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Summary 

In human pathogen Pseudomonas aeruginosa, quorum sensing (QS) is 

crucial in regulating the expression of a large number of genes, especially those 

encoding virulence factors. Consequently, there is a need to understand how QS is 

regulated. QS systems in P. aeruginosa consist of the Las and Rhl systems and 

these two systems are also linked to Pseudomonas aeruginosa quinolone signal 

(PQS) signalling systems. It has already been reported that QS is regulated at the 

transcriptional and post-transcriptional level by many factors, but how QS threshold 

is modulated remains obscure. In this study, a genetic screen of transposon 

mutants with changed QS phenotypes was carried out and this led to the discovery 

of anti-activators QslA and QslH.  

In qslA null mutant, there was enhanced PQS signalling and greater 

production of virulence factors compared to wild type. Conversely, overexpression 

of QslA abolished QS, PQS signalling and virulence factor production. QslA was 

determined to inhibit LasR post-transcriptionally and it was found using co-

immunoprecipitation analysis that QslA inhibited QS by protein-protein interaction 

with LasR. Electrophoretic mobility shift analysis (EMSA) analysis showed that QslA 

disrupted LasR activation of gene expression by impeding LasR binding to DNA. 

In addition to its control of QS response, QslA also influenced the QS 

activation threshold. In qslA mutant, 9 times less QS signals was sufficient to 

activate QS-dependent virulence factor production. This finding indicates that QslA 

is responsible for raising the QS “threshold hurdle” so that QS is activated at a high 

QS threshold concentration or a high bacterial cell density. 

In the same transposon mutant screen, another anti-activator named QslH, 

was also identified. When qslH was overexpressed, QS and PQS signalling 

systems as well as virulence factor production were inhibited. Using co-



 

ix 
 

immunoprecipitation analysis, QslH was found to interact with LasR and PqsR. 

QslH interaction with LasR was verified by studying LasR activity in Escherichia coli 

and by EMSA. Results from bacterial two-hybrid analysis also confirmed that QslH 

interacts with PqsR. 

Null mutant of qslH did not differ from the wild type in its QS and PQS 

signalling phenotype. Thus, QslH inhibited QS and PQS signalling only when 

overexpressed. Hence, it was hypothesized that QslH was not expressed at 

adequately high levels to affect QS and PQS signalling in the wild type under the 

experimental conditions used in this study. Transposon mutagenesis was carried 

out and it was found that qslH expression was increased in the absence of mvaT. In 

mvaT mutant, enhanced level of QslH inhibited production of virulence factors. 

Taken together, the results demonstrate that QslH plays a role in QS regulation at 

the downstream of MvaT-dependent regulatory networks. 

Identification of QslA and QslH demonstrates that QS activation in P. 

aeruginosa is modulated by protein-protein interaction. The results from this study 

present a further understanding of the sophisticated molecular mechanisms of 

bacterial QS signalling systems. 
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Chapter 1 – Introduction 

1.1 Pseudomonas aeruginosa is a clinically important human pathogen 

Pseudomonas aeruginosa is a Gram-negative bacterium from the γ 

subclass of proteobacterium. It is a ubiquitous opportunistic pathogen that is 

adapted to highly variable environmental conditions in soil, marshes, coastal marine 

habitats, plants, and mammalian tissue. It has a relatively large genome size of 6.3 

Mb made up of 5570 open reading frames in which a significant percentage is 

dedicated to regulatory genes that enable the bacterium to optimise its gene 

expression for survival (Stover et al., 2000). P. aeruginosa isolates are found in 

opportunistic infections in hospitals (Van Delden & Iglewski, 1998) as well as in 

chronically infected cystic fibrosis (CF) patients, where P. aeruginosa significantly 

increases morbidity and mortality (Frederiksen et al., 1997, Murray et al., 2007). 

Therefore, it is imperative that treatment options are available for such infections. 

Infection by P. aeruginosa, however, is not easily treated (Anderson & O'Toole, 

2008), and this is mainly due to occurrence of antibiotic resistance strains (Pitt et 

al., 2003) and antibiotic tolerance of biofilm-embedded bacteria (Costerton et al., 

1999). Hence, alternative treatment targeting bacterial virulence has been 

suggested (Bjarnsholt & Givskov, 2007). 

 

1.2 Quorum sensing controls P. aeruginosa virulence 

Virulence of P. aeruginosa is mediated by multiple factors including secreted 

enzymes and toxins as well as more complex type III and type VI secretion 

systems. These factors clear the way for P. aeruginosa invasion and also help in 

hindering host immune defence system. Elastase and protease, for example, can 

disrupt the complement system (Kharazmi, 1991). Pyocyanin disrupts neutrophil-

mediated immune response (Allen et al., 2005) and host cellular respiration (Lau et 
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al., 2004). Type III and type VI secretion systems are implicated in acute and 

chronic infections, respectively, and they function by forming “needle-like machines” 

on eukaryotic host membranes (Hauser, 2009, Hood et al., 2010). Bacterial effector 

proteins that are released directly into host tissue and immune cells by these 

secretion systems compromise the host functions (Hauser, 2009, Hood et al., 

2010).  

Many of these virulence mechanisms are controlled chiefly by acyl-

homoserine lactone (AHL) dependent quorum sensing (QS). QS is a form of 

bacterial cell-cell communication that positively regulates type VI secretion as well 

as the production of virulence factors such as elastase, alkaline protease, exotoxin 

A, hydrogen cyanide and pyocyanin as well as (Gambello & Iglewski, 1991, 

Gambello et al., 1993, Latifi et al., 1995, Lesic et al., 2009, Singh et al., 2010). Type 

III secretion system, on the other hand, is negatively regulated by QS (Hogardt et 

al., 2004, Bleves et al., 2005). P. aeruginosa quinoline signal (PQS) system is 

linked to QS and this system, together with Rhl QS system, controls production of 

virulence factors such as pyocyanin, elastase and PA-IL lectin (Pesci et al., 1999, 

Diggle et al., 2003).  

QS also play a possible role in biofilm formation. It was observed that when 

QS was disrupted in P. aeruginosa, biofilm formed was flat, undifferentiated and 

susceptible to SDS treatment, unlike the structured biofilm of wild type which 

contains mushroom-like features (Davies et al., 1998). PQS signalling contributes to 

P. aeruginosa biofilm structure as well by controlling release of DNA, which is a 

biofilm constitutent  (Yang et al., 2009). However, the role of QS in activation of 

biofilm formation is dependent on nutritional and hydrodynamic conditions, and QS 

is not involved in modulating formation of biofilm when bacteria are grown using 

glucose and glutamate as sole carbon source, or when bacteria are grown under 
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turbulent flow where signalling molecules are unable to accumulate (Purevdorj et 

al., 2002, Shrout et al., 2006). 

The importance of QS and PQS systems during pathogenesis was also 

demonstrated using various infection models. PQS was present in the lungs of P. 

aeruginosa infected CF patients, suggesting that PQS signalling pathway is 

functional during host infection (Collier et al., 2002). The importance of PQS 

signalling system in virulence was demonstrated using Caenorhabiditis elegans, 

Arabidopsis and mice models (Cao et al., 2001, Gallagher & Manoil, 2001). The 

importance of QS in the pathogenesis of P. aeruginosa is also verified by studies 

using infection models, including that of C. elegans and mice, which have shown 

that inhibition of AHL-dependent QS reduced P. aeruginosa virulence (Preston et 

al., 1997, Rumbaugh et al., 1999, Pearson et al., 2000, Wu et al., 2001). Because 

of the importance of QS in regulation of virulence in P. aeruginosa, QS has been 

studied extensively. 

 

1.3 QS systems in bacteria 

1.3.1 Discovery of QS system in Vibrio fischeri 

The model of QS is formulated based on work done in marine bacterium 

Vibrio fischeri. It was discovered that bioluminescence in V. fischeri, which is only 

activated at critical bacterial population density (quorum), could also be activated at 

low population density by addition of cell-free supernatant from high cell density 

cultures (Nealson et al., 1970). The diffusible QS signal molecule (autoinducer) 

responsible for activation of bioluminescence was subsequently identified as N-3-

oxohexanoyl-homoserine lactone (Eberhard et al., 1981) and high concentration of 

this QS molecule is achieved at high cell density and can activate QS-regulated 

bioluminescence in V. fischeri. QS was later established to be a signal-dependent 
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mechanism for cell-density dependent gene regulation (Fuqua et al., 1994, Fuqua 

et al., 1996, Lazdunski et al., 2004).  

 

1.3.2 QS mechanism 

The types of autoinducers used for QS vary widely among bacteria. In many 

Gram-negative bacteria, QS is mediated by acyl-homoserine lactone (AHL) while 

oligopeptides are more common in Gram-positive bacteria. For AHL-dependent QS 

systems, QS molecules are typically produced by LuxI-type synthases and released 

into the extracellular environment. QS molecules are continually synthesized along 

with bacterial proliferation and would accumulate as bacterial cell density increases. 

Gradual diffusion of these molecules back into the cells occurs and QS system is 

activated when a threshold concentration of QS molecule is reached.  These 

molecules then bind to their cognate LuxR-type regulator, which would activate the 

expression of QS-regulated processes and sometimes also luxI to generate a 

positive feedback response (autoinduction). AHL molecules produced in general 

are specific to individual bacterial species and they differ in their acyl side-chain 

length, saturation and substituent groups.  

QS allows the bacterial population to synchronise its activation of processes 

that are advantageous when executed in large numbers. Group behaviours such as 

pathogenesis in P. aeruginosa (Smith & Iglewski, 2003), bioluminescence in V. 

fischeri (Nealson et al., 1970), plasmid conjugation in plant pathogen 

Agrobacterium tumefaciens (Zhang et al., 1993) and symbiosis in Rhizobium 

species (Gonzalez & Marketon, 2003) are known to be regulated by QS. 

 

1.3.3 Role of anti-activators in QS 

In the classical QS model, activation of QS depends simply on the regulator 

and the accumulation of QS signals. The discovery that anti-activators, which are 
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proteins that interact with LuxR-type regulators, can influence QS activation reveals 

that additional factors are involved in the control of QS activation. TraM-type QS 

anti-activators have been identified in A. tumefaciens as well as Rhizobium, and in 

A. tumefaciens, LuxR-type regulator TraR activation of QS is inhibited by one or few 

anti-activators, including TraM, TraM2 and TrlR, in the absence of conjugal opines 

(Piper & Farrand, 2000, Chai et al., 2001, Wang et al., 2006). But in the presence of 

opines, TraR protein expression is induced and the increased TraR protein level 

counteracts inhibition by anti-activators (Hwang et al., 1995, Oger et al., 1998, Zhu 

& Winans, 1998, Wang et al., 2006). As a result, QS threshold is dependent on the 

availability of conjugative opines through the action of these anti-activators.  

Among these known QS anti-activators, TrlR is a truncated version of TraR 

without the C-terminal DNA-binding domain due to a frameshift mutation and TrlR 

dimerises with TraR to form an inactive protein complex (Chai et al., 2001). TraM 

and TraM2, on the other hand, are Agrobacterium species-specific 11 kDa proteins 

with no homology to LuxR-type regulators (Hwang et al., 1995, Wang et al., 2006). 

Based on mutational analysis of TraR (Hwang et al., 1999, Luo et al., 2000, 

Swiderska et al., 2001, Qin et al., 2007) and proteolytic fingerprint of TraR-TraM 

complex (Qin et al., 2007), it was predicted that TraM interacts with TraR at a 

region adjacent to TraR DNA-binding domain which results in a change of TraR 

conformation and loss of its DNA-binding ability (Chen et al., 2007, Qin et al., 

2007).  
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1.4 QS in Pseudomonas aeruginosa 

1.4.1 QS in P. aeruginosa consists of the Las and Rhl systems 

In P. aeruginosa, QS is coordinated independently by the Las and Rhl 

systems (Fig. 1.1). LasI and RhlI synthases produce N-3-oxododecanoyl-

homoserine lactone (3-oxo-C12-HSL) (Pearson et al., 1994) and N-butanoyl-

homoserine lactone (C4-HSL), respectively. These synthases generate the 

homoserine lactone ring from S-adenosyl-methionine (SAM) and link it to fatty acyl 

chains on acyl-acyl carrier proteins (More et al., 1996, Parsek et al., 1999).  3-oxo-

C12-HSL and C4-HSL differ in the number of carbons on the fatty acyl side chains, 

and 3-oxo-C12-HSL has an oxo group substitution at position C3 on the acyl side 

chain.  The carbon chain length of the autoinducers synthesized by LasI and RhlI is 

determined by the synthase acyl-chain binding pocket which can restrict the acyl-

chain length of the substrate, thus ensuring only certain signals are synthesized 

(Gould et al., 2004).  
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Fig. 1.1 QS and PQS signalling in P. aeruginosa.  

Diagram showing the Las and Rhl QS and PQS signalling system network in P. 

aeruginosa. Open arrow indicates biosynthesis of proteins or signalling molecules, 

black and blue solid arrow indicate regulatory controls of the signalling components 

during growth of bacteria in LB medium either at exponential phase or at stationary 

phase respectively. The model is revised and updated based on previous 

publications (Ledgham et al., 2003, Venturi, 2006, Gilbert et al., 2009, Williams & 

Camara, 2009). 
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3-oxo-C12-HSL is actively transported out of cells by the MexAB-OprM 

multi-drug efflux pump but its uptake is not dependent on active transport and it is 

unclear how 3-oxo-C12-HSL diffuses back into cells (Pearson et al., 1999). On the 

contrary, C4-HSL is freely permeable (Pearson et al., 1999). 3-oxo-C12-HSL and 

C4-HSL, respectively, activate their cognate transcriptional regulators LasR 

(Gambello & Iglewski, 1991) and RhlR (Latifi et al., 1995, Pearson et al., 1995) at 

threshold concentrations. In this auto-induction loop, QS is activated after diffusion 

of autoinducers 3-oxo-C12-HSL and C4-HSL back into the same bacterial species 

(Seed et al., 1995, Latifi et al., 1996). Las and Rhl QS systems are not compatible, 

so C4-HSL synthesized by RhlI does not activate LasR (Gray et al., 1994, Passador 

et al., 1996) and similarly, 3-oxo-C12-HSL synthesized by LasI does not activate 

RhlR (Pearson et al., 1995, Pearson et al., 1997). 3-oxo-C12-HSL binds to LasR 

with a regulator : autoinducer stoichiometric ratio of 1:1 (Schuster et al., 2004).  

In the presence of 3-oxo-C12-HSL, activated LasR dimerises and binds to 

the promoters of target genes (Kiratisin et al., 2002, Schuster et al., 2004), while 

RhlR dimerises and binds to DNA both in the presence and absence of BHL 

(Medina et al., 2003b, Ventre et al., 2003). In the absence of C4-HSL, RhlR binds to 

the promoter of lasB (Anderson et al., 1999) and rhlR (Medina et al., 2003a) in a 

conformation that represses their expression. 

 

1.4.2 Positive feedback and homeostasis control of QS  

3-oxo-C12-HSL/LasR and C4-HSL/RhlR complexes, respectively, auto-

regulate the expression of 3-oxo-C12-HSL synthesis gene lasI and C4-HSL 

synthesis gene rhlI (Passador et al., 1993, Pearson et al., 1994).  Las and Rhl QS 

systems are organised in a hierarchy under growth in rich medium, whereby earlier 

production of 3-oxo-C12-HSL activates LasR and 3-oxo-C12-HSL/LasR complex 

then stimulates the expression of rhlI and rhlR (Pesci et al., 1997, de Kievit et al., 
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2002). RhlR also induces rhlI expression but LasR has a dominant regulatory role 

(de Kievit et al., 2002). The control of Rhl QS system by LasR is, however, 

dependent on growth and environmental conditions. During stationary phase growth 

or growth in phosphate-limited medium, Rhl QS is induced independent of Las QS 

system (Medina et al., 2003a, Dekimpe & Deziel, 2009). RhlR is also able to 

activate expression of LasR-dependent genes such as lasI (Dekimpe & Deziel, 

2009).  

When optimal QS response is reached, a homeostatic mechanism mediated 

by RsaL is triggered to limit 3-oxo-C12-HSL synthesis (Rampioni et al., 2007b), and 

in the absence of rsaL, there is unchecked production of 3-oxo-C12-HSL (Rampioni 

et al., 2006). RsaL also controls the expression of genes in a QS-independent 

manner and it modulates the secretion of virulence factors and motility, biofilm 

formation and antibiotics sensitivity (Rampioni et al., 2007b, Rampioni et al., 2009). 

RsaL, which belongs to the tetrahelical superclass of HTH proteins, limits 3-oxo-

C12-HSL synthesis by binding to lasI promoter at a distinct binding site from LasR 

and inhibiting lasI transcription even when LasR is bound to the promoter (de Kievit 

et al., 1999, Rampioni et al., 2007a, Rampioni et al., 2007b). The rsaL gene is 

located between lasI and lasR genes in the reverse orientation and it shares the 

same promoter region as lasI (de Kievit et al., 1999). LasR activates the expression 

of both lasI and rsaL from this bi-directional promoter and in this way, LasR 

activates lasI expression directly and at the same time, it also indirectly suppresses 

lasI expression through induction of rsaL expression. The positive and negative 

regulation of lasI by LasR is balanced to allow fine-tuning of lasI expression. 

 

1.4.3 Global regulation of gene expression by QS 

A global view of the genes that are regulated by QS in P. aeruginosa was 

carried out using microarray analysis and proteomic analysis. According to results 
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from microarray studies, around 2.9 – 11.1% of genes in P. aeruginosa PAO1 

genome are QS-dependent (Hentzer et al., 2003, Schuster et al., 2003, Wagner et 

al., 2003). The deviations of QS-dependent genes observed in the different studies 

are likely due to the different growth conditions used. QS-dependent genes are 

either separately activated by only the Las QS system or Rhl QS system, or are 

induced by both Las and Rhl QS systems. Since rhlR expression is dependent on 

LasR, the genes that are regulated by both Las and Rhl QS systems could be either 

co-regulated by LasR and RhlR or just regulated by RhlR. A significant proportion of 

the genes regulated by QS are those which encode for secreted products and this 

is in agreement with findings from proteome analysis of extracellular proteins 

regulated by QS (Nouwens et al., 2003), where 13 proteins including the secreted 

virulence factors LasB elastase and LasA protease are found to be greatly induced 

by QS (Nouwens et al., 2003). 

 

1.4.4 Recognition of promoters by LasR and RhlR 

The promoters of genes that are directly regulated by LasR were analysed 

and this led to the identification of a specific LasR-binding DNA consensus 

sequence called las boxes (CT-N12-AG motif) (Whiteley et al., 1999, Schuster et al., 

2003, Wagner et al., 2003, Gilbert et al., 2009). Binding of LasR to the promoters 

can occur in a cooperative or non-cooperative manner, depending on the 

promoters. Cooperative interaction is likely due to binding of protein to low affinity 

sites which have no sequence homology with the consensus sequence (Strauch, 

1995) since there were no obvious sequence differences in the promoters which 

exhibit these two types of DNA-binding (Gilbert et al., 2009). A small fraction of the 

genes (7 – 22%) identified in the microarray have las boxes in their promoter 

(Schuster et al., 2003, Wagner et al., 2003), suggesting that expression of most of 

the QS-dependent genes were indirectly regulated by LasR. Only genes which are 
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activated, but not repressed, by LasR are found among the genes which are directly 

regulated by LasR in the LasR chromatin immunoprecipitation study (Gilbert et al., 

2009). This suggests that LasR acts only as an activator.  

The consensus sequence for RhlR is not as well characterised as that of 

LasR but it is predicted that RhlR also recognises las box sites (Schuster et al., 

2004). This is due to the fact that RhlR binds to the las box in rhlAB promoter 

(Medina et al., 2003b) and that it activates the expression of LasR-regulated genes 

such as lasI, lasA and lasB (Dekimpe & Deziel, 2009). Nonetheless, there might be 

distinctive characteristics in the DNA-binding affinities of LasR and RhlR because 

genes such as lasB and rhlAB operon that are co-regulated by both regulators 

showed preferential gene expression activation for either LasR or RhlR (Pearson et 

al., 1997, Medina et al., 2003b). Hence, other features of the promoters besides the 

las box consensus sequence may determine the differences in the binding of LasR 

and RhlR. 

