeled as Device R01) for temperatures between 25 °C and 

80 °C. From the slope of the f0-temperature plot in Fig. 5.3, the TCf of Device R01 can 

be determined to be –12.67 Hz °C
-1

 or –73.87 ppm °C
-1

. Having established the TCf, 

this value can then be used to account for the resonator frequency shift contributed by 

temperature fluctuations in later experiments. 

 

Aside from providing a basis for compensating the effects of temperature fluctuations, 

the TCf data of the device can also provide some insight on the axial stress that is 

present on the beam structure. This is discussed in the next section. 
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Fig. 5.3.  f0-temperature plot for Device R01. The temperature coefficient of resonance 

frequency TCf of the device is determined from the slope of the linear best-fit line. The best-fit 

line is obtained using line regression by the method of least squares. In this case, the TCf of 

Device R01 is –12.67 Hz °C
-1

 or –73.87 ppm °C
-1

. 

 

5.2.2. Axial stress on clamped-clamped beams 

The presence of axial stress on the resonator is expected due to the clamped-clamped 

disposition of the vibrating beam structures. As it is possible that the presence of this 

stress could have a detrimental effect on the long-term performance of the resonator, it 

is therefore necessary to estimate the magnitude of the axial stress on the beams. The 

axial stress can, in fact, be derived from the f0-temperature measurements carried out 

on the sample device. 

 

Referring back to Equation (5.5) of the TCf model presented in the previous section, it 

can be deduced that there are two main contributors to the temperature frequency 

sensitivity of the resonator: its material properties (E which is temperature dependent) 

and thermal induced strain. 

 

For packaged resonators, the most common source of thermal induced strain is from 

the package materials which have thermal expansion coefficients and material 
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properties that differ substantially from the resonator material (silicon) [61]. However, 

as the devices are tested at the die level, they do not experience these package stresses 

when heated. This suggests that the strain arises at a more fundamental level: from a 

mismatch in the thermal expansion coefficients of the resonator SOI structural layer 

and the silicon substrate (see Fig. 5.1 for structural layer and substrate). Hence, 

 subSOI
T








          (5.6) 

where αSOI and αsub are the thermal expansion coefficients of the SOI structural layer 

and the substrate respectively. Combining Equations (5.5) and (5.6), 
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Hence, after the TCf of a sample has been determined, its coefficient mismatch can be 

worked out as, 
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 In the case of Device 01 (in the previous section), (αSOI – αsub) = –0.0542 ppm °C
-1

 

(with L = 400 μm and w = 6 μm). With the occurrence of this mismatch, the axial 

stress on the clamped-clamped beams can be estimated by, 
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with T being the temperature of the device. The derived σT is therefore the induced 

axial strain on the resonator beam at temperature T due to the thermal expansion 
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coefficient mismatch (αSOI – αsub). In the case of Device R01, σT = –2.693 MPa at 301 

K (28 °C). 

 

Hence, from the measured TCf of the device, it is possible to approximate the axial 

stress on the clamped-clamped beam structure. These stress estimates will be useful in 

future experiments for comparing the effects of axial stress on resonator long-term 

performance across different device samples. In the following section, the test setup, 

designed based on the phonon detection technique, for monitoring long-term 

performance of resonators is presented. 

 

5.3. Experimental setup 

The phonon detection technique is capable of detecting the motion of multiple devices 

with the same transducer element and only a single set of electronics (a voltage 

preamplifier) is required for measurement. Hence, the test setup required for 

monitoring the performance of a large number of devices can be fairly simply 

implemented. This is particularly advantageous for long-term performance testing in 

the manufacturing process, since a large volume of samples has to be tested in order to 

generalize the performance of a batch of devices. Although the multiple devices have 

to be measured sequentially, the data acquisition time per resonator is short and the 

change-over time between devices is negligible (since the same piezoelectric element 

is used for all devices). The technique is therefore able to characterize a large number 

of devices in a relatively short time frame. 
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Fig.5.4.  Automated phonon detection setup for monitoring the long-term stability of resonator 

devices. 

 

The phonon detection setup for investigating the long-term stability of the resonator 

devices is shown in Fig. 5.4. The test die is mounted onto a copper-plated PCB board 

through which the actuation voltages are fed to the devices-under-test (DUTs). Wire 

bonds are made to the resonator contact pads to provide the electrical contacts to the 

devices. The temperature of the test die is monitored using a thermocouple probe 

which is held in place on the test die surface using a micromanipulator. In order to 

ensure that the PCB board does not couple additional stress onto the test die, only one 

corner of the die is attached to the board using silver conductive paste. This mounting 

holds the test die in place while minimizing external forces from coupling to the die. 

