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Abstract

Switched Dynamical Systems:

Transition Model, Qualitative Theory, and

Advanced Control

Thanh-Trung Han

National University of Singapore

2009

This thesis presents a qualitative theory for switched systems and control methods for
uncertain switched systems. A transition model of dynamical systems is introduced
to obtain a framework for developing qualitative theories. Deriving from the general
rule of transition, we obtain a transition model for switched systems carrying the na-
ture of a collection of continuous signals whose evolutions undergo effects of discrete
events. The transition mappings are introduced as mathematical description of the
continuous motion under interaction with discrete dynamics. Accordingly, results are
obtained in terms of the timing properties of discrete advents instead of dynamical
properties of the discrete dynamics.

Through the formulation of limiting switching sequences and the quasi-invariance
properties of limit sets of trajectories of continuous states, invariance principles are
presented for locating attractors in continuous spaces of switched non-autonomous,
switched autonomous and switched time-delay systems. The principle of small-
variation small-state is introduced for removal of certain limitations of the approach
using Lyapunov functions in hybrid space of both continuous and discrete states
and the approach imposing the switching decreasing condition on multiple Lyapunov
functions on continuous space. The basic observation is that the dwell-time switching
events drive the converging behavior and the boundedness of the periods of persis-
tence ensures the boundedness of the diverging behavior of the overall trajectory.

Compactness and attractivity properties of limit sets of trajectories are estab-
lished for a qualitative theory of switched time-delay systems. It turns out that delay
time and time intervals between two dwell-time switching events play the same role
of causing instability; furthermore, the Razumikhin condition at switching times is
equivalent to the usual switching condition in the sense that they provide the same
information on diverging behavior. Accordingly, an invariance principle is obtained
for switched time-delay systems and, at the same time, a time-delay approach to
stability of delay-free switched systems is introduced.

The gauge design method is introduced for control of a class of switched systems



v

with unmeasured state and unknown time-varying parameters. The control objec-
tive is achieved uniformly with respect to the class of persistent dwell-time switching
sequences. Considering the unmeasured dynamics and the controlled dynamics as
gauges of each others, we design an adaptive control making the closed-loop system
interchangeably driven by the stable modes of these dynamics. In this approach, the
unknown time-varying parameter is considered as disturbance whose effect is atten-
uated through an asymptotic gain. Introducing a condition in terms of observer’s
poles and gain variations, the gauge design framework is further presented for adap-
tive output feedback control of the same class of uncertain switched systems.

Adaptive neural control is introduced for a class of uncertain switched nonlinear
systems in which the sources of discontinuities making neural networks approximation
difficult are uncontrolled switching jumps and the discrepancy between control gains
of constituent systems. Neural networks approximations are presented for dealing
with unknown functions and a parameter adaptive paradigm is presented for deal-
ing with unknown constant bounds of approximation errors. A condition in terms
of design parameters and timing properties of switching sequences is considered for
verifying stability conditions.

Thesis’ Supervisors: Professor Shuzhi Sam Ge

Professor Tong Heng Lee
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Chapter 1

Introduction

Dynamical system is a collection of signals evolving under a fixed rule. Signals in real

systems are typically of either discrete or continuous nature. Labeling the behavior

of the system by the behavior of different groups of signals leads to different classes

of systems. Treating discrete signals and continuous signals of a system on an equal

footing, we have the concept of hybrid dynamical system [3, 6]. Taking the behavior

of continuous signals as system behavior and passing the role of event-driving input

to discrete signals, we arrive at the notion of switched dynamical system [95, 142].

In this thesis, we studies dynamical properties and control of continuous dynamics

in dynamical systems consisting of both discrete and continuous signals. The driving

question is to make conclusion on ultimate behavior of continuous signals using dwell-

time properties [62] of discrete signals. It turns out that richer results can be achieved

in the framework of switched dynamical systems.

The presentation is sketched as follows. Looking toward a theory amenable to

studying dynamical properties of switched systems under relaxed conditions, we in-

troduce transition models for dynamical systems from which switched systems arise

naturally as a special realization of rule of transition. We then present various sta-

bility theories based on which advanced controls are further developed.

1



1.1. Motivating Study 2

1.1 Motivating Study

At a glance, switched systems are usually described by equations of the form

ẋ(t) = fσ(t)(t, xt), (1.1)

where t is the time variable, x(t) is the state at time t of the system, xt is the function

determined by a trace attached to t of the system trajectory x(t), σ : R+ → Q, given

the discrete set Q, is the signal describing the dynamics of the discrete state and is

usually termed the switching signal, and fq, q ∈ Q are functionals. The discontinuities

of σ are termed switching times [95,142].

We have few notations for discussion. In (1.1), xt means that the system is delay-

dependent. If for all time t, xt is determined by the single point x(t) of the system

trajectory, we then write x(t) instead of xt to clarify that the system is delay-free.

An equation (1.1) with σ(t) replaced by a fixed q ∈ Q is said to be a switching-free

system of (1.1). Given a Lyapunov function Vq for each vector field fq, the switching

decreasing condition is: for every q ∈ Q, Vq(x(t)) is decreasing on the sequence of

switching times at which σ either turns to or jumps away q [120, 22]. Dynamical

systems described by ordinary differential equations, i.e., equations of the form (1.1)

with subscript σ(t) dropped, are temporarily called ordinary dynamical systems.

To draw the primary source of the explosion of the area and the current limitation

in switched systems, let us consider the simple case of delay-free systems. At the first

place, it is worth mentioning that during the long history of the field of ordinary

dynamical systems, the celebrated Lyapunov stability theory and LaSalle’s invari-

ance principle have always played the principal roles in studying asymptotic behavior

of switching-free dynamical systems, i.e., converging properties of the paths of the

system state in the state-space. While applications of LaSalle’s invariance principle

range over a variety of control problems [132,18,77], invariant motion is primitive in
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f1(x(τi))

f2(x(τi))

τi

x(t)

t τi τi+1 τi+2 t

V1(x(t))

V2(x(t))

(a) (b)

Figure 1.1: Trajectory and Lyapunov functions in switched systems

contemporary control and communication systems [140,15].

Taking the point of view that evolutions of switched systems and switching-free

systems equally draw paths in the state space, it turns out that asymptotic behavior of

switched systems can be studied using the framework of ordinary dynamical systems.

To this end, we need to establish counterparts in switched systems of well-behaved

elements in ordinary dynamical systems such as semi-group property and decreasing

condition on Lyapunov function. However, the elegant semi-group property of trajec-

tories of ordinary dynamical systems is lost in switched systems. The behind rationale

is: trajectories of switched systems are concatenations of short pieces of trajectories

of ordinary dynamical systems, which means that the behaviors of switched systems

are merely determined by transient behaviors of ordinary dynamical systems. This

lays the primary obstacle makes a principal distinction of switched systems.

On the contrary, the mild decreasing condition on Lyapunov function in ordinary

dynamical systems has a direct counterpart in switched systems, that is the switching

decreasing condition. As witnessed over decades, the switching decreasing condition

provides a great convenience in developing stability theories for switched systems

following the classical framework dynamical systems [120, 22, 13, 63, 107]. However,

unlike the case of ordinary dynamical systems, the switching decreasing condition

appears to be restrictive when impose on switched systems.
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We have Figure 1.1 to illustrate the loss of the semi-group property and the

restrictiveness of the switching decreasing condition in switched systems. There, the

set Q is {1, 2} and τi, . . . , τi+2 are switching times, V1 and V2 are Lyapunov functions

of ordinary dynamical systems whose vector fields are f1 and f2, and x(t) is the

trajectory of the overall system. While the semi-group property states that from the

state at a time, we can determine the state at any other time by merely the time

interval between these times, Figure 1.1(a) shows that it is impossible to determine

the state at a time after τi from a state at a time before τi without involving the time

τi at which the vector field of the system is changed. The semi-group property is thus

broken in switched systems. Furthermore, in view of Figure 1.1(b), the switching

decreasing condition might be desired for convergence. Unfortunately, as the vector

fields f1 and f2 are independent of each other, the Lyapunov functions are short-time

cross-independent along vector fields as well, i.e., in short time periods, behaviors

of Lyapunov functions along different vector fields are independent of each other.

Thus, in short time periods, decreasing in a Lyapunov function does not prevent the

remaining one from increasing. As illustrated in Figure 1.1(b), this may result in

diverging behaviors of all Lyapunov functions.

In another consideration, the achieved results in qualitative theory of hybrid sys-

tems, which of course applicable to switched systems, usually impose an appropri-

ate semi-group property on system trajectories by either combining the discrete and

continuous states into a hybrid state in a merged space or directly making an as-

sumption so that the results can be carried out using the framework of classical

theory [154, 30, 102, 126]. It was pointed out that discrete dynamics represented by

switching signals have time-varying and hence nonautonomous nature [62, 80]. Ac-

cording to [9], imposing semi-group property in nonautonomous systems leads to

conservative results. In light of [58,9,62,80], improvements to qualitative theories for

general hybrid systems [154,30,102,126] are well motivated.
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Under closer scrutiny, it turns out that models of ordinary differential equations

are often only first approximations to the far complex models of the real systems which

would include some of the past states [59]. In many applications, time-delay is a source

of destabilizing and cannot be ignored [59, 81, 113]. This couples with the important

role of switching and delay effect in contemporary systems [5] well motivates studies

on switched systems in which the ordinary dynamical systems are delay-dependent.

In this merit, a stability theory for this class of switched systems, which can be

appropriately termed switched time-delay systems, is not only of theoretical advance

but also of practical importance.

In light of the above considerations, a comprehensive stability theory for switched

systems might address the destabilizing behavior made by either switching events or

time-delay. Nevertheless, while the switching decreasing condition has still played an

important role in contemporary stability theories of both (delay-free) hybrid automata

and switched systems, stability theory for switched time-delay systems remains open.

By virtue of the vast achievements in control of ordinary dynamical systems

[111, 128, 115, 148, 103, 85, 127, 49, 77, 19, 25, 12], well-studied control constraints such

as underactuated, unmodeled dynamics, unmeasurable state, and uncertain system

models are of either practical or theoretical interests for control of switched systems.

However, these constraints often make the widely imposed switching decreasing con-

dition unsatisfiable. Firstly, while this condition requires large decreasing rates, clas-

sical adaptive control for handling parameter uncertainties typically exhibits slow

parameter convergence rates – an undesired performance in classical adaptive control

as well [12]. Though this contradiction can be overcome by means of logic-based

switching [65], the problem remains unsolved for systems in which switching signal is

not the control variable. Secondly, even if switching logic can be used for control, the

unmeasured dynamics makes computation of switching variables based on verifica-

tion of Lyapunov functions unfeasible. Finally, when only system output is available
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for control design, state observer is then naturally involved. However, designing an

observer fulfilling switching decreasing condition seems to be impossible under fast

switching.

Thus, it is not surprising that despite rich achievements in stability analysis,

advanced control of switched systems remains in its early stage.

1.2 Early Achievements in the Area

1.2.1 Qualitative Theory

Stability theory of dynamical systems emerged from the foundation works of H.

Poincaré, A. M. Lyapunov, and G. D. Birkhoff [17, 56, 131]. In correspondence with

significant achievements in the qualitative theory of dynamical systems in Euclidean

spaces [83, 90], general dynamical systems in Banach spaces came to interest [58].

It turned out that elegant qualitative properties of dynamical systems in Euclidean

spaces such as compactness, invariance, and attractability of limit-sets of trajecto-

ries become expensive and are much topology-dependent in the general setting of

dynamical systems in Banach spaces [58].

The early efforts to bring out the field of hybrid systems were made through the

series of Lecture Notes in Computer Science on Hybrid Systems started with [52, 3,

2]. Since the special issue [4], rich results on qualitative theory of switched/hybrid

systems have been actively carried out [22, 154, 102, 30, 13, 63, 107, 126]. Under the

primitive assumption on invariant motions of constituent systems/agents, high level

control of hybrid systems with operational goals has been addressed [140,150,46,45,

105,15].

Using hybrid state combined from the discrete and continuous signals to define

generalized dynamical systems in merged spaces with axiomatic semi-group property,

qualitative theories have been developed for hybrid systems in the framework of clas-
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sical theory of dynamical systems [108,102,126]. It is observed that the topology for

convergence in discrete subspace were not appropriately considered.

In [13], a notion of weak invariance in the continuous space was introduced for

an invariance principle of switched systems without imposing semi-group property on

discrete dynamics. The achieved result is therefore non-conservative. Due to the use

of arcs cut-off of one single trajectory, the result gives loose estimates of attractors and

is limited to dwell-time switching signals. In [107], another notion of weak invariance

is defined via the space of translates of switching signals for a further improvement

of LaSalle’s invariance principle for switched systems. Though improved estimates of

attractors were obtained for the larger class of average dwell-time switched systems,

refinement of invariant sets in terms of level sets and hence the structure of attractors

has not been studied in [107]. Considering nonlinear norm-observability properties

for deriving convergence of a trajectory from its converging segments, LaSalle-like

theorems were obtained for asymptotic stability of a more general class of switched

systems undergoing regular switching signals [63].

1.2.2 Nonlinear Control

The introduction of the differential geometric approach to nonlinear control made a

theoretical clearance for formulating control problems in terms of systems in trian-

gular forms [69]. The emerged facts include: i) under an appropriate transformation,

the original model of the interested system can be transformed into a triangular

form [69,70,28,34]; and ii) control of systems in triangular forms can be designed in a

systematic manner [70,85]. Moreover, if a local transformation was made, then control

performance can be specified for preserving the validation of the transformation.

A seminal achievement in control of systems in triangular forms is the backstepping

design method undergoing the principle of propagating a desired property through a

sequence of augmentations [85]. Stability in backstepping designs is built upon the
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notion of input-to-state stability and its Lyapunov characterization [133,136].

During the formulation progress of the notion of input-to-state stability (ISS)

as a unification of the notions of Lyapunov stability [56] and input-output stability

[159,38], it has turned out that a variety of control problems can be formulated in the

framework of input-to-state stability [133,136,135,139]. Particularly, viewing a system

in triangular forms with appended dynamics as an interconnection of two separated

systems, the superposition property of ISS–Lyapunov functions can be exploited to

design a control stabilizing the overall system without measuring the state as well as

the Lyapunov function of the appended dynamics [74,7, 84,32,48].

Efforts in dealing with situations of which the control depends on functions whose

existence is guaranteed but whose determination is failed gave rise to the field of

adaptive neural control [112, 132, 96, 49, 44]. The primary principle is to bring out

linear forms of estimation errors amenable to the use of traditional Lyapunov-based

adaptive control. Then, parameter estimates can be updated on-line based on the

measured regulation error [94,49]. Though the effectiveness of either adaptive control

and adaptive neural control ranges over a variety of classes of systems, the parameter

update laws usually suffer from discontinuities which switching tends to introduce.

The observation problem arises when there is a need for internal information

but only external measurements are available. In nonlinear systems, the notions

of controllability and observability were formulated in [60]. Existence of observers

for nonlinear systems was studied in [147] through the introduction of the notion

of detectability. For nonlinear systems containing a linear part, high-gain observers

combined with Lipschitzian condition and singular perturbation were proposed for

output feedback controls of nonlinear systems in [20] and [42], respectively.

In summary, the feasibility of nonlinear control is strongly dependent on the prob-

lem context. Under certain practical constraints such as unmodelled dynamics, de-

sired information for making switching-logic is not available. In the reversed direction,
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switching events tend to break feasibility of the control obtained by nonlinear con-

trol methods. Control under the combined effects of switching events and practical

restrictions therefore deserves study.

1.3 Contribution of the Thesis

The main contributions of the thesis are:

Transition model for dynamical systems. By introducing the notion of rule of

transition, we provide a model of dynamical systems amenable to developing qualita-

tive theories. The model generalizes the classical description of dynamical systems as

evolution mappings [131] by dropping the particular time transition properties and

topological structure of the state space. The behind rationale is to follow the fun-

damental principle of classical qualitative theory of dynamical systems which states

that long-term behavior of a dynamical system is governed by the time transition

properties of its motion rather than the specific mechanism generating such motion.

In this manner, we expose the facts that i) in order to develop a non-conservative

qualitative theory for a dynamical system, the primary step is to identify the defining

time transition property of the system; and ii) developing a semi-group property to

study long-term behavior shall specialize the class of systems and might give rise to

conservative results. For example, in switched systems, including discrete states as

part of the limit sets is not meaningful since the discrete parts of these limit sets are

usually the whole discrete space.

The notions of switching sequence, transition indicator, and transition

mappings for switched systems. With the goal of exposing timing properties of

the transition mappings of switched systems, we consider the notion of switching se-

quence to quantize the evolution of switched systems into running times of constituent

dynamical systems. The underlying observation is that though the whole motion of
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switched systems does not enjoy the semi-group property, the property holds on finite

running times of constituent dynamical systems, and hence the transition mapping

can be fully determined by the switching sequence, transition indicator, and transi-

tion mappings of constituent dynamical systems. The corresponding transition model

of switched systems is therefore amenable to the utilization of the achieved results

in switched systems and to the development of qualitative theory. By switching se-

quences, it reflects the observation that stability in switched systems is governed by

the timing properties of switching advents rather than the specific mechanism tailor-

ing the advents of switching events [62]. In addition, by switching sequences, there is

no preclusion for switching events of zero running times which may occur in limiting

behaviors – the main interest in qualitative theories.

A qualitative theory for switched systems. We address the problem of locating

attractors of switched systems using auxiliary functions. Instead of merging spaces

to bring out a switched autonomous system, we study primitive groups of trajectories

generated under fixed switching sequences and develop an invariance principle for the

class of switched non-autonomous systems to which switched autonomous systems

belong. From these primitives, stronger results can be obtained in terms of uniformity.

The results hold over a class of persistent dwell-time switching sequences to which

dwell-time and average dwell-time switching sequences are special cases.

We follow the spirit of the original LaSalle’s invariance principle that uses de-

creasing properties of Lyapunov functions to derive the first estimates of attractors,

and then uses the characterizing properties of limit sets of trajectories to refine these

first estimates. In this spirit, it reveals the fact that the invariance property of limit

sets of trajectories of classical dynamical systems is one of the properties amenable

to refining the first estimates of attractors, and hence it is more natural to make

refinement using typical property of the interested system rather than boiling down

to the semi-group and invariance property of classical dynamical systems.
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The quasi-invariance property of limit sets of trajectories of switched systems

are then revealed through limiting switching sequences. Using this property, we in-

troduce the principle of small-variation small-attractor for an invariance principe of

general switched non-autonomous systems without imposing the usual switching de-

creasing condition. We present the observation that bounded variations are possible

via bounded periods of persistence and their compensations can be made in dwell-

time intervals. Further invariance principles for switched autonomous systems are

then obtained as consequences.

A qualitative theory for switched time-delay systems. We introduce a tran-

sition model of switched time-delay systems. Converging behavior of trajectories of

switched time-delay systems is studied on the Banach space of continuous functions.

We show that bounded trajectories in the Euclidean space give rise to compact and

attractive limit sets in the function space. The notion of limiting switching sequence

is further utilized to characterize the quasi-invariance property of limit sets.

Treating the delay time and the period of persistence on an equal footing, we show

that the decreasing condition on composite Lyapunov function also provides estimates

of increments on periods of persistence. Then, we develop a further relaxed invariance

principle for switched time-delay systems removing switching decreasing condition.

A time-delay approach to delay-free switched systems is presented accordingly.

Small-variation small-state principle for asymptotic gains of switched sys-

tems. Looking towards tools for control design of switched systems, we study positive

Lyapunov functions for asymptotic gains in switched systems. The principle of small-

variation small-state is further studied for relaxed results that do not impose the usual

switching decreasing condition. Again, the behind rationale is that small state can be

observed from small ultimate variations of auxiliary functions, which can be achieved

with dwell-time switching events, while small variations of continuous functions do

not impose consistent decrements. For switched time-delay systems, we derive the
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asymptotic gain via Lyapunov-Razumikhin approach. Upon satisfaction of Razu-

mikhin condition, estimates of past states in terms of current state are available and

hence delay-free control is possible.

Gauge design method for uniform-switching adaptive control of switched

nonlinear systems. We address the problem of achieving a control objective uni-

formly with respect to the class of persistent dwell-time switching sequences. Con-

stituent systems whose models contain unknown time-varying parameters and un-

measured dynamics are interested. It is observed that due to unmeasured states,

verifying switching conditions using full state feedback is impossible. To overcome

this obstacle, we examine the stability characterizations of the appended dynamics

such as growth rate, decreasing rate and the timing characterizations of switching

sequences such as persistent dwell-time and period of persistence. It turns out that

whenever the state of the controlled dynamics is dominated by the unmeasured state,

then the desired behavior of the overall system is guaranteed by the stabilizing mode

of the unmeasured dynamics, and in the remaining case, i.e., the unmeasured state

is dominated by the measured state, estimates of functions of the unmeasured state

in terms of the measured state are available and a measured-state dependent con-

trol can be designed to make the controlled dynamics the driving dynamics of the

overall system. Thus, the gauge design method is introduced undergoing the princi-

ple of making the unmeasured dynamics and the controlled dynamics act as gauging

dynamics of each others. An important advantage of this method is the allowance

of considering unknown time-varying parameters as input disturbance to address the

disturbance attenuation problem for switched systems without considering parameter

estimates as part of system state and hence increasing difficulty in verifying switching

conditions is avoided.

Switching-uniform adaptive output feedback control for switched nonlin-
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ear systems. We address the problem of stabilizing the continuous state of uncertain

switched systems using only output measurements. The primary difficulty lies in the

discrepancy between control gains of constituent systems. The gauge design frame-

work is thus called for an adaptive high-gain observer, in which the dynamics of

the whole system is interchangeably driven by the stable modes of the unmeasured

dynamics and the coupled dynamics of error variables and state estimates. The re-

sulting output feedback cotnrol scheme is hence of non-separation-principle. It turns

out that the observer’s poles are no longer arbitrarily assigned as in nonlinear con-

trol of continuous dynamical systems and destabilizing terms raised by non-identical

control gains might be addressed for non-conservative results. Considering variations

in control gains, full-state dependent control gains are allowed.

Switching-uniform adaptive neural control. Adaptive neural control is pre-

sented for a class of switched nonlinear systems in which the sources of discontinu-

ities making neural networks approximation difficult are uncontrolled switching jumps

and the discrepancy between control gains of constituent systems. Due to switching

jumps, neural networks approximations are presented for dealing with unknown func-

tions and a parameter adaptive paradigm is called for dealing with unknown constant

bounds of approximation errors. In this way, the orders of functions of signals with

discontinuity do not increase as in classical use of adaptive neural control. To deal

with discrepancy between control gains, we introduce a discontinuous adaptive neural

control and then present its smooth approximation for recursive design. A condition

in terms of design parameters and timing properties of switching sequences is con-

sidered for verifying stability conditions on the resulting closed-loop system. It is

observed that when there is no switching jump, the obtained control achieves the

control objective under arbitrary switching.
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Chapter 2

Transition Model of Dynamical

Systems

The main purpose of this chapter is to bring out a model of switched systems from

the transition model of general dynamical systems. Among the existing models of

switched systems which often involve differential equations for describing subsystems,

the transition model of switched systems in this chapter intends to quantize the

transition in the continuous space into switching events for studying limiting behavior

of switched systems. Due to the fact that zero running time switching events are

precluded in the usual description of the discrete dynamics of the underlying hybrid

system using piecewise constant right continuous functions, the notions of sequence

of switching events and transition indicator are presented for improvement.

2.1 Basic Notations

The notations N,R and R+ denote the sets of nonnegative integers, real numbers, and

nonnegative real numbers, respectively. For a n ∈ N, Rn is the usual n–dimensional

Euclidean space. The notation | · | is used for absolute value of scalars and essential

15
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supremum norm of scalar valued functions. We use ‖ · ‖ for the Euclidean norm

of vectors and essential supremum Euclidean norm of vector valued functions. The

notation ‖ · ‖F is the usual Frobenius norm of matrices. For a subset A of Rn, the

distance between a point x ∈ Rn and A is ‖x‖A
def
= inf{‖x− y‖ : y ∈ A}.

We often use {•i}i to denote infinite sequences {•i}∞i=0. The central dot · represents

arguments of functions. For a product set A = A1 × . . . × An × . . ., Pri : A → Ai is

the i-th coordinate projection mapping, i.e., ∀i ∈ N\{0}, Pri((a1, . . . , an, . . .)) = ai.

By a time sequence, we means a divergent infinite sequence in R+.

We shall use the standard notions of comparison functions in [56,133,88]. Consider

the continuous functions α : R+ → R+ and β : R+ × R+ → R+. The function α is

said to be of class-K if it is strictly increasing and is zero at zero. It is of class–K∞ if

it is of class–K and unbounded. The function β is said to be of class–KL if for each

fixed t, the function β(·, t) is of class–K and for each fixed r, β(r, t) → 0 as t → ∞.

Finally, the function β is said to be of class–KK if for each fixed r, both functions

β(·, r) and β(r, ·) are of class–K.

2.2 Dynamical Systems

The concept of dynamical system has its origin in Newtonian mechanics through the

foundation works of H. Poincaré, A. M. Lyapunov, and G. D. Birkhoff [131]. It is a

primitive concept whose understanding should be left intuitive in general and precise

descriptions of the dynamical system can be postulated in specific applications.

In systems and control, the qualitative properties of dynamical systems are of

primary concern and hence models accessible for determining all possible behaviors

of the interested dynamical system are of primitive interest.

For the time being, collections of time diagrams of system state and mechanisms

for generating such collections are usually called for modeling dynamical systems [151].
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In this thesis, we are interested in the transition model of dynamical systems which

basically consists of a space and a rule of change of position.

2.2.1 Transition Model

Definition 2.2.1 (dynamical system) The transition model of dynamical systems

is the triple

Σ = (T,W,R), (2.1)

where T is a set of real numbers termed time space, W is a set termed the signal

space, and R is the rule of transition that is a map from T × (T × W) to W.

Throughout this thesis, a state of the system is an instant of the signals involved

in the system. We shall use the terms system variables, variables in/of the system,

and state variables equally in indicating the variables representing instants in time of

the signals involved in the system.

Intuitively, by an action of the rule of transition on a point (t, (s, w)) ∈ T×(T×W),

it means a guided movement in W from the location w attached to some time s in a

time t. We would clarify that s needs not to carry the meaning of the initial time as

usual. In the coming model of switched system in Section 2.4.3, it is the time interval

since starting for which the system has run to reach the state x.

The above transition model of dynamical systems is equivalent to the behavior

model of dynamical systems Σ = (T,W,B), where T and W are as above and B

is the behavior which is a subset of the set of all maps from T to W [151]. In

fact, given a rule of transition R, the set B = {R(·, t, w) : (t, w) ∈ T × W} is a

behavior. Conversely, given a behavior B, it is a rule of transition the map R defined

by R(t, s, w) = β(t+s, w),∀t ∈ T, t+s ∈ T if there is some β ∈ B such that β(s) = w

and, for a t ∈ T, R(t, s, w) = w if either t+ s 6∈ T or no such β exists.

Though the transition and behavior models are equivalent, we are interested in
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the former one as the rule of transition naturally describes the time transition prop-

erty along the trajectory of the system which is necessary for accessing the invariance

properties of limit sets of trajectories in making conclusions on the long-term be-

haviors of the systems. This observation has its well root in the classical qualitative

theory of dynamical systems [56,130,91,137,8, 108,29].

Finally, it is worth mentioning that the above notion of rule of transition does not

impose R(t, t, w) = w as in the classical notion of motion [56]. As will be annotated

in the next sections, this makes (2.1) capable of modeling a large class of real systems.

2.2.2 Equivalence in Classical Models

As well analyzed in [151], the behavior model of dynamical systems respects the nature

and hence gives a closer description of the real system. As a result, any model of

dynamical system introduced so far including hybrid automata and switched systems

ought to have an equivalent behavior model and hence an equivalent transition model.

Here, we make manifest the realization of the rule of transition in the classical models

of autonomous and non-autonomous dynamical systems.

Definition 2.2.2 ( [129]) Let X be a topological space, a dynamical system on X is

a continuous mapping π : R ×X → X that satisfies the following properties:

i) π(0, x) = x,∀x ∈ X ; and

ii) π(t2, π(t1, x)) = π(t1 + t2, x),∀t1, t2 ∈ R.

Definition 2.2.3 ( [29]) Let X and W be topological spaces. A non-autonomous

dynamical system on X with base space W is a couple (π, ϕ) in which

i) π is a dynamical system on W in the sense of Definition 2.2.2; and

ii) ϕ : R+ × X × W → X is a cocycle mapping on X , i.e., ϕ is continuous,

ϕ(0, x, w) = x,∀x ∈ X , w ∈ W, and for all t1, t2 ∈ R+, x ∈ X , w ∈ W, we have
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ϕ(t1 + t2, x, w) = ϕ(t2, ϕ(t1, x, w), π(t1, w)).

The mappings π and ϕ in the above definitions are usually called the evolu-

tion/transition mappings. We shall alternatively call ϕ the non-autonomous dynam-

ical system without embarrassment. In the context of the general dynamical system

in Definition 2.2.1, we call the systems in Definitions 2.2.2 and 2.2.3 the ordinary au-

tonomous dynamical system (OADS) and ordinary non-autonomous dynamical sys-

tem (ONADS), respectively.

The immediate equivalent transition model of the OADS is the one whose time

and signal spaces are T = R, W = X , and whose rule of transition is R(t, s, x) =

π(t, x),∀t, s ∈ T,∀x ∈ W. Also, an equivalent transition model of the ONADS is

the one whose time and signal spaces are T = R+,W = W × X , and whose rule of

transition is R(t, s, (w, x)) = (π(t, w), ϕ(t, x, w)),∀s, t ∈ T,∀(w, x) ∈ W.

2.2.3 Trajectory, Motion, Attractor, and Limit Set

The transition model in Definition 2.2.1 tends to a model applicable to all possible

dynamical systems by calling for three basic elements any dynamical system ought

to have. To classify dynamical systems, more properties on the rule of transition are

considered. The qualitative theory of dynamical systems classifies the systems by

their limiting behavior such as stability, instability, periodicity, and chaos. In this

aspect, the primitive element is trajectory and the primitive qualitative notions are

motion, attractor, and limit set [56,130].

Likewise, as W models all signals involved in the system, it is natural to divide W

into subspaces when classification of signals is desired. By virtue of the behavioral

theory of dynamical systems [151], the variables representing instants of signals in a

system can be classified into manifest and latent variables. Continuing this idea, we

shall use WM ×WL to denote W when it is desired the clarification between the space
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of manifest variables WM and the space of latent variables WL . Let us begin with

the primitive notion of trajectory for systems described by the transition models.

Definition 2.2.4 (trajectory) Let Σ = (T,WM × WL ,R) be a dynamical system.

Let (xM , xL) ∈ WM × WL and s ∈ T fixed. The (s, xL)–interacting trajectory through

the point xM ∈ WM in the manifest space of the system is the set Os,xL (xM ) = {yM ∈

WM : ∃(t, yL) ∈ T × WL , (yM , yL) ∈ R(t, s, (xM , xL))}.

Let tT = inf{t : t ∈ T} and tT = sup{t : t ∈ T}. Adopting the classical notion

of motion [129], we have the following notions of motion, attractor, and limit set for

dynamical systems described by transition models.

Definition 2.2.5 (motion) Let Σ = (T,WM × WL ,R) be a dynamical system, in

which WM is a topological space. Let (xM , xL) ∈ WM ×WL and s ∈ T fixed. For each

t ∈ T, the (t, s, xL)–motion through xM ∈ WM is the set Rs,xL (xM )(t) = {yM ∈ WM :

∃yL ∈ WL , (yM , yL) ∈ R(t, s, (xM , xL))}.

Definition 2.2.6 (attractor) Let Σ = (T,WM ×WL ,R) be a dynamical system, in

which WM is a topological space. Let A ⊂ D ⊂ WM and xL ∈ WL fixed. Then, the

set A is said to be an (s, xL)–interacting attractor of Σ with basin of attraction D if

for all xM ∈ D, the motion Rs,xL (xM )(t) topologically converges to D as t→ tT.

Definition 2.2.7 (limit set) Let Σ = (T,WM × WL ,R) be a dynamical system, in

which WM is a topological space. Let (xM , xL) ∈ WM × WL and s ∈ T fixed. The

ω–limit set of the (s, xL)–interacting trajectory Os,xL (xM ) is the set

ωs,xL (xM ) =
⋂

T≥tT

⋃

t≥T

Rs,xL (xM )(t). (2.2)

We would mention that the above notions of attractor and limit set have their

very primary root in the theory of pullback attractor of ordinary non-autonomous
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dynamical systems [79, 29]. This theory carried out the fact that though the limit

sets of trajectories of non-autonomous dynamical systems are not invariant in gen-

eral, their non-autonomous limit sets – defined in terms of the interaction with the

backward motion of the time-varying parameters – are invariant. Inspired by this

fact, we introduce (2.2) with the following observation.

The invariance property of trajectories of ordinary autonomous systems is due

to the semi-group property of their transition mappings. As for the general model

(2.2.1), there is no restriction on the transition mapping R, there is no conclusion

on invariance of the limit sets can be made. However, by dividing the signal space

W into manifest and latent spaces to bring out the role of the latent variables in

tailoring the trajectory of the manifest variables, it suggests that the dynamics of

the latent variables can drive the limit sets for invariance. In this thesis, attaching

switching sequences to the backward motion of the time-varying parameters for a rule

of transition of latent variables consisting of switching sequences and the time-varying

parameters, an invariance property is proven for the corresponding non-autonomous

ω-limit sets of switched non-autonomous systems.

Finally, when the manifest space WM is the whole space W, the prefix “(s, xL)-

interacting” in the above definitions shall be dropped accordingly.

2.3 Hybrid Systems

The transition model of dynamical systems (2.2.1) at a high level of generality calls for

the basic elements that a dynamical system ought to have. While the time and signal

spaces usually available from the designation of the interested variables, specification

of the rule of transition commits an important role to analyzing mutual effects between

signals in the systems.

In most applications, there are two types of signals: discrete signals taking val-
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ues in discrete sets and continuous signals taking values in continuums. While the

rule of transition of the continuous variables and the influence of discrete variables

on their dynamics can be sufficiently described by a set of transition mappings of

ordinary dynamical systems labeled by discrete values of the discrete variables, rule

of transition of the discrete variables are usually of logical description which may be

far more complicate for treatability. For the purpose of studying switched systems,

we introduce in this section the notion of sequence of switching events for describing

the discrete dynamics at the lowered level of abstraction.

2.3.1 Hybrid Transition Model

In the following, Q is the usual discrete set and E = Q × Q. In the formal language

of hybrid automata, we call elements of E the edges.

Definition 2.3.1 A transition in the discrete set Q is a sequence σ = {(ei,∆τi)}i

⊂ E×R+ satisfying Pr1(e0) = Pr2(e0) and Pr1(ei) = Pr2(ei−1), i ≥ 1. For each i ∈ N,

the pair (Pr2(ei),∆τi) is called the i-th switching event of σ.

Definition 2.3.2 A rule of transition in the discrete set Q is a collection RQ = {σγ :

γ ∈ I} of transitions in Q, where I is an index set.

Intuitively, the discrete dynamics in Q can be described as follows. The discrete

state is initiated at q0 = Pr1(e0) at some time t0. Then, at the time t1 = t0 + ∆τ0, it

is transferred to q1 = Pr2(e1) at which the process continues. We have the following

notion of hybrid system.

Definition 2.3.3 (hybrid system) A hybrid dynamical system is a hexad

ΣH =
(

R+,Q,X, {ψq}q∈Q,RQ,
)

, (2.3)

where Q is a discrete set which is the space of the discrete signals, X is a topological
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space which is the space of the continuous signals, ψq : R+ × X → X, q ∈ Q are

OADS on X, : R+ ×Q×X → X is the transition map of the continuous state, and

RQ = {σγ : γ ∈ I} is the rule of transition in Q in which each switching events of

any transition σγ is a map from R+ × Q × X to Q × R+, and the first coordinate of

the first switching event of any transition is a constant function.

The evolution of the hybrid system (2.3.3) can be logically described as follows.

Given a transition σ ∈ RQ whose sequence of switching events is {(eσ,i(·),∆τσ,i(·))}i.

Let qσ,i = Pr1(eσ,i). The continuous state of the system evolves from the initial state

xσ,0 ∈ X at the initial time tσ,0 under the transition mapping ψqσ,0 until the time

tσ,1 = tσ,0 + ∆τσ,0(tσ,0, qσ,0, xσ,0). At the time tσ,1 the continuous state is transferred

from x−1 = ψqσ,0(∆τσ,0(·), xσ,0) to xσ,1 = (tσ,1, qσ,0, x
−
σ,1) according to the map , and

the discrete state is transferred to qσ,1 = Pr2(eσ,1(tσ,1, qσ,0, x
−
σ,1)), and a new running

time ∆τσ,1 = ∆τσ,1(tσ,1, qσ,0, x
−
σ,1) is computed. Then, the process continues.

We now specify for the hybrid system ΣH its basic elements in the general frame-

work of the transition model of dynamical systems. The time and signal spaces are

T = R+ and W = E × X. In hybrid systems, all variables are manifest. To specify

the rule of transition, it is observed that the rule of transition include two parts:

rule for transition of continuous variables determined by {ψq}q∈Q and , and rule for

transition of discrete variables determined by RQ.

From the above analysis, for each σ, the sequences {tσ,i}i and {xσ,i}i are well-

defined. For a time t ∈ R+, let iJ (t) the largest integer satisfying tσ,iJ (t) ≤ t.

Let be a fictitious element of E, and define the map σ : R+ → E defined by

σ(tσ,i) = eσ,i and σ(t) = for t 6∈ {tσ,i}. Let Rσ be the map Rσ : T → W de-

fined by Rσ(t; tσ,0, eσ,0, xσ,0) = ( σ(t), ψqiJ (t)
(t− tiJ (t), xiJ (t))). Then, R(t, s, (e, x))

def
=

{Rσ(t; s, e, x) : σ ∈ RQ} is the rule of transition of ΣH .
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2.3.2 A Comparison

To make manifest the right of the above transition model of hybrid systems, let us

consider the following well-known model of hybrid systems reformulated in terms of

the above notions.

Definition 2.3.4 ( [23]) A hybrid dynamical system is a hexad

ΣH ,B =
(

R+,Q,X, {ψq}q∈Q,A,G
)

, (2.4)

where Q is the space of the discrete state, X is a topological space which is the space

of the continuous state, ψq : R+ × X → X, q ∈ Q are OADSs, A = {Aq}q∈Q, Aq ⊂ X

is the set of the jump sets, and G = {Gq}q∈Q, Gq : Aq → Q×X is the set of the jump

transition maps.

According to [21], the dynamics of ΣH ,B is as follows. Starting from a hybrid state

(q0, x0) ∈ Q×X at a time t0, the system evolves according to x(t) = ψq0(t−t0, x0), t ∈

R+ until x(t) enters (if ever) Aq0 at the point x−1 = ψq0(t1− t0, x0) at a time t1. At the

time t1, the transfer (q1, x1) = Gq0(x
−
1 ) is made. Then, from the hybrid state (q1, x1)

at time t1, the process continues.

From the above analysis, the time sequence {ti}i is well-defined. A time ti, i ∈

N, i > 0 is determined by the event “x(t) enters the set Aqi−1
.” As for each i ∈ N\{0}

the autonomous system ψqi−1
is deterministic, the set Aqi−1

is given a priori, and the

state xi−1 was determined from the previous transition event, the time ti at which x(t)

enters Aqi−1
is computable from xi−1. As such, for each i ∈ N, i ≥ 1, ∆τi

def
= ti−ti−1 is a

function of qi−1 and xi−1. Hence, the transition σ = {((qi−1, qi),∆τi)}i is well-defined

and is an element of the rule of transition RQ. Furthermore, let (q, x) = Pr2(Gq(x))

if x ∈ Aq and (q, x) = x, otherwise. Thus, the transition is well defined, and

hence ΣH ,B well induces ΣH .
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Finally, it is worth mentioning that the rule of transition with the last two argu-

ments fixed is a motion defined in [108]. As such, in some aspect, the hybrid transition

model in Definition 2.3.3 and the motion-based hybrid model in [108] are equivalent.

However, it is a trade-off for its very high level of abstraction the interacting dynamics

is hidden in the motion-based hybrid model in [108]. This leads to the fact that the

general results achieved in [108] implicitly impose the switching decreasing condition

when realizing to switched systems. As the model of hybrid systems in Definition

2.3.3 separates the rule of transition of continuous dynamics and the rule of tran-

sition of discrete dynamics, the theory in thesis accepts more relaxed condition, in

particular, the switching decreasing condition is no longer used. On the other hand,

the model in Definition 2.3.3 is capable of modeling hybrid systems in which discrete

variable may exhibit random dynamics, i.e., a transition of both continuous and dis-

crete states can come on the scene at any time. While systems of this property are of

normal interest in studying switched systems, the model in [21] does not describe this

class of systems. As such, in the context of switched systems, the model in Definition

2.3.3 can be considered as an improvement of the models in [108] and [21].

2.4 Switched Systems

2.4.1 Transition Model

Classifying the continuous and discrete dynamics of hybrid systems into manifest

and latent dynamics, respectively, and then studying the continuous dynamics under

the influence of the discrete dynamics gives rise to another model of hybrid systems

termed switched system. It turns out that the converging behavior of the continuous

state is usually governed by the time properties, particularly the dwell-time property,

of the rule of discrete transition rather than the specific model of the discrete dynamics

[62]. Thus, it is convenience to describe the rule of discrete transition as behaviors
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in a timing space. In this way, either state-dependent discrete transition or state-

independent discrete transition can be dealt with, and hence, in some aspect, the

resulting model of switched systems might be more general than the existing models

of hybrid systems. In light of this merit, the rule of transition of the discrete (latent)

variables can be formulated in terms of the following notion of switching sequence.

Definition 2.4.1 Let Q be a discrete set. A switching sequence in Q is a sequence

σ = {(qi,∆τi)}i ⊂ Q × R+. For each i ∈ N, the pair (qi,∆τi) is called the i-th

switching event of σ, and the number ∆τi is called the i-th running time of σ and the

running time of the i-th switching event of σ.

We have the following notion of switched system.

Definition 2.4.2 (switched autonomous system) A switched autonomous sys-

tem is a hexad

ΣA =
(

R+,Q,X, {ψq}q∈Q,S,
)

, (2.5)

where Q is a discrete set which is the space of the discrete signals, X is a topological

space which is the space of the continuous signals, ψq : R+×X → X, q ∈ Q are OADS

on X, S is a collection of switching sequences, and : R+×Q×X → X is the discrete

transition map of the continuous state.

In comparison to the transition model of hybrid systems in Definition 2.3.3, the

influence of the continuous variables on the dynamics of the discrete variable has been

hidden in the set of switching sequences S. The manifest space is now WM = X and

the latent space is WL = S. In switched systems, the rule of transition R is referred

to the transition in the space X of manifest continuous variables.

In the following, we shall call ψq, q ∈ Q the constituent systems or subsystems of

ΣA and the variable q taking values in Q the switching index. For a σ ∈ S and for

the i-th switching event of σ, (qσ,i,∆τσ,i), the number ∆τσ,i is also called a running

time of the respective component system ψqσ,i
.
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Similar to hybrid systems, the evolution of switched system ΣA is as follows. Given

a switching sequence σ ∈ S whose sequence of switching events is {(qσ,i,∆τσ,i)}i. From

an initial state x0 ∈ X at some initial time t0, the system evolves under the transition

mapping ψqσ,0 until the time t1 = t0 + ∆τσ,0 is reached. At the time t1 the system

state is transferred from x−1 = ψqσ,0(∆τσ,0, x0) to x1 = (t1, qσ,0, x
−
σ,1) according to the

map , and the transition mapping is switched to ψqσ,1 . Then, the process continues.

At this place, it is worth comparing the notion of switched systems in Definition

2.4.2 to the usual yet simple way for modeling switched systems, i.e., using piecewise

constant right-continuous signals σ to model switched systems by equations of the

from (1.1) (see Chapter 1) [95,142]. In the following, by a change of switching index

from q1 to q2, it means the change of the transition mapping from ψq1 to ψq2 .

In hybrid and switched systems ΣH and ΣA , a switching interval of the length

zero is meaningful either logically or physically. Let [ti−1, ti] be a such interval, i.e.,

ti−1 = ti. The simple description of the dynamics on this interval is: right at the time

ti = ti−1 the continuous state of the system and the switching index are transferred

to xi−1 and qi−1, respectively, they are transferred further to another state xi and

another index qi, respectively. Furthermore, if we consider ti − ti−1 as the running

time of the system, then a zero running time of the system physically can be: we

lock the system and switch its structure around before starting the system again.

Unfortunately, the right-continuous convention on switching signals do not describe

this important behavior as the mathematical object [t, t) is undefined. Furthermore,

as shall be clear, though it can be assumed that the switching intervals are all non-

zero, the limiting behavior may exhibit zero length switching intervals. As such, the

above notion of switching sequences gives an obvious improvement.

Though the mechanism of evolution of switched systems has described, we need

some further following notations for specifying the rule of transition in the transition

model of switched systems ΣA .
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2.4.2 Notations on Switching Sequences

In this subsection, we make some notations on switching sequences that will be used

throughout the thesis.

The set of all switching sequences is denoted by S. For a switching sequence σ ∈ S,

the notations eσ,i, qσ,i, and ∆τσ,i express that eσ,i = (qσ,i,∆τσ,i) is the i-th switching

event of σ. For i ∈ N, the number τσ,i = 0 if i = 0 and τσ,i =
∑i−1

j=0 ∆τσ,j, otherwise,

is called the starting time of the i-th switching event of σ. We shall call ∆τσ,i both

the i-th running time of σ and the running time of the i-th switching event.

Associated to each switching sequence σ ∈ S, we have the following useful operator

i−σ (·) which shall be used throughout the thesis. Let t ∈ R+ be a nonnegative number,

i−σ (t) is the largest integer satisfying τσ,i−σ (t) ≤ t, i.e., i−σ (t) = max{i ∈ N : τσ,i ≤ t}.

We shall call i−σ the transition indicator.

Definition 2.4.3 A switching sequence is said to be non-blocking at a time t ∈ R+

if the number of its switching events of zero running time at t is finite. It is said to

be non-blocking if it is non-blocking at every time t ∈ R+

According to [62], switching sequences can be further classified based on dwell-time

properties as follows.

Definition 2.4.4 A switching sequence σ ∈ S is said to have

i) a dwell-time τd > 0 if ∆τσ,i ≥ τd,∀i ∈ N;

ii) a persistent dwell-time τp with chatter bound of persistence Np if it has an infi-

nite number of running times of the length no smaller than τp and the number of

switching events between every two consecutive switching events of the running

times no smaller than τp is bounded by Np; and

iii) a persistent dwell-time τp with period of persistence Tp if it has an infinite

number of switching events whose running times are not smaller than τp and
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for every two consecutive switching events eσ,i and eσ,j of this property, we have

τσ,j − τσ,i+1 ≤ Tp;

We shall denote by SD [τd] the set of all switching sequences having the same dwell-

time τd, by SA [τp, Np] the set of all switching sequences having the same persistent

dwell-time τp with the same chatter bound of persistence Np, and by SP [τp, Tp] the

set of all switching sequences having the same persistent dwell-time τp with the same

period of persistence Tp.

To close this subsection, let us mention that the purpose of introducing SA [τp, Np]

is to include switching sequence possessing zero running times. While the notions of

dwell-time and persistent dwell-time with a period of persistence switching sequences

have been well-recognized [95,62,142], the notion of persistent dwell-time with chatter

bound of persistence switching sequence is a modification of the notion of average

dwell-time switching signal in the literature [62]. It can be verified that the switching

sequences in SA [τp, Np] with no zero running time are equivalent to switching signals

of average dwell-time τa = τp/(Np + 2) and chatter bound Na = Np.

2.4.3 Continuous Transition Mappings

In this subsection, we introduce the notions of continuous transition mappings for

realizing the rule of transition of switched systems in terms of transition mappings of

the component systems. In this merit, the continuous transition mappings of switched

systems play the important role of carrying semi-group properties of the component

systems in their respective running times.

Autonomous Mappings

Consider the general switched system ΣA in Definition 2.4.2. We first consider the

case that the discrete dynamics causes no jump in continuous state, i.e., the following

condition holds.
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. . . . . .

ts
t

τσ,i−σ (ts+t)

t0 t0 + τσ,i−σ (ts)+1t0 + ts t0 + τσ,i−σ (ts+t)
(t0 + ts) + t

∆t

Tσ(τσ,i−σ (ts+t), ts, x)
Tσ(t, ts, x)

Tσ(0, ts, x)

Figure 2.1: Trajectory of switched system: t0 – the real starting time, ts – the time
elapsed from t0 to the real time t0 + ts at which the system state was read as x, t –
the time elapsed from t0 + ts to the current real time (t0 + ts)+ t, τσ,i−σ (ts+t) – the time
elapsed from t0 to the real time at which the most recent switch occurred, and ∆t –
the time elapsed from t0 + τσ,i−σ (ts+t) to the current real time.

Assumption 2.4.1 There is no jump in system state, i.e., the discrete transition

mapping is the identity mapping in its third argument:

(t, q, x) = x,∀(t, q, x) ∈ R+ × Q × X. (2.6)

For a switching sequence σ ∈ S and for a number ts, let (ts)
b
σ be the largest number

greater than ts to which there is no blocking time of σ in the interval [ts, (ts)
b
σ). Let X

be a fictitious element for X. We have the mappings Tσ,A : R+×R+×X, σ ∈ S, ts ∈ R+

defined as Tσ,A(t, ts, x) = X,∀t ≥ (ts)
b
σ − ts, ts ∈ R+, x ∈ X, and

Tσ,A(t, ts, x) =























ψq
i
−
σ (ts)

(t, x) if t ∈ [0, τσ,i−σ (ts)+1 − ts],

ψq
i
−
σ (ts+t)

(

ts + t− τσ,i−σ (ts+t),Tσ,A(τσ,i−σ (ts+t) − ts, ts, x)
)

if t ≥ τσ,i−σ (ts)+1 − ts,

(2.7)

for all t ∈ [0, (ts)
b
σ − ts), x ∈ X.

Though the mappings Tσ,A , σ ∈ S defined above are a bit mysterious, they actu-

ally play a role no less important than the evolution mappings π and ϕ in ordinary
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dynamical systems defined in Definitions 2.2.2 and 2.2.3. The mappings specify the

transition in the space X of the continuous variables under the influence of the dynam-

ics of switching sequence in the space S. With the help of Figure 2.1, this can be made

manifest as follows. The problem in question is to determine the future state in the

course of time from a visited state x. Like ordinary non-autonomous systems which

involve the time at which the system state visited x for determination, in switched

systems, the desired additional information is the time ts elapsed from the time t0 at

which the system started running. The time ts in fact carries the information on the

rule of transition for the determination.

