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Abstract. Let σ : 6A → 6A be a subshift of finite type, letMσ be the set of all σ -invariant
Borel probability measures on 6A, and let f : 6A → R be a Hölder continuous observable.
There exists at least one σ -invariant measure µ which maximizes

∫
f dµ. The following

question was asked by B. R. Hunt, E. Ott and G. Yuan: how quickly can the maximum
of the integrals

∫
f dµ be approximated by averages along periodic orbits of period less

than p? We give an example of a Hölder observable f for which this rate of approximation
is slower than stretched-exponential in p.

1. Introduction
Let σ : 6A → 6A be a subshift of finite type, letMσ be the set of all σ -invariant Borel
probability measures on 6A, and let f : 6A → R be Hölder continuous. There is at least
one invariant measure µ ∈Mσ , which we term a maximizing measure for f , such that∫

f dµ = β( f ) := sup
ν∈Mσ

∫
f dν.

In this paper we investigate the problem of finding invariant measures supported on
periodic orbits which approximately realize this maximum. More specifically, if we let
Mσ,p be the the set of all ergodic σ -invariant measures supported on points fixed by σ p,
we investigate the quantity

E f (p) = sup
ν∈Mσ

∫
f dν − sup

ν∈Mσ ,p

∫
f dν,

introduced by Yuan and Hunt [11], which is the difference between the maximum integral
β( f ) of f and the ‘best approximating’ periodic orbit whose period divides p.

Our motivation is twofold. Firstly, the above problem is of interest in control theory:
if we are able to control the dynamical system σ : 6A → 6A, we will wish to direct the
trajectories of points in 6A toward particular unstable orbits which optimize some given
quantity. For reasons of computational simplicity, it is desirable that such orbits should
be periodic and have small length. This leads us to ask how close to optimal orbits of
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a specified period may be. These considerations motivate the work of Yuan, Hunt and
Ott [7, 11].

Secondly, the quantity β( f ) has shown itself to be of interest in a number of situations in
ergodic theory, both intrinsically [1, 2, 6, 8] and in application to existing problems [3, 4, 9].
It is therefore of interest to be able to compute this quantity accurately in numerical
experiments. One obvious approach to this task would be to exhaustively compute ergodic
averages of f along periodic orbits of length up to n, and take the supremum of these
averages as an approximation to β( f ). The error incurred in this approximation would
therefore equal inf1≤p≤n E p( f ).

It is a classical result [10] that
⋃

∞

p=1Mσ,p is dense inMσ in the weak-* topology, and
so E f (p) → 0 as p → ∞ for all continuous f . We wish to investigate the rate at which
this convergence occurs when f is Hölder.

The behaviour of E f (p) as p → ∞ is at present poorly understood. On the strength of
numerical experiments [7] combined with rigorous analysis, Yuan and Hunt [11] observed
that the sequence E f (p) often decays to zero at an exponential rate, but were unable to
prove this in generality. They then asked whether it could be shown that E f (p) always
decays exponentially.

The purpose of this paper is to answer this question in the negative. We have the
following theorem.

THEOREM 1. Let σ : 6A → 6A be a subshift of finite type. There exists Hölder
continuous f : 6A → R such that E f (p) tends to 0 at a slower than stretched-exponential
rate: log E f (p) = o(pε) for every ε > 0.

We note that a result similar to Theorem 1 has recently been proved by Bressaud and
Quas in [5], in which the quantity inf1≤p≤n E p( f ) is considered. Bressaud and Quas were
able to obtain upper and lower bounds that are superior to those in the present article, but
with the weakness that their lower bound applies only along subsequences of integers n.

2. Notation and definitions
Let A be an irreducible aperiodic N × N matrix of zeros and ones. We define the shift
space associated with A to be the set

6A := {x = (xi )i≥1 : xi ∈ {1, . . . , N } and A(xi , xi+1) = 1 for all i ≥ 1},

and define the shift map σ : 6A → 6A by

(σ x)i = xi+1

for all i ≥ 1. Given θ ∈ (0, 1), we define the θ -metric dθ on 6A by

dθ

(
(xi )i≥1, (yi )i≥1

)
= θ inf{n≥1 : xn 6=yn}.