 

 

The PCB board is then bolted on top of the phonon detector which consists of the 

piezoelectric transducer and the preamplifier circuitry. As the piezoelectric transducer 

can detect the motion of any device on the sample die, the same transducer can be used 
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to characterize multiple devices with high throughput. The output waveform of the 

piezoelectric transducer VP(t) is amplified by the preamplifier before being read on a 

digital oscilloscope to provide the phonon waveform Vphonon(t). The preamplifier was 

redesigned to have a voltage gain of 1453 and 3-dB bandwidth of 206 kHz. Device 

characterization is carried out in a vacuum chamber which has a nominal base pressure 

of 10
-3

 – 10
-2

 Pa. 

 

To characterize the resonator DUTs, a DC proof-mass bias VB and an AC drive voltage 

vd1 – vd4 are applied respectively to the four devices in sequence. This process is 

carried out using an automation and data acquisition software coded with LabView. 

The software is run on a control computer (CPU) which communicates with the 

instruments through the general-purpose interface bus (GPIB) port (see Fig. 5.4). The 

DC bias voltage is provided by a HP E3631A power supply and four Aglient 33250A 

arbitrary function generators supply the sinusoidal drive voltages. The phonon voltages 

are monitored by a Tektronix TDS5034B digital oscilloscope. In a typical 

characterization run, a DC voltage VB is first applied to all four devices. Device 1 is 

then actuated with AC drive voltage vd1. The frequency of the AC drive is swept 

upwards and the phonon voltage Vphonon at each frequency step is read by the 

oscilloscope and recorded in order to map the frequency response of the sample. When 

the frequency sweep for Device 1 is complete, vd1 is shut off. The automation software 

then repeats this process for Devices 2 to 4 by activating vd2 to vd4 sequentially. 
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Fig. 5.5.  Frequency response curve of Device R01 obtained using phonon detection at 28.6 

o
C 

and ~2 x 10
-2

 Pa. The device was actuated with VB = 6.0 V and vd = 30 mV. The measured f0 = 

171.589 kHz and Q = 10,200 as determined from the best-fit Lorentzian curve. 
 

The frequency response of a typical device (labeled Device R01) is shown in Fig. 5.5. 

From the recorded frequency response, the resonance frequency f0 and Q-factor of the 

sample can be ascertained. A best-fit Lorentzian curve is first drawn through the 

measured points (fitting is done by the method of least squares). The f0 is determined 

from the point at which the best-fit curve is maximum which is 171.589 kHz. 

 

The Q-factor is computed using the equation, 

f

f
Q


 0             (5.10) 

where f is the range of frequencies for which the phonon voltage amplitude is at least 

0.707 of the maximum phonon voltage at f0 (3-dB level) as determined from the best-

fit curve in Fig. 5.5. In this case, Q turns out to be 10,200. 

 

This phonon detection setup was used to evaluate the long-term stability of the comb 

actuated clamped-clamped beam resonators. Since it is also necessary to monitor the 
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peak displacements of the devices over time, calibrating the voltage-displacement gain 

of the detection setup is therefore required. This is presented next. 

 

5.3.1. Motion detection calibration 

Before performing long-term stability tests, calibration experiments were carried out to 

determine the voltage-displacement gain of the phonon detection setup. Knowledge of 

the voltage-displacement gain allows for estimation of the in-plane displacement of the 

device from the recorded phonon voltage Vphonon. As the phonon coupling may vary 

across devices, depending on the condition of the contact between the sample die, PCB 

board and piezoelectric transducer, it is hence necessary to obtain the voltage-

displacement gain for each DUT. In the calibration experiments, the mounted sample 

device is characterized simultaneously by phonon detection and stroboscopic SEM to 

derive its frequency response. Details of the technique were presented in Chapter 4. 

 

    
Fig. 5.6.  (a) Non-linear frequency response of Device R01 obtained by phonon detection 

(Vphonon) and by stroboscopic SEM (displacement) at 28.6 
o
C and ~2 x 10

-2
 Pa. The resonator 

was actuated at with VB = 15.0 V and vd = 60 mV. (b) Voltage-displacement relation of the 

phonon detector obtained using six points from both curves in (a). The gradient of the best fit 

equation (by linear line regression) gives the voltage-displacement gain of the detector for this 

particular device. 
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To characterize the device, the frequency of the drive voltage vd is swept upwards and 

the resonator motion is imaged at several frequency steps. The displacement 

measurements are then extracted from the SEM micrographs to obtain the final 

frequency response curve. Fig. 5.6(a) shows the frequency response curves obtained by 

both phonon detection and stroboscopic SEM when Device R01 was actuated with VB 

= 15.0 V and vd = 60 mV (non-linear mode). The resonator was actuated to non-linear 

displacements as the larger motion amplitudes provide a wider range of values for 

mapping the voltage-to-displacement. Even at large displacement amplitudes, the 

linear relationship between voltage and displacement is maintained as shown in Fig. 

5(b). The gain of the detector is determined from the gradient of the curve in Fig. 5(b) 

to be 0.0780 mV nm
-1

. This corresponds to a phonon coupling factor κ of 1.15 × 10
-5

 

(calculated using Equation (3.27)) with G = 1453. This value is significantly lower 

than the coupling factors achieved in Chapter 3, but it is not unexpected as the addition 

of the PCB board in between the sample and the transducer introduces two addition 

interfaces between die and PCB and between PCB and transducer. These two 

interfaces are likely to contribute some transmission loss as the coupling at the 

interfaces is not perfect. 