Let us consider a number t ∈ [0, (ts)
b
σ − ts). As illustrated by Figure 2.1, if at the

time instant t0 + ts at which the system state visited x, it is known that the system

had run for a time of amount ts, then the component system driving the dynamics

is ψq
i
−
σ (ts)

. Then, it is also determined that ψq
i
−
σ (ts)

was driving the system until the

time t0 + τσ,i−σ (ts)+1 at which the driving component system is changed to ψq
i
−
σ (ts)+1

.

Note that the switching event associated with qi−σ (ts)+1 may has zero running time.

However, for τ̃
def
= τσ,i−σ (ts)+1, by definition of i−σ (·) and by non-blocking property of σ,

eσ,i−σ (τ̃) is the first non-zero running time switching event at t0 + τσ,i−σ (ts)+1. Thus, it

is ready to evolve further since t0 + τσ,i−σ (ts)+1 under ψq
i
−
σ (τ̃)

.

At a time instant, apart from t0 + ts by an amount of t, exceeding the running

time τσ,i−σ (ts)+1 − ts (since t0 + ts) of ψq
i
−
σ (ts)

, the component system taking the control

is ψq
i
−
σ (ts+t)

. However, in order to determine the state at t0 + ts via this transition

mapping, it is necessary to know the state x(t0 + τσ,i−σ (ts+t)) at which ψq
i
−
σ (ts+t)

started

running. Fortunately, as shown in Figure 2.1, this desired state is Tσ,A(τσ,i−σ (ts+t), ts, x)

which can be determined by recursively applying (2.7) from ts.

We shall call the family TA = {Tσ,A}σ∈S defined by (2.7) the autonomous contin-

uous transition mapping (ACTM) of ΣA . The following property of this mapping is

straightforward.
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Proposition 2.4.1 Under Assumption 2.4.1, the autonomous continuous transition

mapping TA defined by (2.7) is continuous and satisfies

Tσ,A(t1 + t2, ts, x) = Tσ,A(t2, ts + t1,Tσ,A(t1, ts, x)), (2.8)

for all t1, t2 ∈ R+, t1 + t2 < (ts)
b
σ − ts, x ∈ X, and σ ∈ S.

We now indicate the basic elements of the transition model of ΣA . As we are

interested in the dynamics of the continuous variables, the manifest space is WM = X

and the latent space is WL = S. It is observed that at the time ts the discrete variable

has run for a time amount of ts, which means that the switching sequence is at the

state σts – the ts-translate of σ. Thus, an obvious choice of rule of transition RL of

the latent variable is R(t, ts, σ)
def
= σts+t – the (ts + t)–translate of σ. Accordingly, the

rule of transition of ΣA can be specified as

R(t, ts, (x, σ)) = (Tσ,A(t, ts, x), σts+t). (2.9)

In light of the above consideration, a similar mapping TA for the case of non-

identity discrete transition mapping can be defined by a similar manner. In this case,

though the driving component system at any time apart from ts by an amount of t

is directly determined as ψq
i
−
σ (ts+t)

, determining the state at the time this component

system started running involves the transition mapping as follows.

For each σ ∈ S, let σ : R+ × X → X be the mapping defined as

σ(t, x) = (t, qσ,n(t), . . . (t, qσ,1(t), (t, qσ,0(t), x)) . . .), (2.10)

in which, for each t ∈ [ts, (ts)
b
σ − ts), (qσ,1(t), 0), . . . , (qσ,n(t), 0) is the sequence of

consecutive switching events of zero running time of σ at t, and qσ,0(t) be the index

of the switching event right before (qσ,1(t), 0).
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Let Tσ,A : R+ × R+ × X → X be the mapping defined as Tσ,A(t, ts, x) = X for

t ≥ (ts)
b
σ − ts, ts ∈ R+, x ∈ X, and, for t ∈ [0, (ts)

b
σ − ts), x ∈ X,

Tσ,A(t, ts, x) =































































ψq
i
−
σ (ts)

(t, x) if t ∈ [0, τσ,i+σ (ts)
− ts),

σ(τσ,i−σ (ts)+1, qσ,i−σ (ts)+1, ψq
i
−
σ (ts)

(τσ,i−σ (ts)+1 − ts, x)) if t = τσ,i−σ (ts)+1 − ts,

ψq
i
−
σ (ts+t)

(

ts + t− τσ,i−σ (ts+t),Tσ,A(τσ,i−σ (ts+t) − ts, ts, x)
)

if t ∈ (τσ,i−σ (ts)+1 − ts, τσ,i − ts), i > i−σ (ts + τσ,i−σ (ts)+1),

σ

(

τσ,i, qσ,i, ψq
i
−
σ (ts+t)

(

∆τσ,i−σ (ts+t),Tσ,A(τσ,i−σ (ts+t) − ts, ts, x)
)

)

if t = τσ,i − ts, i > i−σ (ts + τσ,i−σ (ts)+1).

(2.11)

The family TA = {Tσ,A}σ∈S defined by (2.11) is also called the autonomous con-

tinuous transition mapping of the switched system ΣA . Without repeating the above

argument, we have the following property of this mapping.

Proposition 2.4.2 If the transition mapping of the switched system ΣA is deter-

ministic, then the mapping TA defined by (2.11) is right-continuous and satisfies

Tσ,A(t1 + t2, ts, x) = Tσ,A(t2, ts + t1,Tσ,A(t1, ts, x)), (2.12)

for all t1, t2 ∈ R+, t1 + t2 < (ts)
b
σ − ts, x ∈ X, and σ ∈ S.

Likewise, the rule of transition in the signal space WM ×WL
def
= X×S of the tran-

sition model of ΣA with Tσ,A defined by (2.11) is R(t, ts, (x, σ)) = (Tσ,A(t, ts, x), σts+t).

Non-autonomous mappings

The transition model of switched systems introduced in Definition 2.4.2 treats all the

continuous variables on an equal footing in the interaction with the discrete state.

In applications, there is also a large class of systems in which part of the continuous

variables plays the role of either driving input or disturbance whose influence on the
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remaining continuous variables needs to be suppressed. Motivated by this considera-

tion, we introduce the following notion of switched non-autonomous systems.

Definition 2.4.5 A switched non-autonomous system is an octuple

ΣNA =
(

R+,Q,X ,W , {ϕq}q∈Q,S, π,
)

, (2.13)

where Q is a discrete set which is the space of the discrete signals, X and W are

topological spaces which are the space of the continuous signals and the space of the

continuous disturbance signals, respectively, ϕq : R+ × X × W → X , q ∈ Q are

ONADS, S is a collection of switching sequences, π is an OADS on W, and :

R+ × Q ×X ×W → X is the discrete transition map of the continuous state in X .

To specify the continuous transition mappings for system ΣNA , we suppose that

is the identity mapping in its third argument and also use X as a fictitious element

of X . The time (ts)
b
σ is as defined in Page 30. We have the mappings Tσ,NA :

R+ × R+ ×X ×W → X , σ ∈ S defined as follows.

Tσ,NA(t, ts, x, w) =























ϕq
σ,i

−
σ (ts)

(t, x, w) if t ∈ [0, τσ,i−σ (ts)+1 − ts],

ϕq
i
−
σ (ts+t)

(

ts + t− τσ,i−σ (ts+t),Tσ,NA

(

τσ,i−σ (ts+t) − ts, x, w
)

,

π(τσ,i−σ (ts+t) − ts, w)
)

if t ≥ τσ,i−σ (ts)+1 − ts,

(2.14)

for all t ∈ [0, (ts)
b
σ − ts), x ∈ X , w ∈ W, and Tσ,NA(t, ts, x, w) = X,∀t ≥ (ts)

b
σ − ts.

It is obvious that the mappings Tσ,NA play the same role as the mapping Tσ,A

in the autonomous case. The mapping specifies the transition in the space X under

the influence of the combined dynamics of switching sequence and the autonomous

dynamics in W of the time-varying parameter w.

As we are interested in the dynamics in X , the manifest space is WM = X and

the latent space is now WL = S × W. Based on Tσ,NA , the rule of transition for

a transition model of ΣNA can be specified once the rule of transition in the latent
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space – denoted as RL – is specified. Inheriting from theory of pullback attractor of

ordinary non-autonomous dynamical systems [79, 29], we have two specifications for

RL according to the motion of w: the rule of forward transition

→

RL (t, ts, (σ,w))
def
= (σts+t, π(t, w)), (2.15)

and the rule of pullback transition

⇋

RL (t, ts, (σ,w))
def
= (σts+t, π(−t, w)). (2.16)

Accordingly, for the transition model of ΣNA , we have the rule of transition

→

R (t, ts, (x, (σ,w)))
def
= (Tσ,NA(t, ts, x, w), (σts+t, π(t, w))), (2.17)

which is appropriately termed rule of forward transition, and the rule of pullback

transition

⇋

R (t, ts, (x, (σ,w)))
def
= (Tσ,NA(t, ts, x, w), (σts+t, π(−t, w))), (2.18)

which is appropriately termed rule of pullback transition.

We shall call the family TNA = {Tσ,NA}σ∈S the non-autonomous continuous tran-

sition mapping (NACTM) of the switched non-autonomous system ΣNA . From the

transition mechanism (2.14), the following property of TNA is straightforward.

Proposition 2.4.3 Under Assumption 2.4.1, the non-autonomous continuous tran-

sition mapping TNA defined by (2.14) is continuous and satisfies

Tσ,NA(t1 + t2, ts, x, w) = Tσ,NA(t2, ts + t1,Tσ,NA(t1, ts, x, w), π(t1, w)). (2.19)

for all ts, t1, t2 ∈ R+, t1 + t2 < (ts)
b
σ − ts, x ∈ X , w ∈ W, and σ ∈ S.
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In the case of non-identity but deterministic , a similar mapping Tσ,NA , and hence

the rules of forward and pullback transition, for ΣNA can be specified by the same

manner. The specification is straightforward though a bit lengthy and is omitted.

To close this preliminary chapter, we would mention that, in comparison to the

cocycle property – second property in ii), Definition 2.2.3 – of the ONADS ϕ [8, 29],

the properties (2.8), (2.12), and (2.19) of the mappings Tσ,A and Tσ,NA defined by

(2.7), (2.11), and (2.14), respectively, preserves the cocycle property of ϕ. In light of

this merit, the mappings Tσ,A and Tσ,NA can be termed switched cocycle processes.

 



Chapter 3

Invariance Theory

The purpose of this chapter is to introduce a qualitative theory for switched systems.

Further notions of limiting switching sequence, autonomous and non-autonomous

attractors, autonomous and non-autonomous ω-limit sets, and quasi-invariance prop-

erty are introduced. The principle of small-variation small-attractor is introduced

for invariance principles of switched systems. Instead of imposing the usual switch-

ing decreasing condition, boundedness of ultimate variations of auxiliary functions is

considered for convergence.

3.1 Motivation

In systems and control, the foundation of the qualitative theory – the theory makes

conclusions on long-time behavior of a dynamical system without solving for the tra-

jectories – is built on the Lyapunov’s second method and its generalization – the

LaSalle’s invariance principle, in which the central notion is the Lyapunov function.

Due to its energy embrace, Lyapunov function is not limited in ordinary dynami-

cal systems. Making no exception, LaSalle’s invariance principle framework for at-

tractability and stability of sets in switched systems is of natural interest.

37
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The practical motivation for invariance theory of switched systems lies in the use of

invariant motions of constituent systems/agents in contemporary control and commu-

nication systems [18,140,5,46,45,105,15,160]. Nevertheless, while invariance theories

of switched/hybrid systems often impose the semi-group property on system trajecto-

ries and the switching decreasing condition which are practically restrictive [108,30],

advanced designs of highly complex systems suppose that invariance control of con-

stituent systems has been done a priori [140, 15]. This obviously lays a significant

gap in the field of hybrid systems.

Invariance principles for switched systems have been actively investigated using

both differential equations model and hybrid systems’ framework [108, 102, 62, 13,

107, 126]. Similar to non-autonomous systems, due to the loss of the semi-group

property, the ω-limit sets of trajectories of switched systems are generally not invari-

ant. The common approach to overcome this obstacle is to embed the state space

into a topological space on which a generalized dynamical system is defined. Then,

asymptotic behavior of the original system is investigated through the generalized

system [129,9, 108,107,80].

In ordinary non-autonomous systems, using the functional space of translates and

examining limiting equations, it was shown that the ω-limit set of trajectories of

the original system is semi-quasi-invariant and a LaSalle-like invariance principle

was obtained [9]. Considering switching variables as part of the hybrid state and

then imposing a semi-group property on system trajectories, invariance in hybrid

spaces and invariance principles for general hybrid systems have been studied [108,

102, 126]. Examining the convergence of a sequence of arcs cut off of one single

trajectory, a notion of weak invariance and an invariance principle was presented for

switched systems with dwell-time [13]. Introducing a novel notion of ω-limit set in

the product space, another notion of weak invariance property was considered and

an invariance principle were obtained for a class of switched systems with average
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dwell-time [107]. In [63], the elegant notions of nonlinear norm-observability were

introduced and invariance principle for uniform stability of switched nonlinear systems

was carried out.

In summary, the aforementioned results applying to the switched autonomous

systems either directly or implicitly make use of the switching decreasing condition.

As a result, their applicability does not agree with the generality of the systems.

Invariance theory without imposing switching decreasing condition and semi-group

property remains open for switched non-autonomous systems and switched systems.

3.2 Limiting Switched Systems

Switched system returns, for each single switching sequence, a non-autonomous sys-

tem [80]. Therefore, the asymptotic behavior of switched systems can be investigated

through the behavior of their limiting systems [9]. The purpose of this section is to

bring out such useful limiting systems. For this purpose, we have the following notion

of limiting switching sequence.

Throughout this chapter, we suppose that all switching sequences in S is non-Zeno

and nontrivial, i.e., the following assumption holds.

Assumption 3.2.1 In any finite interval, the number of switching events of any

switching sequence in S is finite. There are infinitely many switching events in each

switching sequence and the running times of switching events are all bounded by ∆T .

3.2.1 Limiting Switching Sequence

Definition 3.2.1 Let σ ∈ S be a switching sequence and let t ∈ R+ be a positive

number. The t-translate of σ is the switching sequence σt ∈ S whose switching events

eσt,i = (qσt,i,∆τσt,i) are determined by

i) qσt,i = qσ,i−σ (t)+i,∀i ∈ N; and
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ii) ∆τσt,0 = τσ,i−σ (t)+1 − t, and ∆τσt,i = ∆τσ,i−σ (t)+i,∀i ∈ N\{0}.

It is worth noting that by translating in index variable i instead of translating in

time variable t as in [107], the t-translate of a switching sequence preserves the zero

running times of σ as well.

Definition 3.2.2 Let {σn}n be a sequence of switching sequences in S and let σ ∈ S.

Then, {σn}n is said to converge to σ as n goes to infinity, denoted as σn → σ, n→ ∞,

if the following properties hold:

i) limn→∞ qσn,i = qσ,i,∀i ∈ N, and

ii) limn→∞ ∆τσn,i = ∆τσ,i,∀i ∈ N.

Definition 3.2.3 (limiting switching sequence) Let σ ∈ S be a switching se-

quence. A switching sequence σ∗ ∈ S is said to be a limiting switching sequence

of σ if there is a time sequence {tn}n such that σtn → σ∗, n→ ∞.

Hereafter, for each switching sequence σ ∈ S, we shall denote by S∗
σ the set of all

limiting switching sequences of σ.

3.2.2 Existence and Properties

The following proposition asserts the existence of limiting switching sequence.

Proposition 3.2.1 Let σ ∈ S be a switching sequence. Suppose that all the running

times of σ are bounded by ℓ > 0. Then, the set S∗
σ is nonempty.

Proof: Let {tn}n be a time sequence. We shall show that there is a subsequence

{tnm
}m of {tn}n such that {σtnm

}m converges.

Let us equip the interval [0, ℓ] the usual Euclidean metric dℓ defined as dℓ(x, y) =

|x − y|,∀x, y ∈ [0, ℓ] and equip the discrete set Q the usual discrete metric defined

as dQ(q1, q2) = 0 if q1 = q2 and dQ(q1, q2) = 1 if q1 6= q2, for every q1, q2 ∈ Q.
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Obviously, the space of switching events Q = Q × [0, ℓ] and the countable product

Q
N = Q ×. . .×Q ×. . . are metrizable topological spaces with the usual product metric

[1, Theorem 3.24, page 84]. Furthermore, as Q and [0, ℓ] are compact with respect to

their respective metrics, Q is sequentially compact [72, Definition 10.15, page 170].

Since Q N is a metrizable topological space and Q is sequentially compact, applying

[72, Proposition 10.18, page 171], we conclude that Q N is sequentially compact.

Consider the sequence of switching sequences {σtn}n. For each n ∈ N, we have

the point ηn ∈ Q N defined by

ηn = (eσtn ,0, . . . , eσtn ,i, . . .), (3.1)

where eσtn ,i, i ∈ N are switching events of σtn . Since Q N is sequentially compact,

there is η∗ ∈ Q N and a subsequence {ηnm
}m of {ηn}n such that {ηnm

} → η∗,m→ ∞.

Equivalently, σtnm
→ σ∗,m → ∞, where σ∗ ∈ S is the switching sequence whose

switching events eσ∗,i, i ∈ N are defined by

qσ∗,i = Pr1(Pri(η
∗)), and ∆τσ∗,i = Pr2(Pri(η

∗)), (3.2)

where Pri is the usual i-th coordinate projection mapping. Therefore, the set of

limiting switching sequence of σ is nonempty. �

It is important to examine the dwell-time properties of limiting switching se-

quences. In the following, we show that for certain classes of switching sequences,

their limiting switching sequences preserve their dwell-time properties. Note that, by

Assumption 3.2.1, we have assumed that the switching sequences are non-Zeno.

Proposition 3.2.2 Let σ ∈ S be a switching sequence whose running times are all

bounded and let σ∗ ∈ S∗
σ be a limiting switching sequence of σ. Then, the following

assertions hold:
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i) if σ ∈ SD [τd], then so is σ∗ except the first switching event of σ∗;

ii) if σ ∈ SA [τp, Np], then so is σ∗; and

iii) if σ ∈ SP [τp, Tp] and σ∗ is non-Zeno, then σ∗ ∈ SP [τp, Tp].

Proof: By Proposition 3.2.1, the set of limiting switching sequences of σ is nonempty.

Let σ∗ be a limiting switching sequence of σ. By Definition 3.2.3, there is a time

sequence {tn}n such that σtn → σ∗, n→ ∞. Since, for each n, σtn is the tn–translate

of σ, for each n ∈ N, σtn have the same dwell-time properties as σ.

The first assertion is obvious as, for each i ∈ N, {∆τσn,i}n is lower bounded by

τd. We prove the second assertion by contradiction. Suppose that ii) is not true, i.e.,

σ∗ 6∈ SA [τp, Np]. From definition of SA [τp, Np], this implies that σ∗ has a sequence

of Np + 1 consecutive switching events whose running times are all strictly less than

τp, i.e., there is i ∈ N such that ∆τσ∗,i+j < τp,∀j ∈ N def
= {0, 1, . . . , Np}. Since Np

is finite, this implies that there is a ǫ > 0 such that ∆τσ∗,i+j < τp − ǫ,∀j ∈ N .

On the other hand, as σtn → σ∗, n → ∞, for each j ∈ N , there is a Nj such that

|∆τσtn ,i+j − ∆τσ∗,i+j| ≤ ǫ/2,∀n ≥ Nj. This implies that

∆τσtn ,i+j ≤ ∆τσ∗,i+j + ǫ/2 < τp − ǫ/2,∀n ≥ max{Nj : j ∈ N },∀j ∈ N . (3.3)

However, (3.3) implies that, for sufficiently large n, the tn–translate of σ, that is σtn ,

has a sequence of Np + 1 consecutive switching events of the running times strictly

less than τp. This contradicts to the dwell-time properties of σtn .

We also prove the third assertion by contradiction. Suppose that this assertion is

not true. Then, σ∗ has two switching events eσ∗,i and eσ∗,j to which τσ∗,j−τσ∗,i+1 > Tp

and the running times of all switching events of σ∗ between eσ∗,i and eσ∗,j are strictly

less than τp. Let ǫ > 0 be the positive number satisfying (j−i−1)ǫ < τσ∗,j−τσ∗,i+1−Tp

and ∆τσ∗,k < τp − ǫ,∀k = i+ 1, . . . j− 1. Such ǫ exists due to the finiteness of i and j
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and the contradiction assumption. Since σtn → σ∗, n→ ∞ and i and j are finite, there

is a number N0 ∈ N such that |∆τσtn ,k −∆τσ∗,k| < ǫ/2,∀k = i+1, . . . , j−1,∀n ≥ N0.

Therefore, for all n ≥ N0, we have ∆τσtn ,k ≤ ∆τσ∗ + ǫ/2 < τp − ǫ/2, and

τσtn ,j − τσtn ,i+1 =

j−1
∑

k=i+1

∆τσtn ,k ≥
j−1
∑

k=i+1

(∆τσ∗,k − ǫ/2)

≥ τσ∗,j−1 − τσ∗,i − (j − i− 1)ǫ/2 > Tp. (3.4)

This means that for every n ≥ N0, the translate σtn has two switching events eσtn ,i

and eσtn ,j to which τσtn ,j − τσtn ,i+1 > Tp and the running times of all switching events

between eσtn ,i and eσtn ,j are all larger than τp. This is a contradiction since all

σtn , n ∈ N belong to SP [τp, Tp]. �

Proposition 3.2.3 Consider a switching sequence σ ∈ S and its limiting switching

sequence σ∗ ∈ S∗
σ. Let {tn}n be the sequence to which σtn → σ∗, n→ ∞. Then,

lim
n→∞

(τσ,i−σ (tn)+j − tn) = τσ∗,j,∀j ∈ N\{0}, (3.5)

and

σtn+t → σ∗
t , n→ ∞,∀t ∈ R+. (3.6)

Proof: We prove (3.5) by contradiction. Suppose that the converse holds, i.e., there

are j0 ∈ N\{0} and ǫ > 0, such that for every M ∈ N, there is nM ≥M such that

|τσ,i−σ (tnM
)+j0

− tnM
− τσ∗,j0| > ǫ. (3.7)

Since σtn ’s are translates of σ, by Definition 3.2.1, we have

τσtn ,j0
def
=

j0−1
∑

k=0

∆τσtn ,k = τσ,i−σ (tn)+1 − tn +

j0−1
∑

k=1

∆τσ,i−σ (tn)+k = τσ,i−σ (tn)+j0
− tn. (3.8)
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In addition, as ∆τσtn ,k → ∆τσ∗,k, n → ∞, we have |∆τσtn,k
− ∆τσ∗,k| < 0.5ǫ/(j0 +

1),∀k = 0, . . . , j0 − 1 for sufficiently large n. This coupled with (3.8) yields

|τσ,i−σ (tn)+j0
− tn − τσ∗,j0 | =

∣

∣

∣

j0−1
∑

k=0

(∆τσtn ,k − ∆τσ∗,k)
∣

∣

∣
< ǫ/2, (3.9)

for sufficiently large n, which obviously contradicts to (3.7).

To prove (3.6), let us consider the number i−σ∗(t), and for each n ∈ N, letNσ[tn, t] =

i−σ (tn + t) − i−σ (tn). By definition of (·)−σ∗ (see Page 28), we have

t ≥ τσ∗,i−
σ∗ (t) =

i−
σ∗ (t)−1
∑

k=0

∆τσ∗,k = lim
n→∞

i−
σ∗ (t)−1
∑

k=0

∆τσtn ,k

= lim
n→∞

(

τσ,i−σ (tn)+1 − tn +

i−
σ∗ (t)−1
∑

k=1

∆τσ,i−σ (tn)+k

)

(3.10)

On the other hand, by Definition 3.2.1, we have

τσ,i−σ (tn+t) =

i−σ (tn+t)
∑

k=0

∆τσ,k = τσ,i−σ (tn)+1 +

Nσ [tn,t]−1
∑

k=1

∆τσ,i−σ (tn)+k. (3.11)

As τσ,i−σ (tn+t) − (tn + t) ≤ t,∀n ∈ N by definition, (3.11) implies that

t ≥ τσ,i−σ (tn+t) − (tn + t) + t = τσ,i−σ (tn)+1 − tn +

Nσ [tn,t]−1
∑

k=1

∆τσ,i−σ (tn)+k. (3.12)

Taking limits of both sides of (3.12) as n→ ∞, we have

t ≥ lim
n→∞

(

τσ,i−σ (tn)+1 − tn +

Nσ [tn,t]−1
∑

k=1

∆τσ,i−σ (tn)+k

)

(3.13)

Comparing (3.10) and (3.13) and noting that τσ∗,i−
σ∗ (t)+1 > t by definition, we obtain

limn→∞Nσ[tn, t] = i−σ∗(t) from which (3.6) follows. �
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3.2.3 Limiting Switched Systems

In this subsection, we introduce the notion of limiting switched systems for defining

quasi-invariance of trajectories of switched systems. Let ΣS be a switched system

defined by either Definition 2.4.2 or Definition 2.4.5, and let S1 be a subset of S.

Then, we use ΣS [S1] to denote the switched system

ΣS [S1]
def
= (R+,Q,X, {ψq}q∈Q,S1, ), (3.14)

if ΣS is autonomous, and the system

ΣS [S1]
def
= (R+,Q,X ,W , {ϕq}q∈Q,S1, π, ), (3.15)

if ΣS is non-autonomous. When S1 = {σ} is a single element set, we then write

ΣS [σ] for simplicity.

Definition 3.2.4 Let ΣS be a switched system defined by either Definition 2.4.2 or

Definition 2.4.5. Then, for each σ ∈ S, the switched system ΣS [S∗
σ] is said to be the

limiting switched system of the switched system ΣS [σ].

3.3 Qualitative Notions and Quasi-Invariance

The basic problem in studying asymptotic behavior of dynamical system is to locate

attractors of trajectories without solving the system equations. In ordinary dynamical

systems, an efficient approach to solve this problem is to combine invariance properties

of the limit sets of trajectories and the convergence of auxiliary functions [56,59]. As

shown in Section 2.4.3, when there is no jump in the continuous state, the transition

mappings Tσ,A(t, ts, x) and Tσ,NA(t, ts, x, w) are continuous functions of the transition

time t. Hence, the limit sets of trajectories of switched systems are well-defined in

the classical setting. However, due to the dependence on varying quantities σ, ts, and
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w, these limit sets are no longer invariant. As such, a primary step is to bring out

another qualitative property for limit sets of trajectories of switched systems.

In this section, using limiting switching signals, we introduce the notion of quasi-

invariance for switched systems. For this purpose, let us realize the notions of attrac-

tor and limit set from the general framework of dynamical systems in Section 2.2.3

in switched systems as follows.

3.3.1 Qualitative Notions

Autonomous

Let TA = {Tσ,A}σ∈S be the transition mapping of the switched autonomous system

ΣA = (R+,Q,X, {ψq}q∈Q,S, ) with X = Rn. The latent variable is σ. From the rule

of transition (2.9) and Definitions 2.2.4–2.2.7, the following realization of the notions

in Section 2.2.3 are obvious.

Definition 3.3.1 (trajectory) Let x ∈ Rn, ts ∈ R+ and σ ∈ S fixed. The (ts, σ)–

interacting trajectory through the point x is the set Ots,σ(x) = {Tσ,A(t, ts, x) : t ∈ R+}.

Definition 3.3.2 (motion) Let x ∈ Rn. The (t, ts, σ)–motion through x of ΣA is

Rts,σ(x)(t) = Tσ,A(t, ts, x).

Definition 3.3.3 (attractor) Let A and D be closed sets in Rn. The set A is said

to be the (ts, σ)–forward attractor of ΣA with basin of attraction D if

lim
t→∞

‖Tσ,A(t, ts, x)‖A = 0,∀x ∈ D. (3.16)

In addition, if this property holds for all σ ∈ S, then A is said to be the switching-

uniform forward attractor with basin of attraction D of ΣA .
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Definition 3.3.4 (ω-limit set) Let x ∈ Rn and ts ∈ R+ fixed. The ω–limit set of

the (ts, σ)–interacting trajectory Ots,σ(x) through x of the system ΣA is the set

ωts,σ(x) =
⋂

T≥ts

⋃

t≥T

Tσ,A(t, ts, x). (3.17)

Non-autonomous

As discussed in Section 2.4.3 – Page 33, switched non-autonomous systems arise

when we are interested in the interaction between the dynamics of a part of continu-

ous variables and the combined dynamics of the discrete variables and the remaining

continuous variables. From the general framework presented in Section 2.2.3 and the

definition of switched non-autonomous systems in Definition 2.4.5, realizing the no-

tions in Section 2.2.3 in terms of the non-autonomous continuous transition mapping

Tσ,NA gives rise to trajectories, attractors, and limit sets parameterized by part of the

continuous variables and switching sequences as follows.

Let TNA = {Tσ,NA}σ∈S be the continuous transition mapping of the switched non-

autonomous system ΣNA = (R+,Q,X ,W , {ϕq}q∈Q,S, π, ) with X = Rn and W = Rd.

From the rules of forward transition (2.15) and pullback transition (2.16), we have

the following realizations in switched non-autonomous systems.

Definition 3.3.5 (forward trajectory) Let x ∈ Rn, ts ∈ R+, w ∈ Rd, and σ ∈ S

fixed. The (ts, w, σ)–forward trajectory through the point x is the set
→

O ts,w,σ (x) =

{Tσ,NA(t, ts, x, w) : t ∈ R+}. In addition, the family
→

O ts,σ= {
→

O ts,w,σ: w ∈ W} is

termed the non-autonomous forward trajectory through x of ΣNA .

Definition 3.3.6 (pullback trajectory) Let x ∈ Rn, ts ∈ R+, w ∈ Rd, and σ ∈ S

fixed. The (ts, w, σ)–pullback trajectory through the point x is the set
⇋

O ts,w,σ (x) =

{Tσ,NA(t, ts, x, π(−t, w)) : t ∈ R+}. In addition, the family
⇋

O ts,σ= {
⇋

O ts,w,σ: w ∈ W}

is termed the non-autonomous pullback trajectory through x of ΣNA .
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Definition 3.3.7 (forward motion) Let x ∈ Rn, ts ∈ R+, w ∈ Rd, and σ ∈ S fixed.

The (t, ts, σ)–forward motion through x of ΣNA is
→

Rts,σ,w (x)(t) = Tσ,NA(t, ts, x, w).

Definition 3.3.8 (pullback motion) Let x ∈ Rn, ts ∈ R+, w ∈ Rd, and σ ∈ S

fixed. The (t, ts, σ)–pullback motion through x of ΣNA is
⇋

Rts,σ,w (x)(t) = Tσ,NA(t, ts, x,

π(−t, w)).

Definition 3.3.9 (forward attractor) Let A and D be closed sets in Rn. The set

A is said to be the (ts, σ, w)–forward attractor of ΣNA with basin of attraction D if

lim
t→∞

‖Tσ,NA(t, ts, x, w)‖A = 0,∀x ∈ D. (3.18)

In addition, if this property holds for all σ ∈ S, then A is said to be the switching-

uniform forward attractor with basin of attraction D of ΣNA .

Definition 3.3.10 (pullback attractor) Let A and D be closed sets in Rn. The

set A is said to be the (ts, σ, w)–pullback attractor of ΣNA with basin of attraction D

if

lim
t→∞

‖Tσ,NA(t, ts, x, π(−t, w))‖A = 0,∀x ∈ D. (3.19)

In addition, if this property holds for all σ ∈ S, then A is said to be the switching-

uniform pullback attractor with basin of attraction D of ΣNA .

Definition 3.3.11 (ω-limit set) Let x ∈ Rn fixed. The ω–limit set of the (ts, w, σ)–

forward trajectory
→

O ts,w,σ through x of the system ΣNA is the set

ωts,w,σ(x) =
⋂

T≥ts

⋃

t≥T

Tσ,NA(t, ts, x, w). (3.20)

In addition, the family Ωts,σ(x) = {ωts,w,σ(x) : w ∈ W} is termed the non-autonomous

forward ω–limit set of the non-autonomous trajectory
→

O ts,σ.
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Definition 3.3.12 (pullback ω-limit set) Let x ∈ Rn fixed. The pullback ω–limit

set of the (ts, w, σ)–pullback trajectory
⇋

O ts,w,σ through x of the system ΣNA is the set

ωts,w,σ(x) =
⋂

T≥ts

⋃

t≥T

Tσ,NA(t, ts, x, π(−t, w)). (3.21)

In addition, the family Ωts,σ(x) = {ωts,w,σ(x) : w ∈ W} is termed the non-autonomous

pullback ω–limit set of the non-autonomous trajectory
⇋

O ts,σ.

3.3.2 Quasi-invariance

As analyzed in Section 1.1 and Section 2.4.3, the semi-group property is lost in the

transition mappings of switched systems. Thus, the invariance of limit sets of trajec-

tories is lost in switched systems as well. However, as in the framework of LaSalle’s

invariance principle, invariance property is for refining first estimate of attractors of

the system, it is possible to consider other properties of the limit sets for refinement.

In the next section, we shall show that, for a switched system ΣS and a switching

sequence σ ∈ S, the limit set of any trajectory of the switched system ΣS [σ] is forward

invariant under the rule of transition of the limiting switched systems ΣS [S∗
σ]. For

this reason, we have the following notion of quasi-invariance.

For a set A and a motion R, let R(A)(t) be the set {R(x)(t) : x ∈ A}.

Definition 3.3.13 Let ΣA be a switched autonomous system. For a fixed switching

sequence σ ∈ S, a set A ⊂ Rn is said to be σ-quasi-invariant if there is a σ∗ ∈ S∗
σ

such that R0,σ∗(A)(t) ⊂ A,∀t ≥ 0.

Definition 3.3.14 Let ΣNA be a switched non-autonomous system. For a fixed switch-

ing sequence σ ∈ S, a family of sets {Aw}w∈W in Rn is said to be σ-quasi-invariant if

if there is a σ∗ ∈ S∗
σ such that

→

R0,σ∗,w (Aw)(t) ⊂ Aπ(t,w),∀t ≥ 0, w ∈ W.
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3.4 Limit Sets: Existence and Quasi-invariance

The main purpose of this section is to prove that when there is no switching jump,

i.e., Assumption 2.4.1 holds, the limit sets of trajectories of switched system exist

and are quasi-invariant. In the following we use w−t to denote π(−t, w) without

embarrassment.

3.4.1 Continuity of Transition Mappings

Lemma 3.4.1 Let ΣNA be a switched non-autonomous system without switching jump,

i.e., Assumption 2.4.1 hold. Suppose that Q is finite and, for each switching sequence

σ ∈ S, x ∈ Rn, w ∈ Rd and ts ≥ 0, the mapping Tσ,NA(t, ts, x, w−t) is bounded. Then,

Tσ,NA(t, ts, x, w−t) is continuous with respect to t.

Proof: Since ts and x are fixed, in this proof, we shall suppose that ts = 0 without

loss of generality and use Tσ,NA(t, w) to denote Tσ,NA(t, 0, x, w) for short.

Since Tσ,NA(t, ts, x, w−t) is bounded, there is a constant H > 0 such that

‖Tσ,NA(t, ts, x, w−t)‖ ≤ H,∀t ∈ R+. (3.22)

Let BH = {ζ ∈ Rn : ‖ζ‖ ≤ H}. We prove the theorem by contradiction. Suppose

that Tσ,NA(t, w−t) is not continuous, i.e., there is t∗ ≥ ts = 0 such that Tσ,NA(t, w−t) is

not continuous at t∗. Without loss of generality, suppose that t∗ ≥ τσ,1. Then, there

is a number ǫ∗ > 0 such that for every δ > 0, there is tδ > 0 such that

|tδ − t∗| ≤ δ and ‖Tσ,NA(tδ, w−tδ) − Tσ,NA(t
∗, w−t∗)‖ ≥ ǫ∗. (3.23)

By definition of the transition indicator i−σ (·) in Section 2.4.2, i−σ (t∗) is the largest

number satisfying τσ,i−σ (t∗) ≤ t∗, and since σ is non-Zeno, i∗
def
= i−σ (t∗) is finite and
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t∗ ∈ [τσ,i∗−1, τσ,i∗). From definition of Tσ,NA in (2.14) (see Page 34), we have

Tσ,NA(t
∗, w−t∗−ς) = ϕqσ,i∗

(t∗ − τσ,i∗ ,Tσ,NA(τσ,i∗ , 0, x, w−t∗−ς), π(τσ,i∗ , w−t∗−ς))

def
= ϕqσ,i∗

(t∗ − τσ,i∗ ,Tσ,NA(τσ,i∗ , w−t∗−ς), w−t∗−ς+τσ,i∗
), (3.24)

and, for each i ∈ N def
= {0, . . . , i∗ − 1} and for every ς, we have

Tσ,NA(τσ,i+1, w−t∗−ς) = ϕqσ,i
(∆τσ,i,Tσ,NA(τσ,i, x, w−t∗−ς), w(−t∗−ς+τσ,i)). (3.25)

Let ǫi > 0, i ∈ N be arbitrary numbers. From Assumption 3.2.1, the running times

of all switching events are bounded by ∆T . Since ϕqσ,i
’s are transition mappings of

ONADS, they are uniformly continuous on the compact set ∆T ×BH ×W. Thus, for

each i ∈ N , there is ri = ri(ǫi) > 0 such that











|t− t′| + ‖x− x′‖ + ‖w − w′‖ ≤ ri

(t, x, w), (t′, x′, w′) ∈ [0,∆T ] × BH ×W

⇒ ‖ϕqσ,i
(t, x, w) − ϕqσ,i

(t′, x′, w′)‖ < ǫi. (3.26)

Also, since W is compact, π is uniformly continuous on W . As such, for each i ∈ N ,

there is a number δri
> 0 such that the following inequality holds for all ς ∈ [−δri

, δri
]:

‖w−t∗+τσ,i
− w−t∗−ς+τσ,i

‖ = ‖π(−t∗ + τσ,i, w) − π(−t∗ − ς + τσ,i, w)‖ < ri

2
. (3.27)

Based on the continuity of the transition mappings ϕq, q ∈ Q, combining (3.26)

and (3.27), it follows that for each i ∈ N and for every ǫi > 0, there are ri > 0 and

δri
> 0 such that, for all t ∈ [0,∆T ], x, x′ ∈ BH , and ς ∈ [−δri

, δri
], we have

‖x− x′‖ < ri

2
⇒ ‖ϕqσ,i

(t, x, w−t∗+τσ,i
) − ϕqσ,i

(t, x′, w−t∗−ς+τσ,i
)‖ < ǫi. (3.28)
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Let ri∗ be a design constant to be specified later. For each i ∈ N , let ǫi > 0 and

ri(ǫi) be successively defined in such a way that ǫi ≤ ri+1/2. Let δmin = min{δri
: i ∈

N }. Note that τσ,0 = 0. Using (3.27) with i = 0, we have

|∆τσ,0 − ∆τσ,0‖ + ‖x− x‖ + ‖w−t∗ − w−t∗+ς‖ ≤ r0
2
,∀ς ∈ [−δmin, δmin]. (3.29)

Thus, applying (3.26) yields

‖Tσ,NA(τσ,1, w−t∗) − Tσ,NA(τσ,1, w−t∗−ς)‖ = ‖ϕqσ,0(∆τσ,0, x, w−t∗)

− ϕqσ,0(∆τσ,0, x, w−t∗−ς)‖ ≤ ǫ0 ≤
r1
2
,∀ς ∈ [−δmin, δmin]. (3.30)

This coupled with (3.27) applying for i = 1 implies that

|τσ,1 − τσ,1| + ‖Tσ,NA(τσ,1, w−t∗) − Tσ,NA(τσ,1, w−t∗−ς)‖

+ ‖w−t∗+τσ,1 − w−t∗−ς+τσ,1‖ ≤ r1,∀ς ∈ [−δmin, δmin]. (3.31)

Then, applying (3.25) for i = 1, we obtain

‖Tσ,NA(τσ,2, w−t∗) − Tσ,NA(τσ,2, w−t∗−ς)‖ = ‖ϕqσ,1(∆τσ,1,Tσ,NA(τσ,1, w−t∗), w−t∗+∆τσ,1)

− ϕqσ,1(∆τσ,1,Tσ,NA(τσ,1, w−t∗−ς), w−t∗−ς+∆τσ,1)‖ ≤ ǫ1,∀ς ∈ [−δmin, δmin]. (3.32)

Since ǫi ≤ ri+1/2,∀i ∈ N , continuing this procedure, we arrive at

‖Tσ,NA(τσ,i∗ , w−t∗) − Tσ,NA(τσ,i∗ , w−t∗−ς)‖ ≤ ǫi∗−1,∀ς ∈ [−δmin, δmin]. (3.33)

Due to the continuity of ϕqσ,i∗
, there is a number ri∗ such that in the compact set

[0,∆T ] × BH ×W, we have

|t− t′|+‖x−x′‖+‖w−w′‖ ≤ ri∗ ⇒ ‖ϕqσ,i∗
(t, x, w)−ϕqσ,i∗

(t′, x′, w′)‖ < ǫ∗/2. (3.34)
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As ǫi∗−1 ≤ ri∗/2 by construction, combining (3.24), (3.33), and (3.34), we have

‖Tσ,NA(t
∗, w−t∗) − Tσ,NA(t

∗, w−t∗−ς)‖ ≤ ǫ∗/2,∀ς ∈ [−δmin, δmin]. (3.35)

Furthermore, as Q is finite and ϕq, q ∈ Q is continuous, there is a rǫ such that in

the compact set [0,∆T ] × BH ×W, we have

|t+t′|+‖x+x′‖+‖w−w′‖ ≤ rǫ ⇒ ‖ϕq(t, x, w)−ϕq(t
′, x′, w′)‖ ≤ ǫ∗/2,∀q ∈ Q. (3.36)

This coupled with the condition that there is no switching jump leads to

‖Tσ,NA(t
∗ + ς, w−t∗−ς) − Tσ,NA(t

∗, w−t∗−ς)‖ < ǫ∗/2 (3.37)

for sufficiently small ς. Combining (3.37) and (3.35), we obtain

‖Tσ,NA(t
∗ + ς, w−t∗−ς) − Tσ,NA(t

∗, w−t∗)‖ < ǫ∗ (3.38)

for all sufficiently small ς. This contradicts to (3.23). Thus, we conclude that

Tσ,NA(t, w−t) is continuous with respect to t. �

3.4.2 Existence and Quasi-invariance

Theorem 3.4.1 Let ΣNA be a switched non-autonomous system satisfying condition

of Lemma 3.4.1. For each σ ∈ S, x ∈ X ⊂ Rn, and ts ≥ 0, suppose that the pullback

trajectories
⇋

O ts,w,σ (x) are bounded for all w ∈ W. Then, for every w ∈ W, the

pullback ω-limit set ωts,w,σ(x) is nonempty and compact. In addition, Tσ,NA(t, ts, x, w)

approaches ωts,w,σ(x) as t→ ∞.

Proof: In this proof, we also use Tσ,NA(t, w) to denote Tσ,NA(t, ts, x, w) for short.
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Since
⇋

O ts,w,σ (x) ⊂ Rn are bounded for all w ∈ W, ts ∈ R+, for every time

sequence {tn}n, the sequence {Tσ,NA(tn, w−tn)}n ⊂ Rn is bounded. By the Bolzano-

Weierstrass’s lemma there exists a subsequence {nm}m of {n}n such that the sequence

{Tσ,NA(tnm
, w−tnm

)}m converges to some point x∗ ∈ Rn which obviously belongs to

ωts,w,σ(x) by Definition 3.3.12. Thus, ωts,w,σ(x) is non-empty for all w ∈ W.

As ωts,w,σ(x) ⊂ Rn, we shall prove its compactness by showing that it is bounded

and closed. Firstly, since ωts,w,σ(x) consists of limits of points in bounded trajectories
⇋

O ts,w,σ (x), w ∈ W, ts ∈ R+, it is bounded. We proceed to prove the closedness of

ωts,w,σ(x) by considering a limit point y of ωts,w,σ(x). By definition, there is a sequence

{yn}n ⊂ ωts,w,σ(x) such that yn → y, n→ ∞.

Let τ > 0 be any finite number and let {εn}n be any sequence satisfying εn →

0, n → ∞. For each n ∈ N, let kn ∈ N be the integer such that ‖ykn
− y‖ < εn/2.

Such an integer exists as yn → y, n→ ∞. For an index kn, n ∈ N, as ykn
∈ ωts,w,σ(x),

there is a time sequence {t(kn)
m }m such that

Tσ,NA

(

t(kn)
m , w

−t
(kn)
m

)

→ ykn
,m→ ∞. (3.39)

From the sequences {t(kn)
m }m, n ∈ N, let us define the time sequence {tkn

}n

as follows. Applying (3.39) for n = 0, there is a time tk0 ∈ {t(k0)
m }m such that

‖Tσ,NA(tk0 , w−tk0
) − yk0‖ < ε0/2. From tk0 , applying (3.39) for each n ∈ N\{0}, we

obtain the times tkn
∈ {t(kn)

m }m that satisfies ‖Tσ,NA(tkn
, w−tkn

) − ykn
‖ < εn/2 and

tkn
> tkn−1 + τ .

Obviously, {tkn
}n is a time sequence as its elements are separated by τ . Thus, by

construction, we have

‖Tσ,NA(tkn
, w−tkn

)− y‖ ≤ ‖Tσ,NA(tkn
, w−tkn

)− ykn
‖+ ‖ykn

− y‖ < εn,∀n ∈ N. (3.40)
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As εn → 0, n → ∞, (3.40) implies that Tσ,NA(tkn
, w−tkn

) → y, n → ∞, i.e.,

y ∈ ωts,w,σ(x). Thus, ωts,w,σ(x) is closed and hence, with its boundedness, is compact.

We prove the last assertion of the theorem by a standard contradiction argu-

ment. Suppose that the converse holds, i.e., there is a time sequence {tn}n and

a number ǫ > 0 such that ‖Tσ,NA(tn, ts, x, w) − y‖ > ǫ,∀n ∈ N, y ∈ ωts,w,σ(x).

Since {Tσ,NA(tn, ts, x, w)}n is bounded, it has a subsequence converging to some point

x∗ ∈ Rn which is obviously an element of ωts,w,σ(x) by definition. This is a contra-

diction and hence the assertion holds. �

Theorem 3.4.2 (quasi-invariance) Let ΣNA be a switched non-autonomous system

in which the discrete set Q is finite and there is no switching jump. Let ts ∈ R+, x ∈

X ⊂ Rn, and σ ∈ S fixed. Suppose that the non-autonomous pullback ω-limit set

Ωts,σ(x) exists and all limiting switching sequences of σ are non-Zeno. Then, Ωts,σ(x)

is σ-quasi-invariant.

Proof: We provide a constructive proof of the theorem. Consider a point y ∈

ωts,w,σ(x). By Definition 3.3.11, there is a time sequence {tn}n such that

y = lim
n→∞

Tσ,NA(tn, 0, x, w−tn). (3.41)

It follows from Proposition 3.2.1 that there is a subsequence {tnm
}m of {tn}n such

that σtnm
→ σ∗ as m → ∞. Thus, Proposition 3.2.3 implies that σtnm+t → σ∗

t ,∀t ∈

R+. Hence, by virtue of Definition 3.2.1, we have

qσ,i−σ (tnm+t)+j

def
= qσtnm+t,j

→ qσ∗
t ,j

def
= qσ∗,i−

σ∗ (t)+j,∀t ∈ R+,∀j ∈ N. (3.42)

By definition of the transition indicator (·)−σ∗ (see Page 28), i−σ∗(0) is the last index

satisfying τσ∗,i−
σ∗ (0) ≤ 0, i.e, τσ∗,j = 0,∀j = 0, . . . , i−σ∗(0) and τσ∗,i−

σ∗ (0)+1 > τσ∗,i−
σ∗ (0). In
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view of Definition 3.2.1, this also implies that

∆τσ,i−σ (tnm )+j

def
= ∆τσtnm

,j → ∆τσ∗,j = 0,m→ ∞,∀j = 1, . . . , i−σ∗(0) − 1, and

τσ,i−σ (tnm )+1 − tnm

def
= ∆τσtnm

,0 → ∆τσ∗,0 = 0,m→ ∞. (3.43)

Let τ̃σ,nm
(0) = 0. By virtue of (3.43), for each k = 1, . . . , i−σ∗(0), the following

number converges to zero as m→ ∞:

τ̃σ,nm
(k) =

k−1
∑

j=0

∆τσtnm
,j. (3.44)

Using Definition 3.2.1, it is computed that i−σ (tnm
+τ̃σ,nm

(k)) = i−σ (tnm
)+k. Hence,

as σtnm
→ σ∗ and the functions ϕq, q ∈ Q are continuous, we obtain the following

equality for k = i−σ∗(0):

lim
m→∞

Tσ,NA(tnm
+ τ̃σ,nm

(k), 0, x, w−tnm
)

= lim
m→∞

ϕq
σ,i

−
σ (tnm )+k−1

(∆τσ,i−σ (tnm )+k−1,Tσ,NA(tnm
+ τ̃σ,nm

(k − 1), 0, x, w−tnm
), w)

= lim
m→∞

Tσ,NA(tnm
+ τ̃σ,nm

(k − 1), 0, x, w−tnm
). (3.45)

As iσ∗(0) is finite, repeating the above equality for k = i−σ∗(0) − 1 until k = 1, we

eventually obtain

lim
m→∞

Tσ,NA(tnm
+ τ̃σ,nm

(i−σ∗(0)), 0, x, w−tnm
) = y. (3.46)

Since ∆τσtnm
,i−

σ∗ (0) → ∆τσ∗,i−
σ∗ (0) we have t+τσ,iσ,σ∗ (tnm ) ≤ τσ,iσ,σ∗ (tnm )+∆τσtnm

,i−
σ∗ (0)

for sufficiently large m, and hence i−σ (t + τσ,iσ,σ∗ (tnm )) = iσ,σ∗(tnm
) = i−σ (tnm

) + i−σ∗(0)

for sufficiently large m. In addition, by virtue of (3.44), we have iσ,σ∗(tnm
)

def
= i−σ (tnm

+

τ̃σ,nm
(i−σ∗(0))) = i−σ (tnm

) + i−σ∗(0) and tnm
+ τ̃σ,nm

(i−σ∗(0)) = τσ,iσ,σ∗ (tnm ). Hence, for a

time t ∈ [τσ∗,i−
σ∗ (0), τσ∗,i−

σ∗ (0)+1] = [0,∆τσ∗,i−
σ∗ (0)], applying (3.42) for t = j = 0 and
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using the construction (2.14), we obtain

Tσ∗,NA(t, 0, y, w) = ϕq
σ∗,i

−
σ∗ (0)

(t, lim
m→∞

Tσ,NA(tnm
+ τ̃σ,nm

(i−σ∗(0)), 0, x, w−tnm
), w)

= lim
m→∞

ϕq
σ∗,i

−
σ∗ (0)

(t,Tσ,NA(τσ,iσ,σ∗ (tnm ), 0, x, w−tnm−τ̃σ,nm (i−
σ∗ (0))), w)

= lim
m→∞

ϕq
σ,i

−
σ (tnm )+i

−
σ∗ (0)

(t,Tσ,NA(τσ,iσ,σ∗ (tnm ), 0, x, w−τσ,iσ,σ∗ (tnm )
), w)

= lim
m→∞

Tσ,NA(t+ τσ,iσ,σ∗ (tnm ), 0, x, w−τσ,iσ,σ∗ (tnm )
)

= lim
m→∞

Tσ,NA(t+ τσ,iσ,σ∗ (tnm ), 0, x, w−(t+τσ,iσ,σ∗ (tnm ))+t). (3.47)

As t+τσ,iσ,σ∗(tnm ) → ∞,m→ ∞, the last equality of (3.47) shows that Tσ∗,NA(t, 0, y, w) ∈

ωts,π(t,w),σ. Therefore, Ωts,σ(x) is σ-quasi-invariant on [0,∆τσ∗,0]. Repeating the above

argument for subsequent time stages of σ∗, the conclusion of the theorem follows. �

By virtue of Theorem 3.4.2, the quasi-invariance property is independent of the

“past time” ts of the switching sequence. Since autonomous systems are non-autonomous

systems with constant transition mappings. The following results are straightforward

from Theorems 3.4.1 and 3.4.2.