 

1.4.5 Timing of QS activation 

Gene expression activation by QS is not strictly dependent on signal 

molecules only and expression of some QS-dependent genes in P. aeruginosa is 

not advanced by addition of exogenous QS signals. The growth phase dependence 

in their activation by QS could be due to co-regulation of genes by growth-

dependent factors such as RpoS and RhlR, but these factors do not completely 

account for all the growth- and QS- dependent genes (Whiteley et al., 1999, 

Schuster & Greenberg, 2007). Multiple factors such as MvaT, GacA, RsmA, QscR, 

and QteE have also been reported to influence the timing of QS activation 

(Reimmann et al., 1997, Chugani et al., 2001, Pessi et al., 2001, Diggle et al., 2002, 

Siehnel et al., 2010). It was also reported that complex medium contains inhibitors 

that prevent early induction of QS-dependent genes (Yarwood et al., 2005). 
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1.5 PQS signalling in P. aeruginosa 

1.5.1 Synthesis of signals involved in PQS signalling 

PQS signalling system is integrated with QS network by cross-regulation 

and co-regulation of virulence genes (Fig. 1.1) (Pesci et al., 1999). 4-hydroxy-2-

heptylquinoline (HHQ), which is the precursor molecule of PQS (3,4-dihydroxy-2-

heptylquinoline), is synthesized from anthranilate by the enzymes encoded from 

pqsABCD operon (Gallagher et al., 2002, Lepine et al., 2004). Anthranilate is 

involved in several biochemical pathways and about 12% of it is converted to PQS 

(Calfee et al., 2001). Anthranilate is produced by either PhnA/PhnB (Essar et al., 

1990a) or TrpE/TrpG synthases (Essar et al., 1990b). HHQ is converted to PQS by 

PqsH (Gallagher et al., 2002). Both HHQ and PQS belong to a family of 

antimicrobial signal family of 4-hydroxy-2-alkylquinolines (HAQs) that are 

chemically distinct from QS AHL molecules. The production of PQS is initiated at 

the end of the logarithmic growth phase and is maximal at the onset of the 

stationary growth phase (Lepine et al., 2003). HHQ and PQS activate the LysR-type 

transcriptional regulator PqsR (also known as MvfR) (Xiao et al., 2006), which 

induces the transcription of pqsABCDE and phnAB, resulting in autoinduction of 

these signals (Wade et al., 2005).  

 

1.5.2 Undefined role of PqsE 

PqsE is related to the metallo-β-lactamase superfamily and although it does 

not affect PQS synthesis, it is necessary for pyocyanin and cyanide production 

(Gallagher et al., 2002). It was found that PqsE induces the production of these 

virulence factors by enhancing RhlR activity in a HHQ and PQS signal independent 

manner (Farrow et al., 2008). PqsE also represses the expression of PQS 

signalling genes independent of RhlR, so it was suggested that PqsE is involved in 

the homeostatic regulation of PQS signalling system (Hazan et al., 2010, Rampioni 
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et al., 2010). PqsE is responsible for the control of swarming motility, biofilm 

formation, virulence in C. elegans, and infection of lettuce leaf and mouse in a 

HAQ-independent manner (Rampioni et al., 2010). An attempt to determine the 

mechanism of PqsE activity was carried out by testing whether compounds such as 

PQS and AHL were substrates of PqsE based on their binding affinity, but it failed 

to provide answers as to what the substrate and function of PqsE are (Yu et al., 

2009).  

 

1.5.3 Vesicular transport of PQS signals 

Unlike QS signal molecules 3-oxo-C12-HSL and C4-HSL which diffuse 

freely or through active transport by pump into extracellular environment, release of 

hydrophobic HHQ and PQS signal molecules outside of cells is mediated by 

vesicles (Mashburn & Whiteley, 2005). This process is controlled directly by PQS 

but not HHQ, whereby interaction of PQS with the lipid A component of 

lipopolysaccaride in cell outer membrane will induce formation of membrane 

vesicles carrying these signal molecules (Mashburn & Whiteley, 2005, Mashburn-

Warren et al., 2008).  

 

1.5.4 QS and PQS signalling systems are linked 

Both Las and Rhl QS systems influence PQS signalling (Pesci et al., 1999), 

where LasR positively regulates pqsA, pqsH and pqsR (Gallagher et al., 2002, 

Lepine et al., 2004, Gilbert et al., 2009) while RhlR exerts negative control 

(McGrath et al., 2004). PQS production is dependent on LasR only at early growth 

phases, since significant amount of PQS was detected in lasR mutant after 24-hour 

growth (Diggle et al., 2003). In addition, PQS signalling system upregulates the Rhl 

system through PqsR (McKnight et al., 2000) and PqsE (Farrow et al., 2008, Hazan 

et al., 2010). The interaction of these three different signalling systems is dynamic 
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and is probably dependent on the growth phase and conditions (McGrath et al., 

2004). Because of the regulatory links between AHL-dependent QS and PQS 

signalling, there is a substantial overlap in their regulon and about 55% of PqsR-

regulated genes are also regulated by QS (Deziel et al., 2005). 

 

1.5.5 Iron chelating effect of PQS 

Besides acting as the ligand for PqsR, PQS (but not HHQ) depletes iron 

from the growth medium and the iron-limiting conditions caused by exogenous 

addition of PQS induces production of pyochelin and pyoverdine siderophore as 

well as the genes involved in oxidative stress response (Bredenbruch et al., 2006). 

The iron-chelating effect of PQS also causes increased rhlR and pqsA expression 

as well as biofilm formation due to reduced iron concentrations and not because 

PqsR-iron complex has enhanced activity (Bredenbruch et al., 2006, Diggle et al., 

2007, Yang et al., 2007, Hazan et al., 2010). 

 

1.6 Regulation of QS 

Since QS is an integral regulatory component of P. aeruginosa, its 

expression and signalling amplitude have to be tightly and finely regulated 

according to environmental conditions. Some of the QS-dependent genes may be 

individually co-regulated by QS and other regulatory factors at their own specific 

promoters. On the other hand, regulatory systems could also fine-tune QS signal 

output level, thereby controlling the expression of all QS-dependent genes 

(Schuster & Greenberg, 2006). Many studies have thus been conducted to identify 

the factors that modulate QS. 
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1.6.1 Transcriptional regulation – Summary 

In P. aeruginosa, transcriptional regulation of QS by different factors have 

been described in numerous reports (Schuster & Greenberg, 2006, Venturi, 2006, 

Williams & Camara, 2009) and some of these factors, such as VqsR, Vfr, MvaT as 

well as the sigma factors RpoN and RpoS, have been studied in greater details and 

would be described below. Transcriptional regulators that regulate QS directly 

include VqsM which affects both QS and PQS signalling by acting upstream of 

VqsR (Dong et al., 2005), AlgQ which directly regulates lasR and rhlR expression 

(Ledgham et al., 2003a), AlgR which binds to rhlI and rhlA promoters and inhibit 

their expression in a biofilm-specific manner (Morici et al., 2007), PmpR which 

inhibits pyocyanin production, biofilm formation and swarming by repressing the 

expression of pqsR directly (Liang et al., 2008), and PhoB which upregulates the 

expression of rhlR and pqsR under phosphate-limited condition (Jensen et al., 

2006). In addition, there are transcriptional regulators that have been found to 

regulate QS but whether they do so directly is still being investigated. These 

regulators include PtxR which positively regulates LasR QS but negatively 

regulates Rhl QS and PQS signalling (Carty et al., 2006), and PA1196 which 

induces Rhl QS and PQS signalling (Liang et al., 2009). 

 

1.6.2 Transcriptional regulation – VqsR 

VqsR is a LuxR-type regulator that is transcriptionally regulated by LasR (Li 

et al., 2007). VqsR, instead of inhibiting QS like QscR which is another LuxR-type 

regulator, is a positive regulator of QS. Mutation of vqsR in P. aeruginosa TB strain 

led to loss of autoinducer production, decreased pyocyanin, elastase and protease 

levels, and reduced virulence in C. elegans killing model (Juhas et al., 2004). 

Modulation of the expression of these QS-regulated genes by VqsR was also 

observed by microarray analysis (Juhas et al., 2005). Besides QscR, the other 
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LuxR-type regulators in PAO1 genome (PA1136 (25% protein identity), VqsR (24% 

protein identity), PA4074 (23% protein identity)) showed less protein identity with 

LasR (and RhlR) than QscR. 

 

1.6.3 Transcriptional regulation – Vfr 

Vfr, which was first discovered as a virulence factor regulator necessary for 

exotoxin A and protease production, is about 67% identical at amino acid level to 

Escherichia coli catabolite gene activator protein (CAP; also known as CRP) (West 

et al., 1994). CAP is involved in controlling carbon source utilisation in E. coli by 

responding to intracellular cAMP levels. Similar to CAP, Vfr regulatory activity is 

dependent on binding of cAMP ligand but Vfr is not involved in catabolite regulation 

in P. aeruginosa (Suh et al., 2002). Moreover, cAMP levels in P. aeruginosa are not 

altered by changes in carbon source (Siegel et al., 1977, Phillips & Mulfinger, 

1981).  

Instead, Vfr has been reported to modulate QS, twitching motility and type III 

secretion system in P. aeruginosa (Beatson et al., 2002, Wolfgang et al., 2003). 

Transcription of lasR is directly activated by Vfr and consensus binding sequence of 

Vfr is found on lasR promoter (Albus et al., 1997). Promoter analysis of rhlR 

showed that Vfr recognition sequence is also located at downstream of P4 promoter 

start site and rhlR transcription initiated from this promoter is reduced by deletion of 

vfr. However, more evidence is necessary to determine whether Vfr directly 

regulates rhlR transcription (Medina et al., 2003a). Vfr not only regulates QS genes, 

but also modulates the expression of QS-regulated genes such as exoA and lasB 

through PtxR (Ferrell et al., 2008). The expression of ptxR is upregulated by Vfr, 

and PtxR itself is a positive regulator of lasI expression and an inhibitor of PQS and 

Rhl QS signalling systems (Carty et al., 2006). 
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1.6.4 Transcriptional regulation – MvaT 

MvaT represent a novel class of H-NS-like proteins that are functionally 

similar to H-NS in E. coli despite the lack of sequence similarity (Tendeng et al., 

2003). MvaT in PAO1 is homologous to P16 subunit of P. mevalonii heteromeric 

transcriptional regulator, which regulates mevalonate catabolism (Rosenthal & 

Rodwell, 1998). MvaT inhibits pyocyanin production, 3-oxo-C12-HSL and C4-HSL 

levels but enhances elastase and protease production, and it also delays QS 

activation in the presence of exogenous 3-oxo-C12-HSL and C4-HSL (Diggle et al., 

2002). MvaT, together with MvaU, binds to AT-rich motifs and inhibits transcription 

initiation from these regions (Castang et al., 2008). However, MvaT was not found 

to bind to the promoters of QS genes, hence it is likely that MvaT indirectly 

regulates QS gene expression.  

MvaT also transcriptionally regulates multiple QS-modulatory genes such as 

ptxS and mexEF-oprN operon (Westfall et al., 2004, Westfall et al., 2006). MvaT 

induces the expression of ptxS (Westfall et al., 2004) which interferes with 

activation of QS by PtxR (Colmer & Hamood, 1998). QS is also inhibited by MvaT 

through small RNA rsmZ. RsmZ positively modulates QS by inhibiting negative 

regulation of QS by RsmA (Pessi et al., 2001, Heurlier et al., 2004). Expression of 

rsmZ is repressed by MvaT (Brencic et al., 2009).  MvaT also positively modulates 

QS by repressing the expression of mexEF-oprN operon (Westfall et al., 2006), 

which inhibits the synthesis of C4-HSL signals (Kohler et al., 2001). Thus, MvaT 

affects QS through transcriptional regulation of various proteins. 

 

1.6.5 Transcriptional regulation – RpoN RpoS 

Alternative sigma factors, specifically RpoN and RpoS, recognise different 

subsets of gene promoters and QS is influenced by these sigma factors. However, 

the consensus binding sites of RpoN and RpoS are not found or are non-functional 
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in the promoters of QS genes. RpoN recognition sequence is found in rhlI promoter, 

but it does not display a functional role (Heurlier et al., 2003), so QS is probably 

indirectly regulated by RpoN and RpoS. In the absence of rpoN, there is increased 

transcription of lasI, lasR, rhlI and rhlR as well as increased 3-oxo-C12-HSL and 

C4-HSL production (Heurlier et al., 2003). In minimal medium, however, rhlI 

expression is positively regulated by RpoN (Thompson et al., 2003). The 

transcription of rhlI and as well as RhlR-regulated genes such as hcnA and phzA in 

addition to production of BHL and pyocyanin are enhanced in the absence of rpoS 

(Whiteley et al., 2000). This contradicts an earlier study where RhlR was found to 

activate rpoS transcription (Latifi et al., 1996). 

 

1.6.6 Post-transcriptional regulation – small RNA 

Post-transcriptional regulation of QS could be controlled at the mRNA level 

by small RNAs mediated by RsmA and GacA. GacA upregulates the expression of 

small RNAs (sRNAs) rsmZ and rsmY (Kay et al., 2006), which interacts with RNA-

binding protein RsmA and inhibit its activity (Heurlier et al., 2004). RsmA activity is 

also inhibited by regulatory RNA rsmB (Burrowes et al., 2005). RsmA is a negative 

regulator of Las and Rhl QS system, which inhibit QS signal production and 

reduced QS-dependent production of protease and elastase (Pessi et al., 2001). 

RsmA is a homologue of CsrA in E. coli and CsrA is hypothesized to inhibit 

translation by blocking the ribosome-binding site (RBS) and by altering mRNA 

stability (Romeo, 1998). It is not known whether RsmA directly binds to the mRNA 

of QS genes, but it was found that RsmA binds to the RBS of hcnA which is also 

transcriptionally regulated by QS (Pessi & Haas, 2000, Pessi & Haas, 2001), thus 

RsmA affects QS-dependent gene expression directly and indirectly.  

GacA is a two-component system regulator and is activated when 

phosphorylated. Activation of GacA, which was determined by measuring rsmZ 
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expression, was found to be positively regulated by GacS and LadS and negatively 

regulated by RetS (Goodman et al., 2004, Ventre et al., 2006). GacS, LadS and 

RetS belong to the family of two-component sensor kinases. GacS activates GacA 

by directly phosphorylation and this is disrupted by RetS, which interacts with GacS 

and inhibits GacS autophosphorylation (Goodman et al., 2009). The kinase 

activities of the two-component system sensor kinases are possibly modulated by 

binding of extracellular stimulatory ligands, but the natural ligands for these sensors 

have not been identified.  

 

1.6.7 Post-transcriptional regulation – Lon protease 

QS is also regulated at the post-translational level by Lon protease. Lon 

protease is an ATP-dependent protease and it negatively regulates QS by 

specifically degrading LasI and RhlI synthases. Hence, the expression of rhlI and 

rhlR, as well as C4-HSL production, were increased in lon mutant compared to wild 

type (Takaya et al., 2008).  QS regulation by proteases was also reported in A. 

tumefaciens where TraR was degraded by ClpXP in the absence of autoinducer 

(Zhu & Winans, 2001).  The stimulus for degradation by Lon protease is not known, 

and its role may be to ensure protein turnover so that autoinducers are synthesized 

only when necessary. 

 

1.6.8 Post-transcriptional regulation – lactonase and acylase 

QS is inhibited by quorum quenching whereby QS signal molecules are 

degraded by acylases and lactonases (Dong et al., 2002, Lin et al., 2003, Wang et 

al., 2004). Acylases cleaves the homoserine lactone ring from the acyl side chain 

while lactonases hydrolyses the homoserine lactone ring. Genes encoding acylases 

are present in P. aeruginosa genome and these include PvdQ, QuiP, PA0305 and 

PA1893. Overexpression or exogenous addition of PvdQ was found to reduce 3-
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oxo-C12-HSL molecules and reduce elastase and pyocyanin production (Sio et al., 

2006). Similarly, overexpression of QuiP also prevents the accumulation of 3-oxo-

C12-HSL (Huang et al., 2003). Although PvdQ and QuiP have not been shown to 

regulate QS, their abilities to affect accumulation of QS signals suggests that they 

might potentially affect QS signalling. QuiP, but not PvdQ, PA0305 and PA1893, is 

also necessary for bacteria grown with decanoyl-HSL as sole carbon source 

(Huang et al., 2006). 

 

1.6.9 Post-transcriptional regulation – GidA 

GidA, which encodes for a flavin adenine dinucleotide -binding protein that 

modifies tRNA, post-transcriptionally regulates Rhl QS system (Gupta et al., 2009). 

In the gidA mutant, production of rhamnolipid, pyocyanin and protease are 

abolished due to reduced RhlR protein levels. Las QS system and rhlR transcription 

are not influenced by GidA. Based on the results, GidA was postulated to affect 

RhlR translation and this is possibly due to its function in uridine tRNA modification 

that is necessary for specific pairing at the wobble position for certain amino acid 

codons. In the absence of gidA, the translation of proteins that have a higher 

percentage of such amino acids would be affected. 

 

1.6.10 Unconfirmed mode of QS regulation – RelA, Ppk, PtsP 

RelA is responsible for the synthesis of guanosine 3′,5′ -bisdiphosphate 

(ppGpp) in E. coli, and this stringent response is triggered under nutritionally 

stressed conditions. When relA is overexpressed in P. aeruginosa, transcription of 

lasR and rhlR as well as production of 3-oxo-C12-HSL, C4-HSL and elastase are 

induced earlier (van Delden et al., 2001). This occurs independent of the effect of 

RelA on expression of rpoS (van Delden et al., 2001). Conversely, QS-regulated 

elastase production and virulence in Drosophila melanogaster feeding assay was 
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reduced in null mutant of relA (Erickson et al., 2004). DksA increases the binding 

affinity of RNA polymerase to rRNA promoters in the presence of ppGpp and forms 

an inactive RNA polymerase complex that inhibits rRNA transcription (Perron et al., 

2005). The regulatory effect ppGpp has on QS might be mediated by DksA. In 

addition, DksA was previously demonstrated to activate the translation of QS-

dependent genes lasB and rhlAB and the production of elastase and rhamnolipids 

(Jude et al., 2003).  

Polyphosphate kinase 1 (Ppk1) is responsible for the polymerisation of 

polyphosphate from ATP (Ahn & Kornberg, 1990), while Ppk2 synthesizes 

polyphosphate using GTP (Zhang et al., 2002a). ppk1 mutant exhibits reduced 

production of 3-oxo-C12-HSL, C4-HSL, elastase and rhamnolipids (Rashid et al., 

2000b), which may be related to its decrease in motility (Rashid & Kornberg, 2000, 

Rashid et al., 2000a, Fraley et al., 2007) and biofilm formation (Davies et al., 1998). 

The effect of Ppk2 on QS has not been reported. 

PtsP, which encodes for phosphoenolpyruvate-protein phosphotransferase 

EINtr, was found to positively regulate expression of QS negative regulator qscR 

which leads to the inhibition of lasI and rhlI expression (Xu et al., 2005). In E. coli, 

EINtr, together with NPr and IIANtr, was suggested to modulate the transcriptional 

regulation of carbon and nitrogen metabolism through its phosphate relay (Reizer et 

al., 1996). Hence, it is possible that PtsP might also indirectly regulate QS in P. 

aeruginosa in this manner.  

 

1.6.11 Probable anti-activators in Pseudomonas aeruginosa 

In P. aeruginosa, fluorescence anisotropy and cross-linking studies 

suggests that an orphan LuxR-type regulator QscR inhibits QS by anti-activation of 

LasR and RhlR (Ledgham et al., 2003b). Null mutation of qscR results in early 

induction of QS signal production, enhanced virulence in a Drosophila 
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melanogaster feeding assay and increased elastase production (Chugani et al., 

2001). QscR, however, also has a functional DNA-binding domain and regulates 

the expression of a distinct set of genes when bound to 3-oxo-C12-HSL (Lee et al., 

2006, Lequette et al., 2006). Thus, QscR effects on QS may also be a result of 3-

oxo-C12-HSL sequestering or through its own gene regulation. The precise 

mechanisms of QscR activity remain to be investigated.  

QteE in P. aeruginosa also controlled QS activation where expression of 

QS-dependent genes is induced at earlier growth phase in qteE mutant compared 

to wild type as a result of increased LasR protein levels (Siehnel et al., 2010). 

Induced expression of qteE also abolished QS-dependent production of 

rhamnolipids, elastase, protease and pyocyanin due to reduced LasR and RhlR 

protein stabilities. It is likely QteE is a QS anti-activator that mediate LasR and RhlR 

protein stabilities through protein-protein interaction (Siehnel et al., 2010). 

 

1.6.12 Environmental regulation of QS 

Although many factors have been determined to affect QS signalling, the 

modulation of these regulatory factors by either environmental or intrinsic stimuli is 

largely not known. QS was demonstrated to be influenced by iron, oxygen, NaCl 

(Wagner et al., 2003, Kim et al., 2005, Duan & Surette, 2007), but the regulatory 

components responsible for sensing and translating these changes to changes in 

QS gene expression are not completely clear. 

QS activation is dependent on the accumulation of QS signals that 

increases as bacterial cell density increases. However, the accumulation of QS 

signals is not only dependent on cell numbers but also on the environment, as the 

rate at which QS signals accumulate is governed by factors such as pH changes, 

degradation enzymes and mass transfer processes (Boyer & Wisniewski-Dye, 

2009). Hence, QS has also been proposed to function as diffusion sensing or 
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efficiency sensing, whereby the environment is monitored for accumulation of QS 

signals to gauge whether it would be beneficial for the bacteria to produce virulence 

factor or initiate DNA uptake or other processes which are location-dependent 

(Redfield, 2002, Hense et al., 2007).  