 

Once the voltage-displacement gain for each device is known, the physical in-plane 

displacements can then be calculated from the recorded phonon voltages Vphonon. These 

calculated displacements can be used to monitor device stability over time. In the next 

section, the measured long-term stability parameters for the resonators are presented 

using one device as an example. The same parameters were monitored for all the 

sample devices in this study. 
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5.3.2. Measured stability parameters 

The long-term stability of the clamped-clamped beam resonators was examined by 

monitoring several sample devices of the same design (with L = 400 μm and w = 6 μm). 

Each resonator was actuated and characterized every 30 minutes over a period of 500 

hours using the automated phonon detection test setup described earlier. From the 

recorded frequency response curves obtained over the actuation period, three key 

resonator parameters were extracted: the resonance frequency f0, Q-factor and peak in-

plane displacement (calculated using the voltage-displacement gain). The variation of 

these three parameters over time can be used to assess the long-term performance of 

the devices. 

 

Figure 5.7(a) shows the recorded f0 of Device R01 over the actuation period. The large 

local fluctuations in the f0 are indicative that there is some form of external disturbance 

acting on the device and hence the frequency shift is not the true drift resultant from 

long-term actuation. An inspection of the recorded surface temperatures of the device 

over the actuation period (see Fig. 5.7(b)) reveals significant fluctuations of about 

±1.8 °C over the 500 hours. Having established that the device TCf is –73.87 ppm °C
-1

 

(see Section 5.2.1), the effects of temperature on frequency shift can hence be 

decomposed. This is achieved by using the recorded temperature data to derive the 

temperature compensated resonance frequency fC, 

         nfTCTnTnfnf faveC 00        (5.11) 

where f0(n) and T(n) are the measured resonance frequency and temperature at 

measurement point n and Tave is the average temperature over the actuation period. 
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Fig. 5.7.  (a) Recorded f0 of Device R01 over the 500-hour actuation period. The resonance 

frequency of the device has a substantial dependence on temperature, resulting in large 

fluctuations in the measured f0. (b) Measured surface temperature of Device R01. This data 

was used to decompose the effects of temperature variations on f0. The average surface 

temperature over the actuation period was ~27.9 ±1.8 °C. (c) Plot of temperature compensated 

f0 after temperature effects have been decomposed. The frequency drift ∂f0/∂t of Device R01, 

obtained using linear line regression, is –4.512 Hz day
-1

. 
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The final temperature compensated f0 readings for Device R01 are shown in Fig. 5.7(c). 

The average surface temperature over the actuation period was ~27.7 ±1.8 °C. From 

the temperature compensated frequency plot (Fig. 5.7(c)), the frequency drift ∂f0/∂t of 

Device R01 is determined using linear line regression to be –4.512 Hz day
-1

 over the 

500-hour actuation period. This frequency drift value is the first of the three 

parameters which can be used for assessing resonator long-term stability. 

 

The other two parameters monitored over the actuation period were the Q-factor and 

peak in-plane displacement of the resonator. Fig. 5.8 shows the Q-factor variation and 

displacement of Device R01 throughout the actuation period. The displacements are 

calculated from the recorded phonon voltages using the voltage-displacement gain of 

0.0780 mV nm
-1

 (determined using the method detailed in Section 5.3.1). 

 

 
Fig. 5.8.  Q-factor variation and in-plane displacement of Device R01 throughout the actuation 

period. The displacements were derived from the recorded phonon voltages at the resonance 

frequency f0 using the voltage-displacement gain of 0.0780 mV nm
-1

. 
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A total of fifteen sample devices (designed with L = 400 μm and w = 6 μm) were tested 

in these long-term stability experiments. The data obtained will be presented in the 

following section along with discussions on the observed trends in the variation of the 

three stability parameters. 

 

5.4. Long-term frequency stability measurements for 

clamped-clamped beam resonators 

The measured TCf and voltage-displacement gain of the fifteen resonators used in these 

long-term stability experiments, along with their frequency characteristics, are listed in 

Table 5.2. The fifteen devices were located on four separate dies. Despite being of the 

same design and fabricated in the same process, the fifteen devices display some 

disparity in their temperature dependencies, as is evident from their varied TCf values. 

However, this disparity is localized to the dies since samples on the same die have 

roughly the same TCf and the variation occurs across the different dies. 

 

The fifteen devices were monitored, for a period of 500 hours, in four separate batches 

with devices on the same die being tested together. They were actuated in their linear 

mode (VP = 6.0 V and vd = 30 mV) at ~28°C and ~10
-2

 Pa. The stability performance 

of the devices, in terms of their resonance frequency f0, Q-factor and peak 

displacement amplitude, during the 500-hour actuation period is discussed below. 
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Table 5.2.  Summary of the fifteen devices used in these long-term stability experiments. The 

voltage-displacement gain was derived as described in Section 5.3.1. 