Corollary 3.4.1 Let ΣA be a switched autonomous system in which the discrete set

Q is finite and there is no switching jump. For each σ ∈ S, x ∈ X ⊂ Rn, and

ts ≥ 0, suppose that the trajectory Ots,σ(x) is bounded. Then, the ω-limit set ωts,σ(x)

is nonempty and compact.

Corollary 3.4.2 Let ΣA be a switched autonomous system in which the discrete set

Q is finite and there is no switching jump. Let ts ∈ R+, x ∈ X ⊂ Rn, and σ ∈ S fixed.

Suppose that the ω-limit set ωts,σ(x) exists and all limiting switching sequences of σ

are non-Zeno. Then, ωts,σ(x) is σ-quasi-invariant.

To close this section, let us mention that except non-Zeno requirement, Theorem

3.4.2 applies to switching sequences possessing zero running times. In switched sys-

tems without dwell-time, arbitrarily short running times are possible and hence the
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limiting switching sequences tend to exhibit switching events of zero running times.

As such, the generality of Theorem 3.4.2 is obvious.

3.5 Invariance Principles for Switched Systems

Since the work [90], the invariance principle has taken a central role in the quali-

tative theories of dynamical systems. Though the most lucid result is dedicated to

autonomous dynamical systems and the invariance property of the limit sets of system

trajectories is normally lost in more general classes of dynamical systems, the frame-

work of [90] remains of increasing impact [58, 9, 10, 11, 55, 101, 26, 62, 63, 13, 107, 126].

This is due to the fact that, in locating attractors of the system, the invariance of

limit sets plays the role of refining the first estimate of the attractor obtained from

examining behavior of the auxiliary Lyapunov function. Therefore, though invari-

ance is the defining property of attractors, there is no restriction in choosing other

properties of the limit sets for refinement.

In this section, from the quasi-invariance property of trajectory of switched sys-

tems proven in the previous section, we develop further invariance principles for

switched systems. The main improvement in comparison to the existing results lies

in the relaxation of the switching decreasing condition. We first prove the result for

switched non-autonomous systems, and then present the results for switched non-

autonomous systems as consequences.

3.5.1 General Result

Notations

In the following ΣNA is the switched non-autonomous system defined in Definition

2.4.5, where the discrete set Q = {1, . . . , q♮} is finite, X ⊂ Rn and W ⊂ Rd are

topological spaces, and is the identity mapping with respect to its third argument,
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i.e., there is no switching jump. In this merit, we shall drop the discrete transition

mapping and denote the switched non-autonomous system by the hexad ΣNA =

{R+,Q,X ,W , {ϕq}q∈Q,S, π) without embarrassment.

We shall use the term non-autonomous set to refer to a mapping A : W →

P(X ) taking values in the set P(X ) of subsets of X [53]. For convenience, we also

denote the non-autonomous sets as a family of subsets of X parameterized by W ,

i.e., AW = {Aw : w ∈ W}. For two non-autonomous sets AW = {Aw}w∈W and

BW = {Bw}w∈W and a w ∈ W, the set AW is said to be contained in BW at w and

denoted AW ⊂w BW if Aw ⊂ Bw. If Aw ⊂ Bw,∀w ∈ W, then AW is said to be

contained in BW and denoted AW ⊂ BW .

For each w ∈ W, we shall call Rϕ,w(·)(t) : X → X the w-motion in X of the

ordinary non-autonomous dynamical system with transition mapping ϕ described in

Definition 2.2.3. As usual Rϕ,w(D)(t) = {Rϕ,w(x)(t), x ∈ D}, and Rϕ
def
= {Rϕ,w : w ∈

W} is called a non-autonomous motion.

The non-autonomous set DW = {Dw}w∈W , Dw ⊂ X is said to be forward invariant

under the non-autonomous motion Rϕ if Rϕ,w(Dw)(t) ⊂ Dπ(t,w),∀t ∈ R+,∀w ∈ W.

The set DW is said to be a common forward invariant set for the switched non-

autonomous system ΣNA if it is forward invariant under the motions of all constituent

systems ϕq, q ∈ Q. If ℘ is a property of sets, then the non-autonomous set AW =

{Aw}w∈W is said to have the property ℘ if all Aw, w ∈ W has this property. We say

that the set A is the largest set satisfying property ℘ contained in the set BW at

w ∈ W if for every set A ′
W satisfying ℘ contained in BW at w, we have A ′

W ⊂w AW .

If for each w ∈ W, Cw is the largest set satisfying ℘ contained in Aw, then the set

CW
def
= {Cw}w∈W is said to be the largest set satisfying ℘ contained in AW .

When σ and ts are fixed a priori, we shall use the notations wt and Tw(t, x)

to denote π(t, w) and Tσ,NA(t, ts, x, w−t), respectively. In the context of the modern

theory of non-autonomous systems [8, 29], Tw can be interpreted as the pullback
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motion toward the limit set at w.

Let V1 and V2 be functions from Rn to R, the relative variation between V1 and

V2 at t1 and t2 along the pullback motion Tw(t, x) is

Vart2
t1
[V1, V2](Tw, x) = |V1(Tw(t1, x)) − V2(Tw(t2, x))|. (3.48)

Finally, a switching sequence σ ∈ S is said to have a persistent dwell-time τp if it

has infinitely many switching events of running times no less than τp. Such switching

events are called dwell-time switching events of σ.

General Invariance Principle

Theorem 3.5.1 Let ΣNA be a switched non-autonomous system in which every switch-

ing sequence in S has a persistent dwell-time. Suppose that DW = {Dw}w∈W , Dw ⊂

X is a common forward invariant compact non-autonomous set of ΣNA and D =
⋂

w∈W Dw 6= ∅.

Let G [X ,R;W ] = {gw}w∈W and V q[X ,R;W ] = {Vq,w}w∈W , q ∈ Q be families of

functions in which gw, Vq,w, w ∈ W, q ∈ Q are continuous functions from Dw to R.

For each q ∈ Q, let rq,w = sup{Vq,w(x) : x ∈ D, gw(x) < 0} if {x ∈ D : gw(x) < 0} 6= ∅

and rq,w = −∞, otherwise.

Suppose further that there are nonnegative constants δ1 and δ2 such that for any

fixed initial state x ∈ D, any fixed time ts, and any fixed switching sequence σ ∈ S,

the following properties hold along the trajectory Tw(t, x), t ∈ R+:

i) in any switching event (qσ,i,∆τσ,i), i ∈ N, if ς1, ς2 ∈ [0,∆τσ,i] are such that

ς2 > ς1 and gw(Tw(τσ,i + ςj, x)) ≥ 0, j = 1, 2, then

Vqσ,i,w(Tw(τσ,i + ς1, x)) ≥ Vqσ,i,w(Tw(τσ,i + ς2, x)); (3.49)
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ii) for the sequence of dwell-time switching events {(qσ,iDj
,∆τσ,iDj

)}j of σ satisfying

gw(Tw(τσ,iDj
, x)) ≥ 0, we have

lim sup
j→∞

sup
k>j

Var
τ
σ,iD

k
τ
σ,iD

j

[Vq
σ,iD

j
,w, Vq

σ,iD
k
,w](Tw, x) < δ1, and (3.50)

lim sup
j→∞

max
t∈[τ

σ,iD
j−1

+1
,τ

σ,iD
j
]
Vart

τ
σ,iD

j−1
+1

[Vq
σ,iD

j−1
,w, Vq

σ,i
−
σ (t)

,w](Tw, x) ≤ δ2. (3.51)

Let rw = max{rq,w : q ∈ Q}, Lγ = {Lw,γ}w∈W , γ ∈ R be the non-autonomous level

sets defined as Lw,γ =
{

ζ ∈ Dw : ∃q ∈ Q, Vq,w(ζ) ≤ rw + 2δ2 + δ1 or Vq,w(ζ) ∈

[γ − δ2, γ + δ1 + δ2]
}

, and Mγ
def
= {Mγ,w}w∈W be the largest (ts, σ)-quasi-invariant set

contained in Lγ at w.

Then, Tw(t, x) converges to the set Mw
def
=

⋃

γ∈RMw,γ as t→ ∞.

Proof: Let us first prove the boundedness of the pullback trajectories
⇋

O ts,σ (x).

Consider a time t ∈ [0, τσ,i−σ (ts)+1 − ts]. As DW is forward invariant for all ϕq, q ∈ Q

and D ⊂ Dw,∀w ∈ W, from the construction (2.14) (Page 34), we have

Tσ,NA(t, ts, x, w−t) = ϕq
σ,i

−
σ (ts)

(t, x, w−t) = Rϕq
σ,i

−
σ (ts)

,w−t
(x)(t)

∈ Rϕq
σ,i

−
σ (ts)

,w−t
(Dw−t

)(t) ⊂ Dw,∀t ∈ [0, τσ,i−σ (ts)+1 − ts]. (3.52)

To continue, let i∗σ,1 denote the number i−σ (τσ,i−σ (ts)+1). We note that τσ,i∗σ,1
=

τσ,i−σ (ts)+1 but i∗σ,1 6= i−σ (ts) + 1 in general due to possible zero running time switching

events at τσ,i−σ (ts)+1. As σ is non-Zeno, τσ,i∗σ,1+1 > τσ,i∗σ,1
by definition.

We now consider a time t ∈ [τσ,i∗σ,1
− ts, τσ,i∗σ,1+1− ts] = [τσ,i−σ (ts)+1− ts, τσ,i∗σ,1+1− ts].

Clearly, i−σ (t− ts) = i∗σ,1. From the construction (2.14), we have

Tσ,NA(t, ts, x, w−t) = ϕσ,i∗σ,1
(ts + t− τσ,i∗σ,1

,Tσ,NA(τσ,i∗σ,1
− ts, x, w−t), w−t+τσ,i∗

σ,1
−ts).

(3.53)

By expressing w−t = w−(τσ,i∗
σ,1

−ts)−(ts+t−τσ,i∗
σ,1

) and using (3.52), we have Tσ,NA(τσ,i∗σ,1
−
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ts, x, w−t+τσ,i∗
σ,1

−ts) ∈ Dw−(ts+t−τ
σ,i∗

σ,1
)
. This coupled with (3.53) and the forward in-

variance property of DW shows that for all t ∈ [τσ,i−σ (ts)+1 − ts, τσ,i∗σ,1+1 − ts], we have

Tσ,NA(t, ts, x, w−t) ∈ ϕσ,i∗σ,1
(ts + t− τσ,i∗σ,1

, Dw−(ts+t−τ
σ,i∗

σ,1
)
, w−t+τσ,i∗

σ,1
−ts) ∈ Dw. (3.54)

From τ ∗σ,1, repeating the above procedure, we conclude that Tσ,NA(t, ts, x, w−t) ∈

Dw,∀t ≥ τ ∗σ,1. In summary, Tσ,NA(t, ts, x, w−t) ∈ Dw,∀t ≥ 0. Thus,
⇋

O ts,w,σ⊂ Dw

and hence is bounded. Applying Theorems 3.4.1 and 3.4.2, the pullback ω limit set

Ωts,σ(x) is nonempty, compact, and σ-quasi-invariant.

We proceed to show that if there is a sequence {Vq
σ,iD

jn

,w(Tw(τσ,iDjn
, x))}n satisfying

Vq
σ,iD

jn

,w(Tw(τσ,iDjn
, x)) ≥ rq

σ,iD
jn

,w,∀n ∈ N, then there is a number γ ∈ R such that

γ + δ1 ≥ lim sup
n→∞

Vq
σ,iD

jn

,w(Tw(τσ,iDjn
, x)) and lim inf

n→∞
Vq

σ,iD
jn

,w(Tw(τσ,iDjn
, x)) ≥ γ. (3.55)

Indeed, from (3.50), there is a number N ∈ N such that

Var
τ
σ,iD

jm
τ
σ,iD

jN

[Vq
σ,iD

jN

,w, Vq
σ,iD

jm

,w](Tw, x) < δ1,∀m > N, (3.56)

which implies that

Vq
σ,iD

jm

,w(Tw(τσ,iDjm
, x)) > Vq

σ,iD
jN

,w(Tw(τσ,iDjN

, x)) − δ1,∀m > N. (3.57)

As N and x are fixed, (3.57) shows that the sequence {Vq
σ,iD

jm

,w(Tw(τσ,iDjm
, x))}∞m=N

is lower bounded. Thus,

γ = lim inf
m→∞

Vq
σ,iD

jm

,w(Tw(τσ,iDjm
, x)) (3.58)

exists and hence the last inequality in (3.55) holds true.

To prove the first inequality in (3.55), we suppose that its converse holds, i.e.,
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there is ǫ > 0 and a sequence {j′n}n satisfying

Vq
σ,iD

j′n

,w(Tw(τσ,iD
j′n

, x)) ≥ γ + δ1 + ǫ,∀n ∈ N. (3.59)

On the other hand, by definition of γ in (3.58), there is a sequence {j′′n}n satisfying

j′′n > j′n,∀n ∈ N and

Vq
σ,iD

j′′n

,w(Tw(τσ,iD
j′′n

, x)) ≤ γ +
ǫ

2
,∀n ∈ N. (3.60)

Combining (3.59) and (3.60) yields,

sup
jm>j′n

Var
τ
σ,iD

jm
τ
σ,iD

j′n

[Vq
σ,iD

j′n

,w, Vq
σ,iD

jm

,w](Tw, x) ≥ δ1 +
ǫ

2
. (3.61)

Taking limit of the left hand side of (3.61) as j′n → ∞, we obtain a contradiction

to (3.50). Thus the first inequality in (3.55) also holds true.

We now estimate the converging region of the following composite function

VC ,w(t) = Vq
σ,i

−
σ (t)

,w(Tw(t, x)), t ≥ 0. (3.62)

For t ≥ 0, let j−(t) = max{j ∈ N : τσ,iDj
≤ t}, i.e., iDj−(t) is the index of the

switching even closest and before t. Let {jl,n}Ñ
n=0 be the sequence of all indices j ∈ N

satisfying Vq
σ,iD

j
,w(Tw(τσ,iDj

, x)) ≤ rq
σ,iD

j
,w. We have the following cases.

Case 1: Ñ = ∞. In this case, we initially show that, for each n ∈ N, we have

Vq
σ,iD

jl,n

,w(Tw(t, x)) ≤ rq
σ,iD

jl,n

,w,∀t ∈ [τσ,iDjl,n

, τσ,iDjl,n
+1]. (3.63)

Suppose that the converse holds, i.e., there is a time t ∈ [τσ,iDjl,n

, τσ,iDjl,n
+1] and a

number ǫ > 0 such that Vq
σ,iD

jl,n

,w(Tw(t, x)) ≥ rq
σ,iD

jl,n

,w + ǫ. Then, as Vq, q ∈ Q and

Tw are continuous (proven in Lemma 3.4.1), the time t0 = inf{t ∈ [τσ,iDjl,n

, τσ,iDjl,n
+1] :
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Vq
σ,iD

jl,n

,w(Tw(t, x)) ≥ rq
σ,iD

jl,n

,w + ǫ} exists and satisfies t0 > τσ,iDjl,n

. By condition ii),

we have Vq
σ,iD

jl,n

,w(τσ,iDjl,n

) ≥ Vq
σ,iD

jl,n

,w(t0) > rq
σ,iD

jl,n

,w which is a contradiction.

Using the above proven property, we have the following expression

Vq
σ,iD

jl,n+1
,w(T (τσ,iDjl,n+1

, x)) = Vq
σ,iD

jl,n

,w(T (τσ,iDjl,n
+1, x))

+ Vq
σ,iD

jl,n+1
,w(T (τσ,iDjl,n+1

, x)) − Vq
σ,iD

jl,n

,w(T (τσ,iDjl,n
+1, x))

≤ Vq
σ,iD

jl,n

,w(T (τσ,iDjl,n

, x)) + Var[Vq
σ,iD

jl,n

,w, Vq
σ,iD

jl,n+1
,w]

τ
σ,iD

jl,n+1

τ
σ,iD

jl,n
+1

(Tw, x). (3.64)

Taking limits of both sides of (3.64) and using (3.51) yields

lim inf
n→∞

Vq
σ,iD

jl,n+1
,w(Tw(τσ,iDjl,n+1

, x)) ≤ lim sup
n→∞

Vq
σ,iD

jl,n+1
,w(Tw(τσ,iDjl,n+1

, x)) < rw + δ2.

(3.65)

Let {ju,n}n be the sequence of all indices j ∈ N such that Vq
σ,iD

j
,w(Tw(τσ,iDj

, x)) >

rq
σ,iD

j
,w. Clearly, {jl,n + 1}n ⊂ {ju,n}n. Combining (3.55) and (3.65), we arrive at

lim sup
j→∞

Vq
σ,iD

j
,w(Tw(τσ,iDj

, x)) ≤ max{rw, lim inf
n→∞

Vq
σ,iD

ju,n

,w(Tw(τσ,iDju,n
, x)) + δ1}

≤ max{rw, lim inf
n→∞

Vq
σ,iD

jl,n+1
,w(Tw(τσ,iDjl,n+1

, x)) + δ1} ≤ rw + δ2 + δ1. (3.66)

From condition i) and definition of rw, we have

VC ,w(t) = Vq
σ,i

−
σ (t)

,w(Tw(t, x)) = Vq
σ,iD

j−(t)

,w(Tw(τσ,iD
j−(t)

+1, x))

+ Vq
σ,i

−
σ (t)

,w(Tw(t, x)) − Vq
σ,iD

j−(t)

,w(Tw(τσ,iD
j−(t)

+1, x))

≤ max{rw, Vq
σ,iD

j−(t)

(T (τσ,iD
j−(t)

))}

+ max
s∈[τ

σ,iD
j−(t)

+1
,τ

σ,iD
j−(t)+1

]
Vars

τ
σ,iD

j−(t)
+1

[Vq
σ,iD

j−(t)
+1

,w, Vq
σ,i

−
σ (s)

,w](Tw, x). (3.67)
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Taking limits of both sides of (3.67) and using (3.66) and (3.51), we obtain

lim sup
t→∞

VC ,w(t) ≤ rw + 2δ2 + δ1. (3.68)

Case 2: Ñ <∞. In this case, there is a numberM such that Vq
σ,iD

j
,w(Tw(τσ,iDj

, x)) >

rq
σ,iD

j
,w,∀j ≥M . Thus, according to (3.55), there is a number γ such that

γ + δ1 ≥ lim sup
j→∞

Vq
σ,iD

j
,w(Tw(τσ,iDj

, x)) and lim inf
j→∞

Vq
σ,iD

j
,w(Tw(τσ,iDj

, x)) ≥ γ. (3.69)

Using (3.51), (3.67), and the first inequality of (3.69), we have

lim sup
t→∞

VC ,w(t) ≤ γ + δ1 + δ2. (3.70)

In addition, from the first equality of (3.67), it follows that

VC ,w(t) ≥ Vq
σ,iD

j−(t)

(T (τσ,iD
j−(t)

))

− max
s∈[τ

σ,iD
j−(t)

+1
,τ

σ,iD
j−(t)+1

]
Vars

τ
σ,iD

j−(t)
+1

[Vq
σ,iD

j−(t)
+1

,w, Vq
σ,i

−
σ (s)

,w](Tw, x), (3.71)

from which, using (3.51) and the last inequality of (3.69), we have

lim inf
t→∞

VC ,w(t) ≥ γ − δ2. (3.72)

We now consider a limit point of the trajectory y ∈ ωts,σ,w(x). By definition, there

is a time sequence {tn}n such that

y = lim
n→∞

Tσ,NA(tn, ts, x, w−tn). (3.73)

Since Q is finite, there is an index q∗ and a subsequence {tnm
}m of {tn}n such that

qσ,i−σ (tnm ) = q∗,∀m ∈ N. Since the function Vq∗ is continuous, using (3.68) in the case
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Ñ = ∞, we obtain

Vq∗(y) = lim
m→∞

Vq
σ,i

−
σ (tnm )

(Tw(tnm
, x)) ∈ (V−∞,w, rw + 2δ2 + δ1], (3.74)

and using (3.70) and (3.70) in the case Ñ <∞, we have

Vq∗(y) = lim
m→∞

Vq
σ,i

−
σ (tnm )

(Tw(tnm
, x)) ∈ [γ − δ2, γ + δ1 + δ2] (3.75)

for some γ ∈ R, where V−∞,w = inf{Vq,w(ζ) : ζ ∈ Dw, q ∈ Q}.

Let us define the following level sets

Lw,γ =
{

ζ ∈ Dw : ∃q ∈ Q, Vq,w(ζ) ≤ rw + 2δ2 + δ1 or Vq(ζ) ∈ [γ − δ2, γ + δ1 + δ2]}.

(3.76)

From (3.74) and (3.75), we have y ∈ Lγ,w,∀y ∈ ωts,σ,w(x), i.e., Ωts,σ(x) ⊂w Lγ.

Since Ωts,σ(x) is σ-quasi-invariant, we also have Ωts,σ(x) ⊂ Mγ . Therefore, ωts,σ,w ⊂

Mw. Since ωts,σ,w(x) is compact, we have Tw(t, x) → ωts,σ,w(x) and hence the conclu-

sion of the theorem follows. �

Discussion

Invariance principles in qualitative theories of dynamical systems aim at locating

attractors of the systems by firstly estimating region of attraction achieved through

convergence of Lyapunov functions and then further refining this estimate in terms

of invariance properties of limit sets. In this framework, the smaller the convergence

region of Lyapunov functions is, the more precise estimate of attractor is.

As discussed in Chapter 1, the existing results on invariance principles for switched

systems impose the switching decreasing condition on Lyapunov functions, i.e., the

Lyapunov functions are decreasing along the active time of their respective constituent
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systems [63, 13, 107]. Exploiting this condition, the Lyapunov functions are all uni-

formly decreasing and hence good first estimates of attractors are guaranteed. How-

ever, as discussed, the trade-off for the theoretical interest of the switching decreasing

condition is expensive: applicability of the corresponding results is considerably re-

stricted.

Under the above practical consideration, the general result in Theorem 3.5.1 makes

no decreasing requirement on periods of persistence. As presented, the natural ap-

proach for dealing with the respective difficulty is to estimate the diverging behavior

in terms of the converging behavior achievable on dwell-time intervals. The underly-

ing observation in developing the principle is: as Lyapunov functions are continuous

functions of state variables, their variations on bounded time intervals are bounded

if systems have no finite escape time. As shown in Figure 3.1, at the starting time

of a dwell-time switching event, it is always possible to determine the decrements

needed for maintaining convergence. For persistent dwell-time switching sequences,

as the desired minimum length of the running time of dwell-time switching events is

guaranteed by τp, it is possible to estimate the growth in persistent periods and then

design an appropriate control for achieving the desired decrements as long as diverg-

ing periods remain bounded. Without involving control design, this observation is

formulated in terms of bounded ultimate variations in condition ii) of Theorem 3.5.1.

The generality of condition ii) lies in the fact that in the setting of classical dynamical

systems, i.e., Vq,w are identical with respect to q ∈ Q, gw(x) ≡ 0, and i) is satisfied,

this condition automatically holds with δ1 = δ2 = 0.

We note that, similar to the notion of small-time norm observability of switched

autonomous systems [63] stated for norms of system state and output, we study

convergence in terms of small-variations small state to which condition ii) of Theorem

3.5.1 is presented. In general, if a trajectory converges to some region (neighborhood

of origin in [63]), then the limit of diverging segments of the trajectory must stay
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δ1
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k
+1τσ,iD

k−1+1 t

Figure 3.1: Composite Lyapunov function

around this region. The consideration on ultimate variations in condition ii) is to

reflect the fact that this desired detectability property is satisfiable for systems without

finite escape time plus with bounded destabilizing periods.

We note that the condition (3.50) is also of practical relevance. This condition

seems to be necessary for converging behavior of any continuous dynamical systems.

It is obvious that this condition automatically holds for δ1 = 0 for ordinary dynamical

systems possessing Lyapunov functions and switched systems satisfying the switching

decreasing condition which guaranteeing the convergence of all Lyapunov functions.

On the other hand, at its high level of generality, this condition seems to be difficult

to verify. However, as it is imposed on dwell-time intervals, it is satisfiable by control

design. This shall be illustrated in Part II of the thesis - Advanced Control. Also, the

consideration of the functions gw, w ∈ W is of practical interest. In control systems

with inherent uncertainties, converging to small neighborhoods of an equilibrium –

described by gw, w ∈ W – is more realistic than achieving asymptotic convergence to

this single equilibrium.

The expense for the generality and the relaxation in Theorem 3.5.1 is the set

estimate of attractor (3.76). Due to the allowance of destabilizing behavior on persis-

tent periods, set estimates were achieved instead of single curves/manifolds as in the
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classical qualitative theories of ordinary dynamical systems [56, 90]. However, rich

information on the structure of the attractor is carried on the level sets (3.76). As

shall be presented in the next subsection, under less general conditions, (3.76) can be

exploited to obtain stronger results.

To close the presentation of the general invariance principle, let us mention that

the function V
C ,w in the above proof of Theorem 3.5.1 is a function of time. As

the trajectory of V
C ,w(t) is the concatenation of the Lyapunov functions Vq,w’s of

constituent systems, we appropriately call V
C ,w the composite Lyapunov function for

the ease of reference.

3.5.2 Case Studies

In this subsection, we demonstrate that using further properties in specific situations,

stronger results can be obtained from Theorem 3.5.1. As switched autonomous sys-

tems are switched non-autonomous systems with one-element base space W = {w},

the first result is a direct application of Theorem 3.5.1 for a version of invariance

principle of switched autonomous systems. The last two results are to show that once

the dwell-time property of limiting switching sequence gives stronger results while

preserving applicability to general switching sequences.

Theorem 3.5.2 Let ΣA be a switched autonomous system in which every switching

sequence in S has a persistent dwell-time. Suppose that D ⊂ X is a nonempty common

forward invariant compact set of ΣA . Consider the continuous functions Vq : D →

R, q ∈ Q and g : D → R. Let rq be sup{Vq(x) : x ∈ D, g(x) < 0} if {x ∈ D : g(x) <

0} 6= ∅ and be −∞, otherwise.

Suppose further that there are nonnegative constants δ1 and δ2 such that for any

fixed initial state x ∈ D, any fixed time ts, and any fixed switching sequence σ ∈ S,

the following properties hold along the trajectory x(t)
def
= Tσ,A(t, ts, x), t ∈ R+:

i) in any switching event (qσ,i,∆τσ,i), i ∈ N, if ς1, ς2 ∈ [0,∆τσ,i] are such that
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ς2 > ς1 and g(x(τσ,i + ςj)) ≥ 0, j = 1, 2, then

Vqσ,i
(x(τσ,i + ς1)) ≥ Vqσ,i

(x(τσ,i + ς2)); (3.77)

ii) for the sequence of dwell-time switching events {(qσ,iDj
,∆τσ,iDj

)}j of σ satisfying

g(x(τσ,iDj
)) ≥ 0,∀j ∈ N, we have

lim sup
j→∞

sup
k>j

∣

∣

∣
Vq

σ,iD
j

(x(τσ,iDj
)) − Vq

σ,iD
k

(x(τσ,iD
k
))

∣

∣

∣
< δ1, and (3.78)

lim sup
j→∞

max
t∈[τ

σ,iD
j−1

+1
,τ

σ,iD
j
]

∣

∣

∣
Vq

σ,iD
j−1

(x(τσ,iDj−1+1)) − Vq
σ,i

−
σ (t)

(x(t))
∣

∣

∣
≤ δ2. (3.79)

Let r = max{rq : q ∈ Q}, Lγ, γ ∈ R be the level sets defined as Lγ =
{

ζ ∈ D :

∃q ∈ Q, Vq(ζ) ≤ r + 2δ2 + δ1 or Vq(ζ) ∈ [γ − δ2, γ + δ1 + δ2]}, and Mγ be the largest

(ts, σ)-quasi-invariant set contained in Lγ.

Then, x(t) = Tσ,A(t, ts, x) converges to the set M
def
=

⋃

γ∈R Mγ as t→ ∞.

Proof: As ΣA is a switched non-autonomous system with one-element base space

W = {w} in which the rule of autonomous transition is π(t, w) = w,∀t ∈ R. It

is obvious that under conditions i) and ii), this non-autonomous system satisfies

conditions of Theorem 3.5.1. Thus, the result is obvious. �

In the following invariance principle, dwell-time property of the limiting switching

sequences gives stronger results.

Theorem 3.5.3 Let ΣA be a switched autonomous system satisfying conditions of

Theorem 3.5.2. In addition, suppose that the set S∗
σ of limiting switching sequences of

σ is contained in SD [τp]. Let r = maxq sup{Vq(x) : x ∈ D, g(x) < 0}, and Lγ, γ ∈ R

be the level sets defined as Lγ =
{

ζ ∈ D : ∃q ∈ Q, Vq(ζ) ≤ r + δ2 or Vq(ζ) ∈

[γ − δ2, γ + δ1]}
}

, and Mγ be the largest (ts, σ)-quasi-invariant set contained in Lγ.

Then, Tσ,A(t, ts, x) converges to the set M
def
=

⋃

γ∈R Mγ as t→ ∞.
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Proof: Let us consider a limit point y ∈ ωts,σ(x). By Definition 3.3.4, there is a

sequence {tn}n such that

y = lim
n→∞

Tσ(tn, ts, x). (3.80)

As known from the proof of Proposition 3.2.1, there is a subsequence {tnm
}m of

{tn}n and a limiting switching signal σ∗ of σ such that σtnm
→ σ∗,m→ ∞. Without

loss of generality, we suppose that σtn → σ∗, n → ∞. By condition of the theorem,

σ∗ is a dwell-time signal in SD [τp].

Consider the case {tnm
}m has infinitely many elements contained in non-dwell-

time switching intervals, i.e., ∆τσ,i−σ (tnm ) < τp for infinitely many m ∈ N. Let us

label the sequence of all such elements as {tanm
}m. As σtnm

→ σ∗ ∈ Sσ[τp], we have

∆τσ,i−σ (tanm
) → 0,m→ ∞.

For each t ∈ R+, let i−D (t) be the index of the dwell-time switching event in σ

before and closest to t, i.e., i−D (t) = max{i ∈ N : ∆τσ,i ≥ τp, τσ,i ≤ t}. By definition of

tanm
, we have tanm

> τσ,i−
D

(tanm
),∀m ∈ N.

Since all switching events between i−D (t
a
nm

) and i−σ (tanm
) are non-dwell-time and

S∗
σ ⊂ SD [τp], we have

lim
m→∞

(tanm
− τσ,i−

D
(tanm

)) = 0. (3.81)

Therefore, by the continuity of the mapping Tσ,A we have

y = lim
m→∞

Tσ,A(t
a
nm
, ts, x) = lim

m→∞
Tσ,A(τσ,i−

D
(tanm

), ts, x). (3.82)

In view of (3.82), we suppose that all elements of {tnm
}m belong to dwell-time

switching intervals of σ without loss of generality.

As Q is finite, there is a q∗ ∈ Q and infinitely many numbers tbnm
such that

qσ,i−σ (tbnm
) = q∗. According to the proof of Theorem 3.5.1, we have either, in view of
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r

γ δ2

δ1

δ2

Figure 3.2: Level set Lγ

(3.64) and (3.65),

V−∞ = inf{Vq(ζ) : ζ ∈ D, q ∈ Q} ≤ lim inf
m→∞

Vq
σ,i

−
σ (tnm )

(Tσ,A(τσ,i−σ (tnm ), ts, x))

≤ lim
m→∞

Vq
σ,i

−
σ (tbnm )

(Tσ,A(t
b
nm
, ts, x)) = Vq∗(y)

≤ lim sup
m→∞

Vq
σ,i

−
σ (tnm )

(Tσ,A(tnm
, ts, x)) ≤ r + δ2 (3.83)

or, in view of (3.55) and (3.79),

γ + δ1 ≥ lim sup
m→∞

Vq
σ,i

−
σ (tnm )

(Tσ,A(τσ,i−σ (tnm ), ts, x))

≥ lim
m→∞

Vq
σ,i

−
σ (tbnm )

(Tσ,A(t
b
nm
, ts, x)) = Vq∗(y)

≥ lim inf
m→∞

Vq
σ,i

−
σ (tnm )

(Tσ,A(tnm
, ts, x)) ≥ lim inf

m→∞
Vq

σ,i
−
σ (tnm )

(Tσ,A(τσ,i−σ (tnm )+1, ts, x))

≥ lim inf
m→∞

((

Vq
σ,i

−
σ (tnm )

(Tσ,A(τσ,i−σ (tnm )+1, ts, x))

− Vq
σ,i

−
σ (tnm+1)

(Tσ,A(τσ,i−σ (tnm )+1, ts, x))
)

+ Vq
σ,i

−
σ (tnm+1)

(Tσ,A(τσ,i−σ (tnm )+1, ts, x))
)

≥ γ − δ2. (3.84)

Combining (3.83) and (3.84), it follows that y ∈ Lγ and hence the conclusion of

the theorem follows. �
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The level set Lγ in Theorem 3.5.3 is depicted in Figure 3.2. As can be predicted

from Figure 3.1, due to vanishing separation between dwell-time switching intervals,

the behavior of the system is eventually governed by the limiting switching sequence

and hence good estimates of attractors can be achieved while general switching se-

quences are permitted. By the following theorem, we show that under the usual

conditions on Lyapunov functions, classical analogues of estimates of attractors are

obtained.

Theorem 3.5.4 Let ΣA be a switched autonomous system in which every switch-

ing sequence in S has a persistent dwell-time. Suppose that D ⊂ X is a nonempty

common forward invariant compact set of ΣA and there are continuous functions

Vq : D → R, q ∈ Q such that for a fixed initial state x ∈ D, a fixed time ts, and a

fixed switching sequence σ ∈ SP [τp, Tp] ⊂ S, the following properties hold along the

trajectory Tσ,A(t, ts, x), t ∈ R+:

i) Vqσ,i
(Tσ,A(τσ,i + ς1, ts, x)) ≤ Vqσ,i

(Tσ,A(τσ,i + ς2, ts, x)),∀ς1, ς2 ∈ [0,∆τσ,i], ς1 <

ς2, i ∈ N;

ii) for the sequence of dwell-time switching events {(qσ,iDj
,∆τσ,iDj

)}j of σ, we have

Vq
σ,iD

j

(Tσ,A(τσ,iDj
, ts, x)) ≥ Vq

σ,iD
k

(Tσ,A(τσ,iD
k
, ts, x)),∀k, j ∈ N, k > j, and (3.85)

lim sup
j→∞

max
t∈[τ

σ,iD
j−1

,τ
σ,iD

j
]

∣

∣

∣
Vq

σ,iD
j−1

(Tσ,A(τσ,iDj−1
, ts, x)) − Vq

σ,i
−
σ (t)

(Tσ,A(t, ts, x))
∣

∣

∣
= 0.

(3.86)

Let Lγ, γ ∈ R be the level sets defined as Lγ = {ζ ∈ D : ∃q ∈ Q, Vq(ζ) = γ}, and Mγ

be the largest (ts, σ)-quasi-invariant set contained in Lγ.

Then, Tσ,A(t, ts, x) converges to the set M
def
= ∪γ∈RMγ as t→ ∞.

Proof: From (3.85), {Vq
σ,iD

j

(Tσ,A(τσ,iDj
, ts, x))}j is a decreasing sequence. In addition,

as Vq, q ∈ Q are continuous, andD is compact and common forward invariant compact
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set for ΣA , this sequence is lower bounded. Thus, there is a number γ ∈ R such that

γ = lim
j→∞

Vq
σ,iD

j

(Tσ,A(τσ,iDj
, ts, x)), (3.87)

and hence condition (3.78) of Theorem 3.5.2 is satisfied with δ1 = 0.

Let g(x) ≡ 0, then all conditions of Theorem 3.5.1 are satisfied. Applying Theorem

3.5.1 are satisfied and substituting δ1 = δ2 = 0 and r = −∞, we have the conclusion

of the theorem. �

3.6 Examples

In this section, we provides examples to demonstrate applications of the introduced

invariance principles in locating attractors of switched systems using auxiliary func-

tions. It shall be demonstrated that by examining non-autonomous attractors, con-

verging to the origin behavior can be achieved. We also show in Example 3.2 the

existence of limit cycles in switched systems.

Example 3.6.1 (The Non-autonomous Case)

In this example, we consider the switched non-autonomous system ΣNA whose con-

stituent systems are described by the following differential equations.

ϕ1 :







ẋ1

ẋ2






=







x2 − x1(3x
2
1 + x2

2 − w1)

−3x1 − 2x2(3x
2
1 + x2

2 − w1)







ϕ2 :







ẋ1

ẋ2






=







4x2 − x1(x
2
1 + 4x2

2 − w2)

−x1 − x2(x
2
1 + 4x2

2 − w2)






(3.88)

where w = [w1, w2]
T is the time-varying parameter generated by an autonomous

system π on some compact set W ⊂ R2. Let λ(π(t, w))
def
= ∂π(t, w)/∂t, and let Vw be
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the non-autonomous Lyapunov function whose components are

V1,w(x) = (3x2
1 + x2

2 − w1)
2, V2,w(x) = (x2

1 + 4x2
2 − w2)

2, w ∈ W. (3.89)

Let ϕi(t, x, v) = [ϕi,1(t, x, v), ϕi,2(t, x, v)]
T , i = 1, 2 be the component transition map-

pings of ΣNA . For a fixed w ∈ W, the time derivatives of Vi,w, i = 1, 2 along the pull-

back trajectories at w of the constituent systems ϕj, which are ϕj(t, x, w−t), w−t =

π(−t, w), can be computed as

DjVi,w(ϕj(t, x, w−t)) =
∂Vi,w(x)

∂x

∣

∣

∣

x=ϕj(t,x,w−t)

((∂ϕj

∂v
λ(v)

)∣

∣

∣

v=w−t

+
∂ϕj

∂t

)

. (3.90)

Let [ξ1, ξ2]
T def

= ϕ1(t, x, w−t) and [ζ1, ζ2]
T def

= ϕ2(t, x, w−t) for short. Since π is an

autonomous system on compact set W , there is a function gw(x1, x2) ≥ 0 satisfying

g0,w(x1, x2) ≥ max
i

{∥

∥

∥

(∂ϕi

∂v
λ(v)

)∣

∣

∣

v=π(−t,w)

∥

∥

∥
, t ∈ R

}

. (3.91)

A direct calculation according to (3.90) yields

D1V1,w ≤ −2(6ξ2
1 + 4ξ2

2)(3ξ
2
1 + ξ2

2 − w1)
2 + 2g0,w(ξ1, ξ2)|3ξ2

1 + ξ2
2 − w1|,

D2V2,w ≤ −2(2ζ2
1 + 8ζ2

2 )(ζ2
1 + 4ζ2 − w2)

2 + 2g0,w(ζ1, ζ2)|ζ2
1 + 4ζ2

2 − w2|. (3.92)

In view of (3.92), let us consider the function gw(x1, x2) satisfying

gw(x1, x2) ≤ min
i
{gi,w(x1, x2)},∀(x1, x2) ∈ R2, (3.93)
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where

g1,w(x1, x2) = 3x2
1 + x2

2 − |w1| −
√

g0,w(x1, x2)

g2,w(x1, x2) = x2
1 + 4x2

2 − |w2| −
√

g0,w(x1, x2). (3.94)

Obviously, if gw(x1, x2) ≥ 0, then 6x2
1 + 4x2

2 −
√

g0,w(x1, x2) ≥ 0 and 2x2
1 + 8x2

2 −
√

g0,w(x1, x2) ≥ 0, which lead to

D1V1,w ≤ −2
(

6ξ2
1 + 4ξ2

2 − 2
√

g0,w(x1, x2)
)

(3ξ2
1 + ξ2

2 − w1)
2 ≤ 0,

D2V2,w ≤ −2(2ζ2
1 + 24ζ4

2 − 2
√

g0,w(x1, x2))(ζ
2
1 + 2ζ4

2 − w2)
2 ≤ 0. (3.95)

As such, for gw(x1, x2) ≥ 0, V1,w and V2,w are decreasing on running time of their

respective constituent systems. Therefore, the switched system ΣNA satisfies condition

i) of Theorem 3.5.1.

On the other hand, using (3.90) and Young’s inequality, we have

D2V1,w ≤ 2(3ζ2
1 + ζ2

2 − w1)
(

22ζ1ζ2 − (6ζ2
1 + 4ζ2

2 )(ζ2
1 + 4ζ2 − w2)

)

+ 2g0,w(ζ1, ζ2)|3ζ2
1 + ζ2

2 − w1|

≤ −2(3ζ2
1 + ζ2

2 − w1)(6ζ
2
1 + 4ζ2

2 )(ζ2
1 + 4ζ2

2 − 3 − w2)

+ 2g0,w(ζ1, ζ2)|3ζ2
1 + ζ2

2 − w1|

≤ −2(3ζ2
1 + ζ2

2 − w1)(6ζ
2
1 + 4ζ2

2 )(ζ2
1 + 4ζ2

2 − w2) + 6(3ζ2
1 + ζ2

2 − w1)

× (6ζ2
1 + 4ζ2

2 − w1) + 6w1(3ζ
2
1 + ζ2

2 − w1) + 2g0,w(ζ1, ζ2)|3ζ2
1 + ζ2

2 − w1|.

(3.96)
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Figure 3.3: Forward attractor.

Since W is compact and
√

g0,w(ζ1, ζ2) ≤ (3ζ2
1 + ζ2

2 − w1) when gw(ζ1, ζ2) ≥ 0,

(3.96) further leads to

D2V1,w ≤ 6(3ζ2
1 + ζ2

2 − w1)(6ζ
2
1 + 4ζ2

2 − w1) + 6w1(3ζ
2
1 + ζ2

2 − w1)

≤ c11V1,w + c12
√

V2,w, (3.97)

where c11 and c12 are positive constants. Similarly, there are constants c21 > 0 and

c22 > 0 such that

D1V2,w ≤ c21V2,w + c22
√

V1,w, (3.98)

provided that gw(ξ1, ξ2) ≥ 0. Directly solving (3.97) and (3.98) on persistent dwell-

time intervals and, in view of (3.97), (3.98), and (3.95), making the persistent dwell-

time τp sufficiently large with respect to the period of persistence Tp, it is obvious

that condition ii) of Theorem 3.5.1 is satisfied.
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Figure 3.4: Pullback attractor of ΣNA at w = [w1, w2]
T = [8.5, 16]T .
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Figure 3.5: Convergence via non-autonomous attractors
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In simulation we choose Tp = 0.4s and τp = 1s. The time-varying parameters w1

and w2 are taken as the output of the chaotic system

η̇1 = σ(η2 − η1)

η̇2 = η1(ρ− η3) − η2

η̇3 = η1η2 − βη3,

w =
[

√

η2
2 + 1,

√

η2
3 + 1

]T
, (3.99)

where σ = 10, β = 8/3, and ρ = 28 are constants.

As shown in Figure 3.3, the switched system ΣNA exhibits a chaotic behavior and,

as the forward attractor is determined by the specific dynamics of w, no conclusion

on the influence of w on the behavior of system state x can be made using forward

attractor. However, as shown in Figure 3.4, the above limitation of forward attractor

is removed by using pullback attractors. By pushing the initial value w0 = π(−t, w)

backward from w = [w1, w2]
T , the limit set of the pullback trajectory is well-estimate

by the level sets shaped by limit cycles 3x2
1 + x2

2 = w1 and x2
1 + 4x2

2 = w2 of the

constituent systems.

In addition, since the non-autonomous ω-limit set at a w ∈ W can be interpreted

as the container of the system state at the current time if the system has run suffi-

ciently long. It is well concluded that for under any parameter w that converge to zero

as t→ ∞, the system state x(t) shall converge to the region {ζ ∈ Rn : gw(ζ)|w=0 < 0}

as t→ ∞. This fact is shown in Figure 3.5, where w was generated by the system

ξ̇ =

[

0 0.2

−0.3 −0.7

]

ξ, w = [ξ2
1 , ξ

2
2 ]

T . (3.100)

Example 3.6.2 (Autonomous Case)
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Figure 3.6: Limiting behavior of switched autonomous system ΣA

In this example, we consider the switched autonomous system ΣA whose constituent

systems are described by the following differential equations.

π1 :







ẋ1

ẋ2






=







x2 − x1(3x
2
1 + x2

2 − 14)

−3x1 − 2x2(3x
2
1 + x2

2 − 14)







π2 :







ẋ1

ẋ2






=







4x3
2 − x1(x

2
1 + 2x4

2 − 16)

−x1 − 3x2(x
2
1 + 2x4

2 − 16)






(3.101)

Using the Lyapunov functions V1 = (3x2
1 + x2

2 − 14)2 and V2 = (x2
1 + 2x4

2 − 16)2,

it is verified that the sets O1 = {(x1, x2) ∈ R2 : 3x2
1 + x2

2 − 14 = 0} and O2 =

{(x1, x2) ∈ R2 : x2
1 + 2x4

2 − 16 = 0} are attractive invariant sets of π1 and π2,

respectively. They are limit cycles of the corresponding constituent systems. A direct

computation shows that V̇1 ≤ 0 and V̇2 ≤ 0 along the trajectories of their respective

systems and hence condition ii) of Theorem 3.5.2 is satisfied. In simulation a dwell-

time switching sequence was used so that condition i) and ii) of Theorem 3.5.2 can
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be satisfied as well. The function g was selected as g(x1, x2) = min{V1(x), V2(x)}

and the running times of π1 and π2 are generated randomly in intervals [0.8, 0.9] and

[1.2, 1.4], respectively. As shown in Figure 3.6, the attractor of the system is well

estimated by the set O1 ∪ O2 ∪ {(x1, x2) : g(x1, x2) ≤ 0}.
 



Chapter 4

Invariance: Time-delay

This chapter aims at a qualitative theory of switched time-delay systems. The delay-

dependent systems are modeled as switched autonomous systems without switching

jump on the Banach space of continuous functions. The qualitative notions are de-

fined in the Banach space and the converging conditions are stated in the Euclidean

space. Treating period of persistence and delay-time on an equal footing, decreasing

condition is imposed in the Banach space without conservativeness. Invariance prin-

ciples are presented for both delay-dependent and delay-free switched systems. The

general class of persistent dwell-time switching sequences is again of primary interest.

4.1 Motivation

Infinite dimensional dynamical systems arise in applications where any finite collection

of parameters is not sufficient to describe the system dynamics. Practical examples of

such systems range over biological, physical, and engineering systems [36, 59, 145,81,

113,68,54,31]. Systems in which infinite dimensions are called upon the past state are

usually termed time-delay systems or retarded systems. Bearing in mind the hybrid

nature of contemporary dynamical systems, one might develop a qualitative theory

82



4.1. Motivation 83

for switched systems with time-delay as a natural advance.

The stability theory of time-delay systems has a long history [59, 89, 113, 54].

Plentiful achievements in this area include Lyapunov-Krasovskii functional method

[83], Lyapunov-Razumikhin function method [59], and invariance principles [57,55,67].

In the qualitative theory of time-delay systems, the long-term behavior is usually

studied by the functional approach in the Banach space of continuous functions for

a richer theory, and is studied by the function approach in the Euclidean spaces for

applicability [58, 59]. While the functional approach addresses the issues on com-

pactness of limit sets, the Lyapunov-Razumikhin function approach aims at a relaxed

decreasing condition on Lyapunov function for less conservative results.

We would mention that switched systems with time-delay have been studied re-

cently [108,158,100,153]. While [153] restricts to switched linear systems with dwell-

time, [158] and [100] adopt the approach of [154] with the inherent conservativeness

in the context of switched systems. In particular, the satisfaction of the difference in-

equality at discrete times in [158,100] requires the knowledge of the discrete dynamics

and hence these results become restrictive in the context of switched systems.

Though the general framework of qualitative theory for hybrid systems in [108]

applies to switched time-delay systems, the semi-group condition on trajectory be-

comes restrictive in the context of switched systems. A qualitative theory of switched

time-delay systems exploiting basic observations of the original LaSalle’s invariance

principle and addressing the loss of the semi-group property of trajectories in the

continuous space remains open.

Motivated by the above consideration, we develop in this chapter a qualitative

theory for switched time-delay systems. The qualitative notions are defined in the

Banach space and the converging conditions are stated in the Euclidean space. It turns

out that, in switched time-delay systems, relation between time-delay and period of

persistence can be exploited for further converging conditions.
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4.2 Preliminaries

We shall adopt some standard notations from [59]. Let [a, b] be an interval in R.

Then, C ([a, b],Rn) is the Banach space of continuous functions mapping the interval

[a, b] into Rn with the topology of uniform convergence, i.e., a sequence of function

{fn}n in C ([a, b],Rn) is said to converge to a function f ∈ C ([a, b],Rn) if

lim
n→∞

sup
x∈[a,b]

‖fn(x) − f(x)‖ = 0. (4.1)

The norm for elements in C ([a, b],Rn) is designated as

‖f‖ = sup{‖f(x)‖ : x ∈ [a, b]},∀f ∈ C ([a, b],Rn). (4.2)

Let Tr ∈ R+ be a retarded parameter. The space C ([−Tr, 0],Rn) shall be denoted

by Cr. Suppose that ψ ∈ C ([t0 − Tr, t0 + T ],Rn) for some t0 ∈ R and T ∈ R+. Then,

for a t ∈ [t0, t0 + T ], ψt is the function in Cr defined by

ψt(ς) = ψ(t+ ς),∀ς ∈ [−Tr, 0]. (4.3)

The distance from a point φ ∈ Cr to a set A ⊂ Cr is dist(φ,A)
def
= ‖φ‖A =

inf{‖φ− ψ‖ : ψ ∈ A}.

For the ease of reference, let us adopt the following notions and result in topology

from [108] for the space C ([a, b],Rn).

Definition 4.2.1 ( [108]) A subset F of C ([a, b],Rn) is said to be equicontinuous if

for every ǫ > 0, there is a number δ > 0 such that

x, y ∈ [a, b], |x− y| < δ ⇒ ‖f(x) − f(y)‖ < ǫ,∀f ∈ F . (4.4)

In addition, F is said to be uniformly bounded if there is a constant H > 0 such that
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‖f‖ ≤ H,∀f ∈ F .