 

1.7 Aims and Scopes 

 In P. aeruginosa, the timing of QS activation has been found to be regulated 

by several factors (Section 1.4.5) and many QS regulators has also been identified 

(Section 1.6). However, the modulation of QS threshold is largely unknown. In this 

study, a random transposon mutagenesis was carried out to identify potential 

regulators of QS activation in P. aeruginosa, specifically anti-activators. This led to 

the discovery of anti-activators QslA and QslH, and the effect of these anti-

activators on QS and PQS signalling in P. aeruginosa was studied using 

transcriptional assays, signal detection analysis and measurement of QS-

dependent virulence factor production. Biochemical studies were also carried out to 

show the protein-protein interaction of these anti-activators with QS regulators. 

Finally, the roles of these anti-activators on QS activation and response were 

examined. 
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Chapter 2 – Transposon mutants identified in genetic screen 

2.1 Introduction 

As discussed in Chapter 1, anti-activators play a significant role in the 

control of QS activation in A. tumefaciens and it was speculated that a similar 

mechanism may be conserved in P. aeruginosa. Considering that anti-activators 

commonly share little amino acid sequence homology, a random transposon 

mutagenesis approach was taken to identify QS regulators, particularly anti-

activators, that modulate QS activation in P. aeruginosa. As shown by the flowchart 

below (Fig. 2.1), these mutants were screened on selection agar plates based on 

expression level of reporter gene lacZ, which was under the control of the promoter 

of QS gene rhlR. From the genetic screen, 20 mutants with altered rhlR expression 

were selected and potential anti-activator genes were identified for further 

characterisation 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Flow chart showing steps taken to identify QS anti-activators.  

QR1 

Mariner transposon mutagenesis 

Colony selection on  
BM agar plates containing X-gal 

β-galactosidase activity assays for selected colonies 

Identification of transposon mutants by  
thermal asymmetric interlaced PCR 
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2.2 Materials and Methods 

2.2.1 Bacterial strains, plasmids, media and growth conditions 

Bacterial strains and plasmids used in this chapter are listed in Table 2.1. 

Basic minimal medium (BM medium) supplemented with 0.2% mannitol (Zhang et 

al., 2002b) was used in transposon mutagenesis and Luria-Bertani (LB) medium 

was used in β-galactosidase activity assays. Antibiotics at the following 

concentrations were added when necessary: gentamicin, 30 μg ml-1; tetracycline, 

100 μg ml-1 for P. aeruginosa; and gentamicin, 5 μg ml-1; tetracycline, 10 μg ml-1 for 

E. coli. 

 

Table 2.1 Bacterial strains and plasmids used in Chapter 2. 

Strain or plasmid Relevant genotype or phenotype Source 

P. aeruginosa 

PAO1 Prototrophic laboratory strain 

 

Holloway et al., 
1979 

QR1 PAO1 containing pUCP-lasRHTH and prhlR-
lacZ 

This study 

E. coli 

DH5α F– Φ80lacZΔM15 endA1hsdR17 (rk
– mk

–) 
supE44 thi-1 gyrA96 ∆(lacZYA-argF) 

Laboratory 
collection 

S17-1 recA pro (RP4-2Tet::Mu Kan::Tn7) Simon et al., 
1983 

Plasmid 

pBT20 mariner transposon mutagenesis vector, 
GmR & ApR 

Kulasekara et al., 
2005 

pME2-lacZ pME6010 carrying a full-length lacZ Laboratory 

 prhlR-lacZ pME2-lacZ carrying rhlR (PA3477) promoter 
fused to lacZ 

This study 

pUCP19 E. coli – P. aeruginosa shuttle vector with lac 
promoter (Plac), AmpR/CbR 

ATCC 87110 

pUCP-lasRHTH pUCP19 containing 505-717 bp of lasR 
(PA1430) ORF under the control of Plac 

This study 



 

26 
 

2.2.2 Construction of reporter strain 

QR1 is a derivative of strain PAO1 containing plasmid pUCP-lasRHTH and 

prhlR-lacZ. pUCP-lasRHTH was constructed by ligating the last 213 bp (505-717 

bp) of lasR open reading frame (ORF) into pUCP19 under the control of Plac. The 

prhlR-lacZ transcriptional fusion reporter was constructed by amplifying the 

promoter region of PrhlR (-401 to +66 relative to translational start site) and ligating 

it to pME2-lacZ vector. 

 

2.2.3 Transposon mutagenesis and identification of transposon insertion site 

A mariner-based transposon carried by vector pBT20 was used for 

mutagenesis of P. aeruginosa strain QR1.  E. coli S17-1 containing pBT20 was 

used for conjugal mating with recipient P. aeruginosa at 37°C for 6 h. BM agar 

plates containing gentamicin and X-gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside) (Biosynth) were used to select for transconjugants. Gentamicin-

resistant colonies that were more or less blue than the parental strain QR1 were 

selected and their β-galactosidase activities were measured. Thermal asymmetric 

interlaced PCR (TAIL-PCR) was carried out on the transposon mutants that showed 

either 20% more or 20% less β-galactosidase activities compared to QR1. 

Transposon specific primers and arbitrary degenerate primers were used to identify 

the transposon insertion sites as described previously (Kulasekara et al., 2005). 

The PCR product was then sequenced and analyzed using NCBI BLAST server. 

 

2.2.4 β-galactosidase activity assays 

The cells of P. aeruginosa containing lacZ transcriptional fusion reporter 

genes were collected at exponential growth phase (OD600 = 1.5) after growth in LB 

medium and assayed for β-galactosidase activity (Sambrook et al., 1989), each with 

triplicates.  
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2.3 Results 

2.3.1 Screening of transposon mutants 

Reporter strain, QR1, was designed to screen for regulators that control QS 

activation in P. aeruginosa. QR1 contained a pUCP-lasR-HTH plasmid 

overexpressing the DNA-binding domain of LasR, and a reporter plasmid PrhlR-

lacZ where rhlR promoter was ligated with reporter gene lacZ. The expression of 

rhlR is induced by both Las and Rhl QS system (Pesci et al., 1997, Medina et al., 

2003a), so mutation of anti-activators that interact with either LasR and RhlR or 

mutation of regulators of either Las or Rhl QS system would affect rhlR expression. 

Expression of LasR-HTH enables activation of PrhlR-lacZ activity in the absence of 

QS signal 3-oxo-C12-HSL (Anderson et al., 1999, Kiratisin et al., 2002), and the 

pUCP-lasR-HTH plasmid was introduced to ensure that regulators that modulate 

expression of lasR and lasI as well as lasR and lasI mutants were not selected in 

the genetic screen. This is particularly because spontaneous lasI and lasR mutants 

develop frequently in vivo and in vitro (Heurlier et al., 2005, D’Argenio et al., 2007) 

as well as during transposon mutagenesis (unpublished data). Overexpressing 

whole LasR will not prevent the identification of lasI mutants, but this can be 

overcome by overexpressing LasR-HTH since it can activate gene expression 

independent of 3-oxo-C12-HSL. Furthermore, QS anti-activators such as TraM and 

TrlR interact with QS regulators at the DNA-binding domain so it was postulated 

that QS anti-activators could still be identified in P. aeruginosa using reporter strain 

overexpressing LasR-HTH.  

About 15, 000 transposon mutants were screened and 20 of these mutants 

were selected because their rhlR expression levels differed substantially from that 

in parental strain QR1 (Fig. 2.1). These mutants were grouped according to the 
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genes in which the transposons were found and the effects the mutations have on 

rhlR expression were described in the following sections. 

 

2.3.2 Mutants with transposons inserted in the intergenic regions or in the 

gene encoding hypothetical protein 

 Among the 20 mutants selected, DNA sequencing analysis showed that 11 

of these mutants had transposons inserted in the intergenic regions and one mutant 

had its transposon inserted in a gene encoding a hypothetical protein (Table 2.2). 

PrhlR-lacZ activities of these 12 mutants were measured and 7 of the mutants had 

reduced PrhlR-lacZ activities compared to QR1 (Fig. 2.2). One of these 7 mutants 

was QRM14, where PrhlR-lacZ activity was about 3 folds less than that in QR1. In 

QRM14, the transposon was inserted between PA3865 and PA3866, which encode 

putative amino acid-binding protein and putatitive pyocin protein, respectively. The 

functions of these two proteins, however, have not yet been verified, so it was not 

clear how rhlR expression was affected in QRM14.  

In QRM71, PrhlR-lacZ activity was also reduced, but only by about 20% 

compared to QR1. The transposon in QRM71 was inserted between mexK and 

mexL. These two genes are part of mexJKL operon and MexJK-OprM is involved in 

antibiotic efflux (Chuanchuen et al., 2005). It is possible that rhlR expression was 

altered in QRM14 because changes in expression of mexJKL operon affects OprM 

availability for 3-oxo-C12-HSL efflux by MexAB-OprM pump (Pearson et al., 1999). 

Surprisingly, the transposon in QRM82 was inserted between PA0263 and 

PA0263.1, which is part of a genetic region encoding proteins involved in type VI 

secretion system (Blondel et al., 2009). This caused PrhlR-lacZ activity in QRM82 

to be about half of that in QR1. Although it has been reported that type VI secretion 

system is regulated by QS (Lesic et al., 2009), converse regulation has not been 
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reported. Hence, the reason why rhlR expression was changed in QRM82 could not 

be explained without further studies. 

 
Table 2.2 Mutants with transposons inserted in the intergenic regions or in the gene 
encoding a hypothetical protein.  
 

Strain Gene Description 
QRM14 251 bp upstream of PA3865, 

1051 bp downstream of PA3866. 

PA3865: probable amino acid binding 

protein, 

PA3866: probable pyocin protein 

QRM22 PA2228 PA2228: hypothetical protein 

QRM71 8 bp upstream of PA3678 (mexL), 88 

bp upstream of PA3677 (mexK). 

PA3678: regulator from tetR family, 

PA3677: probable Resistance-

Nodulation-Cell Division efflux 

membrane fusion protein precursor 

QRM75 102 bp upstream of rhlA, 

322 bp downstream of PA3480. 

RhlA: rhamnosyltransferase chain A 

PA3480: probable dCTP deaminase 

QRM82 70 bp downstream of PA0263.1, 

1186 bp upstream of hcpC (PA0263). 
PA0263.1: tRNA-Arg 

HcpC: secreted protein 

QRM92 767 bp upstream of PA1244, 

248 bp upstream of aprX (PA1245). 
PA1244: hypothetical protein, 

AprX: substrate of the type I secretion 

system 

QRM130 42 bp upstream of PA1243,  

194 bp downstream of PA1244. 

PA1243: probable sensor/response 

regulator hybrid,  

PA1244: hypothetical protein 

QRM168 570bp upstream of PA2228,  

372 bp upstream of PA2229 

PA2228: hypothetical protein, 

PA2229: hypothetical protein 

QRM205 4 bp upstream of dut (PA5321), 

4 bp downstream of coaC (PA5320). 

 Dut: deoxyuridine 5'-triphosphate 

nucleotidohydrolase,  

CoaC: phosphopantothenoylcysteine 

synthetase/decarboxylase 

QRM206 727bp upstream of PA2228,  

215 bp upstream of PA2229. 
PA2228: hypothetical protein, 

PA2229: hypothetical protein 

QRM241 55 bp upstream of rpoC (PA4269), 

11 bp downstream of rpoB (PA4270). 

RpoC: DNA-directed RNA polymerase 

RpoB: DNA-directed RNA polymerase 

QRM262 6 bp upstream of ftsJ (PA4752),  

89 bp upstream of PA4753. 
FtsJ: cell division protein 

PA4753: hypothetical protein 
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Fig. 2.2 PrhlR-lacZ activities of mutants with transposons inserted in the intergenic 
regions or in the gene encoding a hypothetical protein. 
PrhlR-lacZ activities were measured at OD600 = 1.5. Dotted line indictates level of 
PrhlR-lacZ activity in parental strain QR1. The data shown were means of 3 
replicates and error bar, which indicates standard deviation, is not seen when 
standard deviation is small. 
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Transposons in QRM168 and QRM206 were found inserted between 

PA2228 and PA2229, while transposon in QRM22 was inserted in PA2228, which 

encodes a hypothetical protein. PrhlR-lacZ activities of these three mutants were 

less than the parental strain QR1, so it was likely that the changes in rhlR 

expression in these mutants were due to disruption of the same gene. Because 

both PA2228 and PA2229 encode hypothetical proteins, the effect of these genes 

on rhlR expression could not be predicted without further studies. 

PrhlR-lacZ activities in mutants QRM241 and QRM262 were reduced by 

about 50% compared to QR1. DNA sequencing analysis showed that the 

transposon in QRM241 was inserted between rpoB and rpoC, and these genes 

encode DNA-directed RNA polymerase. In QRM262, the transposon was inserted 

between ftsJ and PA4753 and these genes, respectively, encode a cell division 

protein and a hypothetical protein. It is thus possible that in mutants QRM241 and 

QRM262, rhlR expression were reduced because basal cellular processes such as 

transcription and cell division were interfered. 

PrhlR-lacZ activities were increased in QRM75, QRM92, QRM130 and 

QRM205 compared to QR1. In QRM75, PrhlR-lacZ activity was about 40% higher 

compared to QR1 and DNA sequencing analysis showed that the transposon was 

inserted upstream of rhlAB operon (PA3478-PA3479) and rhlR (PA3477). This 

might have caused an increase in expression of the adjacent genes and increased 

expression of rhlR would increase PrhlR-lacZ activity. 

In QRM92 and QRM130, transposons were, respectively, inserted at 

upstream and downstream of PA1244 and these caused PrhlR-lacZ activities to be 

increased by about 70%. PA1244 is a hypothetical protein while its adjacent genes 

PA1243 and aprX, respectively, encodes for a hypothetical protein, which is a 

probable sensor/response regulator hybrid, and a substrate for type I secretion 
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system (Duong et al., 2001). The change in rhlR expression is likely due to the 

either PA1243 or PA1244, which are both hypothetical proteins.  

In QRM205, DNA sequencing analysis showed that the transposon was 

inserted between dut and coaC, which encodes deoxyuridine 5'-triphosphate 

nucleotidohydrolase (Dut) and phosphopantothenoylcysteine 

synthetase/decarboxylase (CoaC), respectively. Dut catalyses the hydrolysis of 

dUTP (deoxyuridine 5'-triphosphate) (Cedergren-Zeppezauer et al., 1992), while 

CoaC is involved in coenzyme A synthesis (Kupke et al., 2000). It has been 

reported that increased uridine monophosphate (UMP) synthesis and increased 

availability of UMP from catalysis of uracil positively influences QS (Ueda et al., 

2009). Thus, it was postulated that the increase in PrhlR-lacZ activity in QRM205 

compared to QR1 was probably due to increased dut expression, which would 

increase UMP levels and upregulate QS signalling.   
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2.3.3 Mutants with transposons inserted in the genes encoding enzymes 

Four of the mutants selected had transposons inserted in the genes 

encoding enzymes (Table 2.3) and their PrhlR-lacZ activities were determined (Fig. 

2.3). In QRM67, PrhlR-lacZ activity was 1.5 times higher than that in QR1. Mutation 

of PA3958, which encodes for a mutator protein, in QRM67 has been reported to 

cause an increase of mutation frequency by 3–4 folds (Wiegand et al., 2008), so it 

is likely that PA3958 did not directly affect QS but accelerate the spontaneous 

mutations that affect QS signalling. Similarly, mutation of mfd was also found to 

increase mutation frequency (Wiegand et al., 2008) and this mutation was present 

in QRM234. PrhlR-lacZ activity in QRM234, however, was reduced to about 50% of 

that in QR1. 

The gene mqoB was disrupted in QRM300 and this caused about 60% 

increase in PrhlR-lacZ activity. MqoB is essential for growth on ethanol or acetate in 

P. aeruginosa (Mellgren et al., 2009), and because metabolism of carbon sources is 

modulated by Crc which is a QS regulator (Linares et al., 2010), it is possible that 

mutation of mqoB may affect QS through its effect on carbon source utilisation. 

PrhlR-lacZ activity was reduced in QRM95 compared to QR1 and this was 

due to the disruption of moaA2, which encodes for a protein responsible for 

synthesis of molybdopterin, an important co-factor for enzymatic reactions. The role 

of molybdopterin in QS has not been reported, and it is not known whether 

molybdopterin is required among the enzymes or proteins associated with QS. 

PrhlR-lacZ activity was also reduced in QRM213 compared to QR1. The 

gene pyrE encoding orotate phosphoribosyltransferase is disrupted in QRM213, 

and PyrE catalyses orotate to orotidine-5'-phosphate. Orotidine-5'-phosphate is the 

precursor of UMP, and as mentioned in Section 2.3.2, UMP levels positively 

influence QS (Ueda et al., 2009). Hence, the reduced rhlR expression in QRM213 

was probably due to disruption of UMP synthesis. 



 

34 
 

Table 2.3 Mutants with transposons inserted in the genes encoding enzymes. 

Strain Gene Description 
QRM67 PA3958 PA3958: probable endonuclease/exonuclease/phosphatase 

QRM95 moaA2 MoaA2: molybdenum cofactor biosynthetic protein A2 

QRM213 pyrE (PA5331) PyrE: orotate phosphoribosyltransferase 

QRM234 mfd (PA3002) Mfd: transcription-repair coupling protein 

QRM300 mqoB (PA4640) MqoB: malate:quinone oxidoreductase 
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Fig. 2.3 PrhlR-lacZ activities of mutants with transposons inserted in the genes 
encoding enzymes. 
PrhlR-lacZ activities were measured at OD600 = 1.5. Dotted line indictates level of 
PrhlR-lacZ activity in parental strain QR1. The data shown were means of 3 
replicates and error bar indicates standard deviation. 
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2.3.4 Mutants with transposons inserted in the genes encoding regulators 

3 of the selected mutants had transposons inserted in genes that encode 

regulators (Table 2.4) and their PrhlR-lacZ activities compared with parental strain 

QR1 were determined (Fig. 2.4). The gene encoding rsaL, which was disrupted in 

QRM208, is a repressor of QS (de Kievit et al., 1999). Mutation of rsaL was 

expected to increase PrhlR-lacZ activity but instead it was reduced by about half. 

This may be because of the polar effect of inserted transposon that inhibited the 

expression of neighbouring genes lasI and lasR, which encode for proteins that 

positively regulate rhlR expression. 

PrhlR-lacZ activities were about 3 times lesser in QRM110 and QRM137 

compared to QR1 due to insertion of transposons at two different sites (843 bp and 

649 bp) in PA5506. PA5506 is part of an operon that includes genes encoding 

enzymes isochorismatase (PA5507), glutamine synthetase (PA5508) and 

amidohydrolase (PA5509). The change in rhlR expression might be due to the 

enzyme expression changes, which remains to be further investigated. 
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Table 2.4 Mutants with transposons inserted in the genes encoding regulators. 

Strain Gene Description 
QRM110 PA5506 (843 bp) PA5506: RpiR family transcriptional regulator 

QRM137 PA5506 (649 bp) PA5506: RpiR family transcriptional regulator 

QRM208 rsaL (PA1431) RsaL: repressor of lasI transcription 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 PrhlR-lacZ activities of mutants with transposons inserted in the genes 
encoding regulators. 
PrhlR-lacZ activities were measured at OD600 = 1.5. Dotted line indictates level of 
PrhlR-lacZ activity in parental strain QR1. The data shown were means of 3 
replicates and error bar, which indicates standard deviation, is not seen when 
standard deviation is small. 
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2.3.5 Identification of genes encoding probable QS anti-activators 

 Based on knowledge of TraM and TraM2 (Hwang et al., 1995, Wang et al., 

2006), QS anti-activator genes are expected to encode for small proteins around 11 

kDa and these proteins would not have any known domains or motifs as well as 

protein export signals. 8 of the 20 mutants had transposons inserted in genes, but 

these genes either encode enzymes or regulators. It was possible that genes, 

which are adjacent to the intergenic regions described in Section 2.3.2, might 

encode for QS anti-activators, so further in silico analysis of these genes were 

carried out. It was found that there were two potential QS anti-activator genes, 

PA1244 and PA2226 (Table 2.5), and these were, respectively, further 

characterised in Chapter 3 and Chapter 4. 

 

Table 2.5 Probable QS anti-activator genes identified among mutants  

Strain Gene Probable QS anti-activator gene 
QRM92 767 bp upstream of PA1244, 

248 bp upstream of aprX 

(PA1245). 

PA1244 (342 bp) encodes 12.7 kDa protein 

QRM130 42 bp upstream of PA1243,  

194 bp downstream of PA1244. 