Die 

index 
Label f0 (kHz) Q-factor 

TCf 

(ppm °C
-1

) 

Voltage-

displacement 

gain (mV nm
-1

) 

Die 1 

R01 171.588 10,200 –73.87 0.0780 

R02 172.752 16,400 –76.82 0.0455 

R03 172.749 18,100 –80.76 0.0972 

R04 173.423 16,100 –65.95 0.0317 

Die 2 

R05 172.299 14,100 +49.16 0.0977 

R06 173.368 19,100 +46.77 0.0820 

R07 173.421 15,200 +51.23 0.0924 

Die 3 

R08 171.036 11,400 –176.38 0.0574 

R09 171.856 20,300 –221.16 0.0851 

R10 171.234 15,800 –158.24 0.0739 

R11 170.845 16,100 –166.51 0.0772 

Die 4 

R12 170.578 17,300 –101.04 0.0685 

R13 170.868 18,300 –117.42 0.0783 

R14 170.741 18,400 –93.57 0.0428 

R15 171.803 17,800 –105.97 0.0780 

 

5.4.1. Measured frequency stability 

The frequency stability of the twelve devices, obtained from their temperature 

compensated f0 plots, is summarized in Table 5.3. Overall, the magnitude of the 

frequency drift displayed by the clamped-clamped beam devices is substantially higher 

than that of square extensional plate resonators and cantilever resonators [71]. One of 

the likely causes of this large frequency drift is the clamped-clamped design which 

tends to induce a fair amount of axial stress on the vibrating beam. The magnitude of 

this axial stress can be estimated from the TCf of the device, as discussed previously in 

Section 5.2.2. From the TCf measurements and applying Equation (5.9), σT for each of 

the samples at 28 °C (301 K), which is the average ambient temperature during testing, 

are calculated and summarized in Table 5.3. 
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Table 5.3.  Measured frequency drift ∂f0/∂t of the twelve devices compared with the derived 

axial stress σT (calculated using Equation (5.9)) at 28 °C (301 K) on the clamped-clamped 

beam. The devices are arranged in order of axial stress with positive values denoting tensile 

stress and negative values denoting compressive stress. 
1
The frequency drift of Devices R04 

and R13 could not be determined as they displayed large f0 swings during the actuation period 

(see Fig. 5.10). Data recording for these two devices was terminated at 120 hours. 

Die 

index 
Label f0 (kHz) 

σT at 28 °C 

(MPa) t

f



 0  (Hz day
-1

) 

Die 2 

R07 173.421 6.564 –6.852 

R05 172.299 6.412 –1.138 

R06 173.368 6.235 –3.874 

Die 1 

 1
R04 173.423 –2.107 - 

R01 171.588 –2.693 –4.812 

R02 172.752 –2.911 –0.9264 

R03 172.749 –3.203 +1.875 

Die 4 

R14 170.741 –4.151 +4.932 

R12 170.578 –4.704 +6.231 

R15 171.803 –5.069 +11.15 
 1

R13 170.868 –5.916 - 

Die 3 

R10 171.234 –8.937 +10.53 

R11 170.845 –9.549 +11.89 

R08 171.036 –10.28 +12.66 

R09 171.856 –13.59 +23.48 

 

The calculated tensile and compressive stress for the fifteen devices is in fairly good 

agreement with results obtained by Miller et al. [106]. In their study of the stress 

characteristics of the SOIMUMPs process, the average measured axial stress 

magnitudes on 25 μm-thick test structures was less than 20 MPa. The data in Table 5.3 

suggests that, for these clamped-clamped beam devices, resonators whose beam 

structures are subjected to larger magnitudes of compressive stress, as in the case of 

Device R08, R09 and R11, tend to display larger positive frequency drift over time and 

hence have poorer frequency stability. On the other hand, devices which experience 

tensile axial stress, as in the case of Device R05, R06 and R07, tend to display negative 

frequency drift. 
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Fig. 5.9.  Graphical representation of f0 drift vs beam axial stress for thirteen of the fifteen test 

devices (Device R04 and Device R13 were omitted). The slope of the linear-fit line suggests 

that an f0 drift of 1.233 Hz day
-1

 is induced for every 1 MPa of stress acting on the clamped-

clamped beam. 

 

A graphical representation of the data is shown in Fig. 5.9. Device R04 and Device 

R13 are omitted from the plot as their frequency stabilities could not be determined 

since they displayed large f0 swings during actuation (see Fig 5.10). From the slope of 

the linear-fit line (obtained using the method of least squares) through the measured 

data points, it can deduced that an f0 drift of 1.233 Hz day
-1

 is induced for every 1 MPa 

of stress acting on the clamped-clamped beams in the devices. 