Theorem 4.2.1 (Arzela-Ascoli – [41]) Let F be a subset of C ([a, b],Rn). Suppose

that F is equicontinuous and uniformly bounded. Then, F is precompact, i.e., the

closure Cl(F) is compact in C ([a, b],Rn).

We shall say that a subset A of some topological space X is compact covered if

there is a compact subset B of X that contains A.

For a function V mapping Rn into R, we shall attach the superscript ♮ to V to

indicate the function V ♮ mapping Cr into R defined as

V ♮(φ) = sup
ς∈[−Tr,0]

V (φ(σ)), φ ∈ Cr. (4.5)

Finally, throughout the chapter, the discrete set Q is supposed to be finite.

4.3 Switched Time-delay Systems

We shall restrict ourselves to the autonomous case for simplicity of exposition as, by

virtue of the general results in Chapter 3, the more general result is obtainable. Thus,

no issue on the autonomy should arise, and we shall call switched time-delay systems

without embarrassment.

4.3.1 The Model

Let Tr ∈ R+ be a fixed number. Adopting Definition 2.4.2, we have the follow-

ing notion of switched time-delay systems as switched autonomous systems without

switching jump whose manifest space is X = Cr.

Definition 4.3.1 (switched time-delay system) A switched time-delay system is

a hexad

ΣD =
(

R+,Q,Cr, {ψq}q∈Q,S
)

, (4.6)
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where Q is a discrete set which is the space of the discrete signals, Cr is the space of

continuous functions mapping [−Tr, 0] into Rn with topology of uniform convergence,

ψq : R+ × Cr → Cr, q ∈ Q are ordinary autonomous dynamical systems on Cr, and S

is a collection of switching sequences.

The transition mapping ψq, q ∈ Q in the above model of switched time-delay

systems can arise in systems described by retarded functional differential equations

(RFDEs) of the form

Rq : ẋ(t) = fq(xt), q ∈ Q, (4.7)

where fq : Cr → Rn, q ∈ Q are continuous functions. In fact, consider an index

q ∈ Q. It is well-known from [59] that if fq takes bounded sets of Cr into bounded

sets of Rn, then for any initial condition φ ∈ Cr, the solution x(φ) ∈ C ([−r,∞),Rn)

of (4.7) is well-defined, unique, and continuously dependent on initial condition, and

the transition mapping ψq : R+ × Cr → Cr, φ 7→ xt(φ) is well-defined and satisfy the

semi-group property

ψq(t+ s, φ) = ψq(t, ψq(s, φ)),∀t, s ∈ R+, φ ∈ Cr. (4.8)

Suppose that the transition mappings ψq, q ∈ Q of the switched time-delay system

ΣD are generated by equations (4.7). The evolution of ΣD can be described as follows.

Given a switching sequence σ ∈ S whose sequence of switching events is {(qσ,i,∆τσ,i)}i.

From the initial condition φ0 ∈ Cr at some initial time t0, the systems evolves under

the law Rqσ,0 given by (4.7) with q = qσ,0 until the time t1 = t0+∆τσ,0 is reached. Since

Rqσ,0 is autonomous, according to [59], the trajectory xqσ,0(φ0) : [−Tr,∆τσ,0] → Rn

generated by Rqσ,0 on [t0, t1] is well-defined, unique, continuous, and independent of

t0. Thus, the transition mapping ψqσ,0(t)
def
= (xqσ,0)t(φ0), t ∈ [0,∆τσ,0] is well-defined

and continuous on [0,∆τσ,0].
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Let us recall that τσ,i =
∑i−1

j=0 ∆τσ,j. At the time t1, the system ΣD changes the

rule of transition from Rqσ,0 to Rqσ,1 . Since xqσ,0(φ0) is continuous on [−Tr, τσ,1], the

initial condition φ1 = (xqσ,0)∆τσ,0(φ0) for the new transition rule Rqσ,1 is well-defined

and belongs to Cr. As such, the trajectory xqσ,1(φ1) : [τσ,1 − Tr, τσ,1 + ∆τσ,1] → Rn

generated by Rqσ,1 on [t1, t2], t2 = t1+∆τσ,1 is well-defined, continuous, and is uniquely

determined the by the initial condition φ0 through φ1. From t2, the process continues,

and we obtain the continuous mapping x(·, x0) : [−Tr,∞) → Rb defined by

x(t;φ0) = xqσ,i
(φi)(t− τσ,i), t ∈ [ti − Tr, ti+1], i ∈ N. (4.9)

Since x(t, φ0) is continuous, by [59, Chapter 2, Lemma 2.1], xt(t, φ0) = φq
σ,i

−
σ (t)

(t−

τσ,i−σ (t)) is continuous on Cr.

In summary, the model (4.6) well describes the switched time-delay systems whose

laws of motions are given by (4.7). Hereafter, we shall deal with switched time-delay

systems using the model (4.6).

4.3.2 Transition Mappings

Suppose that the switching sequence is non-blocking. From the general setting of

switched autonomous systems in Definition 2.4.2, for each switching sequence σ and

initial time ts ∈ R+, the following transition mapping Tts,σ : R+ × Cr → Cr of

switched time-delay system (4.6) is well-defined from (2.7) and is continuous.

Tts,σ(t, φ) =























ψq
i
−
σ (ts)

(t, x) if t ∈ [0, τσ,i−σ (ts)+1 − ts]

ψq
i
−
σ (ts+t)

(

ts + t− τσ,i−σ (ts+t),Tσ(τσ,i−σ (ts+t) − ts, ts, φ)
)

if t ≥ τσ,i−σ (ts)+1 − ts

. (4.10)

We shall alternatively call Tts,σ(t, φ) the trajectory in the space Cr of ΣD . Clearly,

under the transition (4.10), the following trajectory is continuous and uniquely defined
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in the state space Rn of the system:

T
φ

ts,σ : R+ → Rn, t 7→ Tts,σ(t, φ)(0). (4.11)

We shall use Tts,σ for studying qualitative notions and use T
φ

ts,σ for studying

converging conditions of ΣD .

4.3.3 Derivatives along Trajectories

Let a ∈ R be a fixed number. Consider a continuous function x : [a− Tr,∞) → Rn,

which we call a trajectory in Rn, and continuous functions V : Rn → R and V ♮ :

Cr → R. For each t ∈ [a,∞), we have the function xt : [−Tr, 0] → Rn, which we call

a trajectory in Cr, defined as xt(ς) = x(t+ ς), ς ∈ [−Tr, 0]. For a time t ∈ [a,∞), we

have the following Dini derivatives [59,156]:

D+V (x(t)) = lim sup
h→0+

V (x(t+ h)) − V (x(t))

h
; (4.12)

D−V (x(t)) = lim sup
h→0−

V (x(t+ h)) − V (x(t))

h
; (4.13)

D+V ♮(xt) = lim sup
h→0+

V ♮(xt+h) − V ♮(xt)

h
; (4.14)

D−V ♮(xt) = lim sup
h→0−

V ♮(xt+h) − V ♮(xt)

h
. (4.15)

We shall call D+V (x(t)) and D−V (x(t)) respectively the upper-right and upper-left

Dini derivatives at t of V along the trajectory x(t), and D+V ♮(xt) and D−V ♮(xt)

respectively the upper-right and upper-left Dini derivatives at t of V ♮ along the tra-

jectory xt. For a switching sequence σ ∈ S, we are interested in the following notion

of derivative at t of V along the trajectory x(t):

DσV (x(t)) =











D+V (x(t)) if t ∈ {τσ,i}i

max{D+V (x(t)), D−V (x(t))} if t ∈ R+\{τσ,i}i.
(4.16)
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4.3.4 Qualitative Notions

Adopting the qualitative notions of the general dynamical systems in Section 2.2.3,

we shall bring out the qualitative notions for switched time-delay system ΣD using

the transition mapping Tts,σ defined by (4.10). We first clarify that, in the general

framework of the transition model, the manifest space in ΣD is WM = Cr and the

latent space is WL = S.

Definition 4.3.2 (trajectory) Let φ ∈ Cr, ts ∈ R+ and σ ∈ S fixed. The (ts, σ)–

interacting trajectory through the point φ of ΣD is the set Ots,σ(φ) = {Tts,σ(t, φ) : t ∈

R+}.

Definition 4.3.3 (motion) Let φ ∈ Cr. The (t, ts, σ)–motion through φ of ΣD is

Rts,σ(φ)(t) = Tts,σ(t, φ).

Definition 4.3.4 (attractor) Let A and D be closed sets in Cr. The set A is said

to be the (ts, σ)–forward attractor of ΣD with basin of attraction D if

lim
t→∞

‖Tts,σ(t, φ)‖A = 0,∀φ ∈ D. (4.17)

In addition, if this property holds for all σ ∈ S, then A is said to be the switching-

uniform forward attractor with basin of attraction D of ΣD .

Definition 4.3.5 (ω-limit set) Let φ ∈ Cr and ts ∈ R+ fixed. The ω–limit set of

the (ts, σ)–interacting trajectory Ots,σ(φ) through φ of the system ΣD is the set

ωts,σ(φ) =
⋂

T≥ts

⋃

t≥T

Tts,σ(t, φ). (4.18)

4.4 Compactness and Quasi-invariance

Compactness of the limit sets of trajectories is an important issue in the general

qualitative theory of dynamical systems [57, 58]. Different from dynamical systems
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on finite dimensional spaces, boundedness of trajectories generally does not ensure

compactness for the limit sets in Banach spaces. In addition, similar to delay-free

systems, switching events causes the loss of the semi-group property and hence, the

limit sets of switched time-delay systems are not invariant as in the classical time-

delay systems [57,59].

In this section, we shall adopt the compact covering condition in [58] for the com-

pactness of limit sets of trajectories of switched time-delay systems. Then, limiting

switching sequences introduced in the previous Chapter 3 are further applied to study

invariance property of these limit sets of trajectories.

4.4.1 Compactness

Theorem 4.4.1 Let ΣD be a switched time-delay system. Suppose that for fixed φ ∈

Cr, σ ∈ S, and ts ∈ R+ the interacting trajectory Ots,σ(φ) is covered by a compact

subset of Cr. Then, the limit set ωts,σ(φ) is non-empty and compact. In addition,

Tts,σ(t, φ) approaches ωts,σ(φ) as t→ ∞.

Proof: Since Ots,σ(φ) is covered by a compact subset of Cr, for any time sequence

{tn}n, the sequence {Tts,σ(tn, φ)}n has a subsequence {Tts,σ(tnm
, φ)}m that converges.

Therefore ωts,σ(φ) is nonempty.

We proceed to prove the compactness of ωts,σ(φ) by showing that ωts,σ(φ) is closed.

Suppose that {φn}n is a sequence of functions in ωts,σ(φ) that converges to φ∗ ∈ Cr

as n→ ∞. Let τ > 0 be any finite number and let {εn}n be any sequence converging

to zero as n → ∞. As φn → φ∗, n → ∞, for each n ∈ N, there is an integer kn ∈ N

such that ‖φkn
− φ∗‖ < εn/2. For each kn, n ∈ N, as φkn

∈ ωts,σ(φ), there is a time

sequence {t(kn)
m }m such that

lim
m→∞

‖Tts,σ(t(kn)
m , φ) − φkn

‖ = 0. (4.19)
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From the sequence {t(kn)
m }m, n ∈ N, let us define the time sequence {tkn

}n as fol-

lows. Applying (4.19) for n = 0, there is a time tk0 ∈ {t(k0)
m }m satisfying ‖Tts,σ(tk0 , φ)−

φk0‖ < ε0/2. From tk0 , applying (4.19) for each n ∈ N\{0}, we obtain the times

tkn
∈ {t(kn)

m }m that satisfies ‖Tts,σ(tkn
, φ) − φkn

‖ < εn/2 and tkn
> tkn−1 + τ .

Obviously, {tkn
}n is a time sequence as its elements are separated by τ . Thus, by

construction, we have

‖Tts,σ(tkn
, φ) − φ∗‖ ≤ ‖Tts,σ(tkn

, φ) − φkn
‖ + ‖φkn

− φ∗‖ < εn,∀n ∈ N. (4.20)

As εn → 0, n → ∞, (4.20) implies that Tts,σ(tkn
, φ) → φ∗, n → ∞. Hence,

φ∗ ∈ ωts,σ(φ) and ωts,σ(φ) is closed accordingly.

Since Ots,σ(φ) is contained in a compact subset of Cr, the set of limit points

of Ots,σ(φ) including those in ωts,σ(φ) is contained in this compact subset. Thus,

ωts,σ(φ) is contained in a compact set of Cr. This coupled with the closedness of

ωts,σ(φ) implies that ωts,σ(φ) is compact.

We prove the last assertion of the theorem by a contradiction argument similar to

[57]. Suppose that the converse holds, i.e., there is a time sequence {tn}n and a number

ǫ > 0 such that ‖Tts,σ(tn, φ)−φ∗‖ > ǫ,∀φ∗ ∈ ωts,σ(φ). Since {Tts,σ(tn, φ)}n ⊂ Ots,σ(φ)

belonging to a compact subset of Cr, there is a subsequence {Tts,σ(tnm
, φ)}m that

converges to some φ∗ ∈ Cr which is obviously an element of ωts,σ(φ). This is a

contradiction, and hence the assertion holds. �

In Theorem 4.4.1, the technical condition on compact covering of the trajectory

Ots,σ(φ) is imposed. This condition is adopted from the qualitative theory of dynam-

ical systems on Banach spaces [58]. The following theorem asserts that this condition

can be satisfied if the transition mapping in the state space Rn of the system is

bounded and uniformly continuous. We refer to [41] for topological concepts.

Theorem 4.4.2 Let ΣD be a switched time-delay system whose component transition
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mappings ψq, q ∈ Q are generated by RFDEs (4.7) with fq, q ∈ Q mapping bounded

sets in Cr into bounded set in Rn. Suppose that, for fixed φ ∈ Cr, σ ∈ S, and ts ∈ R+,

where φ being uniform continuous on [−Tr, 0], the transition mapping T
φ

ts,σ defined

in (4.11) is bounded. Then, the trajectory Ots,σ(φ) is compact covered.

Proof: Since {T φ
ts,σ(t) ∈ Rn : t ∈ [−Tr,∞)} is bounded, there is a constant H such

that H > ‖T φ
ts,σ(t)‖,∀t ∈ R+. Thus, the trajectory Ots,σ(φ) = {Tts,σ(t, φ) ∈ Cr : t ∈

R+} is uniformly bounded byH. Since the functions fq, q ∈ Q are continuous and take

bounded sets in Cr into bounded sets in Rn, the right hand sides of (4.7) are bounded

for all time and for all constituent systems. This implies that T
φ

ts,σ(t) is uniformly

continuous on individual running times of switching events. However, as there is no

switching jump and the number of elements of Q is finite, this further implies that

T
φ

ts,σ is uniformly continuous on [−Tr,∞). Thus, it is obvious that the trajectory

Ots,σ(φ) is equicontinuous on [−Tr, 0]. As T
φ

ts,σ is bounded, applying Arzela-Ascoli

theorem, we conclude that Ots,σ(φ) is precompact and hence the conclusion of the

theorem follows. �

4.4.2 Quasi-invariance

In this section, we shall introduce a notion of quasi-invariance for switched time-delay

systems using limiting switching sequences introduced in Chapter 3. We shall show

that the limit sets of trajectories of switched time-delay systems are quasi-invariant.

The main complexity lies in the arguments for uniform convergence in function space

Cr. In the following, for each ts ∈ R+ and σ ∈ S, the notation Tts,σ has the obvious

meaning from (4.10). Thus, we have the following definition without involving the

notion of motion.

Definition 4.4.1 Let ΣD be a switched time-delay system. For a fixed switching

sequence σ ∈ S, a subset A ⊂ Cr is said to be σ-quasi-invariant if there is a limiting

switching sequence σ∗ ∈ S∗
σ of σ such that for each φ ∈ A, T0,σ∗(t, φ) ∈ A,∀t ≥ 0.
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In the following theorem, the argument using Arzela-Ascoli theorem for proving

uniform convergence of continuous functions in the space Cr is adopted from [58].

The main difference from the classic results lies in the use of the transition mapping

Tts,σ in dealing with the loss of the semi-group property of the system trajectories.

Theorem 4.4.3 Let ΣD be a switched time-delay system. Let ts ∈ R+, φ ∈ Cr, and

σ ∈ S fixed. Suppose that the trajectory Ots,σ(φ) is compact covered and all limiting

sequences of σ are non-Zeno. Then, the limit set ωts,σ(φ) is σ-quasi-invariant.

Proof: Consider a point φ∗ ∈ ωts,σ(φ). By Definition (3.3.4), there is a time sequence

{tn}n such that

lim
n→∞

‖Tts,σ(tn, φ) − φ∗‖ = 0. (4.21)

It follows from Proposition 3.2.1 that there is a subsequence {tnm
}m of {tn}n such

that σtnm
→ σ∗ as m → ∞. For switching sequences σtnm

,m ∈ N and σ∗, we have

the following notations and facts recalled from the proof of Theorem 3.4.1.

i) σtnm+t → σ∗
t ,∀t ∈ R+,

ii) qσ,i−σ (tnm+t)+j

def
= qσtnm+t,j

→ qσ∗
t ,j

def
= qσ∗,i−

σ∗ (t)+j,∀t ∈ R+,∀j ∈ N,

iii) i−σ∗(0) is the last index satisfying τσ∗,i−
σ∗ (0) ≤ 0, i.e, τσ∗,j = 0,∀j = 0, . . . , i−σ∗(0)

and τσ∗,i−
σ∗ (0)+1 > τσ∗,i−

σ∗ (0),

iv) ∆τσ,i−σ (tnm )+j

def
= ∆τσtnm

,j → ∆τσ∗,j = 0,m→ ∞,∀j = 1, . . . , i−σ∗(0) − 1,

v) τσ,i−σ (tnm )+1 − tnm

def
= ∆τσtnm

,0 → ∆τσ∗,0 = 0,m→ ∞,

vi) τ̃σ,nm
(0) is designated the value 0 and

τ̃σ,nm
(k)

def
=

k−1
∑

j=0

∆τσtnm
,j → 0,m→ ∞,∀k = 1, . . . , i−σ∗(0), and

vii) i−σ (tnm
+ τ̃σ,nm

(k)) = i−σ (tnm
) + k.
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We shall show that

lim
m→∞

‖Tts,σ(tnm
+ τ̃σ,nm

(i−σ∗(0)), φ) − φ∗‖ = lim
m→∞

‖Tts,σ(τσ,i−
σ,σ∗ (tnm ), φ) − φ∗‖ = 0,

(4.22)

where iσ,σ∗(tnm
)

def
= i−σ (tnm

+ τ̃σ,nm
(i−σ∗(0))) = i−σ (tnm

) + i−σ∗(0).

In fact, suppose that for each k ∈ {0, . . . , i−σ∗(0) − 1}, there exist φ∗
k ∈ Cr such

that

lim
m→∞

‖Tts,σ(tnm
+ τ̃σ,nm

(k), φ) − φ∗
k‖ = 0. (4.23)

From the construction of the transition mapping Tts,σ in (4.10) and the designation

of τ̃σ,nm
in the fact vi) and vii) above, we have

Tts,σ(tnm
+ τ̃σ,nm

(k + 1), φ) = ψq
σ,i

−
σ (tnm )+k

(∆τσ,i−σ (tnm )+k,Tts,σ(tnm
+ τ̃σ,nm

(k), φ)).

(4.24)

Since the trajectory Ots,σ(φ) is contained in a compact subset of Cr, Q is finite,

and ∆τσ,i−σ (tnm )+k is arbitrarily small for sufficiently large m, (4.24) implies that for

each ǫ > 0, there is a M ∈ N such that

‖Tts,σ(tnm
+ τ̃σ,nm

(k + 1), φ) − Tts,σ(tnm
+ τ̃σ,nm

(k), φ)‖ < ǫ,∀m ≥M. (4.25)

This together with (4.23) show that

lim
m→∞

‖Tts,σ(tnm
+ τ̃σ,nm

(k + 1), φ) − φ∗
k‖ = 0. (4.26)

Starting at k = 0 with φ∗
0 = φ∗, applying (4.26) successively for k ∈ {0, . . . , i−σ∗(0)−

1}, we obtain (4.22). Then, we proceed by considering a time t ∈ [τσ∗,i−
σ∗ (0), τσ∗,i−

σ∗ (0)+1) =

[0,∆τσ∗,i−
σ∗ (0)) and computing the following limit

lim
m→∞

Tts,σ(t+ τσ,iσ,σ∗ (tnm ), φ). (4.27)
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As ∆τσtnm
,i−

σ∗ (0) → ∆τσ∗,i−
σ∗ (0), we have, for sufficiently large m, t + τσ,iσ,σ∗ (tnm ) ≤

τσ,iσ,σ∗ (tnm )+∆τσtnm
,i−

σ∗ (0) and hence, i−σ (t+τσ,iσ,σ∗ (tnm )) = iσ,σ∗(tnm
) = i−σ (tnm

)+i−σ∗(0).

Thus, from the construction of the transition mapping Tts,σ in (4.10), we have

Tts,σ(t+ τσ,iσ,σ∗ (tnm ), φ) = ψq
σ,i

−
σ (tnm )+i

−
σ∗ (0)

(t,Tts,σ(τσ,iσ,σ∗ (tnm ), φ))

= ψq
σ∗,i

−
σ∗ (0)

(t,Tts,σ(τσ,iσ,σ∗ (tnm ), φ))
def
= ψ♮

nm
(t), (4.28)

for all m ≥M for some M ∈ N.

Since t ∈ [τσ∗,i−
σ∗ (0), τσ∗,i−

σ∗ (0)+1) is bounded by ∆T , the functions ψq, q ∈ Q are

continuous, and the trajectory Ots,σ(φ) is bounded by a compact subset of Cr, for

every ǫ > 0, there is a δ > 0 such that

‖ψq
σ∗,i

−
σ∗ (0)

(t+ ς,Tts,σ(τσ,iσ,σ∗ (tnm ), φ)) − ψq
σ∗,i

−
σ∗ (0)

(t,Tts,σ(τσ,iσ,σ∗ (tnm ), φ))‖

= ‖ψ♮
nm

(t+ ς) − ψ♮
nm

(t)‖

= ‖ψq
σ∗,i

−
σ∗ (0)

(ς, ψ♮
nm

(t)) − ψ♮
nm

(t)‖ < ǫ,∀ς ∈ [0, δ], t ∈ [0,∆T ], (4.29)

which clearly implies that the family {ψ♮
nm

(t)}m is equicontinuous.

In addition, as Ots,σ(φ) is compact covered, {ψ♮
nm

(t)}m is uniformly bounded as

well. Thus, according to Arzela-Ascoli theorem, there is a subsequence of {tnm
}m,

which is again labeled by {tnm
}m, and a continuous function φ♮(t) such that ψ♮

nm
(t) →

φ♮(t),m→ ∞ uniformly with respect to t ∈ [0,∆T ].

Since φq, q ∈ Q are continuous and t ∈ [0,∆T ], from (4.22), we have

lim
m→∞

‖ψq
σ∗,i

−
σ∗ (0)

(t,Tts,σ(τσ,iσ,σ∗ (tnm ), φ)) − ψq
σ∗,i

−
σ∗ (0)

(t, φ∗)‖

= lim
m→∞

‖ψ♮
nm

(t) − ψq
σ∗,i

−
σ∗ (0)

(t, φ∗)‖ = 0. (4.30)
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Thus, for any t ∈ [τσ∗,i−
σ∗ (0), τσ∗,i−

σ∗ (0)+1), we have

‖ψσ∗,i−
σ∗ (0)(t, φ

∗) − φ♮(t)‖ = ‖ψσ∗,i−
σ∗ (0)(t, φ

∗) − ψ♮
nm

(t)‖ + ‖ψ♮
nm

(t) − φ♮(t)‖. (4.31)

In view of (4.30) and the fact that ψ♮
nm

(t) → ψ♮(t), the right hand side of (4.31)

converges to zero as m→ ∞, and hence ψσ∗,i−
σ∗ (0)(t, φ

∗) = φ♮(t). Clearly, by virtue of

(4.28), φ♮(t) ∈ ωts,σ(φ). As such, ψσ∗,i−
σ∗ (0)(t, φ

∗) ∈ ωts,σ(φ),∀t ∈ [τσ∗,i−
σ∗ (0), τσ∗,i−

σ∗ (0)+1).

Repeating the above argument for subsequent time stages of σ∗, the conclusion of

the theorem follows. �

4.5 Invariance Principles

The purpose of this section is to present an invariance principle for switched time-

delay systems and its application for further converging criteria of delay-free switched

systems. By virtue of the qualitative theory presented in the previous chapter, it is

possible to develop a qualitative theory for switched time-delay systems in the Banach

space Cr using Lyapunov functional approach as in the classical theory of time-delay

systems [86, 59]. However, we are interested in the Lyapunov-Razumikhin function

approach for practical relevance. The main issue thus lies in the relaxation of the

decreasing condition on Lyapunov functions, e.g., condition ii) of Theorem 3.5.2,

which is restrictive in the context of time-delay systems [57].

For a trajectory x(t, φ)
def
= T

φ
ts,σ(t) in the space Rn of a switched time-delay system,

let us define the functions V ♮
q : Cr → R, q ∈ Q as follows.

V ♮
q (xt)

def
= sup

ς∈[−Tr,0]

Vq(x(t+ ς, φ)). (4.32)

Throughout the chapter, whenever the period of persistence Tp is involved, we

suppose that the delay time Tr is no smaller than Tp.
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4.5.1 Main Result

Theorem 4.5.1 Let ΣD be a switched time-delay system. Consider compact subsets

D and G of Rn, continuous functions Vq : G → R, q ∈ Q, a class-K function β, a

constant δV ≥ 0, a function φ ∈ Cr satisfying φ(ς) ∈ D,∀ς ∈ [−Tr, 0], a time ts ∈ R+

and a switching sequence σ ∈ SP [τp, Tp], where Tp ≤ Tr. Let x(t, φ) = T
φ

ts,σ(t), t ∈ R+

be the trajectory in the space Rn. Suppose that the following conditions holds

i) x(t, φ) is uniformly continuous with respect to t and x(t, φ) ∈ G,∀t ∈ R+;

ii) Vq1(x) ≤ β(Vq2(x)),∀q1, q2 ∈ Q, x ∈ Rn;

iii) along the trajectory x(t, φ), the functions Vq(x(t, φ)), q ∈ Q are everywhere Dini

differentiable with respect to time;

iv) along the trajectory x(t, φ), t ∈ R+, we have

sup
ς∈[−Tr,0]

Vq
σ,i

−
σ (t)

(x(t+ ς, φ)) ≤ Vq
σ,i

−
σ (t)

(x(t, φ)) ⇒ DσVq
σ,i

−
σ (t)

(x(t, φ)) ≤ 0; (4.33)

v) for the sequence of dwell-time switching events {(qσ,iDj
,∆τσ,iDj

)}j of σ, we have

sup
ς∈[−Tr,0]

Vq
σ,iD

k

(x(τσ,iD
k

+ ς, φ)) ≤ sup
ς∈[−Tr,0]

Vq
σ,iD

j

(x(τσ,iDj
+ ς, φ)),∀k, j ∈ N, k > j,

(4.34)

and

lim sup
j→∞

(

sup
ς∈[−Tr,0]

Vq
σ,iD

j

(x(τσ,iDj
+ ς, φ)) − sup

ς∈[−Tr,0]

Vq
σ,iD

j

(x(τσ,iDj +1 + ς, φ))

)

≤ δV .

(4.35)

Let V−∞ = inf{Vq(ζ) : ζ ∈ G, q ∈ Q}, and Lγ, γ ∈ R be the level sets in Cr defined as

Lγ =
{

φ : φ(ς) ∈ G,∀ς ∈ [−Tr, 0] and ∃q ∈ Q,min{V−∞, γ − δV } ≤ V ♮
q (φ) ≤ β(γ)

}

.

Then, Tts,σ(t, φ) approaches to the set M
def
=

⋃

γ∈RMγ as t→ ∞, where Mγ is the

largest (ts, σ)-quasi-invariant set contained in Lγ.
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Proof: Since x(t, φ) is bounded and uniformly continuous, applying the argument

in Theorem 4.4.2, it follows that Tts,σ(t, φ) is compact covered. Thus, by Theorem

4.4.1, the limit set ωts,σ(φ) in the space Cr of the trajectory Tts,σ(t, φ) attracts this

trajectory and is nonempty and compact.

We proceed to estimate ωts,σ(φ) using auxiliary functions Vq, q ∈ Q. Consider the

composite Lyapunov function

VC (t, φ) =











Vq
σ,iD

j

(x(t, φ)) if t ∈ [τσ,iDj
, τσ,iDj +1)

supς∈[−Tr,0] β(Vq
σ,iD

j

(τσ,iDj
+ ς, φ)) if t ∈ [τσ,iDj +1, τσ,iDj+1

)
, (4.36)

where, without loss of generality, we have supposed that the first switching event of

σ is of dwell-time running time, i.e., iD0 = 0.

Along the trajectory Tts,σ(t, φ), let us define the function V ♮
C

: Cr → R as follows.

V ♮
C
(xt)

def
= sup

ς∈[−Tr,0]

VC (x(t+ ς, φ)) (4.37)

Clearly V ♮
C
(xt) = V ♮

q
σ,iD

j

(xt) on dwell-time intervals. Hence, by condition v), the

sequence {V ♮
C
(xτ

σ,iD
j

)}j is non-increasing. This coupled with the boundedness of xt

implies that there is a number γ ∈ R such that

lim
j→∞

V ♮
C
(xτ

σ,iD
j

) = γ, (4.38)

which combined with condition v) gives rise to

δV ≥ lim sup
j→∞

(

V ♮
q
σ,iD

j

(xτ
σ,iD

j

) − V ♮
q
σ,iD

j

(xτ
σ,iD

j
+1

)
)

= γ − lim inf
j→∞

V ♮
q
σ,iD

j

(xτ
σ,iD

j
+1

). (4.39)

From condition iv), applying the argument of [59, Chapter 5, Theorem 4.1] for func-

tions V ♮
q
σ,iD

j

(xt), j ∈ N on dwell-time intervals [τσ,iDj
, τσ,iDj +1], j ∈ N, it follows that

V ♮
C
(xt) is non-increasing on each of these intervals. Thus, using (4.39) and the condi-



4.5. Invariance Principles 99

tion (4.35), we arrive at

γ = lim
j→∞

V ♮
q
σ,iD

j

(xτ
σ,iD

j

) ≥ lim sup
j→∞

t∈[τ
σ,iD

j

,τ
σ,iD

j
+1

]

V ♮
q
σ,iD

j

(xt) ≥ lim inf
j→∞

V ♮
q
σ,iD

j

(xτ
σ,iD

j
+1

) ≥ γ − δV .

(4.40)

We now consider a limit point φ∗ ∈ ωts,σ(φ). By definition, there is a time sequence

{tn}n such that

lim
n→∞

xtn
def
= lim

n→∞
Tts,σ(tn, φ) = φ∗. (4.41)

Since Q is finite, there is an index q∗ and a subsequence {tnm
}m of {tn}n such that

qσ,i−σ (tnm ) = q∗,∀m ∈ N. We have the following cases.

Case 1: There are infinitely many number nm such that [τσ,i−σ (tnm ), τσ,i−σ (tnm )+1] are

dwell-time intervals. In this case, as V ♮
q∗ is continuous, according to (4.40), we have

V ♮
q∗(φ

∗) = lim
m→∞

∆τ
σ,i

−
σ (tnm )

≥τp

V ♮
q∗(xtn) = lim

m→∞
∆τ

σ,i
−
σ (tnm )

≥τp

V ♮
q
σ,i

−
σ (tnm )

(xtn) ∈ [γ − δV , γ]. (4.42)

Case 2: There is a M ∈ N such that the running times of switching events

eσ,i−σ (tnm ),m ≥ M are all less than τp. Suppose that all the times tnm
are of this

property. Let us recall that, for each m ∈ N, i−D (tnm
) = max{i ∈ N : ∆τσ,i ≥ τp, τσ,i ≤

tnm
} is the index of the dwell-time switching event before and closest to tnm

. We also

define i+D (tnm
) as the index of the dwell-time switching event following eσ,i−

D
(tnm ).

Since Tp ≤ Tr and τσ,i+
D

(tnm ) − τσ,i−
D

(tnm )+1 ≤ Tp by specification, using condition

ii) and definition of functions V ♮
q , we have

Vq
σ,i

−
σ (tnm )

(x(tnm
+ ς, φ)) ≤ β(Vq

σ,i
+
D

(tnm )
(x(t+ ς, φ)))

≤ sup
υ∈[−Tr,0]

β(Vq
σ,i

+
D

(tnm )
(x(τσ,i+

D
(tnm ) + υ, φ))) ≤ β(V ♮

q
σ,i

−
D

(tnm )
(xτ

σ,i
−
D

(tnm )
)) (4.43)
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for ς ∈ [−Tr, 0] and tnm
+ ς ≥ τσ,i−

D
(tnm )+1, and

Vq
σ,i

−
σ (tnm )

(x(tnm
+ ς, φ)) ≤ β(Vq

σ,i
−
D

(tnm )
(x(t+ ς, φ)))

≤ sup
υ∈[−Tr,0]

β(Vq
σ,i

−
D

(tnm )
(x(tnm

+ ς + υ, φ)))

≤ β(V ♮
q
σ,i

−
D

(tnm )
(xtnm+ς)) ≤ β(V ♮

q
σ,i

−
D

(tnm )
(xτ

σ,i
−
D

(tnm )
)) (4.44)

for ς ∈ [−Tr, 0] and tnm
+ ς ≤ τσ,i−

D
(tnm )+1.

Combining (4.43) and (4.44) yields

V ♮
q
σ,i

−
σ (tnm )

(xtnm
) ≤ β(V ♮

q
σ,i

−
D

(tnm )
(xτ

σ,i
−
D

(tnm )
)). (4.45)

Taking the limits of both sides of (4.45) as m→ ∞ using (4.40), we arrive at

V ♮
q∗(φ

∗) = lim
m→∞

V ♮
q∗(xtnm

) = lim
m→∞

V ♮
q
σ,i

−
σ (tnm )

(xtnm
) ≤ β(V ♮

q
σ,i

−
D

(tnm )
(xτ

σ,i
−
D

(tnm )
)) ≤ β(γ).

(4.46)

By virtue of (4.38), the number γ is independent of the limit point φ∗ ∈ ωts,σ(φ).

Thus, from (4.42) and (4.46), the limit point φ∗ ∈ ωts,σ(φ) belongs to the level set

Lγ = {φ ∈ Cr : ∃q ∈ Q : min{V−∞, γ − δV } ≤ V ♮
q (φ) ≤ β(γ)}. (4.47)

Since ωts,σ(φ) is (ts, σ)-quasi-invariant according to Theorem 4.4.3, we also have

ωts,σ ⊂ Mγ ⊂ M . Finally, as ωts,σ is compact and attracts Tts,σ(t, φ), this implies

that Tts,σ(t, φ) →M, t→ ∞. �

The conversing behavior of Lyapunov functions in Theorem 4.5.1 is illustrated

in Figure 4.1. It is observed that the values of Lyapunov functions Vq
σ,iD

j

at start-

ing time τσ,iDj
of dwell-time switching events need not to be decreasing. As ob-

served, since the persistence of period Tp is smaller than the time-delay Tr, the value

of the Lyapunov functions on persistence period is guaranteed to be bounded by
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β(V ♮
C
(τσ,iDj

))
β(V ♮

C
(τσ,iDj+1

))

β(V ♮
C
(τσ,iD

k
))

Tr

. . .

.

.

.

Tr

τp τp
Tp

Tr

τσ,iDj
τσ,iDj +1 τσ,iDj+1

τσ,iDj+1+1 τσ,iD
k

t

Vq
σ,iD

j Vq
σ,iD

j+1

Vq
σ,iD

k

Figure 4.1: Behavior of Lyapunov functions

β(V ♮
C
(τσ,iDj

)) = β(V ♮
q
σ,iD

j

(xτ
σ,iD

j

)). Thus, the trajectories of Lyapunov functions stay

below and hence their convergence is governed by the behavior of the composite func-

tion V ♮
C

represented by the double-lines. Since the sequence {β(V ♮
C
(τσ,iDj

))}j is non-

increasing, the convergence of the Lyapunov functions Vq, q ∈ Q along the trajectory

of the system is guaranteed.

Again, it can be seen that the condition v) in Theorem 4.5.1 is of practical rel-

evance. Since the decreasing condition on Lyapunov functions is imposed only at

starting times of dwell-time switching events and the delay time Tr and period of

persistence Tp are bounded, it is always possible to achieve sufficient decrements on

dwell-time switching events.

4.5.2 Application to Delay-free Systems

The results achieved so far show that in qualitative theory of switched systems with

persistent dwell-time, estimates of increments of Lyapunov functions on periods of

persistence are of natural use in achieving non-conservative results. As illustrated

in Figure 4.1, the decreasing condition on Lyapunov functionals V ♮
q in the space Cr

does not impose decreasing on Lyapunov functions Vq in the space Rn. Furthermore,

every trajectory in Rn induces a trajectory in Cr. Thus, treating the persistence time
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Tp and the delay time Tr as the same stimulus of diverging behavior, we have the

following further non-conservative result in qualitative theory of delay-free switched

systems via time-delay approach.

Let Cp be the space C ([−Tp, 0],Rn) of continuous functions from [−Tp, 0] to

Rn. Consider a delay-free switched autonomous system ΣA with transition mapping

Tts,σ(t, x) defined by (2.7). For a trajectory x(t, φ)
def
= Tts,σ(t, φ(0)) through φ ∈ Cp,

i.e., x(ς, φ) = φ(ς),∀ς ∈ [−Tp, 0], we also denote by xt(φ) the continuous function in

Cp defined as xt(φ)(ς) = x(t + ς, x0), ς ∈ [−Tp, 0]. Again, for a continuous function

V : Rn → R, the function V ♮ : Cp → R is defined as

V ♮(φ) = sup
ς∈[−Tp,0]

V (φ(ς)). (4.48)

The set {xt(φ) ∈ Cp : t ∈ R+} is thus termed the trajectory in the space Cp of

the delay-free switched system ΣA .

Definition 4.5.1 Let ΣA be a switched autonomous system with the transition map-

ping Tts,σ. A subset A ⊂ Cr is said to be σ-quasi-invariant if there is a limiting

switching sequence σ∗ ∈ S∗
σ of σ such that for each φ ∈ A, xt(φ) = (T0,σ∗(t, φ(0)))t ∈

A,∀t ≥ 0.

Theorem 4.5.2 Let ΣA be a switched autonomous system. Consider compact subsets

D and G of Rn, continuous functions Vq : G → R, q ∈ Q, a class-K function β, a

constant δV ≥ 0, a function φ ∈ Cp satisfying φ(ς) ∈ D,∀ς ∈ [−Tp, 0], a time ts ∈ R+,

and a switching sequence σ ∈ SP [τp, Tp]. Let x(t, φ) = Tts,σ(t, φ(0)), t ∈ R+ be the

trajectory through φ ∈ D in the space Rn of the system. Suppose that the following

conditions hold.

i) x(t, φ) is uniformly continuous with respect to t and x(t, φ) ∈ G,∀t ∈ R+;

ii) Vq1(x) ≤ β(Vq2(x)),∀q1, q2 ∈ Q, x ∈ Rn;
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iii) along the trajectory x(t, x0), the functions Vq(x(t, φ)), q ∈ Q are everywhere Dini

differentiable with respect to time;

iv) in any switching event (qσ,i,∆τσ,i), i ∈ N, we have

Vqσ,i
(x(τσ,i + ς1, φ)) ≥ Vqσ,i

(x(τσ,i + ς2, φ)),∀ς1, ς2 ∈ [0,∆τσ,i], ς1 ≤ ς2; (4.49)

v) for the sequence of dwell-time switching events {(qσ,iDj
,∆τσ,iDj

)}j of σ, we have

sup
ς∈[−Tp,0]

Vq
σ,iD

k

(x(τσ,iD
k

+ ς, φ)) ≤ sup
ς∈[−Tp,0]

Vq
σ,iD

j

(x(τσ,iDj
+ ς, φ)),∀k, j ∈ N, k > j,

(4.50)

and

lim sup
j→∞

(

sup
ς∈[−Tp,0]

Vq
σ,iD

j

(x(τσ,iDj
+ ς, φ)) − sup

ς∈[−Tp,0]

Vq
σ,iD

j

(x(τσ,iDj +1 + ς, φ))

)

≤ δV .

(4.51)

Let V−∞ = inf{Vq(ζ) : ζ ∈ G, q ∈ Q}, and Lγ, γ ∈ R be the level sets in Cr defined as

Lγ =
{

φ : φ(ς) ∈ G,∀ς ∈ [−Tp, 0] and ∃q ∈ Q,min{V−∞, γ − δV } ≤ V ♮
q (φ) ≤ β(γ)

}

.

Then, xt(φ) approaches to the set M
def
=

⋃

γ∈RMγ as t → ∞, where Mγ is the

largest (ts, σ)-quasi-invariant set contained in Lγ.

Proof: Adopting the proofs of Theorems 4.4.2 and 4.4.3, it follows that the limit set

ω(φ) =
⋂

T≥ts

⋃

t≥T

xt(φ) (4.52)

is nonempty, compact and quasi-invariant. As condition ii) guarantees the decreasing

behavior of Lyapunov functions, the theorem is a direct consequence of Theorem

(4.5.1) and hence the conclusion of the theorem is straightforward. �

By Theorem 4.5.2, the time-delay nature of switched systems has been revealed.

Similar to time-delay systems, the behavior of switched systems in periods of persis-
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tence tends to destabilize the systems.

Due to arbitrarily fast switching, it is not realistic to impose and verify stability

conditions in the periods of persistence. As a result, a non-conservative approach to

deal with the difficulty at hand is to consider the after-effects of switching in periods

of persistence, and then study the compensating behavior on the dwell-time intervals.

From this point of view, condition v) in Theorem 4.5.2 is of fundamental interest.

 



Chapter 5

Asymptotic Gains

In this chapter, positive definite auxiliary functions are studied for stronger converging

behavior of switched systems. Under the principle of small-variation small state, we

consider ultimate variations of auxiliary functions for asymptotic gain of switched

systems. The results are obtained for both delay-free and delay-dependent systems. In

the case of delay-dependence, asymptotic gain is achieved via a Lyapunov-Razumikhin

function approach.

5.1 Motivation

The attraction of invariance principles presented in the previous chapters lies in their

generality in making conclusion on various limiting behaviors of dynamical systems.

Of such behaviors, asymptotic convergence under disturbance to a compact set in the

state space is of fundamental interest in control theory.

Clearly, such problem can be dealt with by treating the disturbance as a time-

varying parameter and then applying Theorem 3.5.1 to determine the non-autonomous

attractor of the corresponding switched system. Once the non-autonomous attractor

of the corresponding system has been determined, further properties of the time-

105
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varying parameter can be exploited to make further conclusion on the “behavior” of

the non-autonomous attractor. The expense for the generality of this approach is the

complexity in computing with pullback trajectories.

In nonlinear systems, an efficient approach to deal with the problem in question

is to study asymptotic gain in the framework of the notion of input-to-state stability

[138]. Clearly, if a system has an asymptotic gain χ, it is possible to consider the

function g(x) = minq∈Q Vq(x)−χ(‖w‖) and apply Theorem 3.5.2 to make conclusion,

where χ is a class–K∞ function and ‖w‖ is the norm of disturbance. It is observed

that by addressing convergence to a compact set, we have dropped the need for the

structure of the attractor and hence it is not necessary to study the time transition

properties. In this context, it is possible to describe the change of state of constituent

systems by vector fields for computing time derivatives of auxiliary functions.

Motivated by the above considerations and the motivating study presented in

Chapter 1, we shall adopt vector fields to characterize the system evolution and then

develop a Lyapunov stability theory for switched systems with persistent dwell-time

switching. Bearing in mind the constructibility of positive Lyapunov functions in

control design [85], we make use of the approach of combining Lyapunov stability [56]

and input-output stability [159] introduced in [133] and summarized in [138,139]. In

this manner, the switching decreasing condition is completely removed.

5.2 Stability of Delay-free Switched System

5.2.1 System with Input and Asymptotic Gain

Consider dynamical systems described by the following differential equations:

ẋ(t) = fq(x(t), w(t)), q ∈ Q, (5.1)
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where x(t) ∈ Rn is the state, w(t) ∈ Rd is the input, fq : Rn × Rd → Rn, q ∈ Q are

locally Lipschitz continuous functions, and Q is a finite discrete set. Suppose that w

belongs to the space Ld
∞ of measurable locally essentially bounded functions mapping

R into Rd. Then, for each q ∈ Q and for any x0 ∈ Rn there is a unique maximally

extended solution x(t;x0, w, q) of the following initial value problem [134]:











ẋ(t) = fq(x(t), w(t)),

x(0) = x0.
(5.2)

Thus, if the vector fields fq, q ∈ Q are forward complete [134], then the mappings

ϕq : R+×R+×Rn×Ld
∞, (t, t0, x0, w) 7→ x(t; t0, x0, w, q) are uniquely defined. Consider

the autonomous motion in Ld
∞ defined as π(t, w)(·) = w(·+ t), w ∈ Ld

∞. By virtue of

Definition 2.4.5, the following switched non-autonomous system is well-defined

ΣNA = {R+,Q,Rn,Ld
∞, {ϕq}q∈Q,S, π}, (5.3)

where we have supposed that there is no switching jump so that the discrete transition

mapping was dropped.

In light of the above consideration, it is obvious that the switched systems (5.3)

can be equivalently described by

ΣU = {R+,Q,Rn,Ld
∞, {fq}q∈Q,S}. (5.4)

We shall call the switched system ΣU described by (5.4) the switched system with

input. We denote by ΣU [τp, Tp] the switched system ΣU with S = SP [τp, Tp].

Note that x(t; t0, x0, w, q) is the state at the real time t of the system ẋ = fq(x,w)

having started to evolve at the real time t0. As there is no switching jump, according

to (2.14) in Section 2.4.3, if the vector fields fq, q ∈ Q are complete, then for each
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switching sequence σ ∈ S and each initial condition x(t0) = x0 ∈ Rn, t0 ∈ R, w ∈ Ld
∞,

the following mapping is uniquely defined:

Tσ,w,ts(t, x0) =



































x(t+ t0;x0, t0, w, qσ,i−σ (ts)
) if t ∈ [0, τσ,i−σ (ts)+1 − ts]

x(t+ τσ,i−σ (t+ts)
− ts + t0;x(τσ,i−σ (t+ts)

− ts + t0;x0, w, qσ,i−σ (ts)
),

τσ,i−σ (t+ts)
− ts + t0, w(· + τσ,i−σ (t+ts)

− ts), qσ,i−σ (t+ts)
)

if t ≥ τσ,i−σ (ts)+1 − ts,

(5.5)

where w(·+ τσ,i−σ (t+ts)
) : R+ → Rd is defined as w(·+ τσ,i−σ (t+ts)

)(t) = w(t+ τσ,i−σ (t+ts)
).

Hereafter, we suppose that all switched systems are forward complete, i.e., the map-

ping Tσ,w,ts(t, x0) are well-defined for all t ≥ 0.

Adopting the notion of asymptotic gain for nonlinear systems [138], we have the

following analogous notion for switched systems.

Definition 5.2.1 The switched system ΣU is said to have a switching-uniform asymp-

totic gain (SUAG) χ if χ is a class–K∞ function and

lim sup
t→∞

‖Tσ,w,ts(t, x0)‖ ≤ χ(‖w‖),∀w ∈ Ld
∞, x0 ∈ Rn, ts ∈ R+, σ ∈ S. (5.6)

We would mention that the term “switching-uniform” in Definition 5.2.1 is based

on the consideration on uniformity over a class of switching signals in [66,62].

5.2.2 Lyapunov Functions for SUAG

Let us refer to Section 2.4.2 (Page 28) for definition of the transition indicator i−σ (·).

Hereafter, we suppose that ts = 0 without loss of generality. Let V : Rn → R+ be a

continuous function. The derivative of V along a trajectory x(t) is [56]

DV (x(t)) = lim sup
h→0

1

h
(V (x(t+ h)) − V (x(t))), (5.7)
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and the variation of V between t1 and t2 along x is

Vart2
t1
V (x) = |V (x(t1)) − V (x(t2))|. (5.8)

Variation Varb
aV (x(t)) indicates the deviation of V (x(t)) achieved for a duration

of b − a of evolution from the time a. This notion is different from the notion of

total variation in real analysis [156]. Let V1 and V2 be functions from Rn to R+. The

relative variation between V1 and V2 at t1 and t2 along a trajectory x(t) is

Vart2
t1
[V1, V2](x) = |V1(x(t1)) − V2(x(t2))|. (5.9)

The sequence of dwell-time switching events of σ is labeled as {(qσ,iDj
,∆τσ,iDj

)}j.

For brevity, let t̃ = t− t0 and q−σ (t̃) = qσ,i−σ (t̃), tσ,i
def
= t0 + τσ,i, and tσ,iDj

def
= t0 + τσ,iDj

.

Theorem 5.2.1 Consider the switched system with input ΣU [τp, Tp], the class-K∞

functions α
−
, ᾱ, α, γ1, and γ2, and the continuous functions Vq : Rn → R+, q ∈ Q.

Suppose that

α
−
(‖x‖) ≤ Vq(x) ≤ ᾱ(‖x‖),∀x ∈ Rn, q ∈ Q, (5.10)

and for every (essentially) bounded input u ∈ U , switching sequence σ ∈ S, and

starting point (ts, x0) ∈ R ×X, the following properties hold along the corresponding

trajectory x(t) = Tσ,u,ts(t− t0, x0):

i) for each t ∈ [tσ,i, tσ,i+1], i ∈ N, if Vqσ,i
(x(t)) ≥ γ1(‖u‖), then DVqσ,i

(x(t)) ≤

−α(Vqσ,i
(x(t)));

ii) the relative variations among Vq’s on periods of persistence I
p
j = [tσ,iDj +1, tσ,iDj+1

]

satisfy

lim sup
j→∞

max
t∈I

p
j

Vart
t
σ,iD

j
+1

[Vq
σ,iD

j

, Vq
σ,i

−
σ (t̃)

](x) ≤ γ2(‖u‖). (5.11)

Then, the switched system ΣU [τp, Tp] has an asymptotic gain.
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Proof: Let γd(s) = max{τpα(γ1(s)), γ2(s)}. For an ǫ ≥ 0, we have the sets Bq(ǫ) =

{ζ ∈ Rn : τpα(Vq(ζ)) ≤ γd(‖u‖) + ǫ}, q ∈ Q. We shall abbreviate Bq(0) to Bq.

For each ǫ ≥ 0, we have the following claim.

Claim C (ǫ): for each j ∈ N, if x(t◦j) ∈ Bq
σ,iD

j

(ǫ) for some t◦j ∈ [tσ,iDj
, tσ,iDj +1], then

x(t) ∈ Bq
σ,iD

j

(ǫ),∀t ∈ [t◦j , tσ,iDj +1].

