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 SUMMARY 

 

Myocardial restoration via cell therapy and cardiac tissue engineering is limited by 

impaired graft survival. To limit the sequelae of myocardial ischemia it is crucial to 

counteract oxidative stress while promoting neovascularization in the area of injury 

and within the bioengineered tissue. We hypothesized that:  (1) supplementation with 

ascorbic acid (AA) improves donor cell viability in vitro and in vivo, as well as 

angiogenesis and remodeling of thick myocardial artificial grafts (MAG), suitable for 

implantation and myocardial repair; and (2) epicardial implantation of an ascorbic 

acid- enriched myocardial artificial graft, which has been pre-vascularized in the 

recipients‟ own body, promotes restoration of the ischemic heart.  

In experiments conducted to test our first hypothesis, MAG were generated in vitro by 

populating an FDA-approved gelatin scaffold with GFP-Luciferase- expressing rat 

cardiomyoblasts (H9C2-GFP-Fluc). We found that MAG supplementation with 

ascorbic acid (5 or 50 µmol/L) improved cell survival significantly, reduced apoptosis, 

and enhanced H9C2 cell myogenic differentiation in vitro. Furthermore, a novel 

model of graft prevascularization – a renal pouch model, which provides the graft 

with blood vessels of autologous origin-, was developed in healthy Wistar rats. In our 

in vivo model using the renal pouch, AA enrichment improved donor cell survival and 

promoted neovascularization within the MAG. 

To test our second hypothesis, an ascorbic acid- enriched pre-vascularized MAG 

was implanted as a patch into the same rat‟s ischemic heart following myocardial 

infarction (MI). MAG-treated animals (MAG group, n=6) were compared to untreated 

infarcted animals as injury controls (MI group, n=6) and sham operated rats as 

healthy controls (healthy group, n=7).  Echocardiographic, hemodynamic, and 

histological assessments 4 weeks after implantation indicated that AA-enriched pre-
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vascularized- grafts induced a robust angiogenic response in ischemic rat hearts, 

attenuated left ventricular (LV) remodeling and preserved LV function.   

In conclusion, in the current study we have indentified ascorbic acid as a suitable 

supplement to enhance cell survival and neovascularization in tissue engineering 

based therapies.  Furthermore, we demonstrated the importance of promoting 

angiogenesis for successful post-ischemic myocardial repair using three-dimensional 

cardiac patches.  

With our approach, viability support (cell therapy and antioxidant effects), structural 

support (prevention of remodeling) and revascularization (stimulation of 

angiogenesis) have been addressed in the same setting in an acute model of 

myocardial repair. Also, the utilization of FDA approved compounds, as well as MAG 

vascularization with blood vessels of autologous origin, makes this strategy plausible 

for use in the clinical arena and applicable to various donor cell types (ideally of 

autologous origin), other organs and regenerative interventions.  
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1 Introduction 

1.1 Background 

Congestive heart failure resulting from myocardial infarction (MI) and ischemic loss of 

functional cardiomyocytes remains the leading cause of death in the developed 

world. Ischemic heart disease causes over 400,000 deaths per year in the USA alone 

[Lloyd-Jones, 2010]. Coronary artery disease is a major risk for heart failure in 

developed societies. Myocardial infarction and the irreversible loss of functional 

cardiomyocytes accompanied by scar tissue formation, typically lead to heart failure 

(HF). The global prevalence of patients developing heart failure has augmented due 

to the increase in the aging population and to improvements in survival post-

myocardial infarction derived from therapeutic advances [Kannel, 2000, Miller, 2001]. 

Though advanced therapies to treat heart failure have reduced mortality of patients 

with moderate heart failure, heart transplantation remains the only therapy capable to 

improve life quality and survival in patients with end-stage heart failure [Boilson, 

2010, Lietz, 2005, Miller, 2001].  Yet, the global shortage of available organ donors 

remains a limitation to broad utilization of heart transplantation and currently only few 

patients with terminal heart failure benefit from this strategy [Boilson, 2010]. 

Tissue engineering and regenerative medicine have emerged as strategies that may 

revolutionize existing therapies for failing organs.  The main aim of tissue engineering 

is to replace injured tissues and regenerate organs through the assembly of cells with 

biomaterial scaffolds to be implanted into the area of injury [Langer, 1993, Leor, 

2005, Vacanti, 2006]. Through this technology, functional bioartificial tissues can be 

manufactured to replace diseased native ones. Notably, during the past decade 

considerable research efforts in the field of regenerative medicine have been focused 

on finding the ideal cell type to mediate myocardial repair. Cell therapy has been 

explored as means to regenerate ischemic myocardium and an increasing body of 
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evidence suggests that several types of cells (including stem cells) have the capacity 

to partially restore infarcted myocardium following direct injection into the area of 

ischemic injury [Fukuda, 2003, Kofidis, 2004, Martinez, 2009, Nagaya, 2005, 

Zimmermann, 2007].   

However, the success of cell therapy (i.e. intramyocardial delivery of stem cells or of 

any other cell type) and tissue engineered-based therapies is limited by poor cell 

survival in the ischemic area of the heart [Muller-Ehmsen, 2002, Reinecke, 2002], 

and low cell retention [Wang, 2010].   The infarcted myocardium is a harsh hypoxic 

environment that is not conductive to cell survival. It has been reported that more 

than 70% of donor cells die during the first 48 hr after injection in the ischemic heart 

[Muller-Ehmsen, 2002] . In addition, mechanical leakage and vascular wash out also 

contribute substantially to cell loss upon intramyocardial injection [Teng, 2006].  It 

has also been reported that poor cell retention due to early cell migration to other 

remote organs contributes to donor cell loss after injection [Toma, 2002, Zhang, 

2007].  Cell retention and delivery in the area of injury may be improved by using the 

tissue engineering approach, as cells are seeded and entrapped into a biomaterial 

scaffold. Yet, the bioengineered myocardial graft strategy faces significant challenges 

towards its practical therapeutic application in the clinical arena.  Many issues have 

to be addressed to prevent the deleterious effects that myocardial ischemia has on 

the heart structure. Injured cardiomyocytes are replaced by fibrous tissue (myocardial 

remodeling), which involves extensive changes in ventricular geometry [Pfeffer, 

1990].  This ultimately contributes to heart failure progression and poor prognosis 

[White, 1987]. Furthermore, following graft implantation, cells in three-dimensional 

cardiac patches will be challenged by a pro-apoptotic environment and an intense 

inflammatory response arising from the surrounding ischemic tissue [Frangogiannis, 

2008, Robey, 2008].  Likewise, hypoxia particularly in the core of the bioengineered 

graft, is detrimental to donor cell survival [Bursac, 1999]. Vascularization of 3-D grafts 
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is a fundamental goal in  tissue engineering-based strategies for myocardial repair, 

as it is important to prevent necrosis within the core of the graft, and it plays an 

important role in  cell survival and organization [Caspi, 2007].  However, 

bioengineering approaches to myocardial repair have mainly focused on allogeneic 

multicellular patches to achieve formation of primitive blood vessel (tube-like 

structures) [Bursac, 2009, Lesman, 2010a, Sekiya, 2006, Tan, 2009].  A major 

limitation in cardiac tissue engineering is the in vitro generation of three-dimensional 

constructs with a scale suitable for myocardial repair (i.e. more than 1 cm thick). As 

most bioreactors are unable to supply enough nutrients and have diffusional 

constraints on oxygen supply  to engineered grafts in vitro [Radisic, 2007], the need 

for incorporation of blood vessels (i.e. via in vitro or in vivo-prevascularization), as 

well as the stimulation of in situ angiogenesis becomes obvious. 

Most of the approaches explored for post-ischemic heart regeneration claim a 

positive effect on left ventricular (LV) function and mild stimulation of 

neoangiogenesis regardless of the cell type used for the therapy, and despite the 

massive early donor cell death after implantation [Bursac, 2009, Leor, 2005, 

Martinez, 2009].  Following MI, inflammation- and hypoxia- induced compensatory 

angiogenesis takes place. This process eventually fails and the subsequent impaired 

capillary growth as well as the resultant oxidative stress may be an important 

contributor to HF [Tabibiazar, 2001]. Cardiomyocytes are an important source of 

proangiogenic factors, and impaired angiogenesis has been shown to play a key role 

in the development of heart failure [Carmeliet, 1999, Hilfiker-Kleiner, 2006].   

Furthermore, cardiac and vascular endothelial cells, release a variety of auto- and 

paracrine agents which may affect cardiac metabolism, contractility, and rhythmicity 

[Brutsaert, 2003, Narmoneva, 2004].  

Thus, it is necessary to design strategies to counteract oxidative stress while 

promoting neovascularization in the area of injury and within the bioengineered 
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tissue.  Given the relevance of hypoxia and oxidative stress for the fate of cardiac 

cells after ischemic injury as well as within thick bioengineered constructs, we 

postulate that ascorbic acid (AA) is a factor which might reduce cell death in 

myocardial grafts both in vitro and in vivo. This hydrophilic antioxidant scavenges 

toxic free radicals and other reactive oxygen species (ROS) efficiently [Arrigoni, 

2002]. Furthermore, attenuation of hypoxia-induced apoptosis after ascorbic acid 

treatment in vitro has been demonstrated in HL-1 cardiomyocytes [Vassilopoulos, 

2005], and endothelial progenitor cells [Fiorito, 2008]. Ascorbic acid also exerts a 

stimulatory effect on angiogenesis through increased  type IV collagen synthesis by 

endothelial cells [Telang, 2007]. It has been shown that human umbilical vein 

endothelial cells (HUVECs) production of type IV collagen is enhanced when 

ascorbic acid is added in vitro.  At physiological concentrations (up to 100 mol/L), 

ascorbic acid induces tube formation by HUVECs in cultured extracellular matrix 

(ECM) [Telang, 2007]. Furthermore, large doses of ascorbic acid induce superior 

mesenchymal tissue healing in rats. The latter results from early angiogenesis 

induction and increased collagen synthesis [Omeroglu, 2008]. Finally, ascorbic acid 

is available ubiquitously, is an essential part of our diet at a global scale and can be 

easily administered in large doses as a therapeutic supplement in various 

formulations. However, the potential of ascorbic acid for cell therapy and cardiac 

tissue repair has not been exploited yet.    
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1.2 Ischemic Heart Disease and Heart Failure 

1.2.1 Epidemiology 

Ischemic heart disease (IHD) or myocardial ischemia is a disease characterized by 

decrease of blood supply to the myocardium usually due to coronary artery disease 

(CAD).  The ischemic loss of cardiomyocytes derived from myocardial infarction and 

the subsequent development of heart failure constitute the most common cause of 

death worldwide. Ischemic heart disease claims more lives each year than cancer, 

chronic lower respiratory disease, and accidents together [Lloyd-Jones, 2010]. Heart 

failure affects more than 5 million patients, and IHD causes over 400,000 deaths per 

year in the USA alone [CDC, 2009, Lloyd-Jones, 2010] (Figure 1.1). It has been 

estimated that around 10% of all patients with heart failure have advanced disease, 

which is associated with high mortality and poor life quality.  In Singapore, IHD has a 

significant one-year mortality of 20.8%, and is the major contributor to disease 

burden [WHO, 2010], and premature mortality burden [Phua, 2009]. 

Heart failure (HF) is a major healthcare burden  with an incidence  around 10 per 

1000 persons older than 65 years [Goldberg, 2010].  It has been estimated that in 

2010 about 470,000 Americans will have a new ischemic coronary event. According 

to recent statistics, the percentage of population aged 40-69 with a first MI who will 

have HF in 5 years is 7% of men and 12% of women.  Whereas 22% of men and 

25% of women of individuals >70 years will develop heart failure within 5 years after 

MI [Lloyd-Jones, 2010]. In spite of combination pharmacological therapy and 

advanced surgical treatment, 59% of men and 45% of women will die within 5 years 

after heart failure is diagnosed.  

The main risk factors associated with heart failure are hypertension, Type 2 diabetes 

mellitus, hyperlipidemia, and smoking.  The latter are also independent risk factors 
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for CAD, which  constitutes the most common risk factor for heart failure [Goldberg, 

2010].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The global prevalence of patients developing heart failure has risen due to the 

increased number of the aging population and to improvements in survival post-

myocardial infarction derived from therapeutic advances [Kannel, 2000, Miller, 

2001].Neuroendocrine activation in heart failure has become the target of modern 

pharmacotherapy, and  neurohormonal antagonists have now been established as 

the cornerstone of HF treatment strategies. The combined use of angiotensin 

converting enzyme (ACE) inhibitors and beta-blockers has shown to be safe and 

effective as initial therapy in patients with systolic heart failure or left ventricular 

Figure 1.1 Ischemic heart disease mortality  in the USA between 1999 and 
2006, according to the Centre for Disease Control [CDC, 2009]. 
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dysfunction following MI. On the other hand, recent clinical evidence suggests that 

“triple therapy” (i.e.beta-blocker, ACE inhibitor, plus an angiotensin receptor inhibitor 

or aldosterone antagonist can benefit certain patients with advanced systolic 

dysfunction [Jneid, 2007]. 

Though mortality in patients with moderate heart failure has been reduced through 

the utilization of advanced treatmentssuch as combined pharmacological therapy 

[Arroll, 2010], interventional and surgical revascularization, as well as the utilization 

of “destination therapies” (i.e. temporary mechanical support/ left ventricular assist 

devices used as palliative therapy in  patients with end-stage heart failure who are 

not eligible for transplantation because of advanced age or comorbidities), heart 

transplantation remains the only therapy capable to improve life quality and survival 

in patients with end-stage heart failure [Boilson, 2010, Lietz, 2005, Miller, 2001].   

Cardiac transplantation remains the final therapeutic option for the treatment of 

irreversible end-stage heart failure in all age groups [Koerner, 2000] with a true 

prospect for life extension and improvement of life quality.  The most frequently 

reported indication for heart transplantation in the US is coronary artery disease 

(44.8%).  The one-year survival for heart transplants in US is 82%, whereas the long-

term survival (at 17 years) drops to 22% [Bennett, 2000]. Though cardiac 

transplantation may have complications related to immunosupression and long-term 

failure of transplanted organs [Hosenpud, 1997, Hunt, 1998], it remains the sole life-

saving therapy for patients with end-stage HF not responsive to conventional 

medications or surgeries [Mancini, 2010].  However the global shortage of donor 

organs restricts cardiac transplantation [Boilson, 2010, Hosenpud, 2000], and with 

the scarcity of donors it is expected that the trend for transplantation of only the 

sickest patients requiring continuous inotropic and/or mechanical support will 

continue [Mancini, 2010].   
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1.2.2 Pathophysiology 

1.2.2.1 Myocardial Dysfunction 

Heart failure is defined as the structural and functional impairment of the heart such 

that it is unable to pump enough blood to fulfill tissue metabolic requirements at 

normal LV volumes and/or filling pressures.  HF may develop as a result of (1) 

impaired ventricular contractility, (2) increased afterload (i.e. ventricular wall tension 

during contraction), and (3) impaired ventricular filling [Shah, 2007].  Systolic 

dysfunction resulting from loss of the ventricle‟s intrinsic inotropy (impaired 

ventricular contractility) is predominantly caused by ischemic heart disease, and is 

seen in about two thirds of patients with heart failure.  Diastolic dysfunction is a 

ventricular filling impairment that is commonly caused by “stiffening” of the 

myocardium (the ventricle becomes less compliant). 

In general, the changes in cardiac function associated with heart failure include 

systolic dysfunction, diastolic dysfunction, or the presence of both, which ultimately 

lead to a fall in cardiac output (that is the volume of blood ejected by the left ventricle 

per minute). Cardiac dysfunction induces compensatory mechanisms aimed at 

maintaining cardiac output and organ perfusion.  The compensatory effect is 

achieved through neurohumoral and autonomic changes that induce cardiac muscle 

remodeling and hypertrophy, as well as vasoconstriction and augmented 

intravascular volume [Jackson, 2000]. Furthermore, the Frank Starling mechanism is 

activated to increase stroke volume, through the elevation of the LV end-diastolic 

pressure.  This compensatory increase in left ventricular end-diastolic pressure and 

the subsequent increase in circulating volume may result in pulmonary venous 

congestion and fluid transudation to the lungs (pulmonary edema). 
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1.2.2.2 Ventricular Remodeling 

Remodeling is defined as adaptive  changes  that affect the organization of the 

myocardium  allowing the heart to adjust to alterations in mechanical, chemical and 

electrical signals [Souders, 2009]. Remodeling takes place following extensive 

myocardial infarction and the ensuing impairment in cardiac contractility. During the 

scar maturation phase after myocardial infarction, vascular cells undergo apoptosis 

as a collagen-based scar is formed. The extent of remodeling depends on the size of 

the infarct, but is also directly affected by the structural changes associated with 

infarct healing [Frangogiannis, 2008].  Neurohormonal activation leads to regional 

hypertrophy of the non-infarcted segment, with expansion of the infarcted area 

(regional LV wall thinning and dilatation) [Jackson, 2000]. The underlying mechanism 

leading to this enlarged left ventricular size and geometrical change (spherical 

shape) likely stems from the loss of muscle mass and a resultant stretch of 

compensatory remote fibers within unscarred muscle [Buckberg, 2006a]. The initial 

effect of compensatory hypertrophy in the non-ischemic myocardium normalizes wall 

stress and has a short-term beneficial effect on LV function [Margulies, 2002].  

However, the increased collagen deposition and decreased capillary density 

associated with the LV remodeling process may contribute to long-term LV 

dysfunction through increased LV dilation, decreased cardiac output, along with 

increased hemodynamic overloading, and myocardial arrhythmogenicity [Mann, 

2010]. The renin-angiotensin system (RAS) plays an important role in hemodynamic 

hemostasis through short-term vascular and renal effect.  Chronic RAS activation has 

involved in the pathogenesis of cardiac remodeling and failure. 
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1.2.3 Molecular and Cellular Mechanisms in Heart Failure 

At the molecular level, pathological heart hypertrophy is characterized by re-

activation of fetal stage genes that regulate cardiac contractility and Calcium usage 

[Hilfiker-Kleiner, 2006].  Likewise, the activation of signaling pathways in response to 

stress signals has been associated with adaptive and maladaptive hypertrophy, 

cardiac fibrosis and apoptosis, all of which promote heart failure.  

The main cellular constituents of the heart consist of fibroblasts and cardiomyocytes. 

However, other cell types such as endothelial cells and vascular smooth muscle cells 

play an important role in cardiac homeostasis and the heart‟s responses to electrical, 

mechanical and chemical factors. Furthermore, transient cell populations (i.e. 

lymphocytes, mast cells, and macrophages) can interact with the permanent cell 

types and affect cardiac function [Souders, 2009].  Following cardiac injury, 

fibroblasts play a key role in the remodeling process due to their ability to produce 

ECM. Post-ischemic chemical signals (e.g. cytokines, and growth factors) produce 

changes in fibroblast gene expression, and induce cell migration to the area of 

ischemia to support wound healing and scar formation. Initially, this process is critical 

to the reparative wound healing response; yet, over time, these changes produce 

fibrosis and reduce cardiac function [Souders, 2009]. 