 

However, the fluctuations in the measured frequency stabilities of Device R01, R02 

and R03 (in Table 5.3), whose compressive stress magnitudes are similar but have very 

different frequency drifts, also indicate the likely presence of other mechanisms which 

influence the frequency stability of the resonators. One of the possible mechanisms 

could be the adsorption/desorption of water onto/from the resonator beam, which alters 

the mass M of the vibrating structure and therefore its resonance frequency (refer to 
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Equation (5.1)). Although the devices were tested at low pressure in a vacuum 

chamber, the chamber cannot be considered as an ultra-clean environment and the 

presence of minute amounts of water vapor is a distinct possibility. This is a fairly 

reasonable explanation since all three devices were tested together under the same 

ambient conditions and the presence of water vapor affected all three samples. 

Experiments by Henry et al. showed that water adsorption can significantly decrease 

the resonance frequency of silicon paddle resonators over time, even when operating in 

a vacuum environment [107]. Pierron et al. have also observed a decrease in the 

resonance frequency of their resonant test structures when operating at higher relative 

humidity (R.H.) [108]. Hence, the long-term frequency stability of these clamped-

clamped beam devices appear to be dependent on the magnitude of axial stress acting 

on the beam structure, although it is highly likely that axial stress is not the only factor. 

 

Another interesting observation is the deviant frequency behaviour of two of the 

resonator samples. Fig. 5.10 shows the temperature compensated f0 variation of Device 

R13 during actuation (f0 drift in the first 120 hours is shown and testing was then 

terminated since device f0 stability could not be determined). It can be observed that 

the resonator displayed large frequency swings which appear to be somewhat periodic 

with a peak-to-peak amplitude of ~100 Hz (the frequency drift hence cannot be 

determined). A similar phenomenon was observed for Device R04 with less severe 

swings of ~25 Hz. A check on the recorded characterization curves of both devices 

over the actuation period showed no signs of the devices displaying non-linear 

behaviour at the time of the frequency swings. There was also no appreciable 

degradation in Q-factor of both devices over the actuation period. 
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Fig. 5.10.  Temperature compensated f0 variation of Device R13 over the first 120 hours of the 

actuation period. The device displayed periodic frequency swings of ~100 Hz throughout the 

actuation period. Compare with Fig. 5.7(c) which shows the compensated f0 variation for a 

typical device. 

 

It is unlikely that these frequency swings were caused by environmental factors (e.g. 

ambient temperature and pressure) as each of the two devices were tested with three 

others, which did not show frequency swings, in the same vacuum chamber. 

Considering that the frequency swings in Device R04 and Device R13 were present 

from the beginning of the experiment, these swings could be a reflection of the poorer 

initial mechanical state of these two devices in particular, as compared to the other 

samples, rather than a sign of actuation fatigue. 

 

Overall, this form of long-term device testing is able to provide information on device 

frequency drift and identify unusual patterns in frequency behaviour, both of which are 

important for wafer-level screening of devices during manufacturing. For example, the 

detection of frequency swings in Device R04 and Device R13 during testing would 

single them out as unsuitable for frequency reference applications which typically have 

very stringent requirements on frequency stability. From the recorded frequency drift 

data against beam axial stress, it is also clear that some form of stress-relief structure 
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would improve the long-term frequency stability of these clamped-clamped beam 

resonators. 

 

5.4.2. Q-factor and peak displacement variation 

To analyze the Q-factor and displacement fluctuation over time, the standard deviation 

of the recorded data points for each device was used. Table 5.4 shows the mean and 

standard deviation of the Q-factor and peak in-plane displacement of the fifteen 

devices over the actuation period. The coefficient of variation CV is given by, 

%100


s
CV           (5.12) 

where s is the standard deviation and μ is the mean. The CV values in Table 5.4 

indicate that the Q-factor of ten of the devices was relatively stable over the actuation 

period, deviating by less than 12% from their mean values over 500 hours. This is 

indicative that high Q-factor can be sustained as long as the device operating ambient 

is maintained at low pressure (10
-3

 – 10
-2

 Pa). 

 

The peak displacements of these resonators were also consistent throughout, varying 

by less than 10% from the mean values. Data recording for Device R07 and R13 was 

stopped after 120 hours since the f0 swings exhibited by both samples may already be 

an indication of poorer device condition. The Q-factor and displacement trends for 

Device R07, R10 and R14 are somewhat more interesting. 
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Table 5.4.  Mean and standard deviation of the Q-factor and peak in-plane displacement of the 

fifteen devices over the 500-hour actuation period. The coefficient of variation CV is 

calculated using Equation (5.12). 
1
Data recording for Device 04 and Device 13 was terminated 

at 120 hours. 
2
Shows data recorded before bifurcation point. 