QRM168 570bp upstream of PA2228,  

372 bp upstream of PA2229 

PA2226 (501 bp) encodes 18.3 kDa protein 

QRM206 727bp upstream of PA2228,  

215 bp upstream of PA2229. 
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2.4 Discussion 

In this chapter, transposon mutants were screened for changes in rhlR 

expression so as to identify potential QS regulators of QS activation. A total of 20 

mutants were selected from about 15, 000 mutants screened, among them 6 of 

these mutants had higher PrhlR-lacZ activities and 14 mutants had lower PrhlR-

lacZ activities compared to wild type. It was found that, with the exception of rsaL, 

many of the known QS regulators were not identified in this genetic screen. It is 

interesting to note that regulators that modulate QS post-transcriptionally were not 

found in this study. One likely reason is that insufficient mutants were screened. On 

the other hand, the fact that most of the QS regulators that influence QS 

transcriptionally were not identified may highlight the feasibility of using this 

screening method to selectively identify potential genes such as QS anti-activator 

genes that are responsible for post-transcriptional regulation of QS, which was the 

objective of reporter design as described in Section 2.3.1.  

It is likely that some of the genes identified in this transposon mutagenesis 

encode proteins that are involved in the regulation of QS activation. PA5506 

regulator and enzymes MoaA2 and MqoB have not been reported to be associated 

with QS signalling and because they are unlikely to be related to QS anti-activation, 

their roles in QS regulation will not be studied. 

Interestingly, more than half of the selected mutants had transposons 

inserted in the intergenic regions. This might be because mariner transposon used, 

inserts at the dinucleotide TA (Robertson & Lampe, 1995) and as PAO1 genome is 

GC-rich (66.6%) (Stover et al., 2000), there is a higher probability that the 

transposons would insert in AT-rich promoter regions (which are intergenic). 

Nevertheless, analysis of the mutants with transposons inserted in the intergenic 

region led to the identification of two probable genes PA1244 and PA2226 that may 
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encode for anti-activators and the effect of these genes on QS will be subsequently 

examined in Chapter 3 (PA1244) and Chapter 4 (PA2226). 
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Chapter 3 – Defining the Quorum Sensing Threshold and Response by 

QslA 

3.1 Introduction 

In A. tumefaciens, anti-activators TrlR, TraM, TraM2 play an important role 

in regulating QS activation (Piper & Farrand, 2000, Chai et al., 2001, Wang et al., 

2006). However, whether similar mechanisms are conserved in other bacterial 

pathogens remains to be investigated. By using P. aeruginosa as a model, a large 

scale random transposon mutagenesis was conducted and 20 mutants with altered 

expression of QS gene rhlR were selected (Chapter 2). Among these mutants were 

QRM92 and QRM130, which had higher rhlR expression than parental strain QR1. 

Transposons in both QRM92 and QRM130 were inserted between PA1243 and 

PA1244. Because of their interesting phenotype and that PA1244 encodes a small 

hypothetical protein which is a common feature of known anti-activators, these two 

mutants were chosen for further studies. 

In this chapter, PA1244 (QslA) was found to be responsible for the altered 

rhlR expression in QRM92 and QRM130 and the role of QslA in QS and PQS 

signalling pathways as well as QS-dependent virulence factor production in PAO1 

wild type strain was examined. The effect of QslA on QS and PQS signalling 

pathways was shown to be due to protein-protein interaction with LasR and this 

resulted in the loss of LasR DNA-binding activity. QslA was also found to define the 

QS threshold and plays an important role in the regulation of QS activation. The 

findings from this chapter depict a complex mechanism by which the anti-activator 

QslA governs the QS threshold and response in P. aeruginosa. 
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3.2 Materials and Methods 

3.2.1 Bacterial strains, plasmids, media and growth conditions 

Bacterial strains and plasmids used in this study are listed in Table 3.1. Bacteria 

were routinely maintained at 37°C in Luria-Bertani (LB) medium. For analysis, 

overnight starter cultures were diluted to OD600 = 0.03 in LB and cultured under the 

same temperature with shaking at 250 rpm until OD600 = 0.3 and 0.6 (lag phase), 

1.5 and 2.5 (log phase), and 4.5 (stationary phase). Antibiotics at the following 

concentrations were added when necessary: gentamicin, 30 μg ml-1; kanamycin, 

500 μg ml-1; tetracycline, 100 μg ml-1 for P. aeruginosa; and kanamycin, 100 μg ml-

1; tetracycline, 10 μg ml-1; carbenicillin 100 μg ml-1 for E. coli. 

 

3.2.2 β-galactosidase activity assays 

The lacZ transcriptional fusion reporter strains were constructed by amplifying the 

promoter regions of PlasI, PlasR, PpqsA, PrhlI, PrsaL and PqslA at -174 to +63 

(PlasI), -345 to +72 (PlasR), -454 to +128 (PpqsA), -238 to +60 (PrhlI), -500 to +157 

(PrsaL) and -500 to +114 (PqslA) relative to their translational start sites and 

ligating these promoter fragments to pME2-lacZ or pUC18-mini-Tn7T-Gm-lacZ 

vector, respectively. The construction of PrhlR-lacZ transcriptional fusion reporter 

strain was mentioned in Chapter 2. Unless otherwise stated, the cells of P. 

aeruginosa lacZ transcriptional fusion reporter strains were collected at OD600 = 1.5 

and assayed for β-galactosidase activities, each with triplicates.  
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Table 3.1 Bacterial strains and plasmids used in Chapter 3. 

Strain or plasmid Relevant genotype or phenotype Source 

P. aeruginosa 

PAO1 Prototrophic laboratory strain 

 

Holloway et 
al., 1979 

QR1 PAO1 containing pUCP-lasRHTH and prhlR-lacZ Chapter 2 

QRM92 QR1 with transposon inserted 766 bp upstream of qslA  Chapter 2 

QRM130 QR1 with transposon inserted 191 bp downstream of 
qslA 

Chapter 2 

QR1(PA1243) QR1 containing pDSK-PA1243 This study 

QR1(PA1244) QR1 containing pDSK-qslA This study 

QR1(aprX) QR1 containing pDSK-aprX This study 

PP1 PAO1 pqsA::Tn containing ppqsA-lacZ This study 

QF1 PAO1 chromosomal-integrated qslA fused with FLAG This study 

ΔqslA qslA in-frame deletion mutant of PAO1 This study 

ΔqslA(qslA) ΔqslA containing pDSK-qslA This study 

ΔlasR lasR in-frame deletion mutant of PAO1 This study 

wt(qslA) PAO1 containing pDSK-qslA This study 

wt(qslA-FLAG) PAO1 containing pDSK-qslA-FLAG This study 

ΔlasR(qslA-FLAG) lasR in-frame deletion mutant of PAO1 containing 
pDSK-qslA-FLAG 

This study 

ΔlasI lasI in-frame deletion mutant of PAO1 This study 

ΔlasIΔqslA lasI and qslA in-frame deletion mutant of PAO1 This study 

E. coli 

DH5α F– Φ80lacZΔM15 endA1hsdR17 (rk
– mk

–) supE44 thi-1 
gyrA96 ∆(lacZYA-argF) 

Laboratory 
collection 

DL1 DH5α containing pUCP-lasR plasI-lacZ This study 

DR1 DH5α containing pUCP-rhlR prhlI-lacZ This study 

S17-1 recA pro (RP4-2Tet::Mu Kan::Tn7) Simon et al., 
1983 

BL21 Star™ 

 

F– ompT hsdSB (rB
- mB

-) gal dcm rne131 (DE3) Invitrogen 
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Plasmid 

pK18mobsacB 

 

Broad-host-range gene replacement vector, sacB, 
GmR 

Laboratory 
collection 

pK18-qslA pK18mobsacB containing qslA flanking region 

 

This study 

pK18-lasI pK18mobsacB containing lasI flanking region 

 

This study 

pK18-lasR pK18mobsacB containing lasR flanking region 

 

This study 

pME2-lacZ pME6010 carrying a full-length lacZ Laboratory 

 

plasI-lacZ pME2-lacZ carrying lasI promoter fused to lacZ This study 

plasR-lacZ pME2-lacZ carrying lasR promoter fused to lacZ This study 

ppqsA-lacZ pME2-lacZ carrying pqsA promoter fused to lacZ This study 

prhlI-lacZ pME2-lacZ carrying rhlI promoter fused to lacZ This study 

prhlR-lacZ pME2-lacZ carrying rhlR promoter fused to lacZ Chapter 2 

prsaL-lacZ pME2-lacZ carrying rsaL promoter fused to lacZ This study 

pUC18-mini-Tn7T-
Gm-lacZ 

Gmr on mini-Tn7T; lacZ transcriptional fusion vector Choi et al., 
2006 

pqslA-lacZ pUC18-mini-Tn7T-Gm-lacZ carrying qslA promoter 
fused to lacZ 

This study 

pUCP19 E. coli – P. aeruginosa shuttle vector with lac promoter 
(Plac), AmpR/CbR 

ATCC 87110 

pUCP-lasR pUCP19 containing lasR under the control of Plac This study 

pUCP-lasRHTH pUCP19 containing 505-717 bp of lasR ORF under the 
control of Plac 

Chapter 2 

pUCP-rhlR pUCP19 containing rhlR under the control of Plac This study 

pDSK519 Broad-host-range cloning vector with lac promoter 
(Plac), KmR 

Laboratory 
collection 

pDSK-PA1243 pDSK519 containing PA1243 under the control of Plac This study 

pDSK-aprX pDSK519 containing PA1245 (aprX) under the control 

  

This study 

pDSK-qslA pDSK519 containing qslA under the control of Plac This study 

pDSK-qslA-FLAG pDSK519 containing qslA fused with FLAG peptide 
under the control of Plac 

This study 

pET14b Protein expression vector, AmpR Laboratory 
collection 

pET14b-lasR pET14b containing lasR This study 

pGEX6P1 GST fusion protein expression vector, AmpR Laboratory 
collection 

pGEX6P1-qslA pGEX6P1 containing qslA This study 
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3.2.3 RNA extraction and reverse transcription-PCR (RT-PCR) analysis 

Bacterial cells were collected after 5 h growth or at specific time points as indicated. 

Total RNA samples were purified using RNeasy miniprep kit (QIAGEN). Genomic 

DNA was removed by on-column treatment with DNase (QIAGEN) and recombinant 

DNaseI (Roche). RT-PCR was carried out using OneStep RT-PCR kit (QIAGEN) 

and band intensities were determined by ImageJ (http://rsbweb.nih.gov/ij/). 

 

3.2.4 DNA manipulation and deletion mutagenesis 

The qslA in-frame deletion mutant in PAO1 was generated using pK18mobSac 

ligated to approximately 450 bp upstream and downstream flanking regions of qslA. 

The construct was introduced into PAO1 by conjugal mating using E. coli S17-1, 

and recombination of the plasmid with the genomic DNA resulted in an internal 

deletion from 1 – 288 bp of qslA. The mutant was confirmed by PCR analysis. For 

complementation, the coding region of qslA was amplified from 27 bp upstream of 

the translational start site to 108 bp downstream of the stop codon. The PCR 

product was cloned into expression vector pDSK519 and confirmed by DNA 

sequencing. 

 

3.2.5 FLAG recombinant protein purification and sequencing 

The DNA fragment encoding FLAG peptide and glycine spacer was fused in-frame 

to qslA open reading frame at the C-terminal by PCR, and the PCR product was 

ligated to pDSK519. The qslA-FLAG fusion plasmid was transformed into wild-type 

strain PAO1. Chromosomal-encoded qslA-FLAG fusion gene was constructed by 

ligating the qslA-FLAG PCR product to pK18mobSac and carrying out 

recombination as described (Kulasekara et al., 2005). Expression of the FLAG-

fusion protein was confirmed by western blot analysis. Plasmid- and chromosomal-
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encoded FLAG-fusion protein were purified from overnight cultures using ANTI-

FLAG® M2 Affinity Gel (Sigma) according to manufacturer’s protocol. The purified 

FLAG-fusion protein was resolved by 15% SDS-PAGE, transferred onto PVDF 

membrane for protein sequencing by Edman degradation analysis. 

 

3.2.6 Assessment of supernatant AHL and HAQ levels 

Reporter strains DL1, DR1 and PP1 were used to evaluate 3-oxo-C12-HSL, C4-

HSL and HAQ levels, respectively. Cell-free supernatants from PAO1, ΔqslA and 

ΔqslA(qslA) were added separately to 1:20 diluted overnight cultures of 

corresponding reporter strains and grown at 37°C with shaking for 2.5 h. β-

galactosidase activity was then measured. Each experiment was carried out in 

triplicate and the representative data from three independent experiments were 

presented. 

 

3.2.7 Analysis of virulence factor production 

Elastase activity was determined by elastin-Congo red assay as previously 

described with minor modifications (Bjorn et al., 1979). Briefly, 500 µl of culture 

supernatant was added to tubes containing 1 ml of 5 mg ml-1 of elastin-Congo red 

(Sigma) in ECR buffer (0.1 M Tris-Cl pH 7.2, 1 mM CaCl2). Tubes were shaken at 

37°C for 2 h. The unreacted elastin Congo-red was pelleted down and the 

supernatant was measured at OD495. Elastase activity units were determined using 

the equation: 1 unit of elastase activity = (OD495/OD600) × 100. Proteolytic activity 

assay was carried out according to the method previously described (Denkin & 

Nelson, 2004). Briefly, 100 µl of culture supernatants was incubated with 100 µl of 5 

mg ml-1 azocasein dissolved in protease buffer (50 mM Tris-Cl pH 8.0, 0.04% NaN3) 

for 40 min at 37°C. Reaction was stopped by addition of 10% trichloroacetic acid to 

a final concentration of 6.7% and unreacted azocasein was spun down. 
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Supernatants were added to 700 µl of 525 mM NaOH and OD442 were measured. 

Protease activity units were determined using the equation: 1 unit of protease 

activity = (OD442/OD600) × 100. Pyocyanin levels were measured in supernatants of 

P. aeruginosa strains grown in LB medium as previously described (Dong et al., 

2008). Pyocyanin levels were determined according to a previously published 

method (Essar et al., 1990a). 

 

3.2.8 Co-immunoprecipitation and western blot analysis 

Bacteria were grown to OD600 = 3.0 and cells were resuspended in lysis buffer (50 

mM Tris-Cl pH 7.5, 150 mM NaCl, 1% Tween 20, 1 µM 3-oxo-C12-HSL). Cell 

lysates were obtained by sonication and incubated with ANTI-FLAG® M2 Affinity 

Gel (Sigma) for 2 h at 4°C. Eluted proteins were resolved by 15% SDS-PAGE and 

transferred onto a PVDF membrane. Immunoblotting was performed using mouse 

monoclonal ANTI-FLAG® M2 antibody (Sigma) or LasR rabbit polyclonal antibody 

(Martin Schuster, Oregon State University). 

 

3.2.9 Expression and purification of LasR and QslA  

The lasR coding region was amplified and ligated into pET14b (Novagen) using 

NcoI and XhoI restriction sites to produce pET14b-lasR. Strain BL21 starTM 

(Invitrogen) transformed with pET14b-lasR was grown in 1 litres of LB medium 

containing 2 μM 3-oxo-C12-HSL to OD600= 0.5 before being induced with 500 μM of 

isopropyl-β-d-thiogalactopyranoside overnight at 18°C. Cell pellet was resuspended 

in 25 ml of LasR purification buffer (LRPB) (25 mM Tris-HCl pH 7.8, 150 mM NaCl, 

1 mM DTT, 1 mM EDTA, 10% glycerol, 0.05% Tween 20, 200 nM 3-oxo-C12-HSL) 

(Schuster et al., 2004) and lysed by sonication. The cell debris was removed by 

spinning at 26,000 X g for 1 h and the cell lysates were applied to a 5-ml Hi-Trap 

Heparin HP affinity column (GE). Bound LasR proteins were eluted using a 100-ml 
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linear gradient of 150 - 1000 mM of NaCl. Fractions containing LasR were pooled 

and applied to a 30-ml Mono Q column (GE) and the unbound flow-through 

fractions were collected and further purified using the Hi-Trap Heparin HP affinity 

column to obtain the fraction containing >90% pure LasR protein.  

For purification of QslA, the PCR product of qslA coding region was 

digested using BamHI and EcoRI and ligated into pGEX6P1 to generate the 

construct pGEX6P1-qslA. Strain BL21 StarTM carrying pGEX6P1-qslA was grown in 

2.5 litres of LB medium to OD600 = 0.5 before being induced with 200 μM of 

isopropyl-β-d-thiogalactopyranoside overnight at 18°C. Cell pellet was resuspended 

in 25 mM Tris-HCl buffer (pH 7.8) containing 150 mM NaCl and lysed by sonication. 

GST-QslA fusion protein was purified using Glutathione Sepharose column 

chromatography. GST tag was cleaved from GST-QslA fusion protein using 

PreScissionTM Protease (GE). The protein purity was judged by SDS/PAGE to be 

>99% pure.  

 

3.2.10 Electrophoretic mobility shift assay (EMSA) 

Biotinylated DNA probe was amplified using 5′ -biotin labelled primer (Table S1) to 

generate a 350 bp DNA fragment. LasR and QslA proteins, at indicated 

concentrations, were pre-incubated in DNA-binding buffer (10 mM Tris-Cl pH 7.5, 

50 mM KCl, 1 mM DTT, 2.5% glycerol, 5 mM MgCl2, 10 ng µl-1 poly (dI·dC), 0.05% 

NP-40, 5 µM 3-oxo-C12-HSL) for 20 min at room temperature and further incubated 

for 20 min after 1.8 fmol of DNA probe was added. Loading buffer was then added 

to the reaction mixture and electrophoresis was conducted in native 6% Tris-borate-

EDTA polyacrylamide gel at 4°C. DNA probes were detected using LightShift® 

Chemiluminescent EMSA Kit (Pierce) according to the manufacturer’s protocol. 
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3.2.11 Bioinfomatics analysis 

Domain and motif scans were carried out using InterProScan 

(http://www.ebi.ac.uk/Tools/InterProScan/). Protein homologues were identified 

using NCBI BlastP. Hydrophobicity plot analysis of QslA was carried out using CLC 

Main WorkBench (CLC Bio, Denmark). Alignments and amino acid sequence 

percent identity of QslA, QteE, QscR and TraM were analysed by ClustalW 

(http://www.ch.embnet.org/software/ClustalW.html) and shaded using Boxshade 

(http://www.ch.embnet.org/software/BOX_form.html). Protein structures were 

predicted by Hidden Markov Model (HMM)-based method 

(http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html) and viewed using PyMol. 
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3.3 Results 

3.3.1 Identification of QslA as a suppressor of rhlR expression 

The mutants QRM92 and QRM130, which showed substantially higher 

PrhlR-lacZ activities than QR1 (Fig. 2.1), were chosen for further characterization in 

this study. DNA sequencing analysis showed that the transposons were, 

respectively, inserted in the region between PA1243 and PA1244 and between 

PA1244 and aprX in QRM130 and QRM92 (Fig. 3.1A). PA1243 and PA1244 

encode hypothetical proteins of 858 amino acid and 113 amino acid, respectively, 

whereas aprX encodes a 414-amino acid protein substrate of the type I secretion 

system (Duong et al., 2001). RT-PCR analysis showed that only PA1244 and aprX 

transcript levels were consistently reduced or increased in both mutants (Fig. 3.1B), 

suggesting that they might be related to the change in expression pattern of rhlR in 

mutants QRM92 and QRM130.   