We shall prove this claim in the paradigm of [136, Lemma 2.14]. Suppose that

the claim is not true. Then, there are t ∈ (t◦j , tσ,iDj +1] and ǫ′ > ǫ/2 such that

τpα(Vq
σ,iD

j

(x(t))) > γd(‖u‖)+ǫ′. Accordingly, t∗j = inf{t ∈ (t◦j , tσ,iDj +1] : τpα(Vq
σ,iD

j

(x(t))) >

γd(‖u‖) + ǫ′} exists and τpα(Vq
σ,iD

j

(x(t∗j))) ≥ γd(‖u‖) + ǫ′ > τpα(γ1(‖u‖)). Thus,

i) applies and DVq
σ,iD

j

(x(t∗j)) ≤ −α(Vq
σ,iD

j

(x(t∗j))) < −ǫ′/τp. Hence, Vq
σ,iD

j

(x(t∗j)) ≤

Vq
σ,iD

j

(x(s)) for some s < t∗j . This contradicts to the minimality of t∗j . Thus, the claim

holds true.

Let us define t◦j to be tσ,iDj +1 if there is no t ∈ [tσ,iDj
, tσ,iDj +1] at which τpα(Vq

σ,iD
j

(x(t))) ≤

γd(‖u‖) and to be inf{t ∈ [tσ,iDj
, tσ,iDj +1] : τpα(Vq

σ,iD
j

(x(t))) ≤ γd(‖u‖)} if such t exists.

According to the above claim applied for ǫ = 0, we have

τpα(Vq
σ,iD

j

(x(t◦j))) ≥ γd(‖u‖),∀t ∈ [tσ,iDj
, t◦j ]. (5.12)

We shall show that

lim sup
j→∞

Var
t◦j
t
σ,iD

j

Vq
σ,iD

j

(x) ≤ γd(‖u‖). (5.13)

Indeed, suppose that (5.13) does not hold. Then, there is a number ǫ > 0 and an

infinite sequence {tσ,iDjk

}k such that

|Vq
σ,iD

jk

(x(tσ,iDjk

)) − Vq
σ,iD

jk

(x(t◦jk
))| > γd(‖u‖) + ǫ. (5.14)

As α ∈ K∞ which is unbounded and continuous, there is a number δ = δ(ǫ) > 0
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such that

τpα(s) ≤ γd(‖u‖) + δ ⇒ s ≤ α−1(γd(‖u‖)/τp) + ǫ/3. (5.15)

As γd(s) ≥ γ2(s) and Var
t
σ,iD

j+1

t
σ,iD

j
+1

[Vq
σ,iD

j

, Vq
σ,iD

j+1

](x) ≤ max{Vart
t
σ,iD

j
+1

[Vq
σ,iD

j

, Vq
σ,i

−
σ (t̃)

](x) :

t ∈ [tσ,iDj +1, tσ,iDj+1
]}, condition (5.11) implies that

lim sup
j→∞

|Vq
σ,iD

j

(x(tσ,iDj +1)) − Vq
σ,iD

j+1

(x(tσ,iDj+1
))| ≤ γd(‖u‖). (5.16)

Hence, there is an Nǫ ∈ N such that for all j > Nǫ, we have

Vq
σ,iD

j+1

(x(tσ,iDj+1
)) ≤ Vq

σ,iD
j

(x(tσ,iDj +1)) + γd(‖u‖) + ǫ∗, (5.17)

where ǫ∗ = min{δ(ǫ), ǫ/3}.

Consider the case where there is a number p > Nǫ such that

τpα(Vq
σ,iD

j

(x(tσ,iDj +1))) ≤ γd(‖u‖) + ǫ∗ (5.18)

holds at j = p. We shall show that (5.18) also holds at all j ≥ p. Indeed, from the

above claim we have either x(t1) ∈ Bq
σ,iD

p+1

(ǫ∗) for some t1 ∈ I Dp+1 = [tσ,iDp+1
, tσ,iDp+1+1]

and hence x(t) ∈ Bq
σ,iD

p+1

(ǫ∗),∀t ∈ [t1, tσ,iDp+1+1] or τpα(Vq
σ,iD

p+1

(x(t))) > γd(‖u‖) +

ǫ∗,∀t ∈ I Dp+1. Clearly, τpα(Vq
σ,iD

p+1

(x(tσ,iDp+1+1))) ≤ γd(‖u‖) + ǫ∗ in the former case.

In the latter case, by definition of γd, we have τpα(Vq
σ,iD

p+1

(x(t))) > γd(‖u‖) + ǫ∗ ≥

τpα(γ1(‖u‖)),∀t ∈ I Dp+1. Thus, from i) and tσ,iDp+1+1 − tσ,iDp+1
≥ τp, we have

Vq
σ,iD

p+1

(x(tσ,iDp+1
)) − Vq

σ,iD
p+1

(x(tσ,iDp+1+1)) ≥
∫ t

σ,iD
p+1+1

t
σ,iD

p+1

α(Vq
σ,iD

p+1

(x(t)))dt

≥ τp min
t∈I Dp+1

{α(Vq
σ,iD

p+1

(x(t)))} ≥ γd(‖u‖) + ǫ∗. (5.19)
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Combining (5.19) and (5.17) applied at j = p, we obtain

Vq
σ,iD

p+1

(x(tσ,iDp+1+1)) ≤ Vq
σ,iDp

(x(tσ,iDp+1)). (5.20)

Substituting (5.20) into (5.18) applied at j = p, it follows that (5.18) also holds

true for j = p+ 1.

In combination, (5.18) holds at j = p+1. Continuation of this process shows that

(5.18) holds for all j ≥ p. As ǫ∗ ≤ δ(ǫ), it follows from (5.18) and (5.15) that

Vq
σ,iD

j

(x(tσ,iDj +1)) ≤ α−1(γD (‖u‖)/τp) + ǫ/3,∀j > Nǫ. (5.21)

Combining (5.17) and (5.21), we obtain

Vq
σ,iD

j+1

(x(tσ,iDj+1
)) ≤ α−1(γd(‖u‖)/τp) + γd(‖u‖) + 2ǫ/3, (5.22)

for all j > Nǫ. This coupled with (5.12) yields

|Vq
σ,iD

j+1

(x(tσ,iDj+1
)) − Vq

σ,iD
j+1

(x(t◦iDj+1
))| ≤ γd(‖u‖) + 2ǫ/3, (5.23)

for all j > Nǫ, which contradicts to (5.14).

In the case (5.18) does not hold for all j > Nǫ, we have

τpα(Vq
σ,iD

j+1

(x(t))) > γd(‖u‖) + ǫ∗,∀t ∈ I
D

j+1, j > Nǫ, (5.24)

which, through the argument leading to (5.19), leads to

Vq
σ,iD

j

(x(tσ,iDj +1)) ≤ Vq
σ,iD

j

(x(tσ,iDj
)) − γd(‖u‖) − ǫ∗,∀j > Nǫ. (5.25)
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Combining (5.25) and (5.17), we arrive at

Vq
σ,iD

j+1

(x(tσ,iDj+1
)) ≤ Vq

σ,iD
j

(x(tσ,iDj
)),∀j > Nǫ. (5.26)

In addition, as Vq
σ,iD

jk

(x(tσ,iDjk
+1)) ≤ Vq

σ,iD
jk

(x(t◦
iDjk

)), (5.17) and (5.14) imply that

Vq
σ,iD

jk+1

(x(tσ,iDjk+1
)) ≤ Vq

σ,id
jk

(x(tσ,iDjk
+1)) + γd(‖u‖) + ǫ∗

≤ Vq
σ,iD

jk

(x(t◦iDjk

)) + γd(‖u‖) + ǫ∗

≤ Vq
σ,iD

jk

(x(tσ,iDjk

)) − (ǫ− ǫ∗) (5.27)

for all k satisfying jk > Nǫ. Using (5.27) and applying (5.26) successively from jk to

jk+1, we obtain

Vq
σ,iD

jk+1

(x(tσ,iDjk+1
)) ≤ Vq

σ,iD
jk

(x(tσ,iDjk

)) − 2ǫ/3,∀jk > Nǫ. (5.28)

Thus, Vq
σ,iD

jk

(x(tσ,iDjk

)) < 0 for sufficiently large k, which is a contradiction.

As a result, (5.13) holds true.

The proof of the convergence of x(t) is now in order. We first show the convergence

of values of x at end times of dwell-time switching events, i.e.,

lim sup
j→∞

τpα(Vq
σ,iD

j

(x(tσ,iDj +1))) ≤ γd(‖u‖). (5.29)

Suppose that (5.29) is not true. Then, there are ǫ > 0 and sequence {jk}k such

that

τpα(Vq
σ,iD

jk

(x(tσ,iDjk
+1))) > γd(‖u‖) + ǫ,∀k ∈ N. (5.30)

According to definition of t◦j and claim C (ǫ), we have t◦
iDjk

= tσ,iDjk
+1 and hence
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(5.30) implies that

τpα(Vq
σ,iD

jk

(x(t))) > γd(‖u‖) + ǫ,∀t ∈ I
D

jk
. (5.31)

As γd(s) ≥ τpα(γ1(s)), (5.31) implies that Vq
σ,iD

jk

(x(t)) > γ1(‖u‖) and hence, by

i), we have

DVq
σ,iD

jk

(x(t)) < −α(Vq
σ,iD

jk

(x(t))),∀t ∈ I
D

jk
. (5.32)

Taking integrals of both sides of (5.32) and using (5.31) yields

Var
t
σ,iD

jk
+1

t
σ,iD

jk

Vq
σ,iD

jk

(x(t)) ≥
∫ t

σ,iD
jk

+1

t
σ,iD

jk

α(Vq
σ,iD

jk

(x(t)))dt ≥ γd(‖u‖) + ǫ. (5.33)

Taking limits of both side of (5.33), we obtain

lim sup
k→∞

Var
t
σ,iD

jk
+1

t
σ,iD

jk

Vq
σ,iD

jk

(x(t)) ≥ γd(‖u‖) + ǫ, (5.34)

which contradicts to (5.13). Thus, (5.29) holds true.

We now examine the converging behavior of the sequence {x(tj)}j, where {tj}j ⊂

[t0,∞) is an arbitrary divergent sequence. Let us divide {tj}j into two subsequences

{tDj }j and {tpj}j, where the first subsequence consists of all elements of {tj}j belonging

to dwell-time switching intervals and the second one consists of the rest in {tj}j.

For a time t ∈ [t0,∞), there is an interval [tσ,iDj
, tσ,iDj+1

] between starting times

of two consecutive dwell-time switching events that contains t. Then, we define

iD(t) = iDj ,I
D (t) = [tσ,iDj

, tσ,iDj +1], and I p(t) = [tσ,iDj +1, tσ,iDj+1
]. If t ∈ I D (t), then we

further define t◦
D
(t) = t◦j . Recall that t̃ = t− t0. For the sequence {tpj}j, we have

Vq
σ,i

−
σ (t̃

p
j
)
(x(tpj )) ≤ Vq

σ,iD(t
p
j
)
(x(tσ,iD(tpj )+1)) + max

t∈I p(tpj )
Vart

t
σ,iD(t

p
j
)
[Vq

σ,iD(t
p
j
)
, Vq

σ,i
−
σ (t̃)

](x).

(5.35)
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Taking the limits of both sides of (5.35) and using (5.29) and (5.11), we obtain

lim sup
j→∞

Vq
σ,i

−
σ (t̃

p
j
)
(x(tpj )) ≤ γd(‖u‖) + γ2(‖u‖). (5.36)

We now consider the sequence {tDj }j. As we have shown, Vq
σ,iD(tD

j
)
(x(t)) is decreas-

ing on [tσ,iD(tDj ), t
◦
D
(tDj )] and is bounded by α−1(γd(‖u‖)/τp) on [t◦

D
(tDj ), tσ,iD(tDj )+1]. Let

γ3(‖u‖) = α−1(γd(‖u‖)/τp). We have

Vq
σ,iD(tD

j
)
(x(tDj )) ≤ max{Vq

σ,iD(tD
j
)
(x(tσ,iD(tDj ))), γ3(‖u‖)}. (5.37)

Since tσ,iD(tDj ) is the starting time of a dwell-time switching interval which is also

the end time of a period of persistence, taking the limits of both sides of (5.37) and

using (5.36), we obtain

lim sup
j→∞

Vq
σ,iD(tD

j
)
(x(tDj )) ≤ γ∗(‖u‖), (5.38)

where γ∗(s) = max{γd(s) + γ2(s), γ3(s)}.

On the other hand, from (5.10), we have α
−
(‖x(t)‖) ≤ Vq(x(t)),∀t ∈ [t0,∞). As α

−

is continuous, combining (5.36) and (5.38), we arrive at

lim sup
j→∞

‖x(tj)‖ ≤ max
{

α
−

−1
(

lim sup
j→∞

Vq
σ,i

−
σ (t̃

p
j
)
(x(tpj ))

)

,

α
−

−1
(

lim sup
j→∞

Vq
σ,iD(tD

j
)
(x(tDj ))

)}

≤ α
−

−1(γ∗(‖u‖)). (5.39)

Let γ be the class-K∞ function defined as γ(s) = α
−

−1(γ∗(s)). Then, (5.39)

gives lim supj→∞ ‖x(tj)‖ ≤ γ(‖u‖) which, as {tj}j is arbitrary, further implies that

lim supt→∞ ‖x(t)‖ ≤ γ(‖u‖). Finally, as γ is independent of x0 and σ, the conclusion

of the theorem follows accordingly. �

Similar to the case of invariance principles, condition (5.11) imposes the bound-
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edness of ultimate variations of auxiliary functions. Obviously, this is a necessary

condition for stability of any dynamical system. In the classical Lyapunov theory of

dynamical systems [56] and in switched systems satisfying the switching decreasing

condition [22], this condition automatically holds for γ2 ≡ 0. On the other hand, this

condition is due to our need for estimations of increments of auxiliary functions on

destabilizing periods without involving the number of switches in these periods.

5.3 Stability of Switched Time-delay Systems

5.3.1 System with Input

Let us recall some notations from Chapter 4 as follows. The delay time Tr > 0 is a

fixed number. The notation Cr stands for the Banach space of continuous functions

mapping the interval [−Tr, 0] into Rn with the topology of uniform convergence. For

a time function x : [−Tr,∞) → Rn and for each t ∈ R+, xt is the function in Cr

defined as xt(ς) = x(t + ς), ς ∈ [−Tr, 0]. For a function V : Rn → R, the superscript

♮ is to indicate the function V ♮ : Cr → R defined as

V ♮(φ) = sup
ς∈[−Tr,0]

V (φ(σ)), φ ∈ Cr. (5.40)

The Dini and Dσ derivatives of V and V ♮ along a trajectory x(t), t ∈ [−Tr,∞) in

Rn are defined as in Section 4.3.3.

Consider dynamical systems described by the following functional differential

equations:

ẋ(t) = fq(xt, w(t)), q ∈ Q, (5.41)

where x(t) ∈ Rn is the state, w(t) ∈ Rd is the input, fq : Cr × Rd → Rn, q ∈ Q are

continuous functions taking bounded sets in Cr × Rd to bounded sets in Rn, and Q

is a finite discrete set.
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Suppose that w belongs to the space Ld
∞ of measurable locally essentially bounded

functions mapping R into Rd. Then, for each q ∈ Q and for any φ ∈ Cr, there

is a unique maximally extended solution x(t;φ,w, q) of the following initial value

problem [59,121]:










ẋ(t) = fq(xt, w(t)),

x(ς) = φ(ς),∀ς ∈ [−Tr, 0].
(5.42)

Suppose that the vector fields fq, q ∈ Q are forward complete, i.e., for every φ ∈

Cr, q ∈ Q, w ∈ Ld
∞, the solution x(t;φ,w, q) to the problem (5.42) exists and is

unique for all t ∈ R+.

Thus, according to (2.14) in Section 2.4.3, for each function φ ∈ Cr, ts ∈ R+, and

switching sequence σ ∈ S, the following recursively defined trajectory in Rn exists, is

continuous and uniquely defined:

T
D

σ,w,ts(t, φ) =























x(t;φ,w, qσ,i−σ (ts)
) if t ∈ [0, τσ,i−σ (t+ts)+1 − ts]

x(t+ ts − τσ,i−σ (t+ts)
;φτ

σ,i
−
σ (t+ts)

, w(· + τσ,i−σ (t+ts)
), qσ,i−σ (t+ts)

)

if t ≥ τσ,i−σ (t+ts)+1 − ts,

(5.43)

where φτ
σ,i

−
σ (t+ts)

def
= (T Dσ,w,ts(τσ,i−σ (t+ts)

, φ))τ
σ,i

−
σ (t+ts)

∈ Cr and w(· + τσ,i−σ (t+ts)
)(t) =

w(t+ τσ,i−σ (t+ts)
), t ∈ R+.

In summary, we have the following collection for a model of switched time-delay

system with input with the meanings of symbols are obvious:

ΣU ,D = {R+,Q,Cr,Ld
∞, {fq}q∈Q,S}. (5.44)

5.3.2 Stability Notions and Lyapunov-Razumikhin Functions

Adopting the stability notions in continuous time-delay systems [59] and continuous

delay-free dynamical systems [138]. Hereafter, we shall call T Dσ,w,ts(t, φ) a trajectory
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of the switched time-delay system with input ΣU ,D . We have the following analogous

notions for switched time-delay systems with input.

Definition 5.3.1 A trajectory T Dσ,w,ts(t, φ) of a switched time-delay system with in-

put ΣU ,D is said to be bounded if there is a number R(φ,w, ts, σ) > 0 such that

‖T Dσ,w,ts(t, φ)‖ ≤ R,∀t ∈ [−Tr,∞).

Definition 5.3.2 The family of trajectories T Dσ,w,ts(t, φ), φ ∈ Cr, ts ∈ R+, w ∈ Ld
∞, σ ∈

S of a switched time-delay system with input ΣU ,D is said to be switching-uniform

bounded if for every number r > 0, there is a real number R(r, w) such that for any

φ ∈ Cr satisfying ‖φ‖ ≤ r, we have ‖T Dσ,w,ts(t, φ)‖ ≤ R(r, w),∀t ∈ R+, σ ∈ S, ts ∈ R+.

Definition 5.3.3 The switched time-delay system ΣU ,D is said to have a switching-

uniform asymptotic gain χ if χ is a class-K∞ function and

lim sup
t→∞

‖T Dσ,w,ts(t, φ)‖ ≤ χ(‖w‖), (5.45)

for all w ∈ Ld
∞, φ ∈ Cr, ts ∈ R+, and σ ∈ S.

Consider a trajectory T Dσ,w,ts(t, φ) of ΣU ,D . We have the following assumption:

Assumption 5.3.1 There are continuous functions Vq : Rn → R+, q ∈ Q, a non-

decreasing continuous function p : R+ → R+ satisfying p(s) > s for s > 0, and

class–K∞ functions α1, α2, α, and γ1 such that

α1(‖x‖) ≤ Vq(x) ≤ α2(‖x‖),∀x ∈ Rn, q ∈ Q, (5.46)

and along the trajectory x(t)
def
= T Dσ,w,ts(t, φ), we have:

DσVq
σ,i

−
σ (t)

(x(t)) ≤ −α(Vq
σ,i

−
σ (t)

(x(t))) + γ1(‖w‖) (5.47)

whenever p(Vq
σ,i

−
σ (t)

(x(t))) ≥ V ♮
q
σ,i

−
σ (t)

(xt).
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Tr

Aqσ,i

tt− Tr t− Tr t

Aqσ,i

Tr Tr

t− Tr t

Aqσ,i

(a) (b) (c)

Figure 5.1: Relative positions of the trajectory T Dσ,w,ts(t, φ) with respect to Aqσ,i

We shall call the functions Vq, q ∈ Q satisfying Assumption 5.3.1 the Lyapunov-

Razumikhin functions for system ΣU ,D . For a trajectory-based function V (x(t)), the

Razumikhin condition refers to p(V (x(t))) ≥ supς∈[−Tr,0] V (x(t+ ς)) = V ♮(xt).

5.3.3 Boundedness

Theorem 5.3.1 Suppose that for fixed σ ∈ SP [τp, Tp] and w ∈ Ld
∞, the switched

time-delay system with input ΣU ,D satisfies Assumption 5.3.1 for arbitrary φ ∈ Cr. In

addition, Tr ≥ Tp and for the sequence of dwell-time switching events {(qσ,iDj
,∆τσ,iDj

)}j

of σ, we have

V ♮
q
σ,iD

j

(xτ
σ,iD

j

) ≥ V ♮
q
σ,iD

k

(xτ
σ,iD

k

),∀k, j ∈ N, k > j. (5.48)

Then, the trajectory x(t) = Tσ,w,ts(t, φ) is bounded.

Proof: We shall prove the boundedness of x(t) by considering the behavior of the

following composite Lyapunov function:

V ♮
C
(t) =











α2(α
−1
1 (V ♮

q
σ,iD

j

(xt)) if t ∈ [τσ,iDj
, τσ,iDj +1)

α2(α
−1
1 (V ♮

q
σ,iD

j

(x(τσ,iDj
)))) if t ∈ [τσ,iDj +1, τσ,iDj+1

)
, (5.49)

where we have supposed that the first switching event of σ is dwell-time.
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Let γ be any class–K∞ function satisfying γ(s) > γ1(s), s > 0. Consider the

number rγ = α−1(γ(‖w‖)), and define, for each q ∈ Q, the set Aq = {ζ ∈ Rn :

Vq(ζ) ≤ rγ}.

Consider a non-zero running time switching event (qσ,i,∆τσ,i), i ∈ N and a time

t ∈ (τσ,i, τσ,i+1). We have the following cases.

Case 1: x(t+ς) ∈ Aqσ,i
,∀ς ∈ [−Tr, 0], Figure 5.1(c). It is obvious that, in this case,

we have V ♮
qσ,i

(xt) ≤ rγ. We shall show that x(s) ∈ Aqσ,i
,∀s ∈ [t, τσ,i]. In fact, suppose

that the converse holds, i.e., there is s1 ∈ [t, τσ,i], s1 > t such that x(s1) 6∈ Aqσ,i
. Since

Vq(x(t)) and x(t) are continuous with respect to time t, this implies that there is a

number ǫ > 0 such that Vqσ,i
(x(s1)) > rγ + ǫ. Let s∗ = inf{s ∈ [t, τσ,i] : Vqσ,i

(x(s)) >

rγ + ǫ}. Due to the continuity of solutions, we have s∗ < τσ,i and Vqσ,i
(x(s∗)) ≥ rγ + ǫ.

Thus, it follows from definition of rγ that

γ1(‖w‖) < γ(‖w‖) < α(rγ + ǫ) ≤ α(Vqσ,i
(x(s∗))). (5.50)

Moreover, as the current case implies that rγ ≥ V ♮
qσ,i

(xt), we have Vqσ,i
(x(s∗)) ≥

V ♮
qσ,i

(xs∗). Otherwise, the minimality of s∗ is violated. Thus, using Assumption 5.3.1

with (5.50) and the fact that s∗ 6∈ {τσ,i}i, we obtain

D−Vqσ,i
(x(s∗)) ≤ DσVqσ,i

(x(s∗)) ≤ −α(Vqσ,i
(x(s∗))) + γ1(‖w‖) < 0. (5.51)

However, (5.51) implies that there is a number s0 ∈ (t, s∗) such that Vqσ,i
(x(s0)) ≥

Vqσ,i
(x(s∗)) ≥ rγ + ǫ, which contradicts to the minimality of s∗. Thus, x(s) ∈

Aqσ,i
,∀s ∈ [t, τσ,i+1]. Accordingly, V ♮

qσ,i
(xs) ≤ rγ ,∀s ∈ [t, τσ,i+1].

Case 2: x(t+ς) 6∈ Aqσ,i
for some ς ∈ [−Tr, 0], i.e., V ♮

qσ,i
> rγ , Figure 5.1(a)–(b). By

definition of V ♮
q , there is a number ς(t) ∈ [−Tr, 0] such that V ♮

qσ,i
(xt) = Vqσ,i

(x(t+ς(t))).

We further have the following consideration.

Case 2a: ς(t) = 0. In this case, we have Vqσ,i
(x(t)) > rγ , and hence γ1(‖w‖) <
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α(Vqσ,i
(x(t))). Moreover, as p(s) > s, ς(t) = 0 also implies that p(Vqσ,i

(x(t))) >

Vqσ,i
(x(t)) ≥ V ♮

qσ,i
(xt). Hence, using Assumption 5.3.1, we obtain

D+Vqσ,i
(x(t)) ≤ DσVqσ,i

(x(t)) ≤ −α(Vqσ,i
(x(t))) + γ1(‖w‖) < 0. (5.52)

As Vqσ,i
and x are continuous, (5.52) implies the existence of a number h > 0 such

that Vqσ,i
(x(t+ǫ)) ≤ Vqσ,i

(x(t)),∀ǫ ∈ [0, h) and hence V ♮
qσ,i

(xt+ǫ) ≤ V ♮
qσ,i

(xt),∀ǫ ∈

[0, h). Thus, D+V ♮
qσ,i

(xt) ≤ 0 accordingly.

Case 2b: ς(t) < 0. Since Vqσ,i
and x are continuous, there is a number ǫ > 0 such

that Vqσ,i
(x(t+ς(t))) > Vqσ,i

(x(t))+ǫ. Moreover, by the continuity of Vqσ,i
and x

again, there also exists a number h > 0 such that |Vqσ,i
(x(t+ ε))−Vqσ,i

(x(t))| <

ǫ/2,∀ε ∈ [0, h). Thus, Vqσ,i
(x(t + ε)) + ǫ/2 ≤ Vqσ,i

(x(t + ς(t))),∀ε ∈ [0, h) and

V ♮
qσ,i

(xt+ǫ) = V ♮
qσ,i

(x(t)),∀ǫ ∈ [0, h) accordingly. Hence, D+V ♮
qσ,i

(x(t)) = 0.

Combining Cases 2a and 2b, we conclude that D+V ♮
qσ,i

(x(t)) ≤ 0 if x(t+ ς) 6∈ Aqσ,i

for some ς ∈ [−Tr, 0]. Since VC (t)♮ = V ♮
q
σ,iD

j

(xt) for t ∈ [τσ,iDj
, τσ,iDj +1), combining Cases

1 and 2, it follows that either V ♮
C
(t) ≤ rγ or D+V ♮

C
(xt) ≤ 0 on TD = ∪j[τσ,iDj

, τσ,iDj +1].

This combined with condition (5.48) shows that V ♮
C
(t) is bounded by max{rγ , V

♮
C
(0)}

on TD . Clearly, by definition (5.49), V ♮
C
(t) is bounded by max{V ♮

C
(τσ,iDj

) : j ∈ N} on

R+\TD . Hence, in conclusion V ♮
C
(t) is bounded by max{rγ, V

♮
C
(0)}.

On the other hand, condition (5.46) implies that

Vq(x(t)) ≤ α2(α
−1
1 (Vq

σ,iD
j

(x(τσ,iDj
)))),∀q ∈ Q, j ∈ N. (5.53)

As such, it is straightforward that Vq
σ,i

−
σ (t)

(x(t)) ≤ V ♮
C
(t),∀t ∈ R+.
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Consider a number r > 0 and a function φ ∈ Cr satisfying ‖φ‖ ≤ r. From

condition (5.46), we have

‖x(t)‖ ≤ Vq
σ,i

−
σ (t)

(x(t)) ≤ V ♮
C
(t) ≤ max{rγ , V

♮
C
(0)}

≤ max{rγ, α2(α
−1
1 (V ♮

q
σ,iD0

(φ)))} ≤ max{rγ , α2(α
−1
1 (α2(r)))},∀t ∈ R+. (5.54)

Thus, x(t) is bounded. �

5.3.4 Lyapunov-Razumikhin Functions and SUAG

Theorem 5.3.2 Suppose that for every fixed σ ∈ SP [τp, Tp] and w ∈ Ld
∞, the switched

time-delay system with input ΣU ,D satisfies Assumption 5.3.1 for arbitrary φ ∈ Cr. In

addition, Tr ≥ Tp and for the sequence of dwell-time switching events {(qσ,iDj
,∆τσ,iDj

)}j

of σ, the following conditions hold:

i) V ♮
q
σ,iD

j

(xτ
σ,iD

j
+1

) ≥ V ♮
q
σ,iD

j+1

(xτ
σ,iD

j+1

),∀j ∈ N;

ii) lim sup
j→∞

(

Vq
σ,iD

j

(xτ
σ,iD

j

) − Vq
σ,iD

j

(xτ
σ,iD

j
+1

)
)

≤ τεγ2(‖w‖); and

iii) for each j ∈ N, there is a k ∈ N, k > j satisfying Vq
σ,iD

j
+1

(x(τσ,iDj +1)) ≥

Vq
σ,iD

k

(x(τσ,iD
k
)) and ∆τσ,iD

k
≥ Tr.

Then, the switched system ΣU ,D [τp, Tp] has a switching-uniform asymptotic gain.

Proof: Let γ(s) = γ1(s) + γ2(s) and define rγ = α−1(γ(‖w‖)). Let φ ∈ Cr be the

initial condition of the system and let x(t) denote the trajectory Tσ,w,ts(t, φ) for short.

Since Assumption 5.3.1 implies that V ♮
q
σ,iD

j

(x(t)) is non-increasing on [τσ,iDj
, τσ,iDj +1],

condition i) implies condition (5.48) of Theorem 5.3.1. Thus, the system satisfies

conditions of Theorem 5.3.1 and hence the trajectory x(t) is bounded accordingly,

i.e., there is a number H = H(φ,w, σ, rγ) > 0 such that ‖x(t)‖ ≤ H,∀t ∈ R+.
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As usual, let us assume that the first switching event of σ is dwell-time and

prove the convergence on TD = ∪j[τσ,iDj
, τσ,iDj +1] of the following composite Lyapunov-

Razumikhin function:

VC (t) =











Vq
σ,iD

j

(x(t)) if t ∈ [τσ,iDj
, τσ,iDj +1)

Vq
σ,iD

j+1

(x(τσ,iDj+1
)) if t ∈ [τσ,iDj +1, τσ,iDj+1

)
, j ∈ N. (5.55)

By condition (5.46), we have V
C
(t) ≤ R(φ,w, σ, rγ)

def
= α2(H(φ,w, σ, rγ)). Suppose

that ǫ > 0 is an arbitrary number less than R. Based on the constructive framework

of [59, Chapter 5, Theorem 4.2], we shall show that there is a number tǫ ∈ TD such

that V
C
(t) ≤ rγ + ǫ for all t ∈ TD , t ≥ tǫ.

Since p is continuous and satisfies p(s) > s, s > 0, there is a number a =

a(φ,w, σ) > 0 such that p(s) − s > a,∀s ∈ [rγ + ǫ, R]. Let NR = NR(φ,w, σ) be

the first positive integer satisfying rγ + ǫ+NRa ≥ R.

Our purpose at this point is to show that there is a t1 ∈ TD such that V
C
(t1) ≤ rγ+

ǫ+(NR−1)a. Suppose that the converse holds, i.e., V
C
(t) > rγ+ǫ+(NR−1)a,∀t ∈ TD .

Since V
C
(t) is bounded by R for all t ∈ TD , this implies that

p(VC (t)) > VC (t)+ a > rγ + ǫ+(NR − 1)a+ a ≥ R ≥ VC (t+ ς),∀ς ∈ [−Tr, 0], (5.56)

which, by (5.55), further implies that p(Vq
σ,i

−
σ (t)

(x(t))) > V ♮
q
σ,i

−
σ (t)

(xt),∀t ∈ TD .

Thus, by Assumption 5.3.1, we have

D+VC (t) ≤ DσVC (t) ≤ −α(VC (t)) + γ1(‖w‖),∀t ∈ TD . (5.57)

Moreover, V
C
(t) > rγ + ǫ+ (NR − 1)a implies that α(V

C
(t)) > γ(‖w‖) and hence

−α(V
C
(t))+γ1(‖w‖) < −γ2(‖w‖). Thus, integrating both side of (5.57) on dwell-time
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intervals [τσ,iDj
, τσ,iDj +1) yields

VC (τσ,iDj
) − VC (τσ,iDj +1) ≥ γ2(‖w‖)∆τσ,iDj

≥ τpγ2(‖w‖),∀j ∈ N. (5.58)

Taking the limits of both sides of (5.58) as j → ∞, we obtain

lim sup
j→∞

(VC (τσ,iDj
) − VC (τσ,iDj +1)) ≥ τpγ2(‖w‖), (5.59)

which, by virtue of τε < τp, contradicts to condition ii) of the theorem.

Therefore, there is t1 ∈ TD such that the following inequality holds for t = t1:

VC (t) ≤ rγ + ǫ+ (NR − 1)a. (5.60)

Let us consider the dwell-time interval [τσ,i−σ (t1), τσ,i−σ (t1)+1) containing t1. Let iD ,1

be the index of the dwell-time switching event of σ satisfying iD ,1 > i−σ (t1), ∆τσ,i
D ,1

≥

Tr and V
C
(τσ,i

D ,1
) ≤ V

C
(τσ,i−σ (t1)+1). By condition iii) of the theorem and definition

of V
C
, such iD ,1 exists. The next purpose is to show that (5.60) also holds for all

t ∈ TD , t ≥ τσ,i
D ,1

. We have the following cases at t1:

Case 1: V
C
(t1) = rγ + ǫ+ (NR − 1)a. In this case, we have p(V

C
(t1)) > V

C
(t1) +

a ≥ R ≥ V
C
(t1 + ς),∀ς ∈ [−Tr, 0], i.e., the Razumikhin condition holds at t1. By

Assumption 5.3.1 and the fact that α(V
C
(t1)) > γ(‖w‖), we have D+V

C
(t1) < 0.

Hence, there is a number h > 0 such that V
C
(t1 + ε) < rγ + ǫ+(NR − 1)a,∀ε ∈ (0, h).

Case 2: V
C
(t1) < rγ + ǫ + (NR − 1)a. In this case, due to the continuity of Vq’s

and x(t), such number h > 0 in Case 1 exists.

Combining Cases 1 and 2 above, it follows that there is a number h > 0 such

that V
C
(t1 + ε) < rγ + ǫ + (NR − 1)a,∀ε ∈ (0, h). Moreover, by virtue of Case 1,

if V
C
(t) = rγ + ǫ + (NR − 1)a for some t, then D+V

C
(t) < 0. As such, V

C
(t) ≤

rγ + ǫ+ (NR − 1)a,∀t ∈ [t1, τσ,i−σ (t1)+1].
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We proceed to consider the interval [τσ,i
D ,1
, τσ,i

D ,1+1). By the defining property of

iD ,1, we have V
C
(τσ,i

D ,1
) ≤ V

C
(τσ,i−σ (t1)+1) ≤ rγ + ǫ + (NR − 1)a. Thus, applying the

above argument for the dwell-time interval [τσ,i
D ,1
, τσ,i

D ,1+1), it follows that V
C
(t) ≤

rγ + ǫ+(NR −1)a,∀t ∈ [τσ,i
D ,1
, τσ,i

D ,1+1). Furthermore, since ∆τσ,i
D ,1

≥ Tr, this implies

that V ♮
C
(τσ,i

D ,1+1) ≤ rγ + ǫ+ (NR − 1)a.

Consequently, by condition i), we have VC (x(τσ,iDj
)) ≤ V ♮

C
(τσ,iDj

) ≤ V ♮
C
(τσ,i

D ,1+1) ≤

rγ + ǫ + (NR − 1)a for all iDj greater than iD ,1. Applying the above argument for

dwell-time intervals after iD ,1 again, it follows that V ♮
C
(t) ≤ rγ + ǫ + (NR − 1)a,∀t ∈

TD , t ≥ τσ,i
D ,1

.

We now turn to the next levels for function V
C
. Suppose that for some k ∈

{1, . . . , NR − 1}, we have derived the existence of a starting time τσ,i
D ,k

of a dwell-

time switching events satisfying V ♮
C
(t) ≤ rγ + ǫ + (NR − k)a,∀t ∈ TD , t ≥ τσ,i

D ,k
. By

the defining property of iD ,k and p, for a time t ∈ TD , t ≥ τσ,i
D ,k

satisfying V
C
(t) ≥

rγ + ǫ+ (NR − (k + 1))a, we have

p(VC (t)) > VC (t) + a ≥ rγ + ǫ+ (NR − k)a ≥ V ♮
C
(t), (5.61)

which, by Assumption 5.3.1 and the implication V
C
(t) > rγ + ǫ ⇒ −α(V

C
(t)) +

γ1(‖w‖) ≤ −γ2(‖w‖), implies that D+VC (t) ≤ −γ2(‖w‖). Therefore, repeating

the same arguments as above, it follows that there is a time tk+1 and a starting

time τσ,i
D ,k+1

of a dwell-time interval of the length no smaller than Tr such that

V
C
(tk+1), V

♮
C
(t) ≤ rγ + ǫ+ (NR − (k + 1))a,∀t ≥ τσ,i

D ,k+1
.

At k = NR − 1, setting tǫ = τσ,iD ,NR
and using (5.46), we obtain

α1(‖x(t)‖) ≤ V ♮
C
(t) ≤ rγ + ǫ,∀t ∈ TD , t ≥ tǫ. (5.62)
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Furthermore, for a time t ∈ [τσ,iDj +1, τσ,iDj+1
), using condition i) of the theorem and the

property that Tp ≤ Tr, we have

α1(‖x(t)‖) ≤ Vq
σ,iD

j+1

(x(t)) ≤ V ♮
q
σ,iD

j+1

(τσ,iDj+1
),∀t ∈ [τσ,iDj +1, τσ,iDj+1

), j ∈ N. (5.63)

Combining (5.62) and (5.63) yields,

α1(‖x(t)‖) ≤ V ♮
C
(t) ≤ rγ + ǫ,∀t ≥ tǫ. (5.64)

Since ǫ > 0 is arbitrary and rγ = α−1(γ(‖w‖)), (5.64) implies that x(t) approaches the

set O = {ζ ∈ Rn : ∃q ∈ Q, ‖ζ‖ ≤ α−1
1 (α−1(γ(‖w‖)))} as t→ ∞. As, χ

def
= α−1

1 ◦α−1◦γ

is independent of σ, this shows that the system has the switching-uniform asymptotic

gain χ. �

The above result has revealed the important role of relation between delay-time

Tr, persistent dwell-time τp, and period of persistence Tp in stability of switched

time-delay systems. While the dominance of Tr to Tp makes behavior in periods of

persistence accessible through behavior in dwell-time intervals, the existence of dwell-

time intervals of the lengths no smaller than the delay-time ensures the preservation

of the converging behavior through switching events. In comparison to traditional

switching decreasing condition, condition i) of Theorem 5.3.2 is much more relaxed

as it does not prevent the increasing behavior in period of persistence and is imposed

on dwell-time intervals only.
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Chapter 6

Gauge Design for Switching-Uniform

Adaptive Control

The main purpose of this chapter is to introduce the gauge design method for switching-

uniform adaptive control of a class of persistent dwell-time switched systems. Con-

stituent systems possessing unmeasured appended dynamics are interested. The un-

derlying principle is to use the appended dynamics and the controlled dynamics as

gauges of each other to make the destabilizing behavior of a constituent system be

dominated by the stabilizing behavior of its gauging system. The resulting behavior

of the overall switched system is thus ensured to be converging.

6.1 Introduction

Transforming to certain normal forms is usually prerequisite for nonlinear control

design [70,85,71]. The transformation may result in systems with zero dynamics due

to low relative degrees [70, 85] or systems with unmeasured dynamics due to limited

modeling capability [144]. Engineering examples of such systems include convey-

crane system, robotic systems, hovercraft, surface vessel, and helicopters [43, 39]. In

128
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practice, systems with internal/appended dynamics may possess a hybrid nature due

to the effects of discrete events such as reconfiguration in system/control structures

[24,109] and impulse effects [150].

Variables driving evolution of switched systems are inputs of constituent sys-

tems and switching sequence. As appropriate switching sequences can produce stable

switched systems [95,142], extensive research has been carried out for switching strate-

gies [110, 82, 93]. In addition, inappropriate switching sequences may destabilize the

system and cause challenges for control design [95,142]. Of practical relevance, inap-

propriate switching sequences usually arise in applications where uncertain switches

may occur due to failures or where the switching sequences are generated for other

purposes instead of stability. Thus, an important problem in switched systems is

switching-uniform control, i.e., achieving the control objective uniformly with respect

to a class of switching sequences [66,62]. Nevertheless, though stability theories have

been developed for general switched systems [154, 152, 22, 102], switching-uniform

stabilization of switched systems is still limited to switched linear systems [66] and

switched nonlinear systems in Byrnes-Isidori canonical forms [33].

Motivated by these considerations, we study in this chapter control of uncertain

switched nonlinear systems whose constituent systems, after suitable changes of co-

ordinates, can be expressed in the following form:

Σq :



































ż(t) = Qq(z(t), x1(t), θ(t))

ẋi(t) = gq,i(Xi(t))xi+1(t) + fq,i(Xi(t)),

i = 1, . . . , n− 1

ẋn(t) = gq,n(Xn(t))u(t) + fq,n(Xn(t))

, (6.1)

where z(t) ∈ Rd, x(t) = [x1(t), . . . , xn(t)]T ∈ Rn, and u(t) ∈ R are unmeasured state,

measured state, and system input, respectively, Xi(t) = [zT (t), x̄T
i (t), θT (t)]T , q is the

system index belonging to the discrete set Q = {1, . . . , q♮}, θ(t) ∈ Ωθ ⊂ Rdθ is the un-
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known time-varying parameter, and for each i = 1, . . . , n, x̄i(t) = [x1(t), . . . , xi(t)]
T ∈

Ri, and Qq, gq,i, and fq,i, q ∈ Q are known and sufficiently smooth functions.

Difficulty in controlling switched systems whose constituent systems are described

by (6.1) is manyfold. Firstly, due to low relative degrees, we are able to control a

limited number of state variables and might leave the remaining ones evolve au-

tonomously. This raises the challenge that the usual minimum-phase condition for

systems with zero-dynamics [71] is not sufficient for stabilization of switched sys-

tems. Secondly, unmeasured dynamics make control by switching-logic involving

computation based on measurement of all state variables or detectability assumption

unfeasible [61, 64, 122, 65, 106]. The third difficulty is due to the inapplicability of

traditional adaptive control for handling unknown parameters. The behind rationale

is that while the traditional adaptive control results in closed-loop systems with slow

dynamics constituent systems [12], finite running times of constituent systems call for

fast dynamics for fulfilling switching conditions. Finally, the approach of augment-

ing Lyapunov functions of the unmeasured dynamics by quadratic functions of error

variables [71, 97] is no longer effective. This is due to the fact that the cross-supply

rates are positive so that changing supply functions [97,32] for large decreasing rates

on active intervals also causes large growth rates on inactive intervals.

In this chapter, the gauge design method is introduced for overcoming the men-

tioned difficulties. The underlying principle is to use the unmeasured dynamics and

the controlled dynamics as gauges of instability of each others. This is possible since

whenever the state of the controlled dynamics is dominated by the unmeasured state,

then the desired behavior of the overall system is guaranteed by the minimum-phase

property of the unmeasured dynamics, and in the remaining case, i.e., the unmeasured

state is dominated by the measured state, estimates of functions of the unmeasured

state in terms of the measured state are available and a measured-state dependent

control can be designed to make the controlled dynamics the driving dynamics of
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the overall system. The control is responsible for canceling not only known parts of

destabilizing terms but also unknown parts of these terms whenever their computable

estimates are available.

The advantages of the gauge design lies in i) stability conditions can be verified

by the stability properties of the unmeasured dynamics and the dwell-time properties

of the switching signal, and ii) the unknown time-varying parameters can be lumped

into input disturbance that can be attenuated by tuning control parameters.

6.2 Problem Formulation

In the formal language of transition model of dynamical systems, we have the follow-

ing collection as a model of switched systems with input, output, disturbance, and

appended dynamics:

ΣI/O = {T,Q,X ,Z,Ldθ
∞, {Σq}q∈Q,S,U ,Y}, (6.2)

where T = R+,Q = {1, . . . , q♮},X = Rn,W = Rd,U ⊂ Rnu ,Y ⊂ Rny , and Ldθ
∞ are

spaces of time, discrete variable, measured variables, unmeasured variables, input,

output, and disturbance, respectively, S is the space of switching sequences, and

Σq, q ∈ Q are constituent systems whose evolutions are governed by (6.1). The

mechanism of evolution of system ΣI/O is obvious from Section 2.4 of Chapter 2.

Consider the dynamical system described by

ΣC : ζ̇ = Γ(ζ, uC), (6.3)

where ζ ∈ RnC and uC ∈ RmC are state and input of ΣC . Let yC = hC(ζ, uC) and

ym = hm(z, x, u) be the output of ΣC and the measured output of Σq. For q ∈ Q,
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Σz,q

Σx,q

ΣC

θ

z

uC = ym

y

u = yC

Σ
C
qΣq

Figure 6.1: q–constituent closed-loop system ΣC
q : Σz,q – z subsystem of Σq, Σx,q – x

subsystem of Σq

making the interconnection between Σq and ΣC through

uC = ym, u = yC , (6.4)

we obtain the dynamical systems ΣC
q , q ∈ Q, see Figure 6.1, from which the following

switched system with input are well-defined

ΣC = {R+,Q,Rd × Rn × RnC ,Ldθ
∞, {ΣC

q }q∈Q,S}. (6.5)

The state of ΣC is X = [zT , xT , ζT ]T and its input is θ. The mechanism of evolution

of ΣC is obvious from the definition of switched systems in Chapter 2.

For each switching sequence σ ∈ S and each input θ ∈ Ldθ
∞, letX(t) = X(t;σ, θ,X0)

denote the trajectory through X0 of the closed-loop switched system ΣC . We have

the following control problem for switched system with appended dynamics ΣI/O.

Switching-uniform adaptive output regulation: design a dynamical system of

the form (6.3) such that, under the interconnection (6.4) with ym = x, the trajec-
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tory X(t) = X(t;σ, θ,X0) of the closed-loop system ΣC generated by any switching

sequence σ ∈ S[τp, Tp], input θ ∈ Ldθ
∞ and initial condition X0 satisfies:

i) X(t) is bounded; and

ii) y(t) = x1(t) approaches to a small neighborhood of zero as t→ ∞.

We would mention that by collections (6.2) and (6.5), it is implicitly supposed

that there is no switching jump in trajectories. For each q ∈ Q, we shall call the

equation ż(t) = Qq(z(t), x1(t), θ(t)) in (6.1) the z–subsystem of Σq and, accordingly,

the collection of the remaining equations in (6.1) the x–subsystem of Σq. We shall

respectively denote these subsystems by Σz,q and Σx,q. The interconnection structure

of the controlled switched system is shown in Figure 6.1.

As the measured output ym = x does not contain z, we shall call Σz,q the unmea-

sured dynamics of Σq and we call the dynamics of the continuous state z of system

ΣI/O, labeled as Σ∆, the unmeasured dynamics of ΣI/O. In this chapter, we provide

solution to the proposed control problem under the following conditions.

Assumption 6.2.1 There are smooth positive definite and proper functions Uq :

Rd → R, q ∈ Q, class K∞ functions α
−
, ᾱ, α1, α2 and β, and a continuous function

υ : R+ → R+, υ(0) = 0 such that, for all q, q1, and q2 ∈ Q, q1 6= q2, for all y ∈ R and

z ∈ Rd and for all θ ∈ Ωθ, the following properties hold:

i) Uq1
(z) ≤ β(Uq2

(z)) and α
−
(‖z‖) ≤ Uq(z) ≤ ᾱ(‖z‖);

ii)
∂Uq(z)

∂z
Qq(z, y, θ) ≤ −α1(Uq(z)) + υ(y2); and

iii)
∂Uq1

(z)

∂z
Qq2

(z, y, θ) ≤ α2(Uq1(z)) + υ(y2).

Let µ be a C1 class-K∞ function and ωk : R+ × R+ → R+, k = 1, 2 are functions

defined as ωk(a, b) = G−1
k (Gk(a) + b), where

G1(v)
def
=

∫ v

1

ds

−α1(s) + µ(s)
, and G2(v)

def
=

∫ v

1

ds

α2(s) + µ(s)
, v ∈ R+. (6.6)
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Assumption 6.2.2 lims→0+(∂µ(s)/∂s)α1(s) = 0 and both functions α1−µ and α2+µ

are of class-K∞. There exist numbers RV > 0 and τ0 > 0 and a class–KL function ω0

satisfying ω0(ω0(a, s), t) ≤ ω0(a, s + t),∀a, s, t ∈ R+ such that ω2(s, t) < ∞,∀(s, t) ∈

[0, RV ) × [0, Tp] and

ω1(β(ω2(s, Tp)), τp) ≤ ω0(s, τǫ),∀s ∈ R+. (6.7)

In system with appended dynamics, the control objective is often to force the

system output to follows a prescribed signal [71]. In such context, the system output

y(t) plays the role of input disturbance to the z–subsystem. As a result, certain

stability property must be imposed on the internal dynamics for solvability [74,71,7,

84,32,48]. Without involving the switching signal, Assumption 6.2.1 imposes stability

properties of constituent systems Σq only.

The first inequality in condition i) of Assumption 6.2.1 is not a restriction as

from the second inequality, such a function β can be β(·) = ᾱ(α
−

−1(·)). However, β

is considered as in practice such a function β giving better growing estimates than

ᾱ ◦ α
−

−1 might be utilized for better control.

Condition (6.7) provides a quantitative condition from the well-known but still

unutilized fact in switched systems: in comparison to the persistent period and the

growth rate, the larger the dwell-time and the decreasing rate are, the better con-

verging behavior is achieved. As ω1 and ω2 are class–KL and class–KK functions,

respectively, condition (6.7) holds if either decreasing rate α1 or dwell-time τp are

sufficiently large with respect to the growth rate α2 and the persistent period Tp.

In the case that the functions β, µ, α1, and α2 are linear as in [149], i.e., β(s) =

a0s, α1(s) − µ(s) = a1s, and α2(s) + µ(s) = a2s, the condition (6.7) reduces to

τǫ
def
= a1τp−a2Tp−ln a0 > 0 and a function β0 satisfying (6.7) is ω0(s, τǫ) = s exp(−τǫ).

Thus, the generality of (6.7) is obvious.
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Assumption 6.2.3 There are known functions gx,i, i = 1, . . . , n such that

|gq,i(z, x̄i, θ)| ≥ gx,i(x̄i) > 0, (6.8)

for all (z, x̄i, θ) ∈ Rd × Ri × Ωθ, q ∈ Q, i = 1, . . . , n.

As the control gains are continuous and bounded away from zero by (6.8), they

have unchanged signs. Without loss of generality, we further assume that all the

control gains’ signs are positive.

Control for systems with changing control gains’ signs is an extensive problem

[155]. However, control of this class of systems can be developed from controls of

systems with known control gains’ signs [155,99]. Therefore, control of systems with

known control gains’ signs, as assumed in Assumption 6.2.3, also plays an important

role in dealing with larger class of systems, whilst state-dependent and un-identical

control gains of constituent systems Σq in (6.1) present an obvious generalization from

systems with constant control gains [85,71].

