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SUMMARY 

 

Crash severity is a concern in traffic safety. To propose efficient safety strategies to 

reduce accident severity, the relationship between injury severity and risk factors 

should be insightfully established. The purpose of this study is to identify the effects of 

factors of time, road features, and vehicle and driver characteristics on crash injury.  

This study on the severity of accidents at signalized intersections is investigated 

because the numbers of these crashes are the highest of total accidents and result in a 

variety of injured drivers. 

 

To establish the relationship between injury severity and the risk factors and to solve 

multilevel data structures in the dataset, hierarchical binomial logit model is selected 

for the study. The reported accident data in Singapore from year 2003 to 2007 are used 

to calibrate the model. From twenty-two pre-selected variables, the significant factors 

in both fixed and random part are identified by using 95% Bayesian Credible Interval 

(BCI). In addition, Deviance Information Criterion (DIC) is also employed to find the 

suitable model. 

 

The result indicates that ten variables are identified as significant factors. Crashes at 

night, with high speed limit or at intersection with presence of red light camera vitally 

increase the severity while a variable, wet road surface, reduces the injury. Vehicle 

movement also significantly affects the crash severity. This study also finds that 

Honda manufacture is safer than other vehicle makes. With driver characteristics, 

driver gender and age are also associated with crash severity, while involvement of 

offending party positively affects crash severity. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 RESEARCH BACKGROUND 

 

Road systems both satisfy transportation demand and provide transportation supply 

efficiently. Road safety is one of the most important concerns of transportation supply. 

Therefore, reducing crash frequency and severity not only ameliorates safety but also 

saves a lot of money as well as improves transportation. To propose efficient safety 

strategies, several studies have been trying to fully identify how accident severity 

varies. In Singapore, although crash severity decreases, based on some studies’ 

findings such as (Quddus et al. (2002) and Rifaat and Chin (2005), accident rate and 

severity are still high in recent years. For instance, accident data show that the numbers 

of drivers are 2661, 2923, 2255, 2516, and 2933 from year 2003 to 2007, respectively. 

Thus, clearly understanding the relationship between the injury severity and risk 

factors is necessary for developing safety countermeasures. 

 

Statistical models have been developed for road safety and applied for predictions of 

accident severity in specific situations. Firstly, several researchers have improved 

crash severity prediction models in order to take into account the severity levels. For 

example, some studies have applied some generalized linear models (GLMs) to 

classify nominal categories. Binary probit or logit models have been employed when 

the severity levels are classified as two levels: injury and non-injury. In addition, 

multinomial probit and logit have been used in order to explore the important factors 

affecting severity, categorized as multinomial states. On the other hand, one of the 

most common models used for categorizing the severity levels is ordered probit or 
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logit model. The advantage of this model is to take into account the ordered nature of 

severity levels from the lowest severity to the highest severity such as no injury, 

possible injury, evident injury, disabling injury, and fatal. Secondly, other studies have 

examined and focused on specific effects, such as driver age and gender, vehicle type, 

mass, and size, collision type and others, on degree of severity. For instance, (Islam 

and Mannering (2006); Lonczak et al. (2007); Ulfarsson and Mannering (2004) 

separated driver gender and driver age to evaluate how difference between male and 

female affects severity and examine how different age groups influence fault and crash 

injury. In addition, (Gray et al. (2008) and Yannis et al. (2005) concentrated on young 

(or old) drivers to find countermeasures that reduce the severity of specific groups. On 

the other hand, vehicle type, mass, and size have been studied by several researchers 

(Chang and Mannering 1999; Evans and Frick 1992; Evans and Frick 1993; Fredette et 

al. 2008; Islam and Mannering 2006; Khorashadi et al. 2005; Kim et al. 2007b; 

Langley et al. 2000; Savolainen and Mannering 2007; Ulfarsson and Mannering 2004) 

because they are directly associated with the increase of severity. Moreover, a series of 

studies (Kim et al. 2007a; Kockelman and Kweon 2002; Pai ; Pai and Saleh 2008a; Pai 

and Saleh 2008b; Preusser et al. 1995; Wang and Abdel-Aty 2008) have centered on 

evaluating the relationship between severity and crash types. Last, but not least, 

previous studies (Abdel-Aty 2003; Abdel-Aty and Keller 2005; Huang et al. 2008; 

Kim et al. 2007a; Milton et al. 2008; Obeng 2007; Pai and Saleh 2008a) have also 

investigated severity of accident at specific locations. All of the studies mentioned 

above provided us with the knowledge to both understand various severities and 

suggest efficient countermeasures so that accident severity is decreased. 
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Selection of suitable statistical models is dependent on some assumptions made in 

these models. It also depends on how accident data confirm these assumptions. For 

example, generalized linear regression models (GLMs) that are used for predicting 

severity assume that all samples in the dataset are independent of one another. 

However, when this assumption is violated, the estimation of parameters and standard 

errors is incorrect. As a result, conclusions that the factors are significant are not 

correct. In fact, (Jones and Jørgensen (2003)  clearly explored the existence of 

dependence between samples such as samples of vehicle. Casualties within the same 

vehicle would have the same probability of survival. However, in reality, some 

casualties are killed and others are survived even though all of them travel in the same 

vehicle. Therefore, the assumption of independence may not hold true. The model 

without overcoming this problem, especially when there is clearly an existence of 

dependence between samples, would lead to inaccurate estimates of parameters and 

standard errors. Although some previous researches (Huang et al. 2008; Jones and 

Jørgensen 2003; Kim et al. 2007a) developed approaches to solve this problem which 

is also called multilevel data, these models are not fully developed; thus, resulting in 

the fact that some conclusions are incorrect. Therefore, this study continues to improve 

the hierarchical models with the purpose of better and more clearly taking into account 

the impacts of risk factors on crash severity at signalized intersection in Singapore. 

 

1.2 OBJECTIVE AND SCOPE OF THIS STUDY 

 

The main purpose of this study is to examine how accident severity is affected by risk 

factors. The severity of road accidents at signalized intersections is chosen in this 

analysis. This is because the numbers of collisions at signalized intersections are the 
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highest (20% of total accidents) and the numbers of drivers and vehicles increase from 

2003 to 2007, based on accident data provided by Traffic Police in Singapore. 

 

In order to obtain this objective, the hierarchical logit model with random slope effects 

has been developed for analyzing occupant severity. Moreover, accident data are used 

to explore the relationship between the crash severity and several factors such as 

general factors, road features, and vehicle and casualty characteristics. The model 

calibration and validation are then estimated to prove the appropriateness of 

hierarchical logit model compared with another model. 

 

1.3 OUTLINE OF THE THESIS 

 

The organization of this thesis contains five chapters and is presented as follows. 

Chapter 1 provides the research background in which the limitations of statistical 

models are identified. The objective and scope of this study are also mentioned in this 

chapter. The outline demonstrates the organization of this thesis. 

Chapter 2 presents the literature reviews of the severity models in recent year. The 

problem of statistical models is also identified. 

Chapter 3 describes the formulation and assessment of the hierarchical logit model. 

Chapter 4 demonstrates the application of hierarchical logit model for crash severity at 

intersections. The parameter estimation, model calibration and validation, and 

explanation of significant covariates are also given in this chapter. 

Finally, conclusions of analyzing severity are discussed in Chapter 5. Besides, research 

contributions and recommendations are presented.  
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CHAPTER 2:  REVIEW OF CRASH SEVERITY MODELS 

 

2.1 INTRODUCTION 

 

Reducing accident severity is a target of traffic safety. Before proposing 

countermeasures to improve road safety, experts and engineers have to establish the 

relationships between risk factors and the crash severity or crash frequency. Therefore, 

a number of researchers have been interested in developing and improving statistical 

approaches in order to clearly and correctly explore how the response variables are 

dependent on the explanatory variables, such as road features, traffic factors, and 

vehicle and driver characteristics. In addition to using count models such as Poison and 

Negative binomial models to predict accident frequency, generalized linear regression 

models (GLMs) have been broadly employed for investigating crash severity. Since 

the injury severity variable is discrete, sporadic and nominal, at least three types of 

GLMs: binary logit/probit models, multinomial logit/probit model, and ordered 

logit/probit models are suitable for taking into account the severity level. Previous 

studies (such as Factor et al. 2008; Obeng 2007; Pai 2009 and Simoncic 2001) 

successfully used binary logit/probit models to overcome the severity levels, which are 

categorized as less and high injury, and find several risk factors that significantly 

influence the severity. On the other hand, when data contain the severity variables 

classified as more than two states and nominal categories, multinomial logit/probit 

models are employed so that estimates of parameters, standard errors, and 

significances are more accurate. Some researchers such as (De Lapparent (2006); Kim 

et al. (2007b); Savolainen and Mannering (2007); Shankar and Mannering (1996); 

Simoncic (2001); Ulfarsson and Mannering (2004) did some of these studies. 
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Moreover, a lot of accident data commonly contain crash severity that is ranked from 

the lowest severity to the highest severity. Consequently, several studies (Abdel-Aty 

2003; Kockelman and Kweon 2002; Lee and Abdel-Aty 2005; O'Donnell and Connor 

1996; Pai and Saleh 2008a; Pai and Saleh 2008b; Quddus et al. 2002; Rifaat and Chin 

2005; Zajac and Ivan 2003) employed ordered logit and probit models to explain and 

overcome the ordinary outcomes of the severity. 

 

This chapter presents a literature review of GLMs. In addition, mathematical 

formulations, general forms, assumptions, and limitations of GLMs such as binary, 

multinomial, and ordered logit/probit models are provided in this chapter. Based on the 

information, a potential problem is also identified. 

 

2.2 REVIEW OF STATISTICAL MODELS  

 

2.2.1 BINARY LOGIT AND PROBIT MODEL 

 

In the studies of accident severity, logit and probit models are appropriate to 

investigate the fact that crash severity is a binomial or multinomial outcome. Binary 

logit and probit models are employed when the response variable has two states such 

as injury or non-injury, hit-and-run or not-hit-and-run crash, or at-fault or not-at fault 

case. In these models which are applied for predicting the injury, the crash severity is a 

binomial distribution. So, the response variable Yi for the ith observation can take one 

of two values: Yi= 0 or 1, where Yi=1 presents the first state such as injury and Yi= 

presents the other state: non-injury. The probability of Yi is denoted by )1YPr( ii  . 