A growing body of evidence suggests that inflammatory signaling and bioactive 

molecules (cytokines) also contribute to the development of heart failure. It has been 

shown that TNF- induces apoptosis in cardiomyocytes [Krown, 1996], and is a 

cardio-depressant [Muller-Werdan, 1997].  Levels of circulating TNF-  are increased 

in patients with heart failure and is a marker for bad prognosis due to its toxic effects 

on the heart and the circulation [Mann, 2001]. Neurohormonal and sympathetic 

activation are the pathophysiological hallmark of acute and chronic HF. The renin-

angiotensin system is a key mediator in cardiac remodeling, and encompasses a 
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cascade of enzymatic reactions resulting in the formation of Angiotensin II (Ang II).  

Ang II causes vasoconstriction and has multiple pro-fibrotic effects in the heart that 

include promotion of fibroblast proliferation and adhesion, as well as synthesis of 

extracellular matrix proteins through activation of the Ang II type I receptor (AT1R).  

Also, TGF1 acts downstream  of Ang II  promoting cardiac fibrosis  [Schnee, 2000].  

Aldosterone is another important component of the RAS. Stimulated by Ang II, 

aldosterone is released to maintain fluid balance. Its increased levels during heart 

failure lead to water and sodium retention [Swedberg, 2000].  Furthermore, 

aldosterone plays a key role in adverse remodeling, collagen synthesis and 

endothelial dysfunction [Dawson, 2004, Falkenstein, 2000]. Likewise, increased 

plasma levels of the vasoactive peptides urocortin-1 and entodothelin-1 have been 

associated with severe diastolic ventricular dysfunction and poor prognosis [Tang, 

2010]. On the other hand, natriuretic peptides including atrial natriuretic peptide, 

brain natriuretic peptide, and C- type natriuretic peptide are up-regulated during 

cardiac stretch and cardiac injury,  and seem to have a protective effect through 

inhibition of cardiac remodeling through regulation of fibroblast proliferation [Jarvis, 

2006].  

 

1.2.4 Oxidative Stress during Heart failure 

Evidence has demonstrated the increased myocardial production of reactive oxygen 

species (ROS) during heart failure [Sam, 2005].  ROS include the free radicals 

superoxide anion (O2
•−) and hydroxyl (OH•) as well as hydrogen peroxide (H2O2).  

The process of remodeling may also be driven by (ROS)-dependent pathways. 

Cellular levels of ROS and therefore their deleterious effects are regulated by various 

antioxidant systems (e.g. catalase, superoxide dismutases, glutathione peroxidases, 

and various vitamins) [Nabeebaccus, 2010].  The imbalance between ROS and 
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antioxidants is known as oxidative stress. The latter is likely  to be involved in critical 

aspects related to the development and progression of heart failure [Hilfiker-Kleiner, 

2006].  In particular it seems that NADPH oxidase-derived ROS play an important 

role in cardiac remodeling through activation of mitogen kinases (e.g. Akt, 

Ras/MAPK) and transcription factors (e.g. STAT, NFB) that produce cardiac 

hypertrophy. Similarly, NADPH oxidase-derived ROS activate pro-fibrotic genes that 

contribute to fibrosis and subsequent dilation [Nabeebaccus, 2010].  Moreover, ROS 

produce mitochondrial dysfunction leading to cardiomyocyte apoptosis.  Activation of 

apoptotic pathways are involved in cardiomyocytes‟ cell loss not only during acute 

ischemia, but also during heart failure.  In contrast to the copious amount of cells that 

undergo apoptosis during acute ischemia; heart failure is associated with low but 

abnormally sustained levels of cardiomyocyte apoptosis.  Furthermore, evidence 

suggests that apoptosis also has an effect on cardiomyocyte remodeling and 

contractility [Hilfiker-Kleiner, 2006]. 

 

1.2.5 Angiogenesis in the Ischemic Heart 

Angiogenesis is defined as the sprouting of blood vessels from pre-existing 

capillaries.  Following myocardial ischemia, transient enhancement of blood flow can 

originate from angiogenesis or from the recruitment of coronary collaterals 

[Tabibiazar, 2001].  Following MI, inflammation- and hypoxia- induced compensatory 

angiogenesis takes place. The major triggers of this process include mechanical (e.g. 

increased blood flow and sheer stress and stretch of the myocardium due to increase 

in LVEDV), chemical (e.g. hypoxia-induced up-regulation of VEGF)  and molecular 

factors (e.g. pro-angiogenic growth factors and inflammation) [Al Sabti, 2007].  Pre-

clinical studies have shown that the presence of inflammatory cells, such as 

macrophages and neutrophils is sufficient to produce angiogenesis [Lin, 2006, 
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Sunderkotter, 1991]. The recruitment of inflammatory cells following myocardial 

infarction (i.e. macrophages, monocytes and platelets), induces the expression of 

VEGF and FGF.  On the other hand, VEGF can stimulate and recruit other 

macrophages to increase inflammatory response, and in this way, stimulate more 

angiogenesis [Al Sabti, 2007].  However, this process of compensatory post-ischemic 

angiogenesis eventually fails and the subsequent impaired capillary growth as well 

as the resultant oxidative stress may be an important contributor to HF [Tabibiazar, 

2001]. Cardiomyocytes are an important source of proangiogenic factors, and 

impaired angiogenesis has been shown to play a key role in the development of 

heart failure in animal models [Carmeliet, 1999, Hilfiker-Kleiner, 2006]. 

 

1.3 Cardiac Tissue Engineering and Cell Therapy 

The heart is an organ with restricted regenerative capacity. Though a new paradigm 

which confers self-regeneration potential to the heart -an organ believed to be 

terminally differentiated-, has been introduced by the identification of cardiac stem 

cells [Beltrami, 2003, Messina, 2004], its regenerative capability cannot compensate 

for cell loss during MI and HF.  Tissue engineering and regenerative medicine have 

emerged as strategies that may revolutionize existing therapies for the failing heart. 

The main aim of tissue engineering is to replace injured or damaged tissues and 

regenerate organs through the assembly of cells into biomaterial scaffolds to then be 

implanted into the area of injury [Langer, 1993, Leor, 2005, Vacanti, 2006]. Through 

this technology, functional bioartificial tissues can be manufactured to replace 

diseased native ones.  

Cell therapy has also been explored as means to regenerate ischemic myocardium. 

This approach focuses on re-population of the ischemic heart with healthy cells via  

direct injections into the scarred myocardium. During the past decade substantial 



 
Chapter 1 Introduction 

 

15 
 

research efforts in the field of regenerative medicine have been focused on finding 

the ideal cell type to mediate myocardial repair [Martinez, 2009]. A growing body of 

evidence suggests that several types of cells have the capacity to partially restore 

infarcted myocardium [Fukuda, 2003, Kofidis, 2004, Martinez, 2009, Nagaya, 2005, 

Zimmermann, 2007]. Pre-clinical evidence has widely supported the paracrine 

hypothesis of stem cell action, which proposes that the beneficial effects of adult 

stem cell implantation is attributable to cardioprotection that leads to repair of 

ischemic myocardium rather than de novo regeneration by cardiomyogenic 

differentiation [Gnecchi, 2005].  On the other hand, most clinical trials so far have 

focused on using both autologous skeletal myoblasts and diverse bone marrow-

derived cell subsets (mononuclear cells, hematopoietic progenitors, mesenchymal 

stem cells) in acute myocardial infarction, refractory angina and chronic heart failure 

patients [Dobert, 2004, Menasche, 2010, Schachinger, 2004, Schaefer, 2009, 

Wollert, 2004]. Yet, pre-clinical and clinical studies using bone marrow adult stem 

cells have failed to demonstrate that cell therapy elicits a sustained large-scale long-

term positive effect on heart function [Meyer, 2009, Schaefer, 2009], while therapies 

using skeletal myoblasts have lead to sustained ventricular arrhythmias [Menasche, 

2005].  

The therapeutic success of post-ischemic  stem cell implantation - and virtually of any 

other cell type- is limited by poor cell survival in the ischemic myocardium [Muller-

Ehmsen, 2002, Reinecke, 2002], and low cell retention [Wang, 2010]. The ischemic 

or failing heart encloses a harsh hypoxic environment that is not conductive to cell 

survival, and it has been reported that more than 70% of cells die during the first two 

days after injection into the heart [Muller-Ehmsen, 2002]. Furthermore, post-injection 

mechanical leakage and vascular wash out may also account for a large amount of 

cell loss [Teng, 2006].  Poor cell retention due to early stem cell migration to other 

remote organs such as lungs, liver, and spleen immediately after injection has also 
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been observed [Dai, 2009, Toma, 2002, Zhang, 2007].  However, these issues may 

be improved by using the cardiac tissue engineering approach, as this strategy may 

offer homogeneous cell delivery in a three-dimensional environment while providing 

structural support (scaffold) to the myocardial area of ischemic injury [Bursac, 2009, 

Dai, 2009, Leor, 2005, Martinez, 2009, Wang, 2010]. 

 

1.3.1 Cardiac Tissue Engineering Strategies 

Strategies of cardiac tissue engineering are classified as 1) in vitro and 2) in vivo.  

The in vitro strategy involves the fabrication of a three-dimensional bioengineered 

myocardial patch in a culture dish or bioreactor.  Tissues are constructed from a cell- 

seeded scaffold or biomaterial gel, as well as by the generation of scaffold-free cell 

sheets.  The in vivo tissue engineering approach involves in situ generation of tissue 

by either implanting cell seeded or acellular scaffolds in the epicardium, or by 

injecting hydrogels with or without cells intramyocardially  [Kofidis, 2005, Leor, 2005].   

The in vitro approach offers  good control of construct shape and size but it is limited 

by size constraints, since three dimensional constructs generated in vitro may 

undergo core necrosis in vitro or after transplantation in the area of ischemic injury.  

 

1.3.1.1 Tissue Engineered Three Dimensional Approaches in Myocardial 

Restoration 

A number of works have emerged during the last decade and various biomaterials 

and cell types have been used to construct three dimensional grafts destined for 

myocardial repair. In vivo studies indicate that regardless of the kind of cells or 

scaffold material used, three-dimensional tissue implantation into the area of 

myocardial injury improves heart function to some extent [Martinez, 2009].   A 

summary of the various strategies used to fabricate 3-D cardiac patches for 
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myocardial repair and their advantages and disadvantages are displayed in Table 

1.1.  Heart function improvement following the epicardial implantation of a 

bioengineered graft containing adult stem cells –or any other cell type-, is not likely to 

be associated with induction of cardiomyocyte regeneration, cell engraftment or cell 

differentiation.  The beneficial effect of bioengineered patches on cardiac function 

seems to be mediated by proangiogenic and paracrine mechanisms which may 

attenuate left ventricular remodeling [Frangogiannis, 2008].  

 

1.3.1.1.1 Myocardial Patches- Porous Biomaterials 

Tissue engineers utilize scaffold materials that are biocompatible and biodegradable 

to generate patches for epicardial implantation in the area of myocardial injury.  Cells 

can be seeded in a porous material which will thereby provide structural support.  

Three dimensional porous scaffolds promote neo-tissue formation by providing 

surface that facilitates cell attachment, migration, proliferation and generation of 

tissue through the region where it  is required [Muschler, 2004].  For the fabrication of 

porous scaffolds, single or combined biomaterials are used [Leor, 2000, Piao, 2007, 

Vacanti, 2006]. In some cases, Engelbroth-Holm-Swarm mouse sarcoma-derived 

extracellular matrix (i.e. Matrigel) is added to assist cell retention within the 

scaffolds [Caspi, 2007].    Researchers have used various strategies using diverse 

scaffold materials and cell types to fabricate 3-D cardiac patches: e.g. alginate 

scaffolds seeded with fetal rat cardiac cells  [Leor, 2000]; PGL mesh - embedded 

fibroblast grafts (Dermagraft ®) [Kellar, 2001]; Poly- glycolide-co-caprolactone 

(PGLC) patches seeded with bone marrow-derived mononuclear cells [Piao, 2007]; 

hESC-derived endothelial cells and embryonic fibroblasts embedded in porous 

polymer scaffolds (PLLA/PLGA) using Matrigel [Caspi, 2007].  Most of these 

strategies have been applied in animal (rodent) models of myocardial repair i.e. 



 
Chapter 1 Introduction 

 

18 
 

epicardial patch implantation after myocardial infarction is induced.  Regardless of 

the approach and cell type utilized, patch implantation leads to neovascularization in 

the graft and scar areas.  Moreover, the grafts attenuate left ventricle (LV) dilation 

and improve heart function. 

1.3.1.1.2 Myocardial Patches- Hydrogel/ ECM – Based Tissues 

In this strategy, cells are mixed with soluble hydrogel matrices (e.g. collagen, fibrin) 

and entrapped in the 3-D structure upon matrix solidification [Zimmermann, 2009]. 

Human mesenchymal stem cells (hMSCs) have been embedded into rat tail collagen 

type I to produce a patch that was implanted on the rat epicardium immediately after 

myocardial infarction [Simpson, 2007].  Donor hMSCs were not detectable at 4 

weeks after graft implantation, but patch application induced improvements in LV 

remodeling.  Furthermore, a marked increase of blood vessels was detected in the 

infarct area of treated animals. In contrast, acellular control-patches did not improve 

heart function or remodeling parameters, so early remodeling changes in the patch-

treated animals were assumed to be hMSCs-mediated and not matrix related.   

Notably,  Zimmermann et al. showed the feasibility of  generating large contractile 

engineered heart tissue (EHT) grafts in vitro, made of neonatal rat cardiac cells 

(mixed cell population) embedded in a collagen type I/ Matrigel scaffold and shaped 

into a ring and conditioned by mechanical stretching that can survive after 

implantation and enhance contractile function of infarcted hearts  [Zimmermann, 

2006].  EHT-derived cardiomyocytes engrafted with the host myocardium and 

capillary networks were identified in the area of injury. The authors observed that 

donor cells were recruited and integrated into host vessels during neovascularization 

[Naito, 2006].   
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1.3.1.1.3 Scaffoldless Systems- Cell Sheets  

Strategies to produce scaffoldless systems for myocardial engineering have been 

recently established. A novel technique to fabricate pulsatile cardiac grafts via 3-D 

cell sheet manipulation using thermo-responsive culture surfaces was introduced by 

Okano‟s group [Shimizu, 2002].   Later, it was demonstrated that cardiac cell sheets 

made of neonatal rat cardiomyocytes (NRCMs) have intrinsic angiogenic potential, 

since they express angiogenesis-related genes and form endothelial cell networks in 

vitro [Sekine, 2008, Sekiya, 2006]. After a three-step subcutaneous implantation into 

nude rats, grafts completely synchronized and all tissues survived without necrosis 

while a well-organized microvascular network was created [Shimizu, 2006].  The cell 

sheet approach has been recently used as a strategy aiming to repair the heart after 

myocardial infarction. Sekine et al. created triple-sheet myocardial tissues made of 

co-cultured NRCMs and endothelial cells (ECs) and implanted it as an epicardial 

patch in infarcted rats [Sekine, 2008].   The authors found that greater number of 

capillaries, decrease in fibrosis and improvement of cardiac function were 

proportional to the amount of ECs contained in the layered tissue grafts.  More 

importantly, they found that donor blood vessels bridged into the host‟s infarcted 

myocardium.  These results suggest that neovascularization reduces remodeling and 

contributes to the improvement of cardiac function.   

 

1.3.1.1.4 Decellularized Matrix and Biological Patches 

By decellularization of mammal organs, any potentially immunogenic material is 

cleared, and the remaining extracellular matrix is then recellularized and implanted 

as an epicardial patch.  Porcine small intestine submucosa (SIS) seeded with 

mesenchymal stem cells (MSCs) [Tan, 2009], as well as sliced acellular bovine 

pericardium sandwiched with folded MSCs sheets (i.e. five layers)  [Chen, 2008, Wei, 

2008] have been used to create patches for myocardial repair.  Implantation of such 
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re-cellularized biological patches into the area of ischemic injury lead to improvement 

of LV contractile function and remodeling, and increased blood vessel density. 

Notably, Ott et al. described the decellularization of whole rat hearts as a platform to 

engineer a bioartificial heart [Ott, 2008]. Though this strategy has not been tested in 

pre-clinical models of myocardial repair, the organ decellularization and 

recellularization approach might be a promising technology for organ tissue 

engineering once the conditions for in vitro reseeding and organ maturation are 

optimized. 

 

1.3.1.1.5 In vivo Myocardial Engineering and Graft pre-vascularization 

The in vivo tissue engineering approach involves in situ generation of tissue or the 

utilization of the body as a “bioreactor” to mature and pre-vascularize cardiac grafts 

in vivo. 

 Birla et al. introduced an in vivo model of angiogenesis to promote survival, 

organization and functionality of myocardial cells in 3-D- fibrin constructs. [Birla, 

2005, Birla, 2009]. Neonatal rat cardiomyocytes were suspended in a fibrin gel and 

seeded into silicone tubing that was implanted on top of the femoral vessels of adult 

rats. Three weeks after implantation, the resulting graft showed well organized 

cardiac cells and neovascularization and displayed normal myocardial tissue 

contractile properties. In another approach, Morrit and colleagues introduced an in 

vivo 3-D cell culture chamber containing an AV-loop in the rat groin and that was 

seeded with a mixture of neonatal rat cardiomyocytes and Matrigel [Morritt, 2007].  

After 4 and 10 weeks in vivo, vascularized, spontaneously beating, 3-D cardiac tissue 

was obtained. These vacularized grafts have not been used for myocardial repair yet.  

Also, the harvest of femoral vessels with the graft and the utilization of tumor-derived 

ECM (Matrigel) may be limitations for future clinical application of this strategy. 
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Omental wrapping or omentopexy, is a technique introduced in the mid 30‟s to treat 

heart ischemia, by promoting „re-vascularization‟  from a pedicle with omental vessels 

to coronary arteries [O'Shaughnessy, 1937]. Tissue engineers have been recently 

using this classic concept to promote neovascularization in myocardial grafts.  

Ueyama et al. combined the omentopexy and 0.7 mm FGF-enriched hydrogel sheets 

for cardiac repair [Ueyama, 2004].  The procedure was used as a restorative therapy 

placing the FGF- hydrogel sheet on top of the area of ischemia followed by omental 

wrapping in rabbits. A better fractional area change was detected in the FGF-

omentum treated group, and communication between the gastroepiploic artery and to 

the coronary artery was documented by angiography.  In a unique study, Shao and 

associates used autologous hepatic tissue combined with omental wrapping to 

promote angiogenesis and restore cardiac function in rats [Shao, 2008].  This 

strategy stimulated angiogenesis, reduced adverse LV remodeling after MI and 

improved cardiac function.  Enhancement in vascularization was associated withthe 

expression of proangiogenic growth factors (i.e. HGF, bFGF and VEGF).  