Assumption 6.2.3 is instrumental in overcoming the obstacle that the well-known

cancelation design for continuous systems, in which the terms 1/gk,i’s are included

in the controls for matching the control to nonlinear functions fk,i’s [85, 162], does

not apply to switched system (6.2). The behind rationale lies in i) uncomputable

unmeasured state dependent control gains gk,i’s cannot be included in the controls,

and ii) even if z was known, the control and the nonlinear functions of a constituent

system Σ1 are matched only when this system is active.

To close this section, let us recall the following lemmas.

Lemma 6.2.1 ( [14]) Let v(t) be a differentiable function in J = (a, b) such that

v̇(t) ≤ g(v(t)),∀t ∈ J, (6.9)
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where g is a nonzero continuous function in I = (v1, v2). Let t0 ∈ J and v(t0) = v0 ∈

I, then

v(t) ≤ G−1(G(v0) + t− t0),∀t ∈ [t0, b1) = J1, (6.10)

where G(v) =
∫ v

u
ds/g(s), u, v ∈ I and b1 = sup{t ∈ [t0, b) : G(v0)+s−t0 ∈ G(I), t0 ≤

s ≤ t}. In addition, the function ω(a, t)
def
= G−1(G(a) + t), a ∈ I, t ∈ J satisfies

ω(β(a, s), t) = ω(a, s+ t),∀a ∈ I, s, t ∈ J, s+ t ∈ J. (6.11)

Lemma 6.2.2 ( [97]) For any real-valued continuous function f(x, y) where x ∈

Rn, y ∈ Rm, there are smooth scalar-value functions a(x) ≥, b(y) ≥ 0, c(x) ≥ 1 and

d(y) ≥ 1 such that

|f(x, y)| ≤ a(x) + b(y) and |f(x, y)| ≤ c(x)d(y). (6.12)

6.3 Switching-Uniform Adaptive Output Regulation

In this section, we present the gauge design method for switching-uniform adaptive

output regulation of persistent dwell-time switched system with unmeasured dynamics

(6.2). The design makes use of the controlled error dynamics as a gauge for instability

mode of the unmeasured dynamics to design a control preserving the converging

behavior in this mode. To this end, we exploit the fact that in unstable modes of

z-system, estimates of z-dependent functions in terms of error variables are available

for control design. In this way, auxiliary functions satisfying conditions of Theorem

5.2.1 can be constructed for the convergence of the combined unmeasured dynamics

and error dynamics. As the measured state-dependent domination functions of the

unmeasured state dependent functions are utilized, we separate the unknown time-

varying parameters from known variables and combine them into a lumped input
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disturbance which can be attenuated by tuning control parameter.

Since υ(0) = 0, there is a continuous function υ0 such that υ(s) = υ0(s)s, s ≥ 0.

Our design involves the following gauge along the trajectories of z, x:

µ(Uq(z(t))) ≤ Vg(ξ(t))
def
= υ1(ξ

2
1(t))ξ

2
1(t) +

n
∑

i=2

ξ2
i (t), q ∈ Q, (6.13)

where Uq’s and µ are given in Assumptions 6.2.1 and 6.2.2, z ∈ Rd is the state of

the unmeasured dynamics Σ∆, ξi = xi − αu,i−1 ∈ R, i = 1, . . . , n are error variables,

αu,0 = 0, αu,i, i = 1, . . . , n are the so-called virtual controls, υ1 : R+ × R+ → R+

is a continuous nondecreasing function satisfying υ1(s) ≥ max{υ0(s), 1},∀s ∈ R+.

Hereafter, we call the differential equations describing the dynamics of the error state

ξ = [ξ1, . . . , ξn]T the ξ-subsystem or controlled dynamics labeled as ΣE .

6.3.1 Control Design

By Assumption 6.2.1, if the inverse of (6.13) holds for all the time, then converging

behavior of ξ is guaranteed by the converging behavior of z. Thus, the design purpose

is to preserve the converging behavior of z on time stages (6.13) holds. To proceed,

let us recall the definition of the transition indicator i−σ from Section 2.4.2 of Chapter

2 and the notion of derivative along a trajectory (5.7). For each i = 1, . . . , n, ξ̄i is the

vector [ξ1, . . . , ξi]
T .

First Virtual Control Design

Let ξ1 = x1 and ξ2 = x2 − αu,1 where αu,1 is the first virtual control to be designed.

From the system dynamics (6.1), we have the following evolution rule for ξ1

ξ̇1 = gq,1(z, x1, θ)x2 + fq,1(z, x1, θ), q ∈ Q. (6.14)
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Consider the following function

Vg,1(ξ1) =
1

2
υ1(ξ

2
1)ξ

2
1 , (6.15)

which we call the first gauge Lyapunov function candidate as it is a part of Vg.

Let υD(s) = (∂υ1(s)/∂s)s + υ1(s). As Vg,1 is continuously differentiable, the

derivative of Vg,1 along the evolution of ξ1 is

DVg,1(ξ1(t)) ≤ max
p∈Q

{

υD(ξ2
1(t))

(

gp,1(z(t), x1(t), θ(t))(ξ2(t) + αu,1(t))

+ fp,1(z(t), x1(t), θ(t))
)

ξ1(t)
}

. (6.16)

Bearing in mind that computation are made along evolutions of state variable z

and x, we shall often drop the time arguments of evolving variables for short. At

this point, our objective is to construct a virtual control αu,1 such that if (6.13)

holds, then the right-hand-side of (6.16) contains a negative functions of ξ2
1 . To

this end, let us estimate the functions gp,1’s and fp,1’s in terms of known variables

ξi’s upon satisfaction of (6.13). Since gp,1’s and fp,1’s are continuous and Up’s are

radially unbounded by Assumption 6.2.1, for p ∈ Q, there is a continuous function

ψp,1 nondecreasing in its first argument such that

gp,1(·)ξ2 + fp,1(·) ≤ ψp,1(Uq(z), x1, ξ2, θ),∀(z, x1, θ) ∈ Rd × R × Ωθ. (6.17)

Such a function ψp,1 can be

ψp,1(s, x1, θ) = sup{gp,1(ζ, x1, θ)ξ2 + fp,1(ζ, x1, θ) : ζ ∈ Rd, ‖ζ‖ ≤ α
−

−1(s)}, s ∈ R+,

(6.18)

where α
−

is given by Assumption 6.2.1. Applying Lemma 6.2.2 and Young’s inequality,
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we obtain functions ψa
q,1, ψ

b
q,1, q ∈ Q such that, upon satisfaction of (6.13), we have

υD(ξ2
1)(gp,1(·)ξ2 + fp,1(·))ξ1 ≤ |υD(ξ2

1)|ψp,1(Uq(z), ξ1, ξ2, θ)|ξ1|

≤ |υD(ξ2
1)|ψp,1

(

µ−1
(

υ1(ξ
2
1)ξ

2
1 +

n
∑

i=2

ξ2
i

)

, ξ1, ξ2, θ
)

|ξ1| ≤ ψa
p,1(θ)ψ

b
p,1(ξ̄n)|ξ1|. (6.19)

where ξi, i = 2, . . . , n are error variables to be defined at the next steps. Since ψa
p,1 is

continuous and θ ∈ Ldθ
∞ is bounded, there is a constant Θ1 such that (ψa

p,1(θ))
2 ≤ 4Θ1.

As such, applying Young’s inequality, the last term in (6.19) satisfies

ψa
p,1(θ)ψ

b
p,1(ξ̄n)|ξ1| ≤ KΘ(ψb

p,1(ξ̄n))2ξ2
1 +

(ψa
p,1(θ))

2

4KΘ

≤ KΘ(ψb
p,1(ξ̄n))2ξ2

1 +
Θ1

KΘ

, (6.20)

where KΘ > 0 is a time-varying design parameter to be updated.

Since Q is finite, there is a C1 positive function ψ1, that is nondecreasing in each

individual argument, such that (ψb
p,1(ξ̄n))2 ≤ ψ1(ξ̄

2
n),∀p ∈ Q, where ξ̄2

n = [ξ2
1 , . . . , ξ

2
n]T .

Such a function ψ1 can be any C1 positive function satisfying

ψ1(s) ≥ sup
{

(ψb
p,1(ξ̄n))2 : ξ̄n ∈ Rn, ‖ξ̄n‖2 ≤

n
∑

i=1

si, p ∈ Q

}

, s = [s1, . . . , sn]T ∈ (R+)n.

(6.21)

Applying the following identity [97]

f(x1, . . . , xi) =
(

∫ 1

0

∂f(x1, . . . , xi−1, s)

∂s

∣

∣

∣

s=βxi

dβ
)

xi + f(x1, . . . , xi−1, 0)

def
= A(x1, . . . , xi)xi + f(x1, . . . , xi−1, 0), (6.22)

to the function ψ1 recursively from i = n to i = 1, we obtain positive functions ϕ1,i

satisfying

ψ1(ξ̄
2
n) =

n
∑

i=1

ϕ1,i(ξ̄
2
i )ξ

2
i + ψ1(0), ξ̄2

i = [ξ2
1 , . . . , ξ

2
i ]

T . (6.23)
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In summary, from (6.19), (6.20) and (6.23), we have

υD(ξ2
1)(gp,1(z, x1, θ)ξ2 +fp,1(z, x1, θ))ξ1 ≤ KΘ

(

n
∑

i=1

ϕ1,i(ξ̄
2
i )ξ

2
i +ψ1(0)

)

ξ2
1 +

Θ1

KΘ

,∀p ∈ Q

(6.24)

whenever (6.13) holds true.

Remark 6.3.1 As ψ1 is nondecreasing in each its argument, its partial derivatives

are nonnegative. As such, in view of (6.23), the non-negativeness of the functions

ϕ1,i(·)’s in (6.23) is guaranteed.

As we are going to design αu,1 such that αu,1ξ1 ≤ 0, substituting (6.20) and

x2 = ξ2 + αu,1 into (6.16), we obtain

DVg,1(ξ1(t)) ≤ υD(ξ2
1) min{gp,1(z, x1, θ) : p ∈ Q}ξ1αu,1

+KΘ

(

n
∑

i=1

ϕ1,i(ξ̄
2
i )ξ

2
i + ψ1(0)

)

ξ2
1 +

Θ1

KΘ

(6.25)

upon satisfaction of (6.13).

Remark 6.3.2 The universal design of the functions ψi, i = 1, . . . , n in (6.21) and

(6.37) below applies to the generic functions fp,i’s and gp,i’s. In practice, specific

structures of fp,i’s and gp,i’s can be exploited to improve estimates (6.20) and (6.39)

below for better control performance.

In view of (6.25), let us consider the following first virtual control αu,1

αu,1 = − 1

gx,1(x1)
(̺1(ξ1) +KΘϕ1(ξ1))ξ1, (6.26)

where ̺1, and ϕ1 are positive smooth functions to be specified. By construction, υ1 is

a nondecreasing function which has nonnegative derivative and υ1(s) ≥ 1,∀s ∈ R+.

Therefore,

υD(s) =
∂υ1(s)

∂s
s+ υ1(s) ≥ υ1(s) ≥ 1,∀s ∈ R+. (6.27)
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This together with the property gp,1(·)/gx,1(·) ≥ 1 from Assumption 6.2.3 implies that

υD(ξ2
1)gp,1(·)ξ1αu,1 ≤ −gp,1(·)

gx,1(·)
(̺1(ξ1) +KΘϕ1(ξ1))ξ

2
1 ≤ −̺1(ξ1)ξ

2
1 −KΘϕ1(ξ1)ξ

2
1 .

(6.28)

By virtue of (6.25), let ϕ1 be the smooth positive function satisfying ϕ1(ξ1) ≥

ϕ1,1(ξ
2
1)ξ

2
1 + ψ1(0). Then, substituting ϕ1 and (6.28) into (6.25), we arrive at

DVg,1(ξ1) ≤ −̺1(ξ1)ξ
2
1 +KΘ

n
∑

i=2

ϕ1,i(ξ̄
2
i )ξ

2
i ξ

2
1 +

Θ1

KΘ

(6.29)

whenever the condition (6.13) holds. This completes the design of the first virtual

control αu,1.

Remark 6.3.3 Different from the traditional backstepping design [85], in gauge de-

sign, the inequality (6.13) gives rise to the domination function ψ1(·) depending on

all error variables which cannot be canceled all at once by αu,1. The novelty here is

the decomposition of ψ1 into functions of square of error variables (6.23) which can

be canceled by the next virtual controls.

Inductive Virtual Control Design

The purpose of the inductive design is to augment the gauge Lyapunov function

candidate Vg,1 and design the virtual controls αu,i’s to propagate (6.29) in such a way

that all the positive functions in the derivatives along trajectory are eliminated when

the actual control u is reached. Let us state the inductive assumption as follows.

Inductive Assumption: at a step s ≥ 1, there are

i) gauge Lyapunov function candidates Vg,j, j = 1, . . . , s given by

Vg,j(ξ̄j) = Vg,j−1(ξ̄j−1) +
1

2
ξ2
j , j = 2, . . . , s (6.30)

with Vg,1 given by (6.15);
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ii) virtual controls

αu,j = − 1

gx,j(x̄j)
(̺j(ξj) +KΘϕi(ξ̄j))ξj, j = 1, . . . , s, (6.31)

where gx,j’s are given by Assumption 6.2.3, and ̺j, ϕj, j = 1, . . . , s are design

positive functions given by (6.43), i = j and (6.45) in the below; and

iii) an unknown constant Θs > 0 and nonnegative functions ϕl,j, l = 1, . . . , s, j =

s+ 1, . . . , n,

such that whenever (6.13) holds true, the derivatives of Vg,s along the trajectory ξ̄s(t)

satisfy

DVg,s(ξ̄s(t)) ≤ −
s

∑

j=1

̺j(ξj)ξ
2
j +KΘ

n
∑

j=s+1

s
∑

l=1

ϕl,j(ξ̄
2
j )ξ

2
j ξ

2
l +

Θs

KΘ

. (6.32)

As shown in the previous subsection, the induction assumption holds for s = 1.

Suppose that the assumption holds for s = k − 1, k ≥ 2. We will show that it also

holds for s = k.

From the rule of evolution Σq given in (6.1), the rules of evolution for the error

ξk = xk − αu,k−1 are

ξ̇k = gq,k(z, x̄k, θ)xk+1 + fq,k(z, x̄k, θ) + rq,k(z, x̄k, θ), q ∈ Q (6.33)

where rq,k’s are continuous functions given by

rq,k(·) = −
k−1
∑

j=1

∂αk−1

∂xj

(gq,j(·)xj+1 + fq,j(·)) −
∂αu,k−1

∂KΘ

K̇Θ, q ∈ Q. (6.34)

As the update law for KΘ shall be designated as a continuous function of ξ1 (see

(6.47) below), the functions rq,k’s defined by (6.34) then depends only on z, x̄k and θ

as in (6.33).
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Let us define ξk+1 = xk+1 − αu,k and consider the following k-th gauge Lyapunov

function candidate

Vg,k = Vg,k−1 +
1

2
ξ2
k. (6.35)

From the Inductive Assumption, the derivative of Vg,k along the trajectory ξ̄k(t) satisfy

DVg,k(ξ̄k(t)) = DVg,k−1(ξ̄k−1(t)) + (gq
σ,i

−
σ (t)

,k(·)(ξk+1 + αu,k)

+ fq
σ,i

−
σ (t)

,k(·) + rq
σ,i

−
σ (t)

,k(·))ξk

≤ −
k−1
∑

j=1

̺j(ξj)ξ
2
j +KΘ

(

k−1
∑

l=1

ϕl,k(ξ̄
2
k)ξ

2
l

)

ξ2
k +KΘ

n
∑

j=k+1

k−1
∑

l=1

ϕl,j(ξ̄
2
j )ξ

2
j ξ

2
l

+
Θk−1

KΘ

+ max
q∈Q

{

gq,k(·)αu,kξk + (gq,k(·)ξk+1 + fq,k(·) + rq,k(·))ξk
}

(6.36)

whenever (6.13) holds true.

Having (6.36), our next purpose is to design the virtual control αu,k that eliminates

part of the positive terms from and add desired negative terms to the right hand side

of (6.36). By the same type of reasoning leading to (6.19), we obtain smooth functions

ψa
p,k, ψ

b
p,k, p ∈ Q such that whenever (6.13) is satisfied, we have

(gp,k(·)ξk+1 + fp,k(·) + rp,k(·))ξk ≤ ψa
p,k(θ)ψ

b
p,k(ξ̄n)|ξk| ≤ KΘ(ψb

p,p(ξ̄n))2ξ2
k +

(ψa
p,k(θ))

2

4KΘ

.

(6.37)

Moreover, as Q is finite, there is a C1 positive function ψk nondecreasing in each

individual argument such that (ψb
p,k(ξ̄n))2 ≤ ψk(ξ̄

2
n),∀p ∈ Q. Again, applying the

identity (6.22) to the function ψi recursively from j = n to j = ki, we obtain the

functions ϕk,j, j = k, . . . , n satisfying

ψk(ξ̄
2
n) =

n
∑

j=k

ϕi,j(ξ̄
2
j )ξ

2
j + ψk(ξ̄

2
k−1, 0, . . . , 0). (6.38)
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As θ ∈ Ldθ
∞ is bounded and ψa

p,p’s are continuous, there is a constant Θk > 0 such

that max{Θ1, . . . ,Θk−1, ‖(ψa
p,k(θ(·)))2‖/4, p ∈ Q} ≤ Θk. As such, from (6.37) and

(6.38), upon satisfaction of (6.13), we have

(gp,k(·)ξk+1 + fp,k(·) + rp,k(·))ξk ≤ KΘ

(

n
∑

j=k

ϕk,j(ξ̄
2
j )ξ

2
j + ψk(ξ̄

2
k−1, 0, . . . , 0)

)

ξ2
k +

Θk

KΘ

.

(6.39)

Note that we are going to design αu,k such that αu,kξk ≤ 0. Substituting (6.39)

into (6.36), it follows that

DVg,k(ξ̄k(t)) ≤ −
k−1
∑

j=1

̺j(ξj)ξ
2
j +KΘ

(

k
∑

l=1

ϕl,k(ξ̄
2
k)ξ

2
l + ψk(ξ̄

2
k−1, 0, . . . , 0)

)

ξ2
k

+KΘ

n
∑

j=k+1

k
∑

l=1

ϕl,j(ξ̄
2
j )ξ

2
j ξ

2
l + min{gp,k(·) : p ∈ Q}αu,kξk +

Θk

KΘ

(6.40)

whenever (6.13) holds true. Consider the virtual control

αu,k = − 1

gx,k(x̄k)

(

̺k(ξk) +KΘϕk(ξ̄k)
)

ξk, (6.41)

where ̺k and ϕk are smooth positive functions to be specified. As gp,k(·) ≥ gx,k(·),∀p ∈

Q by Assumption 6.2.3, we have

gp,k(·)ξkαu,k = −gp,k(·)
gx,k(·)

(̺k(·) +KΘϕk(·))ξ2
k ≤ −̺k(·)ξ2

k −KΘϕk(·)ξ2
k,∀p ∈ Q. (6.42)

In view of (6.40), let ϕk be the smooth positive function satisfying

ϕk(ξ̄k) ≥
k

∑

l=1

ϕl,k(ξ̄
2
k)ξ

2
l + ψk(ξ̄

2
k−1, 0, . . . , 0). (6.43)
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Substituting (6.41) and (6.43) into (6.40), we arrive at

DVg,k(ξ̄k(t)) ≤ −
k

∑

j=1

̺j(ξj)ξ
2
j +KΘ

n
∑

j=k+1

k+1
∑

l=1

ϕl,j(ξ̄
2
j )ξ

2
j ξ

2
l +

Θk

KΘ

(6.44)

upon satisfaction of (6.13). Thus, the inductive assumption holds for s = k.

Actual Control Design

Following the Inductive Design Step, we obtain at the final step s = n the n-th gauge

Lyapunov function candidate Vg
def
= Vg,n given by (6.30), j = n and the virtual control

αu,n given by (6.31), j = n. As ξn+1 = xn+1 − αu,n = u− αu,n, let us select u = αu,n

so that ξn+1 = 0. The remaining designs are those for ̺j’s and the update law for

KΘ.

As µ′(s) = ∂µ(s)/∂s ≥ 0, s > 0 for µ ∈ K∞ and µ′(s)α1(s) → 0 as s → 0+ by

Assumption 6.2.2, there is a class-K function αg chosen to be C1 such that αg(µ(s)) ≥

µ′(s)α1(s). We choose ̺j’s to be C1 functions satisfying

n
∑

j=1

̺j(ξj)ξ
2
j ≥ αg(2Vg(ξ̄n)). (6.45)

Such functions ̺j’s exist as αg(2Vg(ξ̄n)) can be expressed as

αg(2Vg(ξ̄n)) = αg

(

n
∑

j=1

υ̃j(ξ
2
j )ξ

2
j

)

≤
n

∑

j=1

αg

(

nυ̃j(ξ
2
j )ξ

2
j

)

=
n

∑

j=1

(

∫ 1

0

∂αg(nυ̃j(s)s)

∂s

∣

∣

∣

s=βξ2
j

dβ
)

ξ2
j , (6.46)

where υ̃j(ξ
2
j ) is υ1(ξ

2
1) if j = 1 and is 1, otherwise.

Let ǫd > 0 be a desired accuracy and kK > 0 be a tuning gain. We select the



6.3. Switching-Uniform Adaptive Output Regulation 146

following update law for KΘ [97]:

K̇Θ =











kK(|ξ1| − ǫd) if |ξ1| ≥ ǫd

0 if |ξ1| < ǫd

, KΘ(0) = 1. (6.47)

Finally, let wΘ(t)
def
= Θn/KΘ(t). We shall estimate the derivative of Ug(ξ)

def
=

µ−1(2Vg(ξ)) along the evolution of ξ as follows. As u = α◦
n gives ξn+1 = u − α◦

n = 0

and renders (6.32) hold for s = n under (6.13), using (6.45), we have

DVg(ξ(t)) ≤ −αg(2Vg(ξ(t))) + wΘ(t) (6.48)

whenever (6.13) holds true. As µ ∈ C1 and so is µ−1, we have

DUg(ξ(t)) = 2(µ′(µ−1(2Vg(ξ(t)))))
−1DVg(ξ(t))

≤ −2(µ′(Ug(ξ(t))))
−1(αg(µ(Ug(ξ(t)))) − wΘ(t)) (6.49)

whenever (6.13) holds true. From (6.49) and the designated property αg(µ(s)) ≥

µ′(s)α1(s), if αg(µ(Ug(ξ(t)))) ≥ 2‖wΘ‖ ≥ 2wΘ(t), then we further have

DUg(ξ(t)) ≤ −α1(Ug(ξ(t))) (6.50)

whenever (6.13) holds true. This completes the design procedure.

Remark 6.3.4 The update law (6.47) is adopted from [97]. Though there is no com-

mon Lyapunov function to prove the boundedness of KΘ as in [97], we will show in the

next subsection that, in switched systems (6.2), the update law (6.47) still guarantees

the boundedness of KΘ through the converging-input converging-state property of the

closed-loop system.

Remark 6.3.5 As (6.50) is guaranteed only when (6.13) holds, stability of the re-
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sulting closed-loop system cannot be obtained from (6.44) with arbitrary ̺i’s as in

the usual Lyapunov-based control design of continuous dynamical systems. As such,

condition (6.45) on the design functions ̺j’s is presented to obtain (6.50) for stability

analysis presented in the next subsection.

6.3.2 Stability Analysis

In this section, we prove that the control obtained in the previous subsection achieves

the proposed control objective. The main steps are as follows. We first show that the

(switched) system of x̃ = [zT , ξT ]T has an asymptotic gain with respect to the input

wΘ. Then, we show that the adaptation of the parameter KΘ will be stopped when

the desired accuracy has been reached. Consider the functions

Vq(x̃)
def
= max{Uq(z), µ

−1(2Vg(ξ))}, q ∈ Q. (6.51)

As Uq, q ∈ Q, and Vg are continuous functions and z(t) and ξ(t) are continuous

in t, the functions Vq(x̃(t)), q ∈ Q are continuous in t as well. Let ρµ(s) = s + µ(s)

which is a class-K∞ function. Let us verify that

Vq(x̃) ≥ ρ−1
µ (Uq(z) + 2Vg(ξ)),∀q ∈ Q. (6.52)

Indeed, if µ(Uq(z)) ≥ 2Vg(ξ) then Vq(x̃) = Uq(z) and hence ρµ(Vq(x̃)) = Uq(z) +

µUq(z) ≥ Uq(z) + 2Vg(ξ). In the inverse case of µ(Uq(z)) < 2Vg, we have Vq(x̃) =

µ−1(2Vg(ξ)) and hence ρµ(Vq(x̃)) = µ−1(2Vg(ξ))+2Vg(ξ) ≥ Uq(z)+2Vg(ξ). Combining

both cases, we obtain (6.52).

Recall that {(qσ,iDj
,∆τσ,iDj

}j is the sequence of dwell-time switching events of σ and,

given the initial time t0, tσ,iDj
= t0 + τσ,iDj

. We have the following proposition.

Proposition 6.3.1 Under the input u = α◦
n, the following properties holds along the
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resulting trajectory x̃(t):

i) Vq
σ,iD

j

(x̃(t)) ≤ max{ω1(Vq
σ,iD

j

(x̃(tσ,iDj
)), t− tσ,iDj

), µ−1(α−1
g (2‖wΘ‖))},

∀t ∈ [tσ,iDj
, tσ,iDj +1]; and

ii) if Vq(x̃(tV )) < RV for some tV ∈ [tσ,iDj−1+1, tσ,iDj
], q ∈ Q, then Vq(x̃(t)) ≤

ω2(V
w
q (tV ), Tp),∀t ∈ [tV , tσ,iDj

],

where V w
q (s) = max{µ−1(α−1

g (2‖wΘ‖)), Vq(x̃(s))}, ω1, ω2, and RV are given in As-

sumption 6.2.2, and tσ,iD−1+1
def
= tσ,0.

Proof: See Section 6.5. �

Subject to the update law (6.47), KΘ(t) is nondecreasing and hence wΘ(t) is

bounded. Define the constant Vini = max{χ(‖wΘ‖), Vqσ,0(x̃(t0))} and the function

χ(s) = µ−1(α−1
g (2s)), s > 0. We have the following theorem.

Theorem 6.3.1 Consider the switched system (6.2) whose driving dynamics are de-

scribed by (6.1). Suppose that Assumptions 6.2.1–6.2.3 hold and Vini < RV . Then,

under the control u = α◦
n given by (6.31), j = n with ̺j’s satisfying (6.45), the re-

sulting switched system of x̃ = [zT , ξT ]T , whose driving dynamics are described by

ż = Qq(z, y, θ) and (6.33) and whose input is wΘ, has an asymptotic gain.

Proof: We shall prove the theorem by showing that the (switched) system generating

x̃ satisfy conditions of Theorem 5.2.1 with the functions Vq, q ∈ Q defined in (6.51).

As the driving dynamics of z and x are described by differential equations (6.1) and

the resulting control u = α◦
n is continuous, from the theory of differential equations

[137], we know that the corresponding transition mappings Tq are continuous in their

domains of existence. We shall verify the forward completeness of x̃ through its

boundedness in the subsequent verification of condition ii) of Theorem 5.2.1.

From (6.52) and definition of Vq, we have

Uq(z) + µ−1(2Vg(ξ)) ≥ Vq(x̃) ≥ ρ−1
µ (Uq(z) + 2Vg(ξ)). (6.53)
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As µ and ρµ are class-K∞ functions, this shows that (5.10) holds.

To verify condition i) of Theorem 5.2.1, we have the following cases at the time

t ∈ [tσ,i, tσ,i+1], i ∈ N.

Case 1: Inequality (6.13) does not hold for q = qσ,i. In this case, we have

Vqσ,i
(x̃(t)) = Uqσ,i

(z(t)) and

υ(y2) ≤ υ1(ξ
2
1(t))ξ

2
1(t) ≤ µ(Uqσ,i

(z(t))). (6.54)

From Assumption 6.2.1 and (6.54), we have

DVqσ,i
(x̃(t)) =

∂Uqσ,i
(z(t))

∂z
Qqσ,i

(z(t), x1(t), θ(t))

≤ −α1(Uqσ,i
(z(t))) + µ(Uqσ,i

(z(t))) ≤ −α̃1(Vqσ,i
(x̃(t))), (6.55)

where we have defined α̃1(s) = α1(s) − µ(s).

Case 2: Inequality (6.13) holds for q = qσ,i. In this case, we have Vqσ,i
(x̃(t)) =

µ−1(2Vg(ξ(t))) = Ug(ξ(t)). By control design, (6.50) holds if Vqσ,i
(x̃(t)) = Ug(ξ(t)) ≥

µ−1(α−1
g (2‖wΘ‖)).

Both these cases show that

DVqσ,i
(x̃(t)) ≤ −α̃1(Vqσ,i

(x̃(t))) if Vqσ,i
(x̃(t)) ≥ µ−1(α−1

g (2‖wΘ‖)). (6.56)

As µ, αg, and α̃1 are class-K∞ functions, this shows that the condition i) of Theorem

5.2.1 is satisfied.

We now verify condition ii) of Theorem 5.2.1. Suppose that Vq(x̃(t
∗
j)) < RV for

some t∗j ∈ [tσ,iDj−1+1, tσ,iDj
]. According to ii) of Proposition 6.3.1, Vq(x̃(t)) remains

bounded on [t∗j , tσ,iDj
] and hence, by (6.53), so is x̃(t). In addition,

Vq(x̃(tσ,iDj
)) ≤ max{ω2(Vq(x̃(t

∗
j)), Tp), ω2(µ

−1(α−1
g (2‖wΘ‖)), Tp)}. (6.57)
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At the time tσ,iDj
, we have either a) Vq

σ,iD
j

(x̃(tσ,iDj
)) = Uq

σ,iD
j

(z(tσ,iDj
)) which, by

Assumption 6.2.1, is less than β(Uq(z(tσ,iDj
))) which, in turn, is less than β(Vq(x̃(tσ,iDj

)))

or b) Vq
σ,iD

j

(x̃(tσ,iDj
)) = Ug(ξ(tσ,iDj

)) ≤ Vq(x̃(tσ,iDj
)). It can be verified that β(s) ≥ s, s ≥

0. These together result in

Vq
σ,iD

j

(x̃(tσ,iDj
)) ≤ β(Vq(x̃(tσ,iDj

))). (6.58)

As ω1 is nonincreasing in its second argument, the boundedness of Vq
σ,iD

j

(x̃(tσ,iDj
))

from (6.58) coupled with i) of Proposition 6.3.1 implies that Vq
σ,iD

j

(x̃(t)) remains

bounded on [tσ,iDj
, tσ,iDj +1] and hence so does x̃(t). In conclusion, x̃(t) is bounded

on [t∗j , tσ,iDj +1].

Similarly, the boundedness of x̃(t) on the subsequent time period [tσ,iDj +1, tσ,iDj+1+1]

is obtained if Vq(x̃(tσ,iDj +1)) < RV for some q ∈ Q. We shall show that this holds true

with q = qσ,iDj
. Applying i) of Proposition 6.3.1, we have

Vq
σ,iD

j

(x̃(tσ,iDj +1)) ≤ max{ω1(Vq
σ,iD

j

(x̃(tσ,iDj
)), τp), µ

−1(α−1
g (2‖wΘ‖))}. (6.59)

By stacking (6.57), (6.58), and (6.59) and using Assumption 6.2.2, we obtain

Vq
σ,iD

j

(x̃(tσ,iDj +1)) ≤ max{µ−1(α−1
g (2‖wΘ‖)), ω1(β(ω2(µ

−1(α−1
g (2‖wΘ‖)), Tp)), τp)),

ω1(β(ω2(Vq(x̃(t
∗
j)), Tp)), τp)}

≤ max{χ(‖wΘ‖), ω0(Vq(x̃(t
∗
j)), τ0)}, (6.60)

where we have used the property (6.7) from Assumption 6.2.2. As χ(‖wΘ‖) ≤ Vini ≤

RV and ω0(s, τ0) < s, Vq(x̃(t
∗
j) ≤ RV , (6.60) shows that Vq

σ,iD
j

(x̃(tσ,iDj +1)) < RV and

subsequently x̃(t) is bounded on [tσ,iDj +1, tσ,iDj+1+1].

Now, let t∗0 = tσ,0 = t0 if tσ,0 < tσ,iD0
and t∗0 = tσ,1 if tσ,0 = tσ,iD0

. We claim that x̃(t) is

bounded on [t0, t
∗
0] and Vq(x̃(t

∗
0)) < RV for some q ∈ Q. This claim is obvious for t∗0 =
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tσ,0. In the case t∗0 = tσ,1, as the first switching event is of dwell-time and t∗0 is its end

time, from i) of Proposition 6.3.1 and the property Vq
σ,iD0

(x̃(tσ,iD0
)) = Vqσ,0(x̃(t0)) < RV ,

it follows that x̃(t) is bounded on [t0, t
∗
0]. In addition, at the time t∗0, as iD0 = 0, using

i) of Proposition 6.3.1, we have either Vqσ,0(x̃(t
∗
0)) = Vq

σ,iD0

(x̃(tσ,iD0+1)) ≤ χ(‖wΘ‖) <

RV or Vq
σ,iD0

(x̃(tσ,iD0+1)) ≤ ω1(Vq
σ,iD0

(x̃(tσ,iD0
)), τp) ≤ G−1

1 (G1(Vqσ,0(x̃(tσ,iD0
))) + 0) =

Vq
σ,iD0

(x̃(tσ,iD0
)) = Vqσ,0(x̃(tσ,0)) < RV . Thus, Vqσ,0(x̃(t

∗
0)) < RV , i.e., the claim is

true.

By the preceding argument, we conclude that x̃(t) is bounded on t ∈ [t0,∞) and

hence the forward completeness of x̃ follows.

From the properties ω0(s, τ0) < s and ω0(ω0(a, s), t) ≤ ω0(a, s + t) as given in

Assumption 6.2.2, applying (6.60) successively from tσ,iDj +1 back to t∗0, we have

Vq
σ,iD

j

(x̃(tσ,iDj +1)) ≤ max{χ(‖wΘ‖), ω0(Vq
σ,iD

j−1

(x̃(tσ,iDj−1+1)), τ0)} ≤ . . .

. . . ≤ max{χ(‖wΘ‖), ω0(Vqσ,0(x̃(t
∗
0)), (j − 1)τ0)}. (6.61)

As ω0 ∈ KL, taking the limits of Vq
σ,iD

j

(x̃(tσ,iDj +1)) as j → ∞ we obtain

lim sup
j→∞

Vq
σ,iD

j

(x̃(tσ,iDj +1)) ≤ χ(‖wΘ‖). (6.62)

In addition, since Vq
σ,iD

j

(x̃(tσ,iDj +1)) < RV , from ii) of Proposition 6.3.1, we have

Vq
σ,i

−
σ (t̃)

(x(t)) ≤ β(Vq
σ,iD

j

(x̃(t))) ≤ β(ω2(V
w
q
σ,iD

j

(tσ,iDj +1), Tp)),∀t ∈ [tσ,iDj +1, tσ,iDj+1
]. Since

Vq’s are nonnegative, this implies that

lim sup
j→∞

max
t∈I

p
j

Vart
t
σ,iD

j
+1

[Vq
σ,iD

j

, Vq
σ,i

−
σ (t̃)

](x) ≤ lim sup
j→∞

max
t∈I

p
j

Vq
σ,i

−
σ (t̃)

(x(t))

≤ lim sup
j→∞

ρ(ω2(V
w
q
σ,iD

j

(tσ,iDj +1), Tp))

≤ max
{

ρ(ω2(χ(‖wΘ‖), Tp)), lim sup
j→∞

Vq
σ,iD

j

(x̃(tσ,iDj +1))
}

≤ ρ(ω2(χ(‖wΘ‖), Tp))
def
= γ2(‖wΘ‖). (6.63)
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Thus, condition ii) of Theorem 5.2.1 is satisfied.

As the satisfaction of the conditions of Theorem 5.2.1 is independent of switching

signal, applying Theorem 5.2.1, we have the conclusion of the theorem. �

Theorem 6.3.2 Suppose that the hypotheses of Theorem 6.3.1 hold. Then, under

the control u = αn given by (6.31), j = n with ̺i’s satisfying (6.45), the output x1(t)

converge to the set Bǫd
= {s ∈ R : |s| ≤ ǫd} and the trajectory x̃(t) remains bounded.

Proof: As wΘ(t) is bounded, by Theorem 6.3.1, there is a class-K∞ function γ inde-

pendent of switching sequence σ ∈ S such that x̃(t) → {ζ ∈ Rd×n : ‖ζ‖ ≤ γ(‖wΘ‖)}.

Our first purpose is to show that KΘ(t) is bounded. Indeed, suppose that the converse

holds. Then there is a divergent sequence {th}j ⊂ [t0,∞) such that K̇Θ(tj) 6= 0,∀j ∈

N. From the update law (6.47), it must hold that |ξ1(tj)| ≥ ǫd,∀j ∈ N. Let ǫ > 0 and

δ > 0 be numbers satisfying γ(ǫ) + δ < ǫd.

As Θn is bounded and KΘ is unbounded and nondecreasing, there is a time t(ǫ)

such that wΘ(t) = Θn/KΘ(t) ≤ ǫ,∀t ≥ t(ǫ). Let tσ,i(ǫ) be the switching time of σ

that is greater than t(ǫ). By Theorem 6.3.1, the state x̃(t) of the switched error

system remains bounded for t ≤ tσ,i(ǫ). As a result, the trajectory x̃(t), t ≥ tσ,i(ǫ) of

the switched error system is the trajectory x̃′(t) of the same switched error system

with initial state x̃′(0) = x̃(tσ,i(ǫ)), initial value of the time-varying parameter θ(0) =

θ(tσ,i(ǫ)), input w̃Θ defined by w̃Θ(t) = wΘ(t + tσ,i(ǫ)), t ≥ 0, and switching sequence

σ(ǫ) defined by (qσ(ǫ),i,∆τσ(ǫ),i) = (qσ,i+i(ǫ),∆τσ,i+i(ǫ)), i ∈ N. Obviously σ(ǫ) also has

the persistent dwell-time τp with the period of persistent Tp. By Theorem 6.3.1,

lim supt→∞ ‖x̃′(t)‖ ≤ γ(‖w̃Θ‖) ≤ γ(ǫ). As x̃′(t) = x̃(t + t(ǫ)), t ≥ 0 and ‖w̃Θ‖ ≤ ǫ, it

follows that there is Tδ ∈ R+ such that ‖x̃(t+t(ǫ))‖ = ‖x̃′(t)‖ ≤ γ(ǫ)+δ < ǫd,∀t ≥ Tδ.

Thus |ξ1(tj)| ≤ ‖x̃(t)‖ ≤ γ(ǫ)+δ < ǫd, for sufficiently large j which is a contradiction.

Therefore, KΘ(t) is bounded.

Finally, as x̃(t) is continuous and bounded by Theorem 6.3.1, ξ1(t) and hence

K̇Θ(t) are uniformly continuous. Thus, the monotonity from the update law (6.47)
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and the boundedness of KΘ(t) show that limt→∞

∫ t

0
K̇Θ(s)ds exists and is finite. By

Barbalat’s lemma, we have limt→∞ K̇Θ(t) = 0. Therefore, ξ1(t) → Bǫd
, t → ∞ as,

otherwise limt→∞KΘ(t) 6= 0, a contradiction. �

6.4 Design Example

In this section, we present an example to demonstrate the application of the presented

theory in switching-uniform output regulation of switched systems with unmeasured

dynamics, state dependent control gains, and persistent dwell-time switching.

Consider the switched systems whose constituent systems are

Σ1 :



































ż1 = −z1(1 + z4
1 + z2

2) + 1
4
z2(1 + sinx1)

ż2 = −z2(1 + z4
1 + z2

2) − 1
4
z3
1(1 + sinx1)

ẋ1 = θ1x2 + eθ2x1z2
1

ẋ2 = (2 + x2
2 + θ1z

2
2)u+ θ2x1z2

,

Σ2 :



































ż1 = −8z1 + 2z2

ż2 = −z1 − 12z2 + x1

ẋ1 = θ3x2 + 2θ4

√

z2
1 + 3z2

2

ẋ2 = (θ5 + x2
2)u+ θ4x2(z1 + z2)

, (6.64)

where the unknown time-varying parameters are θ1 = 1 + sin2 t, θ2 = cos t, θ3 =

2 + cos t, θ4 = sin t, and θ5 = 2 − sin t. The output of the system is y = x1.

Due to high-order terms in Σ1, a common ISS-Lyapunov function for z-subsystems

may not exist. Instead, we have the following Lyapunov functions for z-systems of

Σ1 and Σ2:

U1(z) =
1

4
z4
1 +

1

2
z2
2 , and U2(z) = z2

1 + z1z2 + 4z2
2 . (6.65)

Let Q1 and Q2 denote the vector fields of z-subsystems of Σ1 and Σ2, respectively.

With the help of Young’s inequality, the Lie derivatives of U1 and U2 along the vector
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fields Q1 and Q2 are estimated as

LQ1U1(z) ≤ −4U2
1 (z) − 2U1(z), LQ2U1(z) ≤ U2

1 (z)/150 + U1(z)/12 + x2
1/24;

LQ1U2(z) ≤ 0.5U2(z), LQ2U2(z) ≤ −4U2(z) + x2
1. (6.66)

In view of (6.4), as LQ2U1 ≤ U2
1/150 + U1/12, estimate of increment of U1 has

finite escape time. However, if U1(z) ≤ 150/4, then we have LQ2U1 ≤ U1/4 + U1/12

so that estimates of increments and decrements of both U1 and U2 can be expressed

in terms of exponential functions. As such, we will choose small persistent dwell-time

Tp and small initial condition U1(z(0)) for simulation to avoid finite escape time.

From (6.65), a function β to satisfy Assumption 6.2.1 is β(s) = 3
√
s+9s+s2/4. Let

the design gauge be Uq(z) ≤ Vg, i.e., µ(s) = s. Then, provided that U1(z) ≤ 150/4,

the functions β1 and β2 in Assumption 6.2.1 can be computed as β2(s, t) = set/2 and

β1(s, t) = se−2t, and hence, the condition (6.7) turns to impose β(β(s))e−(2τp−Tp/2) to

be a class KL function, which can be satisfied for 2τp − Tp/2 > 0. In addition, the

lower bounds for control gains are gx,1 = 1 and gx,2 = 1 + x2
2. As such, the switched

system given by (6.64) satisfies conditions of Theorem 6.3.2. Following the design

procedure in Section IV, we obtain the following adaptive control

α1 = −
[

k1 + k2ξ
2
1 +KΘ(eξ2

1 + 2)ξ2
1

]

ξ1

A = k1 + 3k2ξ
2
1 + 3KΘ(eξ2

1 + 2)ξ2
1 + 2KΘe

ξ2
1ξ4

1

u = − 1

1 + x2
2

(

k3 + k4ξ
2
2 +KΘA

2x2
2 +KΘA

2(eξ2
1 + 1)(ξ2

1 + ξ2
2)

+KΘ(ξ2
1 + ξ2

2)x
2
2 +KΘ(eξ2

1 + 4)ξ2
1

)

ξ2, (6.67)

where ki, i = 1, . . . , k4 are design parameters, ξ1 = x1, ξ2 = x2 − α1, and KΘ is

updated by (6.47). A value for the unknown constant Θ2 is Θ2 = 7 > sup{θ2
1/4 +

2eθ2
2 + θ2

2/2, θ
2
3/4 + 3θ2

4}.
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Figure 6.2: Adaptive output regulation
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For simulation, we choose k1 = k3 = 1, k2 = k4 = 0.5, the initial state (z, x) =

[1,−2, 0.4,−1]T , and the desired accuracy ǫd = 0.01. The tuning gain kK is chosen

to be 100 for fast convergence of KΘ. The switching sequence with persistent period

Tp = 0.2s and dwell-time τp = 0.8s is generated in such a way that i) on persistent

periods, the lengths of switching intervals are generated randomly in [0, 0.05] and ii)

the lengths of dwell-time intervals are generated randomly in [0.8, 1.2].

The simulation results for this example are shown in Figure 6.2. It can be seen

from Figure 6.2(a) that the output regulation is well obtained. The peak points

in control signal are due to the fast transient periods caused by changes of active

constituent systems. It is also observed from Figure 6.2(b) that the adaptive gain

KΘ converges to a fixed value and the remaining signals are bounded. Thus, the

simulation results well illustrated the presented theory.

6.5 Proof of Proposition 6.3.1

In this proof, a closed interval [t1, t2] (an open interval (t1, t2), resp.) is said to

be ξ−domt[q] (z−domt[q], resp.) if (6.13) holds (does not hold, resp.) for all t

in this interval. An interval of either these properties is said to be maximal in its

corresponding property if it has no strict subinterval of the same property. We further

denote qσ,iDj
by qDj for short.

Consider a dwell-time switching event (qσ,iDj
,∆τσ,iDj

), j ∈ N. We state that if the

inequality

VqDj
(x̃(t)) ≤ µ−1(α−1

g (2‖wΘ‖)), (6.68)

holds for some t = ti ∈ [tσ,iDj
, tσ,iDj +1], then it also holds for all t ∈ [ti, tσ,iDj +1].

Indeed, consider the case ti belongs to a ξ−domt[qDj ] interval [t1, t2] ⊂ [tσ,iDj
, tσ,iDj +1].

As (6.13) holds on [t1, t2], we have VqDj
(x̃(t)) = µ−1(2Vg(ξ(t))) and (6.48) holds for

all t ∈ [t1, t2]. As µ−1 ∈ K∞, this coupled with the satisfaction of (6.68) at t = ti
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implies that 2Vg(ξ(ti)) ≤ α−1
g (2‖wΘ‖) and (6.48) holds on [t1, t2]. As such, 2Vg(ξ(t)) ≤

α−1
g (2‖wΘ‖),∀t ∈ [ti, t2]. Since VqDj

(x̃(t)) = µ−1(2Vg(ξ(t))), t ∈ [t1, t2], this shows that

(6.68) holds on [ti, t2].

Let (t2, t3) be the z−domt[qDj ] next to [t1, t2]. On this interval, we have VqDj
(x̃(t)) =

UqDj
(z(t)) and the inverse of (6.13) holds for q = qDj . Thus, from Assumption 6.2.1

and the fact that the driving dynamics for z on [tσ,iDj
, tσ,iDj +1] is that of the index qσ,iDj

,

for t ∈ (t2, t3), we have

DUqDj
(z(t)) ≤ −α1(UqDj

(z(t))) + υ(y2)

≤ −α1(UqDj
(z(t))) + µ(UqDj

(z(t))) < 0, (6.69)

where we have used the property υ(ξ2
1) ≤ 2Vg(ξ(t)) ≤ µ(UqDj

(z(t))) held on z−domt[qDj ]

intervals. Therefore, UqDj
(z(t)) is decreasing on (t2, t3). As we have UqDj

(z(t)) =

µ−1(2Vg(ξ(t))) at the transition time t2 and (6.68) holds at t = t2, this coupled with

the continuity of UqDj
(z(t)) further implies that VqDj

(x̃(t)) = UqDj
(z(t)) is bounded by

µ−1(α−1
g (2‖wΘ‖)) on (t2, t3) as well. Continuing this process until tσ,iDj +1 is reached,

we conclude that the statement is true.

In the case ti belongs to a z−domt[qDj ] interval, it is obvious from the above

argument that the statement is true.

We now consider ti to be minimal in the sense that there is no t0 ∈ [tσ,iDj
, tσ,iDj +1], t0 <

ti such that (6.68) holds for t = t0. For such ti, we have VqDj
(x̃(t)) > µ−1(α−1

g (2‖wΘ‖)),

∀t ∈ [tσ,iDj
, ti) and hence (6.50) holds on ξ−domt[qDj ] intervals contained in [tσ,iDj

, ti).

Thus, on ξ−domt[qDj ] intervals, as Vq
iD
j

(x̃(t)) = µ−1(2Vg(ξ(t))) = Ug(ξ(t)), we have

DVqDj
(x̃(t)) ≤ −α1(VqDj

(x̃(t))). This coupled with (6.69) and the fact that VqDj
(x̃(t)) =

UqDj
(z(t)) on z−domt[qDj ] intervals show that

DVqDj
(x̃(t)) ≤ −α1(VqDj

(x̃(t))) + µ(VqDj
(x̃(t))),∀t ∈ [tσ,iDj

, ti) (6.70)
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Since D+VqDj
(x̃(t)) ≤ DVqDj

(x̃(t)), using comparison principle [77] in combination

with Lemma 6.2.1 for (6.70), we have VqDj
(x̃(t)) ≤ ω1(VqDj

(x̃(tσ,iDj
)), t − tσ,iDj

),∀t ∈

[tσ,iDj
, ti). Combining this estimate with the above estimate (6.68) of VqDj

(x̃(t)) on

[ti, tσ,iDj +1], we obtain

VqDj
(x̃(t)) ≤ max{ω1(VqDj

(x̃(tσ,iDj
)), t− tσ,iDj

), µ−1(α−1
g (2‖wΘ‖))},∀t ∈ [tσ,iDj

, tσ,iDj +1],

(6.71)

i.e., the statement i) of the Proposition is true.

We prove the statement ii) of the Proposition by examining increments of Vq(x̃(t))

on the interval [tV , tσ,iDj
]. Consider the first maximal z−domt[q] subinterval (t1, t2)

of [tV , tσ,iDj
]. As υ(y2) ≤ µ(Uq(z(t))) and Vq(x̃(t)) = Uq(z(t)) on z−domt[q] intervals,

from Assumption 6.2.1, we have

DVq(x̃(t)) ≤ α2(Vq(x̃(t))) + µ(Vq(x̃(t))),∀t ∈ (t1, t2). (6.72)

Again, applying comparison principle [77] in combination with Lemma 6.2.1 for

(6.72), we obtain

Vq(x̃(t)) ≤ ω2(Vq(x̃(t1)), t− t1), t ∈ (t1, t2). (6.73)

In addition, as [tV , t1] (if not empty) is ξ−domt[q], from the above proof of i),

we have Vq(x̃(t1)) ≤ µ−1(α−1
g (2‖wΘ‖)) if Vq(x̃(ti)) ≤ µ−1(α−1

g (2‖wΘ‖)) for some

ti ∈ [tV , t1] and DVq(x̃(t)) ≤ −α1(Vq(x̃(t))),∀t ∈ [tV , t1] implying that Vq(x̃(t)) ≤

Vq(x̃(tV )),∀t ∈ [tV , t1] if there is no such ti. Therefore, for any t ∈ [tV , t1], we have

Vq(x̃(t)) ≤ max{µ−1(α−1
g (2‖wΘ‖)), Vq(x̃(tV ))} = V w

q (tV ). (6.74)

Since α2(s) + µ(s) > 0, ω2 is nondecreasing in both arguments. Thus, combining
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(6.73) and (6.74), we obtain

Vq(x̃(t)) ≤ ω2(V
w
q (tV ), t− tV ),∀t ∈ [tV , t2]. (6.75)

We now consider the next pair of ξ−domt[q] and z−domt[q] subintervals of [tV , tσ,iDj
],

namely [t2, t3] and (t3, t4), respectively. Since V w
q (tV ) ≥ µ−1(α−1

g (2‖wΘ‖)), ω2 is non-

decreasing, and on ξ−domt[q] intervals, Vq(x̃(t)) is decreasing as long as it is not

smaller than µ−1(α−1
g (2‖wΘ‖)), the inequality in (6.75) holds for t ∈ [t2, t3] as well.