Further analysis showed that in trans expression of PA1244 in QR1 reduced 

PrhlR-lacZ activity to a basal level, but expression of PA1243 or aprX did not affect 

the reporter activity (Fig. 3.2). These data suggests that PA1244 could be involved 

in modulation of QS. For the convenience of discussion, PA1244 was referred to as 

qslA hereafter according to its role in encoding a quorum sensing LasR-specific 

anti-activator as described below. To verify that QslA also affects rhlR expression in 

wild type strain, the qslA in-frame deletion mutant ΔqslA and its complemented 

strain ΔqslA(qslA) were generated using PAO1 as the parental strain. As expected, 

PrhlR-lacZ activity was increased in ΔqslA but greatly reduced in the complemented 

strain ΔqslA(qslA) (Fig. 3.2).  
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Fig. 3.1 Changed level of QslA affects rhlR expression in mutant QRM92 and 
QRM130.  
(A) Genetic organisation of qslA and adjacent genes PA1243 and aprX. 
Transposon insertion sites of mutants QRM92 and QRM130 were indicated by 
triangles. (B) RT-PCR analysis of qslA, PA1243, aprX and control 16S rRNA in 
QR1, QRM92 and QRM130. Band intensities listed under the bands were 
measured by ImageJ. 
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Fig. 3.2 QslA is implicated in regulation of the QS gene rhlR expression.  
PrhlR-lacZ activity assays were measured at OD600 = 1.5. The data shown were 
means of 3 replicates and error bar, which indicates standard deviation, is not seen 
when standard deviation is small. 
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3.3.2 Translational start site of QslA  

QslA was annotated as a putative protein with 113 amino acids in the 

Pseudomonas Genome Database (www.pseudomonas.com), but in silico analysis 

predicted a translational start site at 27 bp downstream of the original annotated 

start site and the open reading frame (ORF) would generate a 104-amino acid 

protein (FGENESB, Softberry). To address this discrepancy, a flag peptide 

fragment was fused to chromosomal qslA at the C-terminal, which was determined 

not to affect QslA activity (Fig. 3.3A). The purified QslA-FLAG fusion protein was 

analysed by Edman degradation and the results showed that the first 8 amino acids 

of the QslA-flag fusion protein was matched to the 10th-17th amino acid of the 

originally annotated QslA protein (Fig. 3.3B). Due to background noise in the 

Edman degradation analysis, more than one amino acid peaks were detected at 

each position and these background peaks are usually from the previous or next 

amino acid. QslA protein therefore consists of 104 amino acids with a predicted 

molecular weight of 11.8 kDa.  

http://www.pseudomonas.com/�
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Fig. 3.3 QslA was discovered to alter rhlR gene expression in mutant QRM92 and 
QRM130.  
(A) PrhlI-lacZ activities of wild type (wt), ΔqslA and wild type strain with 
chromosomal-integrated qslA fused with FLAG (QF1). The data shown were means 
of 3 replicates and error bar indicates standard deviation. (B) Alignment of the 
annotated QslA amino acid sequence with the sequenced amino acids of QslA-
FLAG fusion protein. (C) Hydrophobicity plot analysis of QslA by Kyte-Doolittle 
scale, window size=9 (CLC Main Workbench). 
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3.3.3 In silico analysis of QslA  

QslA homologues are found in certain Pseudomonas species, including P. 

aeruginosa, P. mendocina and P. fluorescens (Table 3.2). These homologues 

share over 30% identity at amino acid level but none of them have been 

characterised previously. Domain analysis and motif search did not reveal any 

useful clues.  Analysis of QslA by PredictProtein (Rost et al., 2004) showed that it 

has a highly helical secondary structure (61%) and the helical regions are mainly 

found in two regions (amino acid 51–70 and 80–96) as predicted by DNASTAR® 

Lasergene Protean software. These structural features were also identified in QslA 

predicted protein structure determined using a HMM-based protein structure 

modelling program (http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html) (Fig. 

3.4A). It was also noted that QslA contains a relatively high proportion of 

hydrophobic amino acid residues (40/104), but the hydrophobicity plot did not 

identify an obvious hydrophobic region (Figure 3.3C).  

The function of QslA was not evident from analysing its protein sequence, 

and this was expected for TraM-like anti-activator proteins which do not have 

identifiable motifs or domains (Hwang et al., 1995). As QslA negatively regulates 

rhlR expression, it was very likely that QslA was a TraM-like anti-activator. Thus, 

the protein sequence of QslA was compared with known and probable QS anti-

activators QscR, QteE and TraM, but sequence alignment revealed little amino acid 

similarity among these proteins (Table 3.3, Fig. 3.5A). However, TraM and QslA 

were found to be similar in protein size containing 102 amino acids and 104 amino 

acids, respectively. Moreover, interestingly, protein structure prediction by HMM-

based program (http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html) showed 

that QslA shared conserved alpha helix structural features with TraM and TraM2 

(Fig. 3.4A, B), as the three proteins contain two long alpha helices (Chen et al., 

2004, Vannini et al., 2004, Chen et al., 2006). In contrast, QslA did not resemble 

http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html�
http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html�
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the predicted structures of QscR and QteE (Fig. 3.4C, D). Although QslA and TraM 

share some protein structural similarities, superimposition of QslA predicted 

structure on TraM protein structure (Vannini et al., 2004) using PyMOL 

(http://www.pymol.org/) resulted in partial overlap only (Fig. 3.5B), and not all of the 

crucial residues essential for TraM interaction with TraR are present in the 

overlapping region (Hwang et al., 1999, Swiderska et al., 2001). This is somewhat 

expected as the LuxR homologues from different bacterial species, such as TraR 

and LasR, normally share low amino acid sequence homology. The above analyses 

suggest that QslA may be a QS anti-activator and its effect on QS was further 

investigated. 

http://www.pymol.org/�
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Table 3.2 QslA protein homologues.  
Proteins which showed amino acid sequence homology to QslA were identified by 
BLASTP program provided by the National Center for Biotechnology Information 
(NCBI). 
 
 

Species Gene ID E value Identities 
(%) 

Positives 
(%) 

P. aeruginosa PAO1 PA1244 5e-54 100 100 

P. aeruginosa UCBPP-PA14 PA14_48150 5e-54 100 100 

P. aeruginosa 2192 PA2G_00237 5e-54 100 100 

P. aeruginosa PACS2 PaerPA_01001720 7e-54 100 100 

P. aeruginosa PAb1 PaerPAb_19586 7e-54 100 100 

P. aeruginosa LESB58 PLES_40681 3e-53 99 99 

P. aeruginosa C3719 PACG_00214 3e-53 99 99 

Pseudomonas mendocina ymp Pmen_3423 2e-11 36 57 

P. mendocina ymp Pmen_1507 5e-08 34 47 

Pseudomonas fluorescens Pf0-1 Pfl01_3024 1e-05 41 52 

P. fluorescens SBW25 PFLU2003 0.001 37 46 

P. fluorescens SBW25 PFLU1925 0.045 42 55 
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Fig. 3.4 Predicted Protein structure of QslA, QteE and QscR and crystal structure of 
TraM.  
Ribbon structure predicted for QslA (A), QteE (C) and QscR (D) by HMM-based 
methods (http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html). TraM ribbon 
structure chain B (B) was obtained from PDB no. 1US6 (Vannini et al. 2004).  
 

 

Table 3.3 Protein sequence identity of QslA, QteE, QscR and TraM.  
Proteins were aligned using ClustalW and the percent identities of alignment were 
shown. 
 

Protein QslA QteE QscR TraM 
QslA  11% 12% 11% 
QteE 11%  14% 10% 
QscR 12% 14%  9% 
TraM 11% 10% 9%  
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http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html�
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Fig. 3.5 Comparison of QslA and TraM structures.  
(A) Alignment of QslA and TraM protein sequence using ClustalW. The identical 
amino acids are highlighted black and the similar amino acids are highlighted grey. 
Dashes (-) indicate gaps. The boxed regions indicate residues which were reported 
to be important for TraM interaction with TraR (Hwang et al., 1999 (B) 
Superimposition of QslA predicted ribbon structure (pink) on TraM ribbon structure 
chain B from PDB no. 1US6 (Vannini et al. 2004) (purple). QslA residues (indicated 
as (A)) Phe-85, Arg-96 and Leu-97 are found overlapping TraM residues (indicated 
as (M)) Leu-29, His-40, Arg-41, respectively. Side chains of TraM residues Leu-29, 
His-40, Arg-41, Leu-54, Tyr-72, Val-86, Gly-94 and Pro-97 are shown in red while 
side chains of QslA residues Phe-85, Arg-96 and Leu-97 are shown in grey. 
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3.3.4 Effect of QslA on QS gene expression and signal production 

The Rhl QS system is linked to the Las QS and PQS signalling systems 

(Latifi et al., 1996, Pesci et al., 1999, McKnight et al., 2000). As QslA affects rhlR 

expression, the impact of QslA on these three signalling systems was investigated. 

To this end, the coding sequence of lacZ was cloned under the control of the 

promoters of these signal synthase genes, i.e., lasI, pqsA and rhlI, to generate the 

reporter fusion genes PlasI-lacZ, PpqsA-lacZ and PrhlI-lacZ. The expression of 

these signal synthases in wild type PAO1, ΔqslA and ΔqslA(qslA) were determined 

by measuring PlasI-lacZ, PpqsA-lacZ and PrhlI-lacZ activities at different cell 

densities (OD600). As a comparison, the corresponding signal production in these 

strains was also measured. Contrary to the effect on rhlR expression, deletion of 

qslA resulted in decreased PlasI-lacZ activity, and overexpression of qslA in ΔqslA 

abolished PlasI-lacZ activity (Fig. 3.6A). The transcriptional fusion gene reporter 

data agreed well with the results of 3-oxo-C12-HSL assay, which showed lesser 3-

oxo-C12-HSL molecules in ΔqslA than in wild-type with undetectable level of 3-oxo-

C12-HSL being found in the complemented strain ΔqslA(qslA) (Fig. 3.6D).  

It is expected that inhibition of 3-oxo-C12-HSL-dependent Las QS would 

result in loss of HAQ and C4-HSL signals since LasR activates the expression of 

their synthesis genes (de Kievit et al., 2002, Gallagher et al., 2002). In agreement 

with this, in trans expression of qslA in ΔqslA blocked the expression of rhlI and 

pqsA (Fig. 3.6B, C), and abolished the production of HAQ and C4-HSL (Fig. 3.6E, 

F). Consistent with the qslA expression results, pqsA expression and HAQ 

production were higher in ΔqslA than in wild type (Fig. 3.6B, E). In contrast, only a 

modest change in rhlI transcription and C4-HSL level were detected in the absence 

of qslA at OD600 = 0.6 (Fig. 3.6C, F).  

The above results establish the negative regulatory role of overexpression 

of qslA on three signalling systems, i.e., PQS, Las and Rhl, when expressed in 
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trans. On the contrary, QslA influence of QS and PQS signalling in wild type PAO1 

is gene-dependent. The expression of rhlI was slightly upregulated in the deletion 

mutant ∆qslA compared to wild type whereas expression of pqsA was induced by 2-

3 fold in ∆qslA compared to wild type. It is possible that the expression level of the 

LasR-dependent genes is related to the LasR affinity to corresponding promoters 

(Schuster et al., 2004). The promoters such as pqsA promoter with relatively low 

affinity for LasR may not be “saturated” under normal conditions, and thus could 

direct a substantially higher increase in gene expression than those “saturated” 

promoters such as rhlI promoter when more LasR molecules become available. 
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Fig. 3.6 QslA influences the Las and Rhl QS as well as PQS signalling systems.  
The effects of QslA on expression of lasI (A), pqsA (B) and rhlI (C) were determined 
by measuring β-galactosidase activities in wild type (○), ΔqslA (□) and ΔqslA(qslA) 
(Δ). PlasI-lacZ, PpqsA-lacZ and PrhlI-lacZ gene fusion construct were introduced 
into the strains tested. 3-oxo-C12-HSL (D), HAQ (E) and C4-HSL (F) levels in the 
supernatant of wild-type (○), ΔqslA (□) and  ΔqslA(qslA) (Δ) were determined by β-
galactosidase activity assays using reporter strains DL1, PP1 and DR1, 
respectively. The data shown were means of 3 replicates and error bar, which 
indicates standard deviation, is not seen when standard deviation is small. 
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3.3.5 QslA affects virulence factor production 

The AHL-dependent QS and PQS signalling systems regulate the 

expression of genes encoding a range of virulence factors such as elastase, 

protease and pyocyanin (Latifi et al., 1995, Pesci et al., 1999). Because QslA 

altered QS and PQS signalling, we reasoned that production of these virulence 

factors would be similarly affected. The results showed that deletion of qslA 

resulted in about 20 – 200% increase in elastase production compared with the wild 

type strain PAO1 at three growth stages (Fig. 3.7A). Protease produced in ΔqslA 

was about 3-fold and 50% more than that in wild-type at OD600 = 0.5 and OD600 = 

3.0, respectively, but at OD600 = 5.0, no substantial difference was detected in wild 

type and the mutant ΔqslA (Fig. 3.7B). Compared to elastase and protease, 

deletion of qslA caused most substantial changes in pyocyanin production. Its level 

in ∆qslA was increased by about 150 – 280% over the wild type PAO1 at three 

growth stages from OD600 = 3.0 to 5.5 (Fig. 3.7C). In the qslA complemented strain, 

production of three virulence factors were drastically reduced to almost 

undetectable levels (Fig. 3.7A, B, C).  
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Fig. 3.7 QslA affects virulence factor production.  
Production of elastase (A), protease (B), and pyocyanin (C) were determined in wild 
type (white bar), ΔqslA (shaded bar) and ΔqslA(qslA) (dashed bar). The data shown 
were means of 3 replicates and error bar indicates standard deviation. 
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 3.3.6 QslA modulates LasR activity post-transcriptionally 

To understand whether QslA affects the activity of QS signal receptor LasR, 

lasR expression was first analysed by determining PlasR-lacZ activities in wild type, 

ΔqslA and ΔqslA(qslA). The results showed that lasR expression was consistently 

higher in ΔqslA compared to the wild type and this was reduced when qslA was 

expressed in trans in ΔqslA (Fig. 3.8A).  

The above results indicate that the transcript level of lasR is modulated by 

QslA. Given that QslA does not contain a DNA-binding domain and that lasR 

expression is auto-regulated (Pesci et al., 1997), we reasoned that QslA might 

control lasR transcription through its post-transcriptional effect on LasR. To explore 

this possibility, lasR was fused with the constitutive promoter Plac and expressed in 

strain ΔlasR that contains either the qslA expression construct (pDSK-qslA) or the 

empty vector pDSK. LasR activity was gauged by its activation of PlasI-lacZ activity. 

The results showed that QslA inhibited LasR activity when lasR was expressed 

constitutively (Fig. 3.8B), demonstrating that QslA inhibits LasR post-

transcriptionally. QslA was also able to inhibit the LasR-HTH activity (Fig. 3.8B), as 

previously shown for QR1 (Fig. 3.2). 
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Fig. 3.8 QslA inhibits LasR activity post-transcriptionally.  
(A) The effects of QslA on expression of lasR were determined by measuring β-
galactosidase activities in wild type (○), ΔqslA (□) and ΔqslA(qslA) (Δ). (B) The 
influences of QslA on PlasI-lacZ activities in ΔlasR(lasR) and ΔlasR(lasRHTH). The 
lacZ activities were determined in the absence (white bar) or presence (shaded bar) 
of in trans expression of qslA. The data shown were means of 3 replicates and error 
bar, which indicates standard deviation, is not seen when standard deviation is 
small. 
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3.3.7 QslA inhibits LasR by protein-protein interaction 

To determine whether QslA post-transcriptionally modulates LasR activity 

through protein-protein interaction, QslA-FLAG fusion protein was expressed in 

strain PAO1 and the deletion mutant ∆lasR. As a control, untagged QslA protein 

was also expressed in PAO1 using the same vector as the QslA-FLAG fusion gene. 

Immunoprecipitates eluted from anti-FLAG affinity gel were immunoblotted using 

anti-LasR and anti-FLAG antibodies separately and the results showed that QslA-

FLAG co-immunoprecipitated with LasR (Fig. 3.9A, top and middle panels). On the 

other hand, LasR did not co-immunoprecipitate with untagged QslA although LasR 

was present in the cell lysate (Fig. 3.9A, top and bottom panels lane 1). The 

specificity of anti-LasR antibody against LasR was confirmed by the absence of 

band in the immunoblot of the cell lysates from ∆lasR(qslA -FLAG) (Fig. 3.9A, 

bottom panel lane 3). The results demonstrated that QslA formed a heterologous 

protein complex with LasR in vivo.  

To test whether DNA-binding ability of LasR is disrupted by QslA and to 

further verify the interaction between LasR and QslA, electrophoretic mobility shift 

assay (EMSA) was performed using purified LasR and QslA proteins. Previous 

study showed that LasR binds to the intergenic promoter region between lasI and 

rsaL (Schuster et al., 2004, Gilbert et al., 2009), so the biotinylated DNA probe of 

this region was generated. EMSA analysis confirmed that LasR formed DNA-

protein complexes with the DNA probe (Fig. 3.9B lane 3).  But when QslA was 

added to the reaction mixture, the DNA-binding activity of LasR was disrupted in a 

dose-dependent manner, with complete disruption of DNA-binding when 800-fold 

molar excess of QslA over LasR was incubated (Fig. 3.9B lane 4-8). As a control, 

QslA alone could not form a complex with the probe DNA (Fig. 3.9B lane 1). 

Interestingly, heat-treatment of QslA reduced but did not abolish the DNA-binding 

ability of LasR (Fig. 3.9B lane 9), suggesting that either QslA is relatively heat-
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stable or denatured QslA remains partially active in interaction with LasR. We 

further showed that QslA interaction with LasR was not affected by addition of up to 

125 μM of 3-oxo-C12-HSL (Fig. 3.9C) 
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Fig. 3.9 QslA directly interacts with LasR.  
(A) The total protein lysates from wt(qslA), lane 1; wt(qslA-FLAG), lane 2; and 
ΔlasR(qslA-FLAG), lane 3 were immunoprecipitated (IP) separately with anti-FLAG 
M2 affinity gel. Immunobloting (IB) was carried out using anti-LasR and anti-FLAG 
antibodies as indicated. (B) EMSA was carried out using biotinylated DNA probe 
containing lasI-rsaL promoter region and 1.8 fmol of DNA probe was used in each 
reaction. DNA probe was incubated for 20 min with QslA (144 μM), lane 1; LasR 
(90 nM), lane 3; and LasR (90 nM) pre-incubated with increasing concentrations of 
QslA (9, 18, 36, 72, 144 μM) for 20 min, lanes 4 – 8. QslA (144 μM) in lane 9 was 
heat-denatured at 99°C for 15 min before incubation with LasR and DNA probe. 
Lane 2 contains DNA probe without proteins. (C) Lane 1 contains DNA without 
proteins. DNA was incubated with LasR (90 nM) (lane 2 – 5) or LasR (90 nM) and 
QslA (36 μM) (lane 6 – 9) with different concentrations of 3-oxo-C12-HSL: 1 μM 
(lane 2, 6), 5 μM (lane 3, 7), 25 μM (lane 4, 8) and 125 μM (lane 5, 9). 
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3.3.8 LasR overexpression promotes negative feedback regulation of lasI 

expression 

It is known that LasR activates the expression of lasI and 3-oxo-C12-HSL 

production (Seed et al., 1995), but surprisingly, null mutation of the LasR anti-

activator QslA did not cause enhanced lasI expression and 3-oxo-C12-HSL 

production (Fig. 3.6A, D). We speculated that this is due to increased LasR 

activation of the negative feedback mechanism involving RsaL, which is a lasI 

promoter specific repressor (Rampioni et al., 2007b), in ΔqslA. When lasR was 

overexpressed in wild type strain to mimic ΔqslA by changing the stoichiometry of 

QslA and LasR and providing more unbound LasR proteins than the wild type 

containing the expression vector, it was found that lasI expression and 3-oxo-C12-

HSL production were indeed reduced at late growth stage (Fig. 3.10A, B). To 

determine whether reduction in Las QS signalling in ΔqslA and in lasR 

overexpression strain was due to increased expression of rsaL, rsaL transcript level 

analysis were carried out by fusing the rsaL promoter with the lacZ reporter gene. 

The results showed that rsaL expression was increased to a comparable level by 

either deletion of qslA or overexpression of lasR (Fig. 3.10C), thus it is plausible 

that the increased level of RsaL in ΔqslA might be the cause of the decreased lasI 

expression and 3-oxo-C12-HSL production in ΔqslA.  
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Fig. 3.10 Overexpression of LasR reduces PlasI-lacZ expression and 3-oxo-C12-
HSL production.  
PlasI-lacZ activities (A) and 3-oxo-C12-HSL levels (B) of wild type containing the 
vector pUCP19 (○) and wild type containing pUCP-lasR (□). (C) PrsaI-lacZ activities 
of wild type (wt), ΔqslA, wild type with pUCP19 vector control (wt(pUCP19)) and 
wild type containing pUCP-lasR (wt(lasR)). The data shown were means of 3 
replicates and error bar, which indicates standard deviation, is not seen when 
standard deviation is small. 
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3.3.9 RsaL-dependent negative feedback regulation inhibits lasI expression in 

∆qslA 

To test whether RsaL was responsible for the inhibition of lasI expression in 

∆qslA, the single deletion mutant ∆rsaL and double deletion mutant ∆rsaL∆qslA 

were generated. As expected, deletion of rsaL from PAO1 substantially increased 

the lasI expression level (Fig. 3.11A). In the absence of rsaL, null mutation of qslA 

caused an increase of about 25 – 40% in the transcriptional expression level of lasI 

than the single deletion mutant ∆qslA (Fig. 3.11A).  Similarly, the transcriptional 

expression level of rhlI was significantly higher in ΔrsaLΔqslA compared to ΔrsaL 

(Fig. 3.11B). Taken together, the above findings suggest that the increased level of 

RsaL in ΔqslA plays a role in negative feedback inhibition of lasI expression. 