Interesting results have also been obtained by Cohen‟s group, which has explored 

strategies aiming at in vivo prevascularization of cardiac patches for myocardial 

repair via the omentum [Dvir, 2009], or the peritoneum [Amir, 2009]. In a model of  

post-ischemic myocardial repair, a patch was constructed by seeding a porous 

alginate scaffold with neonatal rat cardiomyocytes  mixed with growth factor-reduced 

Matrigel and a cocktail of pro-survival and angiogenic factors (i.e. IGF-1, SCD-1 

and VEGF) [Dvir, 2009].  After 2 days in culture, the factor-supplemented grafts were 

implanted in the omentum of rats and allowed to prevascularize for 7 days, followed 

by graft implantation onto the infarcted heart of allogeneic rats for 28 days. The factor 

mixture incorporation favored sarcomeric organization of cardiac cells and improved 

cell viability within the grafts in vitro and in vivo.  Furthermore, the implanted 

omentum- pre-vascularized patch engrafted with the host myocardium and increased 
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scar thickness and thereby prevented further dilation.  Some drawbacks of this 

strategy include the utilization of an allogeneic model of graft prevascularization and 

implantation. Besides, the utilization of Matrigel (even in the growth factor-reduced 

form) is a limitation, since this is a product unlikely to receive FDA approval, and 

hence it is not suitable for clinical use [Polykandriotis, 2008].  On the other hand, the 

omentum has been increasingly appreciated as an important intra-abdominal 

structure that has an innate immune function and plays an important role in 

peritoneal defense.  Thus, some clinicians have even warranted careful consideration 

before the omentum is removed [Platell, 2000].  Furthermore, removal of the 

omentum (omentectomy), as well as its utilization for graft pre-vascularization could 

be limited in patients that have undergone major abdominal procedures. 
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Table 1.1 Summary of advantages and disadvantages of 3-D approaches for myocardial 

restoration [Martinez, 2010]. 

Approach Advantages Disadvantages 

 
 
 
 
 
 
Myocardial 
Patches- Porous 
biomaterials 
 

-Porous materials provide structural 
support to the seeded cells. 
 
-Increased cell retention when used in 
combination with ECM. 
 
-Graft mechanical and electrical pre-
conditioning is feasible. 
 
- Increase neovascularization upon 
implantation in the area of injury. 
 
-Improvement of LV remodeling and 
heart function. 
 
-LV structural support. 
 

-Irregular cell seeding and distribution. 
 
-Limited cell survival within the grafts. 
 
-Biodegradable materials that trigger 
inflammatory response. 
 
-Immunogenicity when tumor-derived 

ECM (Matrigel) is added to the 
construct. 
 
-Epicardial patch application lacks 
integration with the host myocardium. 
 
-Involves open chest surgery for graft 
implantation. 

 
 
 
 
 
Myocardial 
Patches- 
Hydrogel/ECM-
based Tissues 

-Cell retention within the scaffold. 
Uniform cell seeding can be achieved. 
 
-Graft mechanical and electrical pre-
conditioning are feasible. 
 
- Increase neovascularization upon 
implantation in the area of injury.  
 
-Improvement of LV remodeling and 
heart function. LV structural support. 
 
- Cardiac cell engraftment into the host 
myocardium has been reported. 
 

-Limited cell survival within the grafts. 
 
-Immunogenicity when animal  
products and tumor-derived ECM 

(Matrigel) are used. 
 
-Amount of cardiac cell engraftment is yet 
limited. 
 
-Epicardial patch application lacks 
integration with host myocardium. 
 
-Involves open chest surgery for graft 
implantation. 

 
 
 
 
Scaffoldless 
Systems- Cell 
Sheets and 
Microtissues 

- It does not induce immunogenic and 
inflammatory responses from ECM. 
 
-Angiogenic potential in vitro. 
 
-Increase neovascularization upon 
implantation in the area of injury. 
 
-Blood vessels integration with host 
myocardium has been reported. 
 
-Improvement of LV remodeling and 
heart function.  
 

-Limited size (3 cell sheet layers). 
 
-Graft mechanical pre-conditioning could 
be limited. 
 
-Involves open chest surgery for graft 
implantation. 
 

 
 
 
 
 
Decellularized 
Matrix and 
Biological 
Patches 

-Any potential immunogenic material is 
cleared during decellularization. 
 
-Graft mechanical and electrical pre-
conditioning are feasible. 
 
-Increase neovascularization upon 
implantation in the area of injury. 
 
-Improvement of LV remodeling and 
heart function. LV structural support. 
 
-Autologous vascularization when the 
omentopexy approach is used. 

-Irregular cell seeding and distribution. 
 
-Cell differentiation and engraftment has 
been documented, but is yet limited. 
 
-Involves open chest surgery for graft 
implantation. 

In vivo 
Myocardial 
Engineering 

-In vivo autologous graft 
neovascularization and maturation. 

-This approach has not been evaluated 
for myocardial repair 
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1.3.2 Challenges of Cardiac Tissue Engineering: 

The uniqueness of the heart and the limitations for its reproduction by means of 

tissue engineering, derive from its characteristics (Figure 1.2). It is an organ with 

limited regenerative potential and a complex structure comprised by a helix of 

distinctively arranged muscular bands [Buckberg, 2002, Buckberg, 2006b]. The 

normal functional capacity of the heart allows it to pump about 15,000 liters blood per 

day.  In a lifetime, it beats over 2.5 billion times and pumps over 200 million liters of 

blood.  The heart is asymmetric (i.e. left and right chambers are not symmetric), 

anisotropic (i.e. it has different microstructure) and highly angiotropic (i.e. contains a 

great amount of blood vessels). Besides, the heart is a multidimensional organ that 

has more than the usual three dimensions, in which tissue engineering is perceived. 

The fourth dimension of the heart is its pump-function over time. Furthermore, the 

heart rhythm is another feature (a temporal dimension) that needs to be replicated. 

      

 

Figure 1.2 Limitations of myocardial restoration due to the uniqueness of the heart. 
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To date, the ideal cell type to assemble three-dimensional cardiac patches has not 

been found.  However, autologous adult stem cells have become an increasingly 

appealing source for cardiac tissue engineering, as these cells may hold realistic 

clinical potential.  Though outcomes derived from animal studies using adult stem 

cell- based cardiac tissue engineering for myocardial repair have reported similar  

encouraging results (Table 1.2),  the degree of donor cell engraftment and survival is 

limited, and the cardiomyogenic trans-differentiation of most types of adult stem cells 

remains controversial [Martinez, 2011]. The evaluation of tissue engineering-based 

therapies in clinical trials has been limited. Chachques and collaborators  assessed a 

combined therapy involving cell therapy (i.e. intramyocardial injections) followed by 

the epicardial implantation of a collagen scaffold seeded with autologous bone 

marrow cells in patients undergoing coronary artery bypass surgery (CABG) 

[Chachques, 2008]. This nonrandomized, controlled phase I clinical trial (MAGNUM-

trial) included 10 patients that underwent CABG and received BMMNC injections, 

and 10 patients that additionally to surgery and BMMNC injections underwent 

epicardial BMMNC-patch application.   The combined therapy limited LV remodeling 

and improved diastolic function. However, obvious limitations of this study include the 

association of a tissue engineering approach with CABG surgery and cell injections, 

which makes it difficult to attribute any beneficial effect on LV function exclusively to 

the implanted patch.   

On the other hand, while extensive pre-clinical efforts have been focused on finding 

the “ideal cell type” for myocardial regeneration, many equally important aspects 

need to be addressed in light of the complex structure of the heart and the series of 

deleterious and fulminant events leading to heart failure.   Besides the lack of a large-

scale human cardiac cells source [Zimmermann, 2009], one of major limitations in 

cardiac tissue engineering is the in vitro generation of three-dimensional constructs 

with a scale suitable for myocardial repair (i.e. more than 1 cm thick). As most 
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bioreactors are unable to supply enough nutrients and oxygen to bioengineered 

grafts in vitro [Radisic, 2007].  Furthermore, following graft implantation, cells in 3D 

cardiac patches will be challenged by a pro-apoptotic environment and an intense 

inflammatory response arising from the surrounding ischemic tissue [Frangogiannis, 

2008, Robey, 2008].  Likewise, hypoxia particularly in the core of the bioengineered 

graft is a factor that is detrimental to donor cell survival [Bursac, 1999].  

Promoting vascularization of 3-D grafts is a fundamental goal in tissue engineering-

based strategies for enhanced myocardial repair.  Neovascularization is important to 

prevent cardiac graft‟s core necrosis, and it plays an important role for cell survival 

and organization. Research efforts towards ex vivo and in vivo vascularization of 

bioengineered cardiac patches have been recently reported [Caspi, 2007, Dvir, 2009, 

Lesman, 2010b, Morritt, 2007]. The formation of  capillaries within ex vivo generated 

cardiac muscle derived from human embryonic stem cells has been documented 

[Caspi, 2007].  It has been shown that when transplanted in  vivo (into healthy rodent 

hearts) the human vessels within the graft can become functional and contribute to 

tissue perfusion [Lesman, 2010b].  However, this approach has not been evaluated 

yet in pre-clinical studies aiming at post-ischemic myocardial repair. Also, the 

utilization of hESC-derived cardiomyocytes could be a limitation for immediate clinical 

application of this strategy, as further studies are required to ensure the safety of 

embryonic stem cells and their derivatives. On the other hand, data from work 

involving in vitro generation of human endothelial cell-derived capillary networks 

within biodegradable polymer matrices indicate that these in vitro bioengineered 

blood vessels may become leaky after transplantation [Nor, 2001].  In summary, 

novel cardiac tissue engineering concepts that incorporate functional blood vessels 

and stimulate in situ angiogenesis through methods that can realistically be 

translated into the clinical arena are clearly needed to achieve successful cardiac 

repair by tissue engineering. 
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Table 1.2 Outcomes of pre-clinical studies using adult stem cell- based cardiac tissue 

engineering for myocardial repair [Martinez, 2011].
 *
 

                                                

*
 LV, Left Ventricular; MI, myocardial infarction; GAG, glycosaminoglycans; SIS, small 

intestine submucosa; +, indicates found parameter; -, indicates not found parameter; *, 
indicates non-evaluated parameter; NA, indicates non-applicable. 

 

Adult Stem Cell 
Type 

Tissue 
Engineering 
Approach/ 
Biomaterial 

 
Animal 
Model/ 
Time of 
treatme
nt after 
injury 

Outcome 

Ref. Stem cell 
engraftment 
/ Migration 

to scar 

Expression 
of cardiac 
markers 
by donor 

cells 

Expression 
of vascular 
markers by 
donor cells 

 Enhanced 
Angiogenesis 

LV function 
improvement 

LV 
remodeling 
attenuation 

Bone Marrow 
Cells 

 

Muscle patch 
MI in 
mice -

Chronic 
+ (8%) * * + + + 

[Barandon, 
2004] 

Polyglycolic 
acid cloth 
patch 

MI in 
rats- 

Chronic 
- * * + + + 

[Fukuhara, 
2005] 

Bone Marrow 
Mononuclear 

Cells 

Injectable 
Fibrin 

MI in 
rats- 

Chronic 
+ * * + * * [Ryu, 2005] 

poly-
glycolide-co-
caprolactone  
Patch 

MI l in 
rats- 

Acute 
+ + - + + + 

[Piao, 
2007] 

Bone Marrow 
Mesenchymal 

Stem Cells 

Type I 
Collagen-
(GAG) patch 

MI in 
rats- 

Acute 
+ * * + * * 

[Xiang, 
2006] 

Type I 
Collagen 
patch 

MI in 
rats- 

Acute 
- NA NA + + + 

[Simpson, 
2007] 

Sliced 
acellular 
pericardia 
patch & cell 
sheet 

MI in 
rats- 

Chronic  
+ + + + * * [Wei, 2008] 

Sliced a 
cellular 
pericardia 
patch & 
folded cell 
sheet  

MI in 
rats-

Chronic 
+ + + + - + 

[Chen, 
2008] 

Intra-
myocardial 
injection of 
cell sheet 
fragments 

MI in 
rats- 

Acute 
+ + + + + + 

[Wang, 
2008] 

Collagen   
injection 

Ml in  
rats- 

Acute 
+ (16%) * * * - - 

[Dai, 
2009] 

Porcine SIS 
patch 

MI in 
rabbits-
Chronic   

+ + + + + + [Tan, 2009] 

Poly lactide-

co--
coprolactone
patch 

MI in 
rats- 

Acute 
+ + * * + + 

[Jin, 
2009] 

Adipose tissue- 
Mesenchymal 

stem cells 

Cell sheet 
monolayer  
 

MI in rats 
- Chronic 

+ + + + + + 
[Miyah
ara, 
2006] 
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1.4 Ascorbic Acid 

Ascorbic acid (Vitamin C) is an essential dietary constituent for humans.  Its 

deficiency leads to scurvy, a disease characterized by bleeding gums, hemorrhage 

due to impaired collagen deposition and the consequent defective formation and 

repair of blood vessels [Hodges, 1971]. Ascorbic acid is ubiquitousl; it is an essential 

part of our diet, and can be easily administered in large doses as a therapeutic 

supplement in various formulations.   

Ascorbic acid (AA) is in high concentration in tissues with high potential of ROS 

generation such as eyes, brain, liver, lungs, and the heart. It is an aqueous phase 

antioxidant concentrated in the cytosol that seems to play an important role in DNA 

protection from oxidative damage. This hydrophilic antioxidant scavenges toxic free 

radicals and other reactive oxygen species (ROS) efficiently [Arrigoni, 2002] . 

Ascorbate can terminate radical reactions by serving as a stable (electron + proton) 

donor in interactions with ROS, being converted into the radical ion 

semidehydroascorbate and subsequently into dehydroascorbate. These oxidized 

forms of ascorbate donor cause cellular damage, and can be converted back to 

ascorbate by cellular enzymes. Furthermore, attenuation of hypoxia-induced 

apoptosis after ascorbic acid treatment in vitro has been demonstrated in HL-1 

cardiomyocytes [Vassilopoulos, 2005], and endothelial progenitor cells [Fiorito, 

2008]. In hypoxic conditions in vitro hypoxia-inducible factor-1 (HIF-1) promotes 

apoptosis in H9C2 cells (i.e. rat cardiomyoblasts of embryonic origin), and in 

cardiomyocytes [Malhotra, 2008, Vassilopoulos, 2005].  Moreover, it has been shown 

that ascorbic acid depletion interrupts HIF-1 proteosomal degradation, as it is a 

cofactor for proline hydroxylation [Telang, 2007].  

Ascorbic acid intake enhances immunocompetence [Long, 1999]. Increased levels of 

AA have been associated with increased levels of immunoglobulins and increased 
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neutrophils function in mammals [Blair, 1985], as well as with a mitogenic-related 

release of immunoglobulins in human lymphocytes [Tanaka, 1994]. 

There is an ascorbic acid-dependant modulation of collagen, as it may directly 

enhance transcription of the procollagen gene. Collagen synthesis is a complex 

process that involves transcription of procollagen, translation followed by 

hydroxylation, processing of procollagen to collagen and formation of fibrils.  One of 

the most well documented effects of ascorbic acid is collagen hydroxylation [Hitomi, 

1996].  Ascorbic acid has a stimulatory effect on angiogenesis through increase of 

collagen type IV synthesis by endothelial cells [Telang, 2007]. It has been shown that 

human umbilical vein endothelial cell (HUVECs) type IV collagen production is 

enhanced when ascorbic acid is added in vitro.  At physiological concentrations (up 

to 100 mol/L), ascorbic acid induces tube formation by HUVECs cultured in 

extracellular matrix [Telang, 2007]. Furthermore, large doses of ascorbic acid induce 

superior mesenchymal tissue healing in rats. The later results derive from early 

angiogenesis induction and increased collagen synthesis [Omeroglu, 2008].   AA also 

has an effect on cell differentiation, as it  has been shown to modulate expression of 

genes associated with myoblast differentiation [Nandan, 1990].  More importantly, 

ascorbic acid promotes in vitro differentiation of embryonic stem cells into 

cardiomyocytes [E, 2006, Wang, 2010], in a process associated with collagen 

synthesis [Sato, 2006].  

In tissue engineering, AA has been used as a supplement in culture medium to 

enhance collagen production and cell proliferation within hydrogel templates 

containing bFGF [Yoshida, 2010].   Likewise, it has been suggested that AA-

containing polyurethane scaffolds may be useful in bone tissue-engineering 

applications as these materials stimulate collagen type I production, cell 

proliferation, and alkaline phosphatase synthesis in vitro. [Zhang, 2003].  

Futhermore, it has been proposed that the encapsulation of  Magnesium l-ascorbic 
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acid 2-phosphate  and -tocopherol acetate (stable vitamin C and vitamin E 

derivatives) together with polyacrylonitrile nanofibers in the form of core-shell 

structure,  has potential application  as functional dressing for photoprotection [Wu, 

2011]. However, to date the potential of ascorbic acid for cell therapy and tissue 

repair has not been exploited. Experimental studies to assess the effect of ascorbic 

acid on cell survival and to promote angiogenesis in 3-D compounds destined for 

myocardial restoration have yet to be conducted. 

 

1.5 Towards a Novel Model for Graft Vascularization In vivo 

1.5.1 Adipose Tissue and Angiogenesis 

Adipose tissue is a highly vascularized tissue, since each adipocyte is surrounded by 

capillaries.  Angiogenesis in adipose tissue provides oxygen, nutrients and growth 

factors, as well as inflammatory and mesenchymal stem cells that help to keep the 

tissue‟s homeostasis and adipocytes‟ function.  Furthermore, adipocytes produce 

angiogenic factors (e.g. VEGFA and FGF), and adipokines (e.g. leptin, resistin, 

visfatin) that synergistically modulate both angiogenesis and survival mechanisms. 

[Cao, 2010]. Notably, the presence of inflammatory cells and pluripotent adipose-

derived stromal cells further contribute to adipose tissue angiogenesis through pro-

angiogenic growth factors production and stem cell-derived vascular differentiation.   

Human fat tissue has been used in ex-vivo angiogenesis assays, particularly to study 

the role of angiogenesis in obesity and associated disorders [Gealekman, 2008, 

Greenway, 2007].  Furthermore evidence indicates that spontaneous differentiation 

of adipose tissue-derived stem cells into functional cardiomyocyte-like cells without 

chemical induction with 5- azacytidine in vitro [Planat-Benard, 2004] and in vivo 

[Choi, 2010]. It has also been suggested that in spite of poor engraftment, 

intramyocardial delivery post-MI of freshly isolated ASC have a beneficial therapeutic 



 
Chapter 1 Introduction 

 

31 
 

effect on heart function in rats through a potent pro-angiogenic effect [Schenke-

Layland, 2009] 

 

1.5.2 Perirenal Fat 

The adipose capsule of the kidney -or perirenal fat- is an accumulation of 

extraperitoneal adipose tissue that completely surrounds the kidney, and its primary 

function is keeping the kidney in place.  It has been shown that the amount of 

perirenal fat in males exceeds that in females.  Furthermore, it seems that body mass 

index (BMI) is weakly correlated with the amount of perirenal fat, compared to 

subcutaneous fat distribution which undergoes BMI-related changes [Eisner, 2010].   