The logit transformation of the probability i of a crash being injured is given by 
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












i

i
i 1

log)(Logit  (2.1) 

 

Besides, the logit transformation is linked to the linear predictor, presented as follows 

 

ii X)(Logit   (2.2) 

 

 Thus, the logit models are obtained and given by 

 

i
i

i X
1

Log 










 (2.3) 

 

Based on Equation (2.3), the probability i of a crash being injured is solved by 

 

)Xexp(1

)Xexp(
)1YPr(

i

i
ii 


  (2.4) 

 

where, Xi is a vector of explanatory such as road features, traffic factors, and vehicle 

and driver characteristics which may have influences on crash severity. Besides,  is 

the coefficient regression vector of the independent variables, presenting how each 

independent variable affects the increase or decrease of injury.  

 

Binary probit models are similar to binary logit models. The difference between them 

is the error distribution. In the binary logit models, the errors are assumed to have a 
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standard logistic distribution with mean 0 and variance
3


, while the errors in binary 

probit models have an assumption that the error distribution has mean 0 and variance 

1. Therefore, the establishment of the probit models is the same as that of the logit 

model and described as follows. 

 

The probit transformation of the probability i  is given by inverse of standard 

cumulative normal distribution function and written as 

 

)()(obitPr i
1

i    (2.5) 

 

where (.)  is the cumulative distribution function of standard normal distribution. 

In addition, the probit transformation is linked to the linear predictor, described as  

 

ii X)(obitPr   (2.6) 

 

Consequently, the probit models are obtained and given by 

 

ii
1 X)(   (2.7) 

 

Based on Equation (2.7), the probability i of a crash being injured is solved by 

 

)X()1YPr( iii   (2.8) 

 

where the explanations of , Xi and (.)  are mentioned above. 
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Both binary logit and probit model have been broadly used in traffic safety. For 

instance, (Simoncic (2001), who applied binary logit model to overcome injury 

severity of collisions between a pedestrian, bicycle or motorcycle and a car, found that 

some variables, including no use of protective devices, older age, intoxication of 

pedestrians, cyclists, motorcyclists or car divers, and accidents at night, on motorway 

or at weekend  significantly influence the increase of participants’ injury. Moreover, 

Haque et al. (2009)  identified time factors, road features (such as wet surface, lane 

position, and speed limit) and driver-vehicle characteristics (such as driver age and 

license, and vehicle capacity and registration) that contribute to the fault of 

motorcyclist in crashes at specific locations by applying binary logit model. 

Furthermore, (Tay et al. (2008) employed a logit model to analyze hit-and-run 

accidents on which the roadway, environmental, vehicle, crash, and driver 

characteristics have influences. 

 

Although binary logit and probit models have little difference on the error distribution, 

binary logit models are always chosen in previous studies. This is because the 

probability density function (pdf) and cumulative distribution function (cdf) of logit 

models are simpler than those of probit models. Especially, it is easy for the logit 

model to interpret log-odds ratio which probit models cannot estimate. Due to the 

advantages of logit models, the following sections focus on demonstrating multinomial 

logit and ordered logit models. 
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2.2.2 MULTINOMIAL LOGIT MODEL 

 

Multinomial logit models can be thought of as an extension of the binary logit models. 

For the multinomial response variable, multinomial logit models are most frequently 

chosen in order to analyze the crash severity because accident datasets contain multiple 

severity levels and binary logit models are unable to solve more than two levels of 

severity. Another reason is that multinomial logit models’ mathematical structure and 

estimation are simple and easy respectively. (MacFadden (1973) demonstrated the 

multinomial logit models as the most widely-used discrete choice model. This discrete 

choice model is based in the principle that an individual chooses the outcome that 

maximizes the utility gained from that choice. Based on this principle and assumption 

that the error term is generalized extreme value (GVE) distributed, (MacFadden (1981) 

derived the simple multinomial logit model. The final formulation of the models is 

written as 

 

 




J
ij

ij
ii )Xexp(

)Xexp(
)jy(  (2.9) 

 

where )jy( ii   is the probability of individual i having alternative j in a set of 

possible choice categories J. Xi is a vector of measurable characteristics that determine 

alternative j. j is a vector of statistically estimable coefficients. 

 

However, the multinomial logit model has the limitation of independence of irrelevant 

alternatives (IIA) (Ben-Akiva and Lerman 1985), such that the odd of m versus n 

)J..1n,m(  is not affected by other alternatives, i.e. 
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])[Xexp(
)ny(

)my(
nmi

ii

ii 



 (2.10) 

 

This expression is only a function of the respective utilities of alternatives m and n, 

and is not affected by the introduction/removal of other alternatives. This analytical 

feature implies that the relative shares of the two given alternatives are independent of 

the composition of the alternative set. 

 

The limitation of independence of irrelevant alternatives in multinomial logit model 

was also identified by (Chang and Mannering (1999); Lee and Mannering (2002); 

Shankar et al. (1996) in their studies on accident severity. (Shankar et al. (1996) 

classified severity of an accident to be one of five discrete categories: property 

damage, possible injury, evident injury, disabling injury and fatality. However, 

according to them, property damage and possible injury accidents may share 

unobserved effects such as internal injury or effects associated with lower-severity 

accidents. However, the basic assumption in the derivation of the multinomial logit 

model is that error terms or disturbances are independent from one accident severity 

category to another. (Shankar et al. (1996) suggested that if some severity categories 

share unobserved effects (i.e. have correlated disturbances), the model derivation 

assumptions are violated and serious specification errors will result. 

 

On the other hand, according to (Long (1997), a significant advantage of multinomial 

probit models is that the errors can be correlated across choices, which eliminates the 

IIA restriction. However, computational difficulties make multinomial probit models 

impractical. 
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2.2.3 ORDERED LOGIT MODEL  

 

According to (Long (1997), when the response variable is ordinal in nature and models 

for nominal variables are used, there will be loss of efficiency due to information being 

ignored. Therefore, multinomial logit model cannot handle ordinal dependent 

variables. One way to deal with this problem is to use ordered logit models instead of 

multinomial logit ones. Ordered logit models are usually motivated in a latent (i.e., 

unobserved) variables framework. The general form of the model is given by 

 

ii
*
i xy   (2.11) 

 

where, *
iy is a latent, unobservable and continuous dependent variable; ix is a row 

vector of observed non-random explanatory variables;  is a vector of unknown 

parameter; i  is the random error term which is assumed to be logistically distributed. 

 

According to (Long (1997), ordered logit models can be derived from a measurement 

model in which a latent variable *
iy  ranging from  to   is mapped to an observed 

ordinal variable y. The discrete response variable y is thought of as providing 

incomplete information about an underlying *
iy  according to the measurement 

equation: 

 























injury)highest  (the y if     M

...

y if   m

...

injury)lowest  (the   y if    1

y

M
*
i1-M

m
*
i1-m

1
*
i0

i  (2.12) 
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where, the threshold values s' are unknown parameters to be estimated. The extreme 

categories, 1 and M, are defined by open-ended intervals with 0 and M . 

The mapping from the latent variable to the observed categories is illustrated in Figure 

2.1 below: 

                    

    

              1         2                 3                         mτ  

         1          2              3                                              M  

 

Figure 2.1 Mapping of latent variable to observed variable 

 

Since the distribution of i  is specified as standard logit distribution with mean 0 and 

variance
3


, the probabilities of observing a value of y given ix  can be computed. The 

final formulation of the probabilities of observing value of y=m given ix  is described 

as follows 

 

)x(F)x(F)xmyPr( i1mimii    (2.13) 

 

where, (.)F  is the cumulative distribution function of standard logistical distribution; 

ix ,  , and m are mentioned above.  

 

Since accident data usually contain severity levels that are ordered from the lowest to 

the highest severity such as slight injury, serious injury, and fatality, the ordered logit 

*y  

 

y
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and probit models are most commonly applied. These models are also proved to be 

appropriate for analyzing road accidents by several previous studies. For example, 

(O'Donnell and Connor (1996) used two models of multiple choice; the ordered logit 

and probit models, to examine how variations of road-user attributes result in 

variations in the probability of motor vehicle accident severity. In this study, several 

factors that significantly affected injury include driver’s characteristics such as the age, 

seating position, and blood alcohol level, vehicle features such as vehicle type and 

make, and others such as type of collision. This study also indicated that the results 

from the ordered probit and ordered logit models are similar. Moreover, (Quddus et al. 

(2002) indentified that time factor such as driving at weekends and time of day, road 

factors including location, traffic type, surveillance camera, road surface, and lane of 

nature, driver’s factors consisting of nationality, at-fault drivers, gender, and age 

group, vehicle’s features such as engine capacity and headlight not turned on during 

daytime, and the collision types contribute to both various motorcycle injury and 

vehicle damage severity by using the ordered probit models. Furthermore, (Kockelman 

and Kweon (2002) employed the ordered probit models for all crash types, two-vehicle 

crashes, and single-vehicle crashes to estimate the probability of crash severity. The 

results analyzed from an application for all crash types showed the significances of 

gender, violator and alcohol, vehicle type as well as crash type on the severity level. 

On the other hand, some variables, including the same factor in all crash type case and 

other factors such as age, are found to importantly affect injury severity in two-vehicle 

crashes and single-vehicle crashes. Besides, driver severity levels at multiple locations, 

such as roadway sections, signalized intersections, and toll plazas, are solved by 

(Abdel-Aty (2003), using the ordered probit models. The findings indicated that 

driver’s age, gender, seat belt use, and vehicle speed and type are significant on all of 
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the locations. This study also found other variables that have effects on injury in 

specific cases. For example, while a driver’s violation influences injury severity at 

signalized intersections, alcohol, lighting conditions, and horizontal curves contribute 

to the likelihood of injury at roadway sections, and vehicle equipped with Electronic 

Toll Collection has an effect on the probability of injury. In addition to studies 

mentioned above, the ordered logit and probit models have been applied by several 

other researchers (Abdel-Aty and Keller 2005; Gray et al. 2008; Lee and Abdel-Aty 

2005; Pai and Saleh 2008b; Rifaat and Chin 2005; Zajac and Ivan 2003) to deal with 

the injury severity of overall and specific crashes at signalized intersections, young 

male drivers, vehicle-pedestrian crashes at intersections, various motorcycle crash 

types at T junctions, single-vehicle crashes, and motor vehicle-pedestrian collisions, 

respectively. Based on several above-mentioned applications of the ordered 

approaches, it is worth mentioning that these approaches contributed good 

explanations about ordinal discrete measure of severity levels to appropriately 

modeling and solve the crash severity. 