We say that a function f : 6A → R is θ -Hölder continuous if it is Lipschitz continuous
with respect to the metric dθ . We fix θ ∈ (0, 1) for the remainder of this paper.

We define a finite word to be a finite sequence ω = (ωi )
n
i=1 taking values in the

set {1, 2, . . . , N }. We say that ω = (ωi )
n
i=1 is compatible with the matrix A if

A(ωi , ωi+1) = 1 for all i < n. We define the length of the word (ω)n
i=1 to be n. We will

on occasion describe elements of 6A as infinite words. We say that finite words ω1, ω2 of
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equal length n are rotation equivalent if there exists a non-negative integer r < n such that
ω1

i = ω2
i+r whenever 1 ≤ i ≤ n − r , and ω1

i = ω2
i+r−n whenever n − r < i ≤ n. When ω1

and ω2 are rotation equivalent we write ω1
' ω2. Words of distinct lengths are never

rotation equivalent.
Given two words ω1 and ω2 with lengths n1 and n2, respectively, we define their

concatenation ω1
· ω2 to be the word of length n1 + n2 given by [ω1

· ω2
]i = ω1

i when
1 ≤ i ≤ n1, and [ω1

· ω2
]i = ω2

i when n1 + 1 ≤ i ≤ n1 + n2. Given a finite list of words
ω1, . . . , ωm , we denote the compound concatenation ω1

· ω2
· · · · · ωm by

∏m
k=1 ωk .

Concatenation is associative. If ω1, ω2 are finite words with lengths n1, n2 compatible
with A, their concatenation is compatible with A if and only if A(ω1

n1
, ω2

1) = 1.
For each p > 0, we let �p be the set of all words of length p which are compatible

with A. We let �p be the set of all words ω ∈ �p such that A(ωp, ω1) = 1. Note that
ω ∈ �p if and only if both ω ∈ �p and ω · ω ∈ �2p.

If x ∈ 6A, it is clear that σ px = x if and only if xi = xi+p for all i ≥ 1, if and only
if there exists ω ∈ �p such that xi+kp = ωi for all 1 ≤ i ≤ p and k ≥ 0. In this case we
write x = π(ω). This defines a relationship between the sets Fixp = {x ∈ 6A : σ px = x}

and �p, which is readily seen to be bijective. Moreover, we have π(ω1) = σ jπ(ω2) for
some j ≥ 0 if and only if ω1

' ω2.
If a = (ai )

n
i=1 is a finite word and b is either a finite word or an element of 6A, we write

a ≺ b if there is k ≥ 0 such that ai = bi+k for all 1 ≤ i ≤ n. In this case we say that a is a
subword of b.

3. Proof of Theorem 1
We begin with the following.

PROPOSITION 3.1. Let K = σ K be a closed non-empty subset of 6A, and define fK (x) =

−dθ (K , x) for all x ∈ 6A. Clearly fK is θ -Hölder continuous. For each ω ∈ �p we define

ξ(ω, K ) := inf
ω′'ω

{` > 0 : ∃ a ∈ �` such that a ≺ ω′ and ∀x ∈ K , a ⊀ x}.

Let p > 0, and suppose that supω∈�p
ξ(ω, K ) ≤ p. Then

E fK (p) ≥
1
p
θ

supω∈�p ξ(ω,K )
=

1
p

inf
ω∈�p

θ ξ(ω,K ).