This may have important implications for our proposed model, as perirenal fat might 

be a reliable source of adipose tissue regardless of BMI.  Of note, clinical first-stage 

pro-angiogenic tissue implantation in the renal capsule may be performed 

endoscopically, on a day-surgery basis.  

 

1.6 Hypotheses and Aims 

The hypotheses for this thesis were formulated as follows: 

I. Supplementation with ascorbic acid improves donor cell viability in vitro and in 

vivo, as well as angiogenesis and remodeling of thick myocardial artificial 

grafts (MAG), suitable for implantation and myocardial repair.  

 

II. Epicardial implantation of an ascorbic acid- enriched myocardial artificial graft, 

which has been pre-vascularized in the recipients‟ own body, promotes 

restoration of the ischemic heart.  

Based on these hypotheses, the following specific aims were identified: 



 
Chapter 1 Introduction 

 

32 
 

1. To generate three-dimensional myocardial artificial grafts (MAG), and to 

evaluate dose-dependent effects of ascorbic acid on cell viability and 

phenotype in vitro. 

2. To provide MAG with blood vessels of autologous origin, by developing a 

novel model (renal pouch model) for in vivo graft pre-vascularization in 

healthy rats.  

3. To evaluate whether ascorbic acid enrichment has any effect on MAG‟s 

viability, angiogenesis and remodeling in vivo using the renal pouch model in 

healthy rats. 

4. To prevent adverse remodeling and myocardial stiffening, promote 

angiogenesis and provide viability support concurrently, by implanting 

ascorbic acid- enriched and pre-vascularized myocardial artificial grafts into 

ischemic rat hearts. 

An overview of the strategies and experimental design to achieve the proposed aims 

is illustrated in a flowchart in Figure 1.3. 

 

1.7 Novelty and Significance 

The findings from the current study are expected to contribute to the knowledge in 

two areas: tissue engineering and myocardial restoration.  Here, we indentify 

ascorbic acid, a ubiquitous and essential substance, as a suitable supplement for cell 

and tissue transplant-based therapies.   

Our approach provides a realistic perspective for the clinical setting: enhancement of 

cell survival in three-dimensional bioengineered tissues destined for myocardial 

repair both in vitro and in vivo, and a novel method to vascularize grafts for later 

autologous implantation.  With our approach viability support (cell therapy and 
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antioxidant effects), structural support (prevention of remodeling) and 

revascularization (stimulation of angiogenesis) are all addressed.  

Moreover, the utilization of biocompatible, inexpensive, FDA approved compounds, 

as well as the incorporation of autologous blood vessels within three-dimensional 

grafts make this strategy plausibly translatable to the clinical arena and potentially 

extendableto various donor cell types, as well as to other organs and regenerative 

interventions. 

 

1.8 Organization of the Thesis 

Chapter 1 provides a summarized background related to the epidemiology of 

ischemic heart disease and heart failure, as well as an overview of cardiac tissue 

engineering as a therapeutic approach for ischemic heart disease. Next, a more 

detailed literature review is presented, which includes the relevant concepts that 

motivated this research and lead to our hypotheses and the strategies proposed in 

this project.   

Chapter 2 describes the materials and methods for all the assays, techniques and 

procedures used in this research, organized according to the project‟s hypotheses.  

Chapter 3 displays the results derived from this research, organized in two parts.  

The first portion includes the data resulting from experimental work to test our first 

hypothesis (included in a published original paper [Martinez, 2010]).  The second part 

contains the results from experiments carried out to test our second hypothesis 

(results currently under review in a peer-reviewed international scientific journal). 

Chapter 4 contains the discussion, key findings summary and conclusions derived 

from this research, as well as the limitations of this project and recommendations for 

future directions.  
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•Generation of stable cell line expressing GFP 
and Luciferase.  

•Cell viability analysis (Bioluminescence 
imaging)  to determine the ideal ascorbic acid 
titration.

•Generation of MAG and 3D culture.
• In vitro analyses:

•Cell viability (bioluminescence imaging)

•Assessment of apoptosis.

•Cell phenotype.

To generate three-
dimensional 

myocardial artificial 
grafts (MAG) and 

evaluate the effects 
of ascorbic acid on 

cell viability and 
phenotype in vitro

•Development of a novel model for graft's 
autologous vascularization (Renal Pouch) in 
rats.

•Assessment of various biomaterial's 
degradation in the renal pouch.

To provide 
myocardial artificial 

grafts with blood 
vessels of autologous 

origin

•Post- grat implantation analyses:

•Donor cell viability (in vivo bioluminescence 
imaging)

•Angiogenesis (endothelial cell markers)

•Histology: fibrosis and cell infiltration

To evaluate whether 
ascorbic acid has any 

effect on MAG’s 
viability, angiogenesis 

and remodeling in 
vivo

• In vivo model of myocardial restoration in rats 

•Post- grat implantation analyses:

•Donor cell viability (in vivo bioluminescence 
imaging)

•Echocardiography and hemodynamics.

•Angiogenesis (endothelial cell markers)

•Histology: fibrosis and cell infiltration

To restore the 
ischemic heart using 

ascorbic acid 
enriched- & pre-

vascularized- MAG

Experimental Design Aim 

Figure 1.3 Aims and experimental design  
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2 Materials and Methods 

2.1 Materials and Methods Hypothesis I 

The experimental methods carried out for both in vitro and in vivo studies in order to 

test our first hypothesis (and to achieve the project aims 1 to 3) are summarized in 

Figure 2.1 and Figure 2.3. 

 

 

Figure 2.1 Flow chart indicating the methods to achieve Aim 1 (In vitro studies): To generate 
three-dimensional myocardial artificial grafts (MAG), and to evaluate dose-dependent effects 
of ascorbic acid on cell viability and phenotype in vitro. 

 

2.1.1 Cell Culture 

H9c2(2-1) cardiomyoblasts derived from embryonic rat hearts were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA, USA) and maintained in 

DMEM supplemented with 10%  fetal bovine serum, 100,000 U/L of penicillin, and 
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100 mg/L of streptomycin (Gibco), under 5% CO2 at 37°C.  Cells were passed on 

reaching 70% subconfluency to maintain the myoblast phenotype. 

 

2.1.2 Generation of Fluorescent/ Bioluminescent Cell Lines 

pWPT-GFP (kindly provided by Dr. D. Trono, EPFL, Switzerland) and pWPT-Fluc 

(modified from pWPT-GFP) second generation lentiviral vectors were used to infect 

H9C2 cells. pWPT-Fluc was  cloned by removing GFP from pWPT-GFP and inserting 

the firefly luciferase (Fluc) gene PCRed from pGL3 (Promega).  Lentiviral vectors 

were produced by transient transfection of 293T cells. 5x106cells/plate were seeded 

in 10cm tissue culture plates 24 hr before transfection. The latter was performed 

using calcium phosphate precipitation method with 10µg pWPT-GFP or pWPT-Fluc 

vector, 7.5 µg helper plasmid pCMV8.91, and 2.5 µg of MD2G envelope plasmids 

(gifts from Dr. D Trono, University of Geneva, Geneva, Switzerland). Cell culture 

medium was replaced with fresh medium 14-16 hours after transfection. The 

supernatant was filtered through 0.45 µm filter, and the titre of supernatant on 293T 

cells was determined using flow cytometry. H9C2 cells were shown to be highly 

infectable (>90%) with unconcentrated lentiviral supernatant (unpublished data). 

H9C2 cells to be used in vivo were initially infected with supernatant containing 

pWPT-GFP, sorted for GFP positivity, and subsequently infected with pWPT-Fluc 

(H9C2-GFP-Fluc). Furthermore, cells destined for in vitro experiments were infected 

with pWPT-Fluc (H9C2-Fluc).   

Transfection efficiency was assessed with optical bio- imaging using an ultrasensitive 

charged couple device camera that can capture bioluminescence and fluorescence 

(Xenogen IVIS® Lumina).  1x105 and 2x105 H9C2-Fluc-GFP cells were seeded in 6-

well plates and 150 g/ml of D-Luciferin (Caliper Life Sciences, Hopkinton, MA, USA) 

in pre-warmed cell culture medium was added to each well. In another experiment, 
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1x105 cells were seeded in 24 well plates (2-D culture) or in squares of a porous 

matrix (Gelfoam™) and covered with culture medium. Both, bioluminescence and 

fluorescence imaging were performed in the same 2-D and 3-D cultures to assess 

the correlation between luciferase-mediated and GFP-derived photon emission in 

H9C2-GFP-Fluc cells.  The bioluminescence flux (photons per second) and 

fluorescence radiance emission were quantified with Living Imaging Software version 

2.6 (Caliper Life Sciences).   

 

2.1.3 Ascorbic Acid Titration 

 Prior to in vitro experiments, the concentrations of ascorbic acid with no cytotoxic 

effect on H9C2 cells were established, as it has also been previously described for 

other cell types [Telang, 2007, Vissers, 2007].  Three-dimensional cultures were  

established by seeding 1x105 H9C2-Fluc cells in 100 L of Collagen Type I (1g/ml) 

in 96-well plates.  The collagen was allowed to polymerize for 30 min and 3-D 

cultures were supplemented with 150 L of medium containing 5, 50, 100 or 200 

mol/L L-ascorbic acid (Sigma, St. Louis, MO, USA). AA-enriched cell culture 

medium was changed twice a day.  Cell viability was assessed with in vitro 

bioluminescence imaging (BLI) at days 3 and 7 in culture (see detailed BLI methods 

below). Experiments were carried out in triplicate.   

 

2.1.4 3-D Graft Preparation for in vitro Studies 

Sterile, porous sponges prepared from purified porcine skin gelatin (Gelfoam™, 

Pharmacia & Upjohn Company, Kalamazoo, MI, USA) were used as scaffold material 

to fabricate three-dimensional myocardial artificial grafts (MAG). Gelfoam™ squares 

(10 x 10 x 5 mm) were placed in 8-well chamber slides (Lab-Tek™II Chamber 

Slide™, NUNC A/S Roskilde, Denmark) under sterile conditions. Subsequently, 
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foams were hydrated with 100 l growth medium supplemented with 5 µmol/L or 50 

µmol/L L-ascorbic acid (Sigma, St. Louis, MO, USA). Scaffolds with just medium i.e. 

without ascorbic acid and/or without cells, were used as controls.  A 100 l medium 

solution containing 2,5x105 H9C2-Fluc cells was added on top of the 3-D scaffolds.  

Chamber slides were then placed in an incubator under 5% CO2 at 37°C for 30 

minutes to allow cell solution absorption into the sponge (Figure 2.2).  Next, scaffolds 

were covered with 0.4 ml growth medium and placed back into the incubator.  We 

changed the medium daily.  Assays were conducted in quadruplet in five separate 

experiments.  

 

 

Figure 2.2 Myocardial artificial graft preparation. (A) Porcine gelatin porous scaffolds (30-700 

m pore size-) were cut in squares and placed in  8-well chamber slides (chamber size: 9x9 
mm;  area 0.82 cm2).  (B) Scaffolds were re-hydrated with cell culture medium containing 
ascorbic acid prior to H9C2 cell seeding. 

 

2.1.5 In vitro Bioluminescence imaging 

Bioluminescence imaging was used to evaluate the effect of ascorbic acid on H9C2-

Fluc cells in vitro survival when seeded in three-dimensional MAG after 1, 3 and 5 

days in culture (n=20/ treatment/ time-point). For bioluminescence imaging, 150 

g/ml working solution of D-Luciferin (Caliper Life Sciences, Hopkinton, MA, USA) in 
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pre-warmed cell culture medium was added on each well and chamber slides were 

scanned five minutes later using a Xenogen IVIS® Lumina System (Caliper Life 

Sciences).  Bioluminescence was quantified in units of photons per second total flux 

(p/s) using Living Imaging Software version 2.6 (Caliper Life Sciences).   

 

2.1.6 TUNEL Assay and Immunohistochemical Staining for Active Caspase-3 

Three-dimensional myocardial artificial grafts were fixed in 10% buffered formalin, 

embedded in OCT and stored at -80°C after in vitro experiments at days 3 and 5.  In 

situ terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) 

analysis was done using the ApopTag Red in Situ Apoptosis Detection Kit (Millipore 

Billerica, MA, USA) according to the manufacturer's instructions on five-micrometer 

cryosections. Sections from at least three different experiments were visualized using 

a Leica TCS SP5, DMI6000 confocal laser scanning microscope (Leica 

Microsystems, Wetzlar, Germany). The number of TUNEL positive cells was counted 

in ten different fields (400x), from three different grafts per condition. Next, to quantify 

apoptosis and exclude necrosis, ten-micrometer cryosections were stained with 

active Caspase 3 antibody (1:100, rabbit polyclonal antibody to active caspase 3, 

ab2302, Abcam, Cambridge, UK). Sections were counterstained with DAPI 

(Molecular Probes®, Invitrogen, Carlsbad, CA, USA) and z-stacks in 0.5 m steps 

were obtained using confocal microscopy. A single image of maximum projection 

was obtained from the z-stacks by using Leica Application Suite Advanced 

Fluorescence (LAS-AF) quantification software (version 1.8.2 build 1465). 

Sections from at least three different experiments were analyzed. Cells were counted 

using Image J 1.42q (National Institutes of Health, USA). The percentage of TUNEL 

positive and active Caspase 3 positive cells was calculated as 100 X (number of 

positive cells counted/total number of nuclei counted). 



 
Chapter 2 Materials & Methods 

41 
 

2.1.7 Assessment of H9C2 Phenotype in 3-D Culture 

Immunohistochemical assays were carried out to evaluate the effect of AA on H9C2 

cardiomyoblast differentiation. Five-micron cryosections obtained from in vitro 

experiments at days 3 and 5 were stained with an antibody specific to -cardiac and 

skeletal (sarcomeric) muscle actins (1:100, monoclonal mouse anti-sarcomeric actin, 

clone Alpha-Sr-1, DakoCytomatation, Glostrup, Denmark). Sections were then 

incubated with a secondary antibody Alexa Fluor®-568,  counterstained with DAPI 

(Molecular Probes), and visualized with an Olympus BX61 fluorescence microscope 

equipped with a  DP72 12.8 megapixel cooled digital camera  (Olympus, Tokyo, 

Japan). Photomicrographs were processed using the DP2-BSW 2.2. (Build 6212) 

software (Olympus). 

 

2.1.8 Animals and Renal Pouch Model 

This study conforms to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85-23, revised 

1996). The experimental protocol was approved by the National University of 

Singapore-Institutional Animal Care and Use Committee (IACUC). Male SPF Wistar 

Rats (300-350 gr) were used for our experiments (Figure 2.3). All surgical procedures 

were performed using aseptic techniques.  

Anesthesia was induced and maintained in animals with inhalational isoflurane (2%) 

and  intraperitoneal (IP) injection of Ketamine:Xylazine (90 mg/kg :10mg/kg). 

Carprofen (5 mg/Kg, SC) was administered preoperatively for analgesia.  A mid 

laparotomy was performed followed by displacement of the bowel and mild retraction 

of the kidney.  Blunt preparation of the retroperitoneal fossa was done  and a pouch 

was created between the perirenal (retrorenal) fat and the psoas  muscle (Figure 

2.4).  Subsequently,  the myocardial artificial graft was implanted into the retro-renal 
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pouch.  Grafts containing cells were implanted in the right renal pouch,  where as 

acellular controls were implanted in the contralateral pouch. We did not use suture 

material in the implantation process. Finally, the bowel was repositioned and  the 

abdomen was closed in two layers. Animals were allowed to recover in a small-

animal ICU. Carprofen (5 mg/Kg/day, SC) was administered postoperatively for 

analgesia.  

 

 

Figure 2.3 Flowchart indicating the methods followed to achieve Aims 2 & 3 (In vivo studies): 
To provide myocardial artificial grafts (MAG) with blood vessels of autologous origin, by 
developing a novel model for in vivo graft pre-vascularization in healthy rats, and to evaluate 
whether ascorbic acid enrichment has any effect on MAG‟s viability, angiogenesis and 
remodeling in vivo using the renal pouch model. 
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2.1.9 3-D Graft Preparation for in vivo Studies 

 In our preliminary studies, eight rats were used to test several 3-dimensional 

matrices and to identify the one displaying the least degradation and low 

inflammatory reaction after 10 days of implantation using the renal pouch model. 

Four different collagenous foam-scaffolds from diverse origin (i.e. Equine collagen 

and human fibrinogen (Tachotop®, Nycomed, Zurich, Switzerland); bovine collagen 

(Lyostypt®, B. Braun Melsungen AG, Melsungen, Germany); native equine collagen 

(TissuFleece E®, Baxter, Vienna,  Austria ); porcine skin gelatin (Gelfoam™), were 

Figure 2.4 Perirenal fat and renal pouch model. (A) Illustrates the location of the kidneys 
and perirenal fat in the rat.  (B) Cross-section illustrating the normal anatomy of the 
extraperitoneal perirenal space occupied by adipose tissue. K, kidney; P, psoas muscle; C, 
descending colon.  (C)  MAG implanted in the perirenal fat. A pouch is created in the 
perirenal fat between the psoas muscle and the kidney (retrorenally), followed by 
implantation of the myocardial artificial graft (MAG) for in vivo vascularization. 
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implanted in the renal pouch without cells ().  H9C2-GFP-Fluc cells were washed 

three times in cold PBS and centrifuged. Gelfoam™ squares (20 x 20 x 5 mm) were 

placed in 12-well plates and covered with 4 x106 H9C2-GFP-Fluc cells in 250 l PBS 

under sterile conditions.  Based on our in vitro studies, we chose 5 µmol/L L-Ascorbic 

acid in PBS enrichment for the ascorbic acid animal group (Group A, n=10).  Plain 

MAG without ascorbic acid (PBS and cells) were used as control group (Group B, 

n=10).  Acellular grafts containing just PBS (Group C, n=10) or PBS-5 µmol/L 

ascorbic acid (Group D, n=10) were used as negative controls and implanted in the 

left renal pouch.   

 

2.1.10 In vivo Bioluminescence Imaging:  

We performed optical in vivo BLI with the Xenogen-IVIS® Lumina in vivo imaging 

system as previously described [Hauck, 2008, Kutschka, 2006a, Shinde, 2006]. 

Briefly, rats were anesthetized with isoflurane 2% and D-luciferin was administered 

IP at a dose of 150 mg per kilogram of body weight. They were placed in the 

chamber in supine position and peak luciferase activity was detected by imaging 

animals for 40 minutes with  two-minute acquisition separated by two-minute 

intervals [Hauck, 2008]. The same rats were scanned repeatedly on post-implantation 

days 1, 3 and 6. Regions of interest (ROIs) which identify the location the most 

intense signal were created using Living Imaging Software version 2.6. 