Die 

index 
Label 

Q-factor In-plane displacement 

Mean Std dev CV (%) 
Mean 

(nm) 

Std dev 

(nm) 
CV (%) 

Die 1 

R01 10,524 669 6.36 153 4.72 3.08 

R02 15,212 1,553 10.21 166 13.22 7.98 

R03 17,623 1,965 11.15 156 7.13 4.56 
 1

R04 16,525 1,315 7.96 126 12.18 9.67 

Die 2 

R05 13,862 927 6.69 163 6.75 4.15 

R06 18,214 1,165 6.40 172 8.22 4.79 
2
R07 15,233 1,088 7.14 142 4.25 2.99 

Die 3 

R08 11,675 1,098 9.40 163 13.58 8.34 

R09 18,960 2,102 11.09 161 8.17 5.08 
2
R10 14,674 1,207 8.23 149 6.11 4.10 

R11 15,392 1,156 7.51 162 8.24 5.09 

Die 4 

R12 16,431 1,877 11.43 155 10.24 6.60 
1
R13 17,655 1,401 7.94 151 12.99 8.60 

2
R14 17,849 1,750 9.80 155 14.66 9.46 

R15 18,810 1,108 5.89 151 12.06 7.98 

 

While the Q-factor of Device R07, R10 and R14 was fairly stable initially (as noted in 

Table 5.4), a notable drop in this parameter was observed at one point during their 

operating cycles. The Q-factor variation for Device R014 is shown in Fig. 5.11. At t = 

406 hr, the Q-factor stability of the device changes abruptly. The average Q-factor 

before (t < 406 hr) and after (t > 406 hr) the bifurcation point differs by about 3,400 

points, which is higher than the standard deviations of the measured data points in both 

regions. This suggests that the drop in Q-factor is indeed resultant from a change in the 

performance of the sample and not from expected fluctuations or measurement 

uncertainties. Device R07 and R10 displayed similar drops in their Q-factors with 

bifurcation points at t = 387 hr and t = 321 hr respectively. 
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Fig. 5.11.  Q-factor variation and phonon voltage Vphonon of Device R14 over 500 hours. Note 

the drop in Q-factor at the bifurcation point t = 406 hr. The concurrent observation of an 

increase in Vphonon prompted a recalibration of the voltage-displacement gain. It was found that 

the voltage-displacement gain this device increased from 0.0428 mV nm
-1

 to 0.0612 mV nm
-1

 

(~43%) after t = 406 hr. 

 

A survey of the average peak phonon voltages Vphonon before and after the bifurcation 

point also reveals some remarkable information. All three devices displayed a marked 

increase in their average Vphonon after the Q-factor drop (see Fig. 5.11). One possible 

implication of this occurrence is that the phonon transmission properties of the anchor 

structures in each device have been enhanced. This was confirmed by recalibrating the 

voltage-displacement gains of the three samples. 

 

Table 5.5.  Q-factor, in-plane displacement and voltage-displacement gain of Device R07, R10 

and R14 before and after the bifurcation points for each device. 

Label 

Before bifurcation point After bifurcation point 

Voltage-

disp. gain 

(mV nm
-1

) 

Ave. Q 
Ave. disp. 

(nm) 

Voltage-

disp. gain 

(mV nm
-1

) 

Ave. Q 
Ave. disp. 

(nm) 

R07 0.0924 15,233 142 0.125 12,490 114 

R10 0.0739 14,674 149 0.104 11,592 121 

R14 0.0428 17,849 155 0.0612 14,087 125 
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The Q-factor variation, in-plane displacement and the recalibrated gains for the three 

devices are summarized in Table 5.5. The voltage-displacement gain of each device 

was determined after the Q-factor drop and it was found that the gain for each 

resonator increased by at least 35%. In effect, the anchors for each of the three devices 

were dissipating more energy than before which in turn gave rise to a drop in Q-factor 

of ~20%. The twin observations of Q-factor drop and corresponding increase in 

phonon transmission at the anchors is consistent with other studies [8],[86]–[87] which 

suggest that energy losses at the anchors give rise to Q-factor degradation. 

 

The average in-plane displacements (determined using the new voltage-displacement 

gains) of all three devices also showed a similar decrease after the Q-factor drop (see 

Table 5.5) and showed no signs of increasing or decreasing for the remaining time 

period. This is to be expected since the electrostatic energy supplied to the samples 

was the same throughout the actuation period (i.e. the drive voltages remain unchanged) 

and with an increase in the phonon dissipation at the anchors, there is less energy in the 

vibrating system to bend the beam structures (i.e. displacement amplitude is reduced). 

It is worth noting that the reduction in in-plane displacement is less than the rise in 

voltage-displacement gain and hence the overall effect is still an increase in Vphonon. 

Therefore, by monitoring the magnitude of Vphonon alone, it is possible to track changes 

in the phonon dissipation properties of the resonator anchors over time. 