Proof. Let p > 0 and ω ∈ �p, where ξ(ω, K ) ≤ p. We have

logθ sup
ω′'ω

d(π(ω′), K ) = logθ sup
ω′'ω

inf
x∈K

dθ (π(ω′), x)

= inf
ω′'ω

sup
x∈K

inf{` > 0 : x` 6= π(ω′)`}

= inf
ω′'ω

sup{` > 0 : ∃ x ∈ K such that xi = π(ω′)i ∀ 1 ≤ i < `}

= inf
ω′'ω

{` > 0 : ∃ a ∈ �` such that ai = π(ω′)i ∀ 1 ≤ i ≤ ` and ∀x ∈ K , a ⊀ x}

= inf
ω′'ω

{` > 0 : ∃ a ∈ �` such that a ≺ π(ω′) and a ⊀ x ∀ x ∈ K }

= inf
ω′'ω

{` > 0 : ∃ a ∈ �` such that a ≺ ω′ and a ⊀ x ∀ x ∈ K }

= ξ(ω, K ),
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where we have used ξ(ω, K ) ≤ p in the second-from-last equality. Since K is closed,
σ -invariant and non-empty, the Krylov–Bogolioubov theorem shows that there exists
µ ∈Mσ such that µ(K ) = 1. It follows that β( f ) = 0, and so

E fK (p) = inf
σ p x=x

1
p

p−1∑
j=0

d(σ j x, K )

≥
1
p

inf
σ p x=x

sup
0≤ j<p

d(σ j x, K )

=
1
p

inf
ω∈�p

sup
ω′'ω

d(π(ω′), K )

≥
1
p

inf
ω∈�p

θ ξ(ω,K ),

as required. 2

To prove Theorem 1, it therefore suffices to construct a non-empty compact set
K = σ K ⊆ 6A such that supω∈�p

ξ(ω, K ) = o(pε) as p → ∞. The remainder of this
section is dedicated to this task. We will construct the invariant set K recursively, using a
sequence of sets of words Mn of increasing length. The set K will then arise as a limit of
these sets.

Let M1 be a subset of �`1 for some positive integer `1 such that m1 = Card M1 is
divisible by 216. We require that M1 have the following properties.

Definition 3.2. There exists an integer P ≥ 1 and a word z = (zi )
P
i=1 ∈ �P such that:

(i) every ω ∈ M1 satisfies zi = ωi for all 1 ≤ i ≤ P;
(ii) if ω = ω1

· ω2 where ω1, ω2
∈ M1, and zi = ωi+r for all 1 ≤ i ≤ P , then either

r = `1 or r = 0;
(iii) A(ω1

`1
, ω2

1) = 1 for all ω1, ω2
∈ M1; that is, ω1

· ω2
∈ �2`1 for every pair ω1,

ω2
∈ M1.

The reader may verify that such a set M1 can be constructed for any prescribed m1 and
matrix A.

A sequence of sets Mn with cardinalities mn consisting of words of length `n will be
defined in an inductive fashion, starting with the set M1. We begin by introducing some
integer sequences which will be crucial to our construction.

Definition 3.3. Given an integer m1 divisible by 216, let q1 = t1 = m1/4. Define sequences
(mn)n≥1, (qn)n≥1 and (tn)n≥1 as follows. Given the integer tn , let mn+1 = 4tn and
qn+1 = (1/4)mn+1 = 4tn−1, and let τn+1 be the unique positive real number such that

τ
√

τn+1
n+1 = 4tn−1

= qn+1.

Then define

tn+1 = 4b(tn/
√

τn+1)c−1.

The key properties of these sequences are stated in the lemma below.
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LEMMA 3.4. For each n ≥ 1, we have tn | qn , mn/qn = 4 and tn ≥ 214. Moreover, the
sequence (tn)n≥1 satisfies tn/

√
tn+1 ≤ 16t1/4

n for all n ≥ 1 and

lim
n→∞

tn
tn+1

= 0.