Bioluminescence was quantified in units of photons per second total flux (p/s) [Cao, 

2006, Shinde, 2006]. 

 

2.1.11 Immunohistochemistry- Assessment of GFP and RECA Expression: 

At seven days post-implantation, MAG were explanted and fixed in 10% formalin.  

The grafts were subsequently OCT-embedded and stored at -80°C. 
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Immunohistochemical staining was performed in five-micrometer cryosections using 

the primary antibody RECA-1, a ubiquitous marker of rat endothelial cells (1:50 

monoclonal mouse anti-RECA-1; HyCult biotechnologt b.v, The Netherlands). 

Sections were then incubated with secondary antibodies Alexa Fluor®-647 and Anti 

GFP-Alexa Fluor®-488, and nuclei were stained with DAPI (Molecular Probes). 

Images were acquired using a Leica TCS SP5, DMI6000 confocal laser scanning 

microscope (Leica Microsystems, Wetzlar, Germany), times 40 and 20 magnification.  

They were subsequently processed using Leica Application Suite Advanced 

Fluorescence (LAS-AF) quantification software (version 1.8.2 build 1465). 

The mean pixel intensity, a semi-quantitative analysis of fluorescence was used to 

evaluate GFP and RECA expression within the explanted 3-D grafts. Predefined 

settings for laser power and detector gain were used for all experiments.  

 

2.1.12 Histological Analysis: 

We performed Masson‟s Trichrome and hematoxylin-eosin (H&E) staining on five-

micrometer sections of formalin-fixed and paraffin-embedded explanted MAG.  

Histological assessment was performed by an experienced pathologist in a blinded 

fashion. To assess angiogenesis within the explanted graft, the number of blood 

vessels per high power field (hpf) 400x was quantified.   The degree of cell infiltration 

and fibrosis was evaluated as the percentage of area of the scaffold infiltrated by 

cellular reaction and collagen deposition covering the total cellular reaction using a 

manual semi-quantitative method. Ten random fields were chosen in each section for 

all the quantifications.  
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2.1.13 Statistical Analysis 

Data are presented as mean ± SD. To test for statistically significant differences, we 

used two-way ANOVA and the unpaired Student‟s t test when appropriate.  

Differences were considered significant if p<0.05. Regression plots were used to 

describe the relationship between bioluminescence and cell number in vitro; r2 values 

are reported to assess the quality of the linear regression model. All the statistical 

analyses were performed using GraphPad Prism software version 5.01 for 

Windows (GraphPad Software, San Diego, CA, USA). 

 

2.2 Materials and Methods Hypothesis II 

The experimental methods carried out for in vivo studies to test our second 

hypothesis and that are related to the project aim 4, are summarized in a flow chart in 

Figure 2.5. 

 

Figure 2.5 Flow chart indicating the experimental design and methods to Aim 4: Myocardial 

restoration in an acute rat model of myocardial infarction. 
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2.2.1 Cell Culture 

H9c2(2-1) cardiomyoblasts derived from embryonic rat hearts were cultured as 

described elsewhere.  Fluorescent and bioluminescent cells lines were generated as 

previously described (see methods to hypothesis I). 

 

2.2.2 3-D Myocardial Artificial Graft (MAG) Preparation 

We have chosen porcine skin gelatin (Gelfoam™) as scaffold material for our study, 

due to its porosity and biocompatibility. Ascorbic Acid-enriched MAG were prepared 

as previously described.  Briefly, 4 x106 H9C2-GFP-Fluc cells were harvested, 

washed three times in cold PBS, centrifuged and resuspended in 250 l PBS 

containing 5 µmol/L  L-Ascorbic acid (Sigma, St. Louis, MO, USA).  The 250 l cell-

AA suspension was added to Gelfoam™ squares (1.0 x 1.0 x 5 mm) placed in 8-well 

plates chamber slides (Lab-Tek™II Chamber Slide™, NUNC A/S Roskilde, 

Denmark) under sterile conditions.  Cell solution absorption into the sponge, and cell 

attachment were allowed for 3 hr under 5% CO2 at 37°C prior to in vivo implantation. 

 

2.2.3 Animals  

Male SPF Wistar Rats (300-350 gr) were used for our experiments. All surgical 

procedures were performed using aseptic techniques.   

 

2.2.4 MAG Pre-vascularization 

Anesthesia was induced and maintained in animals with inhalational isoflurane (2%) 

and  intraperitoneal (IP) injection of ketamine:xylazine (90 mg/kg :10mg/kg). 

Carprofen (5 mg/kg, SC) was administered preoperatively for analgesia.  A renal 

pouch for graft pre-vascularization was created.  In brief, following laparatomy, a 

pouch was disected in the right retrorenal fat.  Next,  the MAG was implanted into the 
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pouch and pre-vascularized for three days. Animals were allowed to recover in a 

small-animal ICU. Carprofen (5 mg/Kg/bid, SC), Ceftazoline (15 mg/Kg/bid, SC) were 

administered postoperatively for the next 3 days.   Animals received cyclosporine A 

(3 mg/Kg /day, SC) for immunosuppression until the end of the study (4 weeks after 

the restorative therapy).   

 

2.2.5 Myocardial Infarction Model and MAG Angiogenic Restorative Therapy 

Animals were anesthetized  as decribed above and intubated for continuous 

ventilation  with  oxygen and 2% isoflurane using a rodent ventilator (Inspira ASV, 

Harvard Apparatus, Inc Holliston, Massachusetts, USA). Hearts were exposed 

through mid-throacotomy,  and after gentle pericardectomy, left anterior descending 

coronary artery (LAD) ligation was performed by placing a 7-0 polypropylene suture 

stitch from the left border of the pulmonary conus to the right border of the left atrial 

appendage. Acute evidence of ischemia was assessed by direct observation of 

myocardial blanching and ECG changes. In the MAG group (n=6), a mid laparatomy 

was performed concomitantly and the pre-vascularized MAG was explanted from the 

renal pouch and implanted into the area of myocardial ischemia.  The patch was 

attached to the recipient heart 30 minutes after MI using fibrin glue (Tisseel, Baxter 

Healthcare Corporation, Deerfield, IL) (Figure 2.6).  In the MI (injury) group (n=6), 

animals did not receive any treatment following LAD ligation, whereas the healthy 

(sham operated) group (n=7) only underwent mid-thoracotomy and pericardectomy.  

After the restorative procedure, the chest was closed in 3 layers and animals were 

allowed to recover in a small-animal ICU. Carprofen (5 mg/Kg/bid, SC), Ceftazoline 

(15 mg/Kg/bid, SC) were administered postoperatively for the next 7 days. 
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Figure 2.6 Pre-vascularized myocardial artificial graft (MAG) implantation.  (A) MAG was 
explanted from the renal pouch 3 days after autologous in vivo pre-vascularization. Blue 
arrow indicates the MAG within the pre-renal fat.  (B) Following left anterior descending 
coronary artery ligation and myocardial ischemia. The discontinuous line in (B) delimits the 
area of ischemia. (C) The pre-vascularized MAG was implanted epicardially into the heart of 
the same animal.   

 

2.2.6 In vivo Bioluminescence Imaging 

To monitor in vivo H9C2 cell survival in the implanted MAG, we performed optical in 

vivo bioluminescence imaging (BLI) using a Xenogen-IVIS® Lumina in vivo imaging 

system (Caliper Life Sciences, Hopkinton, MA, USA) as previously described. 

[Hauck, 2008, Kutschka, 2006a, Martinez, 2010, Shinde, 2006]  Briefly, rats were 

anesthetized with isoflurane 2% and D-luciferin (Caliper Life Sciences) was 

administered IP at a dose of 150 mg per kilogram of body weight. Animals were 

placed in the chamber in supine position and peak luciferase activity was detected by 

imaging the rats‟ chest for 90 minutes with two-minute acquisition separated by 5-

minutes interval. All rats from the treatment group were prospectively scanned on 

post- MAG implantation days 1, 7 and 14. Regions of interest (ROIs) which 

correspond to the location of the most intense signal were created using Living 

Imaging Software version 3.1. Bioluminescence was quantified in units of photons per 

second total flux (p/s) [Cao, 2006, Shinde, 2006]. 

 



 
Chapter 2 Materials & Methods 

50 
 

2.2.7 Echocardiography 

Echocardiography was performed at 4 weeks postoperatively for all groups by a 

blinded investigator (LHL) using the Vivid 7 Dimension ultrasound system (General 

Electric VingMed, Horton, Norway) equipped with a broadband 10S transducer. 

Following anesthesia with ketamine:xylazine (90 mg/kg :10mg/kg) injected IP, two-

dimensional echocardiographic images of the LV at the papillary muscle level were 

recorded at a transducer frequency of 10 MHz, and used to guide M-mode 

recordings. Offline measurements of LV dimensions and areas were made from 3 

consecutive cardiac cycles using EchoPac software (version 6, General Electric 

Vingmed, Horten, Norway). LV volumes were calculated using a modified Teichholz 

formula:  x D3/6a, where D=diameter of the ventricle in short axis view; a=ellipticity 

factor. An ellipticity factor of 1/3 was used as described elsewhere [Weytjens, 2006]. 

Ejection fraction (%) was calculated as LV end-diastolic volume – LV end-systolic 

volume/LV end-diastolic volume.   

 

2.2.8 Hemodynamic Measurements 

We performed LV pressure and volume measurements 4 weeks postoperatively. 

Rats were anesthetized and intubated for ventilation with 3% isoflurane/97% oxygen.  

Following sternotomy, a 2 mm transient time flow probe was placed in the ascending 

aorta for cardiac output measurement (Transonic Systems Inc, Ithaca, NY).  Next, 

the apex of the LV was cannulated with a pressure transducer catheter (Millar Micro-

Tip® model SPC-721, Millar, Inc, TX, USA) (Figure 2.7).  Pressure and aortic flow 

wave forms were recorded with the Powerlab 8/30 data acquisition system 

(ADInstruments Pty Ltd, Castle Hill, NSW, Australia).  Data were analyzed using Lab 

Chart Pro version 7.0 software (ADInstruments). 
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Figure 2.7 Hemodynamics measurement set-up in an infarcted heart four weeks after LAD 
ligation.  Asterisk indicates the location of the time flow probe placed around the ascending 
aorta.  Arrow pointing at the intra-ventricular pressure transducer catheter inserted into the left 
ventricle from the apex. 

 

2.2.9 Histology and Immunofluorescence 

Two animals underwent bilateral real pouch MAG implantation for graft histology after 

3 days of in vivo vascularization.  Animals were anestethized, and direct labeling of 

the blood vessels by cardiac perfusion with 1,1'-dioctadecyl-3,3,3',3'-

tetramethylindocarbocyanine perchlorate (DiI) was done [Li, 2008].  MAG were then 

explanted from the pouch (n=4), and fixed in 10% buffered formalin. Half of the graft 

was embedded in paraffin and rest was OCT-embedded and stored at -80°C. 

Immediately after hemodynamic assessment, hearts were excised and cut into two 

equal transverse slices and fixed in 10% buffered formalin. The upper slice was 

embedded in paraffin, whereas the lower slice was cryoprotected in sucrose 20% at 

4°C overnight, and subsequently OCT-embedded and stored at -80°C. 
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We performed Masson‟s Trichrome and hematoxylin-eosin (H&E) staining on five-

micrometer paraffin sections from all the hearts included in this study. Semi-

quantitative histological assessment was performed by an experienced pathologist in 

a blinded fashion. Inflammatory cell infiltration and fibrosis were evaluated in the 

following LV areas: (A) infarction, (B) peri-infarct border zone, and (C) graft area for 

the MAG group. Comparable anatomic areas (to those in A and B) were assessed in 

healthy hearts. Fibrosis was evaluated as the percentage of area of the left ventricle 

covered by collagen deposition. Ten random fields were chosen in each section for 

all the quantifications.  

 

To assess angiogenesis, two consecutive 5 m heart sections were stained using a 

blood vessel staining kit (Millipore Corp., Bedford, Massachusetts, USA) in which von 

Willebrand factor (vWF) was used as an endothelial cell marker (Rabbit anti-vWF 

polyclonal antibody, Millipore).  Blood vessels per high power field (hpf) 400x were 

quantified in ten random fields per section in all the experimental groups using Image 

J 1.42q software (National Institutes of Health, USA).   

 

Neovascularization within the graft was assessed in MAG twenty-micrometer 

cryosections through the detection of DiI+ blood vessels. Immunohistochemical 

staining was performed in two consecutive five-micrometer cryosections from each 

heart using a ubiquitous marker of rat endothelial cells (1:50 monoclonal mouse anti-

RECA-1; HyCult biotechnologt b.v). Sections were then incubated with secondary 

antibodies Alexa Fluor®-594 and Anti GFP-Alexa Fluor®-488, and nuclei were 

stained with DAPI (Molecular Probes®, Invitrogen, Carlsbad, CA).   Images were 

acquired using a Leica TCS SP5, DMI6000 confocal laser scanning microscope 

(Leica Microsystems, Wetzlar, Germany), times 40 and 20 magnification.  They were 
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subsequently processed using Leica Application Suite Advanced Fluorescence 

(LAS-AF) quantification software (version 1.8.2 build 1465).   

 

2.2.10 Statistical Analysis 

Sample calculation: Based on power calculation from  our previous studies using 

gelfoam and H9C2 cell grafts for myocardial restoration [Kutschka, 2006a],  7 rats 

per group will afford statistical power to differentiate response between treated and 

untreated groups ( G-Power 3.1.2 software). In total, 30 rats will be used for this 

study, including extra rats to offset losses due to mortality (30% based in pilot 

studies). 

 

Statistics:  Data are presented as mean ± SEM. To test for statistically significant 

differences, we used two-way ANOVA and the unpaired Student‟s t test when 

appropriate.  Differences were considered significant when p<0.05. All statistical 

analyses were performed using GraphPad Prism software version 5.01 for 

Windows (GraphPad Software, San Diego, CA). 
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3 Results 

3.1 Results Experimental Approach to Hypothesis I 

3.1.1 Generation of Bioluminescent/Fluorescent Cell Lines 

Strong bioluminescence activity and good correlation of cell photon emission to cell 

number (number of cells seeded in 2-D culture) was found in H9C2-GFP-Fluc cells 

(r2= 0.96) (Figure 3.1).  Likewise, evaluation of both bioluminescence and 

fluorescence using the IVIS® Lumina bioimaging system indicated that there is a 

linear relationship between bioluminescence signals and fluorescence in 2-D (r2= 1.0) 

and 3-D (r2= 0.92) culture (Figure 3.2).  The latter slight variation in 3-D culture is 

likely to be related to increased fluorescence signals derived from the scaffold 

material (collagen‟s auto-fluorescence).  Hence, we chose to use bioluminescence 

imaging to assess cell survival in vitro and in vivo, and GFP immunostaining to detect 

donor cells in histological sections (Figure 3.3). 

 

 

 

 

 

 

 

Figure 3.1 H9C2 cells Luciferase 
transfection efficiency. Correlation 
between mean bioluminescence 
(mean total photon flux) and cell 
number in 2-D culture. 
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Figure 3.2 Bioimaging (bioluminescence and fluorescence) in two-dimensional and three-
dimensional cell culture.  (A) 1x10

5
  H9C2-GFP-FLuc cells were seeded on each well for 2-D 

cultures and on a porous collagen matrix for 3-D culture. A slight increase of fluorescence 
radiance was detected in 3-D cultures. (B) There is a perfect linear correlation between the 
amount of photons released per second (Total Flux) and the fluorescence emitted by GFP 
(Total Radiant Efficiency) in two-dimensional culture.  (C) A good correlation between 
bioluminescence and fluorescence three-dimensional was also observed.  

 

 

Figure 3.3 H9C2-GFP-Fluc cells. Immunofluorescence images showing H9C2-GFP-Fluc 
cardiomyoblasts expressing (A) F-actin (in red)  and  (B) F-actin and GFP (in green).    Nuclei 

appear in blue.  Scale bar equals 50 m. 
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Figure 3.4 Bioluminescence imaging evaluating cell viability in 3-D collagen 
cultures after supplementation of cell culture medium with various 
concentrations of ascorbic acid (n=6).  –AA, indicates that cell culture medium 
without ascorbic acid was added.  SEM, standard error of the mean. 

 

3.1.2 Ascorbic Acid Titration  

Ascorbic acid titration assays in collagen 3-D cultures, indicated that any dosage 

equal or above 100 mol/L AA does not have any protective effect on H9C2 rat 

cardiomyoblasts (Figure 3.4). A significant decrease in cell photon emission was 

observed at day 7 compared to day 3 in cultures supplemented with 100mol/ L AA 

(P<0.05) and 200 mol/L AA (P<0.001), as well as in cultures that did not receive any 

ascorbic acid (-AA, P<0.001) in the culture medium.  No significant difference in cell 

bioluminescence was found between 3D cultures supplemented with 5 and 50 mol/L 

AA at day 7.  On the other hand, a significant increase in cell signals by day 7 was 

observed in 3-D cultures enriched with 5 mol/L AA, when compared to the other 

culture conditions, Consequently, we chose to continue using 5 and 50 mol/L 

ascorbic acid in any further in vitro studies. Similar AA physiological concentrations 

(up to 50 mol/L) have also been previously reported as safe in other cell types 

[Telang, 2007, Vissers, 2007]. 
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3.1.3 ECM-based Scaffold Degradation in the Renal Pouch 

We carried out preliminary studies to assess the degradation of several FDA- 

approved ECM foams following implantation of 1cm2 scaffolds (without cells) in the 

perirenal fat of Wistar rats for 7 days (Table 3.1) .  The porcine gelatin foam was 

recovered almost intact after 10 days of implantation and did not trigger fibrosis or 

foreign body reaction in the renal pouch. Hence, Gelfoam was chosen as scaffold 

material for cell-based animal experiments in the present study.  

 

Table 3.1 Degradation of collagen-based foams in the renal pouch. 

 

 

3.1.4 In vitro Bioluminescence Imaging/ Effect of Ascorbic Acid on 3-D H9C2 

Cell Graft Survival in vitro 

BLI showed that there was a significant increase in cell bioluminescent baseline 

signals from day 1 to day 5 in grafts supplemented with both 5 µmol/L and 50 µmol/L 
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ascorbic acid (55.23±0.45%, P<0.001 and 49.83±0.45%, P<0.01 respectively) 

(Figure 3.5 A-D). H9C2-Fluc cells seeded within the three-dimensional MAG 

receiving 5 µmol/L ascorbic acid-supplemented medium showed significantly larger 

bioluminescent signals after 3 days (2.1x108
9.5x107 p/s vs. 1.5x108

 7.4x107p/s, 

P<0.05 versus control) and 5 days in culture (2.3x108
7.9x107vs. 1.7x108

4.8x107, 

P<0.05 versus control). Likewise, 50 µmol/L ascorbic acid-supplemented grafts 

displayed significantly increased cell signals at day 3 when compared to control 

grafts receiving plain culture medium  (2.0x108
8.0x107, P<0.05 versus control) 

(Figure 3.5 D).  There were no large differences in photon emission between the two 

dosages of ascorbic acid. 