 

Since the change in phonon dissipation of the three devices occurred after several 

hundred hours of continuous actuation, it may actually represent a form of fatigue 

response, i.e. phonon dissipation at the anchor structures of clamped-clamped beam 
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resonators tends to increase over long-term operation. The root cause of this increase 

in energy dissipation is difficult to pin-point. It is fairly well-known that surface crack 

initiation and propagation resulting in fracture is a possible failure mechanism for 

silicon structures which experience long-term cyclic stress [74]–[77]. However, no 

cracks were observed at the anchors or anywhere on the surface of the beam structures 

of the three samples under high resolution SEM imaging. Alternatively, the cyclic 

stresses during actuation of the samples may have resulted in sub-surface crack 

formation. Such a fatigue mechanism has been cited as the cause of mechanical failure 

(i.e. fracture) in LIGA nickel (Ni) [109] thin films used as MEMS structural layers. 

However, it has been argued that subcritical cracking (or surface wear) does not occur 

in silicon and that crack growth is initiated in the native oxide (SiO2) instead (reaction 

layer fatigue) [74]–[75],[110]. Therefore, the possibility of sub-surface crack initiation 

occurring within the silicon is remote. 

 

A more likely scenario is the presence of a volume defect at or near the anchor 

structures of the three devices that has aggravated during long-term actuation. The 

presence and variability of process-induced defects along the surface and within the 

volume of silicon structural thin films for MEMS devices is well-known and has often 

been used to explain the disparity in the material’s tensile strength across samples of 

nominally similar dimensions [106],[111]–[112]. Hence, it is not unreasonable to 

expect the occurrence of these volume defects within the clamped-clamped beams. 

Defect growth near the anchors enhances the stress concentration (higher stress fields) 

in the region [113] which in turn raises its phonon dissipation properties. This would 
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therefore explain the observation of increased phonon dissipation at the anchors of the 

test structures during long-term operation. 

 

The collection of data obtained by the test system allows analysis of the long-term 

performance of the devices in three key aspects: frequency stability, Q-factor stability 

and peak displacement. Aside from measuring the actual frequency drift of the devices 

the test system is also able to detect unusual patterns in the frequency stability of the 

resonators. The consistency of the Q-factor and the actuation amplitude (peak 

displacement) can also be derived from the data collected. All these information are 

important for filtering out devices which do not meet specifications for application in a 

manufacturing scenario. In addition, the change in the energy dissipation properties of 

the resonators is a mechanical characteristic which cannot be detected using state-of-

the-art electrical testing techniques. This highlights the unique advantage that the 

phonon detection technique possesses for long-term testing of resonator devices. By 

monitoring the phonon voltage it is possible to identify various instances in the 

operating cycle where the mechanical condition of the anchor structures has changed. 

This in turn may be an indication of device fatigue. 

 

5.5. Conclusions 

An automated phonon detection test setup for monitoring the long-term stability of 

micromechanical resonators has been presented in this chapter. The key advantages of 

phonon detection are its ability to detect the motion of multiple devices with minimal 

use of electronics and the capability of sensing mechanical changes in the samples over 

long-term operation. The test setup was used to investigate the long-term stability of 
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fifteen identical comb actuated clamped-clamped beam resonators fabricated using the 

SOIMUMPS process. It was determined that one of the factors affecting the long-term 

frequency stability of these clamped-clamped beam devices is the magnitude of axial 

stress acting on the beam structure. Larger magnitudes of axial stress tend to result in 

higher frequency shift and poorer frequency stability in the resonators. From the 

measurements, it was established that an f0 drift of 1.233 Hz day
-1

 was induced in these 

samples for every 1 MPa of axial stress on the beam structure. The Q-factors of most 

of the devices were relatively stable over the actuation period, deviating by less than 

12% from the mean values over 500 hours. The peak displacements of the resonators 

were also fairly consistent throughout, varying by less than 10% from the mean values. 

Of the fifteen devices, three resonators showed possible signs of fatigue behaviour 

when the phonon dissipation properties of their anchor structures were enhanced after 

several hundred hours of operation. The enhanced dissipation gave rise to a 35% – 

41% increase in the magnitude of the phonon voltage generated per nm of resonator 

displacement and also to a ~20% drop in the Q-factors of the three resonators. This 

enhanced dissipation may be attributed to the growth of existing volume defects within 

the silicon beam structures. The energy dissipation is a mechanical characteristic 

which cannot be detected using state-of-the-art electrical testing methods, highlighting 

the unique advantage the phonon detection technique possesses for long-term testing of 

resonator devices. By monitoring the phonon voltage it is possible to identify various 

instances in the operating cycle where the mechanical condition of the structures has 

changed. 

 



Chapter 6     Conclusion 

 

 

 

133 

CHAPTER 6 

CONCLUSION 

 

 

 

 

 

 

6.1. Conclusion 

An acoustic phonon detection technique that can be applied for motion characterization 

of dynamic MEMS devices has been developed. Motion detection is achieved by 

utilizing a piezoelectric transducer to sense the mechanical waves or phonons 

generated during the surface interaction or energy dissipation which occurs during 

device actuation. On top of being able to provide similar information on the short-term 

performance parameters of MEMS devices as more established electrical 

characterization techniques, phonon detection also offers additional insight into the 

mechanical state of the devices. This particular attribute is unique to the technique and 

it is a capability which will be especially useful for assessing the long-term 

performance of MEMS devices. The reason for this is because the wear and tear that 

occurs during long-term device actuation invariably alters the mechanical state, a 
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property that cannot be assessed by imaging methods or electrical measurements. Both 

the hardware and software components for an automated phonon detection test system 

for MEMS devices have been established. With regards to sensitivity, the current setup 

is able to sense the vibration of state-of-the-art clamped-clamped beam resonators with 

less than 100 nm peak displacement at resonance. 