 

However, ordered logit and probit models still have some limitations. (Eluru et al. 

(2008) gave a good example to explain a problem of the ordered model. In this paper, 

the crash severity was categorized as the ordinal response variable including no injury, 

possible injury, non- incapacitating injury, incapacitating injury, and fatal injury. The 

ordered models were applied to compute the threshold values which were fixed across 

five crash groups. However, this did not correctly describe the fact that the effects of 

some independent variables may have no difference between two crash groups. This 

can lead to inconsistent estimates of the effects of variables. Besides, other studies 

such as (Jones and Jørgensen (2003) found that accident data are multilevel. This 
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means that dependence between samples such as samples of vehicles exists, which 

these ordered approaches cannot model and handle in order to solve the effects of risk 

factors on the crash severity. 

 

2.3 IDENTIFIED PROBLEM  

 

Although a number of studies on traffic safety have proved that the GLMs including 

the binary logit/probit models, multinomial logit/probit models and ordered logit/probit 

approaches are useful for modeling crash severity, they are incapable of investigating 

dependences between different observations. In fact, accident data contain some 

independent variables that are ranked in levels of a hierarchy. For instance, among 

group factors affecting accident severity, vehicles’ and driver’s characteristics such as 

vehicle registration, vehicle movement, age and gender may be the lowest level of the 

hierarchy of crash injury. In addition, the features of crashes have higher levels 

because the same crash may have different effects on the severity of drivers. A 

hierarchy of crash severity is presented in Figure 2.2. The fact that the predictors are 

classified from the lowest to the highest levels of a hierarchy leads to an assumption of 

independence of different samples to be invalid. Consequently, the GLMs are likely to 

produce poorly estimated parameters and standard errors (Skinner et al. 1989). 

Specially, the problem with the estimation of standard errors is very serious when 

intra-class correlation, by which the degree of resemblance between individual 

casualties belonging to the same crashes can be expressed, is very large; thus, resulting 

in the fact that the null hypothesis of parameters’ significances may be incorrectly 

concluded. 
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Figure 2.2: A hierarchy of severity at level 1, within accident locations at level 2 

 

Moreover, although hierarchical severity models have been developed in traffic safety 

by some researchers (Huang et al. 2008; Jones and Jørgensen 2003; Kim et al. 2007a) 

in order to solve multilevel data, these studies have not employed a full model. An 

assumption in these studies is that only the random intercept effect exists. However, 

according to (Snijders and Bosker (1999), omitting some variables which are random 

slope effects may have influences on the estimated standard errors of the other 

variables. Hence, statistical models are needed to be improved so that the estimates of 

standard errors are more accurate; meaning that prediction of the accident severity is 

better. 

 

2.4 SUMMARY 

 
 

This chapter provides a critical review of the GLMs including binary logit/probit 

models, multinomial logit/probit approaches, and ordered logit/probit models. In each 

statistical model, the probabilistic formulations of accident severity are established to 

find the impacts of a variety of possible independent variables, such as time factors, 

road features, environmental factors, and vehicle-driver characteristics as well, on 

crash severity. Furthermore, applications and limitations of each statistical model are 
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identified on the purpose of assisting researchers to predict the severity more 

accurately. 

 

In addition, potential problems are realized in this chapter. One of the most 

fundamental problems is that multilevel structure of accident data contains dependence 

between different observations, which the GLMs have troubles handling and solving. 

Another problem is that hierarchical binomial logit models to deal with the previous 

problem have not been fully developed. Hence, all of them can result in incorrect 

estimates of standard errors.  

 

In the rest of this thesis, full formulations of the hierarchical binomial logit models are 

developed to overcome multilevel data structures and predict accident severity, by 

using Singapore accident data at signalized intersections 
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CHAPTER 3:  DEVELOPMENT OF HIERARCHICAL BINOMIAL LOGIT 

MODEL WITH RANDOM SLOPE EFFECTS FOR CRASH SEVERITY 

 

3.1 INTRODUCTION 

 

Accident severity is a concern in traffic safety because both much money and time are 

spent in taking care of victims and the society loses human resource. Therefore, 

reducing crash severity is a necessary focus. To develop and propose safety 

countermeasures in an effective manner, we need to insightfully understand the 

relationship between crash severity and risk factors. Data analysis techniques are 

powerful tools for establishing this relationship. Consequently, several statistical 

models have been developed for about two decades in order to examine the impacts of 

risk factors on the accident severity. 

 

Generalized linear regression models (GLMs) including logit/probit models and 

ordered discrete choice models are widely used for predicting the crash severity in 

order to solve problems where some dependent variables such as severity in accident 

data are discrete response variables. Some studies have employed binary logit models 

for solving specific accidents. For instance, while (Factor et al. (2008); Pai ; Simoncic 

(2001) applied these models for predicting motorcycle injury severity, (Obeng (2007) 

used these models to solve crash injury at signalized intersection. The binary logit 

models are also used in other fields of accidents such as effects of risk factors on red-

light-running crashes (Porter and England 2000), influences of roadway, 

environmental, vehicle, crash, and driver characteristics on hit-and-run crashes (Tay et 

al. 2008), and impacts of time factors, road features, and vehicle-driver characteristics 
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on the fault of motorcyclists in crashes at specific locations. Moreover, other 

researchers have used multinomial logit models to take into account injury severity 

classified as a multinomial category. While (De Lapparent (2006); Savolainen and 

Mannering (2007); Shankar and Mannering (1996) focused on studying motorcyclist 

injury via the multinomial logit models, (Lee and Mannering (2002) tried to establish 

the connection between road feature and severity of run-of-roadway crashes and (Kim 

et al. (2007b) examined how risk factors affect the bicyclist injury in bicycle-motor 

vehicle crashes. Furthermore, ordered logit/probit models are widely applied for 

investigating crash severity that is ranked from the lowest to the highest injury. For 

example, (O'Donnell and Connor (1996); Pai and Saleh (2008a); Pai and Saleh 

(2008b); Quddus et al. (2002) analyzed motorcycle accident severity by using ordered 

probit models. On the other hand, (Kockelman and Kweon (2002) applied ordered 

probit models for the risk of different injury severity with all crash types, two-vehicle 

crashes, and single-vehicle crashes, while (Gray et al. (2008) centered their study on 

predicting injury severity of young male drivers. 

 

However, the models previously mentioned only yield accurate estimations of 

parameters and standard errors when assumptions, that all predictors are independent 

and that different observations are independent, are satisfied. Some studies such as 

(Jones and Jørgensen (2003); Kim et al. (2007a) found that the correlation between 

individuals involved in the same cluster such as occupants in the same vehicle or 

driver-vehicle in the same crash is available. Specially, when this correlation is 

strongly significant, the generalized linear regression models (GLMs) are insufficiently 

powerful to correctly deal with this problem which is also called multilevel data 

structure.  
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According to (Goldstein (2003); Snijders and Bosker (1999), one of statistical 

techniques which can solve multilevel data is hierarchical models. The most important 

is, when hierarchical models are applied, that hierarchy is available and identified in 

the dataset. In traffic safety studies on accident severity, (Jones and Jørgensen (2003) 

insightfully explained that probabilities of severity of occupants in the same vehicle 

are different, which the techniques used in most past studies cannot model. Thus, this 

study introduced a developed form of regression models, multilevel logit models, to 

analyze individual severity. In addition, after multilevel accident data are identified, a 

number of researchers have focus on applying hierarchical logit models for predicting 

drivers’ injury and vehicles’ damage. For instance, (Kim et al. (2007a) use hierarchical 

binomial logit models to predict crash severity of different crash types at rural 

intersections, while (Huang et al. (2008) found the impacts of risk factors on severity 

of drivers’ injury and vehicles’ damage in crashes at signalized intersections by using a 

Bayesian hierarchical analysis. 

 

Although they are successful when employing hierarchical binomial logit models for 

the investigation of individual severity, several studies used these models with a 

simple assumption that only random intercept effects exist instead of using both 

random intercept and random slope effects. According to (Snijders and Bosker (1999), 

refraining from using  random slopes may yield invalid statistical tests. This is because 

if some variables have a random slope, then omitting this feature from models could 

affect the estimated standard errors of the other variables. Therefore, this study 

develops the full hierarchical binomial logit models to predict crash severity at 

signalized intersections in Singapore. 
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In the rest of this chapter, the formulation of hierarchical binomial logit (HBL) models 

is established. In addition, model evaluation, deviance information criterion (DIC), is 

presented. Pre-selection of predictors is then summarized .The hierarchical binomial 

logit (HBL) models with these covariates are applied in next chapter to identify the 

significant factors that increase or decrease accident severity at signalized 

intersections. 

 

3.2 MODEL SPECIFICATION 

 

3.2.1 HIERARCHICAL BINOMIAL LOGIT MODEL 

 

Some previous studies have found the existence of within-crash correlation of drivers’ 

severity. Models without solving this correlation might yield incorrect parameter and 

inaccurate standard error estimations. Thus, conclusions of significant variables may 

not be precise. To investigate accident data which are multilevel, some studies (Huang 

et al. 2008; Jones and Jørgensen 2003; Kim et al. 2008) used hierarchical binomial 

logistics models to explain severity correlations between driver-vehicle units involved 

in the same crash. However, random slope effects still are ignored. This may yield 

incorrect or biased estimates of parameters in both the fixed part and the random part. 