Histological cell counts (DAPI +cells) indicated that the amount of DAPI+ cells per hpf 

(x400) in the 5 µmol/L ascorbic acid –enriched grafts was significantly higher than in 

the plain grafts after 3 days in culture (5321.4 vs. 307.18, P<0.05).  Likewise, 

mean cell number was higher in grafts that received 50 µmol/L AA after 5 days in 

static culture  when compared to untreated MAG (41.414.3 vs. 19.66.9, P<0.05). 

There were differences in cell density between the ascorbic acid-treated grafts.  A 

good correlation of luciferase activity per graft to mean cell number (DAPI + cells/ 

graft) was found after 3 days (r2= 0.90) and 5 days (r2= 0.97) in culture (Figure 3.5 E 

and F). 
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Figure 3.5 In vitro Bioluminescence imaging of 3-D MAG. BLI of AA-enriched and plain MAG 
after (A) 1 day, (B) after 3 days in culture, and (C) after 5 days in culture; n=20. (D) MAG 

receiving 50 and 5 mol/L AA-supplemented medium showed significantly larger 

bioluminescent signals after 5 days in culture ( p<0.05 vs. control). 5 mol/L AA-enriched 
MAG also displayed higher photon emission at day 3 in culture (p<0.05 vs. control). An 
increase in cell bioluminescent baseline signals from day 1 to 5 was found in grafts 

supplemented with both 5 mol/L AA (***p<0.001) and 50 mol/L AA (**p<0.01). Correlation 
between mean bioluminescence (mean total photon flux) and histological mean cell number 
after (E) 3 days and (F) 5 days in culture. 3-D, three-dimensional; AA, ascorbic acid; BLI, 
bioluminescence imaging; hpf, high-power field (400x); MAG, myocardial artificial grafts; SD, 
standard deviation. 
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3.1.5 The Effect of Ascorbic Acid on Cell Apoptosis in 3-D MAG in vitro 

 TUNEL assay and active Caspase 3 staining were used to assess the effect of 

ascorbic acid on H9C2-luc cells apoptosis when cultured in thick three-dimensional 

myocardial artificial grafts (MAG) (Figure 3.6 A-F). The percentage of TUNEL+ cells 

per hpf (400x) in plain grafts increased significantly from day 3 in culture 

(23.512.6%) to day 5 (61.930.1%, P<0.001).  The percentage of TUNEL+ cells was 

significantly inferior in the 5 µmol/L and 50 µmol/L MAG at day 5 in culture 

(4.88.6%, P<0.001 and 8.39.2%, P<0.001 respectively) when compared with plain 

control grafts (61.930.1%) (Figure 3.6 G). Given that TUNEL assay tags apoptotic 

and necrotic cells, we used active Caspase 3 staining as a more specific method to 

identify apoptotic cells.  The percentage of active Caspase 3+ cells was considerably 

higher in plain grafts after 3 (41.611.2%) and 5 (44.820.0%) days in culture when 

compare to both dosages of ascorbic acid (Figure 3.6 A-F and H). The 5 µmol/L AA 

grafts had 16.5 6.17% (P<0.01) apoptotic cells at day 3, and 15.7 6.8% (P<0.001) 

at day 5. Likewise, the 50 µmol/L AA MAG had 115.7% (P<0.01) of apoptotic cells 

at day 3 and 18.85.9% (P<0.01) at day 5 in culture. 

 

3.1.6 Ascorbic Acid Effect on H9C2 Cells Phenotype in vitro 

After 3 days in culture, H9C2 cardiomyoblasts were attached to the scaffold material 

and formed a primitive syncytium in all groups (Figure 3.7 A, C and E).  Cells fused 

and formed elongated myotube-like structures that were evident in the ascorbic acid-

treated grafts (Figure 3.7  C and E).  Immunohistochemical assays revealed that -

sarcomeric actin was expressed by untreated and ascorbic acid-enriched cells after 3 

and 5 days in 3-D culture.  However, the ascorbic acid-treated groups displayed 

organized sarcomeric patterns at days 3 and 5 in culture, whereas z-lines were not 

apparent in the untreated cells after 5 days in culture (Figure 3.7 A- F).  
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Figure 3.6 Apoptosis assessment in three-dimensional myocardial artificial grafts.  Confocal 
micrographs of  active Caspase 3 staining (Red) performed after 3 and days in culture in A, 
Plain MAG,; B, 5 µmol/L AA MAG and C, 50 µmol/L AA MAG. Active Caspase-3 staining  
after 5 days in culture in D, Plain MAG; E, 5 µmol/L AA MAG and F, 50 µmol/L AA MAG. The 
insert is a higher magnification showing cytoplasmic active Caspase 3 expression. G, In the 
plain MAG, TUNEL assay showed an increase in the percentage of TUNEL positive cells from 
day 3 to day 5 in culture (***P<0.001, n=9). H, The percentage of apoptotic cells (active 
Caspase-3

+
; n=5) was significantly inferior at days 3 and 5 in the 5 µmol/L AA (P<0.01 and 

P<0.001, respectively) and 50 µmol/L AA MAG (P<0.01). Nuclei were counterstained with 
DAPI (Blue). Scaffold autofluorescence appears in grey. Scale bars indicate 25µm.  MAG, 
myocardial artificial grafts; AA, ascorbic acid. 
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Figure 3.7 Ascorbic acid effect on H9C2 cardiomyoblasts phenotype in 3-D culture. Alpha-sarcomeric 

actin staining (Red) performed after 3 days in culture in A, Plain MAG; B, 5 µmol/L AA MAG and C, 50 
µmol/L AA; and after 5 days in culture in D, Plain MAG; E, 5 µmol/L AA MAG and F, 50 µmol/L AA.  
Nuclei were counterstained with DAPI (Blue). Right side panels depict DIC images that were merged to 
the fluorescence micrographs to identify cell morphology and distribution in the scaffold.  Scale bars 

indicate 10µ. SA, alpha-sarcomeric actin; DIC, differential interference contrast. 

 

3.1.7 In vivo Bioluminescence Imaging 

Bioluminescent signals progressively decreased from day 1 to 6 in both the plain and 

ascorbic acid enriched MAG (Groups A and B) (Figure 3.8 A and B).  However, 

photon emission fell dramatically in plain MAG (Group B) from day 1 to 6 post-

implantation (Figure 3.8 A).  Cell photon emission by day 6 plunged by 74±0.9% of 

the baseline in the plain MAG, while the ascorbic acid-enriched grafts signals 

decreased by just 36.42±1.81% (P<0.0001). There was no significant difference in 

the mean photon emission among groups at days 1 and 3 post graft implantation.  

However, the ascorbic acid MAG (Group A) displayed significantly higher cell signals 

at day 6 (6.1x106±1.7x105 p/s vs. 1.8x106±2.8x105 p/s, P<0.05) (Figure 3.8 C). 
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Figure 3.8 In vivo bioluminescence imaging after 1, 3 and 5 days of graft implantation in the 
renal pouch.  (A) Plain MAG (n=9).  (B) Ascorbic acid-enriched MAG (n=9). (C) The ascorbic 
acid-enriched MAG displayed significantly higher cell photon emission at day 6 after graft 
implantation (*P<0.05).  MAG, myocardial artificial grafts; AA, ascorbic acid. 
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3.1.8 Renal Pouch Model 

None of the rats died before the scheduled euthanasia. There were no visible signs 

of infection, inflammation, adhesions or foreign body reaction in any group after one 

week of myocardial artificial graft implantation in the renal pouch. Explanted grafts 

containing cells (Groups A and B) displayed preserved size and shape. In contrast, 

the negative control grafts (Groups C and D) were slightly smaller in size after one 

week of implantation, which could be due to scaffold‟s degradation.  All the implanted 

grafts were surrounded by a thin layer of connective tissue adhered to the pre-renal 

fat. Numerous blood vessels were visible by the naked eye in both plain (Figure 3.9 

A) and ascorbic acid- enriched MAG (Figure 3.9 C), whilst fewer vascular networks 

could be seen in negative control acellular grafts (Figure 3.9 B and D).  

Figure 3.9 Explanted MAG from the renal pouch. Abundant blood vessels infiltrating 

the (A) plain and (C) ascorbic acid-enriched MAG explanted from the right renal 
pouch. Fewer blood vessels could be observed by the naked eye in the (B) plain 
negative (acellular) control and (D) ascorbic acid negative (acellular) control, 
explanted from the left renal pouc
grafts. 
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3.1.9 Immunohistochemistry- Assessment of GFP and RECA Expression: 

Fluorescence pixel intensity analysis of the confocal micrographs revealed that the 

amount of GFP positive cells (donor cells) was significantly greater in the group A 

(ascorbic acid- enriched MAG) when compared to the plain grafts from group B 

(2.091.42 vs. 0.94 0.24, P<0.01) (Figure 3.10 E).  

Abundant vascular networks infiltrating the MAG could be observed under the 

confocal microscope (Figure 3.10 A and B); angiogenesis was particularly abundant 

in the ascorbic acid group (Figure 3.10 B and D). Furthermore, blood vessels 

infiltration observed in group A (ascorbic acid) was not limited to the outmost regions 

of the graft, as vessels in close contact with the gelatin scaffold were found towards 

the graft‟s core (Figure 3.10 D).  Accordingly, pixel intensity analysis showed that 

expression of the rat endothelial cell antibody (RECA) was significantly higher in the 

explanted grafts from group A (ascorbic acid) than those from group B (plain) 

(4.281.98 vs. 1.461.21, P<0.05). Fluorescence intensity quantification of DAPI+ 

cells did not reveal any difference among groups (Figure 3.10 E). 

 

3.1.10 Histology 

Histology analysis showed a higher amount of blood vessels per hpf (400x) in the 

ascorbic acid-MAG (Group A) compared to plain MAG (Group B) (3.650.5 vs. 2.75 

0.5, P<0.05) (Figure 3.11 A, B and E).  These results are in agreement with the 

analysis of endothelial cell markers following confocal microscopy. In both groups, 

peripheral angiogenesis was higher.  However, a few capillaries could also be 

detected at the graft‟s core.  Ingrowth of vessels was also observed in the periphery 

of the acellular negative controls (Figure 3.11 C and D), but no capillaries were 

detected towards the core.  There was no difference in the number of blood vessels 

found in the negative control groups (Figure 3.11 E).  
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Figure 3.10 GFP and rat endothelial cell antibody (RECA) expression in explanted 
MAG from the renal pouch. (A, C) Plain MAG. (B, D) AA-enriched MAG. Confocal 
micrographs show H9C2-Fluc-GFP cells in green; RECA+ cells in red (blood vessels), 
and nuclei stained with DAPI in blue. Vascular networks infiltrating the grafts could be 
observed in both (A) plain and (B) AA-enriched MAG. The amount of GFP+ and 
RECA+ cells is more evident in the AA group. (C, D) Distribution of donor (GFP+) cells 
and blood vessels in the scaffold. GFP+ cells can be seen in white and nuclei in blue. 
Asterisks indicate the scaffold structure. Arrows point to blood vessels. (E) 
Semiquantitative fluorescence pixel intensity analysis showed that the number of GFP-
positive cells was greater in the AA-enriched MAG (**P<0.01). Likewise, expression of 
RECA was higher in the explanted grafts from the AA group (*P<0.05). GFP, green 
fluorescent protein. 
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There was no significant difference in collagen deposition among groups. The mean 

collagen deposition score (% of area covered by collagen of the total cellular 

reaction) was mild (0-25%) for both ascorbic acid- enriched and plain MAG, as well 

as for negative controls (Table 3.2 and Figure 3.11 A-D).  Cell infiltration was mild in 

all groups, eosinophils being the most abundant cell type found within the grafts. 

Occasional lymphocytes and neutrophils were observed in all the graft sections.  

Likewise, mild foreign body reaction was observed in all the groups. Macrophages 

and giant cell reaction were observed in all groups. Just one of the explanted grafts 

from the negative control (group D) displayed moderate necrosis, 26-50% collagen 

deposition and abundant cell infiltration by neutrophils.  

 

Table 3.2 Histological semi-quantitative scoring of explanted myocardial artificial grafts.† 

 

 

  

                                                

†
 Cellular reaction was defined as the percentage of scaffold area covered by cells, and 

collagen deposition reflects the percentage of collagen covered of the total cellular reaction.   
 

Indicates minimal cellular reaction. MAG, myocardial artificial grafts; AA, ascorbic acid; hpf, 
high power field. 

 

Parameter 

Group A 

AA- MAG 

Group B 

Plain  MAG 

Group C 

AA- control 

Group D 

Plain control 

Cellular reaction (%) 0-25 0-25  0-25 0-25  

No of Eosinophils / hpf 2.3±0.9 2.0±1.0 1.5±0.0 1.5±0.0 

Collagen deposition (%) 0-25 0-25 0-25 0-25 
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Figure 3.11 Masson‟s trichrome staining micrographs of explanted MAG from the renal 
pouch. (A) plain MAG, (B) AA-enriched MAG, (C) plain negative (acellular) control, and (E) 
AA negative (acellular) control. Mild collagen deposition was observed in all groups. Scaffold 
material is stained in blue and pointed out with asterisks, to differentiate it from extracellular 
matrix deposition. Arrows indicate blood vessels within the grafts. (D) Histological analysis of 
the explanted MAG showed fewer amounts of blood vessels per high power field (400x) in the 
plain MAG when compared with the AA-enriched grafts (P<0.05). Scale bars indicate 50 µm. 
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3.2 Results Experimental Approach to Hypothesis II 

3.2.1 Animal Model 

A total of 30 rats were included in this study. Of 22 rats that underwent LAD ligation, 

5 died in the first 24 hr after LAD ligation, two from the MAG group and three from the 

MI group (22% postoperative mortality after MI).  One of 8 healthy sham rats died 

after surgery. There were no surgical complications or mortality during laparatomy 

and MAG implantation in the renal pouch. Two animals had to be excluded from the 

study 2 weeks after MAG epicardial implantation due to extensive skin necrosis at 

the Cyclosporine-A injection site. One rat died after 3 weeks of LAD ligation (MI 

group) and at 4 weeks after LV injury, two rats died during anesthesia for 

echocardiography (one from the MI group and one from the MAG group).  Overall, 19 

rats completed the study (6 in the MAG group, 6 in the MI group and 7 in the healthy 

(sham operated) group.  

  

3.2.2 Donor Cell Survival  

In vivo bioluminescence imaging (BLI) showed a significant decrease in grafted cell 

photon emission from day 1 to day 7 post- epicardial patch implantation by 84% of 

baseline (1.43x107 ± 3.1x106 p/s, and 2.29 x106 ± 5.87x105 p/s,  P<0.0001).  No cell 

signals were detected after two weeks of MAG implantation (Figure 3.12). 
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3.2.3 Left Ventricular Function and Remodeling Assessment by 

Echocardiography  

Echocardiography four weeks after surgery revealed that MAG treatment attenuated 

LV remodeling (LV end-systolic volume 0.31 ± 0.13 vs. 0.81 ± 0.01 ml, P<0.05; LV 

end-diastolic volume 0.79 ± 0.33 vs. 1.83 ± 0.26 ml, P<0.076), and preserved LV wall 

thickness (0.21 ± 0.03 vs. 0.09 ± 0.005 cm, P<0.05) compared to MI. There were no 

significant differences in LV remodeling and function parameters between healthy 

and MAG rats. The percent change in LV cross-sectional area between diastole and 

Figure 3.12 In vivo donor cell survival in ascorbic acid-enriched pre-vascularized MAG after 
epicardial implantation on the ischemic heart. In vivo bioluminescence imaging after (A) 3, 
(B) 7 and (C) 14 days of graft implantation into the ischemic heart of MAG-treated rats.  (D) 
There was a significant reduction in cell photon emission after the first week of graft 
implantation (**P<0.0001).  MAG, myocardial artificial grafts. 
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systole (FAC) was 33.50 ± 2.02% in MI, 42.80 ± 5.36%  in MAG-treated, and 57.0 ± 

9.29% in healthy animals (P<0.05, MI vs. healthy). Furthermore, LV ejection fraction 

(EF) was 54.2 ±7.3 % in MI, 62.8±8.8% in MAG-treated, and 83.0 ± 4.6% in healthy 

animals (P<0.05, MI vs. healthy) (Table 3.3 and Figure 3.13).  

 

 

Table 3.3 Echocardiographic assessment of myocardial remodeling and function in healthy sham 

operated, myocardial infarction (MI), and myocardial artificial graft (MAG) rats.
 ‡
  

 

 

 

                                                

‡
IVSd, interventricular septal thickness-diastole, LVIDd, left ventricular internal dimension-

diastole; LVPWd, left ventricular posterior wall dimension-diastole; IVSs, interventricular 
septal thickness-systole; LVIDs, left ventricular internal dimension-systole; LVPWs, left 
ventricular posterior wall dimension-systole, FS, fractional shortening; LVEDV, left ventricular 
end-diastolic volume; LVESV, left ventricular end-systolic volume; LVAd, left ventricular area-
diastole; LVAs, left ventricular area-systole; FAC,fractional area change; EF, ejection fraction.  
Statistical significance is indicated as follows:  a P<0.05 vs. healthy;*a P<0.01 vs. healthy; **a 
P<0.001 vs. healthy; b P<0.05 vs. MAG; *b P<0.01 vs. MAG. 
 
 
 
 
 

 Healthy MI MAG 

 n=4 n=5 n=5 

    
IVSd (cm) 0.18 ± 0.01 0.09 ± 0.01 

*a, b  
 0.21 ± 0.03 

LVIDd (cm) 0.73 ± 0.01 1.05 ± 0.05 
*a, b

 0.75 ± 0.10 

LVPWd (cm) 0.17± 0.01 0.17 ± 0.02 0.18 ± 0.02 

IVSs (cm) 0.30 ±0.01 0.14 ± 0.05 
a
 0.28 ± 0.04 

LVIDs (cm) 0.40 ± 0.05 0.81 ± 0.01
*a,  b

 0.52 ± 0.09 

LVPWs (cm) 0.31 ± 0.04 0.26 ± 0.02 0.28 ± 0.05 

FS (%) 45.63 ± 5.38 23.14 ± 4.14
 a
 30.87 ± 7.30 

LVEDV (ml) 0.60 ± 0.03 1.83 ± 0.26 
*a

 0.79 ± 0.33 

LVESV (ml) 0.11 ± 0.03 0.81 ± 0.01 
**a, b

 0.31 ± 0.13 

LVAd (cm
2
) 4.30 ± 0.10 8.60 ± 0.28 

*a
 6.48 ± 3.83 

LVAs (cm
2
) 2.15 ± 0.35 5.75 ± 0.64 

a
 3.84 ± 2.39 

FAC (%) 57.0 ± 9.29 33.50 ± 2.02
 a
 42.80 ± 5.36 

EF (%) 83.0 ± 4.6 54.2 ±7.3 
a
 62.8±8.8 
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3.2.4 Hemodynamics 

We performed invasive hemodynamic analyses four weeks after LAD ligation (MAG 

and MI groups) or thoracotomy (healthy group) (Table 3.4).  Infarcted (MI) rats had 

decreased contractility and heart rate (P<0.0001 vs. both healthy and MAG). LV end-

diastolic pressure (LVEDP) was increased both in MI and MAG groups (6.3 ± 0.3 and 

5.1 ± 0.2 mmHg, respectively) compared to healthy animals (3.1 ± 0.1 mmHg; 

P<0.0001).  However, this was lower in MAG-treated rats compared to MI (P<0.01).  