However, the likelihood that lasI expression is also inhibited by other mechanism(s) 

in the absence of QslA cannot be ruled out at this stage, as the expression of lasI is 

not necessarily dependent on LasR (Duan & Surette, 2007).  
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Fig. 3.11  RsaL is implicated in QslA modulation of lasI expression.  
(A) Null mutation of QslA resulted in increased transcriptional expression of rsaL. 
Symbol: open bar, wild type; filled bar, ΔqslA. (B) Deletion of rsaL led to decreased 
transcriptional expression of lasI in the QslA null mutant. Symbol: slash bar, ΔrsaL; 
grill bar, ΔrsaLΔqslA.The data shown were means of 3 replicates and error bar 
indicates standard deviation. Statistically significant level is shown by “**”, which 
indicates p value < 0.01, or “#”, which indicates p value < 0.05. 
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3.3.10 3-oxo-C12-HSL sensitivity is modulated by QslA 

It was shown in Fig. 3.6 that deletion of qslA resulted in increased pqsA and 

rhlI expression, which are known to be LasR-dependent (de Kievit et al., 2002, 

Gilbert et al., 2009), despite reduced 3-oxo-C12-HSL level. This led us to question 

whether the bacterial population could become more sensitive to 3-oxo-C12-HSL in 

the absence of QslA. To test this intriguing possibility, single deletion mutant ΔlasI 

and double mutant ΔlasIΔqslA were generated and the amount of exogenous 3-

oxo-C12-HSL necessary for induction of QS-dependent elastase and protease 

production in these mutants were determined. Results showed that in the absence 

of qslA, less than 200 nM 3-oxo-C12-HSL was sufficient to trigger production of 

elastase and protease to wild-type levels (Fig. 3.12A, B). This was about 9 times 

less than the 3-oxo-C12-HSL concentration needed in ΔlasI (Fig. 3.12A, B). 
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Fig. 3.12 QslA controls the 3-oxo-C12-HSL threshold concentration needed for QS 
activation.  
Elastase (A) and protease (B) production by mutants ΔlasI (○) and ΔlasIΔqsIA (□) 
were determined in LB supplemented with various concentrations of 3-oxo-C12-
HSL as stated. The dotted line indicates the level of elastase or protease in wild 
type strain PAO1 grown without exogenous 3-oxo-C12-HSL. The data shown were 
means of 3 replicates and error bar, which indicates standard deviation, is not seen 
when standard deviation is small. 
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3.3.11 Expression of qslA is not QS-regulated and is constitutive 

 To determine whether QslA effect on QS could be regulated by controlling 

qslA expression levels, transcriptional levels of qslA was analysed. The promoter 

region of qslA is adjacent to that of aprXDEF operon which was identified to be QS-

regulated in microarrays (Schuster et al., 2003, Wagner et al., 2003) as well as in 

ChIP-chip study (Gilbert et al., 2009). But, our transcriptional studies by PqslA-lacZ 

activity assays and RT-PCR analysis showed that qslA expression is not regulated 

by LasR or RhlR (Fig. 3.12A, B), which dismissed the possibility that QslA may be 

involved in negative feedback of LasR activity. RT-PCR analysis of qslA also 

showed that its expression is constitutive throughout growth (Fig. 3.12C), 

suggesting that it is not involved in growth-dependent regulation of QS. 
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Fig. 3.13 Expression of qslA is not QS-dependent and is constitutive.  
(A) The influence of LasR and RhlR on PqslA-lacZ activities were determined at 
different cell densities (OD600). The data shown were means of 3 replicates and 
error bar indicates standard deviation. (B) RT-PCR analysis of qslA and control 16S 
rRNA in wild type (P), ΔlasR (L) and ΔrhlR (R). (C) RT-PCR analysis of qslA and 
control 16S rRNA at different cell densities (OD600). Band intensities listed under 
each band were measured by ImageJ. 
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3.4 Discussion 

In this chapter, evidence that a hypothetical protein PA1244, which was 

designated as QslA, is a key negative regulatory factor in the QS and PQS 

signalling pathway of P. aeruginosa was presented. In the absence of qslA, there 

was enhanced secretion of QS-regulated signal molecules and virulence factors 

including HAQ, pyocyanin, elastase and protease (Fig. 3.2, 3.6, 3.7). Significantly, 

in trans expression of qslA in the deletion mutant ∆qslA substantially reduced or 

even abrogated the biosynthesis of AHL and HAQ signals as well as production of 

QS-regulated virulence factors (Fig. 3.6D-F; Fig. 3.7). In addition, we showed that 

QslA inhibited QS and virulence factor production through counteracting the QS 

signal receptor LasR. Co-immunoprecipitation analysis indicated that QslA formed a 

protein-protein complex with LasR under in vivo conditions (Fig. 3.9A). The finding 

was further verified by EMSA study, which showed that QslA prevented LasR from 

binding to its target promoter (Fig. 3.9B). Thus, it was established that QslA is an 

anti-activator, which is structurally and functionally similar to TraM, and acts by 

modulating QS through molecular interaction with the QS signal receptor LasR in 

bacterial pathogen P. aeruginosa.  

Identification of QslA adds a new member to the list of negative regulatory 

factors in the QS signalling pathway of P. aeruginosa, which includes QscR and 

QteE (Ledgham et al., 2003b, Siehnel et al., 2010). Expression of these regulatory 

factors in trans led to inhibition of QS-dependent phenotypes such as protease, 

elastase and pyocyanin as well as OdDHL and BHL (Chugani et al., 2001, Siehnel 

et al., 2010). The available data, albeit limited, seem to suggest different 

mechanisms of regulation among these three regulatory factors. Contrary to QslA, 

which negatively regulates lasR transcription (Fig. 3.8A), expression of lasR is not 

affected by QteE. In addition, both QscR and QteE were shown to inhibit RhlR 

activity (Ledgham et al., 2003b, Siehnel et al., 2010), which is a homologue of LasR 
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in P. aeruginosa. But when we expressed both QslA and RhlR in E. coli, QslA was 

not found to inhibit RhlR transcriptional activation from rhlI promoter (data not 

shown). Furthermore, 3-D structure modelling revealed different structural features 

for these three regulatory factors (Fig. 3.4). Moreover, loss of QscR or QteE 

resulted in advanced activation of QS gene expression (Chugani et al., 2001, 

Siehnel et al., 2010), which was not observed for QslA since expression of QS 

genes and production of QS dependent virulence factors in the QslA deficient 

mutant were initiated at the same time as the wild type (Fig. 3.6, 3.7). This was not 

due to growth-dependent expression of qslA, which was expressed constitutively 

throughout bacterial growth as revealed by RT-PCR analysis (Fig. 3.12C). In 

contrast, instead of controlling QS threshold by influencing the timing of QS 

activation, our data showed that QslA defines the QS threshold by governing the 

sensitivity of bacterial cells to QS signals. Null mutant of QslA in P. aeruginosa 

substantially reduced the amount of 3-oxo-C12-HSL signal molecules necessary for 

QS activation (Fig. 3.11).   

Why would QslA-deficient mutant of P. aeruginosa become more sensitive 

to QS signals? This was probably due to the role of QslA in raising the “threshold 

hurdle” for QS activation to a higher 3-oxo-C12-HSL concentration (Fig. 3.13). In 

the wild type, QslA inhibits and sequesters LasR/3-oxo-C12-HSL complex at 3-oxo-

C12-HSL concentration below threshold level. In the absence of QslA, the “hurdle” 

is removed and QS threshold is lowered because QS can be activated by 

uninhibited LasR/3-oxo-C12-HSL complex formed at low 3-oxo-C12-HSL 

concentration. At higher 3-oxo-C12-HSL concentration, the increased QS response 

in ∆qslA compared to wild type is also because of increased amount of LasR/3-oxo-

C12-HSL complex. Hence, QslA-deficient mutant was more sensitive to QS signals 

because in the absence of QslA inhibition, LasR/3-oxo-C12-HSL complex formed at 

lower 3-oxo-C12-HSL concentration could activate QS.  
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The increased 3-oxo-C12-HSL sensitivity, however, did not lead to 

advanced QS activation. This may not be surprising since expression of most QS-

regulated genes in P. aeruginosa is not advanced by addition of exogenous QS 

signals (Whiteley et al., 1999, Schuster et al., 2003). The non-quorum nature of 

these QS-regulated genes was suggested to be due to complex promoter 

architecture such that expression of QS-regulated genes requires other growth-

dependent factors  as well as removal of inhibitors in medium (Yarwood et al., 

2005, Schuster & Greenberg, 2006, Schuster & Greenberg, 2007). Furthermore, 

studies have found that the timing of QS activation is dependent on multiple factors 

such as MvaT, GacA, RsmA, QscR, and QteE (Reimmann et al., 1997, Chugani et 

al., 2001, Pessi et al., 2001, Diggle et al., 2002, Siehnel et al., 2010).  

Identification of QslA provides further insight into the sophisticated QS 

regulatory mechanisms in P. aeruginosa. The pathogen may recruit QslA to prevent 

premature QS activation at low bacterial population density by raising the QS 

threshold, and this anti-activation mechanism could serve an important role in 

ensuring that virulence factors are only produced at optimal bacterial quorum when 

they can overwhelm host defence responses. Moreover, the presence of QslA in P. 

aeruginosa and its functional analogue TraM in A. tumefaciens may suggest that 

modulation of QS by anti-activator(s) could be a fairly conserved mechanism in 

Gram-negative bacteria. 
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Fig. 3.14 Schematic model which shows QslA role in raising the QS threshold. 
QS-dependent gene expression is plotted against 3-oxo-C12-HSL concentration for 
wild type strain (solid line) and ΔqslA (dotted line). The 3-oxo-C12-HSL 
concentration at which QS threshold occurs in wild type and ΔqslA are indicated by 
lines with double arrows. In ΔqslA, QS threshold is at a lower 3-oxo-C12-HSL 
concentration because activity of 3-oxo-C12-HSL/LasR complex at such 3-oxo-
C12-HSL concentration is not inhibited in the absence of QslA. 
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Chapter 4 – Identification of a MvaT-regulated anti-activator QslH 

4.1 Introduction 

Anti-activators regulate QS by interacting with LuxR-type regulators. In A. 

tumefaciens, two types of QS anti-activators, TrlR and TraM, have been discovered 

(Piper & Farrand, 2000, Chai et al., 2001), and certain strains such as A6 and Ach5 

also possess a traM homologous gene encoding TraM2 (Wang et al., 2006). In the 

previous chapter, QslA of P. aeruginosa was discovered to fine-tune QS response 

and activation by counteracting the LasR-dependent activation of QS. But, QslA 

might not be the sole anti-activator of QS. Homology search of QslA in P. 

aeruginosa PAO1 genome did not reveal other QslA-like proteins and this suggests 

that the genes encoding QS anti-activators, if they are present, are not easily 

identified by sequence homology analysis.  

In Chapter 2, a large scale random mutagenesis was conducted to identify 

potential genes involved in QS regulation by anti-activation, which led to the 

identification of 20 mutants with changed QS gene expression patterns. In this 

chapter, characterisation of the mutant QRM168 and QRM206, which showed 

decreased expression of QS gene rhlR, led to the identification of a novel anti-

activator QslH. QslH acts by interacting with both LasR and PqsR. Overexpression 

of qslH resulted in inhibition of QS-dependent elastase, protease and pyocyanin 

production in qslH overexpression strain. Evidence is also provided that qslH 

expression was negatively regulated by MvaT, which is a global regulator 

implicated in regulation of QS, pyocyanin synthesis, biofilm formation, arginine 

metabolism and prophage activation (Diggle et al., 2002, Vallet et al., 2004, Li et al., 

2009). The results provided further evidence to support the hypothesis that anti-

activators are an integral part of QS systems. 
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4.2 Materials and Methods 

4.2.1 Bacterial strains, plasmids, media and growth conditions 

Bacterial strains and plasmids used in this chapter are listed in Table 4.1. Bacteria 

were routinely maintained at 37°C in LB medium as described in Section 3.2.1. PA 

medium (also known as King’s A medium (King et al., 1954)) is a phosphate-limiting 

medium used in PpqsA-lacZ activity assay when indicated (Dong et al., 2008). 

 

4.2.2 β-galactosidase activity assays 

β-galactosidase activities in P. aeruginosa were assayed following the method 

described previously in Section 3.2.2. PlasI-lacZ and PrhlI-lacZ activities in E. coli 

were measured when, respectively, grown with exogenous 3-oxo-C12-HSL (250 

nM) and C4-HSL (5 µM). 

 

4.2.3 RNA extraction and RT-PCR analysis 

RNA extraction and RT-PCR analysis were carried out as described in Section 

3.2.3. 

 

4.2.4 DNA manipulation and deletion mutagenesis 

The qslH in-frame deletion mutant in PAO1 was generated using pK18mobSac 

ligated to approximately 500 bp upstream and downstream flanking regions of qslH. 

The construct was introduced into PAO1 by conjugal mating using E. coli S17-1, 

and recombination of the plasmid with the genomic DNA resulted in the 55 – 447 bp 

deletion of qslH. The mutant was confirmed by PCR analysis. For complementation, 

the coding region of qslH was amplified from the start site to 93 bp downstream of 

the stop codon. The PCR product was cloned into expression vector pDSK519 and 

confirmed by DNA sequencing. 
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Table 4.1 Bacterial strains and plasmids used in Chapter 4. 

Strain or plasmid Relevant genotype or phenotype Source 

P. aeruginosa  

PAO1 Prototrophic laboratory strain 
 

Holloway et 
al. (1979) 

QR1 PAO1 containing pUCP-lasRHTH and PrhlR-lacZ Chapter 2 

QRM168 QR1 with transposon inserted 572 bp upstream of 
PA2228 coding region 

Chapter 2 

QRM206 QR1 with transposon inserted 729 bp downstream of 
PA2228 coding region 

Chapter 2 

QR1(PA2225) QR1 containing pDSK-PA2225 This study 

QR1(qslH) QR1 containing pDSK-qslH This study 

QR1(vqsM) QR1 containing pDSK-vqsM This study 

QR1(PA2228) QR1 containing pDSK-PA2228 This study 

QR1(PA2229) QR1 containing pDSK-PA2229 This study 

QR1(PA2230) QR1 containing pDSK-PA2230 This study 

QEGP PAO1 containing PPA2228-lacZ This study 

QEG15 QEGP transposon inserted at 139 bp of mvaT ORF This study 

QEG20 QEGP transposon inserted at 18 bp of mvaT ORF This study 

PP1 PAO1 pqsA::Tn containing ppqsA-lacZ Chapter 3 

ΔqslH qslH in-frame deletion mutant of PAO1 This study 

ΔqslH(qslH) ΔqslH containing pDSK-qslH This study 

ΔlasR lasR in-frame deletion mutant of PAO1 Chapter 3 

ΔrpoS PAO1 rpoS::Tn This study 

ΔmvaT mvaT in-frame deletion mutant of PAO1 This study 

ΔqslHΔmvaT qslH and mvaT in-frame deletion mutant of PAO1 This study 

wt(vqsM) PAO1 containing pDSK-vqsM This study 

ΔqslH(qslH) ΔqslH containing pDSK-qslH This study 

ΔqslH(qslH-FLAG) ΔqslH containing pDSK-qslH-FLAG This study 

wt(qslH) PAO1 containing pDSK-qslH This study 

wt(qslH-FLAG) PAO1 containing pDSK-qslH-FLAG This study 

ΔlasR(qslH-FLAG) lasR in-frame deletion mutant of PAO1 containing 
pDSK-qslH-FLAG 

This study 
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QHF1 PAO1 chromosomal-integrated qslA fused with FLAG 
and chromosomal-integrated qslH fused with FLAG 

This study 

HF1 PAO1 chromosomal-integrated qslH fused with FLAG This study 

MHF1 mvaT in-frame deletion mutant of HF1 This study 

E. coli 

DH5α F– Φ80lacZΔM15 endA1hsdR17 (rk
– mk

–) supE44 thi-1 
gyrA96 ∆(lacZYA-argF) 

Laboratory 
collection 

DL1 DH5α containing pUCP-lasR plasI-lacZ Chapter 3 

DR1 DH5α containing pUCP-rhlR prhlI-lacZ Chapter 3 

BL21 Star™ (DE3) F– ompT hsdSB (rB
- mB

-) gal dcm rne131 (DE3) Invitrogen 

S17-1 recA pro (RP4-2Tet::Mu Kan::Tn7) Simon et al., 
1983 

Plasmid 

pK18mobsacB 
 

Broad-host-range gene replacement vector, sacB, 
GmR 

Laboratory 
collection 

pK18-qslH pK18mobsacB containing qslH flanking region 
 

This study 

pK18-mvaT pK18mobsacB containing mvaT flanking region 
 

This study 

pME2-lacZ pME6010 carrying a full-length lacZ Laboratory 
collection 

plasI-lacZ pME2-lacZ carrying lasI promoter fused to lacZ Chapter 3 

ppqsA-lacZ pME2-lacZ carrying pqsA promoter fused to lacZ Chapter 3 

prhlI-lacZ pME2-lacZ carrying rhlI promoter fused to lacZ Chapter 3 

prhlR-lacZ pME2-lacZ carrying rhlR promoter fused to lacZ Chapter 2 

pPA2228-lacZ pME2-lacZ carrying PA2228 promoter fused to lacZ This study 

pUCP19 E. coli – P. aeruginosa shuttle vector with lac 
promoter (Plac), AmpR/CbR 

ATCC 87110 

pUCP-lasR pUCP19 containing lasR under the control of Plac Chapter 3 

pUCP-lasRHTH pUCP19 containing 505-717 bp lasR ORF under the 
control of Plac 

Chapter 2 

pUCP-rhlR pUCP19 containing rhlR under the control of Plac Chapter 3 

pDSK519 Broad-host-range cloning vector with lac promoter 
(Plac), KmR 

Laboratory 
collection 

pDSK-PA2225 pDSK519 containing PA2225 under the control of 
Plac 

This study 

pDSK-qslH pDSK519 containing qslH under the control of Plac This study 

pDSK-vqsM pDSK519 containing vqsM under the control of Plac This study 
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pDSK-PA2228 pDSK519 containing PA2228 under the control of 
Plac 

This study 

pDSK-PA2229 pDSK519 containing PA2229 under the control of 
Plac 

This study 

pDSK-PA2230 pDSK519 containing PA2230 under the control of 
Plac 

This study 

pDSK-qslH-FLAG pDSK519 containing qslH fused with FLAG peptide 
under the control of Plac 

This study 

pET14b-lasR pET14b containing lasR Chapter 3 

pGEX6P1 GST fusion protein expression vector, AmpR Laboratory 
collection 

pGEX6P1-qslH pGEX6P1 containing qslH This study 

pTRG Vector containing RNAPα under the control of the 
IPTG-inducibe, tandem promoter lpp/lac-UV5 

Stratagene 

pTRG-Gal11P pTRG containing gal11P Stratagene 

pTRG-qslH pTRG containing qslH This study 

pBT Vector containing λ-cl under the control of the IPTG-
inducible lac-UV5 

Stratagene 

pBT-LGF2  pBT containing lgf2 Stratagene 

pBT-pqsR pBT containing pqsR This study 

pBT-pqsR-LBD pBT containing 304-999 bp pqsR ORF This study 

pBT-pqsR-HTH pBT containing 1-276 bp pqsR ORF This study 
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4.2.5 Assessment of supernatant AHL and HAQ levels 

3-oxo-C12-HSL, C4-HSL and HAQ were measured using reporter strains DL1, DR1 

and PP1 as previously mentioned in Section 3.2.6.  

 

4.2.6 Analysis of virulence factor production 

Virulence factors levels in overnight cultures were determined according to the 

previously mentioned methods (Section 3.2.7).  

 

4.2.7 Co-immunoprecipitation and western blot analysis 

The DNA fragment encoding FLAG peptide and glycine spacer was fused in-frame 

to qslH open reading frame at the C-terminal by PCR, and the PCR product was 

ligated to pDSK519. The qslH-FLAG fusion plasmid was transformed into ∆qslH 

strain. Bacteria were grown to OD600 = 3.0, and co-immunoprecipitation and 

western blot analysis were carried out as stated in Section 3.2.8. Protein bands 

were characterised by liquid chromatography – mass spectrometry (LC-MS) 

analysis. 

Western blot analysis of QslA-FLAG and QslH-FLAG protein levels was carried out 

using overnight cultures. The same amount of cell pellets from each strain were 

resuspended in loading buffer and lysed by incubating at 99°C for 15 min. Cell 

lysates were obtained by spinning down the cell debris and analysed by 

immunoblotting with anti-FLAG antibody after electrophoresis by 15% SDS-PAGE 

and transfer to PVDF membrane. 

 

4.2.8 Expression and purification of LasR and QslH  

LasR protein was purified according to previously stated method (Section 3.2.9). 

The PCR product of qslH coding region was digested using BamHI and EcoRI and 

ligated into pGEX6P1 to form pGEX6P1-qslH. Strain BL21 star carrying pGEX6P1-
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qslH was grown in 2.5 litres of LB medium to OD600 = 0.5 before being induced with 

200 μM of isopropyl-β-d-thiogalactopyranoside overnight at 18°C. Cell pellet was 

resuspended in 25 mM Tris-HCl buffer (pH 7.8) containing 150 mM NaCl and lysed 

by sonication. GST-QslH fusion protein was purified using Glutathione Sepharose 

column chromatography. GST tag was cleaved from GST-QslH fusion protein using 

PreScissionTM Protease (GE). Protein purity was judged by SDS/PAGE to be >99% 

pure.  

 

4.2.9 EMSA 

EMSA was carried out as previously described (Section 3.2.10) using LasR and 

QslH protein. 