Proof. The first two statements are clear. We consider the sequence (tn)n≥1; the definition
implies that

1
16τn+1 = 4(tn−1/

√
τn+1)−2

≤ 4b(tn/
√

τn+1)c−1
= tn+1 ≤ 4(tn/

√
τn+1)−1

≤ τn+1,

for every n ≥ 1. We proceed inductively. Given that tn ≥ 214, notice that
√

τn+1 log τn+1 = (tn − 1) log 4.

We thus have
tn =

√
τn+1 log4 τn+1 + 1 >

√
τn+1,

and therefore
log4 τn+1 < 2 log4 tn .

We deduce
√

tn+1 ≥
1
4
√

τn+1 =
tn − 1

4 log4 τn+1
≥

tn − 1
8 log4 tn

≥
1
8

t3/4
n −

1
8
,

where we have used the elementary inequality log4 t ≤ t1/4 for all t ≥ 16. Thus

tn+1 ≥
1
64 (t3/4

n − 1)2
≥ 2−6(221

− 211
√

2 + 1) > 214,

for every n ≥ 1, making it clear that tn/
√

tn+1 ≤ 16t1/4
n . One may easily use the above to

show that tn+1 ≥ tn + 1/64 for each n ≥ 2, which implies that tn → ∞; since for each n
we have

0 ≤
tn

tn+1
≤

4tn

t3/2
n − 2t3/4

n + 1
,

it follows that limn→∞ tn/tn+1 = 0 as required. 2

For an integer n ≥ 1, a finite word a = (ai )
m
i=1 and a finite or infinite word b,

we shall write a ≺n b if there is k ≥ 0 such that ai = bi+k`n for all 1 ≤ i ≤ m. The
distinction between ≺ and ≺n will be important since we will construct words ω ∈ Mn+1

as concatenations of words a, b, c, . . . ∈ Mn . For example, if a, b, c ∈ Mn , then it is true
that b · c ≺n a · b · c · a and c · b ⊀n a · b · c · a; however, the statement c · b ≺ a · b · c · a
could be either true or false, depending on the subword structure of the words a, b and c.

Given n ≥ 1 and the set Mn , we construct the set Mn+1 as follows. Recalling that
mn = 4qn , partition Mn into qn disjoint sets Ck

n of cardinality 4, where 1 ≤ k ≤ qn . For
each k, we will write Ck

n = {ck
j : 1 ≤ j ≤ 4}. Define

In =
{
(i1, i2, . . . , iqn ) ∈ {1, 2, 3, 4}

qn : im = im+tn for all 1 ≤ m ≤ qn − tn
}
.

For each qn-tuple (i1, . . . , itn ) ∈ In , we construct the word

ω(i1,...,iqn ) :=

qn∏
k=1

ck
ik
.
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Let Mn+1 = {ω(i1,...,iqn ) : (i1, . . . , iqn ) ∈ In}, then clearly

Card Mn+1 = Card In = 4tn = mn+1,

in accordance with Definition 3.4. We remark that Definition 3.2(iii) implies that
Mn ⊆ �`n for every n ≥ 1. The key features of the above construction are summarized
in the following lemma.

LEMMA 3.5. The following are direct consequences of the definition of the sets Mn .
(i) If

∏qn
k=1 ck

jk
∈ Mn , where n ≥ 2 and each ck

jk
∈ Ck

n−1, then ck
jk

∈ C1
n−1 if and only if

k = 1.
(ii) If ω1 = ck1

j1
· ck2

j2
with ck1

j1
∈ Ck1

n and ck2
j2

∈ Ck2
n , then there exists N > n and ω2 ∈ MN

such that ω1 ≺n ω2 if and only if k2 = 1 + k1 mod qn .
(iii) If ω1 =

∏k0+tn
k=k0

ck
jk

, where each ck
j ∈ Ck

n and k0 ≤ qn − tn with jk0 6= jk0+tn , then
ω1 ⊀n ω2 for all ω2 ∈ MN whenever N ≥ n + 1.

(iv) If ω1 ≺n ω2 ∈ Mn+1, ω1 ≺n ω3 ∈ Mn+1 and ω1 has length at least tn`n , then
ω2 = ω3.