MAG rats had higher cardiac output than MI animals (51.59 ± 6.5 vs. 25.06 ± 4.24 

ml·min-1, P<0.01), and comparable to healthy animals (47.08 ± 1.9 ml·min-1, P=0.46). 

 

Table 3.4 Hemodynamics assessment of myocardial function in healthy sham operated, 

myocardial infarction (MI), and myocardial artificial graft (MAG) groups.
 §
 

                                                

§ bpm, beats per minute; s, seconds; LVEDP, left ventricular end-diastolic pressure; IRP, 
isovolumetric relaxation period. Statistical significance is indicated as follows: a P<0.05 vs. 
healthy; *a P<0.01 vs. healthy; **a P<0.001 vs. healthy; ***a P<0.0001 vs. healthy;  b P<0.05 
vs. MAG;*b P<0.01 vs. MAG; **b P<0.001 vs. MAG. 
 

 Healthy  MI MAG 

 (n=7) (n=6) (n=6) 

    

Body Weight (gr) 419.7 ± 15.9 421.5  ± 8.6 430.2  ± 10.6 

    

Heart Rate (bpm) 188.0 ± 7.5 147.7 ± 11.1 
**a, **b

 193.6 ± 12.5 

Maximum LV  Pressure 
(mmHg)  

75.6 ± 4.3 83.7 ± 7.3 81.8 ± .7 

LVEDP (mmHg) 3.1 ± 0.1 6.3 ± 0.3 
***a, *b

 5.1 ± 0.2 
***a

 

Mean LV Pressure  21.2 ± 1.3 19.6 ± 1.1 23.58 ± 2.0 

Cycle Duration (s) 0.33 ± 0.01 0.43 ± 0.04
 a, b

 0.32 ± 0.02 

Maximum positive dP/dt 
(mmHg/s) 

3,484.1 ± 344.5 3,613.1 ± 423.2 3,703.7 ± 267.4 

Contractility Index (1/s)  93.6 ± 3.0 78.9 ± 3.0
 a
 89.9 ± 6.5 

Maximum negative dP/dt 
(mmHg/s) 

-2,573.8 ± 146.1 -2,309.6 ± 263.5 
a, b

 -2,732.2 ± 282.3 

IRP  (mmHg/s) -1,599.7 ± 163.0 -1,598.8± 194.9 -1,658.7 ± 83.9 

Tau (s) 0.02 ± 0.002 0.03 ± 0.01 0.02 ± 0.002 

    

Stroke Volume (ml·beat
-1

) 0.25 ± 0.01 0.17 ± 0.02
 *a, b

 0.26 ± 0.02 

Cardiac output (ml·min
-1

) 47.08 ± 1.9 25.06 ± 4.24 
**a, **b 51.59 ± 6.49 
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3.2.5 MAG Prevascularization in the Renal Pouch 

After 3 days in the renal pouch, grafts preserved their size and shape and were 

covered by a thin layer of connective tissue (Figure 3.14 A).  H&E staining showed 

donor H9C2 cardiomyoblasts forming syncytia, as well as neo-blood vessels within 

the graft (Figure 3.14 B). Effective MAG neo-vascularization after 3 days in the renal 

pouch was evidenced, as host‟s DiI+ blood vessels were found throughout the graft 

(Figure 3.14 C and D).  

 

 

 

Figure 3.14 Prevascularized Myocardial Artificial Graft (MAG). (A) Explanted MAG after 3 
days in the renal pouch. (B) H&E staining (200x) shows donor H9C2 cells forming syncytia 
(black arrows), and neo-blood vessels containing red blood cells (red arrowhead) within the 
graft.  (C) Confocal, and (D) merged confocal and bright field images  (100x) of explanted 
MAG after  direct labeling of the blood vessels by cardiac perfusion with 1,1'-dioctadecyl-
3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). Yellow arrows indicate DiI+ blood  
vessels (in red) infiltrating the macroporous gelatin graft. 
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3.2.6 Left Ventricular Morphology and Histology 

Consistent with the echocardiographic evaluation, MAG-treated hearts displayed 

more preserved LV dimensions in comparison to MI hearts 1 month after LAD ligation 

(Figure 3.15 A-C). Alignment of the implanted graft was observed along the 

epicardium, which may have contributed to the preservation of LV wall thickness 

(Figure 3.15 C).  The geometrical improvements seen in MAG-treated rats were 

associated with a 25% reduction in fibrosis in the infarct and peri-infarct border zone 

compared with MI control hearts (Figure 3.15  D-F and Table 3.5).   

 

 

Figure 3.15 (A-C) Morphology of explanted hearts.  Mid-ventricular cross-section of (A) 
healthy (B) myocardial infarction (MI), and (C) myocardial artificial graft (MAG)-treated hearts.  
Engrafted MAG, indicated by blue dotted line, remained firmly attached and aligned to the left 
ventricular scar area. (D-F) Masson‟s thrichrome staining micrographs of explanted hearts in 
(D) healthy, (E) MI and (F) MAG-treated animals. Reduced collagen deposition, as well as 
islets with cardiomyocytes were observed in the scar area of MAG-treated hearts. Scale bar 

indicates 5 mm in (A-C), and 20 m in (D-F). 
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Table 3.5 Histological semi-quantitative fibrosis scoring of explanted hearts from healthy 

sham operated, myocardial infarction (MI), and myocardial artificial graft (MAG) rats. 
**
 

 

 

There was significant neutrophil recruitment to the graft area in MAG-treated rats 

relative to the LV scar area in the same animals and in MI rats, as well as to sham 

operation/healthy rats (P< 0.001).  Similarly, the amount of mast cells observed in the 

graft area was greater compared to the infarcted LV of the same MAG-treated 

animals (P< 0.05), and to the LV of infarcted (MI) and healthy rats (P< 0.001). On the 

other hand, lymphocyte concentration in the LV infarcted area was significantly 

decreased in the MAG-treated group compared to MI (P< 0.001).  Plasma cells were 

not observed in any experimental group (Table 3.6).  

H&E staining revealed that the implanted patch engrafted to the scarred myocardium 

of treated hearts (Figure 3.16 A-C). Newly formed vessels were found both within the 

implanted graft and in the LV (scar area) of the MAG group (Figure 3.16 C).  The LV 

wall in MAG-treated hearts was thicker compared to MI hearts due in part to the 

presence of the epicardial patch. 

 

 

                                                

**
 LV, left ventriclular; NA, not applicable 

 Healthy MI MAG 

 n=7 n=6 n=6 

LV fibrosis (%) 0 >50% 26-50 

LV infarct border zone fibrosis (%) NA 0-25% 0 
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Abundant RECA+ blood vessel networks infiltrating the scarred myocardium of MAG-

treated hearts were also observed under confocal microscopy (Figure 3.17).  

Angiogenesis assessment using an endothelial marker (von Willebrand factor) 

(Figure 3.18 A-C), revealed a 7-fold increase in blood vessel density in the scar area 

of MAG-treated compared to MI hearts (15.28 ± 1.1 vs. 2.06 ± 0.3 blood vessels/hpf, 

P<0.0001, Figure 3.18 D).  

 

 

Table 3.6 Left ventricular (LV) inflammatory cell infiltration
††

 

 

                                                

 

††
 Evaluation of inflammatory cell infiltration in H&E stained sections reflects the number of 

cells counted in the assessed area/high power field (hpf). Significance is indicated as *P<0.05 
and ***P<0.001, vs.  (a) LV of healthy animals; (b) LV infarct (scar) area in  myocardial 
infarction (MI) group; (c) LV scar area in myocardial artificial graft (MAG)-treated rats; and (d) 
graft area in the MAG-treated group.   
 

 

 

 

 

 

 

 

 

 

 
 

Healthy 
n=7 

MI  
n=6 

MAG 
n=6 

Area Assessed / hpf 
 
LV

 
LV Scar LV Scar Graft 

Neutrophils  0 1.28±0.38 0 4.64±0.75 
***a,b,c

 

Lymphocytes 0 6.61±1.84 
***b; **d

 1.79±0.18 3.64±0.7 
***a

 

Macrophages  0 0 1.29±0.75 1.57±0.78 

Mast Cells  0 1.67±0.25 0 4.07±0.90 
***a,c; *b

 

Plasma Cells 0 0 0 0 



 
Chapter 3 Results 

79 
 

 

Figure 3.16 Reconstruction of the left ventricular wall using H&E staining micrographs (200x) 
in (A) healthy sham operated, (B) myocardial infarction (MI); and (C) myocardial artificial graft 
(MAG)-treated explanted hearts.  The implanted patch engrafted to the epicardium  and newly 
formed blood vessels were found within the implanted graft and in the left ventricle (scar area) 
of MAG-treated rats. Green arrows are delimiting the epicardial graft, and remnants of 

scaffold material are pointed out by asterisks in (C). Scale bar indicates 100 m. 
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Figure 3.17 Left ventricular endothelial cell antibody (RECA) expression.  Confocal 
micrographs of (A-B) infarcted, and (C-D) MAG (myocardial artificial graft)-treated hearts. 
RECA

+ 
cells are labeled in red (blood vessels) and DAPI-labeled nuclei appear in blue.  

Vascular networks infiltrating the scarred myocardium could be observed in the MAG-treated 
animals, 4 weeks after epicardial patch implantation. GFP

 +
 donor cells were not observed in 

any of the treated hearts.  Scale bar indicates 250 m.  
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Figure 3.18 Left ventricular blood vessels density. von Willebrand factor staining of heart 
paraffin sections (in dark brown) from (A) healthy (n=7), (B) myocardial infarction (MI, n=6) 
and (C) myocardial artificial graft (MAG)-treated rats (n=6).  (D) There was a 7-fold increase 
of blood vessels per high power field (x400) in the left ventricle of MAG-treated hearts 
compared to MI hearts. Black arrows indicate blood vessels. (***P<0.001). Scale bar indicates 
20 µm.  
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4 Discussion 

4.1 Ascorbic Acid Improves Embryonic Cardiomyoblast Cell Survival & 

Promotes Vascularization in Potential Myocardial Grafts in vivo 

 

The main findings in the present study are fourfold:  first, ascorbic acid enhances 

thick bioengineered myocardial tissue survival in vitro through inhibition of cell 

apoptosis; second, the graft‟s viability and angiogenic potential in vivo are superior 

with ascorbic acid enrichment; third, we introduced an in vivo model for myocardial 

graft pre-vascularization that provides the graft with blood vessels of autologous 

origin before implantation in the targeted organ; and finally, the post-ischemic 

angiogenic therapy explored in this study using ascorbic acid-enriched- pre-

vascularized- myocardial artificial grafts attenuated  left ventricular remodeling and 

preserved left ventricular function in a rat model of myocardial infarction.  

 

4.1.1 Effect of Ascorbic Acid on H9C2 Cell Survival within Myocardial 

Artificial Grafts in vitro 

Stem cell- and bioartificial tissue- based therapies for the heart remain 

supplementary measures. The unique architecture and limited regenerative potential 

of the heart muscle restrict the capacity of random injections and implants to restore 

myocardium efficiently and permanently. The progress of such methods from random 

and supplementary to first-line therapeutic options will largely depend upon 

improvement on various levels: first, therapies have to be less traumatic and, second, 

the effect has to be stronger and more durable by enhancing graft viability and 

functionality in vivo. It is critical to sustain donor cell survival within bioengineered 

myocardial grafts through in vitro establishment of vascular networks for successful 

cardiac repair. Cell death constitutes a major limitation in cell and tissue implantation 
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in the frame of restorative therapies. Some reports indicate that more than 70% of 

cells die during the first two days after injection into the myocardium [Muller-Ehmsen, 

2002], whilst others point out a cell loss of ~ 55% just 10 minutes following 

implantation into the heart [Suzuki, 2004]. Furthermore, there is evidence that, in 

spite of capillary formation in vivo, donor cell survival after myocardial 3-D graft 

implantation is still at risk [Leor, 2000].   

We improved graft viability using ascorbic acid, a biocompatible, FDA approved and 

inexpensive compound that could be beneficial for the tissue engineering and the cell 

therapy field in general. The addition of ascorbic acid to the graft constitutes an 

uncomplicated method to counteract fulminant events which occur during acute 

ischemia and remodeling within the area of myocardial lesion. Such events are 

cytokine and radical oxygen species liberation, accumulation of purine derivates 

(danger signals), inflammation and apoptosis. Ascorbic acid is a ubiquitous and 

essential substance with practically no side-effects even in high doses, and can 

easily be integrated in a regenerative therapy protocol. Ascorbic acid participates in a 

variety of physiological functions in living organisms. In humans, its deficiency 

causes defective healing and disturbed blood vessel formation due to impaired 

collagen deposition [Hodges, 1971, Telang, 2007]. Besides its role in angiogenesis, 

ascorbic acid reduces hypoxia-induced apoptosis in vitro [Vassilopoulos, 2005, 

Vissers, 2007].  Accordingly, we hypothesized that ascorbic acid could be used to 

reduce cell death in myocardial grafts both in vitro and in vivo.  

We used bioluminescence imaging to assess H9C2-luc cell survival within thick 

three-dimensional myocardial artificial grafts (MAG) in vitro. The high sensitivity of 

BLI to monitor viable cells [Chen, 2009, Jenkins, 2003] was effectively demonstrated 

in our in vitro model, as we found a robust correlation between luciferase activity and 

histological cell counts.  We did not find significant difference in cell photon emission 

among groups after one day in culture, suggesting homogeneous delivery of cells 
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within the grafts. However, an increase in cell photon emission was observed within 5 

days in culture, indicating that cell survival and proliferation were enhanced [Cao, 

2006] when 3-D myocardial artificial tissues are supplemented with ascorbic acid.   

 

4.1.2 Effect of Ascorbic Acid on Cell Apoptosis within Myocardial Artificial 

Grafts in vitro 

Our data suggest that ascorbic acid enhance cell viability within bioengineered 

tissues in vitro in spite of the harsh conditions in culture (i.e. static 3-D culture, 

hypoxia and limited growth medium volume). Apoptosis is an active process 

associated with both the acute and chronic phases of myocardial infarction in 

response to oxidative insults [Kang, 2003]. The role of hypoxia on apoptosis via 

mitochondrial pathway activation of downstream effector caspases has already been 

demonstrated [McClintock, 2002]. It has been shown that in hypoxic conditions, 

hypoxia inhibitor alpha (HIF-1a) promotes apoptosis in H9C2 cells and 

cardiomyocytes [Graham, 2004, Malhotra, 2008, Vassilopoulos, 2005]. There is also 

evidence that depletion of ascorbic acid interrupts HIF-1a proteosomal degradation, 

leading to increased expression of the latter [Telang, 2007].  

Our in vitro experiments showed that graft viability improved via reduction of cell 

apoptosis, particularly when medium is supplemented with both 5 mol\L and 50 

mol\L ascorbic acid.  Furthermore, the amount of cells within the ascorbic-acid 

grafts is preserved over time in static culture conditions, whereas it significantly 

decreases in the plain MAG. These data correlate with our in vitro BLI results.  Thus, 

our findings suggest that ascorbic acid has a protective effect on donor cells when 

cultured in thick three-dimensional bioartificial constructs. The precise mechanism of 

such effect was not explored in this study.  However, the enhancement in cell viability 

observed in the antioxidant-supplemented groups could be attributed to ascorbic 
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acid-driven ROS scavenging that preserves the integrity of the mitochondria, and 

stabilization of the key regulator of hypoxia (HIF-1) [Malhotra, 2008, Telang, 2007, 

Vassilopoulos, 2005].  We do not have direct proof that ascorbic acid was in its active 

form during our study.  However, previous studies have demonstrated that the 

oxidized form of ascorbic acid -dehydroascorbic acid, (DHAA)- is neuroprotective in 

ischemia models [Huang, 2001, Kim, 2008], and it also prevents apoptosis and 

oxidative damage in macrophages [Asmis, 1998], lymphoid, myeloid and mesothelial 

cells [Gogou, 2007], among others [Martino, 2009].  DHAA is transported by the 

glucose transporters Glut1 into the mitochondria, and not the reduced form (ascorbic 

acid) [Kc, 2005].  Subsequently, DHAA is reduced back to ascorbic acid by protein 

disulfide isomerases.   Thus, we assume that even if ascorbic acid was oxidized 

during our experiments, there was a protective effect that could have been initiated 

by dehydroascorbic acid, which is ultimately reduced back to ascorbate in the 

mitochondria. 

Our preliminary in vitro titration studies suggested that any dosage equal or above 

100µmol/L AA have a cytotoxic effect on cardiomyoblasts. In vivo, it has been 

reported that ascorbic acid induces apoptosis of myeloid and lymphoid cells at 

concentrations above serum level (50µmol/L) [Puskas, 2000]. The ascorbic acid 

dosages utilized in our in vitro studies have also been previously reported as safe 

physiological dosage in other cell types [Kc, 2005, Vassilopoulos, 2005]. Hence, we 

chose the lowest possible physiological dose (5 µmol/L) for our in vivo studies 

according to this rationale, and due to the observation that after a 10 fold increase of 

ascorbic acid dose there were no differences in cell survival in vitro. 
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4.1.3 Ascorbic acid effect on H9C2 Cells Phenotype within Myocardial 

Artificial Grafts in vitro 

Besides cytoprotection, ascorbic acid seems to have an effect on cell differentiation. 

It has been shown that 100 µmol/L AA enhances differentiation of embryonic stem 

cell into cardiomyocytes in vitro [Takahashi, 2003], as well as ex-vivo differentiation 

of adult bone marrow stem cells into cardiomyocytes-like cells [Shim, 2004]. In our 

study, immunohistochemical assessment of MAG after 3 and 5 days in culture 

revealed that ascorbic acid induced morphological myogenic characteristics including 

elongation and cell fusion [Leong, 2007]. Expression of sarcomeric actin was 

observed among all groups at day 3, yet more organized „z-line like‟ patterns were 

observed in the ascorbic acid-enriched grafts both at days 3 and 5 in culture.  These 

results suggest that ascorbic acid may have an effect on H9C2 cardiomyoblasts 

differentiation. However, this interesting observation should be further addressed in 

future studies. 