To deal with this problem, a full model is developed, thus resulting in the fact the 

cross-level interactions between covariates are specified and estimated. In the 

individual-level model (level 1), the response Yij for the ith driver-vehicle unit in the jth 

crash takes one of two values: Yij=1 in case of high severity, otherwise, Yij=0. The 

probability of Yij is denoted by )1YPr( ijij  . The logistics model is presented as 

follows. 
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where: pijX is the pth covariate at the individual-level for the ith driver-vehicle unit in 

the jth crash such as vehicle registration, type of driving license, nationality, age and 

gender. Besides, j0 and pj are the intercept and the regression coefficients, 

respectively. Both of them in Eq. (3.1) vary with the different crash (level 2) and are 

presented as the follows. 
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where: γ  is the parameter. qjZ  is the qth covariate at the crash-level, depending only on 

the crash j, rather than on the driver-vehicle unit i. According to this definition, the qjZ  

covariates in road traffic consist of time factors, road features, and environmental 

factors. Random effects (U0j and Upj) are also included to permit the potential random 

variations across the crash. The random slopes are addressed in this study. Therefore, 

the combined model is yielded by substituting Eqs. (3.2) and (3.3) with Eq. (3.1) and is 

presented as follows: 
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It is assumed that Upj is independent of the level-one residuals Rij and that Rij has a 

normal distribution with zero mean and variance of
3

 
2

.It is also assumed that the 

random effects (Upj) have a multivariate normal distribution with zero mean and a 

constant covariance matrix, as suggested by (Snijders and Bosker (1999). This matrix 

is presented as follows. 

 

Var (Uhj) = 2
h   (h=0,…,p) 

Cov (Uhj,Ukj) = 2
hk  (h,k=0,…,p) 

 

In the fixed part of coefficient estimation, the exponential of effect coefficients, 

)exp( , is computed to gain Odds Ratio (O.R.) estimates in the hierarchical binomial 

logit model. The purpose of Odds Ratio (O.R.) is to interpret that a unit increase 

variable pijX or qjZ will reduce/increase the odds of severity by multiplicative effect 

of )exp( . For the category in the model, where dummy variables are used, 

)exp( ba  presents the odds ratios between these two categorical variables. In this 

case, the parameter makes sense when one category is compared with another. 

 

3.2.2 ESTIMATION 

 

There are several methods available for estimating regression coefficients and random 

effects. One of convenient methods is known as empirical Bayes estimation which 

produces so-called posterior means. Several previous studies such as (De Lapparent 

2006; Washington et al. 2005) have used empirical Bayes estimation in transportation 
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applications. Besides, Winbugs and application of this software (Spiegelhalter et al. 

2003b) are available and easy to model empirical Bayes estimation. Thus, this study 

employs empirical Bayes estimation and Winbugs software to estimate regression 

coefficients and random intercept and slope effects. To obtain posterior means, strong 

prior information is needed to input to the model. According to Winbugs guide, to 

easily reach convergence, prior distributions of all regression coefficients should be 

normal distributions (0, 1000) and prior distributions of all variances in random part 

should be gamma distribution (0.001, 0.001) in this study. In Winbugs software, each 

of three chains of iterations for estimating posterior means produces a trace plot. 

Convergence has been achieved if all the chains appear to be overlapping one another. 

After convergence has been achieved, the Markov Chain Monto Caeclo (MCMC) 

simulation should be run for a further number of iterations to obtain samples that can 

be used for posterior inference. The more samples the simulation has, the more 

accurate will be the posterior estimates. One way to assess the accuracy of the 

posterior estimates is by calculating the Monte Carlo error for each parameter. As a 

rule of thumb, the simulation should be run until the Monte Carlo error for each 

parameter of interest is less than about 5% of the sample standard deviation. 

 

3.3 MODEL EVALUATION 

 

3.3.1 BAYESIAN CREDIBLE INTERVAL (BCI) AND DEVIANCE 
INFORMATION CRITERION (DIC) 

 

The important step of model evaluation is to examine which the variables in the model 

are significant and evaluate which models are better. While Bayesian Credible Interval 
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(BCI) is used to find the significance of the variables, Deviance information criterion 

(DIC) is employed to compare two models. 

 

3.3.1.1 Bayesian Credible Interval (BCI) 

 

In this study, Empirical Bayes estimation is employed to compute the posterior mean, 

standard deviation, and BCI. According to (Bolstad (2007), 95% BCI is computed for 

each covariate to examine whether each coefficient is significant or not. The 

parameter, which has 95% BIC containing 0, is insignificant. Then, the model is run 

again, where the insignificant variables are dropped, to find the final group containing 

all of the significant variables. In addition, the significance of variables in the random 

part is evaluated using the same method. 

 

3.3.1.2 Deviance information criterion (DIC) 

 

To ensure that the hierarchical binomial logit model is more accurate than the binary 

logit model, the later is also estimated, where the covariates in both the two models are 

the same and there is no random effect in binary logit model. So, the formulation of 

binary logit model is given by 
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where: pijX is the pth covariate at the individual-level for the ith driver-vehicle unit in 

the jth crash, γ  is the parameter and qjZ  is the qth covariate at the crash-level. 
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For model comparison, Deviance Information Criterion (DIC), proposed by 

(Spiegelhalter et al. (2003a), is calculated in both two models. Basically, DIC is 

intended as the traditional model comparison criteria such as Akaike's Information 

Criterion (AIC). Therefore, to easily understand DIC, a review of previous model 

comparison criteria is necessary. 

 

First of all model comparison uses a measure of fit, called the deviance statistic )G( 2 , 

and complexity, called degree of freedom, to examine which models are better. The 

formulation of the deviance statistic )G( 2 is given by 

 

)LlogL(logG fc
2   (3.6) 

 

where cL denotes the likelihood of current model and fL denotes the likelihood of 

estimated from the full (or saturated) model. 

 

Since increasing complexity is accompanied by a better fit, models are compared by 

trading off these two quantities. In addition, following early work of (Akaike (1973), 

proposals are often based on minimizing a measure of expected loss (Akaike's 

Information Criterion, AIC) on a future replicate data set as follows:  

 

b2)L(log)b(AIC c   (3.7) 
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where b is a number of variables in the model. After AICs of all models are calculated, 

according to (Joshua and Garber (1990), the minimum AIC indicates the selected 

model.  

 

The second model comparison is Bayesian information criterion (BIC) statistic. 

Exactly, when samples are much large, (Raftery (1986); Raftery (1995) found the use 

of the 2G statistic as a good-of-fit measure may not be enough powerful to choose the 

better model when two models are compared. Therefore, a new criterion, Bayesian 

information criterion (BIC) statistic, is proposed to solve this problem. The BIC index 

provides an approximation to factor) Bayes dtransforme( log2 , which may be 

considered as the ratio in likelihood between one model )M( 0 and another model )M( 1 . 

The basic idea is to compare the relative plausibility of two models instead of finding 

the absolute deviation of observed data from a specific model. However, the statistical 

methods for computing the Bayes factor are complicated. Many studies have found the 

BIC statistic, proposed by (Raftery (1986); Raftery (1995), is useful. The formulation 

of the BIC statistic is given by 

 

)nlog(DFGBIC 2   (3.8) 

 

where the 2G statistic is mentioned above, DF denotes a number of degree of freedom, 

and n denotes a number of observations.  

Both AIC and BIC expects the specification of the number of parameter in each model. 

However, (Gelfand and Dey (1994) suggested that observations in complex 

hierarchical models may be outnumbered and that model comparison using AIC or 

BIC cannot be directly used. Therefore, Deviance information criterion (DIC) is 
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proposed to improve comparison between two models that contain multilevel data 

structures. 

 

Final model comparison reviewed in this chapter is Deviance information criterion 

(DIC). (Spiegelhalter et al. (2003a) proposed Bayesian measures of complexity and fit 

that can combine traditional model comparison. The purpose of Bayesian measures is 

to identify models that have the best explanation of observed data with the expectation 

that they are to minimize uncertainty about observations generated in the same way. 

The formulation is given by: 

 

DD p)(Dp2)(DDIC   (3.9) 

 

where )(D  is termed as ‘Bayesian deviance’, in general given by 

 

)}y(flog{2)}y(plog{2)(D   (3.10) 

 

and, more specifically, for members of exponential family with )()Y(E  we shall 

use the saturated deviance )(D  which is obtained by setting }y)(y{(p)y(f   

 

Dp is motivated as a complexity measure for effective number of parameters in a 

model, as the difference between the posterior mean of deviance and the deviance at 

the posterior estimates of the parameters of interest. It is given as 

 

)(D)(DpD   (3.11) 
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This is also called “mean deviance minus the deviance of the means”. )(D  is regarded 

as classical estimate of fit given by MCMC simulation. The posterior mean deviance 

)(D  can be taken as a Bayesian measure of fit or “adequacy”. The DIC is formed by 

the sum of classical estimate of fit and twice the effective number of parameters )p( D . 

We also can consider DIC as a Bayesian measure of fit or adequacy, penalized by an 

additional complexity term Dp . This is a reason that explains why DIC is intended as  

generalization of Akaike's Information Criterion (AIC). In summary, this method, DIC 

is also applied in this study to choose the fittest model between hierarchical binomial 

logit model and binary logit model. 

 

3.4 PRE-SELECTION OF VARIABLES IN ACCIDENT DATASET 

 

To apply the model for predicting crash severity, it is necessary to pre-select risk 

factors including time-related factors, road and environmental features, crash factors, 

and vehicles and drivers’ characteristics. One way to choose variables is to examine 

previous researches. Besides, in accident data, some variables which relevantly affect 

drivers’ injury are also considered in this study. On the other hand, categorizing 

independent variables is also based on similar studies on predicting crash severity. The 

description of predictors will be presented in the next chapter. 

 

Accident data in Singapore contain three types including general accident information, 

vehicle and driver related information, and pedestrian information, each of which 

depicts different factors involved in accident. Therefore, based on previous studies and 

Singapore accident data, risk factors are selected to have effects on accident severity in 
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Singapore condition. Table 3.1 shows the selected variables in this study and reasons 

why these variables are considered. Finally, 22 factors that may be associated with 

drivers’ injury have been selected from general accident information, vehicle and 

driver related information. 