 

4.2.10 Bacterial two-hybrid assay 

Bacterial two-hybrid assay was carried out using plasmids and host reporter strain 

XL1-Blue MRF´ Kan from BacterioMatch II two-hybrid system vector kit 

(Stratagene). The coding region of qslH was cloned into pTRG vector and partial or 

whole coding region of pqsR was cloned into pBT vector. Protein-protein interaction 

would induce expression of HIS3 and aadA reporter genes that would, respectively, 

allow bacterial growth on selective medium plates containing 3-amino-1,2,4-triazole 

(3-AT) and streptomycin. Non-selective and selective medium plates were prepared 

according to the manufacturer’s protocol. 

 

4.2.11 In silico analysis of QslH 

Domain and motif scans, protein structure prediction, protein homology search and 

amino acid sequence identity of QslH with QslA and TraM, as well as amino acid 

sequence homology of DNA binding domain of LasR and PqsR were carried out as 

previously mentioned (Section 3.2.11). 
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4.2.12 Construction of reporter strain QEGP and transposon mutagenesis 

QEGP is PAO1 strain containing construct pPA2228-lacZ. The pPA2228-lacZ 

transcriptional fusion reporter was constructed by amplifying the promoter region of 

PPA2228 (-801 to +159 relative to translational start site) and ligating it to pME2-

lacZ vector. Transposon mutagenesis was carried out as previous mentioned 

(Section 2.2.3). 
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4.3 Results 

4.3.1 QslH inhibits rhlR expression 

 Two insertion mutants QRM168 and QRM206 described in Chapter 2 were 

found to have considerably less PrhlR-lacZ activity compared to their parental strain 

QR1 (Fig. 2.1). The transposon insertion sites in these two mutants were 

determined to be in the intergenic region between PA2228 and PA2229 (Fig. 4.1A). 

PA2228 and PA2229 encode hypothetical proteins and they are predicted to be part 

of the PA2228-vqsM-PA2226 operon and the PA2229-PA2230 operon, 

respectively. Because the transposons were inserted in the non-coding regions, it 

was hypothesized that changes in the expression level of the neighbouring genes 

were responsible for the changes in PrhlR-lacZ activities. RT-PCR results showed 

that the transcript levels of PA2225 to PA2230 were increased in QRM168 and 

QRM206 compared to QR1, but there was no change in transcript level of loading 

control 16S rDNA in the 3 strains (Fig. 4.1B). PA2225 to PA2230 were then 

individually overexpressed in QR1 and it was found that only overexpression of 

PA2226 reduced PrhlR-lacZ activities (Fig. 4.2). Thus, PA2226 is a putative 

regulator that influences AHL-dependent QS and PQS signalling. Given its role as a 

quorum sensing lasR-binding anti-activator as discussed below, PA2226 was 

named QslH.  

 



 

90 
 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 QslH alters rhlR gene expression in mutant QRM168 and QRM206.  
(A) Genetic organisation of qslH and adjacent genes PA2225 to PA2230. 
Transposon insertion sites of mutants QRM168 and QRM206 were indicated by 
triangles and their distance from the translation start site of PA2228 was noted. (B) 
RT-PCR analysis of PA2225 – PA2230 and control 16S in QR1 (1), QRM168 (2) 
and QRM206 (3). Band intensities listed under each band were measured by 
ImageJ. 
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Fig. 4.2 PrhlR-lacZ activities of QR1 overexpressing PA2225 – PA2230 separately. 
PA2226 was designated as qslH. PrhlR-lacZ activities were measured after growth 
of bacteria in LB until OD600 = 1.5. The data shown were means of 3 replicates and 
error bar indicates standard deviation. 
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 4.3.2 QslH blocks AHL-dependent QS and PQS signalling systems in P. 

aeruginosa 

The effect of QslH on AHL-dependent QS and PQS signalling systems was 

then studied by determining lasI, pqsA and rhlI expression using lacZ transcriptional 

fusion. The production of corresponding signalling molecules, 3-oxo-C12-HSL, C4-

HSL and HAQ, were also measured. 

It was found that overexpression of qslH in wild type blocked the expression 

of pqsA and rhlI throughout growth (Fig. 4.3B, C). Consistent with the gene 

expression data, negligible HAQ signal was detected and C4-HSL production was 

decreased by 35 – 80% when qslH was overexpressed (Fig. 4.3E, F). Inhibition of 

lasI expression and decreased 3-oxo-C12-HSL production in the qslH 

overexpression strain were also observed, but the effect was only evident at early 

growth phases (OD600=0.4, 1.0) (Fig. 4.3A, D). Thus, QslH substantially inhibits 

both AHL-dependent QS and PQS signalling systems.  
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Fig. 4.3 QslH overexpression inhibits AHL-dependent QS and PQS signalling.  
The effects of QslH on expression of lasI (A), pqsA (B) and rhlI (C) were determined 
by measuring β-galactosida se activities in wild type strain PAO1 containing pDSK 
vector control (white bar) and wild type strain overexpressing qslH (grey bar). PlasI-
lacZ, PpqsA-lacZ and PrhlI-lacZ gene fusion construc ts were separately introduced 
into the strains tested. 3-oxo-C12-HSL (D),  HAQ (E) and C4-HSL (F) levels in the 
supernatant of wt(pDSK) (white bar) and wt(qslH) (grey bar) were determined by β-
galactosidase activity assays using reporter strains DL1, PP1 and DR1, 
respectively. The data shown were means of 3 replicates and error bar indicates 
standard deviation. 
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4.3.3 QslH inhibits virulence factor production in P. aeruginosa 

The production of elastase, protease and pyocyanin virulence factors are 

induced by QS (Latifi et al., 1995, Pesci et al., 1999). Hence, it was predicted that 

inhibition of AHL-dependent QS and PQS signalling systems by overexpression of 

qslH would cause a decline in virulence factor production. In agreement with this, 

elastase, protease and pyocyanin measured in qslH overexpression strain were 

greatly reduced compared to the vector control (Fig. 4.4). These results confirmed 

the QS inhibitory effects of QslH. 
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Fig. 4.4 QslH overexpression reduces virulence factor production in P. aeruginosa.  
Production of elastase (A), protease (B) and pyocyanin (C) were determined in 
wt(pDSK) and wt(qslH). The data shown were means of 3 replicates and error bar, 
which indicates standard deviation, is not seen when standard deviation is small. 
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4.3.4 In silico analysis of QslH 

 QslH is a unique 166-amino acid protein that is found only in P. aeruginosa 

strains (Table 4.2). In order to determine QslH functionality, domain analysis and 

motif scans were carried out but they did not reveal useful clues. QslH protein is 

mainly made up of hydrophobic residues (47%), but hydrophobicity plot showed 

that they were not localised at specific regions of the protein (Fig. 4.5A). Prediction 

of secondary structure of QslH suggests that it consists of 3 α-helices (Fig. 4.5B) 

approximately at residues 47–61, 69–93 and 96–121. Although the number of 

helices predicted in QslH was different from that in TraM and QslA and the protein 

identities between these proteins were not high (Fig. 4.6D), QslH resembles TraM 

and QslA protein structures as it is mainly made up of α-helices (Fig. 4.6A-C). QslH 

is predicted to be 18 kDa and is slightly larger than TraM and QslA which are 

around 11 kDa. To determine whether QslH inhibits QS by anti-activation, its 

putative protein-protein interaction targets were subsequently examined. 

 

 

Table 4.2 QslH homologues were found only in strains of P. aeruginosa.   
Proteins which showed amino acid sequence homology to QslH were identified by 
BLASTP program provided by the National Center for Biotechnology Information 
(NCBI). 
 

Species Gene ID E 
value 

Identities 
(%) 

Positives 
(%) 

P. aeruginosa PAO1 PA2226 2e-91 100 100 

P. aeruginosa C3719 PACG_04962 9e-30 48 66 

P. aeruginosa 2192 PA2G_05512 9e-30 48 66 

P. aeruginosa PACS2 PaerPA_01000893 3e-29 47 66 

P. aeruginosa UCBPP-PA14 PA14_58930 2e-24 46 65 

P. aeruginosa PA7 PSPA7_4439 6e-24 46 65 

P. aeruginosa PAb1 PaerPAb_24036 9e-21 45 65 
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Fig. 4.5 In silico analysis of QslH.  
(A) Hydrophobicity plot analysis of QslH by Kyte-Doolittle scale, window size=9 
(CLC Workbench). (B) Secondary structure of QslH was analysed and highlighted 
areas denotes alpha helix regions. 
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Fig. 4.6 Comparison of QslH protein structures and amino acid sequence with TraM 
and QslA.  
Ribbon structures predicted for QslH (A), QslA (B) by HMM-based methods 
(http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html) as well as the crystal 
structure of TraM (C) (Vannini et al., 2004). (D) The amino acid sequence of QslH, 
QslA and TraM were aligned by ClustalW and the protein identities of pairwise 
comparison of these proteins were stated. 

Protein QslH QslA TraM 
QslH  10% 11% 
QslA 10%  11% 
TraM 11% 11%  
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4.3.5 QslH interacts with LasR and PqsR in vivo 

To identify the potential protein-protein interaction targets of QslH, QslH was 

overexpressed as a FLAG tag recombinant protein, which did not affect QslH 

activity when expressed in mutant ΔqslH (Fig. 4.7A). QslH-FLAG fusion protein was 

purified under non-denaturing conditions and putative interacting proteins were co-

immunoprecipitated by using anti-FLAG affinity gel. Eluted protein complexes were 

separated by SDS-PAGE and the protein bands were cut and identified by liquid 

chromatography-mass spectrometry analysis (Table 4.3). In the negative control 

where untagged qslH was overexpressed in wild type, only GltA, which is a citrate 

synthase that catalyses oxaloacetic acid and acetyl-CoA to citrate in the TCA cycle, 

glyoxylate cycle and in anaerobic respiration (Donald et al., 1989), was eluted. 

Interestingly, LasR and PqsR eluted together with QslH-FLAG fusion protein (Fig. 

4.7B, Table 4.3), and because these two proteins are directly involved in QS and 

PQS signalling, QslH protein-protein interaction with LasR and PqsR were then 

further characterised. Most of the other proteins that co-immunoprecipitated with 

QslH-FLAG fusion protein are housekeeping proteins which are expressed in 

relatively larger amounts, hence it is likely they were unspecifically bound to the 

anti-FLAG affinity gel or to QslH-FLAG fusion protein. These housekeeping proteins 

include ribosomal proteins 30S S3 and 30S S2, and chaperone proteins DnaJ, 

GroEL and DnaK. Proteins that are unspecifically bound are also present in smaller 

quantities which are insufficient to provide peptide coverage of more than 50% 

(Table 4.3) 
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Fig. 4.7 Co-immunoprecipitation analysis of QslH-FLAG fusion protein. 
(A) The PpqsA-lacZ activities, measured at OD600 = 1.0, when wild-type (wt), ΔqslH, 
ΔqslH(qslH) and ΔqslH(qslH -FLAG) were grown in LB. (B) Protein purification from 
the cell lysates of ΔqslH(qslH-FLAG) (lane 2) and ΔqslH(qslH) (lane 3) using anti-
FLAG M2 affinity gel  and analysed by 12% SDS-PAGE. Lane 1 are molecular 
weight markers (NEB). The distinct protein bands in lane 2 includes QslH-FLAG 
and unknown protein bands which are arbitrarily named QS1 – QS9; the protein 
band in lane 3 is GltA. 
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Table 4.3 Proteins that co-immunoprecipitated with QslH-FLAG fusion protein.  
The protein bands were characterised by LC-MS analysis. 
 

 

Band Peptide 
coverage (%) Protein kDa Band Peptide 

coverage (%) Protein kDa 

QS1 57 LasR 27 QS5 72 DnaJ 40 
QS1 43 30S S3 26 QS5 58 NirJ 44 
QS1 38 OprG 25 QS5 49 FtsA 45 
QS1 37 50S L3 21 QS5 46 DadA 47 
QS1 30 GrpE 21 QS5 37 SpeC 44 
QS2 50 30S S2 27 QS5 33 PA2127 48 
QS2 42 PA3262 22 QS6 69 AtpD 50 
QS2 38 MutM 30 QS6 39 FliC 49 
QS2 30 PA5179 33 QS8 59 GroEL 55 
QS3 63 PqsR 37 QS9 53 DnaK 68 
QS3 44 PA1127 36 QS9 38 PA4595 61 
QS3 43 MreB 37 QS9 33 SdhA 64 
QS3 30 LtaA 38     
QS4 39 PA1572 41     
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4.3.6 QslH inhibits LasR by protein-protein interaction 

To find out whether QslH inhibits LasR directly, LasR activity in the 

presence of QslH was studied in heterologous host Escherichia coli DH5α. lasR, as 

well as lasR-HTH which encodes the DNA-binding domain of LasR, was fused 

separately with the constitutive promoter Plac and expressed in E. coli that contains 

either the qslH expression construct (pDSK-qslH) or the empty vector pDSK. 

Activities of LasR and LasR-HTH were gauged by activation of PlasI-lacZ reporter 

activity. It was found that QslH inhibited LasR activity in E. coli (Fig. 4.8A), 

suggesting that QslH may interact with LasR directly. QslH also inhibited LasR-HTH 

activity in E. coli (Fig. 4.8A), and this result showed that the DNA-binding domain of 

LasR (LasR-HTH) was sufficient for protein-protein interaction and that 3-oxo-C12-

HSL was not essential for inhibition of LasR activity by QslH.  

To confirm the interaction between QslH and LasR, the presence of LasR in 

the co-immunoprecipitates of QslH-FLAG protein in wild type was tested using anti-

LasR antibody. As expected, LasR co-immunoprecipitated with QslH-FLAG but not 

with untagged QslH although LasR was present in the cell lysates (Fig. 4.8B). 

These results demonstrated that QslH interacts with LasR in vivo. 

To evaluate the possibility that QslH and LasR interaction inhibits LasR 

activity by disrupting its DNA-binding ability, an electrophoretic mobility shift assay 

(EMSA) using purified LasR and QslH protein was carried out. The results showed 

that the biotinylated DNA probe containing lasI-rsaL promoter was bound by LasR 

(Fig. 4.8C lane 3) and in the presence of QslH, DNA-binding of LasR was disrupted 

in a dose-dependent manner, with complete disruption of DNA-binding when 200-

fold molar excess of QslH over LasR was incubated (Fig. 4.8C lane 4-9). The 4-fold 

lesser QslH protein compared to QslA protein needed to completely disrupt LasR 

binding suggests that the binding affinity between QslH and LasR is stronger that 

that between QslA and LasR, however this cannot be verified without further 
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experiments such as isothermal calorimetry. QslH itself did not bind to the DNA 

probe (Fig. 4.8C lane 1). As a control, heat-denatured QslH protein showed 

reduced disruption of LasR DNA-binding (Fig. 4.8C lane 10). 
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Fig. 4.8 QslH interacts with LasR and inhibits LasR activity by disrupting its DNA-
binding ability.  
(A) Transcriptional activity of LasR and LasR-HTH in E. coli DH5α were determined 
by PlasI-lacZ activities. The lacZ activities were determined in the absence (white 
bar) or presence (grey bar) of overexpressed qslH. The data shown were means of 
3 replicates and error bar indicates standard deviation. (B) Proteins were 
immunoprecipitated (IP) using anti-FLAG M2 affinity gel in 1: wt(qslH), 2: wt(qslH-
FLAG) and 3: ΔlasR(qslH-FLAG). Immunoblots (IB) of immunoprecipitates were 
carried out using anti-LasR and anti-FLAG antibodies. (C) EMSA was carried out 
using biotinylated DNA probe containing lasI-rsaL promoter region and 1.8 fmol of 
DNA probe was used in each reaction. DNA probe was incubated for 20 min with 
only QslH (72 μM) in lane 1, with only LasR (90 nM) in lane 3, and with LasR (90 
nM) pre-incubated for 20 min with increasing concentrations of QslH (2.25, 4.5, 9, 
18, 36, 72 μM) in lanes 4 – 9. QslH (72 μM) in lane 10 was heat-denatured at 99°C 
for 15 min before pre-incubation with LasR. Lane 2 contains DNA probe only 
without proteins. 
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4.3.7 QslH inhibits PqsR independently of protein-protein interaction with 

LasR 

 Besides LasR, PqsR was also identified as a putative interaction target of 

QslH (Fig. 4.7B). To verify QslH interaction with PqsR, the PqsR-dependent pqsA 

expression was studied when bacteria were grown in PA medium (Dong et al., 

2008). Under the low phosphate conditions in PA medium, pqsA expression is 

activated by PqsR but not LasR (Jensen et al., 2006). It was found that pqsA 

expression was reduced by about 5 folds when qslH was overexpressed in ΔlasR 

(Fig. 4.9A), which strongly suggests that QslH is able to inhibit PqsR activity. This 

also showed that the inhibitory effect of QslH on PqsR was independent of its 

inhibition of LasR.  

Due to the technical difficulties in purifying PqsR protein and the lack of anti-

PqsR antibody, protein-protein interaction between QslH and PqsR could not be 

verified by co-immunoprecipitation or EMSA. Instead, bacterial two-hybrid assay 

was carried out to confirm the interaction between QslH and PqsR in vitro. The 

results from bacterial two-hybrid assay showed that QslH interacts with the DNA-

binding domain of PqsR (PqsR-HTH) only (Fig. 4.9B, sector 7) but not with PqsR 

ligand-binding domain or full length protein (Fig. 4.9B, sector 6, 8), which was also 

observed when PQS was added to the agar plates (Fig. 4.10). At this stage, it could 

not be explained why the full length PqsR did not interact with QslH, one likely 

explanation is that fusion of bacteriophage λ repressor to PqsR in the pBT vector 

used for bacterial two-hybrid assay might block proper protein folding to a 

conformation required for interaction. As a negative control, QslH or PqsR, 

expressed together with empty vector pBT or PTRG, did not result in bacterial 

growth (Fig. 4.9B, sector 2 – 5). All the bacterial strains grew on the non-selective 

medium plate (Fig. 4.9A), excluding the possibility that bacterial growth was 
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affected.  Thus, the results indicate that QslH interacts with PqsR through the DNA-

binding domain of the latter. 
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Fig. 4.9 QslH inhibit s PqsR activity by protein-protein interaction. 
(A) Bacteria were grown in PA medium until OD600=1.0 and pqsA expression was 
determined by β-galactosidase activity assay. The data shown were means of 3 
replicates and error bar, which indicates standard deviation, is not seen when 
standard deviation is small. (B-D) Bacterial two-hybrid was carried out by plating co-
transformants of pBT-LGF2 and pTRG-Gal11P as positive control (1); co-
transformants of pBT empty vector and pTRG-qslH (2), pTRG empty vector and 
pBT-pqsR-LBD (3), pTRG empty vector and pBT-pqsR-HTH (4), pTRG empty 
vector and pBT-pqsR (5) as negative controls; and co-transformants of pTRG-qslH 
and pBT-pqsR-LBD (6), pTRG-qslH and pBT-pqsR-HTH (7), pTRG-qslH and pBT-
pqsR (8) to determine QslH protein-protein interaction with partial and whole PqsR. 
The agar plates used were non-selective medium plates (B) or selective medium 
plates containing 3-AT (C) or containing 3-AT together with streptomycin (D). 
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Fig. 4.10 Interaction of QslH and PqsR in the presence of PQS. 
Bacterial two-hybrid assay was carried out according to Fig. 4.9B-D. The agar 
plates used were non-selective medium plates (A) or selective medium plates 
containing 3-AT (B) and both plates were supplemented with PQS at a final 
concentration of 1 μM. 

A 

 

 

B 

 

 

2

1

3

4

67

8

2

1

3

4

5

67

85



 

109 
 

4.3.8 Homology of LasR and PqsR 

It is interesting to note that QslH interacts with DNA-binding domain of LasR 

and PqsR although the DNA-binding domain of these two regulators do not share 

substantial amino acid sequence homology (9% protein identity, 37% protein 

similarity) (Fig. 4.11A). LasR and PqsR are respectively part of the LuxR and LysR 

families of transcriptional regulators, which are functionally activated when bound 

by their cognate ligands (3-oxo-C12-HSL and HHQ/PQS). While the amino acids 

critical for QslH interaction with LasR and PqsR remain to be investigated, based 

on the distinct features of the two transcriptional regulators, it is likely that the 

epitopes for QslH interaction with LasR and PqsR maybe different. RhlR is highly 

homologous to LasR (47% protein identity, 65% protein similarity) (Fig. 4.11B), 

however its activity was not substantially inhibited by QslH when these two proteins 

were overexpressed in E. coli (Fig. 4.12).  
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Fig. 4.11 Comparison of amino sequence of LasR, PqsR and RhlR. 
Amino acid sequence alignment of DNA-binding domain (HTH) of LasR with that of 
PqsR (A) and RhlR (B). The identical amino acids are highlighted black and the 
similar amino acids are highlighted grey. Dashes (-) indicate gaps. 
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Fig. 4.12 QslH did not inhibit RhlR activity in E. coli.  
Transcriptional activity of RhlR in E. coli was determined by PrhlI-lacZ activities. 
The lacZ activities were determined in the absence (-) or presence (+) of 
overexpressed qslH. These values were normalised by deduction of background 
readings of PrhlI-lacZ activity without RhlR. The data shown were means of 3 
replicates and error bar, which indicates standard deviation, is not seen when 
standard deviation is small. 
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4.3.9 Deletion of qslH in wild type strain does not affect AHL-dependent QS 

and PQS signalling systems  

Overexpression of qslH inhibited AHL-dependent QS and PQS signalling 

systems (Fig. 4.3) as well as QS-dependent virulence factor production (Fig. 4.4). 