(v) For each n ≥ 1 we have
`n+1 = qn`n =

1
4 mn`n

and hence

`n+1 = `1

n∏
k=1

qk .

The proof is clear. 2

The following lemma allows us to pass from the relation ≺ to the relation ≺n , and thus
make use of Lemma 3.5.

LEMMA 3.6. Let a = (ai )
`n
i=1 ∈ Mn and ω = (ωi )

`N
i=1 ∈ MN where n < N. Suppose that

there is r ≥ 0 such that ai = ωr+i for all 1 ≤ i ≤ `n . Then `n | r .

Proof. We first prove the case n = 1. Let ω =
∏m

k=1 ωk where each ωk
∈ M1, and

suppose ai = ωr+i for all 1 ≤ i ≤ `1. There exists k∗ such that k∗`1 ≤ r + i < (k∗
+ 2)`1

for all 1 ≤ i ≤ `1, so that if we let ω̂ = ωk∗

· ωk∗
+1, then zi = ai = ω̂i+r−k∗`1 for all

1 ≤ i ≤ P ≤ `1 by Definition 3.2(i). By Definition 3.2(ii) we have either r − k∗`1 = `1

or r − k∗`1 = 0, and so `1 | r as required.
We proceed by induction on n. Let a =

∏qn−1
k=1 âk and ω =

∏m
k=1 ω̂k , with each âk ,

ω̂k
∈ Mn−1. Let â1

= (â1
i )

`n−1
i=1 . Since â1

i = ωr+i for all 1 ≤ i ≤ `n−1, we have `n−1 | r
by the induction hypothesis. Since each ω̂k has length `n−1, it follows that there is
s = r/`n−1 > 0 such that

∏qn−1
k=1 âk

=
∏k=s+qn−1

k=s ω̂k . By Lemma 3.5(i) we have âk
∈ C1

n−1
if and only if k = 1, and similarly ω̂k

∈ C1
n−1 if and only if k ≡ 1 mod qn . Since

ω̂s+1
∈ C1

n−1 it follows that s ≡ 0 mod qn . Since r = s`n−1 and `n = qn−1`n−1, we
deduce that `n | r . 2

Henceforth, we shall say that a finite word ω is admissible if and only if it occurs as a
subword of some ωn ∈ Mn for some n (and hence for all sufficiently large n). We deduce
the following.
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COROLLARY 3.7. Let ω = (ωi )
p
i=1 be admissible. Let a, b ∈ Mn and write a = (ai )

`n
i=1,

b = (bi )
`n
i=1. If there are r, s > 0 such that ai = ωi+r , bi = ωi+s for all 1 ≤ i ≤ `n , then

`n | r − s.

We may now prove the next lemma.

LEMMA 3.8. The following constraints on admissibility hold.
(i) If ω = ck1

j1
· ck2

j2
with ck1

j1
∈ Ck1

n and ck2
j2

∈ Ck2
n , then ω is admissible if and only if

k2 = 1 + k1 mod qn .
(ii) If ω =

∏k0+tn
k=k0

ck
jk

with each ck
jk

∈ Ck
n and jk0 6= jk0+tn where k0 ≤ qn − tn , then ω is

not admissible.

Proof. Apply Lemma 3.5 and Lemma 3.6. 2

LEMMA 3.9. Let a, b ∈ Mn where n ≥ 2, and suppose that the word a · b is inadmissible.
Then a · b has an inadmissible subword of length less than or equal to 2tn−1`n−1.