 

Table 3.1: Risk factors related to crash severity at signalized intersections in Singapore 

 Variables References of other studies Selected 
variables 
for the 
study 

Reasons 

GENERAL ACCIDENT INFORMATION 
 accident 

severity at 
SI (A 
dependent 
variable) 

  Accidents 
occurring at 
signalized 
intersections 
consist of 20% of 
total accidents. 

Time 
related 
factors  

Year of 
accident 

(Gray et al. 2008; Lee and 
Mannering 2002; Pai and 
Saleh 2008b; Quddus et al. 
2002) 

Y New safety 
strategies are 
suggested in each 
year. This 
variable may 
present the 
efficiency of the 
strategies 

 Month of 
accident 

(Gray et al. 2008; Pai and 
Saleh 2008b; Quddus et al. 
2002) 

N This variable 
presents seasons 
in year. It is 
dangerous to 
drive in winter. 
But seasons is not 
clear in 
Singapore. 

 Day of 
accident 

(Gray et al. 2008; Huang et 
al. 2008; Lee and 
Mannering 2002; Pai and 
Saleh 2008b; Quddus et al. 
2002) 

Y Traffic volume 
may affect 
vehicle’s speed. 
The higher speed, 
the more serious 
injury severity.  Time of 

accident 
(Chang and Mannering 
1999; Gray et al. 2008; 
Huang et al. 2008; 
O'Donnell and Connor 
1996; Pai and Saleh 2008b; 
Quddus et al. 2002; Zhang 

Y 
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et al. 2000) 
Location 
related 
factors  

Intersection 
type  

(Huang et al. 2008; Quddus 
et al. 2002; Zhang et al. 
2000) 

Y Different ITs 
have different 
sight distances 
that influence the 
fact that a driver 
reduces speed 
during accident.  

Road 
features 

Lane nature (Huang et al. 2008; Quddus 
et al. 2002) 

Y Vehicle’s position 
may present its 
directions such as 
turning left or 
right, or going 
straight. This may 
affect vehicle’s 
speed. 

 Street 
lighting 

(Abdel-Aty 2003; Gray et 
al. 2008; Huang et al. 
2008; Pai and Saleh 2008b; 
Quddus et al. 2002) 

Y This variable 
affects driver’s 
visibility 
influencing the 
reduction of 
speed. 

 Road speed 
limit 

(Abdel-Aty 2003; Gray et 
al. 2008; Huang et al. 
2008; Pai and Saleh 2008b; 
Quddus et al. 2002; 
Shankar and Mannering 
1996) 

Y  

 Road 
surface 

(Gray et al. 2008; Huang et 
al. 2008; Quddus et al. 
2002; Shankar and 
Mannering 1996) 

Y When the road is 
wet or weather is 
not good, drivers 
tend to reduce 
speed to control 
their vehicles. 
This may lead to 
less harmful. 

 Weather 
condition 

(Huang et al. 2008; Pai and 
Saleh 2008b; Quddus et al. 
2002) 

Y 

Crash 
related 
factors  

Movement 
type 

(Chang and Mannering 
1999; Huang et al. 2008; 
O'Donnell and Connor 
1996; Pai and Saleh 2008b; 
Quddus et al. 2002; Wong 
et al. 2007; Zhang et al. 
2000) 

Y Head on 
collisions are 
more injured than 
other collisions: 
U turn or left turn 
etc because speed 
is also affected by 
movement type. 

Other 
factors  

Type of 
warning 
signs 

(Pai and Saleh 2008b) N Signals may 
reminder drivers 
that a risk of 
accident may 
occur. But almost 
all observations 
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are “not 
applicable” 

 Pedestrian 
involvement 

(Huang et al. 2008)   

 Safe drive 
zone in use 

 Y Users may drive 
carefully and 
reduce vehicle’s 
speed because 
they know there 
is high population 
density in this 
area. 

 Red light 
camera 

(Huang et al. 2008; Quddus 
et al. 2002) 

Y These variables 
are to curb red-
light running and 
driver’s fault. 
This may relieve 
severities 

 Speed 
camera 
within 200m 

 Y 

 Hit & run (Johnson 1997) Y Notification and 
emergency are 
delayed.  

VEHICLE-DRIVER INFORMATION 
Vehicles 
factors  

Vehicle 
registration 
number 

 N  

 Countries’ 
vehicle 
registration 

 Y Different 
countries have 
different standard 
of vehicle 
maintenance, 
different training. 

 Type of 
vehicle 

(Abdel-Aty 2003; Chang 
and Mannering 1999; 
Huang et al. 2008; Pai and 
Saleh 2008b) 

Y Vehicle’s weight 
and speed 
produce energy 
when accidents 
occur. The more 
energy, the more 
severity. 

 Vehicle 
make code 

 Y Vehicle’s 
maintenance, 
engine, mass, and 
size affect injury 
severity 

Driver 
factors  

Child seat 
offence 

 N 96% of 
observations are 
not applicable 

 Child 
injured 

 N 99% of 
observations are 
not applicable 

 Driver (Abdel-Aty 2003) N 99% of 



  Chapter Three: Development of HBLM 

National University of Singapore  34 

belted observations are 
use of the belt and 
not applicable.  

 Type of 
driving 
license 

 Y Licenses present 
driver’s skills and 
training. 

 Driver 
nationality 

(Gray et al. 2008; Quddus 
et al. 2002) 

Y Different 
nationality may 
have different 
habits and 
behavior. 

 Driver 
likely at 
fault 

(Pai and Saleh 2008b; 
Porter and England 2000) 

Y Offending party 
affects driving 
ability of drivers. 
Driver’s fault 
increase conflict 
with other 
vehicles. 

 Age (Abdel-Aty 2003; Gray et 
al. 2008; Huang et al. 
2008; Quddus et al. 2002) 

Y These variables 
may present 
driver’s 
experience, and 
immaturity 

 Gender (Abdel-Aty 2003; Gray et 
al. 2008; Huang et al. 
2008; Quddus et al. 2002) 

Y 

 

Note: Y denotes the selected variables and N denotes the unselected variables  

 

3.5 SUMMARY 

 

This chapter presents the formulation of full hierarchical binomial logit models. In 

addition, model evaluation including BCI and DIC is introduced to examine the 

significance of variables in the fixed part and random part and to select the best model 

between hierarchical binomial logit model and binary logit model, respectively. Pre-

selection of variables is also prepared in this chapter so that application of hierarchical 

binomial logit model for crash severity at signalized intersections in Singapore will be 

illustrated and validated in the next chapter. 
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CHAPTER 4:  APPLICATION OF HIERARCHICAL BINOMIAL LOGIT 

MODEL FOR ACCIDENT SEVERITY AT SIGNALIZED 

INTERSECTIONS 

 

4.1 INTRODUCTION 

 

Based on the proposed model and Singapore accident data, this chapter describes the 

application of hierarchical binomial logit model for solving injury severity of crashes 

at signalized intersections in Singapore. In this application, a description of dataset for 

predicting severity and model evaluation for validating the methodology are also 

summarized. The result of this study indicates factors that importantly influence crash 

severity, each of which will be discussed in detail. Finally, the summary of this study 

is given. 

 

4.2 ACCIDENT DATA 

 

For this study, accident data in Singapore from year 2003 to 2007 are used. This study 

focuses on investigating injury severity of accidents occurring at signalized 

intersections because the numbers of these crashes and vehicle-driver units are the 

highest in the dataset. In fact, based on data collection, 6991 crashes occur at 

signalized intersections, accounting for 20% of total accidents. Besides, the data show 

13289 driver-vehicle units involved in these crashes, of which 5.1% cause fatal and 

serious injury and 94.9% cause slight and no injury. 
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In the hierarchical binomial logit model, a binary dependent variable refers to crash 

severity. The dependent variable (Yij) can take the value 0 or 1. If an accident has fatal 

or serious injury, it is called higher severity and Yij is equal to 1. Meanwhile, if an 

accident has slight or no injury, it is considered as less severe and Yij is equal to 0.  

 

In addition to severity levels, independent variables which may have influences on 

accident severity are selected from Singapore accident data. Based on pre-selection of 

these variables presented in the previous chapter, there are 22 variables coded for each 

intersection accident. The definitions of covariates, together with their mean and 

standard deviation (S.D.) are presented in Table 4.1. According to (Agresti (1996), an 

ordinal explanatory variable is treated as quantitative with conditions that statistical 

models fit well and have a single parameter rather than several ones. Therefore, to 

better analyze injury severity of accidents, all of the variables are split into groups of 

dummy variables based on previous and similar traffic safety researches. In addition, 

(Greene (1993) suggested that continuous variables have been scaled (by dividing by 

N) to have their means lying between 0 and 1. This is because dummy variables have 

means between 0 and 1, and models are almost never correctly estimable if the 

continuous variables are of very different magnitudes (Greene 1993). This is also 

because the choice of a continuous variable’s score has effect only on the results, 

where observations in each category are very unbalanced (Agresti 1996). Thus, time 

trend variable is categorized as year 2003=0.2, year 2004=0.4, year 2005=0.6, year 

2006=0.8, and year 2007=1.  

 

A correlation matrix for the explanatory variables, which may be associated with 

severity level, is checked to avoid multi-collinearity as well as wrong signs in the 
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estimated coefficients. For the highly correlated variables, only the most significant 

variable is kept in the analysis. For example, weather condition is removed due to high 

correlation with road surface. Finally, the total covariates in the level 2: the crash level, 

used in analysis are Time trend, Day of week, Time of day, Intersection type, Lane 

nature, Night time indicator, Road surface, Road speed limit, Safe drive zone, 

Presence of RLC, Speed camera within 200m, Hit & Run, and Pedestrian involvement. 