Furthermore, as (t3, t4) is z−domt[q], we also have (6.73) with (t1, t2) replaced by

(t3, t4). Thus, by the additive and nondecreasing properties of ω2 (see Lemma 6.2.1),

we have

Vq(x̃(t)) ≤ ω2(Vq(x̃(t3)), t− t3)

≤ ω2(ω2(V
w
q (tV ), t3 − tV ), t− t3)

≤ ω2(V
w
q (tV ), t− tV ),∀t ∈ (t3, t4). (6.76)

Continuing this process until tσ,iDj
is reached, we arrive at

Vq(x̃(t)) ≤ ω2(V
w
q (tV ), t− tV ),∀t ∈ [tV , tσ,iDj

]. (6.77)

As ω2 is nondecreasing and tσ,iDj
− tV ≤ Tp, ii) follows (6.77) directly. �

 



Chapter 7

Switching-Uniform Adaptive Output

Feedback Control

In this chapter, adaptive observer is presented for switching-uniform stabilization of

switched systems by output feedback. In a gauge design framework, the resulting

dynamic output feedback control is of non-separation-principle. The underlying prin-

ciple is to make the dynamics of the whole system to be interchangeably driven by

the stable modes of the unmeasured dynamics and the coupled dynamics of error

variables and state estimates. In this way, converging behavior of state estimates

of the controlled dynamics are preserved through unstable modes of the unmeasured

dynamics which at the same time provides estimates of functions of unmeasured state

in terms of errors variables and known variables.

7.1 Introduction

Control by output feedback is a typical problem in feedback control systems [114,

146,16]. The problem arises in applications in which information available for control

design is from only external measurements. For nonlinear systems, the traditional

160
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approach is to study conditions under which separation principles apply [114, 16].

Recently, using switching signal as a control variable allowing new switches only

when sufficiently accurate state estimates have been reached, [106] introduced a sep-

aration principle for switched systems. For switched linear systems, state-dependent

switching-logic was developed [49,50].

The increasing difficulty caused by uncertain and arbitrarily fast switching is

twofold. Beside infeasibility of the strategy of switching among the set of observers

of constituent systems, achieving sufficiently accurate state estimates on every single

switching interval impossible. In comparison to continuous dynamical systems, the

discrepancy between control gains of constituent systems in switched systems gives

raise to new destabilizing terms in the error dynamics so that the Hurwitz matrix for

Luenberger observer is not sufficient for a converging behavior.

In light of the above consideration, output feedback control of switched systems

might relax the separation principle and a Hurwitz matrix that is robust/adaptive

with respect to the new destabilizing terms is of principal interest.

In this chapter, we use gauge design framework to overcome typical obstacles in

output feedback control of switched systems. The main novelty lies in the integration

of the presented gauge design method and the method of adaptive high-gain [78, 92]

so that control gains dependent on unestimated states are allowed, an enhancement

that has not appeared for even continuous systems.

7.2 Problem Formulation

Consider the switched system with input, output, disturbance and appended dynamic

ΣI/O modeled by (6.2) in Chapter 6, in which the driving dynamics {Σq}q∈Q are

described by (6.1). Let us refer to Section 6.1 of Chapter 6 for detailed description

of the switched system ΣI/O as well as related notations. In this chapter, we are



7.2. Problem Formulation 162

interested in the following output feedback control problem for ΣI/O.

Switching-uniform adaptive output feedback stabilization: design a dynami-

cal system of the form (6.3) such that under the interconnection (6.4) with ym = x1,

the trajectory X(t) = X(t;σ, θ,X0) of the closed-loop system ΣC generated by any

switching sequence σ ∈ S[τp, Tp], input θ ∈ Ldθ
∞ and initial condition X0 satisfies the

following properties:

i) X(t) is bounded; and

ii) x(t) approaches to a small neighborhood of the origin as t→ ∞.

In this chapter, we provide a solution to the proposed output feedback control

problem under the following conditions.

Assumption 7.2.1 There are known constants gi, i,= 1, . . . , n and ∆G > 0 and

possibly unknown constant LF > 0 such that for all z ∈ Rd, x̄i ∈ Ri, q ∈ Q, and

i = 1, . . . , n, we have

|gq,i(z, x̄i, θ) − gi| ≤ ∆G, and |fq,i(z, x̄i, θ)| ≤ LF (‖z‖p/2 + |x1| + . . .+ |xi|).(7.1)

Assumption 7.2.2 The system (6.2) satisfies Assumption 6.2.1 for β(s) = aβs, α1(s) =

aα,1s, and α2(s) = aα,2s, where αβ, aα,1 and aα,2 are positive constants. In addition,

aα,1 > aα,2,

ã1Uq(ζ) ≥ ‖ζ‖p,∀ζ ∈ Rd, q ∈ Q, (7.2)

and

ã1τp − ã2Tp > ln aβ, (7.3)

where ã1 = (aα,1 − aα,2)/2 and ã2 = (aα,1 + aα,2)/2.

In nonlinear output feedback control, it is often assumed that the systems can

be described by models in which control gains are either known constants or known
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functions of output [104,124,98,73,84,92] so that control gains in error equations are

vanished. However due to the discrepancy between control gains, non-zero control

gains in error equations in switched systems might not be avoided. By Assumption

7.2.1, we shall deal with this typical problem based on consideration of variation

∆G in control gains. The Lipschitz-like condition for fq,i in (7.1) is instrumental in

nonlinear output feedback control via high-gain observer [124,92].

Let P,Q,Λ, and Π be symmetric matrices satisfying

ATP + PA ≤ −2Q, DP + PD ≥ 0, (7.4)

ΓT Λ + ΛΓ ≤ −2I, DΛ + ΛD ≥ 0, and (7.5)

∆ΛI ≤ Q, (7.6)

where

A =



















−a1 g1 . . . 0

...
...

. . .
...

−an−1 0 . . . gn−1

−an 0 . . . 0



















, Γ =



















0 g1 . . . 0

...
...

. . .
...

0 0 . . . gn−1

−γ1 −γ2 . . . −γn



















, (7.7)

are design constant matrices, I is the identity matrix, D = diag{1, . . . , n}, λmax,P

and λmax,Λ are the maximal eigenvalues of P and Λ respectively, ā = [a1, . . . , an]T

and γ̄ = [γ1, . . . , γn]T are design parameters, and

∆Λ =
λ2

max,P

2
∆2

G

(

1 +
‖γ̄‖2

gn

)(

1 +
λ2

max,Λ

λmax,P

‖ā‖2
)

+ λmax,P ∆G (7.8)

are constants fixed a priori.

Upon the introduction of the gain variation ∆G for less conservative results, (7.6)

is considered for solvability of the problem. While (7.4) and (7.5) are always possible
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[92], satisfaction of (7.6) can be made by appropriate matrices A and Q. It is observed

from (7.8) that (7.6) automatically holds when ∆G = 0, i.e., the control gains of

constituent systems are identical constants.

For two vectors a, b ∈ Rn, we have

n
∑

i=1

|ai|
i

∑

j=1

|bj| =
n

∑

i=1

n
∑

j=i

|aj||bj−i+1| ≤
n

∑

i=1

(

n
∑

j=i

|aj||bj−i+1| +
i−1
∑

j=1

|aj||bn−i+1+j|
)

≤
n

∑

i=1

(

n
∑

j=1

a2
j

)1/2(
n

∑

j=i

b2j−i+1 +
i−1
∑

j=1

b2n−i+1+j

)1/2

= n‖a‖‖b‖. (7.9)

7.3 Adaptive Output Feedback Control

In this section, we utilize the adaptive high-gain technique in universal output feed-

back control design of nonlinear systems [92] to present a gauge design for output

feedback control of switched systems. The main advance lies in the use of a gaug-

ing inequality to deal with the inherent discrepancy between control gains and the

dependence on the unmeasured state of driving systems Σq.

7.3.1 Adaptive High-Gain Observer

The purpose of this subsection is to construct an observer providing state estimates

for system (6.2). Let x̂ = [x̂1, . . . , x̂n]T be the estimate of x, and λ > 0 be the

time-varying observer’s high-gain. We have the following scaled variables

ei =
xi − x̂i

λi
and ζi =

x̂i

λi
, i = 1, . . . , n. (7.10)

In view of (7.4)–(7.6), let us consider the following reduced-order adaptive observer
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for system (6.2)

˙̂xi(t) = gix̂i+1(t) + λi(t)ai(x1(t) − x̂1(t)), i = 1, . . . , n (7.11)

λ̇(t) = kλe
2
1(t), λ(0) = 1, (7.12)

where x̂n+1
def
= u and kλ > 0 is the tuning gain of λ.

From the dynamic equations (6.1) and (7.11), the dynamics of ei, i = 1, . . . , n are

ėi(t) =
1

λi

(

gi(xi+1(t) − x̂i+1(t)) + (gq
σ,i

−
σ (t)

,i(z(t), x̄i(t), θ(t)) − gi)xi+1(t)

+ fq
σ,i

−
σ (t)

,i(z(t), x̄i(t), θ(t)) − λiai(x1(t) − x̂1(t))
)

− i
λ̇

λ
ei(t)

= λgiei+1(t) + ẽq
σ,i

−
σ (t)

,i(t) − aiλe1(t) − i
λ̇

λ
ei(t), (7.13)

where, for each i = 1, . . . , n and q ∈ Q, ẽq,i is

ẽq,i =
1

λi

[

(gq,i(z, x̄i, θ) − gi)xi+1 + fq,i(z, x̄i, θ)
]

. (7.14)

Thus, defining e = [e1, . . . , en]T and ẽq = [ẽq,1, . . . , ẽq,n]T , q ∈ Q, (7.13) gives rise

to the following compact form describing the dynamics of e(t):

ė(t) = λAe(t) − λ̇

λ
De(t) + ẽi−σ (t)(t). (7.15)

In view of (7.14), ẽq’s are dependent on the unestimated state z and the differences

between control gains of subsystems. Thus, the convergence of the estimation error

e(t) cannot be derived from (7.15) only as in classical nonlinear output feedback

control [78, 124, 92]. For this reason, a gauge function is called for overcoming the

obstacle caused by ẽq’s.
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7.3.2 Control Design

Consider the functions

Ve = (r0 + 1)eTPe and Vζ = ζT Λζ, (7.16)

where

r0 =
λ2

max,Λ

λmax,P

‖ā‖2. (7.17)

Our gauge function is Vg = Ve+Vζ , where ζ = [ζ1, . . . , ζn]n. Let aµ = (aα,1−aα,2)/2.

Along the evolution of E = [eT , ζT ]T , we have the following gauges

aµUq(z) ≤ Ve + Vζ , q ∈ Q. (7.18)

In the following, we shall show that upon the satisfaction of (7.18), the state

estimates provided by the observer (7.11)-(7.12) can be used for designing a control

capable of making the dynamics of e and ζ the driving dynamics of the whole system.

By Assumption 7.2.2, whenever (7.18) holds, we have ‖z‖p ≤ Ve + Vζ and hence,

‖z‖p/2 = a−1/2
µ (aµ‖z‖p)1/2 ≤ a−1/2

µ (Ve + Vζ)
1/2 ≤ a−1/2

µ (Ve)
1/2 + a−1/2

µ V
1/2
ζ . (7.19)

The derivative DVg(E(t)) can be computed through the derivatives of Ve and Vζ

as follows. As gq,i(·)’s are positive, using Assumption 7.2.1, (7.19) and replacing xi

by x̂i + λiei, we obtain

|ẽq,i| ≤
|gq,i(z, x̄i, θ) − gi|

λi
|x̂i+1 + ei+1λ

i+1| + LF

λi

(

‖z‖p +
i

∑

j=1

|x̂j + λjej|
)

≤ ∆G

λi
|x̂i+1| + ∆G|ei+1|λ+

LF

λi

(

√

Ve

aµ

+

√

Vζ

aµ

+
i

∑

j=1

|x̂j + λjej|
)

. (7.20)

As such, upon the satisfaction of (7.18), from (7.4), (7.5) and the designated posi-
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tiveness of DP + PD and λ̇/λ (see (7.12)), it follows that

DVe(e(t)) = λ(r0 + 1)eT (ATP + PA)e− (r0 + 1)
λ̇

λ
eT (DP + PD)e+

n
∑

i=1

eTPiẽi

≤ −2λ(r0 + 1)eTQe+ (r0 + 1)
[

n
∑

i=1

∆G

λi
|eTPi||x̂i+1| + λ∆G

n
∑

i=1

|eTPi||ei+1|

+
n

∑

i=1

LF |eTPi|
λi

(

√

Ve

aµ

+

√

Vζ

aµ

)

+
n

∑

i=1

|eTPi|
i

∑

j=1

LF |ej|
λi−j

+
n

∑

i=1

|eTPi|
i

∑

j=1

LF |x̂j|
λi

]

. (7.21)

As x̂n+1 = u shall be designed in the form (7.28) below, from (7.10), we have

1

λi
|x̂i+1| = λ|ζi+1|, i = 1, . . . , n− 1,

1

λn
|x̂n+1| =

1

λn
|u| =

λ

gn

|γ1ζ1 + . . .+ γnζn|. (7.22)

Since γi’s are design constants fixed a priori, (7.22) gives rise to

∥

∥

∥

[ |x̂2|
λ2

, . . . ,
|x̂n+1|
λn+1

]T ∥

∥

∥
≤ λ

√

1 + g−1
n ‖γ̄‖2‖ζ‖. (7.23)

On the other hand, it is observed that en+1 = 0 and ‖eTP‖ ≤ λmax,P‖e‖. Thus,

using e(7.8), (7.23) and the Cauchy-Schwartz and Young inequalities, we have

n
∑

i=1

∆G

λi
|eTPi||x̂i+1| + λ∆G

n
∑

i=1

|eTPi||ei+1|

≤ λ∆G

√

1 + ‖γ̄‖2‖eTP‖‖ζ‖ + λ∆G‖eTP‖‖e‖

≤ λλmax,P ∆G

√

1 + ‖γ̄‖2‖e‖‖ζ‖ + λλmax,P ∆G‖e‖2

≤ λ
λ2

max,P

2
∆2

G(1 + ‖γ̄‖2)(r0 + 1)‖e‖2 +
λ

2(r0 + 1)
‖ζ‖2 + λλmax,P ∆G‖e‖2

≤ λ∆Λ‖e‖2 +
λ

2(r0 + 1)
‖ζ‖2. (7.24)
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Upon satisfaction of (7.18), substituting (7.24) into (7.21) and applying the in-

equality (7.9) and the Cauchy-Schwartz inequality, we obtain the following estimate

DVe(e(t)) ≤ −2λ(r0 + 1)eTQe+ (r0 + 1)
[

λ∆Λ‖e‖2 +
λ

2(r0 + 1)
‖ζ‖2 +

LF

λ

√
n‖eTP‖

×
(

√

λmax,P

aµ

‖e‖ +

√

Vζ

aµ

)

+ nLF‖eTP‖‖e‖ + LFn‖eTP‖‖ζ‖
]

≤ −λ(r0 + 1)(2eTQe− ∆Λ‖e‖2) +
λ

2
‖ζ‖2 + (r0 + 1)

[LF

√
n

λ

(λ
3/2
max,P√
aµ

‖e‖2

+
‖eTP‖2

2
+

Vζ

2aµ

)

+ nLFλmax,P‖e‖2 +
nLF

2
‖eTP‖2 +

nLF

2
‖ζ‖2

]

.

(7.25)

Further substitution of Vζ ≤ λmax,Λ and ‖eTP‖ ≤ λmax,P‖e‖ into (7.25) with the use

of (7.6) yields

DVe(e(t)) ≤ −λ(r0 + 1)eTQe+ (r0 + 1)LF

(λ
3/2
max,P

√
n

λ
√
aµ

+
λ2

max,P (
√
n+ n)

2λ

+ nλmax,P

)

‖e‖2 +
λ

2
‖ζ‖2 + (r0 + 1)

( LF

√
n

2λ
√
aµ

λmax,Λ +
nLF

2

)

‖ζ‖2

≤ −λ(r0 + 1)eTQe+ ℓ(r0 + 1)eTQe+
λ

2
‖ζ‖2 + ℓ(r0 + 1)‖ζ‖2 (7.26)

upon satisfaction of (7.18), where ℓ > 0 is time-varying parameter satisfying

ℓ ≥ max
{λ

3/2
max,P

√
n

λ
√
aµ

+
λ2

max,P (
√
n+ n)

2λ
+ nλmax,P ,

√
n

2λ
√
aµ

λmax,Λ +
n

2

}

LF , (7.27)

which is bounded since λ is non-decreasing.

On the other hand, a direct computation from (7.11) and (7.7) shows that under

the control

u = −λ
n+1

gn

(γ1ζ1 + . . .+ γnζn), (7.28)
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the dynamic equation of ζ is

ζ̇ = λΓζ − λ̇

λ
Dζ + λāe1. (7.29)

Thus, using (7.5) and noting that λ̇/λ ≥ 0 and DΛ + ΛD ≥ 0, we have

DVζ(ζ(t)) ≤ −2λ‖ζ‖2 − λ̇

λ
ζT (DΛ + ΛD)ζ + 2λ‖ζT Λ‖‖ā‖|e1|

≤ −2λ‖ζ‖2 + λ‖ζ‖2 + λλ2
max,Λ‖ā‖2‖e‖2

≤ −λ‖ζ‖2 + λλ2
max,Λ‖ā‖2λmax,P

λmax,P

‖e‖2 ≤ −λ‖ζ‖2 + λr0e
TQe. (7.30)

Combining (7.26) and (7.30), we have the following inequality upon satisfaction

of (7.18):

DVg(E(t)) ≤ −(λ− ℓ(r0 + 1))
(

eTQe+
1

2
‖ζ‖2

)

. (7.31)

7.3.3 Stability Analysis

In this section, we shall show that the adaptive output feedback control given by

(7.28), (7.11), (7.12), and (7.10) achieves stabilization uniformly with respect to the

class of persistent dwell-time switching sequences SP [τp, Tp]. In view of (7.31), the

uncertainties are lumped into the unknown parameter ℓ to present no separated input

disturbance. Hence, asymptotic convergence to the origin can be achieved once λ is

sufficiently large. This is slightly different from the case of adaptive output regulation

in Chapter 6, where uncertainties is lumped into a separated unknown parameter Θn

to which disturbance attenuation problem was naturally addressed. We have the

following theorem whose proof is carried out in the framework of [92].

Theorem 7.3.1 Consider the switched system ΣI/O modeled by (6.2). Suppose that

Assumptions 6.2.1, 7.2.1, and 7.2.2 are satisfied. Then, under the adaptive output

feedback control given by (7.28), (7.11), (7.12), and (7.10), the all signals in the
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resulting closed-loop system ΣC are bounded and the state x(t) converges to the origin

uniformly with respect to S[τp, Tp].

Proof: From Assumption 7.2.2, let us consider the functions ω1 and ω2 defined by

ω1(s, t) = s exp(−ã1t), ω2(υ, t) = s exp(ã2t), υ, t ∈ R+. (7.32)

Using β(s) = aβs in Assumption 7.2.2, we have

ω1(β(ω2(s, Tp)), τp)) = aρs exp(−ã1τp + ã2Tp) = s exp(−τǫ) def
= ω0(s, τǫ), (7.33)

where τǫ is any positive number satisfying 0 < τǫ ≤ ã1τp − ã2Tp − ln aβ. Clearly, these

functions satisfy Assumption 6.2.2.

We prove the boundedness of λ by a contradiction argument. Suppose that λ

is unbounded. Then, there is a time tλ > 0 such that for all t ≥ tλ, we have

λ(t) − ℓ(r0 + 1) ≥ aα,1, the decreasing rate of z-system. In this case, it follows from

(7.31) that DVg(E(t)) ≤ −aα,1Vg(E(t)). Then, applying the argument of the proof of

Theorem 6.3.1, it follows that the dynamics of (z, e, ζ) satisfies conditions of Theorem

5.2.1 with auxiliary functions Vq(z, e, ζ) = max{Uq(z), a
−1
µ Vg(e, ζ)}, q ∈ Q, and we

obtain e1(t) → 0, t → ∞, which coupled with the boundedness and the continuity of

e1(t) further implies that

λ(∞) − λ(0) =

∫ ∞

0

e21(t)dt = e21(∞) − e21(0) <∞, (7.34)

which contradicts to the contradiction hypothesis. Hence, λ(t) is bounded.

Our next objective is to prove that e(t) and ζ(t) converge to 0 as t→ ∞.
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As designated by (7.12), λ̇(t) = kλe
2
1(t) and λ(t) ≥ 1,∀t. Hence, from the first

inequality in (7.30), the derivative DVζ(ζ(t)) satisfies

DVζ(ζ(t)) ≤ −2λ‖ζ‖2 + 2λλmax,Λ‖ζ‖2‖ā‖|e1|

≤ −λ‖ζ‖2 + λλ2
max,Λ‖ā‖2e21 ≤ −‖ζ‖2 + λ2

max,Λ‖ā‖2λλ̇

kλ

, (7.35)

which, by integration, gives rise to

Vζ(ζ(t)) +

∫ t

0

‖ζ(s)‖2ds ≤ Vζ(ζ(0)) +
λ2

max,Λ‖ā‖2

2kλ

(λ2(t) − λ2(0)),∀t ≥ 0. (7.36)

Due to the boundedness of λ(t), the right hand side of (7.36) is bounded. Hence,

ζ(t) is well-defined and is bounded for all t ≥ 0. Applying the Barbalat’s lemma, we

obtain ζ(t) → 0, t→ ∞.

We proceed to prove the convergence of e(t). Let λ0 ≥ 1 be a design constant and

consider the following scaled error variables:

εi =
xi − x̂i

λi
0

, i = 1, . . . , n. (7.37)

From (7.11) and (7.37), the time derivatives of εi’s are computed as

ε̇i =
1

λi
0

(gi(xi+1 − x̂i+1) + (gq
σ,i

−
σ (t)

,i(z(t), x̄i(t), θ(t)) − gi)xi+1

+ fq
σ,i

−
σ (t)

,i(z(t), x̄i(t), θ(t)) − λiai(x1 − x̂1))

= λ0giεi+1 + ε̃q
σ,i

−
σ (t)

,i − λ
λi

λi
0

aie1, (7.38)
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where e1 = (x1 − x̂1)/λ and

ε̃q,i =
1

λi
0

(

(gq
σ,i

−
σ (t)

,i(·) − gi)xi+1 + fq
σ,i

−
σ (t)

,i(·)
)

=
1

λi
0

(

(gq
σ,i

−
σ (t)

,i(·) − gi)
(

x̂i+1 + λi+1
0 εi+1

)

+ fq
σ,i

−
σ (t)

,i(·)
)

, q ∈ Q. (7.39)

Let ε̄ = [ε1, . . . , εn]T and ε̃q = [ε̃q,1, . . . , ε̃q,n]T . Adding −λ0aiε1 + λ0aiε1 to the right

hand side of (7.38), we have

˙̄ε = λ0Aε̄+ λ0āε1 + ε̃q
σ,i

−
σ (t)

− λBāe1, (7.40)

where B = diag{λ/λ0, . . . , (λ/λ0)
n}. Let us consider the Lyapunov function

Vε(ε̄) = ε̄TP ε̄, (7.41)

and the following gauges

aµUq(z) ≤ Vε(ε̄), q ∈ Q. (7.42)

By virtue of (7.19), upon satisfaction of (7.42), we have

‖z‖p/2 = a−1/2
µ (aµ‖z‖p)1/2 ≤ a−1/2

µ V 1/2
ε . (7.43)

Since λ(t) is bounded and λ0 is a constant, let λ0 is selected such that λ0 ≥

2 sup{λ(t) : t ∈ R+}. As such, in view of (7.10), we have the following expressions

1

λi
0

|x̂i+1| =
λi+1

λi
0

|ζi+1| ≤ |ζi+1|, i = 1, . . . , n− 1,

1

λn
0

|x̂n+1| =
1

λn
0

|u| =
λn+1

gnλn
0

|γ1ζ1 + . . .+ γnζn| ≤ g−1
n |γ1ζ1 + . . .+ γnζn|. (7.44)
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As a result, we have

∥

∥

∥

[ 1

λ0

|x̂2|, . . . ,
1

λn
0

|x̂n+1|
]T ∥

∥

∥
≤

√

1 + g−1
n ‖γ̄‖2‖ζ‖. (7.45)

In view of (7.39) and (7.43), upon satisfaction of (7.42), we have

|ε̃q,i| ≤ ∆G
|x̂i+1|
λi

0

+ λ0∆G|εi+1| +
LF

λi
0

(

µ−1/2V 1/2
ε +

i
∑

j=1

|x̂j + λj
0εj|

)

, (7.46)

which, by a similar use of the Cauchy-Schwartz’s inequality as in (7.25), results in

ε̄P ε̃q ≤ ∆G

√

1 + g−1
n ‖γ̄‖2‖ε̄TP‖‖ζ‖ +

LF

λ0

√
n‖ε̄TP‖

√

µ−1λmax,P‖ε̄‖

+ nLF‖ε̄TP‖‖ε̄‖ + nLF‖ε̄TP‖‖ζ‖

≤ ℓ0(ε̄
TQε̄+ ‖ζ‖2), q ∈ Q, (7.47)

where ℓ0 > 0 is a constant that can be selected independent of λ0.

In addition, using Cauchy-Schwartz’s inequality and ε1 = λe1/λ0, we also have

2λ0ε̄
TP āε1 ≤ λ2

0‖P ā‖2ε2
1 + ‖ε‖2 = λ2‖P ā‖2e21 + ‖ε̄‖2

2λε̄TPBāe1 ≤ λ2‖PBā‖2e21 + ‖ε̄‖2. (7.48)

From (7.47), (7.48), and (7.40), the derivative of DVε(ε̄(t)) can be computed as

DVε(ε̄(t)) ≤ −2λ0ε̄
TQε̄+ λ2‖P ā‖2e21 + ‖ε̄‖2 + ℓ0(ε̄

TQε̄+ ‖ζ‖2) + λ2‖PBā‖2e21 + ‖ε̄‖2

≤ −(2λ0 − ℓ0 − 2λ−1
max,Q)ε̄TQε̄+ ℓ0‖ζ‖2 +Kee

2
1 (7.49)

upon satisfaction of (7.42), where λmax,Q is the maximal eigenvalue of Q and Ke is

any constant satisfying Ke ≥ λ2‖P ā‖2 + λ2‖PBā‖2 which exists as λ(t) is bounded.
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In view of (7.49), let λ0 is such that λ0 ≥ ℓ0 − 2λ−1
max,Q. Then, we have

DVε(ε̄(t)) ≤ −λ0ε̄
TQε̄+ ℓ0‖ζ‖2 +Kee

2
1 (7.50)

upon satisfaction of (7.42). Moreover, for the state E = [zT , ε̄T ]T , let us consider the

Lyapunov functions

Vq(E) = max{Uq(z), a
−1
µ Vε(ε̄)}. (7.51)

At a time instant t ∈ R+, we have the following cases:

Case 1: aµUq
σ,i

(
σt)

(z(t)) ≤ Vε(ε̄(t)). In this case, we have Vq
σ,i

−
σ (t)

(E(t)) = a−1
µ Vε(ε̄(t))

and hence, it is obvious from (7.50) that

DVq
σ,i

−
σ (t)

(E(t)) ≤ −λ0
λmin,Q

λmax,Q

Vq
σ,i

−
σ (t)

(E(t)) + ℓ0‖ζ(t)‖2 +Kee
2
1(t), (7.52)

where λmin,Q is the smallest eigenvalue of Q.

Case 2: aµUq
σ,i

(
σt)

(z(t)) > Vε(ε̄(t)). By Assumption 7.2.2, we have

υ(x2
1) = aυx

2
1 = aυ(x1 − x̂1 + x̂1)

2 = aυ(λe1 + λζ1)
2 ≤ 2aυλ

2e21 + 2aυλ
2‖ζ‖2. (7.53)

As Vq
σ,i

−
σ (t)

(E(t)) = Uq
σ,i

−
σ (t)

(z(t)), using (7.53) and Assumption 7.2.2, we have

DVq
σ,i

−
σ (t)

(E(t)) ≤ −aα,1Vq
σ,i

−
σ (t)

(E(t)) + 2aυλ(t)2e21(t) + 2aυλ(t)2‖ζ(t)‖2. (7.54)

Letting aE = min{aα,1, λ0λmin,Qλ
−1
max,Q} and ℓ1 = max{ℓ0, Ke, 2aυ‖λ(t)‖2} and com-

bining (7.52) and (7.54), we arrive at

DVq
σ,i

−
σ (t)

(E(t)) ≤ −aEVq
σ,i

−
σ (t)

(E(t)) + ℓ1e
2
1(t) + ℓ1‖ζ(t)‖2, t ∈ R+. (7.55)
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Integrating both sides of (7.55), we obtain

Vq
σ,i

−
σ (t)

(E(t)) +

∫ t

0

Vq
σ,i

−
σ (s)

(E(s))ds

≤ Vqσ,0(E(0)) + ℓ1

∫ t

0

e21(s)ds+ ℓ1

∫ t

0

‖ζ(s)‖2ds,∀t ≥ 0. (7.56)

As λ(t) is bounded, (7.34) is satisfied. Thus, in view of (7.34) and (7.36), the right

hand side of (7.56) is bounded. As there is no switching jump, Vq
σ,i

−
σ (t)

(E(t)) is con-

tinuous with respect to t. Hence, the boundedness of the RHS of (7.56) implies that

E(t) → 0, t→ ∞, and consequently, ε(t) and x(t) converge to 0 as t→ ∞. �

7.4 Design Example

Consider the switched systems whose constituent systems are given by

Σ1 :



































ż1 = −z1 + z2z1

ż2 = −z2(1 + z2
2) − z2

1 + z2x1

ẋ1 = θ1x2 + ln(1 + ‖z‖2)

ẋ2 = (2 + sin z2
2)u+ θ2x1

, Σ2 :



































ż1 = −3z1 + z2

ż2 = z1 − 2z2 + x1

ẋ1 = θ3x2 + 2θ4x1

ẋ2 = θ5u+
√

z2
1 + 3z2

2

,

(7.57)

where the unknown time-varying parameters are θ1 = 1 + sin2 t, θ2 = cos t, θ3 =

1.5 + 0.6 cos t, θ4 = sin t, and θ5 = 2.5− 0.5 sin t. The output of the system is y = x1.

From the given time-varying parameters, we have g1 = 1.5, g2 = 2.5 and ∆G = 0.6.

Thus, let us choose a1 = 30, a2 = 25, b = 3, and

P =







2.65 −3

−3 3.7






, Q =







9 −1.475

−1.475 −9






,

Γ =







0 1.5

−2 −5






, Λ =







2.13 0.5

0.5 0.35






, (7.58)
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Figure 7.1: State convergence: ξ = [x1 − x̂1, x2 − x̂2]
T

to which a direct calculation shows that (7.4), (7.5), and (7.6) are satisfied.

For z-system of (6.64), we have the Lyapunov function U1(z) = U2(z) = U(z) =

z2
1 + z2

2 whose Lie derivatives are

LQ1U(z) = −2z2
1 + 2z2z

2
1 − 2z2

2 − 2z4
2 − 2z2z

2
1 + 2z2

2x1 ≤ −2U(z) + 0.5x2
1

LQ2U(z) = −6z2
1 + 2z1z2 + 2z1z2 − 4z2

2 + 2x1z2 ≤ −2U(z) + x2
1. (7.59)

Since U(z) is in quadratic form, Assumption 7.2.2 holds for µ = 1, p0 = 2, aρ = 1,

and a1 = a2 = 1. Clearly, the systems (7.57) satisfy the Lipchitz condition in (7.1).

As such, conditions of Theorem 7.3.1 are satisfied. Then, by Theorem 7.3.1, the

output feedback control u = −λ(2λx̂1 + 5λx̂2), where λ, x̂1, and x̂2 are generated by

(7.11) and (7.12) with n = 2, g1 = 1.5, g2 = 2.5, a1 = 30, and a2 = 25, stabilizes the

system (7.57) for any persistent dwell-time switching sequence satisfying τp > Tp.

For simulation, we choose the initial state (z, x) = [1,−2,−2, 5]T , x̂ = 0, λ(0) = 1,

and kλ = 10. The switching sequence with persistent period Tp = 0.4s and dwell-
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Figure 7.2: Control input u(t) and observer’s gain λ(t)

time τp = 0.6s is generated in such a way that i) on persistent periods, the lengths

of switching intervals are generated randomly in [0, 0.1] and ii) the lengths of dwell-

time intervals are generated randomly in [0.6, 0.9]. The simulation results are shown

in Figures 7.1 and 7.2. As observed, Figure 7.1 shows that the stabilization is well

obtained, and Figure 7.2 shows that the adaptive observer’s gain λ converges to a

fixed value. Thus, the simulation results well illustrated the presented theory.

 



Chapter 8

Switching-Uniform Adaptive Neural

Control

In this chapter, adaptive neural control is presented for a class of switched nonlinear

systems with switching jumps and uncertain system models. Further conditions on

limiting variation of the Lyapunov function is given for asymptotic gain of switched

systems with switching jumps. The control objective is achieved uniformly with re-

spect to the class of persistent dwell-time switching sequences. The coupled difficulties

associated with the discrepancy between control gains and switching jumps are over-

come by a discontinuous adaptive neural control combined with the classical adaptive

control. Smooth approximations of the discontinuous controls are then presented for

a systematic design procedure.

8.1 Introduction

Adaptive neural control is a well-established yet important area in advanced control.

It provides an effective tool for dealing with systems of models containing functions

whose existence is guaranteed but whose determination is failed [112, 132, 96, 49, 44].

178
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Due to the approximating nature of modeling methods and a variety of sources of

uncertainties in practice, switched systems whose constituent systems’ models involve

unknown functions are obviously of practical relevance and hence are in the scope of

control theory. As such, the problem of utilizing the capability of handling unknown

functions of adaptive neural networks (NNs) arises naturally.

The challenging obstacle in adaptive neural control of switched systems are due

to the contradiction between continuity conditions for validation of neural networks

approximation and the discontinuities caused by switching events. In this chapter, we

shall deal with this fundamental problem and introduce an adaptive neural control

design method for a class of uncertain switched systems in which the sources of

discontinuities are uncontrolled switching jumps and discrepancy between control

gains of constituent systems.

The destabilizing behavior caused by switching jumps makes the usual decreasing

condition on Lyapunov functions in existing stability theories of switched systems

[22,63] unsatisfiable, and at the same time, makes the usual use of Young’s inequality

for decoupling unknown parameters and known functions in adaptive control no longer

effective. As well-known in switched systems, due to the destabilizing behavior at

switching times, satisfactorily stabilizing performance must be achieved before new

switches for stability. However, high-order terms resulted from decoupling operations

do not give suitable estimates of variations of Lyapunov functions for tailoring this

performance. To overcome this difficulty, we shall adopt Theorem 5.2.1 to present a

further Lyapunov-stability theorem addressing switching jumps. We then introduce

a control design method that combines advantages of adaptive neural control and

classical adaptive control.

Again, we consider constituent systems in triangular form as systems of this form

have the advantages i) controls can be obtained via a systematic design procedure,

and ii) nonlinear systems can be transformed into triangular forms under appropriate
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conditions [70, 85]. For this class of systems, the difficulty is also due to uncer-

tain switching making control by switching among a set of controllers predesigned

for individual subsystems [106] difficult and the discrepancy between control gains

making the usual design of adaptation laws by matching controls to system nonlin-

earities [85, 49] do not apply. In this chapter, the former difficulty is overcome by

exploiting the aforementioned stability theorem to design a control depending on the

dwell-time property of the switching sequence only. The later difficulty is overcome

by a discontinuous adaptive neural control combined with classical adaptive control.

Smooth approximation of this control is then presented for recursive design. A con-

dition in terms of switching sequences’ dwell-time property and design parameters is

presented for verifying satisfaction of stability conditions of the resulting closed-loop

system. It is observed that when there is no switching jump, the obtained control

achieves the control objective under arbitrary switching.

8.2 Problem Formulation and Preliminaries

8.2.1 System Model

Consider the collection of dynamical systems that, after suitable changes of coordi-

nates, can be described by the following equations:

Σq :























ẋi(t) = gq,i(x̄i(t))xi+1(t) + fq,i(x̄i(t))

i = 1, . . . , n− 1

ẋn(t) = gq,n(x̄n(t))u(t) + fq,n(x̄n(t))

q ∈ Q, (8.1)

where Q = {1, . . . , q♮} is a finite discrete set, x
def
= x̄n = [x1, . . . , xn]T ∈ Rn, y ∈ R and

u ∈ R are system state, output and input, respectively, x̄i = [x1, . . . , xi]
T ∈ Ri, i ∈
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{1, . . . , n}, and gq,i(·), fq,i(·), q ∈ Q, i ∈ {1, . . . , n} are unknown smooth functions.

Throughout this chapter, N is the set {1, . . . , n}.

In the formal language of transition model of dynamical systems presented in

Section 2.4 (Chapter 2) and Section 5.2.1 (Chapter 5), we have the following collection

as a model of switched systems with input and switching jump:

ΣJ = {T,Q,Rn,L1
∞, {Σq}q∈Q,S, }, (8.2)

where T = R+ is the time space, Q and Rn are spaces of discrete and continuous states,

L1
∞ is the space of measurable locally essentially bounded functions mapping R+ to

R and representing the space of one-dimensional input, S is the space of switching

sequences, and : R+ × Q × Rn → Rn is the discrete transition mapping. Let

ym = hm(x) and y = h(x) be the measured output and the controlled output of ΣJ .

Consider the following dynamical system

ΣC :











ζ̇ = Γ(ζ, uC)

yC = hC(ζ, uC)
. (8.3)

where ζ ∈ RnC is the state of ΣC . For each q ∈ Q, let ΣC
q label the dynamical system

resulted from the interconnection between Σq and ΣC through uC = ym, u = yC .

Then, we have the following closed-loop switched systems:

ΣC = {R+,Q,Rn × RnC , {ΣC
q }q∈Q,S, }. (8.4)

The output tracking control problem for system ΣJ is stated as follows.

Output Tracking Design a dynamical control ΣC of the form (8.3) such that for

every switching sequence σ ∈ S and initial condition X(0)
def
= [xT (0), ζT (0)]T , the

trajectory X(t)
def
= [xT (t), ζT (t)]T satisfies the following properties:
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i) X(t) is bounded; and

ii) the measured output y(t) = x1(t) follows a prescribed signal yd(t).

In this chapter, we provide a solution to the proposed control problem under the

following conditions.

Assumption 8.2.1 The the set of switching sequences is S = SA [τp, Np] which con-

sists of all switching sequences having the same persistent dwell-time τp > 0 and the

same chatter bound of persistence Np, i.e., i) for every T ≥ 0 there is i ∈ N such

that τσ,i > T and τσ,i+1 − τσ,i ≥ τp, and ii) the number of switching events of any

σ ∈ SA [τp, Np] between every two consecutive time intervals of the lengths greater than

τp is less than Np.

Assumption 8.2.2 The measured output is ym = x. The desired signal yd is con-

tinuously differentiable, yd and its time derivative ẏd are bounded by a constant yM :

max{|yd(t)|, |ẏd(t)|} ≤ yM ,∀t ≥ 0. (8.5)

Assumption 8.2.3 There is a constant µ ≥ 0 such that at any switching time τσ,i, i ∈

N, we have

‖ (τσ,i, qσ,i, x
−(τσ,i)) − x−(τσ,i)‖ ≤ µ|e(τσ,i)|, (8.6)

where e(t) = y(t) − yd(t) is the tracking error and x−(τσ,i) is the departing state of

the discrete transition.

As will be clarified in Remark 8.3.1 below, due to the sudden changes in coeffi-

cients of unknown estimation errors, certainty equivalence principle does not apply

for adaptive neural control of switched systems, i.e., replacing unknown parameters

by their converging estimates for the actual control is not possible. To overcome this

obstacle, we consider the scaling functions γi’s for control gains with the following

property.
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Assumption 8.2.4 The control gains gq,i, q ∈ Q, i ∈ N have known unchanged signs

and are bounded. There are known functions γi, i ∈ N and possibly unknown bounded

functions g0,i, i ∈ N such that

1 ≤ gq,i(x̄i)

g0,i(x̄i)
≤ γi(x̄i),∀x̄i ∈ Ri,∀q ∈ Q, i ∈ N , (8.7)

and along the trajectory x(t) of the system, the functions g0,i’s have finite rates of

change, i.e., the time Dini derivatives of g0,i’s satisfy

|D+g0,i(x̄i(t))| ≤ gd,∀t ∈ R+, i ∈ N (8.8)

for some gd ≥ 0. In addition, γi’s and ∂γi(x̄i)/∂x̄i, i ∈ N are bounded.

Without loss of generality, we further assume that the signs of gq,i’s are all positive.

Assumption 8.2.3 implies that the jumps in system state at switching instants

are governed by the tracking error. This appears to be a necessary condition for

convergence of trajectories of systems with uncontrolled state jumps.

The functions γi’s in Assumption 8.2.4 can be considered as a generalization as in

either non-switched systems and switched systems with identical subsystems’ control

gains, condition (8.7) automatically holds for γi = 1,∀i ∈ N . In addition, as neural

networks approximations are implemented over compact sets and the functions gq,i’s,

g0,i’s, and γi’s are fixed a priori, is is well-known that imposing the boundedness on

these functions is not restrictive in the context of adaptive neural control [118].

Let us recall the following lemma for smooth approximation of non-smooth func-

tions.

Lemma 8.2.1 ( [123]) The following inequality holds for any ε > 0

0 ≤ |η| − η tanh(η/ε) ≤ kP ε,∀η ∈ R (8.9)
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where kP is a constant that satisfies kP = e−(kP +1), i.e., kP = 0.2785.

8.2.2 Switching-Uniform Practical Stability

Consider the general switched autonomous system ΣA defined by Definition 2.4.2

in Chapter 2 with X = R+ × Rn. Then, for fixed σ ∈ S, ts ∈ R+ and (t0, x0) ∈

R+×Rn, the transition mapping Tσ,A defined by (2.11) defines a trajectory (t, x(t)) =

Tσ,A(t, ts, (t0, x0)) of ΣA starting at (t0, x0) ∈ R+×Rn in the continuous space R+×Rn.

We have the following notion of practical stability for switched systems.

Definition 8.2.1 The system ΣA is said to be switching-uniformly practically stable

(SUpS) if there is a constant c > 0 such that for every fixed σ ∈ S, ts ∈ R+ and

x0 ∈ Rn, the corresponding trajectory (t, x(t)) = Tσ,A(t, ts, (t0, x0)) of ΣA satisfies

lim sup
t→∞

‖x(t)‖ ≤ c. (8.10)

The notion of practical stability is useful in describing the behavior of converging

to some compact set of fixed size in the state space of system state [87, 75]. As

we are interested in converging behavior of the continuous state x of the switched

systems with input ΣJ , which is part of the state of the closed-loop system ΣC ,

and adaptive neural control typically achieves the control objective in the sense of

practical stability [49,48], the above notion of practical stability of switched systems

is of instrumental interest.

In the above switched autonomous system ΣA , we have considered the time variable

t as part of the continuous state. In view of (8.10), there is no confusion should

arise. The rule of transition of ΣA consists of the time shift transition of t and the

transition mappings ψq : R+ × R+ × Rn → Rn, q ∈ Q of the continuous state x(t).

Let fq : R × Rn → Rn be the time-varying vector fields generating ψq, q ∈ Q. As we

are dealing with switching jumps, there are discrete transitions of continuous state
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at the times of changing rule of transition. As such, in the framework of transition

mappings introduced in Section 2.4.2, at each switching time τσ,i, i ∈ N, we shall use

the notation x−(τσ,i) to denote the state ψqσ,i−1
(∆τσ,i−1,Tσ,A(τσ,i−1, ts, x0))–the last

state in (i − 1)-th switching event of σ, and the notation x(τσ,i) to denote the state

(τσ,i, qσ,i, x
−(τσ,i))–the starting state of the i-th switching event of σ.

We have the following theorem for SUpS of switched systems.

Theorem 8.2.1 Suppose that, for switched autonomous system ΣA described above

with S = SA [τp, Np], there exist class–K∞ functions α
−
, ᾱ, and α, non-negative numbers

ετ ∈ [0, τp), p, c1 and c2, and a continuous function V : R+ ×Rn → R+ such that, for

all (t, x) ∈ R+ × Rn and q ∈ Q, we have

α
−
(‖x‖) ≤ V (t, x) ≤ ᾱ(‖x‖), (8.11)

∂V (t, x)

∂t
+
∂V (t, x)

∂x
fq(t, x) ≤ −α(‖x‖) + c1, (8.12)

and along the trajectory (t, x(t)) = Tσ,A(t, ts, x0), the following properties hold:

i) there is a constant V0 = V0(σ, ts, x0) such that V (t, x(t)) ≤ V0,∀t ≥ 0;

ii) for the sequence {τσ,ij}j of all switching times satisfying ∆τσ,ij ≥ ετ , we have

lim
j→∞

(V (τσ,ij , x(τσ,ij)) − V (τσ,ij+1, x
−(τσ,ij+1))) ≤ ετc2; and (8.13)

iii) at any switching time τσ,i, we have V (τσ,i, x(τσ,i)) ≤ pV (τσ,i, x
−(τσ,i)).

Then, the ΣA is switching-uniformly practically stable.

Proof: See Section 8.6.1. �
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8.3 Direct Adaptive Neural Control Design

The purpose of this section is to develop a systematic design procedure for adaptive

neural control of switched system (8.1). The novelty lies in the introduction of a

discontinuous adaptive neural control using scaling functions γi’s combined with clas-

sical adaptive control for dealing with discrepancy between subsystems’ control gains

and switching jumps. Smooth approximations of the discontinuous controls are then

presented for desired smoothness in recursive designs. As usual, the design procedure

includes n steps as follows.

Initial Step

Let ξ1 = x1 − yd and ξ2 = x2 − α1, where α1 is the virtual control to be designed.

From the models (8.1) of constituent systems Σq , the dynamic equation for ξ1 are

ξ̇1(t) = gq,1(x1)x2 + fq,1(x1) − ẏd(t)
def
= Qq,1(x1, x2, ẏd(t)), q ∈ Q. (8.14)

Consider the following control structure

α∗
1 = −k1ξ1 − π1(x1)ξ1, (8.15)

where k1 > 0 is a design parameter and π1(x1) is a positive smooth function to be

specified. We have the following Lyapunov function candidate:

U1 =
1

2g0,1(x1)
ξ2
1 , (8.16)

where g0,1 is given in Assumption 8.2.4. From Assumptions 8.2.2 and 8.2.4, using

Young’s inequality and replacing x2 by ξ2 + α1, the time derivatives of U1 at a time



8.3. Direct Adaptive Neural Control Design 187

t ∈ R+ along the (time-varying) vector fields Qq,1, q ∈ Q satisfy:

LQq,1U1 =
−D+g0,1(·)

2g2
0,1(·)

ξ2
1 +

1

g0,1(·)
(

gq,1(·)(α1 + ξ2) + fq,1(·) − ẏd(t)
)

ξ1

≤ gd

2g2
0,1(·)

ξ2
1 +

gq,1(·)
g0,1(·)

(α1 − α∗
1)ξ1 +

gq,1(·)
g0,1(·)

α∗
1ξ1

+
g2

q,1(·)
4g2

0,1(·)
ξ2
1 + ξ2

2 +
λ1(|fq,1(x1)| + yM)2

4g2
0,1(·)

ξ2
1 +

1

λ1

, (8.17)

where λ1 is a design parameter. In view of (8.17), let π1 be the smooth function

satisfying

π1(x1) ≥
1

g2
0,1(·)

(gd

2
+
g2

q,1(·)
4

+ λ1
(|fq,1(x1)| + yM)2

4

)

,∀q ∈ Q, (8.18)

which exists as fq,1, gq,1, q ∈ Q are continuous and Q is finite. As gq,1(·)/g0,1(·) ≥

1,∀q ∈ Q by Assumption 8.2.4, substituting (8.15) and (8.18) into (8.17), we obtain

LQq,1U1 ≤
gq,1(·)
g0,1(·)

(α1 − α∗
1)ξ1 − k1ξ

2
1 + ξ2

2 +
1

λ1

, q ∈ Q. (8.19)

In view of (8.15) and (8.18), α∗
1 is dependent on unknown functions gq,1, fq,1, q ∈ Q.

Thus, neural networks (NNs) is called for approximation. From (8.15) and (8.18), we

have the following NNs representation of α∗
1.

α∗
1 = −c1ξ1 +W ∗T

1,aS(V ∗T
1,aZ1) + ε1,a + λ1(W

∗T
1,aS(V ∗T

1,b Z1) + ε1,b), (8.20)

where Z1 = [x1, yd, 1]T and ε1,a and ε1,b are approximation errors.

It is observed from (8.20) that we have used two NNs to approximate two unknown

smooth functions. The behind rationale is due to the fact that λ1 is a known param-

eter and hence the structure of the bounding function π1 in (8.18) can be utilized for

better control performance.
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Remark 8.3.1 In the usual adaptive neural control [49], the virtual control α1 can

be designed following certainty equivalence principle (CEP) that simply obtains the

control by replacing the unknown NNs parameters W ∗
1,a, V

∗
1,a,W

∗
1,b and V ∗

1,b by their

estimates Ŵ1,a, V̂1,a, Ŵ1,b, and V̂1,b, respectively. Then, the parameter update laws are

designed such that the terms containing the uncertain difference α1−α∗
1 are eliminated.

However, by virtue of (8.19), this method does not apply to the current problem as

the term ξ1(α1 −α∗
1)gq,1(·)/g0,1(·) contains the unknown function gq,1(·) which cannot

be reduced for matching α1 −α∗
1 to the update law as usual. Thus, a non-CEP control

is of instrumental interest.

In (8.20), three-layers NNs are used for function approximations. In comparison

to RBF NNs which are also capable of approximating continuous functions [119],

multi-layer NNs have the advantage that the basis function set as well as the centers

and variations of radial-basis type of activation functions are estimated online and

hence, they need not to be specified a priori [157, 49]. This means that we need not

to fix a priori the compact set Ω over which the NNs approximations are employed.

We proceed to define the following variables:

η∗1 = Ŵ ∗T
1,aS(V ∗T

1,aZ1) + λ1W
∗T
1,b S(V ∗T

1,b Z1)

η̂1 = Ŵ T
1,aS(V̂ T

1,aZ1) + λ1Ŵ
T
1,bS(V̂ T

1,bZ1). (8.21)

Consider the following control strategy

α1,d =











−c1ξ1 + η̂1 + αs
1 if η̂1ξ1 ≥ 0,

−c1ξ1 + γ1(x1)η̂1 + αs
1 if η̂1ξ1 < 0,

(8.22)

which can be expressed in the following equivalent form for smooth approximation

α1,d = −c1ξ1 +

(

1 +
γ1(x1) − 1

2
(1 − sgn(η̂1ξ1))

)

η̂1 + αs
1, (8.23)
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where αs
1 is the leakage term, and sgn(s) = 1 if s ≥ 0 and sgn(s) = −1, otherwise.