 

4.1.4 Renal Pouch model and effect of ascorbic acid on myocardial artificial 

grafts in vivo 

To evaluate the ascorbic acid effect on a bioartificial graft in vivo we developed a 

simple and reproducible renal pouch model.  In order to assess donor H9C2-Luc-

GFP cell survival within the graft, we performed noninvasive imaging at days 1, 3 and 

6 post-implantation with a bioluminescence charge-coupled device (CCD) camera.  

We observed that one week after graft implantation in a renal pouch for in vivo pre-

vascularization, H9C2 cardiomyoblast survival decreases substantially.  The latter 

was reflected by reduction of cell photon emission by nearly 75% of baseline in 

Group B (plain MAG). This observation is consistent with previously reported data 

from studies where bioluminescence imaging was used to assess myocardial graft 
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survival in vivo in a heterotopic model of myocardial restoration in 

immunosuppressed rats [Kutschka, 2006a].   The authors have shown that H9C2 

cardiomyoblasts injected in thin (3x3x1 mm) gelfoam grafts undergo massive cell 

death within 5 days after implantation into the ischemic myocardium.  Early 

cardiomyoblast survival within the implanted grafts could only be improved by 

addition of collagen and growth factors [Kutschka, 2006a] or by cell transduction with 

the anti-apoptotic hBcl-2 gene [Kutschka, 2006b]. In addition, premature H9C2 cell 

death has been also documented after injection in healthy myocardium [Wu, 2003].  

Here, we observed that by day 6 post-implantation cell survival was significantly 

enhanced within the implanted myocardial artificial tissues via ascorbic acid 

enrichment (Group A).  This indicates donor H9C2-GFP-Fluc cell survival and 

proliferation in the host in the ascorbic acid-enriched MAG during the first days post 

graft implantation. Yet, confirmation of a proliferative effect of ascorbic acid on H9C2 

cells needs to be further addressed in future studies.  Our results are of interest for 

cell transplantation models given the fact that we used an allogeneic model in 

immunocompetent rats.   

A limiting factor on cell or bioartificial tissue engraftment and survival is immune or 

inflammatory reaction. In past work we had demonstrated that the density of equine 

collagen scaffolds decreases by 30% after two weeks of implantation in skeletal 

muscle and triggers a heavy host cell infiltration. Our previous and current studies 

also demonstrate a bioluminescence signal drop over the first week indicating 

decrease in cell survival [Mueller-Stahl, 2008]. The latter apparently occurs 

regardless the administration of immunosuppresant (i.e. cyclosporine) or not. It 

seems that the most sensitive and specific time-window to capture in vivo photon 

emission in MAG –and also the most accurate- is the first week post-implantation in 

the renal pouch.  In spite of this short time frame, it was sensitive enough in our 

hands to display the difference in bioluminescence signals in the ascorbic acid 



 
Chapter 4 Discussion 

89 
 

enriched MAG. Cell viability after implantation has been demonstrated to be 

compromised in a time-dependent manner, even in models where one or two 

immunosuppresive agents have been used [Kutschka, 2006a, Mueller-Stahl, 2008].  

Furthermore, in our previous study donor cells could be detected using a cell tracker 

up to day 21 after graft implantation in immunosupressed rats [Mueller-Stahl, 2008] .  

This demonstrates that in current models, the fate of grafted tissue is limited by 

immunologic barriers even when immunosupression is used.     

It is likely that the restorative effect of implanted bioartificial grafts is achieved via 

neovascularization/paracrine effects [Frangogiannis, 2008, Leor, 2000] which in turn 

attenuate the infarct expansion, rather than by cardiomyocyte regeneration, cell 

differentiation, or functional graft integration into the host‟s myocardium. Evidence 

has shown that most bioengineered tissues for myocardial restoration have mainly 

focused on multicellular allogeneic approaches to achieve neovascularization within 

bioengineered grafts [Caspi, 2007, Narmoneva, 2004, Sekine, 2008, Sekiya, 2006, 

Tan, 2009, Zimmermann, 2009].  With our study, we introduce a strategy to promote 

a natural pattern of angiogenic sprouting and graft vascularization in the graft 

recipient itself.  

A prominent novelty of the present study is the introduction of the pouch model for in 

vivo graft pre-vascularization that has proven to be an easy and efficient way to 

supply bioengineered myocardial tissues with blood vessels of autologous origin. 

Using neonatal rat cardiomyocytes cast in an equine collagen type I mesh, we have 

recently shown that graft survival after implantation is determined by host immune 

responses and degree of angiogenesis [Mueller-Stahl, 2008]. In such model, 

vascularization could only be seen in the superficial layer of the graft after 14-21 days 

of implantation. Interestingly, the vascular density was significantly lower when the 

rats received immunosuppressive therapy.  Here we present a model with superior 
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and faster angiogenic potential. Moreover, we demonstrate that the 

neovascularization process is enhanced in ascorbic acid-enriched grafts.  

 

4.2 Post-Ischemic Angiogenic Therapy Using In Vivo Pre-Vascularized 

Ascorbic Acid-Enriched Myocardial Artificial Grafts Improves Heart 

Function in a Rat Model  

Cardiac tissue engineering holds the potential to become a therapeutic option for 

cardiac repair after MI. Pre-clinical studies suggest that various cell types have the 

capacity to somewhat restore infarcted myocardium [Bursac, 2009, Toma, 2002, 

Zimmermann, 2009]. Regardless of the cell type used, myocardial grafts seem to 

have a positive effect on LV dysfunction, myocardial remodeling and 

neovascularization via paracrine mechanisms [Kinnaird, 2004, Lionetti, Nakanishi, 

2008, Zimmermann, 2009].  However, donor-cell derived paracrine effects on the 

injured myocardium are not sufficient to support mature vascularization within thick 

bioengineered grafts, and in the injured heart. Hence, the incorporation of blood 

vessels within three-dimensional myocardial grafts, as well as the stimulation of in-

situ angiogenesis in the ischemic area may play a key role for successful cardiac 

regeneration. Though the formation of  capillaries within ex vivo generated cardiac 

muscle derived from human embryonic stem cells has been documented [Caspi, 

2007], and it has been shown that when transplanted in  vivo the human vessels 

within the graft can become functional and contribute to tissue perfusion [Lesman, 

2010b].  However, this approach has not been evaluated yet in pre-clinical studies 

aiming at post-ischemic myocardial repair. Also, the utilization of human embryonic 

stem cell-derived cardiomyocytes could be a limitation for immediate clinical 

application as further studies are required to ensure their safety. data from work 

involving in vitro generation of human endothelial cell-derived capillary networks 
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within biodegradable polymer matrices indicate that these in vitro bioengineered 

blood vessels may become leaky after transplantation [Nor, 2001]. 

Our previous work showed that supplementation with ascorbic acid improves survival 

of bioengineered myocardial tissue in vitro via inhibition of cell apoptosis, and 

enhances donor cell viability, as well as the graft‟s angiogenic potential in vivo 

[Martinez, 2010].  Since angiogenesis remains a challenge in cardiac tissue 

engineering, we tested herein the hypothesis that AA-enriched MAG which have 

been pre-vascularized in the recipients‟ own body will promote restoration of the 

ischemic heart. 

Here, we used a model of ischemic LV injury and remodeling in rats, without 

necessarily satisfying the definition of heart failure. The post-ischemic angiogenic 

therapy explored in this study decreased LV remodeling and preserved LV function.  

It is likely that the restorative effect of the implanted MAG was achieved via donor 

cell-induced early paracrine effects (attenuation of infarct expansion and remodeling), 

LV structural support, as well as through the robust angiogenic response induced in 

ischemic rat hearts.   The degree of neovascularization obtained in this study is 

greater than that resulting from previously reported cardiac tissue engineering 

strategies where only a two-fold increase in blood vessels density was found in the 

scar zone of infarcted hearts treated with omentum-generated pre-vascularized grafts 

[Dvir, 2009]. This superior outcome could be due both to the angiogenic effect of AA 

[Fiorito, 2008, Martinez, 2010, Omeroglu, 2008, Telang, 2007], and to blood vessels 

of autologous origin from the pre-vascularized graft.  Neovessels embedded in the 

patch may have served as an immediate source of endothelial cells and pro-

angiogenic growth factors, as well as a template for new sprouts to “infiltrate” the 

ischemic myocardium.   
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4.2.1 Allogeneic Donor Cell Survival in the Implanted Patch 

Although reduction of hypoxia-induced apoptosis in vitro has been demonstrated 

following supplementation with AA in several cell types including rat H9C2 

cardiomyoblasts, [Fiorito, 2008, Martinez, 2010, Vassilopoulos, 2005]  sustained 

donor cell survival could not be achieved in our study as evidenced by significantly 

reduced cell photon emission signals one week after epicardial patch implantation 

(i.e. 10 days after implantation in the renal pouch). This observation is in agreement 

with other reports indicating that after graft implantation, early allogeneic donor cell 

death occurs regardless of the administration of immunosuppressant [Mueller-Stahl, 

2008, Pereira, 1990]. The fate of the cells embedded in the implanted patch is limited 

by the harsh hypoxic environment in the ischemic myocardium which is not 

conducive to cell survival, and also by immunological barriers.  In our previous study, 

in vivo donor cell survival was enhanced by MAG supplementation with 5 mol/L AA. 

However, this effect did not extend beyond 1 week post-implantation in the renal 

pouch of immunocompetent allogeneic rats [Martinez, 2010]. On the other hand, in 

the present study it seems that donor cell viability could be maintained for the period 

of graft pre-vascularization (3 days), to then show a steep decrease (80%) during the 

first week after epicardial implantation in the ischemic heart.  There is evidence of the 

existence of a cyclosporine A-resistant pathway of T cell activation [Pereira, 1990], 

and lymphocytes may be activated by macrophages during the post-ischemic wound 

healing process.  The latter might explain why biodegradation and mild foreign body 

reaction occurred despite immunosuppressive therapy [Mueller-Stahl, 2008].   Since 

the natural protein-derived (gelatin) scaffold sponges used in this study  do not elicit 

a significant foreign body reaction (FBR) [Rohanizadeh, 2008], the immunogenic 

reaction observed in the graft area of the MAG group could have been triggered by 

the allogeneic donor cells.  While inflammatory cell infiltration could have 

compromised donor cell survival, it may have boosted neovascularization in the 
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ischemic myocardium.  Animal studies indicate that the presence of macrophages 

and neutrophils is sufficient to produce angiogenesis.  Likewise, the infiltration of 

mast cells in the graft area of the MAG-treated animals could have played a critical 

role in neovascularization [Kim, 2010].  In response to inflammatory cytokines, mast 

cells -as well as macrophages- secrete IL-8, a chemokine known for its pro-

angiogenic effect [Koch, 1992].   

 

4.2.2 Effect of Ascorbic Acid-enriched and Pre-vascularized- MAG on Heart 

Function 

Growing evidence suggests that regardless of early cell donor death, cardiac tissue 

engineering strategies have a positive effect on heart function.  The latter may be 

attributable to paracrine effects and cardioprotection that lead to neovascularization, 

containment of remodeling and limitation of non-ischemic infarct expansion, rather 

than de novo cardiomyogenic differentiation of donor cells.  As shown herein, MAG 

treatment immediately after MI attenuated LV remodeling and preserved LV wall 

thickness.  Furthermore, our approach limited LV contractile dysfunction, since 

percentage FAC, LV ejection fraction and cardiac output were comparable between 

MAG-treated and healthy animals. Since the heart rate of MI animals is lower than in 

healthy or MAG animals, this might limit definitive conclusions derived from 

comparisons for cardiac output and stroke volume, as cardiac output is the product of 

stroke volume and heart rate. However, it seems that MAG treatment may have 

prevented relative bradycardia, a complication that may accompany inferior wall 

infarction [Trappe, 2010].   

In a previous study, our group evaluated the effect of porcine gelatin matrix 

implantation (Gelfoam scaffold without cells) on the infarcted myocardium using a rat 

heterotopic heart transplant model in which restored hearts were transplanted into 

the abdomen of syngeneic recipients [Kutschka, 2006b]. Functional evaluation four 
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weeks after the restorative procedure indicated that transplantation of infarcted 

control hearts with Gelfoam patches without cells had no beneficial effects on heart 

function, since it led to significantly lower FS and LVEF compared to heterotopic 

normal control hearts and infarcted hearts treated with gelfoam grafts seeded with rat 

cardiomyoblasts overexpressing the BCL2 gene.   

Various strategies aiming either at inducing angiogenesis within cardiac grafts or pre-

vascularizing them prior to implantation into the ischemic heart have emerged during 

the last decade [Caspi, 2007, Dvir, 2009, Morritt, 2007, Shao, 2008, Ueyama, 2004].  

As expected, the effects on heart function and remodeling obtained after the pre-

clinical application of such constructs have been similar to the findings observed in 

the present study.  However, some of the previously reported studies on graft pre-

vascularization may have limitations for immediate clinical application due to the 

utilization of ex vivo allogeneic models or the incorporation of non-FDA approved 

materials [Caspi, 2007, Dvir, 2009]. Though we cannot consider the progress in the 

field of production of functional heart muscle anything more than nascent at the 

present time, here we introduce a model for graft vascularization that may have the 

potential to be translated into clinical interventions. 

Further preclinical studies exploring the effects of AA supplementation and in-vivo 

vascularization on cardiac grafts containing autologous adult stem cells or cardiac 

stem cells, as well as their application in chronic models of heart failure are 

warranted. 

 

4.3 Summary of Key Findings  

 Ascorbic Acid enhances donor cell survival within thick three-dimensional 

bioengineered myocardial grafts cultured under static conditions.  Graft 

viability is improved via reduction of cell apoptosis. 
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 Supplementation with ascorbic acid induces the expression of cardiac 

markers in H9C2 cells (rat cardiomyoblasts) cultured in three-dimensional 

constructs.  

 A novel model for myocardial graft pre-vascularization in vivo was introduced, 

which provides grafts destined for myocardial repair with blood vessels of 

autologous origin, devoid of side effects. 

  Ascorbic acid enrichment promotes neovascularization of potential 

myocardial artificial grafts in vivo. 

 Epicardial implantation of AA-enriched- pre-vascularized- grafts induced a 

robust angiogenic response in ischemic rat hearts, attenuated left ventricular 

remodeling (preservation of LV internal dimensions and wall thickness), and 

limited LV contractile dysfunction. 

 

4.4 Conclusions  

In conclusion, the current research introduces a model that is a powerful one to 

vascularize engineered implants in vivo. The possible explanation for the superior 

ascorbic acid-enriched graft viability in our allogeneic pre-clinical model might be 

both the anti-apoptotic and pro-angiogenic effects exerted by ascorbic acid.  These 

findings render ascorbic acid a considerable supplement for cell and tissue 

transplant-based therapies. Yet, to confirm the wide translational potential of our 

approach further studies should be done to evaluate the effect of ascorbic acid in 3-D 

bioartificial myocardial grafts containing human adult stem cells or differentiated cells, 

as well as in bioengineered tissues destined to regenerate other organs (i.e. bone, 

cartilage, skin, etc).   
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Furthermore, the importance of angiogenic therapy to prevent post-ischemic heart 

failure has been demonstrated in this study. Regardless of the cell approach used to 

regenerate the myocardium, establishing and maintaining a vascular network is 

crucial to achieve any improvement in cardiac function within the ischemic area.  

On the other hand, our findings suggest that AA-enriched-pre-vascularized MAG 

constitute a superior source of blood vessels for three-dimensional bioartificial grafts 

destined for myocardial regeneration. Here we present a tissue engineering-based 

therapy to prevent adverse remodeling. Furthermore, with our approach, viability 

support (cell therapy and antioxidant effects), and myocardial revascularization 

(stimulation of angiogenesis) have been addressed in an acute model of myocardial 

repair.  

In addition, the utilization of biocompatible, inexpensive, FDA approved compounds, 

as well as MAG vascularization with blood vessels of autologous origin, makes this 

strategy plausibly translatable and applicable to various donor cell types (ideally, 

adult stem cells of autologous origin to avoid immune rejection), other organs and 

regenerative interventions.   

We have made progress towards clinical translation of cardiac tissue engineering by 

providing autologous vascularization to cardiac patches without requiring the 

utilization and harvest of a major blood vessel. Of note, all first-stage pro-angiogenic 

tissue implantation could be performed through a minimally invasive laparoscopic 

procedure, on a day-surgery basis in the clinical setting.   

 

4.5 Challenges and Recommendations 

A limitation of our study is the utilization of an allogeneic cell type with poor 

translational potential (i.e. embryonic cells of rodent origin). Hence, in our currently 
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ongoing studies we are using human bone marrow-derived mesenchymal stem cells 

and human umbilical cord mesenchymal stem cells which have the potential to be 

applied in the clinical arena.   

In our myocardial restoration experiments of the present study we did not have 

negative controls such as acellular patches or MAG without prevascularization. Yet, 

previous studies carried out by our group suggested that epicardial implantation of 

Gelfoam alone or Gelfoam seeded with H9C2 cells did not improve cardiac function 

in an acute model of myocardial restoration in rats.  Improvements in cardiac 

performance were only observed with the addition of growth factors within the graft, 

or after transduction of H9C2 cells with the human BCL2 transgene [Kutschka, 

2006a, Kutschka, 2006b].    Furthermore, echocardiography assessments performed 

in the myocardial repair experiments of this study were done in a reduced number of 

animals.  Thus, this smaller sample size may not be statistically robust (particularly in 

the healthy group), and might lead to type I and type II errors.  However, our 

hemodynamics and histology analyses were carried out in all the rats included in this 

study.   

Some aspects besides incorporation of vascularization and control of immune or 

inflammatory responses need yet to be addressed towards application of engineered 

myocardial grafts as a therapeutic approach in the clinical setting.   Perhaps efforts at 

myocardial regeneration via tissue engineering do not essentially require implantation 

of grafts representing partially differentiated “cardiac tissue” that will ultimately not 

engraft to the left ventricle, increasing thereby the risk of arrhythmias [Smith, 2008].  

It has become increasingly evident that cell delivery is not the only –or even the best- 

tool for myocardial repair, and that cardiac patches should also be used to provide 

structural support to the ventricular wall while delivering the necessary proteome, 

cytokines and genes that will stimulate efficiently the heart‟s intrinsic regenerative 

potential.   
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Finally, emerging tissue engineering-based approaches have yet to be proven as 

offering advantage over and above existing treatments without unacceptable 

additional risk to the patient. Our strategy could face some challenges towards its 

clinical application, as our pre-clinical model involves acute post-MI epicardial patch 

implantation.  The latter is unlikely in the clinical setting due to a high risk of 

complications and mortality when acute surgery is performed in patients with evolving 

MI.  Ideally, tissue-engineered based interventions should be applied in sub-acute 

and chronic situations.  On the other hand, MAG prevascularization in the renal 

pouch might have risks associated with any surgical procedure (e.g. infection, 

bleeding).  Yet, these events can be avoided with adequate antibiotic prophylaxis and 

minimally invasive surgery performed by expert hands.  
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