In addition, covariates in the vehicle-driver level are Vehicle movement, Registration, 

Driver nationality, Vehicle manufacture, Type of driving license, Involvement of 

offending party, Driver age, and Driver gender. 
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Table 4.1: Covariates used in the model 

Explanatory Covariates Description of the variables Two-wheel 
vehicle 

Light vehicle Heavy vehicle 

Mean SD Mean SD Mean SD 
I.GENERAL        
1.Time trend Year (Assuming 2003=0.2 to 2007=1.0) 0.601 0.287 0.602 0.292 0.605 0.284 
2.Day of week If accident at weekend=1, otherwise=0 0.281 0.449 0.334 0.472 0.278 0.448 
3.Time of day        
- Peak time period (7am – 10am or 5pm – 
8pm) 

If accident at peak period =1, otherwise=0 0.296 0.456 0.255 0.436 0.320 0.467 

II. ROAD CHARACTERISTICS        
4.Intersection type        
- X intersection If accident at X intersection=0, otherwise=1 0.742 0.438 0.759 0.428 0.716 0.451 
- Y/T intersection If accident at Y/T intersection=0, 

otherwise=1 
0.246 0.431 0.231 0.422 0.274 0.446 

- Others If accident at other intersections=0, 
otherwise=1 

0.012 0.110 0.010 0.100 0.010 0.099 

5.Lane nature        
- Left lane If accident at left lane=1, otherwise=0 0.191 0.393 0.159 0.366 0.251 0.434 
- Centre lane If accident at centre lane=1, otherwise=0 0.291 0.454 0.318 0.466 0.264 0.441 
- Right lane If accident at right lane=1, otherwise=0 0.304 0.460 0.303 0.460 0.266 0.442 
- Others If accident at others=1, otherwise=0 0.196 0.397 0.202 0.402 0.190 0.392 
6.Night time indicator        
- Night time If accident in night time = 1, otherwise 0 0.678 0.467 0.685 0.464 0.622 0.485 
7.Road surface If dry = 0, otherwise 1 0.118 0.323 0.120 0.325 0.136 0.343 
8.Weather condition If fine = 0, otherwise 1 0.081 0.273 0.094 0.292 0.110 0.313 
9.Road speed limit        
- <=50 km/h If road speed limit is less than 50 km/h=1, 

otherwise=0 
0.853 0.355 0.854 0.353 0.876 0.329 

- 60 km/h  If road speed limit is 60 km/h=1, 
otherwise=0 

0.105 0.307 0.107 0.310 0.085 0.278 

- 70 km/h  If road speed limit is 70 km/h=1, 
otherwise=0 

0.040 0.196 0.035 0.185 0.032 0.176 

III. OTHER CHARACTERISTICS        
10.Safe drive zone in use If Yes=1, otherwise=0 0.006 0.077 0.005 0.072 0.005 0.072 
11.Presence of RLC If RLC is present=1, otherwise=0 0.060 0.237 0.059 0.235 0.046 0.209 
12.Speed camera within 200m If speed camera within 200m C is present=1, 

otherwise=0 
0.005 0.067 0.005 0.068 0.005 0.069 

13.Hit & Run If the offending vehicle hit and run away=1,  
otherwise=0 

0.023 0.150 0.014 0.117 0.018 0.131 

14.Pedestrian involvement If pedestrian involved =1,  otherwise=0 0.021 0.155 0.051 0.220 0.027 0.173 
IV. VEHICLE CHARACTERISTICS        
15.Registration If country’s registration is Singapore=0, 

otherwise=1 
0.102 0.303 0.022 0.146 0.172 0.377 

16.Vehicle make code        
- HONDA If a vehicle is HONDA =1, otherwise=0 0.518 0.500 0.510 0.500 - - 
- YAMAHA If a vehicle is YAMAHA =1, otherwise=0 0.226 0.419 - - - - 
- SUZUKI If a vehicle is SUZUKI =1, otherwise=0 0.157 0.364   - - 
- SYM If a vehicle is SYM =1, otherwise=0 0.028 0.164 - - - - 
- KAWASAKI If a vehicle is KAWASAKI =1, otherwise=0 0.029 0.167 - - - - 
- VESPA If a vehicle is VESPA =1, otherwise=0 0.022 0.148 - - - - 
- TOYOTA If a vehicle is TOYOTA =1, otherwise=0 - - 0.213 0.409 0.570 0.495 
- NISSAN If a vehicle is NISSAN =1, otherwise=0 - - 0.082 0.274 0.062 0.242 
- HUYNDAI If a vehicle is HUYNDAI =1, otherwise=0 - - 0.066 0.249 0.039 0.194 
- MITSHUBITSHI If a vehicle is MITSHUBITSHI =1, 

otherwise=0 
- - 0.065 0.247 0.095 0.293 

- MERCEDES BENZ If a vehicle is MERCEDES BENZ =1, 
otherwise=0 

- - 0.013 0.115 0.009 0.092 

- MAZDA If a vehicle is MAZDA =1, otherwise=0 - - 0.011 0.102 - - 
- B.M.W If a vehicle is B.M.W =1, otherwise=0 - - 0.008 0.090 - - 
- PROTON If a vehicle is PROTON =1, otherwise=0 - - 0.006 0.077 - - 
- RENAULT If a vehicle is VESPA =1, otherwise=0 - - 0.004 0.063 - - 
- FORD If a vehicle is RENAULT =1, otherwise=0 - - - - 0.057 0.231 
- VOLVO If a vehicle is VOLVO =1, otherwise=0 - - - - 0.029 0.166 
- ISUZU If a vehicle is ISUZU =1, otherwise=0 - - - - 0.005 0.069 
- FIAT If a vehicle is FIAT =1, otherwise=0 - - - - 0.007 0.084 
- OTHERS If a vehicle is others =1, otherwise=0 0.010 0.099 0.022 0.146 0.128 0.334 
17.Vehicle movement        
- Single vehicle self-skidded If single vehicle self-skidded =1, 

otherwise=0 
0.078 0.268 0.011 0.102 0.011 0.104 
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- Single vehicle against stationary 
objective or pedestrian 

If single vehicle against stationary objective 
or pedestrian =1, otherwise=0 

0.026 0.159 0.025 0.156 0.033 0.178 

- Between moving vehicle(s) and 
stationary vehicle 

If between moving vehicle(s) and stationary 
vehicle=1, otherwise=0 

0.872 0.335 0.907 0.291 0.846 0.361 

- Between moving vehicles If between moving vehicle=1, otherwise=0 0.021 0.143 0.055 0.228 0.087 0.283 
- Other movements If other movements=1, otherwise=0 0.003 0.056 0.002 0.047 0.020 0.142 
V. DRIVER CHARACTERISTICS        
18.Type of driving license If driver license is Qualified Driving 

License-normal=0, otherwise=1 
0.068 0.252 0.103 0.304 0.205 0.404 

19.Nationality If driver nationality is Singapore, =0, 
otherwise=1 

0.163 0.370 0.065 0.246 0.222 0.416 

20.Involvement of offending party If driver is likely at fault=1, otherwise=0 0.496 0.500 0.657 0.475 0.320 0.467 
21.Age        
- 0 – 25  If age <=25, =1, otherwise=0 0.396 0.489 0.102 0.303 0.126 0.332 
- 26 – 45  If age within 26-45=1, otherwise=0 0.399 0.490 0.488 0.500 0.478 0.500 
- 46 – 65  If age within 46-65=1, otherwise=0 0.180 0.384 0.377 0.485 0.368 0.482 
- 66 – 100  If age > 66=1, otherwise=0 0.025 0.157 0.032 0.177 0.028 0.164 
22.Gender If gender is female =1, otherwise=0 0.036 0.187 0.161 0.368 0.029 0.169 
Observations  N=13288       

 

4.3 MODEL CALIBRATION AND VALIDATION 

 

4.3.1 MODEL CALIBRATION 

 

At the beginning, the hierarchical binomial logit model is run with the 21 covariates 

from the dataset. Empirical Bayes estimation is employed to compute posterior mean, 

standard deviation, and Bayesian Credible Interval (BCI). According to (Bolstad 

(2007), 95% BCI is computed for each covariate to examine whether each coefficient 

is significant or not. The covariate, which has 95% BCI containing 0, is eliminated. In 

addition, Winbugs software is used to estimate regression coefficients and random 

effects. Each of three chains of iterations produces a trace plot. Convergence has been 

achieved if all the chains appear to be overlapping one another. After convergence has 

been achieved, the MCMC simulation should be run for a further number of iterations 

to obtain samples that can be used for posterior inference. The more samples the 

simulation has, the more accurate posterior estimates will be. One way to assess the 

accuracy of the posterior estimates is by calculating the Monte Carlo error for each 

parameter. As a rule of thumb, the simulation should be run until the Monte Carlo 

error for each parameter of interest is less than about 5% of the sample standard 
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deviation. In this study, trace plots with a good degree of mixing, produced from three 

chains of 40,000 iterations, indicate that estimation of coefficients are convergent. 

Then, 5% of the sample standard deviation of Monte Carlo error for each coefficient is 

obtained after next 10,000 iterations. The means and 95% BCI of estimated random 

effects and regression coefficients are monitored and presented in the Table 4.3. 

 

In addition, the hierarchical binomial logit model is employed for each type of 

vehicles. This is because although vehicles are produced from the same manufactures, 

different types of vehicle have different influences on crash severity. Moreover, this 

study deals with accident severity at signalized intersections with all vehicles including 

two-wheel vehicles, light vehicles and heavy vehicles. Consequently, the HBL model 

is separated into 3 models to evaluate crash severity with two-wheel vehicles, light 

vehicles and heavy vehicles. 