Proof. Let a =
∏qn−1

k=1 ak and b =
∏qn−1

k=1 bk where each ak, bk
∈ Mn−1. Define u =∏qn−1

k=qn−1−tn−1+1 ak and v =
∏tn−1

k=1 bk , each being an admissible word of length tn−1`n−1.
Clearly u · v ≺ a · b. Suppose, for a contradiction, that u · v ≺ ω1 · ω2 = ω, say,
where ω1, ω2 ∈ Mn and ω is admissible. Let (u · v)i = ωi+r for all 1 ≤ i ≤ 2`n−1. By
Lemma 3.6, r = `n−1s for some s. Suppose that s ≥ qn ; then v ≺n ω2 and so ω2 = b by
Lemma 3.5(iv). Thus s = qn and hence u ≺n ω1 and ω1 = a. Therefore ω = a · b and so
is not admissible. It follows that u · v is inadmissible; this word has length 2tn−1`n−1 as
required. 2

LEMMA 3.10. Let ω be a word of length ` ≥ `n , where n ≥ 2. Then either ω '
∏m

k=1 ωk

with each ωk
∈ Ck

n−1, or there exists ω′
' ω which has an inadmissible subword of length

less than or equal to 3`n−1.

Proof. Suppose that for all ω′
' ω, every subword of ω′ of length 3`n−1 is admissible. Let

` = s`n−1 + r with 0 ≤ r < `n−1. We claim that there exist ωk
∈ Mn−1 and a word ω∗

of length r such that ω '
∏s

k=1 ωk
· ω∗. We will show that (ωi )

m`n−1
i=1 '

∏m
k=1 ωk for all

m ≤ s by induction on m.
Clearly, any admissible word of length 3`n−1 must include some a ∈ Mn−1 as a

subword, so ω must include such a subword. Taking a rotation equivalent of ω if necessary,
we deduce that there exists ω1

∈ Mn−1 such that ωi = ω1
i for all 1 ≤ i ≤ `n−1. This proves

the case m = 1.
Given that (ωi )

m`n−1
i=1 =

∏m
k=1 ωk with each ωk

∈ Mn−1, consider the word b = (bi )
2`n−1
i=1

defined by bi = ω(m−1)`n−1+i for all 1 ≤ i ≤ 2`n−1, which is well-defined as long as
m + 1 ≤ s. Since b has length 2`n−1 < 3`n−1, it is admissible and so there exist N , M ,
t > 0 and a =

∏M
k=1 ak

∈ MN with each ak
∈ Mn−1 such that bi = at+i for all 1 ≤ i ≤

2`n−1. By Lemma 3.6 we have t = `n−1t for some t , so that b = at+1
· at+2. Thus

(ωi )
(m+1)`n−1
i=m`n−1+1 = (bi )

2`n−1
i=`n−1+1 = at

∈ Mn−1 as required to prove the case m + 1. This
completes the induction step and proves our claim.
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Since for any ω′
' ω, every subword of ω′ with length less than or equal to 3`n−1 is

admissible, the word z = ωs
· ω∗

· ω1 must be admissible. By Corollary 3.7 this implies
`n−1 | r and hence r = 0, thus completing the proof. 2

LEMMA 3.11. Let ω =
∏m

k=1 ωk for some ω1, . . . , ωm
∈ Mn with m ≥ 1. Then at least

one of the following holds:
(a) there exists ω′

' ω such that ω′ has an inadmissible subword with length less than
or equal to 2`n−1tn−1;

(b) there exists ω′
' ω such that ω′ has an inadmissible subword with length less than

or equal to (1 + tn)`n , and m ≥ qn; or
(c) there exist m̂ > 0 and ω̂1, . . . , ω̂m̂

∈ Mn+1 such that m = `n+1m̂ and ω '
∏m̂

k=1 ω̂k .

Proof. Suppose that case (a) does not hold. Writing ω =
∏m

i=1 cki
ji

with every cki
ji

∈ Cki
n ,

this assumption implies, via Lemma 3.8(i) and Lemma 3.9, that for every i < m we have
ki1 = 1 + ki mod qn . Clearly, there exists a rotation equivalent of ω which includes the
word ckm

jm
· ck1

j1
. Again by Lemma 3.8(i) and Lemma 3.9, our assumption that case (a) does

not hold implies that this word is admissible, and hence k1 = km + 1 mod qn . It follows
that the sequence ki must take every value in the range 1, . . . , qn an equal number of
times. Taking a rotation equivalent if necessary, we have

ω =

S∏
s=1

qn∏
k=1

ck
jk,s

for some integer S ≥ 1 and some sequence jk,s . Note in particular that m ≥ qn (as required
for (b) to hold).