 

To facilitate motion calibration for subsequent experiments, a high-resolution 

stroboscopic SEM technique for directly measuring the in-plane physical displacement 

of dynamic MEMS devices with nanoscale accuracy has also been introduced. 

Stroboscopy was achieved by time-gated sampling of the SEM secondary electron (SE) 

signal. By varying the phase delay of the gate signal, the instantaneous displacement of 

the device at various phases of its motion can be captured. The technique can further 

be applied to obtain a phase-resolved image of the motion of the device-under-test 

(DUT) during actuation by ramping the phase delay of the gate signal while imaging. 

This capability is particularly handy should one require a graphic visualization of the 

DUT motion, something which cannot be provided by optical imaging techniques that 

typically utilize blur synthesis for motion measurement. The current hardware 

implementation can achieve a displacement resolution of about 20 nm, limited mainly 

by the electron probe size, for motion frequencies up to 3.58 MHz. Further 

optimization can potentially allow the system to provide sub-10 nm imaging resolution. 

 

The phonon detection test setup was applied to study the long-term performance of 

micromechanical comb actuated clamped-clamped beam resonators. Resonator devices 

were selected as the subject of study due to their potential as a commercially viable 
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product. From the test results on fifteen identical resonators, obtained over 500 hours 

of actuation for each device, it was determined that one of the factors affecting the 

long-term frequency stability of the clamped-clamped beam devices is the magnitude 

of axial stress acting on the beam structure. Larger magnitudes of axial stress tend to 

result in higher frequency shift and poorer frequency stability in the resonators. From 

the measurements, it was established that an f0 drift of 1.233 Hz day
-1

 was induced in 

the samples for every 1 MPa of axial stress on the beam structure. The Q-factor and 

peak displacement of most of the samples remained fairly consistent throughout 

varying by less than 12% and 10% from their mean values respectively. Of the fifteen 

devices, three resonators showed possible signs of fatigue behaviour when the phonon 

dissipation properties of their anchor structures were enhanced after several hundred 

hours of operation. The enhanced dissipation gave rise to a 35% – 41% increase in the 

magnitude of the phonon voltage generated per nm of resonator displacement and also 

to a ~20% drop in the Q-factors of the three resonators. Previous reported studies on 

the long-term stability of micromechanical resonators, which were carried out using 

state-of-the-art electrical measurement methods, have not been able to identify any 

such signs of fatigue in devices. The energy dissipation is a mechanical characteristic 

which cannot be detected using electrical testing, highlighting the unique advantage 

the phonon detection technique possesses for long-term testing of resonator devices. 

By monitoring the phonon voltage it is possible to identify various instances in the 

operating cycle where the mechanical condition of the structures has changed.  
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6.2. Recommendations for future work 

Future work on phonon detection can proceed on two fronts. The first is to extend the 

long-term testing capability of the technique to other MEMS structures, most notably 

contact-mode devices such as switches or micromirrors. The current results on 

resonator testing have essentially demonstrated the feasibility of phonon detection in 

identifying variations in the mechanical state (more specifically changes in the anchor 

dissipation) of the samples over time. Contact-mode devices are even more likely to 

experience wear and tear since their operation typically involves surface-to-surface 

interactions and hence it appears fitting that phonon detection be applied in the testing 

of these devices as well. Analysis of the phonon signal generated can potentially 

provide information on the intrinsic properties of the test structure, such as its natural 

resonance frequency, and also on the tribological properties of the contact surfaces. 

Once more, these are parameters which cannot be measured by electrical screen tests 

which are currently widely used for MEMS device testing. 

 

The second is to further the long-term tests which have been presented in this work. 

The data obtained from the clamped-clamped beam resonators has revealed a possible 

form of fatigue behaviour which can eventually give rise to a failure mode. Some form 

of accelerated testing procedure would be necessary to induce the occurrence of the 

failure mode within a reasonable time period. Developing such a procedure would be a 

worthwhile endeavor as it can serve as a stepping stone to establishing a kind of ‘burn-

in’ test for resonator manufacturers to screen out infant mortality failures. Accelerated 

aging techniques that are commonly applied for materials testing involve the 

application of elevated temperature, humidity and mechanical stress during testing. 
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However, selection of an appropriate method for the resonator structures should take 

into consideration their observed fatigue behaviour (i.e. enhanced anchor dissipation) 

and possible failure mechanism. 
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