 

Table 4.2: Estimate of Deviance Information Criterion (DIC) 

Deviance Information 
Criterion (DIC) 

Two-wheel vehicles Light vehicles Heavy vehicles 

- Hierarchical binomial 
logit model 1074.540 1521.640 946.803 
- Binary logit model 1237.290 1606.970 1011.110 
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Table 4.3: Estimate of fixed part and random part 

Explanatory Covariates in the HBL 
model 

Two-wheel vehicles Light vehicles Heavy vehicles 
Mean 95% BCI OR Mean 95% BCI OR  Mean 95% BCI OR  

FIXED EFFECTS             
Day of week (relative to weekday) - - - - - - - - 0.472 0.116 0.830 1.604 

Night time indicator (relative to 
daytime)             
- Night time 0.720 0.235 1.246 2.054 0.617 0.306 0.940 1.853 0.712 0.396 1.107 2.038 

Road surface (relative to wet road 
surface) -0.522 -1.021 -0.019 0.593 -0.436 -0.849 -0.034 0.646 - - - - 

Road speed limit (relative to Speed 
limit which is less than 50 km/h)             
- Speed limit is 60 km/h 0.980 0.405 1.555 2.665 0.550 0.144 0.947 1.734 - - - - 

- Speed limit is 70 km/h 0.525 -0.377 1.382 1.690 0.434 -0.240 1.035 1.544 - - - - 

Presence of RLC(relative to no red 
light camera) 1.099 0.436 1.776 3.001 0.387 0.036 0.721 1.472 - - - - 

Vehicle make code (relative to Honda 
manufacture)             
- YAMAHA 1.129 0.725 1.526 3.093 - - - - - - - - 
- SUZUKI 0.560 0.044 1.068 1.750 0.603 -0.454 1.548 1.828 - - - - 
- SYM 1.426 0.646 2.132 4.162 - - - - - - - - 
- KAWASAKI 1.376 0.537 2.115 3.959 - - - - - - - - 
- VESPA 0.578 -0.507 1.524 1.783 - - - - - - - - 
- TOYOTA - - - - 0.479 0.112 0.845 1.615 - - - - 
- NISSAN - - - - 0.572 0.056 1.059 1.771 - - - - 
- HUYNDAI - - - - 0.769 0.243 1.257 2.358 - - - - 
- MITSHUBITSHI - - - - -0.040 -1.041 0.833 0.961 - - - - 
- MERCEDES BENZ - - - - 0.945 0.252 1.590 2.573 - - - - 
- MAZDA - - - - 0.627 -0.447 1.580 1.872 - - - - 
- B.M.W - - - - 0.166 -1.148 1.301 1.180 - - - - 
- PROTON - - - - -0.191 -1.660 1.100 0.826 - - - - 
- RENAULT - - - - 0.021 -1.539 1.379 1.021 - - - - 
- FORD - - - - 0.814 -0.604 2.084 2.256 - - - - 
- VOLVO - - - - - - - - - - - - 
- ISUZU - - - - - - - - - - - - 
- FIAT - - - - - - - - - - - - 
- OTHERS 0.475 -1.423 1.881 1.608 0.029 -1.074 0.977 1.030 - - - - 
Vehicle movement (relative to crashes 
between moving vehicle and stationary 
vehicle)             
- Single vehicle self-skidded -1.357 -2.429 -0.396 0.257 0.047 -0.431 0.516 1.048 -0.077 -0.664 0.502 0.925 

- Single vehicle against stationary objective 
or pedestrian -0.647 -1.922 0.513 0.524 - - - - -0.264 -0.821 0.285 0.768 

- Between moving vehicles 1.172 0.190 2.123 3.228 0.371 0.005 0.739 1.449 0.660 0.234 1.079 1.934 

- Other movements 0.055 -1.663 1.705 1.056 0.137 -0.375 0.654 1.147 -0.103 -0.676 0.468 0.902 

Involvement of offending party 
(relative to non-offending) - - - - 0.692 0.245 1.197 1.997 - - - - 

Driver age (relative to age 26 – 45)             
- 0 – 25 0.111 -0.259 0.489 1.118 - - - - -0.546 -1.018 -0.088 0.579 

- 46 – 65 -0.008 -0.528 0.474 0.992 - - - - -0.185 -0.602 0.184 0.831 

- 66 – 100 1.160 0.316 1.943 3.190 - - - - -0.007 -0.574 0.548 0.993 

Driver gender (relative to male) - - - - -0.535 -0.934 -0.155 0.586 -0.948 -2.260 -0.200 0.388 

RANDOM EFFECTS             

Between-crash variance (0
2) 2.942 0.467 5.897  0.700 0.295 1.303  1.579 0.636 2.745  

Involvement of offending party (1
2) - - -  1.506 0.465 2.886  - - -  

Gender (2
2) - - -  0.608 0.225 1.254  0.926 0.212 2.885  

Age (3
2)             

- 0 – 25 (4
2) 1.576 0.275 4.787  - - -  0.574 0.177 1.478  

- 46 – 65 (5
2) 1.024 0.214 3.561  - - -  0.839 0.208 2.257  

- 65 – 100 (6
2) 2.544 0.275 10.870  - - -  1.440 0.246 5.217  
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4.3.2 MODEL VALIDATION 

 

Model evaluation using Deviance Information Criterion (DIC) is also presented in 

Table 4.2. The model that has the minimum DIC is selected as the best. The result 

shows that in all three models with two-wheel vehicles, light vehicles, and heavy 

vehicles, the DIC values for hierarchical binomial logit modes (1074.540; 1521.640; 

and 946.803) are less than those in binary logit models (1237.290; 1606.970; and 

1011.11), respectively. This means that the use of hierarchical binomial logit model in 

all of three cases is more suitable than that of binary logit models. 

 

In addition, 95% BCI of estimated random effects indicates existence of random 

intercept effects in all three models. Besides, random slope effects are also identified. 

For example, while the age variable has random slope in the two-wheel-vehicle model, 

there are two random slope effects: involvement in party variable and gender variable 

in light-vehicle model and three random slope effects: age variable, gender variable 

and vehicle registration variable in heavy-vehicle model. 

 

 

4.4 DISCUSSION OF SIGNIFICANT RISK FACTORS  

 

From the hierarchical binomial logit model, the effects of the covariates are presented 

in Table 4.1. In the final model, 10 variables are significant with 95% BCI which does 

not contain 0. They are: 1)Day of week, 2)Night time indicator, 3)Road surface, 

4)Road speed limit, 5)Presence of RLC, 6)Vehicle make code, 7)Vehicle movement, 
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8)Involvement of offending party, 9)Age, and 10)Gender. The interpretations of these 

significant covariates are discussed in the following. 

 

Day of week 

Day of week is categorized into 2 groups: crash occurrence at weekend or on weekday. 

This covariate is found to significantly affect the crash severity involved in only heavy 

vehicles. The parameter is positive (0.472, 95% BCI (0.116; 0.830), OR 1.640), 

indicating that crashes at the weekend have 64.0% higher odds of high crash severity 

than those on weekdays. This finding is similar to a study of (Chang and Mannering 

(1999) who found that truck-involved crash severity both increases at weekends and is 

higher than non-truck-involved crashes. This may be reasonable because lower traffic 

volume at the weekend may lead to the increase of vehicle speed. The fact that heavy-

vehicle drivers may drive fast to finish their work as soon as possible at weekend to 

take a rest significantly increases casualties’ injury. Meanwhile, light vehicles and two-

wheel vehicles do not affect the severity because drivers may carefully control their 

vehicles and there are a few two-wheel vehicles at weekend. 

 

Night time indicator 

Night time indicator covariate has two categories including day time and night time. 

The finding indicates this covariate is found to be significant in all of the three vehicle 

types. Crashes in night time have 105.4%, 85.3% and 103.8% higher of odd ratio of 

the severity than those in day time with two-wheel vehicles, light vehicles, and heavy 

vehicles, respectively. This result is consistent with (Simoncic (2001) finding that 

crashes at night are more seriously severe than those during day time. The reasons are 

that driver visibility in night time may be less than that in day time and that speeding 
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and alcohol use increase severity at night. Among three models, crashes associated 

with two-wheel vehicles have the highest increase of severity because two-wheel 

vehicles may not been clearly seen by other vehicles. 

 

Road surface 

Wet road surface is identified as a significant factor that has effects on the crash 

severity associated with two-wheel vehicles and light vehicles instead of heavy ones. 

The analysis described above shows that the coefficient of two-wheel-related accidents 

is -0.522 (95%BCI (-1.202; -0.019)) and that of heavy vehicle-related ones is -0.436 

(95%BCI (-0.849; -0.034)). Occupants in two-wheel vehicles and light vehicles have a 

decrease of severity in odds ratio by 40.7% and 35.4%, respectively, when compared 

with those involved in crashes on dry-road surface. Some studies (Quddus et al. 2002; 

Rifaat and Chin 2005) also found the same result that accident severity decreases on 

the wet road surface. According to statistics about Singapore weather, the rain is often 

heavy so that driver visibility may reduce; thus, drivers are inclined to reduce their 

speed during the bad surface. So, the fact wet road surface decrease crash severity may 

be reasonable. 

 

Road speed limit 

The finding indicates that speed limit covariate significantly influences the crash 

severity related to two-wheel vehicles and light vehicles. Compared with those where 

speed limit is less than 50 km/h, the crashes on roads, in which speed limit is 60 km/h, 

increase the severities by 166.5% and 73.4% with two-wheel vehicles and light 

vehicles, respectively. (Zhang et al. (2000) also found that the odds of fatality in 

crashes occurring in zones with higher speed are higher than those in crashes occurring 
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in zones with lower speed. The higher their speed is, the more difficult drivers are able 

to stop. Therefore, drivers are more likely to have fault in controlling their vehicles, 

resulting in more serious severity. 

 

Presence of Red Light Camera 

The result shows that the presence of Red Light Camera is associated with higher 

severity by 200.1% and 47.2% with both two-wheel vehicles and light vehicles. This 

finding is also similar to some studies: (Erke ; Huang et al. 2008; Quddus et al. 2002). 

The reasons are that many drivers tend to run when light is red. However, they know 

the existence of RLC, suddenly stopping their vehicles. Specially, two-wheel vehicles 

are more likely to be skidded when the wheel is suddenly stopped. Besides, Red Light 

Cameras are often installed at high risk locations. Thus, more information such as 

drivers’ behavior and distraction, when drivers know the existence of RLC at 

intersections, should be obtained to better understand the effects of this variable on 

crash severity. 

 

Vehicle movement 

Five vehicle-movement categories are single self-skidded, vehicle against stationary or 

pedestrian, between vehicle and stationary vehicle, between vehicles, and others, 

where a reference case is a crash between vehicles and stationary vehicles. The finding 

indicates that movement between vehicles covariate when compared with the base case 

is positive and significant in 3 types of vehicles: two-wheel vehicles, light vehicles, 

and heavy vehicles, where their odds ratios are 3.228, 1.449, and 1.934, respectively. 