We now suppose also that (b) does not hold. To show that ω is a concatenation of
elements of Mn+1, and hence that (c) holds, it remains to show that jk,s = jk+tn ,s for all
1 ≤ s ≤ S and 1 ≤ k ≤ qn − tn . If this is not the case, then ω must include a subword of
the form

k0+tn∏
k=k0

ck
j,s

for some fixed s such that jk0,s 6= jk0+tn ,s , which is inadmissible by Lemma 3.8(ii) and has
length (1 + tn)`n , implying the case (b). 2

Combining the above lemmata, we obtain the following.

PROPOSITION 3.12. Define a set K ⊆ 6A by letting x ∈ K if and only if every subword
of x is admissible. Then K is closed, satisfies σ K = K , and is non-empty. Moreover,

sup
ω∈�p

ξ(ω, K ) = o(pε)

for every ε > 0.

Proof. That K is a non-empty subset of 6A follows from the fact that Mn ⊆ �`n for every
n ≥ 1. The proof that K is closed and σ K = K is straightforward. Given ω ∈ �p and
`n ≤ p < `n+1, we will attempt to bound the quantity

ξ(ω, K ) = inf
ω′'ω

{` > 0 : ∃ a ∈ �` such that a ≺ ω′ and a is not admissible}.
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Suppose that ξ(ω, K ) > 3`n−1. Then by Lemma 3.10 we have ω '
∏m

i=1 cki
ji

, where each

cki
ji

∈ Cki
n−1 and m = p/`n−1. Lemma 3.11 then implies that either ξ(ω, K ) ≤ 2`n−2tn−2,

or ξ(ω, K ) ≤ `n−1(1 + tn−1), or ω '
∏m̂

i=1 cki
ji

where each cki
ji

∈ Cki
n and m̂ = p/`n . In the

last of these three alternatives, apply Lemma 3.11 again to see that, since p < `n+1, either
ξ(ω, K ) ≤ 2`n−1tn−1, or p ≥ `nqn and ξ(ω, K ) ≤ `n(1 + tn) ≤ 2ptn/qn . We conclude
that, in any case,

ξ(ω, K ) ≤ max
{

3`n−1, 2`n−2tn−2, `n−1(tn−1 + 1), 2`n−1tn−1,
2ptn
qn

}
= max

{
2`n−1tn−1,

2ptn
qn

}
.

Hence, for every n ≥ 3 and ε > 0,

sup
`n≤p<`n+1

sup
ω∈�p

1
pε

ξ(ω, K ) ≤ max
{

2`n−1tn−1`
−ε
n , 2

`1−ε
n+1tn
qn

}
≤ 2 max

{
`1−ε

n−1tn−1q−ε
n−1, `1−ε

n tnq−ε
n

}
= 2`1−ε

n tnq−ε
n .

To complete the proof, therefore, it suffices to show that tnq−ε
n `n → 0 for every ε > 0.

Using Lemma 3.5(vii), Lemma 3.4 and Definition 3.3, we have

log4(tnq−ε
n `n) ≤ log4

(
4(tn−1/

√
τn)−εtn−1q1`1

n−1∏
k=2

qk

)

≤ log4(q1`1) +
tn−1
√

tn
− εtn−1 +

n−2∑
k=1

tk

= −εtn−1 +

n−2∑
k=1

tk + O(t1/4
n−1).

Elementary analysis then shows that since tn−1/tn tends to zero,
∑n−2

k=2 tk = o(tn−1)

and so
log4(tnq−ε

n `n) → −∞,

as required. 2
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