From (8.15), (8.18) and (8.20), we have (η∗1 + ε1,a + λ1ε1,b)ξ1 ≤ 0. For q ∈ Q, we

have the following cases:

• η̂1ξ1 ≥ 0: Since gq,1(·)/g0,1(·) ≤ γ1(·) by Assumption 8.2.4, from (8.20) and

(8.22), we have

gq,1(·)
g0,1(·)

(α1,d − α∗
1)ξ1 ≤ −k1

gq,1(·)
g0,1(·)

ξ2
1 +

gq,1(·)
g0,1(·)

η̂1ξ1 + k1
gq,1(·)
g0,1(·)

ξ2
1

+
gq,1(·)
g0,1(·)

(

− (η∗1 + ε1,a + λ1ε1,b)
)

ξ1 + αs
1ξ1

≤ γ1(·)(η̂1 − η∗1)ξ1 + αs
1ξ1 − γ1(·)(ε1,a + λ1ε1,b)ξ1. (8.24)

• η̂1ξ1 < 0: using gq,1(·)/g0,1(·) ≥ 1 from Assumption 8.2.4, we also have

gq,1(·)
g0,1(·)

(α1,d − α∗
1)ξ1 ≤ −k1

gq,1(·)
g0,1(·)

ξ2
1 + γ1(·)

gq,1(·)
g0,1(·)

η̂1ξ1 + k1
gq,1(·)
g0,1(·)

ξ2
1

+
gq,1(·)
g0,1(·)

(

− (η∗1 + ε1,a + λ1ε1,b)
)

ξ1 + αs
1ξ1

≤ γ1(·)(η̂1 − η∗1)ξ1 + αs
1ξ1 − γ1(·)(ε1,a + λ1ε1,b))ξ1. (8.25)

Combining both cases, we have

gq,1(x1)

g0,1(x1)
(α1,d − α∗

1)ξ1 ≤ αs
1ξ1 + γ1(x1)

(

Ŵ T
1,aS(V̂ T

1,aZ1) −W ∗T
1,aS(V ∗T

1,aZ1)

+ λ1(Ŵ
T
1,bS(V̂ T

1,bZ1) −W ∗T
1,aS(V ∗T

1,b Z1))
)

ξ1 − γ1(x1)(ε1,a + λ1ε1,b)ξ1. (8.26)

To continue, let us make the following convention.

The notation W stands for W,V , and θ, and S stands for the subscripts a and b.

An expression containing either W or S stands for the group of all expressions obtained

by replacing W and S by their all possible values, e.g. ‖W1,S‖3 is ‖W1,a‖3, ‖W1,b‖3. We

shall write W � 0 if all elements of W are non-positive. Accordingly, we have W1 � W2
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if W1 − W2 � 0. The operators =,≺,�, and ≻ are defined in the same element-wise

manner. In addition, ‖ · ‖♯ is ‖ · ‖ if · is a vector and is ‖ · ‖F if · is a matrix.

Let W̃1,S = Ŵ1,S − W
∗
1,S be the estimation errors. From (8.26), using [161, Lemma

3.1], we have

gq,1(·)
g0,1(·)

(α1,d − α∗
1)ξ1 ≤ γ1(x1)(W̃

T
1,a(Ŝ1,a − Ŝ ′

1,a)V̂
T
1,aZ1 + Ŵ T

1,aŜ
′
1,a(Ṽ1,a)

TZ1)ξ1

+ γ1(x1)d1,a|ξ1| + λ1γ1(x1)(W̃
T
1,b(Ŝ1,b − Ŝ ′

1,b)V̂
T
1,bZ1 + Ŵ T

1,bŜ
′
1,b(Ṽ1,b)

TZ1)ξ1

+ λ1γ1(x1)d1,b|ξ1| − γ1(x1)(ε1,a + λ1ε1,b)ξ1 + αs
1ξ1, q ∈ Q, (8.27)

where d1,S = ‖V ∗
1,S‖F‖Z1Ŵ

T
1,SŜ

′
1,S‖F + ‖W ∗

1,S‖‖Ŝ ′
1,SV̂

T
1,SZ1‖ + ‖W ∗

1,S‖.

Let ε > 0 be a design parameter fixed a priori. By Lemma 8.2.1, we have

|ξ1| ≤ ab
(

ξ1 tanh
(ξ1

√
1 + b2

ε

)

+
kP ε√
1 + b2

)

≤ a
√

1 + b2 tanh
(ξ1

√
1 + b2

ε

)

ξ1 + kP εa,

(8.28)

for arbitrary a, b > 0. By a direct calculation using (8.28), we have

γ1(·)d1,S|ξ1| ≤ θ∗T1,aΦ1,aξ1 + λ1θ
∗T
1,bΦ1,bξ1 + kP εΘ1, (8.29)

where θ∗1,S,Θ1, and Φ1,S are given by the following recursive formulae with i = 1:

θ∗i,S =
[

‖W ∗
i,S‖, ‖V ∗

i,S‖F , εi,S

]T

Θi = ‖V ∗
i,a‖F + ‖W ∗

i,a‖ + λi(‖V ∗
i,b‖F + ‖W ∗

i,b‖)

Φi,S = γi(x̄i)
[

√

1 + ‖ZiŴ T
i,SŜ

′
i,S‖2

F tanh
(ξi

√

1 + ‖ZiŴ T
i,SŜ

′
i,S‖2

F

ε

)

,

(1 +
√

1 + ‖Ŝ ′
i,SV̂

T
i,SZi‖2) tanh

(ξi

√

1 + 2‖Ŝ ′
i,SV̂

T
i,SZi‖2

ε

)

,−1
]T

. (8.30)

The classical adaptive neural control of nonlinear systems decouples the unknown

parameters ‖W ∗
1,S‖ and ‖V ∗

1,S‖F in d1,S and then designs the leakage term αs
1 to elim-
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inate the remaining known positive functions [49]. However, this technique leads to

functions of high orders of error variables which might be avoided for dealing with

switching jumps. By (8.29), classical adaptive control is called for dealing with un-

certainties without increasing the orders of error variable ξ1.

By virtue of (8.29), let us consider the following leakage term

αs
1 = −θ̂T

1,aΦ1,a − λ1θ̂
T
1,bΦ1,b, (8.31)

where θ̂1,S are estimates of θ∗1,S. Substituting (8.29) and (8.31) into (8.27) yields

gq,1(·)
g0,1(·)

(α1,d − α∗
1)ξ1 ≤ γ1(x1)(W̃

T
1,a(Ŝ1,a − Ŝ ′

1,a)V̂
T
1,aZ1 + Ŵ T

1,aŜ
′
1,aṼ

T
1,aZ1)ξ1

+ λ1γ1(x1)(W̃
T
1,b(Ŝ1,b − Ŝ ′

1,b)V̂
T
1,bZ1 + Ŵ T

1,bŜ
′
1,bṼ

T
1,bZ1)ξ1

− θ̃T
1,aΦ1,aξ1 − λ1θ̃

T
1,bΦ1,bξ1 + kP εΘ1, q ∈ Q. (8.32)

In the right hand side of (8.32), the unknown variables W̃1,S are in linear forms so

that they can be eliminated by appropriate NNs parameter update laws. However,

as discontinuous α1,d given by (8.22) cannot be used for virtual control in recusive

design, we further apply Lemma 8.2.1 to obtain the following smooth approximation

of α1,d

α1,sm = −k1ξ1+
(

1+
γ1(x1) − 1

2

(

1−tanh
(γ1(x1)(γ1(x1) − 1)η̂1ξ1

2ε

)))

η̂1+αs
1. (8.33)

As 1 ≤ gq,1(·)/g0,1(·) ≤ γ1(·) by Assumption 8.2.4, applying Lemma 8.2.1 for η = η̂1ξ1

and ε = 2ε/(γ1(x1)(γ1(x1) − 1)), we have

gq,1(·)
g0,1(·)

(α1,sm − α1,d)ξ1 ≤ kP ε,∀q ∈ Q. (8.34)

Consider the first virtual control α1 = α1,sm given above. From (8.32) and (8.34),
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adding 0 = −α1,d + α1,d to α1 − α∗
1, we obtain

gq,1(·)
g0,1(·)

(α1 − α∗
1)ξ1 ≤ γ1(x1)(W̃

T
1,a(Ŝ1,a − Ŝ ′

1,a)V̂
T
1,aZ1 + Ŵ T

1,aŜ
′
1,aṼ

T
1,aZ1)ξ1

+ λ1γ1(x1)(W̃
T
1,b(Ŝ1,b − Ŝ ′

1,b)V̂
T
1,bZ1 + Ŵ T

1,bŜ
′
1,bṼ

T
1,bZ1)ξ1

− θ̃T
1,aΦ1,aξ1 − λ1θ̃

T
1,bΦ1,bξ1 + δnn,1, (8.35)

where δnn,1 = (Θ1 +1)kP ε is an unknown constant that can be made arbitrarily small

by adjusting ε. Substituting (8.35) into (8.19), we obtain

LQq,1U1 ≤ −k1ξ
2
1 + ξ2

2 + γ1(x1)(W̃
T
1,a(Ŝ1,a − Ŝ ′

1,a)V̂
T
1,aZ1 + Ŵ T

1,aŜ
′
1,aṼ

T
1,aZ1)ξ1

+ λ1γ1(x1)(W̃
T
1,b(Ŝ1,b − Ŝ ′

1,b)V̂
T
1,bZ1 + Ŵ T

1,bŜ
′
1,bṼ

T
1,bZ1)ξ1

− θ̃T
1,aΦ1,aξ1 − λ1θ̃

T
1,bΦ1,bξ1 + δnn,1 +

1

λ1

. (8.36)

We are now ready to design the parameter update laws. Let ΓW1,S
be the de-

sign adaptation gain matrices of appropriate dimensions and consider the Lyapunov

function candidate V1 given by the following recursive formula with i = 1

Vi = Ui +
1

2
W̃ T

i,aΓ
−1
Wi,a

W̃i,a +
1

2
tr

{

Ṽ T
i,aΓ

−1
Vi,a
Ṽi,a

}

+
1

2
θ̃T

i,aΓ
−1
θi,a
θ̃i,a

+
λi

2
W̃ T

i,bΓ
−1
Wi,b

W̃i,b +
λi

2
tr

{

Ṽ T
i,bΓ

−1
Vi,b
Ṽi,b

}

+
λi

2
θ̃T

i,bΓ
−1
θ
i,b
θ̃i,b. (8.37)

Let W
min
1,S and W

max
1,S be the lower and upper bounds of the ideal NNs parameters W

∗
1,S,

i.e., W
min
1,S � W

∗
1,S � W

max
1,S , and let ProjŴ1,S

be the standard projection mapping [51].

We have the following update laws for Ŵ1,S

˙̂W1,S = τ ♮
W1,S

def
= ProjŴ1,S

(τW1,S
), (8.38)



8.3. Direct Adaptive Neural Control Design 193

where τW1,S
are tuning functions given by the following recursive formulae for i = 1

τWi,S
= ΓWi,S

(

− γi(x̄i)(Ŝi,S − Ŝ ′
i,SV̂

T
i,SZi)ξi − σWi,S

Ŵi,S

)

τVi,S
= ΓVi,S

(

− γi(x̄i)ZiŴ
T
i,SŜ

′
i,Sξi − σVi,S

V̂i,S

)

τθi,S = Γθi,S

(

Φi,Sξi − σθi,S
θ̂i,S

)

, (8.39)

where σW1,S
are small design constants. For each q ∈ Q, let us define the vector field:

Qq,1
def
= [QT

q,1, (τ
♮
W1,a

)T , col(τ ♮
V1,a

)T , (τ ♮
W1,b

)T , col(τ ♮
V1,b

)T , (τ ♮
θ1,a

)T , (τ ♮
θ1,b

)T ]T . (8.40)

From (8.36), by a direct computation using standard completing square and projection

computation [128,49], we obtain

LQq,1V1 ≤ −k1ξ
2
1 −

1

2

∑

W,S

σW1,S
‖W̃1,S‖2

♯ + ξ2
2 + δ1, q ∈ Q, (8.41)

where

δ1 =
1

2

∑

W,S

σW1,S
‖W

∗
1,S‖2

♯ + δNN,1 +
1

λ1

(8.42)

is a constant that can be made arbitrarily small by adjusting design parameters: λ1, ε,

and σW1,S
. This completes the first step.

Inductive Step (i = 2, . . . , n):

Let ξi = xi − αi−1 and ξn+1 = u − αn, where αi−1 is the (i − 1)-th virtual control

designed at the (i− 1)-th step.

By a direct computation, we have the following dynamic equations for ξi:

ξ̇i = gq,i(x̄i)xi+1 + f ◦
q,i(x̄i, ψ̄i, φ̄i, yd) −

∂αi−1

∂yd

ẏd
def
= Qq,i(·), q ∈ Q, (8.43)
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where

f ◦
q,i(·) = fq,i(x̄i) −

i−1
∑

j=1

∂αi−1

∂xj

(gq,j(x̄j)xj+1 + fq,j(x̄j)) − φi, q ∈ Q

φi =
i−1
∑

j=1

∑

υ=a,b

(∂αi−1

∂Ŵj,υ

τWj,υ
+

lj,υ
∑

k=1

∂αi−1

∂V̂
(q)
j,υ

τ
(k)
Vj,υ

+
∂αi−1

∂θ̂j,υ

τθj,υ

)

, φ̄i = [φ1, . . . , φi]
T

ψi =

[

∂αi−1

∂yd

,
∂αi−1

∂x1

, . . . ,
∂αi−1

∂xi−1

]T

, ψ̄i = [ψT
1 , . . . , ψ

T
i ]T . (8.44)

In (8.44), the variables φi’s and ψi’s are computable and shall be included in NNs

input for reducing computation load, lj,υ is the number of columns of V̂j,υ, and V̂
(k)
j,υ

and τ
(k)
Vj,υ

are k-th columns of V̂j,υ and τVj,υ
, respectively.

Consider the following i-th Lyapunov function candidate

Ui = Vi−1 +
1

2g0,i(x̄i)
ξ2
i . (8.45)

By Young’s inequality and Assumption 8.2.4, we have the following estimates for

Lie derivatives at time t of Ui along the vector fields Q̄q,i
def
= [QT

q,i−1, Qq,i]
T , q ∈ Q:

LQ̄q,i
Ui = LQq,i−1

Vi−1 −
D+g0,i(·)
2g2

0,i(·)
ξ2
i +

1

g0,i(·)
(

gq,i(·)(ξi+1 + αi) + f ◦
q,i(·) −

∂αi−1

∂yd

ẏd

)

ξi

≤ LQq,i−1
Vi−1 +

gd

g2
0,i(·)

ξ2
i +

gq,i(·)
g0,i(·)

(αi − α∗
i )ξi +

gq,i(·)
g0,i(·)

α∗
i ξi +

g2
q,i(·)

4g2
0,i(·)

ξ2
i

+ ξ2
i+1 + 4λi

(

|f ◦
k,i(·)| +

∣

∣

∣

∂αi−1

∂yd

∣

∣

∣
yM

)2

ξ2
i +

1

λi

, (8.46)

where λi > 0 is a design parameter. As (8.46) has the same structure as (8.17),

following the same design with the same notations W,S, and ♯ of the Initial Step, we

obtain

i) the i-th ideal control

α∗
i = −

(

1 + ki + πi(x̄i, φ̄i, ψ̄i)
)

ξi, (8.47)
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where ki > 0 is a design parameter and πi is the smooth function satisfying

πi(·) ≥
1

g2
0,i(·)

(gd

2
+
g2

q,i(·)
4

+
λi

4

(

f ◦
q,i(·) +

∣

∣

∣

∂αi−1

∂yd

∣

∣

∣
yM

)2)

,∀q ∈ Q; (8.48)

ii) the i-th virtual control αi = αi,sm given by

αi,sm = −kiξi +
(

1 +
γi(x̄i) − 1

2

(

1 − tanh
(γi(x̄i)(γi(x̄i) − 1)η̂iξi

2ε

)))

η̂i + αs
i ,

η̂i = Ŵ T
i,aS(V̂ T

i,aZi) + λiŴ
T
i,bS(V̂ T

i,bZi), Zi = [x̄T
i , yd, αi−1, φ̄

T
i , ψ̄

T
i , 1]T ,

αs
i = −θ̂T

i,aΦi,a − λiθ̂
T
i,bΦi,b, (8.49)

where λi > 0 is the design parameter, θ̂i,S are estimates of θ∗i,S, Ŵi,S are estimates

of the ideal NNs parameters W
∗
i,S of the NNs approximation of α∗

i , and θ∗i,S,Θi,

and Φi are defined by (8.30) with obvious meanings;

iii) the parameter update laws

˙̂Wi,S = τ ♮
Wi,S

def
= ProjŴi,S

(τWi,S
), (8.50)

with the tuning functions τWi,S
given by (8.39); and

iv) the Lyapunov function candidate Vi given by (8.37),

such that, for each q ∈ Q, we have

LQq,i
Vi ≤ −

i
∑

j=1

cjξ
2
j −

1

2

i
∑

j=1

∑

S=a,b

σWj,S
‖W̃j,S‖2

♯ + ξ2
i+1 + δi, (8.51)

where Qq,i, q ∈ Q are time-varying vector fields

Qq,i = [Q̄T
q,i, (τ

♮
Wi,a

)T , col(τ ♮
Vi,a

)T , (τ ♮
Wi,b

)T , col(τ ♮
Vi,b

)T , (τ ♮
θi,a

)T , (τ ♮
θi,b

)T ]T , (8.52)
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ΓWi,S
are design adaptation gain matrices, and

δi = δi−1 +
1

2

∑

W,S

σWi,S
‖W

∗
i,S‖2

♯ + (Θi + 1)kP ε+
1

λi

(8.53)

is a constant which can be made arbitrarily small by adjusting design parameters.

Step n: At this step, ξn+1 = 0, we obtain the actual control u = αn given by

(8.49) with i = n and the final Lyapunov function candidate Vn satisfies

LQq,n
Vn ≤ −

n
∑

i=1

kiξ
2
i −

1

2

n
∑

j=1

∑

S=a,b

σWj,S
‖W̃j,S‖2

♯ + δn,∀q ∈ Q. (8.54)

This completes the design procedure.

8.4 Stability Analysis

In this section, based on Theorem 8.2.1, we show that for appropriate design pa-

rameters, the control u = αn designed above achieves the proposed control objec-

tive. To this end, let us define the variables E1 = [ξ1, . . . , ξn]T , E2 = [W̃ T , Ṽ T ]T and

E = [ET
1 , ET

2 ]T , where

W̃ = [W̃ T
1,a, . . . , W̃

T
n,a, W̃

T
1,b, . . . , W̃

T
n,b]

T

Ṽ = [col(Ṽ1,a)
T , . . . , col(Ṽn,a)

T , col(Ṽ1,b)
T , . . . , col(Ṽn,b)

T ]T . (8.55)

Let VE1
and VE2

be Lyapunov functions defined as

VE1
(t, E1) =

n
∑

i=1

1

g0,i(x̄i(t))
ξ2
1 , and

VE2
(E2) =

1

2

n
∑

i=1

∑

S=a,b

(

W̃ T
i,SΓ

−1
Wi,S

W̃i,S + tr
{

Ṽ T
i,SΓ

−1
Vi,S
Ṽi,S

})

. (8.56)

In terms of the above notations, let nE be the appropriate dimension of E , VE
def
= Vn,
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and Qq
def
= Qq,n, q ∈ Q. Then, VE can be expressed as VE(t, E) = VE1

(t, E1) + VE2
(E2).

As the functions g0,i are lower bounded by Assumption 8.2.4 and the set N =

{1, . . . , n} is finite, there are positive numbers gmax and gmin such that gmin ≤ g0,i(ζ) ≤

gmax,∀ζ ∈ Ri,∀i ∈ N . Let λ0 > 0 be the number that is greater than all eigenvalues

of Γ−1
Wi,S

, i ∈ N and cE be the positive number defined by

cE =
1

2
min

{ 1

2λ0

min{σWi,S
}, gmin min{c1, . . . , cn}

}

. (8.57)

Then, from (8.38), (8.54) and (8.56), we have

LQq
VE(t, E) ≤ −2cEVE1

(t, E1) − 2cEVE2
(E2) + δn,∀t ≥ 0,∀q ∈ Q. (8.58)

Consider the ball

Bδn
=

{

E ∈ RnE :
cE
gmax

n
∑

i=1

ξ2
i + cEVE2

(E2) ≤ δn

}

. (8.59)

Obviously, for E 6∈ Bδn
, we have

LQq
VE(t, E) ≤ −cEVE(t, E),∀t ≥ 0, q ∈ Q. (8.60)

We proceed to consider a switching sequence σ ∈ SA [τp, Np]. Let {τσ,iDj
}j be the

sequence of all starting times of dwell-time switching events of σ, i.e., τσ,iDj +1 − τσ,iDj
≥

τp,∀j ∈ N. As σ ∈ SA [τp, Np], for each j ∈ N, the number nDij = iDj+1 − iDj − 1 of

switching events between two consecutive dwell-time switching events of σ satisfies

nDij ≤ Np.

From the boundedness of sigmoid activation functions of NNs and their derivatives,

the boundedness of parameter estimates ensured by the adaptation laws (8.38) and

(8.50) [161, Lemma 4.1], the boundedness of γi’s and their gradients from Assumption
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8.2.4, and the boundedness of the function fth(x, y) = (a+
√

1 + x2) tanh(y
√

1 + bx2/ε)

and its derivatives, where x, y are independent variables and a, b ≥ 0 are constants,

a direct computation shows that the derivatives of the virtual controls αi’s given by

(8.33) and (8.49) are bounded, i.e., there is a constant qα > 0 such that

∥

∥

∥

∂αi

∂x̄i

∥

∥

∥
≤ qα,∀x̄i ∈ Ri,∀i ∈ N . (8.61)

We have the following proposition.

Proposition 8.4.1 At switching times τσ,i, we have

VE(τσ,i, E(τσ,i)) ≤ qµVE(τσ,i, E−(τσ,i)), (8.62)

and for every j ∈ N, if (8.60) holds for all t ∈ [τσ,iDj +1, τσ,iDj+1
), then we have

VE(t, E(t)) ≤ qNp+1
µ VE(τσ,iDj +1, E(τσ,iDj +1))e

t−τ
σ,iD

j
+1 ,∀t ∈ [τσ,iDj +1, τσ,iDj+1

], (8.63)

where

qµ = 1 + 4µ
(

δG +
gmax

gmin

(1 + µ(1 + qα))(1 + qα)
)

δG =











0 if µ = 0

gmax

µgmin

if µ 6= 0
. (8.64)

Proof: See Section 8.6.2. �

Theorem 8.4.1 Suppose that Assumptions 8.2.1–8.2.4 hold for system ΣJ given in

(8.2) and

(Np + 2) ln qµ < cEτp, (8.65)

where qµ is the constant defined in Proposition 8.4.1. Then, the control u = αn given
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by (8.49), i = n together with parameter update laws (8.50), i ∈ N guarantees that

all signals in the closed-loop system are bounded and the tracking error converges to

a neighborhood of the origin whose size can be made arbitrarily small by adjusting

design parameters undergoing (8.65).

Proof: We first consider the case there is a time t∗ such that E(t∗) ∈ Bδn
. In this case,

we know from the proof of Theorem 8.2.1 that E(t) escapes from Bδn
only through

switching jumps. Let τσ,j be the first switching time greater than t∗ at which E(τσ,j) 6∈

Bδn
and let [τσ,i+

D
(j), τσ,i+

D
(j)+1] be the first dwell-time interval after τσ,j. By virtue

of the proof of Proposition 8.4.1, we have VE(τσ,j, E(τσ,j)) ≤ qµVE(τσ,j, E−(τσ,j)) ≤

qµδn. Thus, as the number of switches between τσ,j and τσ,i+
D

(j) is bounded by

Np, using Proposition 8.4.1, we have VE(t, E(t)) ≤ q
Np
µ δn,∀t ∈ [τσ,j, τσ,i+

D
(j)) and

VE(τσ,i+
D

(j), E(τσ,i+
D

(j))) ≤ q
Np+1
µ δn. As τσ,i+

D
(j)+1 − τσ,i+

D
(j) ≥ τp, this coupled with (8.65)

implies that there is t ∈ [τσ,i+
D

(j), τσ,i+
D

(j)+1] such that VE(t, E(t)) ≤ δn. As such,

VE(t, E(t)) ≤ q
Np+1
µ δn,∀t ≥ t∗ and the conclusion of the theorem follows.

We now complete the proof by considering the case that there is no such t∗, i.e.,

(8.60) holds for all t ≥ 0. Let us verify conditions of Theorem 8.2.1 as follows.

Since g0,i’s are both upper and lower bounded by Assumption 8.2.4, (8.16), (8.45),

and (8.37) imply that VE is both upper and lower bounded by quadratic forms of E .

Hence, condition (8.11) of Theorem 8.2.1 is satisfied. The satisfaction of (8.12) follows

directly from (8.60).

To verify condition i) of Theorem 8.2.1, let us consider a dwell-time interval

[τσ,iDj
, τσ,iDj +1], j ∈ N. As (8.60) holds for all t, applying comparison principle [88]

for (8.60) and using Proposition 8.4.1, we obtain

VE(τσ,iDj +1, E(τσ,iDj +1)) ≤ qµVE(τσ,iDj +1, E−(τσ,iDj +1)) ≤ qµVE(τσ,iDj
, E(τσ,iDj

))e
−cE∆τ

σ,iD
j .

(8.66)
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Furthermore, as ∆τσ,iDj
≥ τp by definition, from (8.65) we have

qNp+2
µ e

−cE∆τ
σ,iD

j ≤ qNp+2
µ e−cEτp < 1. (8.67)

Thus, combining (8.63) and (8.66) and using (8.67) yields

VE(τσ,iDj+1
, E(τσ,iDj+1

)) ≤ qNp+2
µ VE(τσ,iDj

, E(τσ,iDj
))e

−cE∆τ
σ,iD

j+1 < VE(τσ,iDj
, E(τσ,iDj

)). (8.68)

Since (8.68) holds for all j ∈ N, it together with Proposition 8.4.1 implies that

VE(t, E(t)) is bounded by q
Np+2
µ VE(0, E(0)) for all t ≥ 0. Thus, condition i) of Theorem

8.2.1 is satisfied.

Moreover, (8.68) together with the condition that E(t) stays outside the set Bδn

for all t ≥ 0 implies that the functions VE(t, E(t)) is decreasing on the time interval

∪∞
i=0[τσ,iDj

, τσ,iDj +1]. In addition, VE is lower bounded by construction. Thus, both

limi→∞ VE(τσ,iDj
, E(τσ,iDj

)) and limi→∞ VE(τσ,iDj +1, E−(τσ,iDj
+ 1)) exist and are identical.

Therefore, the satisfaction of condition ii) of Theorem 8.2.1 follows accordingly.

Finally, satisfaction of iii) of Theorem 8.2.1 follows (8.62) directly. Thus, applying

Theorem 8.2.1, we conclude that E(t) converges to the set Bδn
, i.e., all the state

variable of the closed-loop system are bounded and the tracking error ξ1(t) = y(t) −

yd(t) satisfying |ξ1(t)| ≤ ‖E(t)‖ converges to a small region as desired. �

The inequality (8.65) in Theorem 8.4.1 can be satisfied for either large dwell-time

τp or small switching jumps gain µ. In addition, when there is no jump in system

state, i.e., µ = 0 implying qµ = 1, (8.65) is automatically satisfied, and hence, the

introduced control achieves the control objective under arbitrary switching.

The inequality (8.65) also reflects the conservativeness of adaptive control in

switched systems. For improving accuracy, small σWi,S
’s, leading to small cE , are

desired. However, (8.65) shows that the dwell-time property of the switching se-

quences and the switching jump gain µ must be taken into account in selecting σWi,S
.
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Thus, given a switching sequence, arbitrary control accuracy cannot be achieved for

switched systems. Instead, the larger τp and the smaller µ and Np, the better accuracy

can be achieved.

8.5 Design Example

In this section, we apply the design procedure presented to design an adaptive neural

control for the switched system whose constituent systems are:

Σ1 :











ẋ1 = x2

√

1 + 3x2
1 + ex1

ẋ2 = (1 + 0.5 sin(x1x2))u+ x1x
2
2

Σ2 :











ẋ1 = (1 + 5x1 tanhx1)x2 + x2
1

ẋ2 = (3 + cosx2)u+ x2 ln(1 + x2
1x

2
2).

(8.69)

The output is y = x1, the desired signal is yd = 0.5(sin t + 0.3 sin(3t)), and the

switching jump gain is µ = 0.1. Clearly, Assumptions 8.2.2 and 8.2.3 are satisfied.

Let us select γ0,1 =
√

1 + 3x2
1 and γ0,2 = 0.5. Thus, Assumption 8.2.4 is satisfied with

γ1 = 3.2 and γ2 = 8.

Following the presented design procedure, we obtain the control u = αn given by

(8.49), i = 2, and the parameter update laws given by (8.50), i = 1, 2.

For simulation, we choose λ1 = λ2 = λs
1 = λs

2 = 10, c1 = c2 = 5, ε = 0.01, σW1,S
=

10−3. At each step, the neural networks Ŵ T
i,υS(V̂ T

i,υZ̄i), i = 1, 2, υ = a, b contain

10 hidden nodes, i.e., li,υ = 10. The activation function is assigned as s(za) =

1/(1 + e−γza) with γ = 5. ΓWi,υ
= 2 × 10−4 × I10, i = 1, 2, υ = a, b,ΓV1,a

= ΓV1,b
=

2×10−4× I3,ΓV2,a
= ΓV2,b

= 2×10−4× I8 where Id is the identity matrix of dimension

d. The parameter estimates Ŵi,S, i = 1, 2 are all initialized at 0. The initial values

of state variables [x1, x2]
T is [1,−1]T . The parameters of the switching sequence are

Np = 10 and τp = 1.2s. The lengths of switching intervals between two consecutive
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Figure 8.1: Tracking performance

dwell-time intervals are randomly generated between 0s and 0.2s.

The simulation results are shown in Figures 8.1 and 8.2. As observed in Figure

8.1, the tracking objective is well obtained. The state variable x2, the control signal

and the switching history are shown in Figure 8.2. It is observed that the signals are

bounded while the switching sequence exhibits arbitrarily fast switching. The highly

oscillated control signal is due to the switching in control structure (8.22). Thus, the

simulation results well illustrate the theory presented.

8.6 Proofs

8.6.1 Proof of Theorem 8.2.1

To prove the theorem, let c = c1 + c2, b = ᾱ(α−1(c)) and, along the trajectory x(t),

let Tx,t, t ∈ R+ be the sets {s ∈ [τσ,i−σ (t), τσ,i−σ (t)+1] : V (s, x(s)) > b}, t ∈ R+. Let (·)Tx

be the operator defined as (t)Tx
= sup Tx,t if Tx,t 6= ∅ and (t)Tx

= τσ,i−σ (t) if Tx,t = ∅.
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Figure 8.2: State x2(t), control signal, and switching history

We have the following inequality from condition ii)

DσV (t, x(t)) ≤ −α(‖x(t)‖) + c1,∀t ∈ R+. (8.70)

From (8.70), by an argument similar to the proof of Theorem 5.2.1, we know that if

V (t∗, x(t∗)) ≤ b for some t∗ ≥ 0, then V (s, x(s)) ≤ b,∀s ∈ [t∗, τσ,i−σ (t∗)+1). This also

implies that if t is such that V (t, x(t)) > b, then (t)Tx
is well defined and V (s, x(s)) ≥

b,∀s ∈ [τσ,i−σ (t), (t)Tx
). Furthermore, if such t∗ exists, then V (t, x(t)) > b for some

t > t∗ is possible only if t is a switching time. As such, we are interested in the case

that there are infinitely many switching times τσ,i at which V (τσ,i, x(τσ,i)) > b as, by

(8.11), the inverse case trivially implies that ‖x(t)‖ ≤ α
−

−1(b),∀t ≥ T for sufficiently

large T ∈ R+.

To continue, let {τ b
σ,i}i be the sequence of all switching times of σ satisfying

(τ b
σ,i)Tx

− τ b
σ,i > ετ ,∀i ∈ N. (8.71)
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We now show that for every time sequence {tbσ,i}i satisfying tbσ,i ∈ [τ b
σ,i, (τ

b
σ,i)Tx

),

V (tbσ,i, x(t
b
σ,i)) converges to the set B = {s ∈ R+ : s ≤ b}, as i → ∞. Indeed, assume

that the converse holds, i.e., there exist ε > 0 and a subsequence {tbσ,ij
}j of {tbσ,i}i

such that

V (tbσ,ij
, x(tbσ,ij

)) ≥ b+ ε = ᾱ(α−1(c)) + ε,∀j ≥ 0. (8.72)

As noted above, (8.72) also implies that V (t, x(t)) ≥ b,∀t ∈ [τσ,i−σ (tbσ,ij
), (t

b
σ,ij

)Tx
).

Thus, from (8.11), the nondecreasing property of ᾱ, and the above convention that

τσ,i−σ (tbσ,ij
) = τ b

σ,i)j, we have

α(‖x(t)‖) ≥ c,∀t ∈ [τ b
σ,ij
, (tbσ,ij

)Tx
),∀j ≥ 0. (8.73)

Using (8.73) and the facts that c > c1, (τ
b
σ,ij

)Tx
− τ b

σ,ij
> ετ to integrate both sides

of (8.70) over [τ b
σ,ij
, (τ b

σ,ij
)Tx

), we obtain

V (τ b
σ,ij
, x(τ b

σ,ij
)) − V ((τ b

σ,ij
)Tx

, x−((τ b
σ,ij

)Tx
)) ≥

∫ (τb
σ,ij

)Tx

τb
σ,ij

(α(‖x(s)‖) − c1)ds

≥
∫ (tbσ,ij

)+ετ

(tbσ,ij
)−ετ

(α(‖x(s)‖ − c1))ds
def
= υij , (8.74)

where [(tbσ,ij
)−ετ
, (tbσ,ij

)+
ετ

) is any subinterval containing tbσ,ij
of [τ b

σ,ij
, (τ b

σ,ij
)Tx

), whose

length is ετ . Since V (t, x(t)) is decreasing on [τ b
σ,ij
, (τ b

σ,ij
)Tx

) and V (t, x(t)) is bounded

by condition i), the sequence {υij}j is bounded and hence has a subsequence that

converges. Without loss of generality, we assume that {υij}j converges. Noting that

(τ b
σ,ij

)Tx
≤ τσ,i−σ (tbij

)+1 and taking the limits of both sides of (8.74) as t → ∞ using

condition ii), we have

τεc2 ≥ lim
j→∞

(V (τ b
σ,ij
, x(τ b

σ,ij
))−V ((τ b

σ,ij
)Tx

, x−((τ b
σ,ij

)Tx
))) ≥

∫ (tbσ,ij
)+τε

(tbσ,ij
)−τε

(α(‖x(s)‖−c1))ds.

(8.75)



8.6. Proofs 205

Since x(t) is uniformly continuous on time intervals [τσ,i, τσ,i+1], i ∈ N, Q is finite, the

norm function ‖ · ‖ and α(·) are continuous, and V (t, x(t)) is bounded by condition

i), (8.72) implies the existence of δ ∈ (0, ετ ] such that α(‖x(tbσ,ij
+ s)‖) ≥ c+ ε′ for all

s ∈ [0, δ/2] if tbσ,ij
≤ (tbσ,ij

)−ετ
+ ετ/2 and for all s ∈ [−δ/2, 0] if tbσ,ij

> (tbσ,ij
)−ετ

+ ετ/2.

Let

t̃bσ,ij
=











tbσ,ij
if tbσ,ij

≤ (tbσ,ij
)−ετ

+ ετ/2

tbσ,ij
− δ/2 if if tbσ,ij

> (tbσ,ij
)−ετ

+ ετ/2
. (8.76)

Obviously, [t̃bσ,ij
, t̃bσ,ij

+ δ/2] ⊂ [(tbσ,ij
)−ετ
, (tbσ,ij

)+
ετ

],∀j ∈ R+. Thus, using (8.75), we have

0 ≥
∫ t̃bσ,ij

+δ/2

t̃bσ,ij

(α(‖x(s)‖) − c)) ds ≥
∫ t̃bσ,ij

+δ/2

t̃bσ,ij

ε′

2
ds =

δε′

4
> 0, (8.77)

which is a contradiction. Therefore, V (tbσ,i, x(t
b
σ,i)) converges to B as i → ∞. As

{tbσ,i}i is arbitrary, this implies that

lim
(t)Tx−τ

σ,i
−
σ (t)

≥ετ ,t→∞
dist(V (t, x(t)), B) = 0. (8.78)

To continue, let us define τ b+
σ,i

def
= τσ,i−σ (τb

σ,i)+1 and consider the sequence {τ b+
σ,i }i. By

definition of τ b
σ,i we have either V (τ b+

σ,i , x
−(τ b+

σ,i )) ≤ b or τ b+
σ,i = (τ b

σ,i)Tx
implying that

τ b+
σ,i −δ ∈ [τ b

σ,i, (τ
b
σ,i)Tx

), ∀δ > 0. Hence, due to the continuity of V and the trajectories

of subsystems, we have

lim
i→∞

V (τ b+
σ,i , x

−(τ b+
σ,i )) = lim

δ→0+
lim
i→∞

V ((τ b+
σ,i − δ, x(τ b+

σ,i − δ)) ≤ b. (8.79)

We proceed to consider the sequence of time intervals [τ b+
σ,i , τ

b
σ,i+1), i ∈ N. For

each i ∈ N, let {τ b,1
σ,i , . . . , τ

b,ni

σ,i } be the sequence of switching times in [τ b+
σ,i , τ

b
σ,i+1). As

σ ∈ SA [τp, Np], we have ni ≤ Np,∀i ∈ N. Let τ b,0
σ,i = τ b+

σ,i and τ b,ni+1
σ,i = τ b

σ,i+1 for

convenience. For each i ∈ N, let ∆Vτσ,i
= V (τσ,i, x(τσ,i)) − V (τσ,i, x

−(τσ,i)).



8.6. Proofs 206

Again, from (8.70) and condition iii), we have

V (t, x(t)) ≤ max{b, V (τσ,i, x(τσ,i))} ≤ max{b, µV (τσ,i, x
−(τσ,i))},∀t ∈ [τσ,i, τσ,i+1).

(8.80)

Therefore, considering all switches in [τ b+
σ,i , τ

b
σ,i+1) using (8.80), we have

V (t, x(t)) ≤ max{b, µNpV (τ b+
σ,i , x

−(τ b+
σ,i ))},∀t ∈ t ∈ [τ b+

σ,i , τ
b
σ,i+1). (8.81)

This coupled with (8.79) above gives rise to

lim
t→∞,t∈[τb+

σ,i ,taub
σ,i+1)

V (t, x(t)) ≤ max{b, µNpb}. (8.82)

As R+ = [τσ,0, τ
b
σ,0)∪(∪i[τ

b
σ,i, τ

b+
σ,i ))∪(∪i[τ

b+
σ,i , τ

b
σ,i+1)), the conclusion of the theorem

follows (8.78) and (8.82). �

8.6.2 Proof of Proposition 8.4.1

Since the parameter estimates are controller’s state, there is no jump in E2 at switch-

ing times. Therefore, VE(τσ,i, E−(τσ,i)) = VE1(τσ,i, E−
1 (τσ,i)) + VE2(E2(τσ,i)),∀i ∈ N.

Consider an arbitrary switching time τσ,i. Since g0,i are bounded by Assumption

8.2.4, using the mean value theorem, we have

|VE(τσ,i, E(τσ,i)) − VE(τσ,i, E−(τσ,i))| = |VE1
(τσ,i, E1(τσ,i)) − VE1

(τσ,i, E−
1 (τσ,i))|

=
n

∑

i=1

(ξi(τσ,i))
2 − (ξ−i (τσ,i))

2

g0,s(x̄s(τσ,i))
+

n
∑

i=1

( 1

g0,s(x̄s(τσ,i))
− 1

g0,s(x̄−s (τσ,i))

)

ξ−i (τσ,i))
2,

(8.83)

where E ′
1 = [ξ′1, . . . , ξ

′
n], ξ′j ∈ [ξ−j (τσ,i), ξj(τσ,i)], j = 1, . . . , n. As the second term in the

second equation of (8.83) is zero if µ = 0, defining qG = g−1
mingmax and δµ = 0 for µ = 0
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and δµ = qG/µ for µ 6= 0, we obtain the following inequality from (8.83)

|VE(τσ,i, E(τσ,i)) − VE(τσ,i, E−(τσ,i))|

≤ 2g−1
min‖E ′

1‖‖E1(τσ,i) − E−
1 (τσ,i)‖ + 4µδµVE1(τσ,i, E−

1 (τσ,i)). (8.84)

By Assumption 8.2.3 and the designed boundedness of derivatives of virtual controls

(8.61), we further have

‖E1(τσ,i) − E−
1 (τσ,i)‖ = ‖x̄n(τσ,i) − ᾱn(τσ,i) − (x̄−n (τσ,i) − ᾱ−

n (τi))‖

≤ ‖x̄n(τσ,i) − x−n (τσ,i)‖ + ‖∂ᾱn/∂x̄n|x̄n=x̄′
n
‖‖x̄n(τσ,i) − x̄−n (τσ,i)‖

≤ µ|e−(τσ,i)| + qαµ|e−(τσ,i)| = µ(1 + qα)|e−(τσ,i)|, (8.85)

where ᾱn = [yd, α1, . . . , αn−1]
T , x̄′n = [x′1, . . . , x

′
n]T , x′i ∈ [x−i (τσ,i), xi(τσ,i)], i = 1, . . . , n.

Since ‖E ′
1‖ ≤ ‖E−

1 (τσ,i)‖+ ‖E1(τσ,i)−E−
1 (τσ,i)‖ and |e−(τσ,i)| = |ξ−1 (τσ,i)| ≤ ‖E−

1 (τσ,i)‖,

using (8.84) and (8.85), we have

VE(τσ,i, E(τσ,i)) ≤ VE(τσ,i, E−(τσ,i)) + |VE(τσ,i, E(τσ,i)) − VE(τσ,i, E−(τσ,i))|

≤ VE(τσ,i, E−(τσ,i)) + 2g−1
min

(

‖E−
1 (τσ,i)‖ + µ(1 + qα)|e−(τσ,i)|

)

µ(1 + qα)|e−(τσ,i)|

+ 4µδµVE1(τσ,i, E−
1 (τσ,i))

≤ (1 + 4µδµ)VE1(·, E−
1 (·)) + 2g−1

min(1 + µ(1 + qα))µ(1 + qα)‖E−
1 (·)‖2 + VE2(E−

2 (·))

≤ (1 + 4µδµ + 4qGµ(1 + µ(1 + qα))(1 + qα))VE1(τσ,i, E−
1 (τσ,i)) + VE2(E−

2 (τσ,i))

≤ qµVE1(τσ,i, E−
1 (τσ,i)) + VE2(E−

2 (τσ,i)) ≤ qµVE(τσ,i, E−(τσ,i)). (8.86)

This proves (8.62).

We proceed to prove (8.63) as follows. Applying comparison theorem for differen-
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tial inequality (8.60) with initial condition E(τσ,i) satisfying (8.86), we obtain

VE(t, E(t)) ≤ VE(τσ,i, E(τσ,i))e
−cE(t−τσ,i)

≤ qµVE(τσ,i, E−(τσ,i))e
−cE(t−τσ,i),∀t ∈ [τσ,i, τσ,i+1). (8.87)

Since the number ni of switches between τσ,iDj
and τσ,iDj+1

is less than Np. Applying

consecutively (8.86) and (8.87) through intervals [τσ,iDj
, τσ,iDj +1], . . . , [τσ,iDj+1−1, τσ,iDj+1

] ,

we arrive at (8.63). Hence, the conclusion of the proposition follows. �

 



Chapter 9

Conclusions

This thesis advances our understanding on qualitative properties of switched sys-

tems and our ability to control uncertain switched systems. Transition model of

dynamical systems amenable to developing qualitative theories of generic dynamical

systems was presented. Elements for studying dynamical properties in the space of

continuous state including limiting switching sequence, transition indicator, transi-

tion mappings, and quasi-invariance property were introduced. Invariance principles

addressing destabilizing behavior were obtained for locating attractors of switched

non-autonomous, switched autonomous, and switched time-delay systems. The gauge

design method was introduced for control of uncertain switched systems. Adaptive

neural control was obtained for output tracking of a class of uncertain switched sys-

tems undergoing uncontrolled switching jumps.

9.1 Summary

In Chapter 2, we have introduced the transition model of dynamical systems and its

realizations to classical model of dynamical systems, hybrid systems, and switched

systems. The model was obtained as a generalization of the classical description of

209



9.1. Summary 210

dynamical systems using evolution mappings. By dropping the semi-group hypothesis

on transition mapping and the topological structure of the state space, we exposed the

rich time-transition property of trajectories of dynamical systems. By decomposing

the abstract state space into manifest and latent spaces, we followed the idea that re-

vealing time-transition properties of interacting trajectories of signals in a dynamical

system is essential in order to obtain richer results. Accordingly, we have obtained

the notions of switching sequence, transition indicator, and transition mappings to

bring out transition models of switched dynamical systems amenable for developing

qualitative theories.

In Chapter 3, we built up an invariance theory for delay-free switched systems on

the time-transition properties of transition mappings obtained in Chapter 2. We have

exposed the existence of limiting switching sequences in switched systems. It turned

out that the qualitative properties on limiting behavior of trajectories of continuous

state in switched systems are governed by the limiting switching sequences. The

quasi-invariance property of limit sets of trajectories of switched systems was proven

accordingly. Invariance principles with relaxed switching conditions were obtained for

switched non-autonomous and switched autonomous systems. Through examples, we

have demonstrated that conclusion on the converging-input converging-state prop-

erty of switched systems can be made by examining the attractors of the systems.

By virtue of the results achieved in this chapter, it turned out that other types of

motions, to which pullback motion is a special case, can be considered for establishing

invariance properties for qualitative theories of dynamical systems.

In Chapter 4, we developed invariance theory for switched time-delay systems.

We established the compactness and the attractivity of limit sets of trajectories in

the function state space that asserted that asymptotic properties of switched time-

delay systems can be studied through these limit sets. In the framework of transition

model, the quasi-invariance and invariance principle for switched time-delay systems
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obtained. The consideration on destabilizing behavior gave rise to the role of the

relative sizes of delay-time and periods of persistence on converging behavior of the

overall trajectories. It was shown that the Razumikhin condition at switching times

can be used to remove the needs for functions estimating state growth in destabilizing

periods. A time-delay approach to delay-free switched systems was presented.

In Chapter 5, we presented the principle of small-variation small-state for asymp-

totic gains of switched systems. The conditions were formulated in terms of com-

parison functions so that convergence of Lyapunov functions implies convergence of

the state via norm estimates. It was shown that the positive definite and radially

unbounded properties of Lyapunov functions plus with their bounded ultimate varia-

tions gave rise to further relaxation on switching conditions. Stability conditions was

also presented for asymptotic gains of switched time-delay systems in the framework

of Lyapunov-Razumikhin functions. It was shown that if the dwell-time is larger than

the delay-time, then the Razumikhin condition also provides estimates for verifying

decreasing behavior.

In Chapter 6, the gauge design method was introduced for switching-uniform

adaptive control of uncertain switched systems with unknown time-varying param-

eters and unmeasured dynamics. Separating the unknown time-varying parameters

from state dependent functions, output regulation was achieved in the sense of dis-

turbance attenuation. In this way, parameter estimates were not included in the

state of the resulting closed-loop systems and hence the problem of slow parameter

convergence in traditional adaptive control as well as the problem of increasing dif-

ficulty in verifying switching conditions were not encountered. The method exposed

the principle of driving system behavior through converging modes of its component

systems. It was also shown that relation between growth and decreasing rates of

the appended dynamics and the persistent dwell-time and period of persistence of

switching sequence is essential in verifying switching conditions of switched systems
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undergoing persistent dwell-time switching sequences. The novelty also lies in the re-

cursive design paradigm, where the destabilizing terms were step-by-step eliminated

instead of being canceled all at once in each single step.

In Chapter 7, adaptive high-gain observer was designed for switching-uniform out-

put feedback stabilization. It was pointed out that destabilizing terms in estimation

error dynamics caused by discrepancy between control gains might not be avoided for

non-conservative results. Condition on variation in control gains was introduced for

the effectiveness of the proposed observer. Application of the CPLF design method

gave rise to an adaptive output feedback control effective in the presence of unknown

time-varying parameters and full-state dependent control gains.

The results in Chapters 2–7 were obtained for switched systems undergoing per-

sistent dwell-time switching sequences.

Finally, in Chapter 8, we presented a combined adaptive neural control for output

tracking of uncertain switched systems undergoing switching jumps and average dwell-

time switching sequences. The underlying principle also lied in the use of dwell-

time intervals to compensate the growth raised in destabilizing periods. In achieving

this performance, we used parameter adaptive mechanism for dealing with unknown

constant bounds of approximation errors without increasing the orders of functions

of signals with discontinuity. A condition in terms of design parameters and timing

properties of switching sequences was introduced for verifying stability conditions.

9.2 Open Problems

Among the stability conditions presented, there is a question of how to verify the

boundedness condition on ultimate variations of auxiliary functions (cf. (3.51), (3.79),

(3.86), (4.35), (5.11), and ii) of Theorem 5.3.2). This condition appears to be nec-

essary for converging behaviors. It automatically holds in the classical Lyapunov
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theorem for ordinary dynamical systems and switched systems satisfying switching

decreasing condition. In Chapter 6, this condition was satisfied by utilizing the stabi-

lizing behavior on dwell-time intervals to render the sequences of values of composite

Lyapunov function at starting times of dwell-time switching events non-increasing.

However, at its high level of relaxation, this condition expresses that once the station-

ary evolution has been established, the auxiliary functions are still allowed to increase.

Therefore, it is obvious that there are possibly further mechanisms for satisfaction of

this condition.

With the introduction of the stability conditions on Lyapunov-Razumikhin func-

tions and the introduction of the gauge design method, it opened the possibility

of switching-uniform control for switched time-delay systems. It is worth mentioning

that the Razumikhin condition provides estimates over a continuum of the past states.

Hence, control design for switched systems with distributed delay terms is possible.

Finally, the invariance principles developed in Chapters 3 and 4 can finds their

applications in complex systems [141, 35, 27]. In such systems, due to limited inter-

action range and individuals’ independent decision, the connection topology changes

frequently and does not follows a specific rule and hence the models of these sys-

tems are of switched systems in nature [117, 143]. Understanding the plentiful col-

lective behavior of these systems such as flocking, consensus, and pattern forma-

tion [117,47,116,37,125,40,76] call for structures of attractors which are of invariance-

principles relevance. In systems such as engineered robot swarms, due to limited

capability of sensing units, communication delay [117] arises and hence the result-

ing systems become relevant to invariance principles of switched time-delay systems

presented in Chapter 4.
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