This means that vehicle movement between vehicles increases severity. The reasons 

are that more energy is created when collisions between two vehicles occur from 
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opposite directions and that vehicles have higher speed in the same directions when a 

signal light allows them to enter across intersections at that time. On the other hand, a 

self-single vehicle movement is only negatively and significantly affected in two-

wheel vehicle case (-1.357, 95% BCI (-2.429; -0.396), OR 0.257). This covariate 

decreases the odds ratio of severity by 74.3%. In this situation, driver’s damage results 

from skid between drivers and road surface. However, helmet and clothes can protect 

motorcyclists from the injury. So, the decrease of severity in this case may be 

reasonable. 

 

Vehicle manufacture  

Vehicle make covariate is found to significantly affect the crash severity containing 

two-wheel vehicles and light vehicles. In two-wheel vehicles, compared with reference 

case: HONDA, four manufactures, including YAMAHA, SUZUKI, SYM, and 

KAWASAKI, have significant influences on severity by odds ratio 3.093, 1.750, 4.162 

and 3.959, respectively. (O'Donnell and Connor (1996) also found that a specific 

vehicle make increases motorcyclist crash severity among different manufactures. On 

the other hand, light vehicles are made by HONDA, TOYOTA, NISSAN, HYUNDAI, 

MITSUBISHI, MERCEDES BENZ, SUZUKI, MAZDA, B.M.W, PROTON, 

RENAULT, FORD and others, where other makes have a total of less than 10 units. 

Relative to HONDA, four manufactures which are positively and significantly related 

to the accident severity are TOYOTA, NISSAN, HYUNDAI, and MERCEDES 

BENZ, where odds ratios are 1.615, 1.771, 2.358 and 2.573, respectively. This is 

because the population of Honda two-wheel vehicles and Honda light vehicles has the 

most increase every year, meaning that vehicles of Honda are always new. The newer 
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vehicles are better maintained and less breakdown. So, the crash severities of Honda 

decrease in both two-wheel vehicles and light vehicles. 

 

Involvement of offending party 

The finding indicates only the crash severities of light vehicles are significantly 

associated with the at-fault driver covariate. The at-fault drivers have 99.7% higher 

odds ratio of crash severity than the not-at-fault driver (0.692, 95% BCI (0.245; 1.197), 

OR 1.997). The reason is that drivers involved in offending party may neither give way 

to other vehicles nor stop their vehicles when entering on intersections even though the 

signal light is red. This also provides evidence for educating drivers to keep away from 

risk-taking maneuvers. 

 

Age 

Four age groups are categorized based on the similarities of drivers’ behavior and 

ability to compare the effect of age on severity. The finding shows that the crash 

severity associated with two-wheel vehicles is highest for the group that is more than 

65 (1.160, 95% BCI (0.316; 1.943), OR 3.190). The reasons are that decrease of visual 

power, deterioration of muscle strength and reaction time may be responsible for an 

age group of 65 to be associated with severity (Rifaat and Chin 2005) and older drivers 

have relatively weak risk reacting ability. On the other hand, the finding indicates that 

the crashes in age group being less than 25 decreases the severity related to heavy 

vehicles, where the parameter, BCI, and odds ratio are (-0.546, 95% BCI (-1.018; -

0.088), OR 0.579), respectively. Young heavy-vehicle drivers are most likely to be in 

good health and trained. Therefore, the finding may be reasonable. 
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Gender 

The gender variable is classified as 2 cases male and female where the base case is 

male. The estimations find that the crash severity related to light vehicles and heavy 

vehicles is significantly affected by this predictor. The female drivers have 41.4% and 

61.2% lower odds ratio of crash severity than the male driver in the light-vehicle 

model and the heavy-vehicle model, respectively. The reasons are that female drivers 

usually drive more carefully and use new version cars and that female health and 

ability are improved. This finding is also similar to the study of (Chang and Mannering 

(1999) who found that female drivers decrease crash severity. 

 

4.5 SUMMARY 

 

This study develops hierarchical binomial logit model with both random intercept and 

slope effect to find the impacts of risk factors on individual severity of occupants 

involved in crashes at signalized intersections in Singapore. Model evaluation 

including DIC and BCI is used to ensure that the hierarchical binomial logit model is 

more suitable than binary logit mode and that there is existence of random intercept 

and slope effects in hierarchical binomial logit model. 

 

Application of hierarchical binomial logit model for individual severity of occupants 

involved in crashes at intersections indicates that 10 variables are identified as 

significant factors by using 95% BCI. These variables include Day of week, Night time 

indicator, Road surface, Road speed limit, and Presence of RLC in the level 2. In 

particular, crashes occurring at night increase accident severity in all 3 situations of 

vehicle types. Besides, in both 2 cases: two-wheel vehicles and light vehicles, wet road 
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surface reduces the injury severity while high speed limit and presence of red light 

camera increase the accident injury. In the vehicle-driver level of crash severity, 

Vehicle manufacture, Vehicle movement, Involvement of offending party, Age, and 

Gender are also identified to be associated with crash severity. For example, with 

vehicle characteristics, this study finds that Honda manufacture is safer than other 

vehicle makes in two-wheel vehicle and light vehicle cases. In addition, vehicle 

movement variable significantly affects all of three models of crash severity. 

Meanwhile, three driver factors are vitally indentified. Female drivers decrease 

severity in crashes related to light vehicles and heavy vehicles. Furthermore, age group 

over 65 related to two-wheel vehicles is also positively associated with occupant 

severity, while Involvement of offending party increases crash severity involved in 

light vehicles.  

 

In summary, this study solves multilevel data structure which may exist in dataset by 

using hierarchical techniques and identifies some risk factors which contribute to the 

injury severity of crashes at signalized intersections.  
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CHAPTER 5:  CONTRIBUTIONS, DISCUSSIONS, RECOMENDATIONS AND 

CONCLUSIONS  

 

5.1 RESEACH CONTRIBUTIONS  

 

The principal objective of this study is to identify factors affecting severity of crashes 

at signalized intersections by using the hierarchical binomial logit model with both 

random intercept and slope effects. In order to achieve this objective, various factors 

(e.g. general accident characteristics, road conditions, vehicle characteristics and driver 

characteristics) have been investigated. In addition, this model calculated with 

Winbugs software establishes the relationship between injury severity and risk factors. 

Besides, model evaluation including DIC and BCI is applied to assess the suitability of 

the model. This study uses Singapore accident data to illustrate the application of 

hierarchical binomial logit model. In the result, 95% BCI in random part indicates the 

random slope effects (such as Involvement of offending party, Gender and Age 

variables) exist. Furthermore, based on the DIC values of two models in three cases of 

vehicle types, the finding also shows this model is able to take account for severity 

correlation of vehicle-driver unit involved in the same crash as well as to improve the 

estimation of regression coefficients and standard errors (more details of DIC and 95% 

BCI value in three vehicles are presented in Table 4.2). Finally, the result demonstrates 

10 variables (details of parameters are presented in Chapter 4) significantly affect the 

severity.  
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5.2 DISCUSSIONS AND RECOMENDATIONS  

 

The hierarchical binomial logit model establishes the relationship between accident 

severity at signalized intersections and risk factors. The result indicates three groups of 

factors are important.  

 

First of all, general characteristics including Day of week and Night time indicator 

have influences on the crash severity. Accidents occurring at weekend are increasingly 

severed since drivers have a tendency to speed when a density of vehicle is low. 

Besides, because of low visibility, alcohol and high speed at night, drivers’ reaction 

which is delayed may increase the severity. Therefore, in order to improve traffic 

safety, drivers should be alert and not be tempted to increase speed to such an extent 

that makes it difficult to control the vehicle. 

 

The second group is road factors (such as Road surface, Road speed limit and Presence 

of RLC). The wet road surface condition has been found to significantly reduce the 

severity because drivers carefully control their vehicles on wet surface and across 

signalized intersection. In addition, road speed limit variable are significant. Drivers 

tend to run fast on roads which have high speed limit. As a result, it is difficult for 

drivers to manage vehicle when accidents happen. Therefore, the finding that high road 

speed limit positively affects the severity is reasonable. On the other hand, the 

presence of RLC is associated with higher severity. It does not imply that presence of 

RLC increases the severity level because it is installed at dangerous locations with 

more severe accidents. Thus, more information such as drivers’ behavior and 

distraction should be obtained so that prediction of severity is more accurate. 
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Finally, driver-vehicle characteristics consist of five variables. Vehicle manufacture 

and Vehicle movement are significant. Accidents between 2 moving vehicles result in 

the high impact force. So, the finding that crash severity in 3 case studies increases 

significantly when vehicles are moving is reasonable. On the other hand, the at-fault 

driver-vehicle unit of Involvement of offending party variable has a positive effect on 

the severity. This provides a more convincible evidence for educating drivers to keep 

away from risk-taking maneuvers. Furthermore, Age and Gender are also identified to 

be associated with the severity of crashes at signalized intersections. For example, over 

65 age group related to two-wheel vehicles is also positively associated with the crash 

severity because visual and physical ability of older driver is deteriorated. Meanwhile, 

female drivers decrease severity in crashes related to light vehicles and heavy vehicles 

due to driving more carefully and soberly. Based on the finding related to driver-

vehicle characteristics, public information programs should be developed to encourage 

all drivers to properly follow traffic legislation. 

 

In summary, this study investigates one problem that multilevel data structures are 

ignored in traffic safety by using full hierarchical binomial logit model. However, this 

study still has some limitations such as models and data. For example, this model 

cannot be able to handle dependent variables that are classified as ordinary variables. 

Besides, this study only solves multilevel data that contain 2 levels: the severity within 

crash clusters. Therefore, a new model such as hierarchical ordered logit/probit model 

with random intercept or both random intercept and slope effects should be developed.  
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5.3 CONCLUSIONS 

 

In conclusion, the research develops full hierarchical binomial logit model with both 

random intercept and slope effects in order to investigate multilevel data structures and 

establish the relationship between the severity and risk factors. This study also finds 

that some factors such as day of week, night time, road surface, speed limit, present of 

RLC, vehicle manufacture and movement, involvement of offending party, and driver 

gender and age are significant influences on crash severity at signalized intersections. 

The findings of this study give a basis for developing effective countermeasures to 

improve road safety. 
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