Subsequently, the role of QslH in wild type strain was studied by generating an in-

frame deletion of qslH in PAO1 strain. PlasI-lacZ, PpqsA-lacZ and PrhlI-lacZ 

constructs were introduced into qslH deletion mutant (ΔqslH) and wild type to study 

the expression of lasI, pqsA and rhlI and it was found that the expression of these 

genes were not significantly higher in ΔqslH compared to wild type (Fig. 4.13A-C). 

Furthermore, similar levels of virulence factors were produced in ΔqslH and wild 

type (Fig. 4.13D-F). Hence, QslH did not affect AHL-dependent QS and PQS 

signalling in wild type.  
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Fig. 4.13 Deletion of qslH in wild type strain PAO1 has lit tle effects on AHL-
dependent QS and PQS signalling as well as virulence factor production. 
The effects of qslH null mutation on expression of lasI (A) pqsA (B) and rhlI (C) 
were determined by measuring β-galactosidase activities in wild type (white bar) 
and ΔqslH (grey bar). PlasI-lacZ, PpqsA-lacZ and PrhlI-lacZ gene fusion constructs 
were, respectively, introduced into the strains tested. Production of elastase (D), 
protease (E) and pyocyanin (F) were determined in PAO1 and mutant ΔqslH. The 
data shown were means of 3 replicates and error bar, which indicates standard 
deviation, is not seen when standard deviation is small. 
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4.3.10 Identification of transposon mutants with increased qslH expression 

  QslH only inhibited AHL-dependent QS and PQS signalling when 

overexpressed but not at wild-type levels. It was speculated that this was due to the 

low expression level of qslH in the wild type (this was subsequently confirmed by 

western blot analysis in Fig. 4.16C). Therefore, a transposon mutagenesis 

screening was carried out to identify putative regulators which control qslH 

expression. PA2228, vqsM and qslH were predicted to belong to an operon 

(Pseudomonas genome database) (Fig. 4.14A) and detection of intergenic 

transcripts by RT-PCR analysis confirmed this (Fig. 4.14B). PA2228 encodes for a 

hypothetical protein while vqsM is a known QS regulator. The promoter of PA2228 

was fused with lacZ and the construct was transformed into wild type to generate 

the parental strain QEGP used for transposon mutagenesis. Around 20,000 

insertion mutants were screened and 11 mutants with increased PPA2228-lacZ 

activities were selected (Table 4.4). Two of these mutants selected (QEG15 and 

QEG20) had about 1.5 to 2 times higher PPA2228-lacZ activities compared to the 

parental strain QEGP (Fig. 4.15) and it was found that the transposons were 

inserted, respectively, at 139bp and 18bp in mvaT, suggesting that disruption of 

mvaT might lead to increased qslH expression.  

MvaT belongs to the H-NS family of transcriptional repressors and it binds to 

AT-rich DNA regions, inhibiting transcriptional initiation from these sites (Castang et 

al., 2008). The role of MvaT in QS has been illustrated by its inhibition of QS signals 

and pyocyanin production and upregulation of elastase and protease production 

(Diggle et al., 2002). Hence, MvaT effect on QS might possibly be linked to QslH 

and the association between MvaT and QslH was further characterised. 
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Fig. 4.14 PA2228, vqsM and qslH are part of an operon.  
(A) Genome organisation of the PA2228-vqsM-qslH operon. Primers were designed 
to amplify RNA of genetic region 1 and 2. Numbers above single-headed arrows 
indicate number of base pairs in the open reading frame while numbers aboe 
double-headed arrows indicate number of base pairs between genes or of DNA 
fragment. (B) RT-PCR analysis of genetic region 1 and 2 with (+) and without (-) 
reverse transcription.  
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Table 4.4 Transposon mutants of QEGP with higher PPA2228-lacZ activities than 
parental strain. 
 

Strain Gene Description 

QEG13 PA3054 PA3054: predicted carboxypeptidase  

QEG15 mvaT (at 139 bp) MvaT: transcriptional regulator 

QEG17 PA2228 (at 593 bp) PA2228: hypothetical protein 

QEG18 166 bp upstream of PA5370, 

120 bp upstream of PA5371  

PA5370: probable MFS transporter 

PA5371: probable acyl-CoA hydrolase 

QEG20 mvaT (at 18 bp) MvaT: transcriptional regulator 

QEG30 PA2228 (at 1082 bp) PA2228: hypothetical protein 

QEG34 PA1511 or PA0262 PA1511/ PA0262: probable Vgr protein in type VI 

secretion system   

QEG35 807 bp upstream of PA2228  Not on pPA2228-lacZ vector 

QEG38 PA1940 PA1940: probable catalase 

QEG47 PA2228 (at 696 bp) PA2228: hypothetical protein 

QEG52 PA2228 (at 171 bp) PA2228: hypothetical protein 

 

 

 

 

 

 

 

 

 

 
Fig. 4.15 Transposon mutants that were found to have higher PPA2228-lacZ 
activities than the parental strain QEGP. 
PPA2228-lacZ activities were measured after growth of bacteria in LB to OD600 = 
1.5. Dotted line indictates level of PPA2228-lacZ activity in parental strain QEGP. 
The data shown were means of 3 replicates and error bar indicates standard 
deviation. 
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4.3.11 MvaT suppresses qslH expression  

To verify that MvaT is involved in modulation of qslH expression, mvaT was 

deleted in wild type strain PAO1 to generate ΔmvaT. RT-PCR analysis of qslH (Fig. 

4.16A) and PPA2228-lacZ activities (Fig. 4.16B) showed that qslH expression was 

increased by 2–3 folds in ΔmvaT compared to wild type.  

The effect of null mutation of anti-activator QslA in wild type strain PAO1 on 

AHL-dependent QS and PQS signalling was described in Chapter 3, but mutation of 

QslH did not show similar phenotype under the same experimental conditions (Fig. 

4.13). To determine that this was due to lower QslH protein level compared to QslA 

in wild type and also to confirm that there were more QslH protein present in 

ΔmvaT compared to wild type, strains QHF1, HF1 and MHF1 were generated by 

genetic recombination (Section 3.2.5).  QHF1 contains chromosomal-integrated 

qslH fused with FLAG and qslA fused with FLAG while HF1 and MHF1 are, 

respectively, wild type and ΔmvaT strains containing chromosomal-integrated qslH 

fused with FLAG. Fusion of FLAG peptide to QslH and QslA protein did not affect 

QslH and QslA activities (Fig. 3.3A, 4.7A). Western blot analysis was carried our 

using anti-FLAG antibody to detect QslH-FLAG and QslA-FLAG fusion proteins. 

The results showed that QslH was only detected in ΔmvaT but not in the wild type 

(Fig. 4.16C). In contrast, QslA, the anti-activators characterized in Chapter 3, was 

present at a substantially higher level in wild type compared to QslH (Fig. 4.16C). 

This explains why deletion of qslH, unlike qslA, did not affect QS and PQS 

signalling systems in the wild type under the experimental conditions used in this 

study. Consistent with the results from Fig. 4.16, microarray analysis reported 

previously also showed that qslH was upregulated by 3.15 folds in the mvaT mutant 

compared to wild type (Vallet et al., 2004).  
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Fig. 4.16 MvaT represses qslH expression.  
(A) RT-PCR analysis of qslH and 16S transcriptional expression and (B) PPA2228-
lacZ activities were determined at OD600 = 1.5. The data shown were means of 3 
replicates and error bar indicates standard deviation. (C) Western blot analysis of 
QslH and QslA in strains wild type strain with chromosomal-integrated qslA and 
qslH fused with FLAG, QHF1 (1); wild type strain with chromosomal-integrated qslH 
fused with FLAG, HF1 (2); and ΔmvaT with chromosomal-integrated qslH fused 
with FLAG, MHF1 (3). 
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4.3.12 QslH inhibits QS-dependent production of virulence factors in ΔmvaT 

To determine whether increase in qslH expression in ΔmvaT reduced AHL-

dependent QS and PQS signalling, the production of virulence factor between 

ΔmvaT and ΔmvaTΔqslH was compared. The results showed that elastase and 

protease production in ΔmvaT compared to wild type were reduced, respectively, 

by about 30% and 10%, consistent with previous reports (Diggle et al., 2002). 

Deletion of qslH in ΔmvaT restored elastase and protease production to wild type 

levels (Fig. 4.17A, B). These results suggest that QslH plays a role in ΔmvaT by 

suppressing QS-dependent elastase and protease production. In contrast to 

elastase and protease production in ΔmvaT, pyocyanin in ΔmvaT was increased by 

about 50 – 100% compared to wild type (Fig. 4.17C) as previously reported (Diggle 

et al., 2002, Li et al., 2009). This was possibly attributed to MvaT regulation of 

expression of other genes, besides QS, that are involved in pyocyanin production 

(Li et al., 2009) since MvaT positively regulates QS. Pyocyanin produced in 

ΔmvaTΔqslH was increased by about 30% compared to ΔmvaT when they were 

grown in LB (Fig. 4.17C), which showed that QslH inhibited QS-dependent 

regulation of pyocyanin in ΔmvaT. Therefore QslH, when expressed at enhanced 

levels in ΔmvaT, is responsible for reduced AHL-dependent QS and PQS 

signalling. 
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Fig. 4.17 QslH inhibits virulence factor production in ΔmvaT.  
Production of elastase (A), protease (B) and pyocyanin (C) in wild type (      ),   
ΔqslH(      ),  ΔmvaT (     ) and ΔqslHΔmvaT (      ) were determined at the indicated 
cell density (OD600). The data shown were means of 3 replicates and error bar, 
which indicates standard deviation, is not seen when standard deviation is small. 
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4.4 Discussion 

 QslH, a QS anti-activator belonging to the MvaT regulatory network, was 

identified in this study. Overexpression of qslH inhibited AHL-dependent QS and 

PQS signalling due to its interaction with LasR (Fig. 4.8) and PqsR (Fig. 4.9). QslH 

overexpression disrupted Las QS signalling at early growth phase (Fig. 4.3A, D) 

and inhibited PQS and Rhl QS signalling throughout bacterial growth (Fig. 4.3B, C, 

E, F). The effect of QslH on AHL-dependent QS and PQS signalling systems led to 

substantially attenuated production of virulence factors (Fig. 4.4). QslH interaction 

with LasR was supported by co-immunoprecipitation and EMSA analysis (Fig. 4.8), 

while interaction with PqsR was shown by co-immunoprecipitation and bacterial 

two-hybrid studies (Fig. 4.9).  

QslA was previously reported to inhibit AHL-dependent QS and PQS 

signalling by anti-activation (Chapter 3). However, QslA and QslH do not show 

sequence homology (Fig. 4.6) although both proteins interact with LasR. TraM in A. 

tumefaciens is also not homologous to the anti-activators in P. aeruginosa (Fig. 

4.6). This suggests that functionally similar anti-activators do not share sequence 

homology, instead the secondary structures they share may be crucial for their 

interaction with LuxR-type regulators. In addition, QslH also interacts with PqsR at 

its DNA-binding domain and because the DNA-binding domain of PqsR and LasR 

do not show homology, it was hypothesized that QslH interacts with these two 

proteins through different epitopes. TraM and predicted structure of QslA have 2 α-

helices while QslH has 3, and the presence of an additional α-helix might have 

introduced a different interaction interface for QslH. However, QslH interaction with 

LasR and PqsR likely did not take place at the same time, since inhibition of LasR 

by qslH overexpression was alleviated at later growth phase when PqsR was 

accumulating. 
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Overexpression of qslH substantially inhibited AHL-dependent and PQS 

signalling, but deletion of qslH in wild type did not lead to obvious phenotype 

changes (Fig. 4.13). This was subsequently found to be partially because of the 

repression of qslH expression by MvaT (Fig. 4.16). MvaT in PAO1 is homologous to 

P16 subunit of P. mevalonii heteromeric transcriptional regulator MvaT, which 

regulates mevalonate catabolism (Rosenthal & Rodwell, 1998). MvaT is functionally 

similar to H-NS in E. coli (Tendeng et al., 2003) in its ability to bind to AT-rich 

regions to block transcription initiation from these sites. Instead of recognising a 

specific consensus sequence on its DNA-binding sites, MvaT interacts specifically 

with AT-rich regions as shown by chromatin immunoprecipitation (ChIP)-on-chip 

studies (Castang et al., 2008). qslH is located in a region (PA2221–PA2228) of 

significantly lower GC content (49.2%) compared to the rest of P. aeruginosa PAO1 

genome (66.6%) (Stover et al., 2000), and qslH neighbouring gene PA2220 was 

also found to be enriched in MvaT ChIP-on-chip and ChIP qPCR results (Castang 

et al., 2008). As qslH is part of an AT-rich region, it is likely that qslH expression is 

directly repressed by MvaT.  

QslH is not the only MvaT-regulated protein that affects QS. MvaT is a 

global repressor and it influences QS both positively and negatively by controlling 

the expression of other QS-modulatory genes such as ptxS, rsmZ and mexEF-oprN 

operon (Westfall et al., 2004, Westfall et al., 2006). MvaT induces the expression of 

ptxS (Westfall et al., 2004), which interferes with activation of QS by PtxR (Colmer 

& Hamood, 1998), hence inhibiting QS in the process. QS is also inhibited by MvaT 

through small RNA rsmZ as rsmZ expression is repressed by MvaT (Brencic et al., 

2009).  RsmZ inhibits negative regulation of QS by RsmA (Pessi et al., 2001, 

Heurlier et al., 2004). However, MvaT also positively modulates QS by repressing 

the expression of mexEF-oprN operon (Westfall et al., 2006) which inhibits the 

synthesis of C4-HSL signals (Kohler et al., 2001). MvaT is therefore a pleiotrophic 
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regulator that exhibits a multi-layered complex regulation of QS-dependent 

virulence factor production, and QslH is one of the effectors in the MvaT-dependent 

regulatory networks that plays a role at the downstream of MvaT in control of QS-

dependent pathogenesis. 
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Chapter 5 – General Discussion and Future Directions 

Two novel QS anti-activators, QslA and QslH, were identified in this study.  

Both QslA and QslH interact with LasR and in addition, QslH also interacts with 

PqsR. Identification of these two novel anti-activators has provided further insight 

on the sophisticated QS regulatory mechanisms in P. aeruginosa. It is surprising 

that QslH interacts with both LasR and PqsR since they do not share substantial 

protein sequence similarity. Further biochemical analysis of the amino acid residues 

of LasR and PqsR that are crucial for interaction with QslH would improve 

understanding of these interactions and provide clues as to whether QslH interact 

with these two proteins at similar domain or amino acid motif. These results can 

also be compared with the LasR residues that are important for QslA interaction. It 

would be interesting to find out whether the two different anti-activators QslA and 

QslH interact with LasR at the same residues and whether these residues 

determine the binding affinity of the protein-protein interaction.  

Currently, the crystal structures of LasR and PqsR have not been 

determined and only the structure of the ligand-binding domain of LasR has been 

solved (Bottomley et al., 2007, Zou & Nair, 2009). When the protein structures of 

regulators LasR and PqsR as well as anti-activators QslA and QslH are available, 

the interaction interfaces of these proteins can be elucidated. These “hot spots” for 

interaction on LasR and PqsR might be potential targets for inhibitors, provided that 

the interaction interface is reasonably small and specific. QS inhibitors that have 

been reported are mostly targeted at the ligand-binding domain of LasR (Muh et al., 

2006a, Muh et al., 2006b, Geske et al., 2007, Zou & Nair, 2009), while inhibitors of 

PqsR have not been reported. The information of QS regulator structures, together 

with the identification of crucial residues on QS regulators that are found at the 

interaction interfaces with anti-activators, may mark potential target sites for 
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inhibition of QS regulators. These sites can be targeted for docking-based 

screening using small molecule or peptide QS inhibitors (Soulere et al., 2010). The 

compounds or peptides with strong binding affinity that mimic structure or sequence 

of QS anti-activators at the interaction interfaces might be developed to act as QS 

inhibitors. 

Besides developing QS inhibitors based on the biochemical information of 

anti-activation, the in vivo effect of anti-activation by QslA and QslH should also be 

investigated. It is not known whether the heterologous protein complex formed upon 

anti-activation gets localised to a non-functional region such as in the membrane or 

whether the regulators are degraded upon interaction with QslA or QslH. If the 

interaction between these anti-activators and their regulators were reversible, it 

would also be interesting to find out whether the protein-protein interaction leads to 

release of the activating ligands from their regulators, which would imply that the 

turnover of ligand binding is influenced by anti-activation. 

Unlike QslA, QslH did not affect QS in wild type strain under the tested 

experimental conditions. This was found to be due to repression of qslH expression 

by MvaT in wild type so QslH was not present in sufficient levels in the wild type to 

inhibit QS and PQS signalling (Chapter 4.3.10). Hence, not all the anti-activators 

that are encoded in the genome are utilised to control QS under standard laboratory 

conditions and some of these anti-activators may be expressed only under certain 

environmental conditions to fine-tune QS signalling for adaptation. Inhibition of QS 

by QslH may therefore only be initiated under MvaT-regulated conditions.  

On the other hand, RT-PCR analysis indicates that transcriptional 

expression of qslA appears to be constitutive (Section 3.3.10) and a genetic screen 

for transposon mutants with changes in expression of qslA also did not identify any 

potential regulators of qslA (results not shown). Nonethess, there is a possibility 

that QslA inhibition of LasR is modulated to allow control of the QS threshold. 
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It is possible that anti-activation of QslA may be regulated non-

transcriptionally by other means. Type III secretion system regulator ExsA in P. 

aeruginosa is controlled by anti-activator and anti-anti-activators proteins (McCaw 

et al., 2002, Dasgupta et al., 2004), similarly, proteins that can interact strongly with 

QslA and disrupt its interaction with LasR would affect QS anti-activation by QslA. 

In addition, small molecules may also disrupt protein-protein interaction between 

QslA and LasR, as in the case of glycine that inhibits GcvR anti-activation of GcvA 

regulator in E. coli (Heil et al., 2002). 

This study has identified two QS anti-activators, QslA and QslH, which 

share similar protein characteristics as TraM and TraM2 in being small in size and 

having secondary structures that are mostly made up of α-helices. This differs from 

the putative P. aeruginosa anti-activator QscR that is homologous to LasR. The 

anti-activators in A. tumefaciens inhibit the basal amount of TraR/3-oxo-C8-HSL 

complex formed in the absence of opine, and this is only overcome when 

expression of traR is induced by OccR or NocR (Fuqua & Winans, 1994, Hwang et 

al., 1995, Piper & Farrand, 2000, Wang et al., 2006). The activity of A. tumefaciens 

anti-activators thus resembles that of QslA, where basal amount of ligand-bound 

regulators are inhibited. The control of QS threshold in A. tumefaciens, however, 

has not been tested. Hence, even though expression of lasR and traR are induced 

by different mechanisms in P. aeruginosa and A. tumefaciens, respectively, QS 

activation in both bacteria are modulated similarly by anti-activation.  

TrlR, TraM and TraM2 in A. tumefaciens inhibit only LasR homologue, TraR 

(Hwang et al., 1995, Piper & Farrand, 2000, Wang et al., 2006). Anti-activation, 

however, is not only targeted at LuxR-type regulators. QslH was found to inhibit 

PqsR, which is a LysR-type regulator. GcvA, which is a regulator involved in glycine 

metabolism, is also a LysR-type regulator (Heil et al., 2002), while ExsA is a AraC-

type regulator (McCaw et al., 2002), so inhibition of regulator activity by anti-
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activation occurs for different types of regulators. RhlR, which is homologous to 

LasR in P. aeruginosa, was not inhibited by QslA or QslH. It may be possible that 

the anti-activators which interact with RhlR were not identified in this study. 

Identification of QS anti-activators in A. tumefaciens and P. aeruginosa 

suggests that these anti-activators could be an integral part of QS systems in 

bacteria with AHL-dependent QS systems. QS anti-activators are likely species-

specific because homologues of known anti-activators are only found in strains 

within the same species. As a result, homology search may not allow identification 

of QS anti-activators in other bacteria engaged in QS.  

In summary, this study has revealed the roles of two novel QS anti-

activators in P. aeruginosa with specific functions. QslA is instrumental in defining 

the QS threshold, while QslH allows regulation of QS according to MvaT-regulated 

conditions. Based on these findings, further investigation of the protein-protein 

interaction interface of QslA and QslH with QS regulators may facilitate 

development of QS inhibitors to attenuate P. aeruginosa virulence. 
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